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Résumé: : L’hétérogénéité et l’irrégularité croissante des déploiements des réseaux

sans fil de nouvelles générations soulèvent des défis importants dans l’évaluation de

performances de ces réseaux. Les modèles classiques s’appuyant sur des modèles hexag-

onaux pour décrire les emplacements géographiques des nœuds de transmission sont

difficilement adaptables à ces réseaux. Dans ce contexte, il a été proposé un nouveau

paradigme de modélisation des réseaux sans fil qui s’appuie sur les processus ponctuels

de Poisson (PPP), et de manière générale sur la géométrie stochastique. L’analyse, au

travers de ces outils mathématiques, présente une complexité indépendante de la taille

du réseau, et permet d’estimer avec précision des quantités pratiques liées aux per-

formances des réseaux cellulaires. Cette thèse a porté sur la faisabilité mathématique

de l’approche fondée sur les PPP en proposant de nouvelles méthodes mathématiques

d’approximations justes incorporant des modèles de propagation du canal radio.

Dans un premier temps, un nouveau cadre mathématique, considéré comme une ap-

proche Equivalent–in–Distribution (EiD), a été proposée pour le calcul exact de la prob-

abilité d’erreur dans les réseaux cellulaires. L’approche proposée, s’appuyant donc sur

la géométrie aléatoire et des modèles spatiaux, montre une complexité faible en terme

d’évaluation numérique et est applicable à un grand nombre de configurations MIMO

pour lesquelles nous considérons différentes techniques de modulation et techniques de

récupération du signal.

Dans un deuxième temps, nous étudions les performances des réseaux cellulaires en

présence de relais, où trois processus ponctuels de Poisson modélisent respectivement

les nœuds relais, les stations de base, et les terminaux mobiles. Pour ce modèle, nous

avons considéré des critères souples d’association. Le cadre mathématique proposé et

les résultats associés ont montré que les performances dépendent fortement des ex-

posants des fonctions d’atténuation sur les deux premiers sauts sans fil. Nous montrons

aussi qu’une mauvaise configuration du réseau peut amener à des gains négligeables de

l’utilisation de cette technique.

Enfin, nous considérons la modélisation des réseaux cellulaires au travers d’un PPP et

d’un modèle unifié d’atténuation de signal généralisée qui prend en compte deux types

de liaisons physiques : line–of–sight (LOS) et non–line–of–sight (NLOS). Un modèle



ii

de complexité réduite décrivant les propriétés de la liaison radio a aussi été proposée et

permet de prendre en compte dans nos calculs un grand nombre de modèle radio proposés

dans la littérature. Les résultats montrent, entre autres, qu’une densité optimale pour le

déploiement des BS existe lorsque les liens LOS/NLOS sont classés en fonction de leur

charge. Nous comparons nos résultats, s’appuyant donc sur un PPP pour modéliser la

position des stations de bases et notre modèle de canal radio, avec des simulations de

Monte Carlo décrivant des déploiements réels de stations de bases et un modèle de type

blocages de construction empiriques. Une bonne correspondance est observée.



Titre: New Results on Stochastic Geometry Modeling of Cellular Networks: Modeling,

Analysis and Experimental Validation

Key words: cellular networks, relays, stochastic geometry

Abstract: The increasing heterogeneity and irregular deployment of the emerging wire-

less networks give enormous challenges to the conventional hexagonal model for abstract-

ing the geographical locations of wireless transmission nodes. Against this backdrop, a

new network paradigm by modeling the wireless nodes as a Poisson Point Process (PPP),

leveraging on the mathematical tools of stochastic geometry for tractable mathematical

analysis, has been proposed with the capability of fairly accurately estimating the per-

formance of practical cellular networks. This dissertation investigated the mathematical

tractability of the PPP-based approach by proposing new mathematical methodologies,

fair approximations incorporating practical channel propagation models.

First, a new mathematical framework, which is referred to as an Equivalent–in–Distribution

(EiD)–based approach, has been proposed for computing exact error probability of cellu-

lar networks based on random spatial networks. The proposed approach is easy to com-

pute and is shown to be applicable to a bunch of multi–input–multi–output (MIMO)

setups where the modulation techniques and signal recovery techniques are explicitly

considered.

Second, the performance of relay–aided cooperative cellular networks, where the relay

nodes, the base stations, and the mobile terminals are modeled according to three in-

dependent PPPs, has been analyzed by assuming flexible cell association criteria. It is

shown from the mathematical framework that the performance highly depends on the

path-loss exponents of one-hop and two-hop links, and the relays provide negligible gains

on the performance if the system is not adequately designed.

Third, the PPP modeling of cellular networks with unified signal attenuation model

is generalized by taking into account the effect of line–of–sight (LOS) and non–line–

of–sight (NLOS) channel propagation. A tractable yet accurate link state model has

been proposed to estimate other models available in the literature. It is shown that an

optimal density for the base stations (BSs) deployment exists when the LOS/NLOS links

are classified in saturate load cellular networks. In addition, the Monte Carlo simulation

results of the real BSs deployments with empirical building blockages are compared with

those with PPP distributed BSs with the proposed link state approximation at the end

of this dissertation as supplementary material. In general, a good matching is observed.
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Chapter 1

Introduction

1.1 Background

Accurate yet tractable modeling of cellular networks and its performance evaluation

have been a longstanding open research problem in the communication society. The

most frequently considered base station (BS) geometry model is the hexagonal model

[6], where the BSs are placed ideally in a regular infinite hexagonal lattice. This model,

however, is considered to be too idealized even for modeling a carefully planed macro

cellular system since the real sites are usually deviated from its theoretical positions due

to the unavailability of candidate sites in their theoretical positions in reality. Moreover,

due to the increasing heterogeneity and densification of the emerging cellular networks,

where the small cell BSs are randomly overlaid within the macro cell, the accuracy

of the traditional hexagonal grid modeling, which has been used for decades, is ques-

tionable. Another limitation of the conventional hexagonal model is its mathematical

intractability. Explicit derivation of the performance of hexagonal wireless networks

by taking into account the effect of other-cell interference is intractable, thus, expen-

sive and time consuming system level simulation is needed for performance evaluation.

To this end, the bi-dimensional point process abstraction modeling [7], which leverages

tools from stochastic geometry for tractable characterization and performance analysis,

is increasingly attracting the attention of the research community.

Among all the point processes available in the literature, the homogeneous Poisson Point

Process (PPP) is the most popular one thanks to its tractability in the performance

1
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(a) (b) (c)

Figure 1.1: BS deployemts and the voronoi cell, the triangle denotes the locations
of BSs, the solid line is the voronoi boundary: (a) Actual BS locations in London, (b)

hexagonal model, (c) PPP distributed BSs.

analysis and system optimization. The definition of the bi-dimensional PPP in the

Euclidean plane R2 is as follows [8, Ch. 2]:

Definition 1.1. The point process Φ ∈ R2 is a PPP with intensity λ if 1) for every

bounded closed set B ⊂ R2, the counting measure of the point process on B, Φ (B),

follows a Poisson distribution with mean λ [B], where [·] is the Lebesgue measure in two

dimensions and λ is the expected number of points per unit area, and 2) Φ (B1), Φ (B2),

· · · , Φ (Bk) are independent if B1, B2, · · · , Bk are disjoint.

An illustration of the PPP distributed BSs, the hexagonal modeled BSs and the real

BS locations in an urban area in London, UK is available in 1.1, where the database of

the BSs locations is available from [9]. From the definition, the PPP-based abstraction

model indicates that the wireless nodes are distributed independently of each other

and no repulsion between nodes are considered. Obviously, it is an idealized model

that neglects the spatial correlation among the BSs. Its accuracy in modeling realistic

cellular networks in urban area is, however, surprisingly good compared to the hexagonal

lattice. More specifically, the authors in [10] compare the the PPP model with the grid

model and the real BS locations in a Long–Term Evolution (LTE) cellular network. They

have shown that the PPP approach provides a lower bound of the coverage probability of

realistic site deployment, whereas the grid counterpart provides an upper bound. In [11],

similar comparisons have been done by considering the real BS deployments in urban

areas in several metropolitans where the BS locations are from the public database. They

have concluded that the PPP model is more accurate than the hexagonal grid model

for modeling BSs in urban areas. Furthermore, the authors in [12] show that precise
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success probabilities of all motion-invariant point process can be obtained by shifting the

success probability curve of the PPP with the same density, which further stimulate the

motivation of studying the PPP distributed wireless networks. Inspired by its accuracy

and flexibility, the performance analysis, system design and optimization by using the

PPP-based approach have been one of the major interests in the communications society,

e.g., in [10, 13–27], and the references therein.

In my doctoral research, emphasis has been put on the mathematical tractability of

the PPP abstraction model regarding i) the end-to-end performance analysis of emerg-

ing cellular networks by taking into account the impact of network interference, ii) the

design of interference-aware transceivers that exploit the statistical knowledge of net-

work interference for performance improvement, iii) modeling, analyzing and optimiza-

tion of relay-aided cooperative cellular networks where the relay nodes are randomly

distributed, iv) system-level analysis and optimization of cellular networks with simul-

taneous wireless information and power transfer, and v) the performance evaluation of

cellular networks by explicitly taking into account the effect of line-of-sight(LOS) and

non-line-of-sight(NLOS) channel propagations. So far, six journal papers and nine con-

ference papers have been published/submitted incorporating the findings in the depicted

research interests. The full publication list and brief summaries of each journal paper

are given in the next section.

1.2 Publications

Journal Publications

[R1] Marco Di Renzo and Wei Lu, “The Equivalent-in-Distribution (EiD)-based Ap-

proach: On the Analysis of Cellular Networks Using Stochastic Geometry”, IEEE Com-

munications Letters, Vol. 18, No. 5, pp. 761-764, May, 2014.

[R2] Marco Di Renzo and Wei Lu, “End-to-End Error Probability and Diversity Analysis

of AF-based Dual-Hop Cooperative Relaying in a Poisson Field of Interferers at the

Destination”, IEEE Transactions on Wireless Communications, Vol. 14, No. 1, pp.15-

32, Jan 2015.
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[R3] Marco Di Renzo and Wei Lu, “On the Diversity Order of Selection Combining Dual-

Branch Dual-Hop AF Relaying in a Poisson Field of Interferers at the Destination”, IEEE

Transactions on Vehicular Technology, Vol. 64, No. 4, pp.1620-1628, April 2015.

[R4] Marco Di Renzo and Wei Lu, “Stochastic Geometry Modeling and Performance

Evaluation of MIMO Cellular Networks by Using the Equivalent-in-Distribution (EiD)-

Based Approach”, IEEE Transactions on Communications, Vol. 63, No. 3, pp.977-996,

March 2015.

[R5] Wei Lu and Marco Di Renzo, “Stochastic Geometry Modeling and System-Level

Analysis/Optimization of Relay-Aided Downlink Cellular Networks”, IEEE Transac-

tions on Communications, Vol. 63, No. 11, pp.4063-4085, November 2015.

[R6] Wei Lu and Marco Di Renzo, “System-Level Analysis/Optimization of Cellular

Networks with Simultaneous Wireless Information and Power Transfer: Stochastic Ge-

ometry Modeling”, submitted to IEEE Transactions on Vehicular Technology.

Conference Publications

[R7] Wei Lu and Marco Di Renzo, “Performance Analysis of Spatial Modulation MIMO

in a Poisson Field of Interferers”, International Conference on Computing, Networking

and Communications (ICNC), Hawaii, USA, February 3-6, 2014. Best Paper Nominated.

[R8] Wei Lu, Marco Di Renzo and Anthony Busson, “Stochastic Geometry Modeling

and Analysis of the Error Probability of Two-tier Cellular Networks”, EUCNC, Bologna,

Italy, June 23-26, 2014.

[R9] Wei Lu, Marco Di Renzo, “Performance evaluation of relay-aided cellular networks

by using stochastic geometry”, IEEE CAMAD, Athens, Greece, Dec 1-3, 2014. Best

Paper Award.

[R10] Wei Lu and Marco Di Renzo, “Interference–Aware Dual–Hop Cooperative Re-

laying in a Poisson Field of Interferers”, IEEE GLOBECOM, Austin, USA, Dec 8-12,

2014.

[R11] Wei Lu and Marco Di Renzo, “Stochastic Geometry Analysis of Multi-User MIMO

Cellular Networks Using Zero-Forcing Precoding”, IEEE ICC, London, UK, June 8-12,

2015.
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[R12] Wei Lu and Marco Di Renzo, “Accurate Stochastic Geometry Modeling and Anal-

ysis of mmWave Cellular Networks”, IEEE ICUWB, Montreal, Canada, Oct 4-7, 2015.

[R13] Wei Lu and Marco Di Renzo, “Stochastic Geometry Modeling of mmWave Cellular

Networks: Analysis and Experimental Validation”, IEEE M&N, Coimbra, Portugal, Oct

12-13, 2015.

[R14] Wei Lu and Marco Di Renzo, “Stochastic Geometry Modeling of Cellular Networks:

Analysis, Simulation and Experimental Validation”, ACM MSWiM, Cancun, Mexico,

Nov 2-6, 2015.

[R15] Wei Lu and Marco Di Renzo, “On Stochastic Geometry Analysis and Optimization

of Wireless-Powered Cellular Networks”, IEEE GLOBECOM, San Diego, USA, Dec 6-

10, 2015.

1.3 Contributions and Recognitions

The main findings of the published/submitted journal papers are summarized as follows:

In [R1], the Equivalent-in-Distribution (EiD)-based approach to the analysis of cellular

networks is introduced. It is based upon finding EiD representations of the aggregate

other-cell interference of cellular networks, which lead to tractable and exact mathe-

matical formulations of the Average Symbol Error Probability (ASEP) for arbitrary bi-

dimensional modulations. As a byproduct, a new lemma is introduced, which provides

a single-integral expression of the ASEP in terms of the Complementary Cumulative

Distribution Function (CCDF) of the Signal-to-Interference-plus-Noise-Ratio (SINR).

In [R2], the mathematical frameworks to the analysis of amplify–and–forward dual–hop

cooperative relaying protocols are provided in the presence of Nakagami–m fading, addi-

tive noise at the relay, as well as additive noise and symmetric alpha–stable interference

at the destination. Quasi–static and fast–varying interference scenarios are investigated,

which arise, e.g., when either the same or different interferers are active during the

broadcast and relaying phases, respectively. A maximal ratio combining demodulator

is studied, by assuming that the aggregate interference is either unknown (interference–

oblivious) or can be estimated (interference–aware) at the destination. Closed–form
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expressions of the end–to–end moment generating function are provided and the achiev-

able diversity order is studied for different setups. The diversity order is shown to depend

on the path–loss exponent of the interfering network. Under the assumption that the

transmit–powers of cooperative and interfering networks are independent, it is proved

that the interference–aware maximal ratio diversity combiner is capable of achieving

second–order diversity only asymptotically, as the amplitude path–loss exponent tends

to one.

In [R3], the diversity order of Selection Combining (SC) receiver and that of the Max-

imal Ratio Combining (MRC) receiver are investigated in the presence of randomly

distributed interferers at the destination. More specifically, an amplify–and–forward

dual–branch dual–hop cooperative relaying protocol in the presence of Nakagami–m

fading, additive noise at the relay, as well as additive noise and symmetric alpha–stable

interference at the destination is investigated. By contrasting the diversity order of SC

against the diversity of MRC studied in [R2], it is shown that both combining schemes

provide the same diversity order if the distribution of the aggregate interference is un-

known to the destination (interference–oblivious design). They may achieve a different

diversity order, on the other hand, if the aggregate interference can be estimated at the

destination (interference–aware design). Also, it is shown that the achievable diversity

order depends on the aggregate interference in the broadcast and relaying phases being

spatially correlated or independent.

In [R4], the EiD-based approach in [R1] to the analysis of Single-Input-Single-Output

(SISO) cellular networks for transmission over Rayleigh fading channels has been gen-

eralized to compute the error probability of the PPP distributed cellular networks in-

corporating a set of multiple-input-multiple-output (MIMO) structures, the modulation

techniques and signal recovery techniques. The rational of proposed approach relies

on finding a series of conditional compound Gaussian representation of the aggregate

interference from the demodulator. Then, the well-developed technologies for the error

probability analysis for end-to-end communication over additive-white-Gaussian-noise

(AWGN) channels can be applied if the non-Gaussian random variables are conditioned.

Finally, the exact error probability in the presence of non-Gaussian distributed interfer-

ence can be obtained by removing the conditions. This approach is shown to be appli-

cable to SISO networks with Nakagami–m fading, single-input-multiple-output (SIMO)
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networks with Rayleigh fading, and MIMO cellular networks over Rayleigh fading, in-

cluding spatial-multiplexing, orthogonal space-time block coding (OSTBC), zero-forcing

(ZF) reception and zero-forcing precoding. The performance trends with respect to the

MIMO setups are observed from an asymptotic analysis of the error probability.

In [R5], the performance of the relay–aided cellular networks is investigated where the

relay nodes, the BSs and the mobile terminals (MTs) are assumed to be distributed

according to two independent PPPs. A flexible cell association criterion and relay–aided

transmission protocol based on the biased average received power are considered. The

mathematical intractability, when dealing with the spatial correlation between the active

relays and serving BSs for cooperative transmission, has been solved through reasonable

approximations based on the geometry structure. It is shown, from the mathematical

frameworks, that the coverage and rate of the system highly depends on the path-loss

exponents of the one- and two-hop links, and a system level optimization is proposed by

modifying the biasing factors for the one- and two-hop transmission which maximizes

the coverage or the rate.

In [R6], a new mathematical approach for the analysis and optimization of cellular net-

works with simultaneous wireless information and power transfer is introduced. The

proposed methodology leverages stochastic geometry for system–level analysis of cellu-

lar networks, by modeling base stations locations as points of a spatial Poisson point

process. The trade-offs emerging from simultaneous wireless information and power

transfer transmission are characterized through the concept of “feasibility regions” and

are quantified through the joint cumulative distribution function of average harvested

energy and average rate, which is formulated in terms of easy–to–compute two–fold in-

tegrals. To gain insight on the achievable performance, in addition, an upper-bound

is proposed, and its accuracy is discussed. The system model encompasses a realistic

channel model that accounts for line–of–sight and non–line–of–sight links, different cell

association criteria, practical receivers based on time switching and power splitting, di-

rectional beamforming. The analysis shows that optimal values for the time switching

and power splitting ratios exist, as well as that directional beamforming and network

densification are capable of enhancing the achievable performance. More specifically: i)

high directional antennas lead cellular networks to operate in the noise–limited regime,

which is proved to provide optimal performance, and ii) because of the existence of line-

of-sight and non-line-of-sight links, an optimal deployment density for the base stations
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is proved to exist for typical system setups.

While in pursuing a doctoral degree, I also got the following recognitions.

• Exemplary Reviewer of IEEE Transactions on Communications in 2014

• Exemplary Reviewer of IEEE Communications Letters in 2014

• 2014 IEEE CAMAD Best Paper Award

• 2014 IEEE ICNC Single Best Paper Award Nomination

1.4 Organization of the dissertation

In order to save the space and to report the latest research findings, the present dis-

sertation is structured based on the research findings published in [R4], [R5], which

are reported in Chapter 2–3, while other research achievements in [R1], [R2], [R3] and

[R6] are, on the other hand, not presented in this dissertation. In addition, the most

recent research on the mathematical tractability of the PPP model in the presence of

LOS/NLOS channel states is also included and reported in Chapter 4.

In specific, the researching findings in Chapter 2–4 tackles the often cited questions on

stochastic geometry modeling about its mathematical flexibility of i) the symbol level

error probability analysis by explicitly taking into account the modulator and the demod-

ulator, ii) modeling the relaying cellular networks where the positions of the transmitting

nodes, i.e., relays and BSs, might be spatially correlated due to the cell association, and

iii) modeling realistic but more complicated channel propagation to shed light on the sys-

tem design and optimization of practical cellular networks. In addition to investigating

the flexibility of stochastic geometry on modeling various network architectures, Chapter

2–4 also tried to address the common concerns on the complexity of the mathematical

frameworks obtained by using stochastic geometry on modeling relatively complicated

network architectures. Several approximations have been proposed to this end to sim-

plify the frameworks while keeping a good accuracy. All the mathematical frameworks

proposed in this dissertation have been tested and can be efficiently evaluated by the

commercial mathematical computation program, e.g., Mathematica 10.

The outline of the present dissertation are summarized as follows.
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In Chapter 2, the EiD–based approach is introduced for the error probability evaluation

of MIMO cellular networks, which corresponds to the main contributions in [R4] as de-

picted previously. In Chapter 3, a tractable mathematical framework for the analysis and

optimization of two-hop relay-aided cellular networks is introduced, which corresponds

to the main contributions in [R5].

In Chapter 2 and 3, a fundamental assumption on the nature of signal attenuation is

that the received signal/power (including the interference) decays like r−β over distance

r, where β > 2 is refer to as the power path-loss exponent. Although in ubiquitous use

in literatures of stochastic geometry, this path loss model is quite idealized. In Chapter

4, more practical two-state path-loss models are assumed, where the effect of LOS and

NLOS propagations have been explicitly taken into account, for network modeling and

performance analysis. Different link state models, consisting of the probabilities of

links being in LOS or in NLOS, are compared. Furthermore, a more tractable model

has been proposed, which is referred to as multi-ball state model and is shown to be

capable of accurately approximating other state models with an acceptable complexity.

The proposed framework also accounts for the antenna radiation pattern as well as

the multi-tier heterogeneous networks. It is shown that the performance trends of the

PPP distributed cellular networks with two–state channel model are different from their

counterparts with the single–state model.

In Chapter 2–4, the emphasis has been put on the mathematical tractability of the PPP–

based approach. Finally, in Appendix A, the accuracy of the PPP abstraction model

is studied through comparing the coverage probabilities of PPP distributed single-tier

cellular networks against those of real BSs deployment from two telecom operators in

London, UK. The effect of LOS and NLOS channel propagation is also considered in

the comparison by considering both the empirical blockage caused by the buildings and

the multi-ball state model, which shows the flexibility and accuracy of the proposed ap-

proximation on modeling empirical blockage models. Since only Monte Carlo simulation

results are shown in this Chapter, it is included in the dissertation as appendix. The

results are also published in [R14].



Chapter 2

The Equivalent-in-Distribution

based approach for error

performance evaluation

2.1 Introduction

One of the main advantage of the PPP abstraction to model the cellular network is

its mathematical tractability in the performance analysis [10]. Two main performance

metrics have been studied to date, i.e., the outage probability and the average rate

[10, 21, 24]. Less attention has been given, on the other hand, to the computation of

the ASEP, which is, however, a relevant figure of merit to wireless systems analysis and

design. In fact, it is directly related to the bit, packet, block and frame error probabil-

ities, which are important performance metrics to the design of cellular networks [28].

Indeed, mathematical frameworks relying on the PPP–based abstraction are available

to the computation of the ASEP of ad hoc networks [19, 20]. They are not applicable,

however, to cellular networks, as the aggregate interference of decentralized (ad hoc)

and centralized (cellular) networks has a different distribution.

Moreover, from [25, Table I], in particular, it is apparent that most mathematical frame-

works available to date in the field of stochastic geometry are applicable to the analysis

of SISO cellular networks. A few exceptions to this status quo, however, exist. In [27],

coverage probability and area spectral efficiency of MIMO cellular networks are studied

10
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with the aid of tools from stochastic geometry and stochastic ordering. Various down-

link MIMO transmission schemes are studied and compared, including space division

multiple access, single user beamforming and the baseline SISO setup. In [25], the error

probability of spatial multiplexing MIMO transmission is investigated with the aid of

stochastic geometry and the Gil-Pelaez theorem. In [29], the energy efficiency potential

of MIMO cellular networks that use maximal ratio transmission is studied. In [30], the

physical-layer security potential of regularized channel inversion precoding applied to

MIMO cellular networks is investigated.

Against these backgrounds, in this chapter, a new mathematical approach to the compu-

tation of the ASEP of of downlink MIMO cellular networks is introduced. Its rationale

relies upon finding EiD representations of the aggregate other–cell interference, which is

formulated as a linear combination of conditionally Guassian random variables (RVs).

With the aid of this mathematical formulation, the error probability is computed by

first conditioning upon the non–Guassian RVs and by then removing the conditioning.

The usefulness of this approach lies in the possibility of obtaining exact mathematical

expressions in the presence of non-Gaussian distributed interference. The new math-

ematical framework is based on the computation of the moment generating function

(MGF) of the equivalent power gain of the intended link, which makes the EiD–based

approach applicable to a number of MIMO arrangements for transmission over Rayleigh

fading channels. Also, we show that the proposed approach is also applicable to SISO

cellular networks for transmission over Nakagami-m fading channels. Compared to [27],

our approach is different since it does not exploit stochastic ordering. Compared to [25],

our approach: i) is not based on the Gil-Pelaez inversion theorem; ii) is applicable to

many MIMO schemes; and iii) provides, in many cases, exact integral expressions of

the error probability, while [25] does not, as it is based on the computation of pairwise

error probabilities. In the presence of other–cell interference and noise, the error prob-

ability is formulated in terms of a two–fold integral. The framework is shown to reduce

to the computation of a single integral in interference–limited cellular networks. Also,

a simple closed–form expression is introduced, which provides meaningful insights on

the impact of various system parameters that determine the achievable performance of

MIMO cellular networks.

The remainder of the present chapter is organized as follows. In Section 2.2, the system
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Table 2.1: Recurrent parameters and symbols.

Symbol Meaning

Ψ PPP of BSs
Nt number of antennas at each BS
Nr number of antennas at the MT
Ns number of time-slots of a data transmission frame
Nu number of intended MTs for MIMO cellular networks using zero-forcing precoding
τ index of the time-slot
η vector of modulated information symbols
M number of information symbols transmitted in Ns time slots
M number of candidate modulated symbols
µχ modulated symbols
s (τ) the set of space-time encoded symbols emitted by the BS in τ -th time slot
E BSs transmi-energy per transmission
b amplitude path-loss exponent

model is introduced. In Section 2.3, the mathematical framework for the SISO trans-

mission over Nakagami–m is first introduced. In Section 2.4, the framework has been

extended to be applicable to various MIMO transmission schemes. In Section 2.5, the

framework is further investigated and it is shown to provide relevant insight in to the

design of MIMO cellular networks. In Section 2.6, numerical illustrations are provided

to substantiate the proposed approach with the aid of Monte Carlo simulations. Finally,

Section 2.7 concludes this chapter.

Notation: The following notations are used in this chapter. x ∈ SK×1 denotes a K × 1

column-vector with entries belonging to the set S. The kth entry is denoted by x(k).

X ∈ SK×L denotes a K × L matrix with entries belonging to the set S. The (k, l)th

entry is denoted by X(k,l). X̃ denotes the hypothesis of X, X̄ denotes the post-processed

matrix X at the MT. Let a generic function f(x) with complex random variable x, the

writing f(x) = f(|x|) indicates that the function f(x) is independent from the phase of

x. The recurrent parameters and symbols are summarized in Table 2.1.

2.2 System Model

To illustrate the EiD based approach, in this chapter, we consider a bi-dimensional

downlink cellular network deployment as shown in Figure 2.1, where a typical multi-

antenna Mobile Terminal (MT) is located at the origin and the multi-antenna BSs are

modeled as points of a homogeneous PPP (Ψ) of density λ. The number of antennas at
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base station
Typical mobile terminal

r0

Figure 2.1: An example of the PPP distributed cellular networks. The MT located at
the origin is served by the closted BS, all the interfering nodes are distributed outside

the cirlular area centered at the origin with radius r0.

each BS and at the MT is denoted by Nt and Nr, respectively. Based on the properties

of homogeneous PPPs, there is no loss of generality in assuming the MT to be located at

the origin [7]. The distance from the ith BS to the MT is denoted by ri for i ∈ Ψ. The

MT is assumed to be tagged to the nearest BS, i.e., a shortest distance cell association

criterion is considered. The serving BS is denoted by BS0 and its distance from the

MT is denoted by r0, which is a RV with Probability Density Function (PDF) equal to

fr0 (ξ) = 2πλξ exp
(
−πλξ2

)
[10]. According to the properties of homogeneous PPPs [7,

Theorem 1.4.5], the set of interfering BSs i ∈ Ψ(\0) = Ψ\ {BS0} is still a homogeneous

PPP outside the ball centered at the origin and of radius r0. By definition of shortest

distance cell association, ri > r0 for i ∈ Ψ(\0). Full frequency reuse is assumed, i.e.,

all interfering BSs transmit in the same frequency band as BS0. Upon completion

of the cell association, the interfering BSs transmit packets with equal probabilities

0 ≤ p ≤ 1, which represent independent activity factors. This model finds application to

the analysis of, e.g., slotted-ALOHA cellular networks [31] and it is particularly suited in

the context of PPP-based abstraction modeling, since, due to the independent thinning

property of PPPs [7, Proposition 1.3.5], the set of interfering BSs is still a PPP of density

pλ.
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In the depicted downlink MIMO cellular network model, data transmission occurs in

frames of Ns time–slots each. The signal received at the MT in the τth time–slot can

be formulated as follows (τ = 1, 2, . . . , Ns):

y(τ) =
√
E/Ntr

−b
0 H0s0(τ)︸ ︷︷ ︸

x(τ)

+
√
E/Nt

∑
i∈Ψ(\0)

r−bi Hisi(τ)

︸ ︷︷ ︸
iagg(τ ;r0)

+n(τ)
(2.1)

where y(·) ∈ CNr×1; x(·) ∈ CNr×1 is the intended signal from BS0; iagg(·, ·) ∈ CNr×1 is

the aggregate other–cell interference; and n(·) ∈ CNr×1 is the Additive White Gaussian

Noise (AWGN). More specifically: i) E is the BSs transmit–energy per transmission,

which is equally split among the Nt antennas; ii) s
(t)
0 (τ) = Θ(τ,t)

(
η0;S(0)

I

)
∈ C, for

t = 1, 2, . . . , Nt and τ = 1, 2, . . . , Ns, is the vector of space–time encoded symbols emitted

by BS0, where Θ(·; ·) is the Ns × Nt space–time encoding matrix, η0 is the vector of

modulated information symbols and S(0)
I is the side information available at BS0. In

particular, M independent information symbols are transmitted in Ns time-slots, i.e.,

η0 is a M × 1 column-vector and η
(m)
0 ∈ M for m = 1, 2, . . . ,M with M denoting the

set of modulated symbols. The generic M = card {M} symbols of M are denoted by

µχ ∈ C for χ = 1, 2, . . . ,M. A zero–mean and an average unit–energy constraints are

assumed, i.e., (1/M)
∑M

χ=1 µχ = 0 and (1/M)
∑M

χ=1 |µχ|
2 = 1, respectively. For example,

they can be the M symbols of either a Phase Shift Keying (PSK) or a Quadrature

Amplitude Modulation (QAM) constellation diagram. The rate provided by (2.1) is

R = (M/Ns) log2 (M) bits per channel use (bpcu); iii) H0 ∈ CNr×Nt is the channel

matrix of the BS0–to–MT link, where H
(r,t)
0 =

∣∣∣H(r,t)
0

∣∣∣ exp
{
j arg

{
H

(r,t)
0

}}
∈ C and

arg
{

H
(r,t)
0

}
∼ U (0, 2π) for t = 1, 2, . . . , Nt and r = 1, 2, . . . , Nr. Quasi–static fading is

assumed in (2.1), which implies that H0 is constant in the Ns times-slots of a frame,

i.e., H0(τ) = H0 for τ = 1, 2, . . . , Ns, while it changes independently from one frame to

another. The channel envelope
∣∣∣H(r,t)

0

∣∣∣ is assumed to follow a Rayleigh distribution [4,

Sec. 2.2.1.1]. The only exception is the SISO setup in Section 2.3, where
∣∣∣H(r,t)

0

∣∣∣ follows

a Nakagami–m distribution with fading parameter m [4, Sec. 2.2.1.4]; iv) b > 1 is the

amplitude path-loss exponent; v) n(r)(τ) ∼ CN (0,N0) are independent and identically

distributed (i.i.d.) RVs for r = 1, 2, . . . , Nr, τ = 1, 2, . . . , Ns. Similar notation and

assumptions are adopted for the interfering channels of iagg(·; ·). As for the other-cell

interference model, (2.1) assumes the so-called isotropic scenario [20, Sec. II-B], where

the Nr antennas at the MT are omnidirectional and are subject to the interference
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generated by all interfering BSs. Moreover, the aggregate other–cell interference depends

on r0, since the interfering BSs must lie outside the ball of radius r0 and centered at

the origin. This originates from the shortest distance cell association criterion. The

transmit– and receive–antennas are assumed to be co–located, hence the transmission

distances r0 and ri for i ∈ Ψ(\0) are independent of the antennas inter-distances. Similar

to the intended link, locations and channels of all interfering BSs are assumed not to

change in the Ns times-slots of a frame. All channels are i.i.d. with mean square value

E
{∣∣∣H(r,t)

0

∣∣∣2} = E
{∣∣∣H(r,t)

i

∣∣∣2} = Ω for t = 1, 2, . . . , Nt, r = 1, 2, . . . , Nr, i ∈ Ψ(\0). The

signal model in (2.1) is sufficiently general to account for a large number of MIMO

schemes, which are studied in Section 2.4.

Remark 2.1. In the system model of interest, an uncoded transmission is assumed, while

the channel coding, which is one of the essential components of digital communications

chain, has been neglected in this report. Actually, the EiD–based approach can be ex-

tended to the case in the presence of channel coding with a long codewords by making

some assumptions on the dynamics of the channels and of the interferers. For exam-

ple, for mathematical tractability, a block-fading channel, a fast-fading channel or a

quasi-static fading channel can be assumed for the duration of a codeword. As for the

interfering nodes, the dynamics of the locations of the interferers need to be taken into

account as well. One of the reasonable assumption might be to assume that the lo-

cations of the interferers are static for the duration of a codeword, but the associated

channel gains may change according to the three depicted possibilities. In this case,

the other-cell aggregate interference seen at the typical MT during a codeword will be

partially correlated across the symbols of the codeword because of the full correlation

of the spatial locations and of the possible correlation of the channel dynamics. How

to deal with this partially correlated interference is still an open research question in

stochastic geometry modeling and analysis. Thus, the system in the presence of channel

coding has been postponed to future research. �

Also, the following preliminaries are introduced.

Preliminary 2.1. Let a complex RV X. It is said to be spherically symmetric (or

circularly symmetric or rotationally invariant) if its PDF, denoted by fX (·), depends

only on |X|, i.e., fX (x) = fX (|x|) [19, 32]. �
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Remark 2.2. Let X = X(re)+jX(im) be a complex spherically symmetric RV, where X(re)

and X(im) denote the real and imaginary part of X, respectively. Then, the following

properties hold [19, 32]: i) X
d
=X exp {jφ}, where φ ∈ [0, 2π) is an arbitrary constant,

ii) the characteristic function of a random variable X is CFX (ω) = CFX (|ω|), iii)

CFX(re) (|ω|) = CFX(im) (|ω|) = CFX (|ω|), iv) CFX (|ω|) = EX(re)

{
cos
(
|ω|X(re)

)}
=

EX(im)

{
cos
(
|ω|X(im)

)}
, and v) a linear combination of spherically symmetric RVs is

still a spherically symmetric RV. �

Preliminary 2.2. Let a complex RV X. The RV X(GCG) is said to be a Generalized

Compound Gaussian (GCG) representation of X if the following equality in distribution

holds:

X
d
=X(GCG) =

+∞∑
q=1

√
BqGq (2.2)

and: i) {Bq}+∞q=1 are independent real RVs with MBq (s) = exp {−sq}, ii) {Gq}+∞q=1 are

independent complex Gaussian RVs with distribution Gq ∼ CN
(

0, σ2
Gq

)
, iii) {Bq}+∞q=1

and {Gq}+∞q=1 are independent RVs. �

2.3 The framework for SISO transmission over Nakagami–

m fading

In this section, the mathematical framework for studying the average symbol error prob-

ability of SISO cellular network over Nakagami–m fading is presented by invoking the

EiD–based approach. Also, the framework is formulated by introducing some general

notations and results to make it extendable to the MIMO arrangements in the next

section.

Let a SISO transmission scheme and a Nakagami-m fading channel model [33, Sec. 2].

Thus, we have Nt = Nr = Ns = 1, M = 1. Moreover, to make our framework more

digestible, the received signal at the MT in (2.1) is re-written by:

y =
√
Er−b0 h0η0 +

√
E
∑

i∈Ψ(\0)

r−bi hiηi + n (2.3)
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where y = ȳ (1), η0 = η
(1)
0 = s

(1)
0 (1), ηi = η

(1)
i = s

(1)
i (1) for i ∈ Ψ(\0), h0 = H

(1,1)
0 ,

hi = H
(1,1)
i for i ∈ Ψ(\0). The channel fading for each link is assumed to be independent

and identically distributed and follows Nakagami–m distribution, i.e., h0, hi ∼ G (m,Ω).

The detector at the MT is assumed to have full channel state information (CSI), i.e.,

the side information at the MT is SI =
√
Er−b0 S̄I , S̄I = h0. Let η̃0 be the hypothesis

of η0 and ∆0 = η0 − η̃0, thus, the decision matrix of the demodulator at the receiver for

SISO transmission can be formulated as:

Λ (∆0) = |y − SI η̃0|2

=

∣∣∣∣∣∣√Er−b0 h0∆0 +
∑

i∈Ψ(\0)

√
Er−bi hiηi + n

∣∣∣∣∣∣
2

∝ Er−2b
0 |h0|2|∆0|2 + 2Re

{√
Er−b0 (h0∆0)∗n

}
+ 2Re

√Er−b0 (h0∆0)∗

 ∑
i∈Ψ(\0)

√
Er−bi hiηi



(2.4)

where ∝ indicates that the terms independent from ∆0 are neglected since they do not

affect the decision on the hypothesis. The demodulated symbol from the received signal

y is the hypothesis η̃0 ∈M which minimizes Λ (∆0).

The physical interpretation of each addend in (2.4) is as follows: 1) Er−2b
0 |h0|2|∆0|2

is the output in the decision metric related to the useful signal of the serving BS; 2)
√
Er−b0 (h0∆0)∗n is the output in the decision metric related to the additive Gaussian

noise at the receiver; 3)
√
Er−b0 (h0∆0)∗

(∑
i∈Ψ(\0)

√
Er−bi hiηi

)
is the output in the de-

cision metric related to the aggregate other-cell interference. In order to make the

framework presented for SISO cellular networks easily extendable to MIMO setups and

to ease the presentation in the next section, we introduce the following notations:

D1

(
S̄I ,∆0 (τ )

)
= D1 (h0,∆0) = |h0|2|∆0|2

D2

(
S̄I ,∆0 (τ ),n (τ )

)
= D2 (h0,∆0, n) = (h0∆0)∗n

D3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

)
= D3 (h0,∆0, iagg (1; r0))

= (h0∆0)∗
∑

i∈Ψ(\0)

√
Er−bi hiηi

(2.5)
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and

D0

(
S̄I ,∆0 (τ )

) (a)
=

N0D2
1

(
S̄I ,∆0 (τ )

)
En(τ )

{∣∣D2

(
S̄I ,∆0 (τ ),n (τ )

)∣∣2} (b)
= |h0|2|∆0|2 (2.6)

where D0 (·, ·) in (2.6) is introduced to ease the presentation of the SINR later discussed

in the present section and its extension in the next section. Specifically, (a) is the general

definition, (b) is for SISO networks.

With the aid of the new notations in (2.5), the decision matrix in (2.4) can be expressed

by a more general manner as follows:

Λ (∆0 (τ )) =

Ns∑
τ=1

‖ȳ (τ)− ỹ (τ)‖2

∝ (E/Nt) r
−2b
0 D1

(
S̄I ,∆0 (τ )

)
+ 2
√
E/Ntr

−b
0 Re

{
D2

(
S̄I ,∆0 (τ ) ,n (τ )

)}
+ 2
√
E/Ntr

−b
0 Re

{
D3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

)}
(2.7)

where ȳ (τ ) = ψ̄ (SI ,y (τ )) ∈ CN×1 is the post-processed received signal, ỹ (τ ) =

ψ̃ (SI , s̃0 (τ )) ∈ CN×1 is the hypothesis of the post–processed received signal at the

receiver, ψ̄(·) and ψ̃(·) are demodulator– and modulator–dependent functions, respec-

tively, N is the vectors size that depends on the transmission scheme being considered.

As for the SISO network with Nakagami–m fading channels, no post–processing is as-

sumed. Moreover, let Z0,i = (h0∆0)∗hiηi for i ∈ Ψ(\0) be i.i.d. spherically symmetric

complex RVs, thanks to the uniformly distributed phase of channel fading and according

to Preliminary 2.1, and its raw integer moments, is given in the following lemma.

Lemma 2.1. Let a complex RV Z0,i = (h0∆0)∗hiηi, where |hi|2 ∼ G (m,Ω), arg {hi} ∼

U (0, 2π), while ηi, h0 and ∆0 are complex random numbers. Let Z(re)
0,i = Re {Z0,i}. The

raw integer moments of any even order of Z(re)
0,i with respect to hi and ηi are as follows:

E
{(
Z(re)

0,i

)2q
}

= Eηi
{
Ehi

{(
Z(re)

0,i

)2q
}}

=
(
|h0|2|∆0|2

)q (Γ (m+ q)

mqΓ (m)

Γ (q + 1/2)√
πΓ (q + 1)

Ωq

)
Eηi
{
|ηi|2q

} (2.8)

Proof: See Appendix 2.B. �
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Remark 2.3. As for the MIMO setups which will be introduced in Section 2.4, there

exists a similar Z0,i as in Lemma 2.1 depending on the channel gains, H
(r,t)
i , and on

the information symbols, si (·), of the interfering BSs, as well as on the information

symbols, U0 (·), of the serving BS. Since H
(r,t)
i are complex Gaussian RVs, their phase

is uniformly distributed and, thus, from Preliminary 2.1, they are spherically symmetric

RVs. Since Z0,i is the linear combination of H
(r,t)
i , according to Remark 2.2, it is

spherically symmetric as well.

The raw integer moments of a generic Z0,i, when Rayleigh fading channels are assumed,

is given in the following lemma.

Lemma 2.2. Let Z0,i be a complex RV defined as follows:

Z0,i =

Nr∑
r=1

Nt∑
t=1

Ns∑
τ=1

H
(r,t)
i s

(t)
i (τ) U

(r)
0 (τ) (2.9)

where H
(r,t)
i are i.i.d. complex Gaussian RVs, i.e., H

(r,t)
i ∼ CN (0,Ω) for r = 1, 2, . . . , Nr,

t = 1, 2, . . . , Nt, si (τ) and U0 (τ) are Nt × 1 and Nr × 1 complex random vectors, re-

spectively, for τ = 1, 2, . . . , Ns. Let Z(re)
0,i = Re {Z0,i}. The raw integer moments of any

even order of Z(re)
0,i with respect to Hi and si (τ ) are:

E
{(
Z(re)

0,i

)2q
}

=Esi(τ )

{
EHi

{(
Z(re)

0,i

)2q
}}

=

√
π

Γ (1/2− k)
(−1)q ΩqEsi(τ )


 Nr∑
r=1

Nt∑
t=1

∣∣∣∣∣
Ns∑
τ=1

s
(t)
i (τ) U

(r)
0 (τ)

∣∣∣∣∣
2
q

(2.10)

Proof: See Appendix 2.B. �

As discussed at the beginning of this chapter, the rational of the EiD–based approach

relies upon finding a conditional Gaussian representation of the non-Gaussian distributed

interference, which is an enabling technique to reuse the framework developed for AWGN

channel for the error probability analysis. In particular, the EiD representation of the

interference related term, D3(·, ·, ·) , is given in the following proposition.

Proposition 2.1. Let Ψ and Ψ(\0) be the PPPs of density λ of available and interfering

BSs, respectively. Let p be the activity factors of the BSs. Let b > 1 be the amplitude
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path-loss exponent and ri > r0 for i ∈ Ψ(\0) be the distances from the interfering BSs

to the MT. Let Z0,i be i.i.d. spherically symmetric complex RVs for i ∈ Ψ(\0) and let

Z(re)
0,i = Re {Z0,i} have zero mean and finite raw integer moments of any even order. Let

D3 (·, ·, ·) has the following form:

D3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

)
=

∑
i∈Ψ(\0)

√
E/Ntr

−b
i Z0,i (2.11)

The GCG representation of D3 (·, ·, ·) can be formulated as:

D3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

) d
=D(GCG)

3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

)
=
√
E/Nt

+∞∑
q=1

(
r

(−b+1/q)
0 (pλπ)1/(2q)

√
BqGq

) (2.12)

where MBq (s) = exp {−sq} and Gq ∼ CN
(

0, σ2
Gq

(
S̄I ,∆0 (τ )

))
with:

σ2
Gq

(
S̄I ,∆0 (τ )

)
=

(
(−1)q

(−1/b)q
(1/2)q (1− 1/b)q

1

q!
E
{(
Z(re)

0,i

)2q
})1/q

(2.13)

Proof: The proof following by comparing the CFs of D3 (·, ·, ·) and D(GCG)
3 (·, ·, ·), where

the detail is available in Appendix 2.B. �

Remark 2.4. Proposition 2.1 holds for all the wireless network setups where the PPP

distributed interfering nodes are outside the disc with radius r0 and the interference

related term D3(·, ·, ·) can be formulated as in (2.11). �

By capitalizing on the GCG representation of D3 (·, ·, ·), and by conditioning upon all the

non-Gaussian RVs, the output of the decision matrix is equivalent as those in the AWGN

channels. Thus, the SINR of the output of the decision matrix in (2.7), conditioned on(
r0, S̄I ,∆0 (τ) , {Bq}+∞q=1

)
, can be defined and formulated by the same manner as in the
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AWGN channels:

SINR
(
r0, S̄I ,∆0 (τ) , {Bq}+∞q=1

)
=
E

Nt
r−2b

0

∣∣D1

(
S̄I ,∆0 (τ)

)∣∣2
2En(τ)

{∣∣D2

(
S̄I ,∆0 (τ) ,n (τ)

)∣∣2}+ 2E{Gq}
∣∣∣D(GCG)

3

(
S̄I ,∆0 (τ) , iagg (τ ; r0)

)∣∣∣2
(a)
=
E

Nt
r−2b

0

D0

(
S̄I ,∆0 (τ)

)/
2

N0 + E
Nt
r−2b

0

+∞∑
q=1

((
pλπr2

0

)1/q
Bqσ̄2

Gq

)
(2.14)

where (a) follows by introducing the notation σ̄2
Gq

which is defined to satisfy the following

constraint:

σ̄2
Gq

(b)
= σ2

Gq

(
S̄I ,∆0 (τ)

) D0

(
S̄I ,∆0 (τ)

)
D2

1

(
S̄I ,∆0 (τ)

) (c)
=
σ2
Gq

(
S̄I ,∆0 (τ)

)
|h0|2|∆0|2

(2.15)

(b) is the general definition, while (c) is the special case for the SISO networks. From

the SINR defined in (2.14), the symbol error probability for arbitrary bi–dimensional

modulation scheme, conditioned on r0 and {Bq}+∞q=1, can be computed with the aid of the

moment generating fucntion (MGF)–based approach, which is well–known for AWGN

channels [4] and is presented by the following lemma to make the report self–contained.

Lemma 2.3. Let a bi-dimensional modulation scheme with equi-probable symbols, which

is identified by the quadruplets of parameters (α1, β1, γ1, δ1) and (α2, β2, γ2, δ2) [20, Table

III]. Let a demodulator with perfect knowledge of side information, SI , be formulated as:

η̂0 = arg min
η̃0∈M

{Λ (∆0 (τ))} (2.16)

Let D0

(
S̄I ,∆0(τ )

)
defined in (2.6) which can be decomposed by D0

(
S̄I ,∆0(τ )

)
=

D̄0

(
S̄I
)
D̃0 (∆0(τ )) with E∆0(τ )

{
D̃0 (∆0(τ ))

}
= 2. The ASEP of (2.16), i.e., ASEP =

Pr {η̂0 6= η0} can be formulated as follows,

ASEP = Er0
{
E{Bq}+∞q=1

{
δ1PE

(
r0, {Bq}+∞q=1 ;α1, β1, γ1

)
−δ2PE

(
r0, {Bq}+∞q=1 ;α2, β2, γ2

)}} (2.17)
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where:

PE

(
r0, {Bq}+∞q=1 ;α, β, γ

)
=

1

π

∫ α

0
MD̄0

(
β sin2 (γ)

2 sin2 (ω)
SINR

(
r0, {Bq}+∞q=1

))
dω (2.18)

with MD̄0
(s) = ES̄I

{
exp

{
−sD̄0

(
S̄I
)}}

and SINR (·, ·) is defined as follows:

SINR
(
r0, {Bq}+∞q=1

)
=

E

Nt
r−2b

0

N0 +
E

Nt

+∞∑
q=1

(
r

(−2b+2/q)
0 (pλπ)1/q Bqσ̄

2
Gq

)−1

(2.19)

Proof: See Appendix 2.B. �

As for the SISO transmission over Nakagami–m fading,MD̄0
(s) = Eh0

{
exp

(
−s|h0|2

)}
=

(1 + sΩ/m)−m.

Remark 2.5. The mathematical formulation of the ASEP in (2.17) is possible thanks to

the EiD-based representation of the aggregate other-cell interference, i.e., D3 (·, ·, ·). In

fact, by conditioning upon r0, and {Bq}+∞q=1, the decision metric of the demodulator in

(2.7) boils down to that of an equivalent demodulator in AWGN. As a consequence, the

widely adopted mathematical formulation of the ASEP of bi-dimensional modulations

can be used [20, Table III]. As a first step, in fact, only the randomness of the AWGN

and of the complex Gaussian RVs {Gq}+∞q=1 is taken into account. As shown in (2.17), the

conditioning with respect to r0, and {Bq}+∞q=1 is removed subsequently. This constitutes

the main flexibility and usefulness of the EiD-based approach. �

Remark 2.6. The constraint E∆0(τ )

{
D̃0 (∆0(τ ))

}
= 2 represents a normalization fac-

tor that can be understood by direct inspection of (2.6) and of Section 2.4. From (2.6), in

particular, for SISO networks, D̃0 (∆0(τ )) = |∆0|2, which implies E∆0(τ )

{
D̃0 (∆0(τ ))

}
=

2 as a result of the zero-mean and average unit-energy constraints assumed for the con-

stellation diagram. �

Lemma 2.3 gives the well–know framework to compute the ASEP in AWGN channels,

while the procedure to remove these conditions related to the shortest distance r0, and

to the RVs {Bq}+∞q=1 introduced by the EiD approach has been proposed in the following

theorem.

Theorem 2.1. Let MD̄0
(s) = (1 + sΩ0)−m0, where m0 and Ω0 are parameters depend-

ing on D0

(
S̄I ,∆0 (τ )

)
. Let fr0 (ξ) = 2πλξ exp

{
−πλξ2

}
and MBq (s) = exp {−sq} for
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every integer q. Let the SINR(·, ·) defined in (2.19). The unconditional MGF can be

formulated by

MSINR (s) = Er0
{
E{Bq}+∞q=1

{
MD̄0

(
sSINR

(
r0, {Bq}+∞q=1

))}}
= 1−m0Ω0 (E/Nt)πλs

×
∫ +∞

0

∫ +∞

0
{1F1 (m0 + 1; 2;−Ω0 (E/Nt) sy)

× exp
{
−N0x

by
}

exp
{
−πλQ̃ ((E/Nt) y)x

}}
dxdy

(2.20)

where Q̃ (ξ) = pQ (ξ) + 1, and Q (ξ) =
+∞∑
q=1

(
ξσ̄2

Gq

)q
.

Proof: See Appendix 2.C. �

Corollary 2.1. Let the SINR(·, ·) in (2.19) with E/N0 → +∞, i.e., an interference-

limited regime is considered. Then, MSINR (·) in (2.20) simplifies as follows:

MSINR (s)|E/N0→+∞ =M(∞)
SINR (s)

= 1−m0Ω0s

∫ +∞

0

1F1 (m0 + 1; 2;−Ω0sz)

Q̃ (z)
dz

(2.21)

Proof: See Appendix 2.C. �

Remark 2.7. The MGF of D̄0

(
S̄I
)
, MD̄0

(s) = (1 + sΩ0)−m0 , holds if D̄0

(
S̄I
)

follows

the Gamma distribution with fading parameter m0 and mean square value Ω0. For

example, for SISO transmission over Nakagami–m fading, m0 = m, Ω0 = Ω/m.

With the aid of the unconditional MGF of the SINR in Theorem 2.1, the error probability

integral introduced in Lemma 2.3 can be computed as in the following theorem.

Theorem 2.2. Let MD̄0
(s) = (1 + sΩ0)−m0, fr0 (ξ) = 2πλξ exp

{
−πλξ2

}
, MBq (s) =

exp {−sq} for every integer q. Let the SINR(·, ·) in (2.19) and the error probability

integral in Lemma 2.3 be expressed as follows:

I (α, β, γ) = Er0,{Bq}+∞q=1

{
1

π

∫ α

0
MD̄0

(
β sin2 (γ)

2 sin2 (ω)
SINR

(
r0, {Bq}+∞q=1

))
dω

}
(2.22)
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Then, the following identity holds

I (α, β, γ) =
α

π
−m0λ

∫ +∞

0

∫ +∞

0

{
exp

{
−
(

E

N0Nt

)−1 z

κΩ0
xb

}

× exp

{
−πλxQ̃

(
z

κΩ0

)}
T (z;m0, α)

}
dxdz

(2.23)

where κ = β sin2 (γ)
/

2, Q̃ (ξ) = pQ (ξ) + 1, Q (ξ) =
∑+∞

q=1

(
ξσ̄2

Gq

)q
and T (·; ·, ·) is

defined in (2.38) of Appendix 2.A.

Proof: See Appendix 2.C. �

Corollary 2.2. Let the error probability integral in (2.23) with E/N0 → +∞, i.e., an

interference-limited regime is considered. Then, the following identity holds:

I (α, β, γ)|E/N0→+∞ = I(∞) (α, β, γ)

=
α

π
− m0

π

∫ +∞

0

T (z;m0, α)

Q̃ (z/(κΩ0))
dz

(2.24)

Proof: See Appendix 2.C. �

Finally, the function Q̃ (ξ) (or Q (ξ)) consisting of an infinity series, can be represented

with the aid of the hypergeometric functions. In specific, as for the SISO networks, Q (ξ)

is computed as in the following lemma.

Lemma 2.4. Let σ2
Gq

(·, ·) in (2.13) with E
{(
Z(re)

0,i

)2q
}

formulated as in (2.8). Let

σ̄2
Gq

satisfy the equality in (2.15) with D2
1

(
S̄I ,∆0(τ )

)/
D0

(
S̄I ,∆0(τ )

)
= |h0|2|∆0|2. Let

Q (X) =
∑+∞

q=1

(
Xσ̄2

Gq

)q
. For every X > 0, the following identity holds:

Q (X) = Esi
{

2F2

(
−1

b
,m; 1− 1

b
; 1;− |si|2

Ω

m
X

)}
− 1 (2.25)

Proof: See Appendix 2.B. �

The extension of Lemma 2.4 to MIMO arrangements over Rayleigh fading, which will

be described in detail in the next section, is given by the following lemma.
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Lemma 2.5. Let σ2
Gq

(·, ·) in (2.13) with E
{(
Z(re)

0,i

)2q
}

formulated as in (2.10). Let a

function φ (·) such that:

Nr∑
r=1

Nt∑
t=1

∣∣∣∣∣
Ns∑
τ=1

s
(t)
i (τ) U

(r)
0 (τ)

∣∣∣∣∣
2

= φ (si (τ ))

Nr∑
r=1

Ns∑
τ=1

∣∣∣U(r)
0 (τ)

∣∣∣2 (2.26)

Let σ̄2
Gq

satisfy the equality in (2.15) with
D2

1(S̄I ,∆0(τ))
D0(S̄I ,∆0(τ))

=
Nr∑
r=1

Ns∑
τ=1

∣∣∣U(r)
0 (τ)

∣∣∣2. Let Q (X) =

+∞∑
q=1

(
Xσ̄2

Gq

)q
. For every X > 0, the following identity holds:

Q (X) = Esi(τ )

{
1F1

(
−1

b
; 1− 1

b
;−φ (si (τ )) ΩX

)}
− 1 (2.27)

Proof: See Appendix 2.B. �

Remark 2.8. Lemma 2.5 indicates that the conditional variance of the GCG represen-

tation in (2.12) can be expressed by a hypergeometric function even though it consists

of an infinity series. If Ns = 1, the equality in (2.26) is always satisfied with φ (si (1)) =
Nt∑
t=1

∣∣∣s(t)
i (1)

∣∣∣2, i.e.,
Nr∑
r=1

Nt∑
t=1

∣∣∣s(t)
i (1) U

(r)
0 (1)

∣∣∣2 =

(
Nt∑
t=1

∣∣∣s(t)
i (1)

∣∣∣2)(Nr∑
r=1

∣∣∣U(r)
0 (1)

∣∣∣2). �

2.4 Extension to MIMO Cellular Networks

In this section, the depicted simple framework for SISO cellular networks over Nakagami–

m fading has been extended to studying various MIMO arrangements, and it is proved

that their error probability performance can be formulated as in Theorem 2.2 and in

Corollary 2.2 for interference-limited cellular networks. By direct inspection of Theorem

2.2 and Corollary 2.2, it is apparent that the error probability integrals in (2.23) and

(2.24) depend only on three parameters, i.e., m0, Ω0 and Q (·). In the following sub-

sections, such a triplet of parameters is computed for relevant MIMO schemes. It is

worth mentioning that for some MIMO setups the proposed mathematical framework

provides only approximated expressions of the error probability, as explained in the

sequel.

A summary of the triplet (m0,Ω0,Q (·)) is provided in Table 2.2 for all MIMO schemes

analyzed in the present chapter. Also, Table 2.2 highlights when the framework is exact
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Table 2.2: Summary of parameters for the computation of (2.23) in Theorem 2.2 and
of (2.24) in Corollary 2.2 for various MIMO setups. As for the MIMO setup of Section
2.4.2, the framework is exact for [34, Eq. (32), Eq. (40)] and an approximation for [34,
Eq. (37), Eq. (38), Eq. (39)]. Also, p̄ = 2 for [34, Eq. (37), Eq. (38)] and p̄ = 1 for

[34, Eq. (32), Eq. (39), Eq. (40)].

MIMO Setup m0 Ω0 Q (ξ) E/A

SISO (Nakagami–m) m Ω/m Eη0
{
F
(
m, |η0|2ξ

)}
E

SIMO Nr Ω Eη0
{
F
(
1, |η0|2ξ

)}
E

OSTBC NrNt p̄Ω Eη0

{
F
(
1, ‖η0‖2ξ

)}
E/A

ZF Reception Nr −Nt + 1 Ω Eη0

{
F
(
1, ‖η0‖2ξ

)}
E

ZF Precoding Nt −Nu + 1 Ω/Nu F (1, ξ) A

or approximated. In particular, the following short–hand notations are used in Ta-

ble 2.2, i) Q̃ (ξ) = pQ (ξ) + 1; ii) F (m, z) = 2F2

(
m,−1

b ; 1− 1
b , 1;−Ωz/m

)
− 1, which

reduces to F (1, z) = 1F1

(
−1
b , 1−

1
b ,−Ωz

)
− 1 when m = 1; iii) the short hand nota-

tion η0 ∈ M, η0 ∈ MM×1, M = card {M}, Eη0

{
ϑ
(
|η0|2

)}
= (1/M)

∑M
χ=1 ϑ

(
|µχ|2

)
,

Eη0

{
ϑ
(
‖η0‖2

)}
=
(
1/MM

)∑M
χ1=1

∑M
χ2=1 · · ·

∑M
χM=1 ϑ

(∑M
k=1 |µχk |

2
)

, where ϑ (·) is a

generic function; iv) E = Exact, A = Approximation.

For all analyzed MIMO transmission schemes, the following procedure similar as the one

depicted in Section 2.3 is applied:

1. From the signal model in (2.1) and the demodulator in (2.7), the functions D1 (·, ·),

D2 (·, ·, ·) and D3 (·, ·, ·) are computed.

2. The function D0 (·, ·) is computed such that the constraints in (2.6) and (2.15)

are both satisfied. The difference between exact and approximated results may

emerge at this step: if all constraints are satisfied with equality, the mathematical

formulation is exact. Otherwise, it is an approximation.

3. By letting MD̄0
(s) for the single-stream demodulator in Lemma 2.3 , the param-

eters m0 and Ω0 are computed from D0 (·, ·) such that MD̄0
(s) = (1 + sΩ0)−m0

holds.

4. From D3 (·, ·, ·) and (2.11), the RV Z0,i is identified. It is proved that Z0,i can be

formulated as shown in Lemma 2.2. Thus, the function Q (·) is obtained either
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from (2.27). The difference between exact and approximated results may emerge

at this step: if the equality in (2.26) is satisfied, the mathematical formulation is

exact. Otherwise, it is an approximation.

2.4.1 Single-Input-Multiple-Output (SIMO) Transmission over Rayleigh

Fading

Let a SIMO transmission scheme and a Rayleigh fading channel model [33, Sec. 2].

Thus, Nt = Ns = 1, M = 1, s
(1)
0 (1) = η

(1)
0 , s

(1)
i (1) = η

(1)
i for i ∈ Ψ(\0),

∣∣∣H(r,1)
0

∣∣∣2 ∼
G (1,Ω) and

∣∣∣H(r,1)
i

∣∣∣2 ∼ G (1,Ω) for r = 1, 2, . . . , Nr and i ∈ Ψ(\0). Let the interference-

oblivious demodulator in (2.16) with side information S̄I = H
(r,1)
0 for r = 1, 2, . . . , Nr,

ȳ (1) = ψ̄ (SI ,y (1)) = y (1), i.e., perfect CSI is assumed at the demodulator. Then, the

hypothesis of the useful signal would be ỹ(r) (1) = ψ̃ (SI , s̃0 (1)) =
√
Er−b0 H

(r,1)
0 η̃

(1)
0 for

r = 1, 2, . . . , Nr and N = Nr.

By inserting (2.1) in (2.7), we obtain ∆
(1)
0 (1) = η̃

(1)
0 − η

(1)
0 and



D1

(
S̄I ,∆0(τ )

)
=
∣∣∣∆(1)

0 (1)
∣∣∣2∑Nr

r=1

∣∣∣H(r,1)
0

∣∣∣2
D2

(
S̄I ,∆0(τ ),n (τ )

)
=
(
∆

(1)
0 (1)

)∗∑Nr
r=1

(
H

(r,1)
0

)∗
n(r) (1)

D3

(
S̄I ,∆0 (τ ) , iagg (τ ; r0)

)
=

∑
i∈Ψ(\0)

√
E/Ntr

−b
i

∑Nr
r=1 H

(r,1)
i s

(1)
i (1)U

(r)
0 (1)

(2.28)

where U
(r)
0 (1) =

(
H

(r,1)
0 ∆

(1)
0 (1)

)∗
.

Therefore, from D3(·, ·, ·), the i.i.d. spherically symmetric complex RVs in Lemma 2.2 is

defined by Z0,i =
∑Nr

r=1 H
(r,1)
i s

(1)
i (1)U

(r)
0 (1). From (2.6) and (2.15), D0,1

(
S̄I ,∆0(τ )

)
=∣∣∣∆(1)

0 (1)
∣∣∣2∑Nr

r=1

∣∣∣H(r,1)
0

∣∣∣2. Thus, D̄0

(
S̄I
)

=
∑Nr

r=1

∣∣∣H(r,1)
0

∣∣∣2 ∼ G (Nr, NrΩ) and (m0,Ω0) =

(Nr,Ω) [4, Eq. (2.22)]. Since Z0,i is formulated as in Lemma 2.2 with Nt = Ns = 1,

from Remark 2.8 we conclude that Q (·) follows from (2.27) with φ (si (1)) =
∣∣∣s(1)
i (1)

∣∣∣2.

2.4.2 Orthogonal Space-Time Block Coding (OSTBC) Transmission

over Rayleigh Fading

Let an OSTBC MIMO transmission scheme and a Rayleigh fading channel model [33,

Sec. 2]. Based on [34, Sec. V-E], generalized complex orthogonal designs of size
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Nt are considered. Thus, M/N s ≤ 1 and the Ns × Nt space-time encoding ma-

trix Θ
(
η0;S(0)

I

)
= Θ (η0) satisfies the property ΘH (η0) Θ (η0) = DΘ (η0), where

D
(t1,t2)
Θ (η0) =

∑M
m=1 p

(m)
t

∣∣∣η(m)
0

∣∣∣2 for t1 = t2 = t = 1, 2, . . . , Nt, D
(t1,t2)
Θ (η0) = 0 for

t1 6= t2 = 1, 2, . . . , Nt and p
(m)
t are strictly positive numbers for t = 1, 2, . . . , Nt and

m = 1, 2, . . . ,M . For example, p̄ = p
(m)
t for t = 1, 2, . . . , Nt and m = 1, 2, . . . ,M with

p̄ = 2 and p̄ = 1 if the OSTBC encoding matrices of different sizes in [34, Eq. (37), Eq.

(38)] and in [34, Eq. (32), Eq. (39), Eq. (40)] are considered, respectively.

As for the channels,
∣∣∣H(r,t)

0

∣∣∣2 ∼ G (1,Ω) and
∣∣∣H(r,t)

i

∣∣∣2 ∼ G (1,Ω) for t = 1, 2, . . . , Nt,

r = 1, 2, . . . , Nr and i ∈ Ψ(\0). Let the interference-oblivious demodulator in (2.16) with

S̄I = H0, ȳ (τ ) = ψ̄ (SI ,y (τ )) = y (τ ), ỹ (τ ) = ψ̃ (SI , s̃0 (τ )) =
√
E/Ntr

−b
0 Θ (η̃0) and

N = Nr. By inserting (2.1) in (2.7), the multi-stream demodulator can be re-written in

terms of the single-stream demodulator by exploiting the properties of Θ (·) as follows:

Λ (∆0 (τ )) =
M∑
m=1

Λm (∆0 (τ )) (2.29)

where Λm (∆0 (τ )) has the same structure as (2.7) except that it depends on the mth

information symbol, i.e., Dχ (·) 7→ Dχ,m (·) for χ = {0, 1, 2, 3, IAI}.

In particular, the received signals at the MT from the intended link are orthogonal

according to the property of the encoding matrix. This might not be true, on the other

hand, for the interfering links since the matrices of the interfering links are designed for

their intended users. Let ∆i (·) for i ∈ Ψ be formulated as follows (τ = 1, 2, . . . , Ns):

∆
(t)
i (τ) = Θ(τ,t) (η̃0)−Θ(τ,t) (η0)

=
M∑
m=1

α(t) (τ)
(
η̃

(m)
i − η(m)

i

)
+

M∑
m=1

β(t) (τ)
(
η̃

(m)
i − η(m)

i

)∗ (2.29)

where α (·) and β (·) are Nt × 1 complex vectors for τ = 1, 2, . . . , Ns, which depend on

the space-time encoding matrix Θ (·). Then, with the aid of the property [34, Def. 5.5.1]

as follows (it holds for i ∈ Ψ):

Nr∑
r=1

Ns∑
τ=1

∣∣∣∣∣
Nt∑
t=1

H
(r,t)
i ∆

(t)
i (τ)

∣∣∣∣∣
2

=

Nr∑
r=1

Nt∑
t=1

∣∣∣H(r,t)
i

∣∣∣2( M∑
m=1

p
(m)
t

∣∣∣η̃(m)
i − η(m)

i

∣∣∣2) (2.30)
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we obtain, for m = 1, 2, . . . ,M , the following identities hold:

D1,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣η̃(m)

0 − η(m)
0

∣∣∣2 Nr∑
r=1

Nt∑
t=1

p
(m)
t

∣∣∣H(r,t)
0

∣∣∣2
D2,m

(
S̄I ,∆0 (τ ) ,n (τ )

)
=

Nr∑
r=1

Ns∑
τ=1

(
n(r) (τ)

)∗
×

(
Nt∑
t=1

H
(r,t)
0

(
α(t) (τ)

(
η̃

(m)
0 − η(m)

0

)
+ β(t) (τ)

(
η̃

(m)
0 − η(m)

0

)∗))
(2.31)

and D3,m (·, ·, ·) can be formulated as shown in (2.11) with the definitions as follows,


Z0,i =

Nr∑
r=1

Ns∑
τ=1

[(
Nt∑
u=1

H
(r,u)
i s

(u)
i (τ)

)
U

(r)
0

]
=

Nr∑
r=1

Nt∑
u=1

Ns∑
τ=1

H
(r,u)
i s

(u)
i (τ) U

(r)
0 (τ)

U
(r)
0 =

Nt∑
t=1

H
(r,t)
0

(
α(t) (τ)

(
η̃

(m)
0 − η(m)

0

)
+ β(t) (τ)

(
η̃

(m)
0 − η(m)

0

)∗)
(2.32)

It is apparent that Z0,i in (2.32) is formulated as shown in (2.9) of Lemma 2.2. To

proceed with the analysis, it is important to understand whether the equality in (2.26)

is satisfied for arbitrary generalized complex orthogonal designs. This issue is addressed

in Definition 2.1, Proposition 2.2 and Remark 2.9.

Definition 2.1. Let a generalized complex orthogonal design Θ, according to [34, Sec.

V-E]. Let Z0,i in (2.32). Θ is said to be interference-orthogonal if the equality in (2.26)

is satisfied for φ (si (τ )) =
∑M

m=1

∣∣∣η(m)
i

∣∣∣2. �

Proposition 2.2. The generalized complex orthogonal designs in [34, Eq. (32), Eq.

(40)] are interference-orthogonal, while those in [34, Eqs. (37)–(39)] are not interference-

orthogonal.

Proof: The proof follows by direct inspection of the generalized complex orthogonal de-

signs and by checking whether the identity
Nt∑
t=1

∣∣∣∣ Ns∑
τ=1

(
Θ(τ,t) (η0)

)∗
v(τ)

∣∣∣∣2 =

(
Ns∑
τ=1

∣∣v(τ)
∣∣2)×(

M∑
m=1

∣∣∣η(m)
0

∣∣∣2) is satisfied for an arbitrary complex vector v. The equality holds for the

codes in [34, Eq. (32), Eq. (40)]. �

Remark 2.9. The reason why some generalized complex orthogonal designs are not

interference-orthogonal is due to the quasi-static assumption for the other-cell inter-

ference. This implies, in fact, that the terms i(r) (τ) =
∑Nt

u=1 H
(r,u)
i s

(u)
i (τ) in (2.32)
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are not independent for r = 1, 2, . . . , Nr, since they originate from interfering BSs be-

longing to the same PPP. Comparing D2,m (·, ·, ·) in (2.31) with Z0,i in (2.32), we note

that this does not occur for D2,m (·, ·, ·), since the noise terms n(r) (τ) are independent

for r = 1, 2, . . . , Nr, τ = 1, 2, . . . , Ns. The generalized complex orthogonal designs in

[34] are designed based on the independence property of the AWGN. Hence, some code

constructions may not satisfy the interference-orthogonal property that originates from

the partial correlation of the interference across the receive-antennas and the time-slots.

�

The proposed mathematical approach is applicable to interference-orthogonal general-

ized complex orthogonal designs. It can be applied to generalized complex orthogonal

designs that are not interference-orthogonal, by assuming that the equality in (2.26)

holds true. In this latter case, the framework is no longer exact, but it is an approxi-

mation. In Section 2.6, it is shown that it is accurate enough for typical MIMO setups

though.

If Θ is interference-orthogonal, the equalities in (2.6) and (2.15) are satisfied and we are

able to obtain D0,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣η̃(m)

0 − η(m)
0

∣∣∣2 Nr∑
r=1

Nt∑
t=1

p
(m)
t

∣∣∣H(r,t)
0

∣∣∣2 and D̄0,m

(
S̄I
)

=

Nr∑
r=1

Nt∑
t=1

p
(m)
t

∣∣∣H(r,t)
0

∣∣∣2. Since, for typical OSTBCs [34], p̄ = p
(m)
t for t = 1, 2, . . . , Nt

and m = 1, 2, . . . ,M , then D̄0,m

(
S̄I
)
∼ G (NrNt, NrNtΩp̄). This implies (m0,Ω0) =

(NrNt, p̄Ω) [4, Eq. (2.22)]. Since Z0,i is formulated as in Lemma 2.2 with Ns = 1, from

Remark 2.8 we conclude that Q (·) follows from (2.27) with φ (si (τ )) =
∑M

m=1

∣∣∣η(m)
i

∣∣∣2.

2.4.3 Zero-Forcing (ZF) MIMO Receiver over Rayleigh Fading

Let a MIMO transmission scheme with ZF-based reception and a Rayleigh fading channel

model [33, Sec. 2]. Thus, Nr ≥ Nt, Ns = 1, M = Nt, s0 (1) = η0, si (1) = ηi for

i ∈ Ψ(\0),
∣∣∣H(r,t)

0

∣∣∣2 ∼ G (1,Ω) and
∣∣∣H(r,t)

i

∣∣∣2 ∼ G (1,Ω) for t = 1, 2, . . . , Nt, r = 1, 2, . . . , Nr

and i ∈ Ψ(\0). Let the demodulator in (2.7) with S̄I = H0, ȳ (1) = ψ̄ (SI ,y (1)) =(
HH

0 H0

)−1
HH

0 y (1), ỹ (1) = ψ̃ (SI , s̃0 (1)) =
√
E/Ntr

−b
0 s̃0 (1) and N = M = Nt.

Accordingly, the multi-stream demodulator can be re-written in the single-stream for-

mulation similar as (2.29). Let W0 =
(
HH

0 H0

)−1
HH

0 denote the (M = Nt) × Nr ZF
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decoding matrix at the receiver, ∆0 (1) = η̃0 − η0, then the following identities hold:


D1,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣∆(m)

0 (1)
∣∣∣2

D2,m

(
S̄I ,∆0 (τ ) ,n (τ )

)
=
(
∆

(m)
0 (1)

)∗∑Nr
r=1 W

(m,r)
0 n(r) (1)

(2.33)

and D3,m (·, ·, ·) as shown in (2.11) with


Z0,i =

Nr∑
r=1

Nt∑
t=1

H
(r,t)
i s

(t)
i (1) U

(r)
0 (1)

U
(r)
0 (1) =

(
∆

(m)
0 (1)

)∗
W

(m,r)
0

(2.34)

From (2.6) and (2.15), we obtain that

D0,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣∆(m)

0 (1)
∣∣∣2(∑Nr

r=1

∣∣∣W(m,r)
0

∣∣∣2)−1

(a)
=
∣∣∣∆(m)

0 (1)
∣∣∣2 (W̃

(m,m)
0

)−1
(2.35)

where W̃0 =
(
HH

0 H0

)−1
and (a) follows from direct inspection of W0. Thus, D0,m

(
S̄I
)

=(
W̃

(m,m)
0

)−1 (b)∼ G (Nr −Nt + 1, (Nr −Nt + 1) Ω), where (b) follows from [35, Sec. III]

and [36, Corollary 3.2.6, Theorem 3.2.10]. This implies (m0,Ω0) = (Nr −Nt + 1,Ω) [4,

Eq. (2.22)]. Since Z0,i is formulated as in Lemma 2.2 with Ns = 1, from Remark 2.8 we

conclude that Q (·) follows from (2.27) with φ (si (1)) =
∑Nt

t=1

∣∣∣s(t)
i (1)

∣∣∣2.

2.4.4 Zero-Forcing MIMO Precoding over Rayleigh Fading

Let a MIMO transmission scheme with ZF-based precoding and a Rayleigh fading chan-

nel model [33, Sec. 3]. Let Nu single-antenna MTs be served by intended and interfering

BSs in the same channel use within their respective cells. The signal model in (2.1) is

still applicable with minor changes. With a slight abuse of notation, let H0 denote

the Nu × Nt downlink channel matrix of the links from BS0 to its Nu intended MTs.

Likewise, let denote by Hi for i ∈ Ψ(\0) the Nu × Nt downlink channel matrices of the

interfering BSs towards the same Nu MTs as BS0. Also, let Ĥi for i ∈ Ψ(\0) denote the

Nu×Nt downlink channel matrix of the links from the ith interfering BS (BSi) towards

its intended Nu single-antenna MTs. In general, Ĥi 6= Hi. Then, (2.1) still holds by re-

placing Nr with Nu and by letting Nt ≥ Nu, Nr = Ns = 1, M = Nu,
∣∣∣H(u,t)

0

∣∣∣2 ∼ G (1,Ω)

and
∣∣∣H(u,t)

i

∣∣∣2 ∼ G (1,Ω) for t = 1, 2, . . . , Nt, u = 1, 2, . . . , Nu and i ∈ Ψ(\0).
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Let V0 denote the Nt × Nu precoding matrix used at BS0, which is defined as V0 =

V0/‖V0η0‖ with V0 = HH
0

(
H0H

H
0

)−1
. Likewise, let V̂i denote the precoding matrix

used at BSi, which is V̂i = V̂i

/∥∥∥V̂iηi

∥∥∥ with V̂i = ĤH
i

(
ĤiĤ

H
i

)−1
for i ∈ Ψ(\0). Based

on these precoding matrices, which assume that the side information available at BS0

and BSi is S(0)
I = V0 and S(i)

I = V̂i, respectively, the transmitted vectors are s0 (1) =

Θ
(
η0;S(0)

I

)
= V0η0 and si (1) = Θ

(
ηi;S(i)

I

)
= V̂iηi for i ∈ Ψ(\0).

Let the interference-oblivious demodulator in (2.7) with SI = ‖V0η0‖, as well as ȳ (1) =

ψ̄ (SI ,y (1)) = y (1), ỹ (1) = ψ̃ (SI , s̃0 (1)) =
√
E/Ntr

−b
0 (η̃0 (1)/‖V0η0‖) and N =

M = Nu. Accordingly, the multi-stream demodulator in (2.7) can be re-written in the

single-stream formulation similar to (2.29) for each intended user u = m = 1, 2, . . . , Nu.

In particular, we have ∆0 (1) = η̃0 − η0, and the following identities hold:


D1,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣∆(m)

0 (1)
∣∣∣2 ‖V0η0‖−2

D2,m

(
S̄I ,∆0 (τ ) ,n (τ )

)
=
(
∆

(m)
0 (1)

)∗
‖V0η0‖−1n(1) (1)

(2.36)

and D3,m (·, ·, ·) as shown in (2.11) with Z0,i =
∑Nt

t=1 H
(m,t)
i s

(t)
i (1) U

(m)
0 (1), where

si (1) =
∥∥∥V̂iηi

∥∥∥−1
si (1) and U

(m)
0 (1) =

(
∆

(m)
0 (1)

)∗
‖V0η0‖−1. From (2.6) and (2.15),

we obtain D0,m

(
S̄I ,∆0 (τ )

)
=
∣∣∣∆(m)

0 (1)
∣∣∣2 ‖V0η0‖−2 and D0,m

(
S̄I
)

= ‖V0η0‖−2. Since

Z0,i is formulated as in Lemma 2.2 with Ns = Nr = 1, from Remark 2.8 we conclude that

Q (·) follows from (2.27) with φ (si (1)) =
∑Nt

t=1

∣∣∣s(t)
i (1)

∣∣∣2 =
∥∥∥V̂iηi

∥∥∥−2∑Nt
t=1

∣∣∣s(t)
i (1)

∣∣∣2 =

1, since si (1) = V̂iηi for i ∈ Ψ(\0).

So far, the analysis for ZF precoding is exact and no approximations have been used.

To complete the analysis, the distribution of D0,m

(
S̄I
)

= ‖V0η0‖−2 =
(
η∗0VH

0 V0η0

)−1

needs to be computed. To the best of our knowledge, however, it is unknown for

discrete modulation schemes. To get a tractable yet accurate mathematical frame-

work, we exploit two approximations for the computation of the distribution of D0,m (·).

First of all, we assume that η0 follows a unit-energy complex Gaussian distribution,

i.e., η
(m)
0 ∼ CN (0, 1) for m = 1, 2, . . . ,M = Nu. From [5, Eq. (103), Eq. (105)],

we obtain η∗0VH
0 V0η0 ∼ Nu (Nt −Nu + 1)−1 F (2Nu, 2 (Nt −Nu + 1)), which implies

the following, D0,m

(
S̄I
)
∼ ((Nt −Nu + 1)/Nu)F (2 (Nt −Nu + 1) , 2Nu). Second of

all, we approximate this resulting scaled F-distribution with a scaled Chi-Square dis-

tribution, i.e., D0,m

(
S̄I
)
∼ (2Nu)−1 χ2

2(Nt−Nu+1), which is known to be accurate for

Nu � 1 and, in turn, can be re-written in terms of a Gamma distribution, i.e., we
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have the distribution D0,m

(
S̄I
)
∼ G

(
Nt −Nu + 1, N−1

u (Nt −Nu + 1) Ω
)
. This implies

(m0,Ω0) = (Nt −Nu + 1,Ω/Nu) [4, Eq. (2.22)]. In Section 2.6, these approximations

are shown to be accurate enough for typical MIMO setups.

2.5 Insights from the Mathematical Framework

In this section, we elaborate further on the analysis of the proposed mathematical frame-

work in an attempt of shedding lights on the impact of system parameters and MIMO

transmission scheme on the achievable performance. In particular, we focus our atten-

tion on the interference-limited regime, since this is the most interesting case study for

cellular networks and it is more mathematically tractable as well. Thus, our departing

point is (2.24). Furthermore, we focus our attention on constant-envelope modulations,

e.g., multi-level PSK, as they lead to a simplified mathematical analysis and experi-

ences confirm that similar conclusions can be drawn for other modulations. In this case,

the expectations in Table 2.2 can be computed in closed-form, since
∣∣∣η(m)

0

∣∣∣ = 1 for

m = 1, 2, . . . ,M .

Under these assumptions and from (2.24), the ASEP of PSK modulation can be formu-

lated as follows:

ASEPPSK = I(∞) (α, β, γ)

=
α

π
− m0

π

∫ +∞

0

T (z;m0, α)

p1F1 (−1/b; 1−1/b;− (κMIMO/κMOD) z)− p+ 1
dz

(2.33)

where i) (α, β, γ) = (π − π/M, 2, π/M), ii) κMOD = (1/2)β sin2 (γ) = sin2 (π/M), iii)

(m0, κMIMO) = (Nr, 1) for SIMO, iv) (m0, κMIMO) = (NrNt,M/p̄) for OSTBCs, v)

(m0, κMIMO) = (Nr −Nt + 1,M = Nt) for ZF reception, and finally, vi) (m0, κMIMO) =

(Nt −Nu + 1,M = Nu) for ZF precoding.

Proposition 2.3. Let ASEPPSK in (2.33). The following approximation holds:

ASEPPSK ≈ K(0)
PSK −

K(0)
PSK

√
πΓ
(
K(1)

PSK

)G2,3
4,3

K(2)
PSK

∣∣∣∣∣∣ 1/2 0 0 1

0 K(1)
PSK 0

 (2.34)

where K(0)
PSK = 1/2 if M = 2 and K(0)

PSK = 1 if M ≥ 4, K(1)
PSK = m0 and K(2)

PSK =

p (b− 1)−1 sin−2 (π/M)κMIMO.
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Proof: See Appendix 2.D. �

In spite of being an approximation, (2.34) is surprisingly simple and insightful. In par-

ticular, it depends on two main parameters, i.e., K(1)
PSK and K(2)

PSK. By direct inspection

of the Meijer G-function in (2.34), it follows that ASEPPSK monotonically decreases as

K(1)
PSK increases and that it monotonically increases as K(2)

PSK increases. From (2.34), the

following performance trends can be inferred:

• The ASEP gets worse as either p or M increase. Also, it gets better as b increases.

These trends are in agreement with previously reported results for specific MIMO

transmission schemes [25].

• Let M be fixed and independent of other MIMO parameters. The ASEP gets

worse as κMIMO increases. This implies that the error performance gets worse as

M , i.e., the number of simultaneously transmitted information symbols, increases

for OSTBCs, ZF reception (Nt = M) and ZF precoding (Nu = M).

• Let the rate R = (M/Ns) log2 (M) be fixed and M be computed from it, i.e., M =

2R(M/Ns)
−1

. Thus, K̄(2)
PSK = sin−2 (π/M)κMIMO ∝ 22R(M/Ns)

−1
M . Accordingly,

the error performance is expected to get better as M increases (e.g., M = Nt for

ZF reception and M = Nu for ZF precoding).

• The ASEP gets better as m0 increases. Thus, the error performance gets better

with the “degrees of freedom” of MIMO transmission. For example, this occurs if:

i) Nr increases for SIMO, ii) NrNt increases for OSTBCs, iii) Nr − Nt increases

for ZF reception, and iv) Nt −Nu increases for ZF precoding.

• The first three case studies assume that K(1)
PSK is fixed, while the fourth that K(2)

PSK

is fixed. For some MIMO setups, however, K(1)
PSK and K(2)

PSK may not be chosen

independently of each other. Because of the opposite behavior of (2.34) as a

function of K(1)
PSK and K(2)

PSK, some non-trivial trends may emerge.

These considerations are reasonable, somehow expected and in agreement with intuition.

They confirm the validity of our mathematical approach for performance evaluation of

cellular networks. At the same time, (2.34) provides a simple mathematical formulation

that allows us to quantify the impact of important system parameters. In particular,
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(2.34) accounts for a large number of MIMO transmission schemes via the parameter

κMIMO. These trends are substantiated in Section 2.6 with the aid of Monte Carlo

simulations.

2.6 Numerical and Simulation Results

In this section, numerical examples are shown to substantiate the accuracy of the math-

ematical frameworks and to confirm the performance trends highlighted in Section 2.5.

The frameworks are compared against Monte Carlo simulations, which are obtained by

using the similar procedure described in [21, Sec. V], [25, Sec. VI]. To increase the

readability, the methodology used for the evaluation of ASEP is described as follows:

Step 1: A finite circular area of radius RA around the origin, i.e., where the probe

mobile terminal is located, is considered as the simulated area. The radius is chosen

to be sufficiently large to minimize the truncation error committed in simulating

the infinite bi–dimensional plane. In practice, the radius is chosen such that at

least 1000 BSs are simulated.

Step 2: In the finite circular region of area, the number of BSs are generated as a RV

following the Poisson distribution with density λ and area πR2
A, and the BSs are

distributed following a uniform distribution over the simulated area.

Step 4: The closest BS is chosen as the serving BS of the MT, while all other active

BSs are interfering nodes to the useful link.

Step 5: Independent channel gains are generated for each link from the BS to the MT,

the precoding matrices are generated at each BS accordingly.

Step 6: Given the received signal from all the active BSs in Ns time–slots, the MT

decodes M intended information symbols by the demodulator in (2.16).

Step 7: Finally, by repeating Step 1–Step 7 for Nmc = 106 times, the ASEP is computed

by the number of incorrect estimations of the transmitted symbols divided by

MNmc.

The accuracy of the PPP-based abstraction with unified path-loss model for modeling

the error performance of cellular networks is investigated in [25, Sec. VI], by comparing
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it with grid-based abstraction models. Hence, similar curves are not reported in this

section. The simulation setup is summarized in the caption of each figure, where markers

show Monte Carlo simulations, solid lines the framework from (2.23) and dashed lines

the framework from (2.24). As for the implementation of the mathematical frameworks

for QAM with M ≥ 4, the parameters as follows are used: α1 = π/2, β1 = 3/(M− 1),

γ1 = π/2, δ1 = 4
(√

M− 1
)/√

M and α2 = π/4, β2 = 6/(M− 1), γ2 = π/4, δ2 =

4
(√

M− 1
)2/

M. If M = 2, the quadruplet (α, β, γ, δ) = (π/2, 2, π/2, 1) is used.

Selected numerical examples are illustrated in Figs 2.2–2.6, where the ASEP is depicted

as a function of E/N0, which is a reference signal-to-noise-ratio that is computed at

a fixed reference distance of one meter from the transmitter. These figures confirm

the accuracy of the proposed mathematical frameworks. Furthermore, the performance

trends highlighted in Section 2.5 as a function of the MIMO setups are confirmed. The

approximations proposed in Section 2.4.2 (see Fig. 2.4(b)) and in Section 2.4.4 (see

Fig. 2.5(b)) are confirmed to be sufficiently accurate in the considered setup. Similar

accuracies are obtained for different parameters. Some figures deserve special comments.

In agreement with [25], Fig. 2.2 confirms that the impact of the fading severity is neg-

ligible in the presence of other-cell interference. The path-loss exponent has a different

impact in noise- and interference-limited regimes. In particular, a bigger path-loss is

beneficial in interference-limited cellular networks, since the other-cell interference is re-

duced. Figure 2.3(b) shows a similar behavior in the presence of receive-diversity. Figure

2.3(a) confirms that receive-diversity is still beneficial, but the gain in the presence of

other-cell interference is reduced compared to the noise-limited scenario. The limited

receive diversity gain in the interference–limited network is due to the partial correla-

tion of the interference seen at each receive antenna. Specifically, in the noise-limited

scenario, the receive diversity originates from the independence of the channel gains as

well as the independence of the additive Gaussian noise of each link. When the system

is interference–limited, the positions of the interfering nodes are the same for all the

co–located receive antennas, which indicates that the aggregate interference is partially

correlated, which reduces the diversity.

Figure 2.4 shows that the performance gain offered by transmit-diversity compared to

receive-diversity in noise-limited networks is not observable in the presence of other-cell
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Figure 2.2: ASEP of SISO transmission over Nakagami-m fading (Ω = 1). Setup: (a)
λ = 10−5, p = 10−3, M = 16, and b = 2; (b) λ = 10−5, p = 10−3, M = 16, and m = 2.

interference. In fact, the ASEP of Fig. 2.3(a) and Fig. 2.4(a) is almost the same. This

result can be understood by direct inspection of (2.34). K(1)
PSK is larger for OSTBC than

for SIMO, which would lead to a better ASEP for OSTBC. κMIMO, however, is larger for

OSTBC than for SIMO, which would lead to a worse ASEP for OSTBC. This trade-off

leads to the almost no gain of transmit-diversity in the considered setup.

Figure 2.5 compares ZF reception and ZF precoding under similar operating conditions,

and under the assumption that M is independent ofNt andNu, respectively. As discussed

in Section 2.5, the figure confirms that the ASEP gets worse by increasing Nt and Nu.

A close inspection of Figs. 2.5(a) and 5(b) reveals that ZF reception and precoding

provide almost the same performance in the interference-limited regime. Architectural

design and mo/demodulation complexity are, however, quite different between them.

Figure 2.6 provides a sound confirmation of some non-trivial trends highlighted in Section

2.5. Figure 2.6(a) shows that the ASEP may get worse by increasing Nt, while Fig.

2.6(b) shows that the ASEP gets better by increasing Nt. The trend in Fig. 2.6(a)

originates from the fact that K(1)
PSK decreases by increasing Nt and that this effect is not
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Figure 2.3: ASEP of SIMO transmission over Rayleigh fading (Ω = 1). Setup: (a)
λ = 10−5, p = 10−3, M = 16, and b = 2; (b) λ = 10−5, p = 10−3, M = 16, and Nr = 2.

counterbalanced by the reduction of the modulation order M. On the other hand, the

trend in Fig. 2.6(b) follows because K(1)
PSK is kept fixed by increasing Nr. As a result,

reducing the modulation order M is beneficial (K(2)
PSK decreases).

In conclusion, the proposed mathematical frameworks are sufficiently accurate and in-

sightful to the analysis, design and optimization of MIMO-aided cellular networks.

2.7 Conclusion

In this chapter, a new mathematical methodology for performance evaluation of downlink

MIMO cellular networks is introduced. The proposed approach relies on a PPP-based

abstraction model for the locations of cellular BSs and it exploits results from stochastic

geometry for the computation of the distribution of the other-cell interference. Based

on a new exact and closed-form expression of the CF of the other-cell interference, an

EiD representation for it is introduced, which is shown to be conveniently formulated

in terms of an infinite summation of conditionally Gaussian and independent RVs with
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Figure 2.4: ASEP of OSTBC transmission over Rayleigh fading (Ω = 1). Setup: (a)
H2 code in [34, Eq. (32)] (Alamouti), λ = 10−5, p = 10−3, M = 16 (R = 4bpcu), and
b = 2; (b) H3 code in [34, Eq. (39)], λ = 10−5, p = 10−3, M = 16 (R = 3bpcu), and

b = 2.

zero mean and finite variance. By capitalizing on this mathematical formulation, a two-

fold integral expression of the error probability for various MIMO transmission schemes

is computed. In the interference-limited regime, exact single-integral and closed-form

approximated expressions are provided, which are shown to offer insightful information

on the impact of system parameters and MIMO setups.

The application of the EiD-based approach goes beyond the performance evaluation

of downlink MIMO cellular networks. It can, in principle, be applied to all system

setups where non-Gaussian distributed RVs possess an EiD representation that can be

formulated in terms of complex Gaussian RVs with zero mean. For example, the authors

have recently extended it for application to heterogeneous cellular networks with an

arbitrary number of tiers, different densities, transmit powers and biases for each tier

[37]. Other potential generalizations and applications of the EiD-based approach include

the analysis of heterogeneous cellular networks with channel coding at the physical layer

as well as the analysis of relay-aided (heterogeneous) cellular networks [13, 14, 16].
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Figure 2.5: ASEP of ZF-based MIMO transmission over Rayleigh fading (Ω = 1).
Setup: (a) ZF reception, λ = 10−5, p = 10−3, M = 16, b = 2, and Nr = 4; (b) ZF

precoding, λ = 10−5, p = 10−3, M = 16, b = 2, and Nt = 4.

Appendix

2.A Useful Notable Integrals

Notable Integral 2.1. Let p be a complex number with Re {p} > 0. Let X be a

non-negative real number. The following identity holds [38, Eq. (6)]:

X−p =
1

Γ (p)

∫ +∞

0
zp−1 exp {−zX} dz (2.35)

Notable Integral 2.2. Let p be a complex number with Re {p} > 0. Let X be a

non-negative real number. The following identity holds [39, Eq. (4)]:

exp {−p/X} = 1−√p
∫ +∞

0
z−1/2J1 (2

√
pz) exp {−zX} dz (2.36)
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Figure 2.6: ASEP of ZF-based MIMO reception over Rayleigh fading (Ω = 1). Setup:
(a) λ = 10−5, p = 10−3, b = 2, and Nr = 4; (b) λ = 10−5, p = 10−3, and b = 2.

Notable Integral 2.3. Let m be a real number with m ≥ 1/2. Let s and X be

non-negative real numbers. The following identity holds [20, Eq. (18)]:

sΓ (m+ 1)X1/2
1F1 (m+ 1; 2;−sX)

=

∫ +∞

0

√
szzm−1 exp {−z} J1

(
2
√
szX

)
dz

(2.37)

Notable Integral 2.4. Let m be an integer number with m ≥ 1/2. Let ω be a real

number, and X and µ be non-negative real numbers. The following identity holds [40]
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and [20, Eq. (22)].

T (X;m,µ)

=

∫ µ

0

1

sin2 (ω)
1F1

(
m+ 1; 2;− X

sin2 (ω)

)
dω

=



m−1∑
k=0

(1−m)k
k!(2)k

Xk

[
exp{−X}

2

k∑
n=0

(
k
n

)
X−(n+1/2)Γ

(
n+ 1

2 , X cot2 (µ)
)]
,

if 0 ≤ µ ≤ π/2

m−1∑
k=0

(1−m)k
k!(2)k

Xk

[
exp{−X}

2

k∑
n=0

(
k
n

)
X−(n+1/2)

(
2Γ
(
n+ 1

2

)
− Γ

(
n+ 1

2 , X cot2 (µ)
))]

,

if µ > π/2

(2.38)

2.B Proofs of Propositions and Lemmas

Proof of Proposition 2.1. The proof consists of two steps: 1) the CFs of D3 (·, ·, ·), i.e.,

CFD3 (·; ·), and of D(GCG)
3 (·, ·, ·), i.e., CFD(GCG)

3

(·; ·), conditioned upon r0 are computed

and 2) it is shown that they are the same, thus proving their equivalence in distribution.

The CF of D3 (·, ·, ·) is computed by using the same steps as in [15, Proposition 1].

To make the report self–contained, the proof in [15, Proposition 1] is repeated here.

The difference is that the channel envelopes are assumed to have a generic distribution

instead of being Rayleigh distributed. The channel phase is, on the other hand, always

uniformly distributed. In particular, the CF conditioned on r0 can be computed as

follows,

CFD3 (ω; r0)

= E|r0

exp

−jω ∑
i∈Ψ(\0)

√
E/Ntr

−b
i Z0,i


(a)
= exp

[
−2πpλ

∫ +∞

r0

(
1− CFZ0,i

(
ω

√
E

Nt
r−bi

))
dri

]
(b)
= exp

[
−2πpλ

∫ +∞

r0

(
1− EZ0,i

{
cos

(
|ω|
√
E

Nt
r−bi Z

(re)
0,i

)})
dri

]
(c)
= exp

{
−pλπr2

0EZ0,i

{
−1 + 1F2

(
−1

b
;
1

2
, 1− 1

b
;−|ω|

2

4

E

Nt
r−2b

0

(
Z(re)

0,i

)2
)}}

(d)
= exp

−pλπr2
0

+∞∑
q=1

(−1/b)q
(1/2)q (1− 1/b)q

(−1)q

q!

(
|ω|2

4

E

Nt
r−2b

0

)q
E
{(
Z(re)

0,i

)2q
}

(2.39)
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where (a) follows by applying the Probability Generating Functional (PGFL) theorem of

PPPs [7], (b) follows because, as mentioned in Remark 2.3, the RVs Z0,i are spherically

symmetric and, thus, property iv) in Remark 2.2 holds, (c) follows by solving the integral

with respect to ri with the aid of [41, Eq. (3.771.4)] and (d) follows from the series

expansion of the generalized hypergeometric function [2, Ch. 5, Eq. (2)].

From (2.39), it follows that CFD3 (ω; r0) = CFD3

(
|ω|2 ; r0

)
, in other word, the CF of

D3 (·, ·, ·) depends only on the absolute value of ω. It proves, according to Remark 2.2,

that D3 (·, ·, ·) is a spherically symmetric RV. It is worth mentioning that this holds for

arbitrary values of r0 ≥ 0. Accordingly, the notation CFD3

(
|ω|2 ; r0

)
is used in what

follows.

Also, the CF of D(GCG)
3 (·, ·, ·) is computed as follows:

CFD(GCG)
3

(ω; r0)

= E{Gq},{Bq}

exp

−jω√E/Nt

+∞∑
q=1

(
r

(−b+1/q)
0 (pλπ)1/(2q)

√
BqGq

)


(a)
=

+∞∏
q=1

E{Bq}

{
exp

{
−s |ω|

2

4

E

Nt
r
−2b+2/q
0 (pλπ)1/qσ2

Gq

(
S̄I,∆0(τ )

)
Bq

}}

=
+∞∏
q=1

exp

{
−

(
|ω|2

4

E

Nt
r
−2b+2/q
0 (pλπ)1/q

)q
σ2q
Gq

(
S̄I,∆0(τ )

)}
(2.40)

where (a) is by the independence of {Gq}∞q=1, {Gq}∞q=1 and by the CF of a complex

zero mean Gaussian RB. Finally, by inserting (2.13) in (2.40) and by comparing it with

(2.39), we found that they are exactly the same. Thus, D3 (·, ·, ·) and D(GCG)
3 (·, ·, ·) are

equivalent in distribution.

Proof of Lemma 2.1. By definition, Ehi

{(
Z(re)

0,i

)2q
}

(a)
= |si|2q |h0|2q |∆0|2q K1K2, with:



K1 = E|hi|2
{
|hi|2q

}
(b)
=

Γ (m+ q)

Γ (m)mq
Ωq

K2 = Earg{hi}
{

cos2q (arg {hi}+ arg {si + h0 + δ0})
}

(c)
=

1

2π

∫ 2π

0
cos2q (x) dx

(d)
=

Γ (q + 1/2)

Γ (q + 1)
√
π

(2.41)

where (a) follows from the statistical independence of |hi|2 and arg {hi}; (b) follows from

[4, Eq. (2.23)]; (c) follows from the fact that arg {hi} is uniformly distributed in [0, 2π)
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and that the integral is independent of the constant term arg {si + h0 + δ0}; and (d)

follows from [41, Eq. (2.516.2)] and Γ (q + 1/2) = 2−q
√
π (2q − 1)!!. The proof follows

by computing the expectation with respect to si.

Proof of Lemma 2.2. Let Z0,i in (2.9). By definition, the following identity holds

Z(re)
0,i =

Nr∑
r=1

Nt∑
t=1

Ns∑
τ=1

∣∣∣H(r,t)
i

∣∣∣ ∣∣∣s(t)
i (τ)

∣∣∣ ∣∣∣U(r)
0 (τ)

∣∣∣
× cos

(
arg
{

H
(r,t)
i

}
+ arg

{
s

(t)
i (τ)

}
+ arg

{
U

(r)
0 (τ)

})
(a)∼ N|U0(τ ),si(τ )

0,
Ω

2

Nr∑
r=1

Nt∑
t=1

∣∣∣∣∣
Ns∑
τ=1

s
(t)
i (τ) U

(r)
0 (τ)

∣∣∣∣∣
2


(2.42)

where (a) is by
∣∣∣H(r,t)

i

∣∣∣ cos
(

arg
{

H
(r,t)
i

}
+ arg

{
s

(t)
i (τ)

}
+ arg

{
U

(r)
0 (τ)

})
∼ N (0,Ω/2)

and that H
(r,t)
i are i.i.d. RVs with zero mean. From (2.42), the raw moments with respect

to Hi are computed with the aid of [42, Eq. (13)]. The proof follows by computing the

expectation with respect to si(τ ).

Proof of Lemma 2.3. By direct inspection of (2.7) and (2.29), it follows that Λm (·) is

the decision metric of a single-stream demodulator in zero-mean AWGN, by conditioning

upon r0, {Bq}+∞q=1 , S̄I [4, Ch. 7]. By conditioning upon r0, {Bq}+∞q=1 , S̄I , in fact, the first

addend of (2.7) is a constant and the last two addends of (2.7) are Gaussian RVs with

zero mean. Accordingly, from [20, Sec. IV-B, Table III], the ASEP can be formulated

as follows:

ASEPm = E,r0,{Bq}+∞q=1,S̄I

{
δ1

π

∫ α1

0
exp

{
−β1 sin2 (γ1)

2 sin2 (ω)
Υm

}
dω

−δ2

π

∫ α2

0
exp

{
−β2 sin2 (γ2)

2 sin2 (ω)
Υm

}
dω

} (2.43)

where Υm = Υm

(
r0, {Bq}+∞q=1 , S̄I

)
is the conditional SINR, which, from (2.7), is de-

fined as Υm

(
r0, {Bq}+∞q=1 , S̄I

)
= E∆0(τ )

{
Υm

(
r0, {Bq}+∞q=1 , S̄I ,∆0(τ )

)}
, which can be
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calculated by

Υm

(
r0, {Bq}+∞q=1 , S̄I ,∆0(τ )

)
(a)
=

(
E
Nt

)2
r−4b

0 D2
1,m

(
S̄I ,∆0(τ )

)
4
(
E
Nt

)
r−2b

0

(
σ2

N
2

)
+ 4

(
E
Nt

)
r−2b

0

(
σ2

I
2

)
(b)
=

(
E
Nt

)
r−2b

0 D̄0

(
S̄I
)
D̃0,m (∆0(τ ))

2N0 + 2
(
E
Nt

)∑+∞
q=1

(
r

(−2b+2/q)
0 (pλπ)1/q Bqσ̄2

Gq

)
(2.44)

where (a) follows from (2.7) and shorthands σ2
N = En(τ )

{∣∣D2,m

(
S̄I ,∆0(τ ),n (τ )

)∣∣2}
and σ2

I = E{Gq}+∞q=1

{∣∣∣D(GCG)
3,m

(
S̄I ,∆0(τ ), iagg (τ ; r0)

)∣∣∣2} and (b) follows from the equal-

ities in (2.6) and (2.15), i.e., σ2
N =

[
D2

1,m

(
S̄I ,∆0(τ )

)/
D0,m

(
S̄I ,∆0(τ )

)]
N0 for noise-

related term and interference-related σ2
I =

[
(E/Nt)

∑+∞
q=1

(
r

(−2b+2/q)
0 (pλπ)1/q Bqσ̄

2
Gq

)]
×
[
D2

1,m

(
S̄I ,∆0(τ )

)/
D0,m

(
S̄I ,∆0(τ )

)]
.

Since E∆0(τ )

{
D̃0,m (∆0(τ ))

}
= 2, the conditional SINR Υm simplifies to:

Υm = Υm

(
r0, {Bq}+∞q=1 , S̄I

)
=

E

Nt
r−2b

0 D̄0

(
S̄I
)N0 +

E

Nt

+∞∑
q=1

(
r

(−2b+2/q)
0 (pλπ)1/q Bqσ̄

2
Gq

)−1
(2.45)

The proof follows by applying the MGF-based approach [4] to the computation of

ED̄0(S̄I) {·}.

Proof of Lemma 2.4. Let us start from the identity D2
1

(
S̄I ,∆0(τ )

)/
D0

(
S̄I ,∆0(τ )

)
=

|h0|2 |∆0|2. Then the following equalities hold,

Q (X) =

+∞∑
q=1

(
Xσ̄2

Gq

)q
=

+∞∑
q=0

(
Xσ̄2

Gq

)q
− 1

(a)
=

+∞∑
q=0

(−1/b)q
(1/2)q (1− 1/b)q

(−1)q

q!

Γ (m+ q)

Γ (m)

Γ (q + 1/2)

Γ (q + 1)
√
π

(
Ω

m
X

)q
Esi
{
|si|2q

}
− 1

(b)
= Esi


+∞∑
q=0

(−1/b)q
(1/2)q (1− 1/b)q

(−1)q

q!

Γ (m+ q)

Γ (m)

Γ (q + 1/2)

Γ (q + 1)
√
π

(
|si|2

Ω

m
X

)q− 1

(2.46)
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where (a) follows from (2.13) and (b) originates from the linearity property of the

expectation operator. Equation (2.25) is obtained from the series representation of

the generalized hypergeometric function [2, Ch. 5, Eq. (2)] and from the equality

Γ(m+q)Γ(q+1/2)
(1/2)qΓ(m)Γ(q+1)

√
π

=
(m)q
(1)q

for every q.

Proof of Lemma 2.5. We know that the relation D2
1

(
S̄I ,∆0 (τ )

)/
D0

(
S̄I ,∆0 (τ )

)
=∑Nr

r=1

∑Ns
τ=1

∣∣∣U(r)
0 (τ)

∣∣∣2 holds. Then, the following equalities hold

Q (X) =
+∞∑
q=1

(
Xσ̄2

Gq

)q
=

+∞∑
q=0

(
Xσ̄2

Gq

)q
− 1

(a)
=

+∞∑
q=0

(−1/b)q
(1/2)q (1− 1/b)q

1

q!

√
π

Γ (1/2− q)
(XΩ)q Esi(τ ) {(φ (si (τ )))q} − 1

(b)
= Esi(τ )


+∞∑
q=0

(−1/b)q
(1/2)q (1− 1/b)q

1

q!

√
π

Γ (1/2− q)
(φ (si (τ )) ΩX)q

− 1

(2.47)

where (a) follows from (2.13) and (b) originates from the linearity property of the

expectation operator. Equation (2.27) is obtained from the series representation of

the generalized hypergeometric function [2, Ch. 5, Eq. (2)] and from the equality
√
π
[
(1/2)q Γ (1/2− q)

]−1
= (−1)q for every q.

2.C Proofs of Theorems and Corollaries

Proof of Theorem 2.1. Let the MGF of the SINR be defined asMSINR

(
s; r0, {Bq}+∞q=1

)
=

MD̄0

(
sSINR

(
r0, {Bq}+∞q=1

))
, where the SINR

(
r0, {Bq}+∞q=1

)
is given in (2.19). Then,
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the following equalities hold,

MSINR

(
s; r0, {Bq}+∞q=1

)
=

1 + s
(E/Nt) Ω0r

−2b
0

N0 + (E/Nt)
∑+∞

q=1

(
r

(−2b+2/q)
0 (pλπ)1/q Bqσ̄2

Gq

)
−m0

(a)
=

1

Γ (m0)

∫ +∞

0
xm0−1 exp{−x}

× exp

−
(
E
Nt

)
Ω0s

N0r2b
0 +

(
E
Nt

)+∞∑
q=1

(
r

2/q
0 (pλπ)1/q Bqσ̄2

Gq

)x

 dx

(b)
= 1− 1

Γ (m0)

∫ +∞

0
xm0−1 exp {−x}

×

[√
EΩ0

Nt
sx

∫ +∞

0
y−1/2J1

(
2

√
EΩ0

Nt
sxy

)
exp

{
−yA

(
r0, {Bq}+∞q=1

)}
dy

]
dx

(c)
= 1−m0

EΩ0

Nt
s

∫ +∞

0
1F1

(
m0 + 1; 2;−EΩ0

Nt
sy

)

× exp

−y
N0r

2b
0 +

E

Nt

+∞∑
q=1

(
r

2/q
0 (pλπ)1/q Bqσ̄

2
Gq

) dy

(2.48)

where: (a) follows from (2.35), (b) follows from (2.36),
∫ +∞

0 xm0−1 exp {−x} dx = Γ (m0)

and by using the shorthandA
(
r0, {Bq}+∞q=1

)
= N0r

2b
0 +(E/Nt)

∑+∞
q=1

(
r

2/q
0 (pλπ)1/q Bqσ̄

2
Gq

)
,

and (c) follows from (2.37).

The next step is the computation of the expectation with respect to the RVs {Bq}+∞q=1,

i.e., MSINR (s; r0) = E{Bq}+∞q=1

{
MSINR

(
s; r0, {Bq}+∞q=1

)}
. From (2.48), the following

equalities hold:

MSINR

(
s;σ2

IAI, r0

)
= 1−m0

EΩ0

Nt
s

×
∫ +∞

0
1F1

(
m0 + 1; 2;−EΩ0

Nt
sy

)
exp

{
−yN0r

2b
0

}
S (y; r0) dy

(2.49)
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S (y; r0) = E{Bq}+∞q=1

exp

−y ENt

+∞∑
q=1

(
r

2/q
0 (pλπ)1/q Bqσ̄

2
Gq

)


(a)
=

+∞∏
q=1

EBq

{
exp

{
−y E

Nt
r

2/q
0 (pλπ)1/q Bqσ̄

2
Gq

}}
(b)
=

+∞∏
q=1

exp

{
−
(
y
E

Nt
r

2/q
0 (pλπ)1/q σ̄2

Gq

)q}

= exp

−pλπr2
0

+∞∑
q=1

(
y
E

Nt
σ̄2
Gq

)q
= exp

{
−pλπr2

0Q
(
y
E

Nt

)}

(2.50)

where: (a) holds because the RVs {Bq}+∞q=0 are independent for every q and (b) fol-

lows from MBq (s) = exp {−sq}. Also, Q (·) is defined in (2.20). The final step

is the computation of the expectation with respect to the RV r0, i.e., MSINR (s) =

Er0 {MSINR (s; r0)} =
∫ +∞

0 MSINR (s; ξ) fr0 (ξ) dξ. With the aid of some changes of

variables, the final expression can be formulated as shown in (2.20). This concludes the

proof.

Proof of Corollary 2.1. The proof follows from (2.20) by letting N0 = 0 and by

computing the integral with respect to the variable x with the aid of the notable integral∫ +∞
0 exp {−Kx} dx = 1/K for K > 0.

Proof of Theorem 2.2. With the aid of (2.20), I (·, ·, ·) in (2.22) can be re-written as

follows,

I (α, β, γ)

=
1

π

∫ α

0
MSINR

(
β sin2 (γ)

2 sin2 (ω)

)
dω

(a)
=
α

π
−m0λ

∫ +∞

0

∫ +∞

0
exp

{
−
(

E

N0Nt

)−1 z

κΩ0
xb

}
exp

{
−πλQ̃

(
z

κΩ0

)
x

}
×
(

z

κΩ0

)[∫ α

0

1

sin2 (ω)
1F1

(
m0 + 1; 2;− z

sin2 (ω)

)
dω

]
dxdz

(2.51)

where (a) follows from the change of variable (E/Nt)κΩ0y = z and by exchanging the

order of integration. The proof follows by computing the integral in the square brackets

with the aid of (2.38).
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Proof of Corollary 2.2. The proof follows from (2.23) by letting N0 = 0 and by

computing the integral with respect to the variable x with the aid of the notable integral∫ +∞
0 exp {−Kx} dx = 1/K for K > 0.

2.D Proof of Proposition 2.3

From (2.33), we have the equalities below

ASEPPSK

(a)
≈ α

π
− m0

π

∫ +∞

0

T (z;m0, α)

1 + k̄z
dz

(b)
=
α

π
− m0

π

∫ α

0

(∫ +∞

0

1F1 (m0 + 1; 2;−y)

1 + k̄ sin2 (ω) y
dy

)
dω

(c)
=
α

π
− 1

πΓ (m0)

∫ α

0
G2,2

3,2

k̄ sin2 (ω)

∣∣∣∣∣∣ 0 0 1

0 m0

 dω

(d)
≈ κ0

2
− κ0

πΓ (m0)

∫ π/2

0
G2,2

3,2

k̄ sin2 (ω)

∣∣∣∣∣∣ 0 0 1

0 m0

 dω

(e)
=
κ0

2
− κ0

2πΓ (m0)

∫ 1

0
x−1/2 (1− x)−1/2G2,2

3,2

k̄x
∣∣∣∣∣∣ 0 0 1

0 m0

 dω

(f)
=
κ0

2
− κ0

2
√
πΓ (m0)

G2,3
4,3

k̄
∣∣∣∣∣∣ 1/2 0 0 1

0 m0 0



(2.52)

where: (a) follows by using the series representation of the generalized hypergeomet-

ric function [2, Chapter 5, Eq. (2)], i.e., 1F1 (−1/b; 1−1/b;− (κMIMO/κMOD) z) ≈

1 + (b− 1)−1 (κMIMO/κMOD) z and by introducing k̄ = (b− 1)−1 p (κMIMO/κMOD); (b)

follows from (2.38) and some changes of variable; (c) follows by using the Mellin-Barnes

integration theorem [3, Eq. (2.24.1.1)]; (d) follows from α = π − π/M = π/2 for M = 2,

from the approximation α = π− π/M ≈ π for M ≥ 4 and from the symmetry of sin2 (·).

In particular, κ0 = 1 if M = 2 and κ0 = 2 if M ≥ 4; (e) follows from the change of

variable x = sin2 (ω); (f) follows from [41, Eq. (7.811.2)]. The proof follows by inserting

the specific parameters of PSK modulation in (2.52).



Chapter 3

Stochastic Geometry Analysis of

Relay-aided Cellular Networks

3.1 Introduction

The deployment of Relay Nodes (RNs), as network infrastructure elements without a

dedicated wired backhaul connection, has been considered by the IEEE 802.16j working

group [43] and by the Third Generation Partnership Project’s Long Term Evolution

Advanced (3GPP LTE-A) [44] for enhancing, in a cost–effective manner, coverage and

rate of cellular networks. Currently, practical cellular networks employ half–duplex

RNs, i.e., the RNs can either receive or transmit data but not at the same time and

on the same frequency, for forwarding data packets from the Base Stations (BSs) to

the Mobile Terminals (MTs). Several protocols have been proposed in the literature for

relay-aided cellular networks, which include Amplify–and–Forward (AF), Decode–and–

Forward (DF) and Demodulate–and–Forward (DemF) relaying [45].

The available literature on the mathematical performance evaluation of relay-aided wire-

less networks is vast, and it encompasses noise-limited [46–49] and interference-limited

[50–57] operating scenarios. Further information is available in [13, 14]. Even though

the available frameworks provide relevant insight on the performance of relay-aided wire-

less networks, they are not directly applicable to cellular networks. They, in fact, are

applicable either to network deployments where the locations of BSs and RNs are fixed

and known a priori (see, e.g., [50–52]) or to ad hoc networks, where the interferers are

50
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randomly located in the whole plane and, thus, the notion of cell is not explicitly taken

into account (see, e.g., [13, 14, 54, 58]). Furthermore, the interference generated by the

RNs is not considered in the system model, which, on the other hand, is one of the main

challenges faced by deploying RNs in cellular networks [44].

In this chapter, we develop a tractable approach to the mathematical performance eval-

uation and optimization of relay-aided cellular networks, which explicitly accounts for

the centralized nature of cellular networks as opposed to their ad hoc counterpart. The

motivation and the significance of our work lie in understanding and quantifying the

impact of the presence of the RNs in cellular networks. Since the operating principle

of cellular networks is different from ad hoc networks, the conclusions and the insights

from [14, 50–56] cannot be guaranteed to hold, a priori, for relay-aided cellular networks.

Notably, a fundamental challenge of relay-aided cellular networks, compared with ad hoc

and cellular networks, lies in the cell association criterion, which consists of selecting a

pair of serving BS and RN. As a result, new mathematical frameworks to shed light on

and to quantify the benefits of deploying the RNs in the presence of other-cell interfer-

ence and using practical cell association criteria to choose the pair of serving BS and

RN are needed. To the best of the authors’ knowledge, no mathematical approach of

this kind is available in the literature.

To this end, we capitalize on the so-called stochastic geometry abstraction modeling

of cellular networks [24], which, since its first inception in [10], has been routinely

used for system-level performance evaluation and optimization due to its mathemati-

cal tractability and accuracy [59, 60]. This approach has been successfully applied to

the modeling and analysis of downlink cellular networks [10, 15], multi-antenna cellular

networks [26, 27, 61], heterogeneous cellular networks [21–23, 62], uplink cellular net-

works [63, 64] and millimeter-wave cellular networks [65, 66], just to cite some relevant

examples. Recent developments in this field of research are available in [61]. To the best

of the authors’ knowledge, stochastic geometry modeling has never been applied to the

analysis of relay-aided cellular networks.

In the present chapter, we exploit stochastic geometry for modeling relay-aided down-

link cellular networks, as well as we introduce a tractable mathematical framework for

computing coverage, rate and for studying the role of the RNs in cellular networks.

More specifically, the locations of BSs, RNs and MTs are modeled as points of three
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Table 3.1: Recurrent parameters and symbols.

Symbol Meaning

ΦX PPP of network elements X = {BS,RN,MT}
Φ

(I)
X PPP of interfering network elements X = {BS,RN}
λX density of network elements X = {BS,RN,MT}

NRB number of resource blocks
BS0, BSR0 serving BSs of one- and two-hop transmission

RN0 serving RN for two-hop transmission
MT0 probe MT
βX,Y path-loss exponent of the X-to-Y link
SX,Y shadowing of the X-to-Y link
hX,Y fast-fading of the X-to-Y link
PT total transmit power
PX transmit power of network element X
KT power splitting ratio

BBS, BRN bias coefficients
χ1hop, χ2hop one-, two-hop transmission probabilities

σ2
N thermal noise power

BW transmission bandwidth per resource block
ηcell = (BBSPT )/(BRN (1−KT )PT ) it is a shorthand notation

independent and homogeneous Poisson Point Processes (PPPs). A flexible cell associ-

ation and relay-aided transmission protocol based on the best biased average received

power are considered. It is shown that coverage and rate highly depend on the path-loss

exponents of one- and two-hop links, as well as that, if the system is not well designed,

the presence of RNs may provide negligible performance gains. By capitalizing on the

proposed analytical framework, a system-level and interference-aware optimization cri-

terion of the bias coefficients for cell association is proposed, which is shown to enhance

the end-to-end coverage probability in the interference-limited regime. In addition, it

guarantees that, regardless of the system setup, relay-aided cellular networks are never

worse than cellular networks (without using the RNs).

This chapter is organized as follows. In Section 3.2, the system model is introduced. In

Section 3.3, the problem is formulated in mathematical terms. In Section 3.4, the frame-

works for computing coverage and rate are provided, and relevant insights are discussed.

In Section 3.5, the mathematical analysis is validated via Monte Carlo simulations and

numerical results are presented. Finally, Section 3.6 concludes this chapter.

Recurrent parameters and symbols are summarized in Table 3.1.
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3.2 System Model

3.2.1 Network Deployment Modeling

A downlink relay-aided cellular network is considered. BSs, RNs and MTs are modeled

as points of three independent and homogeneous PPPs, which are denoted by ΦBS, ΦRN

and ΦMT of density λBS, λRN and λMT, respectively. In addition, BSs, RNs and MTs

are assumed to be equipped with a single antenna for both transmission and recep-

tion. The analysis of multi-antenna transmitters and receivers is postponed to future

research. Both BSs and RNs are assumed to have NRB Resource Blocks (RBs), e.g.,

carrier frequencies/wavelengths, available for serving the MTs. In general, every BS

provides service to multiple MTs. For each tagged MT, every BS picks at random and

with probability 1/NRB the RB where to transmit. The RNs transmit on the same RB

as the BS they are paired to, according to the association criterion and relaying protocol

described in Section 3.2.3. Further details on the load model and NRB are provided in

Section 3.2.4. Each RB is split in two time-slots. In the first time-slot, only the BSs

are allowed to transmit. In the second time-slot, only the RNs are allowed to transmit.

Further information on the relaying protocol is provided in Section 3.2.3. Without loss

of generality and in agreement with the Slivnyak theorem [7, vol. 1, Th. 1.4.5], the

performance of a typical MT located at the origin of the bi-dimensional plane is studied.

This typical MT is denoted by MT0. It can be served either via a one- or a two-hop link

with the aid of a RN. In the first case, the BS serving MT0 is denoted by BS0. In the

second case, the RN serving MT0 is denoted by RN0 and the BS serving RN0 is denoted

by BSR0. In the first time-slot, as a result, interference is generated by all active BSs

with the exception of the serving BS, i.e., BS0 or BSR0. In the second time-slot, on the

other hand, interference is generated by all active RNs with the exception of the serving

RN, i.e., RN0. Further information on BS association and relaying protocol are provided

in Section 3.2.3. Since we are interested in analyzing the performance of a typical MT,

MT0, the analysis is conducted for an arbitrary RB, where MT0 receives its intended

signal. The sets of interfering BSs and RNs in the RB of interest are denoted by Φ
(I)
BS

and Φ
(I)
RN, respectively. They are further detailed in Section 3.2.4.

Remark 3.1. Assuming that the RNs are distributed according to a PPP is particulary

suitable in the context of the present chapter for two main reasons. The RNs may be idle

MTs that are willing to assist the transmission of other active MTs. In this case, the PPP
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modeling assumption may be deemed to be appropriate. In other cases, on the other

hand, the RNs may be deployed by the network operators and, thus, their locations may

not be totally random. In our case study, however, we adopt a PPP-based abstraction

model for the locations of the BSs. In this context, a non-random deployment of the

RNs may be in contrast with it and may not be convenient for mathematical analysis.

Assuming the RNs to be distributed according to a PPP is, on the other hand, an

integral part of the PPP-based modeling of cellular networks [67]. In some scenarios,

the locations of BSs and RNs may exhibit some level of correlation. This correlation may

be modeled by using point processes that are not PPP. These scenarios are, however,

beyond the scope of the present report and they are postponed to a future research

contribution. It is worth emphasizing, finally, that several other papers available in the

literature have used a PPP for modeling the RNs, e.g., [68] and references therein. �

3.2.2 Channel Modeling

The channel model takes into account path-loss, shadowing and fast-fading, which are

described as follows. Throughout the present chapter, the propagation channels related

to network elements of the same type are assumed to be independent and identically

distributed (i.i.d.). If a generic BS-to-RN link is considered, e.g., from the BS BSi ∈ ΦBS

to the RN RNk ∈ ΦRN, the channel parameters are identified by using the subscript

“BS,RN”. A similar notation holds for the channel parameters related to other network

elements.

A. Path-Loss

Let rXi,Yk be the distance between two generic network elements Xi and Yk. Based

on the downlink network model of Section 3.2.1, we have Xi ∈ {BSi,RNi} and Yk ∈

{RNk,MTk}, where BSi, RNi and MTi denote the generic BS, RN and MT of ΦBS, ΦRN

and ΦMT, respectively. The path-loss, l (·), of this generic link is defined as l (rXi,Yk) =

κ0r
βX,Y
Xi,Yk

, where κ0 denotes the free-space path-loss at a distance of one meter and βX,Y >

2 denotes the power path-loss exponent. In particular, κ0 = (4π/ν)2, where ν is the

transmission wavelength. The considered path-loss is usually known as the “close-in”

model [69].



Chapter 3. Stochastic geometry analysis relay-aided cellular networks 55

B. Shadowing

In addition to the distance-dependent path-loss, the generic (Xi, Yk) link is subject to

mid-scale fading that is denoted by SXi,Yk . SXi,Yk is assumed to follow a log-normal dis-

tribution [70], whose PDF is fSXi,Yk (ξ) = 10log10(e)√
2πσ2

X,Y ξ
exp

(
−(10log10(ξ)−µX,Y )

2

(2σ2
X,Y )

)
[4], where

µX,Y and σ2
X,Y denote the mean and the variance of the random variable 10 log10 (SXi,Yk).

Spatial correlation of shadowing is not considered in this report. It may, however, be

taken into account as in [71].

C. Fast-Fading

Besides path-loss and shadowing, the generic (Xi, Yk) link is subject to a random complex

channel gain, which is denoted by hXi,Yk . The power gain |hXi,Yk |
2 is assumed to follow

an exponential distribution (i.e., Rayleigh fading is considered) having mean square

value equal to ΩX,Y . The probability density function of |hXi,Yk |
2 is f|hXi,Yk |

2 (ξ) =

(1/ΩX,Y ) exp (−ξ/ΩX,Y ) [4].

3.2.3 Cell Association and Relaying Protocol

The typical MT, MT0, can be served either via a one- or a two-hop link. In the first case,

MT0 is served by BS0 and a single time-slot is used. In the second case, MT0 is served by

RN0, which, in turn, is served by BSR0. In this latter case, two subsequent time-slots are

used. Thus, a half–duplex relaying cellular network is assumed. The extension to full–

duplex scheme is not that straightforward and has been postponed to future research.

More details are discussed in Section 3.5. A DF relaying protocol is considered [45]. As

a consequence, a typical downlink transmission may occur either in one or in two time-

slots. All transmissions in the same RB occur at the same transmission wavelength ν.

Let PT be the total transmit power budget for serving MT0. Let PBS0 , PRN0 and PBSR0

denote the transmit powers of BS0, RN0 and BSR0. In order to ensure the so-called

total power constraint [45], they are defined as PBS0 = PT , PRN0 = (1−KT )PT and

PBSR0
= KTPT , where 0 < KT < 1 is a power splitting coefficient.
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Figure 3.1: Coverage regions in the absence of shadowing in an area of 9 square
kilometers. Squares and triangles denote BSs and RNs, respectively. (a) Without
relays. (b) With relays. (c) Figures (a) and (b) are overlapped to show the difference.

Setup: PT = 40 dBm, KT = 0.5 and βBS,MT = βRN,MT = 4.

The triplet BS0, RN0 and BSR0 is identified by using the cell association criterion as

follows:

BS0 = arg min
BSi∈ΦBS

{
l (rBSi,MT0)

PTSBSi,MT0

}
; RN0 = arg min

RNk∈ΦRN

{
l (rRNk,MT0)

(1−KT )PTSRNk,MT0

}
BSR0 = arg min

BSi∈ΦBS

{
l (rBSi,RN0)

KTPTSBSi,RN0

} (3.1)

Remark 3.2. Eq. (3.1) ensures that MT0 receives the highest power from the available

BSs and RNs, as well as that the serving RN, RN0, receives the highest power from

the available BSs. Also, PT and KT do not affect the selection of BS0, RN0 and BSR0

in (3.1). They, in fact, are independent of the subscripts i and k. Moreover, BS0 and

BSR0 might be two different BSs on the plane or they may indicate the same BS which

provides the highest power to MT0 and the highest power to RN0 among all the BSs. �

Let the triplet of network elements BS0, RN0 and BSR0 from (3.1). The typical MT,

MT0, is served either via a one- or a two-hop link according to the cell association

criterion as follows:
one− hop : BS0 → MT0 if

l(rBS0,MT0)
BBSPTSBS0,MT0

≤ l(rRN0,MT0)
BRN(1−KT )PTSRN0,MT0

two− hop : BSR0 → RN0 → MT0 if
l(rBS0,MT0)
BBSPTSBS0,MT0

>
l(rRN0,MT0)

BRN(1−KT )PTSRN0,MT0

(3.2)

where BBS and BRN are non-negative constants, and BS0, RN0, BSR0 are obtained from

(3.1).
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Figure 3.2: Coverage regions in the presence of shadowing in an area of 9 square
kilometers. Squares and triangles denote BSs and RNs, respectively. Points with the
same color are served by the same BS in (a) and (b), and by the same RN in (c). (a)
Without relays. (b) With relays. (c) One cell of figure (b) is magnified to highlight the
association area of each RN of the cell. Setup: PT = 40 dBm, KT = 0.5, βBS,MT =

βRN,MT = 4, µBS,MT = µRN,MT = 0dB and σBS,MT = σRN,MT = 4dB.

Remark 3.3. The association/transmission criterion in (3.2) resembles the so-called bi-

ased cell association often used in multi-tier cellular networks [23], where BBS and BRN

play the role of bias coefficients. In (3.2), BBS and BRN play a similar role by prioritizing

either one- or two-hop transmission depending on the system parameters. In Section

3.4.3 and Section 3.5, it is shown that the best choice of BBS and BRN depends on the

path-loss exponents βX,Y for X ∈ {BS,RN} and Y ∈ {RN,MT0}. Throughout the

present chapter, without loss of generality, it is assumed that BRN = 1 and BBS ≥ 0. If

BBS = 1, there is no bias. �

Remark 3.4. The rationale of introducing the concept of prioritization originates from

the fact that the cell association in (3.1) and (3.2) takes only the signal powers into

account, while the other-cell interference is neglected. In cellular networks in the ab-

sence of RNs, the authors of [72, Lemma 1] have proved that a cell association based

only on the signal power is optimal. This is not necessarily true for relay-aided cellular

networks. An example confirming this statement is provided in Section 3.4.3, which

motivates the related optimization problem in (3.30). As better discussed in Section

3.4.3, in particular, the concept of prioritization can be thought as adding (long-term)

interference-awareness in the cell association criterion, eventually leading to better per-

formance. The numerical examples shown in Section 3.5 confirm that without priori-

tization, i.e., without interference-awareness (BBS = BRN = 1), worse performance is

obtained. �

Remark 3.5. Thanks to the bias coefficients in (3.2), the relay-aided cellular network
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under analysis subsumes the cellular network setup, i.e., when the RNs are not used.

By direct inspection of (3.2), in fact, it follows that all transmissions are likely to be

one-hop and two-hop if BBS � 1 and BBS � 1, respectively. More specifically: i) if

BBS = ∞, the system model reduces to a cellular network without using the RNs, and

ii) if BBS = 0, all the MTs are served via a two-hop link. In Section 3.5, in particular,

these two case studies are analyzed as well, in order to better highlight the impact of

using the RNs in cellular networks. �

Remark 3.6. Let BBS = BRN = 1. The cell association in (3.1), (3.2) can be interpreted

as follows. Let MT0, the BS and RN providing the highest received power to it are

identified, i.e., BS0, RN0. If the power received from BS0 is higher than that received

from RN0, then MT0 is served by BS0. Otherwise, MT0 is served by RN0. In this latter

case, RN0 is served by the BS providing the highest received power to it, i.e., BSR0.

BS0 and BSR0 are, in general, different, ensuring that the best access point for each hop

is selected. �

The association/transmission criterion in (3.1) and (3.2) takes the presence of RNs into

account. It is expected, as a consequence, that the coverage regions of the available

BSs are different compared to cellular networks in the absence of RNs. An example of

coverage regions computed according to (3.1) and (3.2) is illustrated in Fig. 3.1 and

in Fig. 3.2, in the absence and in the presence of RNs. More specifically, Fig. 3.1

shows the conventional voronoi diagram of BSs (in the absence of relaying) in (a) and

the boundary of cells consisting of one serving BS and several relay nodes in (b). The

relays in each cell bounded by the black solid lines is connected to the only BS in its cell,

and the MTs falling in the cell are tagged to either a relaying node or the BS in that

cell. The comparison of these two cases is in (c). As for Fig. 3.1, constant shadowing

has been assumed for the illustration purpose only, which is equivalent to the absence

of shadowing for the cell association point of view. In Fig. 3.2, the positions of the BSs

and relays are the same as those in Fig. 3.1, the shadowing for the links between each

candidate serving nodes and each pixel (possible location of MT), on the other hand, is

assumed to be independently distributed.
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3.2.4 Load Modeling

Two operating scenarios are considered: 1) saturated traffic load and 2) light traffic

load.

A. Saturated Traffic Load

In this case, the number of MTs is much larger than that of BSs and RNs. This occurs

if λMT � λBS and λMT � λRN. Also, λMT is assumed to be sufficiently high that all

the BSs are active in every RB. Thus, the set of interfering BSs in the RB of interest,

Φ
(I)
BS, is equal to the set of all available BSs except the serving BS. If MT0 is served via a

one-hop link, the serving BS is BS0 and Φ
(I)
BS = ΦBS\BS0. If MT0 is served via a two-hop

link, the serving BS is BSR0 and Φ
(I)
BS = ΦBS\BSR0.

Remark 3.7. Based on the properties of PPPs [7], Φ
(I)
BS is a homogeneous PPP of density

λ
(I)
BS = λBS. Some interfering BSs, however, may serve their respective MTs either via a

one- or a two-hop link. These two sets of interfering BSs are denoted by Φ
(I,1hop)
BS and

Φ
(I,2hop)
BS , respectively, such that Φ

(I)
BS = Φ

(I,1hop)
BS ∪ Φ

(I,2hop)
BS and Φ

(I,1hop)
BS ∩ Φ

(I,2hop)
BS = ∅.

Since the cell association in (3.1), (3.2) is distance-dependent, the sets Φ
(I,1hop)
BS and

Φ
(I,2hop)
BS are not homogeneous PPPs. The locations of the interfering BSs in Φ

(I,1hop)
BS

and Φ
(I,2hop)
BS are expected to exhibit, in particular, some level of spatial correlation. Due

to the mathematical intractability of taking these spatial correlations into account, we

resort to Approximation 3.1 for system-level evaluation. The accuracy of Approximation

3.1 is investigated in Section 3.5 with the aid of Monte Carlo simulations. �

Approximation 3.1. Let χ1hop and χ2hop be the probabilities that MT0 is served via

a one- and a two-hop link, respectively. χ1hop and χ2hop are computed in Section 3.3.2.

Since all the MTs receive service in our system model, then χ1hop + χ2hop = 1. The

sets of interfering BSs, Φ
(I,1hop)
BS and Φ

(I,2hop)
BS , in a generic RB are assumed to be two

homogeneous and independent PPPs of density λ
(I,1hop)
BS = χ1hopλ

(I)
BS and λ

(I,2hop)
BS =

χ2hopλ
(I)
BS, respectively. The spatial constraints originating from (3.1) and (3.2) are,

however, taken into account for system-level performance evaluation, as discussed in

Section 3.3.1. �

Remark 3.8. In the saturated traffic case, all the available BSs are active in a generic RB.

With the exception of the serving BS, all the other BSs act as interferers. The number
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of active RNs is, however, smaller than the number of available RNs. Let Φ
(I)
RN denote

the set of active interfering RNs for the typical MT, MT0, in the RB of interest. Based

on the relaying protocol of Section 3.2.3, the number of interfering RNs, card
{

Φ
(I)
RN

}
,

must satisfy the condition card
{

Φ
(I)
RN

}
= card

{
Φ

(I,2hop)
BS

}
. This holds because paired

BSs and RNs transmit in the same RB. Since a sub-set of available RNs are active in

a generic RB and the cell association in (3.1), (3.2) is distance-dependent, Φ
(I)
RN is not

a homogeneous PPP. The locations of the interfering RNs are expected to exhibit some

level of spatial correlation. Similar to Remark 3.7, for mathematical tractability, we

resort to Approximation 3.2 for system-level analysis. Its accuracy is investigated in

Section 3.5. �

Approximation 3.2. The set of interfering RNs, Φ
(I)
RN, in a generic RB is assumed to

be a homogeneous PPP of density λ
(I)
RN = χ2hopλ

(I)
BS, where λ

(I)
BS = λBS. Also, the loca-

tions of BSs and RNs are assumed to be independent. The constraint card
{

Φ
(I)
RN

}
=

card
{

Φ
(I,2hop)
BS

}
originating from the relaying protocol and the spatial constraints origi-

nating from (3.1) and (3.2) are, however, taken into account for system-level performance

evaluation, as discussed in Section 3.3.1. Thus, some level of spatial correlation is ac-

counted for. �

B. Light Traffic Load

In this case, the number of MTs is small. This occurs if λMT � NRBλBS and λMT �

NRBλRN. Since the RBs are chosen at random and with equal probability by each BS,

the density of interfering BSs in a generic RB is equal to λ
(I)
BS = λMT/NRB. As a result,

some BSs are inactive in the RB of interest. Similar to the saturated traffic case, the

set of interfering BSs in that RB is denoted by Φ
(I)
BS, and it can be split in two disjoint

sets corresponding to the interfering BSs serving their associated MTs either via a one-,

Φ
(I,1hop)
BS , or a two-hop, Φ

(I,2hop)
BS , link.

Remark 3.9. Since some BSs are inactive in a generic RB and the cell association in

(3.1), (3.2) is distance-dependent, the set of interfering BSs in that RB, Φ
(I)
BS, is not a

homogeneous PPP. The locations of the interfering BSs are expected to exhibit some

level of spatial correlation. Similar to Remark 3.7, for mathematical tractability, we use

Approximation 3.3 for system-level analysis. Its accuracy is studied in Section 3.5. �



Chapter 3. Stochastic geometry analysis relay-aided cellular networks 61

Approximation 3.3. The sets of interfering BSs, Φ
(I)
BS, Φ

(I,1hop)
BS and Φ

(I,2hop)
BS in a

generic RB are assumed to be three homogeneous PPPs of density λ
(I)
BS = λMT/NRB,

λ
(I,1hop)
BS = χ1hopλ

(I)
BS and λ

(I,2hop)
BS = χ2hopλ

(I)
BS, respectively. Also, Φ

(I,1hop)
BS and Φ

(I,2hop)
BS

are assumed to be independent. Similar to Approximations 3.1, 3.2, the spatial con-

straints originating from (3.1) and (3.2) are, however, taken into account for system-level

analysis. �

Remark 3.10. As for the active RNs, comments similar to Remark 3.8 hold. Hence, Φ
(I)
RN

is not a homogeneous PPP. For mathematical tractability, Approximation 3.4 is used.

Its accuracy is studied in Section 3.5. �

Approximation 3.4. The set of interfering RNs, Φ
(I)
RN, in a generic RB is assumed to

be a homogeneous PPP of density λ
(I)
RN = χ2hopλ

(I)
BS, where λ

(I)
BS = λMT/NRB. Also, the

locations of BSs and RNs are assumed to be independent. Similar to Approximation

3.2, however, the constraint card
{

Φ
(I)
RN

}
= card

{
Φ

(I,2hop)
BS

}
and the spatial constraints

originating from (3.1) and (3.2) are taken into account in Section 3.3.1. �

Remark 3.11. In the present report, only saturated and light traffic load models are

investigated. The analysis of general load conditions requires, in fact, the knowledge

of the distribution of the cells size in the presence of RNs [73]. This distribution is,

however, unknown even in the absence of RNs and, usually, it is empirically derived

from Monte Carlo simulations [74]. To the best of the authors’ knowledge, however,

there are no empirical results for the size distribution of Poisson cells in the presence of

RNs. As shown in Fig. 3.1 and Fig. 3.2, the shape and size of the cells in the presence

and in the absence of RNs look different. In order to study general load conditions, the

empirical cells size distribution in the presence of RNs needs to be estimated beforehand.

The approach proposed in the present report, fortunately, is directly applicable to relay-

aided cellular networks with general load conditions. The methodology introduced in

[73] is, in fact, directly applicable to our case study if the distribution of the cells size

is known. Due to space limitations, however, the extension to general load conditions is

postponed to future research. �
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3.3 Problem Formulation and Useful Lemmas

In this section, we provide a mathematical formulation of the problem at hand. We begin

by introducing the definitions of Signal-to-Interference-plus-Noise-Ratio (SINR), which

are used for computing the performance metrics of interest. The SINRs are introduced

in what follows, by considering one- and two-hop links.

For ease of presentation, some recurrent notation is introduced. The random variable

ZX,Y = l (rX,Y )/SX,Y for X ∈ {BS,RN} and Y ∈ {RN,MT0} denotes the ratio of

path-loss and shadowing for a generic (X,Y ) link. σ2
N = 10σ

2
N (dBm)/10 denotes the

thermal noise power, where σ2
N (dBm) = −174 + 10 log10 (BW) + FdB, FdB is the noise

figure in dB and BW is the transmission bandwidth of each RB. P
(1hop)
BSi

= PBS0 = PT

for BSi ∈ Φ
(I,1hop)
BS denotes the transmit power of the BSs that serve their MTs via a

one-hop link. P
(2hop)
BSj

= PBSR0
= KTPT for BSj ∈ Φ

(I,2hop)
BS denotes the transmit power

of the BSs that serve their MTs via a two-hop link. PRNk = PRN0 = (1−KT )PT for

RNk ∈ Φ
(I)
RN denotes the transmit power of the RNs. ηcell = (BBSPT )/(BRN (1−KT )PT )

is a shorthand used for simplifying the writing of (3.2).

A. Definition of SINR: One-Hop Link

If the typical MT, MT0, is served via a one-hop link, the SINR at MT0 can be formulated

as follows:

SINRBS0,MT0 =
PBS0 |hBS0,MT0 |

2Z−1
BS0,MT0

σ2
N + I(1hop)

BS0→MT0
(ZBS0,MT0) + I(2hop)

BS0→MT0
(ZBS0,MT0)

(3.3)

where we have introduced the aggregate other-cell interferences as follows:

I(1hop)
BS0→MT0

(ZBS0,MT0) =
∑

BSi∈Φ
(I,1hop)
BS

P
(1hop)
BSi

|hBSi,MT0 |
2Z−1

BSi,MT0

× 1 (ZBSi,MT0 > ZBS0,MT0)

I(2hop)
BS0→MT0

(ZBS0,MT0) =
∑

BSj∈Φ
(I,2hop)
BS

P
(2hop)
BSj

∣∣hBSj ,MT0

∣∣2Z−1
BSj ,MT0

× 1
(
ZBSj ,MT0 > ZBS0,MT0

)
(3.4)

The aggregate other-cell interferences, I(1hop)
BS0→MT0

(·) and I(2hop)
BS0→MT0

(·), in (3.4) are re-

lated to the interfering BSs serving their MTs via a one- and a two-hop link, respectively.
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The indicator functions in (3.4), 1 (ZBSi,MT0 > ZBS0,MT0) and 1
(
ZBSj ,MT0 > ZBS0,MT0

)
for BSi ∈ Φ

(I,1hop)
BS and BSj ∈ Φ

(I,2hop)
BS , respectively, originate from the association crite-

rion in (3.1). More specifically, they take into account that the power received from the

serving BS is higher than that of every interfering BSs.

B. Definition of SINR: Two-Hop Link

If the typical MT, MT0, is served via a two-hop link, the SINR needs to be defined at

both the serving RN, RN0, and at the probe MT, MT0.

The SINR at RN0 can be formulated as follows:

SINRBSR0,RN0

=
PBSR0

|hBSR0,RN0 |
2Z−1

BSR0,RN0
1 (ZBSR0,MT0 > ηcellZRN0,MT0)

σ2
N + I(1hop)

BSR0→RN0
(ZBSR0,RN0 ,ZRN0,MT0) + I(2hop)

BSR0→RN0
(ZBSR0,RN0 ,ZRN0,MT0)

(3.5)

where we have introduced the aggregate other-cell interferences as follows:

I(1hop)
BSR0→RN0

(ZBSR0,RN0 ,ZRN0,MT0)

=
∑

BSi∈Φ
(I,1hop)
BS

P
(1hop)
BSi

|hBSi,RN0 |
2Z−1

BSi,RN0

× 1 (ZBSi,RN0 > ZBSR0,RN0) 1 (ZBSi,MT0 > ηcellZRN0,MT0)

I(2hop)
BSR0→RN0

(ZBSR0,RN0 ,ZRN0,MT0)

=
∑

BSj∈Φ
(I,2hop)
BS

P
(2hop)
BSj

∣∣hBSj ,RN0

∣∣2Z−1
BSj ,RN0

× 1
(
ZBSj ,RN0 > ZBSR0,RN0

)
1
(
ZBSj ,MT0 > ηcellZRN0,MT0

)

(3.6)

The aggregate other-cell interferences, IBSR0→RN0 (·, ·) and I(2hop)
BSR0→RN0

(·, ·), in (3.6) have

the same meaning as those in (3.4). Two indicator functions, however, need to be used

as a result of the association criterion in (3.1) and of the transmission protocol in (3.2).

The functions 1 (ZBSi,RN0 > ZBSR0,RN0) and 1
(
ZBSj ,RN0 > ZBSR0,RN0

)
originate from

(3.1) and take into account that the path-loss (with shadowing) of the serving BS is

lower than that of every interfering BSs. The functions 1 (ZBSi,MT0 > ηcellZRN0,MT0)

and 1
(
ZBSj ,MT0 > ηcellZRN0,MT0

)
originate from (3.2) and they take into account that,

from (3.1), the conditions ZBSi,MT0 > ZBS0,MT0 and ZBSj ,MT0 > ZBS0,MT0 hold. The
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indicator function in the numerator of (3.5), 1 (ZBSR0,MT0 > ηcellZRN0,MT0), originates

from (3.2) as well, since, from (3.1), the condition ZBSR0,MT0 > ZBS0,MT0 holds.

The SINR at MT0 can be formulated as follows:

SINRRN0,MT0 =
PRN0 |hRN0,MT0 |

2Z−1
RN0,MT0

σ2
N + I(2hop)

RN0→MT0
(ZRN0,MT0)

(3.7)

where we have introduced the aggregate other-cell interference as follows:

I(2hop)
RN0→MT0

(ZRN0,MT0)

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
PRNk |hRNk,MT0 |

2Z−1
RNk,MT0

1 (ZRNk,MT0 > ZRN0,MT0) (3.8)

The aggregate other-cell interference, I(2hop)
RN0→MT0

(·), in (3.8) is related to the inter-

fering RNs serving their MTs via a two-hop link. The indicator function in (3.8),

1 (ZRNk,MT0 > ZRN0,MT0) for RNk ∈ Φ
(I)
RN, originates from the association criterion in

(3.1). It takes into account that the power received from the serving RN is higher than

that of every interfering RNs. As mentioned in Remark 3.8, the condition card
{

Φ
(I)
RN

}
=

card
{

Φ
(I,2hop)
BS

}
originates from the relaying protocol.

Remark 3.12. As mentioned in Section 3.2.1, BSs and RNs are allowed to transmit only

during the first and the second time-slot, respectively. This is the reason why there

is no interference originating from the RNs in (3.3) and (3.5), as well as there is no

interference originating from the BSs in (3.7). �

Remark 3.13. The mathematical formulation of the SINRs in (3.3)-(3.8) shows that some

level of spatial correlation and spatial non-homogeneity introduced by the cell association

criterion in (3.1) and (3.2) is explicitly taken into account. This holds even though, based

on the approximations of Section 3.2.4, it is assumed that the sets of interfering BSs and

RNs are homogeneous PPPs. This originates from using the indicator functions. Also,

the constraint card
{

Φ
(I)
RN

}
= card

{
Φ

(I,2hop)
BS

}
is taken into account in (3.8). �

3.3.1 Problem Formulation

Three performance metrics are considered: i) coverage probability, ii) average rate and

iii) coverage rate.
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A. Coverage Probability

Let T be a reliability threshold below which transmission is not reliable anymore and

communication is suspended. The coverage probability, Pcov (·), can be formulated as

follows:

Pcov (T) = EZBS0,MT0

{
P(1hop)

cov (T;ZBS0,MT0)
}

+ EZRN0,MT0

{
P(2hop)

cov (T;ZRN0,MT0)
}

(3.9)

P(1hop)
cov (T;ZBS0,MT0) = Pr {SINRBS0,MT0 > T| ZBS0,MT0}

× Pr
{
ZRN0,MT0 ≥ η−1

cellZBS0,MT0

∣∣ZBS0,MT0

}
P(2hop)

cov (T;ZRN0,MT0) = Pr {SINRBSR0,RN0 > T and SINRRN0,MT0 > T| ZRN0,MT0}

× Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0}

(3.10)

where P
(1hop)
cov (·; ·) and P

(2hop)
cov (·; ·) are the coverage probabilities corresponding to one-

and two-hop links, respectively. The conditioning upon ZBS0,MT0 and ZRN0,MT0 origi-

nates from (3.2).

B. Average Rate

The average rate, Raverage, is defined as the expectation of the instantaneous rate, as:

Raverage = EZBS0,MT0

{
R(1hop)

average (ZBS0,MT0)
}

+ EZRN0,MT0

{
R(2hop)

average (ZRN0,MT0)
}

(3.11)
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R(1hop)
average (ZBS0,MT0)

=E(·)\ZBS0,MT0

{
BW log2 (1 + SINRBS0,MT0)

× Pr
{
ZRN0,MT0 ≥ η−1

cellZBS0,MT0

∣∣ZBS0,MT0

}}
R(2hop)

average (ZRN0,MT0)

(a)
=E(·)\ZRN0,MT0

{
BW

2
min {log2 (1 + SINRBSR0,RN0) , log2 (1 + SINRRN0,MT0)}

× Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0}
}

(b)
=E(·)\ZRN0,MT0

{
BW

2
log2 (1 + min {SINRBSR0,RN0 , SINRRN0,MT0})

× Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0}
}

(3.12)

where notation and definitions similar to the coverage probability are used. In particular,

(a) follows from the rate of DF relaying [45, Eq. (15)] and (b) holds because log2 (·) is

a monotonically increasing function.

C. Coverage Rate

The coverage rate is defined as the probability that the rate is greater than a minimum

value that needs to be guaranteed for data transmission. Let R0 denote such a minimum

rate requirement. By taking into account the equality (b) in (3.12), the coverage rate

can be formulated, similar to (3.9), as follows:

Rcov (R0) =EZBS0,MT0

{
P(1hop)

cov

(
T(1hop);ZBS0,MT0

)}
+ EZRN0,MT0

{
P(2hop)

cov

(
T(2hop);ZRN0,MT0

)} (3.13)

where T(1hop) = 2R0/BW − 1, T(2hop) = 22R0/BW − 1, and P
(1hop)
cov (·; ·), P

(2hop)
cov (·; ·) are

defined in (3.10).

It is apparent from (3.13) that the coverage rate can be obtained by using the same

framework as that of the coverage probability, by appropriately scaling the thresholds.

For this reason, it is only briefly considered in Section 3.4. Several numerical examples

are, however, illustrated in Section 3.5.



Chapter 3. Stochastic geometry analysis relay-aided cellular networks 67

Remark 3.14. Average and coverage rate in (3.11) and (3.13) are defined by taking into

account the transmission bandwidth of a single RB, i.e., BW. They provide, thus, an

estimate of the throughput for a typical RB. �

Remark 3.15. The definition of coverage and average rate in (3.12) and (3.13), respec-

tively, takes into account that new information packets are delivered to the typical MT

either via one- or two-hop links. In the two-hop case, in particular, the rate is multiplied

by a 1/2 factor that accounts for the fact that two time-slots for transmission are needed.

If BBS = ∞, then ηcell = ∞ and P
(2hop)
cov (T;ZRN0,MT0) = 0, R

(2hop)
average (ZRN0,MT0) = 0.

This implies that all the MTs are served via a one-hop link and, as expected, the sys-

tem model reduces to a cellular network without RNs. If BBS = 0, then ηcell = 0 and

P
(1hop)
cov (T;ZRN0,MT0) = 0, R

(1hop)
average (ZRN0,MT0) = 0. This implies that all the MTs are

served via a two-hop link. In both cases, the definition of coverage and average rate ac-

counts for the number of time-slots effectively used, i.e., one and two, respectively. This

holds even though the transmission protocol under analysis foresees that the BSs and

the RNs are not allowed to transmit in the second and in the first time-slot, respectively.

If BBS = ∞, for example, only one (not two) time-slot appears in the computation of

the rate. If BBS 6= ∞ and BBS 6= 0, some MTs are served via a one-hop link and the

others via a two-hop link with some probability (see Section 3.3.2), which is explicitly

reflected in the definition in (3.12) and (3.13). As a result, mathematical analysis and

comparison of different cellular network setups, e.g., with and without using the RNs,

are fair in terms of degrees of freedom effectively used. �

Remark 3.16. Coverage probability, coverage rate and average rate provide different in-

formation on the achievable performance of cellular and relay-aided cellular networks.

Coverage probability and coverage rate correspond to the cumulative distribution func-

tion of the SINR and of the rate, respectively. They provide, as a consequence, infor-

mation on the distribution of two different random variables and may serve different

purposes. For example, guaranteeing a good coverage probability instead of a high rate

may be relevant for cell-edge MTs. The opposite may be important for cell-center MTs.

In addition, coverage probability and coverage rate may be used to compute the so-called

5th, 50th (median) and 90th percentile used in standards working groups for quantifying

the performance of cell-edge and cell-center MTs [75]. While the coverage rate provides

the entire distribution of the rate, the average rate provides the expectation of the rate

that is achievable by a MT that is randomly distributed in a generic cell. �
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3.3.2 Useful Lemmas

From Section 3.2.4 and Section 3.3.1, three enabling results are needed for computing

the coverage probability in (3.9), the average rate in (3.11), and the coverage rate in

(3.13).

• The distribution of the ratio of path-loss and shadowing of the intended links

(X0, Y0) for X0 ∈ {BS0,BSR0,RN0} and Y0 ∈ {RN0,MT0}, i.e., the probability

density function and the cumulative distribution function of ZX0,Y0 = l (rX0,Y0)/SX0,Y0 ,

i.e., fZX0,Y0
(·) and FZX0,Y0

(·). These random variables, in fact, appear in the def-

initions of the SINRs in (3.3)-(3.8).

• The conditional probabilities that MT0 is served via a one-hop and a two-hop link,

as follows:

χ1hop (ZBS0,MT0) = Pr
{
ZRN0,MT0 ≥ η−1

cellZBS0,MT0

∣∣ZBS0,MT0

}
χ2hop (ZRN0,MT0) = Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0}

(3.14)

They appear, in fact, in (3.9) and (3.11).

• The probabilities that MT0 is served via a one- and a two-hop link, i.e., χ1hop and

χ2hop. From Section 3.2.4, in fact, they are needed to compute the densities of the

PPPs of interfering BSs and RNs.

These three enabling results are provided in Lemma 3.1, Lemma 3.2 and Lemma 3.3

available in Appendix 3.A.

3.4 System-Level Performance Evaluation

In this section, we provide tractable mathematical frameworks to the computation of

coverage probability/rate and average rate. Despite the homogeneous PPP-based ap-

proximations for system-level performance evaluation introduced in Section 3.2.4, the

computation of (3.9) and (3.11) is still mathematically intractable. This is mainly due

to the presence of two indicator functions in the mathematical formulation of the SINR

in (3.5) and (3.6). In order to obtain a tractable, yet accurate and insightful, mathe-

matical formulation of coverage probability/rate and average rate, we capitalize on an
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Figure 3.3: Rationale of Approximation 3.5. For ease of illustration, no shadowing is
considered, as well as ηcell = 2 and KT = 1/2. The figure illustrates typical locations for
BS0, BSR0, RN0 under the assumption that MT0 is served via a two-hop transmission

and, thus, RN0 is closer to MT0 than to any other BSs.

approximated expression of the SINR in (3.5) and (3.6), which, in Section 3.5, is shown

to be sufficiently accurate for typical system setups.

Approximation 3.5. Let SINRBSR0,RN0 in (3.5) and (3.6). The following approxima-

tion is proposed:

SINRBSR0,RN0 ≈
PBSR0

|hBSR0,RN0 |
2Z−1

BSR0,RN0

σ2
N + I(1hop)

BSR0→RN0
(ZBSR0,RN0) + I(2hop)

BSR0→RN0
(ZBSR0,RN0)

(3.15)

I(1hop)
BSR0→RN0

(ZBSR0,RN0) ≈
∑

BSi∈Φ
(I,1hop)
BS

P
(1hop)
BSi

|hBSi,RN0 |
2Z−1

BSi,RN0

× 1 (ZBSi,RN0 > ZBSR0,RN0)

I(2hop)
BSR0→RN0

(ZBSR0,RN0) ≈
∑

BSj∈Φ
(I,2hop)
BS

P
(2hop)
BSj

∣∣hBSj ,RN0

∣∣2Z−1
BSj ,RN0

× 1
(
ZBSj ,RN0 > ZBSR0,RN0

)
(3.16)

which originates by neglecting the spatial constraints 1 (ZBSR0,MT0 > ηcellZRN0,MT0),

1 (ZBSi,MT0 > ηcellZRN0,MT0) and 1
(
ZBSj ,MT0 > ηcellZRN0,MT0

)
. �

Remark 3.17. The approximated expression of the SINR in (3.15) is independent of

ZRN0,MT0 . �

Rationale of Approximation 3.5: The rationale of Approximation 3.5 can be under-

stood by direct inspection of Fig. 3.3. For ease of illustration, Fig. 3.3 is obtained by
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assuming ηcell = 2, i.e., no bias and KT = 1/2, as well as in the absence of shadow-

ing. It illustrates typical locations of BS0, BSR0 and RN0. Without loss of generality,

MT0 is located at the origin. The indicator functions 1 (ZBSi,MT0 > ηcellZRN0,MT0) and

1
(
ZBSj ,MT0 > ηcellZRN0,MT0

)
in (3.6) enforce the interfering BSs to lie outside the disc

having center where MT0 is and of radius equal to rRN0,MT0 . The indicator functions

1 (ZBSi,RN0 > ZBSR0,RN0) and 1
(
ZBSj ,RN0 > ZBSR0,RN0

)
in (3.6) enforce the interfering

BSs to lie outside the disc having center where RN0 is and of radius equal to rBSR0,RN0 .

As a result, the interfering BSs can lie only in the “white” area. This geometric region

of the plane is difficult to be taken into account for system-level performance evalua-

tion. As far as the indicator function 1 (ZBSR0,MT0 > ηcellZRN0,MT0) is concerned, similar

comments hold for the locations of the serving BS BSR0. The rationale behind Approx-

imation 3.5 is to let the interfering BSs lie in the whole bi-dimensional plane with the

exception of the disc having center where RN0 is and of radius equal to rBSR0,RN0 . This

geometric region is, in fact, more mathematically tractable. �

Accuracy of Approximation 3.5: By direct inspection of Fig. 3.3, the accuracy of Ap-

proximation 3.5 is expected to increase as rRN0,MT0 gets smaller. This condition is likely

to occur as the density of the RNs increases. In this case, in fact, the distance between

RN0 and MT0 is expected to be relatively small. The accuracy of Approximation 3.5,

however, is expected to be good also if the density of the RNs is small compared to that

of the BSs. In this case, in fact, MT0 is likely to be served via a one-hop link and the

end-to-end performance is expected to be mainly determined by SINRBS0,MT0 in (3.3),

which is not affected by Approximation 3.5. In summary, the accuracy of Approximation

3.5 is expected to get better if the density of the RNs is either much bigger or much

smaller than that of the BSs. For comparable values of the densities, some inaccuracies

may emerge. In Section 3.5, however, they are shown to be acceptable for typical setups

and, more importantly, they are shown not to alter the inherent performance trends of

relay-aided cellular networks. �

3.4.1 Coverage Probability

In this section, we provide tractable mathematical frameworks to the computation of the

coverage probability in (3.9). General and special system setups leading to closed-form

mathematical formulations are presented.
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Proposition 3.1. Let the system model in Section 3.2 and Approximations 3.1-3.5. Let

the SINRs in (3.3)-(3.8), and the association probabilities χ1hop and χ2hop in Lemma 3.3.

Let the saturated and light traffic load scenarios, where λ
(I)
BS = λBS and λ

(I)
BS = λMT/NRB,

respectively. Let λ
(I,1hop)
BS = χ1hopλ

(I)
BS, λ

(I,2hop)
BS = χ2hopλ

(I)
BS, λ

(I)
RN = χ2hopλ

(I)
BS and

card
{

Φ
(I)
RN

}
= card

{
Φ

(I,2hop)
BS

}
. Let PBS0 = PT , PBSR0

= KTPT , PRN0 = (1−KT )PT

and ηcell = (BBSPT )/(BRN (1−KT )PT ). The coverage probability defined in (3.9) can

be formulated as follows:

Pcov (T) ≈ JBS,MT (T) + JBS,RN (T)JRN,MT (T) (3.17)

JBS,MT (T) = πλBSΥBS,MT

×
∫ +∞

0
exp

(
−

σ2
Nκ0T

PBS0ΩBS,MT
y
βBS,MT

2

)
exp

−πλRNΥRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT


× exp (−ΘBS,MT (T) y) dy

JBS,RN (T) = πλBSΥBS,RN

∫ +∞

0
exp

(
−

σ2
Nκ0T

PBSR0
ΩBS,RN

y
βBS,RN

2

)
× exp (−ΘBS,RN (T) y) dy

JRN,MT (T) = πλRNΥRN,MT

×
∫ +∞

0
exp

(
−

σ2
Nκ0T

PRN0ΩRN,MT
y
βRN,MT

2

)
exp

−πλBSΥBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT


× exp (−ΘRN,MT (T) y) dy

(3.18)

where ΥX,Y is defined in (3.32) and the following functions have been introduced:

ΘBS,MT (x) = πλBSΥBS,MT − πλ(I,1hop)
BS ΥBS,MTΨBS,MT (−x)

− πλ(I,2hop)
BS ΥBS,MTΨBS,MT (−KTx)

ΘBS,RN (x) = πλBSΥBS,RN − πλ(I,1hop)
BS ΥBS,RNΨBS,RN (−x/KT )

− πλ(I,2hop)
BS ΥBS,RNΨBS,RN (−x)

ΘRN,MT (x) = πλRNΥRN,MT − πλ(I,2hop)
BS ΥRN,MTΨRN,MT (−x)

ΨBS,MT (x) = 1− 2F1 (1,−2/βBS,MT; 1− 2/βBS,MT;x)

ΨBS,RN (x) = 1− 2F1 (1,−2/βBS,RN; 1− 2/βBS,RN;x)

ΨRN,MT (x) = 1− 2F1 (1,−2/βRN,MT; 1− 2/βRN,MT;x)

(3.19)

Proof: See Appendix 3.B. �
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Remark 3.18. From the mathematical standpoint, the proof in Appendix 3.B is different

from state-of-the-art papers on PPP-based modeling of cellular networks, e.g., [10]. In

particular: i) some steps of the mathematical derivation are possible only with the aid of

Approximations 3.1-3.4, ii) Approximation 3.5 has not been proposed elsewhere, and iii)

the constraint card
{

Φ
(I,2hop)
BS

}
= card

{
Φ

(I)
RN

}
is a unique characteristic of the relaying

protocol, making the mathematical steps that lead to the final result different from

typical derivations. �

Remark 3.19. As mentioned in Section 3.3.1, the coverage rate is a special case of the

coverage probability. From (3.13) and Proposition 3.1, in particular, it can be formulated

as follows:

Rcov (R0) ≈ JBS,MT

(
T(1hop)

)
+ JBS,RN

(
T(2hop)

)
JRN,MT

(
T(2hop)

)
(3.20)

where T(1hop) = 2R0/BW−1, T(2hop) = 22R0/BW−1 and JBS,MT (·), JBS,RN (·), JRN,MT (·)

are defined in (3.18). In the remainder of the present chapter, due to space limitations,

special case studies for the coverage rate are not considered, since they are similar to

those of the coverage probability. �

Corollary 3.1. Let the same assumptions as in Proposition 3.1. Let σ2
N → 0, i.e.,

the system model is interference-limited. The coverage probability can be formulated

as in (3.17) by replacing JBS,MT (T) → J (σ2
N→0)

BS,MT (T), JBS,RN (T) → J
(σ2
N→0)

BS,RN (T) and

JRN,MT (T)→ J
(σ2
N→0)

RN,MT (T) in (3.18), where:

J (σ2
N→0)

BS,MT (T) = πλBSΥBS,MT

×
∫ +∞

0
exp

−πλRNΥRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT

 exp (−ΘBS,MT (T) y) dy

J (σ2
N→0)

BS,RN (T) = πλBSΥBS,RN

∫ +∞

0
exp (−ΘBS,RN (T) y) dy

= πλBSΥBS,RN/ΘBS,RN (T)

J (σ2
N→0)

RN,MT (T) = πλRNΥRN,MT

×
∫ +∞

0
exp

−πλBSΥBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT

 exp (−ΘRN,MT (T) y) dy

(3.21)

Proof: If follows from (3.18), by letting σ2
N → 0 and by computing notable integrals. �
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Remark 3.20. If βBS,MT/βRN,MT can be written as the ratio of two positive integers, the

integrals in (3.21) can be formulated in closed-form in terms of the Meijer G-function

with the aid of the Mellin-Barnes integration theorem [3, Eq. (2.24.1.1)]. Also, the

integrals in (3.21) have simplified closed-form expressions for several special values of

the ratio βBS,MT/βRN,MT. A simple case study occurs if βBS,MT/βRN,MT = 1, as follows:

J (σ2
N→0)

BS,MT (T) = (λBS/λRN) (ΥBS,MT/ΥRN,MT)

(
η

2/βRN,MT

cell

/
ΘBS,MT (T)

)
J (σ2

N→0)
RN,MT (T) = (λRN/λBS) (ΥRN,MT/ΥBS,MT)

(
η
−2/βBS,MT

cell

/
ΘRN,MT (T)

) (3.22)

Due to space limitations, other special cases are not reported in the present report.

Similar closed-form expressions can be obtained for other similar integrals presented in

the sequel. �

Corollary 3.2. Let the same assumptions as in Proposition 3.1. Let λ
(I)
BS → 0, i.e.,

the system model is noise-limited. The coverage probability can be formulated as in

(3.17) and (3.18), by replacing the functions ΘBS,MT (x) → Θ

(
λ

(I)
BS→0

)
BS,MT = πλBSΥBS,MT,

ΘBS,RN (x) → Θ

(
λ

(I)
BS→0

)
BS,RN = πλBSΥBS,RN and ΘRN,MT (x) → Θ

(
λ

(I)
BS→0

)
RN,MT = πλRNΥRN,MT

in (3.19).

Proof: If follows by letting λ
(I)
BS → 0 in (3.19), which implies λ

(I,1hop)
BS → 0 and λ

(I,2hop)
BS →

0. �

Corollary 3.3. Let the same assumptions as in Proposition 3.1. Let BBS → +∞, i.e.,

all the MTs are served, almost surely, via a one-hop link. The coverage probability can

be formulated as Pcov (T)→ P
(BBS→+∞)
cov (T) ≈ J (BBS→+∞)

BS,MT (T), where J (BBS→+∞)
BS,MT (·) is

defined as follows:

J (BBS→+∞)
BS,MT (T) = πλBSΥBS,MT

×
∫ +∞

0
exp

(
−

σ2
Nκ0T

PBS0ΩBS,MT
y
βBS,MT

2

)
exp

(
−Θ

(BBS→+∞)
BS,MT (T) y

)
dy

(3.23)

where the following definitions hold for saturated and light load models, respectively:

Θ
(BBS→+∞)
BS,MT (x) = πλBSΥBS,MT2F1 (1,−2/βBS,MT; 1− 2/βBS,MT;−x)

Θ
(BBS→+∞)
BS,MT (x) = πλBSΥBS,MT − π (λMT/NRB) ΥBS,MT

× (1− 2F1 (1,−2/βBS,MT; 1− 2/βBS,MT;−x))

(3.24)
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Proof: If BBS → +∞, then ηcell → +∞, χ1hop → 1 and χ2hop → 0. This implies

λ
(I,1hop)
BS → λ

(I)
BS, λ

(I,2hop)
BS → 0, exp

(
−τη−2/βRN,MT

cell

)
→ 1 and exp

(
−τη2/βRN,MT

cell

)
→

0 for τ > 0. The proof follows by noting that JBS,MT (T) → J (BBS→+∞)
BS,MT (T) and

JRN,MT (T)→ 0. �

Remark 3.21. The coverage probability in (3.23) can be obtained also by letting λRN →

0, i.e., there are no RNs in the network and the system model reduces to a simple cellular

network. This immediately follows from (3.18), since JRN,MT (T) → 0 if λRN → 0, as

well as χ1hop → 1 and χ2hop → 0. In the saturated traffic load scenario, the coverage

probability in (3.23) coincides with previous mathematical frameworks reported in [76].

In the light traffic load scenario, on the other hand, it generalizes [76]. In the interference-

limited regime, i.e., σ2
N → 0, the coverage probability in (3.23) can be further simplified

as follows:

J (BBS→+∞, σ2
N→0)

BS,MT (T) = πλBSΥBS,MT

∫ +∞

0
exp

(
−Θ

(BBS→+∞)
BS,MT (T) y

)
dy

= πλBSΥBS,MT

/
Θ

(BBS→+∞)
BS,MT (T)

(3.25)

Equation (3.25) shows that the coverage probability is independent of the density of

BSs, λBS, only for the saturated load model. This finding was reported in [10], [22].

In the light load model, the coverage probability depends on λBS, λMT, NRB. In the

presence of RNs, (3.21) shows that it depends on λRN too. �

Corollary 3.4. Let the same assumptions as in Proposition 3.1. Let BBS → 0, i.e.,

all the MTs are served, almost surely, via a two-hop link. The coverage probability

can be formulated as Pcov (T) → P
(BBS→0)
cov (T) ≈ J (BBS→0)

BS,RN (T)J (BBS→0)
RN,MT (T), where

J (BBS→0)
BS,RN (·) and J (BBS→0)

RN,MT (·) are defined as follows:

J (BBS→0)
BS,RN (T) = πλBSΥBS,RN

×
∫ +∞

0
exp

(
−

σ2
Nκ0T

PBSR0
ΩBS,RN

y
βBS,RN

2

)
exp

(
−Θ

(BBS→0)
BS,RN (T) y

)
dy

J (BBS→0)
RN,MT (T) = πλRNΥRN,MT

×
∫ +∞

0
exp

(
−

σ2
Nκ0T

PRN0ΩRN,MT
y
βRN,MT

2

)
exp

(
−Θ

(BBS→0)
RN,MT (T) y

)
dy

(3.26)

Θ
(BBS→0)
BS,RN (x) = πλBSΥBS,RN − πλ(I)

BSΥBS,RNΨBS,RN (−x)

Θ
(BBS→0)
RN,MT (x) = πλRNΥRN,MT − πλ(I)

BSΥRN,MTΨRN,MT (−x)
(3.27)
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as well as λ
(I)
BS = λBS and λ

(I)
BS = λMT/NRB for saturated and light load models, respec-

tively.

Proof: If BBS → 0, then ηcell → 0, χ1hop → 0 and χ2hop → 1. This implies λ
(I,1hop)
BS → 0,

λ
(I,2hop)
BS → λ

(I)
BS, exp

(
−τη−2/βRN,MT

cell

)
→ 0 and exp

(
−τη2/βRN,MT

cell

)
→ 1 for τ > 0. The

proof follows since JBS,MT (T) → 0, JBS,RN (T) → J (BBS→0)
BS,RN (T) and JRN,MT (T) →

J (BBS→0)
RN,MT (T). �

Remark 3.22. In the interference-limited regime, i.e., σ2
N → 0, (3.26) can be simplified

as in (3.25). �

Corollary 3.5. Let the same assumptions as in Proposition 3.1. Let BBS/BRN = 1,

i.e., no bias is applied for cell association. The following results hold:

• If βBS,MT/βRN,MT � 1, the coverage probability can be formulated as in Corollary

3.3.

• If βBS,MT/βRN,MT � 1, the coverage probability can be formulated as in Corollary

3.4.

• If βBS,MT/βRN,MT = 1, the coverage probability can be formulated as in Proposition

3.1, by setting ηcell = 1/(1−KT ) and βBS,MT = βRN,MT = βMT.

Proof: If BBS/BRN = 1 and βBS,MT/βRN,MT � 1, then χ1hop → 1 and χ2hop → 0.

If BBS/BRN = 1 and βBS,MT/βRN,MT � 1, then χ1hop → 0 and χ2hop → 1. As a

consequence, the proof follows by using the same line of thought as the proofs of Corollary

3.3 and Corollary 3.4. �

3.4.2 Average Rate

In this section, we provide a tractable mathematical framework to the computation of

the average rate in (3.11). Only the general case is presented, since special cases can be

readily obtained from Section 3.4.1.

Proposition 3.2. Let the same assumptions as in Proposition 3.1. Let JBS,MT (·),

JBS,RN (·) and JRN,MT (·) defined in (3.18). The average rate defined in (3.11) can be
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formulated as follows:

Raverage =
BW

ln (2)

∫ +∞

0
JBS,MT (z)

dz

z + 1

+
1

2

BW

ln (2)

∫ +∞

0
JBS,RN (z)JRN,MT (z)

dz

z + 1

(3.28)

Proof: Let δ be a positive constant and ∆ be a non-negative random variable. The

following holds:

E∆ {δ log2 (1 + ∆)} =

∫ +∞

0
Pr {δ log2 (1 + ∆) ≥ x} dx

= (δ/ln (2))

∫ +∞

0
F∆ (z)/(z + 1)dz

(3.29)

where F∆ (·) is the complementary cumulative distribution function of ∆. By applying

these equalities to (3.12), the proof follows using the same steps as those used for the

proof of Proposition 3.1 in Appendix 3.A. �

Remark 3.23. In the most general case formulated in (3.28) and (3.18), a two-fold integral

needs to be computed for obtaining the average rate. The framework reduces to the

computation of a single integral for several special cases analyzed in Section 3.4.1, i.e.,

if the coverage probability is available in closed-form. The 1/2 factor that multiplies the

second addend in (3.28) originates from the two-hop DF-based relaying protocol. �

3.4.3 Performance Trends, Design Insight and System-Level Optimiza-

tion

In this section, we discuss relevant performance trends that can be inferred from the

mathematical frameworks introduced in Section 3.4.1. For brevity, coverage/average

rate are not explicitly discussed in this section. Relevant comments, however, are pro-

vided once showing the numerical results in Section 3.5. For ease of presentation, the

frameworks considered in this section are summarized in Table 3.2. Table 3.2, in par-

ticular, provides results for noise- and interference-limited operating regimes, since they

are more conveniently formulated for understanding the inherent performance trends of

the system model under analysis.
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Table 3.2: Summary of mathematical frameworks in the presence/absence of RNs

and for noise-limited (λ
(I)
BS → 0) and interference-limited (σ2

N → 0) operating regimes.

Notation: ΥX,Y is defined in (3.32), λ
(I)
BS = λBS and λ

(I)
BS = λMT/NRB for saturated

and light traffic load models, respectively, PBS0
= PT , PBSR0

= KTPT and PRN0
=

(1−KT )PT .

Recurrent Functions

G
(
λ
(I)
BS→0

)
X,Y (T;P ) ≈ πλXΥX,Y

∫ +∞
0

exp

(
− σ2

Nκ0T

PΩX,Y
y
βX,Y

2

)
exp (−πλXΥX,Y y) dy

G(σ2
N→0)

X,Y (T) ≈ λX

λX−λ
(I)
BS+λ

(I)
BS2F1(1,−2/βX,Y ;1−2/βX,Y ;−T)

Case Study Coverage Probability

Without Relays (λRN → 0)

OR

With Relays (λRN 6= 0) P

(
λ
(I)
BS→0

)
cov (T) ≈ G

(
λ
(I)
BS→0

)
BS,MT (T;PBS0)

and BBS/BRN � 1 (BBS → +∞) P
(σ2
N→0)

cov (T) ≈ G(σ2
N→0)

BS,MT (T)

OR

With Relays (λRN 6= 0)

and BBS
BRN

= 1 and
βBS,MT

βRN,MT
� 1

With Relays (λRN 6= 0)

and BBS/BRN � 1 (BBS → 0) P

(
λ
(I)
BS→0

)
cov (T) ≈ G

(
λ
(I)
BS→0

)
BS,RN (T;PBSR0)G

(
λ
(I)
BS→0

)
RN,MT (T;PRN0)

OR

With Relays (λRN 6= 0) P
(σ2
N→0)

cov (T) ≈ G(σ2
N→0)

BS,RN (T)G(σ2
N→0)

RN,MT (T)

and BBS
BRN

= 1 and
βBS,MT

βRN,MT
� 1

Before discussing the performance trends, we note, from Table 3.2, that the coverage

probability in noise- and interference-limited operating regimes depends on the functions

G
(
λ

(I)
BS→0

)
X,Y (·; ·) and G(σ2

N→0)
X,Y (·), respectively. By direct inspection of them, the following

two remarks hold.

Remark 3.24. Let G
(
λ

(I)
BS→0

)
X,Y (·; ·) in Table 3.2. For typical operating conditions, i.e.,

σ2
Nκ0

/
(PΩX,Y ) � 1, which holds for medium-high Signal-to-Noise-Ratios (SNRs), and

λX � 1, which holds for typical network densities, G
(
λ

(I)
BS→0

)
X,Y (·; ·) monotonically de-

creases as the path-loss exponent βX,Y increases. The need to emphasize that the net-

work has to operate under “typical operating conditions” originates from fact that, as a

function of βX,Y , the term yβX,Y /2 has a different behavior for y ∈ (0, 1) and for y ≥ 1.

For “typical operating conditions”, the behavior of G
(
λ

(I)
BS→0

)
X,Y (·; ·) is mainly determined
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by the values of y for which y ≥ 1, i.e.,
∫ +∞

0 (·) dy ≈
∫ +∞

1 (·) dy. This ambiguity orig-

inates from the unbounded path-loss model, which, however, is known to be accurate,

from the standpoint of physics, for “typical operating conditions”. �

Remark 3.25. Let G(σ2
N→0)

X,Y (·) in Table 3.2. It monotonically increases as the path-

loss exponent βX,Y > 2 increases. This originates from the fact that the function

2F1 (1,−2/βX,Y ; 1− 2/βX,Y ;−x) monotonically decreases, for every x ≥ 0, as the path-

loss exponent βX,Y > 2 increases. �

Let the case studies in Table 3.2. Based on Remark 3.24 and Remark 3.25, we conclude

that: the coverage probability decreases in the noise-limited regime and increases in

the interference-limited regime as the path-loss exponent of any of the links increases,

respectively.

This finding is similar to previously reported results for cellular networks, i.e., in the

absence of RNs [10], [21]. This is confirmed by direct inspection of Table 3.2 for λRN → 0

as well. A major difference exists, however, between cellular (in the absence of RNs)

and relay-aided cellular (in the presence of RNs) networks, which originates from the cell

association criterion in (3.1) and (3.2), i.e., the inherent two-tier nature of relay-aided

cellular networks as opposed to the single-tier nature of cellular networks. Consider the

following example. Let BBS/BRN = 1 (no bias) and βBS,MT/βRN,MT � 1. From Table

3.2, we conclude that the MTs are likely to be served via a one-hop link and that there

is no performance difference between cellular and relay-aided cellular networks. As a

result, the coverage probability decreases and increases as βBS,MT increases in the noise-

and interference-limited regimes, respectively. Also, it is almost independent of βBS,RN

and βRN,MT. This operating condition results in nearly optimal performance in the

noise-limited regime, but in highly sub-optimal performance in the interference-limited

regime. The condition βBS,MT/βRN,MT � 1, in fact, implies that βBS,MT is much smaller

compared to βRN,MT. Based on (3.1) and (3.2), as a consequence, the transmission

occurs through those links providing the smallest path-loss. Based on Remark 3.24 and

Remark 3.25, this maximizes the coverage probability in the noise-limited regime, but

it minimizes the coverage probability in the interference-limited regime. In the latter

case, it would be better to serve the intended MT via a two-hop link in order to enjoy

less interference thanks to the larger path-loss exponent of the RN-to-MT links. This

apparent ambiguity originates from the sub-optimality of the choice BBS/BRN = 1 and,

more in particular, from the fact that the bias coefficients BBS and BRN are interference-
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and channel-independent. In order to ensure that relay-aided cellular networks are no

worse than cellular networks, BBS and BRN need to be adequately optimized as a function

of the path-loss exponents. In the presence of RNs, otherwise, the coverage probability

may be worse than in the absence of RNs. By using the same line of thought, similar

conclusions can be drawn for coverage/average rate. Given the cost of deploying RNs,

this is not desirable. On the other hand, optimizing the cell association criterion based

on the instantaneous aggregate other-cell interference would be impractical, due to the

fact that the cell association of each BS will depend on the cell association of any other

BS available in the network.

To overcome this complexity and to exploit the presence of RNs in the network, we

propose an end-to-end (system-level) and interference-aware optimization criterion for

the bias coefficients BBS and BRN. The idea consists of optimizing BBS and BRN based

on the system-level mathematical formulation of the coverage probability, by taking into

account the cell association as well. The optimization criterion turns out to be, as a

result, end-to-end and interference-aware. It is, in addition, practically affordable, since

it does not require the knowledge of the association pattern of the whole network at any

BS. Let BRN = 1 for simplicity, but without loss of generality. In mathematical terms,

the optimization problem can be formulated as follows:

B(opt)
BS

= arg max
BBS∈(0,+∞)

{Pcov (T;BBS) = JBS,MT (T;BBS) + JBS,RN (T;BBS)JRN,MT (T;BBS)}

(3.30)

where JBS,MT (·; ·), JBS,RN (·; ·), JRN,MT (·; ·) are defined in (3.18) by making explicit

the dependence on BBS and setting ΘBS,MT (T) = ΘBS,MT (T;BBS), ΘBS,RN (T) =

ΘBS,RN (T;BBS), ΘRN,MT (T) = ΘRN,MT (T;BBS), as well as λ
(I,1hop)
BS = λ

(I,1hop)
BS (BBS) =

λ
(I)
BSχ1hop (BBS), λ

(I,2hop)
BS = λ

(I,2hop)
BS (BBS) = λ

(I)
BS(1−χ1hop (BBS)), χ1hop = χ1hop (BBS) =∫ +∞

0

(
1− FZRN0,MT0

(
η−1

cell (BBS) ξ
))
fZBS0,MT0

(ξ) dξ, ηcell = ηcell (BBS) = BBS/(1−KT ),

finally, fZBS0,MT0
(·) and FZBS0,MT0

(·) are provided in (3.31).

Similar optimization problems may be formulated for coverage rate and average rate.

They are not reported in this section due to space limitations, but the related perfor-

mance is illustrated in Section 3.5.
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Remark 3.26. In general, the optimization problem in (3.30) cannot be solved in closed-

form and it is not even possible to prove its convexity/concavity properties. This usually

arises in optimization problems, either involving or not the use of stochastic geometry.

A recent example related to stochastic geometry modeling of cellular networks is dis-

cussed in [77], where closed-form solutions are shown not be available for general system

setups, despite the fact that simpler utility functions than coverage and rate are stud-

ied. In practice, however, the optimal solution of (3.30) can be obtained numerically

with the aid of the Mathematica built-in function FindMaximum. Similar to [77], nu-

merical solutions of (3.30) can be efficiently computed. They, however, typically lead to

local optima. The effectiveness of such numerical approach is validated in Section 3.5

with the aid of Monte Carlo simulations. Without loss of generality, in Section 3.5, the

starting point of the search is assumed to be B(0)
BS = 1 and a large search space, i.e.,(

B(min)
BS ,B(max)

BS

)
=
(
10−20, 1020

)
, is considered. From a practical standpoint, in fact,

this would be equivalent to having
(
B(min)

BS ,B(max)
BS

)
= (0,+∞). �

Remark 3.27. Even though no closed-form solution of (3.30) for arbitrary parameters

exists, B(opt)
BS can be computed in closed-form for some special cases. From corollaries

and remarks in Section 3.4.1, this holds:

1. If λ
(I)
BS → 0 (noise-limited setup) and βBS,MT/βRN,MT � 1, then Pcov (T,BBS) ∝

exp

(
−B2/βBS,MT

BS

)
. This implies B(opt)

BS → 0, i.e., the optimal setup is when all the

MTs are served via a two-hop link. Accordingly, relay-aided cellular networks are

expected to outperform cellular networks.

2. If λ
(I)
BS → 0 (noise-limited setup) and βBS,MT/βRN,MT � 1, then Pcov (T,BBS) ∝

exp

(
−B−2/βRN,MT

BS

)
. This implies B(opt)

BS →∞, i.e., the optimal setup is when all

the MTs are served via a one-hop link. Accordingly, relay-aided cellular networks

are expected to underperform cellular networks.

3. If σ2
N → 0 (interference-limited setup) and βBS,MT/βRN,MT � 1, Pcov (T,BBS) ∝

exp

(
−B−2/βRN,MT

BS

)
. This implies B(opt)

BS →∞, i.e., the optimal setup is when all

the MTs are served via a one-hop link. Accordingly, relay-aided cellular networks

are expected to underperform cellular networks.

4. If σ2
N → 0 (interference-limited setup) and βBS,MT/βRN,MT � 1, Pcov (T,BBS) ∝

exp

(
−B2/βBS,MT

BS

)
. This implies B(opt)

BS → 0, i.e., the optimal setup is when all the
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MTs are served via a two-hop link. Accordingly, relay-aided cellular networks are

expected to outperform cellular networks. �

The closed-form optimal solution of the case studies in Remark 3.27 highlights two

important conclusions: i) prioritization provides, in general, better performance than

assuming BBS = BRN = 1 and ii) if prioritization is not used, relay-aided cellular net-

works may not outperform cellular networks for some system setups. These conclusions

originate from the fact that, for the analyzed case studies, the setup BBS = BRN = 1 does

not result in the optimal solution of (3.30). In Section 3.5, it is shown that relay-aided

cellular networks are never worse than cellular networks and that the coverage probabil-

ity is maximized if B(opt)
BS in (3.30) is used, regardless of the noise- or interference-limited

operating regime and regardless of the triplet (βBS,MT, βBS,RN, βRN,MT).

Remark 3.28. The optimization problem in (3.30) is based on a utility function that

provides system-level performance of relay-aided cellular networks. As a consequence, it

depends only on long-term statistics and, in particular, it does not require any local (in-

stantaneous) channel and interference knowledge. In practice, the optimization problem

in (3.30) is solved by a “higher hierarchy” entity, e.g., a BS controller, which broadcasts

the optimal bias coefficients to all BSs and RNs in the network. With these optimal

bias coefficients at hand, the cell association criterion in (3.1) and (3.2) is subsequently

applied without the need of local or network-level estimates of the other-cell interference.

Accordingly, the computational complexity of the proposed system-level optimization is

kept at a minimum. �

By direct inspection of Table 3.2, in addition, the following conclusions as a function of

the densities of BSs, RNs, MTs and of the number of RBs can be drawn.

• In the noise-limited regime, the coverage probability monotonically increases as

λBS and λRN increase. This originates because G
(
λ

(I)
BS→0

)
X,Y (·; ·) monotonically in-

creases with λX .

• In the interference-limited regime, the coverage probability depends, in general,

on the triplet of densities (λBS, λRN, λMT). In the saturated traffic load case, it is

independent of the densities if the MTs are likely to be served via a one-hop link.

• In the interference-limited regime, the coverage probability is independent of the

shadowing. This originates from G(σ2
N→0)

X,Y (·), which is independent of ΥX,Y . This
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trend holds regardless of the densities of BSs, RNs and MTs, i.e., regardless of the

triplet (λBS, λRN, λMT).

• In the interference-limited regime, if the density of RNs is high enough, i.e., λRN →

+∞, and the density of BSs, λBS, is finite, then P
(σ2
N→0)

cov (T) → G(σ2
N→0)

BS,RN (T).

In this case, in fact, the MTs are likely to be served via a two-hop link and

G(σ2
N→0)

RN,MT (T) → 1. Thus, the coverage probability mainly depends on the BS-to-

RN links.

• Let the light load model. In the interference-limited regime, the coverage probabil-

ity tends to one, as λBS → +∞, λRN → +∞. In this case, in fact, G(σ2
N→0)

BS,MT (T)→

1, G(σ2
N→0)

BS,RN (T)→ 1, G(σ2
N→0)

RN,MT (T)→ 1.

• Let the light load model. In the interference-limited regime, the coverage proba-

bility increases as NRB increases. If NRB → +∞, the coverage probability tends

to one.

Remark 3.29. By comparing the main performance trends of relay-aided ad hoc networks

in [13] and [14] with those of relay-aided cellular networks that originate from Table

3.2, different conclusions can be drawn. In [13] and [14], it is proved that the end-

to-end performance is mainly determined by the path-loss exponent of the interferers

and that the path-loss exponents of the probe links have no impact on the asymptotic

performance. In the present report, on the other hand, it is proved that the end-to-end

performance depends on the triplet of path-loss exponents (βBS,MT, βBS,RN, βRN,MT), as

well as that the optimal bias coefficients from (3.30) are needed for ensuring that relay-

aided cellular networks are no worse than cellular networks for arbitrary values of the

triplet (βBS,MT, βBS,RN, βRN,MT). These different trends originate from the fact that the

distances of the probe links are fixed in [13] and [14], while they are random variables

in the present report and depend on the cell association criterion in (3.1) and (3.2). �

3.5 Numerical and Simulation Results

In this section, numerical examples to verify the accuracy of the proposed frameworks

and to discuss the impact of several parameters on coverage and rate of relay-aided

cellular networks are illustrated. To reduce the space, only some figures are shown.

Similar trends are observed, however, for the missing figures.
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Simulation Setup

The simulation parameters are in agreement with the LTE-A standard. Unless otherwise

stated: PT = 45 dBm, KT = 0.5, FdB = 10 dB, ν = c0/fc, where c0 is the speed of

light in meter/sec and fc = 2 GHz is the carrier frequency, µX,Y = 0 dB, σX,Y = 4

dB, ΩX,Y = 1, BW = 180 kHz, NRB = 50 for light traffic load, λBS = 1
/(
πR2

cell

)
,

where Rcell = 200 m is the average radius of a cell, λRN = 3λBS. Other parameters

are in the captions of the figures. It is worth mentioning that BW = 180 kHz is the

transmission bandwidth of a RB in the LTE-A standard and that the pair BW = 180

kHz and NRB = 50 corresponds to a total transmission bandwidth of 10 MHz [28, Table

6.2].

Monte Carlo Simulations

System-level simulations are performed by carefully reproducing the system model of

Section 3.2. It is worth mentioning, however, that Approximations 3.1-3.5 are not

enforced in the system-level simulator and that they are used only for developing the

frameworks. To ensure saturated and light traffic load conditions, the density of the

MTs in a generic RB is adequately chosen. For the considered setup, we have used

the following densities per RB: λ
(RB)
MT = 50λBS for saturated traffic load and λ

(RB)
MT =

(1/5)λBS for light traffic load. For each available MT, the cell association criterion in

(3.1) and (3.2) is applied, as well as serving BS, RN and one- or two-hop links are

identified. Then, the SINRs defined in Section 3.3 are computed for all the available

MTs. The performance metrics are computed accordingly, based on the definitions

available in Section 3.3.1. The final result is obtained by averaging the performance

metric of interest with respect to all the available MTs (i.e., it is not computed only for

the MT closest to the origin).

Validation of Approximations 3.1-3.4

Based on Approximations 3.1-3.4, the set of interfering BSs, Φ
(I)
BS, the set of interfer-

ing BSs serving the MTs via a one- and a two-hop link, Φ
(I,1hop)
BS and Φ

(I,2hop)
BS , and

the set of interfering RNs, Φ
(I)
RN, are assumed to be homogeneous PPPs, even though

they are not. In Fig. 3.4, the accuracy of these assumptions is investigated. To
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Figure 3.4: Void probability of Φ
(I)
BS (a), Φ

(I,1hop)
BS (b), Φ

(I,2hop)
BS (c), Φ

(I)
RN (d). Solid

lines show the approximations and markers show Monte Carlo simulations. Setup:
βBS,MT = βBS,RN = βRN,MT = 3.5, BBS = 1. (a) and (b) refer to the saturated traffic

load. (c) and (d) refer to the light traffic load.

this end, we exploit the void probability theorem of homogeneous PPPs [7, Theo-

rem 1.1.5], which states that a point process Φ of density λ is a homogeneous PPP

if and only if, for any region of area A, the equality Pr {Φ (A) = ∅} = exp (−λA) holds.

Assuming Approximations 3.1-3.4 true, the following holds: Pr
{

Φ
(I,1hop)
BS (A) = ∅

}
≈

exp
(
−λ(I,1hop)

BS A
)

, Pr
{

Φ
(I,2hop)
BS (A) = ∅

}
≈ exp

(
−λ(I,2hop)

BS A
)

, Pr
{

Φ
(I)
RN (A) = ∅

}
≈

exp
(
−λ(I)

RNA
)

, as well as Pr
{

Φ
(I)
BS (A) = ∅

}
≈ exp

(
−λ(I)

BSA
)

in the light load case and

Pr
{

Φ
(I)
BS (A) = ∅

}
= exp

(
−λ(I)

BSA
)

in the full load case. For assessing the accuracy of

Approximations 3.1-3.4, we compare these mathematical expressions of the void prob-

abilities against those obtained via system-level Monte Carlo simulations, as described

above. More specifically, once all the MTs are associated with their respective serving

BSs and RNs, the set of active BSs and RNs for each RB are identified. Without loss

of generality, we consider a region of area A that is centered at the origin and of radius

RA, i.e., A = πR2
A. This assumption does not bias the validation of the accuracy of

Approximations 3.1-3.4. It just makes the simulations easier to be implemented and
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Figure 3.5: Coverage rate versus λBS/λRN. Solid lines show the frameworks and
markers show Monte Carlo simulations. Setup: βBS,MT = βBS,RN = βRN,MT = 3.5,

BBS = 1. (a) and (b) refer to saturated and light traffic loads.

avoids the border effects that originate from the practical need of considering a finite

simulation area. For each point process, the probability that no nodes fall in the ball of

area A = πR2
A is computed, as a function of RA. This procedure is applied to each RB

and the final empirical estimates of the void probabilities are obtained by computing the

expectation with respect to the number of RBs. Theoretical (based on Approximations

3.1-3.4) and empirical void probabilities are illustrated in Fig. 3.4 for saturated and light

traffic load models. The figure confirms that, even though, as expected, a gap exists,

it is relatively small. More importantly, in addition, the shape of the void probability

function is well captured by the proposed approximations. These findings substanti-

ate the adoption of Approximations 3.1-3.4 for system-level performance evaluation of

relay-aided cellular networks.
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Figure 3.6: Coverage probability. Solid lines show the frameworks and markers show
Monte Carlo simulations. (a) and (b) refer to noise-limited and saturated traffic load,
respectively. Setup: βBS,RN = βRN,MT = 3.5. BBS = 0 corresponds to two-hop trans-

mission. The other setups are for one-hop transmission, i.e., BBS =∞.

Validation of Approximation 3.5

In Section 3.4, it is mentioned that the accuracy of Approximation 3.5 depends on the

density of the RNs, as compared to that of the BSs. In Fig. 3.5, the accuracy of

Approximation 3.5, as a function of the ratio λBS/λRN, is studied. As a case study,

the coverage rate is considered. As anticipated in Section 3.4, Fig. 3.5 confirms that

the accuracy of Approximation 3.5 gets slightly better as λBS/λRN either decreases or

increases. We note, however, that the difference between the mathematical framework in

Section 3.4 and Monte Carlo simulations is small, even for λBS/λRN = 1. This confirms

the usefulness of Approximation 3.5 for system-level performance evaluation of relay-

aided cellular networks. All in all, Fig. 3.5 confirms that the proposed approach is

accurate for arbitrary λRN.
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Figure 3.7: Coverage rate. Solid lines show the frameworks and markers show Monte
Carlo simulations. (a) and (b) refer to noise-limited and light traffic load. Setup:
βBS,RN = βRN,MT = 3.5. BBS = 0 corresponds to two-hop transmission. The other

setups are for one-hop transmission, i.e., BBS =∞.

Coverage Probability and Rate: Framework Validation and Perfor-

mance Trends

In Figs. 3.6 and 3.7, coverage probability and rate are illustrated, respectively. The

objective of these figures is threefold: i) to validate the accuracy of the frameworks, ii)

to highlight the differences between noise- and interference-limited relay-aided cellular

networks, and iii) to highlight advantages and limitations of one- and two-hop trans-

mission. The curves labeled BBS = 0 are obtained by forcing the relay-aided cellular

network to serve all the MTs via a two-hop link. All the other curves are obtained by

setting BBS =∞, i.e., by forcing the relay-aided cellular network to serve all the MTs via

a one-hop link. In agreement with the conclusions drawn in Section 3.4.3, it is apparent

that noise- and interference-limited networks have almost opposite performance trends.

Two-hop cellular networks are not necessarily better than their one-hop counterpart,

and the superiority of one- or two-hop transmission depends on the path-loss exponents.

Figure 3.7, in particular, highlights that the coverage rate of two-hop transmission may
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Figure 3.8: Coverage probability (a) and rate (b). Solid lines show the frameworks
and markers show Monte Carlo simulations. Setup: βBS,RN = βRN,MT = 3.5, T = 10

dB in (a), R0 = 1 Mbits/sec in (b), light traffic load in (a) and (b).

be better than that of one-hop transmission in the noise-limited scenario. Because of the

need of two time-slots, however, this never occurs, for the considered set of parameters,

in the interference-limited scenario. These trends confirm the need of the system-level

optimization in (3.30), as well as the need of taking the other-cell interference into ac-

count for an accurate performance assessment and optimization of relay-aided cellular

networks.

System-Level Optimization: Impact of the Path-Loss Exponents

In Figs. 3.8 and 3.9, coverage probability, coverage rate and average rate as a function

of the path-loss exponents are illustrated. The objective of these figures is to assess the

advantages of the system-level optimization in (3.30) and of the prioritization (end-to-

end interference-awareness) in (3.2). To this end, four case studies are investigated: i)

BBS = 0, which corresponds to a setup where all the MTs are served via a two-hop link,

ii) BBS = 1, which corresponds to a setup without one- vs. two-hop prioritization, ii)
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Figure 3.9: Average rate. Solid lines show the frameworks and markers show Monte
Carlo simulations. (a) and (b) refer to noise-limited and saturated traffic load, respec-

tively. Setup: βBS,RN = βRN,MT = 3.5.

BBS =∞, which boils down to a cellular network in the absence of RNs, and iv) BBS =

opt, which corresponds to the end-to-end optimal solution of (3.30). The figures confirm

the need of system-level optimization and of the prioritization in (3.2) for improving

the performance and for overcoming the sub-optimality of a cell association criterion

that neglects the other-cell interference. It worth nothing that this holds in the noise-

limited scenario as well (see Fig. 3.9 (a)), since the impact of using two-slots is not

taken into account in (3.2). Again, the trends of noise- and interference-limited regimes

are different. Figure 3.8 (a) confirms that the presence of RNs is more advantageous

from the coverage probability standpoint. From the coverage/average rate standpoint,

on the other hand, the optimal operating setup according to (3.30) is always close to

that corresponding to cellular networks without using the RNs. The better coverage

probability shown in Fig. 3.8 (a), however, highlights that cell-edge MTs may still

benefit from half-duplex relaying based on repetition coding, if the main objective is to

improve the quality of the received signal.
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In general, one may find from Figure 3.6–3.9 that half–duplex relaying is not beneficial

in cellular networks for many case studies when the system is interference-limited. This

disappointing result can be understood as follows: the main benefit of implementing

relays in cellular networks is the enhancement of the useful signals for cell-edge users to

compensate the severe channel attenuation. When the network is interference–limited,

this compensation on the intended signal is negated by the interference caused by the

relays. Moreover, in the system model under consideration, a half–duplex relaying pro-

tocol, which requires two time–slots for transmission, is assumed and the relays are

assumed to be randomly planned in the cellular networks, which are not optimal scheme

in terms of the performance.

Nevertheless, the deployment of relays may still be desirable, for example, in the urban

micro cellular networks where the channel model is subject to LOS or NLOS propaga-

tion as discussed in detail in Chapter 4. When the LOS/NLOS link states have been

taken into account, the enhancement on the intended signal, thanks to the relays, would

overtake the increase of interference since the intended links are more likely to be in LOS

state than those interfering links. Another possible approach to highlight the additional

potential of relaying cellular networks is by implementing the directional antennas at

the relays which enhance the useful signal, and as a byproduct, reduce the other-cell

interference. Instead of the interference isolation, the full-duplex relaying [78] might sig-

nificantly outperforms its half-duplex counterpart as well. When full-duplex relays are

considered, the transmission process is completed in one time–slot, and the interference

seen by the MTs originates from both the active BSs and the active relays. In addition,

the selected serving relays see the interference from the other cell BSs and relays as

well. The spatial and temporal correlation between the aggregate interference at the

relay nodes and at the MTs are unprecedented in half-duplex relaying cellular networks,

and the validity of the proposed approximations in the chapter is questionable in the

full-duplex architecture. These are interesting avenues of future work.

3.6 Conclusion

In this chapeter, end-to-end coverage and rate of relay-aided cellular networks have

been investigated with the aid of an abstraction model based on stochastic geometry

theory. With the aid of some system-level approximations, whose accuracy has been
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validated with the aid of Monte Carlo simulations, mathematically tractable expressions

have been obtained, which are formulated either in integral- or in closed-form. Direct

inspection of the obtained frameworks and numerical results has revealed that, in the

interference-limited regime, the presence of RNs may not be always beneficial for some

performance metrics and parameters setup. To overcome this limitation, a system-level

and interference-aware optimization criterion of the bias coefficients used for one- or

two-hop protocol selection has been proposed. The idea consists of tuning the bias

coefficients in order to maximize the end-to-end coverage and rate. The accuracy of

the proposed system-level modeling and the gain provided by the proposed system-

level optimization have been substantiated with the aid of Monte Carlo simulations for

various operating conditions. The numerical results show that, by optimizing the bias

coefficients, relay-aided cellular networks are no worse than cellular networks, but in

some cases the optimal biases correspond to the setup where all the MTs are served via

one-hop links.

Appendix

3.A Lemma 3.1, Lemma 3.2 and Lemma 3.3

Lemma 3.1. Let ZX0,Y0 = l (rX0,Y0)/SX0,Y0, where X0 = arg minXi∈ΦX

{
l(rXi,Y0)
ςSXi,Y0

}
,

ΦX is a homogeneous PPP of density λX , ς is a positive constant, l (rXi,Y0) = κ0r
βX,Y0
Xi,Y0

for Xi ∈ ΦX with κ0 > 0 and βX,Y0 > 2, and SXi,Y0 for Xi ∈ ΦX are i.i.d. log-normal

random variables with parameters
(
µX,Y0 , σ

2
X,Y0

)
. The cumulative distribution function

and the probability density function of ZX0,Y0 can be formulated as:

FZX0,Y0
(x) = Pr {ZX0,Y0 ≤ x} = 1− exp

(
−πλXκ

−2/βX,Y0
0 ΥX,Y0x

2/βX,Y0

)
fZX0,Y0

(ξ) = dFZX0,Y0
(x)
/
dx
∣∣∣
x=ξ

=

(
2πλXκ

−2/βX,Y0
0 ΥX,Y0ξ

2/βX,Y0
−1

/
βX,Y0

)
× exp

(
−πλXκ

−2/βX,Y0
0 ΥX,Y0ξ

2/βX,Y0

)
(3.31)
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where ΥX,Y0 is defined as follows:

ΥX,Y0 = exp

(
1

10 log10 (e)

2

βX,Y0

µX,Y0 +
1

2

(
1

10 log10 (e)

2

βX,Y0

)2

σ2
X,Y0

)
(3.32)

Proof: It follows using a methodology similar to [76, Sec. II-A]. By definition, ZX0,Y0 =

l (rX0,Y0)/SX0,Y0 = minXi∈ΦX {l (rXi,Y0)/(ςSXi,Y0)} = minXi∈ΦX {l (rXi,Y0)/SXi,Y0}, since

ς is a constant independent of Xi ∈ ΦX . Let the point process of the ratio of path-loss

and shadowing be defined as ZY0 = {l (rXi,Y0)/(SXi,Y0)}Xi∈ΦX
. By invoking the displace-

ment theorem of PPPs [7, Th. 1.10], ZY0 can be interpreted as a transformation of ΦX ,

which is still a PPP on R+. Its intensity measure, in particular, can be formulated, by

definition, as:

ΛZY0
([0, x)) = Pr

{
l (rXi,Y0)

SXi,Y0

∈ [0, x) , Xi ∈ ΦX

}
(a)
= 2πλXESXi,Y0


∫ (

SXi,Y0
x

κ0

)1/βX,Y0

0
rdr


(b)
= πλX (x/κ0)2/βX,Y0 ESXi,Y0

{
S

2/βX,Y0

Xi,Y0

}
(c)
= πλX (x/κ0)2/βX,Y0 ΥX,Y0

(3.33)

where (a) follows from the displacement theorem of PPPs, (b) follows from the compu-

tation of the integral, and (c) follows by introducing ΥX,Y0 = ESXi,Y0

{
S

2/βX,Y0

Xi,Y0

}
, which

is the fractional moment of a log-normal random variable. ΥX,Y0 can be computed in

closed-form from [4, Eq. (2.55)], as shown in (3.32). The cumulative distribution func-

tion of ZX0,Y0 in (3.31) follows from the void probability theorem of PPPs [76, Corollary

6], i.e., FZX0,Y0
(x) = Pr {ZX0,Y0 ≤ x} = 1−exp

(
−ΛZY0

([0, x))
)

. Its probability density

function in (3.31) follows by computing the first derivative of the cumulative distribution

function. �

Remark 3.30. The Cumulative Distribution Functions (CDFs) and PDFs of ZBS0,MT0 ,

ZBSR0,RN0 and ZRN0,MT0 can be obtained from (3.31) by setting the quadruplet of param-

eters
(
λX , βX,Y0 , µX,Y0 , σ

2
X,Y0

)
as
(
λBS, βBS,MT, µBS,MT, σ

2
BS,MT

)
,
(
λBS, βBS,RN, µBS,RN, σ

2
BS,RN

)
,

and (λRN , βRN,MT, µRN,MT, σ2
RN,MT

)
, respectively. This directly follows from (3.1). �
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Lemma 3.2. Let χ1hop (·) and χ2hop (·) in (3.14), where BS0 and RN0 are defined in

(3.1). Let ηcell = (BBSPT )/(BRN (1−KT )PT ). The following results hold:

χ1hop (ZBS0,MT0) = 1− FZRN0,MT0

(
η−1

cellZBS0,MT0

)
χ2hop (ZRN0,MT0) = 1− FZBS0,MT0

(ηcellZRN0,MT0)
(3.34)

where FZBS0,MT0
(·) and FZRN0,MT0

(·) are defined in Lemma 3.1 and Remark 3.30.

Proof: By definition, it follows from Lemma 3.1. �

Lemma 3.3. Let the cell association criterion in (3.1) and (3.2). The probabilities that

MT0 is served via a one- and a two-hop link can be formulated as follows:

χ1hop = Pr

{
l (rBS0,MT0)

BBSPTSBS0,MT0

≤
l (rRN0,MT0)

BRN (1−KT )PTSRN0,MT0

}
=

∫ +∞

0

(
1− FZRN0,MT0

(
η−1

cellξ
))
fZBS0,MT0

(ξ) dξ

(3.35)

and χ2hop = 1− χ1hop, where FZBS0,MT0
(·), fZBS0,MT0

(·), FZRN0,MT0
(·) and fZRN0,MT0

(·)

are defined in Lemma 3.1 and Remark 3.30, as well as ηcell = (BBSPT )/(BRN (1−KT )PT ).

Proof: It follows from (3.34) of Lemma 3.2, since, by definition, χ1hop = EZBS0,MT0
{

χ1hop (ZBS0,MT0)}. The condition χ1hop + χ2hop = 1 holds by definition as well. �

Remark 3.31. If βBS,MT/βRN,MT can be written as the ratio of two positive integers, the

integral in (3.35) can be formulated in closed-form in terms of the Meijer G-function with

the aid of the Mellin-Barnes integration theorem [3, Eq. (2.24.1.1)]. Further comments

are available in Remark 3.20 as well. �

3.B Proofs of Proposition 3.1

By direct inspection of (3.9) and (3.17), Proposition 3.1 follows by proving the two fol-

lowing identities: EZRN0,MT0

{
P

(2hop)
cov (T;ZRN0,MT0)

}
≈ JBS,RN (T)JRN,MT (T) as well

as EZBS0,MT0

{
P

(1hop)
cov (T;ZBS0,MT0)

}
≈ JBS,MT (T). The “≈” signs originate from Ap-

proximations 3.1-3.5. Approximation 3.5 is not used for JBS,MT (·).



Chapter 3. Stochastic geometry analysis relay-aided cellular networks 94

The first identity can be proved as follows. From (3.10) and Lemma 3.2, the following

holds:

EZBS0,MT0

{
P(1hop)

cov (T;ZBS0,MT0)
}

= EZBS0,MT0
{Pr {SINRBS0,MT0 > T| ZBS0,MT0}χ1hop (ZBS0,MT0)}

(3.36)

The expectation EZBS0,MT0
{·} corresponds to the integral with respect to y in (3.18).

The rest of the proof can be obtained from the equalities as follows:

Pr {SINRBS0,MT0 > T| ZBS0,MT0}
(a)
= Pr

{
|hBS0,MT0 |

2 >
ZBS0,MT0T

PBS0

(
σ2
N + I(1+2)

BS0→MT0
(ZBS0,MT0)

)∣∣∣∣ZBS0,MT0

}
(b)
= E(·)\ZBS0,MT0

{
exp

(
−
ZBS0,MT0T

PBS0ΩBS,MT

(
σ2
N + I(1+2)

BS0→MT0
(ZBS0,MT0)

))}
(c)
≈ exp

(
−
ZBS0,MT0σ

2
NT

PBS0ΩBS,MT

)
E(·)\ZBS0,MT0

{
exp

(
−
ZBS0,MT0T

PBS0ΩBS,MT
I(1+2)

BS0→MT0
(ZBS0,MT0)

)}
(3.37)

where I(1+2)
BS0→MT0

(ZBS0,MT0) = I(1hop)
BS0→MT0

(ZBS0,MT0) + I(2hop)
BS0→MT0

(ZBS0,MT0), (a) fol-

lows from (3.3), (b) follows from the complementary cumulative distribution function

of exponential random variables, i.e., Pr
{
|hBS0,MT0 |

2 > x
}

= exp (−x/ΩBS,MT) and (c)

follows from the independence, by assumption, of Φ
(I,1hop)
BS and Φ

(I,2hop)
BS , as stated in

Approximation 3.1 and Approximation 3.3.

The expectations E(·)\ZBS0,MT0
{·} can be computed as follows:

E(·)\ZBS0,MT0

{
exp

(
−
ZBS0,MT0T

PBS0ΩBS,MT
I(1hop)

BS0→MT0
(ZBS0,MT0)

)}
≈ exp

(
−E|hBSi,MT0 |

2

{∫ +∞

ZBS0,MT0

(
1− exp

(
P

(1hop)
BSi

ZBS0,MT0T

PBS0ΩBS,MT

|hBSi,MT0 |
2

x

))
dx

× Λ
(1)
ZMT0

([0, x))
})

(3.38)
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which is obtained by using the Probability Generating Functional (PGFL) theorem of

PPPs [7, Proposition 1.2.2], where, from (3.33), the following holds:

ΛZMT0
([0, x)) = πλ

(I,1hop)
BS (x/κ0)2/βBS,MT ΥBS,MT0

Λ
(1)
ZMT0

([0, x)) = dΛZMT0
([0, x))

/
dx

= (2/βBS,MT)πλ
(I,1hop)
BS (1/κ0)2/βBS,MT x2/βBS,MT−1ΥBS,MT0

(3.39)

with ΥBS,MT0 being defined in (3.32) and P
(1hop)
BSi

= PBS0 = PT .

The other expectation can be obtained with similar steps by using the substitutions

P
(1hop)
BSi

→ P
(2hop)
BSj

= PBSR0
= KTPT and λ

(I,1hop)
BS → λ

(I,2hop)
BS . The approximation in

(3.38) originates from the PPP assumption for the interfering BSs, as stated in Approx-

imation 3.1 and Approximation 3.3.

The final expression of JBS,MT (·) follows by using the notable integrals:

∫ +∞

X
(1− exp (−A/x))x2/β−1dx = − (β/2)X 2/β (1− 1F1 (−2/β; 1− 2/β;−A/X ))

E|h|2
{

1F1

(
−2/β; 1− 2/β;−Y |h|2

)}
= 2F1 (1,−2/β; 1− 2/β;−YΩ)

(3.40)

where A > 0, X > 0, β > 2 and |h|2 is an exponential random variable with mean

square value Ω.

The second identity can be proved as follows. From (3.10) and Lemma 3.2, the following

holds:

EZRN0,MT0

{
P(2hop)

cov (T;ZRN0,MT0)
}

=EZRN0,MT0

{
Pr {SINRBSR0,RN0 > T and SINRRN0,MT0 > T| ZRN0,MT0}

× χ2hop (ZRN0,MT0)
} (3.41)

The expectation EZRN0,MT0
{·} corresponds to the integral with respect to y in (3.18). In

the following, thus, we focus our attention on the joint probability Pr
{

SINRBSR0,RN0 > T

and SINRRN0,MT0 > T| ZRN0,MT0

}
. As for SINRRN0,MT0 , its definition in (3.7) is used.

As for SINRBSR0,RN0 , its approximated expression in (3.15) is used, i.e., Approximation

3.5. Let us denote the number of interfering BSs and RNs as K(I,1hop)
BS = card

{
Φ

(I,1hop)
BS

}
,
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K(I,2hop)
BS = card

{
Φ

(I,2hop)
BS

}
, K(I)

BS = card
{

Φ
(I)
BS

}
= K(I,1hop)

BS + K(I,2hop)
BS and K(I)

RN =

K(I,2hop)
BS , where the last identity originates from the relaying protocol, as commented

in Remark 3.8, i.e., card
{

Φ
(I,2hop)
BS

}
= card

{
Φ

(I)
RN

}
. Based on the assumption of inde-

pendent PPPs stated in Approximations 3.1-3.4, SINRBSR0,RN0 and SINRRN0,MT0 are

independent if K(I,1hop)
BS and K(I,2hop)

BS are fixed and given. In other words, the following

holds:

Pr
{

SINRBSR0,RN0 > T and SINRRN0,MT0 > T| ZRN0,MT0 ,K
(I,1hop)
BS ,K(I,2hop)

BS

}
≈ Pr

{
SINRBSR0,RN0 > T| K(I,1hop)

BS ,K(I,2hop)
BS

}
× Pr

{
SINRRN0,MT0 > T| ZRN0,MT0 ,K

(I,2hop)
BS

} (3.42)

where we have taken into account that SINRBSR0,RN0 is independent of ZRN0,MT0 , as

stated in Remark 3.17, as well as that SINRRN0,MT0 is independent of K(I,1hop)
BS .

Based on the definition of SINRBSR0,RN0 in (3.15), the following equalities hold:

Pr
{

SINRBSR0,RN0 > T| K(I,1hop)
BS ,K(I,2hop)

BS

}
(a)
= Pr

{
|hBSR0,RN0 |

2 >
ZBSR0,RN0T

PBSR0

×
(
σ2
N + I

(1hop)
BSR0→RN0

(ZBSR0,RN0) + I
(2hop)
BSR0→RN0

(ZBSR0,RN0)
)∣∣∣K(I,1hop)

BS ,K(I,2hop)
BS

}
(b)
= E

(·)\K(I,1hop)
BS ,K(I,2hop)

BS

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

(
σ2
N

+ I
(1hop)
BSR0→RN0

(
ZBSR0,RN0 ;K(I,1hop)

BS

)
+ I

(2hop)
BSR0→RN0

(
ZBSR0,RN0 ;K(I,2hop)

BS

)))}
(c)
= EZBSR0,RN0

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

σ2
N

)
γ(BS,1hop)

(
ZBSR0,RN0 ;K(I,1hop)

BS

)
× γ(BS,2hop)

(
ZBSR0,RN0 ;K(I,2hop)

BS

)}
(3.43)

where (a) and (b) follow similar to (a) and (b) in (3.37). In (b), the dependence of the

aggregate interferences upon K(I,1hop)
BS and K(I,2hop)

BS is made explicit for clarity. In (c),
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the following definitions hold:

γ(BS,1hop)

(
ZBSR0,RN0 ;K(I,1hop)

BS

)
= E

(·)\ZBSR0,RN0
,K(I,1hop)

BS

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

I
(1hop)
BSR0→RN0

(
ZBSR0,RN0 ;K(I,1hop)

BS

))}
γ(BS,2hop)

(
ZBSR0,RN0 ;K(I,2hop)

BS

)
= E

(·)\ZBSR0,RN0
,K(I,2hop)

BS

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

I
(2hop)
BSR0→RN0

(
ZBSR0,RN0 ;K(I,2hop)

BS

))}
(3.44)

By inserting (3.16) in (3.44), the latter equation can be re-formulated as

γ(BS,1hop)

(
ZBSR0,RN0 ;K(I,1hop)

BS

)
(d)
= γ

K(I,1hop)
BS

(BS,1hop) (ZBSR0,RN0)

γ(BS,2hop)

(
ZBSR0,RN0 ;K(I,2hop)

BS

)
(d)
= γ

K(I,2hop)
BS

(BS,2hop) (ZBSR0,RN0)

(3.45)

where:

γ(BS,1hop) (ZBSR0,RN0)

= EBSi

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

P
(1hop)
BSi

|hBSi,RN0 |
2Z−1

BSi,RN0
1 (ZBSi,RN0 > ZBSR0,RN0)

)}
γ(BS,2hop) (ZBSR0,RN0)

= EBSj

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

P
(2hop)
BSj

∣∣hBSj ,RN0

∣∣2 Z−1
BSj ,RN0

1
(
ZBSj ,RN0 > ZBSR0,RN0

))}
(3.46)

and (d) holds since the addends in (3.16) are i.i.d.. In (3.46), BSi and BSj denote the

generic interfering BSs that belong to Φ
(I,1hop)
BS and Φ

(I,2hop)
BS , respectively. In addition,

P
(1hop)
BSi

= PBS0 = PT and P
(2hop)
BSj

= PBSR0
= KTPT .
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Similar steps can be applied to Pr
{

SINRRN0,MT0 > T| ZRN0,MT0 ,K
(I,2hop)
BS

}
in (3.42).

From (3.7), we have:

Pr
{

SINRRN0,MT0 > T| ZRN0,MT0 ,K
(I,2hop)
BS

}
= exp

(
−
ZRN0,MT0T

PRN0ΩRN,MT
σ2
N

)
γ(RN,2hop)

(
ZRN0,MT0 ;K(I,2hop)

BS

)
γ(RN,2hop) (ZRN0,MT0)

= ERNk

{
exp

(
−
ZRN0,MT0T

PRN0ΩRN,MT
PRNk |hRNk,MT0 |

2Z−1
RNk,MT0

1 (ZRNk,MT0 > ZRN0,MT0)

)}
(3.47)

where γ(RN,2hop)

(
ZRN0,MT0 ;K(I,2hop)

BS

)
= γ

K(I,2hop)
BS

(RN,2hop) (ZRN0,MT0) and PRNk = PRN0 =

(1−KT )PT .

To complete the proof, two steps are left: the computation of the expectations 1) of

(3.42) with respect to K(I,1hop)
BS , K(I,2hop)

BS ; 2) in (3.46) for γ(BS,1hop) (·), γ(BS,2hop) (·) and

in (3.47) for γ(RN,2hop) (·). Let us start with 1).

Based on Approximation 3.5 and as illustrated in Fig. 3.3, the K(I)
BS interfering BSs are

located outside the disc having center where RN0 is and of radius equal to rBSR0,RN0 , i.e.,

outside the “red” disc in Fig. 3.3. This implies rBSi,RN0 > rBSR0,RN0 for BSi ∈ Φ
(I)
BS. Let

us denote this unbounded region of the plane by A (rBSR0,RN0). Due to the properties

of the PPPs [7], the following equalities hold:

Pr
{

card
{

Φ
(I)
BS (A (rBSR0,RN0))

}
= K(I)

BS

}
= exp

(
−λ(I)

BSA (rBSR0,RN0)
)(
AK

(I)
BS (rBSR0,RN0)

/(
K(I)

BS!
))

Pr
{

card
{

Φ
(I,1hop)
BS (A (rBSR0,RN0))

}
= K(I,1hop)

BS

∣∣∣K(I)
BS

}
=

K(I)
BS!

K(I,1hop)
BS !

(
K(I)

BS −K
(I,1hop)
BS

)
!
χ
K(I,1hop)

BS
1hop (1− χ1hop)K

(I)
BS−K

(I,1hop)
BS

(3.48)

as well as χ2hop = 1− χ1hop and K(I,2hop)
BS = K(I)

BS −K
(I,1hop)
BS .
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Then, the expectation of (3.42) with respect to K(I,1hop)
BS and K(I,2hop)

BS can be formulated

as follows:

Pr {SINRBSR0,RN0 > T and SINRRN0,MT0 > T| ZRN0,MT0}

≈ EK(I,1hop)
BS ,K(I,2hop)

BS

{
Pr
{

SINRBSR0,RN0 > T| K(I,1hop)
BS ,K(I,2hop)

BS

}
× Pr

{
SINRRN0,MT0 > T| ZRN0,MT0 ,K

(I,2hop)
BS

}}
(a)
= exp

(
−
ZRN0,MT0T

PRN0ΩRN,MT
σ2
N

)
× EZBSR0,RN0

{
exp

(
−
ZBSR0,RN0T

PBSR0
ΩBS,RN

σ2
N

)
γ (ZBSR0,RN0 ,ZRN0,MT0)

}
(3.49)

γ (ZBSR0,RN0 ,ZRN0,MT0)

= EK(I,1hop)
BS ,K(I,2hop)

BS

{
γ
K(I,1hop)

BS

(BS,1hop) (ZBSR0,RN0) γ
K(I,2hop)

BS

(BS,2hop) (ZBSR0,RN0) γ
K(I,2hop)

BS

(RN,2hop) (ZRN0,MT0)

}
(b)
=

+∞∑
K(I)

BS=0

Pr
{
K(I)

BS

} K(I)
BS∑

K(I,1hop)
BS =0

Pr
{
K(I,1hop)

BS

∣∣∣K(I)
BS

}

×
[
γ
K(I,1hop)

BS

(BS,1hop)

(
γ(BS,2hop)γ(RN,2hop)

)K(I)
BS−K

(I,1hop)
BS

]
(c)
= exp

(
−χ1hopλ

(I)
BSA (rBSR0,RN0)

(
1− γ(BS,1hop)

))
× exp

(
−χ2hopλ

(I)
BSA (rBSR0,RN0)

(
1− γ(BS,2hop)γ(RN,2hop)

))
(3.50)

where the following short-hand notations γ(BS,1hop) = γ(BS,1hop) (ZBSR0,RN0), γ(BS,2hop) =

γ(BS,2hop) (ZBSR0,RN0) and γ(RN,2hop) = γ(RN,2hop) (ZRN0,MT0) are used in (3.50). Also,

(a) follows from (3.43) and (3.47), (b) follows from (3.48) using the short-hand nota-

tions Pr
{
K(I)

BS

}
= Pr

{
card

{
Φ

(I)
BS (A (rBSR0,RN0))

}
= K(I)

BS

}
and Pr

{
K(I,1hop)

BS

∣∣∣K(I)
BS

}
=

Pr
{

card
{

Φ
(I,1hop)
BS (A (rBSR0,RN0))

}
= K(I,1hop)

BS

∣∣∣K(I)
BS

}
and (c) follows applying the bi-

nomial theorem to compute the inner sum and the Taylor expansion of the exponential

function to compute the outer sum.
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The final step is the computation of the expectations in (3.46) and (3.47). From (3.50),

more precisely, the following two terms need to be computed:

γ̄(BS) (ZBSR0,RN0) = A (rBSR0,RN0)
(
1− γ(BS,1hop) (ZBSR0,RN0)

)
γ̄(BS,RN) (ZBSR0,RN0 ,ZRN0,MT0)

= A (rBSR0,RN0)
(
1− γ(BS,2hop) (ZBSR0,RN0) γ(RN,2hop) (ZRN0,MT0)

)
= A (rBSR0,RN0)

(
1− γ(BS,2hop) (ZBSR0,RN0)

)
+A (rBSR0,RN0) γ(BS,2hop) (ZBSR0,RN0)

(
1− γ(RN,2hop) (ZRN0,MT0)

)
(3.51)

where the last identity is more suitable for performing the computation. The steps

towards this end are similar to those used for computing (3.38). Due to space limita-

tions, we omit the details and provide only the main procedure for computing them. In

particular, the following line of thought is used:

• To solve the integrals, A (rBSR0,RN0) = {r| r > rBSR0,RN0} in Fig. 3.3 is replaced

by A (rBSR0,RN0 , rmax) = {r| rBSR0,RN0 < r < rmax}. Once the integrals are solved,

the limit rmax → +∞ is computed.

• The generic term ZX,Y is re-written in terms of distance and shadowing, i.e.,

ZX,Y = r
βX,Y
X,Y

/
SX,Y . This implies the following: ZX,Y > ZX0,Y0 ⇒ rX,Y >

(ZX0,Y0SX,Y )1/βX,Y .

• The distances of the generic interferers, i.e., rBSi,RN0 and rBSi,RN0 in (3.46) and

rRNk,RN0 in (3.47), are, by definition of PPP, uniformly distributed in the area

A (rBSR0,RN0 , rmax). Thus, their PDF is f (r) = 1/A (rBSR0,RN0 , rmax) in the area

A (rBSR0,RN0 , rmax) and zero elsewhere.

• As for the terms
(
1− γ(·) (·)

)
, “1−” is first moved inside the expectation. The

expectations implied in (3.46) and (3.47) are computed in this order: i) first, that

with respect to the distances of the interferers, ii) second, that with respect to fast-

fading ((3.40) is used), iii) third the limit rmax → +∞ is computed, iv) fourth,

that with respect to shadowing ((3.32) is used). The integrals are computed using

(3.40).

• As for the computation of γ(BS,2hop) (ZBSR0,RN0), steps ii) is performed before step

i), i.e., the expectation with respect to fast-fading is first computed. The resulting
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integral with respect to the distances of the interferers is computed with the aid

of the notable integral:

∫ M

m
x
(

1 +Qx−2b
)
dx

=

(
M2

2

)
2F1

(
1,−1

b
; 1− 1

b
;− Q

M2b

)
−
(
m2

2

)
2F1

(
1,−1

b
; 1− 1

b
;− Q

M2b

)
(3.52)

The proof follows by putting everything together and by using algebraic manipulations

and simplifications.



Chapter 4

Stochastic Geometry Modeling

and Analysis of Cellular Networks

over Multi-State Channel Model

4.1 Introduction

Heterogeneous ultra-dense cellular networks constitute an enabling architecture for achiev-

ing the disruptive capabilities that the fifth generation (5G) of cellular networks is ex-

pected to provide [79]. Modeling, simulating, analyzing and optimizing such networks

is, however, a non-trivial problem. This is due to the large number of access points that

are expected to be deployed and their dissimilar characteristics, which encompass de-

ployment density, transmit power, access technology, etc. The PPP abstraction model,

due to its mathematical flexibility for modeling heterogeneous ultra-dense cellular de-

ployments, has been extensively used in the last few years and it is gaining exponential

prominence in the scientific community.

A vast majority of the researches relying on the PPP abstraction model, however, are

based on some simplifying modeling assumptions. For example, the unified power-law

path-loss model, where the received power (including the interference) decays as a func-

tion of rβ over a distance r, and β > 2 is referred to as the path-loss exponent, has been

widely considered in the researches leveraging on stochastic geometry. Notably, this sig-

nal attenuation model, although in ubiquitous use, is quite idealized. In order to model

102
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more realistic and general network architecture, recently, the multi-state channel model,

where LOS and NLOS propagations are explicitly taken into account as suggested by

3GPP [80], has been considered in the field of wireless network modeling. For example,

the authors in [81, 82] considered the signal propagation blockages from the buildings

in urban areas, which are modeled with the aid of the random shape theory. In [83],

the distance dependent LOS blocking probability is obtained from measured data in an

outdoor local area based on the linear model. In [84] and [85], the authors considered the

3GPP suggested LOS/NLOS probabilities [80] in the performance evaluation of densely

deployed cellular networks.

It has been shown by the experimental simulations in Appendix A as well as by the

numerical results in Section 4.6 that the performance trends and the design guidelines

obtained from the stochastic geometry analysis are quite different in the presence and

in the absence of multi-state channel models. For example, the conclusion that the

coverage probability of the interference–limited cellular networks is independent from

the density of transmission nodes [10] by assuming the unique channel models does not

hold if the multi-state channels are considered. The details are available in Section

4.6. Similar conclusions have also been implied somehow in [85]. These new behaviors

and the disappointing fact that the idealized single-state channel model is unable to

characterize the property of real propagation motivate the researchers to complicate

their system models.

Despite the improvement in modeling, the mathematical tractability of the multi-state

PPP-based abstraction model has remained elusive to date. In this chapter, we inves-

tigate the mathematical feasibility of the multi-state channel models, e.g., the random

shape model [81], the linear model [83], and the 3GPP model [80], on modeling cellular

networks, where LOS/NLOS channel model has been explicitly taken into account. In

specific, a multi-slope channel model has been proposed to approximate the depicted

multi-state models by matching the intensities of the path-loss processes. The proposed

approach leverages on and generalizes the two ball approximation in [66]. Moreover, the

practical antenna radiation pattern, which is usually neglected in stochastic geometry

analysis, has been explicitly taken into account in our case study. The proposed ap-

proach is shown to be applicable to multi-tier heterogeneous cellular network and cell

association criteria based on the smallest path-loss and the highest received power, and

its accuracy has been substantiated through Monte Carlo simulations.
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In addition, the PPP-abstraction model together with the multi-state channel approxi-

mation have shown to also be able to accurately approximate realistic cellular networks

with the empirical LOS/NLOS conditions due to blockages of buildings. More specifi-

cally, we explicitly take realistic BS locations, building footprints, LOS/NLOS channel

conditions into account, where i) the locations of the BSs are taken from a large database

made available by OFCOM, the independent regulator and competition authority for the

United Kingdom (UK) communications industries [9]; and ii) the footprints of the build-

ings are taken from a large database made available by Ordnance Survey, the Britain’s

mapping agency offering the most up-to-date and accurate maps of the UK [86]. Our

extensive study highlights that the our abstraction model is capable of accurately pre-

dicting the performance of cellular networks in dense urban environments. To ease the

presentation and to focus on the mathematical analysis in this chapter, the experimental

validation of cellular network modeled by PPP-based abstraction model is presented in

Appendix A of the report.

The remainder of the present chapter is organized as follows. In Section 4.2, the system

model is introduced. In Section 4.3, a tractable approximation of the link state model

and an approximation on the antenna radiation pattern are introduced. In Section 4.4,

mathematical frameworks on the performance analysis of the PPP-abstraction model

are presented. In Section 4.5, the framework is further investigated and the impact of

the system parameters is studied. In Section 4.6, numerical illustrations are provided to

substantiate the proposed approach with the aid of Monte Carlo simulations. Finally,

Section 4.7 concludes this chapter.

4.2 System Model

4.2.1 Base Stations Modeling

In this chapter, the BSs are assumed to be distributed according to a homogeneous PPP

Φ of density λBS on the bi-dimensional plane. Thanks to Slivnyak theorem, the typical

MT of interest is assumed, without loss of generality, to be located at the origin of the

2D plane. We assume that all the BSs are accessible, and the MT is tagged to the BS

denoted as BS(0) according to the association criteria described in Section 4.2.5. Similar

to [10], a full frequency reuse and a saturated load scenario are assumed, which indicates
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Table 4.1: Recurrent parameters and symbols.

Symbol Meaning

Φ PPP of BSs
Φk PPP of BSs with links to the MT in state k ∈ {LOS,NLOS}

Λk([0, x)) intensity measure of the path-loss process of BSs with links to the MT in state k
P transmit power of a BS
βk power path-loss exponent of links in state k
κk path-loss constant of links in state k

h
(i)
k the channel fading power of the BS(i)-to-MT link in state k

G(i) the antenna radiation pattern of the BS(i)-to-MT link for i ∈ Φ

L
(i)
k the path-loss of the BS(i)-to-MT link for i ∈ Φk

L̂
(i)
k the path-loss to fading ratio of the BS(i)-to-MT link for i ∈ Φk

that all the BSs except BS(0) are interfering nodes for the intended link from BS(0) to

the MT. The transmit power of all the BSs is assumed to be the same, which is denoted

by P.

4.2.2 Link States Modeling

In this chapter, the effects of LOS and NLOS channel propagation are explicitly taken

into account in agreement with the recent research findings in [81–85, 87], as well as

the 3GPP suggested system models [80]. The proposed framework encompasses a wide

range of link state models which are available in the literature, including 3GPP suggested

link state model for outdoor MTs in urban areas [80], random shape abstraction models

based on the building shapes in metropolis [81, 82], linear model obtained from channel

measurements for outdoor areas [83]. In specific, the BS-to-MT links can either be in

LOS or in NLOS, and the probability of a link of length r (in meter) being in LOS

or in NLOS is assumed to be independent of other links, and these probabilities for

the depicted link state models are given in Table 4.2. The details of the coefficients in

Table 4.2 are discussed in Section 4.6. It is assumed that the propagation state of each

BS-to-MT link is independent, then, Φ = ΦLOS ∪ ΦNLOS, where Φk denotes the set of

BSs with BS-to-MT links in state k ∈ {LOS,NLOS}.

Remark 4.1. In the present chapter, the states of the channels are assumed to be indepen-

dent for the sake of mathematical tractability. The correlation between the link states,

which mainly originates from the presence of same blockage obstacles for the neighbor-

ing transmission nodes, on the other hand, has been neglected. This correlation, often
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Table 4.2: Probabilities of a link of length r being in LOS or in NLOS for link state
models introduced in Section 4.2.2

pLOS(r) pNLOS(r)

3GPP
model [80]

min
{

18
r , 1

}(
1− e−

r
36

)
+ e−

r
36 1− pLOS(r)

Random
Shape [81]

γRS exp (−αRSr) 1− pLOS(r)

Linear
model [83]

1− pNLOS(r) min {aLMr + bLM, cLM}

manifesting itself as correlated shadowing, has been considered , for example, in [71, 88–

90]. In specific, the author in [71] account for shadowing correlation by capitalizing the

Owen and Steck method for the generation of equi-correlated multivariate normal distri-

butions, which is also applicable to the system of interest in the present chapter at the

cost of additional complexity. The authors in [90] highlighted the stress of taking chan-

nel correlations into account and proposed the Manhattan Poisson line process–based

framework, which could be the future research interest to extend the framework in the

present report. Nevertheless, as validated by the simulations in Appendix A, where the

link states are determined by the empirical building blockages and the independence of

link states is not assumed a prior, the simplified independence assumptions is accurate

and acceptable for the considered system. �

4.2.3 Channel Modeling

In this subsection, the channel models of the downlink BS-to-MT links are presented.

The signal propagation of a generic BS-to-MT link is assumed to be subject to the

path-loss as well as the Nakagami–m channel fading, which are described in detail as

follows.

4.2.3.1 Path-Loss Modeling

Different path-loss models of links in LOS and in NLOS are assumed in our case study.

In particular, the path-loss of a link between BS(i) for i ∈ Φk and the MT can be

formulated as follows:

lk(r
(i)) = κk(r

(i))βk (4.1)
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where k = {LOS,NLOS} denotes the state of the BS(i)-to-MT link, r(i) is the length of

the link, κk ≥ 1 and βk ≥ 2 are the path-loss constant and path-loss exponent for links

in state k, respectively. In general κk and βk are of different values for k = LOS and

k = NLOS.

4.2.3.2 Fast Fading

In addition to the distance dependent path-loss attenuation, each link is also subject to

an independent and fast varying channel fading. In the present chapter, the Nakagami–

m fading is assumed. Let h
(i)
k denote the fading power of the BS(i)-to-MT link, where

k ∈ {LOS,NLOS} denotes the link state. Then, h
(i)
k ∼ G(mk,mk/Ωk). The Nakagami–

m fading includes Rayleigh fading (mk = 1) as a special case, and it can closely ap-

proximate Nakagami–q fading and Rician fading [4], where the latter one is widely used

to model propagation paths consisting of a LOS link. More specifically, the one–to–one

matching of the fading figures between the m parameter of Nakagami–m distribution

and the q parameter of Nakagami–q distribution, m =
(1+q2)

2

2(1+2q4)
[4, Eq. (2.25)], al-

lows the Nakagami–m distribution to closely approximate the Nakagami–q distribution.

Similarly, the one–to–one mapping between the m parameter and the Rician K factor,

m =
(1+K2)

2

1+2K2 [4, Eq. (2.26)], allows the Nakagami–m distribution to closely approximate

the Rice distribution.

4.2.4 Radiation Pattern Modeling

To enhance the received signal from the intended BS as well as to reduce the other-cell

interference, directional antennas are equipped at both the BSs and the MTs, where

the radiation pattern as a function of the boresight angle θS ∈ [−π, π) is denoted as

GS(θS), where S ∈ {BS,MT}. The antenna gain of a generic BS(i)-to-MT link is

G(i) = GBS(θBS)GMT(θMT). Similar to [91], parameterized antenna radiation patterns

are considered in the present paper such that the total radiated power (TRP) remains

constant over the parameter space, i.e., (1/2π)
∫ π
−π GS (θS) dθS = 1 for S ∈ {BS,MT}.

More specifically, the following antenna models are considered in this chapter whose radi-

ation patterns are given in Table 4.3: i) omni-directional antenna; ii) 3GPP antenna pat-

tern [92], where θ
(3dB)
S denotes the 3dB beamwidth in degrees, ϕ

(3GPP)
S = θ

(3dB)
S

√
AS/12,
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Table 4.3: Radiation Patterns in Section 4.2.4, where S ∈ {BS,MT}

GS(θS)

Omni-
directional

1

3GPP
Pattern

g
(3GPP)
S 10

−6
(
θs
/
θ
(3dB)
S

)2
/

5
1[

0,ϕ
(3GPP)
S

) (|θS |)

+g
(3GPP)
S 10−AS/101[

ϕ
(3GPP)
S ,π

) (|θS |)

UWLA
∣∣∣g(UWLA)
S N−1

S sin
(
NSπν

−1 cos (θS) dS
)

sin−1
(
πν−1 cos (θS) dS

)∣∣∣2
Sectors

with transition

g
(1;Sec)
S 1[

0,θ
(1,Sec)
S

) (|θ|) + g
(2;Sec)
S 1[

θ
(3,Sec)
S ,π

) (|θ|)

+g
(1;Sec)
S

(
1−

(
|θ| − θ(1,Sec)

S

)/
γS

)
1[
θ
(1,Sec)
S ,θ

(2,Sec)
S

) (|θ|)

+
(

2g
(2;Sec)
S

(
|θ| − θ(2,Sec)

S

)/
γS

)
1[
θ
(2,Sec)
S ,θ

(3,Sec)
S

) (|θ|)

g
(3GPP)
S is the TRP normalization factor; iii) uniform weighted linear array (ULWA) [93],

where NS denotes the number of arrays with uniform spacing equal to dS , ν is the wave-

length of transmitted signal, and g
(UWLA)
S is the normalization factor; iv) antenna sec-

tors with transition width [91], where g
(1;Sec)
S =

(
2π − (2π − 3γS/2−$S) g

(2;Sec)
S

)/
$S ,

θ
(1,Sec)
S = ($S − γS)/2, θ

(2,Sec)
S = ($S + γS)/2, θ

(3,Sec)
S = $S/2 + γS . The details on the

chosen of the parameters are given in Section 4.6.

For ease of description, the MT and its serving BS, denoted by BS(0), are assumed to

be capable of perfectly estimating the angles of arrival and of adjusting the antenna

steering orientations accordingly without alignment errors. Therefore, the maximum

achievable antenna gain is always assumed on the intended link for all the depicted

radiation pattern models. The antenna arrays of all non-intended links, on the other

hand, are assumed to be independently oriented with respect to each other according to

a uniform distribution on [−π, π) [66].

4.2.5 Cell Association Criterion

By taking into account the trade-off between performance and flexibility, two different

cell association criteria, which are based on the smallest path-loss, and highest received

power, respectively, are studied in this chapter. Let lk(r
(i)) defined in Section 4.2.3 be

the path-loss of the BS(i)-to-MT link in state k, where k ∈ {LOS,NLOS}. Let h
(i)
k

denote the fast fading of the BS(i)-to-MT link. Then, the cell association policies are as

follows:
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A. Smallest Path-loss Association

In this scenario, the MT is assumed to be served by the BS of the smallest path-loss to

it. In other word, the path-loss of the intended link is:

L(0) = min
{
L

(0)
LOS, L

(0)
NLOS

}
(4.2)

where L
(0)
k = min

i∈Φk

{
L

(i)
k = lk

(
r(i)
)}

denotes the smallest path-loss of the links in state k

for k ∈ {LOS,NLOS}. In practical, by assuming the position of the MT is quasi-static,

the intended BS selected by the smallest path-loss association criterion is the one which

provides the highest average received power to the MT since the transmit power and

antenna radiation pattern of each BS are assumed to be the same, and the impact of

fast fading has been averaged.

B. Highest Received Power Association

Let L̂
(0)
LOS, L̂

(0)
NLOS, denote the smallest path-loss-to-fading ratio of the links in LOS

and NLOS, respectively, i.e., L̂
(0)
k = min

i∈Φk

{
L̂

(i)
k = lk

(
r(i)
)/
h

(i)
k

}
for k ∈ {LOS,NLOS}.

Then, the path-loss-to-fading ratio of the intended link for this cell association is:

L̂(0) = min
{
L̂

(0)
LOS, L̂

(0)
NLOS

}
(4.3)

The intended BS chosen by this cell association criterion is the one which provides

the highest received power to the MT, which is optimal in performance at the cost of

implementation complexity.

4.2.6 Problem Formulation

The performance of the cellular network consisting of PPP distributed BSs is evaluated

from the distribution of the SINR of the received signal at the MT for the two cell

association criteria. Specifically, when smallest path-loss association is assumed, the
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SINR can be formulated as follows:

SINR =


PG(0)h

(0)
LOS

/
L

(0)
LOS

σ2
N+iagg

(
L

(0)
LOS

) if L(0) = L
(0)
LOS ≤ L

(0)
NLOS

PG(0)h
(0)
NLOS

/
L

(0)
NLOS

σ2
N+iagg

(
L

(0)
NLOS

) if L(0) = L
(0)
NLOS < L

(0)
LOS

=
∑
k

PG(0)h
(0)
k

/
L(0)

σ2
N + iagg

(
L(0)

)δ (L(0) − L(0)
k

)
(4.4)

where k in
∑
k

is the short hand notation of k ∈ {LOS,NLOS}, σ2
N is the power of additive

white Gaussian noise, the conditional aggregate other-cell interference is iagg
(
L(0)

)
=∑

k

∑
i∈Φk

(
PG(i)h

(i)
k

/
L

(i)
k

)
1
(
L

(i)
k > L(0)

)
, where the indicator function originates from

the cell association criterion.

When highest received power association is assumed, the SINR is

SINR =
PG(0)

/
L̂(0)

σ2
N + îagg

(
L̂(0)

) (4.5)

where the conditional interference is îagg

(
L̂(0)

)
=
∑
k

∑
i∈Φk

(
PG(i)

/
L̂

(i)
k

)
1
(
L̂

(i)
k > L̂(0)

)
.

Based on the SINR of the received signal, the coverage probability (Pcov), and the

average rate (R) are used to quantify the performance of the cellular network. The

performance metrics are formulated as follows:

Pcov (VT) = Pr {SINR ≥ VT} (4.6)

R =ESINR [BWlog2 (1 + SINR)]
(a)
=

BW

ln (2)

∫ ∞
0

Pcov (t)

t+ 1
dt (4.7)

where (a) follows from [21].

By leveraging on the theoretical state models in Section 4.2.2, and by taking into account

the antenna gains in Section 4.2.4, the performance metrics under consideration are not

mathematically tractable due to a couple of unsolvable integrals. Numerical evaluation

of these integrals are time-consuming. More details of the mathematical intractability

are discussed in Appendix 4.B where the distribution of the aggregate interference is

calculated. In the next section, a general tractable approximation on the link state

models introduced in Section 4.2.2, which is referred to as multi-ball approximation,



Chapter 4. Stochastic geometry modeling and analysis of cellular networks over
multi-state channel model 111

and an approximation on the radiation patterns in Section 4.2.4, which is referred to as

multi-lobe approximation, are proposed for mathematically evaluating (4.6)-(4.7). The

proposed approximations have been proved to be applicable to all the link state models

and the antenna models considered in this chapter.

4.3 Tractable Modeling on Link States and Radiation Pat-

terns

As mentioned in Section 4.2.6, the depicted link state models in Section 4.2.2, and the

radiation patterns in Section 4.2.4 are useful for system-level simulations, they are, on

the other hand, not tractable for mathematical performance analysis. In this section, we

introduce two approximations, which is tractable yet accurate, for incorporating all the

link state models and all the radiation patterns introduced in Section 4.2 in PPP-based

cellular networks.

4.3.1 Multi-ball Link State Approximation

Inspired by the two-ball approximation proposed in [66], in this paper, we approximate

the state probability of links from BSs to a typical MT as a piece-wise constant function

of the link length r. In particular, we split the bi-dimensional plane with PPP distributed

BSs in N+1 regions, which correspond to N balls centered at the typical MT with radius

denoted by D1 < · · · < DN. Then, the probability of a BS-to-MT link being in state k,

for k ∈ {LOS,NLOS}, can be formulated by


p

(approx)
k (r) =

∑N+1
n=1 q

[Dn−1,Dn]
k 1[Dn−1,Dn] (r)∑

k q
[Dn−1,Dn]
k = 1, for n = 1, 2, · · · ,N + 1

(4.8)

where q
[Dn−1,Dn)
k ≥ 0 is the probability of the BS-to-MT link being in state k when

r ∈ [Dn−1, Dn), and we introduce the notation D0 = 0, DN+1 = +∞. The second

equality in (4.8) corresponds to the constraint that the total probabilities of each state

should be one.

Throughout this report, the approximation in (4.8) is referred to as multi-ball approx-

imation, which is optimized from the point of view of the typical MT. It is apparent
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that increase the number of balls will increase the accuracy of the approximation as well

as the computational complexity in the mathematical analysis. In the next subsection,

we introduce the methodology used for estimating Dn and q
[Dn−1,Dn)
k , for n = 1, · · · ,N,

from the link state models in Section 4.2.2.

4.3.2 Path-loss Intensity Matching

As introduced in Section 4.2.3, the path-loss of the BS-to-MT link not only depends on

the distance from the BS to the MT, but also depends on the state of the link. From

the displacement theorem of PPPs [7], we know that the path-losses of the BS-to-MT

links can be considered as an independent and identical displacement or translation

from a bi-dimensional PPP to a one-dimensional process, which is still a PPP. Inspired

by this fact, the proposed methodology for matching the multi-ball approximation and

other models in Section 4.2.2 are based on the intensity measure of the process of path-

losses, which explicitly takes the dependence between the link length and link state into

account. Moreover, the intensity is directly related to the calculation of the performance

metrics in (4.6),(4.7) as described in Section 4.4.

Let Ψ denote the set of path-losses of the BS-to-MT links where the BSs belong to Φ.

From the independence assumption, Ψ =
⋃
k Ψk, where Ψk denotes the set of path-losses

of the BSs in Φk. The intensity of Ψk for k ∈ {LOS,NLOS} can be obtained from its

definition [76] as follows:

Λk ([0, x)) = 2πλBS

∫ ∞
0

Pr {lk (r) ∈ [0, x)} pk (r) rdr (4.9)

where lk (r) is the path-loss defined in Section 4.2.3, pk (r) is the probability of a link

of distance r being in state k, which is given in Table 4.2 and in (4.8). From the

independence assumption, the intensity of Ψ is Λ ([0, x)) =
∑

k Λk ([0, x)). From the

definition in (4.9), the intensity measure Λk ([0, x)) for the depicted link state models in

Section 4.2.2 and for the multi-ball approximation are computed in Table 4.4.
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Table 4.4: path-loss Intensity on Link State Models in Section 4.2.2

3GPP suggested path-loss model

Λ
(3GPP)
LOS ([0, x)) = πλBS

(
x

κLOS

)2/βLOS

H
(
x− κLOS18βLOS

)
+ 2πλBSH

(
x− κLOS18βLOS

)
×
(

624− 36e−(x/κLOS)1/βLOS/36
(

18 + (x/κLOS)1/βLOS

)
+ 18(x/κLOS)1/βLOS

)
Λ

(3GPP)
NLOS ([0, x)) = πλBSH

(
x− κNLOS18βNLOS

)
×

(
−1572 +

((
x

κNLOS

) 1
βNLOS − 18

)2

+ 72e
− 1

36

(
x

κNLOS

) 1
βNLOS

(
18 +

(
x

κNLOS

) 1
βNLOS

))
Random Shape Based Link State Model

Λ
(RS)
LOS ([0, x)) = 2πλBSγRS

×
(
α−2

RS − α
−2
RS

(
1 + αRS(x/κLOS)1/βLOS

)
e−αRS(x/κLOS)1/βLOS

)
Λ

(RS)
NLOS ([0, x)) = 2πλBS

×

(
1
2

(
x

κNLOS

) 2
βNLOS − γRSα

−2
RS + γRSα

−2
RS

(
1 + αRS

(
x

κNLOS

) 1
βNLOS

)
e
−αRS

(
x

κNLOS

) 1
βNLOS

)
Linear Model

Λ
(Linear)
LOS ([0, x)) = 2πλBS

×
{(

1/2− bLM/2− (x/κLOS)1/βLOSaLM/3
)

(x/κLOS)2/βLOS

×H
(
x− κLOS((cLM − bLM)/aLM)βLOS

)
+
(
6a2

LM

)−1
(

(cLM − bLM)3 + 3a2
LM(x/κLOS)2/βLOS (1− cLM)

)
× H

(
x− κLOS((cLM − bLM)/aLM)βLOS

)}
Λ

(Linear)
NLOS ([0, x)) = 2πλBS

×
{(
bLM/2 + (x/κNLOS)1/βNLOSaLM/3

)
(x/κNLOS)2/βNLOS

×H
(
x− κNLOS((cLM − bLM)/aLM)βNLOS

)
+1
/(

6a2
LM

) (
(bLM − cLM)3 + 3a2

LMcLM(x/κNLOS)2/βNLOS

)}
× H

(
x− κNLOS((cLM − bLM)/aLM)βNLOS

)}
Multi-ball Link State Model

Λ
(N−Ball)
LOS ([0, x)) = Ξ(N−Ball)(x,LOS), Λ

(N−Ball)
NLOS ([0, x)) = Ξ(N−Ball)(x,NLOS)

Ξ(N−Ball)(x, k) =

πλBS

{∑N
n=1 q

[Dn−1,Dn]
k

[
H
(
x− κkDβk

n

)
H
(
x− κkDβk

n−1

)(
(x/κk)

2/βk −D2
n−1

)
+H

(
x− κkDβk

n

) (
D2
n −D2

n−1

)]
+q

[DN,∞]
k H

(
x− κkDβk

N

)(
(x/κk)

2/βk −D2
N

)}

From the intensities, the estimation of Dn and q
[Dn−1,Dn]
k for n = 1, · · · ,N in (4.8) is

implemented by solving the following optimization problem:

arg min

{Dn},
{
q
[Dn−1,Dn]
k

}
{∥∥∥log

(
Λ(N−Ball) ([0, xm))

)
− log

(
Λ(X) ([0, xm))

)∥∥∥2

F

}
(4.10)

where X ∈ {3GPP,RS,Linear} indicates the 3GPP model, random shape model and

linear model, respectively, xm is chosen to capture the main body of Λ(X) ([·, ·)), the
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logarithm in (4.10) is used to better control the accuracy of the estimation.

In practice, the optimization problem in (4.10) can be solved by using, e.g., the Matlab

built-in function ‘lsqcurvefit’ with a random initial searching point whose accuracy has

been verified in our simulations. The total probability constraint for two state models

can be explicitly taken into account in ‘lsqcurvefit’ function by adjusting only q
[Dn−1,Dn)
LOS

while its NLOS counterpart is 1− q[Dn−1,Dn)
LOS , and vice versa.

4.3.3 Multi-Lobe Radiation Pattern Approximation

The computation of the performance metrics in (4.6),(4.7) involves the averaging over the

radiation patterns given in Table 4.3, since the perfect alignment is not assumed for the

interfering links. When the 3GPP suggest antenna pattern, the UWLA antenna, and the

sector radiation pattern are considered, the expectation with respect to the antenna gain

of the interfering links leads to an unsolvable integral. In this subsection, we introduce

a radiation pattern approximation, which is referred to as multi-lobe approximation,

to facilitate the computation involving the depicted antenna models. The accuracy of

the approximation is confirmed by the numerical examples shown in Section 4.6. The

approximation finds its rational from the multi-ball approximation. In specific, the

antenna gain of the BS or of the MT can be approximated by the following piece-wise

constant function:

G
(approx)
S (θS) =

∑TS

tS=1
g

(tS)
S 1[

ϕ
(tS−1)

S ,ϕ
(tS)

S

) (|θS |) (4.11)

where S ∈ {BS,MT}, θS ∈ [−π, π), TS is the number of lobes of the radiation pattern,

g
(tS)
S is the antenna gain of the tS-th lobe, 0 < ϕ

(1)
S < · · · < ϕ

(TS−1)
S < π corresponds to

the angle of the lobe, and ϕ
(0)
S = 0, ϕ

(TS)
S = π.

By direct inspection of (4.11), the probability density function (PDF) of the antenna gain

of a generic interfering link from BS(i)-to-MT, i.e., G(i) = G
(approx)
BS

(
θ

(i)
BS

)
G

(approx)
MT

(
θ

(i)
MT

)
,

is:

fG(approx) (ϑ) =

TBS∑
tBS=1

TMT∑
tMT=1

φ
(tBS)
BS

2π

φ
(tMT)
MT

2π
δ
(
ϑ− g(tBS)

BS g
(tMT)
MT

)
(4.12)

where φ
(tS)
S = 2

(
ϕ

(tS)
S − ϕ(tS−1)

S

)
for S ∈ {BS,MT}.
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4.3.4 Radiation Pattern Matching

The parameters g
(tS)
S and ϕ

(tS)
S , for tS = 1, · · · ,TS , of the multi-lobe approximation

are estimated from the radiation patterns in Table 4.3 by solving a similar optimization

problem as in (4.10), which is given as follows:

arg min{
ϕ

(·)
S

}
,
{
g

(·)
S

}
{∥∥∥log10

(
G

(X)
S (θS)

)
− log10

(
G

(approx)
S (θS)

)∥∥∥2

F

}
(4.13)

where the logarithm is chosen for achieving better accuracy in the sidelobe region. Since

the antenna gain is usually measured in dB, log10(·) is used instead of ln(·).

4.4 The Coverage Probability of Cellular Networks

Since the average rate defined in (4.7) is directly related to the coverage probability, in

this section, we mainly focus on the calculation of the coverage probability for three asso-

ciation criteria introduced in Section 4.2.5. In specific, the probability density functions

(PDFs) of the smallest path-loss, and of the smallest path-loss-to-fading ratio, respec-

tively, are first presented as preliminaries. Then, the CF of the aggregate other-cell

interference are introduced. The PDFs and CFs are later used to facilitate the compu-

tation of the coverage probabilities, which are presented at the end of this section.

4.4.1 Preliminaries

In this subsection, the PDFs of the smallest path-loss, and of the smallest path-loss to

fading ratio are presented, which correspond to the two association criteria in Section

4.2.5.

Proposition 4.1. Let the typical MT located at the origin. Assume the downlink BS-

to-MT links follow the multi-ball link state model as depicted in Section 4.3.1. When

the smallest path-loss association is considered, the PDF of the smallest path-loss, L(0),

defined in (4.2) is as follows:

fL(0) (x) =
∑
k

Λ
(N−Ball)(1)
k ([0, x)) exp

(
−
∑
K

Λ
(N−Ball)
K ([0, x))

)
(4.14)
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where k,K ∈ {LOS,NLOS}, Λ
(N−Ball)
k ([0, x)) denotes the intensity of the path-losses

whose links are in state k, and is given in Table 4.4, the first order derivative of the

intensity can be formulated as follows:

Λ
(N−Ball)(1)
k ([0, x)) =

d

dx
Λ

(N−Ball)
k ([0, x))

= πλBS

{∑N+1

n=1
q

[Dn−1,Dn]
k

2

βk
κ
−2/βk
k x2/βk−1H

(
x− κkDβk

n

)
H
(
x− κkDβk

n−1

)} (4.15)

Proof: From the void probability theorem of PPPs [76, Corollary 6], the null probability

of the path-loss process Ψ in [0, x), where x > 0, is:

Pr {l (r) > x} = Pr {no pathloss less than x} = exp (−Λ ([0, x))) (4.16)

Therefore, the CDF of L(0) is FL(0)(x) = Pr
{
L(0) < x

}
= 1− exp (−Λ ([0, x))) and the

PDF of L(0) can be computed by fL(0) (x) = (dFL(0) (x))/dx. The PDF in (4.14) follows

by computing the derivative of an exponential function. �

Proposition 4.2. Let the typical MT located at the origin. Assume the downlink BS-

to-MT links follow the multi-ball link state model as depicted in Section 4.3.1. When

the highest received power association is considered, the PDF of the smallest path-loss-

to-fading ratio, L̂(0), defined in (4.3) is as follows:

f
L̂(0) (x) =

∑
k

Λ̂
(N−Ball)(1)
k ([0, x)) exp

(
−
∑
K

Λ̂
(N−Ball)
K ([0, x))

)
(4.17)

where k,K ∈ {LOS,NLOS}, the intensity of the path-loss-to-fading ratio of links in state

k is

Λ̂
(N−Ball)
k ([0, x)) = πλBS

{
N∑
n=1

q
[Dn−1,Dn]
k Q̃k

(
2

βk
,
κkD

βk
n

x
,
κkD

βk
n−1

x

)
(x/κk)

2/βk

+
N∑
n=1

q
[Dn−1,Dn]
k

(
Qk

(
0,
κkD

βk
n

x

)(
D2
n −D2

n−1

)
− Q̃k

(
0,
κkD

βk
n

x
,
κkD

βk
n−1

x

)
D2
n−1

)

+q
[DN,∞]
k

(
Qk

(
2

βk
,
κkD

βk
N

x

)
(x/κk)

2/βk −Qk

(
0,
κkD

βk
N

x

)
D2

N

)}
(4.18)

where

Qk (v, z) =
1

Γ (mk)

(
Ωk

mk

)v
γ

(
mk + v,

mk

Ωk
z

)
(4.19)
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Qk (v, z) =
1

Γ (mk)

(
Ωk

mk

)v
Γ

(
mk + v,

mk

Ωk
z

)
(4.20)

Q̃k (v, z1, z2) = Qk (v, z1)−Qk (v, z2) (4.21)

and the derivative of intensity is:

Λ̂
(N−Ball)(1)
k ([0, x)) = πλBSq

[DN,∞]
k

2

βk
κ
−2/βk
k x2/βk−1Qk

(
2

βk
,
κkD

βk
N

x

)

+ πλBS

∑N

n=1

2

βk
q

[Dn−1,Dn]
k κ

−2/βk
k x2/βk−1Q̃k

(
2

βk
,
κkD

βk
n

x
,
κkD

βk
n−1

x

) (4.22)

Proof: From the independence assumption of the fast fading, the intensity measure of the

path-loss-to-fading ratios of the links from BSs to the typical MT can be formulated by

Λ̂ ([0, x)) =
∑

k Pr {lk (r)/hk ∈ [0, x)} = Ehk
{

Λ
(N−Ball)
k ([0, hkx))

}
. The result in (4.18)

is obtained by calculating the expectation with respect to the channel fading. The rest of

the proof follows a same procedure as in Proposition 4.1. �

4.4.2 Characteristic function of the aggregate interference

The computation of the coverage probability by taking into account the influence of ag-

gregate other-cell interference leverages on the probability generating functional (PGFL)

of PPPs and on the Gil-Pelaez inversion theorem for smallest path-loss association and

highest received power association, respectively. In both cases, the characteristic func-

tion (CF), or the Laplace transform of the interference is involved. In the following

propositions, the CFs of the interference for two different cell association criteria are

provided, respectively.

Proposition 4.3. Let the downlink BS-to-MT links follow the multi-ball link state model

as depicted in Section 4.3.1, and let the cell association based on the smallest path-loss.

Conditioned on the path-loss of the intended link, the aggregate other-cell interference

is:

iagg

(
L(0)

)
=
∑
k

∑
i∈Φk

(
PG(i)h

(i)
k

/
L

(i)
k

)
1
(
L

(i)
k > L(0)

)
(4.23)

where k ∈ {LOS,NLOS}. The characteristic function of the interference in (4.23) is:

CFiagg

(
ω,L(0)

)
=
∏
k

exp

(
TBS∑
tBS=1

TMT∑
tMT=1

φ
(tBS)
BS

2π

φ
(tMT)
MT

2π
Tk
(
ω,L(0), g

(tBS)
BS g

(tMT)
MT

))
(4.24)
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where

Tk (ω, x, g) = πλBS

N∑
n=1

q
[Dn−1,Dn]
k

{
H
(
x− κkDβk

n−1

)
D2
n−1Fk

(
ω, κkD

βk
n−1, g

)
+H

(
x− κkDβk

n

)
H
(
x− κkDβk

n−1

)
(x/κk)

2/βkFk (ω, x, g)

−H
(
x− κkDβk

n

)
D2
nFk

(
ω, κkD

βk
n , g

)}
+ πλBSq

[DN,∞]
k

{
H
(
x− κkDβk

N

)
D2

NFk
(
ω, κkD

βk
N , g

)
+H

(
x− κkDβk

N

)
(x/κk)

2/βkFk (ω, x, g)
}

(4.25)

Fk (ω, x, g) = 1−2F1

(
mk,−

2

βk
, 1− 2

βk
, jωPgΩk/(xmk)

)
(4.26)

Proof: See Appendix 4.B. �

Proposition 4.4. Let the downlink BS-to-MT links follow the multi-ball link state model

as depicted in Section 4.3.1, and let the cell association based on the highest received

power. Conditioned on the path-loss-to-fading ratio of the intended link, the aggregate

other-cell interference is:

îagg

(
L̂(0)

)
=
∑
k

∑
i∈Φk

(
PG(i)

/
L̂

(i)
k

)
1
(
L̂

(i)
k > L̂(0)

)
(4.27)

The characteristic function of the interference in (4.27) is:

CFîagg

(
ω, L̂(0)

)
=
∏
k

exp

(
TBS∑
tBS=1

TMT∑
tMT=1

φ
(tBS)
BS

2π

φ
(tMT)
MT

2π
T̂k
(
ω, L̂(0), g

(tBS)
BS g

(tMT)
MT

))
(4.28)
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where

T̂k (ω, x, g)

= πλBS

N∑
n=1

q
[Dn−1,Dn]
k

×

{
1

Γ (mk)

(
D2
n−1γ

(
mk,

mk

Ωk

κkD
βk
n−1

x

)
−D2

nγ

(
mk,

mk

Ωk

κkD
βk
n

x

))

+F̂k (1, x, ω, g) Q̃k

(
2

βk
,
κkD

βk
n

x
,
κkD

βk
n−1

x

)(
x

κk

)2/βk

+
mk

Ωk
Êk (Dn, Dn−1, x, ω, g)

}

+ πλBSq
[DN,∞]
k

{
D2

N

Γ (mk)
γ

(
mk,

mk

Ωk

κkD
βk
N

x

)
−D2

N

mk

Ωk

(
κkD

βk
N

)mk
× Ek

(
mk

Ωk
κkD

αk
N , x, ω, g

)
+F̂k (1, x, ω, g)Qk

(
2

βk
,
κkD

βk
N

x

)(
x

κk

)2/βk
}

(4.29)

F̂k (y, x, ω, g) = 1− 1F1

(
− 2

βk
, 1− 2

βk
,
jωPg

x
y

)
(4.30)

Êk (Dn, Dn−1, x, ω, g) =D2
n

(
κkD

βk
n

)mk
Ek

(
mk

Ωk
κkD

αk
n , x, ω, g

)
−D2

n−1

(
κkD

βk
n−1

)mk
Ek

(
mk

Ωk
κkD

αk
n , x, ω, g

) (4.31)

Ek (y, x, ω, g) =
γ (mk, xy)

Γ (mk)
Fk (x, ω, g)− ymke−xy

xΓ (mk)
Bk (y, x, ω, g) (4.32)

Fk (x, ω, g) =
1

xmk
2F1

(
mk,−

2

βk
, 1− 2

βk
,
jωPg

x

)
(4.33)

Bk (y, x, ω, g) ≈ F̂k (mk, x, ω, g)− F̂k (y, 1, ω, g)

y −mk/x
(4.34)

Proof: See Appendix 4.B. �

4.4.3 Prony approximation on the CDF of Gamma distribution

Assume a random variable hk follows a Gamma distribution, i.e., hk ∼ G (mk,mk/Ωk).

Then, by applying the Prony approximation, the complementary cumulative distribution

function (CCDF) of hk can be closely approximated by a series of exponential functions,
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which can be formulated as follows:

Pr {hk ≥ VT} = 1− 1

Γ (mk)
γ (mk.VTmk/Ωk) ≈

NProny∑
np=1

anp exp
(
−VTbnpmk/Ωk

)
(4.35)

When mk = 1, i.e., Rayleigh fading is considered, Pr {hk ≥ VT} = exp (−VT/Ωk), and

no approximation is assumed. The parameters anp and bnp for np = 1, 2, · · · ,NProny in

(4.35) can be obtained by solving the following optimization problem using the Matlab

built-in function ‘fmincon’:

arg min
{anp},{bnp}

{∥∥∥∥1− 1

Γ (mk)
γ (mk.VTmk/Ωk)−

∑NProny

np=1
anp exp

(
−VTbnpmk

/
Ωk

)∥∥∥∥2

F

}
(4.36)

4.4.4 Coverage Probability for Smallest path-loss Association

The SINR of the received signal at the MT when smallest path-loss association is as-

sumed can be expressed by:

SINRPL=
∑
k

PG(0)h
(0)
k

/
L

(0)
k

σ2
N + iagg

(
L

(0)
k

)δ (L(0) − L(0)
k

)
(4.37)

where k ∈ {LOS,NLOS}. The coverage probability of the SINR in (4.37) is given in the

following proposition.

Proposition 4.5. Let the downlink BS-to-MT links follow the multi-ball link state model

as depicted in Section 4.3.1, and let the the smallest path-loss cell association. The

coverage probability of the SINR in (4.37) is:

P(PL)
cov (VT) =

∑
k

∫ ∞
0
Jk (VT, x) Λ

(N−Ball)(1)
k ([0, x)) exp

(
−
∑
K

Λ
(N−Ball)
K ([0, x))

)
dx

(4.38)

where k,K ∈ {LOS,NLOS}, Jk (VT, x) is the coverage probability conditioned on the

path-loss of the intended link in state k, which can be formulated by

Jk (VT, x) ≈
NProny∑
np=1

anp exp

(
−
bnpmkVTxσ

2
N

ΩkPG(0)

)
CFiagg

(
j
bnpmkVTx

ΩkPG(0)
, x

)
(4.39)

where CFiagg(·, ·) is the CF defined in (4.24).
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Proof: From the total probability theorem, the coverage probability of the system can be

formulated by:

P(PL)
cov (VT) =

∑
k
E
L

(0)
k

[
Jk
(

VT, L
(0)
k

)
Pr
{
L(0) = L

(0)
k

}]
(4.40)

where the probability that the intended link is in state k can be calculated by:

Pr
{
L(0) = L

(0)
k

}
(a)
=
∏
k

Pr
{
L

(0)

k
> L

(0)
k

}
(b)
=
∏
k

exp
(
−Λ

(N−Ball)

k

([
0, L

(0)
k

)))
(4.41)

where k ∈ {LOS,NLOS} and k 6= k; (a) follows from the independence assumption; (b)

is obtained from the void probability of the path-loss process. The conditional coverage

probability can be calculated by

Jk (VT, x) = Pr

{
h

(0)
k ≥ VTL

(0)
k

(
σ2
N + iagg (x)

) (
PG(0)

)−1
}

(c)
≈
∑NProny

np=1
anpEiagg(·)

[
exp

(
−bnpmkVTL

(0)
k

(
σ2
N + iagg (x)

) (
PG(0)Ωk

)−1
)] (4.42)

where (c) follows from the Prony approximation of the CCDF of Nakagami-m ran-

dom variable introduced in Section 4.4.3. The rest of the proof follows by calculat-

ing the expectation in (4.42) with the aid of the conditional CF given in Proposition

4.3, and the expectation in (4.40) with the aid of the PDF of L
(0)
k , i.e., f

L
(0)
k

(x) =

Λ
(N−Ball)(1)
k ([0, x)) exp

(
−Λ

(N−Ball)
k ([0, x))

)
. This concludes the proof. �

4.4.5 Coverage Probability for Highest Received Power Association

The SINR of the received signal at the MT when the highest received power association

is assumed can be expressed by:

SINRHP =
PG(0)

/
L̂(0)

σ2
N + îagg

(
L̂(0)

) (4.43)

The coverage probability of the SINR in (4.43) is given in the following proposition.

Proposition 4.6. Let the downlink BS-to-MT links follow the multi-ball link state model

as depicted in Section 4.3.1, and let the highest received power cell association. The
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coverage probability of the SINR in (4.43) is:

P(HP)
cov (VT) =

∫ ∞
0
Ĵ (VT, x) f

L̂(0) (x)dx (4.44)

where f
L̂(0) (x) is given in (4.17), Ĵ (VT, x) is the coverage probability conditioned on

the path-loss-to-fading ratio of the intended link, which is formulated by

Ĵ (VT, x) =
1

2
− 1

π

∫ ∞
0

1

ω
Im

{
exp

(
−jωPG(0)

xVT

)
exp

(
jωσ2

N

)
CFîagg (ω, x)

}
dω (4.45)

where CFîagg (ω, x) is the CF of interference defined in (4.28).

Proof: Conditioned on the smallest path-loss-to-fading ratio, the CCDF of the SINR in

(4.43) can be expressed as the CDF of the interference, i.e.,

Pr
{

SINRHP

(
L̂(0)

)
≥ VT

}
= Pr

{
iagg

(
L̂(0)

)
≤ PG(0)

/(
VTL̂

(0)
)
− σ2

N

}
(4.46)

Then, (4.45) can be derived from (4.46) by applying the Gil-Pelaez inversion theo-

rem [94]. The coverage probability in (4.44) is obtained by calculating the expectation

E
L̂0

[
Ĵ
(

VT, L̂0

)]
with the aid of the PDF of L̂(0) defined in (4.17). �

4.4.6 Fast Fourier Transform Based Efficient Computation

It is worthy to mention that the numerical evaluation of the coverage probability consist-

ing of a two-fold integral and invoking the Gil-Pelaez inversion theorem is not efficient

in the state-of-the-art computational software, e.g., in Mathematica 10. To address the

computational problem, and to improve the stability of the proposed algorithm, a fast

computation technique is introduced in this section, which can be used to efficiently

evaluate the integral involving Gil-Pelaez inversion theorem.

Lemma 4.1. Let CFX (ω) denote the CF of the random variable X. By invoking the

Gil-Pelaez inversion theorem [94], the CDF of X can be expressed as:

Pr {X ≤ T} =
1

2
− 1

π

∫ ∞
0

1

ω
Im
{
e−jωTCFX (ω)

}
dω (4.47)

Let f (ωn) =
(
CFX (ωn)

/
ωn
)
H(ωn), where ωn = −(Nβ)/2 + βn for n = 0, · · · ,N − 1;

N is a real positive integer which is power of 2; β denotes the sampling interval of the
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input function f (ω). Then, if the sampling frequency constraint 1/β > T/π is satisfied,

(4.47) can be approximated by:

Pr {X ≤ T} ≈ 1

2
− 1

π
Im
{

(−1)kβF(−1)nf(ωn) [k]
}

(4.48)

where k = [[TNβ/(2π)]] +N/2.

Proof: It is noticable that the output of the integral in (4.47) is equivalent to the imag-

inary part of the continuous Fourier transform (CFT) of f (ωn). Then, the rest of the

proof follows [95, Eq. 5-10] where the continuous Fourier transform is numerically eval-

uated using fast Fourier transform (FFT). Finally, the sampling frequency constraint

should be satisfied such that k < N . �

Lemma 4.1 is directly applicable to the evaluation of Proposition 4.6. More specifically,

by assuming the system is interference limited, i.e., σ2
N → 0, P

(HP)
cov (VT) in (4.44) can

be evaluated by

P(HP)
cov (VT)

(a)
=

1

2
− 1

π
Im

{∫ ∞
0

∫ ∞
0

1

ω
exp

(
−jωPG(0)

xVT

)
CFîagg (ω, x) f

L̂(0) (x) dωdx

}
(b)
=

1

2
− 1

π
Im

{∫ ∞
0

exp

(
−j 2πu

Nβ
y

)
g (y) dy

}
≈ 1

2
− 1

π
Im
{

(−1)kβF(−1)ng(yn) [k]
}

(4.49)

where (a) follows by inserting (4.45) into (4.44), (b) is obtained through the change of

variable y = G(0)PωNβ
/

(2πuxVT), and by introducing ḡ (y) defined as follows,

ḡ (y) = (1/y)

∫ ∞
0

CFîagg

(
2πuxVTy

/(
G(0)PNβ

)
, x
)
f
L̂(0) (x) dx (4.50)

where u < N/2 is a positive integer, and k = u +N/2 in the intended k-th output of

the FFT. It is noticeable that the approximation introduced by the round operation in

(4.48) is avoided thanks to the change of variable. In practice, the FFT in (4.49) can

be efficiently computed using the Mathematica built-in function ‘Fourier’ with setup

‘FourierParameters→ {1,−1}’, and u = 1 is chosen to reduce the aliasing.
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4.4.7 Generalization

The proposed analytical framework leveraging on the multi-ball link state approximation

investigates the performance of single-tier cellular networks. The extension to multi-tier

cellular networks is straightforward. In this subsection, the coverage probability of

multi-tier cellular networks, where the cell association is based on the biased smallest

path-loss, is presented.

Consider a multi-tier cellular network consisting of P tiers of BSs which are characterized

by different transmit power Pp for p = 1, 2, · · · ,P as well as different directivity gains

g
(tp)
BS,p for tp = 1, 2, · · · ,TBS,p. The BSs of each tier are distributed according to inde-

pendent homogeneous PPPs of density λ
(p)
BS for p = 1, 2, · · · ,P. Moreover, independent

multi-ball link state models are assumed for BSs in each tier. In specific, the probability

of a BS-to-MT link of length r, where the BS belongs to tier p, can be formulated as

follows: 
pk,p (r) =

Np+1∑
n=1

q

[
D

(p)
n−1,D

(p)
n

)
k,p 1[

D
(p)
n−1,D

(p)
n

) (r)

∑
k q

[
D

(p)
n−1,D

(p)
n

)
k,p = 1, n = 1, 2, · · · , Np + 1

(4.51)

The MT is assumed to be associated to a BS in tier p, for p = 1, 2, · · · ,P, if

Bp

/
l(0)
p (r) > Bp̄

/
l
(0)
p̄ (r) (4.52)

where p = 1, 2, · · · ,P and p 6= p, l
(0)
p (r) = min

{
l
(0)
LOS,p (r) , l

(0)
NLOS,p (r)

}
denotes the

smallest path-loss of the links with BSs belonging to tier p, Bp = BpPpG
(0)
p , Bp is the

biasing factor, G
(0)
p denotes the antenna gain of the intended link of tier p.

The SINR of the received signal in this case study is as follows:

SINR(Multi)=

P∑
p=1

∑
k

PpG
(0)h

(0)
k,p

/
l
(0)
k,p (r)

σ2
N +

P∑̄
p=1

∑̄
k

∑
i∈Φk̄,p̄

[
PG(i)h

(i)

k̄,p̄

/
l
(i)

k̄,p̄
(r)
]

1
(
l
(i)

k̄,p̄
(r) > Bp̄B

−1
p l

(0)
k,p (r)

)
× δ

(
L

(0)
− l(0)

k,p (r)
/
Bp

)
(4.53)

where L
(0)

= min
{
l
(0)
LOS,1 (r)

/
B1, l

(0)
NLOS,1 (r)

/
B1, · · · , l(0)

LOS,P (r)
/
BP , l

(0)
NLOS,P (r)

/
BP

}
.
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Proposition 4.7. Let the SINR of the multi-tier cellular network in (4.53), the coverage

probability can be formulated as follows:

P(Multi)
cov (VT) =

P∑
p=1

∑
k

∫ ∞
0
J (Multi)
k,p (VT, x) Λ

(N−Ball)(1)
k,p ([0, x))

× exp

− P∑
p̂=1

∑
k̂

Λ
(N−Ball)

k̂,p̂

([
0,
Bp̂

Bp

x

)) dx

(4.54)

where J (Multi)
k,p (VT, x) denotes the coverage probability conditioned on the path-loss of

the intended link from tier p and in state k, which can be formulated by

J (Multi)
k,p (VT, x)

≈
N

(k,p)
Prony∑

nk,p=1

ank,p exp

(
−
bnk,pmk,pVTσ

2
N

Ωk,pPpG
(0)
p

x

)
CF

(Multi)
iagg

(
j
bnk,pmk,pVTx

Ωk,pPpG
(0)
p

, x

) (4.55)

The intensity measure Λ
(N−Ball)
k,p ([0, x)) and its derivative Λ

(N−Ball)(1)
k,p ([0, x)) are of the

same form as their counterparts in Proposition 4.1 by replacing λBS with λ
(p)
BS, Dn with

D
(p)
n for n = 1, 2, · · · , Np, q

[Dn−1,Dn]
k with q

[D
(p)
n−1,D

(p)
n ]

k,p , κk with κk,p, and βk with βk,p.

And the CF of the interference in the heterogeneous cellular network is

CF
(Multi)
iagg

(ω, x)

=
P∏
p̄=1

∏
k̄

exp

 TBS,p∑
tBS,p=1

TMT,p∑
tMT,p=1

φ
(tBS)
BS

2π

φ
(tMT)
MT

2π
Tk,p

(
ω,
Bp

Bp

x, g
(tBS,p)
BS,p g

(tMT,p)
MT,p

) (4.56)

Tk,p (·, ·, ·) is of the same form as its counterpart in Proposition 4.3 by replacing the

subscript k with {k, p}. �

4.5 Performance Trends and Design Insights

In this section, the fundamental performance trends of the cellular network relying on

the emerging multi-ball link state models are studied, which shed light on the engineer-

ing design and system-level optimization. Due to the space limitation and to ease the

presentation, the trends are derived based on the single-tier cellular network by consid-

ering the smallest path-loss association. Similar conclusions can be drawn by analyzing

other case study at the cost of more complicated algebraic manipulations.
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a) The impact of antenna radiation pattern

From the direct inspection of (4.39) and of the distributions of the antenna patterns

in Table 4.3, the following trends can be derived: 1) the antenna gain of the intended

link in the absence of alignment errors G(0) > 1 are capable of enhancing the useful

signal, which is equivalent to reducing the threshold of the coverage by noticing the

term VT

/
G(0) in (4.39); 2) the impact of the antenna gains of the interfering links

G(i) ≤ G(0) can be studied by focusing our attention on the CF of interference in (4.39),

specifically, on the term VTG
(i)
/
G(0) before computing the expectation with respect to

G(i). It is obvious that G(i)
/
G(0) < 1, so the antenna gains of the interfering links are

capable of increasing the performance of the system.

b) The impact of BS density λBS

The analysis follows the same line of though as [96] where two scenarios are studied: 1)

κNLOSD
βNLOS
1 > κLOSD

βLOS
1 � L(0) which corresponds to a dense deployment of BSs,

i.e., large λBS; 2) L(0) � κNLOSD
βNLOS
N > κLOSD

βLOS
N which corresponds to a sparse

deployment of BSs, i.e., small λBS. To ease the presentation, Rayleigh fading with

ΩLOS = ΩNLOS = 1, omni-directional antennas at the BSs and the MT are assumed

for all the links. Then, the coverage probability for sparse and dense cellular networks,

respectively, are as follows:

P(sparse)
cov (VT)

(a)
=

∫ ∞
0

[
2π

βNLOS
q

[DN,∞]
NLOS κ

−2/βNLOS

NLOS x2/βNLOS−1 exp

(
−

VTxσ
2
N

λ
βNLOS/2
BS Pξ(0)

−πq[DN,∞]
NLOS

(
x

κNLOS

) 2
βNLOS

2F1

(
1,− 2

βNLOS
, 1− 2

βNLOS
,−VT

))]
dx

(4.57)

Pdense
cov (VT)

(b)
=

∫ ∞
0

Θ (VT, y)
2π

βLOS
κ
−2/βLOS

LOS y2/βLOS−1q
[0,D1]
LOS dy (4.58)

Θ (VT, y) = exp

(
−
∑
k

πλ
1−βLOS/βk
BS q

[0,D1]
k

(
y

κk

)2/βk

2F1

(
1,− 2

βk
, 1− 2

βk
,−VT

)

+π
∑
k

N∑
n=1

(
q

[Dn−1,Dn]
k − q[Dn,Dn+1]

k

)
λBSD

2
n2F1

(
1,− 2

βk
, 1− 2

βk
,− VTy

κkλ
βLOS/2
BS Dβk

n

))
(4.59)
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where (a) is obtained by noticing that q
[DN,∞]
LOS ≈ 0 for practical setups, and in the sparse

deployed network, the BSs are distributed outside the ball with largest radius; and (b)

holds by taking into account that, in general q
[0,D1]
LOS � q

[0,D1]
NLOS, βNLOS � βLOS, and by

neglecting the impact of noise since the dense deployed network is interference-limited.

From (4.57), it is observed that the coverage probability monotonically increases as

λBS increases in sparse cellular network. From (4.58) and (4.59), we notice that the

first addend inside the exponential function in (4.59) monotonically decreases as λBS

increases. The impact of density in the second addend can be drawn by focusing on the

terms λBSD
2
n and λ

βLOS/2
BS Dβk

n . From them, we realize that increasing λBS is equivalent

to increasing the radius of the first ball D1 of the link state model while keeping the

LOS/NLOS probabilities constant. Since q
[0,D1]
LOS � q

[0,D1]
NLOS ≈ 0 for typical system setups,

this implies that more links are in LOS as λBS increases, which degrades the coverage

probability [96]. In conclusion, the coverage probability monotonically increases as λBS

increases in sparse network while it monotonically decreases as λBS increases in dense

network. This implies that at least one optimal density exists which maximizes the

coverage probability.

4.6 Numerical and Simulation Results

In this section, the some numerical examples are illustrated to validate the accuracy

of the proposed multi-ball state approximation and to show the performance trend of

cellular networks with LOS/NLOS links compared to those with the single state model.

Unless otherwise stated, the following simulation setup, which is in agreement with the

LTE-A standard, is assumed. The transmit power of the BSs is P = 30 dBm; the noise

power is σ2
N = −174 + 10 log10 (BW) + FdB, where BW=20 MHz is the transmission

bandwidth and FdB = 10 dB is the noise figure; κLOS = κNLOS = (4π/ν)2 is the free

space path-loss at a distance of 1 meter from the transmitter, where υ = c/fc is the

signal wavelength, c ≈ 3 × 108 meters/sec is the speed of light, and fc=2.1 GHz is

the signal frequency; the path-loss exponents of LOS and NLOS links are βLOS = 2.5

and βNLOS = 3.5; the fast-fading envelope of the LOS links follows a Nakagami-m

distribution with parameters m = 2 and ΩLOS = 1; the fast-fading envelope of the

NLOS links follows a Rayleigh distribution with parameter ΩNLOS = 1. The network

density, λBS, is expressed in terms of the average cell radius, i.e., Rcell =
√

1/(πλ),
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Table 4.5: Three-ball approximations of state models in Section 4.2.2 obtained as the
solution of (4.10).

D1 D2 D3 q
[0,D1]
LOS q

[D1,D2]
LOS q

[D2,D3]
LOS q

[D3,∞]
LOS

3GPP
model

47.7989 215.9387 1874.442 0.9446 0.2142 0.0243 0.0021

Random
Shape

5.2414 20.2029 60.4573 0.9941 0.6166 0.1851 0

Linear
model

8.7212 31.2749 70.5092 0.8979 0.7673 0.5211 0.2

Table 4.6: Four-lobe approximations of antenna radiation patterns in Section 4.2.4
obtained as the solution of (4.13).

ϕ(1) ϕ(2) ϕ(3) g(1) g(2) g(3) g(4)

3GPP Pattern 16.152◦ 32.304◦ 48.455 ◦ 7.783 2.673 0.312 0.047

UWLA 6.44◦ 14.46◦ 176.78◦ 9.903 1.975 0.390 11.521

Sectors 30◦ 40◦ 45◦ 4.946 2.469 0.025 0.05

and Rcell=63.1771 meters unless otherwise stated. This is the setup for an ultra dense

cellular network which agrees with the empirical BSs deployment from the combination

of O2 and Vodafone in London, see A.2.1.

Furthermore, when the random shape based link state model is considered, γRS = 1,

αRS = 0.046 for the Manhattan region as used by [81]. When the linear model is

considered, aLM = 0.0078, bLM = 0.1, and cLM = 0.8 for the outdoor local area with

foliage [83]. For the 3GPP suggested pathloss model, no specific parameters need to be

defined. For simplicity, we assume that the antenna structure at the BSs and the MT are

the same. When the 3GPP suggested antenna model is assumed, a 6 sector scenario [92]

is assumed where θ(3dB) = 35◦, A = 23, ϕ(3GPP) = 48.46◦, g(3GPP) = 9.33. When UWLA

patterns are assumed, d = υ/2, and 8 antennas are assumed, g(UWLA) = 12.1631. When

sector pattern with transition width are considered, g(2;Sec) = 0.05, $ = 70◦, γ = 10◦,

which corresponds to a 3 sectors scenario. In the present chapter, we use the 3-ball

state model and 4-lobe antenna patterns to approximate the state models in Section

4.2.2 and antenna pattern models in Section 4.2.4, respectively, which provides a good

matching accuracy while still keeping the computational complexity at a low level. The

parameters of the state approximation and pattern approximation are provided in Table

4.5 and 4.6, respectively.

The Monte Carlo simulations results are obtained by considering the actual link state

models introduced in Section 4.2.2 as well as the actual antenna radiation patterns in
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Figure 4.1: Coverage probability of smallest pathloss association by assuming sectored
antennas unless otherwise stated. 1) ”Random Shape”: the LOS/NLOS link states
follows the random shape model. 2) ”3GPP”: link states follows 3GPP model. 3)
”3-Ball”: link states follow corresponding 3-ball approximations and 4-lobe radiation
pattern approximation is considered. 4) ”1-State (N)” all links are in NLOS. 5)”1-State

(L)” all links are in LOS.

Section 4.2.4. The multi-ball approximation and the multi-lobe approximation are not

enforced in the simulator, they are, on the other hand, considered for the analytical

performance analysis, e.g., using Proposition 4.5, 4.6.

Selected numerical results are illustrated in Figs. 4.1–4.4. In general, a good agreement

between mathematical framework and simulators is observed. More specifically, in Fig.

4.1, the suitability of the proposed multi-ball approximation and multi-lobe approxima-

tion for studying random shape link state models, 3GPP link state model and sectored

antenna patterns in cellular networks are investigated. Besides the LOS/NLOS link

state models, Fig. 4.1 also provides the coverage probability when LOS and NLOS links

are not differentiated (typical approach used in the literature), and a single-state link

model is assumed. In this case, all links are assumed to be either in LOS or in NLOS.

The figures show that neglecting LOS and NLOS links results in significantly differ-

ent performance estimates, which are usually lower bounds for the coverage probability



Chapter 4. Stochastic geometry modeling and analysis of cellular networks over
multi-state channel model 130

0 5 10 15 20 25 30 35 40
48

49

50

51

52

53

54

55

56

57

58

P [dB]

R
at

e 
[M

bi
ts

/s
ec

]

 

 
Linear UWLA
3−ball, 4−lobe

Figure 4.2: Average rate of smallest pathloss association. Markers show the Monte
Carlo simualtion results with link states following the linear model, and UWLA patterns

are assumed. Solid line shows the 3-ball model with 4-lobe antennas.

by assuming LOS/NLOS states. This confirms the compelling need of using adequate

path-loss and link state models for an accurate prediction of the performance of cellular

networks. The higher numerical complexity of the resulting mathematical frameworks,

which originates from the distance-dependent link state model, is, as a result, justified.

In Fig. 4.2, the average rate with respect to the transmit power of BSs is shown. The

numerical results confirms the accuracy of the multi-ball model on approximating the

linear model, and the accuracy of the multi-lobe model on approximating the UWLA

patterns. Furthermore, it shows that when the transmit power is larger than 20dB,

increasing the transmit power will not results in a gain in the performance, since the

system is interference limited, and any increase in P on the intended link is counterbal-

anced with the increase of interference.

In Fig. 4.3, the coverage probability of cellular networks using highest received power

association is shown. The mathematical framework in Proposition 4.6 is evaluated with

the aid of the fast computation technique in Lemma 4.1. Notably, increasing the number

of the sampling points on the input signal for FFT will improve the accuracy of the
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Figure 4.3: Coverage probability of highest received power association. Omni-
directional antenna is assumed. The fast computation techinique in Lemma 4.1 is

used by considering N = 210, 211, 212, 213, 214 sampling points.

framework at the expense of increasing computational complexity. In general, the single–

fold integral and the FFT can be efficiently evaluated in the commercial computational

software, e.g., in Mathematical 10.

Finally, in Fig. 4.4, the impact of the density of BSs deployments is illustrated. The

figure confirms, according to Section 4.5, that an optimal deployment density exists,

as well as that the performance trend depends on the adequate link state model. In

general, the optimal BSs densities, for different link state models, are different.

4.7 Conclusion

In this chapter, a new mathematical framework for computing the coverage probability

and average rate cellular networks has been proposed by taking into account of the

effect of LOS/NLOS propagation and the antenna gain. A multi-ball approximation

for modeling the link state probabilities has been introduced, which is mathematically

tractable and is shown to be able to accurately estimate other link state models available

in the literature. The proposed approach is applicable to different cell association criteria
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Figure 4.4: Coverage probability vs. BSs density, smallest pathloss association is
assumed. VT = 10dB. Markers show the Monte Carlo simulation results, where 1)
”3GPP”: link states follow 3GPP model. 2) ”Random Shape”: link states follow
random shape model. 3) ”3-Ball”: link states follow linear model. 3GPP antenna gain
patterns are assumed at both BSs and MTs. Solid line shows the 3-ball approximation

with 4-lobe antenna pattern.

and multi-tier heterogeneous networks. And a FFT based fast computation technique

is proposed to facilitate the computation involving the Gil-Pelaez inversion. It is shown

from the framework that an optimal BS density exists when the LOS/NLOS attenuation

is considered.

Appendix

4.A Useful Notable integrals

Notable Integral 1 : Let A be a real positive number, B be a complex number with

Re {B} ≤ 0, and β > 2 be a real number, the following identity holds [26]:

∫ ∞
A

(exp (B/t)− 1)t2/β−1dt = (β/2)A2/β (1− 1F1 (−2/β; 1− 2/β;B/A)) (4.60)
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Notable Integral 2 : Let m > 0, Ω > 0 be two real positive numbers, B be a complex

number with Re {B} < Re {m/Ω}, the following identity holds [4]:

∫ ∞
0

mmtm−1

ΩmΓ (m)
eBte−mt/Ωdt =

mm

Ωm
(m/Ω− B)−m (4.61)

Notable Integral 3 : Let m > 0, Ω > 0 be two real positive numbers, B be a complex

number with Re {B} < Re {m/Ω}, the following identity holds [41, Eq. 8.350.1]:

∫ X

0

mmtm−1

ΩmΓ (m)
eBte−mkt/Ωdt =

(
1− B Ω

m

)−m
γ
(
m,x

(m
Ω
− B

))/
Γ (m) (4.62)

Notable Integral 4 : Let m > 0, Ω > 0 be two real positive numbers, B be a complex

number with Re {B} < Re {m/Ω}, the following identity holds [41, Eq. 7.522.9]:

∫ ∞
0

1F1

(
− 2

β
, 1− 2

β
,Bt
)
mmtm−1

ΩmΓ (m)
e−

m
Ω
tdt = 2F1

(
m,− 2

β
, 1− 2

β
,B Ω

m

)
(4.63)

Notable Integral 5 : Let m,X be real positive numbers, and z be a large real positive

number. Let f(t) be a holomorphic function in a domain that contains the nonnegative

reals. The following approximation holds [97, Eq. 2.15]:

∫ X

0
tm−1e−ztf (t) dt ≈ γ (m, zX)

Γ (m)

∫ ∞
0

tm−1e−ztf (t) dt− Xme−Xz

z

f (X)− f (m/z)

X −m/z
(4.64)

4.B Proof of Propositions in Section 4.4.2

1) The proof of Proposition 4.3:

The CF of iagg(·) in (4.23) is computed from its definition as follows:

CFiagg

(
ω,L(0)

)
(a)
=
∏
k

E(·)\L(0)

exp

jω ∑
i∈Φk

(
PG(i)h

(i)
k

/
L

(i)
k

)
1
(
L

(i)
k > L(0)

)
(b)
=
∏
k

exp

(
E(·)\L(0)

[∫ ∞
0

(
exp

(
jωPG(i)h

(i)
k

/
x
)
− 1
)
dΛ

(N−Ball)
k

([
L(0), x

))])
(c)
=
∏
k

exp

(
E(·)\L(0)

[∫ ∞
L(0)

(
exp

(
jωPG(i)h

(i)
k

/
x
)
− 1
)

Λ
(N−Ball)(1)
k ([0, x)) dx

])
(4.65)
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where (a) is by the independence assumption; (b) is obtained from the PGFL of PPP

[7]; (c) follows from the fact that d
dxΛ

(·)
k

([
L(0), x

))
= d

dx

[
Λ

(·)
k ([0, x))− Λ

(·)
k

([
0, L(0)

))]
=

Λ
(·)(1)
k ([0, x)). The expectation in (4.65) is computed with respect to G(i) and h

(i)
k . By

inserting (4.15) into (4.65), the integral in (4.65) can be solved with the aid of the

notable integral in (4.60). In addition, it should be point out that the integral in (4.65)

is unsolvable, to the best of the author’s knowledge, if other intensity measures in Table

4.4 are considered. After some mathematical simplifications, we have:

CFiagg

(
ω,L(0)

)
=
∏
k

exp

{
πλBS

N∑
n=1

q
[Dn−1,Dn]
k

[
H
(
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n−1

)
D2
n−1E
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(
ω, κkD

βk
n−1, G

(i), h
(i)
k

)]

+H
(
L(0) − κkDβk

n

)
H
(
L(0) − κkDβk

n−1

)(L(0)

κk

)2/βk

E
[
F̂k
(
ω,L(0), G(i), h

(i)
k
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−H

(
L(0) − κkDβk

n

)
D2
nE
[
F̂k
(
ω, κkD

βk
n , G

(i), h
(i)
k

)] ]
+ πλBSq

[DN,∞]
k

[
H
(
L(0) − κkDβk

N

)
D2

NE
[
F̂k
(
ω, κkD

βk
N , G(i), h

(i)
k

)]
+H

(
L(0) − κkDβk

N

)(L(0)

κk

)2/βk

E
[
F̂k
(
ω,L(0), G(i), h

(i)
k

)]}
(4.66)

where F̂k (·, ·, ·, ·) is defined in (4.30).

The rest of the proof follows by the computation of the expectations in (4.66) with respect

to the channel fading and the antenna gain, respectively. In specific, the expectations

on F̂k (·, ·, ·, ·) is computed through the following procedure: 1) the expectation with

respect to the Nakagami–m fading is first computed with the aid of the notable integral

in (4.63); 2) the expectations with respect to G(i) are computed by using the PDF in

(4.12)

2) The proof of Proposition 4.4:
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Following the same procedure as the proof of Proposition 4.3, the conditional CF of the

interference in (4.27) can be formulated by

CFîagg

(
ω, L̂(0)

)
=
∏
k

exp

(
EG(i)

[∫ ∞
L̂(0)

(
exp

(
jωPG(i)

/
x
)
− 1
)
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k ([0, x)) dx
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∏
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k Λ
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0, h

(i)
k x
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])
(4.67)

where (a) is obtained by swapping the order of expectations/integrals in order to ease

the computation. By inserting (4.15) into (4.67), the integral in (4.67) can be solved

with the aid of the notable integral in (4.60). After some mathematical simplifications,

we have

CFîagg
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ω, L̂(0)
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∏
k
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(4.68)

The rest of the proof follows by the computation of the expectations in (4.68) through

the following procedure: 1) the change of variables yn−1 = h
(i)
k

/(
κkD

βk
n

)
, for n =

1, 2, · · · ,N, are applied in each addend inside the exponential function when computing

the expectations with respect to the Nakagami-m fading; 2) the truncated integrals over

yn−1 are then calculated with the aid of the approximation in (4.64); 3) the expectation

with respect to G(i) is computed by the PDF given in (4.12).



Chapter 5

Conclusion and Future Work

5.1 Summary

In this dissertation, the network interference modeling and performance analysis of cel-

lular networks (in the presence of relays) has been proposed relying on the PPP-based

abstraction model. Compared to prior works on stochastic geometry modeling and

analysis, the mathematical flexibilities of the PPP model on the average symbol error

probability evaluation, on the modeling of relays-aided cooperation networks, and on the

modeling of LOS/NLOS channel propagation have been investigated in this dissertation.

The specific contributions of each chapter are as follows:

In Chapter 2, the distribution of the aggregate other-cell interference is characterized

in a variety of MIMO cellular networks where the BSs are distributed according to a

homogeneous PPP, and an equivalent-in-distribution based approach has been proposed,

in which the interference is expressed by a generalized compound Gaussian representa-

tion, to reuse the common methodology developed for AWGN channels to evaluate the

ASEP. The framework is applicable to a large number of MIMO arrangements, including

receive-diversity, spatial-multiplexing, orthogonal space-time block coding, zero-forcing

reception and zero-forcing precoding. The proposed approach leads to exact two-fold

integral expressions for the error probability for arbitrary b-dimensional modulations

in the presence of other-cell interference and additive noise. When the system is inter-

ference limited, the mathematical framework simplifies to a single integral expression.
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The performance trends with respect to the MIMO setups can be observed from an

asymptotic analysis of the error probability.

In Chapter 3, a tractable mathematical framework to the analysis and optimization of

two-hop relay-aided cellular networks is introduced. The proposed approach leverages

stochastic geometry for system-level analysis, by modeling the locations of base stations,

relay nodes and mobile terminals as points of homogeneous PPPs. A flexible cell asso-

ciation and relay-aided transmission protocol based on the best biased average received

power are considered. Computationally tractable integrals and closed-form expressions

for coverage and rate are provided, and the inherent performance trends of relay-aided

cellular networks are identified. It is shown, notably, that coverage and rate highly de-

pend on the path-loss exponents of one- and two-hop links. In the interference-limited

regime, in particular, it is shown that, if the system is not adequately designed, the pres-

ence of relay nodes may provide negligible performance gains. By capitalizing on the

proposed mathematical framework, a system-level and interference-aware optimization

criterion of the bias coefficients is proposed.

In Chapter 4, by relying on the PPP abstraction modeling for the locations of the

BSs and by considering the effect of LOS/NLOS propagation, a tractable mathematical

framework for evaluating the coverage probability and average rate of cellular networks

has been proposed with the aid of a multi-ball approximation modeling of the link state

models. The proposed mathematical framework is applicable to cell association criteria

based on the smallest path-loss and on the highest received power. It also accounts for

practical antenna radiation patterns, and for multi-tier cellular network deployments.

A fast computation technique has been proposed to speed up the evaluation of the

mathematical framework involving the Gil-Pelaez inversion. It is shown that an optimal

density of cellular network deployment exists when the LOS and NLOS propagation are

explicitly taken into account.

5.2 Future work

In this section, several possible future research avenues are enumerated to extend the

research in this dissertation.

• Cellular networks modeling based on non-PPP point processes
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The assumption of a homogeneous PPP abstraction modeling has been widely adopted

by the research community due to its mathematical tractability. It is, in fact, a pure

random deployment and is more tractable than other point processes in the literature

[59]. It also corresponds to a worst case scenario for estimating the performance of real

network deployment as it completely neglect the dependence of the BSs deployment.

Recently, special efforts have been made by the academia towards modeling the base

stations as non-PPP point processes. For example, the determinantal point process,

including the Ginibre Point Process, has been used to model the network deployment

with repulsion in [98], [99]. The Poisson cluster process has been used by the authors in

[100] and in [101] to model nodes that are clustered around highly populated area. A few

analytically tractable performance metrics have been derived based on these non-PPP

processes with the idealized single state channel model. To this end, it is interesting to

extend the research in this dissertation to the non-PPP processes.

• Channel modeling with more realistic path-loss function

In Chapter 4, the idealized single-state channel modeling has been generalized to take

into account the LOS and NLOS channel propagation. It is shown that the performance

trend of the PPP modeled two-state cellular networks is quite different from its single-

state counterpart. Nevertheless, the two-state model is still a simplified assumption,

although suggested by 3GPP for system level simulation, as the path-loss exponent

generally decreases when the link length increases in practice. It is interesting to compare

the performance trend of the practical distance dependent path-loss model with the two-

state simplification,and to investigate the mathematical tractability of practical models.

• Relay-aided millimeter wave cellular networks

As discussed in Chapter 3, the relay nodes in interference-limited dense cellular networks

may provide negligible performance gains if the relays are not carefully deployed. The

relays, on the other hand, may have significant impact on the cellular networks operating

on millimeter wave frequency band. In spite of common belief, recently conducted

channel measurements have shown the suitability of the millimeter wave frequency for

cellular communications [102]. However, the cell radius for millimeter wave transmission

is limited to 100-200 meters [102], and it is shown in recent performance analysis of
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millimeter wave cellular networks that the system is noise limited for typical setups

[66]. Moreover, a link between the outdoor cellular BS and an indoor user cannot be

established on millimeter wave band due to the blockage of walls. To this end, it is

interesting to investigate the performance of the relay deployments in millimeter wave

cellular networks, which might be an enabling technology for 5G.



Appendix A

Simulation and Experimental

Validation of the PPP

Abstraction with Multi-State

Channel Model

A.1 Introduction

Throughout this report, the BSs in cellular networks are always modeled according to

a homogeneous PPP, where the locations of the BSs are not assumed to be regularly

deployed, but they are assumed to be randomly distributed according to a PPP. This

approach, due to its mathematical flexibility for modeling heterogeneous ultra-dense

cellular deployments, has been extensively used in the last few years and it is gaining

exponential prominence in the scientific community.

Despite that, the experimental validation of the PPP-based abstraction for modeling

cellular networks has remained elusive to date. This is especially true for modeling

macro cellular BSs, whose deployment is, usually, not totally random. A few researchers

have tried to justify the PPP-based model by using empirical data for the locations of the

BSs, e.g., [10], [59], [11]. These studies have confirmed the potential accuracy and the

usefulness of the PPP-based model. They, however, are based on a small set of data and

on simplifying modeling assumptions. Notably, they do not account for the footprints of

140
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Table A.1: BS statistics from OFCOM - The city of London (A = 4 km2).

O2+Vod. O2 Vod.

Number of BSs 319 183 136

Number of rooftop BSs 95 62 33

Number of outdoor BSs 224 121 103

Average cell radius (m) 63.1771 83.4122 96.7577

the buildings and rely on simplified channel models, where LOS and NLOS propagation

conditions that originate from the presence of buildings are neglected. This is mostly

due to the inherent difficulties in obtaining accurate data related to the locations of the

BSs and of the buildings in urban areas [81].

In this Appendix, we investigate the accuracy of the PPP-based abstraction for model-

ing cellular networks with the aid of experimental data. We explicitly take realistic BS

locations, building footprints and LOS/NLOS channel conditions into account. More

specifically: i) the locations of the BSs are taken from a large database made avail-

able by OFCOM, the independent regulator and competition authority for the United

Kingdom (UK) communications industries [9]; and ii) the footprints of the buildings are

taken from a large database made available by Ordnance Survey, the Britain’s mapping

agency offering the most up-to-date and accurate maps of the UK [86]. Our extensive

study highlights that the empirical link state model can be accurately approximated

through the multi-ball approximation proposed in Chapter 4, and the PPP-based model

is capable of accurately predicting the performance of cellular networks in dense urban

environments.

A.2 System Model

A.2.1 Base Stations Modeling

In order to test the accuracy of the PPP-based model for the locations of the BSs,

we use experimental data from an actual deployment of BSs that correspond to the

city of London in UK from OFCOM [9]. More specifically, we consider the BSs of two

telecommunication operators: O2 and Vodafone. The empirical data is summarized

in Tables A.1. The following terminology and notation are used: i) “rooftop BSs” is

referred to the BSs that lay inside a geographical region (polygon) where a building is
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Figure A.1: London case study. Dense urban environment, where the 55.9% of the
area is occupied by buildings. Horizontal and vertical axis provide distances expressed
in meters. (a) Entire region under analysis. (b) Magnification of a smaller region. (c)

Google map view of (b). (d) Satellite view of (b).

located; ii) “outdoor BSs” is referred to the BSs that lay in a geographical region where

no buildings are located. Information about the locations of the buildings is provided

in Section A.2.2; and iii) A denotes the area of the geographical region under analysis.

From the number of BSs (N ) and A, the density of BSs is obtained as λBS = N/A.

Accordingly, the average cell radius shown in the tables is computed as Rc =
√

1/(πλBS)

[66].

To study the impact of network densification and the potential gains of sharing the

BSs between telecommunication operators, two scenarios are investigated. In the first

scenario, the BSs of O2 and Vodafone operate at different frequencies, thus they do not

interfere with each other. This is equivalent to having just one telecommunication op-

erator in the region of interest. Hence, only the BSs of one telecommunication operator

are accessible to the typical MT. In the second scenario, O2 and Vodafone share the BSs

and they operate at the same frequency. So, a denser deployment of BSs is available in

the region of interest and the BSs of both telecommunication operators are accessible

to the typical MT. Furthermore, full frequency reuse for the BSs of the same telecom-

munication operator and a saturated load traffic model are assumed. This implies that,

with the exception of the serving BS, all the accessible BSs at a given frequency act as

interferers for the probe MT.

As far as the PPP-based model for the locations of the BSs is concerned, we assume that

the number of BSs is a Poisson random variable with the same density as the empirical

data, and the locations of the BSs are assumed to be uniformly distributed in in the

same region A.
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A.2.2 Buildings Modeling

To take realistic blockages into account, i.e., LOS and NLOS propagation conditions due

to the locations and the shapes of buildings (see also Section A.2.3), we use experimental

data corresponding to the actual deployments of buildings in London where the data

is obtained from OS [86]. In particular, the same geographical regions as those of the

locations of the BSs in Section A.2.1 are considered. To make sure that the data obtained

from the two independent websites of OFCOM and OS can be merged together, we have

verified their consistency with the aid of Google maps for the same areas. Figures A.1

provide a graphical representation of the geographical areas under analysis, by merging

the data from OFCOM and OS. As far as the buildings are concerned, their elevation is

not considered, since this data is not available in the database. Therefore, the analysis

of its impact is postponed to a future research study.

A.2.3 Blockages Modeling

The presence of buildings in dense urban environments constitute an inherent source of

blockages, which results in LOS and NLOS links. Modeling LOS and NLOS propagation

conditions constitute an important requirement for assessing the physical layer perfor-

mance of transmission schemes within the 3GPP [80]. In this chapter, we are interested

in the performance evaluation of outdoor MTs, and in what follows, the blockage models

for a generic BS-to-outdoor-MT link are introduced.

A.2.3.1 Empirical-Based Model

Based on the locations of the BSs and on the locations and the shapes of the buildings

described in Sections A.2.1 and A.2.2, respectively, LOS and NLOS propagation con-

ditions can be empirically taken into account. In this chapter, the empirical LOS and

NLOS links are identified as follows. Let a generic “outdoor BS” and a generic outdoor

MT in the region of interest. The related link is in LOS if no building is intersected by

connecting the BS and the MT with a straight line. Otherwise, the link is in NLOS.

Let a generic “rooftop BS”, the BS-to-MT links are assumed to be in NLOS. This is a

simplifying assumption used in other literature as well [103], which seems acceptable if

no information on the elevation of the buildings is available.
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A.2.3.2 Multi-Ball Approximation

Due to the presence of blockages (i.e., buildings), a generic BS-to-MT link may be either

in LOS or in NLOS with a probability that depends on the BS-to-MT distance, the

locations of the BSs, as well as the locations and the shapes of the buildings. This

dependence on the distance and on the network topology makes the simulation and the

analysis of cellular networks based on the PPP-based model less tractable and more time-

consuming. In this chapter, we compare the empirical-based model against the multi-

ball approximation proposed in Chapter 4. The proposed approximation is optimized

from the point of view of the typical MT and, thus, the spatial deployments of the

BSs and of the buildings are explicitly taken into account. This makes it suitable for

system-level performance evaluation and optimization. The parameters of the multi-ball

approximation can be obtained through the intensity matching. which is described in

Section A.3. Further details of the multi-ball approximation are not presented in this

chapter again. The readers can refer to Chapter 4.

A.2.3.3 1-State Model

In stochastic geometry modeling, LOS and NLOS propagation conditions are often ne-

glected and all links are assumed to be either in LOS or NLOS. This case study is

considered in this test as well, in order to better understand the differences between

1-state and 2-state blockage models.

A.2.4 Channel Modeling

In addition to modeling blockages, we consider a practical channel model. In particular,

path-loss, shadowing and fast-fading are considered. Let a generic BS denoted by BSi

and a generic outdoor MT denoted by MTt.

As for the path-loss, we consider a bounded model lk
(
r(i,t)

)
= κk

(
max

{
r0, r

(i,t)
})βk ,

where r(i,t) denotes the BS-to-MT distance, k = LOS or k = NLOS if the BS-to-MT

link is in LOS or in NLOS, κk denotes the free-space path-loss, βk denotes the path-loss

exponent, and r0 is a positive constant that avoids the singularity of the path-loss model

for r(i,t) → 0.
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As for the shadowing, we consider that it is distributed according to log-normal random

variable with mean and standard deviation (in dB) equal to µk and to σk, respectively.

In this chapter, shadowing is denoted by X
(i,t)
k .

As for the fast-fading, we consider that the envelope of the links in LOS and in NLOS is

distributed according to a Nakagami-m (with m ≥ 0.5) and a Rayleigh random variable

with mean power Ω, respectively. In this chapter, the envelope of the fast-fading is de-

noted by h
(i,t)
k . Fast-fading and shadowing are assumed to be independently distributed.

Thus, the received power at MTt can be formulated as:

PR =
Ph

(i,t)
k X

(i,t)
k

κk
(
max

{
r0, r(i,k)

})βk (A.1)

where P is the transmit power of BSi.

A.2.5 Cell Association Modeling

The typical (probe) MT is assumed to be served by any accessible BS that provides

the highest average received power to it. Thus, path-loss and shadowing are both taken

into account for cell association. Fast-fading, on the other hand, is averaged out and

neglected. This is, in fact, the typical operating condition based on 3GPP specifications

[80].

Let MTt be the typical MT and the probe link be identified by the subscript “0”. Let

C
(0,t)
k be defined as follows:

C
(0,t)
k = min

i∈Φ
(k)
BS

{
C

(i,t)
k =

κk
(
max

{
r0, r

(i,t)
})βk

X
(i,t)
k

}
(A.2)

where Φ
(k)
BS is the PPP of the BSs in state k, and 1/C

(0,t)
k is the highest average received

power at MTk from any accessible BS whose BS-to-MTk link is in LOS if k = LOS or

in NLOS if k = NLOS. From (A.2), the serving BS of MTt is that corresponding to the

inverse average received power defined as C(0,t) = min
{
C

(0,t)
LOS , C

(0,t)
NLOS

}
, since it provides

the best link.
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Table A.2: 3-ball approximation of empirical blockage models obtained as the solution
of (4.10).

D1 (meters) D2 (meters) D3 (meters) q
[0,D1]
LOS q

[D1,D2]
LOS q

[D2,D3]
LOS q

[D3,∞]
LOS

15.1335 56.5978 195.7149 0.7948 0.3818 0.0939 0

A.2.6 Problem Statement

Let BS0 be the serving BS of MTt. Based on (A.1) and (A.2), the signal-to-interference-

plus-noise-ratio (SINR) at the typical MT, MTt, can be formulated as follows:

SINR =
Ph

(0,t)
k /C

(0,t)
k

σ2
N +

∑
k∈{LOS,NLOS}

∑
i∈Φ

(k)
BS \BS0

I(i,t)

k,k

(A.3)

where I(i,t)

k,k
= (Ph

(i,t)

k
/C

(i,t)

k
)1
(
C

(i,t)

k
> Ck

(0,t)
)

denotes the generic interfering term,

k ∈ {LOS,NLOS} refers to the LOS/NLOS state of the BS0-to-MTt link, σ2
N denotes

the noise power.

In this chapter, the performance metric for quantifying the accuracy of the PPP-based

model is the CCDF of the SINR, since it provides complete information on its distri-

bution. In addition, it corresponds to the coverage probability of a typical MT as a

function of the link reliability threshold. Let T be this threshold, it can be formulated

as follows:

Pcov (T) = Pr {SINR > T} (A.4)

A.3 Numerical Results: Experimental Validation

In this section, we illustrate several numerical examples in order to validate the accuracy

of the PPP-based abstraction for modeling cellular networks, as well as to confirm the

tightness of the proposed multi-ball approximation for simplifying the simulation and

for enabling the mathematical modeling of cellular networks.

Simulation Setup Unless otherwise stated, the following simulation setup, which

is in agreement with the long term evolution advanced (LTE-A) standard, is assumed.

The transmit power of the BSs is P = 30 dBm; the noise power is σ2
N = −174 +
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10 log10 (BW) + FdB, where BW=20 MHz is the transmission bandwidth and FdB = 10

dB is the noise figure; κLOS = κNLOS = (4π/ν)2 is the free space path-loss at a distance

of 1 meter from the transmitter, where υ = c/fc is the signal wavelength, c ≈ 3 × 108

meters/sec is the speed of light, and fc=2.1 GHz is the signal frequency; r0 = 1 meter;

the path-loss exponents of LOS and NLOS links are βLOS = 2.5 and βNLOS = 3.5; the

mean and standard deviation of the shadowing are µLOS = µNLOS = 0 dB, σLOS = 5.8

dB, and σNLOS = 8.7 dB; the fast-fading envelope of the LOS links follows a Nakagami-

m distribution with parameters m = 2 and ΩLOS = 1; the fast-fading envelope of the

NLOS links follows a Rayleigh distribution with parameter ΩNLOS = 1. Used notation:

“O2” means that only the BSs from O2 are accessible; “Vodafone” means that only the

BSs from Vodafone are accessible; and “O2+Vodafone” means that all BSs from O2 and

Vodafone are accessible.

Multi-Ball Approximation of the Blockages In this section, we study the ac-

curacy of the proposed multi-ball approximation for modeling spatial blockages, under

the assumption that the BSs are distributed according to a PPP. The solution of the

intensity matching by solving the optimization in (4.10) is summarized in Table A.2

by assuming N = 3, which provides a good matching accuracy while still keeping the

computational complexity at a low level. The intensity measure of the empirical-based

model of the blockages is obtained by using the following procedure based on the actual

locations and shapes of the buildings obtained from the OS database.

Step 1: The geographical region illustrated in Figs. A.1 for London is considered. As

discussed in Section A.2.2, this data is obtained from OS. The BSs are generated

according to a PPP of density λBS, which is chosen according to the data in Table

A.1. Outdoor and rooftop BSs are identified.

Step 2: In the same areas, the MTs are generated according to another PPP of density

λMT = 10λBS. This choice of λMT guarantees saturated traffic conditions, i.e., all

the BSs have at least one MT to serve based on the cell association in Section

A.2.5. Among all the MTs, one MT among those that do not lay in a building

(outdoor MTs) is randomly chosen as the typical MT.

Step 3: Let the probe (typical) MT, its distance r and link state (LOS or NLOS) with

respect to any accessible BSs are computed according to Section A.2.3.1.
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Figure A.2: Coverage probability in three case studies: 1) “OFCOM, OS”: the BSs
are obtained from the OFCOM database and the buildings from the OS database. 2)
“PPP, OS”: the BSs are distributed according to a PPP and the buildings are obtained
from the OS database. 3) “PPP, Multi-Ball”: the BSs are distributed according to a

PPP and the multi-ball approximation in Table A.2 is used.

Step 4: Step 2 and Step 3 are repeated several thousands of times in order to get suffi-

cient statistical data. From this data, two vectors are obtained: a vector containing

the distances whose links are in LOS and a vector containing the distances whose

links are in NLOS.

Step 5: From the vectors computed in Step 4, pLOS (r) and pNLOS (r) are estimated

by using, e.g., the hist function of Matlab. To this end, a resolution step equal to

∆r = 1 meter and M = 2000 discrete distances are considered. Thus, the LOS and

NLOS probabilities are available for the set of distances rm for m = 1, 2, . . . ,M ,

where ∆r = rm−rm−1 = 1 meter. The corresponding LOS and NLOS probabilities

are pLOS (rm) and pNLOS (rm) for m = 1, 2, . . . ,M .

Step 6: Finally the intensity measure of the path-losses is computed by the following

discrete (empirical) approximation of (4.9) (for k = {LOS,NLOS}):

Λ
(em)
k ([0, x)) ≈ 2πλBS∆r

M∑
m=1

Pr
{
κk (max {r0, rm})βk ≤ x

}
pk (rm) rm (A.5)
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PPP-Based Modeling of the BSs In Figs. A.2, we study the accuracy of the

PPP-based abstraction for modeling cellular networks, by either considering or not the

multi-ball approximation for modeling blockages. As discussed in Sections A.2.1 and

A.2.2, the empirical coverage probability is obtained by using the locations of the BSs

and the footprints of the buildings from the OFCOM and OS databases, respectively.

The following procedure for computing the empirical coverage probability is used.

Step 1: The geographical region illustrated in Figs. A.1 for London is considered. As

discussed in Section A.2.2, this data is obtained from OS. Two case studies for the

locations of the BSs are considered. 1) The BSs are distributed according to their

actual locations obtained from OFCOM (Figs. A.1, Tables A.1). 2) The BSs are

distributed according to a PPP whose density is the same as that of Tables A.1.

In both cases, outdoor and rooftop BSs are identified.

Step 2: In the same areas, the MTs are generated according to another PPP of density

λMT = 10λBS. This choice of λMT guarantees saturated traffic conditions, i.e., all

the BSs have at least one MT to serve based on the cell association in Section

A.2.5. Among all the MTs, one MT among those that do not lay in a building

(outdoor MTs) is randomly chosen as the typical MT.

Step 3: Let the probe (typical) MT, its distance r and link state (LOS or NLOS) with

respect to any accessible BSs are computed according to Section A.2.3.1.

Step 4: For each link between the probe MT and the accessible BSs, path-loss, shad-

owing and fast-fading gains are generated according to Section A.2.4.

Step 5: Let the probe MT and the accessible BSs, its serving BS is identified by using

(A.2) in Section A.2.5.

Step 6: The SINR and its associated coverage probability are computed by using (A.3)

and (A.4), respectively.

Step 7: Steps 1-6 are repeated 106 times in order to get sufficient statistical data. The

final coverage probability is computed as the empirical mean of the obtained 106

realizations for each target reliability threshold.

If the 1-state model in Section A.2.3.3 is considered, the same procedure is used. The

only difference is that all the links are assumed to be, a priori, either in LOS or NLOS.
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Figure A.3: Coverage probability: impact of blockages. Three case studies are ana-
lyzed: 1) “OS”: the buildings are obtained from the OS database. 2) “1-State (N)”: all

links are in NLOS. 3) “1-State (L)”: all links are in LOS.

All in all, Figs. A.2 confirm the accuracy of the PP-based abstraction model, and the

tightness of the proposed multi-ball and multi-lobe approximations in practical scenarios.

Achievable Performance: Impact of Blockages In Fig. A.3, we study the impact

of the blockage model on the coverage probability. This figure highlights the importance

of accurately modeling blockages. More specifically, the widespread used 1-state model

provides different results from the more accurate and realistic LOS/NLOS blockage

model, which accounts for the locations of buildings. Figure A.3 points out that the

coverage probability may be better than that predicted by using the 1-state model,

since the links in LOS result in good probe links while the links in NLOS result in

less interference. The proposed multi-ball approximation turns out to be a useful tool

for taking LOS/NLOS propagation conditions into account at an affordable complexity,

eventually leading to the mathematical analysis and optimization of cellular networks.

A.4 Conclusion

With the aid of experimental data for the actual locations of BSs and for the actual loca-

tions and shapes of buildings, we have studied the accuracy of the PPP-based abstraction
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for modeling cellular networks. This study has highlighted that the PPP-based model

is sufficiently accurate for modeling dense urban environments of major metropolitan

areas. We have observed that accurate models for the blockages is needed for obtain-

ing reliable estimates of the coverage probability of cellular networks. Finally, we have

validated the accuracy of flexible multi-ball approximation for incorporating realistic

blockage into the PPP-based abstraction of cellular networks. Based on these findings,

the PPP-based model seems to be sufficiently accurate and tractable for enabling the

mathematical analysis and optimization of emerging ultra-dense cellular networks, which

use advanced wireless access transmission schemes.
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