
HAL Id: tel-01418298
https://theses.hal.science/tel-01418298v1
Submitted on 20 Dec 2016 (v1), last revised 20 Jan 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Improving the Quality of Mobile Apps by
Leveraging Crowdsourced Feedback

Maria Gomez

To cite this version:
Maria Gomez. Towards Improving the Quality of Mobile Apps by Leveraging Crowdsourced Feedback.
Software Engineering [cs.SE]. Universite Lille 1; Inria Lille - Nord Europe, 2016. English. �NNT : �.
�tel-01418298v1�

https://theses.hal.science/tel-01418298v1
https://hal.archives-ouvertes.fr

Towards Improving the Quality of
Mobile Apps by Leveraging
Crowdsourced Feedback

Maria Gomez

Supervisors: Prof. Romain Rouvoy and Prof. Lionel Seinturier

Inria Lille Nord Europe
University of Lille

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Science

Thesis Committee:
Prof. Xavier Blanc, Dr. Jacques Klein and Prof. Michele Lanza (referees)
Dr. Alessandra Gorla and Prof. Luigi Lancieri (examiners)

University of Lille 2nd December 2016

“Difficult things take a long time;
impossible things, a little longer”

—Dr. André A. Jackson

A mi tío Miguel, por ser mi referente.
A mis padres y mi hermano, por ser mi fuente de motivación.

A Antonio, por su paciencia y apoyo infinitos.

Acknowledgements

ix

Abstract

The development of mobile applications (apps) is exploding, largely due to the
widespread use of mobile devices. App stores (e.g., Google Play) are the common
distribution channels for apps. The excessive competition in current app markets
is forcing app vendors to release high-quality apps. In fact, previous studies have
repeatedly demonstrated that app users are intolerant to quality issues (e.g., crashes,
unresponsive apps). Users who encounter issues frequently uninstall apps and move to
alternative apps. Hence, quickly detecting and preventing issues is crucial for staying
competitive in the market.

Although developers use emulators and test apps before deployment, many bugs emerge
in the wild. Developing apps which run without errors along time remains a primary
concern for app developers. The big challenge is that the environment is out of the
app developers’ control. More specifically, the mobile ecosystem faces rapid platform
evolution (OSs, APIs), high device fragmentation, and high diversity of execution
contexts (networks, locations, sensors).

This thesis introduces a new generation of app stores—App Store 2.0, which exploit
crowdsourced information about apps, devices and users to increase the overall quality
of the delivered mobile apps. App stores already have access to these different types
of crowds. We claim that app stores can exploit the wisdom of the crowd to distill
actionable insights from the feedback returned by the crowds. These actionable insights
assist app developers to deal with potential errors and threats that affect their apps
prior to publication or even when the apps are in the hands of end-users.

We sketch a prototype of the envisioned app store for Android apps. We validate the
proposed solution with real bugs and apps. Our results have proven the applicability
and feasibility of our approach. These new app stores have the potential to reduce
human effort and save precious time for developers, which is a decisive factor for the
success of mobile apps in current app markets.

Résumé

Le développement des applications mobiles (apps) est en pleine explosion, en grande
partie en raison de l’utilisation généralisée des appareils mobiles. Les magasins
d’applications (e.g., Google Play) sont les canaux de distribution courants pour les
apps. La concurrence excessive sur les marchés d’applications actuels oblige les four-
nisseurs d’applications à diffuser des applications de haute qualité. En fait, des études
antérieures ont démontré que les utilisateurs d’applications sont intolérants à des prob-
lèmes de qualité (e.g., des arrêts inopinés, des applications qui ne répondent pas). Les
utilisateurs qui rencontrent des problèmes désinstallent fréquemment les applications
et se dirigent vers des applications concurrentes. Par conséquent, détecter et prévenir
rapidement des problèmes dans les applications est crucial pour rester compétitif sur
le marché.

Même si les développeurs utilisent des émulateurs et testent les applications avant le
déploiement, de nombreux bugs peuvent encore apparaître dans la nature. Dévelop-
per des applications qui fonctionnent sans erreur à travers le temps reste donc une
préoccupation majeure pour les développeurs. Le grand défi qui demeure est que
l’environnement reste hors du contrôle des développeurs d’applications. Plus pré-
cisément, l’écosystème mobile est confronté à une rapide évolution des plateformes
mobiles, une forte fragmentation des équipements, et une grande diversité des contextes
d’exécution (les réseaux, les localisations, les capteurs).

Cette thèse présente donc une nouvelle génération de magasins d’applications mobiles—
App Store 2.0—qui exploite des données collectées sur les applications, les appareils
et les utilisateurs afin d’augmenter la qualité globale des applications mobiles publiées
en ligne. Les magasins d’applications ont déjà accès à différents types de communautés
(de smartphones, d’utilisateurs, et d’applications). Nous affirmons que cette nouvelle
génération de magasins d’applications peut exploiter l’intelligence collective pour
obtenir des indications pratiques à partir des données retournées par les utilisateurs.
Ces indications concrètes aident les développeurs d’applications à traiter les erreurs et

xiv

les menaces potentielles qui affectent leurs applications avant la publication ou même
lorsque les applications sont dans les mains des utilisateurs finaux.

Nous avons conçu un prototype du magasin d’applications envisagé pour les applications
Android. Nous validons la solution proposée avec des bugs et des applications réels.
Nos résultats ont prouvé l’applicabilité et la faisabilité de notre approche. Ces nouveaux
magasins d’applications ont le potentiel de réduire l’effort humain et de gagner du
temps précieux pour les développeurs, ce qui est un facteur déterminant pour le succès
des applications mobiles sur les marchés d’applications actuels.

Table of contents

List of figures xix

List of tables xxiii

I Preface 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Statement . 5
1.3 Thesis Goals . 6
1.4 Proposed Solution . 7
1.5 Publications . 8

1.5.1 Publication Details . 8
1.5.2 Awards . 9

1.6 International Research Visits . 9
1.7 Thesis Outline . 9

2 State of the Art 13
2.1 App Store Analysis . 14

2.1.1 Review Analysis . 14
2.1.2 Android Permission Analysis . 15

2.2 Debugging . 16
2.2.1 Crash Reporting Systems . 17
2.2.2 Field Failure Reproduction . 17
2.2.3 Automated Patch Generation 19

2.3 Crowd Monitoring . 20
2.3.1 Monitoring User Interactions to Support Bug Reproduction . . 21

xvi Table of contents

2.4 Mobile App Testing . 21
2.4.1 Automated UI Testing Tools . 22
2.4.2 Record and Replay . 23
2.4.3 Performance Testing . 23

2.5 Conclusion . 25

3 The Vision of App Store 2.0 27
3.1 App Store 2.0 Overview . 28
3.2 Main Building Blocks . 29

3.2.1 Crowd Monitoring Block . 31
3.2.2 Crowd Leveraging Block . 32

3.3 Conclusions . 34

II Contributions 35

4 Monitoring the Crowd 37
4.1 Types of Bugs in Mobile Apps . 38

4.1.1 App Crashes . 38
4.1.2 UI Jank . 39

4.2 What Information to Monitor from the Crowd? 40
4.2.1 Monitoring User Feedback . 40
4.2.2 Monitoring App Context . 43
4.2.3 Monitoring App Executions . 43

4.3 Conclusions . 48

5 Leveraging the Crowd in vitro 49
5.1 Reporting Risky Apps a priori . 50

5.1.1 Empirical Study of Google Play Store 50
5.1.2 Analyzing App Permissions . 52
5.1.3 Generating Risk Reports . 59
5.1.4 Implementation Details . 62

5.2 Reporting on Performance Degradations 63
5.2.1 Aggregating Performance Logs 66
5.2.2 Identifying Performance Deviations 66
5.2.3 Generating Performance Reports 70
5.2.4 Implementation Details . 72

5.3 Conclusions . 73

Table of contents xvii

6 Leveraging the Crowd in Vivo 75
6.1 Reproducing Crash Scenarios a posteriori 75

6.1.1 Aggregating Crowdsourced Crash Logs 77
6.1.2 Identifying Crash Patterns . 80
6.1.3 Generating Reproducible Scenarios 82
6.1.4 Implementation Details . 85

6.2 Patching Defective Apps in the Wild 88
6.2.1 Patch strategy 1: Muting unhandled exceptions 88
6.2.2 Patch strategy 2: Deactivating UI features 90
6.2.3 Implementation Details . 91

6.3 Conclusions . 93

III Empirical Evaluations 95

7 Evaluation of in-vitro Approaches 97
7.1 Evaluation of Crowdsourced Checkers 97

7.1.1 Empirical Study Design . 98
7.1.2 Dataset . 98
7.1.3 Empirical Study Results . 99
7.1.4 Threats to Validity . 101

7.2 Evaluation of DUNE . 103
7.2.1 Empirical Study Design . 103
7.2.2 Dataset . 103
7.2.3 Empirical Study Results . 106
7.2.4 Threats to Validity . 113

7.3 Conclusion . 114

8 Evaluation of in-vivo Approaches 115
8.1 Evaluation of MoTiF . 115

8.1.1 Empirical Study Design . 115
8.1.2 Dataset . 116
8.1.3 Empirical Study Results . 118
8.1.4 Threats to Validity . 122

8.2 Evaluation of CrowdSeer . 123
8.2.1 Empirical Study Design . 123
8.2.2 Empirical Study Results . 124

xviii Table of contents

8.2.3 Threats to Validity . 137
8.3 Conclusion . 138

IV Final Remarks 139

9 Conclusions and Perspectives 141
9.1 Contributions . 142
9.2 Perspectives . 144

9.2.1 Short-term Perspectives . 144
9.2.2 Long-term Perspectives . 147

9.3 Final Conclusion . 149

References 151

Appendix A Users’ Opinion and Preferences Survey 163

Appendix B App Developer Interview 169

List of figures

1.1 Chapter 1 at a glance . 3
1.2 Theis outline . 11

2.1 Chapter 2 at a glance . 13
2.2 Research Areas and subareas related to this thesis 14

3.1 Chapter 3 at a glance . 27
3.2 Types and volume of crowds in app stores 28
3.3 Big picture of Smart Stores 2.0. 29
3.4 Main building blocks of the proposal. 30
3.5 App Store 2.0 workflow. 31

4.1 Chapter 4 at a glance . 37
4.2 Identifying Crash-prone Apps from User Reviews 41
4.3 Example of three error-related topics from user reviews 42
4.4 Examples of crash-related reviews in Google Play Store 42
4.5 Example of a crowdsourced crash trace. 45
4.6 Frame rendering metrics for an app execution divided in buckets per UI

event . 47

5.1 Chapter 5 at a glance . 49
5.2 Overview of the Risk Analysis component 51
5.3 Distribution of error-suspicious apps by categories in Google Play. . . . 52
5.4 Taxonomy of Permission Types in Android apps 54
5.5 Calibration of confidence factor and minNumObj parameters. 61
5.6 Excerpt of the Google Play Store dataset in Neo4j 63
5.7 Overview of the Performance Analysis module 65
5.8 Example of a Batch Model from a historic runs repository 66

xx List of figures

5.9 Automated detection of performance deviations through Interquartile
Ranges with fine-grained (UI) metrics. 71

5.10 Dune implementation. Metrics acquisition component (left). Report
generation component (right). 72

6.1 Chapter 6 at a glance . 75
6.2 Overview of the Crash Analysis module in the App Store 2.0. . . . 76
6.3 Crash Graph derived from Table 6.1. 79
6.4 Learning the crash-prone context from a candidate trace. 82
6.5 Generated reproducible scenario for the Wikipedia app 84
6.6 MoTiF implementation . 85
6.7 Crowd crash graph in Neo4J . 87
6.8 Dijkstra algorithm implementation in Cypher 87
6.9 Example of exception trace thrown by a defective app 89
6.10 Example of a Crowdseer script . 93

7.1 Chapter 7 at a glance . 97
7.2 Evolution of apps and permissions in the Google Play Store (between

November 2013 and March 2014). 98
7.3 Evaluation of the accuracy of the permission checkers. 100
7.4 Reviews evolution after removing error-sensitive permissions. 102
7.5 Frames rendered during the test scenario execution in the Space Blaster

app in the historical dataset (left) and in the new context (right). . . . 107
7.6 Frames rendered during the test scenario execution in the K-9 app in

the historical dataset (left) and in the new context (right). 108
7.7 Outliers flagged in the new test runs in the K-9 app in comparison with

the historical test runs. 109
7.8 Graph visualization of the context rules identified in the K-9 app. . . . 110

8.1 Chapter 8 at a glance . 115
8.2 Runtime overhead (ms) of monitoring user interactions (left) and send

traces to server (right). 119
8.3 Results of the User Survey (Nlab=33, Ncrowd=495, Ntotal=528). 131
8.4 Preferred options instead of crash (N=528). 132

9.1 Chapter 9 at a glance . 141

A.1 Description of the usage scenario . 164

List of figures xxi

A.2 Set of Questions to Evaluate . 165
A.3 Crowdflower job . 166
A.4 Demographic information of the crowdsourced participants (N=495) . . 167

List of tables

1.1 International Research Visits . 10

2.1 Prior work in the Review Analysis in Google Play Store 15
2.2 Summary of related work in the Field Failure Reproduction sub-area . . 19
2.3 Summary of related work in the Crowd Monitoring area 20

3.1 Types and Volumes of Crowdsourced Information in App Stores. 32

4.1 Types of Bugs in Mobile apps. 38
4.2 Categories of Android app crashes. 39
4.3 Examples of Android view types with their event listeners and handler

methods . 44
4.4 Excerpt of a crash log . 46

5.1 Summary of applying the permission taxonomy to our Google Play Store
dataset . 58

5.2 App Permission Checkers . 62
5.3 Context similarities between the new performance trace (T4) and the

historical traces (T1, T2 and T3). 68

6.1 Example of crash traces and single steps split. In bracket, occurrences
of each step. 78

6.2 Examples of mappings between Android event handler methods and
Robotium methods. 83

7.1 Comparison to alternatives . 101
7.2 Summary of the approach’s parameters 103
7.3 Sample of the Device Lab used in the experiment. 105
7.4 Summary of the performance of Dune to spot UI events. 112

xxiv List of tables

8.1 Statistics of the Android apps used in our experiments. 116
8.2 Crowd of devices used in the experiment. 117
8.3 Number of events and compression factor of the crash traces for the

CrowdSource (first five rows) and Chimp (last row) datasets. 120
8.4 Candidate traces to reproduce crashes. 122
8.5 Experiment results using Crowdseer to avoid crashes in the benchmark

apps† . 125
8.6 Overview of the interviewed Android developers 133

9.1 Relationship between contributions and publications 143

Part I

Preface

The first part of this manuscript introduces the motivation,
scope and goals of this thesis.

Chapter 1

Introduction

Mobile
Apps

Platform
Evolution

Device
Fragmentation

Diverse
Context

Crashes UI
janks

issues

challenges

supported
by

AppStore
2.0

Crowd

PROBLEM

SOLUTION

Fig. 1.1 Chapter 1 at a glance

The widespread use of mobile devices
(such as smartphones and tablets) has
accelerated the development of mobile ap-
plications—broadly called ‘apps’. These
apps are commonly distributed through
centralized platform-specific app stores,
such as Google Play (Android), Apple
Store (iOS), Windows Store (Windows
Phone), etc. The Google Play Store (the
official market for Android apps) pub-
lishes 2.2 million apps [147] and registered
65 billion app downloads during the last

year [16]. Revenue-wise, app developers earned more than 41 billion dollars in 2015,
while projections estimate 101 billion dollar to be collected by 2020 [145].

While the popularity of mobile apps keeps on increasing, the quality of these apps
varies widely. Unfortunately, end-users frequently experience bugs and crashes with
some apps installed on their devices; as reported by user feedback in the form of
reviews [99, 109] and ratings [119]. Given the increasing competition in the mobile app
ecosystem, improving the experience of users is a major goal for app vendors.

This thesis introduces a new generation of app stores—App Store 2.0, which exploits
crowdsourced information about apps, devices and users to increase the overall quality
of the delivered mobile apps. Since app stores already have access to these different
types of crowds, the key insight is to make them exploit the wisdom of the crowds

4 Introduction

to generate actionable insights for the stakeholders of the mobile ecosystem (app
developers, app users, and app store moderators). These new app stores have the
potential to save precious time for developers, which is a crucial factor for the success
of apps in current app markets.

The rest of the chapter is organized as follows. Section 1.1 describes the motivation of
this research. Section 1.2 discuss the problem that this thesis aims to tackle. Section 1.3
presents the main goals of this thesis. Section 1.4 introduces our proposed solution.
Section 1.5 details the publications derived from this research. Section 1.6 describes
the international visits performed during this thesis. Finally, Section 1.7 summarizes
the structure of this document.

1.1 Motivation

The severe competition in the app market challenges app vendors to release high-quality
apps for keeping popularity among users. Previous studies showed that app users who
encounter issues (e.g., crashes) are likely to stop using the app and even to look for
alternatives [88].

The quality of apps depends on both functional and non-functional requirements (e.g.
absence of failures and performance). In particular, app crashes and unresponsive apps
heavily disrupt the users’ experience, as highlighted by user feedbacks [99]. When issues
surface, app developers need to quickly detect, replicate, and fix issues. Otherwise,
they risk to loose customers and be forced out of the market.

Currently, a wide range of testing tools for mobile apps are available [89, 112, 46, rob].
Although developers use emulators and test apps extensively prior to release, many
bugs still emerge once the apps are deployed on users’ mobile devices [29]. As an
illustration, let us consider a developer who has developed and published an app
in a store. Eventually, Android releases a new OS version, for example prompting
devices to update from the 6.0 Marshmallow version to the latest 7.0 Nougat version.
Immediately after the OS update, the app starts crashing on users’ devices and some
users complain and report negative reviews on the store [119]. This crash is originated
by an OS update which is out of control of the app developer. The main challenge
faced by app developers is that they do not own the ecosystem, as it is the case of web
applications [27].

1.2 Problem Statement 5

In particular, guaranteeing the proper functioning of the deployed apps along time is
challenging for the following reasons:

• Rapid platform evolution. The Android operating system is extremely frag-
mented (i.e., SDKs, APIs). For example, new Android versions are released
frequently [156]; during 2015 two Android versions were released (Lollipop 5.1
and Marshmallow 6.0), and in 2016 a new version (Nougat 7.0) has been released.

• High device fragmentation. Despite the platform fragmentation, there is a
high device fragmentation. There are over 24,000 distinct devices and more that
1,200 different device brands [126]. Thus, it is challenging to test an app in all
available devices.

• Heterogeneous execution contexts. There is a high diversity of configuration
settings and conditions of execution (e.g., sensors, networks, locations, etc.).
Hence, it is practically impossible to simulate all possible runtime environments
in vitro, i.e., before release.

1.2 Problem Statement

Beyond their initial publication, maintaining apps remains one of the most complex
tasks in mobile developments. More specifically, app developers face the following
challenges:

• First, app developers need to detect when users face issues. This is typically
done by manual investigations of user reviews and/or bug reports (commonly
collected via reporting libraries).

• Second, the conditions triggering the defects must be isolated to reproduce the
issues. Given the high combinatorial explosion of device characteristics and
operating conditions, this quickly becomes an arduous task.

• Lastly, the defects should be fixed and a new app version must be released to
the store. However, as long as the developer does not upload a fixed version, the
store continues spreading the defective app across users and devices. Since the
release process of a new app version can be long [117], developers risk to loose
customers who move to the competitors’ apps. In addition, apps lose a certain
percentage of users when they are asked to re-download apps, because many
users never do it [27].

6 Introduction

The work presented in this thesis aims to alleviate the challenges presented above.
More specifically, this thesis aims to answer the following four research questions:

• Research question 1: Is it possible to predict occurrences of mobile app bugs
from the feedback returned by the crowd?

• Research question 2: Is it possible to faithfully reproduce in vitro mobile app
bugs experienced by users in the wild?

• Research question 3: Is it possible to prevent recurrences of mobile app bugs
in vivo?

• Research question 4: Is it possible to exploit the diversity of the crowd to
improve user experience with mobile apps?

These research questions are explored in next sections.

1.3 Thesis Goals

The main goal of this thesis is to drastically improve the quality of mobile apps. We
pursue to complement existing testing solutions with novel mechanisms to monitor and
debug apps after their deployment in the wild. We focus on two types of bugs: crashes
and UI janks.

Regarding research question 1, this thesis aims to study mechanisms to anticipate the
emergence of bugs before deploying apps to users. This is especially important when
considering that negative reviews in early releases of an app make it almost impossible
to recover afterwards [119]. These mechanisms learn from observations of existing
buggy apps executed by the crowd.

Regarding research question 2, this research aims to provide mechanisms to automate
the reproduction of bugs faced by users in the wild. These mechanisms systematically
analyze crash reports collected from a crowd of devices and users to automatically
synthesize execution traces which reproduce wild failures. The goal is to minimize
developer effort and automate the reproduction step.

Regarding research question 3, this thesis intends to provide mechanisms to prevent the
exhibition of further instances of a previously observed failure. These mechanisms aim
to mitigate the raise of unhanded exceptions. For such purpose, crowd feedback will be
exploited to isolate the conditions triggering failures and the defective functionalities

1.4 Proposed Solution 7

of apps. The prevention actions need to be transparent to users. The final goal is to
minimize the time that users are exposed to failures and the number of affected users.

Finally, regarding research question 4, this thesis aims to provide an approach to
automatically detect and isolate UI performance defects by exploiting the diversity of
devices and operating contexts.

1.4 Proposed Solution

This thesis proposes leveraging the wisdom of the crowd to improve the quality of
mobile apps. Our key insight is that app stores should leverage the different types
of crowds to which they have access—crowd of apps, crowd of devices, and crowd of
users. We therefore claim that app stores can leverage the value of this crowdsourced
information to deliver new services, supporting the development of mobile apps in
several ways.

This thesis introduces App Store 2.0, which enhances standard app stores by ex-
ploiting the wisdom of the crowd. The crowd contributes to the development of a new
generation of app stores, which include the capability to assist developers to deal with
potential errors and threats that affect their apps prior to publication or even when
the apps are in the hands of end-users. The App Store 2.0 has two main missions:
1. to reduce developer effort to maintain mobile apps, and 2. to enhance the experience
and loyalty of users with apps. The App Store 2.0 relies on self-healing principles
and aims to support and automate the mobile app maintenance process.

The App Store 2.0 contributes to the delivery of actionable insights to the stake-
holders of a mobile app ecosystem. These feedbacks span over risk reports to support
the decision process of app store moderators, reproducible scenarios to support the
reproduction task of app developers, performance reports for app developers, and app
patches for app users. The modular software architecture of App Store 2.0 paves the
way for the deployment of additional modules that an app store moderator and app
developers can decide to activate.

Finally, we sketch a prototype of the envisioned App Store 2.0 for Android apps. We
perform a series of empirical studies to validate the feasibility of our proposal. Our
research shows that crowdsourcing can overcome the challenges identified above and
improve the overall quality of mobile apps.

8 Introduction

1.5 Publications

The contributions derived from this research have been published on international
peer-review conferences. In this section, we detail the publications and awards resulted
from this thesis. The publications are ordered by year of publication.

1.5.1 Publication Details

• Maria Gomez, Bram Adams, Walid Maalej, Martin Monperrus, Romain Rouvoy.
App Store 2.0: From Crowd Information to Actionable Feedback in Mobile
App Ecosystems. IEEE Software - Special Issue in Crowdsourcing for Software
Engineering, 2017 (to appear).

• Maria Gomez, Romain Rouvoy, Bram Adams, Lionel Seinturier. Mining
Test Repositories for Automatic Detection of UI Performance Regressions in
Android Apps. 13th International Conference on Mining Software Repositories
(MSR’16) [76] (acceptance rate: 36/103, 27%).

• Maria Gomez, Romain Rouvoy, Bram Adams, Lionel Seinturier. Reproduc-
ing Context-sensitive Crashes of Mobile Apps using Crowdsourced Monitoring.
3rd IEEE/ACM International Conference on Mobile Software Engineering and
Systems (MOBILESoft’16) [77] (acceptance rate: 22,6%).

• Maria Gomez, Matias Martinez, Martin Monperrus, Romain Rouvoy. When
App Stores Listen to the Crowd to Fight Bugs in the Wild. 37th International
Conference on Software Engineering (ICSE’15), track on New Ideas and Emerging
Results (NIER) [75] (acceptance rate: 25/135, 18%).

• Maria Gomez, Romain Rouvoy, Martin Monperrus, Lionel Seinturier. A
Recommender System of Buggy App Checkers for App Store Moderators. 2nd
ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft’15) [78] (acceptance rate: 7/42, 16.6%).

In addition, one journal article is under submission:

• Maria Gomez, Romain Rouvoy, Lionel Seinturier, Walid Maalej. Crowdseer:
Preventing App Crashes by Learning from Users. IEEE Transactions on Software
Engineering. (article to be submitted).

1.6 International Research Visits 9

1.5.2 Awards

This thesis has received two awards.

• 1st Place Winner ACM Student Research Competition Award. Maria
Gomez. Debugging of Mobile Apps in the Wild Guided by the Wisdom of the
Crowd. 2nd ACM International Conference on Mobile Software Engineering and
Systems (MOBILESoft’15 - SRC) [74]. May 2015. This work was invited to
participate in the grand final competition.

• Best Poster Award. PhD Welcome Seminar organized by Pôle de Recherche
et d’Enseignement Supériur (PRES) - Université Lille Nord de France (ULNF).
Nov. 2013.

1.6 International Research Visits

During this PhD, two research visits have been performed. Table 1.1 summarizes the
details of these visits.

Dr. Bram Adams and Prof. Walid Maalej have a deep expertise in software engineering
and mobile computing. In particular, Dr. Bram Adams is an expert on software
release engineering. While, Prof. Walid Maalej is an expert on app store analysis and
crowdsourcing. These expertises excellently complements this PhD topic. As a result,
these collaborations have influenced and tremendously enriched this thesis.

1.7 Thesis Outline

This dissertation is organized in 5 parts ,which contain 9 chapters and 3 appendixes as
shown in Figure 1.2.

Part I: Preface. This manuscript starts by presenting the motivation of this research
and the challenges that this thesis intends to tackle. First, Chapter 2 reviews the
state of the art on the major research areas that are related to this research. Second,
Chapter 3 provides and overview of the App Store 2.0 proposed in this thesis.

Part II: Contributions. The second part describes in detail the contributions of
this thesis. In Chapter 4, we present the monitoring block to gather different types

10 Introduction

Table 1.1 International Research Visits

Research visit
Duration July 2015 – October 2015 (3 months)
Host Dr. Bram Adams
Destination Lab on Maintenance, Construction and Intelligence of Software

(MCIS)
Polytechnique Montreal
Montreal, Canada

Results During this visit, we performed an empirical study regarding crash
reproduction with a group of students simulating a diverse crowd. In
addition, we explored performance bugs in mobile apps and propose
an approach to automatically detect UI performance defects in
heterogeneous contexts.

Research visit
Duration January 2016 – April 2016 (4 months)
Host Prof. Walid Maalej
Destination Mobile Services and Software Engineering (MAST)

Hamburg University
Hamburg, Germany

Results As a result of this visit, we developed and approach to automatically
prevent crashes in mobile apps by deactivating UI features on the
fly. This approach was empirically evaluated with a large group of
mobile users and app developers.

of feedbacks from the crowd in app stores. Afterwards, Chapter 5 and Chapter 6
describe the approaches which constitute the App Store 2.0 before and after releasing
apps, respectively. These approaches generate four types of actionable insights from
crowdsourced information.

Part III: Evaluations. In this part, we present four empirical studies to validate the
feasibility of the proposal. In particular, Chapter 7 reports on empirical evaluations to
validate the approaches contained in the in vitro module. Whereas Chapter 8 validates
the approaches contained in the in vivo module.

Part IV: Final Remarks. Finally, Chapter 9 presents the final conclusions and
speculates future research directions to continue this research.

Part V: Appendixes. Additionally, we attach three appendixes. Appendix ??
describes the tools implemented to support the approaches presented in this thesis.
Appendix A shows the design of the survey used to evaluate our proposal with users.

1.7 Thesis Outline 11

DTbIntroduction 4TbCrowdbMonitor

5TbCrowdbLevarage
inbvitro

7TbEvaluation
inbvitro

9TbConclusionbh
Perspectives

Preface Contributions Evaluations Finalbremarks

2TbStatebofbthebArt

3TbOverview 6TbCrowdbLevarage
inbvivo

8TbEvaluation
inbvivo

Appendixes

ATbToolbSupport

BTbUsers
Survey

CTbDevelopers
Interview

Fig. 1.2 Theis outline

Appendix B illustrates the design of the interview performed with developers as part
of the evaluation of this thesis.

Chapter 2

State of the Art

App Store
Analysis

Crowd
Monitoring

Debugging

App
Testing

This
thesis

Fig. 2.1 Chapter 2 at a glance

The development of mobile apps is experi-
encing an unprecedented popularity. This
chapter reviews the state of the art in the
major research areas that are closely re-
lated to this thesis. This chapter aims to
answer the following research questions:

q1: Which approaches have been pro-
posed?

q2: How to organize the proposed ap-
proaches?

q3: What are the limitations of current
approaches?

These research questions are answered along the chapter. We have identified four
main research areas: app store analysis, debugging, crowd monitoring, and mobile app
testing. To classify existing approaches, we consider different sub-areas within each
area. Figure 2.2 shows a graphical presentation of the main research areas and subareas
of this thesis.

This thesis fits in the intersection of the four bodies of knowledge. In the following
sections, we analyze and discuss the most relevant approaches in these areas and their
subareas.

14 State of the Art

App Store
Analysis

App
TestingDebugging

Crowd
Monitoring

Review
Analysis

Crash
Reporting
Systems

Field
Failure

Reproduction

Automated
Patch

Generation

Monitoring
UI&Interactions

Automated
UI&Testing

Tools

Record&&
Replay

Performance
Testing

Permission
Analysis

Fig. 2.2 Research Areas and subareas related to this thesis

The rest of the chapter is organized as follows. Sections 2.1 to 2.4 summarize related
work to this research and outlines the deficiencies of existing approaches. Finally,
Section 2.5 presents the conclusions.

2.1 App Store Analysis

The app store analysis area studies information regarding mobile apps mined from app
stores. William et. al. [154] have identified seven key sub-fields of app store analysis:
API analysis, feature analysis, release engineering, review analysis, security analysis,
store ecosystem comparison, and size and effort prediction. We focus on analyzing the
related work in the two sub-fields related to this thesis: reviews and API analysis.
In particular, in the API analysis sub-field we focus on approaches which concern the
study of the permissions of APIs.

2.1.1 Review Analysis

In this section, we discuss recent approaches that analyze app reviews posted by users
on the Google Play Store. Table 2.2 summarizes prior work in the Review Analysis
sub-area.

Ha et al. [82] manually analysed user reviews available on Google Play Store to
understand what users write about apps. Performing this task manually becomes
infeasible due to the large amount of available reviews.

2.1 App Store Analysis 15

Table 2.1 Prior work in the Review Analysis in Google Play Store

Approach #Apps #Reviews
Ha et al. [82] 59 556

Chen et al. [122] 4 169,097
Fu et al. [70] 171,493 13,286,706

Iacob and Harrison [93] 161 3,279
Maalej et al. [108] 80 146,057

Chen et al. [122] present AR-Miner, a tool for mining reviews from Google Play Store
and extract user feedbacks. First, they filter reviews that contain useful information for
developers to improve their apps. Then, they prioritize the most informative reviews
before presenting the content of reviews. They use LDA to group the reviews discussing
about the same thematics.

Fu et al. [70] propose WisCom, a system to analyze user reviews and ratings in order
to identify the reasons why users like or dislike apps.

Iacob and Harrison [93] propose MARA, a tool for extracting feature requests from
online reviews of apps. First, they use a set of predefined rules to identify sentences in
online reviews which refer to feature requests. Then, they apply LDA for identifying
the most common topics among the feature requests.

Maalej et al. [108] propose an approach to automatically classify reviews into for
categories: bug reports, feature requests, user experiences, and ratings.

Similar to these studies we analyze reviews available in stores to extract informative
feedback. Nevertheless, our work differs from these studies since we focus on reviews as
an oracle of error-proneness. The reviews constitute a trigger to further analyze apps.

2.1.2 Android Permission Analysis

The API analysis sub-field studies the API usage extracted from apps. In Android,
APIs are protected by a permission model. More specifically, we focus on the literature
that analyzes the usage of permissions.

CHABADA [81] proposes an API-based approach to detect apps that misbehave
regarding their descriptions. CHABADA clusters apps with similar descriptions
and identifies API usage outliers in each cluster. These outliers point out potential

16 State of the Art

malware apps. In contrast, we analyze user reviews (and not on app descriptions) to
automatically identify buggy apps (as opposed to identify malware).

Frank et al. [69] propose a probabilistic model to identify permission patterns in
Android and Facebook apps. They found that permission patterns differ between
high-reputation and low-reputation apps.

Barrera et al. [47] studied the permission requests made by apps in the different
categories of the Google Play store by mapping apps to categories based on their set
of requested permissions. They show that a small number of Android permissions are
used very frequently while the rest are only used occasionally.

Jeon et al. [95] proposed a taxonomy that divides official Android permissions into four
groups based on the permission behaviors (e.g., access to sensors, access to structured
user information). For each category, they propose new fine-grained variants of the
permissions.

Chia et al. [54] performed a study on Android permissions to identify privacy risks on
apps. They analyze the correlation between the number of permissions requested by
apps and several signals, such as app popularity and community rating.

Our work differs from previous studies as we focus on permissions as a proxy for
bugginess. Our taxonomy has a different goal, the aim of our classification is helping to
identify error-sensitive permissions. Previous studies focus on official Android-specific
permissions, we also analyze Google-defined, Vendor-defined and Developer-defined
permissions.

Discussion
Despite the prolific research in the app store analysis area, none of previous approaches
have proposed mechanisms to exploit the user feedback by the stores themselves
automatically. We claim that app stores can automatically translate the crowd
feedback into actionable insights.

2.2 Debugging

Debugging is the process of detecting, locating, and correcting faults in a computer
program [131]. Debugging can take place during development, or after deployment when
the software is in production. Zeller [163] identifies 7 steps in the debugging process:

2.2 Debugging 17

1) Track the problem, 2) Reproduce the failure, 3) Automate, 4) Find infection origins,
5) Focus on likely origins, 6) Isolate the infection chain, and 7) Correct the defect.

This thesis aims to assist app developers to debug mobile apps after deployment. In
particular, we focus on supporting steps 1, 2 and 7. Our goal is to assist developers
to detect, reproduce, and patch failures. We review the literature in the subareas
corresponding to each of these debugging steps. To track these problems, we review
previous works in the crash reporting systems sub-area. To reproduce failures, we
review the literature in the sub-area of field failure reproduction. Finally, to correct
defects, we review existing approaches in the automated patch generation sub-area.

2.2.1 Crash Reporting Systems

Crash reporting systems collect information (such as stack traces and core dumps) when
a program crashes and send it back to developers. In the mobile platform, there is a
range of crash reporting tools, for example: crashlytics [cra], SPLUNK [splunk],
ACRA [ACRA], and Google Analytics [googleanalytics]).

These systems collect raw analytics on the execution of apps. Crash reports (collected
by crash reporting systems) typically lack steps to reproduce failures [110]. Thus,
developers face problems when reproducing failures experienced by users. Knowing the
steps that lead to failures and the context under which failures arise, it is essential to
reproduce failures [163]. However, none of previous crash reporting systems synthesize
steps to reproduce crashes neither the context that induce the failures.

This thesis goes beyond current crash reporting systems by exploiting crowd feedback
in a smarter way. The App Store 2.0 provides developers reproducible scenarios,
which define the steps to reproduce crashes and the context that induce the failures.
The reproducible scenarios are crowd-validated before delivery to developers.

2.2.2 Field Failure Reproduction

The Field Failure Reproduction sub-area studies techniques to assist developers to
reproduce in-lab crashes that are faced by end-users after release.

BugRedux. Jin and Orso [96] introduce BugRedux, an approach that applies
symbolic execution and constraint solving techniques to recreate field failures for
desktop programs. BugRedux implements 4 reproduction strategies by taking as

18 State of the Art

input 4 different types of failure data: the crash location, the crash stack trace, the
call sequence, or the complete execution trace. BugRedux is implemented for the C
language.

BUGEX. Röβler et al. [133] propose the approach BUGEX that leverages test case
generation to systematically isolate failures and characterize when and how the failure
occurs. The input of BUGEX is a failing test case. BUGEX uses an evolutionary
approach to generate executions which are identical to the input failing test. BUGEX
is implemented for the Java language.

ReCrash. Artzi et al. introduce ReCrash [42], a technique to generate unit tests
that reproduce failures in Java programs. ReCrash stores partial copies of method
arguments in memory during program executions to create unit tests to reproduce
failures. ReCrashJ is an implementation of ReCrash for Java.

STAR. Chen and Kim presents STAR [53], a framework to automatically reproduce
crashes from crash stack traces of object-oriented programs. The input of STAR is
the stack trace of a crash. STAR is implemented for the Java language.

Despite the prolific research in this area, none of the aforementioned approaches
are available for mobile platforms. Mobile apps pose additional challenges for the
reproduction task—i.e., context-induced crashes that are invisible from the apps’ code.

We identify the following reproduction approaches for the mobile platform:

Crashdroid. Crashdroid [152] is an approach to automatically generate steps to
reproduce bugs in Android apps. Crashdroid takes as input the call stack from crash
reports and generates a sequence of steps and a replayable script to reproduce the
crash. Developers need to perform a preprocessing in the apps. In particular, they
need to provide natural language descriptions of different scenarios of the apps under
test. Crashdroid cannot characterize contexts under which crashes arise, consequently
it cannot isolate device-specific crashes.

Table 2.2 summarizes the state of are in the Field Failure Reproduction sub-area.

This thesis complements existing approaches by providing a solution that can synthesize
steps and characterize contexts to reproduce crashes, without any preprocessing from
developers. Thus, we can deal with context-specific crashes which are the most
challenging for developers.

2.2 Debugging 19

Table 2.2 Summary of related work in the Field Failure Reproduction sub-area

Approach Language Technique Mobile Context
BugRedux [96] (2012) C Symbolic execution No -
BUGEX [133] (2012) Java Evolutionary approach No -
ReCrashJ [42] (2008) Java Record&Replay No -
STAR [53] (2014) Java Stack-trace based No -
Crashdroid [152] (2015) Android Stack-trace based Yes No

2.2.3 Automated Patch Generation

The last step of the debugging process is the correction of the defect to avoid their
emergence. The Automatic Software Repair area explores approaches for ‘automatically
finding a solution to software bugs, without human intervention [115]’. A patch is ‘any
modification to a source or object program’ [131]. The modification could require or not
require recompiling the source program. In this section, we summarize the sub-area
that concerns the automatic generation of patches.

Monperrus [115] presents a literature review on Automatic Software Repair approaches.
A huge number of automatic repair approaches have been proposed for desktop pro-
grams. These approaches use techniques which span over Genetic Programming (e.g.,
GenProg [102]), Rollback and Checkpoint (e.g., Assure [141]), Probabilistic and Ma-
chine Learning techniques (e.g., ClearView [129]), and Model-checking techniques (e.g.,
AutoFix-E [128]) among others.

Other approaches focus on automatic recovery from failures as part of the repair. For
example [52, 71] have proposed successful mechanisms to recover Java programs from
failures (unhandled exceptions) at runtime. Pagano et al. [127] propose FastFix, a
platform that remotely monitors web or desktop applications to identify symptoms of
incorrect execution or performance degradation. However, these approaches are not
available for the mobile platform.

Despite this research area has been extensively explored in desktop programs, the
automated patch generation for mobile apps is still in its infancy.

In the mobile domain, Azim et al. [45] propose an approach based on patch construction
and application restart to provide self-healing capabilities to recover Android apps
from certain kinds of faults. Their patching strategy consists of rewriting the bytecode
of apps to insert try/catch blocks to wrap methods that throw unhandled exceptions,
and to restart the system to a safe GUI state after the app experiences a failure. They

20 State of the Art

focus on runtime recovery from crashes. Their approach is reactive—i.e., it initiates
after a crash happens. In addition, since their approach is based on binary rewriting,
apps need to be reinstalled after the patch is applied.

Choi and Chang [55] propose a new component-level exception mechanism for Android
apps to recover from unexpected exceptions.

All previous approaches share a similar goal to this thesis, make programs more resilient
to faults. We focus on learning from failures to prevent more manifestation of crashes,
while the developer fixes the app. In addition, our approach is fed by crowd feedbacks
and continuously learns to improve its repair strategy.

Discussion
The debugging process has been extensively studied for desktop programs and
currently there is a huge number of assisting tools. Nevertheless, there is a lack of
approaches and tools to assist the post-deployment debugging for mobile platforms.
The debugging process posses additional challenges in mobile environments due
to high device fragmentation, rapid platform evolution (SDK, OS), and diverse
operating context (e.g., sensors).

2.3 Crowd Monitoring

Another family of approaches have monitored a multitude of devices in the wild with
different purposes. Table 2.3 summarizes the most relevant approaches in the Crowd
Monitoring area.

Table 2.3 Summary of related work in the Crowd Monitoring area

Approach Type of bug Platform Goal
MobiBug [29] (2010) Functional Not implemented Failure debugging
AppInsight [132] (2012) Performance Windows Phone Performance analysis
Carat [124] (2013) Energy Android Energy diagnosis

MobiBug. Agarwal et al. [29] propose MobiBug, a collaborative debugging framework
that monitors a multitude of phones to obtain relevant information about failures.
This information can be used by developers to manually reproduce and solve failures.
This thesis synthesizes reproducible scenarios to enable developers to automatically
reproduce crashes.

2.4 Mobile App Testing 21

AppInsight. AppInsight [132] is a system to monitor app performance in the wild for
the Windows Phone platform. AppInsight instruments mobile apps to automatically
identify the critical path in user transactions, across asynchronous-call boundaries.
However, they do not synthesize scenarios to reproduce crashes.

Carat. Oliner et al., [124] introduce Carat, a collaborative process in top of a crowd
of mobiles devices for diagnosing energy bugs in mobile apps. Carat is implemented
for Android apps.

Previous approaches have exploited the crowd to diagnose different types of bugs
in mobile apps. Similar to these approaches, this thesis exploits the crowd to ex-
tract knowledge. This thesis also translates crowd knowledge into actionable insights
automatically for developers. Finally, we exploit the crowd to asses the generated
insights.

2.3.1 Monitoring User Interactions to Support Bug Repro-
duction

Previous research have monitored user interactions for testing and bug reproduction
purposes in Web ([87]) and desktop applications (e.g., FastFix [136], [137]).

In the mobile domain, MonkeyLab [105] is an approach to mine GUI-based models
based on recorded executions of Android apps. The extracted models can be used
to generate actionable scenarios for both natural and unnatural sequences of events.
However in MonkeyLab, apps are exercised by developers in lab. This thesis aims to
synthesize realistic scenarios form user traces collected in the wild. In addition, our
approach also deals with context information, since context is crucial to reproduce
failures in mobile environments.

Discussion
There is a lack of crowdsourced solutions to assist developers to automatically detect,
reproduce, and patch failures in mobile apps after their deployment in the wild.

2.4 Mobile App Testing

Currently, a wide range of testing tools for Android apps are available. These techniques
focus on aiding developers to detect potential failures before the release of apps. This

22 State of the Art

section reviews three sub-areas of app testing related to this thesis: Automated UI
testing, Record and Replay techniques, and Performance Testing.

2.4.1 Automated UI Testing Tools

First, there are several frameworks that support automatic testing of mobile apps.
Android provides the tools Espresso [34], and UI Automator [36]. In addition, other
popular app testing frameworks are: Calabash [Calabash], Robotium [rob], and Selen-
droid [selendroid]. These frameworks enable testing apps without having access to
the source code. These frameworks require the developer to manually define the test
scenarios to execute. Thus, they risk to lack unexplored code of the apps.

In addition, there is a broad body of research in automated input generation for
mobile apps. These tools automatically explore apps with the aim of discovering faults
and maximizing code coverage. These tools can be categorized in three main classes
concerning the exploration strategy they implement [57]:

Random testing: These tools generate random UI events (such as clicks, touches) to
stress apps to discover faults. The most popular tool in this category is Monkey [35],
provided by Android. Dynodroid [112] is also a random tool which generates UI
and system events.

Model-based testing: The second class of tools extract the GUI model of the
app and generate events to traverse the states of the app. The GUI models are
traversed following different strategies (e.g. breath or depth first search) with
the goal of maximizing code coverage. Examples of tools in this category are:
MobiGUITAR [31], PUMA [86], and ORBIT [56].

Systematic testing: The third class of tools use techniques, such as symbolic execu-
tion and evolutionary algorithms, to guide the exploration of the uncovered code.
Examples of these tools are: Sapienz [114], EvoDroid [113], ACTEve [33],
A3E [46], and AppDoctor [90].

Despite the rich variety of approaches, previous tools lack support to test apps un-
der different execution contexts—i.e., networks, sensor states, device diversity, etc.
Therefore, they cannot detect context-related bugs which are inherent to the mobile
domain.

2.4 Mobile App Testing 23

There exist cloud services to test an app on hundreds of devices simultaneously on
different emulated contexts. Caiipa [103] is a cloud-based testing framework that
applies the contextual fuzzing approach to test mobile apps over a full range of mobile
operating contexts. In particular, they consider three types of contexts: wireless
network conditions, device heterogeneity, and sensor input. However the concepts are
generic to any mobile platform, current implementation of Caiipa is only available for
Windows Phones. There are other cloud-based commercial solutions where developers
can upload their apps to test them on hundreds of different devices simultaneously,
such as Google Cloud Test Lab [Google], Xamarin Test Cloud [xamarin] and
testdroid [tes].

Despite the prolific research in the automated UI testing sub-area, testing approaches
cannot guarantee the absence of unexpected behaviors in the wild. This thesis aims to
complement existing testing solutions, with a post-release solution to help developers
to efficiently detect and debug failures faced by users.

2.4.2 Record and Replay

There is also a set of techniques that capture and replay user and system events for
GUI test automation.

The Android getevent tool [getevent] runs on devices and records kernel input events.
RERAN [73] is a tool to record and replay kernel event traces. RERAN uses the
getevent tool to record and generate a replay script. Similarly, MobiPlay [165] is a
record and replay technique based on remote execution.

The inputs recorded by these tools are based on screen coordinates. Thus, these tools
only can replay the scripts in the same devices where they were recorded. To overcome
the fragmentation problem, MOSAIC [85] and VALERA [91] extend RERAN to
generate platform-independent scripts which can be recorded and replayed in different
devices.

2.4.3 Performance Testing

In addition to functional testing, developers also need to test the performance of their
apps.

24 State of the Art

Liu et al. [106] identify three types of performance issues in mobile apps: UI lagging,
memory bloat, and energy leak. Additionally, they present PerfChecker, a static code
analyzer to identify such performance bugs. Later, Liu et al. [106] present an approach
for diagnosing energy and performance issues in mobile Internetware applications.

Other approaches have focused on detecting UI performance defects. Yang et al. [160]
propose a test amplification approach to identify poor responsiveness defects in android
apps. Ongkosit et al. [125] present a static analysis tool for Android apps to help
developers to identify potential causes of unresponsiveness, focusing on long running
operations.

The aforementioned approaches focus on stressing apps to expose UI responsiveness
lags. Nevertheless, the performance of the app highly varies depending on the execution
context. For example, one app can perform well on a set of devices, but exhibit perfor-
mance issues in different devices or different OS version. There is a lack of automated
testing approaches to detect UI performance issues that take into consideration different
execution contexts.

2.4.3.1 Performance Regression Testing

When a new version of software is released (for example after fixing bugs), developers
conduct regression testing [153]. Regression testing implies validating the new release
against prior releases. This is typically achieved via execution of “regression tests”
(tests used to validate prior releases). Performance regressions are defects caused by
the degradation of the system performance compared to prior releases [67]. Thus,
developers assess if the new release fulfills their expected performance goals—i.e.,
preventing performance degradations, improving performance, etc.

Performance regression testing has been vastly studied in desktop and web application
domains. Foo et al. [68] introduce an approach to automatically detect performance
regressions in heterogeneous environments in the context of data centers. However,
performance regression testing has received less research interest for mobile apps. The
rapid evolution of the mobile ecosystem (OSs, APIs, devices, etc.) and the diversity
of operating conditions (network, memory, etc.) make it difficult to guarantee the
proper performance of mobile apps running on different environments. Thus, detecting
performance degradations among different app versions and execution contexts is crucial
to ensure high quality apps. This thesis aims to complement existing performance

2.5 Conclusion 25

testing solutions with a performance regression approach that takes into consideration
the highly diverse execution context.

Discussion
Testing tools cannot ensure the absence of unexpected failures in the field. Even if
apps are extensively tested before release, unexpected errors can arise due to the
rapid platform and fragmentation evolution.

2.5 Conclusion

This chapter reviews the most relevant approaches in the research areas and subareas
that are closely related to this thesis. This thesis falls in the intersection between: app
store analysis, debugging, crowd monitoring, and app testing.

Among the prolific research in these areas, there is a lack of automated solutions for
the mobile platform to debug apps in the wild which fully support:

• collection of realistic execution traces for debugging,

• generation and validation of scenarios to reproduce bugs in the field,

• generation and validation of patches that avoid bugs in different groups of devices
and contexts,

• detection of UI performance defects in different groups of devices and contexts.

This thesis contributes a crowdsourced monitoring solution to help developers to debug
mobile apps after release. This framework can be incorporated into app stores, which
can provide actionable insights for the stakeholders of the mobile ecosystem.

Chapter 3

The Vision of App Store 2.0

App
Store

2.0

Crash
Prevention

Crash
Reproduction

Permission
Checkers

UI Performance
Checkers

CROWD

Fig. 3.1 Chapter 3 at a glance

The proliferation of smartphones is lead-
ing to a rapid growth in the development
of mobile applications (apps). Currently,
app developers can chose among a large
ecosystem of app stores to publish their
apps [lis]. Stores enable developers to run
their apps on thousands of mobile devices.
Neverhteless, existing app stores offer lim-
ited support for improving the quality of
mobile apps. When an app has a bug, the

store continues spreading the defective app across users and devices, until the developer
uploads a fixed version. Unfortunately, the release time of a new app version can be
long [117]. Thus, impacting negatively on the reputation of the app, the developer,
and the store.

This thesis proposes leveraging the wisdom of the crowd to improve the quality of
mobile apps. This research investigates a crowd-based framework to engineer a new
generation of app stores—App Store 2.0. The App Store 2.0 enhances current app
store services with new functionalities to assist developers to deal with different types
of defects in mobile apps. The goal is to continuously capture the quality of experience
of a crowd of mobile users and provide actionable insights to developers and users.

The reminder of this chapter presents the vision of App Store 2.0. Section 3.1
summarizes the proposed crowd-based approach to deliver actionable insights from app

28 The Vision of App Store 2.0

stores. Section 3.2 describes the main building blocks which compose the approach.
Finally, Section 3.3 concludes the chapter.

3.1 App Store 2.0 Overview

App stores have access to three huge crowds: crowd of apps, crowd of devices,
and crowd of users. Nevertheless, current app stores do not exploit the diversity
of available crowd sources to provide actionable insights to developers and users.
Figure 3.2 reports on the different types of crowds and their volume [126]. The huge
amount of possible permutations results in a complex ecosystem.

Crowd of Apps Crowd of Devices Crowd of Users

1,200+ DISTINCT DEVICE BRANDS

24,000+ DISTINCT ANDROID DEVICES

2.2 MILLION APPS IN GOOGLE PLAY 3.79 BILLION UNIQUE MOBILE USERS

Fig. 3.2 Types and volume of crowds in app stores

Our key insight is that the wisdom of those crowds can be combined, and the resulting
sum is more powerful than each one in isolation. The combination of these crowds
results in 3 types of crowdsourced information—app execution logs, app context, and
user feedbacks. App stores can leverage the value of this crowdsourced information to
deliver new services.

This thesis provides a collection of approaches to generate actionable insights by using
different types of crowdsourced information. The actionable insights aim to assist
developers to deal with 2 types of bugs in mobile apps: crashes and UI janks.

The App Store 2.0 orchestrates a feedback loop that continuously analyses crowd
feedbacks to detect and eventually fix defective apps. In the presence of defects,
the App Store 2.0 takes self-initiated measures to generate actionable insights. In
particular, the App Store 2.0 incorporates two types of approaches:

1. In vitro approaches. Upon submission of new apps, stores take preventive
actions before making the apps publicly available to users. Preventive actions

3.2 Main Building Blocks 29

refer to predictions of problems (through crowd feedback analysis) and attempts
to avoid their occurrence in the field.

2. In vivo approaches. After users install and execute apps, if problems surface—
such as crashes—the store immediately takes actions to assist the developer to
fix and prevent such issues. These reactive approaches actuate when apps are in
hands of end-users.

The different mechanisms are complementary and can be activated simultaneously.
App Store 2.0 moderators decide upon which measure(s) to activate. Figure 3.3
shows an overview of the App Store 2.0.

developer

crowd

app

App Store 2.0

actionable
insight

in vitro

app

in vivo

feedbakck

Fig. 3.3 Big picture of Smart Stores 2.0.

Three target audiences can benefit from the proposed approach:

• App stores. Currently there is a huge range of app stores available, all competing
to attract customers (developers and users). App stores can implement the
presented App Store 2.0 approach to enhance their services, improving the
quality of apps and consequently the store’s reputation.

• App developers. Developers want to deliver high quality apps to survive the
market competition. By using this approach, they can increase the quality of
their apps, thus contributing to improve their users’ satisfaction and loyalty.

• App users. Users want high-quality apps that ensure a high user experience (e.g.,
absence of crashes and responsive apps).

3.2 Main Building Blocks

The approach to engineer App Store 2.0 contains two main building blocks: Monitoring
the Crowd and Leveraging the Crowd. At the Monitoring Block, crowd feedback

30 The Vision of App Store 2.0

is continuously collected from different sources—i.e., user feedbacks, app execution logs,
and app context information. The crowd feedback constitutes the knowledge to guide
the autonomous decision-making process in the store. At the Leveraging Block, the
crowd feedback is exploited to deliver actionable insights for the stakeholders of the
mobile ecosystem. These actionable insights will assist developers during the process
of detecting, reproducing, and fixing mobile app bugs. Figure 6.2 shows the main
building blocks which compose the proposal. We envision 4 modules to generate 4

Risk
Prediction

Crash
Analysis

Performance
Analysis

Patch
Generation

Permission
Analysis

Risk Report

Reproducible
Scenario

Performance
Report

App
Patches

CrowdELeveragingEBlock

output

output

output

output

CrowdEMonitoringEBlock Actionable
Insights

User
Reviews

App
Execution

Logs

App
Context

input

IN
 V

IV
O

IN
 V

IT
R

O

Fig. 3.4 Main building blocks of the proposal.

different types of actionable insights. These actionable insights span over risk reports,
performance reports, reproducible scenarios and app patches.

Figure 3.5 illustrates the workflow of the App Store 2.0. An app developer uploads
an app to the App Store 2.0 for distribution. Before making the new app publicly
available to users, the store runs a Risk Analysis to predict potential crashes. The
risk analysis is based on observations of user feedbacks reported by other apps executed
by the crowd. If there is a risk of crash, the store sends a risk report to the store
moderator, who can notify the developer or decide to publish the app anyway. When
the developer uploads the new fixed release, the store runs a Performance Analysis
to ensure that the new release does not perform worse than the previous release. A
detailed performance report is provided to the developer, who can update the app
to fix the performance defects prior to its publication.

When the app is downloaded and executed on the users’ mobile devices, a Crash
Analysis service listens for crash occurrences in the wild. In the presence of crashes,
the App Store 2.0 learns crash and context (i.e., software and hardware configurations)
patterns, which are turned into a reproducible scenario to help developers to quickly
reproduce the observed errors. Meanwhile, as the release process can be long, the store

3.2 Main Building Blocks 31

generates patches to prevent that other users continue facing the same observed issues.
Afterwards, the store keeps monitoring the information crowdsourced from devices and
user feedback as an oracle for the autonomous improvement process.

apps

logs reviews

notify

trigger

crash
patterns

notify

Crowd
knowledge

download
apps

use
apps

CROWDbOF
DEVICES

CROWDbOFbUSERS

write
reviews

update
apps

DEVELOPERS

app app

app app

CROWDbOF
APPS

develop
apps

publish
apps

verified2app

STORE
MODERATOR

1

in vitro

in vivo

Actionable2feedback2flow

RISK
ANALYSIS

PERFORMANCE
ANALISIS

CRASH
ANALYSIS

PATCH
GENERATION

CROWD
MONITOR

REPRODUCIBLE
SCENARIO

PERFORMANCE
REPORT

RISK
REPORT

APP
PATCH

notify

Actionable2feedback2artifact

A

B C

D

2

3

4 5

App2Store21.02flow

App2Store22.02module

Repository

AppbStoreb250

Fig. 3.5 App Store 2.0 workflow.

3.2.1 Crowd Monitoring Block

This building block is associated with a crowd monitor component, which continuously
collects crowd information from different sources: user feedbacks posted in the store,
app execution logs, and app context information derived from the execution of apps in
devices by users. Table 3.1 illustrates different types of crowdsourced information and
their volumes.

The collected crowd information is used a posteriori with two different purposes:

• Defect Detection. Detecting when users experience issues (i.e., crashes, UI lags)
with apps.

32 The Vision of App Store 2.0

Table 3.1 Types and Volumes of Crowdsourced Information in App Stores.

Crowdsourced information
Contexts 23 distinct Android OS API levels [126]

1,411 distinct requested permissions [78]
Reviews 228+ million user reviews in Google Play [41]
Logs 60+/day/app apps are run by 280 million users [66]

• Continuous Validation. Validating the quality of the measures adopted by the
store to continuously improve its strategy.

3.2.2 Crowd Leveraging Block

This building block is composed by 4 main modules to deliver 4 different types of
actionable insights: risk reports, performance reports, reproducible scenarios, and app
patches. The first two modules are executed in vitro before releasing apps. Whereas
the two latter modules are executed in vivo once apps are in hands of end users.

3.2.2.1 In vitro approaches:

• Risk Prediction. The App Store 2.0 can build crowd-based checkers to rank
the risk of a crash in newly submitted apps. The Risk Prediction module
relies on an additional module: Permission Analysis. The crowd monitor
component continuously supervises user reviews published in the store. Once
the store identifies a cluster of crash-prone apps, the Permission Analysis
component searches for recurring permission patterns (requested by the apps)
that correlate with the crashes. The Permission Analysis component then
creates a predictive machine-learning model to predict if a new app will crash
based on the set of requested permissions. The resulting predictive model
constitutes the basis of the crowd-based checkers to score the risk of crashes of
new apps at submission time.

Tool support: This thesis provides a Recommender System of Buggy Permission
Checkers to predict crash-prone apps depending on the set of permissions re-
quested. This system is built from an empirical study of 46,644 apps and their
1,402,717 user reviews from the Google Play Store.

3.2 Main Building Blocks 33

• Performance Analysis. One important category of performance defects in
Android apps is related to poor GUI responsiveness. The main research challenge
of automatically identifying UI performance problems on mobile devices is that
the performance of an app highly varies depending on its context—i.e., the
hardware and software configurations on which it runs. By leveraging the wisdom
of the crowd of devices, the store can incorporate UI Performance Checkers to
flag UI performance defects as outliers in metrics monitored across different app
executions and heterogeneous contexts.

Once an app developer uploads a new release of an app to the store, the
Performance Analysis component compares the UI performance of the new
app release and the previous releases to assess whether the new app release fulfills
the expected performance goals—i.e., to prevent performance degradations.

Tool support: This thesis contributes the DUNE tool. DUNE is a context-aware
approach to detect UI performance deviations between different app releases and
contexts.

3.2.2.2 In vivo approaches:

• Crash Analysis. Once an app is downloaded and executed on the users’ mobile
devices, the store listens for the emergence of crashes. When crashes surface,
the Crash Analysis component aggregates the crowdsourced execution logs
(collected from a multitude of devices) into a weighted directed graph. This
graph provides an aggregated view of interactions from a multitude of users in a
defective app before a specific crash arises. The store uses the graph to identify
repeating patterns of UI events and contexts that appear frequently among
crashes. The patterns are translated into a reproducible scenario to automatically
recreate the crashes faced by users.

Tool support: This thesis provides the MoTiF tool. MoTiF uses machine learning
techniques atop of data crowdsourced from real devices and users. MoTiF is
composed of two parts: 1) a mobile client library, that runs on mobile devices, to
monitor app executions and crashes; and 2) a cloud service to learn and generate
reproducible scenarios.

• Crash Prevention: Patch Generation. While developers are working on fix-
ing the apps, the app store generates temporary patches to prevent the occurrence

34 The Vision of App Store 2.0

of the same crash for different users. The Patch Generation component creates
two types of patches: inserting try/catch blocks in suspicious locations of code,
and deactivating the crash-triggering features of crashes. When the store receives
a download request for an app that has been previously flagged as defective, the
store delivers an alternative patched release of the app. Afterwards, the store
keeps monitoring crowdsourced information from devices and user feedback that
run those patched apps to assess the effectiveness of the generated patches. If
a patch generation technique fails (e.g., the patched app keeps crashing), the
store learns from these failures. The App Store 2.0 continuously monitors
crowdsourced information to improve the patching process.

Tool support: To inject the patches, this thesis provides the CrowdSeer tool. The
CrowdSeer tool implements two patching strategies. The former instruments the
bytecode of Android apps to inject try/catch blocks. The latter deactivates the
crash-triggering features of apps at run-time. While the first strategy, requires
reinstall the apps. The second strategy update apps on the fly.

Chapter 5 and Chapter 6 provides further details regarding each of the modules.

3.3 Conclusions

This chapter outlines a crowd-based framework to engineer the App Store 2.0. The
goal of the App Store 2.0 is to improve the quality of the delivered mobile apps. The
main idea is that collecting information from a multitude of devices and users it is
possible to extract relevant knowledge to assist app developers to automatically detect,
reproduce and patch mobile app bugs.

The approach consists of two main building blocks: monitoring and leveraging the crowd.
The proposed crowd-based approach reports the following benefits. First, it increases
the crash tolerance of apps, thus enhancing user experience. Second, it improves
reactivity to detect and avoid crashes, thus avoiding to harm the app reputation.
Third, it automates the bug-fixing process, thus reducing human intervention to
maintain mobile apps. Four, it updates apps on-the-fly, without requiring to release a
new version of the app, thus reducing the time that users are exposed to crashes, and
reducing the number of affected users.

Part II

Contributions

In part I, we introduced the vision of the App Store 2.0. In
this part, we sketch our solution towards making it reality.

Chapter 4

Monitoring the Crowd

UI
Events

Exception
traces

Static Dynamic

UserKReviews
APPKEXECTUIONS

USERKFEEDBACK

DEVICEKCONTEXT

MONITOR

Fig. 4.1 Chapter 4 at a glance

Current app stores are software reposito-
ries that deliver apps upon user requests.
The architecture of current app stores is
composed of two parts: a) a client app
that runs in mobile devices and enables
to download and install apps; and b) a
centralized server side that enables devel-
opers to upload apps for distribution and
obtain feedback about their apps. Given
this architecture, app stores have access
to a huge crowd of devices, users, apps,
and developers. However, current app

stores serve as distributors of apps and do not exploit the available crowd sources. We
claim that by leveraging crowdsourced information it is possible to assist developers
to deal with bugs which affect mobile apps, such as crashes and UI janks. These two
types of bugs have a negative impact on user experience.

This chapter describes the monitoring block which current app stores can incorporate
to gather information from the crowd. In particular, three types of crowd information
can be accessed from stores: user feedbacks, app execution logs, and app context.

The reminder of the chapter is organized as follows. We first describe the main types
of bugs which affect mobile apps in Section 4.1. Afterwards, Section 4.2 discusses
types of crowd-sourced information which are accessible from app stores, and presents

38 Monitoring the Crowd

techniques to monitor such sources in app stores. Finally, Section 4.3 concludes the
chapter.

4.1 Types of Bugs in Mobile Apps

We start by reviewing the literature to identify different types of bugs which affect
mobile apps. Based on the types of bugs identified by Zaeem et al. [162] and Liu
et al. [107], we divide mobile app bugs in two main groups: functional bugs and
performance bugs. Table 4.1 shows different categories of app bugs identified by
previous work.

Table 4.1 Types of Bugs in Mobile apps.

Functional bugs [162] Performance bugs [107]
Unhandled Exceptions* GUI lagging*

Rotation Energy leak
Activity Lifecycle Memory bloat

Gestures
Input handling
Third party lib

In this thesis, we focus on Unhandled Exceptions (i.e., crashes) and GUI lagging. (i.e.,
janks) because these types of issues are directly perceivable by users and have a negative
impact on user experience [88]. In the following subsections, we further describe these
two types of defects. We claim that app stores can contribute to mitigate these issues
by exploiting crowdsourced information.

4.1.1 App Crashes

If an app implements inefficient error-handling mechanisms in its source code, then
the app may throw unhandled exceptions during execution and the operating system
terminates the app. This behavior is commonly referred to as a crash. We focus on
app failures which manifest with crashes, hence we first study which are the main
causes of app crashes. Kechagia et al. [97] identify causes of Android app crashes
within a dataset of stack traces collected from real devices. In addition, Liang et
al. [103] identify context-related bugs in mobile apps, i.e., network conditions, device

4.1 Types of Bugs in Mobile Apps 39

Table 4.2 Categories of Android app crashes.

Cause Sample app App crashes
Missing or corrupted resource PocketTool If the Minecraft game is not installed on the

device
Indexing problem Ermete SMS Deleting a phone number taken from the address

book
Insufficient permission ACV Long-pressing a folder
Memory exhaustion Le Chti After some navigation steps in the app
Race condition or deadlock Titanium Clicking the back button during the app launch
Invalid format or syntax PasswdSafe Opening a password that contains Norwegian

characters
Network conditions Wikipedia Attempting to save a page without network con-

nectivity
Device heterogeneity Wikipedia Pressing the Menu button on LG Devices
Sensor input MyTracks When GPS is unavailable

heterogeneity and sensor input. Table 4.2 summarizes these categories of Android app
crashes, together with a sample app exhibiting such a type of crash.

In particular, the crashes that depend on context are more challenging to isolate and to
reproduce by developers in the lab [29]. We aim to complement existing in-house testing
solutions with a collaborative approach that monitors apps after their deployment in
the wild.

4.1.2 UI Jank

In Android, a lag in the UI is called a jank [Tes], particularly when dealing with
scrolling, swiping, or other forms of animation [64]. To ensure smooth animations, apps
must render at 60 frames per second (FPS), which is the rate that allows animations
to be perceived by the human eye [60f]. Most Android devices refresh the screen every
16 ms (1 sec

60 fps = 16 ms per frame). Consequently, any frame taking more than 16 ms
will not be rendered by Android, and hence will be flagged as a jank. In this case,
users will experience choppy animations and laggy GUI. Performing heavy computions
in the UI thread of the app is one of the most common practice that leads to janks.
Google therefore encourages developers to test the UI performance of apps to ensure
that all frames are rendered within the 16 ms boundary [60f].

The main research challenge of automatically identifying janks on mobile devices is that
the performance of an app highly varies depending on its context—i.e., the hardware
and software configurations on which it runs. For example, an app can perform well

40 Monitoring the Crowd

on a set of devices, but it may exhibit janks in a different environment consisting of,
amongst others, a different device model.

4.2 What Information to Monitor from the Crowd?

To support developers to deal with defects in mobile apps, different sources of infor-
mation can be monitored from the crowd. The main component in the monitoring
block is the App monitor which gathers crowd feedback from different sources. We
have identified three types of crowdsourced information:

• User feedbacks. Reviews and ratings which mobile users post in the store
regarding the apps.

• App context. Information related to the operating context where the app
runs—e.g., device model, SDK version, memory, and state of sensors.

• App execution logs. Information derived from the execution of apps—e.g.,
user interaction traces, exception traces. An execution log contains a sequence of
user interactions (such as clicks) and operating contexts observed during the app
execution.

App stores can incorporate the App monitor component to gather crowd feedback.

4.2.1 Monitoring User Feedback

The App monitor component incorporates a listener which continuously supervises
users’ feedback published in the store (i.e., reviews). This component identifies apps
which accumulate crash-related reviews—i.e., those which mainly discuss about buggy
behavior, to alert the presence of bugs.

We propose a four-step approach to automatically identify crash-prone apps from
reviews written by users in app stores. Figure 4.2 shows an overview of the proposed
approach. The approach comprises the following steps:

1. Mine topics. To automatically identify online reviews which treat topics related
to crashes and errors, we use unsupervised machine learning, specifically topic
mining, which can be used to automatically identify topics discussed in user
reviews. For this purpose, we apply the Latent Dirichlet Allocation (LDA)

4.2 What Information to Monitor from the Crowd? 41

User
Review

Collection

 Topic
Mining
LDA

USER REVIEWS

TOPIC
1

TOPIC
100

[fix
update
problem...]

[crash
close
freeze…]

.

.

TOPIC
2

T1=75%, T2=25%

T1=90%, T2=10%

ERROR
RELATED
TOPICS

ERROR-RELATED
REVIEWS

CRASH-PRONE APPS

Fig. 4.2 Identifying Crash-prone Apps from User Reviews

algorithm [50]. LDA identifies topics discussed in an entire corpus of documents
with unlabelled text. We consider each single review of apps as a document. A
topic is a list of words which appear frequently together. For each document,
LDA estimates a probability distribution over the mined topics. For example,
one document may have a probability of 0.7 to relate to topic #1 and of 0.3 to
belong to topic #2 (the sum is always 1). In this case, the document mostly
belongs to topic #1.

The LDA model takes as an input parameter the number of topics to extract. In
order to achieve a better precision, in a preliminary exploratory phase, we ran
the LDA algorithm using different number of topics (e.g., 20, 40, 60, and 100).
Finally, we observe that selecting 100 topics the algorithm generates fine-grained
topics (from user reviews) which help to identify bug-related issues. To reduce
noise in the modeled topics, we filter out English stop words1 from the entire
corpus.

The rational of using topic models is to automatically (1) cluster reviews
discussing about crashes, and (2) extract keywords that characterize error themes
without sketching them beforehand. We are particularly interested in topic models
which reveal bug-related keywords, which were unforeseen initially. This provides
an oracle of error-proneness which the store will use as suspicion of problems
affecting users. To implement this approach, we use MALLET (MAchine Learning

1We use the list of 524 common English stop words included in Mallet.

42 Monitoring the Crowd

for LanguagE Toolkit) [116], a Java library that provides an implementation of
LDA.

2. Select error-related topics. From the mined topics, the store filters the topics
that are related to bugs and crashes. Fig. 4.3 shows three error-related topics
extracted from a corpus of user reviews from Google Play Store:

topic1: fix update problem fixed bug issue crashes phone stars bugs plz pls
time crashing problems working issues crash hope

topic2: work doesn doesnt won didnt working open kit show load kat properly
anymore sucks bad note worked android wont

topic3: app crashes force time open fix close closes won crashing work crash
start freezes working times constantly closing doesnt

Fig. 4.3 Example of three error-related topics from user reviews
3. Select crash-related reviews. The next step consists of identifying reviews which

are mainly composed by error-related topics. To select crash-related reviews, we
analyze the probability distribution given by LDA for each review. Since a review can
discuss several topics, we consider as crash-related reviews those with at least 5% of
its probability related to a topic discussing buggy issues. Fig. 4.4 shows two examples
of crash-related reviews obtained with our approach. The reviews belong to the app:
“This American Life” (version 2.1.8) 2:

Example review: Astoundingly buggy. Get ready for the app to crash when
you want it to work, and for it to linger in your notification bar even after
you force close. I have no idea how such a phenomenal show has such a
disappointing app.

Example review: Crashes all the time. I love TAL but this app is horrible.
Actually it is a good app but it literally crashes every time I put it to use.
Sometimes it will open up and I can start a show and listen to the whole thing
and when it is done it crashes. Sometimes it crashes as it is opening.

Fig. 4.4 Examples of crash-related reviews in Google Play Store
2https://play.google.com/store/apps/details?id=org.prx.talbot. The dates of the reviews

are 13-12-2013 and 18-12-2013, respectively.

https://play.google.com/store/apps/details?id=org.prx.talbot

4.2 What Information to Monitor from the Crowd? 43

4. Select crash-prone apps. We consider as error-prone apps, the set of apps containing
at least n crash-related reviews. The minimum number of error-related reviews is a
parameter to be decided by app store moderators depending on the quality they want
to ensure in their stores, and the confidence they have on the users reporting reviews.
In this work, we have considered the minimum possible evidence of problems (n > 1
review).

To sum up, by applying unsupervised machine learning on the reviews of apps, the
store automatically flags each app as: “Buggy” or “NonBuggy”.

4.2.2 Monitoring App Context

To isolate bugs, it is essential to know the execution context under which bugs arise.
As an illustration, users recently experienced crashes with the Android Wikipedia
app3, which crashed when the user pressed the menu button. However, this crash only
emerged on LG devices running Android 4.1. Thus, app developers need to know the
user interactions and the execution context (i.e., software and hardware configuration)
that led to crashes.

App stores can collect the following context information during the execution of apps:

• Static context. Properties that remain invariable during the whole app
execution—e.g., device manufacturer, device model, and SDK version.

• Dynamic context. Properties that change along app execution—e.g., memory
state, battery level, network state, and state of sensors.

4.2.3 Monitoring App Executions

Previous research have monitored user interactions for testing and bug reproduction
purposes in different domains [136, 87]. To isolate bugs, when enabled, the store can
log user interaction events during the execution of an app. An execution log contains
a sequence of user interactions (such as clicks) and operating contexts (static and
dynamic) observed during the app execution.

Android apps are UI-centric—i.e., View is the base class for widgets. To intercept
user interaction events with an app, Android provides the View class which provisions

3https://play.google.com/store/apps/details?id=org.wikipedia

44 Monitoring the Crowd

different event listener interfaces that declare public event handler methods. The
Android framework calls these event handler methods when the respective event
occurs [4]. For example, when a view (such as a button) is clicked, the method
onClickEvent is invoked on that object. Table 4.3 reports on a subset of available
event handler methods.

Table 4.3 Examples of Android view types with their event listeners and handler
methods

Type Event listener Event handler
View OnClickListener onClick
ActionMenuView OnMenuItemClickListener onMenuItemClick
AdapterView OnItemClickListener onItemClick

Navigation Tab TabListener onTabSelected
OnTabChangedListener onTabChange

Orientation OrientationEventListener onOrientationChanged

4.2.3.1 Logging Crash Traces

We propose a two-level monitoring strategy. Initially, the Monitor component only
listens for unhandled exceptions (crashes) thrown during the execution of apps. When
a certain percentage of users suffer from crashes with an app, the store flags the app as
defective. Then, the system activates a lightweight monitoring mechanism to transitory
gather execution logs from user interactions with the defective apps. App developers
when submitting apps to the store, can set the threshold of affected users (e.g., just
after observing a single crash or a specific ratio) to start logging.

We define a crash trace (ct) as a sequence of events executed in an app before a crash
arises—i.e., ct = {e1, e2, ..., en}. Events can be of two types: interaction and exception.
The last event of a logged trace (en) is always an exception event. Each time an event
is executed, our approach records event metadata. If the app crashes during execution,
we also collect exception metadata. In particular, the following metadata is recorded
for each type of event:

• Event metadata: timestamp, method name, implementation class, thread id,
and view unique id.

• Exception metadata: timestamp, location, and exception trace.

4.2 What Information to Monitor from the Crowd? 45

The static context is only reported in exception events, since it remains invariable along
the whole app execution. In contrast, the dynamic context is reported for each user
interaction event. Figure 4.5 depicts an example of a crash trace with two interaction
events e1, e2, leading to an app crash crash1.

e1 e2

ON OFF HIGH

wifi data mem

OFF OFF HIGH

wifi data mem

crash
%

ev:5onClick
viewId:%2%
timestamp:5%23456%

ev:5onClick
viewId:235
timestamp:5%234688

Manufacturer:5Samsung
Model:5S3
SDK:5402

NullPointerException
loc:5Main0MethodX:%57

OFF OFF HIGH

wifi data mem bat

75S

Fig. 4.5 Example of a crowdsourced crash trace.

During the execution of an app, the observed events are kept in memory. Only if
the app crashes, the crash traces are temporarily stored in JSON files in the device
memory, until the data is automatically flushed to the store for processing. Table 4.4
reports an example of a crash log in JSON format.

To minimize the impact on battery lifespan and the data subscription of end-users,
devices only report the logs to the cloud server when the device is charging and
connected to the Internet. Once uploaded, the synchronized traces are automatically
removed from the local storage.

The monitoring takes place separately on different devices running the defective app.
To avoid any accidental user’s disturbance, only one app is monitored in each device
and the monitoring is redistributed periodically among devices in the crowd.

4.2.3.2 Logging Performance Traces

During the execution of an app, the store can additionally log UI performance metrics
(i.e., frame rate) to estimate the UI performance of an app.

A performance trace (pt) logs a sequence of UI events during the execution of an app
together with the following data:

1. Performance metrics: We focus on UI rendering related metrics, in particular the
number of frames rendered, the average time to render a frame, and the smooth
ratio. We calculate the smooth ratio as the ratio of rendered frames that are not

46 Monitoring the Crowd

1 "App": "org. wikipedia ",
2 " UserEvent ": [{
3 " timestamp ": "1440115138134",
4 " location ": "<1> main org. wikipedia . search . SearchArticlesFragment$ 8

onClick 262 3",
5 " Variables ": {
6 "v": " instance of android . widget . LinearLayout (id=830028030432)",
7 " fields ": {
8 "v.mID": "2131099772"
9 }

10 },
11 " DynamicContext ": {
12 " totalMem ": "16.0MB",
13 " bluetooth ": false ,
14 " netType ": "WIFI",
15 " maxMem ": "64.0MB",
16 " nativeHeapAlloc ": "4.4MB",
17 " battery ": "100%",
18 "gps": true,
19 " freeMem ": "0.8MB",
20 " network ": "ON"
21 }
22 }],
23 " CrashEvent ": {
24 " timestamp ": "1440115139856",
25 " exception ": "java.lang. RuntimeException : ExceptionEvent@org . wikipedia .

concurrency . SaneAsyncTask :62 in thread <1> main",
26 " StaticContext ": {
27 " androidSDK ": "4.1.2",
28 " deviceModel ": " Samsung Galaxy Nexus ",
29 " hardware ": "tuna",
30 " APIlevel ": "16",
31 " manufacturer ": " samsung ",
32 " availableProcessors ": "2"
33 }
34 } }

Table 4.4 Excerpt of a crash log

janky:

smooth_ratio = 1− #janky frames

#total frames

We use the smooth ratio as a measure to determine the UI performance of an
app. A higher ratio indicates better performance.

2. Execution context characteristics: The context under which apps are executed.
In particular, we consider the following three major dimensions of execution
context:

• Software profile: Mobile SDK, API level, and version of the app under test;

• Hardware profile: Device manufacturer, device model, CPU model, screen
resolution;

4.2 What Information to Monitor from the Crowd? 47

• Runtime profile: Network type, network quality, battery level.

Note that additional information can be included in the model (e.g., memory and
sensor state). Developers can select the relevant characteristics they want to include in
the model depending on the type of bugs they target.

Figure 4.6 depicts an example of the UI frame performance metrics collected during
an app execution in a specific context. It shows the frames rendered along the app
execution from the launch to the end. Each vertical bar represents one frame, and its
height represents the time spent (in ms) to render the frame. The horizontal dashed
line represents the speed limit (16 ms), in the sense that frames taking more time than
this limit—i.e., janky frames—will be skipped, leading to the app’s lag. The different
colors in the bars represent the time spent in each stage of the frame rendering process
(execute, process, and draw). During the test run, 148 frames were rendered and 7
frames were flagged as janky.

EH
Speed
Limit

16
mspf

E2 E3janky
frames

EXIT

BUCKET1

cFr=48
cJanky=3
Smooth=CU94

BUCKET2 BUCKET3 BUCKET4

cFr=48
cJanky=C
Smooth=H

cFr=28
cJanky=H
Smooth= CU96

cFr=24
cJanky=3
Smooth= CU88

Execute
Process
Draw

time wms(per frame
28

2H

H4

 7

 C

LAUNCH

Fig. 4.6 Frame rendering metrics for an app execution divided in buckets per UI event

We propose two performance logging modes. The former is the coarse-grained mode
which considers the metrics observed during the app execution as an aggregation.
Thus, the coarse-grained execution log stores each performance trace (pt) as a vector:
pt = [c1, ..., cn,m1, ...,mn]. Each ci represents a context property, and each mi contains
a global performance metric (#janky frames, smooth ratio, rendering time) across the
whole execution. For example, pt1 is stored as:

pt1coarse = [v1,4.1, samsung,S3,x86,wifi,148,0.95,45]

48 Monitoring the Crowd

In addition, the fine-grained execution log links the metrics to specific user input
events that happened during the app execution and hence could be the trigger of janky
frames. This fine-grained strategy aims to help developers to isolate the root cause
of performance problems. With this goal, we distribute and aggregate the collected
metrics into N different buckets, where N is the number of UI events plus 1. The first
bucket contains all collected metrics before the first user event, the second bucket those
between the first and second user event, etc.

In the example of Figure 4.6, there are 3 UI events (E1, E2, E3) during the app
execution, which means that the frame metrics from app launch to finish are aggregated
into 4 buckets. In particular, each bucket summarizes the number of frames, the number
of janky frames, and the smooth ratio observed in that bucket. Thus, the fine-grained
mode logs a performance trace as a vector that includes one dimension per bucket to
store the metrics observed in those buckets. For example, pt1 is:

pt1fine =[v1, 4.1, samsung, S3, x86, wifi, [48,0.94,3], [48, 1,0], [28, 0.96,1], [24, 0.88,3]]

The metrics of each performance trace populate a repository of historical executions
for different context configurations. This repository will compare the performance of
the app with future app releases. More specifically, it will support the analysis of
performance goals in future releases of the app.

4.3 Conclusions

This chapter has discussed the monitoring phase of the proposed crowd-based approach
to engineer the App Store 2.0. First, we summarize different types of bugs which
affect mobile apps. This thesis intends to tackle two particular bug types: crashes and
janks. Then, we introduce the different types of crowd feedback available from stores:
user feedbacks, context, app executions. This crowd sources constitute the knowledge
to assist developers to deal with the bugs that affect their apps in the wild. Finally, we
detail different approaches for collecting the available crowd sources from app stores.

Chapter 5

Leveraging the Crowd in vitro

Risk

Reports

ReproducibleScenariosPerformance

Reports

AppPatches
Crowdsourced
Information

User
Reviews

App
Context

Execution
Logs

ACTIONABLE INSIGHTS

Fig. 5.1 Chapter 5 at a glance

Chapter 4 presented three different types
of crowdsourced information (i.e., user re-
views, app context, and app execution
logs) which can be accessed from app
stores. As existing app stores offer lim-
ited support for improving the quality of
mobile apps, we propose leveraging the ex-
isting crowdsourced information to deliver
actionable insights. An actionable in-

sight is defined as: “a piece of information that enables an individual (or group) to
make an informed decision. Actionable insights are typically derived by synthesizing
vast amounts of data into succinct, concise statements”1.

This chapter presents two types of actionable insights that app stores can deliver in
vitro, this means during the release phase. The release phase corresponds with the
phase just after submitting apps to the store (deployment phase), when the apps are
invisible to users [28].

We introduce three modules (Risk Analysis, Permission Analysis, and Performance
Analysis), which exploit different types of crowdsourced information to generate two
types of actionable insights: risk reports and performance reports. For each module, we
describe the approach to produce an actionable insight from crowdsourced information.

1http://www.answers.com/Q/What_is_the_meaning_of_give_an_actionable_
insight_to_someone

http://www.answers.com/Q/What_is_the_meaning_of_give_an_actionable_insight_to_someone
http://www.answers.com/Q/What_is_the_meaning_of_give_an_actionable_insight_to_someone

50 Leveraging the Crowd in vitro

The reminder of this chapter is structured as follows. Section 5.1 introduces the
approach to generate risk reports to predict app crashes before publishing the app.
Section 5.2 details the approach to detect performance degradations between different
releases of an app. Finally, Section 5.3 concludes the chapter.

5.1 Reporting Risky Apps a priori

The App Store 2.0 can build crowd-based checkers to rank the risk of a crash in newly
submitted apps—i.e., prior to publication. The basic idea is identifying a set of apps
that tend to crash in hands of end-users and learning common permission patterns
among these apps. Then these permission patterns enable to predict, with certain
probability, when a new app will crash by observing its set of requested permissions.

To build the checkers, the Risk Analysis component relies on 2 types of crowdsourced
information: user reviews and app metadata (i.e., app permissions). The approach to
generate risk reports from crowdsourced information consists of five steps, illustrated
in Figure 5.2, together with the techniques and tools used. (1) The store starts
by identifying apps for which users reported crashes in user reviews (cf. Monitor
component, Section 4.2.1). (2) The second step consists in analyzing the existing
permissions declared by apps. We define a taxonomy to characterize the types of
permissions which Android apps can request (cf. Section 5.1.2). (3) Taking as input
the crash-prone apps in step 1 and the permission classification performed in step 2, we
automatically mine permission patterns which correlate with crashes (cf. Section 5.1.3).
These patterns constitute the knowledge to construct checkers to predict if an app
will potentially crash. App store moderators can activate these app checkers to score
the quality of new submitted apps. Then, the store can notify developers about the
existence of potential bugs in the app before making it publicly available to users.

5.1.1 Empirical Study of Google Play Store

In this section, we describe the dataset we built to perform an empirical study to
generate the crowd-based checkers.

We built a dataset that contains a random sample of all the mobile apps available
on the Google Play Store (as of January 2014). The apps belong to the 27 different

5.1 Reporting Risky Apps a priori 51

Permission
Analysis

Crash-prone
apps

Permission
taxonomy

Permission
Checkers

Learning
buggy-permission

patterns

Mining
Crash-prone

Apps

1

2
New
app

3

Risk
Analysis4

AppStore2.0

Risk.report

Fig. 5.2 Overview of the Risk Analysis component

categories2 defined by Google, and the 4 predefined subcategories (free, paid, new
free, and new paid). For each category-subcategory pair (tools-free, tools-paid,
sports-new_free, etc.), we collect a maximum of 500 samples3, resulting in a median
number of apps per category of 1,978. For each app, we retrieve the following metadata:
name, package, creator, version code, version name, number of downloads, size, upload
date, star rating, star counting, and the set of permission requests. The resulting
dataset contains contains 38,781 apps requesting 7,826 different permissions.

In addition, for each app, we collect up to a maximum of the latest 500 reviews posted
by users in the Google Play Store. For each review, we retrieve its metadata: title,
description, device, and version of the app. None of these fields are mandatory, thus
several reviews lack some of these details. As app updates might fix bugs from previous
releases, some errors reported in the version 1.1 of a given app may be fixed in the
new release 1.2. Therefore, from all the reviews attached to an app, we only consider
the reviews associated with the latest version of the app —i.e., we discard unversioned
and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews.

In our dataset, we identify 10,658 error-suspicious apps (27.48%) by following the
process described in Chapter 4 (cf. Section 4.2.1) to identify crash-prone apps from
user reviews. Figure 5.3 shows the number of error-suspicious apps identified in each
category of the Google Play Store. For each category, we illustrate the distribution of
error-suspicious apps according to the number of error-related reviews published by
users. With 68.90% of apps having error-related reviews, the category GAME contains

2Books&Reference, Business, Comics, Communication, Education, Entertainment, Finance, Games,
Health&Fitness, Libraries&Demo, Lifestyle, Live Wallpaper, Media&Video, Medical, Music&Audio,
News&Magazines, Personalization, Photography, Productivity, Shopping, Social, Sports, Tools, Trans-
portation, Travel&Local, Weather, Widgets.

3This number is a constraint enforced by the Google Play Store.

52 Leveraging the Crowd in vitro

 0

 200

 400

 600

 800

 1000

 1200

 1400

GAM
E

PERSONALIZATION

TOOLS

APP_W
ALLPAPER

PHOTOGRAPHY

ENTERTAINM
ENT

PRODUCTIVITY

M
USIC_AND_AUDIO

APP_W
IDGETS

COM
M
UNICATION

M
EDIA_AND_VIDEO

EDUCATION

BOOKS_AND_REFERENCE

LIFESTYLE

HEALTH_AND_FITNESS

SOCIAL

TRAVEL_AND_LOCAL

BUSINESS

W
EATHER

SPORTS

FINANCE

COM
ICS

M
EDICAL

LIBRARIES_AND_DEM
O

NEW
S_AND_M

AGAZINES

TRANSPORTATION

SHOPPING

#
E
rr

o
r-

su
sp

ic
io

u
s

A
p

p
s

Error-suspicious Apps by Category

#Error-related reviews

51+

41-50

31-40

21-30

11-20

6-10

5

4

3

2

1

Fig. 5.3 Distribution of error-suspicious apps by categories in Google Play.

the largest number of error-suspicious apps. These data are in line with the results
of the study performed by Crittercism based on observations in real devices, showing
that gaming apps have the highest crash rate [59].

5.1.2 Analyzing App Permissions

To find correlations between permission and crash-proneness, we start by proposing a
taxonomy to classify the types of permissions that Android apps can request. This
classification will later support the identification of error-sensitive permissions to build
app permission checkers.

5.1.2.1 Background on Android Permissions

Android apps run in an isolated area of the system without access to system resources
by default. Android provides a set of APIs to enable apps to access to data, resources,
and privileged operations. The APIs are protected by a permission model. Apps must
explicitly request the required permissions to access protected resources and third-party
libraries. Every app has a manifest file (AndroidManifest.xml) that summarizes
information about the app. In particular, the manifest declares the permissions that
the app requires for its execution, and a package name that serves as unique identifier
for the app. When an app attempts to access a resource protected by a permission,
the system checks the content of the manifest at runtime.

5.1 Reporting Risky Apps a priori 53

App developers are solely responsible for identifying the set of permissions required by
their apps. Sometimes, developers fail assigning the adequate permissions, often because
the available documentation of the Android permission system is incomplete [44, 65, 149].
Indeed, a permission error often results in an exception (e.g., SecurityException)
being thrown back to the app during execution [Android-System Permissions], often
leading to the app crash. In addition, the use of buggy or obsolete APIs can lead to
crashes in the apps.

As a matter of clarification, we distinguish between two terms used along the chapter:

• permission requests refer to permissions declared by apps in their manifest file;

• permission types group available permissions that any app can request.

5.1.2.2 Taxonomy Creation

To create the taxonomy of permission types in Android apps, we follow a grounded
theory approach [148]. We first review the literature and define a draft taxonomy
based on observations made by prior works [47, 65]. As a matter of example, Felt
et al. [65] state that they do not consider neither developer-defined permissions nor
Google-defined ones in their analysis. In addition, they reveal the existence of a set
of non-official Android APIs. We include those types of permissions as categories
in the taxonomy and we investigate them in depth. Another example is Barrera et
al. [47], who manually observed that some apps in their dataset request non-existent
permissions and deprecated permissions. We also consider information provided in the
official Android documentation for developers4 and in Android community forums (e.g.,
Android Developers Blog5).

5.1.2.3 The Taxonomy of Permission Types in Android Apps

Figure 5.4 shows the resulting taxonomy of permission types.

The taxonomy classifies permissions into four main categories:
4http://developer.android.com
5http://android-developers.blogspot.com

http://developer.android.com
http://android-developers.blogspot.com

54 Leveraging the Crowd in vitro

Fig. 5.4 Taxonomy of Permission Types in Android apps

1. Android-specific permissions refers to permission types to use the official APIs pro-
vided by the Android SDK6. For example, android.permission.READ_CONTACTS
allows an app to read the user’s contacts data.

2. Google-specific permissions groups the permission types to use the APIs provided
by the Google Play Services SDK7, which include services such as: Google Play
Licensing, Google Play In-app Billing, Google Maps, Google Cloud Messaging
(GCM), etc. For example, the permission com.android.vending.BILLING is
required to use the In-app Billing service that enables to sell products from inside
an app.

3. Vendor-specific permissions encloses permission types to use the APIs included
in SDKs provided by specific mobile device vendors (e.g., Samsung, HTC) to
create apps specialized for their devices. As an illustration, Samsung provides
the AllShare Framework SDK that includes APIs8 to implement convergence
services (e.g., media sharing, screen sharing). Apps using AllShare APIs should
request the following permission: com.sec.android.permission.PERSONAL_ME-
DIA9. Another example is the permission com.sonymobile.permission.CAME-
RA_ADDON that is part of the Sony Add-on SDK 10 (Camera Add-on API) required
to develop apps that can be launched from the native Xperia camera.

4. Developer-specific permissions finally refers to permission types defined by third-
party developers. Android enables apps to define their own permissions to

6http://developer.android.com/sdk
7http://developer.android.com/google
8Samsung documentation for developers: http://developer.samsung.com/develop
9“sec” comes from: Samsung Electronics Co

10Sony documentation for developers: http://developer.sonymobile.com

http://developer.android.com/sdk
http://developer.android.com/google
http://developer.samsung.com/develop
http://developer.sonymobile.com

5.1 Reporting Risky Apps a priori 55

protect the functionality they expose to other apps. For example, android.web-
kit.permission.PLUGIN from Adobe Flash plugin.

We group permissions within each category around 5 classes of permissions:

(a) Official permissions groups permissions that are available in the public SDK’s
documentations for developers.

(b) Removed permissions refers to permissions that were available in previous versions
of APIs and do not exist anymore.

(c) Internal permissions encloses permissions that are intended for internal use by the
system and system apps.

(d) Incorrect permissions groups permissions defined erroneously by developers (e.g.,
misspelled permissions).

(e) Unclassified permissions groups permissions that do not fit into any of the previous
classes.

5.1.2.4 Taxonomy Exploitation

To automatically catalog permissions under categories, we propose heuristics based on
regular expression matching and string analysis:

Heuristic 1 (Android-specific permissions): First, to identify permissions belong-
ing to the Android-specific category, we filter permissions which follow the patterns:

android.permission.[*]
com.android.[*].permission.[*]

From these permissions, we tag as official the permissions that match the list provided
in the public Android documentation for developers according to Android 4.4 (API
level 19)11.

Heuristic 2 (Google-specific permissions): To identify permissions belonging to
the Google-specific category, we filter permissions which follow the patterns:

com.google.android.[*].permission.[*]
com.android.[*]

11http://developer.android.com/reference/android/Manifest.permission.html

http://developer.android.com/reference/android/Manifest.permission.html

56 Leveraging the Crowd in vitro

The last pattern excludes the word “permission” as it matches the Android-specific
pattern. Examples of Google-specific permissions that follow this pattern are:

com.android.vending.BILLING
com.android.vending.CHECK_LICENSE

to use the billing and licensing services, respectively. From these permissions, we define
the class of internal Google permissions with the permissions defined by Google apps
(e.g., Voice Search, GMail). These permissions follow the patterns:

com.google.android.apps.[GoogleAppName].[*]
com.google.android.googleapps.permission.[*]

For example, com.google.android.voicesearch.SHORTCUTS_ACCESS in the Voice
Search app.

Heuristic 3 (Vendor-specific permissions): To identify permissions belonging to
the Vendor-specific category, we filter permissions following the patterns:

com.[vendor].[*].permission.[*]
android.permission.[vendor].[*]

We compile a predefined list of available vendor names: sonymobile, htc, huawei, sec
(Samsung Electronics Co), dell, and motorola.

Heuristic 4 (Classes refinement): We build lists of permissions to refine the
permissions contained in each category under specific classes: official, removed, and
internal. These lists are manually created by collecting documentation available in
different sources. As a matter of example, the Android SDK contains a set of internal
APIs that are intended for exclusive use by the system and system apps. However, they
are available from the Android source code and third-party apps can access internal
APIs using Java reflection [65]. The internal APIs reside in the Android source code in
the package com.android.internal, and in the other packages with the annotation
@hide.

Heuristic 5 (Identifying incorrect permissions): We select all the permissions
within a category that are considered as unclassifiable in previous classes. To automati-
cally identify incorrect permissions, we compute the Damerau-Levenshtein distance [61]
to measure the similarity between two input strings. We normalize the distance to the

5.1 Reporting Risky Apps a priori 57

range [0,1] by dividing the distance by the length of the longest string, thus defined as:

distNDL(s1, s2) = distDL(s1, s2)
max(|s1|, |s2|) (5.1)

We compute the normalized Damerau-Levenshtein distance between each unclassified
permission P and each official permission Oi. Finally, we set the similarity score of
an unclassified permission as the minimum distance of all the obtained normalized
Damerau-Levenshtein distances:

score(P) = min{distNDL(P,Oi)}, i = {0...n} (5.2)

Considering different similarity ranges, we observed 5 types of permission request
mistakes in the Google Play Store:

Misspell. For example, requesting android.permission.READ_CONCACTS instead of
android.permission.READ_CONTACTS.

Wrong prefix. Each permission is identified by a unique label. Typically, the label is
defined by a string starting with a prefix (e.g., android.permission.) followed
by a constant in capital letters. We have identified a set of permissions defining
incorrect prefixes, specifically two common mistakes:
Prefix absence. For example, INTERNET is missing the prefix android.permission.
The rational for this mistake seems to come from the official Android documentation
on permissions, which first provides a table with the permissions showing only the
constant part.
Prefix confusion. For example, requests to android.permission.SET_ALARM,
instead of com.android.alarm.permission.SET_ALARM.

Misuse. It is a special case of prefix misuse. Apps request as permissions other Android
elements (e.g., libraries, features). For example: android.hardware.CAMERA.

Lacking. Finally, we also observed some permissions that look like being incomplete:
android.permission.

In addition to these mistakes, we build a cluster of unclassified permissions: all the
permissions within a category that do not fit in any of the defined classes. Finally, the
developer-specific permissions category covers permissions that do not fit into any of
the previous categories.

58 Leveraging the Crowd in vitro

Table 5.1 synthesizes the results of measuring the abundance of each class of the
permission taxonomy in our dataset from Google Play Store. For each category and
class of the taxonomy, we show the number of permissions and permission requests. We
observed that official Android-specific permissions are the most commonly requested
ones among apps. Removed permissions is the second most popular class among the
dataset.

Official Removed Internal Incorrect Unclassified
#Perm #Req #Perm #Req #Perm #Req #Perm #Req #Perm #Req

Android 137 245,274 19 1,699 50 1,040 144 561 152 1,240
Google 5 18,246 837 1,107 51 200 39 61 3 22
Vendor 184 1,514 - - - - - - - -

Samsung 88 302 - - - - - - - -
Sony 38 291 - - - - - - - -
HTC 28 251 - - - - - - - -
Dell 14 14 - - - - - - - -

Motorola 12 649 - - - - - - - -
Huawei 4 7 - - - - - - - -

Developer 1,085 2,875 - - - - - - - -
TOTAL 1,411 267,909 856 2,806 101 1,240 183 622 155 1,262

Table 5.1 Summary of applying the permission taxonomy to our Google Play Store
dataset

We manually validated the resulting permission classification. We took a random sample
of 300 permissions. Our manual inspection found 5.33% of false positives. Some false
positives derive from the interpretation of permissions. For example, the permission
android.permission.SEND_MMS12 was tagged as Misspelled Android permission while
it is obviously not. The nearest match is the permission android.permission.SEND_SMS.
However, we consider the developer is trying to access to a functionality related with
MMS instead of SMS, and it is not a misspelling.

We define as error-sensitive permissions those permissions that are suspected to induce
bugs. We consider as error-sensitive permissions the set of permissions belonging to
the classes removed, internal, incorrect and unclassified, since the use of non-official
permissions can be the source of problems. To clarify, not all the bugs are related to
the suspicious permissions themselves (e.g., missing permission, wrong permission due
to a typo), but rather to the fact that some APIs for which the permission is requested
are buggy or obsolete [104]. We study the correlation between permission requests and
bugginess without claiming the underlying causes of bugs.

12This permission does not exist in the official Android documentation.

5.1 Reporting Risky Apps a priori 59

5.1.3 Generating Risk Reports

We now study potential correlations between apps that use error-sensitive permissions
and those reported as crash-prone by end-users. We use the knowledge inferred from
this study to propose crowd-based checkers that could be embedded in app stores to
anticipate the emergence of app crashes in the wild.

With the objective of mining common permissions in error-suspicious apps, we use
supervised machine learning, and specifically a classifier where independent variables
are permissions and the dependent variable is crash-proneness.

5.1.3.1 Mining Crash-prone Permission Patterns

To identify permission patterns that correlate with bugs, we use a predictive machine-
learning model, in particular the J48 Decision Tree algorithm (a Weka13 implementation
of C4.5 [130]). J48 predicts the value of a dependent variable based on the value of
various attributes (independent variables) of the data. In our setup, the independent
variables are permissions, and the dependent variable is crash-proneness. We choose
J48 because it enables the direct extraction of rules to predict a label. From the
resulting decision tree model, we extract permission patterns that lead to the label
‘Buggy’. We only consider presence of permissions in the patterns. However the absence
of a permission also causes the app to crash. This kind of bug is partially handled by
our approach, when the permission is missing because of an incorrect or incomplete
declared permission. Furthermore, there already exists some developer support [48] to
automatically check if apps declare all the permissions required to run.

Step 1: Dataset Preprocessing. Let D be a dataset of apps, we represent each
app (A) as a binary vector: A = [p1, ...,pn, c1, ..., cn,L], where pi ∈ {0,1}, ci ∈ {0,1},
and L ∈ {Buggy,NonBuggy}. Each pi depicts a permission, ci represents a class of
permission according to our taxonomy (e.g., INCORRECT class), and L represents the
class label learnt from its user reviews (i.e. ‘Buggy’ or ‘NotBuggy’). The value pi = 1
indicates that the app requests the permission pi, and pi=0 indicates the absence of
the permission. Similarly, ci = 1 indicates that the app requests a permission that
belongs to the class ci in our taxonomy.

13Weka is an open-source Java library that provides implementations of several data mining
algorithms: http://www.cs.waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka

60 Leveraging the Crowd in vitro

For the purpose of this analysis, we group all the classes of infrequent single permissions
(e.g., the misspelled ones) within a common abstract class. Indeed, a specific misspelled
permission usually only appears in one app, but we are rather interested in knowing if
the group of incorrect permissions is frequent in error-suspicious apps. There are also
some permission names that are customized in each app. For example, apps requesting
the GCM Google service must include a specific permission for receiving messages:
[appPackage].permission.C2D_MESSAGE. The permission name must exactly match
the pattern, but each app substitutes [appPackage] by its own package name in the
manifest. This permission prevents other apps from registering and receiving their
messages. Therefore, each specific GCM permission is only requested once at maximum.
Moreover, we grouped all the official Android permissions in a single dimension14. We
notice that the 10 most requested official Android permissions in our dataset are the
same top requested permissions observed by other studies [Android Observatory, 69]15.

Finally, the 4 classes of permissions considered are: ANDROID-OFFICIAL, INCORRECT,
GOOGLE-GCM, and GOOGLE-REMOVED permissions. Each app is represented by a 1,563-
dimensions vector, where the first 1,558 dimensions represent single permissions (pi),
the following 4 dimensions refer to classes of permissions (ci), and the last dimension
is the assigned class label (L).

Step 2: Model Construction. The J48 algorithm takes as input parameters a confi-
dence factor and a minimum number of objects (minNumObj). The confidencefactor

limits the prediction error. For example, a confidence factor of 0.25 indicates that a
permission pattern fails as maximum in the 25% of predictions. Thus, the lower the
confidence factor, the more accurate the classifier. The minNumObj parameter sets
the minimum number of instances that reach a leaf of the tree model. In our case it
represents the minimum number of apps that must exhibit a permission pattern to be
considered as a predictor of the class.

We train a J48 decision tree model using the dataset which contains 10,658 apps
labeled as Buggy and 11,539 labeled as NonBuggy (cf. Section 5.1.1). Varying the
confidence and minNumObj thresholds impacts the number of permission checkers

14The request of Android permissions should not make the app crash, and we are rather interested
in revealing the existence of patterns in error-sensitive permissions. First, we run the experiment
considering all the official Android single permissions, but the most requested permissions appeared
in many checkers, leading to high amount of irrelevant patterns.

15The most requested permissions in our dataset are: INTERNET, ACCESS_NETWORK_STATE,
READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE, ACCESS_WIFI_STATE,
WAKE_LOCK, ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION, and VIBRATE

5.1 Reporting Risky Apps a priori 61

obtained and their respective performance. We run the algorithm several times for
different input values in order to identify the best calibration. We set cross-validation
10 folds. Then, we train the model with different confidence factors (ranging from 0.05
to 0.50 by increments of 0.05) with three different minNumObj limits—i.e., 100, 50
and 20 apps. Figure 5.5 reports on the results of the sensitivity analysis performed.
The resulting family of checkers ranges from 4 to 12 different permission checkers.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

#
C

h
e
ck

e
rs

Confidence Factor

minNumObj=100
minNumObj=50
minNumObj=20

Fig. 5.5 Calibration of confidence factor and minNumObj parameters.

Table 5.2 details 4 families of permission checkers (F1–F4) obtained varying the
confidence factor (c) and minNumObj (m) values. For example, the family F2
includes the 4 permissions pointed by F1 and one additional permission. In the family
F1, we observe two official Google permissions: CHECK_LICENSE and BILLING. Contrary
to our expectations, these official Google permissions are involved in some bugs. After
searching in online forums for Android developers, we realize that there are many
Android developers complaining because they have experienced crashes (due to security
exceptions) in their apps after the update of Google Play services 4.3 (March 2014).

Note that the buggy permission checkers are not meant to be permanent. The app
ecosystem is continuously evolving, and app store moderators can use our approach
regularly (say weekly) for updating existing checkers, discovering new ones, and
discarding outdated ones. The proposed system reveals interesting insights for isolating
bugs in real devices. Nevertheless, we do not claim causality, but rather we suggest
permissions that correlate with bugs.

The family of permission checkers obtained forms the knowledge of the recommender
system. Taking into consideration the performance of the different families obtained,
thus app store moderators can make informed decisions on which checkers to enable

62 Leveraging the Crowd in vitro

Table 5.2 App Permission Checkers

c m Error-sensitive Permission Checker

F1 0.1 100

android.permission.WRITE_INTERNAL_STORAGE
android.permission.ACCESS_SUPERUSER
com.android.vending.CHECK_LICENSE
com.android.vending.BILLING

F2 0.2 100 F1 com.android.launcher.permission.READ_SETTINGS

F3 0.2 50 F1 android.permission.WRITE_OWNER_DATA
com.sonyericsson.extras.liveware.aef.EXTENSION_PERMISSION

F4 0.2 20 F3

com.google.android.googleapps.permission.GOOGLE_AUTH
android.permission.STORAGE
com.android.email.permission.READ_ATTACHMENT
com.google.android.gm.permission.READ_CONTENT_PROVIDER

regarding their performance, in order to predict potential buggy-apps before they are
published in the store.

5.1.4 Implementation Details

This section provides details of the implementation that supports the generation of the
crowd-based permission checkers.

To generate the checkers we started by collecting a dataset of apps from Google
Play Store. To store the dataset, we created a graph database with Neo4J 16. This
dataset therefore consists of a graph describing the apps as nodes and edges. Graph
databases provide a powerful and scalable data modelling and querying technique
capable of representing any kind of data in a highly accessible way [134]. We chose a
graph database because the graph visualization helps to identify connections among
data (e.g., clusters of apps sharing similar sets of permission requests). In particular,
our dataset graph contains five types of nodes: APP nodes grouping the details of
each app, PERMISSION nodes describing permission types, CATEGORY nodes describing
app categories, SUBCATEGORY nodes describing app subcategories, and REVIEW nodes
storing user reviews. Furthermore, there are four types of relationships between APP
nodes and each of the remaining nodes e.g., USES_PERMISSION relationships between
APP and PERMISSION nodes. In total, our graph contains 1,449,361 nodes and
1,901,703 relationships among them. To extract statistics from the dataset, we can
query the graph database using one of the available graph query languages (e.g.,

16http://www.neo4j.org

http://www.neo4j.org

5.2 Reporting on Performance Degradations 63

Cypher, SPARQL, Gremlin). We chose Cypher [Cypher], which is a widely used
pattern matching language.

Figure 5.6 shows an excerpt of the generate Google Play Store graph database in Neo4j.
This dataset is available online17.

Fig. 5.6 Excerpt of the Google Play Store dataset in Neo4j

To identify apps which accumulate reviews related with errors and crashes we use
topic modelling, in particular the Latent Dirichlet Allocation algorithm available in
the MALLET library [116].

Finally, to learn the permissions patterns which constitute the checkers, we use the
J.48 algorithm provided in the Weka library.

5.2 Reporting on Performance Degradations

When the app developer uploads a new app release to the store (for example after
bug fixing), the App Store 2.0 runs a performance analysis to identify potential UI
performance degradations. The Performance Analysis component receives as input
a scenario or test and the historic run repository that are associated with the previous
app release. The historic run repository contains performance metrics collected during
the execution of the scenario or test in previous versions of an app.

17https://sites.google.com/site/androidbuggyappcheckers/

https://sites.google.com/site/androidbuggyappcheckers/

64 Leveraging the Crowd in vitro

To assess whether the new app release fulfills the expected performance goals—i.e., to
prevent performance degradations and to improve performance on low-end devices—
the system first repeats the scenario with the new app release on different devices
of the crowd while collecting UI performance metrics. Then, it compares the newly
collected metrics with the previous metrics available in the historic run repository to
automatically flag performance deviations.

We propose an approach called Dune18 to detect UI performance degradations among
different versions of an app and heterogeneous contexts. The Performance Analysis
component implements the Dune approach. In this section, we describe the Dune
approach in detail. Before jumping into the details of the approach, we discuss three
major challenges associated with the current practices to identify UI performance
regressions in mobile apps:

Challenge #1: Automatic detection of UI performance degradations. Android provides
tools to profile the GPU rendering of apps in order to identify janky frames in an
app [GPU]. The current UI performance testing consists of having a human tester
which performs a set of user operations on the target app and either visually look
for janks, or spend a large amount of time using the GPU profiler to identify janky
frames. Hence, this ad hoc analysis is time consuming, tedious, and error prone. In
addition, such a process relies on the human tester’s ability to perceive frame rate
changes, which could vary from person to person.

Challenge #2: Triaging UI performance root causes. Once a jank is identified, develop-
ers rely on other tools, like Android Systrace [Sys], to profile concrete app executions
in order to find the source of the jank. In particular, they need to filter the full data
collected from a test execution in order to identify the specific sequence of user events
that triggered the slow-down. This manual investigation again requires trial-and-error,
which is even harder as the size of the app increases.

Challenge #3: Environment heterogeneity. The app performance varies depending
on the device on which it runs. For example, an app can perform well on one set of
devices, or one combination of hardware and software, but it can present performance
bottlenecks when running in lower-end devices or in a different execution context (e.g.,
using different network types). There is a lack of tools to identify UI performance
deviations between different app versions and contexts.

18Dune stands for Detecting Ui performaNce bottlEnecks.

5.2 Reporting on Performance Degradations 65

Figure 5.7 shows an overview of the approach to detect performance degradations
between app versions and contexts. The approach has three main phases:

1. Collecting
Performance Logs V1

Developer

Context Profiles

UI Performance
Historical Repository

UI
metrics

UI Events
Timestp.

2. Build Model of
versions/context
Without janks

3. Similarity
Measure

4. Detect
Outliers

5. Context
Patterns

V2

New UI
metrics

 Regression!
Context: SDK 5.0
UI Event: Ev1

Ev1

Similar test runs

Perform. Outliers

Performance report

Fig. 5.7 Overview of the Performance Analysis module

1. Aggregating Performance Logs. To compare a new scenario execution with the
historical executions, we first build a model which aggregates all the performance
logs corresponding with a previous app release.

2. Identifying Performance Deviations. The Performance Analysis component
calculates context similarity and applies a statistical technique (in particular
Interquartile Range) to flag a performance regression when the distance between
the metrics of the new and old executions in similar context is larger than a given
threshold.

3. Generating Performance Reports. If the new app release is flagged as an outlier,
the system identifies the device configurations and specific UI events that trigger
the performance deviations. Then, a detailed report is sent to the developer who
can fix the app before publication.

66 Leveraging the Crowd in vitro

5.2.1 Aggregating Performance Logs

The historic run repository stores performance traces resulting from running a specific
scenario on different devices (cf. Chapter 4 section 4.2.3.2). First, the Performance
Analysis builds a batch model that aggregates the collected metrics and the execution
context across all the runs in the repository for an specific app and scenario.

Figure 5.8 (left) depicts an example of a batch model created from a historic repository
with three performance traces (T1, T2, T3) in version V 1 of an app. Each trace captures
its execution context (i.e., SDK, device manufacturer, device model, CPU chip, and
network type); and the run’s UI performance metrics (e.g., #frames rendered, #janky
frames, and smooth ratio).

SDK

manufacturer

model

APP
v1

T1 T2 T3

4.1

CPU

network

5.0

3G

Total2frames2rendered2
Janky2frames

82189
353352

57.01%

R

% Smooth frames:

R

4.4

82189
104482

82189
115922

87.28% 85.90%

S3 FLEX2 G4

T4

4.1

82189
361552

43.99%

G4

APP
v1.2

REGRESS?

Fig. 5.8 Example of a Batch Model from a historic runs repository

The batch model will be used to detect deviations from the expected app performance.
When the developer releases a new version of the app (e.g., version V 1.2), the batch
model is used to flag performance deviations.

5.2.2 Identifying Performance Deviations

When there is a new version of an app or a new execution context (such as a new SDK
released by Android), the app developer needs to guarantee that the new release (or the
app on a new device) meets the expected performance requirements to fulfill the user
expectations. Then the store executes the scenario in the new context and compares the
metrics with the historic runs. The Performance Analysis component automatically

5.2 Reporting on Performance Degradations 67

compares the new performance trace (T4) with the historical runs repository (T1,T2,T3)
and flags potential performance degradations at specific locations in the app. Remark
that the comparisons are only done between test runs replicating the same scenario in
the app, executing exactly the same functionalities and features.

The process to identify performance degradations consists of 3 steps.

5.2.2.1 Step 1: Calculating Context Similarity

Since the app performance varies depending on the device on which it runs, we rank
previous performance traces according to the context similarity with the new trace [68].
Thus, a previous trace which was run on a more similar environment receives more
weight and will be more relevant for the comparison than a trace on a completely
different environment. To calculate context similarity between two traces T1 and T4 (cf.
Figure 5.8), first we extract from each trace the sub-vector that contains the context
dimensions. For example, the context of the traces in Figure 5.8 are represented by
the sub-vectors:

T1 = [v1, 4.1, samsung,S3,x86,wifi]
T4 = [v1.2, 4.1, lg,G4,x86,wifi]

Then, we generate a binary similarity vector to capture the context properties that are
common in the two runs. A value of 1 indicates that the two runs share the context
property. Conversely, the value 0 indicates that the context property differs between the
two runs. The similarity vector between traces T1 and T4 is: Sim(T1,T4)=[0,1,0,0,1,1],
which means that both T1 and T4 share SDK version 4.1, CPU chip x86 and wifi.

Finally, we measure the similarity degree (simD) between the new and the past trace
as the Cartesian length of the similarity vector. The Cartesian length is calculated
as

√
N , with N the number of 1s in the similarity vector. For example, the similarity

degree between T1 and T4 is
√

3 = 1.73. The higher the degree, the higher the similarity
between the context of the traces.

5.2.2.2 Step 2: Ranking Previous Tests

Using the similarity degree, we can assign a weight (w) to each previous trace to
describe the importance of that trace to analyze the new scenario run. Since we expect

68 Leveraging the Crowd in vitro

that an app behaves similar in similar contexts, traces having similar or identical
contexts as the new trace, should indeed have the largest weights.

Hence, to rank traces, we follow the approach proposed by Foo et al. [68], which
calculates the weight of a previous test as w(Ti) = simD(Ti)∑n

j=0 simD(Tj) . Thus, the sum of
all weights is 1. Table 5.3 reports on the similarities and weights between the new
trace T4 and the historical performance traces. For example, the weight of T1 is
w(T1) = 1.73

1.73+1+1.73 = 0.39.

Table 5.3 Context similarities between the new performance trace (T4) and the historical
traces (T1, T2 and T3).

testN testH simD(TestN ,TestH) w(TestH)

T4

T1 1.73 0.39
T2 1 0.22
T3 1.73 0.39

We use the similarity weight to rank the previous traces, and cluster them according
to the similarity degree with the new trace. Each cluster groups the traces that have
the same degree (and hence weight). In the example, the traces result in two clusters:
the first cluster contains the traces T1 and T3, while the second cluster only trace T2.
Since the first cluster contains the set of traces most similar to the new trace, it will
be used to identify performance deviations.

5.2.2.3 Step 3: Identifying Performance Deviations

The third step aims to identify performance outliers by comparing the metrics collected
in the new trace with the set of traces obtained in the previous step. To detect such
outliers, we apply the Interquartile Range (IQR) statistical technique. This technique
filters outliers and extreme values based on interquartile ranges—i.e., a metric (x) is
considered as an outlier if:

(1) x < Q1−OF × (Q3−Q1)
(2) x > Q3+OF × (Q3−Q1)

where Q1 is the 25% quartile, Q3 is the 75% quartile, and OF is the outlier factor,
which is an input parameter of the technique. We use OF = 1.5 because it is the
default value provided by the Weka library (used in our implementation) to identify

5.2 Reporting on Performance Degradations 69

outliers with this technique. However, OF is a configuration parameter that can be
overridden by the Dune user. With a lower OF factor, metrics are flagged faster (i.e.,
with slighter difference) as outliers.

The outliers flagged by equation (1) are values that deviate below the normal perfor-
mance (with negative offset), whereas outliers flagged by equation (2) are values above
the normal performance (with positive offset). Thus, the Performance Analysis com-
ponent can detect performance deviations that can be categorized as either performance
regressions or optimizations with respect to previous performance traces. Note that
the interpretation of outliers as regression or optimization depends on the type of
the metric x. For example, for the metric number of frames rendered, an outlier with
negative offset is a performance regression. If the new test renders less frames means
that some frames were skipped during the execution, thus resulting in laggy animations
perceivable by users.

By default, the outlier detection considers the set of metrics of a scenario execution
together (coarse-grained, cf. Section 4.2.3.2), then determines if the resulting trace
is an outlier in comparison with the history repository. As illustration, consider a
historic repository of an app with five performance traces that recorded the following
performance metrics (#Fr, Rat, T):

(#Fr) (Rat) (T)
T1 = [448, 0.95, 45.3]
T2 = [453, 0.94, 44.5]
T3 = [450, 0.93, 44.9]
T4 = [457, 0.80, 50.3]
T5 = [430, 0.85, 45.7]

Recently, Android has released a new SDK version (Android Marshmallow 6.0.0) and
the app developer wants to ensure that his app has a good performance in this new
context. Thus, he runs the same scenario in a new device with Android 6.0.0, which
records the following metrics:

T6 = [270, 0.40, 40.3]

70 Leveraging the Crowd in vitro

To automatically detect any performance deviation, we apply the IQR filtering to
the data available in the history repository (T1, T2, T3, T4, and T5) and the new
performance trace (T6). If we assume all 5 traces in the repository to be clustered
together based on similarity degree, a new trace is flagged as outlier if at least one of
its metrics is flagged as outlier compared to these 5 runs.

For example, the first metric of T6 (x1 = 270) is an outlier in comparison with previous
observations of such metric: {448, 453, 450, 457, 430, 270}, according to equation (1):

Q1 = 390, Q3 = 454
270 < 390 −1.5(64)

As a result, T6 is flagged as an outlier.

Finally, the Performance Analysis component adds a class label (Outlier+/Outlier−/N)
to the analyzed test to indicate if it is a performance optimization, regression or normal
execution.

Furthermore, if the fine-grained mode is activated, Dune can spot specific UI events
associated with the outliers. In this case, the performance trace contains a list of
sets of metrics, in particular as many sets of metrics as UI events in the scenario (cf.
Figure 5.9 top). The outlier detection process follows the same IQR filtering strategy,
but in this case, the system flags individual UI events as outlier.

Figure 5.9 illustrates the automated outlier detection process in the fine-grained mode.
The historic repository contains five historical traces (T1 to T5) and a new trace T6 to
analyze. We apply the IQR technique to identify outliers per attribute. As a result,
the store flags T6 as an outlier and reports the event E2 as the location of the outlier.
Then Dune adds the class label E2Outlier− to the trace T6, to indicate that the event
E2 exhibits a performance degradation. If several UI events are flagged as outliers,
then several class labels are added to the trace.

5.2.3 Generating Performance Reports

If the set of metrics of the new run are flagged as an outlier, the store generates a
performance report providing information about the violated metric and the location
of the offending UI event.

5.2 Reporting on Performance Degradations 71

T1: [[200,o0.9,o25.0]o,o[200,o0.8,o10.1],oo[48,o0.9,o10.2]o]

T2: [[190,o0.8,o24.1]o,o[210,o0.9,o10.4],oo[53,o0.9,o10.0]]

T6: [[160,o0.5,o10.1],oo[95,o0.4,o10.1],oooo[50,o0.5,o10.1]o]

HISTORICAL
TEST

REPOSITORY

NEW
TEST

E1 E3E2

sm
oo

th
ne

ss

E1 E2 E3

Q1

Q3

IQ
R

time

T3: [[195,o0.9,o24.1]o,o[205,o0.9,o10.5],oo[50,o0.9,o10.1]oo]
T4: [[200,o0.9,oo27.1],o[200,o0.8,o12.1],oo[57,o0.9,o11.1]]

o

outlier

T5: [[195,o0.8,o10.1]o,o[205,o0.8,o10.1],oo[30,o0.9,o10.1]]

Fig. 5.9 Automated detection of performance deviations through Interquartile Ranges
with fine-grained (UI) metrics.

5.2.3.1 Frequent Context Mining

In the presence of performance outliers, the Performance Analysis component char-
acterizes the context under which the conflicts arise. To identify common context
patterns that induce outliers, we use Association Rule Mining. An association rule
is an implication of the form X =⇒ Y that states “when X occurs, Y occurs” with
a certain probability. The support of such a rule is the frequency of the rule in the
dataset, while the confidence of a rule indicates the percentage of instances of X for
which Y occurs. In our case, X is a context property, and Y is the class label (e.g.,
Outlier−) learned in the previous step. To build a context rule, we require a confidence
value of 90%, which is the default parameter value provided by Weka. However, this
configuration parameter can be overridden by the users of Dune.

Some examples of rules are:
{sdk = 4.1} =⇒ Outlier−

{v = 1.2,dev = LG} =⇒ E2Outlier−

These context rules help the developer to narrow down the different contexts under
which performance bottlenecks appear.

Finally, a performance report is sent to the app developer who can fix the app before
making the app publicly available to users.

72 Leveraging the Crowd in vitro

5.2.4 Implementation Details

This section provides details about our proof-of-concept implementation of Dune.
Dune consists of two parts. The first component is in charge of executing tests on
devices and collecting metrics during the execution, while the second component is in
charge of detecting performance deviations.

Figure 5.10 shows an overview of our tool implementation in charge of collecting
performance metrics during execution.

D
ev

ic
ef

C
D

ev
ic

ef
B

input output

Genymotion

Dumpsys

Logcat

A
ndroidfD

ebugfB
ridge

1a
d
b

2

Robotium

App
version

X

Perf.
test
suite

Frame
metrics

[DevicefA]

Event
timestamps
[DevicefA]

Device
profile

A

Dune.
py

APK
version

X

Device
profile

A

Device
profile

A 12fprovision

22fcontrol install

run

listen

listen

Event
timestamps
[DevicefA]

Frame
metrics

[DevicefA]

Frame
metrics

[DevicefA]

Event
timestamps
[DevicefA]

D
ev

ic
ef

A Weka

Outlier
Detection

(IQR filter)

Context
Mining

(Apriori)

PERFORMANCE
REPORT

output

Fig. 5.10 Dune implementation. Metrics acquisition component (left). Report genera-
tion component (right).

This component is implemented as a Python script that installs and runs tests on
mobile devices and collects metrics during the test executions. To communicate with
devices, our implementation relies on the Android Debug Bridge (adb) [adb]. adb is a
command line tool included in the Android SDK that acts as a middleman between a
host and an Android device. We use adb to install/uninstall apps and tests, log UI
events, and profile GPU rendering.

To track UI events, the tests write the timestamps of the events in the Android Logging
system (logcat) [log]. In Android, the system collects debug information from apps
and from the system into logs, which can be viewed and filtered by logcat. We have
implemented a listener that monitors logcat and subscribes to the UI event messages.

To profile GPU rendering, we use the Android dumpsys tool, which runs on a device
and dumps relevant information about the status of system services [dum]. Since
dumpsys only provides information about the last 120 frames rendered, our tool read
the frames rendered every second, to ensure that no frame information is missed. To

5.3 Conclusions 73

ensure a low overhead, this component is built on top of low-overhead tools provided
by Android.

Instead of requiring tests to be run on physical devices, we leverage the fast third-
party Android emulator Genymotion [gen], which allows to generate emulators with
specific context configurations, on-the-fly. Following the concepts of Infrastructure-as-
a-Service [92], Genymotion just requires a textual specification, after which generation,
deployment and execution of the emulators is fully automated. In particular, one can
configure the emulated device model, SDK, network, etc. Nevertheless, this component
can also work whit physical devices.

The second component of our proof-of-concept implementation is a Java application
that interfaces with Weka [84]. Weka is an open-source Java library that implements
several data mining algorithms. In particular, we use the InterquartileRange filter
implemented in Weka to identify outliers, and the Apriori algorithm to mine association
rules to point out offending contexts.

5.3 Conclusions

This chapter presents two engineering approaches to automatically generate two
different types of actionable insights (risk reports and performance reports) by analyzing
three types of crowdsourced artefacts (user reviews, execution logs, and app context)
accessible from app stores. The actionable insights aim to assist app developers and
store moderators to anticipate the rise of issues in apps before making the apps publicly
available to users. As a result, the quality of apps increases, then the user experience
and satisfaction with apps.

Chapter 6

Leveraging the Crowd in Vivo

Ris
k

Re
po
rts

Reproducible
Scenarios

Perfo
rman

ce

Repo
rts

AppPatchesCrowdsourced
Information

User
Reviews

App
Context

Execution
Logs

ACTIONABLE INSIGHTS

Fig. 6.1 Chapter 6 at a glance

After the release phase (cf. Chapter 5),
the store makes apps visible to users.
Once apps are installed and executed by
users, the App Store 2.0 initiates the
in vivo measures.

This chapter presents two types of action-
able insights that app stores can deliver
in vivo: reproducible scenarios and app
patches. We present two modules (Crash

Analysis and Patch Generation) to generate such insights respectively. The repro-
ducible scenarios aid developers to automatically reproduce crashes experienced by
users. The app patches prevent that users face a previously observed crash.

The rest of the chapter is organized as follows. Section 6.1 describes the approach
to identify recurrent crash patterns and generate reproducible scenarios to support
developers in the crash reproduction task. Section 6.2 presents the module to generate
hot patches to mute crashes. Section 6.3 concludes the chapter.

6.1 Reproducing Crash Scenarios a posteriori

Any software developer knows that faithfully reproducing crashes experienced by users
is a major challenge. From previous research we know that a single failure report
contains insufficient information to isolate a bug [166]. To assist developers in isolating

76 Leveraging the Crowd in Vivo

and reproducing crashes in an automatic and effective manner, the App Store 2.0
incorporates a Crash Analysis component. We propose an approach called Mo-
TiF to translate a collection of crash logs into a reproducible scenario. The Crash
Analysis implements the MoTiF approach to support developers to reproduce crashes
experienced by users.

Figure 6.2 summarizes the MoTiF approach. Figure 6.2 (left side) shows three
crowdsourced crash logs collected from three different users when using the Wikipedia
app. For example, there is a log that reports a crash after the user performs the following
sequence of actions: A-‘Click on Menu’, and B-‘Click on Save Page’. At event A,
the network was ON . Whereas the network was OFF at event B. We described the
monitoring process to collect crash logs in detail in Chapter 4 (cf. Section 4.2.3).

1.xMonitoringxAppxUsage 2.xMiningxCrashxPatterns

CrowdsourcedOExecutionOLogs

ClickxonxMenu

ClickxonxMenuItemxdSavexPaged

RuntimeException

net=ON

context

net=OFF

context

org wikipedia
java lang Runti…

org wikipedia
java lang Runti…

org wikipedia

java lang Runti…

.x.x.x.x.x.x.x

NEXT

NEXT

W
IT

H
_D

Y
N

A
M

IC
_…

WITH_DYNAMIC_CONT…

W
IT

H_D
YNAM

IC
_C

O
NTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

TE
X

T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

WITH_DYNAMIC…

W
IT

H
_D

Y
N

A
M

IC
_…

W
IT

H
_D

YN
AM

IC
_C

O
N

TE
XT

WITH_DYNAMIC_CONTEXT

NEXT

N
EX

T

N
E

X
T

NEXT

NEXT

NEXT

N
E

X
T

N
EX

T

NEXT

NEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

NEXT

N
E

X
T

NEXT

NEXT

NEXT

WITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

TE
X

T
W

IT
H

_D
Y

N
A

M
IC

_C
O

N
T

E
X

T

NEXT

NEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

…

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T W

IT
H

_D
Y

N
A

M
IC

_C
O

N
T

E
X

T

W
IT

H
_D

Y
N

A
M

IC
_C

…

W
ITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
ITH

_D
Y

N
A

M
IC

_C
O

N
TE

X
T

N
E

X
T

N
E

X
T

N
E

X
T

NEXT

N
E

X
T

N
E

X
T

N
E

X
T

NEXT

N
E

X
T

N
E

X
T

W
ITH

_D
Y

N
A

M
IC

_C
O

N
T…

W
ITH_DYNAM

IC_CONTEXT

W
ITH

_D
Y

N
A

M
IC

_C
O

N
TE

X
T

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CO…

WITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

WITH_DYNAMIC_CON…

W
ITH_DYNAM

IC_CONTEXT

NEXT

N
E

X
T

N
EX

T

NEXT

NEXT

NEXT

NEXT

W
IT

H
_D

Y
N

A
M

I…

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

…

WITH_DYNAMIC…

N
E

X
T

W
ITH_DYNAMIC_CONTEXT W

IT
H

_D
Y

N
A

M
IC

_C
O

…

W
ITH

_D
Y

N
A

M
IC

_C
O

N
TE

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

WITH_DYNAMIC_CONTEXT

W
ITH

_D
Y

N
A

M
IC

_C
…

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T…

WITH_DYNAMIC
_CONT…

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H_D
YNAM

IC
_C

O
NTEXT

W
ITH_DYNAM

IC_CONTEXT W
IT

H
_D

Y
N

A
M

IC
_C

O
N

TE
X

T

NEXT

N
E

X
T

N
E

X
T NEXT

N
E

X
T

NEXT

N
E

X
T

N
E

X
T

N
E

X
T

NEXT

N
E

X
T

NEXT

N
E

X
T

N
E

X
T

N
E

X
T

WITH_DYNAMIC_C…

WITH_DYNAMIC_CONTEXT

W
IT

H_D
YNAM

I…

WITH_DYNAMIC_CONTE…

W
ITH

_D
Y

N
A

M
IC

_…

WITH_DYNA…

W
IT

H_D
YNAM

IC
_C

ONTEXT

W
IT

H
_D

Y
N

A
M

IC
_…

W
ITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

TE
X

T

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

NEXT

NEXT

N
E

X
T

NEXT

N
E

X
T

NEXT

N
E

X
T

NEXT

NEXT

NEXT

NEXT

WITH_DYNAMIC_CONTEXT

W
ITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

W
ITH_DYNAM

IC_CO
NTEXT

W
ITH_DYNAMIC_CONTEXT

NEXT

NEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT
WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

NEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

WITH_STATIC_CONTEXT

WITH_STATIC_CONTEXT

W
ITH_STATIC_CONTEXT

W
ITH_DYNAMIC

_CONTEXT

WITH_DYNAMIC_CONTEXT

N
E

X
T

WITH_DYNAMIC_CONTEXT

W
ITH

_D
Y

N
A

M
IC

_C
O

N
TE

X
T

W
ITH_DYNAMIC_CONTEXT

W
ITH

_D
YN

AM
IC

_C
O

N
TEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T N
E

X
T

N
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

N
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

N
EXT

N
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T W

IT
H

_D
Y

N
A

M
IC

_C
O

N
T

E
X

T

WITH_DYNAMIC_CONTEXT

W
IT

H_D
YNAM

IC
_C

ONTEXT

WITH_DYNAMIC_CONTEXT

W
IT

H
_D

YN
AM

IC
_C

O
N

TE
XT

W
IT

H_D
YNAM

IC
_C

ONTEXT

W
ITH

_D
Y

N
A

M
IC

_C
O

N
TE

X
T

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

W
ITH_DYNAM

IC_CO
NTEXT

W
IT

H_D
YNAM

IC
_C

ONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

TE
X

T

N
E

X
T

WITH_DYNAMIC_CONTEXT

W
ITH_DYNAMIC_…

WITH_DYNAMIC_CONTEXT

NEXT

WITH_DYNAMIC_CONTEXT

WITH_DYNAMIC_CONTEXT

N
E

X
T

WITH_DYNAMIC_CONTEXT

W
ITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

N
EX

T

NEXT

NEXT

W
ITH_DYNAMIC_CONTEXT

W
IT

H
_D

Y
N

A
M

IC
_C

O
N

T
E

X
T

org wiki…

{v mID=…

f…

{view=in…

f…

{view=in…

f…

f…

{view=in…

f…

{v mID=U…

f…

{item=in…

f…

{view=in…

f…

{view=in…

f…

f…

{v mRes…
f…

{view=in…

f…

{view=in…

f…

f…

{view=in…
f…

java lang Runti…

)

f…

f…

{view=in…

f…

f…

f…

{view=in…

f…

f…

f…

f…

f…

f…

{view=in…

f…

{view=in…

f…

{view=in…

f…

f…

f…

f…

{view=in…

f…

f…

{view=in…

f…

f…

f…

f…

f…

f…

f…

{keyCod…

f…

f…

f…

)

f…

f…

f…

f…

f…

f…

{view=in…

f…

f…

{view=in…

f…

f…

{view=in…

f…

f…

f…

f…

{view=in…

f…

f…

{view=in…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

{view=in…

f…

f…

f…

{v mID=…

f…

{item=in…

f…

f…

{previou…

f…

f…

f…

f…

{v mID=…

f…

{item=in…

f…

f…

{previou…

f…

{view=in…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

f…

)

f…

f…

f…

{view=in…

f…
{view=in…

f…

f…

{keyCod…

f…

net=ON net=OFF

Crowd-consolidatedOModel

UIApatternP

ContextApatternP

3.xGenerating
ReproduciblexScenario

publicAvoidAtestScenariof-A{

::AClickAonAMenu
solo clickOnViewfsolo getViewf)(/1--B

::ASetAcontext
solo setWifiDataffalse-B

::AClickAonAMenuItem
solo clickOnMenuItemfCSaveAPageC-B

ReproducibleOScenario

VALIDT

NOTOVALIDT

A B

A B
A

A

BC D

BE

A

B

Fig. 6.2 Overview of the Crash Analysis module in the App Store 2.0.

The approach to generate reproducible scenarios from crowdsourced crash logs has
three main phases:

1. Aggregating crowdsourced crash logs. The first step consists of aggregating the set
of crash logs collected from a multitude of devices in a compact representation.

2. Identifying crash patterns. First, we identify common crash patterns among
the collection of app execution traces observed in the wild. These patterns will
be used to automatically extract the minimum sequence of steps to reproduce

6.1 Reproducing Crash Scenarios a posteriori 77

crashes and characterize the operating conditions (i.e., execution context) under
which failures arise (cf. Section 6.1.2).

3. Generating reproducible scenarios. The crash and context patterns identified in
step 2 are translated into a reproducible scenario to reproduce crashes experienced
by users. This scenario will automatically replay a sequence of user interactions
that led to a crash of the app (cf. Section 6.1.3). The store uses the crowd of
devices to validate the generated scenarios. Once the scenario is validated, the
store notifies the app developer.

6.1.1 Aggregating Crowdsourced Crash Logs

The Crash Analysis component aggregates the crowdsourced crash logs into a weighted
directed graph that we denote as Crowd Crash Graph. The Crowd Crash Graph repre-
sents an aggregated view of all the interactions that users performed in a given app
before a crash arises, with their frequencies. The graph enables to induce 1) the
minimum sequence of steps to recreate a crash; and 2) the context under which crashes
arise.

6.1.1.1 Definition: Crowd Crash Graph

The crowd crash graph (CCG) consists of a collection of directed graphs:
CCG={G1,G2, ...,Gn}, where each Gi is a crash graph for a different type of crash.
Such a crash graph aggregates all crash traces that lead to the same exception. It
is based on a Markov chain (1st order Markov model), which is a widely accepted
formalism to capture sequential dependencies [123]. In our crash graph, nodes represent
user interaction events, and edges represent sequential flows between events. Nodes
and edges have attributes to describe event metadata and transition probabilities,
respectively. The transition probability between two events (ei, ej) measures how
often, when ei is fired, it is followed immediately by ej . In each node, the probability
to execute the next event only depends on the current state, and does not take into
consideration previous events.

Our crash graphs are based on the idea of Kim et. al. [100] to aggregate multiple
crashes together in a graph. However, our crash graphs capture a different kind of
information. Whereas the nodes of Kim et al. represent functions and edges represent
call relationships between functions (extracted from crash reports); our nodes represent

78 Leveraging the Crowd in Vivo

Table 6.1 Example of crash traces and single steps split. In bracket, occurrences of
each step.

Crash traces Single trace steps
e1→e2→crash1 e1→e2(2) e2→crash1(3)
e1→e4→e5→e2→crash1 e1→e4(1) e4→e5(1)
e3→e1→e2→crash1 e5→e2(1) e3→e1(1)
e1→e5→crash2 e1→e5(1) e5→crash2(2)
e1→e6→e5→crash2 e1→e6(1) e6→e5(1)

events, and our edges represent sequential user interaction flow. Our nodes and edges
also store event and context metadata, and the graph forms a Markov model. In
addition, we use crash graphs with a different purpose: to synthesize the most likely
sequence of steps to reproduce a crash.

6.1.1.2 Building the Crowd Crash Graph

As illustration, we consider a version of the Wikipedia app (v2.0-alpha) that contained
a crash-inducing bug—i.e., the app crashes when the user tries to save a page and the
network connection is unavailable. Table 6.1 (left) shows an example of five traces
generated with the subject app.

Given a set of traces collected from a multitude of devices, the Crash Analysis
component first aggregates the traces in a graph. The process to build the Crowd
Crash Graph comprises the following two steps:

Step 1: Clustering traces by type of failure. First, we cluster the traces leading
to the same exception. To identify similar exceptions, different heuristics can be
implemented. For example, Dang et al. [62] propose a method for clustering crash
reports based on call stack similarity. We use a heuristic that considers two exceptions
to be the same if they have the same type (e.g., java.lang.NullPointerException)
and message, and they are thrown from the same location—i.e., same class and line
number. For example, in Table 6.1 (first column), we identify two clusters of traces.
The first cluster contains three traces leading to crash1, and the second cluster contains
two traces leading to crash2.

6.1 Reproducing Crash Scenarios a posteriori 79

s

e1 e2

e3 e4 e5

0.66

0.33

1

1

1 1

3 3

1 11

crash1
3

ON OFF LOW

wifi data mem bat

ON OFF HIGH

ON OFF HIGH

HIGH

LOW

HIGH

ON OFF LOW

wifi data mem bat

OFF ON HIGH

OFF OFF HIGH

HIGH

LOW

HIGH

4.1 LG

sdk model manuf

4.1 LG

4.1 LG

L60

G3

 G3

OFF OFF LOW

wifi data mem bat

OFF OFF HIGH

OFF OFF HIGH

HIGH

LOW

HIGH0.66

0.33

Fig. 6.3 Crash Graph derived from Table 6.1.

Step 2: Merging traces in a crash graph. Next, for each cluster of traces, we
form a crash graph following the graph construction technique proposed by Kim et
al. [100]. First, we decompose each trace into single steps—i.e., pairs of events executed
in sequence in a trace (cf. Table 6.1 right). The trace e1 → e2 → crash1 contains two
steps: e1 → e2 and e2 → crash1.

Then, for each event in a step, we create a node in the graph. If the node already
exists, we update its weight. For the same step, we then add a directed edge to connect
the step’s two events. If the edge already exists, we update its weight. In addition,
we create a start node (S) that represents the launch of the app, and add edges to
connect the start node with the first event node of each trace. Finally, we add the
context metadata associated with each event as attributes to the corresponding event
nodes. Figure 6.3 shows the resulting crash graph from the cluster of traces leading to
crash1 in Table 6.1.

For each step in the graph, we then calculate the transition probabilities. For example,
after executing event e1, the event e2 is executed 2 times; and the event e3 is executed 1
time. Therefore, the transition probabilities from node e1 to e2 and e3 are: Pe1−e2 = 0.66
and Pe1−e3 = 0.33. We label each edge with the transition probabilities. In addition,
each node contains a weight indicating the number of occurrences of the event. The
event e2 was executed 3 times.

Finally, the set of crash graphs (one for each type of exception) is stored in a graph
database to form the Crowd Crash Graph of a given app. This model provides a
consolidated view of the most frequent actions among users before a crash arises,
together with the observed execution contexts.

80 Leveraging the Crowd in Vivo

6.1.2 Identifying Crash Patterns

We assume that the most frequent events are the most relevant ones. Thus, the Crash
Analysis component traverses the Crowd Crash Graph to identify repeating patterns
of UI events and contexts that appear frequently among crashes. While several data
mining techniques can be used, we use Path Analysis, Sequential Patterns, and Set
Operations to induce the minimal sequence of steps that reproduce a crash as well as
the context under which this crash occurs.

6.1.2.1 Synthesizing Steps to Reproduce Crashes

MoTiF applies graph traversal algorithms in order to effectively induce the shortest
sequence of steps to reproduce a crash. Some of the app execution logs can be
long and contain irrelevant events to reproduce the crash. For example, the trace
e1→e4→e5→e2→crash1 in Table 6.1 includes four steps to crash the app. However,
there is a two-step trace, e1→e2→crash1, that results in the same crash. By exploiting
the Crowd Crash Graph, we reduce the size of traces and filter out the irrelevant steps.

The goal of this phase is therefore to find the shortest path from the starting node (S)
to an exception node (e) that maximizes the Markov probability of the traversal. For
this purpose, the Crash Analysis component implements the Dijkstra’s algorithm [63],
which is a widely known algorithm to find the shortest path between nodes in a graph.
Whereas Dijkstra aims to minimize the weights over the paths, our goal is to find
the path that maximizes the transition probabilities over the S-e path. Given that
Dijkstra does not work with negative weights, we reduce the problem to a standard
shortest-path problem by replacing the transition probability (Pi) of each edge by
− logPi. Since log is a monotonic function, maximizing Pi is equivalent to minimizing
logPi. In addition, Pi ∈ [0,1] ⇒ logPi ≤ 0 ⇒ − logPi ≥ 0, hence all weights are positive.
For example, in the crash graph of Figure 6.3, we convert the transition probability
between the nodes e1 and e2 as: Pe1−e2 = 0.66 ⇒ P Dijkstra

e1−e2 = − log0.66 = 0.18.

Therefore, the shortest S-e path is the maximum probability path, which we call the
consolidated trace and is promoted as the candidate trace to reproduce the crash. In
our example, Dijkstra’s algorithm starts at node S and would select node e1, since has
the minimum weight (0.18), which corresponds to the edge with the highest transition
probability (0.66). After e1, it selects event e2 since it again has the minimum weight

6.1 Reproducing Crash Scenarios a posteriori 81

(0.18 or probability of 0.66). Therefore, the crowd-consolidated trace to reproduce
crash1 is e1→e2→crash1.

The algorithm can return N different traces ordered by descending probability. If the
trace does not reproduce the crash, then the store tries with the next one. Since the
graph contains the traces of all crashes observed in practice, at least one of the traces
is guaranteed to reproduce the crash.

6.1.2.2 Learning Crash-prone Execution Contexts

As previously mentioned, not all the devices suffer from the same bugs and some
crashes only arise under specific execution contexts—e.g., network unavailable or high
CPU load. Hence, the Crash Analysis component searches for recurrent context
patterns within a consolidated trace, which help to 1) reproduce context-sensitive
crashes, 2) select the candidate devices to assess the generated reproducible scenarios,
and 3) select devices to check that future fixes do not produce any side effects. The
store learns both dynamic and static context patterns.

Dynamic Context. To learn frequent dynamic contexts from a trace, we use Sequen-
tial Pattern Mining, which is a data mining technique to discover frequent subsequences
in a sequence database [111]. A sequence is a list of itemsets, where each itemset is an
unordered set of items. We concatenate the context properties reported in each step
of the consolidated trace. Fig. 6.4 shows 3 sequences of context properties along the
consolidated trace (extracted from Fig. 6.3). We concatenate the properties observed
for each step of the consolidated trace in the different crowdsourced logs. Each of these
sequences contains 4 itemsets, one for each of the events in the trace, and each item
maps to a context property.

In particular, we mine frequent closed sequential patterns—i.e., the longest subsequence
with a given support. The support of a sequential pattern is the percentage of
sequences where the pattern occurs. To ensure that the context truly induces the crash,
MoTiF searches for closed sequential patterns with support 100%—i.e., patterns that
appear in all the observed traces. Among the available algorithms to mine closed
sequential patterns (e.g., BIDE+, CloSpan, ClasSP), we choose BIDE+ because of its
efficiency in terms of execution time and memory usage [150]. In particular, we use
the implementation of BIDE+ available in the SPMF tool [spmf].

82 Leveraging the Crowd in Vivo

OFF ON HIGH LOW OFF OFF HIGH LOWON OFF HIGH LOW

ON OFF HIGH HIGH OFF OFF HIGH HIGHOFF OFF HIGH HIGH

ON OFF LOW HIGH OFF OFF LOW HIGHON OFF LOW HIGH 4A1 LG6X LG

4A1 G3 LG

4A1 G3 LG

wifi data mem bat wifi data mem bat wifi data mem bat
sdk model manuf

S S S
S
S

SS
S

S
S
S

FrequentqDynamicqContextqPattern={ (wifiON, dataOFF), (wifiOFF, dataOFF) }q

e1 e2 crash
1

STATICqCONTEXT

Fig. 6.4 Learning the crash-prone context from a candidate trace.

In Fig. 6.4, the algorithm identifies the following frequent context pattern: {(wifiON,
dataOFF), (wifiOFF, dataOFF)}. This means that the properties (wifiON, dataOFF)
are observed at the same time, and eventually are followed by the properties (wifiOFF,
dataOFF) appearing together. Note that the itemsets appear in sequence—i.e., the
second itemset is always observed after the first itemset—but it does not need to be
occurring at the same time in each trace. In the example, the pattern reveals that the
crash arises when the network is being disconnected (wifiOFF).

Static Context. The example above shows the power of sequential pattern mining
compared to simple intersection operations, since the former enables to capture relevant
context changes, for example running out of memory (e.g., the sequence {memHIGH,
memLOW}), a network disconnection, or an empty battery.

However, to identify relevant static contexts, which do not evolve over time, we can
just use set operations. For example, in Fig. 6.4, the union set across all traces for
the sdk property is {4.1}, for the manufacturer property is {LG}, and for the model
property is {LG60, G3}. In other words, the crash affects LG devices that run Android
4.1, and has been observed in LG60 and G3 models. The resulting sets are the relevant
static contexts and will be used to select the devices to reproduce the crashes.

6.1.3 Generating Reproducible Scenarios

To help developers to reproduce crashes faced by users in the wild, the App Store 2.0
generates reproducible scenarios to automatically recreate crashes. The Crash Analysis
component translates the consolidated trace and its crash-prone execution context (cf.
Section 6.1.2.2) into a reproducible scenario.

6.1 Reproducing Crash Scenarios a posteriori 83

The scenarios are encoded as black-box UI tests to automatically reproduce the sequence
of user interactions that lead to the crash of the app. To implement the scenarios
we use Robotium, which is a test automation framework for automatic black-box UI
tests of Android applications [rob]. We chose Robotium because supports native and
hybrid applications, does not require the source code of the application under test, and
provides fast test case execution.

We propose mapping rules between the Android event handler methods (Section 4.2.3)
and the methods provided by the Robotium API [Robotium API]. For example, the
Android event onClick in a view of type Button is mapped to the Robotium method
clickOnButton. Table 6.2 shows a subset of the mapping rules identified. These
rules guide the automatic generation of reproducible scenarios from app execution
logs. Using the mapping rules, we translate each event in the consolidated trace into a
Robotium method invocation.

Table 6.2 Examples of mappings between Android event handler methods and Robotium
methods.

Element Android method Robotium method
View onLongClick clickLongOnView
Button onClick clickOnButton
TextField setText typeText
ActionMenu onMenuItemClick clickOnActionBarItem
Orientation onOrientationChange setActivityOrientation

We define a base template for a Robotium scenario (Figure 6.5). The process to
generate a Robotium scenario from a consolidated trace is as follows. First, the Crash
Analysis component adds the crash-prone context as an annotation in the test case
(A). Second, it sets the launcher activity of the subject app (B). Finally, it generates a
test method to recreate the steps of the consolidated trace (C).

Figure 6.5 shows the Robotium scenario generated for the Wikipedia app. The test
method testRun recreates the consolidated trace. Lines 2 and 6 correspond to the
events e1 and e2 in the trace, respectively. Lines 1 and 3 represent delays between
events. We calculate the delay between two events as the average of all the observed
delays between those events. Finally, lines 4 and 5 set the network context. Network-
related contexts can be automatically induced in the test cases because Robotium
provides dedicated methods (setWiFiData, setMobileData) for this purpose. For
other context properties, the observed context is added as an annotation in the test
case to help developers to isolate the cause of failures (e.g., @Device(‘LG′)).

84 Leveraging the Crowd in Vivo

importgcom>robotium>solo>k3
importgandroid>test>MctivityInstrumentationTest'ase}3

publicgclassg'rowdTestgextendsgMctivityInstrumentationTest'ase}{
privategSologsolo3
privategstaticgfinalgStringgLMUN'H_M'TIVITY7gUorg>wikipedia>page>PageMctivityU3

privategstaticg'lass9:8glauncherMctivity'lass3
ggggstatic{
ggggggggtryg{ggglauncherMctivity'lass7'lass>forName=LMUN'H_M'TIVITY"3
gggggggg}gcatchg='lassNotFound4xceptionge"g{gthrowgnewgRuntime4xception=e"3g}
gg}

publicg'rowdTest="gthrowsg'lassNotFound4xceptiong{
gggggsuper=launcherMctivity'lass"3gg}

publicgvoidgsetUp="gthrowsg4xceptiong{
ggsuper>setUp="3
ggsolog7gnewgSolo=getInstrumentation="<gggetMctivity=""3gg}

publicgvoidgtestRun="g{
gghhgWaitg}(((ms
ggsolo>sleep=}((("3
gghhg'lickgongImageView
BBsolo.clickOnView=solo>getView=})F)(00//W""3
ghhgWaitg}(((ms
ggsolo>sleep=}((("3
gghhgSetgcontext1gTurngoffgwifigandgmobilegdata
ggsolo>setWifiGata=false"3
ggsolo>setMobileGata=false"3gg
gghhg'lickgongMenuItemgUSavegpageUg
BBsolo.clickOnMenuItem=USavegPageU"3g}ggggg}

CONTEXT
ANNOTATION

LAUNCHERBACTIVITY
OFBSUBJECTBAPP

TESTBMETHODBTO
RECREATEBTHE
CONSOLIDATEDBTRACE

1

2

3

4
5

A

B

C

6

e1:
event7on'lick
view7android>widget>ImageView
viewId7})F)(00/W

e2:
event7onMenuItem'lick
view7android>support>v/>internal
>view>menu>MenuItemImpl
viewId7})F)(00W})
viewName7USavegpageU

DGevice=YLGY"
DSdk=YE>)Y"

Fig. 6.5 Generated reproducible scenario for the Wikipedia app

In addition, a natural language description of each scenario is provided to developers.

6.1.3.1 Crowd-validation of Reproducible Scenarios

Before providing the generated reproducible scenarios to developers, the App Store 2.0
executes the tests in the crowd of real devices to assess whether or not they truly
reproduce the observed crashes in the proper context.

First, the Crash Analysis component uses the static context to select a sample of
devices that match the context profile (e.g., LG devices), then it checks if the scenario
reproduces the crash in those devices. We define the following heuristic to assess
scenarios: the scenario execution should fail and collect the same exception trace as
the original wild crash.

Later, the Crash Analysis component selects a random sample of devices that do not
match the context profile, and tests whether they reproduce the crash. If the scenario

6.1 Reproducing Crash Scenarios a posteriori 85

indeed reproduces the crash in a different context, the store concludes that the learned
context is not discriminative enough. In this case, we add the context in the scenario
as a note to developers, mainly informing him about the devices most frequently
running their apps. If on the contrary, the scenario only reproduces the failure on the
consolidated context, that context will be included as a critical annotation in the test.
Note that, to avoid any user disturbance, the store executes the tests for validation
only during periods of phone inactivity, e.g., during the night, and when the device is
charging.

During the execution of the scenarios for validation, the store could additionally log
UI performance metrics (cf. Section 4.2.3.2) to populate a repository of historical
executions for different context configurations in realistic scenarios. These realistic
scenarios and repositories could be used as input for the Performance Analaysis
component presented in chapter 5 (cf. Section 5.2). Thus, combining performance
analysis in vitro (with tests generated by developers) and vivo (with realistic scenarios
generated by users).

6.1.4 Implementation Details

This section provides details about the infrastructure that supports MoTiF.

Figure 6.6 shows an overview of the proof-of-concept implementation.

Developers

SUBJECT
APP

Monitor

User
interactions

crash
log

Identify2
Crash2

Patterns
crash
traces

Crowd
Crash
Graph

Synthesize2
Reproduc.2
Scenario

Assess
Scenario

Cloud2Server

consol.
trace

reproducible
scenario

validated
scenarioContext

Devices2in2the2wild4.1 4.2

5.1

consol.
context

1 2 3

4

GROPG SPMF

APISENSE

Neo4J

JavaPoet

Robotium

scenario
textual

description

N

Fig. 6.6 MoTiF implementation

86 Leveraging the Crowd in Vivo

Our prototype implementation includes two parts: an Android client library that
runs on the mobile device and a cloud service component. MoTiF can monitor any
debuggable app1 running on a mobile device, without requiring access to its source code.
Our approach is transparent to users, who can keep on using their apps as usual. They
only have to give their consent to automatically report debugging information when
an app crashes in their devices, just like current error reporting systems do.

6.1.4.1 Android Client Library

The Android virtual machine (named Dalvik) implements two debugging interfaces: the
Java Debug Interface (JDI) and the Java Debug Wire Protocol (JDWP), which are part
of the Java Platform Debugger Architecture (JPDA) [Java]. This technology allows
tools such as the adb tool (Android Debug Bridge) to communicate with a virtual
machine. MoTiF’s client app runs adb on the device and communicates with Dalvik
via adb and the standard debugging interfaces JDWP and JDI over a socket. For this,
our tool extends and reuses part of the implementation provided by GROPG [121], an
on-phone debugger. The GROPG implementation ensures low memory overhead and
fast execution, and it enables to monitor apps and to intercept user interaction and
exception events.

6.1.4.2 Cloud Service

MoTiF sends the data collected in devices to a cloud service for aggregation and
analysis using APISENSE [apisense]. APISENSE provides a distributed crowd-sensing
platform to design and execute data collection experiments in mobile devices [83].
APISENSE enables the comunication (sending and receiving data) between devices
and the cloud.

To store and aggregate the crash traces collected from the crowd and the crowd crash
graphs, MoTiF creates a graph database with Neo4J [Neo4J]. Graph databases provide
a powerful and scalable data modelling and querying technique capable of representing
any kind of data in a highly accessible way [134].

We can then query the graph database using the Cypher graph query language [Cypher],
which is a widely used pattern matching language. Figure 6.7 shows an excerpt of the
Crowd Crash Graph in Neo4J of the Wikipedia app. To extract the consolidated traces

1These are apps that have the android:debuggable attribute in their manifest.

6.1 Reproducing Crash Scenarios a posteriori 87

Fig. 6.7 Crowd crash graph in Neo4J

from the Neo4J graph database, we have implemented the Dijkstra algorithm as a
Cypher query. We can then directly query the graph to extract the consolidated traces
from the aggregated crowd data. Figure 6.8 shows the Dijkstra’s implementation in
our Neo4J database to extract consolidated traces. To learn context patterns along the

MATCH (from : APP) , (to :CRASH_EVENT) ,
paths = a l l S h o r t e s t P a t h s ((from) − [:NEXT∗]−>(to))
WITH REDUCE(d i s t =0, r e l in r e l s (paths) | d i s t+r e l .pN)
AS di s tance , paths
RETURN paths , d i s t a n c e

Fig. 6.8 Dijkstra algorithm implementation in Cypher

consolidated trace we use the BIDE+ algorithm provided by the SPMF library [spmf].

Finally, to generate reproducible scenarios we translate the consolidated trace and
context into a Robotium test [rob] and a textual description of the scenario. To
generate the java code of the Robotium tests, we use JavaPoet library which enables
generating .java source files.

88 Leveraging the Crowd in Vivo

6.2 Patching Defective Apps in the Wild

Prior research has demonstrated that users who encounter app crashes are likely to
stop using the app [88]. Preventing and quickly fixing crashes have therefore become a
major goal of app developers.

The App Store 2.0 can contribute to automatically prevent crashes in mobile apps
by exploiting crowd feedback. When a user experiences a crash, we expect others to
suffer from a similar situation. Thus, by mining such crashes reported by the crowd of
users, we can learn the conditions triggering such a crash and prevent it. We propose
Crowdseer, an automated crash prevention mechanism, which learns from crashes
observed in a crowd of mobile devices to anticipate and prevent the emergence of the
same crashes for other users.

While the developer investigates and releases a sustainable fix (which might take several
days [117]), the Patch Generation component can generate temporary patches to
prevent the occurrence of an observed crash for different users. The Patch Generation
implements the Crowdseer approach. Crowdseer proposes two patching strategies
to prevent app crashes from app stores. The first strategy consist of muting unhan-
dled exceptions raised during the execution of apps. The second strategy consist of
deactivating UI features (e.g., a menu option, a button) triggering crashes. The two
strategies are complementary and can be activated simultaneously.

The patching process starts when the App Store 2.0 flags an app as defective (cf.
Chapter 4, Section 4.2.3). The Patch Generation component receives as input the
crash patterns (i.e., consolidated trace and context) extracted by the Crash Analysis
component (cf. Section 6.1.3) and generates candidate patches to prevent the crashes.

6.2.1 Patch strategy 1: Muting unhandled exceptions

The first strategy synthesizes candidate patches to avoid crashes during the execution of
apps. This strategy generates a new version of the app for each patch that synthesized.
Thus apps need to be re-installed after patching.

This patch generation process is as follows. First, the Patch Generation component
extracts the exception trace of a crash log. Figure 6.9 shows an example of an exception
trace thrown by a defective app.

6.2 Patching Defective Apps in the Wild 89

bbbbbbbbFATALbEXCEPTION8bmain
bbbbbbbbjava(lang(RuntimeException8bUnablebtobstartbactivitybComponentInfo
bbbbbbb{com(snowbound(pockettool(free2com(snowbound(pockettool(free(LevelSelector}8
bbbbbbbjava(lang(NullPointerException
bb58bbbatbandroid(app(ActivityThread(performLaunchActivitykActivityThread(java890M7/
bbbbbbbb(((bb
bb98bbbatbcom(android(internal(os(ZygoteInit(mainkNativebMethod/
bb)8bbbatbdalvik(system(NativeStart(mainkNativebMethod/
bbZ8bbbCausedbby8bjava(lang(NullPointerException
bbM8bbbatCcom.snowbound.pockettool.free.LevelSelector.getWorldList(LevelSelector.java:78)
bb38bbbatCcom.snowbound.pockettool.free.LevelSelector.onCreate(LevelSelector.java:43)
bb48bbbatbandroid(app(Activity(performCreatekActivity(java8M006/
bbbbbbbb(((b

Fig. 6.9 Example of exception trace thrown by a defective app

Second, the component extracts the n frames that refer to the defective app. In the sam-
ple app, the 2 frames that start with the package name of the app (com.snowbound.pocket-
tool.free). From each suspicious frame, we extract the name of the suspicious method
and the class that implements it. In our example there are 2 suspicious methods (cf.
Fig. 6.9, lines 5 and 6): getWorldList and onCreate, defined in the class LevelSelector.
The patch wraps the code defined inside the suspicious methods with a try/catch
block to capture the runtime exceptions that are not handled by the methods.

Next, the Patch Generation component creates n different patches, where n is the
number of suspicious methods. For each synthesized patch, the store creates a new
release of the defective app which includes the patch. In the sample app, the component
creates 2 patched versions, where each patch wraps a different suspicious method.

Current app stores only have access to the bytecode of apps. To inject the patches,
the store instruments the bytecode of the apps. Nevertheless, the App Store 2.0
could also enable developers to upload the source code of their apps to allow for more
powerful repairing techniques. Finally, the different patched app versions are deployed
on different user devices available in the crowd.

When the store receives a download request for an app that has been previously flagged
as defective, the store delivers an alternative patched release of the app. Afterwards, the
store keeps monitoring crowdsourced information from devices and user feedback that
run those patched apps to assess the effectiveness of the generated patches. If a patch
generation technique fails (e.g., the patched app still crashes), the store learns from
these failures. If a delivery strategy distributes patches to the wrong set of devices (e.g.,
not all the devices suffer from the same bug), the store detects it. The App Store 2.0
continuously monitors crowdsourced information to improve the patching process.

90 Leveraging the Crowd in Vivo

In the sample app, the patch applied in the getWorldList method (Patch1) continues
throwing the exception, whereas the patch applied in the onCreate method (Patch2)
avoids the crash. Therefore, the store learns that Patch1 is ineffective and automatically
discards it.

6.2.2 Patch strategy 2: Deactivating UI features

Industrial experience have stated that asking users to re-download apps make to lose a
certain percentage of users, who never do it [27]. Thus, it is necessary to count with
solutions that can prevent crashes without requiring users to re-download apps.

The second patch dynamically and contextually disables app features to limit the
access to functionalities that have been previously observed as buggy by other users. In
particular, we adopt the concept of interaction feature defined by Zaeem et al. [162]:
“An interaction feature is an action supported by the mobile platform, which enables a
human user to interact with a mobile app, using the mobile device and the graphical
user-interface (GUI) of the app”.

As illustration, users recently experienced crashes with a version of the Wikipedia app
(v2.0-alpha), which contains a crash-inducing bug. The app crashes when the user
requests to save a page when the network connection is unavailable. After observing
several instances of this crash, the App Store 2.0 disables automatically the ‘Save
page’ menu in different devices to prevent the crash. Based on the crash patterns and
context patterns identified by the Crash Analysis component (cf. Section 6.1.2), the
Patch Generation component generates a preventive patch to disable the interaction
feature that triggers the crash depending on context. The patch automatically disables
the trigger of the crash (e.g., ‘Save page’ on Wikipedia app example), thus avoiding
the crash to emerge and to disrupt the user experience.

This patch generation process takes as input a crowd-consolidated trace (from the
Crash Analysis Component) and proceeds as follows.

1. Patch Generation. First, the Patch Generation component processes the crowd-
consolidated trace and selects the last event before the crash. From that event, the
Patch Generation component extracts the feature involved (UI element) and such
feature is promoted as the candidate feature to be disabled. From the consolidated
trace of the Wikipedia app, the option ‘Save Page’ will be disabled, thus preventing
other users to access such functionality to crash their app. The option will only be

6.2 Patching Defective Apps in the Wild 91

disabled when the network connection is unavailable. Additionally, a message informs
the users about the temporary unavailability of the feature. Apart from disabling
UI features, the patch can also disable the rotation of specific Activities when an
orientation change is observed previous to a crash. In Android, many crashes manifest
when the device is rotated from landscape to portrait orientation or vice versa due to
a deficient implementation of the Activities life-cycle [162].

Finally, the store automatically deploys the preventive patch in all the instances of the
app which run in different devices in the crowd. The store uses the context patterns to
select the set of users which have a similar context profile. The store updates all the
apps on-the-fly, without requiring the developers to publish a new version of the app.

2. Continuous Patch Validation. After applying the preventive patch, the store
continues monitoring the app to validate the effectiveness of the preventive patch.
If, after disabling a feature, the app continues exhibiting the same crash, then the
store reverts the patch and mines for a different crash-triggering feature to disable.
In this case, the Patch Generation component tries with the previous feature in the
consolidated trace. In the particular case of the Wikipedia app, the deactivation of the
‘Save page’ menu option effectively avoids the crash when network is disabled. But if
after disabling this menu option the app still crashes, then component will try with
the previous feature in the trace—i.e., the full Menu would be disabled. The store
continuously monitors the crowd and supervises its own preventive actions to make
corrections if necessary.

The App Store 2.0 quickly identifies issues and provides immediate patches which
prevent other users to experience same issues while the developer is fixing the app and
publishes a new release in the store. This is especially important when considering
that publishing a new version of the app can take from hours to several days, due to
the validation process of the app stores. This strategy reduces the time that users are
exposed to crashes as well as it reduces the number of affected users.

6.2.3 Implementation Details

This section provides details about the infrastructure that supports the Crowdseer
module. Crowdseer implements two strategies, injecting try/catch blocks to mute
exceptions and deactivating crash-triggering UI features on the fly. The following
sections present the implementations which support each strategy.

92 Leveraging the Crowd in Vivo

6.2.3.1 Dealing with Try/Catch Injection

For the first patching strategy, we have implemented a Java program, which instruments
the bytecode of Android apps using Dexpler [49]. This programs takes as input an
.apk file (of the Android app to) and two input parameters: class name and method
name where the patch has to be injected. Then, it returns as output a new .apk file
which includes the patch. The instrumentation program is available online2.

6.2.3.2 Dealing with Feature Deactivations at Run-time

In this section we describe the implementation of the second patching strategy proposed
in this thesis. Following the concepts of Infrastructure-as-a-Service [92], our software
implementation is composed of two parts: 1) a mobile client library to embed in apps;
and a 2) a cloud service to update apps on-the-fly. A short demo of the infrastructure
is available online3.

Crowdseer Client Library. We have implemented an Android library, to be inte-
grated in an app, to incorporate the automated crash prevention mechanism. This
library enables apps to communicate with the cloud service to upload crash logs and
receive preventive patches on-the-fly.

Android apps are user-interface (UI) centric. The graphical user interface of Android
apps consists of components called Activity, which renders a screen to interact with
users [2]. Each Activity corresponds to a core function of the app. The user interface
for an activity contains a hierarchy of views. A View is an object that models a user
interaction modality [7], such as Button, Menu, etc.

The Crowdseer library implements a “UI facade” that exposes a series of meth-
ods to disable GUI components of the app dynamically. For example, the method
disableViewById(int id) disables the view (such as a button) with the id provided
as a parameter. The facade uses Aspect-Oriented Programing (AOP) to update the UI.
For this purpose, we uses the AspectJ library available for Android [aspectj].

Crowdseer Cloud Service. Crowdseer sends the crash logs collected by mobile
devices to a cloud service for aggregation and analysis using APISENSE [apisense].

2https://www.dropbox.com/sh/u3ffy1lw85opww8/AACBLu2zcTCUNgXAFh7dpDbma
3https://www.youtube.com/watch?v=o7PnOpgoeJ8.

https://www.dropbox.com/sh/u3ffy1lw85opww8/AACBLu2zcTCUNgXAFh7dpDbma
https://www.youtube.com/watch?v=o7PnOpgoeJ8

6.3 Conclusions 93

var ui = r e q u i r e (’ UI ’) ;
var w i f i = r e q u i r e (’ w i f i ’) ;

w i f i . onStateChanged (function (wi f iEvent) {
i f (w i f i . i s S t a t e (w i f i .DISCONNECTED)) {

u i . disableMenuItemById (’@+id /menu_save_page ’) ;
u i . showToast (’ The menu ’ Save page ’ i s t emporar i l y unava i lab l e ’) ;

} e l s e
u i . enableMenuItemById (’@+id /menu_save_page ’) ;

}) ;

Fig. 6.10 Example of a Crowdseer script

APISENSE is a distributed crowd-sensing platform to design and execute data collection
experiments in mobile devices [83]. Crowdseer uses the RESTful interface of
APISENSE to update apps on-the-fly. The patch to be remotely applied in the apps
are specified in JavaScript language and posted by Crowdseer to APISENSE for
deployment. APISENSE also bridges the Android SDK with a scripting engine so that
all the methods defined by the “’UI facade” are made accessible from scripts. Thus,
the preventive patches to disable features are generated by Crowdseer as JavaScript
scripts. Figure 6.10 shows an example of the preventive patch for the Wikipedia app is
defined as follows:

This script indicates that when there is change in the network state, if the state is
DISCONNECTED, then it disables a menu item (whose id is ’@+idmenu_save_page’) and
shows a toast message to inform the user. When the network connection is available,
then it enables the item again.

6.3 Conclusions

This chapter presents two engineering approaches to automatically generate reproducible
scenarios and app patches by analyzing crowdsourced crash logs and app contexts.

The reproducible scenarios aim to assist app developers to reproduce in vitro crashes
that were faced by users in the field. The app patches prevent future manifestations of
an observed crash in the same user and other users. As a result, the user experience
and satisfaction with apps increases. The generated actionable insights save effort
and time for app developers during the bug-fixing process which is a crucial factor for
succeeding in the highly competitive app market.

Part III

Empirical Evaluations

To demonstrate the feasibility of the App Store 2.0, we have
implemented a set of supporting tools.
This part presents empirical studies to evaluate their capabili-
ties.

Chapter 7

Evaluation of in-vitro Approaches

EVALUATION

DUNEPERMISSION
CHECKERS

Fig. 7.1 Chapter 7 at a glance

In Chapter 5 we have presented two mod-
ules (Risk Analysis and Performance
Analysis) to distill actionable insights
from crowdsourced artifacts. We have im-
plemented a set of supporting prototype
tools for Android apps (cf. Appendix ??
for implementation details).

In this chapter, we apply the proposed ap-
proaches in practice and report on empir-
ical studies to evaluate their capabilities.

For each module we present the motivation, evaluation protocol, results, and threats
to validity.

The rest of the chapter is structure as follows. Section 7.1 evaluates the accuracy of the
generated crowdsourced checkers. Section 7.2 evaluates the Dune approach. Finally,
section 7.3 concludes the chapter.

7.1 Evaluation of Crowdsourced Checkers

In this section, we evaluate the accuracy of the generated crowdsourced checkers to
predict buggy apps before release.

98 Evaluation of in-vitro Approaches

7.1.1 Empirical Study Design

To assess the effectiveness of our approach, we investigate three main research questions:
RQ1: What is the accuracy of the inferred checkers?
RQ2: To what extent checkers are able to flag new apps as buggy?
RQ3: What is the effect of removing error-sensitive permissions on error reviews?

In the following, we describe the studies we performed to answer these research
questions.

7.1.2 Dataset

To assess the approach, we started by collecting apps from the Google Play Store. Since
the Google Play Store is continuously evolving (adding, removing and/or updating
apps), we performed three snapshots of the store in November 2013 (D0), January
2014 (D1), and March 2014 (D2). Figure 7.2 depicts the evolution of our dataset along
time in terms of additions, removals and updates of apps and permission types. D1

contains 38,781 apps requesting 7,826 different permissions, while D2 contains 46,644
apps and 9,319 different permission requests. The observed evolution tends to add
new apps, more than updating or removing existing ones. In January, 15,023 new apps
appeared, 9,001 apps (33,13%) were updated, and 3,411 apps (12,55%) were removed.
Similarly in March, 12,543 new apps appeared, 8,970 apps (23,13%) were updated
and 4,680 apps (12,07%) disappeared.

-10000

 0

 10000

 20000

 30000

 40000

 50000

NOV13 JAN14 MAR14 NOV13 JAN14 MAR14
-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
u
m

b
e
r

o
f

A
p

p
s

N
u
m

b
e
r

o
f

P
e
rm

is
si

o
n
s

Dataset Evolution

APPS
APP-Updates
APP-Additions

APP-Removals

PERMS

PERM-Additions
PERM-Removals

PERMISSIONSAPPS

Fig. 7.2 Evolution of apps and permissions in the Google Play Store (between November
2013 and March 2014).

7.1 Evaluation of Crowdsourced Checkers 99

We observe that the app updates tend to rather add permissions than remove existing
ones. Out of the 3,411 apps that updated to a new version in January 2014, there are
2,677 apps (78.48%) that update their set of permission requests. Specifically, there
are 3,007 permission request removals and 5,225 permission request additions. This
confirms that the trend of adding more and more permissions pointed out by previous
studies [151] still holds. We have also observed that some apps are adding unnecessary
permission requests when updating to a new version. For example, there are 74
apps adding the deprecated permission [appPackage].permission.MAPS_RECEIVE
previously required to use the Google Maps API v1. The update of Google Play
Services 3.1.59 (in July 2013) made this permission useless1. Furthermore, apps request
6 permissions by median, and at maximum, request 83 different permissions. In
contrast, there are 2,592 apps that request 0 permissions.

7.1.3 Empirical Study Results

We now present the experiments we performed to answer the three formulated research
questions and the results we obtained.

7.1.3.1 RQ1. Evaluating the Accuracy of the Inferred Checkers

Checkers often have false positives, which in our case means that the app is flagged as
buggy while still works fine. To answer RQ1, we evaluate the accuracy of the inferred
permission checkers (cf. Chapter 5, Section 5.1.3).

To evaluate the accuracy we use the Laplace expected error estimate [58], which is
computed as follows:

LaplaceAccuracy = (nc +1)/(ntot +k) (7.1)

where k is the number of classes in the domain, e.g. Buggy/NonBuggy (k = 2). ntot is
the total number of examples covered by the checker. In our case, is the total number of
apps requesting the permissions captured by the checker. nc is the number of examples
in the predicted class by the checker. In our case, is the number of Buggy apps that
request the permissions captured by the checker.

1Google Maps Android API v2 Release Notes: https://developers.google.com/maps/
documentation/android/releases?hl=en#july_2013

https://developers.google.com/maps/documentation/android/releases?hl=en#july_2013
https://developers.google.com/maps/documentation/android/releases?hl=en#july_2013

100 Evaluation of in-vitro Approaches

We set cross-validation 10-folds and we perform a sensitivity analysis of the accuracy of
the checkers for different values of input parameters. Figure 7.3 shows the accuracy of
the recommender system. The family of checkers exhibits an accuracy that ranges from
61.42% to 61.96%. We observe that the reported accuracy does not change significantly
for different values of the parameters. Table 5.2 shows the accuracy (acc.) values for

 61.2

 61.3

 61.4

 61.5

 61.6

 61.7

 61.8

 61.9

 62

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

%
A

cc
u
ra

cy

Confidence Factor

minNumObj=100
minNumObj=50
minNumObj=20

Fig. 7.3 Evaluation of the accuracy of the permission checkers.

some of the permission checkers identified. We also report the number of Buggy (B)
and NonBuggy (NB) apps in the testing set, which request the permissions captured
by the checkers.

7.1.3.2 RQ2. Evaluating Checkers with New Apps

For answering RQ2, we use the dataset D2 updated in March 2014 (cf. Section 7.1.2).
We select the subset of new apps that appeared in D2 and did not exist in D1. D2

contains 6,783 new apps (with reviews). We use the user reviews as our ground-truth
for determining if an app is buggy or not. Thus, we check if the D2-version apps flagged
as suspicious by our checkers have been reported as buggy by end users (after the
publication of the version of D2). Our system flagged 1,896 apps as error-suspicious.
Out of 1,896 suspicious apps, 56% of apps were also reported as buggy by end users.

The 56% of new apps flagged as suspicious by our checkers were also reported as
buggy by end users a posteriori.

7.1 Evaluation of Crowdsourced Checkers 101

We further evaluate the performance of our approach by comparing it with alternatives.
First, we compare our checkers built from permission patterns against: 1) a classifier
that flags as suspicious apps the apps that request some single error-sensitive permissions
without learning permission patterns; and 2) a random classifier that flags suspicious
apps randomly. As Table 7.1 shows, our approach learning permission patterns performs
better than the others.

Table 7.1 Comparison to alternatives

Pattern-based Single perm. Random
Flagged apps 1,896 814 1,718

Bug-reported apps 1,062 (56%) 404 (50%) 815 (47%)

Remark that this measure is only an approximation, since we build an oracle of app
bugginess from user reviews without performing in-depth analysis of apps. In fact,
the lack of bug-related reviews does not necessarily imply that the app is bug-free,
since an error can exist without being reported. Although this oracle is incomplete,
it is a useful tool that helps store moderators to make informed decisions about app
bugginess considering only information sources—i.e., reviews—available on stores.

7.1.3.3 RQ3. Impact of Removing Error-sensitive Permissions

To answer RQ3, we investigate if the apps that remove error-sensitive permissions
(captured by the checkers) in the update get less error-related reviews. We noticed 30
apps (with error-related reviews) that remove error-sensitive permissions after updating.
For these apps, we compute the percentage rate of error-related reviews before and
after the update. Figure 7.4 illustrates the evolution of the reviews in these apps. We
observe that after removing error-sensitive permissions, 22 apps (out of 30) remove
error-related reviews. If the checkers had been enabled in the app store, all those apps
would have been flagged as suspicious before publication.

7.1.4 Threats to Validity

We focus on permission requests and user reviews to build a family of buggy app
checkers that can help app store moderators to score the quality of a submitted app.
One threat to the internal validity of our study is that we have not analyzed the source
or binary code of apps to ensure that the declared permissions are actually used.

102 Evaluation of in-vitro Approaches

 0%

10%

20%

30%

40%

50%

60%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A11

A12
A13

A14
A15

A16
A17

A18
A19

A20
A21

A22
A23

A24
A25

A26
A27

A28
A29

A30

%
 E

rr
o
r-

re
la

te
d

 r
e
v
ie

w
s

Before Update
After Update

Fig. 7.4 Reviews evolution after removing error-sensitive permissions.

We consider user reviews as a ground truth of bugginess, but we are aware that this
measure is only an approximation. Users do not always report crashes when faced,
and some bugs can be reported later in time. In addition, apps can crash for many
reasons, not only due to permission-related issues. To address this threat, the in vivo
approaches (in particular the Crash Analysis module, cf. Chapter 6) complement
this pre-release approach. The in vivo approaches immediately actuate after users
experience crashes.

The conceptual foundations of our approach are independent of Android. We only need
an oracle of bugginess and some observation features (in our case, the user reviews and
the requested permissions, respectively). To gain in confidence in the external validity
of our evaluation, more evaluations are needed on other platforms, using other oracles
of bugginess and features.

Regarding sensitivity, the proposed approach is based on predefined thresholds specified
by various parameters. Table 7.2 summarizes these parameters together with the
reasonable values used in the experiments reported in this thesis (cf. Section 4.2.1).
The calibration of these parameters can impact the results and constitute a potential
threat to validity. We have performed a sensitivity analysis for different values of these
parameters. The reported accuracy does not change significantly for different values.

7.2 Evaluation of DUNE 103

Table 7.2 Summary of the approach’s parameters

Parameter Value
LDA model number of topics threshold 100
Error-related reviews threshold in suspicious apps > 1
Composition threshold in error-related reviews 0.05
J48 model confidence factor 0.4
J48 model minNumObjects 20

7.2 Evaluation of DUNE

In this section, we perform experiments to evaluate the effectiveness of Dune to detect
UI performance regressions and optimizations in apps executed on different devices
with different hardware and software configurations.

7.2.1 Empirical Study Design

To evaluate the effectiveness of the Dune approach we investigate four research
questions:

• RQ1: What is the effectiveness of the approach to identify new test runs with
performance degradation?

• RQ2: What is the effectiveness of the approach to isolate contextual conditions
under which performance degradations arise?

• RQ3: What is the effectiveness of the approach to identify performance optimiza-
tions?

• RQ4: What is the effectiveness of the approach to identify performance degrada-
tions at a fine granularity—i.e., UI event level?

7.2.2 Dataset

We describe the apps under test (AUTs), the devices used, the tests developed, and
the data collection procedure to set up the experiments.

We first mine real UI performance defects that are documented in issue tracker
discussions and commit messages in software repositories of Android apps. In particular,
we study Dune on real UI performance issues reported in two Android apps: the K-9

104 Evaluation of in-vitro Approaches

Mail client, and the Space Blaster game. To further evaluate the approach, we use an
additional app, the ExoPlayer Android media player. In this app, we manually inject
janks in the context of our evaluation process. We provide a description of each AUT,
and the UI performance issues that were reported.

• K-9 Mail. K-9 is an open-source e-mail client for Android [k9]. The K-9 app
(version 5.006) lags when opening a message from the list of messages. This issue
happens after upgrading devices to Android Lollipop (V 5.∗) [k9-].

• Space Blaster. Space Blaster is a space shooter game that originated on the
Nintendo and Sega consoles, and later has been ported to Android [spa]. Users
experience performance degradations when playing on Android 5.0 devices.

• ExoPlayer. ExoPlayer is an open source media player for Android developed
by Google [11]. ExoPlayer provides functionality to play audio and video both
locally and over the Internet. It is currently used inside Google’s popular YouTube
and Play Movies applications [12].

We chose these apps because UI animations are prime (e.g., scroll mails, game ani-
mations and play video). Thus, the UI performance is crucial and any performance
degradation quickly impacts user’s experience.

7.2.2.1 Building the Device Lab

To automatically run different versions of the AUTs in heterogeneous contexts in our
experiments, we leverage the fast third-party Android emulator Genymotion [gen] (cf.
Appendix ??). Genymotion provides a wide range of images of real devices (with
distinct hardware and software profiles), and it allows the developer to simulate different
execution environments—i.e., network types.

We select the images of 20 different Android devices with different hardware and
software profiles to emulate a heterogeneous context. These context profiles correspond
to common configurations of popular devices at the time of performing our experiments.
The selected devices run the Android SDKs: 4.1.1, 4.2.2, 4.3 and 4.4.4. We call this
lab the Device lab.

We then build an additional lab that contains 5 additional images of Android devices
running the Android SDKs: 5.0, 5.1, and 6.0.0. The latter forms the Upgraded device
lab. These two device labs will be used across different experiments. Table 8.2 shows

7.2 Evaluation of DUNE 105

the set of the virtual devices we use in the study, with their hardware and software
characteristics.

Table 7.3 Sample of the Device Lab used in the experiment.

Device Brand Model SDK API CPU Screen
D1 LG Optimus L3 4.1.1 16 x86 240x320
D2 Google Galaxy Nexus 4.2.2 17 x86 720x1280
D3 Motorola Moto X 4.2.2 17 x86 1080x1920
D4 Samsung Galaxy S4 4.3 18 x86 1080x1920
D5 Samsung Galaxy Note 3 4.3 18 x86 1080x1920
D6 HTC Evo 4.3 18 x86 720x1280
D7 Sony Xperia Z 4.3 18 x86 1080x1920
D8 Google Nexus 5 4.4.4 19 x86 1080x1920
D9 Google Nexus 9 5.0.0 21 x86 1536x2040

D10 Google Nexus 5X 6.0.0 23 x86 1080x1920
D11 Google Nexus 5 5.1.0 22 x86 1080x1920
D12 Samsung Galaxy S6 5.1.0 22 x86 1440x2560
D13 Google Nexus 4 5.1.0 17 x86 768x1280
D14 Google Nexus 4 4.4.4 19 x86 1080x1920
D15 Sony Xperia Tablet Z 4.1.1 16 x86 1920x1200
D16 HTC One 4.3 18 x86 1080x1920
D17 Motorola Moto X 4.3 18 x86 720x1280
D18 Samsung Galaxy S3 4.2.2 17 x86 720x1280
D19 Google Nexus 7 4.3 18 x86 800x1280
D20 Sony Xperia Z 4.2.2 23 x86 1080x1920

7.2.2.2 Setting Up Tests to Collect Data

We then define, for each AUT, user interaction scenarios to mimic the real usage
scenarios that were reported in the issue trackers to reproduce the performance bugs.
We specify 3 test scenarios, one for each AUT.

To automatically run and repeat these scenarios, we use Robotium, which is a test au-
tomation framework for automatic black-box UI tests for Android apps [rob]. Robotium
executes a sequence of user interactions—i.e., clicks, scrolls, navigations, typing text,
etc.—on an app without requiring the source code, and it is able to do this fast. During
such a test execution, we log the timestamp of each executed UI event, and we profile
the GPU rendering of the app.

106 Evaluation of in-vitro Approaches

7.2.2.3 Benchmark Suite

To evaluate the performance of Dune, we run each test scenario on the 20 emulated
devices in the Device lab. To attenuate noise and obtain more accurate metric values,
we repeat the same test 10 times and accumulate the results as a mean value. We
repeat this process twice on each device with 2 different types of networks—i.e., WiFi
and 3G. This results in 20×2 = 40 different test runs for each app, which constitutes
the historical test repository of an app. We consider all test runs in the historical test
repositories as having acceptable performance.

Finally, we run the same tests in the 5 devices in the Upgraded device lab. This results
in 5 new test runs per app.

7.2.3 Empirical Study Results

Using the repositories presented above, we performed a series of 4 experiments to
evaluate Dune. We perform an experiment for each research question. For each
experiment, we provide a motivation, present the approach followed and our results.

7.2.3.1 RQ1. Performance Degradation

Motivation: The first goal of Dune is detecting performance deviations in a new
test run in comparison with previous test runs. In this experiment, we study the
coarse-grained filtering performance of Dune to flag tests that contain performance
outliers.

Approach: To perform this experiment, we select two real context-related performance
bugs reported in the K-9 and Space Blaster apps. Both apps reported UI performance
issues after upgrading devices to Android Lollipop (v5.∗). The app developers confirmed
these issues. While the most recent version of the K-9 app fixes the problem, the bug
remains in the Space Blaster app.

In order to simulate the device upgrades reported in the issues for the AUTs, we
select, for each app, the 5 test runs which were executed in the Upgraded device lab
(cf. Section 7.2.2.3). These test runs exhibit performance degradation. We then
compare each new test with the repository of historical tests, thus we perform 10 of
such comparisons.

7.2 Evaluation of DUNE 107

Results: Dune correctly flags all performance regressions in our dataset. Out
of 10 new tests (5 per app), Dune flags the 10 tests as containing performance
degradations.

Figure 7.5 compares the frames rendered during the execution of the test scenario in the
Space Blaster app in the historical repository (left) and in an updated device (right).
In particular, we illustrate the test runs in devices Google Nexus 4 with Android 4.3
and 5.0.0, respectively. In the historical test, the average time to render each frame is
8 ms which is under the 16 ms threshold. On the contrary, the average rendering time
per frame is 144 ms. In addition, while the historical test execution rendered 2,145
frames and only 6 frames were janky (the smooth ratio is 99%), the new test only
rendered 176 frames, thus showing that more than the 90% of frames were skipped
and resulting in laggy animations perceivable by users.

Fig. 7.5 Frames rendered during the test scenario execution in the Space Blaster app
in the historical dataset (left) and in the new context (right).

Similarly, Figure 7.6 shows the frames rendered during the execution of the test scenario
in the K-9 app on a Google Nexus 7 device with Android 4.3 in the historical test
repository (left) and in the same type of device with Android 5.1.0 (right).

The task to manually determine if a new test induces a performance degradation along
its execution is challenging and time-consuming. This task becomes harder as the
size of the historical test repository augments and the number of considered metrics
increases. Nevertheless, Dune is able to correctly identify each performance outlier in
∼ 1 ms in our datasets.

Figure 7.7 shows the outliers flagged in the new test runs in comparison with the
historical test runs in the K-9 app for the metrics: number of frames, smooth ratio,
and average time to render each frame.

108 Evaluation of in-vitro Approaches

Fig. 7.6 Frames rendered during the test scenario execution in the K-9 app in the
historical dataset (left) and in the new context (right).

7.2.3.2 RQ2. Context Isolation

Motivation: The second goal of Dune is to pinpoint potential contexts that induce
janks. This experiment aims to assess this capability.

Approach: To perform this evaluation, we use the test repositories generated in
Experiment A for the K-9 app. We then evaluate the effectiveness of Dune to identify
the conflictive contexts that were reported as causing the performance issues in the
K-9 app. We let Dune learn context rules with minimum support 0.01 and minimum
confidence 0.9. We set minimum support 1%, since the proportion of new test runs
is small in comparison with the number of test runs in the historical dataset. For
example, when a new test run includes a new context property that was not available
in the historical tests, e.g., a new SDK version is released, these properties have a low
frequency. By setting a low minimum support value we ensure that the rules capture
these new infrequent properties as they emerge. On the contrary, we set confidence
to 90%, since we want to ensure that the context properties are highly correlated
with outliers. This is the default value provided in the Weka library used in the
implementation.

Results: Dune effectively learns context rules where janks arise. As a result,
Dune identifies 7 context rules (after pruning redundant rules). All these rules have
a confidence of 100%. Figure 7.8 shows a graph-based visualization of the context
rules identified in the K-9 app. In the graph, nodes represent items (or itemsets)
and edges indicate relationship in rules. The size of the nodes represents the support
of the rule. In particular the contexts are the SDKs: 5.0.0, 5.1.0, and 6.0.0, and
their associated API levels: 21, 22, and 23, respectively. Thus, Dune effectively

7.2 Evaluation of DUNE 109

10
0

20
0

30
0

40
0

N
um

be
ro

fr
am

es
or

en
de

re
d

10
20

30
40

50
60

70

A
ve

ra
ge

oti
m

eo
fr

am
eo

re
nd

er
in

go
Um

sB

0D2
0D3

0D4
0D5

0D6
0D7

0D8
0D9

S
m

oo
th

or
at

io
S

M
O

O
T

H
hhh

R
A

T
IO

N
U

M
B

E
R

hF
R

A
M

E
S

A
V

E
R

A
G

E
hhh

hR
E

N
D

E
R

IN
G

hT
IM

E
hhU

m
sB

Outliers

Outliers Outliers

Fig. 7.7 Outliers flagged in the new test runs in the K-9 app in comparison with the
historical test runs.

identifies the contexts that were reported as problematic in the issue tracker system.
Furthermore, even though the SDK 6.0.0 was not reported in the apps’ issue reports2,
we manually repeated the scenario on a device with 6.0.0 and we could perceive UI
lags as described. This finding underlines the potential of the technique to identify
performance regressions across contexts. In addition, the Google Nexus 5X device
appears in a rule, since it is the unique device in the repository that runs the version
6.0.0.

To analyze the sensitivity of the parameters in this experiment, we increase the
minimum support threshold with deltas of 0.01 and explore the rules obtained. When
the minimum support reaches 0.03, the number of context rules found is 5. In particular,
the contexts SDK=6.0.0 and device=Google Nexus 5X are pruned. Whereas the
remaining 5 rules are the same as those previously identified, which effectively reproduce
the performance regressions. Moreover, when we set the minimum support to 0.07, no
rules are found. In this experiment, all the rules exhibit a confidence of 1, which is the
highest possible value. Developers can calibrate the parameters of Dune (minimum
support and confidence) according to their needs. If they are too restrictive, they risk
to miss some defects, and harm the experience of their users. On the contrary, if they
are too permissive, they can obtain context rules that are not discriminative enough.

2At the time of writing, Android 6.0.0 (Marshmallow) is one of the latest Android version released
and it is few widespread among devices.

110 Evaluation of in-vitro Approaches

Fig. 7.8 Graph visualization of the context rules identified in the K-9 app.

7.2.3.3 RQ3. Performance Optimization

Motivation: In addition to detecting performance degradations, improving app perfor-
mance (for example in low-end devices) is another significant performance goal which
app developers persecute. Hence, developers can use Dune to assess performance
optimizations. The goal of the third experiment is to assess this capability.

Approach: We select the 10 new tests that were generated in Experiment A for both
apps K-9 and Space Blaster. Then, we randomly select one of the tests in each app
from the historical test repository—i.e., we swap the new tests and one of the elements
of the test repository. Finally, we check if Dune correctly flags the historical test as
an outlier (optimization) in comparison with the new tests. In this case, the outlier
should have a positive offset, hence indicating a performance optimization.

Results: The approach effectively reports the historical test as an outlier with
positive offset, hence indicating that this run is better than previous tests. This
result confirms the utility of Dune, which can spot both regressions and optimizations
effectively.

7.2.3.4 RQ4. UI Event Filtering

Motivation: The last experiment aims to evaluate the capability of Dune to filter
out individual events that trigger janks. Hence, in this experiment, we evaluate the
fine-grained filtering performance to identify performance degradations at UI event

7.2 Evaluation of DUNE 111

level. We check if Dune correctly points out the events in a test that trigger a jank.
The more irrelevant UI events Dune can discard, the less effort developers require to
find the root cause of problems.

Approach: In this evaluation, we use the Exoplayer app with manually injected janks.
Since we know the location where the janks were injected, we can assess the effectiveness
of the approach.

Google states that most of the performance issues in apps come from performing heavy
operations in the main UI thread. Thus, we inject a synthetic jank, extracted from
Sillars et al. [64], in the Exoplayer app to cause UI performance degradation. The
jank consists of inserting a heavy computation in the UI thread. We inject the jank
in two locations of the app—i.e., when the user selects the option Logging during
video playback and when the user touches the screen during video playback. We then
define a realistic user interaction scenario for the AUT. At a high level, the scenario
consists of selecting and playing two videos from the Internet, and change different
configuration settings while the video is playing. In total, the scenario is composed of
20 user interactions and takes 102 seconds to execute on average. Across the execution
of the test scenario the jank manifests 4 times after events: #3, #7, #16, #17.

We then run the test scenario with the mutated version of the Exoplayer app on 15
devices randomly selected in our Device lab. This results in a mutated test repository
with 15 test runs that exhibit performance degradations. Remark that all the test
executions traverse the injected faults.

We measure the effectiveness of Dune in terms of Precision and Recall which are
computed as follows [68]:

Precision = 1− #false positives

total# of events flagged

Recall = #janky events detected

#expected janky events

False positives are events flagged as janky, while we did not include a jank in such a
position. Note that the precision metric is only an approximation, since we cannot
ensure that the false positives really are false alarms. The app could experience
performance degradations at some points due to external factors, such as network
variations, device state (e.g., device running out of battery), etc. The less false positives,
the less locations the developer will need to explore to fix the janks. On the contrary,

112 Evaluation of in-vitro Approaches

Table 7.4 Summary of the performance of Dune to spot UI events.

Janky events:#3, #7, #16, #17
Test Flagged Events Precision Recall
T1 3,5,7,16 0.75 0.75
T2 2,3,5,7,16,17 0.67 1
T3 3,5,7,16 0.75 0.75
T4 3,6,11,16,17 0.60 0.75
T5 3,11,16,17 0.75 0.75
T6 3, 6,11,16,17 0.60 0.75
T7 1,6,7,8,9,12,14,16,17,18 0.30 0.75
T8 1,2,3,7,9,11,12,17,18 0.33 0.75
T9 1,2,3,6,7,8,9,11,12,16,17,18 0.33 1
T10 3,4,6,7,8,16,18 0.43 0.75
T11 3,4,6,7,8,16,18 0.43 0.75
T12 3,6,7,8,16,17 0.67 1
T13 2,3,4,6,7,8,16,17,18 0.44 1
T14 1,2,3,4,6,7,8,16,17,18 0.40 1
T15 2,3,4,6,7,8,16,17,18 0.44 1

average: 0.53 0.83

high recall means that the approach detects most performance degradations at specific
events. The recall metric is the most important in this setting, since a high recall
means that Dune finds most of the janks.

Results: The approach obtains an average precision and recall of 53% and
83%, respectively. Table 7.4 reports the results of the experiment. For each mutated
test, it shows the events that were flagged (bold events were flagged correctly), together
with the approximate precision and the recall. Recall is the most important metric
for Dune, since it aims to find all occurrences of janks. The low precision means that
several events were flagged without any jank being injected. After manual inspection
of these incorrectly flagged events, we observe that many performance deviations are
induced by the effect of the previous jank. For example, we injected a jank in event
#7. We can observe that when event #7 is flagged in a test, the next event #8 is also
flagged in most of the tests, since the app has not recovered yet. Although event #8 is
considered as a false positive in the evaluation, it is observed as janky. In addition, we
observe that in some test runs (e.g., T7, T8, T9) the number of falsely flagged events
is higher. The rational of this is that such test runs correspond with lower-end devices
which make the app to perform worse in general along the whole execution. Finally,
some external factors such as network variations, can be responsible to introduce lags
at some points of the execution. Nonetheless, Dune is a powerful tool which can filter
out the most relevant events, thus saving precious time to developers.

7.2 Evaluation of DUNE 113

7.2.4 Threats to Validity

Our results show that the approach can be successfully used to spot UI performance
deviations at a fine granularity. Nevertheless, further analyses are necessary to evaluate
the efficiency of this approach on different types of apps. For example, we should
consider different app categories and sizes. The setting to evaluate the approach
(number of scenarios and test runs) is similar to the settings used in previous works [68])
that successfully tackled a similar problem.

In order to better capture the user experience, the performance test scenarios that are
used by Dune are expected to provide a good coverage of the app functionalities and
be representative of app usages. With regard to this threat, we could use user-realistic
scenarios collected from the crowd, as the ones generated by the MoTiF module (cf.
Section 6.1).

In addition, one important threat to construct validity is the choice of devices used
in the experiment. Similar to user scenarios, the selected device profiles should be
representative of the devices owned by users. One alternative technique to user
monitoring is to select random profiles during the test execution and to rely on the
similarity measure to better approximate the performance bottlenecks.

For the purpose of our experimentations, we use Android emulators, although the
performance of an app could vary when running on a emulator compared to on a real
device. Nevertheless, in practice, app developers use emulators to test their apps due
to budget and time constraints. Given the large mobile fragmentation, developers
use both emulators and real devices. To address this threat, we plan to extend our
experiments in a crowd of real devices and perform performance analysis in vivo.

The proposed approach is based on predefined thresholds specified by various parameters.
The first parameter is the outlier factor used to detect performance outliers (cf.
subsubsection 5.2.3.1). The second parameter is the confidence factor used to learn
context rules (cf. subsubsection 5.2.2.3). The calibration of these parameters can
impact the results and constitute a potential threat to validity.

Finally, other ecosystems than the Android one should be explored. The conceptual
foundations of our approach are independent of Android and the type of performance
defect. We only need an oracle of performance and some observation features (in
our case, context characteristics). To gain confidence in the external validity of our

114 Evaluation of in-vitro Approaches

approach, more evaluations are needed on other platforms, using different performance
metrics.

7.3 Conclusion

This chapter has presented different empirical studies to evaluate the applicability and
feasibility of the App Store 2.0 in practice. In particular, this chapter focuses on
evaluating the in vitro approaches: crowdsourced checkers and Dune. The approaches
have been studied with real app and real bugs. Overall, the application of our proposed
approaches reveals positive results regarding its applicability and feasibility.

Chapter 8

Evaluation of in-vivo Approaches

EVALUATION

CrowdSeerMoTiF

Fig. 8.1 Chapter 8 at a glance

This chapter reports on empirical stud-
ies to evaluate the in vivo approaches
(MoTiF and Crowdseer) in the
App Store 2.0. We have implemented
supporting tools for Android apps (cf. Ap-
pendix ?? for details). In this section, we
apply MoTiF and Crowdseer with real
app bugs reported by the crowd to evalu-
ate their applicability and feasibility. For

each module we present the motivation, evaluation protocol, results, and threats to
validity.

The rest of the chapter is structured as follows. Section 8.1 evaluates MoTiF. Sec-
tion 8.2 evaluates Crowdseer. Section 8.3 concludes the chapter.

8.1 Evaluation of MoTiF

In this section, we report on empirical experiments that we performed to evaluate the
applicability and performance of MoTiF.

8.1.1 Empirical Study Design

To evaluate MoTiF we address the following three research questions:

116 Evaluation of in-vivo Approaches

• RQ1: What is the overhead of MoTiF?

• RQ2: Can MoTiF identify crash patterns effectively?

• RQ3: Can MoTiF synthesize scenarios that reproduce crashes effectively?

8.1.2 Dataset

We start by collecting a dataset of real buggy apps. These apps were selected based on
their popularity, app category, different size and complexity of functionality, mixture
of open-source and proprietary, and the types of crashes that occur. Table 8.1 lists the
apps used in the study, with their version, category, size, and type.

Table 8.1 Statistics of the Android apps used in our experiments.

Android App Category Size Type #Users Avg. #Traces Crash typein Kb rating (#unique)

Google I/O 2014 Books 15,060 open 500k–1M 4.3 11 (2) Device heterogeneity
Invalid format

Wikipedia (2.0α) Books 5650 open 10M–50M 4.4 4 (1) Network conditions
OpenSudoku (1.1.5) Games 536 open 1M–5M 4.6 5 (1) NullPointerException
Bites (1.3) Lifestyle 208 open 10k–50k 3.2 16 (1) Invalid format
PocketTool (1.6.12) Tools 1410 closed N/A N/A 16 (1) Missing resource

To perform the experiments, we use two datasets—i.e., the Chimp and CrowdSourced
datasets. Both are based on the 5 Android apps that experience crashes. The Chimp
dataset is obtained from the 5 mobile apps using the Monkey testing tool (provided
by Android). This tool generates pseudo-random user events, such as clicks, touches,
gestures as well as system-level events in apps running on a device or in emulators [35].
If the app crashes or receives an unhandled exception, Monkey stops and reports the
error. To build the Chimp dataset, we first let Monkey send 1,000 events to each of
our apps. We then repeated this, but this time using 50,000 events. Finally, for the
Bites app, we repeated the 50,000 events 49 more times (such that this app in fact
had 50 such executions). These three different types of executions will be used across
different research questions.

The CrowdSource dataset is obtained through crowdsourcing with students of one
computer science lab in Lille and two in Montréal. Since engaging users to participate
in crowdsourced experiments is a challenge [159], we designed the experiment as a
contest with a prize as incentive for users. The goal of the contest was to try crashing
the 5 candidate apps as many times as possible in as many different ways as possible,
during a maximum time of 60 minutes. The participants were unaware of the number

8.1 Evaluation of MoTiF 117

and types of crashes in the apps. Eventually, 10 participants engaged in the contest,
each of whom was an experienced mobile user.

To run the contest, we provided 5 Android devices with different characteristics to
simulate a diverse crowd (cf. Table 8.2). We pre-installed MoTiF and the set of apps
under test and borrowed the devices to the participants for the duration of the contest.

Table 8.2 Crowd of devices used in the experiment.

Device model Android SDK
LG-E617G 4.0.3
Samsung Galaxy Nexus 4.0.4
Samsung GT-I9100 4.1.1
Samsung GT-I9100 4.1.2
Samsung Nexus S 4.1.2

8.1.2.1 Exploratory Data Analysis

Before jumping to the research question results, we first want to compare the two
obtained datasets in more detail, since the Chimp dataset is obtained automatically,
compared to the manually gathered CrowdSource dataset.

In the Chimp dataset (for the 50,000 events sent to each app), the apps Bites and
PocketTool crashed after executing 9,480 events and 33 events, respectively. However,
no crash could be found for the other three apps.

In the CrowdSource dataset, on the other hand, the participants were able to generate
52 crashes (each yielding a trace for analysis) across the five apps, distributed across
the different devices and Android versions. Table 8.1 (right part) shows, for each
subject app, the distribution of crash traces (i.e., crashes) per app and the number of
unique crashes amongst them. The observed crashes belong to 4 of the 7 categories of
crashes identified in the literature (cf. Table 4.2).

Out of the 52 crashes, we could identify 6 unique crashes, as shown in the table. For the
Google I/O app, the crowd discovered two crashes that we were unaware of beforehand.
The first crash is a context-related crash occurring only on the devices with Android
4.0.3 and Android 4.0.4. The second crash happens when searching for a word that
contains the quote character: “. Since the Google I/O app was developed on purpose by

118 Evaluation of in-vivo Approaches

Google for their annual Android developer conference as an example of best practices
(its source code was made publicly available), these two discovered bugs underline the
quality of the CrowdSource dataset. Indeed, it demonstrates that even apps that are
well-designed and tested, crash in certain contexts. Furthermore, crowd-based crash
monitoring seems a valid basis for gathering a wide variety of crashes.

In the remainder of this section, we discuss our findings for the 3 research questions,
using the two datasets. For each question, we provide a motivation, approach and
findings.

8.1.3 Empirical Study Results

We report the experiments performed to answer each research questions and the findings
we obtained.

8.1.3.1 RQ1. Runtime overhead

Motivation: The first phase of MoTiF is the monitoring of an app’s execution on
a client device. The more overhead monitoring causes, the more users will be aware
that MoTiF will be running, and the more it can influence their user experience.
Furthermore, users without crashes should not be punished with slow performance due
to monitoring. Hence, this question aims to quantify the overhead of MoTiF.

Approach: We study the runtime overhead introduced by MoTiF by monitoring the
app executions of the Chimp dataset on the Samsung Galaxy Nexus with Android
4.1.2 and 2 processors. In particular, we used the executions of 1,000 events of the
Chimp dataset, then measured the average execution time across the recorded events
as well as the average time required to send traces to the server.

Findings: The mean overhead to log a user event is 39 ms. Due to MoTiF’s
adaptive logging strategy, MoTiF initially only listens for uncaught exception events.
Therefore, the corresponding runtime overhead to store exception events is 0, given
that MoTiF logs the exception events only after the app has crashed. Only when
an app is suspected to be crash-prone, MoTiF augments the monitoring strategy to
log user interactions. As such, the obtained average overhead of 39 ms of the current
proof-of-concept implementation is imperceptible to users when interacting with the
apps. A response delay < 500 ms is acceptable for users according to the Intel industry

8.1 Evaluation of MoTiF 119

experience values [157]. Nevertheless, additional engineering efforts should be invested
to minimize overhead. Different approaches, e.g., code instrumentation, could be
explored. Finally, it is important to note that MoTiF distributes its experiments
among the different devices available in its crowd, and redistributes them periodically,
hence any accidental overhead will even out across different devices.

The median execution time to send crash traces to the server is 666 ms.
The crash traces are temporarily stored in JSON files in the device memory, until the
data is automatically flushed to the remote server for processing. For example, the 50
random traces in the Chimp dataset generated for the Bites app contain 36,603 events
and consume 31 MB. Since MoTiF sends the traces to the server only when the device
is charging, and the majority of users charge their devices on a daily basis, MoTiF
liberates the temporary storage in a short time. Hence, in a typical use scenario, only
a limited number of traces will be stored in a device. Since modern devices have
several GBs of memory available and incorporate external storage cards with additional
memory, the temporal storage of traces in devices is feasible. Furthermore, to minimize
the impact on a user’s device, only one app is monitored at a given time on each device.
Figure 8.2 shows the statistical distribution of the overhead measures.

0
10
0

20
0

30
0

40
0

50
0

0
10
00

30
00

50
00

Fig. 8.2 Runtime overhead (ms) of monitoring user interactions (left) and send traces
to server (right).

8.1.3.2 RQ2. Identification of crash patterns

Motivation: The second phase in MoTiF is the identification of crash patterns, which
is crucial to filter noise from user interaction events and context. The more irrelevant
steps MoTiF can eliminate, the more succinct the resulting crash pattern, and hence
the less effort is required from developers to interpret the crash patterns. Here, we

120 Evaluation of in-vivo Approaches

Table 8.3 Number of events and compression factor of the crash traces for the Crowd-
Source (first five rows) and Chimp (last row) datasets.

Android App Avg. # #Consol. Compr.
Events Events Factor

Google I/O 2014 22 1 22
Wikipedia 29.5 2 14.75
OpenSudoku 60 8 7.5
Bites (CrowdSource) 56 6 9.33
PocketTool 9.4 1 9.4
Bites (Chimp) 778.79 2 389.40

study the filtering performance of MoTiF for the crash traces, as well as its resilience
to noise introduced in the data.

Approach: For each app, we extract the crowd-consolidated traces using MoTiF and
measure their compression factor as Avg. #events in crash traces

#Eventsincrowdconsolidatedtrace . The higher this
factor, the better MoTiF was able to filter the trace.

Furthermore, in order to assess the impact of noise, we used the 50 executions of the
Bites app in the Chimp dataset (each of which crashed the app). In particular, we
added these 50 traces to the crash graph of the Bites app obtained from CrowdSource.
Since the amount of random crash data from Chimp outweighs the amount of manually
generated crash data, this experiment allows to measure how effective MoTiF can
deal with noise in the crash data.

Findings: MoTiF obtains compression factors of 7.5 up to 22. As shown in
Table 8.3, the number of events per trace can significantly differ among apps, since
it will depend on the design of the app and the location of the bug causing the
crash. However, for all the apps, the total number of events in the crowd-consolidated
trace (generated by MoTiF) is smaller than the average size of the original traces.
For example, in the Wikipedia app, the average size of traces is 29.5, while MoTiF
synthesizes a 2-event trace from the crowd data, together with a relevant context:
network disconnection. Table 8.3 shows the resulting compression factors, which are
the highest for the Google I/O app. However, even for the apps with the longest traces
(60 for OpenSudoku and 56 for Bites), MoTiF is able to reduce the size of the event
trace substantially to 8 and 6, respectively.

In the presence of noise, MoTiF achieved a compression factor of 389.40.
Indeed, the graph from the Chimp dataset for Bites contains 629 different event nodes
and 3,596 relationships among them (extracting the consolidated trace took 267ms).

8.1 Evaluation of MoTiF 121

Whereas the average number of events in the randomly generated crash traces is 778.79,
the consolidated crash trace contains only 2 events:
keyUp(keyCode = 22)− > onMenuItemClick(id = 6).

Although this trace reproduces the original crash, we observe that it slightly differs from
the consolidated trace synthesized from CrowdSource. This is because the input data
in this case contains more randomly generated traces (50) than manually generated
ones (16), hence the random Chimp events dominate. However, both 2-event traces are
correct and their main difference is that the Chimp traces contain event subsequences
that never could be crowdsourced because of the physical limitations of a mobile device.

8.1.3.3 RQ3. Generation of reproducible scenarios

Motivation: The third and final phase of the approach is the generation of a test suite
to reproduce crashes. The main challenge here is to generate the same exception types
as the original crashes. This is what is evaluated in this question.

Approach: To check if the promoted traces from CrowdSource can reproduce the crashes,
we generate the corresponding Robotium tests with MoTiF. We then execute the test
cases on the devices and check whether the app crashes again and, if so, whether the
same exception types occur.

Findings: The test cases correctly reproduce the bugs in 4 (out of 5) apps.
In other words, the execution of the test cases generates the same exception type in
the same stack trace location as the original crashes of CrowdSource. Only in the
OpenSudoku app, the first consolidated trace failed when trying to reproduce. Closer
analysis of the source code revealed that this failure is due to the display of the same
dialog box from two different locations in the app. Hence, in the graph, the event
was merged into a single node. We plan to further explore such situations to improve
the effectiveness of MoTiF. In any case, when we extracted the next most weighted
consolidated-trace from the graph, the crash could be reproduced. One benefit of the
Crowd Crash Graph is indeed that it will always contain a path that reproduces the
crash.

Table 8.4 summarizes the steps extracted from the crowd-consolidated traces to repro-
duce the context-sensitive crashes found by the participants of the experiment. Each
of them is not only compact, but also easy to interpret by developers.

122 Evaluation of in-vivo Approaches

Table 8.4 Candidate traces to reproduce crashes.

App Events

Google I/O
1) Click on ImageView Search
2) Type “
1) Click on a Session [Android 4.0.3/4.0.4]

Wikipedia
1) Click on ImageView Menu
2) Disconnect WiFi and mobile data
3) Click on MenuItem “Save Page”

OpenSudoku

1) Click on ListItem position 1
2) LongClick in ListItem position 1
3) Click on MenuItem “Edit note”
4) Click on Button “Save”
5) LongClick in ListItem position 1
6) Click on MenuItem “Delete puzzle”
7) Click on Button “Ok”
8) Change orientation

Bites

1) Click on Tab “Method”
2) Click on context menu
3) Click on MenuItem “insert”
4) Touch text field “Method”
5) Click Button “ok”

PocketTool 1) Click on Button “Level Editor”

8.1.4 Threats to Validity

One important threat to construct validity is the choice of CrowdSource participants
which could be biased to young, experienced mobile app users who knew that they
had to find crashes. This might not be representative of the typical users of some
apps, and hence impact (either positively or negatively) the ability of crowdsourcing to
generate certain crash traces. Nonetheless, our experiment is performed under realistic
conditions with 5 real apps with different types of crashes.

Although performing a crowdsourcing experiment is challenging, especially taking into
account the added difficulty of factoring in different contexts, our approach does not
require any critical number of users to work. As soon as MoTiF collects one single
trace, it can synthesize a test case to reproduce this trace. However, the larger the
number of users (with higher diversity), the more accurate the results that MoTiF
produces and the more crash types can cover.

Our approach also has limitations induced by the implementation of the client library.
First, for convenience, the apps must have their debug flag enabled to be monitored

8.2 Evaluation of CrowdSeer 123

by MoTiF. Second, the implementation of MoTiF requires root access and only
runs in devices with Android SDKs under 4.2 due to a limitation introduced by the
underlying implementation. We plan to make MoTiF compatible with the latest
Android versions. To alleviate any potential security risk inherent to the current proof-
of-concept implementation, alternative techniques (e.g., bytecode instrumentation,
embedding a library in the apps source code) could be used to collect the user traces.
Further threats are associated to the way in which we measured the overhead of
MoTiF.

Furthermore, the choice of apps and devices are a threat to external validity. Further
analyses are necessary to evaluate the efficiency of this approach on different types of
apps and crashes. For example, different app categories and sizes of apps should be
considered. Finally, other ecosystems than the Android one should be explored.

8.2 Evaluation of CrowdSeer

This section describes the application of Crowdseer in practice to evaluate its
applicability and feasibility. Crowdseer has been applied in different real bugs
reported by the crowd in Android apps and evaluated with users and developers.

8.2.1 Empirical Study Design

In particular, to evaluate Crowdseer we perform a set of experiments which focus
on answering the following research questions:

• RQ1: How effective is Crowdseer to prevent crashes of Android apps?

• RQ2: What do users think about the feature deactivation mechanism of Crowd-
seer?

• RQ3: What is the applicability of the approach from the developer’s perspective
in practice?

124 Evaluation of in-vivo Approaches

8.2.2 Empirical Study Results

In the following, we describe the studies we performed to answer these research questions.
For each study, we report on the motivation, the experiment design, and the results we
obtained.

8.2.2.1 RQ1. Crash Prevention Experiment

The first study focuses on answering RQ1 to evaluate the effectiveness of Crowdseer
to improve the resilience of apps to crashes. For this study, we conducted an experiment
on 10 different apps and real crashes and we checked if Crowdseer was actually able
to prevent those crashes.

8.2.2.2 Experiment Design

We collected a dataset of real app crashes reported by the crowd. We avoided to
manually inject crashes in the apps, since we intend to demonstrate real crashes and
real apps that are more representative of crashes experienced by users. We limited our
search space to open-source apps as we need to instrument the source code in order to
integrate the Crowdseer library.

To select the apps, we inspected issues reported in the issue trackers of open-source
Android apps. In particular, we explored the following repositories: Google Code
Archive [15], F-droid [fdr], GitHub, and AOpenSource [aop]. We also checked the user
reviews published in the Google Play Store. In addition, we included apps, which have
been studied in previous works [162, 57].

Once we have identified a list of candidate apps, we searched for the source code of the
specific version for which the crashes have been reported. Some bug reports lacked the
version of the app affected by the crash, so we had to consider several versions of the
app to reproduce the crash. To reproduce the crowd-reported crashes, we used the
Monkey testing tool provided by Android. This tool generates pseudo-random user
events, such as clicks, touches, gestures, as well as system-level events in apps running
on devices or emulators [35]. If Monkey reproduces the crash, we add the app to our
app dataset. Otherwise, we discard the app. The final dataset contains 10 apps for
which Monkey was able to reproduce the reported crash as shown in Table 8.5 (left).
All the apps we considered contain real bugs which have been reported by users.

8.2 Evaluation of CrowdSeer 125

Table 8.5 Experiment results using Crowdseer to avoid crashes in the benchmark
apps†

App name Category Size #Monkey
Events before

#Monkey Events Crash

in store (Kb) crash without
Crowdseer

with Crowdseer prevented?

1 OpenMensa (0.8) Tools 2,290 3,670 10,000 yes
2 Easy xkcd (3.3.9) Comics 16,080 1,687 4,427 → 10,000 yes
3 Ringdroid (2.7.3) Media 5,450 3,188 10,000 yes
4 ADSdroid (1.5) Reference 344 3,670 10,000 yes
5 Androimatic K. (1.0) Communic. 328 1,655 8,388 → 10,000 yes
6 Dalvik Explorer (3.4) Tools 148 470 470 → 10,000 yes
7 Amazed (2.0.2) Games 44 355 352 no
8 aagtl (1.0.31) Tools 872 2,146 3,554 → 10,000 yes
9 NPR News (2.4) Multimedia 2,260 545 10,000 yes
10 AnkiDroid (2.2.3) Education 8,500 3,091 10,000 yes

†X Max. number of events = 10,000

To run the experiments, we used the Genymotion emulator [gen]. We install and run
the benchmark apps in an image of a device Samsung Galaxy S4 with Android SDK
4.3. We chose this device since it is a popular device at the time of writing. For each
app in our dataset, we run Monkey twice.

The sequence of events generated by Monkey is based on a random seed value, which
can be set by an optional input parameter. For the same seed value, Monkey generates
the same sequence of events. We used a fixed seed value in order to reproduce the
same scenario multiple times (in particular 12345 selected randomly)1. We set Monkey
to send 10,000 events with 50ms time delay between consecutive events (i.e., throttle
value). In addition, we set Monkey to inject 1% of rotation events (since many Android
crashes are triggered after rotation due to inadequate management of the Android
Activities lifecycle) and to avoid injecting system events (since system events are not
involved in the reported crashes)—i.e., start/end call, up/down volume (pct-syskeys
parameter). The final Monkey setting we used in the study is the following:

adb shell monkey -p [package_name] --pct-rotation 1 --pct-syskeys 0 -s
12345 --throttle 50 -v 10000

First, we run Monkey with the original app. If the app crashes or receives an unhandled
exception, Monkey stops and reports the error. Then, we extract the last feature
executed just immediately before the crash. Second, we add Crowdseer into the
apps and set it to deactivate the conflictive features extracted in the previous run.
Then, we run Monkey again with the same configuration to replicate the same sequence

1Note that using the same input parameters, occasionally the results can slightly differ because is
hardly possible to ensure exactly the same system state across experiments.

126 Evaluation of in-vivo Approaches

of events executed in the first run. Finally, we compare the number of events that
Monkey completes in both runs.

After deactivating the conflictive feature, the crash should be avoided. This implies
that Monkey should complete the execution without errors or find a different crash.
In the latter case, the number of injected events should be larger than the number of
events inserted in the first run. Thus, meaning that the first observed crash is avoided.

8.2.2.3 Experiment Results

Out of 10 studied apps, our approach effectively avoids the crashes in 9
apps. Table 8.5 summarizes the results of the experiment. For each app, the table
shows the app name with its version (in brackets), and the store category to which
the app belongs, number of events (out of 10,000 specified) which Monkey injected
in the first and second runs—i.e., with the original app and finally if our approach
successfully prevents the crash. For example, Monkey crashed the original OpenMensa
app at event 3,670 while, after feature deactivation, Monkey completes the execution
without errors.

In the Easy xkcd, Androimatic, and aagtl apps, Crowdseer avoids the crash
observed in the first run, however it finds a new crash in a different location. We
observe that in the three apps, the number of injected events in the second run is
higher than the number of injected events in first run (4,427 > 1,687, 8,388 > 1,655,
and 3,554 > 2,146, respectively). This means that Crowdseer succeeds to prevent
the crash and Monkey continues the exploration. We manually analyzed the code of
these apps to confirm that such apps contain several bugs, which lead to crashes in
different locations. The continuous patch validation phase of Crowdseer continuously
monitors the patched apps, thus it will detect this situation and it will deploy an
additional patch to prevent the second observed crash.

Crowdseer initially failed to avoid the crash in the Dalvik Explorer app. The
Dalvik Explorer app crashes when clicking on a link in the app. Thus, the candidate
feature to deactivate is a link. However, a link is not a graphical element of the UI (it is
an instance of the Linkify class), thus the link lacks an identifier to characterize such
element. As Crowdseer uses id’s to identify and deactivate graphical elements, it
cannot disable a link. In this situation, Crowdseer will try with the previous feature
contained in the consolidated trace. In the particular case of the Dalvik Explorer

8.2 Evaluation of CrowdSeer 127

app is an item in the menu. Disabling such menu item, it prevents that the user reaches
such link.

Finally, Crowdseer failed to prevent the crash in the Amazed app. The Amazed app
is a game where the user moves the device to direct a ball in the screen. This app
uses the accelerometer to work. The app crashes after some movements. For the time
being, Crowdseer does not monitor accelerometer data, thus it cannot deal with this
type of crash. In fact, Crowdseer cannot tackle gesture-induced crashes.

8.2.2.4 RQ2. User Opinion and Preferences Survey

The study aims to evaluate the automatic feature deactivation mechanism from the
users perspective answering RQ2. User satisfaction plays an important role in our
approach, given that the underlying goal of Crowdseer is to enhance user experience
with apps. In fact, the higher the user satisfaction with an app, the less risk for
developers to loose users in favor of the competitor’s apps.

8.2.2.5 Survey Design

We conducted a survey with closed questions in April 2016. The goal is to show users
how Crowdseer works and ask what they think and which option the prefer. To
ensure a strong degree of realism, we selected a real popular Android app with a real
bug. In particular, we use a version of the Android Wikipedia app (v2.0α) that contains
a crash-inducing bug—i.e., the app crashes when the user tries to save a page and the
network connectivity is unavailable2.

We follow a within-subjects design [138] where all participants are exposed to every
treatment/method. In our case, every subject is exposed to 1. the original app crash,
and 2. the deactivation of the buggy feature to prevent the crash.

We ran the study under two settings: a traditional lab setting with in situ subjects,
and using a crowdsourcing setting with crowdsourced subjects.

Lab Setting: In the lab setting, we asked 33 mobile users to participate in the
experiment. The subjects were researchers and master students in Computer Science.

2This bug has been fixed in posterior versions of the app.

128 Evaluation of in-vivo Approaches

We performed a case study based evaluation by immersing users in a real application of
the approach [161]. First, the subjects had to carry out a real task with the Wikipedia
app. Afterwards, we asked them to complete a survey.

We provided the subjects with a tablet (Samsung GALAXY Tab 4 running Android
5.0.2), which had the app under test installed. The experiment started with a scenario
description which outlined the steps that the subjects must carry out with the subject
app. This includes 5 steps: 1. Launch the Wikipedia app, 2. Search a page, 3. Deactivate
the WiFi connection, 4. Open Menu, 5. Click on ‘Save page’.

Every subject had to repeat the scenario twice. The first time, the app crashes after
clicking on ‘Save page’. The second time, the app disables the ‘Save page’ option to
prevent the crash and shows a pop-up message to inform about the unavailability of
such feature.

Afterwards, participants proceed with our survey to evaluate the feature deactivation
mechanism. The form used in the experiment is available in Appendix A. The form
had four questions using 5-Likert scale [138], one multiple-choice question to know
the preferences of users, and finally one open question where users can provide any
additional feedback or comments. Overall, the questionnaire needed 8 minutes to
answer.

Crowdsourcing Setting: The use of students and researchers as experimental sub-
jects and the size of the sample (33 subjects) might not be considered as representative
of the population of mobile users and it constitutes a potential threat to validity. To
alleviate this threat, we used a crowdsourcing platform to engage a broader and more
heterogeneous participation in our study.

Experiment subjects: A crowdsourcing platform, such as Amazon Mechanical Turk
(MTurk) [Amazon Mechanical Turk]), is an online service from which anyone can
publish micro-tasks and recruit contributors all over the world to complete the tasks
for a small monetary reward. Tasks typically require little time and effort to realize.
At the time of writing, MTurk is the most popular crowdsourcing platform, but it
disallows to request tasks from outside of the US. Thus, we use an alternative service,
the CrowdFlower platform [cro], to recruit 600 crowdsourced subjects to participate in
our study.

We design the experiment as a two-steps job in CrowdFlower. First, we provide a
video that illustrates the two usage scenarios that in situ subjects had to manually

8.2 Evaluation of CrowdSeer 129

perform with a real device3. We add annotations in the video to ensure that participants
understand the scenarios. After watching the video, participants had to answer the same
questionnaire as provided to in situ subjects. However, this questionnaire additionally
included a list of demographic questions to characterize the crowd who participated
to our study. The demographic questions included: age, country, IT background and
smartphone usage. More information about the job published in CrowdFlower is
available in Appendix A. CrowdFlower ensures that each participant only performs
the job once.

We designed the job to be completed in less than 10 minutes, and we set a prize of
$0.15. To incentive participants to carefully complete the survey, we announced a
bonus of $0.15 in addition to the prize of the job.

When designing a crowdsourced survey, we have to consider additional threats as we
risk to recruit fraudulent participants, who randomly answer the questions. To alleviate
this threat, we incorporated mechanisms to ensure the quality of answers:

• Validation questions. We included along the questionnaire two test questions to
detect fraudulent participants. In particular, these questions were: Which option
is disabled in the app shown in the video? and Which smartphone do you use
currently? If a participant fails the first question, or enters random text that
does no correspond with any smartphone, we classify such an answer as invalid
and excluded it from the evaluation.

• Time threshold. We set 5 minutes as the minimum time to complete the job.
CrowdFlower rejects the jobs that are completed faster than this threshold.

• Click check. We add a validator to ensure that the video link was clicked. However,
this check cannot ensure that the participants watched the video, we can only be
sure that they accessed to it.

We deployed the job to the crowd in April 2016.

We first launched the job in CrowdFlower to 100 participants as exploratory data
analysis phase. CrowdFlower characterizes its crowd workers in 3 levels regarding their
experience and the overall quality of their previously completed jobs. A level-3 crowd
implies the most experienced and successful participants. We decided to publish the
task only to level-2 crowd and we obtained the requested 100 answers in 40 minutes.
Then, we analyzed the answers and rejected the ones who failed our validation test.

3The scenario video can be watched at https://www.youtube.com/watch?v=za2dhlRqhwI

https://www.youtube.com/watch?v=za2dhlRqhwI

130 Evaluation of in-vivo Approaches

As a result, we kept 71 answers, excluding 29% of the answers. Afterwards, we made
adjustments in the settings of the job with the aim of increasing the quality of the
answers, and we re-launched the job.

Second round. For the second round, we select only level-3 crowd, while targeting 400
participants. Note, that in each new round CrowdFlower bans participants who have
already completed the job. We collected the 400 responses in less than 2 hours. After
sanitizing the results, we kept 330 answers—thus excluding 17.5% of fake answers. We
observed how increasing the level of the target crowd (from level 2 to 3) reduces the
number of fake answers.

Third round. Finally, we made another adjustment to increase the quality of the
answers. We continued targeting only crowds of level 3, but in this case we reduced
the price of the job, from $0.15 to $0.10 and increased the amount of the bonus (from
$0.15 to $0.20). We re-published the job to 100 more participants and we collected
the last 100 answers in 90 minutes. We kept 94 answers—i.e., we reject only 6% of
answers. Fraudulent participants tend to apply for the tasks with higher reward.

Finally, we obtained a sample of 495 answers from crowdsourced subjects.

8.2.2.6 Survey Results

Surveyed users prefer deactivating buggy features over suffering from crashes.
Figure 8.3 provides details on the experiment results we obtained when evaluating the
approach with end-users.

Overall, the evaluation reveals an high satisfaction with our proposed approach. First,
72.2% of users report app crashes as annoying or very annoying. The 61.5% of users
agree that a disabled feature is less annoying than a crash (45.6% agree and
18.0% strongly agree). On the contrary, 12.7% of users disagree. There are also 23.7%
of users who do not agree neither disagree. We observe that the amount of neutral
users (i.e., users that do not agree neither disagree) is larger among the crowdsourced
subjects, 25.1% against the 3.0% in the in situ subjects. The rational of this could
be that some crowdsourced subjects may have misunderstood the formulation of the
question, while in situ subjects can ask for clarifications. In fact, this happened during
the study, several in situ subjects asked for confirmation regarding their understanding
of some questions. This is one of the risks when using crowdsourced participants for
user evaluation [101], some questions can be misunderstood and the participants lack

8.2 Evaluation of CrowdSeer 131

A disabled feature disrups
less my experience
than a crash

40 20 80
Strongly disagree Disagree N/A Agree Strongly agree

I would like that all apps
use the feature
deactivation to
prevent crashes

100Percentage

Percentage

Lab

Crowd

All

Lab

Crowd

All

Lab

Crowd

All

An app crash is
very annoying
to me

40 60200

40 20 80 10040 60200

Fig. 8.3 Results of the User Survey (Nlab=33, Ncrowd=495, Ntotal=528).

the opportunity to clarify. To alleviate this threat, we include textual captions along
the video to describe what is happening in the app.

Finally, the 56.3% of users would like that all the apps in their devices
incorporate the deactivation mechanism to prevent crashes. While the 21.8%
disagrees on that. We observe that any in situ subject disagree on this statement, and
there are only 2 users that neither agree or disagree. Since in situ subjects had to
perform the scenario themselves with a real device, their degree of realism is higher,
then they perceived the crash more annoying than if the crash was watched in a video.

The survey includes an additional question to determine user preferences regarding
the type of prevention action (e.g., feature deactivation) instead of a crash. Users
repeatedly requested for an explanation about the feature deactivation.

Figure 8.4 summarizes the reported user preferences. ‘Displaying a message’ (which
informs about the unavailability of a feature) and ‘Disabling the feature’ are the most
voted options. Followed by the combination of both—i.e., message and disabling. In
addition, the 10.6% of users (56 users) prefer to totally hide the feature in the app if it
is unavailable. Furthermore, three-quarters of in situ subjects commented that they
would like to know the reason why the feature is disabled. In the particular case of the
Wikipedia app (used as case study), a message that explains that the ‘Save page’ is
disabled because the network connection is unavailable. Then, they can do a corrective
action to make the feature available again. As a future work, we plan to enhance the

132 Evaluation of in-vivo Approaches

messages to include information about the reasons of the deactivations. We also plan
to study mechanisms to incorporate recommendations about the actions that users
can take to avoid the issues when possible.

(32.8%)

(32.8%)

(10.6%)

(18.5%)

(0.9%)

(4.4%)

Fig. 8.4 Preferred options instead of crash (N=528).

In addition, 9 subjects prefer other solutions. We asked an open-ended question to
in situ subjects to have the opportunity to further discuss with them. We summarize
alternative preventive mechanisms users suggested:
- Display an information icon next to the feature. When the user clicks on the icon,
inform that such feature has been observed as buggy and will potentially crash the app.
Then, let the user to decide if temporarily disabling the feature or taking the risk.

- Only show a message after the first time the user taps the feature. Thus, if such
feature is rarely used, the user will not be disturbed with irrelevant notifications.

- Disable the feature, but if the feature is not fixed in a short time, then hide the feature.

- Recommend actions to make the feature available. For example, after clicking in a
feature inform the user that the WiFi must be activated first.

8.2.2.7 RQ3. Developer Feedback Interview

The goal of the last study is to qualitatively evaluate the applicability of our approach
from the developers’ perspective. For this purpose, we conducted several semi-structured
exploratory interviews with experienced mobile app developers. This experiment aims
to answer RQ3.

8.2 Evaluation of CrowdSeer 133

Table 8.6 Overview of the interviewed Android developers

ID EXP. COUNTRY ROLE TYPE OF
(YEARS) APPS

D1 7 Germany Research assistant Games, Location-
based, Context-based
(sensors)

D2 6 Germany Sw developer, Sw architect 1 Game, Social messag-
ing, Security, Language
learning

D3 3 Germany Developer, Tester, UI design Health care (diabetics)
D4 4 France Sw developer, Sw architect, Self-employed Business apps
D5 11 Canada Android developer Games, Radio stations,

Business apps
D6 10 Canada Android developer French retirement sys-

tem app, Business apps

8.2.2.8 Interview Design

Developer recruitment: We interviewed 6 experienced mobile app developers (from 3 to
11 years of experience) who have been working in companies developing Android apps.
We selected developers from Europe and America, with different experiences, from
companies located in different countries, and with different roles in the companies, to
minimize potential threats of external validity. Table 8.6 provides an overview of the
participants.

The goal of the interviews was to explore the applicability of Crowdseer from the
developer’s perspective. The interview focused on exploring how, which, and why
questions. We structured the interview in four sections: 1. Background and project
context, 2. Current crash detection and fixing practice, 3. Feedback to Crowdseer,
and 4. Overall satisfaction with our approach. We prepared a list of questions as a
guidance, but the interviews were open to discussions with developers. The prepared
interview is available in Appendix B.

The interview started with a presentation which provides general information about
the approach and the supporting infrastructure. After a short demo of the approach,
we proceed with the exploratory questions. Each interview had a duration between
45 and 60 minutes. The interviews were performed during March and April 2016. 3
interviews were performed physically, while the others by video conference.

8.2.2.9 Interview Results

After completing the interviews, for each question, we analyze and compare the an-
swers of the different developers. We divide the interview in topics and discuss the

134 Evaluation of in-vivo Approaches

observations in each of them.

General Crash Detection and Fixing practice: In the first part of the interview,
we explore the current practice of crash detection and fixing to gain insights and
understand the needs of developers.

To detect when users experience crashes, D2, D3 and D4 developers use third-party
libraries—crash reporting tools—embedded in their apps (in particular Crashlytics,
Sentry and New Relic). The remaining 3 developers rely on the feedback provided
by the Android platform via the Google Developer Console in the Google Play Store.
In particular, D1 declared that: “the Google Developer Console provides enough
information and I do not need additional tools”. While, developers D5 and D6 refuse to
add any third-party library to their apps because they loose the control of the apps
and makes the apps dependent of a third-party.

Developers D5 and D6 (the most experienced developers) commented that their apps
are highly stable and hardly ever crash. D5 stated that: ‘I like to say that I don’t
get any crash’ and D6 said: ‘Apps never should get to a point of crash’. They argued
that, after many years developing apps, they anticipate potential points of crash and
prevent crashes beforehand. In addition, they heavily test their apps previous to
release, including beta-testing to a reduced group of users before making the final
release publicly available.

All developers agreed that stack traces are the most valuable artifact when
trying to fix a bug. The stack trace is the starting point to figure out the root
cause of a problem. This aligns with the findings of previous research in desktop
programs [139]. Furthermore, developers use user reviews posted in the store
to add new features, but not for bug-fixing. D3 sketched: “user reviews lack of
useful information to reproduce and fix problems”.

In addition, the 6 developers highlighted that the reproduction step is the most
challenging when facing a crash due to device fragmentation and the lack
information about the context of bugs. D3 sketched: “We only have 5 different
devices to test. It’s hard to reproduce because there are many device-specific problems”.

Feedback on Crowdseer: In the second part of the interview, we explored developers’
opinion about Crowdseer, their acceptance of the approach, and their preferences.

8.2 Evaluation of CrowdSeer 135

All developers agreed that Crowdseer is a powerful approach to prevent
crashes. Developers D2 and D4 highlighted as strength of the approach the possibility
to quickly update apps. D3 sketched: ‘I love the possibility to quickly update apps
in case of critical issues without waiting for the long process of publishing a new app
release in the store, which can take from hours to days in some cases’.

All developers requested means for hooking the decision process of Crowd-
seer. All the developers manifested that they would like that Crowdseer notifies
them before the feature deactivation is performed. They want to always keep the
control of their apps. They would like to receive a notification informing about the
crash and the suggestion of the feature to deactivate, then they decide to apply it
or not. However, developers D2 and D3 stated that if the crash is very critical—i.e.,
affecting a large community of users in a short time—then the feature deactivation
can be applied and sending a notification to them informing about preventive action
adopted. In such a case, they would like to be able to revert the change if they disagree.

Regarding the notification channel that Crowdseer should use to communicate with
developers, they prefer notifications via a Slack channel or e-mail. They also mention
that the notifications should include a link to directly apply the feature deactivation.
Additionally, developers would like that Crowdseer creates a new issue automatically
in their Issue Tracker (e.g., in Github).

All developers remarked the fast and easy ability to integrate Crowdseer
in their apps. All developers liked the current implementation of Crowdseer—i.e.,
a library to embed in apps, and a web interface to update apps on-the-fly. However,
developers D5 and D6 refuse to add any third-party library into their apps. D5 claimed:
“we used to use a library for reporting crashes and each time that the Android SDK
updated, that library produced a high amount of issues in our app”. D6 said: “we were
using some third-party libraries which make our apps consume up to 40% more battery”.
They said that they use third-party libraries during beta-testing to get insights about
the performance of their apps; but when they release the final version to the public,
they remove all the third-party libraries.

Regarding the web interface of Crowdseer, developers D3, D4, and D6 mentioned
that there should be a mechanism to automatically test the apps after the feature
deactivation to ensure that such a deactivation does not introduce any additional
crashes or undesired behavior. Furthermore, D4 suggested to keep an history of patches
that can be applied or rejected at any moment. Also, there should be some mechanism
to order patches by priority, regarding how many users are affected by the crashes.

136 Evaluation of in-vivo Approaches

Five developers found the deactivation mechanism really useful to reduce
crashes in the apps. While, the reminder developer cannot agree neither disagree
if he does not test it. D6 mentions that some crashes appear for operations running
in background and Crowdseer cannot prevent such crashes. We are aware that
Crowdseer cannot prevent all types of crashes in mobile apps.

Four (out of six) developers would like to incorporate Crowdseer in their
apps now. Remark that one of these developers contacted us some days after the
interview asking to use our library. On the contrary, developers D5 and D6 need
more information before accepting to incorporate the approach. In particular, these 2
developers are the same developers who declared that they rarely experience crashes
and dislike to integrate third-party libraries in their apps. They said that they need
to test Crowdseer before to include it in their developed apps. D6 said that: “for
me security is a very critical concern, I need to be sure that any malicious app can
attack your library and then get the control of my app”. As future work, we plan study
mechanisms to enforce the security of Crowdseer.

We extracted additional insights from the interviews. From the end-users perspective,
the approach should include a feedback to them and explain why some features are
unavailable, to help users understand and avoid frustration. This aligns with the
feedback extracted from users’ survey. Developer D2 suggested that defective apps
could incorporate a small information icon in the top informing about some features
have crashed for other users, and then the user can accept or dismiss that the app
proceeds with the feature deactivation.

In addition, the approach could recommend different solutions to prevent the crash
(e.g., disable a menu item or disable the whole menu) and developers decide which is the
most adequate action to be applied depending on the type of app and the location of
the crash. D4 requested that it would be nice to incorporate mechanisms to recommend
fixes to the crashes. Crowdseer could be extended to incorporate automatic software
repair techniques [115] in order to automatically apply patches fixing the crashes in
some specific situations.

To sum up, developers have in general a positive opinion about the approach and have
provided valuable feedback regarding the adoption of Crowdseer in practice. In
contrast, they request mechanisms to control the decision process of Crowdseer. We
take all their insights into consideration to improve the approach.

8.2 Evaluation of CrowdSeer 137

8.2.3 Threats to Validity

We describe the threats that could potentially limit the validity of our results and the
mechanisms we apply to mitigate them.

Construct validity. The benchmark of apps used in the evaluation constitutes a
potential threat to construct validity. First, this sample only includes open-source
Android apps. We use a benchmark of real apps, which contain real bugs, in order to
ensure that the crashes are representative of real crashes faced by users in practice.
The apps belong to different categories and sizes, and some of them have also been
used to evaluate prior approaches related with Android testing. Nevertheless, more
experiments with more apps and types of crashes are necessary to gain confidence on
the results.

Internal validity. The selection of users and developers is a potential threat of
internal validity. To mitigate this threat, we consider an heterogeneous sample with
people from different countries, experiences and background, to gain confidence that
the participants are representative of the population in general. First, we perform
the study with users in situ. Since these users are researchers and students, there
is a threat that they do not represent the population of mobile users in general. To
alleviate this threat, we extended the experiment with crowdsourced participants from
different countries, ages, and background. Thus, we increased the size of our sample
population, from 33 participants to 528 participants.

By using crowdsourced participants, we alleviate the threat of sample size and het-
erogeneity, but we also introduce some additional threats. First, we risk to consider
fraudulent users that complete the task randomly. We adopted several measures—i.e.,
test questions, time threshold, click check—to alleviate this threat. However, in situ
subjects can also randomly answer the surveys. Second, we risk that participants
misunderstand questions, and they do not have the opportunity to clarify as in situ
subjects have.

We design the user study with high degree of realism, by making users to see the
approach running in practices, using a real device and a real bug in a popular app.
However, the results can be biased because of the app selected for the study—i.e., the
Wikipedia app.

External validity. To generalize our findings, more experiments with a larger number
of users and developers are necessary. To alleviate this threat, we used a crowdsourcing

138 Evaluation of in-vivo Approaches

platform to recruit a bigger and more heterogeneous sample of subjects. Similarly, we
select developers with different backgrounds, who work in different types of companies,
have different experiences, and live in different countries.

8.3 Conclusion

This chapter has presented different empirical studies to evaluate the applicability
and feasibility of the App Store 2.0 in practice. Our experiments demonstrate the
effectiveness of the feature deactivation mechanism to prevent crashes and that users
are ready to accept the automated feature deactivation mechanism in practice. In
fact, they prefer our solution instead of crashing. However, users demand explanations
about the preventive actions taken. On the contrary, developers have concerns about
loosing the control of their apps and request to intervene in the prevention mechanism.

Part IV

Final Remarks

Chapter 9

Conclusions and Perspectives

Contributions

Perspectives

Fig. 9.1 Chapter 9 at a glance

With the proliferation of mobile devices,
the development of mobile applications
has gained a huge popularity over the last
years. The reputation of a mobile app
vendor is crucial to survive amongst the
ever increasing app market competition.
Hence, detecting and preventing quality

issues, in particular crashes and unresponsive apps, has become a major goal for app
vendors.

This thesis addresses the development of a new generation of app stores—App Store 2.0.
For this purpose, we have introduced a crowdsourced framework for extending current
app stores with advanced services to assist app developers to automatically improve
the quality of mobile apps. This research combines: app store analysis, debugging,
crowd monitoring, and app testing.

This chapter summarizes the contributions of this thesis and discusses perspectives for
future research. The last chapter is structured as follows. Section 9.1 summarizes the
contributions of this research. Section 9.2 states future research lines to extend this
thesis. Finally, section 9.3 concludes this manuscript.

142 Conclusions and Perspectives

9.1 Contributions

The main contribution of this research is a crowdsourced framework to engineer
a new generation of app stores. Since app stores already have access to different
types of crowds—crowd of apps, crowd of users, crowd of devices—, our key insight is
to make them exploit the wisdom of those crowds to generate actionable feedbacks.
The App Store 2.0 includes the capability to assist developers to deal with potential
errors and threats that can affect apps prior to publication or even when the apps are in
the hands of end-users. In particular, this thesis focuses on alleviating crash-inducing
bugs and UI janks in mobile apps. We have demonstrated that app stores can leverage
the wisdom of the crowd to improve the quality of mobile apps. This contribution has
resulted in three publications: [75], [74], [IEEESw].

The proposed crowdsourced framework comprises 4 software engineering approaches,
as well as supporting tools, to produce 4 actionable insights (risk reports, performance
reports, reproducible scenarios, and app patches) from crowdsourced feedback. In Chap-
ter 1, we formulated four research questions. In this section, we review these questions
and discuss the specific contributions which complement the main contribution:

An approach to predict app crashes before executing apps. This contribution
relates to research question 1: Is it possible to predict occurrences of mobile app bugs
from the feedback returned by the crowd? To answer this question, we introduced
an approach to predict potentially buggy apps by using correlations between
permission patterns (requested by apps) which are frequent among apps reported
as buggy through user reviews. The proposed approach leverages the wisdom of
apps. In particular, we combine unsupervised and supervised machine learning
on top of user reviews and app permissions. We conclude that certain types of
bugs can be anticipated with certain measure, before executing apps, by exploiting
crowd feedback. As a result, a publication has been derived from this contribution:
[78].

A crowdsourced approach to reproduce context-related crashes. The second
contribution connects to research question 2: Is it possible to faithfully reproduce
in vitro mobile app bugs experienced by users in the wild? To answer this question
we propose MoTiF. MoTiF exploits the wisdom of users and wisdom of devices
to identify UI sequences and contexts which induce crashes. In particular, MoTiF
monitors app usages and contexts, analyzes crowdsourced crash logs, groups failures,
and constructs minimized black-box reproducible scenarios from such crowdsourced

9.1 Contributions 143

data. Developers can then use the generated scenarios to automatically reproduce
crashes in vitro. This contribution has resulted in a publication: [77].

An automated crash prevention approach for mobile apps. The third contri-
bution relates to research question 3: Is it possible to prevent recurrences of mobile
app bugs in vivo? To answer this question we devise Crowdseer. Crowdseer
exploits the wisdom of users and wisdom of devices to identify buggy functionalities
and contexts under which crashes arise. Crowdseer contributes two patching
strategies for mobile apps. The former strategy learns from previous crashes re-
ported by the crowd and patches apps to mute unhanded exceptions. The latter
strategy diagnoses the UI feature and context triggering the crash, and immediately
deactivates crash-triggering feature on-the-fly, without requiring users to re-install
apps. As a result, two publications have been produced from this contribution:
[75], [ASE-journal].

A context-aware approach to detect UI lags in mobile apps. The fourth
contribution relates to research question 4: Is it possible to exploit the diversity of
the crowd to improve user experience with mobile apps? To answer this question,
we propose Dune. Dune leverages the wisdom of devices to automatically identify
UI performance deviations among different versions of an app and heterogeneous
contexts. Dune monitors app usages, UI performance-related metrics, and contexts.
Using this information Dune spots specific UI events and context properties (e.g., a
specific SDK version) that potentially trigger janks. This contribution has resulted
in a publication: [76].

Table 9.1 summarizes the contributions of this thesis and the publications that support
them.

Table 9.1 Relationship between contributions and publications

Contribution Publication

Crowdsourced framework
[75]
[74]
IEEESw (under review)

Crash prediction (Checkers) [78]
Crash reproduction (MoTiF) [77]

Hot-patching (Crowdseer) [75]
ASE-journal (to submit Nov. 16)

UI jank detection (Dune) [76]

144 Conclusions and Perspectives

To conclude, the aforementioned contributions demonstrate that by leveraging the
wisdom of the crowd, app stores can orchestrate the maintenance process of mobile
apps in an automated way. This contributes to reduce human effort and time which is
a crucial factor for the success of apps in the app market.

9.2 Perspectives

In this dissertation, we have presented our vision of App Store 2.0 and our solution
towards making it a reality. However, this research opens new research directions. In
this section, we present short-term and long-term perspectives for the continuation of
this research.

9.2.1 Short-term Perspectives

In this section, we describe the immediate continuations of this work. In particular,
for each module of the App Store 2.0, we envision several extensions.

9.2.1.1 Dealing with run-time permissions

Traditionally, Android users need to grant access to all the requested permissions by
apps at installation time. Starting with Android 6.0 (API level 23) [37], Android
introduced a new run-time permission model which gives the app’s permission control
to users. Under the new permission model, users grant and revoke app permissions at
run-time. For example, the user can give access to the camera in an app, but disprove
access to the device location. When some permissions are revoked, apps must be able
to continue working with limited features.

The new permission model poses new challenges for app developers who need to test
apps under additional conditions. In particular, various combinations of granted and
revoked permissions need to be tested, in order to ensure that apps can handle all
permission configurations without leading to crashes.

We plan to extend the permission checkers presented in this thesis with additional
run-time permission checkers. Prior to release, the run-time permission checkers can
stress different permission configurations to anticipate crashes related with specific
permission combinations. After releasing apps, the run-time permission checkers can

9.2 Perspectives 145

learn from conflictive permission configurations observed from the crowd of users. In
other words, the run-time permission checkers can learn permission configurations
which have lead to crashes. The permission knowledge extracted from the crowd can
be translated into several actionable insights. First, a permission configuration report
for app developers in order to fix their apps. Second, recommendations to users, which
inform users that if they revoke a specific permission A the app will potentially crash,
unless a permission B is activated. Third, patches will be generated to prevent that
other users face a previously observed permission combination at run-time.

9.2.1.2 Improving Dune’s performance

Regarding Dune, we plan to study new models to improve the performance of Dune.
In particular, we focus on the fine-grained detection mechanisms (UI level). For this
purpose, we will explore different models and algorithms available into the Kevoree
Modelling Framework [98]. These models have already been successfully used in other
domains, such as the IoT (Internet of Things) [118].

9.2.1.3 Reaching Monitoring Trade-offs

The current monitoring strategy of the App Store 2.0 is designed to minimize user
disturbance and runtime overhead. First, only one app is monitored in each device.
Second, the monitoring of user interactions only starts after a crash is observed and
ends as soon as the store generates an actionable insight. Finally, the monitoring is
redistributed periodically among the devices in the crowd. We intend to extend and
complement these measures to minimize the invasiveness of the monitoring and the
runtime overhead even more.

We plan to investigate further mechanisms to reach trade-off between the amount
of collected data and the reproducibility rate of MoTiF. We will analyze different
strategies to reduce the amount of data collected while still being able to extract
relevant knowledge to isolate bugs. For example, we could consider only logging
relevant context data depending on the types of the apps (instead of collecting all
context data always). As an illustration, in location-based apps, the GPS context will
be relevant. We will also analyze if we can spread different types of data collected in
different devices and the resulting aggregation can still report insightful knowledge.

146 Conclusions and Perspectives

9.2.1.4 Enforcing privacy-preserving mechanisms

Although the crowd can help developers to deal with current challenges of the mobile
app development process, it also exposes additional challenges, such as user privacy.
The proposed monitoring solution includes privacy-preserving mechanisms as part
of its design. First, the monitoring block applies anonymization [30] to ensure user
anonymity. In addition, our implementation assigns a pseudo identifier, which identifies
each app execution in a specific device. Such an identifier cannot reveal the original
device identifier (which could expose user identity).

To enforce privacy, we plan to explore and incorporate a decentralized dissemination
strategy [142]. Furthermore, App Store 2.0 needs to establish privacy policies and
reach trade-offs between developers, stores and users to fulfill the needs of all the
parties. We will set privacy policies which enable end-users using App Store 2.0 to
configure their privacy preferences. For example, granting access to specific types of
data during the data collection, and the phases of the process where they volunteer to
participate.

9.2.1.5 Dealing with input-induced crashes

Input-induce crashes are crashes which manifest when the user inputs text in an
app (mainly through TextFields or TextAreas) in an incorrect format, and the app
inefficiently processes inputs. For example, inserting text when numbers are expected,
leaving a field empty, inserting special characters, etc. In such situations, the current
implementation of Crowdseer generates a patch which consists of disabling the
TextField. Nevertheless, a more suitable prevention action would be to disable the
TextField only when the ‘conflictive’ input is inserted.

We propose to further explore this type of bug and to enhance the prevention strategies
applied by Crowdseer. To provide smarter prevention mechanisms, we will again
exploit the wisdom of the crowd to learn which is the minimum input sequence that
induces the crash. For this purpose, input minimization techniques will be explored [164].
At the same time, privacy mechanisms will be considered to deal with inputs. Finally,
different text processing techniques will be studied.

9.2 Perspectives 147

9.2.1.6 Recommending corrective actions for end-users

To prevent the emergence of crashes, the current strategy of Crowdseer deactivates
crash-triggering features. From the user study performed as part of the evaluation, we
discovered that end-users request explanations regarding the deactivation.

Hence, we plan to extend Crowdseer to providing explanations as part of the
patches. We will enhance the messages (which Crowdseer shows to users) to
include information about the reasons of the deactivations. For example, ‘The menu
SAVE has been disabled because the network is unavailable’. We also plan to study
mechanisms to incorporate recommendations about corrective actions that users can
take to avoid the issues when possible. For example, if a crash is induced by a network
unavailability, a message could notify that the network should be turn on to access a
specific functionality.

9.2.2 Long-term Perspectives

In this section, we present additional research directions we would like to tackle on the
long term.

9.2.2.1 Embedding security mechanisms

As part of the evaluations of Crowdseer, we performed a series of interviews with
experienced app developers. From this study, we found that security is an important
concern for developers to use our approach. For example, our system needs to ensure
that any malware app can attack our system and get control of apps in the wild.
As future work, we will study security mechanisms and embed security measures to
strengthen the approach.

9.2.2.2 Incorporating further automatic repair strategies

Current app stores only have access to the bytecode of apps. Nevertheless, the
App Store 2.0 could enable developers to upload additional artifacts such as apps’
source code and test suites. Then, allowing for more powerful repairing techniques.
We will explore and integrate existing automatic software repair approaches, such as

148 Conclusions and Perspectives

Nopol [158]. Nopol is an automatic software repair tool for Java which repairs condition
bugs (if condition, missing precondition) in Java code.

9.2.2.3 Dealing with other types of bugs

In Chapter 4, we discussed different types of bugs in mobile apps. The conceptual
foundations of the presented approach could be extended in order to tackle other types
of bugs, such as energy leaks and memory bloats.

9.2.2.4 Addressing other mobile platforms

The solution proposed in this thesis focuses on Android because currently such OS
accounts for 81.61% of all global smartphone sales [146]. However, we would like to
extend our solution for other mobile platforms. More specifically, to the iOS platform,
which is the second most used mobile platform worldwide.

9.2.2.5 Providing incentive mechanisms

Crowdsourced systems need mechanisms to foment the end-users willingness to con-
tribute to such system [159]. We will investigate incentive mechanisms to be included
in the App Store 2.0 to encourage users to participate in the debugging process.

9.2.2.6 Adoption in practice

To demonstrate the feasibility of the proposal, we have implemented a set of prototype
tools to support the different approaches which compose the App Store 2.0. We plan
to invest engineering efforts to convert the prototypes into mature tools. The final goal
is to transfer this research to industry. Finally, we will evaluate the approach with
larger crowds of devices and apps.

9.3 Final Conclusion 149

9.3 Final Conclusion

To close this manuscript, a quote stated by Helen Keller synthesizes the main idea of
this thesis:

“Alone we can do so little; together we can do so much.”
—Helen Keller

This quote remarks the value of collaborations to successfully achieve any goal. Ex-
ploiting the wisdom of the crowd from app stores brings new opportunities to improve
mobile apps. This thesis evidences the value of the diversity of the crowd to face
inherent challenges to the mobile ecosystem.

References

[adb] Android adb. http://developer.android.com/tools/help/adb.html.

[2] Android Developers. Activities. http://developer.android.com/guide/components/
activities.html.

[60f] Android Developers. Android Performance Patterns: Why 60 FPS? https://www.
youtube.com/watch?v=CaMTIgxCSqU.

[4] Android developers guide. Input events. http://developer.android.com/guide/
topics/ui/ui-events.html.

[dum] Android dumpsys. https://source.android.com/devices/tech/debug/dumpsys.
html.

[log] Android logcat. http://developer.android.com/tools/help/logcat.html.

[7] Android UI Overview. http://developer.android.com/guide/topics/ui/overview.
html.

[aop] AOPensource. http://aopensource.com.

[cra] Crashlytics. https://try.crashlytics.com/.

[cro] CrowdFlower. http://crowdflower.com.

[11] ExoPlayer. http://developer.android.com/guide/topics/media/exoplayer.html.

[12] ExoPlayer Adaptive video streaming on Android (YouTube) . https://www.
youtube.com/watch?v=6VjF638VObA.

[fdr] F-droid. https://f-droid.org.

[gen] Genymotion. https://www.genymotion.com.

[15] Google Code Archive. https://code.google.com/archive.

[16] Google Play installs reached 65 billion last year. https://techcrunch.com/2016/
05/18/google-play-installs-reached-65-billion-last-year/.

[k9-] K-9 issue report. https://github.com/k9mail/k-9/issues/643.

http://developer.android.com/tools/help/adb.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
https://www.youtube.com/watch?v=CaMTIgxCSqU
https://www.youtube.com/watch?v=CaMTIgxCSqU
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/ui-events.html
https://source.android.com/devices/tech/debug/dumpsys.html
https://source.android.com/devices/tech/debug/dumpsys.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/guide/topics/ui/overview.html
http://aopensource.com
https://try.crashlytics.com/
http://crowdflower.com
http://developer.android.com/guide/topics/media/exoplayer.html
https://www.youtube.com/watch?v=6VjF638VObA
https://www.youtube.com/watch?v=6VjF638VObA
https://f-droid.org
https://www.genymotion.com
https://code.google.com/archive
https://techcrunch.com/2016/05/18/google-play-installs-reached-65-billion-last-year/
https://techcrunch.com/2016/05/18/google-play-installs-reached-65-billion-last-year/
https://github.com/k9mail/k-9/issues/643

152 References

[k9] K9-Mail Android app. https://play.google.com/store/apps/details?id=com.fsck.
k9&hl=en.

[GPU] Profiling GPU Rendering Walkthrough. http://developer.android.com/tools/
performance/profile-gpu-rendering/index.html.

[rob] Robotium. https://code.google.com/p/robotium.

[spa] Space Blaster Android app. https://play.google.com/store/apps/details?id=com.
iraqdev.spece&hl=en.

[tes] Testdroid. http://testdroid.com. [Online; accessed Jan-2016].

[Tes] Testing Display Performance. http://developer.android.com/training/testing/
performance.html. [Online; accessed Mar-2016].

[Sys] Testing Display Performance. http://developer.android.com/tools/help/systrace.
html.

[lis] The Big List of App Stores for Developers. http://appindex.com/blog/
list-app-stores/http://appindex.com/blog/list-app-stores/. [Online; accessed June-
2016].

[ACRA] ACRA. http://www.acra.ch/.

[27] Adams, B., Bellomo, S., Bird, C., Marshall-Keim, T., Khomh, F., and Moir, K.
(2015). The practice and future of release engineering: A roundtable with three
release engineers. IEEE Software, 32(2):42–49.

[28] Adams, B. and McIntosh, S. (2016). Modern release engineering in a nutshell–why
researchers should care. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 5, pages 78–90. IEEE.

[29] Agarwal, S., Mahajan, R., Zheng, A., and Bahl, V. (2010). Diagnosing Mobile
Applications in the Wild. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, HotNets, pages 22:1–22:6. ACM.

[30] Aggarwal, C. C. and Philip, S. Y. (2008). A general survey of privacy-preserving
data mining models and algorithms. Springer.

[31] Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., and Memon, A. M.
(2015). Mobiguitar: Automated model-based testing of mobile apps. IEEE Software,
32(5):53–59.

[Amazon Mechanical Turk] Amazon Mechanical Turk. https://mturk.com.

[33] Anand, S., Naik, M., Harrold, M. J., and Yang, H. (2012). Automated concolic
testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 59. ACM.

[34] Android. Android Espresso. https://developer.android.com/training/testing/
ui-testing/espresso-testing.html.

https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en
https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en
http://developer.android.com/tools/performance/profile-gpu-rendering/index.html
http://developer.android.com/tools/performance/profile-gpu-rendering/index.html
https://code.google.com/p/robotium
https://play.google.com/store/apps/details?id=com.iraqdev.spece&hl=en
https://play.google.com/store/apps/details?id=com.iraqdev.spece&hl=en
http://testdroid.com
http://developer.android.com/training/testing/performance.html
http://developer.android.com/training/testing/performance.html
http://developer.android.com/tools/help/systrace.html
http://developer.android.com/tools/help/systrace.html
http://appindex.com/blog/list-app-stores/http://appindex.com/blog/list-app-stores/
http://appindex.com/blog/list-app-stores/http://appindex.com/blog/list-app-stores/
http://www.acra.ch/
https://mturk.com
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html

References 153

[35] Android. UI/Application Exerciser Monkey. https://developer.android.com/
studio/test/monkey.html.

[36] Android. UIAutomator. https://google.github.io/android-testing-support-library/
docs/uiautomator/.

[37] Android (2016). Requesting permissions at run time). https://developer.android.
com/training/permissions/requesting.html/.

[Android Observatory] Android Observatory. http://androidobservatory.org.

[Android-System Permissions] Android-System Permissions. http://developer.android.
com/guide/topics/security/permissions.html.

[apisense] apisense. APISENSE. http://apisense.io.

[41] Applause (2015). Analysis: In search of the best apps for
ios and android of 2015. https://arc.applause.com/2015/12/16/
applause-analytics-state-of-the-app-store-and-google-play-2015/.

[42] Artzi, S., Kim, S., and Ernst, M. (2008). ReCrash: Making Software Failures
Reproducible by Preserving Object States. In Proceedings of the 22nd European
Conference on Object-Oriented Programming, ECOOP, pages 542–565. Springer.

[aspectj] aspectj. AspectJ. https://eclipse.org/aspectj.

[44] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. (2012). Pscout: Analyzing
the android permission specification. In Proceedings of the 2012 ACM conference on
Computer and Communications Security, pages 217–228.

[45] Azim, M. T., Neamtiu, I., and Marvel, L. M. (2014). Towards Self-healing
Smartphone Software via Automated Patching. In 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE’14, pages 623–628.

[46] Azim, T. and Neamtiu, I. (2013). Targeted and Depth-first Exploration for
Systematic Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA, pages 641–660. ACM.

[47] Barrera, D., Kayacik, H. G., van Oorschot, P. C., and Somayaji, A. (2010). A
methodology for empirical analysis of permission-based security models and its
application to android. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 73–84, New York, NY, USA. ACM.

[48] Bartel, A., Klein, J., Le Traon, Y., and Monperrus, M. (2012a). Automatically
securing permission-based software by reducing the attack surface: An application
to android. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE’12, page 274–277, New York, NY, USA. ACM.

[49] Bartel, A., Klein, J., Monperrus, M., and Le Traon, Y. (2012b). Dexpler: Con-
verting Android Dalvik Bytecode to Jimple for Static Analysis with Soot. In ACM
Sigplan International Workshop on the State Of The Art in Java Program Analysis.

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://google.github.io/android-testing-support-library/docs/uiautomator/
https://google.github.io/android-testing-support-library/docs/uiautomator/
https://developer.android.com/training/permissions/requesting.html/
https://developer.android.com/training/permissions/requesting.html/
http://androidobservatory.org
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://apisense.io
https://arc.applause.com/2015/12/16/applause-analytics-state-of-the-app-store-and-google-play-2015/
https://arc.applause.com/2015/12/16/applause-analytics-state-of-the-app-store-and-google-play-2015/
https://eclipse.org/aspectj

154 References

[50] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022.

[Calabash] Calabash. Calabash. Automated acceptance testing for mobile apps. http:
//calaba.sh/.

[52] Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., and Pezze, M. (2013).
Automatic recovery from runtime failures. In International Conference on Software
Engineering, pages 782–791. IEEE Press.

[53] Chen, N. and Kim, S. (2014). STAR: Stack Trace based Automatic Crash
Reproduction via Symbolic Execution. IEEE Transactions on Software Engineering,
41:1–1.

[54] Chia, P. H., Yamamoto, Y., and Asokan, N. (2012). Is this app safe?: A large
scale study on application permissions and risk signals. In Proceedings of the 21st
International Conference on World Wide Web, WWW’12, pages 311–320, New York,
NY, USA. ACM.

[55] Choi, K. and Chang, B.-M. (2015). A lightweight approach to component-level
exception mechanism for robust android apps. Computer Languages, Systems &
Structures, 44:283–298.

[56] Choi, W., Necula, G., and Sen, K. (2013). Guided gui testing of android apps with
minimal restart and approximate learning. In ACM SIGPLAN Notices, volume 48,
pages 623–640. ACM.

[57] Choudhary, S. R., Gorla, A., and Orso, A. (2015). Automated Test Input Genera-
tion for Android: Are We There Yet? In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on, pages 429–440. IEEE.

[58] Clark, P. and Boswell, R. (1991). Rule induction with cn2: Some recent improve-
ments. In Machine learning—EWSL-91, pages 151–163. Springer.

[59] Crittercism (2014). Mobile experience benchmark.

[Cypher] Cypher. http://docs.neo4j.org/refcard/2.0.

[61] Damerau, F. J. (1964). A technique for computer detection and correction of
spelling errors. Commun. ACM, 7(3):171–176.

[62] Dang, Y., Wu, R., Zhang, H., Zhang, D., and Nobel, P. (2012). ReBucket: A
Method for Clustering Duplicate Crash Reports Based on Call Stack Similarity. In
Proceedings of the 34th International Conference on Software Engineering, ICSE’12,
pages 1084–1093, Piscataway, NJ, USA. IEEE Press.

[63] Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271.

[64] Doug Sillars (2015). High Performance Android Apps: Improve ratings with speed,
optimizations, and testing. O’Reilly Media, first edition.

http://calaba.sh/
http://calaba.sh/
http://docs.neo4j.org/refcard/2.0

References 155

[65] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. (2011). Android
permissions demystified. In Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages 627–638, New York, NY, USA. ACM.

[66] Flurry (2015). Mobile addicts multiply across the globe. http://flurrymobile.
tumblr.com/post/124152019870/mobile-addicts-multiply-across-the-globe.

[67] Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou, Y., and Flora, P.
(2010). Mining performance regression testing repositories for automated performance
analysis. In Proceedings of the 10th International Conference on Quality Software,
QSIC 2010, Zhangjiajie, China, 14-15 July 2010, pages 32–41.

[68] Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou, Y., and Flora, P. (2015).
An industrial case study on the automated detection of performance regressions
in heterogeneous environments. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2, pages
159–168.

[69] Frank, M., Dong, B., Felt, A., and Song, D. (2012). Mining permission request
patterns from android and facebook applications. In Proceedings of the 12th IEEE
International Conference on Data Mining, ICDM’12, pages 870–875.

[70] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N. (2013). Why people
hate your app: Making sense of user feedback in a mobile app store. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’13, New York, NY, USA. ACM.

[71] Gaudin, B., Vassev, E. I., Nixon, P., and Hinchey, M. (2011). A control theory
based approach for self-healing of un-handled runtime exceptions. In 8th ACM
international conference on Autonomic computing, pages 217–220. ACM.

[getevent] getevent. Getevent tool. https://source.android.com/devices/input/getevent.
html.

[73] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. (2013). Reran: Timing-and
touch-sensitive record and replay for android. In Proceedings of the 35th International
Conference on Software Engineering (ICSE), pages 72–81. IEEE.

[74] Gómez, M. (2015). Debugging of Mobile Apps in the Wild Guided by the Wisdom
of the Crowd. In Dig, D. and Dubinsky, Y., editors, 2nd ACM International
Conference on Mobile Software Engineering and Systems. ACM Student Research
Competition., Firenze, Italy. IEEE.

[75] Gómez, M., Martinez, M., Monperrus, M., and Rouvoy, R. (2015a). When App
Stores Listen to the Crowd to Fight Bugs in the Wild. In 37th International
Conference on Software Engineering (ICSE), track on New Ideas and Emerging
Results, Firenze, Italy. IEEE.

[76] Gómez, M., Rouvoy, R., Adams, B., and Seinturier, L. (2016a). Mining Test
Repositories for Automatic Detection of UI Performance Regressions in Android
Apps. In Robbes, R. and Bird, C., editors, 13th International Conference on Mining
Software Repositories (MSR’16), Austin, Texas, United States. IEEE.

http://flurrymobile.tumblr.com/post/124152019870/mobile-addicts-multiply-across-the-globe
http://flurrymobile.tumblr.com/post/124152019870/mobile-addicts-multiply-across-the-globe
https://source.android.com/devices/input/getevent.html
https://source.android.com/devices/input/getevent.html

156 References

[77] Gómez, M., Rouvoy, R., Adams, B., and Seinturier, L. (2016b). Reproducing
Context-sensitive Crashes of Mobile Apps using Crowdsourced Monitoring. In
Flynn, L. and Inverardi, P., editors, IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft’16), Austin, Texas, United States.
IEEE.

[78] Gómez, M., Rouvoy, R., Monperrus, M., and Seinturier, L. (2015b). A Recom-
mender System of Buggy App Checkers for App Store Moderators. In Dig, D. and
Dubinsky, Y., editors, Proceedings of the 2nd ACM International Conference on
Mobile Software Engineering and Systems, Firenze, Italy. IEEE.

[Google] Google. Google Cloud Test Lab. https://firebase.google.com/docs/test-lab/.

[googleanalytics] googleanalytics. Google Analytics. http://www.google.com/analytics.

[81] Gorla, A., Tavecchia, I., Gross, F., and Zeller, A. (2014). Checking app behav-
ior against app descriptions. In ICSE’14: Proceedings of the 36th International
Conference on Software Engineering, Hyderabad (India), 31 May - 7 June.

[82] Ha, E. and Wagner, D. (2013). Do android users write about electric sheep?
examining consumer reviews in google play. In Proceedings of the IEEE Consumer
Communications and Networking Conference, CCNC’13.

[83] Haderer, N., Rouvoy, R., and Seinturier, L. (2013). Dynamic deployment of sensing
experiments in the wild using smartphones. In Proceedings of the International
Conference on Distributed Applications and Interoperable Systems, DAIS’13, pages
43–56.

[84] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA data mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18.

[85] Halpern, M., Zhu, Y., Peri, R., and Reddi, V. J. (2015). Mosaic: cross-platform
user-interaction record and replay for the fragmented android ecosystem. In Per-
formance Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium on, pages 215–224. IEEE.

[86] Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R. (2014). Puma:
programmable ui-automation for large-scale dynamic analysis of mobile apps. In Pro-
ceedings of the 12th annual international conference on Mobile systems, applications,
and services, pages 204–217. ACM.

[87] Herbold, S., Grabowski, J., Waack, S., and Bünting, U. (2011). Improved bug re-
porting and reproduction through non-intrusive gui usage monitoring and automated
replaying. In Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on, pages 232–241. IEEE.

[88] Hewlett Packard (2015). Failing to Meet mobile App User Expectations: A Mobile
User Survey. Technical report.

https://firebase.google.com/docs/test-lab/
http://www.google.com/analytics

References 157

[89] Hu, C. and Neamtiu, I. (2011). Automating GUI Testing for Android Applications.
In Proceedings of the 6th International Workshop on Automation of Software Test,
AST, pages 77–83. ACM.

[90] Hu, G., Yuan, X., Tang, Y., and Yang, J. (2014). Efficiently, effectively detecting
mobile app bugs with appdoctor. In Proceedings of the Ninth European Conference
on Computer Systems, page 18. ACM.

[91] Hu, Y., Azim, T., and Neamtiu, I. (2015). Versatile yet lightweight record-and-
replay for android. In ACM SIGPLAN Notices, volume 50, pages 349–366. ACM.

[92] Humble, J. and Farley, D. (2010). Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st
edition.

[93] Iacob, C. and Harrison, R. (2013). Retrieving and analyzing mobile apps feature
requests from online reviews. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR’13, pages 41–44, Piscataway, NJ, USA. IEEE
Press.

[Java] Java. Javatm platform debugger architecture. http://docs.oracle.com/javase/1.
5.0/docs/guide/jpda/.

[95] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J. S., and
Millstein, T. (2012). Dr. android and mr. hide: Fine-grained permissions in android
applications. In Proceedings of the Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, SPSM ’12, pages 3–14, New York, NY, USA.
ACM.

[96] Jin, W. and Orso, A. (2012). BugRedux: Reproducing Field Failures for In-
house Debugging. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 474–484, Piscataway, NJ, USA. IEEE Press.

[97] Kechagia, M., Mitropoulos, D., and Spinellis, D. (2014). Charting the API
minefield using software telemetry data. Empirical Software Engineering, pages
1–46.

[98] Kevoree (2016). Kevoree modeling framework). https://http://kevoree.org/.

[99] Khalid, H., Shihab, E., Nagappan, M., and Hassan, A. (2015). What do mobile
app users complain about? Software, IEEE, 32(3):70–77.

[100] Kim, S., Zimmermann, T., and Nagappan, N. (2011). Crash graphs: An aggre-
gated view of multiple crashes to improve crash triage. In Proceedings of the 41st
International Conference on Dependable Systems & Networks (DSN), pages 486–493.
IEEE.

[101] Kittur, A., Chi, E. H., and Suh, B. (2008). Crowdsourcing user studies with
mechanical turk. In SIGCHI conference on human factors in computing systems,
pages 453–456. ACM.

http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
https://http://kevoree.org/

158 References

[102] Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012). GenProg:
A generic method for automatic software repair. Software Engineering, IEEE
Transactions on, 38(1):54–72.

[103] Liang, C.-J. M., Lane, N. D., Brouwers, N., Zhang, L., Karlsson, B. F., Liu,
H., Liu, Y., Tang, J., Shan, X., and Chandra (2014). Caiipa: Automated Large-
scale Mobile App Testing through Contextual Fuzzing. In Proceedings of the 20th
International Conference on Mobile Computing and Networking, MobiCom. ACM.

[104] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R.,
and Poshyvanyk, D. (2013). API change and fault proneness: A threat to the success
of android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, page 477–487, New York, NY, USA. ACM.

[105] Linares-Vásquez, M., White, M., Bernal-Cárdenas, C., and Moran, K Poshyvanyk,
D. (2015). Mining android app usages for generating actionable gui-based execution
scenarios. In 12th IEEE Working Conference on Mining Software Repositories
(MSR’15).

[106] Liu, Y., Xu, C., and Cheung, S.-C. (2014a). Characterizing and detecting perfor-
mance bugs for smartphone applications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY,
USA. ACM.

[107] Liu, Y., Xu, C., and Cheung, S.-C. (2014b). Characterizing and Detecting Perfor-
mance Bugs for Smartphone Applications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY,
USA. ACM.

[108] Maalej, W., Kurtanovic, Z., Nabil, H., and Stanik, C. (2016). On the automatic
classification of app reviews. Requir. Eng., 21(3):311–331.

[109] Maalej, W. and Nabil, H. (2015). Bug report, feature request, or simply praise?
on automatically classifying app reviews. In 23rd IEEE International Requirements
Engineering Conference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015, pages
116–125.

[110] Maalej, W., Tiarks, R., Roehm, T., and Koschke, R. (2014). On the comprehen-
sion of program comprehension. ACM Transactions on Software Engineering and
Methodology (TOSEM), 23(4):31.

[111] Mabroukeh, N. R. and Ezeife, C. I. (2010). A taxonomy of sequential pattern
mining algorithms. ACM Computing Surveys (CSUR), 43(1):3.

[112] Machiry, A., Tahiliani, R., and Naik, M. (2013). Dynodroid: An Input Generation
System for Android Apps. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, pages 224–234, New York, NY, USA. ACM.

[113] Mahmood, R., Mirzaei, N., and Malek, S. (2014). Evodroid: Segmented evolution-
ary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 599–609. ACM.

References 159

[114] Mao, K., Harman, M., and Jia, Y. (2016). Sapienz: multi-objective automated
testing for android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, pages 94–105. ACM.

[115] Martin Monperrus (2015). Automatic Software Repair: a Bibliography. Technical
report.

[116] McCallum, A. K. (2002). MALLET: a machine learning for language toolkit.
http://mallet.cs.umass.edu.

[117] McIlroy, S., Ali, N., and Hassan, A. E. (2016). Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store. Empirical Software
Engineering, 21(3):1346–1370.

[118] Moawad, A., Hartmann, T., Fouquet, F., Nain, G., Klein, J., and Le Traon, Y.
(2015). Beyond discrete modeling: a continuous and efficient model for iot. In Model
Driven Engineering Languages and Systems (MODELS), 2015 ACM/IEEE 18th
International Conference on, pages 90–99. IEEE.

[119] Mojica, I. J., Nagappan, M., Adams, B., Berger, T., Dienst, S., and Hassan,
A. E. (2015). An examination of the current rating system used in mobile app stores.
IEEE Software.

[Neo4J] Neo4J. http://www.neo4j.org.

[121] Nguyen, T. A., Csallner, C., and Tillmann, N. (2013). Gropg: A graphical on-
phone debugger. In Software Engineering (ICSE), 2013 35th International Conference
on, pages 1189–1192. IEEE.

[122] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang
(2014). AR-Miner: mining informative reviews for developers from mobile app
marketplace. In Proceedings of the 36th International Conference on Software
Engineering, ICSE’14.

[123] Norris, J. R. (1998). Markov chains. Cambridge university press.

[124] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and Tarkoma, S. (2013).
Carat: Collaborative energy diagnosis for mobile devices. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, pages
10:1–10:14, New York, NY, USA. ACM.

[125] Ongkosit, T. and Takada, S. (2014). Responsiveness analysis tool for android ap-
plication. In Proceedings of the 2Nd International Workshop on Software Development
Lifecycle for Mobile, DeMobile 2014, pages 1–4.

[126] OpenSignal (2015). Android fragmentation visualized. http://opensignal.com/
reports/2015/08/android-fragmentation/.

[127] Pagano, D., Juan, M. A., Bagnato, A., Roehm, T., Bruegge, B., and Maalej,
W. (2012). FastFix: Monitoring control for remote software maintenance. In 34th
International Conference on Software Engineering, pages 1437–1438. IEEE Press.

http://mallet.cs.umass.edu
http://www.neo4j.org
http://opensignal.com/reports/2015/08/android-fragmentation/
http://opensignal.com/reports/2015/08/android-fragmentation/

160 References

[128] Pei, Y., Furia, C. A., Nordio, M., Wei, Y., Meyer, B., and Zeller, A. (2014). Au-
tomated fixing of programs with contracts. Ieee transactions on software engineering,
40(5):427–449.

[129] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M.,
Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., et al. (2009). Automatically
patching errors in deployed software. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 87–102. ACM.

[130] Quinlan, J. R. (1993). C4. 5: programs for machine learning, volume 1. Morgan
kaufmann.

[131] Radatz, J. (1990). Ieee standard glossary of software engineering terminology.
IEEE-SA Standards Board.

[132] Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., and
Shayandeh, S. (2012). AppInsight: Mobile App Performance Monitoring in the Wild.
In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, pages 107–120.

[133] Röβler, J., Fraser, G., Zeller, A., and Orso, A. (2012). Isolating failure causes
through test case generation. In Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA, pages 309–319. ACM.

[134] Robinson, I., Webber, J., and Eifrem, E. (2013). Graph Databases. O’Reilly.

[Robotium API] Robotium API. http://robotium.googlecode.com/svn/doc.

[136] Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C., and Maalej, W. (2013).
Monitoring user interactions for supporting failure reproduction. In 21st International
IEEE Conference on Program Comprehension (ICPC), pages 73–82. IEEE.

[137] Roehm, T., Nosovic, S., and Bruegge, B. (2015). Automated extraction of failure
reproduction steps from user interaction traces. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
121–130. IEEE.

[138] Rosnow, R. L. (2008). Beginning behavioral research: a conceptual primer.
{Pearson/Prentice} Hall, Upper Saddle River, {N.J}, 6th ed edition.

[139] Schroter, A., Bettenburg, N., and Premraj, R. (2010). Do stack traces help
developers fix bugs? In Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, pages 118–121. IEEE.

[selendroid] selendroid. Selendroid. http://selendroid.io/. [Online; accessed Jan-2016].

[141] Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., and Keromytis, A. D.
(2009). Assure: automatic software self-healing using rescue points. ACM SIGARCH
Computer Architecture News, 37(1):37–48.

[142] Sommerard, R. and Rouvoy, R. (2016). Towards privacy-preserving data dissem-
ination in crowd-sensing middleware platform. In 11èmes journées francophones
Mobilité et Ubiquité (UbiMob’16), page 6.

http://robotium.googlecode.com/svn/doc
http://selendroid.io/

References 161

[splunk] splunk. SPLUNK. https://mint.splunk.com.

[spmf] spmf. SPMF: An open-source data mining library. http://www.
philippe-fournier-viger.com/spmf/index.php. [Online; accessed Jan-2016].

[145] Statista (2015). Worldwide mobile app revenues in 2015, 2015 and
2020 (in billion u.s. dollars). https://www.statista.com/statistics/269025/
worldwide-mobile-app-revenue-forecast/.

[146] Statista (2016). Global market share held by smartphone operating
systems from 2009 to 2015). https://www.statista.com/statistics/263453/
global-market-share-held-by-smartphone-operating-systems/.

[147] Statista (2016). Number of apps available in Google Play Store
as of February 2016. http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store. [Online; accessed
June-2016].

[148] Strauss, A. and Corbin, J. (1994). Grounded theory methodology: An overview.
In Denzin, N. K. and Lincoln, Y. S., editors, Handbook of Qualitative Research, pages
273–285+. Sage Publications, Thousand Oaks, CA.

[149] Vidas, T., Christin, N., and Cranor, L. (2011). Curbing android permission
creep. In Proceedings of the Web 2.0 Security and Privacy 2011 workshop, W2SP’11,
Oakland, CA.

[150] Wang, J. and Han, J. (2004). BIDE: Efficient mining of frequent closed sequences.
In Data Engineering, 2004. Proceedings. 20th International Conference on, pages
79–90. IEEE.

[151] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M. (2012). Permission evolution
in the android ecosystem. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 31–40, New York, NY, USA. ACM.

[152] White, M., Linares-Vásquez, M., Johnson, P., Bernal-Cárdenas, C., and Poshy-
vanyk, D. (2015). Generating Reproducible and Replayable Bug Reports from
Android Application Crashes. In 23rd IEEE International Conference on Program
Comprehension (ICPC).

[153] Whittaker, J. A. (2000). What is software testing? and why is it so hard? IEEE
software, 17(1):70–79.

[154] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman
(2016). A Survey of App Store Analysis for Software Engineering.

[xamarin] xamarin. Xamarin Test Cloud. http://xamarin.com/test-cloud. [Online;
accessed Jan-2016].

[156] Xamarin (2016). Understanding android api levels). https://developer.xamarin.
com/guides/android/application_fundamentals/understanding_android_api_
levels/.

https://mint.splunk.com
http://www.philippe-fournier-viger.com/spmf/index.php
http://www.philippe-fournier-viger.com/spmf/index.php
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
http://xamarin.com/test-cloud
https://developer.xamarin.com/guides/android/application_fundamentals/understanding_android_api_levels/
https://developer.xamarin.com/guides/android/application_fundamentals/understanding_android_api_levels/
https://developer.xamarin.com/guides/android/application_fundamentals/understanding_android_api_levels/

162 References

[157] Xiao-Feng Li (2012). Quantify and Optimize the User Interactions
with Android* Devices. https://software.intel.com/en-us/android/articles/
quantify-and-optimize-the-user-interactions-with-android-devices.

[158] Xuan, J., Martinez, M., Demarco, F., Clément, M., Lamelas, S., Durieux, T.,
Le Berre, D., and Monperrus, M. (2016). Nopol: Automatic repair of conditional
statement bugs in java programs. IEEE Transactions on Software Engineering.

[159] Yang, D., Xue, G., Fang, X., and Tang, J. (2016). Incentive mechanisms for
crowdsensing: Crowdsourcing with smartphones. IEEE/ACM Transactions on
Networking, 24(3):1732–1744.

[160] Yang, S., Yan, D., and Rountev, A. (2013). Testing for poor responsiveness in
android applications. In Engineering of Mobile-Enabled Systems (MOBS), 2013 1st
International Workshop on the, pages 1–6. IEEE.

[161] Yin, R. K. (2013). Case study research: Design and methods. Sage publications.

[162] Zaeem, R. N., Prasad, M. R., and Khurshid, S. (2014). Automated Generation
of Oracles for Testing User-Interaction Features of Mobile Apps. In 2014 IEEE
International Conference on Software Testing, Verification, and Validation, ICST’14,
pages 183–192, Washington, DC, USA. IEEE.

[163] Zeller, A. (2005). Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[164] Zeller, A. and Hildebrandt, R. (2002). Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200.

[165] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li (2016). MobiPlay: A Remote
Execution Based Record-and-Replay Tool for Mobile Applications. Austin, Texas.

[166] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., and Weiss,
C. (2010). What makes a good bug report? IEEE Transactions on Software
Engineering, 36(5):618–643.

https://software.intel.com/en-us/android/articles/quantify-and-optimize-the-user-interactions-with-android-devices
https://software.intel.com/en-us/android/articles/quantify-and-optimize-the-user-interactions-with-android-devices

Appendix A

Users’ Opinion and Preferences
Survey

This appendix presents the survey design to evaluate the Crowdseer approach from
the users’ perspective.

To evaluate Crowdseer from the users perspective, we conducted a survey with
closed questions. We ran the survey under two settings:

• lab setting with in situ participants,

• crowdsourcing setting with crowdsourced participants.

Lab Setting

In the lab setting, 33 in situ participants performed a case study based evaluation.
Figure A.1 shows the instructions of the case study provided to users. Figure A.2
provides the questionnaire that participants had to complete.

Crowdsourcing Setting

In the crowdsourcing setting, we recruited 600 participants using the crowdsourcing
platform CrowdFlower. We published the survey (which in-situ participants performed)
as a job in CrowdFlower. Fig A.3 shows a screenshot of the CrowdFlower job.

164 Users’ Opinion and Preferences Survey

Fig. A.1 Description of the usage scenario

The CrowdFlower job contains two steps:

• Step 1 : Participants have to watch the following video:
https://www.youtube.com/watch?v=za2dhlRqhwI

• Step 2 : After watching the video, participants have to complete the same
questionnaire that in situ participants completed (cf. Fig. A.2).

Out of 600 participants we kept 495 answers which passed our quality filters (i.e.,
validation questions, time threshold, click check). The crowdsourced participants
belong to 75 different countries.

Figure A.4 provides demographic information of the crowdsourced participants: country,
age, IT background and smartphone usage.

https://www.youtube.com/watch?v=za2dhlRqhwI

165

Fig. A.2 Set of Questions to Evaluate

166 Users’ Opinion and Preferences Survey

Fig. A.3 Crowdflower job

167

(a) Country

(b) Smartphone usage

(c) Age

(d) IT background

Fig. A.4 Demographic information of the crowdsourced participants (N=495)

Appendix B

App Developer Interview

This appendix presents the interview we designed to evaluate the CrowdSeer approach
from the developers’ perspective.

Interview Design

This interview aims to qualitatively evaluate CrowdSeer from the developers’ perspec-
tive. The interview is divided in 4 parts. In the following, we illustrate the questions
which composed the interview.

PART A. Brackground and Project Context

• For how long have you been developing mobile apps?

• Which mobile platform(s) are you targeting?

• Which is your role in the company?

• Which types of apps have you developed? How many users do your apps have?

PART B. Current Crash Detection and Fixing Practice

• Process. How do you currently detect when users experience crashes with your
app?

• How do you proceed when users report crashes with your app?

• Reporting Tools. Do you use any crash reporting system? If yes, which one(s)?
How do you use it? If not, why not?

170 App Developer Interview

• Crash types. Which kind(s) of crashes do you usually face with your apps? Do
you detect them before or after release?

• Do you follow different strategies depending on the types of crashes? Notify
users, new release, downgrade the version...

• Do you publish temporary patches to fix crashes before you provide the final fix
of the app? If yes, why?

• Issues. Which step(s) (e.g., detection, reproduction, fixing) are more difficult to
complete when facing a crash?

PART C. Feedback to Crowdseer

• General impression. How do you like the proposed solution (i.e., a library
embedded in your app)? Why?

• How would you compare our approach with current crash reporting systems?
Would you prefer a different solution? How?

• Interact with CrowdSeer. How CrowdSeed should proceed when a crash is
detected and the "preventive patch" (feature to deactivate) is synthesized?

• How would you like to be notified when CrowdSeer synthesizes a patch? Adding
a new issue in your Issue Tracker...

• Workflow integration. Integration with your development tools, as a separated
tool... For example, Eclipse, Issue Tracker...

PART D. Overal satisfaction

• I find the automatic deactivation functionality really useful to reduce my app’s
crashes (1-5)

• I would like to include the automatic deactivation functionality to prevent crashes
in all my developed apps (1-5)

• I find the CrowdSeer mobile library (1-5)

• I find the CrowdSeer web interface (1-5)

• Overall, I am very satisfy with this system (1-5)

• Add any additinal feedback (1-5)

	Table of contents
	List of figures
	List of tables
	I Preface
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Goals
	1.4 Proposed Solution
	1.5 Publications
	1.5.1 Publication Details
	1.5.2 Awards

	1.6 International Research Visits
	1.7 Thesis Outline

	2 State of the Art
	2.1 App Store Analysis
	2.1.1 Review Analysis
	2.1.2 Android Permission Analysis

	2.2 Debugging
	2.2.1 Crash Reporting Systems
	2.2.2 Field Failure Reproduction
	2.2.3 Automated Patch Generation

	2.3 Crowd Monitoring
	2.3.1 Monitoring User Interactions to Support Bug Reproduction

	2.4 Mobile App Testing
	2.4.1 Automated UI Testing Tools
	2.4.2 Record and Replay
	2.4.3 Performance Testing

	2.5 Conclusion

	3 The Vision of as
	3.1 as Overview
	3.2 Main Building Blocks
	3.2.1 Crowd Monitoring Block
	3.2.2 Crowd Leveraging Block

	3.3 Conclusions

	II Contributions
	4 Monitoring the Crowd
	4.1 Types of Bugs in Mobile Apps
	4.1.1 App Crashes
	4.1.2 UI Jank

	4.2 What Information to Monitor from the Crowd?
	4.2.1 Monitoring User Feedback
	4.2.2 Monitoring App Context
	4.2.3 Monitoring App Executions

	4.3 Conclusions

	5 Leveraging the Crowd in vitro
	5.1 Reporting Risky Apps a priori
	5.1.1 Empirical Study of Google Play Store
	5.1.2 Analyzing App Permissions
	5.1.3 Generating Risk Reports
	5.1.4 Implementation Details

	5.2 Reporting on Performance Degradations
	5.2.1 Aggregating Performance Logs
	5.2.2 Identifying Performance Deviations
	5.2.3 Generating Performance Reports
	5.2.4 Implementation Details

	5.3 Conclusions

	6 Leveraging the Crowd in Vivo
	6.1 Reproducing Crash Scenarios a posteriori
	6.1.1 Aggregating Crowdsourced Crash Logs
	6.1.2 Identifying Crash Patterns
	6.1.3 Generating Reproducible Scenarios
	6.1.4 Implementation Details

	6.2 Patching Defective Apps in the Wild
	6.2.1 Patch strategy 1: Muting unhandled exceptions
	6.2.2 Patch strategy 2: Deactivating UI features
	6.2.3 Implementation Details

	6.3 Conclusions

	III Empirical Evaluations
	7 Evaluation of in-vitro Approaches
	7.1 Evaluation of Crowdsourced Checkers
	7.1.1 Empirical Study Design
	7.1.2 Dataset
	7.1.3 Empirical Study Results
	7.1.4 Threats to Validity

	7.2 Evaluation of DUNE
	7.2.1 Empirical Study Design
	7.2.2 Dataset
	7.2.3 Empirical Study Results
	7.2.4 Threats to Validity

	7.3 Conclusion

	8 Evaluation of in-vivo Approaches
	8.1 Evaluation of MoTiF
	8.1.1 Empirical Study Design
	8.1.2 Dataset
	8.1.3 Empirical Study Results
	8.1.4 Threats to Validity

	8.2 Evaluation of CrowdSeer
	8.2.1 Empirical Study Design
	8.2.2 Empirical Study Results
	8.2.3 Threats to Validity

	8.3 Conclusion

	IV Final Remarks
	9 Conclusions and Perspectives
	9.1 Contributions
	9.2 Perspectives
	9.2.1 Short-term Perspectives
	9.2.2 Long-term Perspectives

	9.3 Final Conclusion

	References
	Appendix A Users' Opinion and Preferences Survey
	Appendix B App Developer Interview

