
HAL Id: tel-01419298
https://theses.hal.science/tel-01419298v2

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for rigorous development of distributed
components : formalisation and tools

Oleksandra Kulankhina

To cite this version:
Oleksandra Kulankhina. A framework for rigorous development of distributed components : formal-
isation and tools. Other [cs.OH]. Université Côte d’Azur, 2016. English. �NNT : 2016AZUR4077�.
�tel-01419298v2�

https://theses.hal.science/tel-01419298v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THÈSE

pour l’obtention du titre de

Docteur en Sciences

Mention Informatique

présentée et soutenue par

Oleksandra Kulankhina

A framework for rigorous

development of distributed components:

formalisation and tools

Thèse dirigée par Eric Madelaine

Soutenue le 14 Octobre 2016

Jury

Rapporteurs Radu Mateescu Inria Grenoble - Rhône-Alpes

Frantǐsek Plášil Charles University, Prague

Examinateurs Frédéric Mallet Université Nice Sophia Antipolis

Ludovic Henrio CNRS

Simon Bliudze EPFL, Lausanne

Directeur de thèse Eric Madelaine Inria Sophia Antipolis

Invité Rabéa Ameur-Boulifa Télécom ParisTech

ii

iii

Résumé

Dans cette thèse, nous proposons une approche rigoureuse pour la conception et le

développement de systèmes à base de composants hiérarchiques distribués. L’idée de

base du travail présenté est de combiner les techniques de conception de logiciels

dirigées par les modèles, bien connues des programmeurs, avec des méthodes de

vérification formelles puissantes, capables d’assurer les propriétés fonctionnelles d’un

système distribué et de détecter les erreurs dès le stade de la conception.

Tout d’abord, nous introduisons un formalisme graphique basé sur UML pour

l’architecture et le comportement des composants hiérarchiques de modélisation.

Deuxièmement, nous spécifions formellement un ensemble de contraintes qui assurent

la correction de la composition des composants, en mettant l’accent sur la séparation

entre les aspects fonctionnels et non-fonctionnels. Troisièmement, nous expliquons

comment nos modèles graphiques peuvent être traduits automatiquement dans le

formalisme d’entrée d’un model-checker. Nous nous concentrons ensuite sur le codage

des fonctionnalités avancées de composants distribués, comme communications de 1

vers N, la reconfiguration et les communications asynchrones basées sur les appel de

procédures distants.

Enfin, nous mettons en œuvre cette approche dans une plateforme intégrée orienté

modèle qui comprend un ensemble d’éditeurs graphiques, un module de validation

de la décision correcte de l’architecture statique, un module traduisant le modèle

conceptuel dans une entrée pour la plateforme de vérification CADP, et enfin un

générateur de code exécutable

iv

Abstract

In this thesis we introduce an approach for rigorous design and development of

distributed hierarchical component-based systems. The core idea of the presented

work is to combine the well-known among the programmers techniques for model-

driven software design and the powerful formal verification methods able to ensure

the functional properties of a distributed system and to detect errors at the early

design stage.

First, we introduce a UML-based graphical formalism for modelling architecture

and behaviour of hierarchical components. Second, we formally specify a set of con-

straints that ensure the correct components composition with a focus on separation

between the functional and non-functional aspects. Third, we explain how the graph-

ical models can be automatically translated into an input for a model-checker. For

this aim, we rely on a formally specified intermediate structure encoding the se-

mantics of components behaviour as a network of synchronised parametrised label

transition systems. We focus here on encoding the advanced features of distributed

components such as one-to-many communications, reconfiguration, and asynchronous

communications based on request-reply.

Finally, we implement the approach in an integrated model-driven environment

which comprises a set of graphical editors, an architecture static correctness validation

plug-in, a plug-in translating the conceptual model into an input for a verification

toolsuite CADP, and a generator of the implementation code.

Acknowledgements

First of all, I would like to thank my advisors Eric Madelaine and Ludovic Henrio for

giving me the opportunity to do a PhD, for all the discussions that we had, for all

their ideas, and for the time they spent on working with me. I would like to thank

Radu Mateescu and Frantisek Plasil who kindly agreed to review this dissertation.

I would like to thank Frederic Mallet, Simon Bliudze, and Rabea Ameur-Boulifa for

doing the honour to be the members of the jury for my defence.

I would like to thank Justine Rochas for the enormous support and help, for

keeping the great atmosphere in our office, for all those hundreds of things she has

done for me. I cannot imagine this PhD and my life in France without her.

I would like to thank Fabrice Huet for the constant support, for a lot of advice

he gave me in any kind of situation, and for the help. I would like to thank Sophie,

Christel, Vincenzo, Fabien, Francoise, and all the members of Oasis and Scale team.

I would like to thank Iyad who welcomed me in the team. I would like to thank

Alexandra for being so kind to me and for introducing me to the project. Also, I

would like to thank all the engineers and interns with whom I worked on the VerCors

platform. I would like to thank Julien De Antoni for his help with the implementation.

I would like to thank the professors of Kharkiv National University of V.N. Karazin,

and especially Iryna Zaretska for giving me a solid background in mathematics and

informatics which allowed me to become a PhD Candidate.

I would like to thank my boyfriend Hlib Mykhailenko for the enormous support

and his ability to find in any situation the right words that encouraged me. I would

like to thank Yurii Guznienkov for introducing me to the world of computer science,

it is 100% thanks to him that I have chosen the field about which I am so passionate.

I would like to thank all other members of my family and my friends for the support.

Last but not least, I would like to thank my mother Iryna Didorchuk. Neither

this dissertation no other achievements in my life would be possible without her love

and support.

v

vi

Table of Contents

List of Figures xi

List of Listings xiii

List of Tables xv

1 Introduction 1

1.1 Motivation and objectives . 1

1.2 Contribution . 7

1.3 Outline . 10

2 Context 13

2.1 The Grid Component Model . 14

2.1.1 GCM overview . 14

2.1.2 GCM/ADL . 17

2.1.3 GCM/ProActive . 18

2.2 Parameterised networks of synchronised automata 24

2.2.1 Term algebra and notations 24

2.2.2 The pNets model . 25

2.2.3 Observation and flow of information 27

2.2.4 Adequacy of pNets for modelling GCM components 28

2.3 CADP . 29

2.4 The Fiacre specification language . 32

2.5 Model-Driven Engineering . 33

2.5.1 Unified Modelling Language 34

2.5.2 Eclipse Modeling Framework 35

2.5.3 Obeo Designer . 36

2.6 VerCors . 37

vii

viii TABLE OF CONTENTS

3 An overview of the VerCors platform 41

3.1 The core functionalities of VerCors 41

3.2 Diagrams for architecture and behaviour specification 44

3.2.1 An illustrative example . 44

3.2.2 Architecture specification . 45

3.2.3 Behaviour specification . 48

3.3 The architecture of VerCors . 51

3.4 Discussion . 55

4 Well-formed component architecture 59

4.1 Formalisation of component structure 60

4.2 Auxiliary functions . 61

4.3 Interceptors . 63

4.4 Well-formed component architecture 65

4.4.1 Core . 65

4.4.2 Non-functional aspects . 68

4.4.3 Collective communications . 70

4.4.4 Additional rules . 71

4.5 Properties . 71

4.6 Architecture static analysis in VerCors 74

4.7 Discussion and Related work . 74

5 Verification and execution of distributed components 79

5.1 From application design to pNets . 80

5.1.1 Semantics of primitive components 81

5.1.2 Semantics of composite components 92

5.1.3 Implementation . 100

5.2 From pNets to CADP . 108

5.2.1 Preparing the input: generating Fiacre, EXP and auxiliary scripts108

5.2.2 Model-checking with CADP 112

5.3 Code generation and execution . 115

5.3.1 ADL generation . 116

5.3.2 Java generation . 118

5.3.3 Code execution . 123

5.4 Discussion . 124

5.4.1 On the verification . 124

5.4.2 On the executable code generation 125

TABLE OF CONTENTS ix

6 Advanced features 127

6.1 Non-functional components and interceptors 129

6.1.1 From application design to pNets 129

6.1.2 Implementing pNet generation and integration with CADP . . 134

6.1.3 Code generation . 134

6.2 Component attributes and attribute controllers 135

6.2.1 Graphical specification . 136

6.2.2 From application design to pNets 137

6.2.3 Implementing pNet generation and integration with CADP . . 138

6.2.4 Code generation . 139

6.3 Reconfigurable multicast interfaces 140

6.3.1 Graphical specification . 141

6.3.2 From application design to pNets 142

6.3.3 Implementing pNet generation and integration with CADP . . 155

6.3.4 Code generation . 157

6.4 Reconfiguring multicasts from NF components 157

6.4.1 Graphical specification . 157

6.4.2 From application design to pNets 158

6.4.3 Implementing pNet generation and integration with CADP . . 158

6.4.4 Code generation . 159

6.5 Examples . 161

6.5.1 Composite pattern . 161

6.5.2 Springoo . 171

6.6 Discussion . 173

7 Related work 177

7.1 The SOFA 2 project . 178

7.2 The BIP Component Framework . 181

7.3 Rebeca formal modelling language and development tools 183

7.4 ABS . 188

7.5 Other frameworks . 191

7.5.1 Component models and tools 192

7.5.2 Verification platforms . 196

7.6 Summary . 200

7.6.1 On the verification tools . 200

7.6.2 On the component development frameworks 200

x TABLE OF CONTENTS

8 Conclusion 203

8.1 Summary . 203

8.2 Perspectives . 206

8.2.1 Modelling and analysis of parameterised architectures 206

8.2.2 Modelling and analysis of multi-threaded components 207

8.2.3 Modelling and analysis of reconfigurable systems 208

8.2.4 Extending the pNet generator 210

8.2.5 Properties specification and visualising the results of model-

checking . 211

8.2.6 Static analysis and type-checking of state machines 211

8.2.7 Other ideas of the future work 213

A Extended Abstract in French 215

A.1 Introduction . 215

A.2 Résumé des développements . 221

A.3 Conclusion . 225

List of Figures

2.1 A GCM application . 15

2.2 Request-reply by futures . 19

2.3 Request treatment by GCM/ProActive components 20

2.4 UML class diagram . 35

2.5 UML state machine diagram . 35

2.6 EMF example . 36

3.1 VerCors workflow . 42

3.2 Screenshot of VerCors . 43

3.3 VerCors component diagram . 46

3.4 A component diagram of Peterson’s leader election use-case example . 48

3.5 VerCors class diagram . 49

3.6 State machine diagram . 51

3.7 Scenario state machine . 51

3.8 Architecture of VerCors . 52

4.1 Internal interfaces of a membrane . 63

4.2 An input chain of interceptors . 64

4.3 Examples of architecture constraint violations 73

4.4 Architecture static correctness validation in VerCors 75

5.1 An example of a primitive component 82

5.2 pNet for the PrimExample component from Figure 5.1 83

5.3 Graphical representation of the behaviour of the Body 88

5.4 pLTSs for the Future Proxies and Proxy Managers 89

5.5 A state machine and its translation to a pLTS 91

5.6 An example of a composite component 93

5.7 pNet for the composite component from Figure 5.6 94

5.8 Auxiliary processes proxy and delegate of composite components . . . 96

5.9 pNets meta-model (simplified) . 102

xi

xii LIST OF FIGURES

5.10 Construction of a pNet of a primitive component 105

5.11 Construction of a pNet of a composite component 107

5.12 Fiacre code of a body . 109

5.13 The workflow of implementation code generation 116

5.14 A primitive with an attached UML class 121

5.15 A simple state machine . 122

5.16 Code execution . 123

6.1 Bindings in a membrane . 130

6.2 pNet of a component with a componentised membrane 131

6.3 Graphical specification of a component attribute 136

6.4 An attribute controller pLTS . 137

6.5 A primitive component with a multicast Interface 141

6.6 A composite component with multicast internal and external interfaces 141

6.7 A Group Manager . 143

6.8 A Group Proxy for a method of a primitive component 144

6.9 pNet model for Figure 6.5 . 144

6.10 Dynamic Connector for a Multicast Interface 145

6.11 The Proxy of a multicast interface inside a composite component . . 149

6.12 pNets for the Composite component with multicast internal and ex-

ternal interfaces . 150

6.13 A multicast of a sub-component sends an external request 154

6.14 A Group Manager for a void method 155

6.15 Modelling binding reconfiguration . 158

6.16 VerCors model of the composite pattern 163

6.17 The class diagram of the composite pattern 164

6.18 addSubcomp method . 165

6.19 addAnyUnbound method . 166

6.20 Scenario for the composite pattern application 167

6.21 Springoo application modelled in VerCors 172

7.1 The BIP design flow [2] . 181

7.2 Verification workflow of KeY-ABS[117] 190

List of Listings

2.1 ADL example . 18

2.2 A Java class of a GCM/ProActive primitive 22

2.3 A GCM/ProActive component construction and access 23

2.4 An example of synchronization vectors in .exp 30

2.5 A Fiacre process . 33

5.1 An example of SVL script . 111

5.2 An example of a JAXB-based class 116

5.3 An XML file generated by JAXB . 116

5.4 An Acceleo template translating VerCors record type into a Java class 118

5.5 Java code of a record type generated by VerCors 119

5.6 Generated Java code of a primitive component 120

5.7 Generated Java code of a state machine 122

6.1 Generated ADL file of a composite with a componentised membrane . 135

6.2 A Java class implementing the behaviour of a primitive component

with an attribute . 139

6.3 An ADL specification of a component attribute 139

6.4 An ADL attribute which stores reconfigurable interfaces 160

6.5 Java code of a component-controller 160

xiii

xiv LIST OF LISTINGS

List of Tables

4.1 The formalization of GCM architecture 61

4.2 Auxiliary functions . 62

4.3 Interceptor predicates . 66

4.4 Core predicates . 66

4.5 Non-functional predicates . 68

5.2 Server and client-side synchronisation vectors for primitive components 85

5.3 Server and client-side synchronisation vectors of a pNet of a composite

component . 97

5.4 Binding synchronisation vectors of a pNet of a composite component 98

5.5 Behaviour graph files (all with Queue size of 3) 112

6.1 Attribute controller synchronisation vectors for primitive components 138

6.2 Synchronisation vectors for multicast client interfaces in primitive com-

ponents . 147

6.3 Synchronisation vectors for multicast interfaces in composite components151

6.4 Binding synchronisation vectors for multicast interface 153

7.1 Verification tools . 201

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Contents

1.1 Motivation and objectives 1

1.2 Contribution . 7

1.3 Outline . 10

1.1 Motivation and objectives

In recent years the amount of data to be processed has grown exponentially, present-

ing new challenges to the software developers and scientists. It is often too large to

be processed on a single machine. Distributed computing is the approach able to

support the efficiency of large applications operating on big data. According to it,

a program can be split into several interacting parts which are executed on differ-

ent computational nodes. Programming such systems is a difficult task because the

developer has to ensure not only the correctness of the behaviour of each individual

module but also the correctness and consistency of their composition. The collabora-

tion of several processes distributed over multiple machines and the synchronisation

between them make the computational logic more complex. In this thesis we target

checking the correctness of the computational logic of distributed applications.

Programming distributed components

A popular approach for the development of large-scale distributed applications is

the component-oriented programming where a software system is split into separate

modules (components) with well-defined interfaces which they use for interacting with

each other. The approach enforces a clear design of the applications and provides

1

2 CHAPTER 1. INTRODUCTION

a solid basis for safe and modular development of complex systems. There exists a

variety of component models [1, 2, 3] defining how an application should be designed,

implemented, and deployed. They often use different vocabularies but in general,

all of them rely the notions of components, interfaces (sometimes called ports), and

bindings (sometimes called connectors). A component can be seen as a block of a

software which provides some functionality. Components use interfaces as the com-

munication points to expose their services and to access the services of each other.

The bindings are used to establish the communications between the interfaces. One of

the advantages of the component-oriented approach is the re-usability of components:

when the developer writes a new program, he can re-use some existing components

as he knows statically their provided and required functionalities. In addition to the

flat composition, some models allow for the development of hierarchical systems, i.e.

a component can ”wrap” other components. In this case, the former is called a parent

component or a container, and the latter are its sub-components. Such an approach

allows the programmer to hide the complexity of the internal implementation of a

part of the system.

Even with the help of the component-oriented programming, the development

of large-scale distributed applications is challenging for three main reasons. First,

such software systems often rely on asynchronous requests. This means that when

a component sends a request to another component, the sender does not have to

block its execution waiting for the reply. As a result, two components can execute

their services in parallel. This increases the efficiency of the application because

serving requests in parallel can be much faster than the sequential processing and

because the computational resources of the sender do not stay idle while waiting for

the result of a remote method invocation. On the other hand, the asynchrony makes

the development of distributed systems more complicated. The reason is that the

behaviour of such components is not easy to predict at the programming stage as it

is impossible to know when exactly the result of a remote computation will arrive

and when it can be used.

Another challenge is presented by the evolution of a distributed system at run-

time: in order to adapt to the current task or to the changes in the environment, an

application often needs to be reconfigured during its execution. This may include, for

instance, adding or removing components depending on the system workload. The

programmer has to take care of all possible configurations of a software application

and to make sure that for each of them the system will behave correctly. Manag-

ing a reconfigurable system becomes even more complex in the case of hierarchical

applications because the changes applied to a parent component can often affect its

1.1. MOTIVATION AND OBJECTIVES 3

content.

Finally, when programming a distributed system, it is not always easy to keep

separated the functional and non-functional aspects while allowing them to commu-

nicate. The former is responsible for the business logic of an application: it defines

how the system behaves within the given problem domain. The latter controls the

application: it measures the necessary performance metrics that are often based on

the functional behaviour, plans and executes the reconfiguration. It takes care of

the security aspect and the other aspects not related to the application logic. The

non-functional part should not depend on the concrete system domain: whenever

the software is overloaded, a new computational node should be added no matter

whether it processes bank transfers, multiplies matrices, or renders a game graphics.

Implementing separately the functional and non-functional parts is important for the

safety and re-usability of the software components; it allows for clear definition of

the objective of each part. The fact that components have well-defined provided and

required interfaces, makes programming systems with strong separation of concerns

easier. Moreover, sometimes the separation of concerns is enforced by a component

model: some component models define functional and non-functional components

and interfaces. The issue is that the two different parts of an application are often

influenced by each other and often have to interact with each other, and the developer

has to program these communicating parts so that they are still clearly separated.

We have defined a set of challenges that the developer of a distributed application

has to face. We can see that there is a need to help the programmer to address

them by providing techniques and tools which can assist in the design, analysis, and

implementation of distributed system.

The Grid Component Model

Among all the existing component models, we focus on the Grid Component Model

(GCM) [4] because its has the following features.

First, it allows for specifying distributed hierarchical components: at the leaves of

hierarchy it has so-called primitive components which encapsulate some business code

and represent the units of distribution. Then components are assembled hierarchically

using compote components.

Second, the reference implementation of GCM provided by the GCM/ProAc-

tive [5] middleware allows for programming loosely-coupled components that com-

municate only via asynchronous requests with futures. More precisely, whenever a

component sends a remote request, it creates a future object which is a placeholder

for the reply. As opposed to the synchronous communications, the sender continues

4 CHAPTER 1. INTRODUCTION

its execution as long as it does not require the result of the remote method invoca-

tion. When the result is needed, the sender either uses the value that was received

by the future object, or waits till it is computed. Such communications are still asyn-

chronous in the sense that the requester does not get blocked immediately after a

remote method call, but they are much easier to control than the fully asynchronous

message-passing. The communications based on futures increase the level of par-

allelism as the sender can continue its execution while its remote request is being

processed by another component. The absence of the shared memory makes compo-

nents loosely-coupled: each component has its own local memory and thus only it is

responsible for its own state and execution. This makes the model well-adapted to the

distributed setting. Moreover, the usage of futures is transparent in GCM/ProActive:

the programmer does not need to use any specific instructions for manipulating the

futures.

The third advantage of GCM is its reconfiguration capabilities. A GCM component

can be added or removed, started or stopped, and the bindings between components

can be modified at run-time.

Another strong point of GCM is that it enforces separation of concerns : it de-

fines the notions of functional and non-functional interfaces and functional and non-

functional components which can have hierarchical structure. In addition, GCM

provides techniques for modelling not only one-to-one but also one-to-many and

many-to-one communication styles which are widely used in the distributed systems.

Model-driven software engineering

A number of techniques which leverage the documentation, the development, and

the maintainance of the large complex software are provided by the model-driven-

engineering [6] approach which has become a de-facto standard for the development

of industrial projects. In particular, it allows the programmer to design a model

of the future application before writing its code, and thus, to plan in advance the

structure and the behaviour of each component involved in the system. There exist

dozens of textual and graphical notations developed in the industry and academia for

the specification of the application design from various viewpoints. One of the most

popular graphical languages for obejct and component-oriented systems is the Unified

Modelling Language (UML) [7]. It allows for designing a software application as a set

of diagrams that describe its architecture, behaviour, the interactions with the user,

etc. The diagrams can be used not only for documenting the project but also as an

input for the code generation. Indeed, there exist a number of tools [8, 9, 10] which

partially translate a software model into executable code so that the programmer

1.1. MOTIVATION AND OBJECTIVES 5

does not need to write it from scratch. In addition, the diagrams can be statically

analysed to check the absence of errors that could occur in the implementation code.

The earlier an error is detected, the lower the cost of its correction. Model-driven

engineering became popular in the industry also because it facilitates the maintenance

of large applications. Whenever a new functionality has to be added, instead of

modifying directly the implementation code, the developer can, first, introduce it in

the design of the application in order to see its impact on the rest of the system.

Formal methods

A set of powerful techniques for the specification and analysis of complex software

is based on formal methods. They allow one to model a system as a composition of

mathematical entities and to prove certain properties on it. There exist a number

of approaches [11] that differ in the underlying mathematical model, in the level of

automation (some techniques are fully automatic, the others require guidance from

the user), and in the addressed aspects of the input model (e.g. the timed behaviour,

the safe composition of components, the interactions between concurrent processes).

One technique for fully automatic and exhaustive analysis of a system behaviour is

provided by model-checking. It relies on building a model of an application behaviour

and on exploring its state-space in order to verify the formula which models the

desired property of the input model. It can be, for instance, the reachability of a

particular behaviour, or the absence of a deadlock. One of the advantages of model-

checking is that it performs the exhaustive analysis of the input model which allows

identifying the erroneous ”rare” scenarios that are not always covered by the software

tests. The success of the approach is highlighted by its application to the large-

scale projects developed by the leading modern companies and institutes such as for

instance, the web-services of Amazon [12], the spacecraft controllers of NASA [13],

and the flight control systems of Airbus [14].

However, model-checking can be only applied to an abstraction of the real system,

encoded in a finite state manner. Such an abstraction can be obtained by analysis of

the source code, but this can be costly. We prefer to associate the formal methods

with the model-driven engineering approach: starting from a high-level model of an

application, we can generate an abstract state-space for model-checking and some

executable code. If needed, the generated code can be refined to get the final detailed

implementation.

Formal methods allow one to detect a huge variety of errors in a software system

at the design stage but their use in the industry is still very low. There are two key

reasons for that. First, the application of such techniques can be enormously costly:

6 CHAPTER 1. INTRODUCTION

for instance, sometimes the generated state-space of a model-checked system is so

huge that it is just impossible to verify it exhaustively. To address this challenge, the

formal method community is working on the techniques for the state-space reduction

such as partial order reduction [15], symmetry reduction [16], etc. Another reason why

the formal methods are not widely used by the software engineers is the complexity of

their practical usage. Mastering formal methods often requires significant background

in mathematics and professional trainings. This second issue is addressed in this

dissertation.

Objectives and positioning

This work aims at including systematic verification of behavioural properties in the

industrial development process of component-based distributed applications. For this

purpose we want to provide the developers of distributed component-based systems

with a set of model-driven tools supporting rigorous design and implementation of safe

applications. Our tools should guide the user through all crucial phases of component

software development: from application design specification to verification of the

modelled architecture and of the properties of its behaviour as well as automated

code generation. More precisely, we want to:

• design a user-friendly language for the specification of hierarchical asynchronous

component-based systems with reconfiguration capabilities;

• help the developers to ensure formally that the application design is statically

correct and that the functional components of the modelled system are properly

separated from the non-functional ones;

• develop an approach to automatically translate the user-defined specification

into an input for a powerful model-checker in order to verify the properties of

the modelled application;

• develop an approach to automatically translate the designed application into

executable code;

• integrate all these techniques into a single framework for modelling, verification,

and code generation for distributed component-based systems.

GCM features a complex programming model, and includes many advanced mech-

anisms. Its operational semantics has been well-defined and formalised in previous

works of the Oasis team [17], and the middleware implementation respects the model

1.2. CONTRIBUTION 7

and the semantics. However, we need a behavioural semantics (not the classical

operational one) in order to allow for model-checking temporal properties. The chal-

lenge here is to define this semantics in a way that respects closely the semantics of

GCM/ProActive components and the middleware implementation, ensuring that the

properties proven by the model-checker will be respected by the generated code.

In this thesis we target modelling and verification of distributed hierarchical

component-based systems with strong separation between functional and non-functional

concerns, reconfiguration capabilities, and communications based on futures. The

originality of this work lies in the combination of all these features. In fact, there ex-

ist a number of component models supported by development platforms that feature

some of these elements. For instance, the BIP [2] component model allows specifi-

cation of hierarchical asynchronous systems but does not provide the reconfiguration

capabilities. The components of Rebeca [18] are asynchronous and highly dynamical

but not hierarchical. The components of SOFA 2 [1] provide all the targeted fea-

tures except that the non-functional part of a component can be only flat and the

future-based communications are not supported. We present a deeper overview and

comparison of the component models and tools related to the work presented in this

thesis in Chapter 7.

1.2 Contribution

Overall, this work aims at integrating in a single framework techniques for modelling,

analysis, and generation of hierarchical distributed component-based systems with

asynchronous communications and reconfiguration capabilities. We would like to

provide software developers with a single platform where one can model a distributed

application in a user-friendly and easy-to-learn graphical language, analyse the con-

ceptual model by applying powerful formal verification techniques, and generate the

implementation code. We try to automatise as much as possible the analysis of con-

ceptual models and code construction because we would like our framework to be

used by non-experts in formal methods. We describe below the main contributions

of this thesis.

Graphical specification language. We introduce a graphical language for the

specification of the architecture and behaviour of component-based distributed sys-

tems. The language allows expressing complex hierarchical structures comprising

both business logic components (functional components) and components responsi-

ble for the control and management of an application (non-functional components).

8 CHAPTER 1. INTRODUCTION

At the same time, the specifications of the two aspects are graphically separated

from each other. The notations of our language extensively reuse UML elements [7]

which are well-known among programmers. This makes the graphical formalism user-

friendly and easy-to-learn. Several formalisms for GCM components have already

been discussed in [19, 20], but none of them has been properly integrated in a soft-

ware platform. Based on the previous works, in this thesis we present the first version

of the specification approach for coherent and complete definition of GCM compo-

nent architecture and behaviour. It integrates a domain-specific language designed

for GCM components with the UML meta-model.

Formalisation of component architecture and static correctness rules. We

provide a formal model for component architectures including a flexible set of con-

structs for the definition of the non-functional part of an application which has never

been formalised before. The business logic and control parts of a modelled system

are strongly separated. Based on the architecture formalisation, we define a number

of predicates insuring the static correctness of the component composition. After

validation of these rules, we guarantee that the application possesses a number of

properties which are necessary prerequisite for the correct execution and the recon-

figurability of the system. Those properties include uniqueness of naming, separation

of concerns, and communication determinacy. The properties will be also crucial

during the analysis phase and the executable code generation.

Generation of behavioural models. We formalise a set of semantic rules for the

transformation of the designed conceptual models into a semantic formalism allowing

us to specify the details of the application behaviour and communications between

components. The behavioural models are generated in terms of parameterised net-

works of synchronised automata [21]. They encode future-based communications,

hierarchical components, some aspects of architecture reconfiguration, and one-to-

many communications. We also show how the generated structures can be automat-

ically transformed into an input for a model-checker (we use the model-checker of

CADP [22]) in order to verify the requirements of the designed application expressed

as logical properties. Prior to this work, the approach presented in this thesis has

been partially manually tested on several use-cases [23, 24]. However, this is the first

work where the fully automatic translation of the graphical models into an input for

a model checker is implemented as a software. The fully automatised process has

also been tested on several use-case examples, and some of them are included in this

dissertation.

1.2. CONTRIBUTION 9

Generation of executable code. Once the conceptual model has been proven

statically correct, and its functional properties have been model-checked, we generate

the executable code of the designed application. The produced code includes an XML-

based file encoding the system architecture and a set of Java classes implementing the

behaviour of the components. This way, we are able to run distributed applications

that are proven safe. In this thesis we will explain how the generation process is

organised and demonstrate several experiments of running an application produced

by our framework.

Integration of graphical designer, model-checker, and execution platform.

Finally, we implement and integrate the front-end graphical designer with a model-

checker, and an execution middleware in a single model-driven Eclipse-based frame-

work called VerCors. Using the front-end editor, the user can design the conceptual

model of his application in our graphical specification language. Then, he can check

that the defined architecture is statically correct with respect to the properties we

formalised. Next, VerCors fully automatically generates a behavioural model of the

designed application and transforms it into an input for a model-checker. As we will

show in this thesis, the model-checker can verify a number of properties on the pro-

duced structure. This includes both generic properties (e.g. absence of deadlocks)

and application-specific properties (e.g. reachability of a particular system state, in-

evitability, etc). This work does not focus on the assistance to property specification

but we provide a number of examples of properties verified for our use-case models.

Finally, the platform automatically produces the implementation code of the designed

system which can be executed in a distributed environment1.

The work presented in this thesis is included in the following publications2:

• Ludovic Henrio, Oleksandra Kulankhina, Dongqian Liu, Eric Madelaine; ”Ver-

ifying the correct composition of distributed components: Formalisation and

Tool” FOCLASA, Sep 2014, Rome, Italy. The paper presents the formalisation

of component architecture and static correctness properties.

• Tatiana Aubonnet, Ludovic Henrio, Soumia Kessal, Oleksandra Kulankhina,

Frédéric Lemoine, Eric Madelaine, Cristian Ruz, Noëmie Simoni; ”Management

1I encoded most of the functionalities of the VerCors platform; I coordinated the work of the
students and engineers who helped me with several specific tasks; Regarding the re-used code, I
integrated an existing UML editor into the front-end of VerCors; I integrated and enhanced a part
of a generator of the executable code (about 40%) from the previous versions of the platform.

2I am the main author of the publications at FOCLASA’14 and FASE’16. All the authors have
equal contribution to the paper in the JISA journal. Regarding the paper submitted to the JLamp
journal, I contributed to the correction and refinement of the presented formalisation, I implemented
the software constructing the behavioural models according to the formalised rules.

10 CHAPTER 1. INTRODUCTION

of service composition based on self-controlled components”; Journal of Internet

Services and Applications, Springer, 2015, 6 (15), pp.17. In this paper we

use the VerCors platform in order to model and generate a service-oriented

distributed application.

• Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, Eric Madelaine; ”Integrated

environment for verifying and running distributed components”; Fundamental

Approaches to Software Engineering (FASE), Apr 2016, Eindhoven, Nether-

lands; Springer, Lecture Notes in Computer Science, 9633, pp.66-83, 2016, Fun-

damental Approaches to Software Engineering. The paper provides a general

overview of the graphical formalism, behaviour generation, and executable code

generation processes presented in this thesis.

• Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric Made-

laine, Alexandra Savu; ”Behavioural Semantics for Asynchronous Components”

(submitted to JLamp). The paper introduces detailed formalisation of the gen-

eration of the behavioural models for GCM components.

1.3 Outline

The thesis is organised as follows:

Chapter 2 presents the technical background this work is based on. We describe

the main component model we rely on: GCM (Grid Component Model) with its

reference implementation in the GCM/ProActive middleware. We introduce the for-

malism which we use for encoding component behaviour and the verification platform

which we use for model-checking. Then, we introduce the basic notions of model-

driven engineering and the tools we used for the implementation of the VerCors

platform. Finally, we make a short overview of the history of VerCors and discuss

what are the contributions of this thesis with respect to the previous versions of the

platform.

Chapter 3 makes an overview of the version of VerCors implemented in this the-

sis. We discuss its core functionalities from the user point of view, the graphical

formalisms of the front-end designer, and the implementation architecture.

Chapter 4 presents the formalisation of component architecture and static cor-

rectness predicates. We introduce the notion of component well-formedness and a set

1.3. OUTLINE 11

of properties insured by the validation of the predicates. We also explain how the

static correctness check was implemented in VerCors. Finally, we discuss applicability

of the provided architecture formalisation and predicates to the component models

other than GCM, and their relation to the similar previous studies.

Chapter 5 describes the core contribution of this thesis: the semantic rules defining

the construction of the behavioural models and the generation of the implementation

code. We start by explaining the transformation of the specification of GCM-based

architecture and behaviour conceptual models into an intermediate structure encod-

ing system behaviour at a low lever (in terms of networks of parameterised automata).

Then, we discuss how the generation process is implemented in VerCors, and how the

constructed structures are transformed into an input for the model-checker of CADP.

We also present the generation of the executable code of an application designed and

verified in VerCors.

Chapter 6 extends the graphical formalism, the generation of the behavioural mod-

els and of the executable code with the constructs necessary for modelling, verify-

ing, and running component-based systems with advanced features. They include

the non-functional components, attribute controllers, and reconfigurable one-to-many

communications.

Chapter 7 presents the related works. We discuss the state-of-the-art frameworks

for modelling and verification of distributed component-based systems, and we posi-

tion our work with respect to the other studies. Then, we make an overview of several

verification platforms and we explain why we chose the model-checker of CADP for

our work.

Chapter 8 provides the conclusion and a discussion on the future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Context

Contents

2.1 The Grid Component Model 14

2.1.1 GCM overview . 14

2.1.2 GCM/ADL . 17

2.1.3 GCM/ProActive . 18

2.2 Parameterised networks of synchronised automata . . . 24

2.2.1 Term algebra and notations 24

2.2.2 The pNets model . 25

2.2.3 Observation and flow of information 27

2.2.4 Adequacy of pNets for modelling GCM components 28

2.3 CADP . 29

2.4 The Fiacre specification language 32

2.5 Model-Driven Engineering 33

2.5.1 Unified Modelling Language 34

2.5.2 Eclipse Modeling Framework 35

2.5.3 Obeo Designer . 36

2.6 VerCors . 37

This chapter discusses the background required for reading this thesis. We start

by an overview of the component model this work relies on and its reference imple-

mentation. Second, we present an intermediate formalism that we use in order to

encode the components behaviour at low level. Then, we introduce the verification

13

14 CHAPTER 2. CONTEXT

toolbox that we apply to model-check the functional properties of the component-

based systems. In order to apply the model-checker we rely on an intermediate text

language for the behaviour specification; the language is also discussed in this chap-

ter. Next, we introduce the model-driven engineering paradigm which will be used in

this thesis for tools implementation. Finally, we make a short overview of the history

of the VerCors platform and compare this work to its previous versions.

2.1 The Grid Component Model

The approach presented in this work relies on the Grid Component Model (GCM).

GCM was designed by the CoreGrid European network of Excellence [4] as an ex-

tension of the Fractal model [25] dedicated to distributed systems, including a set of

control capabilities. The framework targets the design, implementation, execution,

and deployment of hierarchical reconfigurable large-scale component-based applica-

tions. In this section, first, we provide an overview of GCM. Then, we describe an

XML-based language for the GCM architecture specification. Finally, we introduce

the ProActive middleware providing an implementation of GCM components based

on Active Objects.

2.1.1 GCM overview

A GCM-based application consists of components, interfaces and bindings. We de-

scribe each of the elements below and illustrate them in Figure 2.1. We do not explain

the graphical notations here as they will be presented in details in Section 3.2.

Hierarchical components. There exist two types of components in GCM depend-

ing on the level of observation: primitive and composite components, we will call them

”primitives” and ”composites” correspondingly. A composite encompasses inner com-

ponents which are called sub-components. A composite (Application in Figure 2.1)

is separated into two parts: a membrane (the grey part) containing all the subcompo-

nents dealing with the application management and control, and a content (the white

part) which comprises the subcomponents implementing the business logic. Another

component type - primitive (TaskDistributor, Worker1 in Figure 2.1) - could be

seen as a black-box view on a component that encapsulates the implementation code

and provides some functionality. Each primitive also has a componentised membrane

responsible for control and management. A primitive can comprise attributes of prim-

itive type that will be accessible from outside of the component. Each component is

characterised by a name and a set of interfaces.

2.1. THE GRID COMPONENT MODEL 15

Figure 2.1 – A GCM application

Interfaces. The GCM interfaces are the communication points for the components.

The communication between components is performed in the form of method invo-

cation. An interface able to invoke methods and to receive the invocation results

is called a client interface (e.g. C1), and interfaces that accept method invocations

and send back the results are called server interfaces (e.g. S1). The interfaces that

call or serve methods implementing the business logic are called functional while the

ones dealing with the application control are called non-functional. The interfaces

that communicate are connected by bindings (the black arrow from C1 to S1). An

interface accessible from outside of a component is said to be external. An internal

interface is reachable only from inside of a component.

Collective communications. In order to facilitate parallel programming, GCM

defines the cardinality of an interface which can be singleton, multicast or gathercast.

A singleton is the simplest interface used for one-to-one communications. A client

singleton can be connected to only one target interface at each time in order to ensure

the deterministic behaviour. However, a singleton server interface can be bound to

several client interfaces, but a request from each client is processed separately. A

multicast provides an abstraction mechanism for the one-to-N communications. It is

a client interface that transforms a single method invocation into several requests and

sends them to multiple target interfaces at the same time. If the method is supposed

to return a result, the replies from the target components are collected in a single

16 CHAPTER 2. CONTEXT

structure and given back to the caller. An abstraction for N-to-one communication

is provided by the gathercast interfaces. A gathercast is a server interface that can

receive calls from several clients at the same time, the calls are assembled in a single

request that is processed by the gathercast interface owner.

The separation of concerns. The functional part of a GCM application can be

separated from the control part thanks to the separation of a composite component

into a membrane and a content and to the usage of functional and non-functional

interfaces. This separation ensures, as much as possible, the independence of the

business code from the management code.

The non-functional aspect. The GCM was design to support wide range of non-

functional capabilities which can be implemented thanks to the three core elements:

predefined controllers, non-functional components, and reconfiguration mechanisms.

The GCM specification describes a set of predefined entities used for an application

management including:

• A Lifecycle controller is included in every component and serves to stop and

start a component.

• A Attribute controller is used to configure the values of the component at-

tributes.

• A Binding controller is used to bind or unbind singleton interfaces.

• Multicast and gathercast controllers are used to reconfigure (bind/unbind) mul-

ticast and gathercast interfaces.

• Content and membrane controllers are used to add subcomponents in a content

or a membrane correspondingly.

Additionally, the user can define his custom component-controllers (also referred

as non-functional components) and place them in the membrane of the managed com-

ponent (e.g. Controller in Figure 2.1). The component-controllers can be primitives

or composites; they have access to the predefined controllers (Lifecycle controller,

Binding controller, etc.) and to the host component. The programmer can make a

component-controller accessible from outside of the composite through non-functional

interfaces, or use interfaces and bindings in order to reach the content subcomponents

from the component-controller. In fact, specification of the non-functional part of a

composite is as flexible as the design of the business logic.

2.1. THE GRID COMPONENT MODEL 17

Thanks to the set of features described above, a GCM application architecture

can evolve at runtime; this includes binding reconfiguration, component start and

stop, adding or removing subcomponents at different levels of hierarchy. The recon-

figuration capabilities provide a mechanism for application adaptation: a system can

analyse the current state and change its structure depending on the current needs as

demonstrated in [26].

Interceptors. Sometimes, the information should be shared between the functional

part and the controllers of the application. Interceptors are specific components inside

the membrane that can intercept the flow of functional calls in order to trigger reaction

from the non-functional aspects. For example, in the application from Figure 2.1, the

Monitor component monitors the number of requests sent to the TaskDistributor

and forwards the information to the Controller. Then, the controller can, for exam-

ple, add more workers to the system if the amount of requests is greater than a given

threshold. Monitor illustrates very well what is an interceptor. Several interceptors

can sequentially intercept the same functional call. The interceptors are discussed in

details in Section 4.3.

2.1.2 GCM/ADL

A GCM-based application architecture can be specified in an XML-based format

called architecture description language (ADL). Listing 2.1 demonstrates an ADL file

of the application depicted on the Figure 2.1. Its root element definition represents

the root component of the modelled system and in our example corresponds to a

composite. The specification of a composite includes the external functional interfaces

(line 2), the subcomponents of the content (lines 3-14), the bindings of the content

(lines 22-23) and the description of the membrane (lines 15-21) which includes the

non-functional part. The definition of a primitive is demonstrated by lines 3-11. It

is very similar to a composite except that instead of components nested in a content

it has a reference to implementation class (line 6). The specification of a functional

interface should include a reference to all interceptors that monitor its calls if there

are any. The component attributes reachable from outside should be declared in ADL

(lines 7-9). The definition of subcomponents can be alternatively given in a separate

ADL file and referenced from the root component. Lines 2, 4-7 include references to

Java classes and interfaces which will be detailed in the next section.

18 CHAPTER 2. CONTEXT

1 <definition name=”Application”>

2 <interface name=”s it1” role=”server” signature = ”ServerInterface” interceptors=”Monitor.MS”/>

3 <component name=”TaskDistributor”>

4 <interface name=”S1” role=”server” signature = ”ServerInterface”/>

5 <interface name=”C1” role=”client” signature = ”ClientInterface”/>

6 <content class=”TaskDistributorClass”/>

7 <attributes signature=”TDAttributeController”>

8 <attribute name=” myId” value=”1”/>

9 </attributes>

10 <controller desc=”primitive”/>

11 </component>

12 <component name=”Worker1”>

13 ...

14 </component>

15 <controller desc=”composite”>

16 <interface name=”s it2−controller” role=”server”.../>

17 <component name=”Controller”>

18 ...

19 </component>

20 <binding client=”this.s it2−controller” server=”Controller.s it1”/>

21 </controller”>

22 <binding client=”TaskDistributor” server=”TaskDistributor.s it2”/>

23 ... other bindings

24 </definition>

Listing 2.1 – ADL example

2.1.3 GCM/ProActive

The ProActive platform [5] is a Java middleware for programming distributed and

concurrent applications. The core notions of this framework are the active objects

and communication paradigm based on request-reply by futures [26]; we discuss both

of them below. The ProActive platform is important for this work because it provides

a reference implementation of GCM which is used in order to run the executable the

code generated by VerCors.

Active objects and request-reply by futures. An active object [27] is a unit of

distribution in ProActive and represents a normal Java object that additionally has

a queue of pending requests, a body that has the ability to decide in which order the

requests are served, and a control thread. It is an independent activity that can be

addressed remotely and encapsulates its state: only the unique thread of the active

object can modify its state. The active objects communicate asynchronously and we

describe in details the communication paradigm below.

We rely on an example shown in Figure 2.2 which illustrates the behaviour of

two active objects. Here, TaskDistributor and Worker are active objects but not

primitives as in the previous example. Whenever TaskDistributor invokes a method

2.1. THE GRID COMPONENT MODEL 19

TaskDistributor Worker1

x = Worker1.task1()

run

Queue

Future x

Queue

drop a

request

create a

future

(a) Remote method invocation

TaskDistributor Worker1

x = Worker1.task1()

run

Queue

Future x

Queue

task1

do something...

do something...

(b) Asynchronous execution

TaskDistributor Worker1

x = Worker1.task1()

run

Queue

Future x

Queue

task1

do something...

do something...

x.getValue()

do something...

try to

get the

value

(c) Wait-by-necessity

TaskDistributor Worker1

x = Worker1.task1()

run

0

Queue

Future x

Queue

task1

do something...

do something...

x.getValue()

do something...

return 0

do something...

return

the

result

provide

the

value

(d) Result return

Figure 2.2 – Request-reply by futures

on Worker (Figure 5.5a), a short rendez-vous occurs and the caller gets blocked until

the corresponding request is dropped in the queue of the callee. This rendez-vous

is used to ensure a causal ordering of requests, The calls between active objects are

asynchronous meaning that the requester can continue its execution. If the method is

supposed to return a result, the requester creates a so-called future object that does

not store any value initially but is ready to receive the result of the remote method

invocation. The requester continues its execution as long as it does not need the

value of the future (Figure 2.2d). Once the value is required, the requester checks

whether the result was obtained or not. If the result is available, the caller can use

it and proceed the execution. Otherwise, the requester gets blocked waiting for the

actual value (Figure 2.2c); such mechanism is called wait-by-necessity. If an active

object calls one of its own methods (a local method), the invocation is synchronous.

In fact, the communications in GCM/ProActive can rely on so-called first-class

futures. A first-class future is a future object which can be passed as an argument of

a remote method call even if its value is not known. In this thesis we do not consider

20 CHAPTER 2. CONTEXT

Body Class
Body

Server request

Binding

GCM/ProActive Primitive GCM/ProActive Composite

Client request

TaskDistributor Application

TaskDistributor

Figure 2.3 – Request treatment by GCM/ProActive components

the first-class futures.

From active objects to components. From the high-level point of view, a

GCM/ProActive primitive is implemented as an active object that comprises all the

features discussed above. By default, the incoming requests are served in FIFO order,

but this can be modified by the programmer. Figure 2.3 illustrates treatment of re-

quests by the GCM/ProActive components. The body of a primitive selects a request

from the queue and forwards it to its Java class that implements the corresponding

behaviour of the primitive. When the request has been processed, the body selects

the next request from the queue. If a primitive invokes a remote method, the call is

forwarded from the Java class to the client interface and then to the target compo-

nent. If the method is supposed to return a result, the corresponding future object

is created. A composite is also an active object and it has an implementation class

that can be used for configuring some specific parameters, but it does not implement

any logic. All requests to the external server interfaces are first dropped in the queue

of the composite and then the body forwards them to the subcomponents that are

bound to the corresponding server interface. The client requests from the subcom-

ponents to outside of the composite are also dropped in the queue of the composite

and then distributed among the corresponding client interfaces.

More technically, in order to wrap an active object into a GCM primitive, the

programmer has to decide which methods of the active object can be called exter-

nally, or, in terms of GCM, which methods of the primitive will be accessible on the

external server interfaces. Those methods are then composed into Java interfaces.

Each Java interface will be later associated to possibly multiple GCM interfaces and

there is no correlation between their names. Then, the programmer writes a Java

2.1. THE GRID COMPONENT MODEL 21

class implementing the behaviour of the primitive. The class is supposed to imple-

ment the Java interfaces associated with the GCM server interfaces of the primitive

and a set of auxiliary interfaces. An example of a possible implementation of the

TaskDistributor primitive from Figure 2.1 is given in the Listing 2.2. The class

should at minimum include the following definitions:

• the references to the client interfaces (line 7);

• the local variables;

• the attributes that will be exposed by the Attribute Controllers (line 5);

• the methods to access the attributes (lines 35-36);

• the methods that are exposed on the server interfaces (lines 10-15);

• the auxiliary methods dealing with the client interfaces and bindings (lines

17-32);

• the local methods

Multi-threaded active objects and primitive components. Significant work

has been done on the theoretical and practical aspects of the multi-threaded active

objects [28, 29] which are already implemented in ProActive and can serve as the basis

for the multi-threaded GCM primitives. The work presented in this thesis supports

only single-threaded primitives, but specification and analysis of the multi-threaded

primitives is kept for the future work.

Constructing and using components. There are two ways to construct a GCM

application in ProActive: either manually or using a factory. In the first case, the pro-

grammer invokes the GCM/ProActive API to create components with all necessary

characteristics, to add subcomponents in the composites and to connect interfaces

with bindings. This approach is not applied in this thesis. Instead, we rely on the

second method where an application is constructed by a dedicated factory. The fac-

tory takes an ADL file with the system architecture, a set of Java classes implementing

primitives’ behaviour, a set of Java interfaces declaring the methods of the GCM in-

terfaces and creates automatically all necessary elements including components at

different levels of hierarchy controllers and bindings.

When we explained the structure of an ADL file, we did not mention how it is

linked to the actual implementation because this is related to the underlying mid-

dleware. In the case of a GCM/ProActive ADL (example in the Listing 2.1), the

22 CHAPTER 2. CONTEXT

1 public class TaskDistributorClass implements Serializable, BindingController,
2 TDAttributeController, ServerInterface{
3

4 //an attribute accessible from outside
5 public int myId;
6 //client interfaces
7 public ClientInterface C1;
8

9 //methods of the server interfaces
10 public int run() {
11 IntWrapper x = C1.task1();
12 //do something
13 int y = x.getValue();
14 return y;
15 }
16

17 //auxiliary methods for the management of bindings and interfaces
18 public void bindFc(String myClientItf, Object serverItf) {
19 switch(myClientItf) {
20 case ”C1”: C1 = serverItf;
21 ...}
22 public String[] listFc() {
23 return new String[1]{”C1”};
24 ...}
25 public Object lookupFc(String myClientItf) {
26 switch(myClientItf) {
27 case ”C1”: return C1;
28 ...}
29 public void unbindFc(String myClientItf) throws NoSuchInterfaceException {
30 switch(myClientItf) {
31 case ”C1”: C1 = null;
32 ...}
33

34 //methods to manage the attributes
35 public void set myId(int newId) {...}
36 public int get myId() {...}
37 }

Listing 2.2 – A Java class of a GCM/ProActive primitive

programmer has to associate a primitive and a Java class implementing its behaviour

(line 6), a GCM interface and a Java interface with its method signatures (lines 4,

5), a list of attributes of a primitive with a Java interface providing access to them

(line 7).

Given an ADL file, Java classes and interfaces, the GCM/ProActive factory re-

turns an instance of the root component as illustrated in the Listing 2.3. Here, line 1

gets an instance of the factory which will create the component. The factory is asked

to construct a new component at line 5; it takes two arguments: the context which

stores the description of the deployment infrastructure (we omit the details here) and

the name of the ADL file. Next, the constructed component should be ”started”.

GCM/ProActive has an implementation of the Lifecycle controller able to start a

component as illustrated at line 6. The user can then get a server interface of the

constructed component by name (line 7) and invoke its methods (line 8). Addition-

ally, the user can use the standard API to modify the root component and bind it to

the other components.

2.1. THE GRID COMPONENT MODEL 23

1 Factory f = FactoryFactory.getFactory();
2 String adl = ”Application.adl”;
3Map<String, Object> context = new HashMap<String, Object>();
4 //fill the context with the deployment data
5 Component application = (Component) f.newComponent(adl, context);
6 GCM.getLifeCycleController(mainComponent).startFc();
7 RunItf itf = (RunItf)(component.getFcInterface(”s it1”));
8 itf.run();

Listing 2.3 – A GCM/ProActive component construction and access

Overall, specifying GCM/ProActive applications manually can sometimes require

significant effort as the programmer has to take care of the coherency between the

ADL description, Java classes and interfaces. In order to facilitate the development

process, VerCors generates all elements of the application automatically from the

user-defined graphical specification.

Distributed deployment. The GCM components can be deployed in a distributed

manner where a primitive component is a unit of distribution. The underlying in-

frastructure is specified as a composition of virtual nodes that express the abstract

references to the resources where the components will be deployed. The virtual nodes

are then associated to the exact physical infrastructure. The information about vir-

tual nodes can be specified either with Java API or in the ADL file. The physical

infrastructure should be provided in an XML-based file and given to the GCM factory

when the component is being constructed (lines 3-5, Listing 2.3.

Collective communications. GCM/ProActive provides an API for multicast and

gathercast interfaces with the corresponding controllers and several policies on dis-

patching request arguments and assembling results. At the current stage, the VerCors

platform deals only with the multicast interfaces for which an outgoing request is repli-

cated and sent to all the bound targets and the results are collected in a list and given

back to the requester. Implementing other policies will be necessary in the future

work.

Non-functional aspect. The predefined controllers are implemented in GCM/ProAc-

tive and the user has access to them. For example, line 6 of the Listing 2.3 demon-

strated invocation of a Lifecycle controller that starts a component. Except from

that, the user has two ways to implement his customized controllers: as object-

controllers or as component-controllers. Both of them should be inserted in the

component membrane and specified in the ADL file. As opposed to the objects,

the component-controllers can have hierarchical structure and communicate with the

24 CHAPTER 2. CONTEXT

other subcomponents. ProActive implements the reconfiguration primitives defined

in the CM specification.

2.2 Parameterised networks of synchronised au-

tomata (pNets)

In this section we present the parameterised networks of synchronised automata

(pNets) - an intermediate formalism that we will use in this work to encode the

behaviour of GCM components.

2.2.1 Term algebra and notations

In the following definitions, we extensively use indexed structures (maps) over some

countable indexed sets. The indices will usually be integers, bounded or not. Such

an indexed family is denoted as follows: ai∈Ii is a family of elements ai indexed over

the set I. Such a family is equivalent to the mapping (i �→ ai)
i∈I . To specify the

set over which the structure is indexed, indexed structures are always denoted with

an exponent of the form i ∈ I (arithmetic only appears in the indices if necessary).

Consequently, ai∈Ii defines first I the set over which the family is indexed, and then

ai the elements of the family.

For example ai∈{3} is the mapping with a single entry a at index 3; exceptionally,

such mappings with only a few entries will also be denoted (3 �→ a). When this is

not ambiguous, we shall use abusive vocabulary and notations for sets, and typically

write “indexed set over I” when formally we should speak of multisets, and “x ∈ Ai∈I
i ”

to mean ∃i ∈ I. x = Ai. An empty family is denoted []. To simplify equations, an

indexed set can be denoted M instead of M l∈L
l when L is not meaningful.

In all forthcoming definitions, we suppose that we have a fixed set of variables,

used to construct the expressions of our term algebra. Our models rely on the notion

of parameterised actions. We leave unspecified the constructors of the algebra that

will allow building actions and expressions used in our models. Let us denote Σ

the signature of those constructors, and T be the term algebra of Σ over the set of

variables P . We suppose that we are able to distinguish inside T a set of action terms

(over variables of P) denoted A (parameterised actions), a set of data expression

terms (disjoint from actions) denoted E , and, among expressions, a set of boolean

expressions (guards) denoted B. For each term t ∈ T we define vars(t) the set of

variables of t.

The countable indexed sets can also depend upon variables, and we denote I the

2.2. PARAMETERISED NETWORKS OF SYNCHRONISED AUTOMATA 25

set of indexed sets using variables of P . There must exist an inclusion relationship ⊆

over the indexed sets of I, with the natural guarantee that this operation ensures set

inclusion when one replaces variables by their values. In practice we will mostly use

intervals for which the upper bound depends on the variables of P : I = [1..n] where

n is an integer.

Let � (disjoint union) be a union operator on indexed sets requiring that the two

sets are indexed over disjoint sets, we do not take care here of set re-indexing that

should be performed to avoid collisions. The elements of the union are thus accessed

by using an index of one of the two joined families.

2.2.2 The pNets model

pNets were first formalised in [30]. pNets are hierarchical structures made of param-

eterised labelled transition systems (pLTSs) at their leaves, synchronised by synchro-

nisation vectors. In this section, we define the structure of pLTSs, pNets and Queues.

The formal properties of pNets have been further studied in [21, 31].

pLTS. A pLTS is a labelled transition system with variables; a pLTS can have

guards and assignments of variables on transitions. Variables can be manipulated,

defined, or accessed inside actions, guards, and assignments.

We first identify the actions a pLTS can use. Let a range over action labels, op

are operators, and x range over variable names. The set A of action terms used in

pLTSs is defined as follows:

α ∈ A ::= a(p1, . . . , pn) action terms

pi ::= ?x | Expr action parameters (input variables or

expression)

Expr ::= Value | x | op(Expr1, ..,Exprn) Expressions

We additionally suppose that each input variable does not appear anywhere else in

the same action term: pi =?x ⇒ ∀j �= i. x /∈ vars(pj)

For α ∈ A we also suppose that there is a function iv(α) that returns a subset of

vars(α) which are the input variables of α, i.e. the variables preceded by a “?” in

the action label.

Definition 1 (pLTS). A parameterised LTS is a tuple pLTS � ��S, s0, L,→�� where:

• S is a set of states.

• s0 ∈ S is the initial state.

26 CHAPTER 2. CONTEXT

• L is the set of labels of the form �α, eb, (xj := ej)
j∈J�, where α ∈ A is a

parameterised action, eb ∈ B is a guard, and the variables xj ∈ P are assigned

the expressions ej ∈ E . Variables in iv(α) are assigned by the action, other

variables can be assigned by the additional assignments.

• →⊆ S × L× S is the transition relation.

Note that we make no assumption on finiteness of S or of branching in →.

pNet. pNets are constructors for hierarchical behavioural structures: a pNet is

formed of other pNets, or pLTSs at the bottom of the hierarchy tree. Request queues

can also appear in leaves of a pNet system. A composite pNet consists of a set of

pNets exposing a set of actions, each of them triggered by internal actions in each

of the sub-pNets. The synchronisation between global actions and internal actions is

given by synchronisation vectors : a synchronisation vector synchronises one or several

internal actions, and exposes a single resulting global action. Actions involved at the

pNet level do not need to distinguish input variables. The set AS of action terms

used in pNets is defined as follows:

α ∈ AS ::= a(Expr1, . . . ,Exprn)

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are pLTSs (or

queues defined below), and nodes are synchronisation artefacts:

pNet � pLTS | Queue(m) | ��pNeti∈Ii , SVk∈K
k �� where

• I ∈ I is the set over which sub-pNets are indexed, I �= ∅.

• pNeti∈Ii is the family of sub-pNets.

• SVk∈K
k is a set of synchronisation vectors (K ∈ I). ∀k ∈ K, SVk = α

j∈Jk
j → α

�

k

where αj,α
�

k ∈ AS. Each synchronisation vector verifies: Jk ∈ I and ∅ ⊂ Jk ⊆

I.

A synchronisation vector SVk of the form α
j∈Jk
j → α

�

k means that if each sub-

pNet j in Jk performs synchronously the action αj; this results in a global action

labelled α
�

k. For example, the synchronisation of the same action in two processes

indexed i and j corresponds to the synchronisation vector (i �→ a, j �→ a)→τ (recall

that we identify indexed sets and mappings, giving us a convenient notation for

synchronisation vectors). Brute-force unification of the sub-pNets actions with the

corresponding vector actions, possibly followed by a simplification step, allow us to

identify the exact actions of the sub-pNets that should be synchronised.

2.2. PARAMETERISED NETWORKS OF SYNCHRONISED AUTOMATA 27

When I = [1..n], it is equivalent to use tuple notations instead of indexed sets.

In that case, we denote the pNet as ��pNet1, . . . , pNetn, SV��, and each synchronisa-

tion vector as: �α1, . . . ,αn� → α. In that case, elements not taking part in the

synchronisation are denoted by a dash (−) as in: �−,−,α,−,−�→α.

Queues. There also exists a particular pNet construct called Queue(m); it models

the behaviour of a FIFO queue, with m the set of enqueue-able elements. We assume

that the term algebra has two generic constructors iQ and Serve such that, ∀mi ∈

m. Serve mi ∈ AS ∧ iQ mi ∈ AS. Then the queue pNet offers the following actions:

L = {iQ mi|mi ∈ m} ∪ {Serve mi|mi ∈ m}. The behaviour of a queue is only FIFO

en-queueing/de-queueing of requests. It could be encoded as an infinite pLTS.

Sort. For each pNet, we define a sort function (Sort : pNet → A). The sort of a

pNet is its signature: the set of actions that it can perform. For a pLTS we do not

need to distinguish input variables. More formally1:

Sort(��S, s0, L,→��) = {α{{x ←?x|x ∈ iv(α)}}|�α, eb, (xj := ej)
j∈J� ∈ L}

Sort(��pNet, SV��) = {α�

k|α
j∈Jk
j → α

�

k ∈ SV}

Sort(Queue(m)) = {iQ mi|mi ∈ m} ∪ {Serve mi|mi ∈ m}

More notations. A constructor for a pNet is made of an indexed family of pNets.
←−−−−→
��PN i∈I

i ��; it takes a family of pNets indexed over a set I ∈ I and produces a global

pNet. The synchronisation vectors for this family will be expressed at the level

above, consequently we “export” all the possible synchronisation vectors that the

family could offer, even if only some of them will be used.

←−−−−→
��PNi∈I

i ��� ��PNi∈I
i , {α → α|α ∈ V}��

where V = {αj∈J
j | J⊆I ∧ ∀j ∈ J.αj ∈ Sort(PNj)}

This supposes that the elements of V are action terms. If all the elements of the

family are identical, then we simply write
←−−−→
��PN I��.

An operational semantics for pNets is given in [21].

2.2.3 Observation and flow of information

In the context of encoding GCM components with pNets we assume that for each

globally synchronised action there is a single pLTS that outputs the value of each

1{{y ← x}} is the substitution operation.

28 CHAPTER 2. CONTEXT

parameter (and potentially several targets). However, several actions will receive one

parameter and output another one, without any consequence on the decidability of

which actions can be triggered. By convention, we use labels starting by “i” for the

input side of the main flow (if there is one) as shown in the diagrams, like iQ and iR.

Finally, we identify the actions that are already synchronised (they will not need

further synchronisation). We slightly extend the action algebra with such already

synchronised actions (distinguished by underlined labels):

α ∈ AS ::= a(Expr1, . . . ,Exprn) | a(Expr1, . . . ,Exprn) pNet actions

Synchronised actions are not meant to be used anymore for synchronisation pur-

poses, they should just be visible at the top-level of the pNet hierarchy for the ob-

servation purpose. Consequently, we define an operator that takes an indexed set of

pNets and returns the synchronisation vectors that should be included in the parent

pNets to allow the visibility of synchronised actions:

Observe(pNeti∈Ii) = {(i �→ α)|i ∈ I ∧ α ∈ Sort(pNeti)}

In the following, those synchronisation vectors dedicated to observation will be

implicitly included as synchronisation vectors of all the pNets. This means that for all

pNets, Observe(pNeti∈Ii) is implicitly included in the set of synchronisation vectors

(where pNeti∈Ii is the set of sub-pNets of the new pNet). These synchronisation

vectors are only useful to observe the internal reductions.

In order to express synchronisation vectors of families of pNets, we must allow

families of actions to be considered as actions themselves. More precisely, if ai is an

action, then actions can be of the form (ai)
i∈I , or i �→ a to allow the sub-pNet at

index i to perform an action.

2.2.4 Adequacy of pNets for modelling GCM components

In this work we will present the behavioural semantics of GCM components, expressed

as a translation from a component architecture into a hierarchical pNet. Before

defining this translation, we explain below why the pNets were chosen as a support

for GCM behavioural semantics.

First, our goal is to provide a model adapted to the behavioural verification of

the properties of GCM applications. It must be adapted to the generation of a model

that can then be verified, typically a finite model that could be model-checked, even

if other techniques could be envisioned. In pNets, models can use parameters, both

2.3. CADP 29

in the structure and in the LTSs which allows us to give a semantics based on an

infinite set of states, but also to easily consider finite instances by restricting each

parameter to a finite domain. Thus the first reason for the choice of pNet is that it

is adapted to the definition of infinite models from which a finite instance can easily

be extracted.

Second, the semantics of communication and asynchrony of pNets fits closely to

the one of GCM. Indeed, to guarantee causal ordering of requests, GCM components

communicate by a rendez-vous mechanism. In GCM/ProActive the request sending

and its arrival in the queue of the destination component occur synchronously. The

rest of the execution is entirely asynchronous. pNets have a similar semantics: they

are made of independent pLTSs or pNets interacting by synchronous communications.

On the contrary, futures are a too high-level construct to be part of pNet definition.

They will have to be encoded by a set of pLTSs. Next sections will show that the

parameterised nature of pNets and the synchronisation vectors allow for encoding

futures in a precise and generic way. Thus the second reason why we chose pNet is

that it provides a communication model similar to GCM for requests and give enough

expressive power to encode futures.

From another point of view, we mentioned earlier that we want our behavioural

models to represent the structure of the application (e.g. to allow the encoding of

reconfigurations). On that aspect and more generally when encoding communication

channels, π-calculus might seem to be a reasonable approach. However, we think

that channels à la π-calculus are too powerful. Indeed, in GCM/ProActive bindings

are not first-class entities and can only be reconfigured by an application manager.

Additionally, pNets are much better adapted to the verification techniques we target,

i.e., finite state model-checking, than π-calculus.

Finally, the hierarchical structure of pNets fits well with hierarchical components.

The different levels of hierarchy of the ADL will lead to the same hierarchical levels in

pNets, even if additional pLTSs and pNets will be defined to encode specific features

(e.g., future proxies).

2.3 CADP - a toolbox for construction and anal-

ysis of distributed processes

CADP (for Construction and Analysis of Distributed Processes)[32] is a toolsuite for

the formal modelling, simulation and analysis of parallel asynchronous systems; it

has been proven efficient by multiple case-studies [33, 34, 35]. The framework relies

30 CHAPTER 2. CONTEXT

1 < a1, b1, − > −> g1,
2 < −, −, c1 > −> g2
3 A | B | C

Listing 2.4 – An example of synchronization vectors in .exp

mainly on LOTOS [36] and LotosNT [37] as system specification languages and LTSs

as the abstraction model. We describe below some of the tools included in CADP

and we start by the modules applied in this work.

Caesar and Caesar.adt are compilers that translate the behavioural and the data

parts of a LOTOS specification correspondingly either into an LTS that can be verified

or into a C program to be executed or simulated.

BCG (Binary-Coded-Graphs) is both a format for LTSs and a set of dedicated

libraries. The advantage of the format is that compared to the LTS represented in

ASCII, BCG graphs can take up to twenty times less space. Among variety of tools,

the library includes:

• bcg draw - a module for graphical representation of the graphs;

• bcg min - a tool for graph minimization by strong or branching bisimulation;

• bcg labels allows hiding and renaming labels;

• bcg info gathers information about a graph such as its size, the number of

states and transitions, the list of labels, etc. and provides it to the user;

Exp.open [38] takes a .exp file encoding a network of communicating automata

and constructs its global behaviour graph. The automata are represented as .bcg files

and composed together in parallel using different techniques including synchronisation

vectors, on which we rely in this thesis. Listing 2.4 demonstrates an example of an

.exp file with two synchronisation vectors (lines 1-2). Line 3 lists the names of the

.bcg files of the operating in parallel LTSs that will be composed. A LOTOS action

label is divided into two parts: gate is the action name and offers is the list of action

parameters. The vector at line 1 should be interpreted as follows: if the LTS A

performs an action with gate a1, it should synchronise with B performing an action

with gate b1 and the behaviour of C is not taken into account. This will result in a

global action with gate g1. The offers of synchronised actions should have parameters

with exactly the same types and values. Those parameters will be added to the global

action.

2.3. CADP 31

The model checking language (MCL) is a regular alternation-free µ-calculus

with actions, predicates and expressions over action sequences equipped with parametrised

fixed-point operators and regular expression. The formalism allows direct specifica-

tion of branching-time logics formulas like ACTL [39] and CTL [40] and of regular

logics formulas like PDL [41] interpreted over LTSs. A strong advantage of MCL is

the ability to encode manipulations with data variables. Three types of formulas can

be encoded with the language. First, action formulas are built upon action predi-

cates and boolean operators; second, regular formulas are constructed from action

formulas and regular expression operators (such as choice, counting, repetition and

others). Finally, state formulas are built from boolean operators, modalities, fixed

point operators, and data-handling constructs. In [42] the authors demonstrate the

expressiveness of the formalism by encoding safety, liveness (potential reachability, in-

evitability, deadlock freedom), fairness properties. In order to facilitate formula spec-

ification, MCL is equipped with a library of property patterns [43] such as absence,

precedence, bounded existence, and others. The language allows one to construct his

own reusable libraries of temporal operators.

Evaluator [42] is an on-the-fly model-checker and it is the core CADP engine used

in this work. The tool takes as input an LTS expressed in various formats including

binary graphs, LOTOS, LotosNT, EXP, and a temporal logic property to be checked

in MCL [44]. Then, the input is translated into a boolean equation system [45] which

is solved using algorithms explained in [42].

Evaluator answers either TRUE or FALSE depending on whether the property

is satisfied and possibly provides diagnostics which can be either an example or a

counterexample.

SVL (Script Verification Language) [46] is a high-level scripting language aiming

at facilitating program verification with CADP. The language includes operators for

model-checking, label hiding, renaming, and state-space reduction.

Ocis is an interactive graphical simulator. It takes an automaton as an input and

visualises the execution tree of a system, the execution traces and the communication

between the parallel processes. The user can manually step-by-step navigate through

the execution scenario and save the simulation results as a .bcg graph.

State-space reduction is implemented in CADP at two levels and employs the

notion of so-called ”tau-transitions” or ”hidden transitions”, i.e. the transitions that

exist in the behaviour graph but do not need to be observed during model-checking.

32 CHAPTER 2. CONTEXT

The first approach called partial reduction simply compresses and merges such tran-

sitions. The second approach - total reduction consists in merging several states of

a partially reduced LTS into one state by applying bisimulation techniques. Such

minimisation approach is particularly useful for hierarchical systems like GCM appli-

cations because it allows one to benefit from hiding some details of the behaviour of

the processes at the low-levels of hierarchy. Also, as we will explain later, many pro-

cesses inside GCM components have bisimular behaviour that can be merged during

state space minimisation.

The application of CADP tools in this work. To wrap-up, in this work we

will apply the discussed CADP tools as follows. We will express LTSs in .bcg and

synchronisation vectors in .exp, we will apply exp.open for the composition of au-

tomata. We will use the bcg min to minimise the state space as we will hide a lot

of communications that should not be observed during verification. We will specify

system properties in MCL and model-check them with evaluator. Finally, we will

take advantage of the user-friendly svl script for invoking various CADP modules

and debug our systems with bcg info, bcg draw, bcg labels, and ocis.

The following two modules are not applied in this thesis but we plan experimenting

with them in the future work.

Distributor [47] is a tool for distributed state-space construction, it splits the

generation over N machines and each of them builds a fragment of the resulting LTS.

The fragments are then assembled by bcg merge.

Projector abstracts the behaviour of a graph by synchronizing it with the restricted

version of the behaviour of its interfaces.

2.4 The Fiacre specification language

Fiacre (Format Intermédiaire pour les Architectures de Composants Répartis Em-

barqués) [48] is a user-friendly language for modelling distributed and embedded

compositional systems. Fiacre can be translated into input formats for various veri-

fication tools including CADP.

An example of a Fiacre program is illustrated in the Listing 2.5. Its core element

is a process (named TaskDistributor run, line 3) that consists of a set of states

(declared at line 8), operates on variables (declared at line 9) and constant values

(line 1). The variable data types include built-in integer, natural numbers, boolean

2.5. MODEL-DRIVEN ENGINEERING 33

1 const max:nat is 1
2 type Interval is 0..2
3 process TaskDistributor run
4 [task1: out Interval,
5 r task1: in Interval,
6 return res: out boolean]
7 is
8 states s0,s1,s2
9 var x:Interval, y:nat

10 from s0
11 run!x, ls; to s1
12 from s1
13 r run? y; to s5
14 from s2
15 if y < max then
16 return res !true; to s0
17 else

18 return res !false; to s0
19 TaskDistributor run

Listing 2.5 – A Fiacre process

and user-defined lists, integer intervals (line 2), records (C-like structs). Each state is

associated with a sequence of performed instructions that can include standard if-else

statements, non-deterministic choices, assignments, communication events followed

by a transition to another state. A communication event has a name and may have

a list of either input (prefixed by ?) or output (prefixed by !) parameters. The

programmer should specify the signatures of all communication events as illustrated

at lines 4-6.

Another element of a Fiacre program - a component - can be used to assemble

several processes that operate in parallel and have shared variables; it will not be

used in this thesis.

Fiacre is not a native input language of CADP but it has a compiler to Lotos. In

this work we will encode pLTSs with Fiacre and then use the flac [49] compiler to

translate them to bcg graphs that will be model-checked by CADP. We prefer using

Fiacre because it is very easy to model pLTSs as Fiacre processes and because of the

simplicity and readability of the language.

2.5 Model-Driven Engineering

Model-driven engineering (MDE)[50] is a software development paradigm that allows

constructing an abstract model of an application which can be analysed at the design

stage, transformed into the actual implementation, and used as a documentation and

for automatic testing. Models can describe a system at different levels of abstraction

and from different viewpoints such as hardware/software requirements, application

architecture or behaviour.

34 CHAPTER 2. CONTEXT

The pivotal concept of MDE - a model - is often defined as an abstraction of a

system under study. Another key notion - a meta-model - specifies how the model

should be described, i.e. the building blocks of a model and the relations between

them. For example, if we would like to create a model of a family, the meta-model

would specify that the model consists of family members who have various properties

(for example, name and age) and can be related as children, spouses, cousins, etc.

Models are often associated with views that are their graphical representations.

Constructing a conceptual model before starting the implementation is good be-

cause it provides a clear view on system requirements and can be used as a source

of documentation, but there are other advantages of the MDE approach. Multiple

analysis techniques can be applied to a model in order to evaluate the quality of the

future application and detect errors at the design stage. The static correctness of a

model can be ensured by static analysis techniques; formal methods such as model-

checking can be applied to check functional properties. Also, conceptual models can

be used for an application performance predication at the design stage. Additionally

model-to-model and model-to-text transformation techniques can be used to auto-

matically transform a model into another model or textual representation that could

be an executable code.

Models are specified in modelling languages. The domain-specific languages

(DSLs) are used to design systems for a particular domain, and there exist hundreds

of DSLs in the world. However, sometimes it is a good idea to design a software in

a language that will be easily understood by a wide audience, and this is what is

provided by the Unified Modelling Language (UML).

2.5.1 Unified Modelling Language

UML [7] is a general-purpose modelling language created and supported by the Ob-

ject Management Group (OMG). The language is mainly dedicated to the design of

object-oriented applications and widely used in industry and academia. UML allows

describing a system at different levels of abstraction as a set of diagrams. The ex-

amples of diagrams could be: use-case diagrams illustrating how the user should use

the application, sequence diagrams that depict the interactions between entities, and

activity diagrams that describe step-by-step behaviour.

The two UML diagrams used in this work are the class diagrams and the state

machine diagrams. The class diagrams define program classes and interfaces with

their attributes and method signatures, and relations between them that include

inheritance, aggregation and composition. Figure 2.4 illustrates an example of a

class diagram with class A that implements an interface Itf, owns two attributes at1

2.5. MODEL-DRIVEN ENGINEERING 35

Figure 2.4 – UML class diagram

Figure 2.5 – UML state machine diagram

and at2, and defines a method mthd. The behaviour of an entity (class, method, or

even a system as a whole) can be described with possibly hierarchical state machine

diagrams (also known as state charts). A state machine diagram (we will call them

state machines for short) illustrates the sequence of events that an entity goes through

and their impact on the entity state. An example is illustrated in Figure 2.5. The

model is composed of different type of states, e.g. choice (S2), initial (S1), fork, and

join states, connected by transitions that describe possibly guarded events. States

can be assembled in regions. In this work we will not use hierarchical state machines

and we will have one single region per state machine.

2.5.2 Eclipse Modeling Framework

The Eclipse development environment [51] provides a rich ecosystem for model-driven

engineering; its core technology is the Eclipse Modeling Framework (EMF) [52]

which includes the following features. The first element is a set of tools for con-

structing a meta-model (so-called ecore model). The construction is supported by

a tree-like editor and a static validator. From the ecore model, EMF automatically

generates the Java API of the designed model, an editor that represents a model in a

tree-like viewer (we will call it an EMF-editor in the next chapters) and a standard

Eclipse property editor for the parameters of the modelled elements. The models

are stored in an XML-based format. Figure 2.6 illustrates an example of an ecore

meta-model of a family on the left and the corresponding generated EMF editor with

a model of a family and properties editor on the right.

36 CHAPTER 2. CONTEXT

(a) Ecore model (b) EMF-based editor

Figure 2.6 – EMF example

A graphical editor for an EMF-based model can be implemented with the help

of the Graphical Modeling Framework (GMF) [53]. Both EMF and GMF editors

are distributed as Eclipse plug-ins, i.e. a software that can be installed on top of

Eclipse. For example, a UML ecore and dedicated editors are implemented as an

Eclipse plug-in [54].

2.5.3 Obeo Designer

EMF and GMF provide a large variety of instruments for building domain-specific

model editors. We will not get into details here, but one who has an experience of

working with GMF knows that the technology is powerful, but using it for construct-

ing and maintaining a large graphical designer requires significant effort. A platform

that allows one to implement easily a GMF-based modeller ”without knowledge of

GMF” is Obeo Designer (it has an open-source version Sirius also known as ”Obeo

Designer Community”) [55, 56] that was developed by the Obeo company. The

framework is built on top of EMF and GMF and provides techniques for specifying

a domain-specific language, various model representations such as a diagram, a table

or a matrix, and tools to edit the model. We would like to highlight the following

features of Obeo Designer:

• a technique to extend the modeller with external Java code which allows im-

plementing complex computations;

• built-in layout managers and possibility to implement a custom layout manager;

2.6. VERCORS 37

• wide range of predefined graphical representations of diagram elements and a

mechanism to implement a custom graphical view;

• a mechanism for diagram validation: the programmer can declare the rules to

be checked and Obeo Designer will automatically generate the validation engine

and mark the erroneous elements;

• for any graphical editor, Obeo Designer automatically provides instruments to

export a view in various graphical formats, to hide and show representation

elements, to undo/redo actions, and many other features.

A graphical editor for UML models based on Obeo Designer is implemented in

[57]. It is an open-source project that can be easily extended.

Another framework developed by Obeo is a model-to-text translator Acceleo [58]

which is integrated with Obeo Designer. It can be used to transform an EMF-based

model into any kind of code. The technology is based on templates: the programmer

has to define textually the template of an input element and the corresponding output

text; the programmer can invoke external Java services during text generation. From

the given input, Acceleo constructs the generator that can be then distributed as an

Eclipse plug-in.

In this work we will use Obeo Designer to define our own DSL that relies on UML

and to implement a graphical editor. We will apply model static validation to ensure

that the models are statically correct and use Acceleo model-to-text transformation

to generate executable Java code.

2.6 VerCors

The VerCors platform has already undergone several major generations, with signifi-

cant evolutions for the underlying semantic model, as well as the modelling platform

and the specification formalisms.

The very first version of VerCors was based on a textual description of component

architecture. The original version of the graphical front-end editor called CTTool

[20] was using UML component structures for describing the application architec-

ture and activity diagrams for behaviour modelling. CTTool was generating LOTOS

specification that could be given to CADP for model-checking. The tool was exten-

sively used in the CoCome case-study [59]. The problem was that, at that time, the

authors already aimed at using pNets as an intermediate format and they were not

38 CHAPTER 2. CONTEXT

able to implement properly all the constructs with CTTool. Additionally, the authors

realised that the UML components were too far from GCM needs.

Hence, a new DSL for component structure and a new graphical formalism were

defined and implemented in a tool called VCE (VerCors Component Editor) [19]. At

the same time, aiming at better support for maintenance and usability, the platform

was moved to an Eclipse-based environment and EMF. The new version included a

graphical designer, an architecture static validation engine, an ADL generator, and a

module transforming ADL into graphical models. The generated ADL could be given

to ADL2N tool that transformed it into a pNet in fc2 format [60]. The signatures

of methods had to be specified in Java interfaces. Additionally, with the help of

dedicated GUI, the user had to abstract the data domains. Then, a generated pNet

and a set of manually written fc2 files with server methods behaviour could be given

to FC2Parametrized [61] tool which instantiated the system and produced EXP

files.

A series of publications [62, 63] described the support for several features of dis-

tributed component-based systems, including group communications and futures, but

the toolchain from the specification to behavioural model generation was incomplete

and relied on several manual steps. Moreover, generation of the behavioural models

including some particular features (e.g. group communications) has been discussed

and illustrated by examples in the previous works, but has never been implemented.

The work presented in this thesis has significant changes regarding the previous

tools. It is the first version of VerCors that gathers all bits and pieces of the previ-

ous works and implements fully automatised generation of behavioural models and

executable code. The key improvements are listed below::

• This is the first version of VerCors that integrates the GCM architecture DSL

with UML and allows specifying all core features of GCM. We extended the

existing architecture DSL with references to UML classes and interfaces that

include method signatures. We integrated UML state machine editor for be-

haviour specification and we defined precisely the state machine structure and

semantics in the context of GCM. The graphical formalisms are explained in

details in Section 3.2. In fact, there was no graphical editor for behaviour

specification in the previous versions.

• Second, we changed the underlying platform to Obeo Designer and we benefit

from its rich infrastructure for building and maintaining graphical editors. We

discuss the architecture of the latest version of VerCors in Section 3.3.

• We refined and extended the existing set of architecture static validation con-

2.6. VERCORS 39

straints to deal with the non-functional aspect. The formalisation of the valida-

tion rules and the implementation of their verification are given in Chapter 4.

• Next, since the latest version of VerCors, the semantics of GCM components in

pNets has significantly evolved, and all the changes are taken into account in

the new version. We generate pNets directly from the graphical representation.

Moreover, this is the first version of the platform which automatically constructs

the behaviour of server and local methods. We explain in details the latest

version of the pNets encoding the GCM component semantics and the VerCors

pNets generator in Section 5.1. We address the advanced features (the non-

functional aspect, the group communications) in Chapter 6. Still, we reuse

some code for pNets construction from the previous versions.

• This is the first version of VerCors where the user can specify graphically a

reconfigurable system, automatically translate it into an input for the model-

checker and generate its Java code. For more details, we refer to Section 6.4.

• We almost fully reuse the engine generating ADL. We improved it significantly

by implementing the non-functional part generation.

• This is the first version of VerCors that produces executable Java code from

the graphical model. The generator is discussed in Section 5.3.

In the rest of this thesis we will first make a overview of the current version

of the VerCors platform in Chapter 3. We will present it from the user point of

view, explain its core functionalities, and describe its architecture which relies model-

driven technologies. Then, in Chapter 4 we will formalise the architecture of GCM

components and the notion of component well-formedness. Next, in Chapter 5 we

will formalise how the basic behaviour of GCM components can be encoded in pNets,

we will explain how the formalised generators are implemented in VerCors, and how

the constructed pNets can be then given as an input to the model-checker of CADP.

The generation of the executable code which can run on top of ProActive is also

presented in Chapter 5.

40 CHAPTER 2. CONTEXT

Chapter 3

An overview of the VerCors

platform

Contents

3.1 The core functionalities of VerCors 41

3.2 Diagrams for architecture and behaviour specification . 44

3.2.1 An illustrative example . 44

3.2.2 Architecture specification 45

3.2.3 Behaviour specification . 48

3.3 The architecture of VerCors 51

3.4 Discussion . 55

The chapter provides an overview of the core features of VerCors. The version of

the platform presented in this chapter is one of the contributions of this thesis. It

was published in [64]. We do not detail the differences between the current version

and the previous ones as they have already been discussed in Section 2.6. We start

by describing the platform capabilities from the user point of view. Then, we present

the graphical languages used to design component system architecture and behaviour

in VerCors. Finally, we introduce the architecture of the framework and give a brief

overview of the implementation.

3.1 The core functionalities of VerCors

Now, when the reader is familiar with all underlying technologies and formalisms, we

can introduce the global view of the VerCors workflow which is illustrated in Figure

41

42 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

Code generation

VerificationFront-end

Architecture

static

validator

CADP

flac

compiler
.fiacre

.exp

.bcg

.svl

pNets

.ADL

.Java

.mcl

GCM/ProActive

Deployment

spec

Graphical

designer

Figure 3.1 – VerCors workflow

3.1. The platform consists of three core parts: the front-end graphical designer,

the verification module, and the executable code generation plug-in. We discuss

below each element from the user point of view and we briefly mention the VerCors

installation procedure first.

Installation. The procedure is extremely simple: the user can follow the installa-

tion process offered by the standard Eclipse software install manager 1 in order to

install the platform on top of Obeo Designer (or Eclipse which already has an Obeo

Designer installed).

The Front-end. Once VerCors is installed, the user can create a VerCors-based

project (”VCE-project”) using a standard Eclipse project-creation wizard. By de-

fault, a newly created VCE-project contains a set of empty models where the user

will specify the architecture, classes, behaviour of his component-based system, and

type definitions. The models can be modified using the standard EMF editors and/or

diagram designers which rely on the graphical languages described in the Section 3.2.

Among several type of diagrams that can be modelled in VerCors, the following four

are used by the verification and code generation modules: component (architecture),

UML class, UML state machine and type diagrams. Additionally, the user can model

a number of other UML views such as use-case, sequence, package diagrams, etc. All

graphical designers are equipped with the standard functionalities provided by Obeo

1http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-
124.htm

3.1. THE CORE FUNCTIONALITIES OF VERCORS 43

Figure 3.2 – Screenshot of VerCors

Designer; for instance, the user can show and hide graphical elements, export his

diagrams in a number of formats, layout the elements. The static correctness of the

modelled component architecture can be verified with respect to a set of predefined

properties which are explained and specified formally in Chapter 4.

Figure 3.2 illustrates a screenshot of VerCors with a VCE-project structure on

the left, a diagram in the middle and tool palettes on the top and on the right. The

bottom panel can be used to modify the semantic properties of the modelled system.

Verification. After checking the static correctness, for any component in the con-

ceptual model, the user can launch the generation of an input for the model-checker.

The selected component is called a root, and VerCors produces the behaviour graph

both for the root component and for all its sub-components. The generated graph

can be given to the CADP model-checker to prove the behaviour correctness, As

an additional input, the user should specify the queue size for each component, the

communications that will be hidden during the model-checking and, optionally, a

scenario restricting the environment behaviour. VerCors analyses the input data and

generates the pNets encoding the behaviour of the modelled GCM components. The

44 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

pNets are not visible to the user, they are used as an intermediate formal. Then, Ver-

Cors transforms the pNets into .fiacre and .exp files with the data types abstracted

according to the type diagrams. The platform also creates the auxiliary scripts for

managing the verification workflow. Flac compiler transforms .fiacre files into BCG

format which can be then given to CADP together with the .exp and the auxiliary

scripts. Finally, the user can specify the properties that he wants to check on the

generated graph and run Evaluator of CADP (see the details in Section 5.2).

Code generation. The Java code of the modelled components can be automat-

ically generated as it is presented in Section 5.3. VerCors translates the designed

architecture into an ADL file and produces a set of Java classes and interfaces includ-

ing the signatures of the methods, attributes, and the implementation code of the

methods that were modelled by the user. The user can choose to keep the behaviour

of some methods undefined, in this case VerCors produces an empty body. The enu-

meration types and records are also translated into Java enumerations and classes

respectively. The generated code can be executed on the GCM/ProActive platform.

3.2 Diagrams for architecture and behaviour spec-

ification

In this section we present the diagrams for the design of a component system architec-

ture and behaviour in VerCors. The section is illustrated by a small size use-case ex-

ample - a GCM-based application implementing Peterson’s leader election algorithm

[65]. We start by introducing the algorithm. Then, we present the four core types

of diagrams used in VerCors: component diagrams, UML class diagrams, UML state

machine diagrams and type diagrams. We show how the four graphical languages are

integrated together in order to provide an expressive formalism for component-based

application specification.

3.2.1 An illustrative example

Distributed processes often need to select a unique leader; Peterson’s election algo-

rithm can be used for this purpose. The participants are organised in a unidirec-

tional ring of asynchronous processes. Every process participating in the elections

has a FIFO queue and the order of sent messages is preserved by the communication

channels. Each process can be either in active mode if the process participates in the

election, or in passive mode if it only forwards messages. Initially, every process stores

3.2. DIAGRAMS FOR ARCHITECTURE AND BEHAVIOUR SPECIFICATION45

a unique number that will be modified during the election. The processes exchange

two rounds of messages so that every active process learns the numbers stored by the

two nearest active processes preceding it. If the maximum of the two values of the

nearest active processes and the value held by the current process is the value received

from the nearest predecessor of the process, then the active process takes this value

as its own value; otherwise the process becomes passive. The rounds of messages and

local decision steps are repeated until a process receives its own number, this process

is the leader.

In details, every process P stores variables max(P) and left(P). Max(P) is the

number stored by P . Left(P) is the number of the active process on the left of P .

Processes exchange messages of the form M(step, value) where step is the phase of

the algorithm. At the preliminary phase, each process Pi sends M(1,max(Pi)) to its

neighbour. Then, if an active process Pi receives a message M(1, x) and x is equal to

its own number, the process is the leader, otherwise it assigns x to left(Pi) and sends

M(2, x) to its neighbour. When an active process Pi receives M(2, x) it compares

left(Pi) to x and max(Pi). If left(Pi) is greater than both values, Pi assigns left(Pi)

to max(Pi) and sends M(1,max(Pi)); otherwise Pi becomes passive.

In [66] the authors prove that ”if the algorithm ever terminates, it does so cor-

rectly” in the sense that one and only one leader is elected.

3.2.2 Architecture specification

Component diagrams. The component diagrams are used to define the architec-

ture of a component-based application, i.e. to design the composite and primitive

components with their interfaces and relations between them. Figure 3.3 illustrates

an example of a simple component diagram. A primitive is depicted as a grey box

(Prim1 in the figure) while a composite (Composite in the figure) is illustrated as a

rectangle divided into two parts: the grey part shows its membrane while the white

part corresponds to the content. A GCM interface can be either attached to the

border of its host component (e.g. C-ext), or to the border of a content in the case of

internal interfaces (e.g. S-int). An interface has a set of characteristics that impact

its graphical representation. The icon of an interface changes depending on whether

it is a server (e.g. S1) or a client interface (e.g. C1), a singleton or a collective in-

terface, a functional or a non-functional interface. The bindings are shown as black

arrows that go from the requesting interfaces to the serving ones.

Graphical distinction between functional and non-functional aspects The specifica-

tion of a GCM application functional part can be separated from the non-functional

one thanks to the separation of a composite into membrane and content and the dis-

46 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

client

interface

server

interface

binding

internal

interface

external

interface

composite

components

membrane

component-

controller

content

primitive

component

non-functional

interface

functional

interface

Figure 3.3 – VerCors component diagram

tinction between functional and non-functional interfaces. The non-functional sub-

components (e.g. Controller) are located in the membrane of a composite while the

functional ones (e.g. Prim1 and Prim2) are placed in the content. The non-functional

interfaces (such as S1-contr) have green color whether the functional ones are blue.

Note that the non-functional component Controller has two functional interfaces S

and C that fulfil a non-functional role at the level of the composite.

UML class diagrams. Another kind of diagrams used for the conceptual model

specification in VerCors is UML class diagrams. The platform relies on the following

elements: interfaces, classes and generalisation relations, methods, and attributes.

The UML interfaces are used to define the list of methods that can be called and

served by client and server GCM interfaces correspondingly. The UML interfaces

attached to GCM ones appear on the corresponding component diagrams.

Every primitive should have an attached UML class that appears on the com-

ponent diagram and defines the list of methods implemented by the component and

the list of owned attributes. The user can specify generalisation relations between

classes.

A UML attribute is characterised by its type, its name and a default value. There

exist two ways to define the default value: either in the class specification, or in the

3.2. DIAGRAMS FOR ARCHITECTURE AND BEHAVIOUR SPECIFICATION47

component definition. The former will assign the same default value to the attribute

for all components using this class or its successor; the latter is the approach to

specify the default value of an attribute belonging to a particular primitive. If the

default value is given both in the class specification and in the component definition,

the second one has priority.

Every UML method is described by a name, a list of input parameters and an

output type. Additionally, any method belonging to a class can redefine an interface

method; this means that the class method implements the corresponding method of

an interface. The methods that do not redefine anything are considered as local ones,

i.e. they are used for the component internal computations. For every class attribute

the user should provide the signature of its set and get methods in order to access

the attribute value. It would not be difficult to implement an automatic generation

of those methods in the future versions of VerCors.

Type diagrams. The data types used by UML methods and attributes should

be declared in a type diagram. The user can define integer intervals, enumerations,

record types similar to C-like structs and arrays of fixed size. Additionally, there

exist number of built-in types that do not appear on type diagram: boolean, integer

and natural number types.

The use-case example The Component diagram representing the architecture of

our use-case model of Peterson’s leader election algorithm is shown in Figure 3.4. It

relies on the UML class diagram illustrated in Figure 3.5

Application is a composite; it includes four primitives that participate in the

leader election process. The primitives are connected in a ring topology and have

similar structure. The entry point of the system is the runPeterson() method of

Application server interface S1. This request is forwarded to Comp4 that triggers

the election process. During the election, components invoke method message on

their client interfaces C1. As defined in Section 3.2.1, each message transmits two

parameters: step and val. The message is transmitted to the server interface S1

of the called component. The signature of message is specified in a UML inter-

face ElectionItf. If a component decides to become a leader or a non-leader, it

reports its decision to the environment by invoking an IAmTheLeader(cnum) or an

IAmNotTheLeader(cnum) method on its client interface C2. These methods take the

identifier of the component as a parameter.

In order to illustrate the futures mechanism, the leader component triggers an

external computation that returns a result; here we consider getting a key for en-

48 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

Figure 3.4 – A component diagram of Peterson’s leader election use-case example

cryption process. We extend each primitive with a local method encrypt(key) and

a client interface C3 with a method requestKey() which should be served outside of

the composite and which returns an encryption key. As we will show in the behaviour

specification, the component who claims itself as the leader requests the encryption

key by invoking requestKey() on its client interface, and performs the encryption

once the key is obtained.

All four primitives have the same set of attributes. They have the message(...)

method implementing the leader election algorithm and a list of methods to access lo-

cal attributes. Comp4 has an additional interface providing the method runPeterson()

which triggers the election process. Comp1, Comp2, and Comp3 are implemented by

Class0 while Comp4 uses Class1 that extends Class0 with runPeterson() method.

Initially, the components should have different default values of attribute max and

cnum. cnum is a static unique identifier of a component. To specify the values of

those attributes for every component individually, we define them in the Attributes

field represented as a green box in each primitive definition.

3.2.3 Behaviour specification

State machine diagrams UML state machine diagrams are used for behaviour

specification in VerCors. Each state machine defines the behaviour of a single method

of a UML class.

A state machine has a set of states connected by transitions. In order to make the

further analysis less complicated, we rely on flat state machines (they do not have

3.2. DIAGRAMS FOR ARCHITECTURE AND BEHAVIOUR SPECIFICATION49

Figure 3.5 – VerCors class diagram

hierarchical states) with only one region each. A state stores its name, while the

logic code is specified on the transitions. The UML specification does not provide

any strict syntax for the state machine labels, but since we would like to be able to

analyse component behaviour and to perform the model-checking, we have to define

a specific syntax. A transition has a label of the form [guard]/action1....actionN

where guard is a boolean expression and an action is an assignment or a method call.

An expression can be constructed from variables, constant values (integer and boolean

values, enumeration elements), access to array elements, and arithmetic and logical

operators. An assignment includes a name of a variable (or an array element) whose

value is modified, and an expression or a method call whose value is copied into the

variable. The syntax for a method invocation is owner"."method name"("possibly

list of argument)")" where an owner is either a name of a client interface in the

case of a remote method invocation, or ”this” if the called method is local to the

component. When constructing the grammar we tried to keep it coherent with the

UML specification, expressive, and simple enough so that the labels can be analysed

easily.

State machine transitions should not include any variable declarations, instead,

the local variables of a state machine must be declared in a special area. For each

variable the user can specify its name and its type. A state machine has access to its

own local variables, to the client interfaces and to the local methods of the component

which behaviour the state machine describes; the value of the component attributes

50 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

can be accessed only through getters and setters.

The labels prefixed by ”//” are ignored during model-checking and generated in

the executable code. The programmer can use them in order define instructions which

cannot be analysed by VerCors, and which do not have impact on the computations

but serve for monitoring purposes. We often used them in our experiments in order to

lot messages from the generated Java program. However, the programmer should be

very careful with such kind of instructions because VerCors does not check whether

they have impact on the computations. Hence, if they, in fact, influence the control

flow, VerCors cannot guarantee the model-checked properties in the generated code.

The usage of futures is transparent: the designer does not need to specify explicitly

which variables are futures; whenever a state machine invokes a method on a client

interface and assigns the result to a given variable, the variable is interpreted as a

future. This set of constructs is sufficient to encode any behaviour of distributed

objects; the control structures (like do-while, if-else) have to be encoded as guards

on transitions.

The use-case example Figure 3.6 illustrates the state machine of the message

method of Peterson’s leader election algorithm. It uses six variables where step and

val are input parameters of the method. The initial state is illustrated with a blue

circle (Initial). First, Choice6 checks the phase of the election algorithm. If the

algorithm is in the preliminary (zero) phase either the component is active – it already

participates in the election – or the component triggers the election process on its

neighbour and performs the preliminary phase described in Section 3.2.1. If it is not

the preliminary phase, either the component is passive and the message is forwarded

to the neighbour [isActive==false]/C1.message(step,val), or the actions of the

state machine correspond to the two cases M(1, x) or M(2, x) depending on the value

of step (see Section 3.2.1).

As it was mentioned earlier, to illustrate future-based communications, we extend

our use-case as follows. If a component decides to become the leader, it sends a

requestKey() invocation on its client interface (see the transition from State10 to

State12). The request is forwarded to outside of Application. Then, the component

claims itself as the leader by sending an IamTheLeader(cnum) request. Finally, the

component calls its local method encrypt(key) using the result of requestKey() as

a parameter. The component should be able to claim itself as the leader before it

receives the result of requestKey(). However, it cannot execute encrypt(key) if the

key is not obtained. The VerCors user does not need to explicitly model future-based

communications. Whenever a state machine has a non-void client method invocation,

it is interpreted as a future-based one.

3.3. THE ARCHITECTURE OF VERCORS 51

Figure 3.6 – State machine diagram

Figure 3.7 – Scenario state machine

Scenario specification

The user can additionally model the calls that the system will receive from its

environment. For this purpose, the user specifies a state machine which has its

own local variables and access to the server interfaces of the modelled application

root component. A scenario can have loops and choice states as any other state

machine, but it does not use the wait-by-necessity mechanism. We modelled a very

simple scenario (in Figure 3.7 for our use-case example which invokes the method

runPeterson triggering the election process once.

3.3 The architecture of VerCors

VerCors is implemented as a set of plug-ins for Eclipse; its architecture is illustrated

in Figure 3.8. The modules of the platform can be divided into four categories based

52 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

Figure 3.8 – Architecture of VerCors

on their functionality: meta-models with their EMF editors, graphical designers,

generators, and integration plug-ins.

Meta-models. VerCors relies on six meta-models based on the EMF ecore tech-

nology. The Components meta-model is used for the component-based system ar-

chitecture specifications. Its structure reflects the GCM components structure. The

Components meta-model references the Eclipse UML [54] meta-model for the UML

classes, UML interfaces and components behaviour specification (state machines).

Additionally, we implemented the SMVariables meta-model for the variables dec-

laration on the UML state machines. The types used by the state machine variables

and UML method signatures are based on the VCETypes meta-model. Its root

element VCEType extends UML Type which allows using the types declared by the

user in the specification of the UML elements. The pNets meta-model is used for

the pNets construction. Finally, the pLTS’ labels are based on the Expressions

meta-model. Its structure reflects the grammar of the UML state machine labels.

Graphical designers. The four graphical designers provided by VerCors are fully

based on the Obeo Designer platform and rely on the meta-models described above.

The core editor is the Components graphical designer where the user can graphi-

3.3. THE ARCHITECTURE OF VERCORS 53

cally specify the architecture of his/her application. The component designer includes

a static correctness validator which checks the correctness of the user-defined

models with respect to a set of rules formalised in Chapter 4. The Obeo UML

graphical designer is integrated into VerCors and can be used to define classes that

implement components, UML interfaces that define signatures of methods of compo-

nent interfaces, and state machines that specify component behaviour. Obeo UML

designer includes a number of other UML diagram editors (e.g. Use-case and Ac-

tivity diagrams). We extended Obeo UML state machine diagram editor with tools

and graphical representation for the Variable declarations. Finally, VCETypes

designer can be used for the specification of the types built from integer intervals,

enumerations, records, arrays of fixed size, and boolean.

In addition to the graphical designers, there exist so-called EMF editors that

represent a model as a tree-like structure and allow its modification. We generated

the EMF editors for those structures that can be edited by the users of VerCors (i.e.

components, state machine variables, and VCETypes). An EMF editor for the UML

models is included in the UML Eclipse plug-in.

Generators. The core part of the VerCors platform is the GCM/ADL+Java gen-

erator which produces the implementation code of a modelled system and a pNet

generator that constructs the input for the model-checker. Both construction pro-

cesses involve the analysis of a component behaviour modelled with UML state ma-

chines. More precisely, the behavioural instructions are specified as a state machine

labels, and in order to interpret them, both generators invoke a dedicated Parser

which takes a state machine, parses all its transition labels in the context of a given

component, and returns a map from a state machine transition to an instantiation of

the Expression meta-model classes corresponding to the parsed label. The context

is used to establish references to the signatures of the methods invoked by the state

machine. We implemented the parser using the combination of the Cup [67] and

JFlex [68] technologies. They allow one to specify textually the BNF grammar of

the parsed text and to map the grammar symbols and expressions into a sequence

of actions which will be performed each time when the parser recognises a symbol or

an expression. The actions in our case include the instantiation of the Expression

meta-model classes. From the given specification, Cup and JFlex produce the Java

code of the parser.

The ADL generator takes a Component diagram and a package name as an

input and produces an XML-based (GCM/ADL) file with the given architecture.

The package name corresponds to the package where the Java classes and interfaces

54 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

will be produced. Then, the ADL generator invokes aUML generator that analyses

the UML, VCETypes, and Component models and uses Acceleo templates in order to

produce Java classes and interfaces. Both generators are explained in Section 5.3. For

every set/get method of a UML class, the UML generator produces the corresponding

template-based Java code. For every method which behaviour is defined by a state

machine diagram, UML generator translates the parsed version of the state machine

into Java.

The PNets generator takes the following input: component architecture, ref-

erenced UML elements, scenario state machine if there is any, queue size for each

component, and interactions that should be hidden during model-checking. Then, it

processes the input as follows:

1. Pre-processing. The pre-processor analyses each composite component in

the model being generated and gathers auxiliary information. For each server

interface it finds the sub-component that will process the requests. For every

client interface it finds the sub-components that can send the request. Then,

the state machine Parser is invoked to parse labels of all state machines of

the primitive components and to gather information about local and remote

methods invoked by each state machine.

2. PNets generation. Starting from the root component, a pNets generator re-

cursively produces a pNet encoding the behaviour of each component. More

precisely, for a composite, it generates pLTSs of internal processes (body, queue,

etc), produces a set of synchronisation vectors, and triggers the pNet genera-

tion for each subcomponent. For a primitive, it produces pLTSs of internal

processes and a set of synchronisation vectors. The formalisation and the im-

plementation details are given in Section 5.1. The scenario state machine is also

translated into a pLTS. Synchronisation vectors of the root component include

synchronisation with the scenario.

3. Fiacre generation. Every constructed pLTS is translated into a .fiacre file.

This and the following two generators are presented in Section 5.2.

4. EXP generation. A set of synchronisation vectors of each pNet is translated

into an EXP file.

5. Auxiliary scripts generation. For every pNet we generate a script assem-

bling its sub-nets into a common structure with respect to the synchronisation

given in the corresponding .exp file. The scripts also hide communications

that should not be observed during model-checking. More precisely, VerCors

3.4. DISCUSSION 55

generates one .svl file for each pNet encoding the behaviour of a component

which should be model-checked. The script does the necessary renaming in the

sub-nets, invokes EXP.OPEN in order to construct an automaton, hides some

of the communications in the generated LTS, and finally reduces the state space

to obtain the final model of the component behaviour. In addition, VerCors

creates a .sh file which calls the Flac compiler on each generated .fiacre file

and triggers the execution of each produced SVL script. The order in which

the instructions are executed is important: we have to make sure that when

an SVL script corresponding to a given component invokes EXP.OPEN to con-

struct the component behaviour, all automaton synchronised by the .exp file

have already been built. Hence, the construction should start from components

at the lowest levels of hierarchy, and the .svl file corresponding to the root

component should be invoked in the last step.

Integration. Finally, integration modules are used to integrate VerCors in Eclipse.

The VCEWizard plug-in implements a wizard creating a VerCors project with the

Component, UML and VCETypes model files and one diagram illustrating each

model. The user can then add other models and diagrams. The VCE Features

module makes VerCors installation/update accessible via the standard Eclipse plug-

in installation/update wizard.

3.4 Discussion

The approach and the software platform presented in this dissertation are the result

of not only one doctoral work but rather more than ten years of experience of the

researchers and engineers involved in the project. In this section we discuss some

of the choices that we had to make while designing and implementing the current

version of VerCors based on our own experience and on the previous works.

On the core functionalities and the workflow. The most interesting part of

the VerCors workflow is the integration between the front-end editor and CADP. It

involves two main steps: the construction of pNets and the generation of .fiacre and

.exp files. Using pNets as an intermediate format has already been discussed in [19]

and we still believe that it is highly beneficial for two main reasons. First, because

it does not limit our framework to finite systems: as a parameterised structure the

pNets can represent models with infinite state-space. Hence, in the future we can

experiment with translating them into an input for the infinite state-space model-

56 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

checkers. Second, the gap between the GCM and UML models designed in the

front-end and the networks of communicating automata accepted by CADP is very

large and the pNets are able to fill this gap: they are at the same time close to

the automata accepted by CADP and adequate for modelling the semantics of GCM

components as discussed in Section 2.2.4.

On the graphical formalisms. When designing the specification formalism of

the front-end VerCors editors we targeted two essential features of the specification

language: it should be user-friendly and it should be easy to learn.

First, we had to choose whether the core specification formalism should be textual

of graphical. While several textual languages for GCM components have been already

defined in [69, 70, 71] we decided to extend and implement the existing graphical

formalism as we believe that it is more illustrative and more user-friendly. However,

we still plan to develop a tool for reverse-engineering the ADL description into the

graphical models. Another question is the level of details: what should be illustrated

on the diagrams and what should not, so that the diagrams are not overloaded but at

the same time provide all necessary information. In the current version our intuition

is to show all those elements that are involved both in the model-checking and in

the code generation, and to keep the details necessary only for one of the phases for

the dedicated wizards (e.g. queue size for the verified components, the name of the

package for the implementation classes). In the perfect case we would like the user

to be able to switch between several viewpoints on the model: one dedicated to the

model-checked and another one illustrating the generated implementation.

The second challenge was designing such a specification language that could be

easily mastered by the programmers. An obvious solution would be relying on a sub-

set of UML models, but it appeared to be difficult to adapt them for the specification

of the GCM component architecture. There are several important differences between

GCM components and the meta-model of UML composite structures. In particular,

UML components have bidirectional ports comprising input and output interfaces,

while GCM has interfaces (i.e. the same interface cannot both emit and receive

requests). Another difference is that the structure of GCM components is much

richer than UML composite structures, and we would have had to extend it with many

concepts (multicast/gathercast interfaces, membrane, etc). Hence, it was decided to

create a DSL for the GCM components that would reuse some of the UML elements.

Indeed why would we invent our own formalism for the specification of the primitive’s

implementation classes while there already exist UML classes whose notation is well-

known among the software engineers?

3.4. DISCUSSION 57

The version of VerCors presented in this thesis is actually the first version that

includes UML diagrams integrated with the GCM DSL; and how exactly the UML

elements should be used for the GCM architecture and behaviour specification was

not so obvious at the beginning. For example, in one of the first prototypes we used

classes to define the signatures of the GCM interfaces. Soon, we realised that using

UML interfaces for this purpose is much more natural. Another example could be

the choice of the formalism for the behaviour specification, and the possible solutions

could be using sequence, activity or state machine diagrams. The sequence diagrams

are good for illustrating the message exchange between processes while we wanted to

model the behaviour of each component separately. Moreover, the sequence diagrams

are quite far from the pLTSs and this could cause difficulties for the generation of

the pNets. This is why we decided that the sequence diagrams are not a good

choice. Still, it could be interesting to automatise their extraction from the conceptual

models designed in VerCors in order to illustrate the communication between the

processes. Regarding the choice between the activity and state machine models, it

is still discussable as the two representations are very close to each other. Another

question was whether we should model one state machine per primitive or one state

machine per method. We chose the second option for two reasons. First, it introduces

better modularity in the code and allows using the same state machine for different

components. Second, it is more coherent with the further transformation steps: one

state machine will be translated into one pLTS and one Java operation.

On the platform architecture and implementation. The choice of the under-

lying implementation platform was not so obvious at the beginning. In 2008 [19]

it was already decided to develop VerCors on top of the Eclipse Modeling Project

and the Graphical Modeling Framework as they are integrated in the popular Eclipse

IDE and provide rich infrastructure for developing graphical editors. It was clear

that the VerCors platform was going to be large and feature-rich, and maintaining it

only with the help of GMF would require significant effort. Hence, we were looking

for some additional technology that would facilitate the creation and maintenance of

our model-driven environment. Also, we did not want to implement the UML de-

signer from scratch as there already existed several of them on top of Eclipse. At the

beginning of 2013 we experimented with implementing a prototype of the VerCors

platform on top of the Papyrus Modeling environment [72]. The idea seemed to be

good as the framework already had a UML designer and we even found a tutorial for

extending it with the custom diagram editors. However, after a couple of months of

experiments we realised that implementing VerCors on top of Papyrus would be fea-

58 CHAPTER 3. AN OVERVIEW OF THE VERCORS PLATFORM

sible but complicated. At that time, our colleague Julien DeAntoni introduced us the

Obeo Designer framework which was exactly what we needed: an EMF-based tool for

developing graphical modellers with an open-source UML designer implemented on

top of it. As we mentioned in Section 2.5.3 we could benefit from multiple advantages

and features of the technology, although, it had the only drawback - its license was

not free for the industrial users. Anyway, we started the development of VerCors on

top of Obeo Designer under academic license and in 2014 we ported it to the recently

released open-source version of Obeo Designer which is called Sirius.

In this chapter we made an overview of the VerCors platform: we discussed its

capabilities, the basic workflow and the implementation choices. We present in the

following chapters each of the functionalities and the underlying theory, starting by

the formalisation and static verification of the GCM-based application architecture

in Chapter 4. Then, in Chapter 5 we formally define how a pNet model encoding the

behaviour of GCM components can be generated from the component architecture

and server method behaviour specifications. Then, we explain how the pNet gener-

ation process is implemented in VerCors and how the produced pNets serve as an

input for the model-checker. We also discuss in Chapter 5 the implementation code

generation from VerCors. Finally, in Chapter 6 we explain the construction of pNets

and the generation of the executable code for the advanced features of the GCM com-

ponents such as attribute controllers, group communications, and the non-functional

aspects.

Chapter 4

Formalisation of the static

correctness rules for component

architecture

Contents

4.1 Formalisation of component structure 60

4.2 Auxiliary functions . 61

4.3 Interceptors . 63

4.4 Well-formed component architecture 65

4.4.1 Core . 65

4.4.2 Non-functional aspects . 68

4.4.3 Collective communications 70

4.4.4 Additional rules . 71

4.5 Properties . 71

4.6 Architecture static analysis in VerCors 74

4.7 Discussion and Related work 74

Before implementing an application, a programmer has to make sure that its con-

ceptual model is statically correct as this can prevent from issues at the deployment

and execution stages. We would like to help the developers of component-based

systems to check that the component assembly is statically well-defined and satis-

fies a range of properties such as correct typing, separation between business logic

and application management, proper component encapsulation. For this purpose, we

gathered a number of constraints that should be satisfied by a component assembly.

59

60 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

The constraints are based on the existing literature [73, 74, 69], on the ones imple-

mented in the previous versions of VerCors, on the experience of the GCM-based

systems engineers, and on our own experience. We specify the validation predicates

and discuss how we implement their validation in this chapter.

We start by the first contribution - the formal definition of the core elements

of a component-based application architecture Second, we introduce the auxiliary

functions that are used by the well-formedness specification. Next, we describe in

details the formalisation of so-called interceptors as their definition is a bit more

complex than for the other elements and it has not been given in the previous works.

Then, we introduce the notion of the well-formed components and explain what kind

of properties are guaranteed for an application that satisfies the given constraints.

We briefly discuss how the architecture well-formedness is checked in VerCors. We

make a brief overview of the works related to the specification of correct components

composition. Finally, we discuss how the other component-based frameworks could

benefit from our formalisation.

The core of the contribution presented in this chapter has been published in [75].

We extend it with a few validation constraints that are necessary for the further

verification.

4.1 Formalisation of component structure

In this section we define the core elements of GCM, namely: Interfaces, Components

and Bindings. Their formal definition is given in Table 4.1. We denote Ai∈I
i a set

of elements Ai indexed in a set I. The formal definition is not provided for some

elements of the table, because they are the terminal symbols. Such elements are

presented in a different font (e.g. Name, Type, NF).

Every server (SItf) or client (CItf) interface is characterised by three attributes:

Name is the name of an interface; MSignatures represents the methods which can be

served by a server interface or called by a client interface; Nature defines if it is a

functional or a non-functional interface. Please, note that for the sake of simplicity

we omit the cardinality attribute in the core definitions and we assume all interfaces

to be singletons. Nevertheless, we will introduce the cardinality and show its impact

on the well-formedness specification in Section 4.4.3.

A component is described by its name, the sets of external client and server

interfaces, and a membrane. A primitive additionally includes a set of local methods.

In practice, a primitive also stores a list of attributes but we omit them in the formal

specification as the attributes are not involved in the static validation. A composite

4.2. AUXILIARY FUNCTIONS 61

Element Formalisation

Server interface SItf ::= (Name,MSignaturei∈Ii , Nature)S
Client interface CItf ::= (Name,MSignaturei∈Ii , Nature)C
Interface Itf ::= SItf | CItf
Method signa-
ture

MSignature ::= MName × Type → Type

Primitive Prim ::= CName < SItfi∈Ii ,CItfj∈Jj ,Mk∈K
k ,Membr >

Composite Compos ::= CName < SItfi∈Ii ,CItfj∈Jj ,Membr,Cont >

Component Comp ::= Prim | Compos

Content Cont ::=< SItfi∈Ii ,CItfj∈Jj ,Compk∈Kk ,Bindingl∈Ll >

Binding Binding ::= (QName,QName)
QName ::= This.Name | CName.Name

Nature Nature ::= F | NF

Membrane Membr ::=< Compk∈Kk ,Bindingl∈Ll >

Table 4.1 – The formalization of GCM architecture

component includes a content which is defined by the sets of internal client and server

interfaces, sub-components, and bindings located inside the content.

A binding is described as a couple of names defining its source and target inter-

faces. Each qualified name consists of two parts: the first part defines the container

of the interface, either the name of a sub-component or the identifier This ; the second

part is the name of the interface itself.

Non-functional aspect. The Nature property of an interface can be either func-

tional (F) or non-functional (NF). A membrane is the part of a component which is

responsible for the non-functional aspect of an application. Its formalisation is given

at the bottom of Table 4.1. The bindings (Bindingl∈Ll) are the connections between

the interfaces in a membrane. A membrane can contain a set of sub-components

(Compk∈Kk). Among them, so-called interceptors have a special use. They are recog-

nised in this set essentially from their binding pattern. Section 4.3 will focus on the

definition and identification of interceptors. All the other components in a membrane

are component-controllers.

4.2 Auxiliary functions

Based on the formal definitions given in the previous section, we will specify a set

of rules for the well-formed components in Section 4.4, but first we should introduce

the auxiliary functions that will be used by these rules. The functions are given in

62 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

Function
name

Function Definition

Sym Sym : Itf → Itf
Itf GetItf : (Membr | Cont | Comp) → Itf

GetItf(X : Comp | Cont) ::= SItf(X) ∪ CItf(X)
GetItf(X : Membr) ::=

Sym

�

Itf(Parent(X)) ∪ Itf(Cont(Parent(X))

�

GetSrc GetSrc : Binding × (Membr | Cont) → Itf
GetSrc((Src,Dst), ctnr) ::= itf s.t. Name(itf) = Name(Src)∧














itf ∈ Itf(ctnr) ∧Role(itf) = C,
if Src = This.Name

itf ∈ Itf(comp).(comp ∈ ctnr ∧ Name(comp) = CName),
if Src = CName.Name

GetDst GetDst : Binding × (Membr | Cont) → Itf
GetDst((Src,Dst), ctnr) ::= itf s.t. Name(itf) = Name(Dst)∧














itf ∈ Itf(ctnr) ∧Role(itf) = S,
if Dst = This.Name

itf ∈ Itf(comp).(comp ∈ ctnr ∧Name(comp) = CName),
if Dst = CName.Name

Parent Parent : (Itf | Comp | Membr | Cont) → Membr | Cont | Comp

Table 4.2 – Auxiliary functions

Table 4.2 and explained in details below.

First, we use auxiliary functions providing access to the attributes of the interfaces

and components. For example, the Nature(itf : Itf) function returns the nature of

an interface, Binding(membr : Membr) returns the set of bindings in a membrane.

The definitions of such functions are straightforward and we omit them in Table 4.2.

Second, the symmetry function (Sym) takes an interface as an input and returns

an interface with exactly the same properties but with an opposite role: a client

(. . .)C interface becomes a server (. . .)S one and symmetrically.

Third, we introduce a GetItf function. It takes a container (a component, a

membrane or a content) as an input and computes the set of interfaces stored by

it. If its argument is a component or a content, then the result is the union of its

server and client interfaces sets. The membrane of a component can also have internal

interfaces, even though they are not declared explicitly. The set of internal interfaces

of a membrane is represented by the union of two other sets: all the external interfaces

of the component containing the membrane and all the internal interfaces of the

content inside the component. All the interfaces are taken with the same properties,

but with an opposite role (e.g. a server interface becomes a client one and vice-verse).

4.3. INTERCEPTORS 63

Figure 4.1 – Internal interfaces of a membrane

Figure 4.1 illustrates the (implicit) internal interfaces of a membrane, displayed in red

color. In terms of our formal definition, the interfaces of a membrane are obtained

by computing the set of the symmetric of the interfaces belonging to the component

containing the membrane and its content.

Finally, most of the consistency rules dealing with the bindings will use the aux-

iliary functions GetSrc and GetDst. They are able to retrieve the Interface objects

which are respectively the source and the destination ends of a binding. If GetSrc

and GetDst functions are applied to a binding inside a membrane, then they may

return an internal interface of the membrane or an external interface of one of its

sub-components.

Conversely, some rules use the Parent auxiliary function, that recovers the con-

tainer (component, membrane or content) of an interface, a component, a content

or a membrane. The parent of a sub-component in a composite can be either the

membrane of the content.

4.3 Interceptors

The separation between the functional and non-functional parts of an application is

important for the safety and re-usability of software components. However, a clean

interaction between these two concerns is highly desirable because they can often

influence each other. We formalise the notion of interceptors which are special com-

ponents used for the interactions between functional and non-functional elements.

Interceptors can observe functional invocations and trigger a reaction of the con-

trol part of the component. In the other direction, non-functional components can

influence the functional behaviour by modifying its behaviour in two ways: either

through reconfiguration, i.e. modification at runtime of the component architecture,

or by changing parameters, i.e. component attributes, that will influence the func-

tional behaviour. The formalisation of component architecture with interceptors has

never been provided before. In this section, we, first, we introduce the non-formal

64 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

Figure 4.2 – An input chain of interceptors

definition of an interceptor. Then, we present a predicate recognising the interceptors

among the other sub-components of a membrane.

An interceptor is a functional component inside a membrane. It is connected

to one external and one internal functional interfaces of the membrane’s parent. An

interceptor ”intercepts” a functional call that goes from outside to inside of the mem-

brane (input interceptor) or vice versa (output interceptors). The interceptors are

used to monitor an application and its functional calls. The only functional activity

of an interceptor should be to intercept and forward the functional calls through its

functional client and server interfaces. All the other actions are performed through

non-functional interfaces. To allow more modularity in the design, interceptors can

be assembled in chains inside the membrane. Interceptors in a chain must all be

either input or all output; we shall speak of input chains and output chains. An ex-

ample of an input chain is illustrated at Figure 4.2; here, the chain is formed by two

interceptor components: Products Monitor and Frequency Monitor. By contrast,

Controller is a component-controller: it does not intercept any functional call but

communicates with one of the interceptors and with the component in the content.

In principle, it would be possible to relax this definition, and allow for more general

interceptor structures, e.g. including some parallelism in the form of multicast client

interface in the “chain”, allowing more efficient processing. However it is not clear

whether this would be useful for real applications, and this is not implemented in the

GCM/ProActive middleware, so we prefer to keep the (relatively) simple form in our

formal definition.

In order to distinguish formally the interceptors from the other components, we

define a predicate IsInterc (see Table 4.3). It takes a component and a membrane as an

input and returns true if the component belongs to a chain of interceptors inside the

given membrane. An interceptor chain consists of one or several interceptors. IsInterc

uses a predicate IsIntercChain which identifies if a given sequence of K components is

a chain of pipelined interceptors inside the given membrane. IsIntercChain predicate

4.4. WELL-FORMED COMPONENT ARCHITECTURE 65

checks the following features of the indexed set of components given as input:

• all the components are inside the membrane;

• all the components have exactly one functional server and one functional client

interface (they can have other non-functional interfaces);

• a functional call can go through the sequence of components. More formally,

for any k ∈ 2...K there is a binding connecting client functional interface of

the component number k − 1 and server functional interface of the component

number k;

• the first component of an input chain intercepts a functional call from an exter-

nal functional interface to the content while the last component forwards the

functional call to the content or vice versa for an output chain.

Predicate IsIntercChain uses two auxiliary functions: GetSItfF (comp) (resp. GetCItfF (comp))

returns the sets of all functional server (resp. client) interfaces of component comp.

The predicate IsExtEnd checks, for an input interceptor chain, whether the first

interceptor in the chain is connected to a server functional interface of the parent

component or, for the output interceptors, whether the last one is connected to

a client functional interface of the parent component. Predicate IsIntEnd is the

symmetric, it checks connection with the content. However, the content is not known

for a primitive component; in that case the interfaces of the content are computed by

symmetry of the external (functional) interfaces of the component.

4.4 Well-formed component architecture

Now, we can specify the well-formedness requirements. First, we introduce the core

rules and predicates used for the definition of the well-formedness; then, we focus on

the non-functional aspects and on the collective communications.

4.4.1 Core

Table 4.4 formalises the auxiliary predicates which are used for the definition of the

following constraints:

• Component naming constraint (UniqueCompNames): all the components at

the same level of hierarchy must have different names. This restriction is due

the fact that components are referenced by their name; typically, QName (see

66 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

Predicate name Predicate Definition
IsInterc IsInterc(comp : Comp, membr : Membr) ⇔

∃ic.IsIntercChain(ic,membr) ∧ comp ∈ ic;
IsIntercChain IsIntercChain({i1 ...iK} : set of Comp, membr : Membr) ⇔

{i1 ...iK} ⊆ Comp(membr) ∧ ∃SI1...SIK , CI1...CIK .
(∀k ∈ {1...K}). (GetSItfF (ik)={SIk} ∧GetCItfF (ik)={CIk}) ∧
(∀k ∈ {1...K − 1}).(∃bk ∈ Binding(membr).

GetSrc(bk,membr) = CIk ∧GetDst(bk,membr) = SIk+1)∧
∃b0, bK ∈ Binding(membr).∃I0, IK : Itf.

�

(IsExtEnd(I0, b0, SI1,membr, I0)∧ IsIntEnd(CIk, bK , IK ,membr, IK))∨
(IsIntEnd(I0, b0, SI1,membr, I0) ∧ IsExtEnd(CIk, bK , IK ,membr, IK))

�

IsExtEnd IsExtEnd(CI : CItf, b : Binding, SI : SItf, membr : Membr, I : Itf) ⇔
GetSrc(b,membr) = CI ∧GetDst(b,membr) = SI ∧Nature(I) = F∧
Sym(I) ∈ GetItf(Parent(membr))

IsIntEnd IsIntEnd(CI : CItf, b : Binding, SI : SItf, membr : Membr, I : Itf) ⇔
GetSrc(b,membr) = CI ∧GetDst(b,membr) = SI ∧Nature(I) = F∧
If IsComposite(Parent(membr)) then
Sym(I) ∈ GetItf(Cont(Parent(membr)))

Else Sym(I) ∈ Sym(GetItf(Parent(membr)))

Table 4.3 – Interceptor predicates

Predicate name Predicate Definition

UniqueCompNames UniqueCompNames(Compi∈Ii : set of Comp) ⇔
∀i, i� ∈ I.i �= i� ⇒ CName(Compi) �= CName(Compi�)

UniqueItfNames UniqueItfNames(Itf i∈Ii : set of Itf) ⇔
∀i, i� ∈ I. i �= i� ⇒ Name(Itfi) �= Name(Itfi�)

BindingRoles BindingRoles(b : Binding) ⇔
Role(GetSrc(b,Parent(b))) = C ∧
Role(GetDst(b,Parent(b))) = S

BindingTypes BindingTypes(b : Binding) ⇔
MSignature(GetSrc(b,Parent(b))) ≤
MSignature(GetDst(b,Parent(b)))

CardValidity CardValidity(Bindingl∈Ll : set of Binding) ⇔
∀l, l� ∈ L. l �= l� ⇒

GetSrc(Bindingl,Parent(Bindingl)) �=
GetSrc(Bindingl� ,Parent(Bindingl�))

Table 4.4 – Core predicates

4.4. WELL-FORMED COMPONENT ARCHITECTURE 67

Table 4.1) can be of the form CName.Name; and if two components had the

same name the functions GetSrc and GetDst would not return a single deter-

ministic result. The two contents of two different composite components as

well as two membranes are considered to be different name-spaces. A mem-

brane and a content are also different name-spaces even if they belong to the

same component.

• Interface naming constraint (UniqueItfNames): all the interfaces of a component

must have different names. This constraint will be checked separately, for the

external interfaces of a component, and for the internal interfaces of a content

to allow external and internal interfaces to have the same name. This constraint

also ensures the determinacy of the functions GetSrc and GetDst.

• Role constraint (BindingRoles): a binding must go from a client interface to a

server interface. The predicate uses a function Role(I) that returns C (resp. S)

if I is a client (resp. server) interface.

• Typing constraint (BindingTypes): a binding must bind interfaces of compati-

ble types. The compatibility of interfaces means that for each method of a client

interface there must exist an adequate corresponding method in the server in-

terface. In other words, if a client interface is connected to a server interface

and it wants to call some method, then this method must actually exist on

the server interface. In general, a corresponding method does not need to have

exactly the same signature as the one required, but can use any sub-typing or

inheritance pre-order available in the modelling language. We denote ≤ such

an order between interface signatures.

• Cardinality constraint, CardValidity, ensures that a client interface is bound to

a single server one. In other words, there is not two bindings going from the

same client interface.

We use the previous constraints to specify a well-formedness predicate, denoted

WF. It is defined recursively on the component architecture, namely on primitive

components, on composite components, and on contents.

A GCM primitive component is well-formed if all its interfaces have distinct names

and its membrane is well-formed.

Let prim : Prim = CName < SItfi∈Ii ,CItfj∈Jj ,Mk∈K
k ,Membr >; (4.1)

WF (prim) ⇔ UniqueItfNames(SItfi∈Ii ∪ CItfj∈Jj) ∧WF (Membr)

68 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

Predicate name Predicate Definition

UniqueNamesAndRoles UniqueNamesAndRoles(Itf i∈Ii : set of Itf) ⇔
∀i, i� ∈ I.(i �= i� ∧ Name(Itfi) =
Name(Itfi�)) ⇒ Role(Itfi) �= Role(Itfi�)

BindingNature BindingNature(b : Binding) ⇔
CL(GetSrc(b, Parent(b))) =
CL(GetDst(b, Parent(b))) = 1∨
(CL(GetSrc(b, Parent(b))) > 1∧
CL(GetDst(b, Parent(b))) > 1)

Table 4.5 – Non-functional predicates

A GCM composite component is well-formed if all its external interfaces have

distinct names, and its content and its membrane are well-formed.

Let compos : Compos = CName < SItfi∈Ii ,CItfj∈Jj ,Membr,Cont >; (4.2)

WF (compos) ⇔ UniqueItfNames(SItfi∈Ii ∪ CItfj∈Jj) ∧WF (Membr) ∧WF (Cont)

The content of a GCM component is well-formed if all its interfaces have distinct

names, all its sub-components have distinct names, all its bindings have a valid car-

dinality, all its sub-components are well-formed, the role, type, and nature constraints

are respected for all its sub-bindings. The nature constraint for the bindings relies on

The BindingNature predicate. It is discussed in Section 4.4.2 because it is related

to the non-functional aspects.

Let cont : Cont =< SItfi∈Ii ,CItfj∈Jj ,Compk∈Kk ,Bindingl∈Ll >; (4.3)

WF (cont) ⇔































UniqueItfNames(SItfi∈Ii ∪ CItfj∈Jj)∧

UniqueCompNames(Compk∈Kk)∧

CardValidity(Bindingl∈Ll) ∧ ∀k ∈ K.WF (Compk)∧

∀B ∈ Bindingl∈Ll .BindingRoles(B)∧

BindingTypes(B) ∧ BindingNature(B)

The well-formedness of a membrane is only significant for the non-functional aspect,

it is defined below.

4.4.2 Non-functional aspects

In this section we define the static semantic constraints ensuring safe composition

of the non-functional part of a component-based application. The correctness of a

membrane relies on the two predicates defined in Table 4.5:

4.4. WELL-FORMED COMPONENT ARCHITECTURE 69

• Interface naming constraint (UniqueNamesAndRoles): if there are two inter-

faces with the same name in a membrane, then they must have different roles.

We recall here that the interfaces of a membrane are not declared explicitly but

computed as the symmetry of the interfaces belonging to the parent compo-

nent and its content. This is as slight relaxation from the UniqueItfNames rule

of the general case: we generally want to allow corresponding external/inter-

nal interfaces pairs of opposite role to have the same name. This also ensures

compatibility with the original Fractal model, where internal interfaces were

implicitly defined as the symmetric of external ones.

• Binding nature constraint(BindingNature) is a rule imposing the separation

of concerns between functional and non-functional aspects. We want the func-

tional interfaces to be bound together (only functional requests will be going

through these), and non-functional interfaces to be connected together as a

separate aspect. This is simple to impose in the content of a composite com-

ponents, but a little trickier in the membrane because of the specific status of

interceptors.

The solution is to qualify as functional all the components in a content and

all the interceptors, while all the other components in the membrane are non-

functional. As mentioned earlier, the interfaces are declared functional or non-

functional. From this we compute for each interface a control level ranging

from 1 to 3, where 1 means functional; 2 and 3 mean non-functional. The

two levels are needed because a non-functional component inside a membrane

can have both functional and non-functional interfaces. However, the computed

control level of any of them should indicate that an interface belongs to the non-

functional aspect because the interface belongs to a non-functional component.

Then, the external functional interfaces of non-functional components will have

a control level 2 while their non-functional interfaces will have a control level 3.

Then the compatible interfaces are either both “1”, or both greater than “1”.

The ControlLevel function is formally defined as:

CL(X : Comp) ::=











2, if Parent(X, context) : Membr∧

¬IsInterc(X,Parent(X)))

1, else

CL(X : Cont | Membr) ::= 1

CL(X : Itf) ::=

�

CL(Parent(X)), if Nature(X) = F

CL(Parent(X)) + 1, if Nature(X) = NF
(4.4)

70 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

This constraint on the nature of bindings was already mentioned in [69], we

propose here a formal definition that is simpler and more intuitive.

As the last step, we define the well-formedness predicate for a membrane. A mem-

brane is well-formed if all its sub-components have distinct names, the naming con-

straint is respected for its interfaces, all its sub-components are well-formed, all its

bindings have a valid cardinality, and the role, type, nature constraints are respected

for all its sub-bindings,

Let membr : Membr =< Compk∈Kk ,Bindingl∈Ll >; (4.5)

WF (membr) ⇔































UniqueCompNames(Compk∈Kk)∧

UniqueNamesAndRoles(Itf(membr))∧

∀k ∈ K.WF (Compk) ∧ CardV alidity(Bindingl∈Ll)∧

∀B ∈ Bindingl∈Ll .BindingRoles(B)∧

BindingTypes(B) ∧ BindingNature(B)

4.4.3 Collective communications

One of the crucial features of GCM is to enable one-to-many and many-to-one com-

munications through specific interfaces, namely gathercast and multicast.

In order to specify such communications let us add a Cardinality (Card) field in

the specification of the GCM interfaces. The cardinality can be singleton, multicast

or gathercast. We recall here that a multicast can send requests to several target

interfaces at the same time; a gathercast can be plugged to multiple client interfaces.

These new interfaces modify the definition of cardinality validity. In particular,

the multicast interface allows two bindings to originate from the same client interface.

The CardValidity is modified as follows:

CardValidity(Bindingl∈Ll : set of Binding) ⇔ ∀itf : Itf. ∀l, l� ∈ L.l �= l� (4.6)

(itf=GetSrc(Bindingl, Parent(Bindingl))=

GetSrc(Bindingl� , Parent(Bindingl�) ⇒ Card(itf)=multicast)

The intended semantics is that an invocation emitted by a multicast interface is

sent to all the server interfaces bound to it. Gathercast interface on the contrary

synchronises several calls arriving at the same server interface, they do not entail any

structural constraint. Indeed, multicast and gathercast interfaces were designed for

sending or synchronising several invocations correspondingly. From an architectural

point of view, there is no difference between a gathercast and a singleton server inter-

face because both of them can be plugged to several client interfaces. An interceptor

4.5. PROPERTIES 71

chain should not contain any multicast functional interface because it should transmit

invocations in a one-to-one manner.

4.4.4 Additional rules

In order to facilitate the further analysis and in particular the generation of the be-

havioural models, we add two additional requirements to the well-formed components.

First, we require that no binding has the same component as source and destination:

there is no binding looping back directly to the same component. This condition is

checked by the predicate below:

NoLoopBinding(b : Binding) ⇔ (4.7)

Parent(GetSrc(b,Parent(b))) �= Parent(GetDst(b,Parent(b))

The second additional rule states that no two bindings going from the same mul-

ticast interface reach the same target component; it is expressed by the predicate

below:

NoEqualTarget(b,b’:Binding) ⇔ GetSrc(b,Parent(b)) = GetSrc(b�,Parent(b�)) ∧ (4.8)

Parent(GetDst(b,Parent(b))) = CName.Name ⇒

Parent(GetDst(b,Parent(b))) �= Parent(GetDst(b�,Parent(b)))

The two additional predicates should be checked for each binding in a container

(in a content or in a membrane). This validation is not required by the GCM model

but it simplifies the rules for the construction of the behavioural models presented in

Section 6.3.

4.5 Properties

The well-formedness definition of the preceding section guarantees that, from an ar-

chitectural point of view, the specified component assembly is well-formed. It entails

some properties both at deployment time and during execution. More precisely, the

constraints specified above ensure the following properties:

Component encapsulation. Bindings do not cross boundaries. Indeed, GetSrc

and GetDst predicates are only defined in the context of the parent compo-

nent, for example, the call to GetDst and GetSrc inside the definition of the

BindingRoles predicate ensure that both bound interfaces are either internal in-

72 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

terfaces of the parent component or external interfaces of its sub-components,

which guarantees that no binding crosses component boundaries. If the source

and the destination interfaces are not have the same context, the predicate

returns an error. The property allows preventing issues similar to the one

illustrated in Figure 4.3a where a component (Prim1) outside a composite com-

municates directly with a sub-component (Prim2).

Deterministic communications. The CardValidity predicate guarantees that each

singleton client interface is bound to a single server interface, which guaran-

tees that each communication from a singleton interface is targeted at a single,

well-defined, destination. The predicate helps to avoid a situation illustrated in

Figure 4.3b where it is not clear which component (Component2 or Component3)

will receive requests from Component1. On the other hand, CardValidity takes

into account collective communications and ensures that in the case of a mul-

ticast client, it will be bound to a well-defined set of target server interfaces.

Unique naming. Several predicates ensure the uniqueness of component or inter-

face names in each scope (sub-components of the same component, interfaces

of the same component, etc.). This restriction is crucial for introspection and

modification of the component structure. For example rebinding of interfaces

can be easily expressed based on component and interface names.

Separation of concerns. The definition of non-functional aspects ensure that: 1)

each component has a well-defined nature: functional if it belongs to the con-

tent, and non-functional if it belongs to the membrane. 2) each interface has a

well-defined control level, depending on the component it belongs to and on the

nature of the interface. The nature of components and interfaces is defined by

the control-level (CL) predicate. 3) Bindings only connect together functional

(resp. non-functional) interfaces. 4) We clearly identify interceptor components

that are the only structural exception to these rules: an interceptor is a com-

ponent in the membrane that can have a single functional client and a single

functional server interface, but as many non-functional interfaces as necessary.

Correct typing. For each request sent by a client interface, there should be the

corresponding method on the target server interface which is able to serve it.

This is ensured by the predicate BindingTypes which checks the compatibility

between the method signatures of two interfaces connected by a binding. Fig-

ure 4.3c illustrates an example of an architecture where the typing constraint

is violated: the issue may occur if at run-time Component1 invokes method

4.5. PROPERTIES 73

(a) Incorrect encapsulation

(b) Non-deterministic communication

(c) Incorrect typing

Figure 4.3 – Examples of architecture constraint violations

write() on Component2, because the former cannot serve the request.

In order to guarantee that the generated ADL deploys correctly, i.e. without run-

time error, it is sufficient to ensure that (1) each interface and class the ADL file refers

to exists (which is ensured by the generation process presented in Section 5.3.1), that

(2) no binding exception will be raised at instantiation time (which is ensured by the

well-formedness property and in particular by the determinacy of communications),

and that (3) the unique names ensure that the components and interfaces can be

manipulated adequately during instantiation. All those arguments ensure that each

ADL file generated by VerCors deploys correctly, provided the well-formed property

is verified by the system.

The properties verified by well-formed components not only guarantee that the

ADL generated from a well-formed specification deploys correctly, but also ensure

some crucial properties concerning the runtime semantics (deterministic communica-

tions, separation of concerns, reconfigurability ...).

74 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

4.6 Architecture static analysis in VerCors

All the static semantics constraints defined in the previous sections are encoded in

VerCors in order to validate component assemblies. As mentioned in Section 3.3 we

rely on Acceleo to implement the check. The technology allows one to define a set

of validation rules over a given model in the OCL-based [76] Acceleo language. For

complex computations, the language includes a mechanism for external custom Java

services invocation which makes the rules specification extremely flexible.

An example of a rule defining the naming constraint for the components is given

below:

[not self.siblings(Component)->collect(name)->includes(self.name)/]

It will be checked for every component in a given conceptual model. Here, self is

the component on which the constraint is validated; let us denote it C. The function

siblings(Component) returns the set of all the components in the same container as

C. The function collect(name) extracts the names of all such components. Finally,

includes(self.name) checks if there is any component with the same name as C

and returns true if it finds one.

The given constraint looks very simple as its validation does not involve external

Java services invocation. An example of a more complex constraint could be the one

ensuring that all bindings connect interfaces of proper nature. Its validation is not

trivial as it requires computing the interceptors chains in order to evaluate the control

level of each interface.

The graphical editor of VerCors reports about the constraint violations. The

elements of the architecture which are not correct are marked with red signs and the

error description is given in a standard Eclipse Problem panel. Figure 4.4 illustrates

an example of a validation result; the architecture contains only one error: there is

a binding between two interfaces with incompatible types (C1 and S1). Indeed, if C1

tries to invoke method write, S1 will not be able to serve it and the application will

fail.

4.7 Discussion and Related work

In this chapter we have formalised the architecture of GCM components including

the non-functional aspect and interceptors, we have formalised the specification of

component well-formedness predicates which ensure that the components are well-

encapsulated, the communications are deterministic, and the business-logic of an

application is separated from the control part. We fully implement the automatic

4.7. DISCUSSION AND RELATED WORK 75

Figure 4.4 – Architecture static correctness validation in VerCors

check of the well-formedness constraints in VerCors.

Even though in this chapter we mainly consider the GCM components, we be-

lieve that our formalisation is quite general and the other component models can also

benefit from it. For example, SOFA 2.0 [77] which will be discussed in details in Sec-

tion 7.1 has a structure very similar to the GCM, it features hierarchical composition

and componentised component control. Interestingly, similarly to our approach, one

of the objectives of SOFA is also to provide formal verification tools for distributed

component systems. It would be easy to adapt our formal specification to SOFA

2.0, more precisely: Micro-controllers are components dedicated to non-functional

concerns, they reside in the membrane and are not hierarchical: to take them into

account, we should restrict the correctness rules for the membrane to only allow prim-

itive components in the membrane. Also, the SOFA 2 delegation chains are chains

of interceptors, following exactly the rules defined in Section 4.3. Another exam-

ple could be AOKell [78] – an extension of Fractal specifically for componentising

membranes, it is interesting to note that the authors define a notion of control level,

which is quite similar to the ControlLevel function used in our paper. In this case

again, our approach could be used to verify the correct composition of AOKell-based

components, and ensure the safe design of AOKell component systems.

The two previous works closest to ours are the formalisation of Fractal in Al-

loy [79], and the formalisation of GCM in Isabelle/HOL [80]. The first framework

focuses on structural aspects in order to prove the realisability of component sys-

tems. Except from the core elements (i.e. components, interfaces and bindings), the

76 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

authors formalise the standard Fractal controllers (e.g. Lifecycle controller, Binding

controller) and the components factory. One of the key goals of the work is to make

clear a number of aspects that were left ambiguous in the informal Fractal specifica-

tion. For example, the authors give a precise definition of the sub-typing relation for

the interfaces.

The second work aims at providing lemmas and theorems to reason on compo-

nent models at a meta-level, and prove generic properties of the component model.

In addition to the core elements of a component-based architecture, the authors take

into consideration the evolution of a component state at runtime and the semantics of

communications based on request/reply by futures mechanism. The authors give an

example of how a system reconfiguration can be formally specified in Isabelle. How-

ever, none of the two discussed formalisations included the notion of non-functional

components, many-to-many interfaces, or interceptors. The formal specification of

component correctness defined in this thesis could be used to extend the expressive-

ness of the component model in the Alloy and the Isabelle frameworks.

Another similar work was provided in [74] where the authors investigated a lan-

guage for generating correct-by-construction component systems, and reconfiguring

them safely. The core contribution is a framework Mefresa which is based on the

Coq [81] proof assistant and aims at automatic reasoning on component-based ap-

plication architecture. The authors show how a GCM-based system structure can

be encoded in Coq and how its correctness can be checked with respect to a set of

predefined properties. An interesting aspect of the work is an approach to encode

and validate scenarios for the dynamic application reconfiguration. Similarly to the

cases above, this study does not deal with the structure of the membrane. It could be

extended to the enhanced component structure presented here. Also, it could ben-

efit from using the VerCors graphical designer as a front-end, as encoding manually

components structure in Coq might be a bit tedious for a non-experienced user.

Finally, we assume the conceptual model to be correct with respect to the static

correctness predicates while translating it into an input for the model-checker and

generating the implementation code. Both transformation processes will be pre-

sented in the following chapter. In particular, we generate one pNet encoding the

behaviour of one component and we construct synchronisation vectors to express the

communications between components. The unique naming property is crucial for

the synchronisation, because the synchronised pNets are identified by the full path

to the encoded components, and if two components in a container have the same

name, their pNets will also have the same name which might lead to synchronising

the wrong entities. The unique naming property is also important for the generated

4.7. DISCUSSION AND RELATED WORK 77

program execution, because the GCM/ProActive factory does not allow constructing

two components with the same name in one container. It is also crucial to make sure

that the functional part of a modelled application is properly separated from the non-

functional elements before constructing the pNets. The reason is that when building

the behaviour model, we pre-process separately the functional and non-functional

interfaces and components, hence, any violation of the binding nature constraint can

lead to unpredictable results of pNet construction.

78 CHAPTER 4. WELL-FORMED COMPONENT ARCHITECTURE

Chapter 5

A framework for verifying and

running distributed components

Contents

5.1 From application design to pNets 80

5.1.1 Semantics of primitive components 81

5.1.2 Semantics of composite components 92

5.1.3 Implementation . 100

5.2 From pNets to CADP . 108

5.2.1 Preparing the input: generating Fiacre, EXP and auxiliary

scripts . 108

5.2.2 Model-checking with CADP 112

5.3 Code generation and execution 115

5.3.1 ADL generation . 116

5.3.2 Java generation . 118

5.3.3 Code execution . 123

5.4 Discussion . 124

5.4.1 On the verification . 124

5.4.2 On the executable code generation 125

In this chapter we present the core of our framework: the approaches for verifi-

cation and executable code generation. First, we formally define the construction of

pNets encoding the behaviour of GCM components and then we discuss how they are

79

80CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

translated into an input for the CADP model-checker. We present the implementa-

tion of the full transformation chain: starting from the user-defined graphical models

finishing with the model-checking in CADP. Next, we explain how the implementa-

tion code is generated from the VerCors diagrams and discuss the code execution on

ProActive.

5.1 From application design to pNets

This section defines formally the behavioural semantics for the GCM/ProActive com-

ponents. It shows how to build pNets from the specification of a hierarchy of com-

ponents.

We organise this section as follows. We first give a behavioural semantics for

primitive component behaviour and synchronisation of the different elements of the

primitive component including queue, body, methods, and future proxies. We then

describe the behavioural semantics for composite components, which compose the

semantics of their sub-components, synchronising the requests and replies between

the sub-components, the composite, and the external components. In particular, we

will need to define a new kind of future proxies for handling the delegation mechanism

that occurs in the composite components. Then, we discuss how the generation of

the formalised models is implemented in VerCors.

Term algebra. The definition of pNets in Section 2.2 relies on a very generic

definition of the term algebra. Here we specialise this algebra to take account the

specificities of the GCM components.

The term algebra we use is a set of parameterised actions; actions will typically be

of the form Serve m for m a method label as defined below. Parameters will be either

values (invocation parameters denoted by arg or computed results denoted val), or

future identifiers (denoted by either p, or f , or fid). arg and val range (implicitly)

over the set of values, this set of values being purposely undefined. In an object-

oriented language, those values should be an abstraction of objects. It could be

defined depending on the type of the value but we will not discuss this aspect here.

p, fid, and f range over natural numbers.

Labels for identifying methods. Inside the actions, we need identifiers for meth-

ods that are more precise than simple method names. We define thus MethodLabels

as a set of method labels, where a method label encompasses a method name, a signa-

ture, and the interface the method belongs to, plus possibly other meta-informations.

5.1. FROM APPLICATION DESIGN TO PNETS 81

Most of the following can be read as ifMethodLabels were just method names, however

at some specific points and to disambiguate different methods, the other informations

encoded in MethodLabels are also necessary. mi range over such method labels.

A function MethLabels : Itf → P(MethodLabels) is defined, where MethLabels(Itfi)

returns the set ofMethodLabels corresponding to the methods of interface Itfi. MethLabels

is also defined for sets of interfaces (union of sets of method labels for each interface).

Conversely, for a given method label m, Itf(m) returns the interface of the method.

As in Chapter 4, we distinguish between the set of client interfaces (CItf) and server

interfaces (SItf).

Behavioural semantics. The behavioural semantics of components is expressed

under the form �Component�

It relies on the use of several auxiliary functions for expressing the semantics

of specific parts of the components: the behaviour of the server methods and local

methods (for a primitive component), the behaviour of the body of the component

serving requests one after the other, a proxyManager for managing the available future

proxies, the behaviour of each future proxy, and finally a delegation behaviour used

when a composite component delegates the service of a request to another component.

The signature of all these functions is summarised below.

Function Signature Description

� � Component → pNet basic behavioural semantics

� �server
MethodLabels×

P(MSignature× Impl) → pNet
Server methods

� �local
MethodLabels×

P(MSignature× Impl) → pNet
Local methods

� �body
P(MethodLabels)×

P(MethodLabels) → pNet
The body: serves requests in a FIFO order

� �proxyManager MethodLabels → pNet Manages future proxies

� �proxy MethodLabels → pNet future proxy

� �FutDetect MethodLabels → pNet pLTS detecting a future received as request

parameter

� �delegate MethodLabels → pNet Delegation method (in composite compo-

nents)

5.1.1 Semantics of primitive components

Primitive components are the leaves of the hierarchy; they contain the applicative

code from which more complex components, and thus more complex behaviours can

82CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Figure 5.1 – An example of a primitive component

be built. This section gives a behavioural semantics for GCM primitive components,

able to receive requests, to serve them in a FIFO order by executing a server method,

and to send requests to the external world. Additionally to the global structure of a

primitive component and the synchronisation of its sub-entities, this section defines

pLTSs describing the behaviour of a FIFO service policy, of proxies for handling

futures, of managers for pools of future proxies, and discusses the pLTSs of the server

and local methods. More generally, this section shows that pNets provide a convenient

abstraction for modelling asynchronous components communicating by asynchronous

requests and futures.

Illustrative Example

We first illustrate and explain the structure of the behavioural semantics of primitive

components based on the component shown in Figure 5.1. The primitive PrimExample

has three server methods: m1, m2, m3 and two client methods m4 and m5. Each method

has input and output parameters. For the sake of simplicity, the given example does

not include local methods; their modelling is very close to the server ones and it will

be discussed at the end of the section. Figure 5.2 illustrates the structure of the pNet

expressing the semantics of the component. It illustrates the global structure, the

pNets represented by boxes, and the synchronisation vectors represented by arrows

(an ellipse is used when a synchronisation vector involves more than two processes).

Note that the direction of an arrow is purely conventional, but goes, as much as

possible, from an emission action to a reception action, intuitively following the data

flow.

A primitive component can receive incoming requests (iQ mi) that are stored in

the Queue pNet and then served by the Body pLTS. The service consists in triggering

a Call mi to the adequate server method, called Mi in the figure. Once a result is

5.1. FROM APPLICATION DESIGN TO PNETS 83

M1 M3

PM m5

PM m4

Body

...

Call m*(arg)R m1(fid1, val)

R m3(fid3, val)

Primitive Example 1

R m*(fid∗)

R *(val)

iQ m3(fid3, arg)
iQ m2(fid2, arg)

iR m5(p5, val)

iR m4(p4, val)

Q m5(p5, arg)

Q m4(p4, arg)

GetValue m5(p5, val)
GetValue m4(p4, val)

P1.1

P1.2
Serve m*(fid∗, arg)

P1.4

P2.1
P1.3

P2.2 P2.6

P2.4

P2.3

P2.5

Queue

R m2(fid2, val)

iQ m1(fid1, arg)

G
e
tP

ro
x
y
m
* New m5(p5)

New m4(p4)

Recycle m5(p5)

Recycle m4(p4)

Proxy m5[p5]

Proxy m4[p4]

Figure 5.2 – pNet for the PrimExample component from Figure 5.1

computed for the request, a R mi action is emitted with the corresponding future

identifier fid and result value val.

The server methods can call external components through client interfaces. There

is one proxy manager PM ∗ for each method of each client interface (proxy managers

are both indexed over interfaces and over methods). Then each of those managers

manages itself a family of proxies Proxy ∗. On each proxy manager PM mi, the caller

can perform a GetProxy. Upon request, a fresh future proxy Proxy mi is allocated

and returned by a New mi action that acts as a response to the GetProxy ; there is a

family of future proxies for each method of each client interface. Then the outgoing

call is emitted by the caller pLTS with the reference to the corresponding proxy sent as

parameter (Q mi). Finally when a result is computed the reply iR mi is received by

the adequate proxy and the result can be accessed by GetValue mi actions performed

by some server methods. Then, server methods can emit Recycle actions that are sent

to the adequate proxy and proxy manager. The action notifies the proxy manager

that the proxy will not be used by the caller any more, and that it can be given to

another process. In fact, there is no notion of proxy recycling in GCM/ProActive

because the number of proxies is limited only by the Java heap memory size, however,

this is not the case for the model-checking. When generating the behaviour model

for the finite state-space model-checking we, obviously, have to limit the number of

proxies and in order to be closer to the actual implementation we construct such a

model where proxies can be re-used infinitely.

84CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Global structure

This subsection formalises and generalises the principles depicted in the previous sec-

tion. The behaviour of a primitive component is formalised below and it is computed

by the rules shown in this subsection.1

ml∈L
l = MethLabels(SItf) Q = Queue(ml∈L

l) B = �ml∈L
l �body

∀l ∈ L.SMl = �ml, Impl�server ∀j ∈ J.Pj = P(CItfj)

∀j ∈ J.PMj = PM(CItfj) SV = SVS(m
l∈L
l) ∪ SVC(CItf

j∈J
j , L)

�CName < SItf,CItf
j∈J
j , Impl >� = ��Q,B,

←−−−−−→
��SMl∈L

l ��,
←−−−−−→
��PMj∈J

j ��,
←−−−→
��Pj∈J

j ��, SV ��

With the auxiliary rules for building the proxy managers and the proxy families:

mn∈N
n = MethLabels(CItf) ∀n ∈ N.Fn =

←−−−−−−−→
���mn�Nproxy��

P(CItf) =
←−−−−→
��Fn∈N

n ��

mn∈N
n = MethLabels(CItf)

PM(CItf) =
←−−−−−−−−−−−−−−→
���mn�n∈N

proxyManager
��

The pNet corresponding to a primitive component is made of:

• A queue able to receive incoming requests: it can enqueue a request on a method

label of one of the server interfaces, we use here a pNet queue constructor.

• A body that will serve all the requests that can reach the queue, it will delegate

the treatment of the request to the server methods
←−−−−−→
��SMl∈L

l ��.

• Server methods: there is one server method for each method label of a server

interface.

• A family PM of proxy managers indexed both over the set of client interfaces

and over the methods of those interfaces: those managers are responsible for

allocating a new proxy when requested, and activating those newly created

proxies.

• A family P of future proxies indexed over the set of client interfaces (J), the

methods of those interfaces (N), and proxy indices, i.e. integers (N): a proxy

1Note the construct ml∈L

l
= MethLabels(SItf i∈I

i
) that defines both the value of each method

label ml and the set L over which it is indexed. This kind of constructs will be massively used in
the rest of this Chapter.

5.1. FROM APPLICATION DESIGN TO PNETS 85

Table 5.2 – Server and client-side synchronisation vectors for primitive components.
The synchronised sub-pNets are:

��Queue,Body, ServerMethods,ProxyManagers,Proxies��

l ∈ L fid ∈ N

{�iQ ml(fid, arg),−,−,−,−� → iQ ml(fid, arg), [1]
�Serve ml(fid, arg),Serve ml(fid, arg),−,−,−� → Serve ml(fid, arg), [2]
�−,Call ml(arg), l �→ Call ml(arg),−,−� → Call ml(arg), [3]
�−, R ml(fid), l �→ R ml(val),−,−� → R ml(fid, val)} [4]

⊆ SVS(m
l∈L
l)

P1

j ∈ J l ∈ L mi ∈ MethLabels(CItfj) p ∈ N

{�−,−, l �→ GetProxy mi, j �→ i �→ GetProxy mi,−� → GetProxy mi, [1]

�−,−, l �→ New mi(p), j �→ i �→ New mi(p), j �→ i �→ p �→ New mi�→New mi(p), [2]
�−,−, l �→ Q mi(p, arg),−,−� → Q mi(p, arg), [3]
�−,−,−,−, j �→ i �→ p �→ iR mi(val)� → iR mi(p, val), [4]
�−,−, l �→ GetValue mi(p, val),−, j �→ i �→ p �→ GetValue mi(val)� →

GetValue mi(p, val), [5]
�−,−, l �→ Recycle mi(p), j �→ i �→ Recycle mi(p), j �→ i �→ p �→ Recycle mi� →

Recycle mi(p) } [6]

⊆ SVC(CItf
j∈J
j , L)

P2

is responsible for receiving the result of a request made towards another com-

ponent; when the value of the result is needed by a server method, this method

asks for the value to the adequate proxy.

Synchronisation vectors

The set of synchronisation vectors for a primitive component is built by two functions:

SVS that provides the set of synchronisation vectors corresponding to the server

interfaces, and SVC for the client interfaces. Each of those sets is defined as the

smallest set verifying the rules given in Table 5.2.

Let us explain briefly what are the synchronisation vectors generated by the infer-

ence rules, more precisely, we focus on the synchronisation vectors for theGetProxy mi

actions, in order to explain the rule patters [P2.1]. One synchronisation vector for

GetProxy mi is generated for each l ∈ L, for each j ∈ J , and for each i ∈ I. Each

synchronisation vector synchronises one action2 l �→ GetProxy mi of the sub-pNet

containing the family of server methods, with one action j �→ i �→ GetProxy mi of

the sub-pNet containing the family of proxy managers (for each interface). As each

of the synchronisation vectors of families of pNets triggers the action on the indexed

2j �→ i �→ a should be read j �→ (i �→ a)

86CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

element of the family, this line allows one action GetProxy mi of one server method

(indexed by l) to be synchronised with the action GetProxy mi of the proxy manager

indexed by i of the interface indexed by j.

The set of server synchronisation vectors SVS defined in rule [P1] encodes the

following synchronisations:

• en-queueing an incoming request [P1.1];

• service of a request by the body [P1.2];

• the body calling a server method to serve a request [P1.3];

• the server method providing a result for this served request [P1.4].

In the last case the result both notifies the body process and is returned to the

outside of the primitive component. In all the actions, the method argument or

the returned value is used as parameter, plus when necessary the identifier of the

concerned future (fid).

The set of client synchronisation vectors SVC is defined in rule [P2]3; it encodes

the following synchronisations:

• obtaining a new future proxy which involves a call to the proxy manager [P2.1]

and another action [P2.2] for returning a fresh proxy identifier and activating

the corresponding future proxy;

• the sending of a request from a server method to an external component [P2.3];

• the reception of a result by the future proxy [P2.4];

• the access to a future value [P2.5] from a server method, the future value is

stored in the future proxy; it is interesting to note here that the value of p is

provided by the GetValue action, it is used to index the right future proxy, and

the value of val is on the contrary provided by this future proxy and “returned

instantly” to the server method;

• the recycling of a future proxy [P2.6].

The function SVC receives as argument the set L of indices over which server methods

range. This argument is necessary because the server methods can perform some of

the client-side actions, like GetValue mi.

3Note the indexing of proxy managers (by interfaces and methods) and of proxies (by interfaces,
methods, and proxy identifier).

5.1. FROM APPLICATION DESIGN TO PNETS 87

Queue

The Queue pLTS simply models a FIFO queue which is able to receive requests from

outside of the component and give them to the body. The queue can be constructed

from the signatures of the server methods.

Body

The body is a pLTS modelling the service of the different requests: for each server

method, the body can dequeue a request corresponding to this method, delegate the

service to the appropriate server method pNet, wait until the method finishes its

execution, and finally return this result (if there is any) before de-queueing a new

request. It can be generated automatically from the set of server methods mi∈I
i .

�mi∈I
i �body = ��S, s0, L,→�� where:

• S = {s0} ∪
�

i∈I

{si(fid, arg)} ∪
�

i∈I

{s�i(fid)}

• L =
�

i∈I

{Serve mi(?fid, ?arg),Call mi(arg),R mi(fid)}

• →=
�

i∈I

{s0
Serve mi(?fid,?arg)
−−−−−−−−−−−−−→ si(fid, arg)}∪

�

i∈I

{si(fid, arg)
Call mi(arg)
−−−−−−−−→ s�i(fid)} ∪

�

i∈I

{s�i(fid)
R mi(fid)
−−−−−−→ s0}

Note, that the fid parameter exists only in the labels corresponding to the non-void

methods.

For each methodm, the body pLTS can always perform the three actions Serve m,

then Call m, and then R m. This body encodes a mono-threaded component be-

haviour where no two requests are served at the same time. This corresponds indeed

to the behaviour of the GCM/ProActive framework, and more generally to the be-

haviour of active objects or actors. Allowing the body to serve multiple requests at

the same time would be quite easy but the resulting behaviour would be much more

complex. Figure 5.3 provides a graphical representation for a pLTS of a body (in the

rest of this thesis we will express pLTSs graphically). The figure shows a body able

to serve three functional requests m1, m2, and m3 where only the first two of them

are supposed to return a result.

The model of the body presented in this section encodes one possible serving

policy (the FIFO), but in fact, it would be good to allow the user to choose among

several different policies or even define a custom one.

88CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Serve_m0(?fid,?arg)

Serve_m1(?fid,?arg)

Serve_m2(?fid,?arg)

Call_mo(arg)

Call_m1(arg)

Call_m2(arg)R_m0(fid)

R_m1(fid)

R_m2(fid)

Body

Figure 5.3 – Graphical representation of the behaviour of the Body

Modelling of the Future Proxies

Communicating by asynchronous requests allows each component to execute asyn-

chronously from the others. However it is commonly necessary to obtain a result for

some of those asynchronous invocations. A convenient abstraction for dealing with

response to asynchronous requests is the notion of futures. Technically, a future is

often implemented by a proxy that represents the result and is accessible both locally

to know whether the result came back, and remotely by the invoked component that

wants to return the result. We represent those notions in our behavioural models.

Fresh future proxies are instantiated upon need; this is done by invoking the proxy

manager before performing an asynchronous request.

Remember future proxies are families indexed by client interface index, method

index, and future identifier; proxy managers are indexed by client interface index

and method index. We propose a specification of proxy manager and future proxy in

Figure 5.4. The behavioural semantics of the proxy manager is defined by the pLTS

ProxyManager m shown on the right side of Figure 5.4; in the semantic rules it is

denoted by �m�proxyManager. It maintains a list of available proxies and returns a

fresh future (by a New action), or if there is no more fresh future, raises an error

NoMoreProxy. Indeed, in our specification, we let future identifiers be indexed by N

but if one wants to perform finite model-checking, a bound should be chosen on the

5.1. FROM APPLICATION DESIGN TO PNETS 89

New_m

iR_m(?val)

GetValue(val)

Recycle_m

Proxy_m

val:resType

Recycle_m(?p)

Pool_Proxy[p].free:=true

[Pool_Proxy[p].free=true]

New_m(p)

Pool_Proxy[p].free:=false

GetProxy_m

p:=0

Recycle_m(?p)

Pool_Proxy[p].free:=true

[Pool_Proxy[p].free = false]
Recycle_m(?p)

Pool_Proxy[p].free:=true

[p<Max_Proxy]

p++

[p=Max_Proxy]

Error(NoMoreProxy)

ProxyManager_m

Pool_Proxy:array[1...MaxProxy]

p:nat

Figure 5.4 – pLTSs for the Future Proxies and Proxy Managers

size of each future proxy family, and in each proxy manager, Max Proxy should be

set to the chosen bound. Alternative proxy family specifications, better optimised

for some specific usage could of course be designed; instead we propose here a simple

specification of those proxies.

Proxies have much simpler behaviour; �m�proxy is defined by the pLTS Proxy m

shown on the left side of Figure 5.4. Once activated by a New m action, it waits

for the corresponding reply (R m(?val)). At this point, the proxy can be accessed to

recover the result of the request invocation, it continuously sends the result to the

server methods by a GetValue m(val) action.

The proxies in Figure 5.4 are endowed with a Recycle m transition, bringing back

the proxy in its initial state. This is useful when information can be computed,

e.g., by static analysis, that the proxy is not useful anymore, so it can be made

available again in the proxy pool of the ProxyManager. The Recycle m event should

be sent by the LTS modelling a server method. When such an event is received by

the ProxyManager, this sets the corresponding entry in the Pool Proxy to free. For

generality, the proxy manager accepts Recycle m transitions in every state, even if for

mono-threaded GCM components, this action can only be received when the proxy

manager is in its initial state.

90CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Server methods

The behaviour for each server method is expressed by a pNet, used when serving the

corresponding request. This behaviour is either obtained by source code analysis, or

provided by the user. In the context of this thesis, it is obtained by translating each

state machine modelling the behaviour of a server method into a pLTS. Figure 5.5 il-

lustrates a part of a message method state machine (from Figure 3.6 transformed into

a pLTS. The state machine labels prefixed by ”//” are not translated because they

represent comments. One can notice that the translation is almost straightforward

except from the transformation of the method calls.

An invocation of a local method from a state machine of a server method (e.g.

this.encrypt(key)) is translated into two pLTS actions: one for the method call

and one for the local method termination: Q encrypt(key) and R encrypt(). The

second action can receive the result of the local call but even if no result is returned,

the action is needed in order to ensure that the two methods will not be executed

concurrently.

We distinguish two cases of a remote method invocation: when the called method

does not return a result and when a result is returned. In the first case, the trans-

lation is simple: the call is transformed into a single pLTS action. For example,

C1.message(step, val) is translated into Q C1message(step, val). There is no need

to synchronise on the method termination for two reasons: first, no result is expected,

second, the remote method execution will be done on another component (i.e. by an-

other thread), hence, the current thread does not get blocked. An invocation which

is supposed to return a result (e.g. key:=C3.requestKey()) triggers the futures

mechanism and is encoded in a pLTS with several actions. First, the pLTS asks

to allocate a proxy (GetProxy requestKey()), second, if the proxy was successfully

found, the pLTS receives its index (New requestKey(?p)). Next, the server method

can send the remote method invocation: Q requestKey(p). The server method can

proceed with the execution as long as it does not need the result of the remote call.

In our example the server method invokes another remote method in order to report

that it is the leader. When the server method tries to use the result of a remote call

(for example, in the label this.encrypt(key)), it needs to get the value from the

proxy that was allocated for the remote method invocation: GetValue requestKey(p).

Then, the result can be used.

5.1. FROM APPLICATION DESIGN TO PNETS 91

(a) Remote method invocation R_message()

R_get_isActive

(?isActive)

if isActive =

true then

Q_get_max()

R_get_max

(?max)

if step = 1

if val=max

Q_get_cnum()

R_get_cnum

(?cnum)

GetProxy_C3requestKey()

New_C3requestKey(?p)

Q_C3requestKey(p)

Q_C2IAmTheLeader()

GetValue_C3requestKey

(p, ?key)

Q_encrypt(key)

R_encrypt()

Q_set_isActive(false)

Q_set_left(val)

if val != max

then

Q_C1message(2, val)

Call_message

(?step, ?val)

Q_get_isActive()

if isActive=false

then

Q_C1message

(step, val)Initial

(b) Asynchronous execution

Figure 5.5 – A state machine and its translation to a pLTS

Treatment of the server and client methods that do not return a result

The treatment of the incoming void method invocations is almost the same as for

the non-void ones. The only difference is that if the server method is not supposed

to return a result, then there will be no proxy in the caller for receiving the value.

In this case, the parameter fid is omitted in all the synchronisation vectors of [P1].

The reader should note that since the constructed primitive components are single-

threaded, [P1.1] is applied even to the void server requests: the synchronisation tells

the body when the server method execution is terminated so that the body can take

the next request from the queue. This ensures that only one request is served at each

time (following the semantics of GCM/ProActive components).

The proxy manager and proxies are not constructed for the void client methods,

because there is no need to receive a result. Moreover, the void client method in-

vocation involves only one synchronisation vector [P2.3] which does not include the

proxy index p as a parameter.

92CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Local methods

In fact, a primitive component also includes a set of pLTSs for the local methods

�ml, Impl�local; their definition was omitted in the rest of the section. A pLTS en-

coding the behaviour of a local method is obtained by translating the corresponding

state-machines. The translation process is the same as for the server methods. Local

methods are not involved in any of the rules from [P1] because they cannot be invoked

from outside of a component. They introduce two additional sets of synchronisation

vectors.

First, similar to the server methods, the local methods can also send client re-

quests. In order to model this, we construct the same the synchronisation vectors as

in [P2], where the pNets of the local methods are synchronised with the proxies and

proxy managers.

Second, in order to model the communications between the methods inside a

primitive component, we synchronise the server methods with the local methods

and the local methods with each other. Note, that the server methods cannot be

invoked from inside of a component. The synchronisation is done on the local method

invocation and its termination in the case of the single-threaded components. The

communications are completely synchronous and do not involve futures.

5.1.2 Semantics of composite components

Hierarchical component models, like GCM, allow the specification of new components,

based on the composition of others. Such a composition mechanism is very convenient

when building large applications. As explained in Section 2.1, we start from a static

definition of composition of the system. In the context of this work, the composition

is given in a form of VerCors diagrams, but another kind of language can be used

for that (for example, GCM ADL). The given model is used to extract component

bindings that will define the synchronisation between the emission and the reception

of communication actions. A composite also has a request queue for receiving requests

coming from the outside or the inside of the component, it treats each of those requests

by sending it to the adequate component or emitting a request to the outside world.

For this the composite has future proxies but as the requests only transit through

the component, we implement special future proxies that perform future redirection:

when a future proxy is created, it receives the identifier for another future f � and

when the reply will come back, it will be immediately re-sent as a reply for the future

f �. Once a request has been delegated to the sub-component, the composite can serve

the next request without waiting for the result.

5.1. FROM APPLICATION DESIGN TO PNETS 93

Figure 5.6 – An example of a composite component

Illustrative Example

The example we are going to introduce is based on a composite component illustrated

in Figure 5.6. The component has one server method m0, three client methods: m1,

m2 and m4, and two sub-components A and B. A serves the calls to m0, invokes m3 on

B, m1 and m2 on one of the client interfaces of the composite. B can invoke the m4

client method of the composite. All methods involved in the system are supposed to

return a result.

Figure 5.7 shows the pNets structure corresponding to the composite component

of Figure 5.6. It illustrates the structure of the pNets we generate for specifying the

behaviour of a composite component.

Two sub-pNets A and B represent the behaviour of sub-components A and B. A

queue pNet receives iQ m0(f,arg) requests where f is the future corresponding to the

request and arg is the value passed as argument. Serve ∗ communications allow the

body to retrieve those requests, which will then be treated by the Deleg m0 pNet,

this pNet receives Call communications from the body and delegates the request to

an inner component (here, A). During this process, a future proxy is created by the

proxy manager (process CPM m0), the proxy (process CProxy m0[q]) is responsible

for receiving the reply when A has finished the request treatment and for forwarding

this result to the outside of the composite component: R m0(q,val) that becomes

R m0(f,val). Note that this proxy encodes some basic form of future forwarding: the

future q corresponds to the same result as the future f.

Similarly, requests emitted by the inner components arrive in the queue (we draw

two Queue boxes, but they correspond to the same element), they are then delegated

94CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

A
B

Composite Example 1

Body

CPM m0

CPM m1

CPM m2

CProxy m1[p]

CProxy m2[p]

CProxy m4[p]

iR m4(p, val)

iR m2(p, val)

iR m1(p, val)

CPM m4

CProxy m0[q]

Q m4(fb, arg)

R m0(q, val)

iQ m0(f, arg)

R m0(f, val)

iQ {m1,m2,m4}(f, arg)

New m0(f, q)

Deleg m0

Q m1(p, arg)

Q m2(p, arg)

Q m4(p, arg)

New m1(fa, p)

iR m1(fa, val)
iR m2(fa, val)

R m1(fa)

R m2(fa)

R m4(fb)

Recycle m(p)

R m0(f)

C3

C4.2

C5.2

C6.1

C4.2

C6.2

C7.2

C7.1

C2.1
Serve *(f, arg)

C1.1

C4.1

R m3(f, val)

Deleg m
Call m(f, arg)

C2.2

R m2(f)

C5.1

C2.2

∀m in {m1,m2,m4}

!R m0(f)

C4.1
GetProxy m(f)

∀m in {m1,m2,m4}

R m1(f) R m3(f)

Recycle m0(q)

iR m4(fb, val)

Q m3(f, arg)

New m2(fa, p)

New m4(fb, p)

Q m1(fa, arg)

Q m2(fa, arg)

GetProxy m0(f)

Call m0(f, arg)

Queue

Queue

iQ m0(q, arg)

Figure 5.7 – pNet for the composite component from Figure 5.6

to the outside world by a similar mechanism: a Deleg m pNet delegates the call, and

creates a future proxy, which will be responsible for sending back the result to the

appropriate inner component. Here again the proxy manages the fact that both the

future q and the future fa (or fb) represent the same result.

The structure of the proxy-manager (CPM *) and of the proxy (PM *) is similar

to the primitive case: using double indices over interfaces and methods. However,

here we have proxies both for client interfaces and for server interfaces (because of

their corresponding internal client interfaces).

All the communications expressed above, but also the communication channels be-

tween the different inner components – requests Q m3 and the corresponding replies

R m3 – correspond to synchronisation vectors of the pNet of the composite. Each

box is a pLTS or a family of pLTSs, except inner components that are more complex

pNets.

Global structure

The semantics of a composite component is described below; we assume that all the

methods are supposed to return a result and then we discuss a few modifications that

have to be done in the case of the void requests. The first difference compared to

the semantics of primitive components is that it does not rely on the server method

5.1. FROM APPLICATION DESIGN TO PNETS 95

specification, instead it delegates requests to sub-components, some of the sub-pNets

of a composite component’s pNet correspond to the behaviour of the sub-components.

Like primitive components, the behaviour of composite components includes a proxy

manager and proxy families, but in the case of composites, we also need one future

proxy family for each method of each server interface. Indeed the service of requests

received on a server interface will be delegated to a sub-component, and thus a future

is necessary to represent the result of such a delegated request.

Note the use of the Symm function from Chapter 4 to take the symmetrical role

of an interface and to transform those server interfaces into client ones. For similar

reasons, the request queue can receive requests on all methods of all the interfaces of

the composite component, both server and client (i.e., internal server) ones.

To delegate a request to an inner component or from an inner component to an

external one, “delegation methods” are used, they are denoted DM. Delegation

methods transform a request into another and a special proxy for future is used to

remember the relationship between the original future and the future of the new

delegated request. The building of proxy and proxy manager families are similar

to the case of the primitive component (we reuse the same function); however each

future proxy is slightly different as shown below. The queue and body are similar to

the one of primitive components. The only difference is that the body of a composite

additionally includes actions for the treatment of client requests.

m=
�

Itf∈SItf

MethLabels(Itf) �
�

Itf∈CItf

MethLabels(Itf) Q=Queue(m) B=�m �body

Itfh∈Hh =CItf � Symm(SItf) ∀h∈H.Ph = P(Itfh) ∀h∈H.PMh = PM(Itfh)

SV = SVS(MethLabels(SItf),MethLabels(CItf)) ∪ SVC(CItf, Itf
h∈H
h)

∪ SVB(CName < SItf,CItf,Compk∈Kk ,Binding >)

�CName < SItf,CItf,Compk∈Kk ,Binding >� =

��Q,B,DMS(m),
←−−−−−−→
��PMh∈H

h ��,
←−−−−→
��Ph∈H

h ��,
←−−−−−−−−−→
���Compk�

k∈K��, SV��

With the auxiliary rule for delegation methods:

∀l∈L.DMl=�ml�delegate

DMS(ml∈L
l) =

←−−−−−→
��DMl∈L

l ��

96CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

CProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_m
f:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:nat

New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)

Deleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_m
arg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argType
p,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:nat

Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)Call_m(f,arg)

GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)

New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)

Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)

Figure 5.8 – Auxiliary processes proxy and delegate of composite components

Future Proxies

The behaviour of future proxies for a composite is slightly different from the one of

a primitive, as illustrated in Figure 5.8: the process CProxy m in the figure gives the

new value of the proxy semantics �m�proxy. The delegation methods create those

proxies to remember the identifier of the future that the delegation method should

serve. Consequently, the future proxy receives a future identifier and will return it

upon need. The future proxy thus first receives a New action with a future identifier

as parameter and then emits an R m(f). Such a proxy is automatically recycled as,

by construction, we know it is only used once.

Delegation Methods

The Deleg m process, also shown in Figure 5.8 expresses the management of delegate

methods: �m�delegate is given by the pLTS Deleg m. This delegation process receives

a Call invocation from the body, creates a future proxy, launches a remote invocation

(either to an inner or to an external component) and finishes its execution. This way

the composite component can continue its execution and serve another request, but

the process of the future proxy is still running in order to redirect the reply towards

the right future identifier. The proxyManager for composite component is not shown,

indeed it is a direct adaptation of the primitive one (Figure 5.4): it behaves exactly

the same except that the GetProxy action receives a future identifier as parameter,

this parameter is then passed as argument in the New emission action (it will be used

by the future proxy).

Synchronisation Vectors

Synchronisation vectors are now organised into three sets: server-side (SVS), client-

side (SVC), and binding-related (SVB) synchronisation vectors. The set of server and

5.1. FROM APPLICATION DESIGN TO PNETS 97

Table 5.3 – Server and client-side synchronisation vectors. The synchronised
sub-pNets are:

��Queue,Body,DelegationMethods,ProxyManagers,Proxies, Subcomponents��

m ∈ m f ∈ N

�iQ m(f, arg),−,−,−,−� → iQ m(f, arg) ∈ SVS(m,m�)
C1

(i ∈ L ∧m = mi) ∨ (i ∈ L� ∧m = m�

i) f ∈ N

{�Serve m(f, arg),Serve m(f, arg),−,−,−� → Serve m(f, arg), [1]
�−,Call m(f, arg), i �→ Call m(f, arg),−,−� → Call m(f, arg) } [2]

⊆ SVS(m
l∈L
l ,m�

l
l∈L�

)

C2

j ∈ J mk∈K
k = MethLabel(CItfj) k ∈ K f, p ∈ N

�−, R mk(f), k �→ Q mk(p, arg),−,−,−� → Q mk(p, arg) ∈ SVC(CItf
j∈J
j , Itf h∈Hh)

C3

h ∈ H mk∈K
k = MethLabel(Itfh) k ∈ K f, p ∈ N

{�−,−, k �→ GetProxy mk(f), h �→ k �→ GetProxy mk(f),−,−� → GetProxy mk(f), [1]

�−,−, k �→ New mk(p), h �→ k �→New mk(p, f), h �→ k �→ p �→ New mk(f),−�→
New mk(p, f)} [2]

⊆ SVC(CItf
j∈J
j , Itf h∈Hh)

C4

client synchronisation vectors is the smallest set verifying the rules given in Table 5.3.

The server-side synchronisation vectors are defined by rules [C1] and [C2]. [C1]

allows external components to enqueue a request in the queue, for each method of a

server interface of the composite. Note that replies (R m) are not part of this rule

because they depend on the bindings of the component; consequently they are treated

among the binding synchronisation vectors. Rule [C2] uses a bigger set of methods

as it takes into account requests of the server interfaces and the client interfaces of

the composite; indeed, remember client interfaces have an associated internal server

interface accessible by the sub-components of the composite. This second rule uses

both arguments of SVS, i.e., the list of client and server interfaces of the component.

It deals with request service [C2.1], and subsequent calls [C2.2] to delegation pNets.

Client-side synchronisation vectors are expressed by rules [C3] and [C4] of Table

5.3. Similarly to the server case, [C3] is specific to external client interfaces (given as

first argument of SVC), whether [C4] is applicable to both external and internal client

interfaces (the second argument of SVC). Remember the internal client interfaces are

the symmetric of server interfaces of the composite component. The first rule exports

request sending (Q m) sent by delegate methods to the external components. Note

that delegate methods are indexed by the method labels of the interfaces: in the

pNet definition, ml∈L
l is a disjoint union, and thus each l ∈ L is considered as equal

98CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Table 5.4 – Binding synchronisation vectors. The synchronised sub-pNets are:
��Queue,Body,DelegationMethods,ProxyManagers,Proxies, Subcomponents��

(This.SI, C.SI2) ∈ Binding

SItf ’ = Get(This.SI,CName<SItf,CItf,Compk∈Kk ,Binding>)
k∈K C=Name(Compk)

mn∈N
n =MethLabels(SItf �) n∈N m�

n=mn{{SI←SI2}} q, f ∈ N

{�−, R mn(f), n �→ Q mn(q, arg),−,−, k �→ iQ m�

n(q, arg)� → Q mn(q, arg), [1]

�−,−,−, i �→ n �→ Recycle mn(q), i �→ n �→ q �→ R mn(f), k �→ R m�

n(q, val)� →
R mn(f, val)} [2]

⊆ SVB(CName<SItf,CItf,Compk∈Kk ,Binding>)

C5

(C.CI,This.CI2) ∈ Binding k ∈ K

C = Name(Compk) CItf ’ = Get(C.CI,CName<SItf,CItf,Compk∈Kk ,Binding>)

mn∈N
n =MethLabels(CItf �) n ∈ N m�

n=mn{{CI2←CI}} p, f ∈ N

{�iQ mn(f, arg),−,−,−,−, k �→ Q m�

n(f, arg)� → Q mn(f, arg), [1]

�−,−,−, j �→ n �→ Recycle mn(p), j �→ n �→ p �→ R mn(f), k �→ iR m�

n(f, val)� →
iR mn(p, val) } [2]

⊆ SVB(CName<SItf,CItf,Compk∈Kk ,Binding>)

C6

(C.CI, C �.SI)∈Binding k, k�∈K C=Name(Compk)

C �=Name(Compk�) CItf ’ = Get(C.CI,CName<SItf,CItf,Compk∈Kk ,Binding>)

mn∈N
n = MethLabels(CItf �) n ∈ N m�

n = mn{{CI←SI}} f ∈ N

{�−,−,−,−,−, (k �→ Q mn(f, arg), k
� �→ iQ m�

n(f, arg))� → Q mn(f, arg), [1]

�−,−,−,−,−, (k �→ iR mn(f, val), k
� �→ R m�

n(f, val))� → R mn(f, val) } [2]

⊆ SVB(CName<SItf,CItf,Compk∈Kk ,Binding>)

C7

to a method index k of a single interface i. Consequently, the request sending action

(Q mk) is always issued by the delegate method indexed by k. Rule [C4] allows

delegation methods to instantiate new proxies (by calls to the proxy manager and

to the future proxies). Compared to the case of the primitive component, note the

additional argument f passed to the proxy manager. This future identifier allows

the future proxy (indexed p) to remember that the reply it will receive should be

forwarded to the caller as the value for the future identifier f (and not p). In other

words, the proxy remembers that the future p it will receive is in fact an alias for the

future f . Similarly to primitive components, there are two actions for dealing with

future proxy creations: GetProxy in [C4.1], and New in [C4.2].

Finally, the synchronisation vectors for the bindings of the composite component

are shown in Table 5.4. There are three rules for building SVB. Rule [C5] deals

with import bindings, i.e. bindings from the composite component’s internal client

interfaces to inner components. Symmetrically, [C6] concerns export bindings, from

5.1. FROM APPLICATION DESIGN TO PNETS 99

inner components to the composite component’s internal server interfaces. The last

rule [C7] specifies synchronisations due to bindings between two inner components.

The first rule [C5] deals with import bindings. The first premise of the rule picks

an import binding, the next premises find the concerned server interface of the com-

posite component and the destination of the binding, i.e., a sub-component. The only

remaining non-trivial premise is m�

n = mn{{SI ← SI2}}; it replaces in mn the occur-

rence of the interface named SI by the interface SI2. Indeed, remember MethodLabels

contain the name of the invoked interface, this name must thus be updated when a

request/reply/. . . is transmitted from an interface to another4. Similar premises, re-

naming an interface name, will also be used in rules [C6] and [C7]. The first item

of Rule [C5.1] synchronises the emission of a request by a delegate method with the

inner component bound to the concerned internal client interface. This action is also

synchronised with the proxy that will receive the result computed by the request. The

case [C5.2] concerns the corresponding reply that is issued by the inner component,

this reply is sent to the outside of the composite component. Note the particular flow

of information here: the inner component emits a value for future q, that is directly

synchronised with the future proxy number q of the composite component; the iden-

tifier of the future to be sent to the outside becomes f ; it is retrieved from the future

proxy, and an action R m�

n(f, val) is emitted. At the same time, a recycling action is

triggered in the proxy manager.

The second rule [C6] manages export bindings, it also has one item for request

emission [C6.1] and another one for reply reception [C6.2]. A request emitted by the

inner component on the first side of the binding is enqueued in the composite (at the

other side of the binding). Replies are redirected when received by the composite:

when the reply for future p is received, the future proxy at index p is used to retrieve

the future identifier f , and finally the result val is transmitted, associated with the

future f , to the inner component indexed by k. At the same time, a Recycle action

is triggered in the adequate proxy manager.

Rule [C7] deals with bindings between two inner components. It considers a

binding between an interface of component C and an interface of component C �. It

finds k, the index of C, and k�, the one of C �; the rule directly transfers requests [C7.1]

and replies [C7.2] from one component to the other for all the methods of the client

interface bound. Like in the preceding rules, the name of the interface is updated

during transmission.

4Other meta-informations are encoded in the method label and should also be updated.

100CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Treatment of the methods that do not return any result

Like in the case of primitive components, for the composites, modelling of the requests

that do not return any result is slightly different. First, neither server nor client void

methods of a composite require a delegate pLTS, a proxy or a proxy manager. In-

stead, the body of a composite directly synchronises with the serving sub-component

in order to forward the incoming requests. The composite component is not noti-

fied when a void incoming method invocation has been served while the body of a

primitive synchronises with the server method upon its termination. In the case of

the void client method call, the body of the composite simply forwards the call out-

side of the composite. As this is done in a single step, the request ordering is still

guaranteed withount additional return action in the body. Finally, if a void method

invocation occurs between two sub-components, it obviously involves synchronisation

upon method call only (Rule [C7.1] and does not require synchronising on the reply

(i.e. the Rule [C7.2] is not applied).

In this section we have presented a behavioural semantics for hierarchical compo-

nents communicating by asynchronous requests. The behaviour of composite compo-

nents is only to forward requests to the adequate destination. We encode replies by

means of futures, and composite components act as reply forwarders. This section

generalised the examples of specifications one could find in [30] and formally defines

the automatic generation of behavioural models for asynchronous components. In

the next section we discuss how these semantic rules are implemented in VerCors.

5.1.3 Implementation

The generation of the behavioural models formalised in the previous section is fully

implemented in VerCors. The user can launch the generation on any designed compos-

ite or primitive component if the conceptual model is statically correct with respect

to the rules discussed in Chapter 4, The selected component will be considered as the

root of the produced model. If the root is a composite, the generator will construct

not only its behavioural model, but also the models for all its sub-components. We

recall that as the user-defined input, VerCors takes:

• the graphically designed composition of components with the signatures of

server, client and local methods;

• the specification of each method of a primitive component given as a UML state

machine;

• the type specification;

5.1. FROM APPLICATION DESIGN TO PNETS 101

• the queue size for each component that will be generated;

• the communications that will be hidden in the root component;

• possibly a scenario specified as a UML state machine.

Then, the generation is split into three steps: pre-processing of the input models,

pNets generation, and translating the pNets into an input for CADP. The first two

phases are described in this section, and the third one is explained in Section 5.2

where we discuss the model-checking with CADP.

Pre-processing. At the first step the conceptual model (i.e. components, UML in-

terfaces, classes, and state machines) is examined and a so-called pre-processor builds

an analysed object for each component. The pre-processing is necessary for two rea-

sons: first, it allows analysing the model once so that all the information required for

constructing pNets is ready to be used. Second, it serves for the optimisation pur-

pose: the pre-processor extracts the dependencies between components and methods

so that only communicating entities are synchronised by the synchronisation vectors.

This allows reducing the number of generated communications.

For a primitive, the analysed object includes:

• a list of attributes,

• a list of local methods,

• a mapping from the methods of the server interfaces to the implementing meth-

ods of a class,

• a set of analysed state machines that model the behaviour of each method

It is important to store the attributes and local methods in a list but not in a set

because their order in the list will reflect the order of the corresponding pNets in the

synchronisation vectors. A mapping from the methods of the server interfaces to the

implementing methods of a class a necessary because one method can be exposed by

several interfaces.

In addition to the parsed transition labels, an analysed state machine contains

auxiliary information that will be used during the construction of synchronisation

vectors. This includes the accessed primitive’s attributes and the invoked local and

client methods.

The case of a composite is slightly more complex. Apart from extracting the

server and client methods from the interfaces, the pre-processor needs to extract the

102CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Figure 5.9 – pNets meta-model (simplified)

dependencies between the sub-components, and to map each server method of the

composite to the serving component, and the client methods of the sub-components

to the client methods of the composite.

Generation. When the auxiliary information has been gathered, VerCors can start

building the pNets. The generated structure relies on the pNet classes whose sim-

plified version is illustrated in Figure 5.9. The main difference between the class

diagram and the formal definition of pNets is that in the implementation, a pLTS is

not a subtype of a pNet. Instead, we introduce an abstract class GenericNet which

is extended by a pLTS, pNet and a Hole. A GenericNet has an abstract method

getSorts() which is overridden in each sub-class according to the Sorts formalised

in Section 2.2.2. Also, a GenericNet is an extension of Parameterized abstract class

which stores a list of parameters as most of our structures are parameterised.

5.1. FROM APPLICATION DESIGN TO PNETS 103

Another class extending the Parameterized is a ParamAction; as the name in-

dicates, it models a parameterised action. An action has a name (a label), a type:

emit, receive or tau (hidden) and a list of parameters. If an action has a type ”re-

ceive”, all its parameters are assumed to be input. This is another deviation from

the formalisation where an action can have at the same time input and non-input pa-

rameters. Actually, such implementation corresponds to one of the previous version

of the formalisation [73] and it is better adapted to the Fiacre language with does

not allow mixing input and output parameters in one action (channel). Still, we plan

to update the meta-model and to make it coherent with the latest version of pNets

formalisation.

A ParamAction is extended by the SyncVector class which models a synchroni-

sation vector. As a successor of ParamAction, SyncVector also has a name, a type

and a list of parameters. They correspond to the global action expressed by a syn-

chronisation vector. Additionally, SyncVector has a list of ParamActions which are

the parameterised actions involved in the synchronisation.

Another successor of a ParamAction is an IndexedAction which is used to model

indexed actions such as, for instance an action p �→ Recycle mi() where a proxy

at index p is recycled. The indexed actions are mainly used in the synchronisation

vectors. The index is implemented as an Expression which is not defined here, but

it could be a variable, a literal or other types of expressions.

The ParamNet class models a pNet and contains a list of GenericNets for the

sub-nets and a set of synchronisation vectors. The choice of the data structures is

important: the order of the sub-nets in the list must correspond to the order of their

actions in the synchronisation vectors. This is not guaranteed by the model, but

should be taken as a rule during the pNets construction.

The ParamLTS class models a pLTS and has a kind, a set of states and a reference

to the initial state. The kind indicates which kind of process is expressed by a pLTS:

body, server method, proxy, etc. A State has a set of outgoing Transitions where

each transition may have a guard implemented as an Expression, a list of effects

implemented as Statement, a parameterised action, and a reference to the target

state.

The last type of a generic net - a Hole is not used in this thesis; it is a simple net

that does not have any implementation but exposes a set of actions (sort). We use

Holes for working with so-called open pNets formalised and discussed in [31].

The classes of the presented pNets meta-model can be easily extended. For ex-

ample, if we decide to model some new kind of a process with pLTSs, we will simply

have to add one more literal in the ParamLTSKind enumeration. We did this when

104CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

we extended the implementation with the pLTSs for the group communications that

will be discussed in Chapter 6. If we introduce another type of automata, we will

extend the GenericNet class; this is what we did when we started working with the

open pNets.

Generating primitive components

We implemented the construction of pNets of different entities as independently as

possible from each other so that in the future we can easily modify separate elements.

This could be useful, for example, when we decide to implement several policies for the

body and allow the user to choose among them. Overall, the generation of a primitive

component behavioural model involves six builders as illustrated on Figure 5.10: the

body builder, the proxy and proxy manager builders, the attribute controller builder,

the state machine translator, and the synchronisation vector generator. Each of the

constructors is invoked by the main primitive pNet builder that assembles the results

into a pNet. We include the constructors of the attribute controllers in the figure,

we will discuss them in Section 6.2. VerCors does not construct an intermediate

representation of the queue but directly generate its Fiacre code. All builders except

from the state machine translator construct pLTSs based on some sort of template.

For instance, the structure of a proxy is the same for any encoded server method, only

the action labels differ depending on the method signature. On the other hand, the

structure of a server method pLTS fully depends on the user-defined state-machine

and does not follow any pattern.

The case of the local and server method behaviour generation is slightly more

complex as it involves the translation of the state machines into pLTSs. The core

challenge is to translate the non-void remote method invocations into pLTS actions

because we need to know at which location in the pLTS the caller has to obtain the

result of the remote method invocation, in other words, where the GetValue action has

to be inserted. The straightforward solution would be inserting the GetValue action

just after the remote method invocation but this would force the caller to wait for the

result immediately which is too far from what happens in the real implementation and

from the futures mechanism. In the current version of VerCors we rely on the notions

of basic blocks, future creation points, and future use points in order to provide more

parallelism. A basic block is a sequence of states connected by transitions without

branching in the intermediate states; incoming branching in the entry state and

outgoing branching from the exit state are possible. A future creation point is the

statement where a future is created, i.e. a remote method call which result is assigned

to a variable. We consider as a future use point an occurrence of the variable in any

5.1. FROM APPLICATION DESIGN TO PNETS 105

Figure 5.10 – Construction of a pNet of a primitive component

kind of statement or expression except from the case when the variable is used on

the left side of an assignment, i.e. its value is ”re-assigned”. While translating a

state machine into a pLTS, we split the state machine into basic blocks, then, we say

that the value of each future created within a basic block must be received within

the same basic block. This means, that if the future value is used within the the

same basic block, we insert the GetValue action just before the use point. Otherwise,

the value is received at the end of the basic block. We are currently working on a

more sophisticated approach for detecting where the future value should be obtained,

based on static analysis techniques.

There are a few differences between the formalised structure of the pNet of a

primitive component and the one generated by VerCors. First, instead of families of

proxies we create only one Java instance of a proxy pLTS for each method. Indeed,

at the level of the internal representation of the behavioural graph in Java, we do not

unroll the pNets, hence, there is no need to construct several identical proxies. Later,

when the pLTSs are translated into Fiacre and EXP, we include as many instances

of each proxy in a pNet as there are members in the family.

Next, when generating the internal representation of pNets, we already tend to

slightly adapt it to the future translation into Fiacre. Some limitations of the Fi-

acre language can imply differences between the formal model and the generated

pNets. For example, we will translate the pLTS actions into Fiacre channels and

the arguments of a Fiacre channel should be either all input arguments or all output

arguments. This is not the case for some actions of the pLTSs. For instance, when

106CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

a method pLTS gets the future value, it performs GetValue(p, ?val) action where p

is the proxy index which is known to the pLTS, and val is the value that should be

received by the pLTS. In this case, we generate two sequential actions in the pLTS

of the calling method: GetValue(p) and R GetValue(?val) and two corresponding se-

quential actions in the pLTS of a proxy. The first action defines with which proxy the

caller will synchronise, while the second action retrieves the future value. We check

carefully that no interleaving of actions can make the semantics different from the

original specification.

Then, the constructor of the synchronisation vectors takes as an input the

hiddenActions structure. It stores the information about communications which

should be hidden during model-checking, they can be defined either by the user or

by the default policy. Based on this information, the synchronisation vector builder

marks certain vectors as ”hidden”. The instructions for hiding such vectors are then

generated in the auxiliary scripts managing the state-space construction.

Finally, the generated synchronisation vectors are slightly different from the for-

malised ones. First, we implemented construction of several additional vectors that

expose actions of pLTSs which could be useful while model-checking. This includes

the ErrorQueue action which occurs in a pLTS of a queue when it is saturated,

ErrorNoMoreProxy action which is performed by a proxy manager pLTS when a new

proxy cannot be allocated.

Second, in the formalisation we synchronise all server methods of a primitive

with all proxies and proxy managers of the client methods of the primitive. This is

significantly optimised in the generated vectors: thanks to the pre-processing of the

input model, we know exactly with client methods are invoked by the server ones.

This allows generating only those communication which actually occur, instead of a

full set of all possible interactions.

Generating composite components

Similarly, the generator of the behaviour of a composite invokes several builders con-

structing the sub-component pNets, the body, the delegate pLTSs, proxies and proxy

managers for the client and server methods, the generator of the synchronisation vec-

tors. This is illustrated in Figure 5.11. If the conceptual model includes a scenario

state machine, it is also translated into a pLTS and synchronised with the top-level

component.

The generation of the pNet of a composite component is very close to the formal-

isation but still has a few differences. Like for primitives, it constructs only one Java

object of a proxy pLTS for each non-void method of an interface, and then a family of

5.1. FROM APPLICATION DESIGN TO PNETS 107

Figure 5.11 – Construction of a pNet of a composite component

instances is included in the model-checked graph. Another difference is that, again,

we create additional synchronisation vectors that allow observing the behaviour of

the internal pLTSs (the errors from the queue and proxy managers) and pNets of

the sub-components. More precisely, the SV Builder analyses the synchronisation

vectors of the pNets of the subcomponents. For each synchronisation vector that is

not marked as ”hidden” and that models the internal communication inside a sub-

component (for example, a body takes a request from a queue), SV Builder takes

the global action (the action on the right of a synchronisation vector) and constructs

a synchronisation vector that exposes the action. The created synchronisation vector

is included in the resulting pNet of the composite under construction.

Summary. There are several advantages in the discussed implementation of the

pNets construction. First, the internal behavioural elements (e.g. body, attribute

controllers) are generated independently from each other which facilitates modifica-

tion and substitution of their builders. For instance, this will be useful when we

implement several constructors for different body policies. Second, we decouple the

108CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

pre-processing phase from the generation phase which allows analysing the concep-

tual model once and facilitates the pNets construction. Finally, the pre-processor ex-

tracts some information which allows optimising the generated model. In the current

version we use it for synchronising only the communicating methods and attribute

controllers while the straightforward approach would encode the synchronisation be-

tween all methods. Still, a lot of optimisation should be done. For example, based

on the analysed models we could avoid generating the pLTSs of the local methods

that are not used by the other processes.

5.2 From pNets to CADP

The current version of VerCors relies on the model-checker of CADP and in this

section we explain how the pNets are translated into the input for CADP and provide

the experimental results on the verification of Peterson’s leader election algorithm

discussed in Section 3.2.

5.2.1 Preparing the input: generating Fiacre, EXP and aux-

iliary scripts

We recall that in CADP processes are stored as LTSs in BCG format and composed

according to rules expressed in EXP format. Additionally, the tool provides tech-

niques for state space minimisation. Instead of generating directly BCG, we rely on

a slightly more user-friendly Fiacre format for encoding the pLTSs which can be then

translated into BCG by the flac compiler. Overall, in order to prepare the input for

CADP, we translate each pLTS involved in a system into Fiacre and the synchronisa-

tion vectors of each pNet into EXP. Then, we generate auxiliary scripts that assemble

the produced files, build and minimise the state-space in a hierarchical manner.

Fiacre generation. All pLTSs are transformed into Fiacre in the same way re-

gardless of what kind of process they encodes. Figure 5.12 illustrates a pLTS of a

body translated into Fiacre. The transformation includes the following steps:

1. Transition analysis: the translator analyses the pLTS and constructs three sets:

Vars stores the variables of the pLTS, Types stores the data types involved in

the actions, and Actions keeps the actions.

2. Each state of the pLTS is mapped to a Fiacre state characterised by a name.

3. Types, Actions, state names and Vars are translated into Fiacre.

5.2. FROM PNETS TO CADP 109

Serve_S1_message

(?step, ?val)

Call_S1_message

(step, val)

Call_S2_

runPeterson

Serve_S2_

runPeterson

R_S1_message

R_S2_run

Peterson

type IntInterval is 1..4

type StepInterval is 0..2

process Comp4_Body

[Serve_S1_max: in StepInterval# IntInterval,

Call_S1_message: out StepInterval# IntInterval,

R_S1_message: none,

Serve_S2_runPeterson: none, ...]

is

states s0,s1, s2, s3, s4

var val:IntInterval, step:StepInterval

from s0

 select

 Serve_S1_message ? step, val ; to s1

[]

 Serve_S2_runPeterson ; to s3

 end select

from s1

 ...

Figure 5.12 – Fiacre code of a body

4. For each pLTS state the translator transforms its outgoing transitions into

Fiacre.

EXP generation. The generated processes are then translated into the BCG for-

mat and composed by EXP. The translation of the synchronisation vectors into EXP

is quite straightforward if all synchronised actions have either no parameters or pa-

rameters of the same type. In this case, we translate only the action names into EXP

gates and omit the offers.

When the parameters of the synchronised actions have different types, we cannot

synchronise actions only by gates but we have to include offers. For this, we explicitly

generate each value of a parameter in the synchronisation vector. Let us consider a

simple example. Assume, we have two LTSs A and B that are synchronised by a

vector �a(x), b(y)� → c(x, y) where x is of type boolean and y can have a value from

an integer interval from 2 to 3. If we try to express such synchronisation in EXP

using only gates (i.e. �a, b� → c), CADP will not accept the vector because the

synchronised actions have different offers (i.e. different types of parameters). As an

overcome, we instantiate with all possible values all parameters whose types do not

match and generate a synchronisation vector for each possible instantiation:

< a !0, b !2 > → c !0 !2

< a !1, b !2 > → c !1 !2

< a !0, b !3 > → c !0 !3

< a !1, b !3 > → c !1 !3

110CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Now, the synchronised actions are specified as a gate followed by offers and such

synchronisation can be done.

Another limitation of EXP is that it does not support indexed actions which

are used in several synchronisation vectors of the GCM pNets. For instance, an

indexed action is needed when a server method of a primitive component accesses

a proxy at index p in order to retrieve the result of a remote method invocation:

�GetValue m(p, val), p → GetValue m(val)� → GetValue m(p, val). While construct-

ing such kind of communications in EXP, we rely on the fact that the number of

proxies is fixed at the time when .exp files are created, and that the generated EXP

synchronisation vector includes as many proxies as there are in the family. Hence,

we can explicitly instantiate the value of p and synchronise the server method action

with a proxy at each possible index depending on the value of p. For instance, if the

family size is equal to two, our example synchronisation vector will be translated into

two EXP vectors as follows:

< GetValue m!0, GetValue, – > → GetValue m!0

< GetValue m!1, –, GetValue > → GetValue m!1

Scripts generation. When all pieces of the behavioural model have been produced,

VerCors generates scripts for the automata construction and state space reduction.

We first discuss in general the algorithm encoded by the scripts, and then we give

the technical details on what kind of scripts are generated.

procedure buildPNet(net)
for each subnet in net do

if subnet is not pLTS then
subnet.bcg ← buildPNet(subnet)

else
subnet.bcg ← flac(subnet.fiacre)
subnet.bcg ← minimise(subnet.bcg)

end if
end for
net.bcg ← generate and minimise(net.exp)
if net �= root then

net complete.bcg ← net.bcg
net.bcg ← hide and minimise(net.bcg)

end if
return net.bcg

end procedure

Algorithm 1 Constructing CADP input

5.2. FROM PNETS TO CADP 111

The scripts encode the Algorithm 1 which is based on the bottom-up approach

for behavioural model construction. The buildPNet procedure described by the

algorithm constructs the .bcg file for a pNet given as an input and the .bcg files for

all its sub-nodes as follows. First, it iterates over all sub-nets and constructs their

.bcg files. For this, the procedure invokes buildPNet for each the sub-pNet which

is not a pLTS; for each sub-pLTS it invokes the Flac compiler which translates the

pLTS into BCG format and the bcg min tool that minimises the state-space of the

constructed .bcg file. After all pieces of the pNet have been constructed, buildPNet

invokes EXP.OPEN which assembles the sub-nets with respect to the synchronisation

vectors and creates a minimised .bcg file of the resulting automaton. If the generated

pNet does not model the root component, the scripts make a copy of its .bcg file,

hide some of its labels, and minimise the state space. Copying the initial file could be

optional, it is needed in order to allow the user to model-check the original behaviour

of a sub-component that is not affected by its container.

1 ”Application Comp1 complete.bcg”= branching reduction of ”Application Comp1 SV.exp”;

2 ”Application Comp1.bcg” = branching reduction of gate hide

3 ”CALL SET MAX”, ”R GET MAX”, ...

4 in ”Application Comp1 complete.bcg”

Listing 5.1 – An example of SVL script

More technically, for each component being translated into input for the model-

checker (i.e. the root component and its sub-components at all levels of hierarchy),

VerCors generates a .svl file. Listing 5.1 presents an example of the script gen-

erated for one of the participants of the leader election use-case from Figure 3.4.

The SVL script constructs the .bcg file modelling the component behaviour (line 1).

Next, if the component is not the root (which is the case for our example) the script

hides some of the internal communications (for instance, the access to attribute con-

trollers), minimises the state space and produces the final model (lines 2-4). As a

result, two files are generated: Application Comp1 complete.bcg which represents

the full behavioural graph of the component, and Application Comp1.bcg in which

the internal communications are hidden.

Additionally, VerCors generates one .sh file for the whole model being con-

structed. The script invokes the Flac compiler on a .fiacre file of each pLTS included

in the tree of the generated system. Then, it triggers execution of all produced SVL

scripts starting from the components at the lowest levels of hierarchy and finishing

by the root.

112CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Table 5.5 – Behaviour graph files (all with Queue size of 3)

Graph States Transitions Computation
time

Behaviour of Comp4 3.217.983 45.055.266 2m48.520s
Comp4 (internal communica-
tion hidden, minimized by
branching simulation)

90.821 1.306.138 5m23.030s

full application 296 661 47m1.673s

5.2.2 Model-checking with CADP

Following the procedure described in the previous section, VerCors produces an input

for the CADP model-checker. We experimented with generating and model-checking

the behaviour of our use-case example of the leader election algorithm illustrated in

Figure 3.4. Table 5.5 presents size information for some of the intermediate behaviour

graphs. The last line is for the hierarchical construction of the full model of the

application (including the scenario which triggers the election process once), and the

time includes the whole model-generation workflow. The time needed to generate

.fiacre, .exp files and scripts from VerCors is negligible.

We use the Model Checking Language (MCL) [44] to express the behavioural

properties we want to prove on our system. MCL is the input language of CADP

allowing one to express various temporal logic formulas (CTL, ACTL, PDL) together

with a predicate logic on data values, which will be verified on an input LTS. We

make a short overview of the part of MCL syntax used in this thesis and then give

examples of properties that we have checked on our use-case example.

MCL. Basic MCL allows specifying expressions, action formulas, regular formu-

las, and state formulas. An action in an MCL formula is a transition label of the

model-checked LTS which represents a gate (action name) and possibly a list of offers

(action parameters). An expression can be constructed from literals, data variables,

unary and binary operators. Action formulas are logical formulas built from action

predicates, regular expressions, and boolean operators. Action predicates provide a

mechanism for specifying transition labels whose offers match a certain specification.

Action formulas can be assembled into Regular formulas which rely on the follow-

ing elements:

• A single action formula A is a regular formula which is satisfied by a single transi-

tion whose label satisfies A. For example, a regular formula "Call setValue.*"

is satisfied by all transitions whose labels start by "Call setValue".

5.2. FROM PNETS TO CADP 113

• Regular formulas can be concatenated using "." operator: a formula R1.R2 is

satisfied by a sequence of transitions which consists of two concatenated sub-

sequences where the first sub-sequence satisfies R1 and the second one satisfies

R2.

• The operators "*", "+", "?" are used to express a repetition (a sequence

satisfying the formula is repeated zero or more times), a strict repetition (a

sequence satisfying the formula is repeated one or more times), and an option

formula (a sequence satisfying the formula occurs once or does not occur at all)

correspondingly.

Finally, expressions, action formulas, and regular formulas can be assembled into

state formulas which rely on various operators and modalities and allow one to define

predicates over the set of states of an LTS. In this thesis we will rely on the formulas

using the following modalities and operators:

• the possibility modality "<" R ">" F which is satisfied iff there exists a tran-

sition sequence (a path) in the input LTS which goes from a state satisfying a

regular formula R to the state satisfying a state formula F;

• the necessity modality "[" R "]" F which is satisfied iff all paths going from

a state satisfying a regular formula R lead to a state satisfying F;

• classical logical operators like ”or”, ”xor”, ”end”;

• "true" formula which is satisfied by any state and "false" formula which

cannot be satisfied by any state.

MCL allows one to define custom macros and libraries of operators parameterised

by action and state formulas. Moreover, CADP includes a set of libraries with MCL

operators which can be used from the user-defined formulas. Examples of such oper-

ators are given below:

• Absence Before(R1, R2) is satisfied iff a sequence of transitions satisfying R1

never occurs before a sequence of transitions satisfying R2;

• Inev(R) is true iff all transition sequences lead to a transition sequence satis-

fying R;

114CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Examples of properties. We used MCL in order to specify properties of our use-

case example in the context of a scenario where the election algorithm is triggered

only once.

An important parameter of the state-space generation is the size of the request

queues of our components. Indeed, the size of an LTS encoding explicitly the states of

a queue of max length L, receiving N possible different values is in the order of O(NL),

so it is important to use small sizes both for the domain of request parameters, and

for the length of the queue. However, if we use a length too small, then it is possible

that the queue saturates during the normal activity of the application. We encode

a formula checking that the queue of a component cannot be saturated. Remark

that this check involves the exhaustive analysis of the behaviour and interactions of

the components, and this can be done only by the model-checker. To be able to

detect saturation in the model-checker, our Queue model includes a specific event

’Comp ErrorQueue’.

An example of such a formula for Comp1 is given below:

<true* . ’Comp1 ErrorQueue.*’ >true

This formula means that the Comp1 ErrorQueue action is reachable in the be-

haviour graph. If we set the length of Comp1 queue to 2, the model-checker answers

true: the queue can saturate. If we set it to 3, the result is false, we are safe.

Now we do a similar query for the whole application. If the queue size of all the

components is set to 3 the formula evaluates to true. The model-checker gives us

a diagnostic in the form of a path in the global graph: each primitive component

can drop a request in the application queue, corresponding to calls on the client

interface LeaderItf. If 3 requests are not served before the 4th arrives, then the

queue saturates. If we set the composite queue length to 4, the queue never saturates.

Now that we have proved that our model is not limited by the size of queues,

we can prove some of its functional properties. We check that after a call to

runPeterson(), it is inevitable (under fairness hypothesis) that either the leader

is elected or one of the queues is saturated. The model-checker answers true: the

election terminates. We also proved that with adequate queue size, they never satu-

rate.

[’Call RunPeterson’] Inev (’Q IamTheLeader.*’ or ’ErrorQueue.*’)

Then, we prove that the event Q IamTheLeader is emitted only once (i.e. only

one leader is elected):

Absence Before (’Q IamTheLeader.*’, ’Q IamTheLeader.*’)”

Recall that in order to illustrate the future-based communications, we extended

our use-case with the methods requestKey and encrypt. The former is a client

5.3. CODE GENERATION AND EXECUTION 115

method invoked by the leader component in order to obtain an encryption key. Since

it is a client method, the variable which should store the received result in the leader

component is a future. Hence, the leader component should not get blocked after

the method invocation but continue performing computations which do not involve

the encryption key. In particular, just after asking for the encryption key, the leader

component invokes the IAmTheLeader method on its client interface in order to report

that it is the leader. In order to check that the communications in the generated graph

are indeed implementing futures properly, we verify the following formula which states

that a key must be always received before IamTheLeader() is invoked:

Existence Between(’R RequestKey.*’, ’Q requestKey.*’, ’Q IamTheLeader.*’)

The model-checker answers false and provides an example of system behaviour

where IamTheLeader() method is invoked before the key is received. This proves

that a component is not blocked if the key is not needed.

5.3 Code generation and execution

When the user has checked that the conceptual model of the designed application is

statically correct with respect to the rules formalised in Chapter 4 and if the model-

checker has proven the desired functional properties of the modelled system as dis-

cussed in the previous section, then VerCors can generate the implementation code of

the designed application. The generated code is ready to run in the GCM/ProActive

environment.

Figure 5.13 illustrates the general workflow of the process. The generator takes

as an input a component diagram with components and connections between them,

a UML class diagram with UML classes and interfaces, UML state machine diagrams

specifying the behaviour of the server methods and a type diagram. Additionally,

the platform asks the user to specify the name of the package in which the gener-

ated files will be placed. Before starting the generation, VerCors invokes the state

machine parser which parses the UML state machines in the same way as for pNets

construction (this step is omitted in the figure). Then, two generators are applied to

transform the user-defined conceptual model into an input for ProActive: an ADL

generator and a Java code generator. As explained in Section 2.1.3, ProActive takes

as an input the component architecture specified in a GCM/ADL XML-based file, a

set of Java classes implementing the behaviour of the primitive components and a set

of Java interfaces with the signatures of GCM interfaces.

In this section we first discuss the ADL and Java code generators and then the

execution of the produced code.

116CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Components

UML classes

and

interfaces

Types

ADL

generator

Java

generator
UML state

machines

Type

generator

Class &

interface

generator

ADL file

Java classes

and interfaces

Java classes

and

enumerations

ProActive

Figure 5.13 – The workflow of implementation code generation

5.3.1 ADL generation

We start by an overview of the ADL generator which transforms a component ar-

chitecture model into an XML-based file. The kernel of its current version is mainly

based on the code taken from the previous versions of VerCors and adapted by an

engineer who worked on the project, hence, the content of this sub-section should

not be considered as an exclusive contribution of this thesis. Still, we extended

the generator with the non-functional part construction as will be explained in 6.

1 @XmlRootElement(name = ”component”)

2 public class JAXBComponent {

3 private String name;

4 private List<JAXBInterface> interface;

5 @XmlAttribute(name = ”content class})

6 private String clazz;

7 ...

8 }

9

10 public static void main() {

11 JAXBComponent c = new JAXBComponent();

12 JAXBInterface itf = new JAXBInterface();

13 itf.setName(”myItf”);

14 itf.setType(”server”);

15 c.setName(”myComponent”);

16 c.getInterfaces().add(itf);

17 c.setClazz(”ImplClass”);

18 }

Listing 5.2 – An example of a JAXB-based class

1 <component name=”myComponent”>

2 <interface name=”myItf” role=”server”/>

3 <content class=”ImplClass”/>

4 </component>

Listing 5.3 – An XML file generated by JAXB

5.3. CODE GENERATION AND EXECUTION 117

The JAXB framework. Converting Java objects into XML is a very classical task

which is supported by multiple libraries. The ADL generator of VerCors is imple-

mented using the JAXB (Java Architecture for XML Binding) technology [82] which

is a Java library for converting Java objects to XML representations (the process is

also known as ”marshalling”). Listing 5.2 illustrates the usage of JAXB. Lines 1-8

present an example of a class which stores a model of a simple component charac-

terised by a name, a list of exposed interfaces and an implementation class. We omit

the definitions of the companion JAXBInterface class. Lines 10-17 demonstrate an

instantiation of the given class, and Listing 5.3 shows how the constructed object is

marshalled. JAXB requires a Java class being translated into XML to be annotated

with @XmlRootElement (line 1). This and the other annotations used for the map-

ping can be followed by additional parameters. For example, the programmer can

specify the name of the generated XML element as an attribute of @XmlRootElement

annotation. By default, the class name is used for this purpose. The technology al-

lows for straightforward mapping of class fields, i.e. each field (of a generated class)

of type String is mapped to an XML element with the corresponding name and value

without any additional effort from the programmer. For instance, the field name from

line 3is translated this way. The fields whose types are Java classes annotated with

@XmlRootElement (like the interface at line 4) are also mapped into XML elements.

The programmer can use annotations in order to customise the mapping. For in-

stance @XmlAttribute with additional parameters preceding a field of a class allows

specifying properties of the generated XML attribute. By default, he order of the

generated entities reflects the order of the corresponding fields in the Java classes.

The generator. The ADL generator takes as an input Java objects computed

from the GCM components which were defined by the user in the front-end graphical

editor. We recall that those objects are based on the EMF technology and their

generated classes do not include the annotations required for using JAXB. Hence,

VerCors needs an intermediate set of classes that are able to store the component

model and could be translated into XML. We will call them JAXB classes. VerCors

has such classes for the GCM components (a more complex version of the class shown

in Listing 5.2), interfaces, bindings and the rest of the GCM elements but not for the

UML elements because they are not translated into XML.

Overall, the ADL construction procedure has the following workflow. The gen-

erator takes as an input the user-defined components and starting from the root

component it converts them into JAXB objects. Then, it invokes a dedicated factory

from the JAXB library which prints JAXB objects in an XML-based file.

118CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

We plan to reuse the JAXB objects for the plug-in dedicated to reverse engi-

neering ADL files into the models of VerCors graphical front-end. Indeed, the JAXB

technology also supports ”unmarshalling” XML files, i.e. translating an XML file into

Java objects. We could rely on this mechanism in order to allow the user to import

an existing ADL file into VerCors. This could be particularly useful for analysing

GCM-based projects which were not initially designed in VerCors.

5.3.2 Java generation

The Java code generation includes three main steps: translating types into Java

classes, converting UML interfaces into Java interfaces and translating UML classes

with state machines defining method behaviour into Java classes. All three steps

are based on the Acceleo [58] technology dedicated to model-to-text transformation.

1 [template public generateRecord(rtype : RecordType)]

2 [file (rtype.getTypeName().concat(’.java’), false, ’UTF−8’)]

3 [if not(getPackage().toString().equalsIgnoreCase(’’))]

4 package [getPackage(true) /].types;

5 [/if]

6

7 import java.io.Serializable;

8

9 public class [rtype.getTypeName()/] implements Serializable {

10 [for (field : Field | rtype.fields)]

11 [getTypeName(field.type)/] [field.name/];

12 [/for]

13 }

14 [/file]

15 [/template]

Listing 5.4 – An Acceleo template translating VerCors record type into a Java class

Acceleo and type generator. Acceleo follows a template-based approach for

model-to-text transformation. In a template-based approach, a programmer should

define a so-called template in a dedicated language (in our case it is the Acceleo lan-

guage) that would take an object being translated and use a sequence of the language

statements in order to construct the corresponding text. An Acceleo template has

access to the fields of the object, allows for classical control-flow statements includ-

ing loops and if-else conditions, and is able to invoke external Java services. From

the programmer-defined templates, Acceleo automatically produces Java code of the

corresponding generator (model-to-text translator) which can be invoked from else-

where.

Listing 5.4 demonstrates the simplest Acceleo template implemented in VerCors.

It translates a record type into a Java class. The template signature is given at line 1:

5.3. CODE GENERATION AND EXECUTION 119

it specifies the template name and an input parameter rtype of type RecordType.

Line 2 defines the name of the file where the text will be printed and lines 3-13 define

the content of the file. As for any other Java class, the generated code should include

the name of the package in which the class is included. For this, Acceleo invokes an

external Java service at line 3 in order to get the user-defined package name and if

it is not empty, concatenates the name with ”.type” which means that the generated

type will be included in the ”package name.types” package. Line 7 prints an imported

class. Line 9 specifies the signature of the class being printed: for this, it gets the

name of the record type. Finally, the loop at lines 10-12 iterates over all fields of a

record and for each field it prints the type and the name. In order to get the name of

a field type, the template also invokes an external Java service which maps a VerCors

type into a Java type.

Listing 5.5 provides an example of a record type RecordExample translated into a

Java class. The type has two fields: a boolean field b, and a field e of a user-defined

enumeration type EnumType which definition is omitted here.

1 package example.types;

2

3 import java.io.Serializable;

4

5 public class RecordExample implements Serializable {

6 Boolean b;

7 EnumType e;

8 }

Listing 5.5 – Java code of a record type generated by VerCors

We defined templates for the record and enumeration VerCors types. Then we

used Acceleo in order to produce the corresponding code generator. While con-

structing the implementation code, VerCors invokes the generator for each record

and enumeration type of the user-defined type diagrams; the order in which the Java

classes are produced is not important.

Translating UML interfaces and classes. Similarly, we defined templates

translating UML interfaces and classes into Java code. The case of inter-

faces is quite trivial: the template iterates over the UML methods of an in-

terface and for each method it generates the signature in Java. Converting

UML classes is, however, more complex. We recall that the UML classes are

used in VerCors in order to specify the implementation of primitive compo-

nents business logic. We say that a class is ”attached” to a primitive when

the behaviour and the attributes of the component are defined by the class.

120CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

1 public class Class0 implements Serializable, BindingController, ElectionItf, Class0AC{

2 //local variables

3 public boolean isActive = false;

4 public int left = 1;

5 public int cnum = 1;

6 public int max = 1;

7

8 //client interfaces

9 protected ElectionItf C1;

10 protected MonitorItf C2;

11 protected KeyStorageItf C3;

12

13 //Binding controller’s methods

14 public void bindFc(...) {...}

15 public String[] listFc() {...}

16 ...

17

18 //server methods

19 public void message(int step, int val) {...}

20

21 //local methods

22 public void encrypt(int key) {...}

23

24 //Attribute controller methods

25 public void set max(int value) {...}

26 ...}

Listing 5.6 – Generated Java code of a primitive component

While translating a class attached to a primitive, we have to take into account the

component’s server and client interfaces, the attributes and operations of the class.

Listing 5.6 demonstrates a simplified version of the Class0 attached to one of the

primitive components participating in the Peterson’s leader election algorithm mod-

elled in Chapter 3; Figure 5.14 illustrates once again this component. The Acceleo

template dedicated to a UML class translation invokes an external Java service in

order to obtain the set of server and client interfaces of a primitive. The server in-

terfaces are included in the list of interfaces implemented by the class (ElectionItf

at line 1), the client interfaces are converted into the fields of the class (lines 8-11)

which can be then accessed by the class methods in order to perform a remote method

invocation. Additionally, we generate several auxiliary methods which will be used

by the ProActive factory in order to bind or access the interfaces (lines 13-15). The

user-defined class attributes are translated into class fields (lines 2-6). Finally, Ver-

Cors generates the signatures and the bodies of the user-defined server and local

methods (line 19). We distinguish three kinds of methods: methods with a state ma-

chine specifying the behaviour, methods for which the user did not provide behaviour

description, and attribute set/get methods. The first case involves translation of a

state machine into Java code which will be explained in the next paragraph. If the

5.3. CODE GENERATION AND EXECUTION 121

Figure 5.14 – A primitive with an attached UML class

user has not specified a method behaviour, an empty body is generated. Finally,

VerCors produces standard code for the get- and set-methods which will be discussed

in Section 6.2

Translating UML state machines into Java code. VerCors allows specifying

one state diagram for each method of a primitive component which is then translated

into Java code. Multiple studies [83, 84, 85] are dedicated to the translation of various

types of state machine diagrams into executable code; most of them try to deal with

the state machine hierarchy. However, the translation in our case is much simpler

because a state machine in VerCors has only one region, only one level of hierarchy

and no actions assigned to the states.

As a part of the transformation process, VerCors constructs an enumeration State

which stores the names of all states of the state machines being translated. Note that

here we generate one enumeration type for all state machines modelling the behaviour

of a given application. Each generated method has a local variable curState of type

State which holds the current state of the state machine and actions are taken in

a switch-case statement depending on the value of the variable. Listing 5.7 demon-

strates the Java code constructed by the platform for the state machine from Fig-

ure 5.15. In addition to the curState variable, VerCors translates the user-defined

122CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

Figure 5.15 – A simple state machine

local variables of a state machine (line 2). Then, the platform generates an infinite

loop comprising a switch-case statement which checks the value of curState. For

each state of a state machine VerCors creates a case statement that includes the Java

code corresponding to the label of the outgoing transitions. Note, that an if-else

statement is included in the case of multiple outgoing transitions (lines 11-20). In

the current version, the translation of UML state machines is fully implemented in

Java, but we believe, we could benefit from porting it to Acceleo. The reason is that

the Acceleo code generators are easier to maintain and the code of the model-to-

text transformation templates looks cleaner than a Java code generator with printing

instructions.

1 State curState = State.Initial;

2 boolean x;

3 while(true) {

4 switch (curState) {

5 case Initial:

6 x = this.get isActive();

7 curState = State.Choice1; break;

8 case Choice1:

9 if(x == true) {

10 curState = State.State1; break;

11 }

12 else if(x == false) {

13 this.set isActive(true);

14 x = true;

15 curState = State.State1; break;

16 }

17 case State1:

18 C1.message(0, 0); return x;

19 }}}

Listing 5.7 – Generated Java code of a state machine

5.3. CODE GENERATION AND EXECUTION 123

Figure 5.16 – Code execution

The advantage of such an approach is that the generated code mirrors the state

machine structure. However, a significant drawback is that the code is long and not

very convenient for the programmer since do-while, for, while constructs cannot be

written as such in the state machine, but will rather be encoded within the state

structure, separated by case instructions. We still discuss the possibility to enhance

our framework by implementing a plug-in which would be able to recognise the classi-

cal control-flow patterns in a state machine and to generate more user-friendly code.

On one hand, we would like to improve the quality and the readability of the pro-

duced code. On the other hand, this would require significant effort on the static

analysis and restrict the user-defined input. This could be useful if we expected the

user to modify the generated code which is not the case in our framework, because

the constructed implementation has been model-checked by VerCors, and if the user

tries to modify the logic of the generated methods, the verified functional properties

cannot be guaranteed any more.

5.3.3 Code execution

The code generated by VerCors can be executed on top of the ProActive platform. In

order to check that the produced application, indeed, behaves as we expect, we use

a dedicated visualiser [86] which analyses and shows the request exchange between

ProActive active objects at run-time. For instance, we generated ProActive/Java

code of our use-case example of Peterson’s leader election algorithm from Figure 3.4;

the resulting execution is shown in Figure 5.16. Black arrows represent request emis-

sions (the figure only shows some of them). Yellow and blue rectangles show request

processing. For example, we can see how the call to runPeterson of Application is

transmitted to Comp4 and at the end of the runPeterson request processing Comp4

triggers the elections on Comp1 by calling message(0,1). At the end of the algorithm

execution we can see how Comp3 reports to the Application that it is not the leader

and Comp1 claims to be the leader.

124CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

5.4 Discussion

5.4.1 On the verification

In this chapter we presented how conceptual models graphically specified in VerCors

can be automatically translated into an input for the CADP model-checker. The

transformation includes several steps: first, we generate an internal representation of

system behaviour encoded in pNets, then, the constructed model is translated into

Fiacre and EXP formats, finally, the created files are translated by Flac and CADP

processes into BCG format which can be given as an input to the Evaluator model-

checker. Here we discuss some choices that we had to make while constructing the

verification part of the platform, some ideas for the future work, and we highlight

several advantages of the presented approach.

First, we should mention the choice of the underlying technologies and formats.

As it was discussed in Section 3.4, we believe that our framework benefits from using

pNets as an intermediate format for two main reasons. First, as a parameterised struc-

ture, pNets can be potentially transformed into an input for an infinite state-space

verifier, and, second, they bridge the gap between the graphically specified compo-

nents and the hierarchical composition of automata taken as an input by CADP.

Using Fiacre as an intermediate format could be, in fact, avoided. We could try to

generate LotosNT files directly from pNets, but we believe that as the Fiacre format

is very close to the pLTSs constructed by VerCors, it facilitated the implementation

and debugging of the generator. The usage of the CADP verification platform will

be justified in Section 7.5 where we make an overview of several other verification

platforms.

Second, we have several ideas of how the pNets encoding the behaviour of various

processes of GCM components could be enhanced. For instance, the state machine

translation process could be improved by applying static analysis techniques in order

to detect more precisely where a server or a local method should retrieve the result

of a remote method invocation. This would make the behavioural model closer to

the GCM/ProActive implementation and provide maximum parallelism. Further-

more, the fact that we model processes which get blocked quite early increases the

probability of a deadlock in the behaviour graph which would not occur in the real

implementation.

Regarding the state-space reduction, we believe, that our framework benefits from

several applied techniques. First, we rely on the possibility of hiding the internal ac-

tions of sub-components that should not be observed during model-checking, which

can be followed by significant state-space reduction based on bisimulation minimisa-

5.4. DISCUSSION 125

tion techniques. Second, modelling the environment scenario has significant impact

on the generated system as it reduces the combinations of input requests which can be

received by the designed application. In fact, the application of state-space reduction

techniques to the behavioural models of GCM components has been studied in [24] .

Additionally, we already do some optimisation of the generated pNet model: we

analyse the behaviour of primitive components and the structure of composite ones,

and we construct only those communications that actually occur. In addition, we do

not generate the proxy, proxy manager and delegate pLTSs for the methods which do

not return any result. Still, we believe that there are more possibilities to optimise

the produced structure. For example, we could statically detect that a particular

client method of a primitive is invoked only once; in this case, the generation of the

proxy manager would not be needed.

5.4.2 On the executable code generation

In this chapter we also presented the generation of the executable code from VerCors.

We would like to highlight that this is the first version of the platform which fully

automatically produces the business logic code for the modelled components. In fact,

the generation process is quite straightforward, but still its implementation involved

a few technical choices.

First, we would like to discuss the choice of the plug-in architecture. We separated

the ADL generator from the Java code generator for two main reasosns. First, we

allow the user to generate only an ADL file without the Java classes. This can be

useful for the users who do not model and verify component business logic but provide

it separately from the model of component architecture specified in VerCors. Another

reason is that we would not like the changes in one of the generators to affect another

one and to keep both generators independent. For instance, it is very likely that in

the future we will have to implement an alternative ADL generator that will support

parameterised topologies as discussed in [87], and we would like to be able to reuse

the same Java code generator.

Second, there are several strategies for generating the ADL files: in the current

version of VerCors we construct one ADL file containing the description of the root

component and its sub-components. Another possibility would be producing one

ADL file for each generated component and including references from the ADL of a

composite to the files containing its sub-components. The first strategy is convenient

for debugging the generated application because it does not require switching between

multiple files. On the other hand, producing one file per component allows for more

re-usability: the programmer can use the sub-components’ ADL independently from

126CHAPTER 5. VERIFICATION AND EXECUTION OF DISTRIBUTED COMPONENTS

their containers. However, in this case VerCors cannot guarantee those properties

which were proven by the model-checker for a sub-component in the context of its

container. We believe that both strategies should be implemented in VerCors so

that the user can choose between them. The reason why we opted for a single file

construction is related only to the ease of debugging. The good point is that the

intermediate JAXB objects are already ready to carry the information necessary for

implementing the second strategy. We only need to take care of the way the JAXB

factory is invoked to construct the ADL files, and of the paths to the generated files.

Next, we did not actually choose the underlying technology for the ADL generator

implementation, because we reused the code from the previous version of VerCors.

We believe that there was no need for changing the technology, because JAXB is still

maintained, it was relatively easy to adapt the code to the ecore models of the new

VerCors version. The choice of the approach for Java code generation was also quite

obvious, because Acceleo is a state-of-the art model-to-text transformation technique

which is well-integrated with Obeo Designer.

Finally, the current version of the Java code generator relies on a very simple

algorithm for translating state machines into executable code. It traverses the states

of a state machine in a random order and for each state it constructs a case statement

which encodes the outgoing transitions. The advantage of such approach is that the

produced code mirrors the modelled state machine. On the other hand, the generated

code is not very ”user-friendly”, and enhancing it is in the scope of the future work

as it will be discussed in Section 8.2.

In this chapter we discussed an approach for translating the graphical model of

a GCM-based application architecture and behaviour into an input for the model-

checker and executable Java code. In the next chapter we provide the details on

modelling, verification, and executable code generation of the advanced component

features such as attribute controllers, group communications, and non-functional as-

pects.

Chapter 6

Modelling and verifying advanced

GCM features with VerCors

Contents

6.1 Non-functional components and interceptors 129

6.1.1 From application design to pNets 129

6.1.2 Implementing pNet generation and integration with CADP 134

6.1.3 Code generation . 134

6.2 Component attributes and attribute controllers 135

6.2.1 Graphical specification . 136

6.2.2 From application design to pNets 137

6.2.3 Implementing pNet generation and integration with CADP 138

6.2.4 Code generation . 139

6.3 Reconfigurable multicast interfaces 140

6.3.1 Graphical specification . 141

6.3.2 From application design to pNets 142

6.3.3 Implementing pNet generation and integration with CADP 155

6.3.4 Code generation . 157

6.4 Reconfiguring multicasts from NF components 157

6.4.1 Graphical specification . 157

6.4.2 From application design to pNets 158

6.4.3 Implementing pNet generation and integration with CADP 158

6.4.4 Code generation . 159

127

128 CHAPTER 6. ADVANCED FEATURES

6.5 Examples . 161

6.5.1 Composite pattern . 161

6.5.2 Springoo . 171

6.6 Discussion . 173

In this chapter we explain how the advanced features of GCM components can be

modelled, verified and generated in our framework. We start by presenting the design

and verification of the non-functional part of GCM components. Second, we discuss

the attribute controllers and access to the attributes of primitive components. Then,

we present our approach to modelling and verification of applications with multi-

cast interfaces which enable N-to-one communications. In such communications, a

request from one component can be sent to several targets simultaneously. Moreover,

the presented multicast interfaces can be reconfigured at run-time, i.e. the group of

the target components can be modified during program execution. Next, we inte-

grate the definition of the non-functional part of a component and the reconfigurable

multicast interfaces. More precisely, we explain how the multicast interfaces can be

reconfigured by component-controllers located in the membrane. We present an illus-

trative example where we model and verify an application including all the discussed

advanced features. Finally, we summarise the contribution of the chapter and discuss

shortly the future work.

Auxiliary operators. In this chapter we will often modify the structure of the

pNets of primitive and composite components: we will extend them with other sub-

nets and synchronisation vectors. For this, we will rely on the following operators:

• � - ”restriction” : Let pNet be a pNet andA be an indexed set of labels (strings);

pNet � A returns a pNet similar to pNet but with restricted synchronisation

vectors. The synchronisation vectors of pNet�A are the ones of of pNet except

all the synchronisation vectors containing an element of A as part of their global

synchronisation label. For example, if m belongs to A then all the vectors

containing m in their global label will be removed, in that case the global labels

concerned could be: Q m, !Q m, ?Q m, R m, Serve m, Remember that

method labels contain the name of the interface that contains the method and

consequently, removing a method label cannot remove an action concerning

another method with the same name in another interface.

• ⊕ - ”extension” : For I ∈ IP and I � ∈ IP disjoint, let pNet =

��P, pNeti∈Ii , SVk∈K
k �� be a pNet and pNet�i

i∈I�
be a pNet family (possibly empty).

6.1. NON-FUNCTIONAL COMPONENTS AND INTERCEPTORS 129

Let SV �

k

k∈K�

be synchronisation vectors over I�I �, i.e., ∀k∈K �.SV �

k = α
j∈Jk
j →

α
�

k where α
�

k∈Sort(pNet), Jk ∈ IP , Jk ⊆ I�I �, and ∀j∈Jk∩I.αj∈Sort(pNetj),

and ∀j∈Jk∩I
�.αj∈Sort(pNet�j). pNet⊕��pNet�i

i∈I�
, SV �

k

k∈K�

�� extends pNet with

the new sub-pNets pNet �i. The original synchronisation vectors are kept (they

do not synchronise the new sub-pNets); and the new synchronisation vectors:

SV �

k

k∈K�

are added to the ones of pNet:

pNet⊕ ��pNet�i
i∈I�

, SV�

k

k∈K�

�� = ��P, pNeti∈Ii � pNet�i
i∈I�

, SVk∈K
k � SV�

k

k∈K�

��

6.1 Non-functional components and interceptors

In this section we discuss how the membrane of a composite component including

components can be analysed and translated into implementation code. We do not

explain here the graphical specification of a non-functional part as it was presented in

details in Section 3.2. In Chapter 4 we also formalised the well-formedness conditions

for the componentised membrane of primitives. In the current version of our frame-

work we verify only the membrane of composite components, the aspect dealing with

the componentised membrane of the primitives is in the scope of the future work.

It should be mentioned that a membrane can include sub-components of two kinds:

component-controllers and interceptors. We currently do not construct the pNets for

the latter.

6.1.1 From application design to pNets

As for the functional part, in order to generate input for the model-checker, we,

first translate the specification of a non-functional part of an application into an

intermediate format, i.e. into pNets. More presidency, we extend the pNets presented

earlier with the sub-nets and synchronisation vectors encoding the non-functional

elements. The advantage of using pNets is that they are convenient for encoding the

behaviour of GCM/ProActive components, and at the same time they allow for the

finite abstractions useful for model-checking.

Illustrative example

Figure 6.1 illustrates an example of a composite component Composite with a com-

ponentised membrane. Its content includes one sub-component Prim1, and its mem-

brane includes two component-controllers (Contr1, Contr2) and one interceptor

Monitor. The composite serves calls to two non-functional methods: m1 and m2,

130 CHAPTER 6. ADVANCED FEATURES

Figure 6.1 – Bindings in a membrane

and to one functional method m5. We include the functional method in the example

in order compare the treatment of the functional and non-functional requests. The

m1 and m5 method calls are processed by Prim1 (in the content) while the invoca-

tions of m2 are served by Contr1 (in the membrane). The component-controllers

communicate with each other: Contr1 can invoke method m4 on Contr2. Finally,

the composite includes a non-functional internal interface C2-controller which is

not visible from outside of the composite. It is used by Contr1 which can invoke the

method m3 on it, and the invocation will be forwarded to Prim1.

In order to include the specification of the non-functional elements in the model

of a composite component behaviour, we extend the set of sub-nets encoding the

behaviour of a composite with several other pNets and synchronisation vectors. In

fact, as we will demonstrate in this section, the pNets modelling the non-functional

elements of a composite are very similar to the ones for the functional part. In

particular, we generate proxy, proxy manager, and delegate pLTSs processing the

non-functional requests, and the pNets for the components in the membrane.

Figure 6.2 illustrates the pNet of the composite depicted in Figure 6.1; for the

sake of simplicity, we omit the parameters of the actions in the figure. The pNet

includes three sub-pNets for the sub-components: Contr1, Contr2, and Prim1. The

Monitor component is not included in the structure because we have not formalised

the pNets for the interceptors in the current version of the framework. Instead,

we assume that the functional call goes directly to the plugged component. This

assumption is coherent with the role of interceptors. One can notice that from the

figure of the pNet it is not possible to understand which sub-net models a functional

6.1. NON-FUNCTIONAL COMPONENTS AND INTERCEPTORS 131

Contr1

Prim1

Queue

Body

CPM_m1

CPM_m2

CPM_m5

CPM_m3

CProxy_m1[q]

CProxy_m2[q]

CProxy_m5[q]

CProxy_m1[q]

Deleg_m1

Deleg_m2

Deleg_m5

Serve_*

Call_m1

Call_m2

Call_m5

Deleg_m3

GetProxy_m1

GetProxy_m2

GetProxy_m5

R_m1

 R_m2

 R_m5

iQ_m2

iQ_m5

iQ_m1

New_m

Recycle_m1

 Recycle_m2

 Recycle_m5

Call_m3

R_m3

iQ_m3

GetProxy_m3

New_m5

R_m1

R_m5 R_m3

iR_m3

R_m3

Recycle_

m3

R_m2

Contr2

Q_m4

R_m4Q_m3

iQ_m1

iQ_m2

iQ_m5

C1.1
C2.1

C2.2 C2.2

C5.1

C5.1

C4.1

C4.1

C4.2

C4.2

C6.1

C7.1 C7.2

C5.2

R_m1

R_m2

R_m5

Composite with

componentised

membrane

Figure 6.2 – pNet of a component with a componentised membrane

or a non-functional sub-component. Indeed, at the level of pNets we do not separate

elements of the two concerns as their separation has already been carefully checked

during the static validation. In addition, the pNet of a composite includes the pLTSs

that process the non-functional requests (CPM m1, CProxy m1, Deleg m1, etc) and

the synchronisation vectors for the treatment of requests. The treatment of the non-

functional method calls is very similar to the treatment of the functional ones. Hence,

the synchronisation vectors modelling the communications among the non-functional

elements are based on the rules given in Tables 5.3 and 5.4.

The queue of the composite can receive external requests to the methods exposed

on its server interfaces (iQ m1, iQ m2, and iQ m5) and the invocations to m3 (iQ m3)

can be received from Contr1. Then, those requests are treated by the proxy, proxy

manager, and delegate pLTSs similar to the functional calls discussed in Section 5.1.

The results of the calls to the external methods are returned to outside of the com-

posite: R m1, R m2, R m5, and the result of the invocation of m3 is returned to the

caller, i.e. to Contr1. The communication between the two component-controllers

132 CHAPTER 6. ADVANCED FEATURES

in the membrane is modelled in exactly the same way as if it occurred between two

functional sub-components.

Below we provide a detailed description of the sub-nets and synchronisation vec-

tors generated for the non-functional part of a composite.

Sub-nets

First, we generate the proxy, proxy manager, and delegate pLTSs for each method

of the external non-functional client and server interfaces of a composite in the same

way as for the functional methods.

The construction of functional and non-functional internal interfaces is different.

For each internal functional interface of a composite, there exists a symmetric ex-

ternal one, hence, while building the pLTSs of the functional methods, we discussed

only external interfaces. However, an internal non-functional interface may not have

the corresponding external one, when it is connected to a component inside a mem-

brane. Such interfaces enable the communications between sub-components in the

membrane and in the content. Figure 6.1 illustrates an example of such an interface:

the C2-controller internal interface receives method calls from the Contr1 com-

ponent in the membrane and forwards them to Prim1 in the content. The example

illustrates a client interface, but an internal non-functional server interface could be

also modelled in a similar way. In this case, a method invocation would be triggered

by a component in the content and served by a component in the membrane. Accord-

ing to the semantics of GCM/ProActive components, the invocations to such kind

of interfaces also go through the queue and the body of the composite, hence, the

proxy, proxy manager, and delegate pLTSs should be generated for the methods of

such interfaces (CProxy m2, CPM m2, and Deleg m2 in the example).

Second, we include the pNets encoding the behaviour of the non-functional sub-

components in the pNet of a composite (Contr1 and Contr2 in the example). In

fact, the pNets encoding the behaviour of the components inside the membrane have

exactly the same generation procedure as the ones of the functional components

discussed in Section 5.1.

Synchronisation vectors

As it was discussed in Section 5.1.2 the synchronisation vectors of a composite are

organised into three sets: server-side (SVS), client-side (SVC), and binding-related

(SVB) synchronisation vectors. We start by explaining how the first two sets should

be extended with the synchronisation vectors for the non-functional interfaces. Then,

we discuss the binding-related communications.

6.1. NON-FUNCTIONAL COMPONENTS AND INTERCEPTORS 133

Requests to the non-functional server interfaces of a composite are treated in

exactly the same way as the functional calls, hence the proxy, proxy manager, and

delegate pLTSs generated for the methods of the non-functional interfaces should

be synchronised following the rules from Table 5.3. A non-functional server request

is, first dropped in the queue (Rule [C1]), then taken by the body (Rule [C2.1])

and forwarded to the delegate method (Rule [C2.2]), the new proxy is allocated

by the proxy manager (Rule [C4]), and then the proxy can wait for the reply. A

non-functional client request is treated in a similar manner except that it cannot

be en-queued by an external component (i.e. Rule [C1] is not applied), and it is

forwarded to outside of the composite (Rule [C3]).

The only exception is the internal non-functional interfaces which are con-

nected to the components in the membrane but not to the external interfaces (e.g.

C2-controller in Figure 6.1). Their methods are not exposed to outside of the

composite, and hence the synchronisation vectors [C1], [C3] which express the com-

munications with the external environment are not generated for them. Still, all

the interactions between the queue, the body, proxies, proxy managers, and delegate

methods are involved in the treatment of the requests, and, hence the synchronisation

vectors based on Rules [C2], [C4] are constructed.

The communications which occur on the bindings in the membrane should be also

encoded with synchronisation vectors which extend the (SVB) set. We distinguish

four cases of possible types of interactions, and each of them is illustrated in Figure 6.1

(see b1, b2, combination of b3a and b3b, and b4).

First, a binding can connect directly an external and an internal non-functional

interfaces of a composite (see b1). In this case, the treatment of request is exactly

the same as for the functional calls, because the requests are served (or called) by

the sub-components in the content. Such communications rely on several rules from

Table 5.4. A server method call should be forwarded by the delegate structure to the

plugged sub-component inside the content [C5.1], and the invocation result should be

returned to the caller [C5.2]. A client method invocation should be forwarded from

the caller located in the content to the queue [C6.1], and its result should be returned

to the caller [C6.2].

Second, a component in the membrane can be connected to a non-functional

external interface of the composite (e.g. b2). In fact, this is very similar to the

previous case, and it involves the same synchronisation vectors (i.e. the vectors

expressed by the Rules [C6], [C7)] but the synchronised sub-components are located

in the membrane, not in the content.

Third, component-controllers can use non-functional internal interfaces of the

134 CHAPTER 6. ADVANCED FEATURES

composite in order to communicate with the sub-components inside the content (b3a).

Invocations going through such interfaces are also processed by the queue and the

body of the composite. Hence, all components plugged to an internal non-functional

interface should synchronise with the pLTSs of the composite but not with each

other. In the given example, Contr1 should be synchronised with the queue of the

composite on a method invocation and with the corresponding proxy on the result

reception (Rule [C6]). Prim1 should be synchronised with the corresponding delegate

pLTS on a method invocation, and when it sends the computed result, it synchronises

with the proxy pLTS ([C5]).

Finally, sub-components inside a membrane can communicate with each other

(e.g. b4). They are synchronised on a method call and on a reply following the Rules

[C7], i.e. in the same way as the communicating sub-components in a content.

6.1.2 Implementing pNet generation and integration with

CADP

As it was discussed in the previous section, all the constructs encoding the non-

functional part of a component are based on the ones for the functional elements.

Hence, in order to generate a pNet of a composite with a componentised membrane

from VerCors, we did not have to implement any additional builder. One additional

analysis step that we have to do while pre-processing the input models is extracting a

set of internal non-functional interfaces of composite components which are connected

to the sub-components in a membrane. Then, in addition to the pNet generation

process discussed in Section 5.1.3, we invoke the proxy, proxy manager, and delegate

builders for the methods of the non-functional interfaces, and the pNet builders for

the sub-components in a membrane. The synchronisation vector generator constructs

additionally the synchronisation vectors encoding the communications related to the

non-functional aspect as it was discussed in the previous section. While producing

.fiacre and .exp files, VerCors does not distinguish the constructs encoding functional

and non-functional features. The internal communications in the sub-components of

a membrane are by default hidden in the behaviour graph of the enclosing component.

6.1.3 Code generation

VerCors includes the specification of a component membrane in the generated ADL

file and Java code. This requires an additional pre-processing step where the in-

put architecture is analysed in order to extract interceptors and to map functional

interfaces of a composite to a chain of interceptors.

6.2. COMPONENT ATTRIBUTES AND ATTRIBUTE CONTROLLERS 135

1 <definition name=”Composite”>

2 <interface name=”S3” role=”server” signature=”interfaces.FItf” interceptors=”Monitor.S1”/>

3 <component name=”Prim1”>

4 ...

5 </component>

6 <binding client=”this.S3” server=”Prim1.S3”/>

7 <controller desc=”composite”>

8 <interface name=”S1−controller” role=”server” signature=”p.interfaces.NFItf”/>

9 <interface name=”S2−controller” role=”server” signature=”p.interfaces.NFItf”/>

10 <interface name=”C1−controller” role=”internal−client” signature=”p.interfaces.NFItf”/>

11 <interface name=”C2−controller” role=”internal−client” signature=”p.interfaces.NFItf”/>

12

13 <component name=”Contr1”> ... </component>

14 <component name=”Contr2”> ... </component>

15 <component name=”Monitor”> ... </component>

16 <binding client=”this.S1−controller” server=”this.C1−controller”/>

17 <binding client=”Contr1.C2” server=”this.C2−controller”/>

18 <binding client=”Contr1.C1” server=”Contr2.S1”/>

19 <binding client=”this.S2−controller” server=”Contr1.S1”/>

20 <binding client=”this.C1−controller” server=”Prim1.S1−controller”/>

21 <binding client=”this.C2−controller” server=”Prim1.S2−controller”/>

22 </controller>

23 </definition>

Listing 6.1 – Generated ADL file of a composite with a componentised membrane

Listing 6.1 illustrates a simplified version of an ADL file generated for Composite

from Figure 6.1. The specification of its membrane is given in lines 7-22. It includes

the non-functional internal and external interfaces (lines 8-11), both component-

controllers (lines 13-14) and an interceptor (line 15), bindings in the membrane

(lines 16-19), and bindings connecting the non-functional internal interfaces and the

components in the content (lines 20-21). One can notice that all the bindings in the

membrane are included in the ADL specification except from the ones connecting

an interceptor to the interfaces which calls it intercepts. Instead, the interceptor is

referenced by the corresponding interface in line 2.

The Java classes of component-controllers are constructed in the same way as the

classes implementing functional components. For the interceptors we generate two

additional methods which are invoked when a request is intercepted and after it has

been served.

6.2 Component attributes and attribute con-

trollers

A GCM primitive component can have attributes which are used by its methods. In

fact, we should distinguish between the two aspects: the statefull components (i.e.

the attributes of a component which can be accessed and modified by its methods)

136 CHAPTER 6. ADVANCED FEATURES

Figure 6.3 – Graphical specification of a component attribute

and the get/set access to the attributes of a component from outside. For the first

aspect, we discuss in this section how the attributes of a primitive can be designed

graphically, accessed from its methods, translated into pNets, and generated in the

implementation code. However, we have not yet decided which graphical notations

should be used for the second aspect. Hence, if the user would like to make an

attribute accessible from outside of a component, he must explicitly define a server

method which implements the necessary access. In the generated code we make

the attributes accessible from outside of a component because this is needed for the

GCM/ProActive factory during the deployment.

6.2.1 Graphical specification

As it was discussed in Section 3.2 the attributes of a primitive component should be

declared in the UML class attached to the component. Figure 6.3 illustrates a sim-

plified version of a leader election algorithm participant from our use-case discussed

in Chapter 3. The component has only one attribute - max. In addition, for each

attribute of a class, the user should declare so-called set- and get-methods which are

used to modify and access the value (set max() and get max in our example). The

user should not define any state machine for the behaviour of these methods. The

default initial value of an attribute can be provided in the class specification (it is

equal to 1 in our case). If the user wants to define a specific value for a particular

component, then it should be given in a dedicated green area (the initial value is

equal to 2 in our example).

6.2. COMPONENT ATTRIBUTES AND ATTRIBUTE CONTROLLERS 137

6.2.2 From application design to pNets

Global structure. For each pair of a get- and a set-methods defined for an at-

tribute, we construct a pLTS called attribute controller which stores the value of

the attribute and provides actions to modify and to access it. The pLTSs should

be included in the pNet of the primitive together with the synchronisation vectors

modelling access to the attributes.

The behaviour of a primitive component with attribute controllers is formalised

below. We extend the definition of a primitive with a set Attributes which includes

its attributes.

�CName <SItf i∈Ii ,CItf
j∈J
j ,Mk∈K

k , Attributes>�AC =

�CName <SItf i∈Ii ,CItf
j∈J
j ,Mk∈K

k , Attributes>� ⊕��AC,SVAC��

Where AC is computed by the following rule:

ai∈AI
i = Attributes(Comp)

AC =
←−−−−−−→
���ai�

n∈AI
ac ��

Here the function � �ac returns the pLTS of an attribute controller.

Attribute controller pLTS. The behaviour of an attribute controller is encoded

as a pLTS as illustrated in Figure 6.4. This pLTS stores a variable max which repre-

sents the modelled attribute, and provides actions to access its value (Call Get max(),

R Get max(max)) and to modify it (Set max(?max)).

Call_Get_max

R_Get_max(max)

Call_Set_max

(?max)

Figure 6.4 – An attribute controller pLTS

138 CHAPTER 6. ADVANCED FEATURES

Table 6.1 – Attribute controller synchronisation vectors for primitive components.
The synchronised sub-pNets are:

��Queue,Body, ServiceMethods,ProxyManagers,Proxies,AttributeControllers��

ml∈L
l = MethLabels(SItf) ai∈AI

i = Attributes(Comp)

{�−,−, l �→ Call Get aci,−,−, i �→ Call Get ai� → Call Get ai, [1]
�−,−, l �→ R Call Get ai(val),−,−, i �→ R Call Get ai(val)� → R Call Get ai(val)), [2]

�−,−, l �→ Call Set ai(val),−,−, i �→ Call Set ai(val)� → Call Set ai(val))} [3]

⊆ SVAC(m
l∈L
l)

AC

Synchronisation vectors. The pNet of a primitive component should include one

attribute controller pLTS for each attribute. The pLTSs can be accessed from the

server and local methods of the component; in order to enable such access, the pNet

of the primitive is extended with the synchronisation vectors given in Table 6.1. The

vectors rely on an additional construct Attributes(Comp) which provides a set of

attribute names of the generated primitive where each attribute has a unique name.

Rules [AC.1] and [AC.2] synchronise the server methods and the attribute controllers

when a server method modifies the value of an attribute. Rule [AC.3] allows server

methods to access the attribute values. As in the previous definitions, the rules

include only pLTSs of the server methods, but the local methods are synchronised

with the attribute controllers in the same way.

In order to make an attribute accessible from outside of a primitive, we would

need to extend the queue and the body with the actions for the treatment of the

requests to the attribute controller, and to synchronise them as for any other server

method.

6.2.3 Implementing pNet generation and integration with

CADP

VerCors generates one attribute controller pLTS for each attribute of a primitive com-

ponent and synchronises it with the pLTSs encoding the server and local methods of

the component. The construction requires several steps in addition to the pNet gen-

eration process discussed in Section 5.1.3. First, at the pre-processing phase, VerCors

extracts a set of attributes for each generated primitive; and for each state machine

encoding the behaviour of a method, the pre-processor extracts the set of attributes

accessed by the state machine. Second, while constructing a pNet encoding the be-

haviour of a primitive, for each attribute belonging to the component, the platform

additionally invokes an attribute controller builder which creates the corresponding

6.2. COMPONENT ATTRIBUTES AND ATTRIBUTE CONTROLLERS 139

pLTS. Finally, VerCors generates the synchronisation vectors following the rules from

Table 6.1. Thanks to the analysis done at the pre-processing phase, the synchroni-

sation between methods and attribute controllers which do not communicate is not

generated.

6.2.4 Code generation

Listing 6.2 provides an example of the generated Java class for Class0 from Figure 6.3.

In order to include attributes in the generated code of a GCM/ProActive primitive

component, we have to produce several additional constructs.

1 public class Class0 implements Class0AC ... {

2 public int max = 1;

3

4 public void set max(int value) {

5 this.max = value;

6 }

7 public int get max() {

8 return this.max;

9 }

10 }

Listing 6.2 – A Java class implementing the behaviour of a primitive component with

an attribute

First, we include a field corresponding to each attribute in the Java class (line 2).

If its default value is specified in the UML class, it is also translated into Java code.

GCM/ProActive provides a mechanism to set a value of an attribute which is spe-

cific to a particular component (the value that is graphically defined in the green area

included in the specification of a primitive). For this, we need to include the value in

the ADL description of the component as shown in Listing 6.3. The GCM/ProActive

factory reads the value of each attribute in the ADL file and assigns it during the

component construction.

1 <component name=”Comp2”>

2 ...

3 <attributes signature=”example.interfaces.Class0AC”>

4 <attribute name=” max” value=”2”/>

5 ... other attributes

6 </attributes>

7 <controller desc=”primitive”/>

8 </component>

Listing 6.3 – An ADL specification of a component attribute

Line 3 in in this ADL description refers to the Java interface Class0AC which

methods will be invoked by the factory in order to set the values of the component

attributes. The interface includes the signatures of the set- and get-methods for the

140 CHAPTER 6. ADVANCED FEATURES

attributes included in the ADL description of the component. The interface should

be implemented by the class modelling the behaviour of the component (Class0 in

our example). Such kind of interfaces are also generated by VerCors.

Finally, VerCors automatically produces the code of the set- and get-methods for

each attribute (see lines 4-9 in Listing 6.2).

6.3 Reconfigurable multicast interfaces

One of the core features of the GCM component model is collective communications

which occur through the multicast and gathercast interfaces.

A multicast interface (or a multicast for short) is a client interface which can

send several requests to different targets simultaneously, and then gather the results.

Moreover, the group of target interfaces can be reconfigured at run-time, i.e. the

bindings going from a multicast interface can be dynamically added and removed.

According to the specification of GCM, the policy of a multicast (i.e. how one request

is transformed into several requests, and how multiple results are assembled in a

single result) is customizable. GCM/ProActive defines several default policies for

the multicast interfaces. The unicast policy is used to send one argument to one

destination interface. The broadcast policy copies the list of the arguments and sends

the request to all the plugged target interfaces. The scatter policy splits the list of

arguments and sends a part of it to each target interface. The round robin policy

distributes each element of the list parameter in a random manner to the connected

server interface.

A gathercast interface can receive several method invocations at the same time

and transform them into one request. The gathercast interfaces were not studied in

this work mainly due to the lack of time. For their modelling and verification we plan

to rely on the same techniques as for the multicasts.

In this section we show how a multicast with a broadcast policy can be graphically

modelled, we formalise the generation of pNets encoding one-to-N communications

and explain their construction in VerCors. Finally, we briefly discuss the executable

code generation for the multicast interfaces. This section describes the structure of

a reconfigurable multicast interface and the way the reconfiguration instructions are

processed, and in Section 6.4 we will explain how the reconfiguration of a multicast

can be triggered from a non-functional component. The idea of how the pNets can

be used to encode multicast interfaces was presented in [63]. However, this thesis

is the first work presenting the chain from the graphical design to the generation

of the input for the model-checker and the executable code of the applications with

6.3. RECONFIGURABLE MULTICAST INTERFACES 141

Figure 6.5 – A primitive component with a multicast Interface

Figure 6.6 – A composite component with multicast internal and external interfaces

multicast interfaces.

6.3.1 Graphical specification

As it was discussed in Section 3.2, the representation of a GCM interface modelled

in VerCors changes depending on the values of various properties. In particular, the

user can set the cardinality of an interface either to singleton or to collective. A

collective client interface is a multicast interface. It can belong either to a component

(an external interface) or to a content of a composite (an internal interface).

An example of a multicast interface attached to a primitive component is illus-

trated in Figure 6.5 (see M1). Figure 6.6 shows an example of a composite with an

external multicast Mcast-ext and an internal multicast MCast-int. The user can

assign indices to the bindings going from a multicast interface in order to refer to

them while modelling system reconfiguration (this will be explained in Section 6.4).

In order to analyse application reconfiguration, the user should also model bindings

which do not exist when the modelled application is launched but can appear during

system execution, e.g. the dashed binding 3 going from Mcast-int to S1 of SubComp3.

142 CHAPTER 6. ADVANCED FEATURES

6.3.2 From application design to pNets

Components with multicast interfaces graphically specified in VerCors can be trans-

lated into pNets for analysis. This section provides a model for multicast interfaces

where the capabilities of the pNets’ synchronisation vectors are fully used and allow

one component to broadcast a request to several others, or one component to provide

a reply that would reach the right index in a group of futures. For this, we define

richer future proxies that can handle a list of results, and provide a result as soon as

enough results are available. This section defines � �MC, the behavioural semantics

for components equipped with reconfigurable multicast interfaces.

Principle of the approach

We first explain the principle of the approach focusing on the multicast interfaces of

the primitive components. When a client interface is of type multicast, it may have

a variable number of outgoing bindings (it is bound to the server interfaces of several

components). Invocations emitted by a multicast interface are broadcasted to all the

server interfaces bound to it. In GCM, depending on the interface policy, arguments

of requests emitted by the interface can be dispatched in a parameterisable manner.

Here, we suppose that the argument is broadcasted to all the destination components.

Then results will come back in an asynchronous way from the elements of the group.

The encoding of multicast interfaces relies on the two pLTSs of Figures 6.8 and 6.7

for dealing with the specific future proxies:

• one Group Proxy Manager for each method of each multicast interface: Fig-

ure 6.7 shows the process GrPM m that defines the value of �m�proxyManager
in case the method m belongs to a multicast interface. Compared to a clas-

sical proxy manager, each group proxy manager is also in charge of managing

changes in the group content (bindings and unbindings). Each binding/unbind-

ing operation targeted at a client multicast interface is thus broadcasted to all

the group proxy managers of all the methods of this interface.

• for each method in the multicast interface, an indexed family of Group Prox-

ies: Figure 6.8 defines a process GrProxyPrim m that overrides the value of

�m�proxy in case m belongs to a multicast interface. Upon each request in-

vocation, a corresponding proxy is activated and initialised. Each incoming

reply to this request will update a result vector (additional conditions check

that a given component does not reply twice). Results can be accessed by the

server and local methods that can query either the result vector totally filled

(GetValue m), a partially filled vector (WaitNth m), or an element from the

6.3. RECONFIGURABLE MULTICAST INTERFACES 143

Bind(?t)

G[t]:=true

Unbind(?t)

G[t]:=false

Recycle_m(?p)

Pool_Proxy(p).free:=true

GetProxy_m

p:=0

Recycle_m(?p)

Pool_Proxy(p).free:=true

[Pool_Proxy(p).free=false]

Recycle_m(?p)

Pool_Proxy(p).free:=true
[p=Max_Proxy]

Error(NoMoreProxy]

[p<Max_Proxy]

p++

[Pool_Proxy(p).free=true]

New_m(G)

Pool_Proxy(p).free:=false

GrPM_m

p, t:nat

G:array[1..Max_Group] of bool

Pool_Proxy:array[1...Max_Proxy] of bool

Figure 6.7 – A Group Manager

vector (GettNth m) at a given index. As in the case of the standard future

proxies, a group proxy can be recycled, whenever it can be decided that it will

never be used again.

Note that in the Group Manager pLTS, the group variable G is modified by Bind

and Unbind actions. The values of the elements in G reflect to the status of the

bindings at the corresponding indices in the target group. If G[t] is equal to true,

then the binding at index t is bound, and the corresponding target interface will be

requested during the method invocation. Each time the Group Manager activates a

new Group proxy (New m action), it sends a copy of the value of G, so that even

if reconfigurations occur, each proxy keeps its own copy of Group, on which the

invocation has been performed.

The pNet of a primitive component with a multicast interface is shown in Fig-

ure 6.9, it corresponds to the primitive component that was shown in Figure 6.5. The

figure shows the parts of the pNet that are specific to the handling of multicast inter-

faces. It illustrates that binding operations received in the queue are broadcasted to

each group proxy manager of the targeted multicast interface. Then proxy creation

(New m) is synchronised similarly to the case of usual interfaces except that the cur-

rent status of the multicast interface (G) is transmitted to the created proxy. The

main specificity of the synchronisation vectors for multicast interfaces is the fact that

a request emission is also synchronised with the corresponding proxy that provides

the correct value of G targeted by the invocation (MC(G)), and the outgoing request

144 CHAPTER 6. ADVANCED FEATURES

Recycle_m

MC(G)

[len = length(G)]

GetValue_m(f, vect)

WaitN_m(?nbWait) [len >= nbWait]

R_WaitN_m(f, vect)

R_m(?i, ?val);

if vect(i) = undef

 then len++ fi

vect(i) := val

New_m(?f, ?G)

nbWait := length(G)

vect := [undef … undef]

len := 0

[vect(n) != undef]

GetNth_m(f,n,vect(n))

GrProxyPrimitive_m

f, len, i, nbWait:nat

G:array[1...Max_Group] of bool

val: resultType

vect:array[1...]Max_Group] of resultType

Figure 6.8 – A Group Proxy for a method of a primitive component

i

i

i
 i

 i

Figure 6.9 – pNet model for Figure 6.5

6.3. RECONFIGURABLE MULTICAST INTERFACES 145

B[1]

B[2]

B[n]

Multicast Example

!Q mi(p, arg)

!Q mi(p,G, arg)

Method m

[G=0,0,...,1]

[G=1,0,...,0]

[G=1,1,...,1]

R mi((p, 1), val)

?Q mi((p, 1), arg)

?Q mi((p, 2), arg)

?Q mi((p, n), arg)

!MC(G)

GrProxy m1

GrProxy m2

C7.2

C17

Figure 6.10 – Dynamic Connector for a Multicast Interface

also sends G as argument. This argument containing the invoked group will be used

at the higher level in the hierarchy by the encompassing composite component. We

will also use variable g for the target interfaces which status is included in the group

G: g ranges over qualified names. Finally, actions for accessing the group proxy

(WaitN m, GetValue m, GetNth m) can be invoked by the server methods.

Figure 6.10 illustrates the principle of the synchronisation occurring at the higher

hierarchical level, in the composite that contains the component with the multicast

interface. Remember that we use the maximal value of the group size (the number of

all bindings going from a multicast including normal and dashed bindings). This size

is used to create an array that the connector uses to deliver requests to the adequate

server interfaces depending on the group value at the time of invocation.

In the case of multicast interfaces, the proxy has to know the group addressed

by the invocation.eTo simplify notations, we rather create a bigger array of results

but only the ones corresponding to bound elements of G will be used. Knowing G at

invocation time is also useful to implement a GetValue primitive returning a result if

all replies came back. It is important to note that the group G known by the proxy

is the one that was active at invocation time regardless of bind/unbind operations

that occurred after the invocation.

As for reconfigurable interfaces, the queue and the body of the components that

contain multicast interfaces must be able to accept and handle bind and unbind

requests. In order to handle reconfiguration, the queue and the body are extended

so that they can handle the Bind Itf and Unbind Itf requests. Each action dedicated

to the reconfiguration has a parameter t which represents the index of the target

interface which is bound or undound in the group G. When a request to bind or

unbind an interface arrives, it is first dropped in the queue. Then, the body takes

146 CHAPTER 6. ADVANCED FEATURES

it following the FIFO policy. The request is then forwarded to the proxy manager.

The proxy managers receives Bind/Unbind actions and stores the current value of the

group (in the variable G), whereas the group proxies are responsible for emitting the

current value of the group at invocation.

Finally, the structure of future identifiers has to be enriched for dealing with mul-

ticast interfaces: in the following a future identifier, like f , p, can be either a classical

future identifier, or a couple made of a classical future identifier and an index, the

index being used to identify uniquely the destination of the invocation among G, the

group of invoked components. This way we will be able to distinguish replies origi-

nating from two different members of the group, and concerning the same invocation.

Consequently when constructing the synchronisation vectors (more precisely, in Ta-

ble 6.4), we rely on a function IndexG(g) that returns an integer for each g ∈ G. This

index will be attached to the future identifier to uniquely identify the destination of

the multicast invocation. The function should be injective so that two targets cannot

receive the same index; we let id range over those indices.

Multicast Interfaces for Primitive Components

The pNet of a primitive component with multicast interfaces is similar to the pNet

without multicast interfaces, except that the proxy managers and the proxies for

methods of multicast interfaces are replaced by the pLTSs defined in Figures 6.7

and 6.8: � �proxyManager is overloaded for multicast interfaces, it returns the clas-

sical proxy manager for a singleton interface, and the new one of Figure 6.7 for a

multicast interface, and similarly for � �proxy. In addition, to these changes in the

behavioural semantics of future proxies and their managers, the synchronisation vec-

tors are modified as shown in the next rule: synchronisation vectors containing the

name of a multicast interface are replaced by a new one. Note that, as method labels

contain the name of the interface, �(CItf j∈J
�

j) removes all the synchronisation vectors

containing the name of a method mi of an interface CItfj among its action labels.

ml∈L
l = MethLabels(SItf i∈Ii) CItf

j∈J �

j = {CItfj |j ∈ J ∧ CItfj is multicast}

�CName <SItf i∈Ii ,CItf
j∈J
j ,Mk∈K

k >�MC =

�CName <SItf i∈Ii ,CItf
j∈J
j ,Mk∈K

k >� �(CItf j∈J
�

j)⊕ ��SVMC
C (CItf j∈J

�

j , L)��

The synchronisation vectors SVMC
C for the multicast interfaces of a primitive

component are defined in Table 6.2, they correspond to Figure 6.9. We introduce a

new variable vect, similarly to arg and val, vect ranges over arrays of values. In the

6.3. RECONFIGURABLE MULTICAST INTERFACES 147

Table 6.2 – Synchronisation vectors for multicast client interfaces in primi-
tive components. The synchronised sub-pNets occur in the following order:
��Queue,Body, ServerMethods,ProxyManagers,Proxies��

j ∈ J l ∈ L mi∈I
i = MethLabels(CItfj) i ∈ I p ∈ N CItfj is multicast

{�−,−, l �→ GetProxy mi, j �→ i �→ GetProxy mi,−� → GetProxy mi, [1]
�−,−, l �→ New mi(p), j �→ i �→ New mi(p,G), j �→ i �→ p �→ New mi(G)�→

New mi(p,G), [2]
�−,−, l �→ Q mi(p, arg),−, j �→ i �→ p �→ MC(G)� → Q mi(p,G, arg), [3]
�−,−,−,−, j �→ i �→ p �→ R mi(id, val)� → iR mi((p, id), val), [4]
�−,−, l �→ Recycle mi(p), j �→ i �→ Recycle mi(p), j �→ i �→ p �→ Recycle mi� →

Recycle mi(p), [5]
�−,−, l �→ WaitN mi(p, nb),−, j �→ i �→ p �→ WaitN mi(nb)� →

WaitN mi(p, nb), [6]
�−,−, l �→ R WaitN mi(vect),−, j �→ i �→ p �→ R WaitN mi(vect)� →

R WaitN mi(p, vect), [7]
�−,−, l �→ GetNth mi(p,nb, val),−, j �→ i �→ p �→ GetNth mi(nb, val)� →

GetNth mi(p, nb, val), [8]
�−,−, l �→ GetValue mi(p, vect),−, j �→ i �→ p �→ GetValue mi(vect)� →

GetValue mi(p, vect), [9]
�−,Bind CItfj(t),−, j �→ (i� ∈ I �→ Bind(t)),−� → Bind CItfj(t), [10]

�−,Unbind CItfj(t),−, j �→ (i� ∈ I �→ Unbind(t)),−� → Unbind CItfj(t), [11]

�Serve Bind CItfj(t), Serve Bind CItfj(t),−,−,−,−� → Serve Bind CItfj(t), [12]

�Serve Unbind CItfj(t), Serve Unbind CItfj(t),−,−,−,−� →
Serve Unbind CItfj(t)} [13]

⊆ SVMC
C (CItf j∈Jj , L)

P6

rules, we write (i� ∈ I �→ (Bind(t))) to represent the family Bind(t)i
�
∈I ; this represents

a synchronisation vector that broadcasts the action Bind(t) to all the elements inside

I, here all the proxy managers of the reconfigured interface.

Cases [P6.1] and [P6.2] are used to create a proxy: compared to Section 5.1.1,

the content of the group targeted by the invocation (G) is transmitted to the proxy.

The element [P6.3] expresses request emission, with the proxy emitting the adequate

value of G. Compared to singleton interfaces, reply reception uses the fact that an

index id is attached the future, and transmits this index to the future proxy for mul-

ticast interface. Recycle [P6.5] is similar to the non-multicast case. Elements [P6.6]

and [P6.7] are used for waiting for a given number, nb, of responses: first, nb is sent

to the proxy (WaitN mi action), and then a reply is sent back to the server method

by R WaitN mi. The two next rules [P6.8] and [P6.9] do not require to work in a

request/reply manner, the proxy can directly emit GetNth mi and GetValue mi ac-

tions when they are enabled, i.e. when the necessary replies have arrived. The next

148 CHAPTER 6. ADVANCED FEATURES

two elements ([P6.10] and [P6.11]) deal with the reconfiguration of the multicast in-

terface: they transmit bind and unbind orders from the body to all the group proxy

managers corresponding to the reconfigured interface. The two last items [P6.12]

and [P6.13] synchronise the request queue with the body in order to serve bind and

unbind requests. One can notice that the iQ Bind and iQ Unbind actions of a queue

are not included in any synchronisation vectors. Indeed, the en-queueing of bind and

unbind requests is not exposed to outside of a component. Instead, it is done by

the component-controllers inside the membrane. Hence, the component-controllers

should synchronise with the queue in order to modify interfaces as it will be discussed

in Section 6.4.

Similarly to the client methods of singleton interfaces, the methods of multicasts

can be invoked not only by server methods but also by local ones. In this case, a

pLTS of a local method should synchronise with the corresponding proxy and proxy

manager.

Multicast Interfaces for Composite Components

Concerning composite components, two aspects have to be added. First, composite

components can also have multicast client interfaces which can be either external or

internal. Second, composite components have to encode the synchronisation between

multicast interfaces and the plugged components inside the composite.

Similarly to primitive components, the proxy managers and the future proxies are

different for multicast interfaces compared to normal interfaces. The proxy manager

for a method of a multicast interface is the same as the one for primitive components

(see Figure 6.7). Since a composite itself does not encapsulate any application logic,

a group proxy is quite different and quite simpler than the primitive component case,

it is shown in Figure 6.11. The process GrProxyComposite m defines the behavioural

semantics of the proxy for a multicast interface of a composite component: �m�proxy.

After creation and emission of a MC(G) action, this future proxy accumulates replies

and when all futures have been received, a R m(f, vect) action is emitted. Note that,

as there is no application logic encapsulated in the composite component, a given

policy must be chosen to know when a reply is issued from a multicast interface

belonging to a composite. Here we choose to reply the whole vector of replies when

it is completely filled. It would also be possible to implement a different policy, for

example return the most frequent result or wait until at least half of the replies have

been filled.

6.3. RECONFIGURABLE MULTICAST INTERFACES 149

New_m(?f, ?G)

vect:=[undef...undef]

len:=0

R_m(?i, ?val);

if vect(i) = undef

 then len++ fi

vect(i) := val

MC(G)

[len = length(G)]

R_m(f, vect)

GrProxyComposite_m

len, i, f:nat

G:array[1...Max_Group] of bool

val: resultType

vect:array[1...MaxGroup] of resultType

Figure 6.11 – The Proxy of a multicast interface inside a composite component

The behavioural semantics of proxies and their managers is different for the multi-

cast and singleton interfaces. Then, the behavioural semantics of a composite compo-

nent supporting multicast interfaces is the following: it redefines the synchronisation

vectors for transmitting request and replies concerning multicast interfaces, and the

ones concerning the group proxies and their management.

mi∈L
i are the methods that belong to multicast interfaces of the composite or its sub-components

mi∈L�

i are the methods that belong to multicast interfaces of the composite component

Itfh
h∈H = (CItf j∈Jj) � (Symm(SItfi)

i∈I)

SVMC = SVMC
C (CItf j∈Jj , Itf h∈Hh) ∪ SVC(CItf

j∈J
j , Itf h∈Hh)∪

SVMC
B (TopBindingb∈Bb ,SItf i∈Ii ,CItf

j∈J
j ,Compk∈Kk ,CName)

�CName <SItf i∈Ii ,CItf
j∈J
j ,Compk∈Kk ,TopBindingb∈Bb >�MC=

�CName <SItf i∈Ii ,CItf
j∈J
j ,Compk∈Kk ,TopBindingb∈Bb >� �

Q ml∈L
l � GetProxy ml∈L�

l � New ml∈L�

l � R ml∈L�

l ⊕ ��SVMC��

150 CHAPTER 6. ADVANCED FEATURES

i

i

i

i

Figure 6.12 – pNets for the Composite component with multicast internal and external
interfaces

Figure 6.12 illustrates the construction of synchronisation vectors for a composite

component having one internal client multicast interface, and one external client

multicast interface. The rules for generating the synchronisation vectors dealing with

the multicast server and client interfaces of a composite component are shown in

Table 6.3.

The first rule [C14] defines the emission [C14.1] of a request on a multicast external

client interface and the reception of a reply by this interface [C14.2]. The request

is emitted by the delegation method indexed k, the proxy provides the target group

G. The emission of request by internal multicast client interfaces will be described

below as it depends on the bindings inside the composite component. The reply

reception [C14.2] is similar to the reply reception in a primitive component [P6.4].

The second rule [C15] expresses the creation of a new future proxy and the bind-

ing/unbinding of interfaces, it is very similar to the primitive component case, except

that, as it is the case for a normal interface of a composite component, the future

corresponding to the request served by the composite component is transmitted to

the proxy.

We now describe how we generate synchronisation vectors for the bindings involv-

ing a multicast interface. As it was defined in Section 4.4.4, we require that there is

no looping binding and two bindings from the same MC interface do not reach the

same component; this allows us here to write synchronisation vectors for expressing

6.3. RECONFIGURABLE MULTICAST INTERFACES 151

Table 6.3 – Synchronisation vectors for multicast interfaces in composite components.
The synchronised sub-pNets occur in the following order:
��Queue,Body,DelegationMethods,ProxyManagers,Proxies, Subcomponents��

j ∈ J mk∈K
k = MethLabel(CItfj) k ∈ K p ∈ N CItfj is multicast

{�−,−, k �→ Q mk(p, arg),−, j �→ k �→ p �→ MC(G),−� → Q mk(p,G, arg), [1]
�−,−,−,−, j �→ k �→ p �→ R mk(id, val),−� → iR mk((p, id), val)} [2]

⊆ SVMC
C (CItf j∈Jj , Itf h∈Hh)

C14

h ∈ H mk∈K
k = MethLabel(Itfh) k ∈ K f, p ∈ N Itfh is multicast

{�−,−, k �→ GetProxy mk(f), h �→ k �→ GetProxy mk(f),−,−� → GetProxy mk(f), [1]
�−,−, k �→ New mk(p), h �→ k �→ New mk(p, f,G), h �→ k �→ p �→ New mk(f,G),−�→

New mk(p, f,G)} [2]
�−,Bind Itfh(t),−, h �→ (k� ∈ K �→ Bind(t)),−� → Bind Itfh(t), [3]
�−,Unbind Itfh(t),−, h �→ (k� ∈ K �→ Unbind(t)),−� → Unbind Itfh(t), [4]
�Serve Bind Itfh(t), Serve Bind Itfh(t),−,−,−� → Serve Bind Itfh(t), [5]
�Serve Unbind Itfh(t), Serve Unbind Itfh(t),−,−,−� → Serve Unbind Itfj(t)} [6]

⊆ SVMC
C (CItf j∈Jj , Itf h∈Hh)

C15

multicast interfaces in a simpler way. Indeed, those restrictions ensure that in each

of the synchronisation vectors expressed below, each sub-pNet of the composite pNet

performs a single action in a given synchronisation vector.

In order to define reconfigurable bindings for multicast interfaces, we rely on

TopBinding, the maximal set of bindings that can exist. In practice, it is specified

by the application architect: in VerCors is it the combination of the normal and

dashed bindings going from the multicast interfaces. Then we define four rules for

building synchronisation vectors from TopBinding. For each of the three first rules, we

build Gmax the maximal set of qualified names that can be bound to the considered

multicast interface. Then we consider all the possible subsets G of Gmax; these

are the possible sets on which the request invocations originating from the multicast

interface can arrive. Note that SVB has now CName as additional parameter, it is the

name of the composite component that contains the bindings. We use two auxiliary

functions for computing Gmax, and for obtaining the index of the component inside

a qualified name:

Gmax(TopBindingb∈Bb ,QName,CName) =

{C.Itf|(QName, C.Itf) ∈ TopBindingb∈Bb ∧ C �= This}{{This ← CName}}

Target(C.Itf,Compk∈Kk) = k ∈ K such that C = Name(Compk)}

152 CHAPTER 6. ADVANCED FEATURES

Note that Gmax renames the occurrences of This into CName because when the

encompassing composite is bound, it is referred by its name, not This.

Table 6.4 shows rules for building synchronisation vectors related to bindings in-

volving a multicast interface. Rule [C16] deals with the case when a server interface is

multicast, or more precisely an internal client interface is multicast. The item [C16.1]

in the synchronisation vector expresses request emission. Each request emitted by a

delegation method is broadcasted to the bound interfaces, where the destination set G

is taken from the adequate group proxy. For each destination of the invocation g ∈ G,

the index of the target component is obtained thanks to the Target function; then

IndexG(g) is attached to the future identifier. Replies can originate from each g mem-

ber of G independently (asynchronously); overall, we build one reply vector for each

element of Gmax. The synchronisation vectors for replies are split into two vectors

compared to singleton interfaces: the return of results from sub-components [C16.2]

is done independently from the reply of the overall result [C16.3], the second only

occurs when the vector of replies is filled. The last item of the first rule is in fact

unrelated to bindings, it is however more natural to mention it here; it sends a reply

out of the composite component when the vector of replies of a future proxy f of a

multicast server interface has been completely filled. Method renaming (computation

of m�

g from mj) relies on a function Itf that returns the interface of a method label.

The second rule [C17] deals with the case when a sub-component has a client

multicast interface that sends request to other sub-components. The rules are quite

similar to the previous case except that the emitter component has to be found (it

is indexed by k). The synchronisation between sub-components for the transmission

of a request synchronises the emitter k with the elements of G, or more precisely

with the sub-components indexed by Target(g) for g ∈ G. Again, indices of the

destination components are attached to the future identifier. The set of synchronised

sub-components is a family of card(G) + 1 elements (remember that the definition

of well-formed components ensures that k cannot be among the indices in G, i.e.

that there is no loop binding). There is no need to specify a rule for replies here

because the case of singleton interfaces still applies (except that it is instantiated

for the maximal binding set, TopBinding, and that it returns a future identifier that

contains an index IndexG(g)).

Rule [C18] deals with the case when a sub-component has a client multicast in-

terface that sends a request to other sub-components, but also to the encompassing

component (e.g. M1 in Figure 6.13). This rule applies when the invocation is per-

formed on a target group G that contains CName.Itf where CName is the name of

6.3. RECONFIGURABLE MULTICAST INTERFACES 153

Table 6.4 – Binding synchronisation vectors for multicast inter-
faces. The synchronised sub-pNets occur in the following order:
��Queue,Body,DelegationMethods,ProxyManagers,Proxies, Subcomponents��

i ∈ I SI = Name(SItfi) SI is multicast

m
j∈J �

j = MethLabels(SItfi)

j ∈ J � p, f ∈ N Gmax=Gmax(TopBindingb∈Bb ,This.SI,CName) G⊆Gmax
g ∈ Gmax k = Target(g,Compk∈Kk) for all C.Itf ∈ G. m�

(C.Itf)=mj{{Itf(mj) ← Itf}}

{�−,−, j �→ Q mj(p,arg),−, i �→ j �→ p �→ MC(G),
�

Target(g,Compk∈Kk) �→ iQ m�

g((p, IndexG(g)),arg)
�g∈G

�→ Q mj(p,arg), [1]

�−,−,−,−, i �→ j �→ p �→ R mj(id, val), k �→ R m�

k((p, id), val)� → R mj(p, val) [2]
�−,−,−, i �→ j �→ Recycle mj(p), i �→ j �→ p �→ R mj(f, vect),−� → R mj(f, vect)} [3]

⊆ SVMC
B (TopBindingb∈Bb ,SItf i∈Ii ,CItf

j∈J
j ,Compk∈Kk ,CName)

C16

k ∈ K C = Name(Compk)

CItf �i
i∈I�

= CItfs(Compk) i ∈ I � CI = Name(CItf �i) mj ∈ MethLabels(CItf �i)

CI is multicast Gmax=Gmax(TopBindingb∈Bb ,C.CI,CName) G⊆Gmax
�Itf.CName.Itf ∈ G f ∈ N for all C.Itf ∈ G. m�

(C.Itf)=mj{{Itf(mj) ← Itf}}

�−,−,−,−,−,
�

k �→ Q mj(f,G, arg),
�

Target(g,Compk∈Kk) �→ iQ m�

g((f, IndexG(g)), arg)
�g∈G

�

� →

Q mj(f, arg)

∈ SVMC
B (TopBindingb∈Bb ,SItf i∈Ii ,CItf

j∈J
j ,Compk∈Kk ,CName)

C17

k ∈ K C=Name(Compk)

CItf �i
i∈I�

= CItfs(Compk) i ∈ I � CI = Name(CItf �i) CI is multicast

mj∈MethLabels(CItf �i) Gmax=Gmax(TopBindingb∈Bb ,C.CI,CName) G⊆Gmax
G = {CName.Itf} �G� f ∈ N for all C.Itf ∈ G. m�

(C.Itf)=mj{{Itf(mj) ← Itf}}

�iQ mCName.Itf(f, arg),−,−,−,−,
�

k �→ Q mj(f,G, arg),
�

Target(g,Compk∈Kk) �→ iQ m�

g((f, IndexG(g)), arg)
�g∈G�

�

� →

Q mj(f, arg)

∈ SVMC
B (TopBindingb∈Bb ,SItf i∈Ii ,CItf

j∈J
j ,Compk∈Kk ,CName)

C18

k∈K C=Name(Compk)

(C.CI,This.CI2)∈TopBindingb∈Bb CI2 is multicast j∈J Name(CItfj)=CI2
f, q∈N mn∈N

n = MethLabels(CItfj) n ∈ N m�

n = mn{{CI2 ← CI}}

�−,−,−, j �→ n �→ Recycle mn(q), j �→ n �→ q �→ R mn(f, vect), k �→ iR m�

n(f, vect)� →
R mn(q, vect)

∈ SVMC
B (TopBindingb∈Bb ,SItf i∈Ii ,CItf

j∈J
j ,Compk∈Kk ,CName)

C19

154 CHAPTER 6. ADVANCED FEATURES

Figure 6.13 – A multicast of a sub-component sends an external request

the composite component. Note that as bindings are reconfigurable, the composite

component can be bound or not, and depending on whether it is bound, [C17] or

[C18] applies. This rule only applies for request transmission, it is similar to the

preceding rule except that the composite component also receives a request and that

the set of destination sub-components is obtained from G�, the elements of G that

are not the composite component.

The last rule [C19] deals with the sending of replies from a multicast client in-

terface of the composite component to a sub-component. As replies for multicast

are bound similarly to replies for singleton interfaces, the only difference is the time

when the client interface of the composite sends the reply. Indeed, if the interface is

singleton the reply occurs as soon as one reply is received, and the proxy for future

is used to rename the future identifier (see Section 5.1.2). In the case of a multicast

interface, the reply occurs independently from external communications when the

vector of replies is entirely filled. This is visible in the rule because the global action

is just an observable action of the form R m instead of a communication reception

of the form iR m. Rule [C14.2] that specifies the reception of the reply iR m by the

composite still applies for receiving replies from other components.

Methods that do not return any value. We do not need to construct a group

proxy for a void method of a multicast because there is no need to wait for the result.

However, we should still create the group manager in order to store the configuration

of the current group. Figure 6.14 illustrates the structure of a group manager for a

void method. It has only three actions: one to bind an interface, one to unbind an

interface, and an action to invoke the method on the current group.

6.3. RECONFIGURABLE MULTICAST INTERFACES 155

Bind(?t)

G[t] := true

Unbind(?t)

G[t] := false

MC(G)

GrPM_m

t:nat

G:array[1...Max_Group] of bool

Figure 6.14 – A Group Manager for a void method

6.3.3 Implementing pNet generation and integration with

CADP

At the pre-processing phase, VerCors analyses all user-defined multicast interfaces

and gathers the information necessary for the construction of the pNets. For each

multicast we extract:

• the list of all possible outgoing bindings. Recall that the user can define bindings

of two types: the ones bound during application construction and the ones

bound at the execution time (the dashed bindings); moreover, the user can

associate indices to the bindings. The order in the list of the possible outgoing

bindings must correspond to the user-defined indices associated to the bindings

if there are any;

• the initial group size: the number of bindings bound at application construction

time;

• the maximum group size: the number of bindings which can be potentially

bound to the interface;

Then, for each method of an internal and external multicast interface, VerCors

generates a group proxy and a group manager pLTSs and synchronises them. The

information gathered during pre-processing is used in order to construct the type and

the initial value of the variable G which stores the group of target interfaces in a group

manager. Several constructs included in the pLTSs illustrated in Figures 6.7 and 6.11

are not supported by Fiacre and by the meta-model of VerCors pNets. Hence, in order

to prepare the generated pLTSs to their translation into Fiacre, VerCors produces a

156 CHAPTER 6. ADVANCED FEATURES

group proxy and a group manager which are structurally slightly different from the

ones presented in the previous section.

In particular, an expression [len=length(G)] which compares the number of

received replies and the number of bound interfaces in a group proxy cannot be

directly included in Fiacre. The reason is that the construct length(G) is not defined

anywhere. Instead, in the generated group manager we store a variable gr length

representing the size of the current group; its value is modified upon Bind and Unbind

actions, and it is sent to the newly allocated proxy so that the proxy can compare it

to the number of obtained results.

Another difference is that the undef expression which corresponds to an undefined

reply from a target interface in a group is not supported by VerCors types. In order to

store the information regarding received replies, we add an additional array variable

in a group proxy.

Finally, the synchronisation vectors in EXP and in the meta-model of pNets in

VerCors cannot be associated with guards like the multicast method invocation vec-

tors illustrated in Figure 6.10. In order to enable reconfigurable connectors, we rely

on the renaming capability of CADP. More precisely, in the pLTS of a group proxy

we rename the action MC(G) so that the value of the parameter G is included in

the guard, and we generate separately an invocation synchronisation vector for each

possible group combination. For example, an invocation of a method m of the internal

multicast Mcast-int in Figure 6.6 can be encoded with the following synchronisation

vectors:

< MC 0 0 0, -, -, - > → MC 0 0 0

< MC 1 0 0, iQ m, -, - > → MC 1 0 0

< MC 1 1 0, iQ m, iQ m, - > → MC 1 1 0

< MC 1 1 1, iQ m, iQ m, iQ m > → MC 1 1 1

< MC 0 1 0, -, iQ m, - > → MC 0 1 0

< MC 0 1 1, -, iQ m, iQ m > → MC 0 1 1

< MC 0 0 1, -, -, iQ m > → MC 0 0 1

< MC 1 0 1, iQ m, -, iQ m > → MC 1 0 1

where the participating sub-nets are organised in the following order: < Gr-

Proxy m, SubComp1, SubComp2, SubComp3 > (for the sake of simplicity we omit

the synchronised pNets which are not involved in the method invocation). Depend-

ing on the value of the group, the pLTS of the group proxy emits MC 0 0 0(args) or

MC 1 0 0(args), etc).

6.4. RECONFIGURING MULTICASTS FROM NF COMPONENTS 157

6.3.4 Code generation

If the designed application with multicast interfaces has been proved correct with

respect to the user-defined requirements, VerCors can generate its GCM/ProActive

code. In the ADL file, multicast client interfaces should be tagged as collective.

The bindings which should not be initially constructed by the factory (e.g. the dashed

binding in Figure 6.6) are not included in the ADL description. Finally, the generated

Java code does not distinguish invocation of methods which belong to singleton and

multicast interfaces.

6.4 Reconfiguring multicast interfaces from

component-controllers

The internal and external interfaces of a composite component can be reconfigured by

the non-functional components located in its membrane. In this section we explain

how such reconfiguration can be modelled graphically, how it is encoded in pNets and

translated into Java code.

6.4.1 Graphical specification

While executing a server or a local method, a component-controller can trigger re-

configuration of an interface of its container. As for any primitive in VerCors, the

behaviour of non-functional primitives is defined using UML state machines (see Sec-

tion 3.2). Hence, the requests that trigger the reconfiguration should be also specified

in the state machines. For this, we introduce two specific state machine instructions:

unbind and bind, which represent method invocations on the parent component.

They take two input parameters: the name of the interface to be modified and the

index of the binding to be unbound or bound (remember the binding indices discussed

in Section 6.3.1).

Figure 6.15 illustrates an example of an application where a component-

controller unbinds an internal interface of its container. More precisely,

Controller has one server method unbindM1 which has only one instruction:

parent.unbind(Interfaces.M1, 1). Here, M1 is the name of the internal interface

which will be modified, and 1 is an index of the binding which should be removed.

158 CHAPTER 6. ADVANCED FEATURES

Figure 6.15 – Modelling binding reconfiguration

6.4.2 From application design to pNets

When generating the pNet of a composite, for each method of its multicast inter-

faces we construct the pLTSs of a group proxy and a group manager which encode

possible reconfiguration. The only additional thing needed in order to trigger the

reconfiguration is to synchronise the pNet of a component-controller with the queue

of the composite when the reconfiguration request is en-queued. More precisely,

we generate a synchronisation vector propagating each reconfiguration action of a

component-controller so that it is visible from outside. Then, we synchronise it with

the queue of the composite.

In our example, we extend the pNet of Controller with the following synchro-

nisation vector:

�−,−,Unbind Parent M1(t)� → Unbind Parent M1(t)

where the sub-nets are organised as follows: �Queue,Body, unbindM1�. Next,

when generating the pNet of Composite, we synchronise the reconfiguration action

of Controller with the queue of the composite:

�iQ Unbind M1(t),−,−,−,Unbind Parent M1(t),−� → iQ Unbind M1(t)

where the order of the synchronised sub-nets is:

�Queue,Body,ProxyManagers,Proxies,MembraneSubcomps,ContentSubcomps�

6.4.3 Implementing pNet generation and integration with

CADP

In order to generate pNets of applications with component-controllers which recon-

figure interfaces of their containers, we include several additional steps in the pNet

construction process discussed in Section 5.3.

6.4. RECONFIGURING MULTICASTS FROM NF COMPONENTS 159

First, pre-processing the state machines which model the behaviour of component-

controllers becomes slightly more complex. In addition to the usual analysis, we ex-

tract all reconfiguration instructions. For each reconfiguration instruction, we create

a structure which stores a reference to the modified interface, a reference to the modi-

fied binding, and the instruction type (bind or unbind). This information is stored in

the parsed state machine and used when the transition label with the corresponding

instruction is translated into a pLTS action.

When generating the synchronisation vectors for a pNet of a component-controller,

we check whether the parsed state machines modelling its behaviour include reconfig-

uration instructions. If so, each analysed instruction is translated into a pLTS action

and included in a synchronisation vector in order to be visible from outside of the

component-controller. This allows us to synchronise it later with the queue of the

composite-container.

Finally, when constructing the pNet of a composite, we check if the state-machines

modelling the behaviour of its component-controllers include reconfiguration instruc-

tions. If so, each reconfiguration instruction is translated into a pLTS action and

synchronised with the corresponding action in the queue of the composite.

6.4.4 Code generation

From the model of an application with reconfiguration of multicast interfaces, Ver-

Cors generates executable ProActive/Java code. However, the way reconfiguration

instructions are specified in GCM/ProActive and in VerCors is quite different, thus

the straightforward translation of reconfiguration statements from state machines to

Java code is not possible.

For a given composite component, GCM/ProActive allows the programmer to

get an instance of the PAMulticastController class which is able to reconfigure

the multicast interfaces. For this, it has two methods: bindGCMMulticast and

unbindGCMMulticast; both of them take two input parameters: the name of the

multicast source interface and a reference to the target interface of the modified bind-

ing. On the other hand, in VerCors the reconfigured binding is referenced through the

name of its source interface and a binding index (which does not exist in GCM/ProAc-

tive). When translating state machine instructions into Java code, we can compute

statically the target interface from the binding index if the index is a constant value

like in our example in Figure 6.15. However, it is not always the case: the index of

the reconfigured binding in a state machine instruction can be specified as a variable.

The solution we offer is to generate in the Java code a specific map. The map

stores the relations between the indices and the interfaces targeted by the corre-

160 CHAPTER 6. ADVANCED FEATURES

sponding bindings as it is specified in VerCors. Then, the map can be used during

the program execution in order to retrieve the desired target interface based on its

index. More precisely, when generating the ADL file of a component-controller, we

include an additional attribute hostReconfBindings which encodes a mapping from

the reconfigurable multicast interfaces to the list of target interfaces. The order of the

elements in the lists corresponds to the indices of the plugged bindings. Listing 6.4

illustrates the attribute included in the ADL file of Controller from Figure 6.15.

1 <attribute name=”hostReconfBindings” value=”M1:[SubComp1.S1, SubComp2.S1]”/>

Listing 6.4 – An ADL attribute which stores reconfigurable interfaces

By default, when the GCM/ProActive factory constructs a component, it invokes

a user-defined set-method for each of its attributes specified in the ADL file. We

generate a specific implementation of the set hostReconfBindings method which

parses the value of hostReconfBindings and constructs two maps. itfsMap maps

the name of a reconfigurable multicast interface to the list of names of the target

interfaces, compsMap maps the name of a multicast interface to the list of names of

the target components. The elements in the lists must be ordered according to the

attribute value in the ADL file. These names are used later in order to retrieve the

target interface by its index.

1 public class Controller extends AbstractPAComponentController implements ... {

2 //a map from the source reconfigurable interfaces to the target interfaces

3 private Map<String, List<String>> itfsMap;

4 //a map from the source reconfigurable interfaces to the target components

5 private Map<String, List<String>> compsMap;

6 //the method computes and returns a reference to an interface based on its name,

7 // the name of its host component and the container of its host component

8 public Object getInterface(Container compContainer, String compName, String itfName) {...}

9 //the method parses the input string and fills itfsMap and compsMap

10 public void setHostReconfBindings(String val) {...}

11 public void unbindM1() { ...

12 String tgtCompName = this.compsMap.get(”M1”).get(1);

13 String tgtItfName = this.itfsMap.get(”M1”).get(1);

14 ISingle tgtItf = (ISingle)this.getInterface(Container.CONTENT, tgtCompName, tgtItfName);

15 Utils.getPAGCMLifeCycleController(this.hostComponent).stopFc();

16 Utils.getPAMulticastController(this.hostComponent).bindGCMMulticast(”M1”, tgtItf);

17 Utils.getPAGCMLifeCycleController(this.hostComponent).startFc();

18 ... }}

Listing 6.5 – Java code of a component-controller

Listing 6.5 provides a simplified snippet of the Java code generated for the class

implementing the behaviour of Controller. The maps storing the information about

the reconfigurable interfaces are declared in lines 2-5. Line 9 defines a method which

uses ProActive API in order to retrieve the reference to an interface by its name, the

name of its component, and the container of its component. This method will be used

6.5. EXAMPLES 161

in order to get the target interface of the reconfigured binding. The information about

the container of the component to which the interface is attached is needed because

the target interface can be attached to a component in the content (when reconfig-

uring an internal interface) but also to a component outside the composite (while

the reconfigured interface is external). Line 12 defines setHostReconfigBindings

method which is used by the factory to set the values of itfsMap and compsMap.

Finally, the translation of parent.unbind(Interfaces.M1, 1) instruction is given

in the lines 16-21. It, first gets the names of the target interface and of the target

component (lines 16-17) based on the source interface and the binding index. Here,

the binding index is equal to 1 but it could also be a variable or an expression. Then,

we use the retrieved names for the invocation of the getInterface(...) method in

line 18 which returns a reference to the target interface. Now, all the information

needed for the reconfiguration is gathered, but before modifying an interface of a com-

posite component, we have to stop its functional part (line 19). Note, that here we

stop this.hostComponent, i.e. the composite containing our component-controller.

Once the functional part is stopped, the reconfiguration can be performed (line 20).

Finally, the composite can be started again (line 21).

To sum-up, we have developed a framework for modelling, verification, and genera-

tion of hierarchical component-based applications with functional and non-functional

aspects, reconfigurable multicast interfaces, attributes, and component-controllers

that can launch the reconfiguration. In the following section we will demonstrate

how our techniques can be applied in practice.

6.5 Examples

In this section we introduce the examples of two projects created in the VerCors plat-

form. In the first example we present a hierarchical software system with component-

controllers that reconfigure multicast interfaces and with attribute controllers. The

second example illustrates the usage of interceptors.

6.5.1 Composite pattern

Problem statement. In order to test our approach, we designed, model-checked,

and generated the code of a refined version of an application which was proposed

as a challenge problem at the SAVCBS1 workshop on specification and verification

of component-based systems in 2008. Later, the problem statement was published

1http://www.eecs.ucf.edu/ leavens/SAVCBS/2008/challenge.shtml

162 CHAPTER 6. ADVANCED FEATURES

in [88] as a part of a set of benchmarks for verification tools. The problem is dedicated

to the composite pattern which is very common in component- and object-oriented

programming. According to the challenge, there exists a tree of components (in GCM

terms we call it a ”hierarchy of components”), and a client has a uniformed interface

to access any sub-tree. Each composite in the tree has a counter childrenNum which

stores the number of its sub-components at all levels of hierarchy. The client can

add a sub-component anywhere in the system, and this should increment the value of

childrenNum for all its ancestors. The challenge is to keep the value of childrenNum

up-to-date.

We modelled the discussed application in VerCors. Since we plan to apply a finite

state-space model-checker, we cannot allow the client to add an infinite number of

sub-components. Instead, we model a system with three levels of hierarchy where

each composite (except from the leaves) can have three functional sub-components

and one non-functional sub-component responsible for the reconfiguration and for

storing the childrenNum variable.

In order to keep the proper encapsulation, we allow the client to have access

only to the interfaces of the root component of our hierarchy. More precisely, the

client can use a server interface of the root component and invoke the method

addSubcomp(parentId) on it. Here, parentId is the identifier of the component

inside which a new sub-component should be added. This parent component can

be located anywhere in the hierarchy. It should be also mentioned that each com-

posite stores an attribute myId which has a unique value and which is compared

to parentId. The addSubcomp(parentId) can return true or false depending on

whether a sub-component has been successfully added inside the component with

the given parentId. The result is negative in two cases: either the component with

the parentId is not accessible (it has not been added to the system yet or it does

not exist at all) or if such a component has already added the maximum number of

sub-components. Finally, each composite has an attribute childrenNum that stores

the total number of sub-components added to its sub-tree.

Graphical design. Figure 6.16 illustrates the component diagram of our use-case

example; for the sake of simplicity we hide the internal structure of most of the

components. The root component Comp1 has three composite sub-components with

an identical structure: Comp11, Comp12, and Comp13. Each of them also has three

sub-components with an identical structure. Each composite component (except

from the ones at the lowest level of hierarchy) has an internal multicast interface

C1 which can be bound to the three functional sub-components. All the bindings

6.5. EXAMPLES 163

Figure 6.16 – VerCors model of the composite pattern

going from the multicast interfaces are indexed. One can notice that the bindings

are dashed which means that they do not exist when the application is launched but

they can be added at run-time. In fact, the current version of VerCors does not allow

modelling applications with dynamically created components. Instead, we consider a

component to be ”added” in the tree when it is bound to the multicast interface C1

of its container. Sub-components cannot be added to the composites at the lowest

levels of hierarchy (i.e. to Comp111, Comp112, etc.).

Each composite has a component-controller responsible for adding sub-

components. The behaviour of the component-controllers at the lowest levels of

hierarchy is modelled by the class LeafClass. The behaviour of the component-

controllers of Comp11, Comp12, and comp13 is modelled by NodeClass. The

root controller of the root component is implemented by RootClass which extends

164 CHAPTER 6. ADVANCED FEATURES

Figure 6.17 – The class diagram of the composite pattern

NodeClass; all the classes are illustrated in Figure 6.17. NodeClass has three at-

tributes: myId is the unique identifier, childrenNum is the number of all functional

sub-components at the lower levels of hierarchy, and isBound represents the current

status of the internal multicast interface C1 of the encompassing composite. The lat-

ter attribute is an array of three boolean values. The value at a given index is true if

the outgoing binding with the corresponding index is bound. Otherwise, it is false.

Since no outgoing binding is initially bound to the multicast interfaces, isBound is

initially equal to [false, false, false] for all the components.

Each component-controller has a server method addSubcomp accessible from out-

side of its composite. The method is responsible for adding a sub-component and it

takes one input parameter parentId which represents the identifier of the component

where a sub-component should be added. If, for instance, the client would like to

bind a functional sub-component inside Comp12, he would invoke the method with

the argument equal to one. addSubcomp returns true if a sub-component has been

successfully added in the component on which the method was invoked or in any of

its sub-components. The method is implemented differently for NodeClass and for

LeafClass because the former cannot add any sub-component to the leaves of the

hierarchy.

6.5. EXAMPLES 165

Figure 6.18 – addSubcomp method

Figure 6.18 illustrates a state machine modelling addSubcomp of NodeClass. First,

in state Choice6 it checks if the received parentId equals its own identifier. Then,

two options are possible:

• If the two values differ, addSubcomp request is sent to the sub-components

through the multicast interface C1: ar:=addSubComp(parentId). This invokes

addSubcomp on all the sub-components bound to C1. Then, we iterate over

the array of received responses in order to check whether one of them is equal

to true. If such a response is found, the childrenNum value of the current

component is incremented, and the method returns a positive reply. Otherwise,

it returns false.

• If the input parameter is equal to the identifier of the current component, it

means that a new sub-component should be added inside the encompassing

composite. However, before doing the reconfiguration, we have to check that

adding a sub-component is still possible. Recall that our application can have

166 CHAPTER 6. ADVANCED FEATURES

Figure 6.19 – addAnyUnbound method

only finite number of components, and we modelled our system so that not

more than three sub-components can be added inside a composite. The check

is done by addAnyUnbound local method which is invoked by the transition

/isBound:=this.addAnyUnbound() and illustrated in Figure 6.19. The method

iterates over the isBound array in order to find the index of a binding which

has not been bound yet. If such an index exists, the method binds the binding

at the corresponding index (/parent.bind(Interfaces.C1, index), sets the

value of isBound at the index to true in order to remember that the binding

has been added, and returns true to addSubcomp in order to report that a sub-

component has been successfully bound. addSubcomp, in its turn, increments

the value of childrenNum and returns true. If all three sub-components have

been bound before, the method returns false and does not modify the counter

of the number of children.

A sub-component cannot be added at the lowest levels of hierarchy. Hence,

addSubcomp of LeadClass always returns false and does not perform any additional

actions.

The addSubcomp method of the server interface S1 of Comp1 is the entry point of

6.5. EXAMPLES 167

Figure 6.20 – Scenario for the composite pattern application

the modelled application. If the user wants to add a sub-component somewhere in the

hierarchy, he should invoke this method with the identifier of the target component.

In addition, each component-controller has a method foo. The method does not

encapsulate any logics, and we will use it later for the debugging purposes. Whenever

it is possible, the foo method invokes the foo method on the internal multicast

interface of the composite-container, thus propagating the call to the sub-components.

Finally, the root composite has an interface S2 with the computeChildrenmethod

which returns the value of childrenNum stored by its component-controller.

Model-checking and executable code generation. We used VerCors in order

to generate the pNets of the modelled application and to translate them into the input

for CADP. To reduce the global state-space of the system, we synchronised it with

the scenario illustrated in Figure 6.20. It adds random number of sub-components

to random composites in the application: there are no guards on the transitions

going from the choice state, hence, each time the next transition is chosen non-

deterministically. Then, the scenario requests the value of childrenNum of the root

component and invokes the foo method on the system.

We started building the model following the bottom-up approach: first, we con-

structed the components at the lower levels of hierarchy. From the very beginning

we realised that considering the reconfiguration, the variety of possible requests and

the values of the parameters, the state-space was going to be large. Hence, we de-

168 CHAPTER 6. ADVANCED FEATURES

cided to start by generating the necessary files and by building the state-space for

Comp11, Comp12, and Comp13. Then, we generated the remaining processes for Comp1

and constructed the final state-space using the obtained models for the three sub-

components.

Building the state-space for Comp11, Comp12, and Comp13 Recall that

when the user launches the state-space generation, he has to choose the root compo-

nent of the application and optionally the state machine modelling the behaviour of

the environment (i.e. the scenario). By default, VerCors constructs the state-space

starting from the processes at the lowest levels of hierarchy like if they are not affected

by the scenario, and then synchronises the root component with the scenario. The

reason is that in the current version we do not have tools to compute automatically

the impact of the scenario on the sub-components while building their state-space.

However, the scenario of our use-case example is quite generic and it is not difficult to

infer from the business logic of the application which requests from the environment

modelled in Figure 6.20 can eventually reach Comp11, Comp12, and Comp13. In par-

ticular, we know that the method call S1.addSubcomp(0) is not forwarded to these

three components because 0 is the identifier of the root component, hence, Comp1 will

try to add a sub-component inside its content instead of forwarding the call. Also,

S2.computeChildren() cannot be invoked on the sub-components simply because

they do not serve this method. Hence, we were able to create a state machine that

models the scenario for Comp11, Comp12, and Comp13: it is similar to the scenario for

the root component but it does not have the two transitions with the instructions

S1.addSubcomp(0) and S2.computeChildren(). Then, we automatically generated

from VerCors the state-space for Comp11, Comp12, and Comp13 synchronised with their

scenario.

The time to generate .fiacre, .exp files and the auxiliary scripts from VerCors is

negligible. The overall time to construct Comp11 was 30 minutes. This includes

the time to run the Flac compiler, to build the sub-components of Comp11, and to

construct the final product synchronised with the scenario. Eventually the model

of Comp11 was only 994 states. The reason why constructing so few states took

30 minutes is that, again, when the sub-processes of Comp11 are being constructed,

they are not synchronised with the scenario. It means that building the queue of

the component and its sub-component P11 takes a lot of time, because all possible

interleaving of the incoming requests have to be taken into consideration.

Then, in a similar way we generated the state-space for Comp12 and Comp13.

Since they have exactly the same behaviour and structure as Comp11, constructing

6.5. EXAMPLES 169

their state-spaces took the same time. At this point we were wondering how much

time we would be able to gain, if we could analyse automatically the modelled system

in VerCors and predict that the behaviour of the three components is similar. We

modified manually several files generated for Comp11 and generated .bcg for some of

them in order to obtain the state-space for Comp12. It took us approximately two

minutes which means that detecting statically the similarities between components

and optimising the generated scripts accordingly would save us 28 minutes for building

the state-space of Comp12.

Building the final product We used VerCors to generate automatically all the

files necessary to build the state-space of our use-case example synchronised with

the scenario illustrated in Figure 3.7. We modified the generated .sh script so that

it does not lunch the constructions of Comp11, Comp12 and Comp13 because we had

already built them.

The final non-reduced state-space of Comp1 synchronised with the scenario was

143.689.330 states, and the minimiser of CADP managed to reduce it to 31.699.470

states. Its construction and minimisation took us almost 11 hours. This includes

running Flac compiler for all the pLTSs of Comp1 and for the scenario, building the

state-space of P1, and synchronising all this with Comp11, Comp12, and Comp13. Most

of the time was used for constructing the queue and synchronising the final product.

Running the Flac compiler for the queue of the Comp1 took us almost 6 hours. The

reason is that, at this point, the queue is not affected by the scenario and it should

be able to handle all possible interleaving of the requests both from outside of the

composite and from its internal components.

To sum-up, building the state-space of the whole system took us almost 13 hours

and the obtained state-space is 31.699.470 states. We also modelled in VerCors and

generated the state-space for a similar scenario and a similar system but with only

two functional sub-components at each level of hierarchy and myId ranging from 0 to

2. Then, we model-checked several properties on both examples.

Checking properties. When specifying the properties, we have to remember the

relations between the events in the graphical model and the corresponding actions

in the BCG graph. For instance, the action Scenario S1 addSubcomp in the be-

haviour graph corresponds to the event where the scenario (the environment) invokes

the addSubcomp method on the S1 interface of the root component. Such transla-

tion should be automatised in the wizard for the specification of the model-checked

properties, but in the current version we specify the properties manually.

170 CHAPTER 6. ADVANCED FEATURES

First, we checked that it is possible to add a sub-component at the two higher

levels of hierarchy, i.e. that there exist paths in the behavioural graph where a call

to addSubcomp with parentId equal to 0 (the id of Comp1) or to 1 (the id of Comp11)

returns true. The reply from the model-checker after the verification of the following

formula was TRUE.

<true* . ’Scenario S1 addSubcomp !POS (0)’ . (not ’Scenario S1 addSubcomp.*’)*

. ’R S1 addSubcomp !POS(1)’>true

and

’<true* . ’Scenario S1 addSubcomp !POS (1)’ . (not ’Scenario S1 addSubcomp.*’)*

. ’R S1 addSubcomp !POS(1)’>true

Then, we checked that if a component has not been bound in the system, it cannot

be accessed. More precisely, we checked that Comp11, Comp12, and Comp13 cannot be

accessed unless a sub-component is added to Comp1.

Absence Before (’Comp1[1| 2| 3].*’, ’Scenario S1 addSubcomp !POS (0)’)

Next, we checked that sub-components cannot be added inside a composite more

than twice. For this we used an MCL pattern Bounded Existence Globally which

verifies that a given action predicate is satisfied in the model exactly two times. The

following formula checks this property for Comp12:

Bounded Existence Globally (’Comp12 P12 Bind C1.*’)

For the use-case with two sub-components at each level the model-checker answers

TRUE. However, in the case of three sub-components it answers FALSE and provides

an example of a path where three sub-components are added in the content of Comp12.

We checked a similar formula for all the composites in both examples.

Finally, we checked the main property of the system stating that the value

of childrenNum variable of the root component is equal to the number of sub-

components added at all levels of hierarchy. In order to obtain the value of

childrenNum, the scenario invokes the computeChildren method on the S2 inter-

face of the root component. In order to count the number of components which are

active in the application, we invoke the foo function on the root composite. The

call is propagated to the sub-components at all levels of hierarchy, and we count how

many components have processed the method invocation. If the value returned by

computeChildren is equal to x, we expect the number of components that received

the foo request to be x+1 because the root component should also receive it. The

following MCL formula corresponds to the property:

[true* . R S2 ComputeChildren ?x:Nat .

(not ’R S1 addSubcomp.*’)* . ”Scenario S1 foo”]

<(’.*Serve S1 foo.*’ . (not (’R S1 addSubcomp.*’ or ”Scenario S1 foo”))*){x+1}>true

6.5. EXAMPLES 171

The first line of the formula explores all paths in the behaviour graph where the

number of children x has been returned by the R S2 ComputeChildren action, a new

component has not been added to the system ((not ’R S1 addSubcomp.*’)*), and

after the foo method invocation was sent (Scenario S1 foo). Then the formula

states that all such paths are followed by a path where the foo request has been

served x+1 times, no component has been added in the meanwhile and the root

component has not received any other foo method invocation. The model-checker

answers TRUE. If in the second line we replace x+1 by x+2, which means that we

expect the foo method invocation to be served at least x+2 times, the model-checker

answers FALSE. The reason is that as there are x counted sub-components in the

system, the overall number of composite components is x+1 (the total number of

added children plus the root composite). Hence, the foo method will be served by

at most x+1 components.

We have also generated and executed the code of the modelled application on

GCM/ProActive.

The modelled application involves all the advanced features discussed in this chap-

ter except from the interceptors. It has a non-functional part specified for the com-

posite components, the attribute controllers providing access to the attributes (myId,

isBound, etc.), and multicast interfaces in the composite components which are recon-

figured by the component-controllers. The properties we proved by model-checking

demonstrate that the modelled application performs the reconfiguration correctly: a

new component can be added to different parent composites, after a new component

has been added, it can be accessed. In addition, we have proven that the attribute

of the root component storing the total number of components added in the system,

indeed, has the correct value. Generating the behavioural model from VerCors did

not require any additional effort except from the specification of the scenario for the

sub-components, i.e. modelling of one additional state machine.

6.5.2 Springoo

In this section we present an example of an application using interceptors which

were not included in the previous use-case. We assisted our colleagues from Telecom

ParisTech in modelling and generating of their application called Springoo in VerCors.

The details of the use-case example were published in [89]. Its component diagram

is illustrated in Figure 6.21.

Springoo is a web application that conforms to the three-tier Java Enterprise Edi-

tion (JEE) platform architecture, providing typical commercial web services through

172 CHAPTER 6. ADVANCED FEATURES

Figure 6.21 – Springoo application modelled in VerCors

an Apache/Jonas/MySQL architecture. The business logic of the application is

performed by the Apache-SCC and Jonas-SCC components. Both components are

”self-controlled” in the sense that all functional requests going to and from these

components are monitored by the interceptors InM and OutM located in their mem-

branes. The information gathered by the monitors is then forwarded to the Qos

component which analyses it and provides it to an external component through its

server interface. The behaviour of the Apache-SCC and Jonas-SCC is additionally

controlled by the membrane of the encompassing composite Composite. Its Qos

component-controller gathers and analyses the information from the Qos compo-

nents of Apache-SCC and Jonas-SCC, and from the interceptors in the membrane

of Composite. Finally, a so-called MAPE sequence of components in the membrane

of the root composite Springoo uses the information gathered by the Qos components

in order to the reconfigure system so that it ensures the desired properties. More pre-

cisely, the InOutMonitor intercepts the incoming requests to the application. The

Qos component, as usual, takes the gathered metrics, processes them, and provides

them to the Analyser. The latter additionally requests the information from the

Composite and analyses it. The analysis result is used by the Planner in order to

plan system reconfiguration if it is necessary. Finally, the reconfiguration is performed

by the Executor component. The reconfiguration was not modelled in VerCors be-

cause for this, the authors used GCM-script [90] instead of the GCM/ProActive

API. GCM-script is a high-level scripting language for the reconfiguration, it is not

yet supported by VerCors.

6.6. DISCUSSION 173

The behaviour of the system was not model-checked in VerCors mainly because

Springoo takes the reconfiguration decisions based on the metrics related to the time,

and the timed systems cannot be analysed with our platform. Still, we validated its

static correctness with respect to the properties formalised in Chapter 4 and gener-

ated the ADL file and the skeletons of the Java classes and interfaces including the

component-controllers and intercepts. The authors integrated their implementation

of the business logic in the generated code and ran it on GCM/ProActive.

Even though we did not use VerCors to model-check functional properties of the

Sprinoo use-case, modelling this example was useful both for us and for our colleagues

from Paris for several reasons. First, it allowed us to evaluate the plug-in perform-

ing the static correctness validation discussed in Chapter 4. Second, we received

a feedback from the developers from outside of our laboratory on the usage of the

platform: they explained us what was easy and what was difficult to model in their

application. Based on their feedback ,we significantly enhanced the graphical user

interface. Finally, thanks to using VerCors, our colleagues managed to model their

application and ensure that the design is statically correct (the components are prop-

erly encapsulated, the separation of concerns is respected, etc.), they obtained a set

of diagrams illustrating the modelled architecture, and they generated automatically

the skeleton of the executable code which they used after in order to implement their

application.

6.6 Discussion

In this chapter we presented how component-based applications with advanced fea-

tures can be graphically modelled, verified, and generated in VerCors. Such features

include non-functional components, attribute controllers, and multicast interfaces re-

configurable by the non-functional components.

As it was discussed in Section 3.2, we believe that the advantage of our approach

to modelling of the non-functional aspect of an application is the strong separation

of concern: the user can define separately the business logic and the control part of a

system. The designed membrane of a composite component can be transformed into

a set of pNets which are then included in the automaton encoding the behaviour of

the encompassing component. The rules for generating and synchronising pNets of

the non-functional elements are very similar to the ones dealing with the functional

aspect. Still, we have to take into account a new type of communications - the inter-

actions between the components in the membrane and in the content of a composite

component. In this thesis we consider verification of the non-functional part of the

174 CHAPTER 6. ADVANCED FEATURES

composite components, and at the next steps our framework should be extended to

deal with the membrane of the primitives.

Second, we allow the user to model attributes of primitive components and we

assist in implementing the behaviour of the attribute controllers to access and to

modify their values. A small technical detail which could be improved in the way

the attributes are specified in the current version of VerCors, is that the user has

to declare manually the set- and get-methods. Their signatures could be generated

automatically. Still, we automatise all the procedures at all other steps: we construct

a pLTS encoding a controller for each attribute and generate the Java code of the

set- and get-methods based on a standard template.

We also presented an approach to model, verify, and generate reconfigurable multi-

cast interfaces. While defining the corresponding graphical formalism, we had several

ideas on how the bindings outgoing from the multicast interfaces should be identi-

fied and referenced from the reconfiguration instruction. Our first idea was to keep

the graphical formalism unchanged and to refer to a binding by its source and tar-

get interfaces. Soon, we realised that the drawback of such approach is that each

time we model a reconfiguration, the identifier of the modified binding must be hard-

coded. This is why we decided to introduce binding indices so that the reference to

the reconfigured binding can be parameterised as we did for our composite pattern

example. We have also formalised and partially implemented the generation of pNets

encoding multicast interfaces. As the next step, we plan to finish implementing the

construction of pNets for primitive components with multicast interfaces in VerCors.

We believe that we already have most of the necessary structures, we only need to

encode the generation of group proxies for primitives and the synchronisation vectors

which are already formalised.

The multicast interfaces which can be modelled and verified in the current version

of VerCors implement the broadcast policy. We plan to encode the remaining three

policies provided by GCM/ProActive (i.e. unicast, round-robin, and scatter) in pNets

and to generate the corresponding executable code so that the user can choose the

policy for each interface separately. The idea for the pNet generation is to construct

an additional pLTS which would intercept a call going from a multicast interface a

modify it with respect to the chosen policy. The pLTS should be included in the

pNets that owns the multicast. Recall that for the broadcast policy a call going from

a multicast interface includes the current target group G and the list of the arguments

for the method invocation arg. The additional pLTS should analyse G and arg and

use them to transform the request according to the chosen policy. For instance, for

the unicast policy it should randomly select one member of G and one member of arg,

6.6. DISCUSSION 175

and then send the method invocation with the computed arguments. Moreover, we

would like to allow the user to define graphically a custom policy in a form of a state

machine, and then to translate it automatically into a pLTS and into implementation

code.

Concerning the gathercast interfaces, they can be modelled in VerCors. As the

next step, we should also formalise and generate the pNets for the components with

gathercast interfaces and produce their executable code. We believe that in order

to encode gathercast interfaces with pNets we should follow the same approach as

for the multicast interfaces. The proxy and proxy manager should maintain a group

variable which can be modified depending on the reconfiguration requests. While the

proxy of a multicast emits one request, gathers several results, and forwards them to

the caller, the proxy of a gathercast should gather several requests, transform them

into one request, forward it to the serving method or component, and then return

the result to several callers.

Finally, we used the VerCors platform for two complex use-cases which involved

the advanced features of GCM components discussed in this chapter. This experience

allowed us to evaluate the generator of the input for the model-checker, the plug-in

for the verification of the static correctness of the architecture, and the generation or

the executable code. We observed that our platform could benefit from optimising

the generated input for the model-checker based on the analysis of the behaviour of

the input model and of the designed scenario.

This chapter presented the last contribution of this thesis; in the following chapter

we discuss to related approaches and position our work with respect to the similar

studies.

176 CHAPTER 6. ADVANCED FEATURES

Chapter 7

Related work

Contents

7.1 The SOFA 2 project . 178

7.2 The BIP Component Framework 181

7.3 Rebeca formal modelling language and development tools183

7.4 ABS . 188

7.5 Other frameworks . 191

7.5.1 Component models and tools 192

7.5.2 Verification platforms . 196

7.6 Summary . 200

7.6.1 On the verification tools . 200

7.6.2 On the component development frameworks 200

This chapter reviews the state-of-the-art frameworks for modelling and verification

of distributed component-based systems. We start by detailed overview of the four

specification formalisms and dedicated tools that are the closest to GCM and VerCors.

Each of the four frameworks has strong results on the verification aspect and features

some of the elements this work focuses on (e.g. components, futures, reconfiguration).

For each framework we discuss its advantages and drawbacks compared to VerCors.

Then, we briefly review the other development platforms. Finally, we present the

verification tools that could be potentially used by VerCors as an alternative to

CADP.

177

178 CHAPTER 7. RELATED WORK

7.1 The SOFA 2 project

Among the existing component models and development tools, the approach closest

to VerCors/GCM is presented in the SOFA 2 [77] project. It comprises a component

model supported by a development framework and a runtime environment. We start

this section by describing the SOFA 2 component model and comparing it to GCM.

Then, we present the dedicated tools. Finally, we elaborate on the positioning of our

work with respect to the SOFA 2 project.

The SOFA 2 component model. The SOFA 2 component model has the same

advanced features as the GCM including hierarchical components, the support of

dynamic reconfiguration, separation between functional and non-functional concerns.

A SOFA-based application represents an assembly of components with their interfaces

and a set of connectors used for communication between components.

A SOFA component is modelled by its frame and architecture. A frame is a black-

box view and is associated with a set of provided and required interfaces. An interface

is characterised by a signature and a number of properties. The first property, isCol-

lection is similar to the cardinality of GCM interfaces and defines how many bindings

can be attached to the interface. The second property, connectionType defines the

reconfiguration pattern [91] applicable to the interface. An architecture is a grey-box

view on a SOFA component. An architecture can implement several frames which is

similar to a GCM component implementing several interfaces. An architecture can

be associated with a set of subcomponents and connections between them. If the set

is empty, the architecture refers to a primitive component; otherwise, to a composite

one.

The interfaces are connected by connectors which are similar to the GCM bindings

at the design stage. During program execution the connectors may be implemented

by various interaction types depending on the underlying infrastructure [92]. The in-

teraction types include a classic synchronous client-server call, asynchronous message

passing and uni- or bidirectional streaming of data. A connector in SOFA has much

more features than a GCM binding. For example, it can have a monitoring inter-

ceptor, while in GCM interceptors are modelled as components inside a membrane.

A connector can slightly change a request in order to solve minor incompatibilities

between components which is not possible in GCM. In theory, a GCM interceptor

can impact request arguments, but such behaviour cannot be modelled and analysed

in the current version of VerCors.

The control part of a SOFA component consists of so-called microcomponents.

As opposed to the GCM controllers, the controllers in SOFA are flat, they do not

7.1. THE SOFA 2 PROJECT 179

feature connectors, control part or distribution. A SOFA controller could be seen

as a simple class implementing an interface. The way to assemble microcomponents

is by constructing so-called delegation chains which connect several controllers. A

microcomponent can also be an interceptor which resembles the way interceptors are

implemented in GCM.

On the dynamic reconfiguration side, SOFA 2 supports multiple patterns allowing

one to add and remove components and connectors at run-time [1].

The tools. The SOFA 2 component model is supported by a modelling platform

SOFA IDE, a set of tools for verification and an execution framework.

SOFA IDE is a model-driven environment for graphical design of the SOFA 2

components. The tool supports UML-based modelling of the components architec-

ture. The executable code for connectors can be automatically generated as described

in [93]. The behaviour of the component interfaces can be textually expressed with

Behavior Protocols [94]. Then, the behaviour should be manually associated to a

component in an XML-based file.

The correctness check for the SOFA applications can be done only at the level of

the Behavior Protocols. A Protocol Checker presented in [95] takes a set of protocols

as an input, creates a parse tree for each protocol, combines the trees and creates a

state space reflecting the parallel composition of the protocols. Based on the obtained

model, the Protocol Checker is able to verify the compliance between two protocols

and translate the Behavior protocols into an input for the CADP Caesar tool.

In [96] the authors present an approach for checking whether the Java implemen-

tation of a component behaviour obeys the specified protocol. For this, the authors

combine a slightly modified versions of Java PathFinder (JPF) [97] and the Protocol

Checker. JPF is a model-checker of Java byte code implemented as an extension of

the Java Virtual Machine (JVM). Unlike the usual JVM, JPF performs all possible

executions of a program and builds its state space as a tree-like structure where the

branches reflect the interleaving of thread instructions. As in the classical model-

checking, the tool traverses the constructed state space to check built-in properties

like assertion violation, and deadlocks. Except from that, JPF includes several ex-

tensions allowing more complex analysis. Among them, we are interested in the

mechanism of Listeners which allows the programmer to define an observer that will

register particular type of events that occurred in the byte code e.g. thread start,

object creation, byte code instruction execution. The result of the monitoring can

be used to check custom properties. In [96] the authors configure JPF listeners so

that they record all invoke and return instructions for the interface methods of SOFA

180 CHAPTER 7. RELATED WORK

component byte code and then notify the Protocol Checker. The Protocol Checker,

in its turn, checks whether the instruction is possible with respect to the state space

of the specified behaviour protocols. If the execution is not possible, the protocol

violation is reported.

The behaviour description can be also traslated into Promela and checked by the

Spin [98] model-checker as discussed in [99]. Three types of errors can be detected

by the described approach: bad activity (a component emits an event but there is

no other component to accept the event), no activity (a deadlock) and divergence

(a component behaviour contains a cycle from which there is no way to reach an

accepting state).

SOFAnode is a distributed execution environment for the SOFA 2 components im-

plemented as Java classes. The environment consists of a set of component containers

called deployment docks which can be located on different machines. A deployment

dock can execute a component which was assigned to the dock during the deploy-

ment. SOFAnode can be managed from an Eclipse-based tool MConsole where the

user can start and stop docks as well as visualize system execution.

Positioning. The SOFA 2 framework for modelling and verification of distributed

component-based systems is very close to VerCors/GCM. However, there is a num-

ber of advantages of the work presented in this thesis. First, in order to master

SOFA 2, the user will have to additionally learn the Behavioral Protocols and the

XML specification linking a component and its behaviour. In VerCors, both com-

ponents architecture and behaviour are modelled in integrated graphical editors; the

user does not need to know any formalism for behaviour specification except from

the UML state machines that are well-known among programmers. Moreover, the

behaviour is associated to the components within the graphical designer and the user

does not need to be aware of the structure of the generated ADL description.

Second, GCM and VerCors provide more expressiveness for modelling and verifi-

cation of the non-functional part of an application than SOFA which, to the best of

our knowledge, allows neither structured controllers nor specifying relations between

controllers.

Finally, we believe that the SOFA framework could benefit from validation of the

architecture static constraints formalised in Chapter 4. To the best of our knowledge,

the current version of SOFA only supports verification at the level of the Behavior

Protocols. Implementation of the architecture static validation could be useful for the

programmers who would like to make sure that the components assembly is statically

correct before dealing with the Behavioral Protocols.

7.2. THE BIP COMPONENT FRAMEWORK 181

Figure 7.1 – The BIP design flow [2]

At the same time, we should note that SOFA 2 project comprises a number of

interesting features which are not included in VerCors. First, it would be useful to

allow the user to model and verify various communication styles in VerCors. Another

interesting task would be checking whether the generated components implementation

obeys the modelled behaviour by adapting the approach presented in [96].

7.2 The BIP Component Framework

BIP (Behavior Interaction Priority) [2] is a framework allowing rigorous model-based

design and programming of complex hierarchical component-based systems. BIP is

supported by a set of tools for reverse engineering various programming languages

into BIP language, a dedicated model-checker and an executable code generator. In

this section we first make an overview of the BIP formalism and then present the

tools for BIP systems development.

The BIP component model. In BIP [100], a software system is designed as a

composition of components connected by possible interactions. The interactions are

characterised by priorities which are used for resolving conflicts and defining the

scheduling policies. The components expose ports which are used for the communi-

cation with the other components.

182 CHAPTER 7. RELATED WORK

The interactions in BIP are structured in connectors characterised by a set of

connected port types and the data variables that can be transferred between the

ports. As opposed to the GCM bindings, connectors may be hierarchical, i.e. a

connector itself can expose a single port that may be bound to another connector.

All the communications done through the connectors are synchronous. An interaction

that can be performed via a connector is described by a subset of the connector’s ports

and can be additionally restricted by a guard expression.

There are two types of components in BIP: atomic and compound ones. The

atomic components are simple entities similar to the GCM primitive components.

They expose a set of ports and perform some behaviour modelled as a Petri net

or a labelled transition system. A compound component is characterised by a set

of contained subcomponents, connectors, priorities and a set of exposed ports that

define an interface of the component. The ports exposed by a compound can belong

to the connectors or components inside the compound.

The tools. Figure 7.1 illustrates the workflow of a BIP-based application devel-

opment. First, a software application is translated from the actual code into a BIP

model. The framework supports full or partial source to source translation from var-

ious input languages such as C+XML, MATLAB/Simulink [101], Lustre and model-

based formalisms such as AADL [102]. Alternatively. the user can specify the system

directly in BIP textual language or using the EMF framework. In addition, the user

should provide the specification of the hardware target platform and a mapping of

the atomic components to the processing units. A BIP model of the system is de-

rived based on this information and it takes into account the hardware architecture

constraints. Then, the obtained models can be used for verification, simulation and

generation of the software code.

The verification of deadlock-freefom and safety properties of BIP-based applica-

tions is done by the D-Finder tool [103]. The verification method of D-Finder takes

a BIP program constructs a predicate characterising the deadlock states. Then, it

computes a local invariant for each atomic component in the system and an invari-

ant on the interactions of components. Finally, the tool checks satisfiability of the

conjunction of the obtained invariants in order to prove the deadlock-freedom.

The drawback of D-Finder is that it does not take into account the data transfer

on the interactions. A solution to this issue was proposed in [104] where the authors

investigate an approach for the verification of the safety property of BIP systems with

infinite state-space and data transfer. The authors encode a BIP program into as a

symbolic transition system and give it as an input to the nuXmv [105] model-checker.

7.3. REBECA FORMALMODELLING LANGUAGE ANDDEVELOPMENT TOOLS183

A completely different verification technique applied to a BIP system in [106] is

based on the runtime verification approach. For a given component-based system and

a property to be verified, the authors synthesize a monitoring BIP component M and

modify the given atomic components so that they communicate with M. M observes

the information provided by the other components and emits verdicts regarding the

property violation. The authors provide not only formalisation of the approach, but

also prove the equivalence of the behaviour of the initial and monitored systems.

Finally, from a BIP model the user can generate C++ code for several execu-

tion platforms. There are two main compilation flows offered by the framework:

engine-based compilation for non-distributed systems (single-, multi-threaded and

real-time implementations) and generation of so-called Send/Receive BIP models for

distributed implementation. In the second case, the synchronous communications are

transformed into asynchronous message-passing as explained in [107].

Positioning. BIP is a powerful framework offering variety of tools for distributed

systems modelling, verification and executable code generation. The clear advantages

of the BIP framework compared to VerCors is the ability to model real-time systems,

the notion of priorities, the translation from the source code to the BIP models.

Moreover, BIP allows expressing complex synchronisation patterns thanks to the hi-

erarchical connectors and to the interactions which involve several ports. In this sense

BIP is closer to pNets which describe a system on much lower level than BIP but also

allow interactions (i.e. synchronisation vectors) to involve several entities. However,

when specifying the interactions between GCM components in VerCors, the user can

only define one-to-one, n-to-one, and one-to-n communications. However, to the best

of our knowledge, BIP does not allow modelling and verification of reconfigurable

systems, does not support the separation of functional and non-functional concerns,

and the parameter-passing is not very well integrated with the analysis of component

hierarchy.

7.3 Rebeca formal modelling language and devel-

opment tools

In the domain of actor-based frameworks, the work closest to ours is Rebeca [18] which

provides an interpretation of the actor model equipped with a formal semantics[108]

and a set of tools for modelling and verification. In this section we, first describe

the Rebeca model and compare it to GCM. Then, we discuss the development tools.

Finally, we introduce one of the key research directions presented by the authors of

184 CHAPTER 7. RELATED WORK

Rebeca - the techniques which allow avoiding state explosion when model-checking

actor-based applications; we also discuss here how those techniques could be applied

to VerCors/GCM.

Rebeca modelling language. A Rebeca-based application is a composition of

actors communicating by asynchronous message-passing. An actor in Rebeca is called

rebec. A rebec is executed in its own thread and possesses a FIFO queue which stores

the incoming messages. A rebec implements a reactive class which comprises three

types of definitions: known rebecs, state variables and message servers. A rebec

can communicate only with the known rebecs which implies that in order to send

a message, a rebec should know the receiver. Message servers are used to process

messages. A message server has a name, a set of input parameters (possibly empty),

and a body implementing the behaviour. The behaviour is composed of a sequence of

statements representing assignments, sending messages, choices and creation of new

rebecs. Every rebec has a special message server dedicated to its initialisation. A

rebec manipulates variables of two kinds: the data variables which model data, and

the rebec variables which correspond to the indices in the list of known rebecs. The

former can be used for specifying the receiver of a sent message. This allows one to

change dynamically the topology of a model.

In terms of the GCM model, a rebec can be seen as a primitive component which

also has a FIFO queue and is also executed in its own thread. A reactive class could

be seen as a class implementing a GCM component with attributes modelling state

variables. The server methods of GCM components are similar to the message servers

in Rebeca. Several key differences between Rebeca and GCM should be highlighted

here.

First, thanks to the notion of interfaces, a GCM component does not need to

store any information about the other components in order to communicate with

them. As a result, it becomes easier to plug a GCM component in different contexts,

because for this purpose the programmer only needs to change a binding but not the

implementation of the component.

Second, the GCM components are hierarchical while Rebeca actors are flat. The

studies on assembling rebecas in composite components were presented in [109] and

[110]. The authors introduced one-level hierarchy aiming at facilitating verification

and avoiding state explosion during model-checking. On the contrary, a GCM-based

application is not limited in the levels of hierarchy. This provides the users with

an expressive mechanism for describing components structure at different levels of

abstraction. Additionally, thanks to the structured components, the GCM model

7.3. REBECA 185

imposes separation between functional and non-functional parts of the application.

Rebeca and GCM rely on different communication paradigms. As opposed to

GCM, Rebeca actors do not implement futures mechanism. Instead, rebecs can

communicate either by asynchronous message-passing, or via completely synchronous

rendez-vous mechanism. This makes the generation of Rebeca behavioural model

easier.

The tools. Rebeca is supported by a set of tools for modelling, simulation and

verification. The modelling environment closest to VerCors is ReUML-Designer [111]

with the following workflow. First, the developer models an actor-based application

in a graphical editor based on UML profiles. Rebecs are modelled as UML classes

which is similar to the way GCM primitive components are specified in VerCors. For

the behaviour specification, ReUML-Designer relies on the UML sequence diagrams

providing better global view on the messages exchange between actors than the UML

state machines. Rebeca code can be generated from the graphical model.

Rebeca is supported by a set of formal verification frameworks. Modere is a tool

for model-checking Rebeca programs. Since it was designed specially for Rebeca, it

includes state-space reduction techniques which are based on the Rebeca computation

model. Modere is integrated in the Afra [112] platform which takes as an input

SystemC code, translates it to Rebeca, and verifies LTL and CTL properties of the

obtained application. Additionally a set of tools were developed for the translation of

Rebeca programs into input languages for various model-checkers such as Promela,

the input language of Spin and SMV - the input language of NuSMV model-checker.

An approach and a tool for distributed model-checking of Rebeca actors is presented

in [113].

The timed Rebeca actors can be translate to the Erlang executable code and

Maude.

The techniques to avoid state explosion. Depending on the target model-

checker, a number of techniques can be applied to a Rebeca program in order to avoid

the state explosion issue. First, since Rebeca relies on finite-space model-checkers,

the queues of the actors should have a user-defined finite size. Additionally, the user

should abstract the data domains. This aspect is similar in VerCors.

Second, compositional [114] and modular[109] verification techniques can be ap-

plied to the Rebeca programs. In compositional verification, an initially designed

system is decomposed and local properties are checked on the obtained subsystems.

Then, it should be proved that the conjunction of the local properties implies the

186 CHAPTER 7. RELATED WORK

global property. In order to apply compositional verification to a Rebeca program,

the user should assemble rebecs in components. Every component is assumed to be

executed in an environment which sends arbitrary messages. The properties proved

for the components by model-checking are then used to ensure the global properties

of the system.

As opposed to Rebeca, VerCors does not do compositional verification. Doing the

compositional verification of the models produced by VerCors would require signifi-

cant effort due to the hierarchical structure which makes it difficult to decompose the

global property into properties of components located at different levels of hierarchy.

The modular verification technique is slightly different from the compositional

approach. It is applied to verify the re-usable subsystems and to prove their spec-

ifications. The application of the modular verification to the models produced by

VerCors is straightforward because VerCors relies on the bottom-up approach for

building system state-space. More precisely, the tool recursively constructs the be-

haviour model of the components starting from the primitives at the lowest levels of

hierarchy and then assembles them into the behaviour of the encompassing contain-

ers. As a result, the user has a behaviour graph for every component in the system

not impacted by the behaviour of its container and is able to verify properties for any

component in the hierarchy as for an open system.

Third, the behaviour of the environment can be modelled for the Rebeca applica-

tions. For this purpose, the user should specify a set of requests (possibly unbounded)

to be processed by rebecs at any time, in an interleaving with processing requests

in the queues. Such approach is not applicable to VerCors, because only the root

component can get requests directly from the environment. Instead, we offer the user

to design the global behaviour of the environment as any kind of possibly unbounded

and non-deterministic scenario modelled as a state-machine.

Finally, the symmetry and partial order reduction techniques can be applied to

Rebeca as discussed in [115]. The symmetry reduction technique consists in identify-

ing classes of sub-graphs with identical structure in the state-space and constructing

only one sub-graph for each class. The state-space of a Rebeca program can be seen

as a graph where a state is a combination of the local states of the rebecs involved in

the system, and a transition is labelled by an enabled action of one of the rebecs. A

local state of a rebec is defined by the values of its local variables and the status of

its queue. An enabled action of a rebec is a service of the first message in its queue

by its reactive class. The service of a message is considered to be atomic. A transition

s
αi−→ t occurs if an action alphai enabled in a rebec ri and it changes the state of the

system from s to t. Thanks to the fact that several rebecs can be instantiated from

7.3. REBECA 187

the same reactive class (hence, they have the same internal behaviour), and that the

list of the known rebecs is defined, the symmetry among the rebecs can be detected

automatically, and the state-space can be reduced.

In fact, the state-space of a Rebeca program is significantly reduced thanks to

the fact that service of a message is considered as an atomic action. Hence, there

is no need to consider the interleaving of particular statements executed by different

rebecs in parallel. In VerCors we partially do such kind of optimisation when hiding

the internal computations inside sub-components but we cannot say it s as efficient

as the reduction applied to Rebeca programs.

The concurrency in the Rebeca applications is modelled by the interleaving of

actions of different rebecs. According to the partial order reduction approach, the

execution of some actions can be postponed to the following states, thus, there is

no need to explore all possible interleaving of actions. The partial order reduction

techniques applied to Rebeca programs rely on the notion of safe actions. An ac-

tion is safe if it does not influence satisfiability of the verified property and if it is

independent from all actions of the other processes. Two actions are independent if

(1) the execution of one of them does not prevent from executing the other one, and

(2) no matter in which order the actions are executed, their processing will result

in the same state. Since the execution of a safe action does not disable the other

actions enabled in a given state, those actions can be postponed to the next state,

and the state-space can be reduced. Safe actions in Rebeca programs can be detected

statically.

For this kind of approaches VerCors relies on the techniques embedded in the

CADP toolbox [22].

Positioning. To conclude, even though Rebeca supported by the dedicated devel-

opment tools and VerCors/GCM share a lot of common features, the frameworks

should be applied to to different domains of applications. Rebeca is targeted to the

flat asynchronous actor-based systems where new participants can be added easily.

VerCors would be better applicable to software with complex hierarchical structure

that relies on request/reply with futures mechanism. It should be mentioned that

the current research on Rebeca covers timed and probabilistic systems which are not

considered by the work presented in this thesis. Another advantage of Rebeca is the

strong mechanism for the state-space reduction based on the computational model.

188 CHAPTER 7. RELATED WORK

7.4 The Abstract Behavior Specification language

and tools

The abstract behavior specification language (ABS) [116] is a rich Java-like specifi-

cation language for modelling concurrent and distributed object-oriented programs.

ABS features formal semantics and is supported by a deductive verification toolset

KeY-ABS [117] which allows verification of unbounded systems. A verified ABS spec-

ification can be then translated into several executable back-end languages. In this

section, we first provide an overview of the core ABS language and its extension.

Then, we compare ABS to GCM and discuss the possibility of using VerCors for

modelling and verification of the ABS programs. Finally, we make an overview of the

development tools dedicated to ABS.

The core ABS language. An ABS program represents a set of objects which can

store data, serve methods and implement interfaces. Objects can invoke methods

on each other but the data of another object cannot be accessed directly. The ABS

objects are assembled into COGs (Concurrent Object Groups) which represent the

units of distribution. A COG can have several threads, but only one thread (and one

object) within a COG can be active at each time while all processes executed in the

other objects are suspended. The scheduling is non-deterministic. The ABS objects

within one COG can communicate either synchronously or asynchronously, while ob-

jects from two different COGs must communicate asynchronously. The asynchronous

communications in ABS rely on request/reply with futures paradigm.

In [118] the authors demonstrated and formally proved that a COG can be trans-

lated into a multi-threaded active object. We could try to adapt the result of their

work and to model ABS COGs in VerCors with primitive components as the relation

between actiove objects and GCM components is discussed in details in [26]. We could

also partially re-use the results of [119] where the authors explain how the ABS ob-

jects can be represented as components. However, making primitives multi-threaded

would require effort on the modification of the body policy.

The ABS extensions. The ABS language was extended with a set of features

providing the developers with additional modelling elements including component-

based modelling, I/O specification, and design and analysis of real-time systems.

In [119] the authors explore the similarities between the ABS objects and com-

ponents and extend the ABS language with the minimum elements required for the

component-based modelling, trying to keep the extended semantics as close as pos-

7.4. ABS 189

sible to the core ABS. An ABS object can be seen as a component and its methods

represent input ports. The following elements were introduced additionally in ABS.

First, every object that represents a component can be either in a safe or not in a

safe state. Second, an object stores the information about its output ports (similar

to the GCM client interfaces) which can be modified only if the object is in a safe

state. Third, a method executed by an object can be annotated as critical. An object

executing a critical method is not in a safe state. The next introduced element is

a primitive which allows waiting for an object to return to a safe state in order to

modify a port. Finally, the notion of locations was introduced in order to enable

components hierarchy; the location of a component can be changed at runtime.

Another interesting extension of the ABS language is the mechanism for I/O

explained in [120]. In general, modelling and verification of I/O is not supported by

ABS because it relies on the underlying platform. The developer can use a so-called

foreign-language interface in order to print something from an ABS program or to

connect an ABS program to the legacy code in another language. The mechanism is

illustrated in [120] by connecting Java code and ABS. For a Java class used by an ABS

application, the programmer should additionally define a default ABS implementation

of all interface methods which will be used for simulation of the ABS code without

Java. It would be interesting to investigate whether a similar approach could be

applied in VerCors. For example, a UML state machine specifying a server method

could include calls to Java classes defined aside.

Modelling of real-time systems is possible with the Real-Time version of ABS. In

one of the latest works [121], the authors formally model the Hadoop YARN clusters

[122] and validate their approach through comparison of the model-based analysis

and the actual performance of the cluster.

The tools. An ABS program can be created in an Eclipse plugin text editor [123].

Mastering the tool and the ABS language should be easy for the developer who

is familiar with object-oriented programming, because the syntax and structure of

ABS resemble Java. The execution of an ABS program can be visualized with an

ABS debugger based on the Eclipse debugger. Additionally, UML sequence diagrams

illustrating the lifeline of each COG can be automatically generated. The diagrams

show a program execution and are updated after each debugger step.

An ABS program can be verified by the deductive verification tool KeY-ABS

which is built on top of the KeY interactive theorem prover [124]. Figure 7.2 illustrates

the workflow of KeY-ABS. The tool takes as an input an ABS program and a .key file

containing invariants, functions, predicates and specific rules required for verification.

190 CHAPTER 7. RELATED WORK

Figure 7.2 – Verification workflow of KeY-ABS[117]

Then, the user is asked which method should be verified. The input is translated into

a specific type of formula which is then checked by the theorem-prover. A positive

answer from the prover means that the method satisfies the invariant. If the formula

cannot be proved, KeY-ABS asks the programmer for additional instructions. 90%

of the proof is done automatically.

VerCors and KeY-ABS follow different verification approaches. The current ver-

sion of VerCors is sufficient for model-checking functional properties of an abstracted

model with finite state-space. In contrast, KeY-ABS proves preservation of invariants

on unbounded systems. On the other hand, the advantage of model-checking is that

it avoid writing invariants: instead, only program properties should be specified by

the user.

A deadlock in the ABS programs can be automatically detected by the

DF4ABS [125] framework. It extracts abstract behavioural descriptions of the meth-

ods of the input program. Such a description is called a contract, and it includes

the method invocations and the dependencies between various statements. Then, the

contracts are analysed in order to detect deadlocks.

COSTABS [126] is a tool able to predict the cost of ABS programs. The analysis

is organised in three steps. At the first step, the cost model should be chosen; it de-

fines the consumption of which resources should be analysed. Five options are offered

by the framework: the steps cost model allows predicting the number of instructions

executed by the program; the memory cost model predicts the amount of memory

required for various instructions; the objects cost model counts the number of objects

involved in the system; the task-level cost model estimates the number of tasks pro-

cessed during the execution. The last cost model - termination model - does not count

any resources but checks that all loops in the program terminate. The second step

7.5. OTHER FRAMEWORKS 191

of the analysis is a so-called ”size analysis” which estimates how the size of the data

changes along the program. The analysis works well for sequential fragments of code,

but the precision can be lost significantly for the programs involving concurrency. At

the third step, the results of the size analysis and the chosen cost model are used in

order to estimate the cost of the program.

Several back-ends exist for translating ABS models into executable languages. In

[118] the authors present a translator of ABS programs into Java code. The resulting

program is based on multithreaded active objects and can be executed in a distributed

manner on the ProActive platform. The authors formally prove the correctness of

the translation. A back-end for Haskell code generation is presented in [127].

Positioning. Both ABS and VerCors/GCM target analysis of distributed object-

oriented applications which rely on request/reply by futures. Both frameworks fea-

ture specification formalisms which can be easily learned by non-experts in formal

methods, modules generating executable code and verification capabilities. We can,

nevertheless, highlight several cases in which VerCors/GCM would be better appli-

cable than ABS. First, VerCors/GCM provides better modelling capabilities for the

systems with complex hierarchical structure because it allows modelling and visual-

izing components hierarchy. Second, for those systems where the separation between

business logic and control part is crucial, VerCors is able to ensure this property.

Third, to the best of our knowledge, modelling group communications is not possible

in ABS. Finally, VerCors should be used by the programmers who opt for model-

checking but not invariant specification. One of the advantage of model-checking

used in VerCors is that it does not require as much guidelines from the user as KeY-

ABS needs for the verification of invariants. On the other hand, one could notice that

compared to DF4ABS, our tool requires manual specification of the deadlock-freedom

formula while DF4ABS can check everything fully automatically. In fact, construct-

ing the deadlock-freedom formula in MCL is quite simple, and we plan to assist in

the specification of this and the other formulas in VerCors as it will be discussed in

the next chapter.

7.5 Other frameworks

In this section we discuss several other frameworks for modelling and verification

of component-based systems. We start by the component models and dedicated

development tools. Then, we make an overview of the verification tools that could

be potentially used by VerCors as an alternative to CADP.

192 CHAPTER 7. RELATED WORK

7.5.1 Component models and tools

Palladio. Another framework for component-based systems modelling is provided

in the Palladio [128] project which presents the Palladio Component Model (PCM)

and a development environment. PCM allows specification of primitive and composite

components, their interfaces with method signatures and connectors. In addition, the

information about resource consumption should be specified for the served methods.

The PCM is supported by an Eclipse-based development environment where the user

can model a system and simulate its execution. Alternatively, the Palladio models

can be automatically extracted from the system implementation provided in Java,

C or C++. Based on the input model and the results of simulation, the tool is

able to predict a number of system performance metrics such as the response time,

throughput and resource consumption.

While both Palladio and VerCors are used for system analysis at the early design

stage, the two frameworks have different objectives. Palladio targets mainly perfor-

mance analysis while VerCors is able to verify functional properties of a system by

applying formal verification techniques. We should also highlight here several lim-

itations of the Palladio framework. First, the results of performance prediction for

concurrent systems significantly differ from the actual performance as mentioned in

[128]. Another limitation is that Palladio does not support modelling of reconfig-

urable systems. While we did not address the performance here, we showed that we

are able to handle certain forms of reconfiguration in VerCors.

DEECo. Another framework developed by the authors of the SOFA component

model is the DEECo (for Dependable Ensembles of Emerging Components) compo-

nent model [129]. It is used for the implementation of large-scale distributed ensem-

bles of components which cooperate together in order to achieve a common objective.

An application in DEECo is constructed from components assembled into ensembles.

A component features a hierarchical data structure called local knowledge which is a

mapping from the data variables to their values. The knowledge of a component can

be exposed to the other components through its interfaces. A component has a set

of processes which are basically tasks manipulating the knowledge. A process can be

scheduled so that it is either executed periodically or triggered each time a particular

condition is met. The DEECo components are assembled into flat ensembles where

one component plays the role of a coordinator and the others are the members. When

a programmer describes an ensemble, he should specify the membership conditions,

i.e. the interfaces that should be exposed by the coordinator and the members of the

ensemble. The ensembles are formed dynamically from the set of components that

7.5. OTHER FRAMEWORKS 193

satisfy the defined conditions. The components do not explicitly send messages to

each other, instead they exchange their knowledge. The ensemble specification de-

fines how the coordinator exchanges the knowledge with the members, thus defining

an abstraction for the one-to-many communications. The DEECo component model

features the formal semantic including the time aspect and presented in [130].

The DEEco component model is implemented in the jDEECo framework [131]

which provides the Java libraries necessary for the development, deployment, and

execution of the DEECo ensembles. The framework is integrated with the Java

PathFinder model-checker for the verification of the designed applications.

One of the advantages of the DEECo framework is that thanks to the notion of

ensembles and membership conditions it allows implementing much more dynamic

applications than GCM/ProActive systems. On the other hand, the dynamically

evolving structure of such applications makes it more challenging to reason about

their properties formally. To the best of our knowledge, neither modelling of future-

based communications, nor design of hierarchical applications is possible with DEECo

as opposed to the GCM/VerCors framework.

Helena. Helena[132] is another framework for modelling highly dynamic ensembles

of autonomic distributed components. In addition to the components and ensembles,

the Helena approach relies on the notions of roles. A Helena component is charac-

terised by a set of attributes and operations that can be served. It can be said that

a component ”fulfils” particular roles which describe the functionalities of a compo-

nent in terms of attributes and operations. There can be several components able

to fulfil the same role. A set of roles connected by so-called role connectors form a

Helena ensemble. The components filling the roles of an ensemble collaborate in order

to achieve a particular goal. The ensemble structure specifies the size of the queue

for the input messages of each role. The behaviour of a role can be modelled as an

LTS whose transitions are labelled by either message sending or message reception

over a role connector. The LTSs of roles behaviour are assembled into an ensemble

behaviour automaton where each state represents an ensemble state and transitions

are labelled by message labels. The Helena roles can communicate both by syn-

chronous and asynchronous message-passing. The communication style depends on

the role queue size specified by the user. Thanks to the role-based modelling, the

Helena framework allows one to design highly dynamic heterogeneous systems with

rich communication patterns. On the other hand, the variety of components that

which can be dynamically included in the ensembles, makes it more challenging to

reason about the designed applications.

194 CHAPTER 7. RELATED WORK

HelenaText[133] is an Eclipse-based text editor for Helena ensembles specification.

The editor features syntax highlighting and content assistance. A HelenaText file can

be automatically translated into the implementation code that can be executed on

the jHelena[134] platform. A model specified in HelenaText can be transformed into

Promela [135] and model-checked with Spin as demonstrated in [136]. At this point,

the programmer chooses the communication paradigm for the translated processes

(either asynchronous or synchronous message-passing) by specifying the input queue

size for the roles. The typical property verified by the authors states that in a

modelled peer-to-peer system supporting distributed storage of files the requester will

always receive the requested file. The peers are connected in a non-parameterised ring

topology.

While both Helena and VerCors/GCM are used for modelling and implementation

of distributed systems, they should be applied for different types of applications. To

the best of our knowledge, neither hierarchical components, nor futures mechanism

can be modelled, verified or executed with Helena. On the contrary, more custom

patterns like publish-subscribe are easy to express in Helena and more difficult to

encode in VerCors.

Credo, Reo, and Creol. Credo[137] is a toolsuite for modelling and analysis of

highly reconfigurable asynchronous distributed systems. The design process com-

prises two main steps. First, the high-level application dataflow is designed with

Reo[138] which allows specifying a reconfigurable network of components where only

a facade of a component is visible. A facade consists of a set of communication points

called ports, event declarations, and an abstract behaviour modelled by constraint au-

tomata [139] specifying the order of raised events and port operations. The ports of

components are connected into a network. A networkmanager defines how the events

raised by the components are handled by the network. The ports are synchronised

with an automaton modelling the communication inside the network. Overall, this

specifies the inter-component communications.

At the second step, the intra-component behaviour is designed with an object-

oriented executable modelling language Creol [140]. In fact, Creol programming

model is very close to ABS. Creol objects rely on asynchronous method calls and

processor release points, feature an execution thread, a set of attributes and methods

to be served. The communication paradigm in Creol is based on request/reply by

futures mechanism

Credo, is able to check the conformance of the models specified in Reo and Creol.

The tool transforms a facade with its behaviour into an intermediate abstract be-

7.5. OTHER FRAMEWORKS 195

haviour specification [141] from which a Creol model is derived. The transformation

result is executed together with the original component specification in Creol in a

special version of Maude[142] configured for the testing purpose. In addition, Credo

can check conformance and between the Creol model and the actual implementation

in C by testing. Furthermore, a Creol skeleton of the application can be automatically

derived from the network specification. The network specification can be checked for

absence of deadlocks.

Apart from the tools provided in Credo, the Creol language is supported by an

Eclipse-based modelling environment which encompasses a type-checker and a simu-

lation environment. Creol programs can be executed using Maude which additionally

provides means for model-checking of infinite-state models.

Credo is a powerful framework for modelling and analysis of distributed systems

where a reconfigurable network of processes is modelled independently from the actual

processes implementation. However, in order to master Credo, the user will have to

learn Reo, Maude and Creol while in VerCors the system specification is based on

the UML models well-known among the programmers. Additionally, VerCors is able

to generate executable Java code of a system.

CORBA Component Model and Cadena. The CORBA Component Model

(CCM) [3] was designed by the Object Management Group for modelling and im-

plementation of distributed components. Components in CORBA have provided and

required ports, publish events on the ports, store attributes. CCM allows components

to be dynamically created, connected, and disconnected.

CCM is supported by a variety of development frameworks. The one closest to

VerCors is presented in the Cadena [143] project. Cadena is implemented as an

Eclipse plugin and supports the following development workflow. First, the user

should load a library of predefined domain-specific components and define his own

project-specific components with their dependencies. Second, the user can specify

the non-functional information such as the distribution related data. Finally, Cadena

uses Bogor [144] to generate system state-space and model-check the global system

properties. Bogor is able to check deadlock-freedom and safety properties expressed

as assertions and invariants. Alternatively, the conceptual model can be transformed

into an input for the dSpin[145] model-checker able to verify LTL formulas.

Overall, Cadena includes a number of features that are not supported by Ver-

Cors such as real-time systems analysis, modelling of sensor networks, integration

of domain-specific libraries of components. It would be very useful to implement

the latter functionality in VerCors. On the negative side, Cadena does not support

196 CHAPTER 7. RELATED WORK

modelling hierarchical systems and request/reply by futures.

Omega2. A tool for modelling and verification of timed component-based systems

which completely relies on the UML formalism is presented in the OMEGA project.

An application architecture can be modelled with hierarchical UML composite struc-

tures and classes, the behaviour on the components’ ports can be designed as UML

state machines. An OMEGA component can be either executed in its own thread

or share a thread with the other components. The components can communicate

either synchronously or asynchronously. The specified models can be translated into

an input for the IF [146] validation environment. From the given model, IF generates

Promela code, on which one can model-check LTL formulas in Spin. The tool is also

linked to CADP Evaluator for checking MCL formulas and Kronos[147] for verifying

TCTL formulas on timed automata.

Again, VerCors does not target timed systems. Instead, as opposed to OMEGA,

VerCors provides capabilities for design and verification of system reconfiguration and

ensures separation between the business logic and the control part of an application.

A graphical designer and a code generator for CADP. Except from the

model-checking part, CADP is also equipped with a front-end designer ELOTON[148]

and a code generation module [149], i.e. CADP could be used for modelling, veri-

fication and executable code generation. ELOTON aims at helping the users write

LOTOS formal specification. It comprises a text editor featuring text highlighting,

auto-completion, error marking, and a graphical visualizer of the specified graphs.

The code generator translates a distributed system specification from LotosNT to

the executable C code. The generated program can be connected to the external

code via user-modifiable C-functions. We believe that the programmers who are not

familiar with LOTOS should benefit from using VerCors because it allows specifying

software on higher level than ELOTON and is better adapted to the user who is

not an expert in formal methods. For example VerCors allows one to define system

behaviour as a set of UML state-machines while in ELOTON it is specified textu-

ally in LOTOS. Regarding the code generator, it would be interesting to investigate

whether we could use the approach presented in [149] to connect the executable code

produced by VerCors to the external functions.

7.5.2 Verification platforms

In this section we discuss some of the verification platforms that could be potentially

used by VerCors as an alternative to CADP.We analyse here three verification toolsets

7.5. OTHER FRAMEWORKS 197

that are used by many component development frameworks in the literature, namely:

Spin, NuSMV, and Maude.

Spin. Spin[98] (for Simple Promela INterpreter) is an open-source model-checker for

multi-threaded software systems specified in the high-level language called Promela

(a Process Meta Language)[150]. It is linked to a tool which is able to extract the

Promela models from the implementation level C code based on some guidelines

from the user[151]. Spin can benefit from exploiting several cores for model-checking

as presented in [152]. The tool supports verification of systems with dynamically

growing number of processes (a Promela process can instantiate other processes at

run-time). Besides model-checking, the tool provides simulation capabilities which

allow for the early system prototyping.

Spin supports verification of liveness and safety properties as well as deadlock-

freedom, the logical consistency of the specification and absence of unexecutable code

for the finite systems. The verified property can be expressed as an LTL formula, as

a process invariant (based on assertions) or a Büchi automaton.

Given system specification in Promela and a property to be checked, Spin gener-

ates the C code of the verifier which implies that a new verifyer will be constructed

for each property. In order to tackle the state explosion, Spin performs on-the-fly

verification, which avoids construction of the global state graph. Additionally, Spin

relies on the partial order reduction techniques [153] in order to reduce the number

of states considered during model-checking depending on the verified formula.

Spin is a popular model-checker which has been proven to be efficient by multiple

examples from industry and academia [154, 155, 156]. Seeing, the successful results

of applying Spin to large systems, it would be interesting to investigate whether the

GCM components could be translated into Promela and model-checked with Spin.

The main challenge here would be translating the components hierarchy, because

Promela supports only specification of flat systems. Such issue does not appear

while using CADP because CADP includes the mechanisms for modelling hierarchical

structures. This is one of the reasons why we prefer using CADP but not Spin for our

first verification experiments in VerCors. Another reason is that unlike Spin, CADP

uses branching bisimulation for state-space reduction which are efficient for the GCM

systems because many processes in various components have bisimular behaviour (e.g.

the attribute controllers, proxy managers).

NuSMV. NuSMV[157] is a model-checker supporting symbolic verification of syn-

chronous and asynchronous systems. The tool takes a set of hierarchical finite state

198 CHAPTER 7. RELATED WORK

machines expressed in the SMV language and checks system properties written in

CTL or LTL.

Each state machine has local variables and could be seen as a reusable module

which can be instantiated multiple times. The modules are composed together (either

synchronously or asynchronously) into a so-called parent module. The latter has

access to the local variables of its sub-modules and can pass any of them by reference

to another sub-module as well as its own variables. Thus, the state machines can share

variables. The composition style - synchronous or asynchronous - is defined by the

parent module. In the first case all sub-modules move at each step simultaneously. In

the case of asynchronous composition, only one randomly chosen sub-module proceeds

at each step. In order to ensure fair interleaving, the programmer can define a fairness

constraint saying that each asynchronously composed module will execute infinitely

often. Every SMV program should have the root module main. A state machine can

express deterministic or non-deterministic behaviour.

Similar to CADP, for each verified property, NuSMV answers whether it holds on

the given system and provides a counterexample if the property is not satisfied. The

verification engine is an implementation of the symbolic model-checking [158] which

combines BDD-based (Binary Decision Diagrams) and SAT-based techniques [159]

for bounded model-checking. Before the verification is started, the input system is

preprocessed in several steps including flattening and applying reduction techniques

[160]. Then, the user chooses which verification mechanism should be triggered:

either the symbolic model-checking or SAT-based verification. In the first case, the

model-checker builds a BDD-based representation of the input model and checks LTL

or CTL formulas on it. In the second case, NuSMV needs to be linked to an external

SAT-solver that could be either MiniSat[161] or Zchaff[162]. The user should provide

the length of a counterexample, and NuSMV translates the given LTL model-checking

formula into a SAT problem.

The latest version of NuSMV is distributed as an Eclipse plug-in and is an open-

source project. It is used as a back-end model-checker by multiple projects aiming at

rigorous development of embedded systems [163, 164, 165]. It would be interesting

to apply the symbolic model-checking techniques provided by NuSMV to the GCM

components modelled in VerCors. For this, we would first have to translate the pLTSs

into the finite state machines. The main challenge here would be to deal with the

synchronisation mechanism of SMV which is different from the one of LOTOS and

EXP as discussed in [166]. In fact, some studies about the symbolic reasoning on

pNets have already been started in [31], but they are still at a theoretical stage.

7.5. OTHER FRAMEWORKS 199

Maude. Maude [142] is a rich framework based on the rewriting logic for rigorous

development of various application types including concurrent and distributed object-

oriented systems. The platform comprises an executable modelling language and a

set of analysis tools.

The Maude language is based on the rewriting logic which has an underlying equa-

tional logic as a parameter. The basic elements of a Maude program are equations

and rules that have rewriting semantics meaning that during the program execution

the left-hand side pattern will be replaced by an instance matching the right-hand

side pattern. Equations are used as simplification patterns while rules can be seen

as transition rules for a possibly concurrent system and a way to express the interac-

tion between different processes. Maude supports user-defined syntax of operators,

objects and types with inheritance. A Maude program containing rules and possibly

equations is called a system module. The modules can form a hierarchy.

A Maude program can be both executed, formally analysed, and verified. The

verification toolsuite includes an inductive theorem prover, a tool able to prove that

a Maude program terminates, a model-checker for the temporal logic formulas (LTL,

CTL, CTL* and others), tools for specification and verification of real-time and prob-

abilistic systems.

Systems from different domains can be specified and analyzed with Maude. This

includes semantics of programming languages, distributed algorithms, biological ap-

plications. We believe that VerCors could benefit from translating a GCM sys-

tem specification into Maude mainly because Maude supports parametrised modules

which could be potentially used for analyzing GCM applications with parameterised

topologies. Another reason is that we could try to apply the Maude LTL bounded

model-checker [167] which able to verify infinite state-space systems. The tool checks

LTL formulas on symbolic representation of an application state-space and either

finds a finite state-space for which the formula is fully verified, or performs the veri-

fication up to a given bound and does not succeed to produce the result, or provides

a counterexample.

Moreover, VerCors could benefit from the rich and expressive type system sup-

ported by Maude. However, translation of GCM components specification into equa-

tions and rules of rewriting logic would require significant effort. Still, we believe

that it should be possible because a translation to Maude has already been done

for the ABS language which shares a lot of common features with GCM/ProActive.

Moreover, Maude provides a mechanism for modelling object-oriented systems.

200 CHAPTER 7. RELATED WORK

7.6 Summary

7.6.1 On the verification tools

Table 7.1 summarises the core elements of the three discussed model-checkers and

CADP: the logics for the verified properties, the way processes communicate or syn-

chronise and the techniques to deal with the state-space explosion. The table does

not take into account real-time and probabilistic systems.

We believe that CADP was a perfect choice for the first experiments with model-

checking in VerCors for several reasons. First, the way processes synchronise in CADP

mirrors the synchronisation vectors of pNets which significantly simplifies the input

model generation. Second, the state-space reduction techniques provided by CADP

are efficient for working with the model of GCM components. We could benefit from

applying the reduction techniques based on the tau-actions which are very useful for

hiding the internal logics of the sub-components. Another advantage is that CADP

implements state-space reduction by branching bisimulation which allows merging

processes with similar behaviour.

Among the other verification tools, the most interesting one would be probably

Maude as it includes techniques for bounded model-checking LTL formulas of systems

with infinite state-space. However, translating the pNets into the rewriting logics of

Maude would require significant effort. In fact, it might be even easier not to use

pNets as an intermediate format but generate the Maude code directly from the

user-defined design. In this sense, it should be easier to experiment with generating

input for the NuSMV model-checker where the processes are encoded as finite state-

machines. On the other hand, the communication paradigm of the NuSMV modules

is quite different from the one of pNets: pNets have no shared variables. In would be

interesting to see whether we could benefit from storing a model of GCM/ProActive

components in BDD and from symbolic model-checking. Regarding the generation of

Promela code, it is difficult to estimate whether applying Spin would provide us with

any advantage because we would have to investigate a technique for pNets flattening

and its impact on the state-space. Still, we consider the possibility of experimenting

with Spin as it has demonstrated good results on handling large state-spaces.

7.6.2 On the component development frameworks

From the analysis of the existing frameworks for rigorous development of component-

based systems, we can highlight the combination of several features that give VerCors

an advantage and make it different from the other platforms. First, its graphical

7.6. SUMMARY 201

Spin NuSMV Maude CADP
Input logics LTL LTL, CTL LTL, CTL,

CTL*
MCL (LTL,
CTL, PDL)

Synchronisation/
communication
mechanism

Message chan-
nels: syn-
chronous or
asynchronous
(buffered)

Shared variables Asynchronous
message-passing
and complex
patterns (Maude
rules) for syn-
chronous inter-
actions

Synchronisation
vectors

Methods to
fight state-space
explosion

Spin applies the
partial order re-
duction[153] and
for each LTL for-
mula it builds
a partial state-
space.

Cone of influ-
ence reduction
[160]: NuSMV
constructs a
partial model
that does not
involve variables
which are not
affected by the
checked prop-
erty; NuSMV
uses BDDs
to store large
state-space.

Partial order re-
duction [168]

Reduction
based on tau
actions: replac-
ing a strongly
connected com-
ponent of tau-
actions by a tau
action, partial
order reduction
by analysing
tau-actions and
others; Reduc-
tion by strong
and branching
bisimulation;

Table 7.1 – Verification tools

designer mainly relies on the UML formalism which is well-known among the pro-

grammers and makes it easier to be mastered by the non-experts in formal methods.

Second, we managed to automatise completely both implementation code production

and the generation of the input for the formal verifier so that the user does not need to

be aware of the GCM ADL syntax and does not need to write manually the LTSs that

will be model-checked. Third, the graphical editor is supported by a static validation

engine which ensures a range of properties for a component assembly. Finally, the

users of VerCors can benefit from all core features of the GCM/ProActive semantics

such as group communications, hierarchical components, run-time reconfiguration,

request/reply by futures, flexible construction of non-functional part, separation be-

tween application control and business logic.

At the same time, VerCors could benefit from a wide range of features that we ob-

served in the related approaches. In particular, implementing various communication

202 CHAPTER 7. RELATED WORK

styles similar to the connectors from SOFA 2 would provide more flexibility and allow

the user to model and verify the communication paradigm he prefers. We could try

the technique implemented by the SOFA 2 authors to check that the implementation

code produced by VerCors, indeed, obeys the designed behaviour. Similarly to BIP,

we could create a plug-in for reverse engineering to convert ADL specification and

implementation code into the conceptual models analysed by VerCors. This would

allow one to verify already existing systems. Next, we should investigate how we can

connect the analysed conceptual models to a legacy code like the authors of ABS did.

Another useful work would be implementing predefined libraries of domain-specific

re-usable components similar to the CORBA ones. All these are just examples of

enhancements that we could inherit from the related frameworks and there is much

more research and implementation to be done on the VerCors platform.

Chapter 8

Conclusion

Contents

8.1 Summary . 203

8.2 Perspectives . 206

8.2.1 Modelling and analysis of parameterised architectures . . . 206

8.2.2 Modelling and analysis of multi-threaded components . . . 207

8.2.3 Modelling and analysis of reconfigurable systems 208

8.2.4 Extending the pNet generator 210

8.2.5 Properties specification and visualising the results of

model-checking . 211

8.2.6 Static analysis and type-checking of state machines 211

8.2.7 Other ideas of the future work 213

8.1 Summary

Asynchronous software components provide a convenient programming abstraction

for design and implementation of large-scale distributed systems, where each compo-

nent acts as an autonomous entity which communicates with the other components

by asynchronous request/reply. Development of such systems is is a challenging task

including a huge number of issues ranging from the safe composition of components

to the applications performance and reliability. This thesis aims at facilitating the

development of safe component-based distributed systems by integrating the tech-

niques for their modelling, verification, and generation in a single framework. We

highlight below the main contributions of this dissertation.

203

204 CHAPTER 8. CONCLUSION

First, we have designed a graphical language for the specification of architecture

and behaviour of component-based systems. Our formalism allows modelling appli-

cations with hierarchical structure, separation between functional and non-functional

concerns, reconfiguration capabilities, and group communications. Our graphical lan-

guage reuses a lot of UML elements (i.e. state machines, classes, and interfaces) which

are well-known among the software developers. This makes our formalism easy-to-

learn. Another advantage is that the specifications of component architecture and

behaviour are integrated together. As a result, after translating the graphical mod-

els into input for the model-checker and into executable code, the programmer does

not need to provide any additional information in order to relate the structural and

behavioural descriptions. In fact, this is the first concrete graphical language for

the specification of architecture and behaviour of GCM components. We have im-

plemented a front-end graphical designer for modelling distributed systems in our

language.

Second, we have formalised the architecture of component-based applications and

its static correctness rules. The validity of an architecture with respect to the for-

malised constraints guarantees that the component assembly possesses a number of

properties such as correct encapsulation of components, separation between functional

and non-functional concerns, deterministic communications. We have also formalised

the notion of interceptors which are special components used for the communication

between the functional and non-functional components. Our formalisation targets

first of all GCM components but it is general enough to be extensible in order to be

applied to several other component models. We have implemented validation of the

formalised rules on the graphically designed models. This allows the user to check

the static correctness of the designed architecture. Static correctness of a component

architecture is a necessary prerequisite for the future analysis and generation of the

executable code.

Third, we have formalised a set of semantic rules for the translation of compo-

nents graphically specified in our language into a model of their detailed behaviour

expressed in terms of pNets. The generated behavioural model encodes the core

and the advanced features of GCM/ProActive components including communications

based on futures, reconfigurable multicast interfaces, and hierarchical functional and

non-functional components. We have implemented the formalised translation of the

graphical models into pNets and the translation of the pNets into an input for CADP

model-checker. This allows the user to translate the designed model into an input

for the model-checker fully automatically in order to check its functional properties.

Then, the programmer can verify the properties related to the safety and liveness

8.1. SUMMARY 205

of the modelled application, reachability of a particular action, and inevitability of a

given event. In addition to the files that encode the behaviour of the modelled system,

we also generate a set of auxiliary scripts managing the state-space. They hide ac-

tions of the sub-components that should not be observed during model-checking and

launch the tools from the CADP platform that perform minimisation. We also allow

the user to reduce the state-space by modelling the behaviour of the environment

in the form of a state-machine. While in the current version we rely on finite-state

model-checking, the pNets encoding the behaviour of GCM components are param-

eterised, hence, they can be potentially transformed into input for a infinite-state

verification tool.

Finally, we have designed and implemented a plug-in translating the conceptual

model of a component-based application into executable code. The generated code

includes an XML-based file with the architecture of a designed system and a set of

Java interfaces and classes with the code implementing the designed business logic.

The generated code can be executed on the GCM/ProActive middleware. This allows

the programmer to obtain automatically the code of an application which conceptual

model has been validated statically and model-checked.

Overall, the core challenge addressed by this thesis is the construction of safe dis-

tributed applications. We have integrated the techniques for model-driven design and

formal verification in a single framework for modelling, verification, and generation

of component-based hierarchical distributed systems. In this thesis, we have demon-

strating the usage of our platform by modelling, verifying, and generating several

applications. Our platform can be installed on top of Eclipse IDE.

The strong point of our approach lies in the combination of the model-driven

techniques and formal methods and in full automation of the generation processes.

On one hand, we allow the programmer to specify the model of his application on a

high level of abstraction using well-known and popular UML notations. On the other

hand, we rely on the powerful and exhaustive formal analysis techniques in order

to ensure the quality of the designed models. In order to assist the programmers

in the development of complex applications, we try to automatise as many steps as

possible. We fully automatically transform the design of a system into an executable

application. We request very few input data from the user in order to translate the

graphical models into an input for the model-checker.

The core challenge in the development of our framework was to bridge the gap be-

tween the three models: the graphical specification, the input for the model-checker,

and the executable code. While translating the graphical models into the model-

checked graphs, we took advantage of using an additional step where we translate

206 CHAPTER 8. CONCLUSION

the graphical specification into intermediate structures. The generated structures are

based on the behavioural semantics for hierarchical asynchronous components which

we have defined and formalised in this thesis in terms of pNets. Our intermediate

model at the same encodes the structure and the behaviour of a user-designed appli-

cation and encodes all the details of the behaviour and communications which can

be model-checked.

The gap between the graphical models and executable code is not so big. While

implementing this translation we took advantage of using the model-to-text transfor-

mation techniques which allowed us to keep our code clean and helped to maintain

it. The combination of the features that can be modelled, verified, and generated

with our platform make our framework original and expressive. It includes the hier-

archical components, the future-based communications, the reconfigurable multicast

interfaces, and the functional and non-functional components.

8.2 Perspectives

In this section we present the ideas for the future work on our framework for mod-

elling, analysis, and generation of component-based systems presented in this thesis.

We discuss the enhancements necessary to allow our framework to handle wider range

of applications. We also explain how our platform can be made more user-friendly.

8.2.1 Modelling and analysis of parameterised architectures

The large-scale real-world applications are often composed of multiple components

which implement similar behaviour, and the number of such components in the system

is often unknown at the design stage. Moreover, it can vary during the program

execution. An example of such application can be the implementation of map-reduce

programming model for parallel and distributed processing of big data. According

to it, the input data is split into independent parts which are processed by several

nodes executing the map() method in parallel. The result of the execution is given

as an input to the reduce() tasks which are also processed in parallel. The number of

the workers executing the tasks can depend on various factors such as, for instance

the size of the input data.

As one of the directions for future work, we would like to extend our framework

with techniques for modelling and verification of systems with variable number of

components, i.e. systems with parameterised topologies. This requires, first of all,

extending the GCM ADL. In [87] the authors introduced examples of component-

8.2. PERSPECTIVES 207

based architectures with parameterised topologies following several patterns (a ring,

a matrix, a pipeline, etc). The authors presented how such applications can be

encoded in ProActive/GCM ADL. We can use the results of their work as a starting

point for the future research and extend their ADL (and ProActive/GCM ADL) for

dealing with more generic parameterised architectures.

In order to model such systems in VerCors, we need to extend our graphical for-

malism. Regarding the verification, the good point is that the pNets encoding the

behaviour of GCM components are already parameterised, hence modelling systems

with parameterised topologies in pNets should not require much additional effort.

However, we should still find a way to translate the graphically specified parameters

to the pNet counterpart. Finally, we should extend the executable code generator

of VerCors so that it can construct parameterised ADL files. Moreover, we should

enhance the ProActive platform so that it can build applications defined in a pa-

rameterisd ADL with the value of parameters given during deployment. There is no

notion of parameterised ADL in the current version of ProActive.

8.2.2 Modelling and analysis of multi-threaded components

Currently, the VerCors platform can be used to model and to verify only single-

threaded primitive components. GCM/ProActive already supports programming of

multi-threaded primitive components, and we would like to extend our framework

with techniques for modelling, verification and generation of multi-threaded primitive

components.

Similar to a single-threaded primitive, a multi-threaded one is implemented in

GCM/ProActive as an active object, but in the second case it can have several

threads. Such active objects are called ”multiactive objects”. For a multiactive

object, the programmer has to specify the number of threads (it is called the ”thread

limit”) which can run in parallel and the requests that can be executed in parallel

(we also call them ”compatible requests”). The thread limit allows avoiding a thread

explosion. In order to define which requests can be executed in parallel, the pro-

grammer should split the server methods into groups and specify the compatibilities

between the groups. Two requests to the methods from compatible groups can run in

parallel. Moreover, the FIFO policy of the queue of a multiactive object is adapted

so that a request can overtake the other requests and be executed if two conditions

are satisfied. First, it should be compatible with the currently running requests, and,

second, it should be compatible with the requests that are located before it in the

queue.

What makes the implementation of GCM/ProActive multiactive objects espe-

208 CHAPTER 8. CONCLUSION

cially interesting for the developer is the priority specification mechanism [169] which

allows the programmer to control the scheduling of requests. The programmer can

use annotations to specify the priorities between the groups. Then, instead of in-

serting a new request at the end of the queue, its position is computed depending

on the specified priorities. More precisely, a request that belongs to a group G is

inserted in the queue before the first request which group has lower priority than G.

The advantage of such approach is that it allows the programmer to customise the

request scheduling.

Modelling and analysis of components based on GCM/ProActive multiactive ob-

jects in VerCors requires, first of all, additional graphical notations for the specifica-

tion of the thread limit and the priorities. We suppose that they should be defined

for a given UML class implementing the behaviour of a component. The generated

pNets should be also modified: we should encode two additional processes and modify

the body. The first process should control the number of threads that are currently

running. When the body takes a new request from the queue, it should check with

this process whether there is an available thread. Whenever a method is served, it

should notify this process that its thread is released. In addition, we should encode

the process inserting the next request in the queue with respect to the user-defined

priorities. The body should be modified in such a way that it can take from the queue

a request that should be executing according to the compatibility relation, i.e. we

need to encode the overtaking of requests. Finally, we should annotate the generated

GCM/ProActive code with respect to the specified groups, compatibilities, priorities,

and thread limits.

8.2.3 Modelling and analysis of reconfigurable systems

In this thesis we discussed how a GCM application with reconfigurable multicast

interfaces can be designed, verified, and generated in our framework. This is not the

only reconfiguration that can be performed for the real GCM systems: the singleton

interfaces can be also bound and unbound, the existing components can be started

and stopped, and new components can be added to the application at run-time.

Extending our framework with tools for modelling, analysis, and generation of such

kind of reconfigurations is in the scope of the future work.

Graphical specification of reconfigurable singleton interfaces should follow the

same principle as for the multicasts. Recall that the latter can have several outgo-

ing bindings, some of them are created during the construction of the application,

others are bound at run-time. A singleton can also have several outgoing bindings

but at most one of them can be bound at each time. As for the multicast interfaces,

8.2. PERSPECTIVES 209

the bind and unbind operations should be triggered from the state machines. The

construction of pNets for reconfigurable singletons was formalised in [73]. While the

reconfiguration of a multicast interface is encoded in the proxy and proxy manager

of its methods, a singleton interface requires an additional binding controller pLTS.

It stores the identifier of the currently bound target interface, provides actions for

its modification, and synchronises with the rest of the component on the method

invocations. Implementing construction of such a pLTS in VerCors and synchronis-

ing it with the other processes is not more complex than generating reconfigurable

multicast interfaces.

Another type of reconfiguration that we would like to model and to verify in

VerCors is starting and stopping a component; this is done by a so-called lifecycle-

controller in ProActive/GCM. There are two key points that make the reconfiguration

challenging. First, we should be able to start and stop separately the membrane and

the content (or the implementation class) of a composite (or of a primitive). When

the content of a composite is stopped but its membrane is running, the component

can serve only the non-functional requests while the functional ones are accumulated

in the queue. This changes the policy of the body: instead of serving calls in a FIFO

order, it checks with the lifecycle-controller the current status of the component, and

depending on the current status it takes the first request of a functional or of a non-

functional type from the queue. The second challenge is imposed by the hierarchy:

normally, when the content of a composite component is stopped, its sub-components

at all levels of hierarchy should be also stopped as it is explained in [170].

The instructions triggering component start and stop should be graphically spec-

ified in the state machines. Encoding such kind of reconfiguration in pNets requires

extending each component with a pLTS modelling the lifecycle-controller, modifying

the policy of the body, and extending the pLTS of the queue and the body with the

actions treating the start and stop requests.

Finally, a sub-component can be added in a membrane or in a content of a com-

ponent at run-time. For the graphical specification of such reconfiguration we can

follow the same approach as for the bind/unbind operations: the representation of

a component can be different depending on whether the component is added to the

system during its construction or at run-time. In addition, we should extend our set

of the architecture static validation rules to check that no binding is plugged to a non-

existing component during the construction of the application. When constructing

the pNets, we should generate all the components specified in the system.

210 CHAPTER 8. CONCLUSION

8.2.4 Extending the pNet generator

We discuss below the features of the component-based applications which we would

like to be able to verify with our framework in addition to the ones fully implemented

in this thesis. Since we rely on the pNets as an intermediate format, we first of all

generate the pNets encoding those features. For some of them, the construction of

pNets is already formalised (e.g. the multicast interfaces for primitive components)

but not yet implemented in VerCors. For the others, we still need to provide the

necessary formalisation and to encode their construction in our platform.

In addition to the future objects discussed in this work, components can also rely

on so-called first-class futures - the futures that can be transmitted between compo-

nents before their value is known. Recall that with the usual futures, a component

has to wait for the result of the remote computation before sending it to another

component. In the case of the first-class futures, a component can send a reference

to a future object (for instance, as an argument of a request) even if its value has

not been received yet. Encoding in pNets GCM applications that communicate by

first-class futures was presented in [73]. The authors introduce the notion of a gen-

eralised reference to the future which is a special variable encoding the name of the

component and the index of the proxy holding the future; in some sense it is a unique

identifier of the future. The reference can be then transmitted between components

as an argument of a request. When the component holding the future receives its

value, it forwards the value to all other components holding the generalised refer-

ence. This requires small modifications in the structure of proxy and proxy manager

pLTSs, an additional pLTS in the component which waits for the future value to

be forwarded, and several additional synchronisation vectors. The main challenge in

constructing the additional elements will be to identify statically which arguments of

which requests can be a references to a future.

In this work we discussed how the interceptors can be graphically modelled and

recognised among the sub-components in a membrane. The next step is to extend

the pNets encoding the behaviour of GCM components with interceptors in order to

model-check their properties.

Another enhancement of the pNet generator that should be carried in a short-term

period is the construction of primitive components with a componentised membrane.

More precisely, the pNet of a primitive should be extended with an additional set of

sub-nets modelling the behaviour of the sub-components. The set of synchronisation

vectors should be extended with the vectors for the bindings inside the membrane.

Finally, we should generate and synchronise the proxy, proxy manager, and delegate

pLTSs for the methods of the non-functional interfaces.

8.2. PERSPECTIVES 211

8.2.5 Properties specification and visualising the results of

model-checking

This work targets the software developers who are not experts in formal methods,

and we believe that considering the complexity of the underlying formal techniques,

we achieved significant progress in automatising the construction of the input for

the model-checker. However, a necessary prerequisite for making our tool accessible

for the non-experts in formal techniques is assisting our users in the specification of

the model-checked properties and translating the diagnostics provided by the model-

checker to the graphical language of our front-end editor.

The core challenge in the high-level specification of the model-checked properties

is the difference between our graphical specification language and MCL with the lan-

guage of the actions of pNets. Our idea is to create a wizard where the user can select

the actions performed by the designed model and the MCL pattern corresponding

to the verified formula. Then, we can translate the chosen actions into the labels of

the model-checked behavioural graph and use them as the arguments of the chosen

MCL pattern. For example, the user can state that a given request cannot be emitted

by a component twice. Then, the pNet action encoding the corresponding request

emission should be used as an argument of the AbsenceBefore MCL pattern.

Another approach to the high-level specification of the expected behaviour is to

model it as a so-called observer automaton. In the case of VerCors, it can be designed

as a state machine. This would require developing another language for the labels

of the transitions for expressing the communications between components. Then, we

can translate a state machine into an MCL formula. For instance, a state machine

with a simple sequence of transitions without branching can be converted to a formula

stating that the corresponding sequence of actions exists in the behaviour graph.

Regarding the diagnostics provided by the model-checker, CADP can return as

a result of verification an example (or a counterexample) of a path in the input

behavioural graph that satisfies (or does not satisfy) the checked property. In our

case, the path is constructed from the labels of the actions of the pNets modelling the

behaviour of the input system. We should interpret each such label and highlight the

graphical elements that are involved in the actions. We should not highlight them all

at once, but do it step-by-step following their order given by the model-checker.

8.2.6 Static analysis and type-checking of state machines

In the current version of VerCors we statically validate the architecture of the designed

system but not its behaviour. Recall that the behaviour of each server and local

212 CHAPTER 8. CONCLUSION

method is defined as a state machine and we would like to extend our framework

with tools for their static analysis and type-checking. It is required for three main

reasons.

First, analysing a state machine before translating it into a pLTS is needed in

order to identify better where the system should block and wait for the value of a

future variable. This will make the generated model closer to the real implementation.

We are currently working on such an analysis.

Second, analysing a state machine statically allows identifying various errors early

at the design stage. We can already detect variables that are used before being

initialised and verify that a method invoked by a state machine exists. We should

also check that a guard condition is indeed a boolean expression, that the operands

in the expressions have compatible types, that the arguments of a method call have

correct types, etc. Such an analysis will allow us to generate correct executable code

and to warn the user about mistakes before using the model-checker.

Finally, the static analysis of state machines can be used to generate more user-

friendly implementation code. Recall that the current version of VerCors produces a

switch-case statement in the body of a server (or of a local) method and translates

each state of the corresponding state machine into a case-statement. Such code

mirrors the structure of a state machine but it is not very easy to follow. On one

hand, this is not an issue because the logic of the generated code is not supposed

to be modified as it has been model-checked. On the other hand, the programmer

who maintains the code is not always the designer of the state machine, and he needs

to understand clearly what the code does in order to maintain the development of

the software. In order to generate more user-friendly code, we can recognise in the

structure of a state machine patterns that correspond to various control statements

like for-loop, do-while loop, etc and to translate them in the corresponding code. The

simplest example is a sequence of transitions without branching or guard conditions;

it can be translated into a sequence of instructions in the executable code. On the

other hand, such an approach can lead to some restrictions on the structure of the

state machines because the programmer will be allowed to use only those constructs

which can be recognised by our analysis plug-in. Hence, we would like to allow the

user to choose: either to compose his state machine only from the structures that can

be recognised by our translator and converted into a user-friendly code, or to define

any combination of states and transitions and to translate them into the switch-case

statements.

8.2. PERSPECTIVES 213

8.2.7 Other ideas of the future work

In addition to the future work that we discussed in details in the previous sections,

there is a number of other enhancements from which our framework can benefit.

Several aspects that were already mentioned in this dissertation are related only

to the implementation of the VerCors platform and can be solved in a short-term

period. In particular, in the current version of the platform, the size of the families of

proxies has the default value for any request. We should develop a wizard where the

user can define the size of the families of proxies for each kind of request separately

(or for the groups of requests). This will make our tool more flexible and optimise

the state-space because we will not generate more proxies than needed according to

the user input.

Second, we should improve the way the attributes of primitive components are

handled as it was discussed in Section 6.2. Remember that in the current version of the

VerCors platform, the programmer has to explicitly define state machines that provide

access to the attributes to outside of the primitive. The state machines are then

translated into pNets as any other server method. Instead of asking the user to specify

a state machine, we can offer him to select the attributes that are accessible through

the server interfaces. We already generate the pLTSs of the attribute controllers

which store the values of the attributes and provide actions to access them from

the component. For the chosen attributes, we should extend the queue and the

body pLTSs with the actions for handling requests to their attribute controllers and

synchronise them with the rest of the system. On the contrary, in the generated

executable code all attributes are accessible from outside of a primitive. This should

be also modified depending on the input from the user.

As the longer-term tasks, we plan to experiment with integrating our platform

with several other verification tools. We discussed in Section 7.6.1 the possibility of

generating input for the Maude and NuSMV frameworks but we are open to exper-

imenting with other tools. In order to enhance the integration of our platform with

CADP we would like to investigate whether the pNets can be converted into Loto-

sNT instead of Fiacre. Another idea for the future research is providing techniques

for modelling and verification of different communication styles as it is done by the

authors of SOFA for their connectors.

214 CHAPTER 8. CONCLUSION

Appendix A

Extended Abstract in French

Un environnement pour le développement
rigoureux de composants répartis: formalisation et
outils logiciels.

A.1 Introduction

Récemment, la quantité de données traitées par des systèmes informatiques a aug-

menté exponentiellement, amenant de nouvelles problématiques pour les développeurs

de logiciels et les scientifiques. Cette quantité de données ne peut être traitée que par

plusieurs machines dans un temps raisonnable. Le calcul distribué est une approche

qui permet aux applications d’opérer sur des données Big Data. Cette approche per-

met de diviser un programme en différentes parties interagissantes, qui s’exécutent sur

différent noeuds de calcul. Programmer ces systèmes est difficile car le développeur de

ces programmes doit assurer non seulement la correction du comportement de chaque

entité, mais aussi la correction et la consistance de leur composition. La collabora-

tion de plusieurs processus, distribués sur plusieurs machines, et leur synchronisation

rendent la logique de calcul plus complexe à établir. Dans cette thèse, nous nous

focalisons sur la vérification de la correction de la logique de calcul, dans le contexte

des applications distribués.

Programmation par composants distribués Une approche classique dans le

développement d’applications distribuées à grande échelle est la programmation par

composants, où un système logiciel est divisé en plusieurs modules (composants), cha-

cun comportant des interfaces bien définies qui peuvent être utilisées pour interagir

les uns avec les autres. Cette approche permet une conception claire des applica-

tions et procure une base solide et modulaire pour le développement de systèmes

215

216 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

complexes. Il existe toute une variété de modèles à composants, définissant comment

une application devrait être conçue, implantée et déployée. Ces modèles utilisent

souvent un vocabulaire différent, mais en général, tous se basent sur les notions de

composants, d’interfaces (parfois appelés ports) et de relieurs (parfois appelés con-

necteurs). Un composant peut être vu comme une brique logicielle qui procure une

fonctionnalité bien particulière. Des composants utilisent les interfaces comme points

de communication pour exposer leurs services et pour accéder aux services des autres

composants. Les relieurs sont utilisés pour établir la communication entre les inter-

faces. Un des avantages de la programmation par composants est la réutilisabilité des

composants : lorsque le développeur écrit un nouveau programme, il peut réutiliser

des composants existants puisqu’il connâıt, de façon statique, les fonctionnalités req-

uises et proposées par chaque composant. En plus de la composition plate de com-

posants, certains modèles permettent le développement de systèmes hiérarchiques, où

un composant peut embarquer un autre composant. Dans ce cas, ce composant est

un composant parent et communément appelé conteneur, et le composant embarqué

est appelé un sous-composant. L’approche hiérarchique permet au programmeur de

cacher la complexité de l’implantation interne d’un partie du système.

Même à l’aide d’outils évolués supportant la programmation par composants, le

développement d’applications distribués à large échelle reste problématique pour trois

raisons principales. Premièrement, ces systèmes sont souvent basés sur des modèles de

communications asynchrones. Typiquement, lorsqu’un composant envoie une requête

à un autre composant, l’envoyeur ne bloque pas son exécution en attendant la réponse.

En conséquence, deux composants peuvent exécuter leurs services en parallèle. Cela

améliore les performances de l’application car servir plusieurs requêtes en parallèle

est plus efficace que le traitement séquentiel et parce que les ressources de calcul de

l’appelant ne restent pas en attente du résultat de l’invocation distante. En revanche,

l’asynchronisme rend le développement de systèmes distribués plus complexe. Une

raison à cela est que le comportement des composants n’est pas facile à déterminer à

l’heure de l’écriture du programme. En effet, il est impossible de savoir exactement

quand le résultat d’un calcul distant reviendra, et quand il sera disponible.

Un autre défi est présenté par l’évolution des systèmes distribués à l’exécution :

dans le but d’adapter la tâche courante aux changements de l’environnement, une

application a besoin de pouvoir être reconfigurée pendant son exécution. Cela peut

inclure par exemple, l’ajout ou la suppression de composants, en dépendant de la

charge du système. Le programmeur doit pouvoir considérer toutes les configurations

possibles de son application et être sûr que pour chacune d’entre elles, l’application

se comportera de façon correcte. Gérer un système reconfigurable devient encore

A.1. INTRODUCTION 217

plus complexe lorsque les changements s’appliquent à un composant parent, car son

contenu en devient impacté.

Enfin, lorsqu’on programme un système distribué, il ne s’avère pas toujours facile

de garder la séparation des préoccupations claires entre les aspects fonctionnels et

non-fonctionnels, tout en leur permettant de communiquer. Les aspects fonction-

nels sont responsable de la logique métier de l’application: ils définissent comment le

système se comporte dans le contexte donné. Les aspects non-fonctionnels contrôlent

le déroulement de l’application : ils mesurent des indications de performance qui sont

souvent requis pour le comportement fonctionnel de l’application. Aussi, ils perme-

ttent de planifier et d’exécuter une reconfiguration, de prendre en charge l’aspect

sécurité, et bien d’autres aspects non liés à la logique métier de l’application. Les as-

pects non-fonctionnels ne doivent pas dépendre du domaine concret du système : si le

système devient surchargé, un nouveau noeud de calcul doit être ajouté, peut importe

si il traite un transfert bancaire, un multiplication de matrice distribuée, où calcule

un rendu graphique. Implanter séparément les aspects non-fonctionnels des aspects

fonctionnels est important pour la sécurité et réutilisabilité des composants logiciels,

cela permet une identification claire des objectifs de chaque entité. Le fait que les

composants aient des interfaces requises et offertes bien définies rend la programma-

tion des systèmes avec une bonne séparation des préoccupations plus facile. De plus,

parfois la séparation des préoccupations est conduite par le modèle de composants :

le modèle distingue les composants et interfaces fonctionnels des non-fonctionnels. Le

problème est que deux parties d’une application s’influencent souvent mutuellement

et communiquent. Le développeur doit alors garder l’équilibre entre interactions et

séparation des préoccupations. Nous avons identifié les problématiques auxquelles le

programmeur d’applications distribués doit faire face. Il existe un besoin d’aider le

programmeur à relever ce défi en lui procurant les techniques et outils nécessaires

pour l’assister dans la conception, l’analyse, et l’implantation de systèmes distribués.

Le Grid Component Model Parmi tous les modèles à composants existants, nous

nous focalisons sur le Grid Component Model (GCM), grâce aux caractéristiques

que nous présentons ci-après. Premièrement, GCM permet de spécifier des com-

posants hiérarchiques distribués : aux feuilles de la hiérarchie, des composants prim-

itifs encapsulent du code métier et représentent les unités de distribution. Puis, les

composants sont assemblés hiérarchiquement en utilisant des composants compos-

ites. Deuxièmement, l’implantation de référence pour GCM, offerte par l’intergiciel

GCM/ProActive, permet une programmation par composants découplée, grâce à la

communication par requêtes asynchrones avec futures. Plus précisément, lorsqu’un

218 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

composant envoie un requête distante, un objet future est créé localement, qui

représente un emplacement pour le résultat à venir. Contrairement aux commu-

nications synchrones, l’envoyeur continue son exécution tant qu’il ne requiert pas le

résultat de l’invocation distante. Lorsque le résultat est requis, l’envoyeur utilise ce

résultat s’il est disponible, ou bien attend qu’il soit calculé s’il ne l’est pas. Ces

communications sont toujours asynchrones dans le sens où l’envoyeur ne bloque pas

directement au moment de l’invocation, bien qu’elles soient plus faciles à contrôler

que les communications par messages, complètement asynchrones. Les communica-

tions basées sur les futures augmentent le degré de parallélisme puisque l’envoyeur

peut continuer son exécution pendant que sa requête est prise en charge par un autre

composant. L’absence de mémoire partagée permet un découplage des composants :

chaque composant a son propre espace mémoire et est le seul responsable de son état

et de son exécution. Cela rend le modèle particulièrement adapté à un environnement

distribué. De plus, l’utilisation des futures est transparent dans GCM/ProActive :

le programmeur n’a pas besoin d’utiliser des instructions spécifiques pour manipuler

les futures. Le troisième avantage de GCM est sa capacité de reconfiguration. Un

composant GCM peut être ajouté ou supprimé, démarré ou arrêté, et les relieurs

entre les composants peuvent être modifiés à l’exécution. Un autre point fort de

GCM est qu’il satisfait la règle de séparation des préoccupations : il définit les no-

tions de composants fonctionnels et non-fonctionnels qui peuvent avoir une structure

hiérarchique. De plus, GCM offre des techniques de modélisation non seulement

point-à-point mais aussi de un vers plusieurs, et de plusieurs vers un, qui sont des

styles de communication largement utilisés en systèmes distribués.

Ingénierie logicielle régie par les modèles Un nombre important de techniques

qui résolvent la documentation, le développement et la maintenance des systèmes logi-

ciels larges et complexes appartient à l’approche d’ingénierie régie par les modèles,

qui est devenue le standard pour le développement de projets industriels. En partic-

ulier, cette approche permet au programmeur de concevoir un modèle de l’application

future avant d’en écrire son code, et ainsi, de planifier à l’avance la structure et le

comportement de chacun des composants impliqués dans le système. Il existe des

dizaines de notations textuelles et graphiques développées dans l’industrie et dans

le monde académique pour la spécification d’application sous plusieurs aspects. Un

des plus populaires langages graphiques pour les systèmes orientés objets et com-

posants est l’UML. Il permet la spécification d’applications à partir d’un ensemble

de diagramme qui décrivent l’architecture, le comportement, les interactions avec

l’utilisateur, etc... Les diagrammes peuvent être utilisés non seulement pour docu-

A.1. INTRODUCTION 219

menter le projet mais aussi comme entrées pour la génération de code à partir du

modèle. Dans cette optique, il existe plusieurs outils qui sont capables de traduire

partiellement un modèle logiciel en code exécutable, tel que le programmeur puisse

prendre ce code comme base de son projet. De plus, les diagrammes peuvent être

analysés statiquement pour vérifier l’absence d’erreurs qui peuvent survenir dans le

code d’implantation. Au plus tôt l’erreur peut être détectée dans le système, au plus

réduit sera le coût de sa correction. L’ingénierie régie par les modèles est devenue

populaire dans l’industrie aussi parce que cela facilite la maintenance des applications

à grande échelle. Lorsqu’une nouvelle fonctionnalité est ajoutée, au lieu de modifier

directement le code d’implantation, le développeur peut, tout d’abord, l’introduire

dans la conception de l’application dans le but de voir son impact sur le reste du

système.

Méthodes formelles Tout un ensemble de techniques pour la spécification et

l’analyse de logiciels complexes est basé sur des méthodes formelles. Elles perme-

ttent de modéliser un système comme une composition d’entités mathématiques et

de prouver leurs propriétés. Il existe un grand nombre d’approches qui diffèrent selon

le modèle mathématique utilisé, ou selon le niveau d’automation (certaines techniques

sont complètement automatiques, d’autres requièrent l’intervention de l’utilisateur),

ou bien encore selon les aspects qui sont traités par le modèle d’entrée (par exemple

aspect temporel, composition sûre ou interactions concurrentes). Une technique qui

procure l’analyse exhaustive et automatique du comportement d’un système est le

model-checking (vérification de modèle). Il se base sur la construction d’un modèle

du comportement de l’application et sur l’exploration de son espace d’états dans le

but de vérifier les formules mathématiques qui modélisent les propriétés recherchées

du modèle d’entrée. Cela peut être, par exemple, l’atteignabilité d’un comportement

particulier, ou l’absence d’interblocage. Un des avantages du model-checking est qu’il

applique une analyse exhaustive sur le modèle d’entrée, ce qui qui permet d’identifier

les scénarios erronés rares qui ne sont pas toujours couverts par les tests logiciels.

Le succès de cette approche est vérifié par son application à des projets de grande

échelle développés par des entreprises modernes qui mènent le marché actuel, comme

les services Web Amazon, les contrôleurs des vaisseaux spatiaux de la NASA et les

systèmes de contrôle de vol d’Airbus.

Cependant, le model-checking ne peut être appliqué qu’à une abstraction du

système réel, encodé dans une machine à états finis. Une telle abstraction peut

être obtenue par analyse du code source, mais cela est très coûteux. Nous choisissons

d’associer les méthodes formelles à l’ingénierie régie par les modèles : nous démarrons

220 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

d’une approche de haut niveau puis nous générons un espace d’états abstrait pour lui

appliquer la technique de model-checking. Nous générons aussi un code exécutable à

partir de l’approche de haut niveau. Si besoin, le code généré.

Les méthodes formelles permettent de détecter une large variété d’erreurs dans

un système logiciel au moment de sa conception mais leur usage dans l’industrie

reste très restreint. Il y a deux raisons à cela. Premièrement, l’application de ces

techniques peut être très coûteuse : par exemple, l’espace d’état peut être si grand

qu’il est impossible de le vérifier exhaustivement. Pour relever ce défi, la communauté

des méthodes formelles développe des techniques de réduction d’espaces d’états, telles

que la réduction à ordre partiel, la réduction symétrique, etc... Une autre raison pour

laquelle les méthodes formelles ne sont pas largement utilisées dans l’industrie par

les développeurs logiciels est la complexité de leur utilisation. Mâıtriser les méthodes

formelles requiert souvent des bases mathématiques solides. Ce deuxième défi est

abordé dans ce manuscrit.

Objectifs et positionnement Ce travail a pour but d’inclure une vérification

systématique de propriétés comportementales dans le processus de développement

industriel d’applications distribuées basées sur les composants. Pour cela, nous

voulons munir les développeurs de systèmes distribués à composants d’un ensem-

ble d’outils régis par les modèles, qui supportent la conception et l’implantation

d’applications sûres. Nos outils sont destinés à guider l’utilisateur dans toutes les

phases du développement de logiciels à composants: depuis la spécification de la con-

ception jusqu’à la génération de code automatique, en passant par la vérification de

l’architecture modélisée et des propriétés de son comportement. Plus précisément,

nous voulons :

• concevoir un langage facile à utiliser pour la spécification de systèmes à com-

posants hiérarchiques et asynchrones, qui a des possibilités de reconfiguration;

• aider les développeurs à être sûr que la conception de leurs applications est cor-

recte de façon statique, et que les composants fonctionnels du système modélisé

sont correctement séparés des composants non-fonctionnels;

• développer une approche consistant à traduire automatiquement les

spécifications définies par l’utilisateur en une entrée acceptable par un model-

checker, dans le but de vérifier les propriétés de l’application modélisée.

• développer une approche consistant à traduire automatiquement l’application

modélisée en code exécutable.

A.2. RÉSUMÉ DES DÉVELOPPEMENTS 221

• intégrer toutes ces techniques dans un seul et même environnement de

développement pour la modélisation, la vérification et la génération de code

de systèmes distribués à base de composants.

La plateforme GCM procure un modèle de programmation riche, et inclut plusieurs

mécanismes avancés. Sa sémantique opérationnelle a été bien définie et formalisée

dans les travaux précédents de l’équipe de recherche Oasis, et l’implantation en tant

qu’intergiciel respecte le modèle et cette sémantique. Cependant, une sémantique

comportementale (et non opérationnelle) est requise pour permettre lemodel-checking

de propriétés temporelles. Le défi ici est de définir la sémantique qui respecte

précisément la sémantique des composants GCM/ProActive et de leur implantation

en tant qu’intergiciel, être sûr que les propriétés prouvées par le model-checker seront

respectées par le code généré.

Dans cette thèse, nous ciblons la modélisation et la vérification des systèmes

à composants distribués et hiérarchiques qui disposent d’une forte séparation des

préoccupations fonctionnelles et non-fonctionnelles, d’une capacité de reconfiguration,

et de communications basées sur les futures. L’originalité de ce travail réside dans

la combinaison de ces caractéristiques. Il existe de nombreux modèles à composants

supportés par des plateformes de développement qui présentent certaines de ces car-

actéristiques. Par exemple, le modèle de composants BIP permet la spécification de

systèmes hiérarchiques et asynchrones, mais ne dispose pas de capacité de reconfigu-

ration. Les composants de Rebeca sont asynchrones et hautement dynamique, mais

pas hiérarchiques. Les composants de SOFA 2 disposent de toutes les caractéristiques

mentionnées précédemment mis à part que la partie non-fonctionnelle d’un composant

ne peut être que non-hiérarchique, et que les communications à base de futures ne

sont pas supportées. Cette thèse propose un aperçu et une comparaison des modèles

à composants et des outils liés au travail présenté dans ce document.

A.2 Résumé des développements

Le but global de ce travail est d’intégrer dans un seul et même environnement toutes

les techniques de modélisation, d’analyse et de génération de systèmes à composants

hiérarchiques et distribués avec communications asynchrones et capacité de reconfig-

uration. Nous voulons munir les développeurs logiciels d’une seul et même plateforme

où ils peuvent modéliser une application de la façon la plus aisée possible grâce à un

langage graphique facile à prendre en main. Nous voulons leur permettre d’analyser

le modèle conceptuellement, en appliquant des méthodes de vérification formelles

puissantes, et de générer le code d’implantation de ce modèle. Nous automatisons

222 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

autant que possible les analyses conceptuelles des modèles, ainsi que la construction

du code final, car notre environnement doit pouvoir être utilisé par des personnes

non-expertes en méthodes formelles. Ce manuscrit présente des contributions qui

sont résumées dans les cinq paragraphes suivants.

Langage de spécification graphique Nous introduisons un langage graphique

pour la spécification de l’architecture et le comportement de systèmes à composants

distribués. Le langage permet d’exprimer des structures hiérarchiques complexes

comprenant la logique métier des composants (composants fonctionnels) et com-

prenant les composants responsables du contrôle et de la gestion de l’application

(composants non fonctionnels); les différentes spécifications des deux aspects sont

graphiquement séparées. Les notations de notre langage réutilisent largement celles

des éléments UML, qui sont bien connus parmi les programmeurs. Cela rend le

formalisme graphique plus facile à utiliser pour un plus grand nombre de program-

meurs. Plusieurs formalismes pour les composants GCM ont déjà été étudié, mais

aucun d’entre eux n’a été proprement intégré dans une plateforme logicielle. Basé sur

les travaux précédents, dans cette thèse nous présentons la première spécification de

l’approche qui représente une définition complète et cohérente de l’architecture des

composants GCM et de leur comportement. Cette approche intègre un langage dédié

spécialement conçu pour les composants GCM, utilisant le méta-modèle UML.

Formalisation de l’architecture des composants et des règles statiques de

correction Nous procurons un modèle formel pour la spécification de l’architecture

des composants qui inclut un ensemble de constructions flexibles pour la définition des

parties non fonctionnelles d’une application qui n’a jamais été formalisé auparavant.

La logique métier et la partie contrôle d’un système modélisé sont précisément séparés.

Basé sur la formalisation de l’architecture, nous définissons un ensemble de prédicats

guarantis

Génération des modèles comportementaux Nous formalisons un ensemble de

règles sémantiques pour la transformation des modèles conçus dans une sémantique

formalisée permettant de spécifier les détails de comportement de l’application et de

ses communications entre composants. Le modèles comportementaux sont générés en

termes de réseaux d’automates synchronisés paramétrés. Ils encodent les communica-

tions basées sur les futures, les composants hiérarchiques, quelques aspects de recon-

figuration d’architecture, et les communications de un vers plusieurs.Nous montrons

aussi comment les structures générées peuvent être automatiquement transformées en

A.2. RÉSUMÉ DES DÉVELOPPEMENTS 223

une entrée pour un model-cheker (nous utilisons le model-checker CADP pour cela)

dans le but de vérifier les éléments requis de l’application conçue exprimés comme

propriétés logiques. Avant ce travail, l’approche présentée dans cette thèse a été par-

tiellement testée manuellement sur plusieurs cas d’utilisation. Cependant, ceci est le

premier travail où la transformation est complètement automatique pour transformer

le modèle en une entrée pour le model-checker. Cette transformation est implantée

comme un logiciel. Le processus de transformation complètement automatique a été

testé sur des exemples, et certains d’entre eux sont inclus dans ce manuscrit.

Génération de code exécutable Une fois le modèle conceptuel prouvé correct

statiquement, et ses propriétés fonctionnelles vérifiée grâce au model-checker, nous

générons le code exécutable de l’application conçue. Le code produit inclut un fichier

XML encodant l’architecture du système et un ensemble de classes Java implantant le

comportement des composants. De cette façon, nous sommes capables d’exécuter des

applications distribuées qui sont prouvées sûres. Dans cette thèse, nous expliquons

comment le processus de génération fonctionne, ainsi que son organisation, et nous

montrons plusieurs expérimentations sur une application produite par notre environ-

nement de génération.

Intégration de l’outil de conception graphique, du model-checker, et de

la plateforme d’exécution Enfin, nous implantons et intégrons la façade de

notre outil de conception graphique avec le model-checker, et avec un intergiciel

pour l’exécution dans un seul et même environnement de développement régi par

les modèles basé sur Eclipse. Cet environnement est appelé VerCors. En utilisant

l’éditeur de la façade de développement, l’utilisateur peut concevoir le modèle de son

application dans notre langage de spécification graphique. Puis, l’utilisateur peut

vérifier que l’architecture conçue est correcte statiquement selon les propriétés que

nous avons formalisées. Ensuite, VerCors génère complètement automatiquement un

modèle comportemental de l’application conçue et le transforme en une entrée lisible

par le model-checker. Nous montrons dans cette thèse que le model-checker peut

vérifier un grand nombre de propriétés sur la structure de programme produite. Cela

inclut à la fois des propriétés génériques (par exemple, l’absence d’interblocage) et

des propriétés spécifiques à l’application (par exemple, l’atteignabilité d’un état par-

ticulier du système, l’inévitabilité, etc...). Ce travail ne se focalise pas sur l’assistanat

pour la spécification de propriétés, mais procure un grand nombre d’exemples vérifiés

pour nos cas d’utilisation. Enfin, la plateforme produit automatiquement le code

d’implantation du système conçu qui peut être exécuté dans un environnement dis-

224 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

tribué.

Le travail présenté dans cette thèse est inclut dans les publications suivantes :

• Ludovic Henrio, Oleksandra Kulankhina, Dongqian Liu, Eric Madelaine; ”Ver-

ifying the correct composition of distributed components: Formalisation and

Tool” FOCLASA, Sep 2014, Rome, Italy. L’article inclut la formalisation de

l’architecture des composants et des règles statiques de correction.

• Tatiana Aubonnet, Ludovic Henrio, Soumia Kessal, Oleksandra Kulankhina,

Frédéric Lemoine, Eric Madelaine, Cristian Ruz, Noëmie Simoni; ”Manage-

ment of service composition based on self-controlled components”; Journal of

Internet Services and Applications, Springer, 2015, 6 (15), pp.17. Dans cet

article VerCors est utilisé pour modéliser une application orientée services.

• Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, Eric Madelaine; ”Integrated

environment for verifying and running distributed components”; Fundamental

Approaches to Software Engineering (FASE), Apr 2016, Eindhoven, Nether-

lands; Springer, Lecture Notes in Computer Science, 9633, pp.66-83, 2016,

Fundamental Approaches to Software Engineering. L’article présent VerCors.

• Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric Made-

laine, Alexandra Savu; ”Behavioural Semantics for Asynchronous Components”

(submitted to JLamp). Cet article d’une part démontre l’expressivité du modèle

pNet et d’autre part spécifie formellement le processus complet de la génération

du modèle comportemental d’un système de composants distribués.

Résumé des chapitres Le chapitre 2 présente les connaissances nécessaires sur

lesquelles se base ce travail. Nous décrivons le modèle à composant principal sur

lequel nous nous basons : GCM (le Grid Component Model) avec son implantation de

référence l’intergiciel ProActive. Nous introduisons le formalisme que nous utilisons

pour encoder le comportement des composants ainsi que la plateforme de vérification

que nous utilisons pour le model-checking. Puis, nous introduisons les notions de base

de l’ingénierie régie par les modèles et les outils que nous utilisons pour l’implantation

de la plateforme VerCors. Enfin, nous présentons un aperçu de l’histoire de VerCors

et nous discutons les contributions de cette thèse comparées aux version précédentes

de la plateforme.

Le chapitre 3 présente un aperçu de la version de VerCors implantée dans cette

thèse. Nous discutons ses fonctionnalités principales du point de vue utilisateur, le

formalisme graphique, et l’implantation de l’architecture.

A.3. CONCLUSION 225

Le chapitre 4 présente la formalisation de l’architecture à composant et les

prédicats de correction statiques. Nous introduisons les notions de composants bien-

formés et un ensemble de propriétés garanties par la validation des prédicats. Nous

expliquons aussi comment la vérification de la correction statique était implantée dans

VerCors. Enfin, nous discutons l’applicabilité de la formalisation de l’architecture

établie et des prédicats à des modèles à composants autres que GCM, ainsi que leur

relation à des études similaires précédentes.

Le chapitre 5 décrit la contribution principale de cette thèse : les règles

sémantiques qui définissent la construction des modèles comportementaux et la

génération du code d’implantation. Nous démarrons par l’explication de la trans-

formation de la spécification de l’architecture basée sur GCM et des modèles con-

ceptuels comportementaux en une structure intermédiaire encodant le comportement

du système à un niveau plus bas (en termes de réseaux d’automates paramétrés).

Ensuite, nous discutons comment le processus de génération est implanté dans Ver-

Cors, et comment les structures construites sont transformées en une entrée pour

le model-checker de CADP. Nous présentons aussi la génération du code exécutable

d’une application conçue et vérifiée avec VerCors.

Le chapitre 6 étend le formalisme graphique, la génération du modèle comporte-

mental et du code exécutable avec les constructions nécessaires pour la modélisation,

la vérification et l’exécution de systèmes basés sur les composants avec des car-

actéristiques avancées. Ces constructions incluent les composants non-fonctionnels,

les attributs de contrôle et les communication de un vers plusieurs reconfigurable.

Le chapitre 7 présente les travaux liées à cette thèse. Nous discutons l’état de

l’art et les environnements de développement courant dans le même contexte que

le notre pour la modélisation et la vérification de systèmes distribués basés sur les

composants et nous positionnons notre travail selon les autres travaux et études. Puis

nous présentons un aperçu de plusieurs plateformes de vérification et nous expliquons

pourquoi nous avons choisi le model-checker de CADP pour notre travail.

A.3 Conclusion

Les composants asynchrones fournissent une abstraction convenable pour le con-

ception et l’implémentation d’applications à large échelle, où chaque composant

fonctionne de manière indépendante et communique par requêtes asynchrones avec

futures. Le développement de ces systèmes est difficile car il inclue plusieurs

problèmes. Cette thèse a pour but de faciliter le processus de développement indus-

triel d’applications distribuées basées sur les composants. Pour cela nous développons

226 APPENDIX A. EXTENDED ABSTRACT IN FRENCH

un framework pour la spécification, la vérification et la génération de code. Dans cette

section nous présentons les contributions principales de ce travail.

Premièrement, nous avons crée un langage graphique pour la spécification de

l’architecture et du comportement des systèmes basées sur les composants. Ce lan-

gage permet de modéliser des application hiérarchiques et asynchrones ayant une

séparation forte des préoccupations, des possibilités de reconfiguration et des com-

munications collectives. Notre langage est basé sur les éléments du langage UML (des

state machines, des interfaces, des classes) qui sont très populaire dans l’industrie.

C’est pourquoi il est facile d’apprendre notre langage. Un autre avantage c’est que les

spécifications d’architecture et de comportement sont bien intégrées ensemble. Cela

permet de générer un graphe pour model-checking et le code exécutable sans interven-

tion du programmeur. Nous avons également développé un éditeur graphique basé

sur notre langage pour la modélisation des systèmes distribués.

Deuxièmement, nous avons formalisé l’architecture des systèmes basés sur les com-

posants et les règles pour son analyse statique. La validité de l’architecture garantit

que la logique métier et la partie contrôle d’un système modélisé sont précisément

séparés, les types des interfaces sont corrects et les communications déterministes.

Nous avons formalisé la notion d’intercepteur qui permet de modéliser des communi-

cations entre des composants fonctionnels et non-fonctionnels. Dans ce travail notre

formalisme est appliqué aux composants GCM, mais il est suffisamment générique

pour être utilisé par les autres modèles à composants. Nous avons implémenté la

validation des règles formalisées.

Troisièmement, nous avons formalisé des règles sémantiques pour la traduction

automatique des spécifications définies par l’utilisateur en pNets. pNets encodent tous

les détails du comportement des composants modélisés. Nous avons implémenté la

traduction automatique des modèles graphiques en pNets, et la traduction des pNets

en une entrée acceptable par un model-checker. Le résultat de la traduction peut être

utilisé pour la vérification des propriétés de l’application modélisée. Les propriétés

incluent safety, liveness, inevitability. Nous générons aussi des scripts pour garder

sous contrôle l’explosion combinatoire de l’ensemble des états. Les scripts permettent

de cacher des actions internes qui n’ont pas besoin d’être vérifiées. L’utilisateur peut

aussi modéliser le comportement de l’environnement pour réduire le nombre d’états

générés.

Enfin, nous avons développé et implémenté une approche consistant à traduire

automatiquement l’application modélisée en code exécutable. Le code généré inclut

la spécification d’architecture basée sur XML, des interfaces et des classes Java. Le

code généré peut être exécute sur le middleware ProActive .

Bibliography

[1] Petr Hnetrynka, Frantǐsek Plášil, Vladimir Mencl, and Lucia Kapova. SOFA

2.0 metamodel. technical report. Department of Software Engineering Faculty

of Mathematics and Physics, Charles University, 2005 (cit. on pp. 2, 7, 179).

[2] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad

Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. “Rigorous Component-Based

System Design Using the BIP Framework”. In: IEEE Software 28.3 (2011),

pp. 41–48 (cit. on pp. 2, 7, 181).

[3] Object Management Group. CORBA Component Model 4.0 Specification.

Specification Version 4.0. Object Management Group, 2006 (cit. on pp. 2,

195).

[4] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto,

Vladimir Getov, Ludovic Henrio, and Christian Pérez. “GCM: a grid ex-

tension to Fractal for autonomous distributed components”. In: Annales des

Télécommunications 64.1-2 (2009), pp. 5–24 (cit. on pp. 3, 14).

[5] Activeeon. ProActive Parallel Suite. 2016. url: http : / / proactive .

activeeon.com/ (cit. on pp. 3, 18).

[6] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen.

Model-driven software development: technology, engineering, management.

2013 (cit. on p. 4).

[7] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Ver-

sion 2.4.1. Tech. rep. Object Management Group, 2011 (cit. on pp. 4, 8, 34).

[8] Obeo. Uml to Java Generator. last visited: 08.2016. url: http : / /

marketplace.obeonetwork.com/module/uml2java-generator (cit. on p. 4).

[9] ArgoUML - an open source UML modeling tool. last visited: 08.2016. url:

http://argouml.tigris.org/ (cit. on p. 4).

[10] Bruno Pagès. BOUML - a UML 2 tool box. last visited: 08.2016. url: http:

//www.bouml.fr/index.html (cit. on p. 4).

227

228 BIBLIOGRAPHY

[11] Leonor M. Barroca and John A. Mcdermid. “Formal Methods: Use and Rel-

evance for the Development of Safety Critical Systems”. In: The Computer

Journal 35 (1992), pp. 579–599 (cit. on p. 5).

[12] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,

and Michael Deardeuff. “How Amazon Web Services Uses Formal Methods”.

In: Commun. ACM 58.4 (Mar. 2015), pp. 66–73 (cit. on p. 5).

[13] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio

Lerda. “Model Checking Programs”. In: Automated Software Engg. 10.2 (Apr.

2003), pp. 203–232 (cit. on p. 5).

[14] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels. “Model checking flight

control systems: The Airbus experience”. In: Software Engineering - Compan-

ion Volume, 2009. ICSE-Companion 2009. 31st International Conference on.

2009, pp. 18–27 (cit. on p. 5).

[15] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem. 1995 (cit. on p. 6).

[16] E. Allen Emerson and A. Prasad Sistla. “Symmetry and model checking”. In:

Formal Methods in System Design 9.1 (1996), pp. 105–131 (cit. on p. 6).

[17] Ludovic Henrio, Florian Kammüller, and Marcela Rivera. “An Asynchronous

Distributed Component Model and Its Semantics”. In: Formal Methods for

Components and Objects: 7th International Symposium, FMCO 2008, Sophia

Antipolis, France, October 21-23, 2008, Revised Lectures. Ed. by Frank S.

de Boer, Marcello M. Bonsangue, and Eric Madelaine. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 159–179 (cit. on p. 6).

[18] Marjan Sirjani. “Rebeca: Theory, Applications, and Tools”. In: Formal Meth-

ods for Components and Objects, 5th International Symposium, FMCO 2006,

Amsterdam, The Netherlands, November 7-10, 2006, Revised Lectures. 2006,

pp. 102–126 (cit. on pp. 7, 183).

[19] Antonio Cansado and Eric Madelaine. “Formal Methods for Components and

Objects: 7th International Symposium, FMCO 2008, Sophia Antipolis, France,

October 21-23, 2008, Revised Lectures”. In: ed. by Frank S. de Boer, Marcello

M. Bonsangue, and Eric Madelaine. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2009. Chap. Specification and Verification for Grid Component-Based

Applications: From Models to Tools, pp. 180–203 (cit. on pp. 8, 38, 55, 57).

BIBLIOGRAPHY 229

[20] Solange Ahumada, Ludovic Apvrille, Tomás Barros, Antonio Cansado, Eric

Madelaine, and Emil Salageanu. “Specifying Fractal and GCM Components

with UML.” In: SCCC. IEEE Computer Society, 2007, pp. 53–62 (cit. on pp. 8,

37).

[21] Ludovic Henrio, Eric Madelaine, and Min Zhang. “pNets: an Expressive Model

for Parameterised Networks of Processes”. In: Formal Approaches to Parallel

and Distributed Systems (4PAD)-Special Session of Parallel, Distributed and

network-based Processing (PDP). Turku, Finland, 2015 (cit. on pp. 8, 25, 27).

[22] Nicolas Coste, Hubert Garavel, Holger Hermanns, Frédéric Lang, Radu Ma-

teescu, and Wendelin Serwe. “Ten Years of Performance Evaluation for Con-

current Systems Using CADP”. In: 4th International Symposium on Leverag-

ing Applications of Formal Methods, Verification and Validation ISoLA 2010.

Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 6416. Amirandes, Hera-

clion, Greece, Oct. 2010, pp. 128–142 (cit. on pp. 8, 187).

[23] Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. “Formally Reasoning on

a Reconfigurable Component-Based System - A Case Study for the Industrial

World”. In: Formal Aspects of Component Software - 10th International Sym-

posium, FACS 2013, Nanchang, China, October 27-29, 2013, Revised Selected

Papers. 2013, pp. 137–156 (cit. on p. 8).

[24] Rabéa Ameur-Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine.

“Verifying Safety of Fault-Tolerant Distributed Components”. In: Formal As-

pects of Component Software: 8th International Symposium, FACS 2011, Oslo,

Norway, September 14-16, 2011, Revised Selected Papers. Ed. by Farhad

Arbab and Peter Csaba Ölveczky. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2012, pp. 278–295 (cit. on pp. 8, 125).

[25] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani. “The Fractal Component Model and its Support in Java: Ex-

periences with Auto-adaptive and Reconfigurable Systems”. In: Softw. Pract.

Exper. 36.11-12 (Sept. 2006), pp. 1257–1284 (cit. on p. 14).

[26] Françoise Baude, Ludovic Henrio, and Cristian Ruz. “Programming dis-

tributed and adaptable autonomous components - the GCM/ProActive frame-

work”. In: Softw., Pract. Exper. 45.9 (2015), pp. 1189–1227 (cit. on pp. 17, 18,

188).

230 BIBLIOGRAPHY

[27] R. Greg Lavender and Douglas C. Schmidt. “Pattern Languages of Program

Design 2”. In: ed. by John M. Vlissides, James O. Coplien, and Norman L.

Kerth. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1996. Chap. Active Object: An Object Behavioral Pattern for Concurrent

Programming, pp. 483–499 (cit. on p. 18).

[28] Ludovic Henrio, Fabrice Huet, and Zsolt István. “Coordination Models and

Languages: 15th International Conference, COORDINATION 2013, Florence,

Italy, June 3-5, 2013. Proceedings”. In: ed. by Rocco Nicola and Christine

Julien. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Chap. Multi-

threaded Active Objects, pp. 90–104 (cit. on p. 21).

[29] Ludovic Henrio and Justine Rochas. “Declarative Scheduling for Active Ob-

jects”. In: SAC 2014 - 29th Symposium On Applied Computing. Ed. by Sung Y.

Shin. ACM Special Interest Group on Applied Computing. Gyeongju, South

Korea: ACM, Mar. 2014, pp. 1–6 (cit. on p. 21).

[30] Tomàs Barros, Rabéa Ameur-Boulifa, Antonio Cansado, Ludovic Henrio, and

Eric Madelaine. “Behavioural models for distributed Fractal components”. In:

Annals of Télécommunications 64.1-2 (2009), pp. 25–43 (cit. on pp. 25, 100).

[31] Ludovic Henrio, Eric Madelaine, and Min Zhang. “A Theory for the Com-

position of Concurrent Processes”. In: Formal Techniques for Distributed Ob-

jects, Components, and Systems - 36th IFIP WG 6.1 International Conference,

FORTE 2016, Held as Part of the 11th International Federated Conference on

Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece,

June 6-9, 2016, Proceedings. 2016, pp. 175–194 (cit. on pp. 25, 103, 198).

[32] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. “CADP

2011: a toolbox for the construction and analysis of distributed processes”. In:

STTT 15.2 (2013), pp. 89–107 (cit. on p. 29).

[33] Rim Abid, Gwen Salaün, Francesco Bongiovanni, and Noël De Palma. “Ver-

ification of a Dynamic Management Protocol for Cloud Applications”. In:

11th International Symposium, ATVA 2013. Vol. 8172. Dang Van Hung and

Mizuhito Ogawa. Hanoi, Vietnam, Oct. 2013, pp. 178–192 (cit. on p. 29).

[34] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri de Ruiter. “Au-

tomated Reverse Engineering using Lego R�”. In: 8th USENIX Workshop on

Offensive Technologies (WOOT 14). San Diego, CA: USENIX Association,

Aug. 2014 (cit. on p. 29).

BIBLIOGRAPHY 231

[35] Bart Theelen, Joost-Pieter Katoen, and Hao Wu. “Model checking of Scenario-

Aware Dataflow with CADP”. In: 2012 Design, Automation Test in Europe

Conference Exhibition (DATE). 2012, pp. 653–658 (cit. on p. 29).

[36] Tommaso Bolognesi and Ed Brinksma. “Introduction to the ISO Specification

Language LOTOS”. In: Comput. Netw. ISDN Syst. 14.1 (Mar. 1987), pp. 25–

59 (cit. on p. 30).

[37] Mihaela Sighireanu. LOTOS NT User’s Manual. 2000 (cit. on p. 30).

[38] Frédéric Lang. “Formal Techniques for Networked and Distributed Systems

- FORTE 2006: 26th IFIP WG 6.1 International Conference, Paris, France,

September 26-29, 2006. Proceedings”. In: ed. by Elie Najm, Jean-François

Pradat-Peyre, and Véronique Viguié Donzeau-Gouge. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006. Chap. Refined Interfaces for Compositional

Verification, pp. 159–174 (cit. on p. 30).

[39] Rocco De Nicola and Frits Vaandrager. “Semantics of Systems of Concurrent

Processes: LITP Spring School on Theoretical Computer Science La Roche

Posay, France, April 23–27, 1990 Proceedings”. In: ed. by Irène Guessarian.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. Chap. Action versus state

based logics for transition systems, pp. 407–419 (cit. on p. 31).

[40] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of

Finite-state Concurrent Systems Using Temporal Logic Specifications”. In:

ACM Trans. Program. Lang. Syst. 8.2 (Apr. 1986), pp. 244–263 (cit. on p. 31).

[41] Michael J. Fischer and Richard E. Ladner. “Propositional dynamic logic of

regular programs”. In: Journal of Computer and System Sciences 18.2 (1979),

pp. 194 –211 (cit. on p. 31).

[42] Radu Mateescu and Mihaela Sighireanu. “Efficient on-the-fly model-checking

for regular alternation-free mu-calculus”. In: Science of Computer Program-

ming 46.3 (2003). Special issue on Formal Methods for Industrial Critical

Systems, pp. 255 –281 (cit. on p. 31).

[43] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns

in Property Specifications for Finite-state Verification”. In: Proceedings of the

21st International Conference on Software Engineering. ICSE ’99. Los Angeles,

California, USA: ACM, 1999, pp. 411–420 (cit. on p. 31).

232 BIBLIOGRAPHY

[44] Radu Mateescu and Damien Thivolle. “A Model Checking Language for Con-

current Value-Passing Systems”. In: FM 2008. Ed. by Jorge Cuellar and Tom

Maibaum. Vol. 5014. Turku, Finland: Springer Verlag, May 2008, pp. 148–164

(cit. on pp. 31, 112).

[45] Henrik Reif Andersen. “Model checking and boolean graphs”. In: Theoretical

Computer Science 126.1 (1994), pp. 3 –30 (cit. on p. 31).

[46] Hubert Garavel and Frédéric Lang. “Formal Techniques for Networked and

Distributed Systems: FORTE 2001 IFIP TC6/WG6.1 — 21st International

Conference on Formal Techniques for Networked and Distributed Systems

August 28–31, 2001, Cheju Island, Korea”. In: ed. by Myungchul Kim, By-

oungmoon Chin, Sungwon Kang, and Danhyung Lee. Boston, MA: Springer

US, 2002. Chap. SVL: A Scripting Language for Compositional Verification,

pp. 377–392 (cit. on p. 31).

[47] Hubert Garavel, Radu Mateescu, and Wendelin Serwe. “Large-scale Dis-

tributed Verification Using CADP: Beyond Clusters to Grids”. In: Electronic

Notes in Theoretical Computer Science 296 (2013). Proceedings the Sixth In-

ternational Workshop on the Practical Application of Stochastic Modelling

(PASM) and the Eleventh International Workshop on Parallel and Distributed

Methods in Verification (PDMC)., pp. 145 –161 (cit. on p. 32).

[48] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R.

Saad, J. Stoecker, and F. Vernadat. “The syntax and semantics of Fiacre”. In:

March 2009 (cit. on p. 32).

[49] flac compiler. url: http://gforge.enseeiht.fr. (cit. on p. 33).

[50] Alberto Rodrigues da Silva. “Model-driven engineering: A survey supported by

the unified conceptual model”. In: Computer Languages, Systems and Struc-

tures 43 (2015), pp. 139 –155 (cit. on p. 33).

[51] Eclipse IDE. url: https://eclipse.org/ (cit. on p. 35).

[52] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework. 2008 (cit. on p. 35).

[53] Graphical Modeling Framework. url: http : / / www . eclipse . org / gmf -

tooling/ (cit. on p. 36).

[54] Eclipse UML meta-mode. url: https://wiki.eclipse.org/MDT/UML2/

Getting_Started_with_UML2 (cit. on pp. 36, 52).

[55] Obeo Designer. url: http://www.obeodesigner.com/ (cit. on p. 36).

BIBLIOGRAPHY 233

[56] Etienne Juliot and Jérôme Benois. Viewpoints creation using Obeo Designer

or how to build Eclipse DSM without being an expert developer. Obeo (cit. on

p. 36).

[57] Obeo UML Designer. url: http://www.umldesigner.org/overview/ (cit.

on p. 37).

[58] Acceleo code generator. url: http://wiki.eclipse.org/Acceleo (cit. on

pp. 37, 118).

[59] Antonio Cansado, Denis Caromel, Ludovic Henrio, Eric Madelaine, Marcela

Rivera, and Emil Salageanu. “A Specification Language for Distributed Com-

ponents Implemented in GCM/ProActive”. In: The Common Component

Modeling Example: Comparing Software Component Models. Ed. by Andreas

Rausch, Ralf Reussner, Raffaela Mirandola, and Frantǐsek Plášil. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2008, pp. 418–448 (cit. on p. 37).

[60] Annie Ressouche, Robert de Simone, A Bouali, and V. Roy. The FC2Tool

user manuel. 1994. url: http://www-sop.inria.fr/meije/verification/

(cit. on p. 38).

[61] Tomas Barros. “Formal specification and verification of distributed component

systems”. PhD Thesis. University of Nice - Sophia Antipolis, 2005 (cit. on

p. 38).

[62] Antonio Cansado, Ludovic Henrio, and Eric Madelaine. “Transparent First-

class Futures and Distributed Components”. In: Electronic Notes in Theoreti-

cal Computer Science 260 (2010). Proceedings of the 5th International Work-

shop on Formal Aspects of Component Software (FACS 2008), pp. 155 –171

(cit. on p. 38).

[63] Rabéa Ameur Boulifa, Ludovic Henrio, and Eric Madelaine. “Behavioural

Models for Group Communications”. In: WCSI-10: International Workshop

on Component and Service Interoperability. 2010 (cit. on pp. 38, 140).

[64] Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, and Eric Madelaine. In-

tegrated environment for verifying and running distributed components -

Extended version. Research Report RR-8841. INRIA Sophia-Antipolis, Dec.

2015, p. 24 (cit. on p. 41).

[65] Gary L. Peterson. “An O(Nlog N) Unidirectional Algorithm for the Circular

Extrema Problem”. In: ACM Trans. Program. Lang. Syst. 4.4 (Oct. 1982),

pp. 758–762 (cit. on p. 44).

234 BIBLIOGRAPHY

[66] Danny Dolev, Maria M. Klawe, and Michael Rodeh. “An O(n log n) Uni-

directional Distributed Algorithm for Extrema Finding in a Circle”. In: J.

Algorithms 3.3 (1982), pp. 245–260 (cit. on p. 45).

[67] CUP - LALR Parser for Java. url: http://www2.cs.tum.edu/projects/

cup/index.php (cit. on p. 53).

[68] JFlex - a lexical analyzer generator. url: http://jflex.de/ (cit. on p. 53).

[69] Paul Naoumenko. “Designing Non-functional Aspects With Components”.

PhD Thesis. Univ. of Nice-Sophia Antipolis, 2010 (cit. on pp. 56, 60, 70).

[70] C. Canal, C.S. Pasareanu, Antonio Cansado, Ludovic Henrio, Eric Madelaine,

and Pablo Valenzuela. “Proceedings of the 5th International Workshop on

Formal Aspects of Component Software (FACS 2008) Unifying Architectural

and Behavioural Specifications of Distributed Components”. In: Electronic

Notes in Theoretical Computer Science 260 (2010), pp. 25 –45 (cit. on p. 56).

[71] Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. “Painless support for static

and runtime verification of component-based applications”. In: Fundamentals

of Software Engineering (FSEN’2015). Teheran, Iran, Apr. 2015, p. 15 (cit. on

p. 56).

[72] Papyrus modeling environment. url: https://eclipse.org/papyrus/ (cit.

on p. 57).

[73] Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, and Alexandra Savu.

Behavioural Semantics for Asynchronous Components. Research Report RR-

8167. INRIA, Dec. 2012, p. 58 (cit. on pp. 60, 103, 209, 210).

[74] Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. “Bringing Coq Into the

World of GCM Distributed Applications”. In: International Symposium on

High-level Parallel Programming and Applications&, HLPP. Paris, France,

2013 (cit. on pp. 60, 76).

[75] Ludovic Henrio, Oleksandra Kulankhina, Dongqian Liu, and Eric Madelaine.

“Verifying the correct composition of distributed components: Formalisation

and Tool”. In: Proceedings 13th International Workshop on Foundations of

Coordination Languages and Self-Adaptive Systems, FOCLASA 2014, Rome,

Italy, 6th September 2014. 2014, pp. 69–85 (cit. on p. 60).

[76] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting

Your Models Ready for MDA. 2nd ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2003 (cit. on p. 74).

BIBLIOGRAPHY 235

[77] Michal Malohlava, Petr Hnetynka, and Tomas Bureš. “{SOFA} 2 Component

Framework and Its Ecosystem”. In: Electronic Notes in Theoretical Computer

Science 295 (2013). Proceedings the 9th International Workshop on Formal

Engineering approaches to Software Components and Architectures (FESCA),

pp. 101 –106 (cit. on pp. 75, 178).

[78] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Coupaye.

“A Component Model Engineered with Components and Aspects”. In: Pro-

ceedings of the 9th International SIGSOFT Symposium on Component-Based

Software Engineering. 2006 (cit. on p. 75).

[79] Philippe Merle and Jean-Bernard Stefani. A formal specification of the Fractal

component model in Alloy. Research Report RR-6721. INRIA, 2008 (cit. on

p. 75).

[80] Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan. “A Frame-

work for Reasoning on Component Composition”. In: FMCO 2009. Lecture

Notes in Computer Science. Springer, 2010 (cit. on p. 75).

[81] Yves Bertot. “Coq in a Hurry”. In: CoRR abs/cs/0603118 (2006) (cit. on

p. 76).

[82] Java Architecture for XML Binding (JAXB). url: https://jaxb.java.net/

(cit. on p. 117).

[83] Hans J. Köhler, Ulrich Nickel, Jörg Niere, and Albert Zündorf. “Integrating

UML Diagrams for Production Control Systems”. In: Proceedings of the 22Nd

International Conference on Software Engineering. ICSE ’00. Limerick, Ire-

land: ACM, 2000, pp. 241–251 (cit. on p. 121).

[84] Iftikhar Azim Niaz and Jiro Tanaka. “Code Generation From Uml State-

charts”. In: in Proc. 7 th IASTED International Conf. on Software Engineer-

ing and Application (SEA 2003), Marina Del Rey. 2003, pp. 315–321 (cit. on

p. 121).

[85] Emil Sekerinski and Rafik Zurob. “iState: A Statechart Translator”. In: UML

2001 — The Unified Modeling Language. Modeling Languages, Concepts, and

Tools: 4th International Conference Toronto, Canada, October 1–5, 2001 Pro-

ceedings. Ed. by Martin Gogolla and Cris Kobryn. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 376–390 (cit. on p. 121).

[86] A viewer for ProActive Active objects. url: https://github.com/scale-

proactive/A-viewer-tool-for-multiactive-objects.git (cit. on p. 123).

236 BIBLIOGRAPHY

[87] Amine Rouini. “Parametric Component Topologies: language extension and

implementation”. Master thesis. Univ. of Nice-Sophia Antipolis, 2010 (cit. on

pp. 125, 206).

[88] K. Rustan M. Leino and Michal Moskal. “VACID-0: Verification of Ample

Correctness of Invariants of Data-structures, Edition 0”. In: Proceedings of

Tools and Experiments Workshop at VSTTE. 2010 (cit. on p. 162).

[89] Tatiana Aubonnet, Ludovic Henrio, Soumia Kessal, Oleksandra Kulankhina,

Frédéric Lemoine, Eric Madelaine, Cristian Ruz, and Noëmie Simoni. “Man-

agement of service composition based on self-controlled components”. In: Jour-

nal of Internet Services and Applications 6.15 (2015), p. 17 (cit. on p. 171).

[90] Mat́ıas Ibañez, Cristian Ruz, Ludovic Henrio, and Javier Bustos-Jiménez. “Re-

configurable Applications Using GCMScript”. Accepted at IEEE Cloud com-

puting. Special issue: Autonomic clouds. Apr. 2016 (cit. on p. 172).

[91] Petr Hnětynka and Frantǐsek Plášil. “Dynamic Reconfiguration and Access to

Services in Hierarchical Component Models”. In: Proceedings of the 9th In-

ternational Conference on Component-Based Software Engineering. CBSE’06.

Berlin, Heidelberg: Springer-Verlag, 2006, pp. 352–359 (cit. on p. 178).

[92] Tomas Bureš and Frantǐsek Plášil. “Communication Style Driven Connec-

tor Configurations”. In: LNCS3026, ISBN 3-540-21975-7, ISSN 0302-9743.

Springer-Verlag, 2004, pp. 102–116 (cit. on p. 178).

[93] Tomas Bureš and Frantǐsek Plášil. “Generating Connectors for Homogeneous

and Heterogeneous Deployment”. In: 2006 (cit. on p. 179).

[94] Frantǐsek Plášil and Stanislav Visnovsky. “Behavior Protocols for Software

Components”. In: IEEE Trans. Softw. Eng. 28.11 (Nov. 2002), pp. 1056–1076

(cit. on p. 179).

[95] Martin Mach, Frantǐsek Plášil, and Jan Kofron. “Behavior Protocol Verifica-

tion: Fighting State Explosion”. In: International Journal of Computer and

Information Science 6.1 (2005), pp. 22–30 (cit. on p. 179).

[96] Pavel Parizek, Frantǐsek Plášil, and Jan Kofron. “Model Checking of Soft-

ware Components: Combining Java PathFinder and Behavior Protocol Model

Checker”. In: 30th Annual IEEE / NASA Software Engineering Workshop

, 25-28 April 2006, Loyola College Graduate Center, Columbia, MD, USA.

2006, pp. 133–141 (cit. on pp. 179, 181).

BIBLIOGRAPHY 237

[97] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio

Lerda. “Model Checking Programs”. In: Automated Software Engg. 10.2 (Apr.

2003), pp. 203–232 (cit. on p. 179).

[98] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Softw.

Eng. 23.5 (May 1997), pp. 279–295 (cit. on pp. 180, 197).

[99] Jan Kofron. “Checking Software Component Behavior Using Behavior Pro-

tocols and Spin”. In: Proceedings of the 2007 ACM Symposium on Applied

Computing. SAC ’07. Seoul, Korea: ACM, 2007, pp. 1513–1517 (cit. on p. 180).

[100] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous

Real-time Components in BIP”. In: Proceedings of the Fourth IEEE Inter-

national Conference on Software Engineering and Formal Methods. SEFM

’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12 (cit. on

p. 181).

[101] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and Joseph

Sifakis. “Compositional Translation of Simulink Models into Synchronous

BIP”. In: IEEE Fifth International Symposium on Industrial Embedded Sys-

tems - SIES 2010, University of Trento, Italy, July 7-9, 2010. IEEE, 2010,

pp. 217–220 (cit. on p. 182).

[102] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis.

“Translating AADL into BIP - Application to the Verification of Real-Time

Systems”. In: Models in Software Engineering, Workshops and Symposia at

MODELS 2008, Toulouse, France, September 28 - October 3, 2008. Reports

and Revised Selected Papers. Vol. 5421. Lecture Notes in Computer Science.

Springer, 2008, pp. 5–19 (cit. on p. 182).

[103] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis.

“D-Finder: A Tool for Compositional Deadlock Detection and Verification”.

In: Computer Aided Verification, 21st International Conference, CAV 2009,

Grenoble, France, June 26 - July 2, 2009. Proceedings. Vol. 5643. Lecture

Notes in Computer Science. Springer, 2009, pp. 614–619 (cit. on p. 182).

[104] Simon Bliudze, Alessandro Cimatti, Mohamad Jaber, Sergio Mover, Marco

Roveri, Wajeb Saab, and Qiang Wang. “Formal Verification of Infinite-State

BIP Models”. In: Automated Technology for Verification and Analysis: 13th

International Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015,

Proceedings. Ed. by Bernd Finkbeiner, Geguang Pu, and Lijun Zhang. Cham:

Springer International Publishing, 2015, pp. 326–343 (cit. on p. 182).

238 BIBLIOGRAPHY

[105] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,

Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Ste-

fano Tonetta. “The nuXmv Symbolic Model Checker”. In: Proceedings of the

16th International Conference on Computer Aided Verification - Volume 8559.

New York, NY, USA: Springer-Verlag New York, Inc., 2014, pp. 334–342 (cit.

on p. 182).

[106] Ylies Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Sad-

dek Bensalem. “Runtime verification of component-based systems in the BIP

framework with formally-proved sound and complete instrumentation”. In:

Software and System Modeling 14.1 (2015), pp. 173–199 (cit. on p. 183).

[107] Borzoo Bonakdarpour, Marius Bozga, and Jean Quilbeuf. “Automated dis-

tributed implementation of component-based models with priorities”. In: Pro-

ceedings of the 11th International Conference on Embedded Software, EM-

SOFT 2011, part of the Seventh Embedded Systems Week, ESWeek 2011,

Taipei, Taiwan, October 9-14, 2011. ACM, 2011, pp. 59–68 (cit. on p. 183).

[108] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. “Modeling

and Verification of Reactive Systems using Rebeca”. In: Fundam. Inform. 63.4

(2004), pp. 385–410 (cit. on p. 183).

[109] Marjan Sirjani, Frank S. de Boer, and Ali Movaghar-Rahimabadi. “Modular

Verification of a Component-Based Actor Language”. In: J. UCS 11.10 (2005),

pp. 1695–1717 (cit. on pp. 184, 185).

[110] Fifth International Conference on Application of Concurrency to System De-

sign (ACSD 2005), 6-9 June 2005, St. Malo, France. IEEE Computer Society,

2005 (cit. on p. 184).

[111] Fatemeh Alavizadeh and Marjan Sirjani. “Using UML to Develop Verifiable

Reactive Systems”. In: Proceedings of the International Conference on Soft-

ware Engineering Research and Practice & Conference on Programming Lan-

guages and Compilers, SERP 2006, Las Vegas, Nevada, USA, June 26-29,

2006, Volume 2. 2006, pp. 554–561 (cit. on p. 185).

[112] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi Kaviani, Ramtin Khos-

ravi, and Mohammad-Javad Izadi. “Timed Rebeca schedulability and deadlock

freedom analysis using bounded floating time transition system”. In: Science

of Computer Programming 98, Part 2 (2015). Special Issue on Programming

Based on Actors, Agents and Decentralized Control, pp. 184 –204 (cit. on

p. 185).

BIBLIOGRAPHY 239

[113] Ehsan Khamespanah, Marjan Sirjani, Mohammad Reza Mousavi, Zeynab

Sabahi-Kaviani, and Mohamadreza Razzazi. “State Distribution Policy for

Distributed Model Checking of Actor Models”. In: ECEASST 72 (2015) (cit.

on p. 185).

[114] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. “Model

Checking, Automated Abstraction, and Compositional Verification of Rebeca

Models”. In: J. UCS 11.6 (2005), pp. 1054–1082 (cit. on p. 185).

[115] Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi,

Ehsan Khamespanah, and Ali Movaghar. “Symmetry and partial order reduc-

tion techniques in model checking Rebeca”. In: Acta Inf. 47.1 (2010), pp. 33–

66 (cit. on p. 186).

[116] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin

Steffen. “ABS: A Core Language for Abstract Behavioral Specification”. In:

Formal Methods for Components and Objects (FMCO). Ed. by Marcello M.

Bonsangue Bernhard K. Aichernig Frank S. de Boer. Vol. 6957. Graz, Austria,

2010, pp. 142–164 (cit. on p. 188).

[117] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. “KeY-ABS: A De-

ductive Verification Tool for the Concurrent Modelling Language ABS.” In:

CADE. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes

in Computer Science. Springer, 2015, pp. 517–526 (cit. on pp. 188, 190).

[118] Ludovic Henrio and Justine Rochas. “From Modelling to Systematic Deploy-

ment of Distributed Active Objects”. In: 11th International Federated Con-

ference on Distributed Computing Techniques (DisCoTec 2016). Heraklion,

Greece, June 2016 (cit. on pp. 188, 191).

[119] Reiner Hähnle, Michiel Helvenstijn, Einar Broch Johnsen, Michael Lienhardt,

Davide Sangiorgi, Ina Schaefer, and Peter Wong. “HATS Abstract Behav-

ioral Specification: The Architectural View”. In: FMCO - Formal Methods for

Components and Objects - 2011. Ed. by Bernhard Beckert, Ferruccio Dami-

ani, Frank S. de Boer, and Marcello M. Bonsangue. Vol. 7542. Turin, Italy:

Springer Berlin / Heidelberg, Oct. 2011, pp. 165–185 (cit. on p. 188).

[120] Reiner Hähnle. “The Abstract Behavioral Specification Language: A Tutorial

Introduction.” In: FMCO. Ed. by Elena Giachino, Reiner Hähnle, Frank S.

de Boer, and Marcello M. Bonsangue. Vol. 7866. Lecture Notes in Computer

Science. Springer, 2012, pp. 1–37 (cit. on p. 189).

240 BIBLIOGRAPHY

[121] Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen, and Ming-Chang Lee.

“ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters”.

In: Proc. 19th International Conference on Fundamental Approaches to Soft-

ware Engineering (FASE 2016). Ed. by Perdita Stevens and Andrzej Wa-

sowski. Vol. 9633. Lecture Notes in Computer Science. Springer, 2016 (cit. on

p. 189).

[122] Yarn Scheduler Load Simulator. url: https://hadoop.apache.org/docs/

r2.4.1/hadoop-sls/SchedulerLoadSimulator.html (cit. on p. 189).

[123] HATS project. ABS Eclipse Plug-in. url: http://tools.hats-project.eu/

eclipseplugin/installation.html (cit. on p. 189).

[124] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-

oriented Software: The KeY Approach. Berlin, Heidelberg: Springer-Verlag,

2007 (cit. on p. 189).

[125] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. “A framework for

deadlock detection in core ABS”. In: CoRR abs/1511.04926 (2015) (cit. on

p. 190).

[126] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, and

Germán Puebla. “COSTABS: A Cost and Termination Analyzer for ABS”. In:

Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and

Program Manipulation. PEPM ’12. Philadelphia, Pennsylvania, USA: ACM,

2012, pp. 151–154 (cit. on p. 190).

[127] Nikolaos Bezirgiannis and Frank Boer. “SOFSEM 2016: Theory and Practice

of Computer Science: 42nd International Conference on Current Trends in

Theory and Practice of Computer Science, Harrachov, Czech Republic, Jan-

uary 23-28, 2016, Proceedings”. In: ed. by Rūsiņš Freivalds Mārtiņš, Gregor

Engels, and Barbara Catania. Berlin, Heidelberg: Springer Berlin Heidelberg,

2016. Chap. ABS: A High-Level Modeling Language for Cloud-Aware Pro-

gramming, pp. 433–444 (cit. on p. 191).

[128] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “Model-Based Performance

Prediction with the Palladio Component Model”. In: Proceedings of the 6th

International Workshop on Software and Performance. WOSP ’07. Buenes

Aires, Argentina: ACM, 2007, pp. 54–65 (cit. on p. 192).

[129] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal

Kit, and Frantisek Plasil. “DEECO: An Ensemble-based Component Sys-

tem”. In: Proceedings of the 16th International ACM Sigsoft Symposium

BIBLIOGRAPHY 241

on Component-based Software Engineering. CBSE ’13. Vancouver, British

Columbia, Canada: ACM, 2013, pp. 81–90 (cit. on p. 192).

[130] Bureš T. Al Ali R., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., and

Plášil F. DEECo Computational Model - I. Technical report. Charles Univer-

sity in Prague, 2013 (cit. on p. 193).

[131] JDEECo - a Java implementation of the DEECo component system. url:

https://github.com/d3scomp/JDEECo (cit. on p. 193).

[132] Rolf Hennicker and Annabelle Klarl. “Foundations for Ensemble Modeling -

The Helena Approach”. In: Specification, Algebra, and Software: A Festschrift

Symposium in Honor of Kokichi Futatsugi (SAS 2014). 2014 (cit. on p. 193).

[133] Annabelle Klarl, Lucia Cichella, and Rolf Hennicker. “From Helena Ensemble

Specifications to Executable Code”. In: Formal Aspects of Component Software

- 11th International Symposium, FACS 2014, Bertinoro, Italy, September 10-

12, 2014, Revised Selected Papers. 2014, pp. 183–190 (cit. on p. 194).

[134] Annabelle Klarl and Rolf Hennicker. “Design and Implementation of Dy-

namically Evolving Ensembles with the Helena Framework”. In: 23rd Aus-

tralian Software Engineering Conference, ASWEC 2014, Milsons Point, Syd-

ney, NSW, Australia, April 7-10, 2014. 2014, pp. 15–24 (cit. on p. 194).

[135] Annabelle Klarl. “From Helena Ensemble Specifications to Promela Verifica-

tion Models”. In: Model Checking Software - 22nd International Symposium,

SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings. 2015,

pp. 39–45 (cit. on p. 194).

[136] Rolf Hennicker, Annabelle Klarl, and Martin Wirsing. “Model-Checking He-

lena Ensembles with Spin”. In: Logic, Rewriting, and Concurrency - Es-

says dedicated to José Meseguer on the Occasion of His 65th Birthday. 2015,

pp. 331–360 (cit. on p. 194).

[137] Immo Grabe, Mohammad Mahdi Jaghoori, Joachim Klein, Sascha Klüppel-

holz, Andries Stam, Christel Baier, Tobias Blechmann, Bernhard K. Aichernig,

Frank S. de Boer, and Andreas Griesmayer. “The Credo Methodology - (Ex-

tended Version)”. In: Formal Methods for Components and Objects - 8th In-

ternational Symposium, FMCO 2009, Eindhoven, The Netherlands, November

4-6, 2009. Revised Selected Papers. 2009, pp. 41–69 (cit. on p. 194).

[138] Farhad Arbab. “Reo: A Channel-based Coordination Model for Component

Composition”. In: Mathematical. Structures in Comp. Sci. 14.3 (June 2004),

pp. 329–366 (cit. on p. 194).

242 BIBLIOGRAPHY

[139] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. “Modeling

component connectors in Reo by constraint automata”. In: Science of Com-

puter Programming 61.2 (2006). Second International Workshop on Founda-

tions of Coordination Languages and Software Architectures (FOCLASA’03),

pp. 75 –113 (cit. on p. 194).

[140] Einar Broch Johnsen and Olaf Owe. “An Asynchronous Communication Model

for Distributed Concurrent Objects”. In: Software and Systems Modeling 6.1

(Mar. 2007), pp. 35–58 (cit. on p. 194).

[141] Immo Grabe, Marcel Kyas, Martin Steffen, and Arild B. Torjusen. “Funda-

mentals of Software Engineering: Third IPM International Conference, FSEN

2009, Kish Island, Iran, April 15-17, 2009, Revised Selected Papers”. In: ed.

by Farhad Arbab and Marjan Sirjani. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2010. Chap. Executable Interface Specifications for Testing Asyn-

chronous Creol Components, pp. 324–339 (cit. on p. 195).

[142] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J.F.

Quesada. “Maude: specification and programming in rewriting logic”. In: The-

oretical Computer Science 285.2 (2002). Rewriting Logic and its Applications,

pp. 187 –243 (cit. on pp. 195, 199).

[143] John Hatcliff, Xianghua Deng, Matthew B. Dwyer, Georg Jung, and Venkatesh

Prasad Ranganath. “Cadena: An Integrated Development, Analysis, and Ver-

ification Environment for Component-based Systems”. In: Proceedings of the

25th International Conference on Software Engineering, May 3-10, 2003, Port-

land, Oregon, USA. 2003, pp. 160–173 (cit. on p. 195).

[144] Robby, Matthew B. Dwyer, and John Hatcliff. “Bogor: An Extensible and

Highly-modular Software Model Checking Framework”. In: SIGSOFT Softw.

Eng. Notes 28.5 (Sept. 2003), pp. 267–276 (cit. on p. 195).

[145] Claudio Demartini, Radu Iosif, and Riccardo Sisto. “dSPIN: A Dynamic Ex-

tension of SPIN”. In: Theoretical and Practical Aspects of SPIN Model Check-

ing, 5th and 6th International SPIN Workshops, Trento, Italy, July 5, 1999,

Toulouse, France, September 21 and 24 1999, Proceedings. Vol. 1680. Lecture

Notes in Computer Science. Springer, 1999, pp. 261–276 (cit. on p. 195).

[146] Marius Bozga, Susanne Graf, and Laurent Mounier. “Automated validation

of distributed software using the IF environment”. In: Workshop on Software

Model Checking (in connection with CAV ’01). Ed. by Willem Visser Scott

D. Stoller. Vol. 55. Electronic Notes in Theoretical Computer Science 3. Paris,

France: Elsevier, July 2001, pp. 370–381 (cit. on p. 196).

BIBLIOGRAPHY 243

[147] Sergio Yovine. “KRONOS: a verification tool for real-time systems”. In: In-

ternational Journal on Software Tools for Technology Transfer 1.1 (1997),

pp. 123–133 (cit. on p. 196).

[148] Giuseppe De Ruvo and Antonella Santone. “An Eclipse-based Editor to Sup-

port LOTOS Newcomers”. In: Enabling Technologies: Infrastructure for Col-

laborative Enterprises (WETICE), 2014 IEEE 23rd International Conference

on. 2014, pp. 372–377 (cit. on p. 196).

[149] Hugues Evrard and Frédéric Lang. “Automatic Distributed Code Generation

from Formal Models of Asynchronous Concurrent Processes”. In: 23rd Eu-

romicro International Conference on Parallel, Distributed and Network-based

Processing (PDP 2015). Turku, Finland, Mar. 2015 (cit. on p. 196).

[150] Gerard J. Holzmann. Design and Validation of Computer Protocols. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1991 (cit. on p. 197).

[151] G.J. Holzmann and M.H. Smith. “An Automated Verification Method for

Distributed Systems Software Based on Model Extraction”. In: IEEE Trans-

actions on Software Engineering 28.4 (2002), pp. 364–377 (cit. on p. 197).

[152] Gerard J. Holzmann and Dragan Bosnacki. “The Design of a Multicore Ex-

tension of the SPIN Model Checker”. In: IEEE Trans. Softw. Eng. 33.10 (Oct.

2007), pp. 659–674 (cit. on p. 197).

[153] Doron Peled. “Combining Partial Order Reductions with On-the-fly Model-

Checking”. In: Proceedings of the 6th International Conference on Computer

Aided Verification. CAV ’94. London, UK, UK: Springer-Verlag, 1994, pp. 377–

390 (cit. on pp. 197, 201).

[154] Moatz Kamel and Stefan Leue. “Validation of a Remote Object Invocation and

Object Migration in CORBA GIOP using Promela/Spin”. In: International

SPIN Workshop (cit. on p. 197).

[155] M. Lowry K. Havelund and J. Penix. “Formal Analysis of a Space Craft Con-

troller using Spin”. In: International SPIN Workshop (cit. on p. 197).

[156] Gerald Lüttgen and Victor Carreño. “Analyzing Mode Confusion via Model

Checking”. In: International SPIN Workshop (cit. on p. 197).

[157] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. “NuSMV Version 2: An OpenSource Tool for

Symbolic Model Checking”. In: Proc. International Conference on Computer-

Aided Verification (CAV 2002). Vol. 2404. LNCS. Copenhagen, Denmark:

Springer, 2002 (cit. on p. 197).

244 BIBLIOGRAPHY

[158] Kenneth L. McMillan. Symbolic Model Checking. Norwell, MA, USA: Kluwer

Academic Publishers, 1993 (cit. on p. 198).

[159] A. Cimatti, E. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tac-

chella. “Integrating BDD-based and SAT-based Symbolic Model Checking”.

In: Proc. ”Frontiers of Combining Systems, FROCOS’02”. Vol. 2309. LNAI.

Santa Margherita, Italy: Springer, 2002 (cit. on p. 198).

[160] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional Rea-

soning in Model Checking. 1998 (cit. on pp. 198, 201).

[161] Enrico Giunchiglia and Armando Tacchella, eds. Theory and Applications

of Satisfiability Testing, 6th International Conference, SAT 2003. Santa

Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Vol. 2919.

Lecture Notes in Computer Science. Springer, 2004 (cit. on p. 198).

[162] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. “Chaff: Engineering an Efficient SAT Solver”. In: Proceedings of

the 38th Annual Design Automation Conference. DAC ’01. Las Vegas, Nevada,

USA: ACM, 2001, pp. 530–535 (cit. on p. 198).

[163] Bernd Kolb, Markus Völter, Daniel Ratiu, Domenik Pavletic, Kolja Dum-

mann, and Tamás Szabó. MBEDDR. url: http://mbeddr.com/ (cit. on

p. 198).

[164] Two Towers. url: http://www.sti.uniurb.it/bernardo/twotowers/ (cit.

on p. 198).

[165] Goanna. url: http://redlizards.com/ (cit. on p. 198).

[166] José Vander Meulen and Charles Pecheur. “Efficient Symbolic Model Checking

for Process Algebras”. In: vol. 5596. LNCS. Springer, 2008 (cit. on p. 198).

[167] Santiago Escobar and José Meseguer. “Symbolic Model Checking of Infinite-

state Systems Using Narrowing”. In: Proceedings of the 18th International

Conference on Term Rewriting and Applications. RTA’07. Paris, France:

Springer-Verlag, 2007, pp. 153–168 (cit. on p. 199).

[168] Azadeh Farzan and José Meseguer. “Partial Order Reduction for Rewriting

Semantics of Programming Languages”. In: Proceedings of the 6th Interna-

tional Workshop on Rewriting Logic and its Applications (WRLA). Ed. by G.

Denker and C. Talcott. 2006 (cit. on p. 201).

BIBLIOGRAPHY 245

[169] Ludovic Henrio and Justine Rochas. “Declarative Scheduling for Active Ob-

jects”. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-

puting. SAC ’14. Gyeongju, Republic of Korea: ACM, 2014, pp. 1339–1344

(cit. on p. 208).

[170] Ludovic Henrio and Marcela Rivera. “Stopping safely hierarchical distributed

components: application to GCM”. In: CBHPC ’08: Proceedings of the 2008

compFrame/HPC-GECO workshop on Component based high performance.

Karlsruhe, Germany: ACM, 2008, pp. 1–11 (cit. on p. 209).

