Keywords: architectures

J'estime avoir eu beaucoup de chance pendant ma thèse, et je voudrais remercier tous ceux qui y ont contribué : En premier lieu, je remercie évidemment mes directeurs de thèse : Laurent et Jean-Marc, et mes co-encadrants de l'ombre : Georges et Patricia. Je sais que mes mails du vendredi étaient souvent trop longs... et je vous remercie d'avoir été si enthousiastes pendant les skype du lundi, c'était une source importante de motivation. J'ai vraiment été bien soutenue durant ma thèse, je suis donc ravie de tous vous avoir à ma soutenance. J'ai eu la chance de me déplacer pour des conférences, événements et collaborations en France et dans le monde. J'ai pu faire de beaux voyages : Italie, Australie, Îles Canaries, Taïwan, et bientôt Chine. Les missions en France : Rennes, Nice, Grenoble, Lille, bien que moins exotiques, me laissent aussi de très bons souvenirs. J'en suis très reconnaissante, et je remercie toutes les personnes, et structures, qui ont rendu cela possible. Au quotidien, les collègues de bureau sont importants, c'est pourquoi je remercie chaleureusement Leandro, Hongyang, Pedro et Radu. Je décerne à Pedro la Palme d'Or du co-bureau, et je me sens à la fois coupable, et très heureuse, de t'avoir entraîné avec moi dans le bureau 376N pendant un an et demi. Je remercie bien sûr l'ensemble de mes collègues, des équipes Sepia à Toulouse et Avalon à Lyon, pour tous les moments passés ensemble. Je ne me lance pas dans une liste, qui serait forcément non exhaustive, toutefois, j'ai une pensée pour ceux avec qui j'ai partagé l'expérience de l'enseignement, et j'adresse un merci spécial à Hélène, ma seule collègue d'équipe lyonnaise. Je m'estime chanceuse que beaucoup de mes collègues soient devenus des amis, et que l'un d'entre eux ait même acquis un statut un peu plus particulier. Je n'oublie pas pour autant mes amis de toujours, que je remercie inniment de ne pas m'oublier non plus, et qui sont toujours partants pour m'héberger, me rendre visite, partir en voyage, ou discuter par chat interposé.

5.6

Energy proportionality comparison with lower and upper bounds

6.1

Short look-ahead windows used for switch-on actions.

6.2

Immediate look-ahead windows used for switch-o actions.

6.3

Long look-ahead windows used for Back-to-Ideal actions.

6.4

Steep Slopes : Multi-Terms performs better than Ideal BML.

6.5

Low Slopes : Multi-Terms performs worse than Ideal BML.

6.6

Day 65 -Comparison between Ideal BML and Multi-Terms algorithms. .

Introduction

In the last decade, our society has witnessed an explosion of the use of on-line services and applications in the daily life. This evolution goes with the ubiquity of connected mobile devices: smartphones, tablets, watches, cars, and so on. Social networks and medias are now an inherent part of our habits. The web site www.internetlivestats.com lists internet activity happening in one second. At the time of the writing, it reports that in one second, 2780 Tweets have been sent, 732 Instagram photos have been uploaded, 127177 YouTube videos have been viewed and 55 323 Google searches have been done.

What users sometimes do not realize, is that at the other end of these applications, there are data centers huge facilities lled with lots of computers, that are processing, computing, storing, retrieving and sending data to make applications available 24/7 from (almost) anywhere on the planet which consume a large amount of energy.

A recent report [53] estimates that data centers in the United States consumed 70 terawatt-hours (TWh) in 2014, accounting for about 1.8% of total U.S. electricity consumption. It represents a 4% increase from 2010 to 2014, which is a large shift from the estimated 24% increase for the period 2005-2010. And the energy consumption of data centers is expected to continue increasing in the future. This same report projects that U.S data centers will consume approximately 73 TWh in 2020.

Apart from being an important nancial limitation for data center's operators, these high amounts of electricity can also be seen as CO 2 emissions, participating in the greenhouse eect. According to several weather agencies, 2015 has been the warmest year on records. Before that, 2014 was the champion, and now 2016 is on track to surpass the record as several months of this year are already the hottest observed.

The consciousness starts to reach a worldwide level. During the 2015 United Nations Climate Change Conference (COP21) in Paris, nearly 200 countries took part in negotiations and agreed on tackling climate change. The agreement contains measures to drastically reduce greenhouse gas emissions and curb global warming to less than 2 ˝C by the end of the century. It is urgent to listen to the messages from our planet and be conscious of the inevitable issue we are facing.

In this thesis, we propose to make these infrastructures more ecient by improving their ability to adapt their energy consumption to the workload evolutions over time.

Large-Scale Distributed Systems

A distributed system is dened as a set of several computers, interconnected with a network, that coordinate their actions by exchanging messages in order to achieve a common goal. This goal diers depending on the purpose served by the distributed system. It can be to provide websites, applications or services such as mail, instant messaging or le hosting. These systems can also be meant to complete complex computations for applications requiring an important computing power, such as weather forecasting or DNA sequencing. This is usually referred to as High Performance Computing (HPC).

Concretely, these computers, commonly referred to as servers or nodes, are stored vertically into cabinets called racks, themselves organized horizontally into ails inside a room, a oor, or a dedicated warehouse. Such facilities are known as data centers, or supercomputers in the HPC case.

Distributed systems dedicated to computing can be classied into dierent categories.

The order used for their description also follows the chronological order of their appearance in research.

• Cluster denes a distributed system composed of tightly connected nodes, generally of homogeneous hardware, situated in the same location, which can be considered as a single computing resource. When private, a cluster is in general managed and used exclusively by one company.

• Grid qualies a set of interconnected clusters, usually geographically distributed and possibly composed of heterogeneous servers. A software layer is necessary to homogenize the infrastructure in order to use it in a transparent manner.

• Cloud computing refers to a shared infrastructure that can be used on-demand by any customers, who will pay the cloud provider according to their usage. Resources are considered elastic as they are dynamically provisioned according to the users' needs. Cloud computing is divided in three main types of services :

Software-as-a-Service (SaaS), denotes software and applications made available via internet browsers. Users have access to the services from anywhere, usually after having created an account, and without having to handle software updates or licenses.

Examples of such services are: Google Drive for le storage and synchronized document editing, and Flickr for to image and video hosting and sharing.

Platform-as-a-Service (PaaS), allows the users to build their own applications and deploy them on the provided platform. Users can focus on the development of their applications and launch them immediately when their are ready without having to build an managed the infrastructure to host them.

Google App Engine is an example of PaaS. Applications are hosted in data centers managed by Google, where the resource scaling is automatically done.

MOTIVATIONS FOR ENERGY SAVINGS IN DATA CENTERS

Infrastructure-as-a-Service (IaaS) gives users direct access to machines they can fully set up, congure, manage and use according to their needs. Users can rent bare-metal servers but most of the time, cloud providers oer dierent congurations of virtual machines (VM). Virtualization is a key technology which has enabled the expansion of cloud computing. It allows several independent operating systems to coexist on a single physical machine. Multiple virtual machines can be hosted on the same server while each of them being totally isolated from the others.

Amazon Elastic Compute Cloud (EC2) is arguably the most famous cloud provider, while OVH is a French server and cloud provider.

Motivations for Energy Savings in Data Centers

The electricity consumed by a server is used to power its many components and perform computations, but a part of it is transformed and rejected in the form of heat. Unfortunately, a server is not able to bear high heats and its probability of failure increases with the temperature. Even if failures are most frequent at high temperatures, operators prefer to adopt conservative approach to increase hardware reliability as much as possible [START_REF] El-Sayed | Temperature Management in Data Centers: Why Some (Might) Like It Hot[END_REF]. Inside a data center room, the high density of servers in racks worsen the heat dissipation issue. That is why data center facilities need an important cooling system, with air conditioning units and fans, to extract the generated heat and keep the room at a reasonable temperature. The consumption of the cooling system generally accounts for 30 to 50% of the total electricity consumed by the data center [START_REF] Ebrahimi | A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities[END_REF].

Indeed, in a data center, not all the consumed energy goes to computing. This is highlighted by the Power Usage Eectiveness (PUE) metric, promoted by the Green Grid consortium in 2007 [START_REF]Green Grid Metrics: Describing Datacenter Power Eciency[END_REF]. It is dened as a ratio of the total energy consumed by the whole data center over the eective energy consumed only by computing servers. This metric reveals all the overhead electricity consumed by cooling infrastructures, power supplies, lights, and so on. The ideal PUE is 1.0 as it means that all of the energy is used for computing. While a recent survey [58] estimates that the average PUE of respondents' largest data centers is around 1.7, Google advertises an average PUE of 1.12 for all their data centers in quarter 2 of 2016 [START_REF] Google | Eciency: How we do it[END_REF]. Despite all the controversy about how companies compute and sometimes use this metric only for publicity purpose, the PUE can also be criticized because it does not show the real energy eciency of the infrastructure.

Most data centers are over-provisioned to be ready to sustain unexpected load peaks, but they sometimes also contain numerous servers that are not fully utilized. An Uptime

Institute survey [58] suggests that close to 30% of servers in U.S. enterprises' data centers are comatose, meaning that they are consuming power but not doing any useful work.

This comes from the poor management of the infrastructure once it is operational. Aging or partly faulty servers remain in the data center, consuming energy, instead of being decommissioned. In such situations, the energy consumed by these inactive servers is eectively consumed by IT equipment, accounting positively for to the PUE metric, but is in really a bad energy utilization.

Focus on Energy Proportionality

In addition, people usually only focus on the maximum energy consumption of a data center, but not enough on the day to day consumption which varies a lot. Having a good energy eciency at full load is important, but also when the load is low, and this aspect is sometimes forgotten. This issue has been exposed by Luiz Andre Barroso and Urs Holzle in 2007 [START_REF] Barroso | The Case for Energy-Proportional Computing[END_REF]. They have observed more than ve thousand servers from a Google data center, and noticed that they are mostly utilized at a load between 10 and 50%. This means they are rarely completely unused, and therefore in a state where they could be shut down, and also rarely at full performance, where they are the most energy ecient.

The main problem is that when a server is idle, i.e., powered on but without activity, its energy consumption is already signicant. Some idle servers can consume as high as 50% of their peak power consumption [START_REF] Barroso | The Case for Energy-Proportional Computing[END_REF]. This amount of energy consumed when a machine is idle is called the static consumption. With our researches we want to nd how the static costs of a data center can be reduced as much as possible in order to have an energy consumption fully dynamic and only dependent on its utilization. The objective of this thesis is to answer the following question: An infrastructure whose energy consumption is proportional to its actual load is it achievable?

Contributions

In this thesis, we propose to reach energy proportionality with an original data center design composed of heterogeneous computing resources. We name this infrastructure BML for Big, Medium, Little to highlight the dierences of characteristics of the chosen hardware. The heterogeneity in our infrastructure is considered at the level of the architecture. We propose to gather dierent types of architectures, as opposite as x86

and ARM, inside the same data center, to benet from their specic performance and energy consumption characteristics.

To achieve energy proportionality, the objective is to always use the least energy consuming hardware, or combination of hardware, that meets the current needs of the running applications. This concept of adaptability is particularly relevant when facing applications whose workloads vary over time. In our infrastructure, we consider that, at any time, only the most appropriate set of hardware for the current load is powered on. The unused nodes are switched o, or put in a suspend or hibernate mode, allowing us to reduce static costs. Around this heterogeneous infrastructure we propose a scheduler that handles reconguration decisions, such as dynamic application migrations and management of computing resources by switch on and o actions.

The relevance of reconguration decisions relies on the preliminary phase of machine proling that allows to know perfectly the energy and performance behaviors of the dierent types of machine for the target application. This enables to compute the most energy ecient combinations of machines for dierent application performance levels. Based on the knowledge of the application workload prole, the scheduler enforces infrastructure recongurations to reduce energy consumption while respecting QoS constraints of the application. The design of our BML infrastructure with its general framework, as well as our rst experimental results have been published in the proceedings of BDCloud 2014 We propose two versions of scheduling algorithms: the rst one called Ideal BML, only considers the machine combinations computed in the preliminary proling phase.

It has been the subject of two publications, a short paper at Cluster 2016 conference [C1], and a full paper at ICPADS 2016 [C3]. The second algorithm named Multi-Terms, allows more reconguration possibilities and take care of the dierent temporalities of these actions. It is explained in details in a paper published at Sbac-Pad 2016 conference [C2]. We have made experimental evaluations which demonstrate that we are saving substantial amounts of energy compared to classical data center managements as we drastically reduce the static energy costs thanks to dynamic recongurations of heterogeneous computing resources.

Structure of the Manuscript

The structure of the manuscript is the following: Chapter 2 provides an overview of the researches concerning energy proportional computing. This state of the art study leads us to heterogeneous computing resources as a key to reach energy proportionality.

Hence we develop in Chapter 3 the technological challenges brought by heterogeneity inside a data center and justify our choices. We detail in Chapter 4 our framework Big, Medium, Little and its specications. We especially focus on the step by step process for building the heterogeneous combinations of computing resources. Chapter 5 presents our rst scheduler version named Ideal BML algorithm with its evaluation.

Chapter 6 describes the second version of the scheduler called Multi-Terms algorithm. We evaluate it considering the same scenarios to highlight the dierences compared to the previous version. Chapter 7 contains discussions about the relevance of our proposition, the hardware choices, the possible improvements, and how we picture the evolutions of this approach in the future. Finally, Chapter 8 concludes our work by summarizing our achievements and gives insights for actual implementation and directions for future works.

Chapter 2

Energy Proportional Computing:

State of the Art

This chapter presents the state of the art of researches concerning energy proportional computing. Although this term has been dened relatively recently, many works trying to enhance energy eciency of servers and data centers can be seen within the energy proportionality goal.

Energy Proportionality

Denitions and Goals

Andre Barroso and Urs Hölzle, two engineers at Google, published a paper in 2007 entitled: The Case for Energy-Proportional Computing [START_REF] Barroso | The Case for Energy-Proportional Computing[END_REF]. In this work, they exposed the energy ineciency of servers with measurements done inside data centers of their own company. Their two key ndings are: (i) Servers are utilized on average between 10% and 50% of their maximum capacity; (ii) When idle, a server can consume up to 50% of its peak energy consumption.

After making these observations, their conclusion is that energy proportional servers would bring large energy savings. Therefore, they urged hardware designers to enhance the energy proportionality of servers and data center operators to improve the resource management in their infrastructures. Themselves did not give solutions to achieve these goals but they opened the research eld of Energy Proportional Computing.

In mathematics, two variables are said proportional if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. Applying this denition to our problem, we want the energy consumption and the utilization of a server to be proportional. By utilization we mean the load of the server, which is characterized by the amount of work performed. Consequently, a perfectly proportional server is a machine consuming 0 when idle and having an energy consumption always proportional to the amount of work produced until its maximum capacity. The constant multiplier is in our case the energy eciency coecient, dened as utilization level divided by the corresponding energy consumption.

Figure 2.1: Typical power consumption of a server from 0 to 100% utilization (from [START_REF] Barroso | The Case for Energy-Proportional Computing[END_REF])

On Figure 2.1, extracted from [START_REF] Barroso | The Case for Energy-Proportional Computing[END_REF], the upper green curve represents the typical energy consumption of a 2007 server from 0 to 100% utilization, while the lower red curve depicts its energy eciency. As the idle consumption of this server accounts for 50% of its peak consumption, its energy eciency is very poor for the lower range of utilization.

Unfortunately, the typical utilization range Barroso and Hölzle have observed was between 10% and 50%, which corresponds to a low energy eciency. That is why an energy proportional server which has a constant energy eciency regarding its utilization would enable important energy savings. parts of power consumption. Indeed, the area from zero to idle consumption is considered as the static consumption part. This xed amount of power consumption no matter the utilization is the one that prevents a server from being energy proportional. Our goal of energy proportionality can be reached only if static costs disappear and the power consumption of a server is only composed of one dynamic part.

Metrics

As it is elementary to know how to measure and quantify a phenomenon in order to understand it fully, several works dened metrics to express energy proportionality characteristics of servers.

Ryckbosch et al. [START_REF] Ryckbosch | Trends in Server Energy Proportionality[END_REF] proposed a metric which is computed using the area between the actual power consumption curve of the server, and the ideal proportional consumption curve, i.e., starting at zero in idle state and being proportional towards peak power and performance, as represented on Figure 2.3. This metric, named EP for Energy Proportionality, is dened like this:

EP " 1 ´area actual ´area ideal area ideal (2.1)
It quanties in a global way how the server is close to perfect energy proportionality:

an EP of 1 results from perfect proportionality while 0 characterizes a server consuming a constant amount of power irrespective of its utilization level. The server pictured in Figure 2.1, whose idle power consumption is 50% of its peak power, has an EP of 0.5.

Although this metric gives a good hint about the energy proportionality of a machine, it can be reductive as two machines can have the same EP score while having two dierent power consumption curves. Hence, following works [START_REF] Varsamopoulos | Trends and Eects of Energy Proportionality on Server Provisioning in Data Centers[END_REF][START_REF] Wong | Knightshift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity[END_REF] rened this work by proposing two metrics to quantify the two dierent aspects that portray energy proportionality.

The rst one is the dynamic power range i.e., the dierence between the idle and the peak power consumption. Varsamopoulos et al. [START_REF] Varsamopoulos | Trends and Eects of Energy Proportionality on Server Provisioning in Data Centers[END_REF] dened the IPR metric for Ideal to Peak Ratio. It is computed as the ratio of the power consumed when idle over the power consumed at full utilization: IP R " power idle power peak

(2.2)
A lower IPR denotes a larger range of dynamic consumption and thus a more energy proportional server. In the same idea, Wong et al. [START_REF] Wong | Knightshift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity[END_REF] proposed the DR metric, standing for Dynamic Range. It also uses idle and peak power consumption values, but is computed as follows:

DR " power peak ´power idle power peak

(2.
3) An energy proportional system would have a dynamic power range DR of 1.

The second aspect that needs to be evaluated is the linearity of the consumption. For that aim, it needs the denition of a hypothetical linear power curves which starts at same idle consumption and ends at same peak consumption as the considered system, but is linear between these two points. Linear Deviation Ratio in [START_REF] Varsamopoulos | Trends and Eects of Energy Proportionality on Server Provisioning in Data Centers[END_REF] and LD for Linear Deviation in [START_REF] Wong | Knightshift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity[END_REF], computed as such:

LDR "

|.| max i ´power i actual power i linear ´1 ¯(2.4)
LD " area actual area linear ´1

(2.5)

The LDR and LD metrics have another advantage compared to the EP metric because the result keeps the sign of the maximum deviation from the linear curve. This means that depending wether the value is positive or negative, we know if the server's power curve is over or under the theoretical straight line. A LD or LDR value of 0 corresponds to a perfectly proportional, or linear, power curve. Negative values indicate under-linearity, which sometimes implies that a server consumes less than the proportional goal. It is better than over-linearity concerning energy savings, but it can signify that a server is not the most energy ecient at full utilization, which can be dicult to take into account in scheduling algorithms.

We present these metrics for actual hardware, allowing to highlight and discuss their dierences with actual examples in section 4.4.5.

Recent Evolutions

Once metrics have been dened, these works [START_REF] Varsamopoulos | Trends and Eects of Energy Proportionality on Server Provisioning in Data Centers[END_REF][START_REF] Ryckbosch | Trends in Server Energy Proportionality[END_REF][START_REF] Wong | Knightshift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity[END_REF] studied existing servers to evaluate how energy proportionality has evolved over dierent successive generations. All their analyzes are based on the SPECpower_ssj2008 benchmark [START_REF] Gray | Workload Characterization of the SPEC-power_ssj2008 Benchmark[END_REF] As a conclusion, despite an improved energy proportionality, current servers' consumption is still not perfectly proportional to their load. Moreover, hardware manufacturers have put eort on increasing dynamic power range, but at the cost of a degraded linearity.

Therefore there is still room for improvements regarding energy proportional computing.

In the following sections, we describe the many dierent approaches that aim at getting closer to this objective with existing non proportional hardware.

Energy Eciency of Homogeneous Clusters

At Software Level

Eorts can be made during software development in order to save energy during its execution. Indeed, a software program that is not coded with the awareness of the underlying hardware on which it will run, can lead to substantial energy wastes. Energy-aware programming practices are often referred to as Green Coding or Green Programming.

The concept of Race to Idle is quite simple: increasing the software performance, leading to minimizing its running time, saves also energy because the faster the execution is completed, the earlier the computer is back to idle and can be put in an energy saving mode. Thus, a rst green programming practice consists in developing ecient algorithms using for example multithreading and vectorization for parallel executions.

Sabharwal et al. [START_REF] Sabharwal | Enabling Green IT through Energy-Aware Software[END_REF] described such recommendations and techniques to build energy ecient software, and focused on reducing energy consumed by idle software instances.

Authors have studied dierent idle applications, e.g., a media player which is open but not playing anything, or an open internet browser not displaying any site, and measured 1 SPECpower_ssj2008 results are available at https://www.spec.org/power_ssj2008/results/.

their power consumption. They advise programmers to limit as much as possible waiting loops and active polling that frequently wake up the CPU and result in wasting electricity.

In the same lines as energy proportional computing, Saxe [START_REF] Saxe | Power-Ecient Software[END_REF] claimed that the amount of resources consumed should be in direct relation with the amount of work actually done by the application. He detailed some key principles to reach this objective such as reducing unnecessary computation, using event-triggered actions instead of active waiting.

He also recommends to perform input and output accesses in batches as well as avoiding memory leaks and freeing no longer needed memory.

More optimizations can also be done during the code compiling process. This is what Fakhar et al. [START_REF] Fakhar | Software Level Green Computing for Large Scale Systems[END_REF] proposed with their green compiler. It aims at making code more energy ecient by applying several techniques which are cache skipping, using register operands, clustering and reordering instructions, loop optimization and so on.

While these green programming practices are important to consider when possible, sometimes users are not authorized to modify the code of the applications they are working with. Even if they can, it may be fastidious to modify a large number of existing lines of code, and the impact on server's energy consumption may not always be worth the eort. That is why it is necessary to couple green coding with energy savings actions at runtime.

At Server Level

At the server level, two main approaches can be distinguished: shutdown, which focuses on improving switches towards energy saving modes and back, and slowdown, which consists in making the dynamic consumption more related to the actual work performed.

Static costs are tackled by shutdown approaches, which propose to put the processor in some low power modes when it is not active. The Advanced Conguration and Power Interface (ACPI) specication [START_REF]Advanced Conguration and Power Interface(ACPI) Specication Version 6.1[END_REF] denes dierent C-states : C0, the operating state during which P-States can be chosen, and C1 to Cn, the idle states during which some processor's components are disabled to save energy. The higher the number of Cn, the less energy the processor consumes and the longer it takes to make it active again. ACPI also denes several sleep states S-states, during which most of the system is powered o, except the network card that stays active to support Wake-on-LAN. The limitation of DVFS is that it reduces the performance and consequently lengthens the execution time. Therefore, it is necessary to determine the most appropriate frequency scaling in order not to increase the overall energy consumption. Dargie showed in [START_REF] Dargie | Analysis of the Power Consumption of a Multimedia Server under Dierent DVFS Policies[END_REF],

where he studied the impacts of DVFS in a multimedia server use case, that this technique enables important gains for I/O bound workload, but it is generally unfavorable when the CPU is utilized at more than 40% on average. Moreover, this work highlighted that it is necessary to know the workload to be able to correctly choose the most appropriate governor policy. As the transitions between frequencies are not instantaneous, on-demand policy may not be relevant for very bursty workload.

Another server power management technique has been developed by Intel in their Sandy Bridge processors. It is named RAPL, standing for Running Average Power Limit.

Via this mechanism, a user can specify a power consumption threshold that the processor will not exceed during a given period. The system then automatically regulates its behavior to keep its consumption under the limit. dynamic provisioning for a small cluster of 8 servers serving web applications [START_REF] Pinheiro | Load Balancing and Unbalancing for Power and Performance in Cluster-Based Systems[END_REF]. The minimum of physical nodes is powered on while the load is balanced among them.

Later, with the apparition of virtualization technologies, the concept of Consolidation, which consists in colocating several virtual machines on the same physical server in order to minimize the quantity of utilized resources, has allowed to broaden the range of applications. It was made possible thanks to the mechanism of Live Migration [START_REF] Clark | Live Migration of Virtual Machines[END_REF],

which is used to dynamically move virtual machines from a physical server to another without much impacting the performances of the applications running inside. When several virtual machines have little load, they can be hosted on the same server, and as soon as one of them needs more resources, a new physical machine can be provisioned and this virtual machine migrated to it.

Most consolidation approaches are based on heuristics algorithms, whose goal is to solve variants of the bin packing problem, where virtual machines must be packed on physical servers while respecting their resources requirements e.g., CPU or memory utilizations. More original alternatives have been proposed, for instance Feller et al. [START_REF] Feller | Energy-Aware Ant Colony Based Workload Placement in Clouds[END_REF] have developed a nature-inspired algorithm based on the Ant-Colony meta-heuristic to compute the workload placement dynamically according to the current load. Hermenier et al. used constraint programming in [START_REF] Hermenier | Entropy: A Consolidation Manager for Clusters[END_REF], allowing them to take reconguration overheads into account. Live migration being a costly process in terms of time and energy, it is necessary to use it wisely. Balouek-Thomert et al. [START_REF] Balouek-Thomert | Energy-Aware Server Provisioning by Introducing Middleware-Level Dynamic Green Scheduling[END_REF] proposed to perform dynamic server provisioning at the middleware level, while taking into account energy-related events and user preferences concerning performance and energy ratio. A more complex problem has been approached by Ardagna et al. as they focused on web services placement across multiple geographically distributed cloud sites [START_REF] Ardagna | Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems[END_REF]. Consequently, they have dened two types of actions: resource provisioning at mid-long term across dierent cloud sites, and virtual machine provisioning inside a same site at short term.

Tolia et al. [START_REF] Tolia | Delivering Energy Proportionality with Non Energy-proportional Systems: Optimizing the Ensemble[END_REF] have widen their study of cluster level energy proportionality as they also measure the energy consumed by cooling systems. Indeed, they proposed a predictive approach to control the fans. They showed that both servers and cooling systems can get closer to energy proportionality is they are well managed.

Finally, Wong and Annavaramn [START_REF] Wong | Implications of High Energy Proportional Servers on Cluster-Wide Energy Proportionality[END_REF] have evaluated the inuence of server level energy proportionality on cluster level. As servers are becoming more and more proportional, they wanted to know if highly energy proportional servers would exempt more energy managements at cluster level. The conclusion is that even if server level proportionality has a direct impact on cluster level, since idle servers' consumption is not close to zero and on/o switches are still lasting too long, there is still a need for more energy ecient managements at cluster level.

The main limitation of these cluster-level actions resides in the homogeneity of computing resources that does not allow a ne grained provisioning. Servers have an important processing capacity and an important energy consumption, thus a decision of switching on or o a server has a big impact on the infrastructure. Therefore, some researchers have recently gained interest for low power processors and started to study if they can oer more energy ecient platforms.

Low Power Processors Clusters

With the emergence of mobile devices, hardware designers have been constrained to conceive low power processors to extend battery life. Moreover, they were also encouraged to build more and more powerful processors as many applications running on smartphones and tablets are highly resource intensive, e.g., games, video streaming, geolocalized applications. Mobile processors are mainly based on ARM architecture, which uses Reduced Instruction Set Computing (RISC). Design of RISC processors requires less transistors than traditional x86 processors based on Complex Instruction Set Computing (CISC), that is why their power consumption and costs are reduced.

As mobile processors feature a good performance to power ratio, they seem to be good candidates for building energy ecient supercomputers. The European project called Mont-Blanc, started in 2011 [START_REF]The Mont-Blanc Project[END_REF], aims at designing a new type of architecture for HPC using energy ecient mobile processors. They were the rst to propose a prototype HPC cluster built from ARM multicore processors, which they named Tibidabo. They performed many experiments with HPC workloads and concluded that applications that scale to a larger number of parallel nodes benet from this platform having competitive performance and energy eciency compared to standard servers [START_REF] Rajovic | Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?[END_REF]. However, they also found some limitations as their prototype was based on rst generation of 32-bit ARM processors. Indeed, the new 64-bit ARMv8 architecture brought some improvements and in particular double-precision oating-point computing.

Other works have studied the use of low power processors for handling data center workloads like web servers and big data applications. Varghese et al. [START_REF] Varghese | Greening Web Servers: A Case for Ultra Low-Power Web Servers[END_REF] showed that the popular Raspberry Pi is ecient for hosting static web servers while consuming less power than a standard server. Loghin et al. [START_REF] Loghin | A Performance Study of Big Data on Small Nodes[END_REF] also concluded that ARM processors offer interesting consumption-performance ratios for database query processing compared to an Intel Xeon processor. On the other hand, these studies show performance limitations, concluding that these low power equipments cannot compete with standard servers for more demanding workloads such as dynamic web servers or I/O intensive big data applications.

Several hardware vendors have started to propose server solutions based on ARM processors, and HP Moonshot [START_REF] Packard | HP Moonshot System[END_REF] is one example. It exploits the concept of Disaggregated Server design where servers are disaggregated and resources, such as processors, memory and I/O ports are arranged in resource pools constructing processing pools, memory pools and I/O pools. The HP Moonshot system is a software-dened server as the company proposes to choose among dierent processors to optimize performances for specic workloads. Their ARM based solution is said to be optimal for web infrastructure.

As a conclusion, clusters composed of low power processors are very promising regarding energy proportionality, but are not necessarily suitable for all types of workloads.

That is why heterogeneity seems to be the solution to take advantage of both low power processors and powerful servers.

Benets of Heterogeneity in the Infrastructure

Inspirations from the Mobile World

To be even more ecient and further extend the battery life of mobile devices, heterogeneous multicore processors were introduced. ARM was the rst to propose a heterogeneous architecture, which they called ARM big.LITTLE, [START_REF] Big | LITTLE: The Future of Mobile[END_REF] consisting in putting two dierent processors on the same board. The idea is to oer a processor with very low power consumption that delivers low-level performance, and a more powerful, and consequently more power consuming processor, to process more intensive tasks. Indeed, this technology takes advantage of the dynamic usage pattern of smartphones and tablets.

These devices alternate between highly intensive tasks such as initial web page rendering and game physics calculation, and low processing intensity tasks such as reading a web page, waiting for user input, and light tasks like texting, e-mail and audio. ARM big.LITTLE has a total of eight cores, four cores for each type of processors: little is a Cortex-A7 and big is a Cortex-A15. The two processors are connected through a cache coherent interconnect which allow transparent and ecient data transfer between them.

When the processor rst came out, its rst implementation, termed Clustered Switching, only allowed to use one cluster at a time, either the big or the little one. Then the In-kernel switching approach proposed to pair each big core to a little one, resulting in a 4 core heterogeneous processor as only one core of each pair could be used at a time. To benet from the full potential of big.LITTLE, the best model is Global Task Scheduling (GTS), giving the ability to schedule tasks on all the cores at the same time. ARM has also developed a kernel space patch based on GTS that keeps track of load history as each thread runs, and uses this data to anticipate the performance needs of the thread next time it runs.

Samsung has implemented this architecture in their Exynos Octa boards. They can be found for example in Samsung Galaxy S4 ans S5 smartphones. Once 64-bit ARMv8 huge performance capabilities and an improved power management.

Motivations for Heterogeneity in Data Centers

The trend of heterogeneous multi-core processors, in the same inspiration as the architecture of ARM big.LITTLE, has emerged in data centers. An example is the prototype QuickIA by Intel. This heterogeneous platform gathers one Intel Atom processor and one Intel Xeon processor, which are representative of two opposite architectures. The Xeon is a high-performance server-class architecture, while the Atom is a low-power microarchitecture targeted for mobile devices. Cong and Yuan [START_REF] Cong | Energy-Ecient Scheduling on Heterogeneous Multi-Core Architectures[END_REF] have developed a scheduling approach to take advantage of this heterogeneous platform. They used a regression model to estimate the energy consumption of each processor and take scheduling decisions accordingly. The drawback is that this approach requires the code to be instrumented to be able to predict the execution time and associated energy consumption.

Wong et al. have proposed KnightShift [START_REF] Wong | Knightshift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity[END_REF]. It consists in a motherboard containing a regular server processor, called Primary Server, and a low power processor, called the Knight. This latter is always powered on, and wakes up the primary server only in case of high load. In fact, they have dened several possible architectures and studied dierent processor candidates. As it is not simple to design custom motherboard, they have implemented KnightShift at the server level by using an Intel Xeon and an Intel Atom connected through their network interfaces.

In the European project CoolEmAll [START_REF] Cupertino | Energy-Ecient, Thermal-Aware Modeling and Simulation of Data Centers: The CoolEmAll Approach and Evaluation Results[END_REF], that aimed at improving energy eciency of data center by working on models, simulations and visualization tools, they used a heterogeneous server board called RECS for Resource Ecient Computing System developed by Christmann [START_REF] Christmann | Description for Resource Ecient Computing System[END_REF]. This server has a very high density as it consists in 18 single CPU modules of three dierent architecture types, from Intel Atom to Intel i7, and each node is equipped with thermal and energy sensors which facilitates monitoring.

The heterogeneity can also come from a computing architecture dierent from traditional processors. Nvidia introduced in 1999 the rst Graphics Processing Unit (GPU), which is a specialized electronic circuit dedicated to graphics rendering. A GPU is able to render images faster than a CPU because it has a parallel processing architecture that allows to process large blocks of data as multiple calculations are done at the same time.

This characteristics made the GPU an interesting processing unit for High Performance Computing (HPC). Indeed, if a computation is performed faster, it often implies that the energy consumed is decreased, but GPU represent also an energy overhead compared to CPU, that is why some researchers started to evaluate GPU's energy eciency. Enos et al. [START_REF] Enos | Quantifying the Impact of GPUs on Performance and Energy Eciency in HPC Clusters[END_REF] evaluated the energy improvement, quantied in performance-per-watt, for four dierent applications that have been ported to work on GPU. Authors concluded that although using GPU increases signicantly power consumption, the resulting acceleration also incurs a reduction of the overall energy consumption.

The fact of using GPU to process computation that is traditionally handled by CPU, is called General-Purpose Computing on Graphics Processing Units (GP-GPU). It is facilitated by the framework Open Computing Language (OpenCL), which allows to write programs that will be executed across heterogeneous platforms, i.e., both on CPU and GPU. Thanks to this framework, it is no longer necessary to write two versions of the same code: one dedicated to run on GPU and one for CPU. CUDA is a parallel computing language by Nvidia and an implementation of the OpenCL standard. Ma et al. proposed GreenGPU [START_REF] Ma | GreenGPU: A Holistic Approach to Energy Eciency in GPU-CPU Heterogeneous Architectures[END_REF], an energy management framework for GPU-CPU heterogeneous architectures. Their work consists in two steps: First, workloads are dynamically split and distributed to GPU and CPU based on their characteristics, so that both sides can nish approximately at the same time. Therefore, the energy consumed when staying idle and waiting for the slower side to nish is minimized. Second, the frequencies of CPU, GPU cores and memory are dynamically adjusted, based on their utilizations. They achieved important energy savings thanks to this advanced management.

Custom heterogeneous boards are not easy to build nor maintain, and GPU requires extra programming eorts. Heterogeneity can simply resides in the fact of using dierent types of servers in the same data center. This idea is not brand new as heterogeneity tends to naturally appear in data centers with time. Heath et al. [START_REF] Heath | Energy Conservation in Heterogeneous Server Clusters[END_REF] argued that maintenance can result in replacing some components with more powerful ones as computing needs were increasing drastically a decade ago, while cost versus performance ratios were decreasing. They advocated the use of an eciency metric and the need to model the dierent types of nodes with respect to this metric. In their work, they used modeling and optimization to minimize the energy consumed per request in a web server use case.

Nathuji et al. [START_REF] Nathuji | Exploiting Platform Heterogeneity for Power Ecient Data Centers[END_REF] have also shown that resource heterogeneity can be exploited to improve energy eciency. They were able to perform an ecient workload allocation with an analytical prediction model for computing power and performance of the dierent architectures with their respective power management capabilities.

While these two approaches consider successfully benet from resource heterogeneity, they mostly consider it as a fatality. With the democratization of low power processors, several following works, including this thesis, support the idea of deliberately choosing a set of heterogeneous machines when building a data center. Chun et al. [START_REF] Chun | An Energy Case for Hybrid Datacenters[END_REF] made the case for hybrid data centers, meaning composed of heterogeneous machines, based on the observation that some applications have signicantly dierent performance per watt on dierent platforms. Indeed, they have also selected the Intel Atom processor for its low power consumption, and Intel Xeon for high performance. They have performed experiments with various workloads such as web services, data mining, video conversion, and they highlighted that workload characterization is crucial to decide which processor will perform the most eciently. The work of Krioukov et al. [START_REF] Krioukov | Nap-SAC: Design and Implementation of a Power-proportional Web Cluster[END_REF] also used these two same processors while focusing on web services. They have proposed several dynamic provisioning algorithm, computing the number of machines that should be on or o depending on the load evolution, but their evaluations are not based on real load traces.

Da Costa compared the energy eciency of three dierent processors: Intel I7, Intel

Atom and ARM Raspberry Pi, and evaluated the energy savings that could be achieved in a heterogeneous data center serving web services [START_REF] Costa | Heterogeneity: The Key to Achieve Power-Proportional Computing[END_REF]. This work has only shown preliminary results for a best-case scenario, without taking into account energy and time overheads of machines switches on and o.

To wrap up, these heterogeneous solutions either rely on very specic and complex designs, or lack some aspects that prevent them to be implemented in reality. In this thesis, we are building a heterogeneous data center with existing hardware, and we develop scheduling algorithms which consider the dierent overheads and temporalities of the reconguration actions.

Chapter 3

Feasibility of Highly Heterogeneous Data Centers

In this chapter we describe the preliminary studies and experiments concerning the virtualization technologies and how they can be used with heterogeneous computing resources.

The results that we have drawn from these studies have guided us for the rest of our work.

Description of the Goals and Problems

Our main goal is to save energy by building an energy proportional data center with a set of heterogeneous machines to benet from their dierent power consumption and performance characteristics. We consider a high heterogeneity because we want to mix ARM low power processors and x86 traditional servers inside a same infrastructure. The problem is that these two kinds of machines have dierent Instructions Set Architecture (ISA). Consequently, it is necessary to evaluate the challenges brought by this heterogeneity, and to nd the possible solutions to make these architectures compatible and both ecient.

Ideally, the objective would be to have the least amount of constraints concerning the applications types, and the fewest possible changes from typical data center management.

That is why we have lead a study on the virtualization solutions available both on ARM and x86 architectures. Indeed, virtual machines or containers can embody any types of applications. The goal of this technical study is to determine if there exists a solution, whichever it is, that would enable executing applications across heterogeneous computing resources, and migrating application instances from one type of machine to another.

Study of Virtualization Solutions for ARM and x86

Virtual Machines

Virtualization allows multiple operating systems (OS) to execute concurrently on the same physical hardware, usually called the host. The operating system running on the host is consequently named host OS. Each virtual machines (VM) can have its own operating system, also referred to as guest OS. The virtualization software, called hypervisor, is supposed to simulate hardware components so that each guest can concurrently access them. However, several levels of virtualization are dened. In full virtualization, everything is perfectly simulated in a way that all guest OS can run with no prior modications.

It is opposed to paravirtualization, where not all the hardware parts are simulated for performance improvements, and the guest can sometimes bypass the hypervisor and execute some tasks directly in the host domain.

We also distinguish two types of hypervisors. Type 1 is a separate software component that runs directly on the hardware and provides an abstraction to the virtual machines running on top of the hypervisor. A popular example of type 1 hypervisor is Xen. processor extensions designed to ease the virtualization processes. This approach is known as hardware-assisted virtualization or accelerated virtualization.

ARM architecture diers a lot from x86 and it is not classically virtualizable [START_REF] Penneman | Formal Virtualization Requirements for the ARM Architecture[END_REF]. KVM/ARM was the rst hypervisor to use ARM virtualization extensions to run unmodied guest operating systems [START_REF] Dall | KVM/ARM: The Design and Implementation of the Linux ARM Hypervisor[END_REF]. As a result, KVM is available on all ARM platforms running a recent version of the Linux kernel as KVM/ARM has been merged in Linux kernel version 3.9, released in April 2013. Xen on ARM has been available since Linux kernel 3.7, but it necessitates some drivers development for the guest OS to be executed with paravirtualization.

Containers

As we are not tied to the virtual machine technology, but are only looking for a way to easily migrate applications between heterogeneous machines, we have studied the solution oered by containers. It is a technique of virtualization at the operating system level. In this case, the kernel of the host OS is shared and accessed by multiple isolated user-space instances. All these instances, called containers or sometimes jails in reference to their isolation property, look like real servers from the users point of view. This technique implies very little to no overhead and does not require any hardware virtualization extensions. However, it is not exible as all containers instances can only be running the same operating system and even the same kernel as the host. Some proprietary solutions exist for Windows, but the majority of approaches are based on Linux. We have selected

Synthesis and Preliminary Choices

All the characteristics of chosen virtualization and containerization solutions are synthesized in Table 3 We lead a performance study of emulation for both architectures in order to decide which solution would be the best. As emulation is very compute intensive, we already supposed before starting the experiments that emulation on ARM host would not provide excellent results. Giving the high performance of x86 servers, our hope was that emulating the ARM instruction set would not be too costly and would still provide better results than a native ARM processor. Nevertheless we wanted to measure the performances of both alternatives in order to have a complete study.

The emulation software QEMU features dierent operating modes. The rst one is system emulation, which emulates a full computer system, including its peripherals, running any guest OS. The second one is user-mode emulation, which only runs programs that were compiled for a dierent instruction set. Even if system emulation of x86 processor is available on the ARM version of QEMU, we have never managed to successfully boot an x86 based virtual machine on the ARM processor we used. Consequently, to be able to complete a full study of both sides, we decided to use user-mode emulation and compare two types of executions: native or emulated, of two program versions: compiled for ARM or x86.

Selected Hardware and Setup

ARM Cortex-A15 is the chosen processor to represent ARM architecture as it is the rst to implement virtualization extensions. It was rst available in the Samsung Chromebook in 2012, and inside the HP 11 Chromebook in 2013, which both feature the same systemon-chip (SoC), the Samsung Exynos 5250, containing a dual core ARM Cortex-A15 with a frequency of 1.7 to 2 GHz. Note that Cortex-A15 is the same processor as the big processor of ARM big.LITTLE. As their code names suggest, these notebooks come with Google Chrome OS. To be able to use KVM software and benet from the virtualization extensions it is necessary to install a Linux distribution, and in particular the Linux kernel version must be equal or posterior to 3.9. In fact, Chrome OS is already a Linuxbased OS, but for these Chromebook it uses a kernel version of 3.8.11, not supporting virtualization extensions. Moreover, installing Linux on ARM platforms is not as easy as it can be for x86 architecture. ARM systems lack ways for hardware discovery such as a standard BIOS or PCI bus. As a consequence, Linux kernel developers must write specic les, called device tree sources (dts) describing each ARM hardware.

At the time we worked with the HP Chromebook, it was not supported by Linux as its dts le did not exist yet 1 . Instead we made it run an Ubuntu distribution based on the same kernel of the Chrome OS already installed. To measure its power consumption, we use the powerstat Ubuntu package which retrieves monitoring data from the battery via the Advanced Conguration and Power Interface (ACPI).

On the contrary, Samsung Chromebook was already supported because as the rst available device with the ARM Cortex-A15 processor, it was of great interest for developers to be able to use virtualization extensions. We have installed on the Samsung Chromebook an Ubuntu version 12.04 with a Linux kernel 3.13, and installed QEMU 2.0 with KVM acceleration capabilities. We used an external watt-meter called Plogg to measure the instantaneous power consumption of the machine.

We have selected x86 servers available on the Grid'5000 testbed for our experiments.

Grid'5000 is a French experimental platform, geographically distributed over 11 sites in France and Luxembourg, dedicated to scientic research concerning large scale infrastructures [START_REF] Bolze | Grid'5000: A Large Scale And Highly Recongurable Experimental Grid Testbed[END_REF]. It is very convenient as some clusters are equipped with power monitoring systems accessible via an API named Kwapi [START_REF] Rossigneux | A Generic and Extensible Framework for Monitoring Energy Consumption of OpenStack Clouds[END_REF]. We have chosen an Intel Xeon processor and an AMD Opteron from monitored clusters located respectively in the cluster named Taurus of Lyon and the Parapluie cluster of Rennes. We nd relevant to select two kinds of x86 servers because it allows to highlight the possible dierences between two generations and two constructors of quite similar servers. Both servers run a Debian Wheezy operating system with QEMU 1.7 installed. In Lyon, electrical consumption is acquired with wattmeters from Omegawatt, whereas in Rennes monitored Power Distribution Units (PDU) from EATON are used and power data is fetched via SNMP requests.

Characteristics of the hardware are gathered in Table 3.2. One striking point is the huge dierence between idle consumptions. Parapluie 's idle power is more than 20 times greater than the Chromebook 's, and 2 times greater than Taurus 's. The upper bound corresponds to the maximum power consumption measured when the processor is fully loaded, using as many instances of cpuburn benchmark as the number of cores. We made experiments with QEMU User Emulation, a tool which allows to execute binaries compiled for a dierent architecture by dynamically translating the instructions during the execution. Not all types of program can be executed through dynamic translation, it needs to be an application compiled with statically linked libraries. We have selected the synthetic benchmark program nbench [START_REF] Mayer | Linux/Unix nbench[END_REF]. It is a simple program written in C, which is composed of several subprograms designed to test CPU capabilities of a machine. Among those subprograms, we have chosen the IDEA encryption benchmark to evaluate integer computation, and the Fourier coecients algorithm for oat computation. We have compiled the program with static libraries in two versions: one compiled for ARM architecture, the other for x86. We have executed these two versions on each selected machines: natively when the architectures of the host and the program are the same, and with QEMU in user emulation mode for binary translation when the architectures dier. Overhead represents the ratio between emulated and native performances.

We realize that the order of magnitude of the overhead is the same no matter the underlying physical architecture. For integer computation the emulation is between 7 to 9 times slower, while for oat computation the overhead is much more important, from 25 to 45 times, the largest being not surprisingly for the ARM processor of the Chromebook.

Even if x86 processors are natively more powerful than ARM processors, (about 12 to 13 times in our selection) the important overhead causes the emulation to slow down a lot all the processors. We can even notice for oat computing that the ARM native execution is in fact more powerful than the emulated execution on x86 servers. Indeed, if we consider the ARM compiled oat benchmark, the Chromebook reaches 27 251 iterations per second whereas Taurus and Parapluie reach respectively 11 153,03 and 12 599,76 iterations per second.

Performance and Power Consumption

As we are aiming at reaching energy proportionality, we are not only interested in performances but also in the associated power consumption. That is why we measured the power consumed by the machines during benchmark executions. With Figures 3.4 and 3.5, we want to picture how far from proportionality this solution could be. For each level of performance, it shows only the most energy ecient hardware. We also plot an ideal curve which starts from 0 and is strictly proportional until the maximum point, corresponding to the average power consumption when the most powerful hardware of our platform reaches its maximum number of iterations rate.

Only a 1-1 relation is considered here as if parallelization would not be possible.

When analyzing the ARM alternative pictured in Figure 3.4, we can see that the ARM hardware leads to important energy savings. In fact, its curve is way under the ideal, except for the very beginning because its idle power consumption is not equal to zero. Moreover, having these two dierent x86 servers is also a good leverage and allows to better stick to the ideal proportionality line. This conrms the assumption we made when selecting two dierent kinds of x86 hardware, and we can interpolate and imagine that even more recent servers would add more proportionality. Nevertheless, even if this alternative seems not far from proportionality, it is not optimal because it wastes the potential performance of x86 servers.

In the x86 alternative shown in Figure 3.5, the gains from ARM hardware are only protable for a reduced part of low performance, that we can only see on the zoomed part of the graph. The most predominant hardware is Taurus, and we realize that Parapluie only brings a small improvement in performance but consumes a lot more than Taurus most of the time. This can be justied by the fact that the Dell PowerEdge R720 (i.e., the Taurus hardware) is the most recent server of our selection, and the energy eciency aspect must have been better considered during its design.

VIRTUAL MACHINE MIGRATION BETWEEN ARM AND X86

Virtual Machine Migration between ARM and x86

We have performed some experiments of live migration with an ARM based virtual machine. As previously explained, we could only use an ARM virtual machine because x86 emulation on ARM devices with QEMU was not fully eective at the moment. We have built an ARM virtual machine with Debian Wheezy OS that emulates the board Versatile Express A15 containing one virtual ARM Cortex-A15 processor, with a 4 Go virtual disk. As it has one virtual CPU, it only executes itself on one core of each host machine. We used Libvirt version 1.2.9 as VM manager. Hardware used is an HP 7800 server with an Intel Xeon E5620 CPU, and the ARM Samsung Chromebook. They are both monitored with external wattmeters WattsUp Pro and power data is acquired and stored with Kwapi API [START_REF] Rossigneux | A Generic and Extensible Framework for Monitoring Energy Consumption of OpenStack Clouds[END_REF].

Due to technical limitations, we only managed to migrate the virtual machine from the x86 server to the Chromebook, and not the opposite way. The virtual machine is rst started on the server where it is executed thanks to emulation. The migration is launched with Libvirt, and as soon as the virtual machine is fully migrated on the Chromebook, it is executed using KVM and the virtualization extensions. The virtual machine was running a web server serving static contents, which stays operational after the migration. The live migration duration is 8 seconds for this example, which corresponds to a data transfer of 53 Megabytes. The two physical machines are linked with a 1GB switch and cables, but as the Chromebook does not have an Ethernet port, we use an Ethernet to USB 2.0 adapter which may reduce the network throughput. Concerning power consumption, we notice a signicant overhead for the source host, about 9 watts when starting the migration. On the destination host there is an increase in power consumption when receiving the virtual machine but then the power stabilizes shortly.

Discussions and Conclusions

The benchmarks results shown in this chapter conrm the interest of having both ARM and x86 architectures in the same infrastructure to approach energy proportionality. Indeed, the ARM processor we have studied, ARM Cortex-A15, has a very low power consumption compared to standard x86 servers. But not surprisingly its performances are also lower, especially for oat computation. It results in a large performance gap between ARM Cortex-A15 and x86 servers for this type of applications. This gap can be reduced if parallel execution on multiple ARM nodes is possible. Additionally, it could be interesting to broaden the range of architecture types and look for ones that t inside the gap regarding performance and energy consumption. Our intuition is that ARMv8 64bits architecture, which promises better performances than Cortex-A15 (ARMv7 32 bits) could allow to get even closer to energy proportionality.

We have explored possible solutions to use the two architectures in a transparent manner. We consider two main categories: virtual machines and containers. We focus on open source solutions, that is why we selected KVM and Xen hypervisors for virtualization, and LXC and OpenVZ for containers. Even if containers have recently gained much attention from the cloud community, they do not seem appropriate to fulll our goal. We put our focus on virtualization and emulation to benet from the recent virtualization extensions introduced by ARM. Unfortunately, the emulation performances are disappointing, and especially because we did not expect the emulation overhead to be this important for powerful x86 servers. Maybe the technology can be improved in both translation ways. A Russian company, Eltechs, is commercializing a product to run x86 applications on ARM devices, and claims that it is 4.5 faster than QEMU, but we could not test it as it is a proprietary solution.

Our rst experiments on virtual machine migration between ARM and x86 were quite promising, but they remained at a proof of concept stage. All these experiments were done in early 2014, and we were working with recent technologies, that were still in development and need to be enhanced, which requires a lot of engineering work.

For the moment, we found that the best solution is to run applications natively on all hardware to benet from their full performances to be able to reach energy proportionality. Consequently, we decided to work with applications that can be compiled and executed on both types of architectures, have the ability to be migrated with no or few constraints, and support parallel distribution. That is why in the following work presented in this thesis, we focus on stateless web servers. We detail the characteristics of the chosen type of application as well as the specications of our proposed framework in the next chapter.

Chapter 4 Design of BML: Energy Proportional Data Center

This chapter details our framework with all its specications. We particularly focus on the infrastructure part by describing its building process step by step. Then we give an implementation of the infrastructure with existing heterogeneous hardware and provide its energy proportionality evaluation at the server level.

General Overview of BML Framework

The framework we propose is called BML, for Big, Medium, Little. It is meant to handle the management of a heterogeneous cluster, from application placement to resource recongurations with the objective of energy proportionality. This name highlights the inspiration from ARM big.LITTLE, but with the introduction of the term Medium, we generalize it to any number of architectures. Indeed, BML does not signify that only three types of machines are considered, but that we take into account a set composed of multiple architectures that each has a dierent range of performance and energy consumption characteristics. Figure 4.1 shows the connections between the dierent components of the BML framework. On the left, the dierent architectures are gathered in a heterogeneous infrastructure. We explain in details in section 4.3 how each type of hardware needs to be proled, and how these proles are used to compute the ideal energy proportional combinations of machines. On the right of Figure 4.1, the application and its load prole are depicted.

The evolution of the load over time may be known a-priori or predicted as we discuss in section 4.2, together with other specications regarding applications characteristics.

The general functioning is the following: the load prediction module gives as output a prediction concerning the performance rate that the application will require at a certain point in the future. Given this information, the scheduler consults the BML combination module to compute the ideal combination of machines needed to achieve this performance rate. Then, depending on its settings, the scheduler can decide to perform some recongurations towards this new combination. If such a decision is taken, the reconguration plan is transferred to the resource manager, which is responsible for triggering all recon-guration actions. These actions consist in switching on and o the machines involved and migrating the applications from one or more sources to one or more destinations. Of course, this framework is a generic overview, and each module implementation can vary in many possible ways: the architectures characteristics, the applications, the load prediction system, but also the scheduling and resource management policies. We give an implementation of the infrastructure in section 4.4, and two scheduler implementations with their evaluations in the chapters 5 and 6.

LOAD PREDICTOR Predicting Application Load

Characterizing the Application and its Load

We target applications with variable load over time and we aim at adapting the computational capacity of the infrastructure to load conditions so that the energy consumption more closely matches resource utilization. Load variations are particularly present in cloud web services, but also often appear in HPC applications [START_REF] Tsafack Chetsa | Application-Agnostic Framework for Improving the Energy Eciency of Multiple HPC Subsystems[END_REF]. For such goal, the application performance needs to be characterized using an application metric. This metric represents the amount of work produced by the application over a given time unit, that is why we sometimes refer to it as performance rate. It is important that this metric is unique and independent of the underlying architecture running the application. BML framework seeks to minimize the energy consumption by dynamically taking provisioning decisions, but the energy consumption is not to be reduced at the expense of performance.

The Quality of Service (QoS) required by the application is carefully taken into account, and the intended QoS level directly impacts the relevance of reconguration decisions. Applications can be classied regarding their performance and QoS requirements.

They can either be critical, if applications have stringent performance requirements, or tolerant, if they have soft QoS requirements. For example, critical applications can be found in banking and medical areas where delays have serious consequences. More toler-ant applications are found in enterprise services, or services with exible deadlines such as backup systems. It is possible that certain applications lie in between these two classes, and hence, depending on the use-case, several intermediate classes be dened.

An important characteristic is the application malleability, i.e., as dened in [START_REF] Mounie | Ecient Approximation Algorithms for Scheduling Malleable Tasks[END_REF] its ability to be executed in a distributed manner across several processors or machines.

In some cases, the malleability can be constrained, and the minimum and maximum number of application instances should be specied. This criterion poses a constraint when computing the possible machine combinations for running the application. If the application is fully malleable, meaning that the number of instances is not limited, the infrastructure can be exploited without constraints. It is also necessary to determine the ability for the application to be migrated across machines. This is dened by how the application maintains state and on the amount of data to transfer. In case of stateful applications, the migration overhead should be evaluated, both in terms of duration and energy consumption.

The knowledge of the load evolution is a crucial parameter in our system as it has a direct impact on the relevance of the resource recongurations. This knowledge can be perfect if the load can be determined with a sure precision. It can be partial if certain characteristics are known, such as weekly, diurnal, hourly patterns, but the accuracy of load variations is not precise. Finally the load can be unknown if no a priori information is available. In such case, the load must be predicted for future intervals using for example learning techniques upon historical data.

Building BML Infrastructure Step by Step

Through this section we detail step by step the process we use to build a BML infrastructure, which corresponds to the BML builder module of Figure 4.1. It begins with the proling of hardware and ends with the computation of ideal combinations of machines.

We consider a scenario where multiple machine types are available to choose from, and there is no limitation in the number of machines of each type. This scenario enables to create perfect combinations of machines, and is equivalent to a capacity planning where a data center infrastructure is built specically for the purpose of the target application with the objective of being energy proportional. With some minor changes, this work can be adapted to consider cases where a heterogeneous infrastructure has already been established, and there are thus limited numbers of machines of each type.

The rst step towards building an energy proportional infrastructure is to determine the energy consumption and performance characteristics of the available hardware.

Hence, each machine type needs to be proled while running the target application to evaluate the maximum performance rate it can reach and the amount of energy it consumes.

The overheads of switching on and o a machine are also part of its characterization prole. Both the time and the energy consumption required during these actions are measured. Once all proles are built, a computational phase is conducted to build the ideal machine combinations to achieve energy proportionality.

To ease the step by step explanations, we illustrate the process with four theoretical examples of architectures as input. However, this methodology is generic and can work with n dierent types of architecture.

Step 1: Characterizing Each Architecture Prole

A prole characterizes the behavior of an architecture in terms of power consumption and performance when running the target application. A machine prole contains at least two data points, namely its idle power consumption and its energy consumption at maximum performance. This maximum performance rate is expressed with an application metric that represents the amount of work performed over a given time step denoted ∆t. In our experiments, we use as metric the number of requests processed per second by a web server, but for example it can be frame rate for an application of video rendering.

To achieve an energy proportional infrastructure, the machines are dynamically powered on and o to reduce the impact of their static power consumption when their are inactive. This implies to measure the time duration and energy consumption of the switch on and o actions for each machine type, in order to take them into account when making reconguration decisions.

Following is a summary of the data we acquire during the proling phase. Let M be the set of architectures available to compose our heterogeneous infrastructure, for each architecture i P M, we collect from proling:

• perf max i : maximum performance rate reached by architecture i, expressed regarding an application metric.

• power max i : average instantaneous power consumed by architecture i when achieving perf max i , expressed in Watts. If the time step ∆t is not equal to one second, power max i " e max i {∆t, (where e max i is the energy consumed by architecture i during one time step ∆t when achieving perf max i , expressed in Joules).

• power idle i : average instantaneous power consumed by architecture i in idle state, expressed in Watts.

• t On i : time required to power on architecture i, expressed in seconds.

• t Of f i : time required to power o architecture i, expressed in seconds.

• e On i : energy consumed during the power-on period of architecture i, expressed in Joules.

• e Of f i : energy consumed during the shut-down period of architecture i, expressed in Joules.

Given this information and assuming that the power consumption is linear between power idle i and perf max i , a function, named powerF or i , is created to compute the power consumed by a given architecture i for the specied performance rate perf Rate given in input. The assumption we make on linear power consumption might lead to small under-or over-estimation, as studied by Rivoire et al. [START_REF] Rivoire | A Comparison of High-level Full-system Power Models[END_REF]. Yet, this approximation is precise enough for our solution, and eases the proling phase. Although acquiring more intermediate data points, if the application allows, or considering potential DVFS, would enable more precision, our methodology would not be aected.

Algorithm 1 details the function powerF or i , where the computed power represents the instantaneous power consumption of the needed number of machines of architecture i to provide the performance rate perf Rate. If another model than linearity is considered for energy modeling, then this function would have an increased complexity. Algorithm Vertical line is the maximum performance of one machine, and beyond is the cumulated power for multiple machines of the same architecture.

Concerning switch on and o actions, it is fundamental to consider their overheads and understand in which conditions it is benecial to perform such an action and when it is not. Indeed, we aim at saving energy by turning o unused machines, but we also want to respect QoS requirements, that is why we need to power on machines perfectly in time to process the incoming workload. As a consequence, the decision of turning o a machine must be taken carefully, with knowledge that this machine will stay powered o for a certain minimum interval.

For this purpose, we dene the Minimum Switching Interval, noted T i s , as the minimum amount of time for which it is more ecient to switch o machine i than to keep it powered on but idle. It is computed as follows:

T i s " max p e On i `eOff i power idle i , t On i `tOff i q
This interval is inspired from the denition of Orgerie et al. in [START_REF] Orgerie | Chasing Gaps between Bursts: Towards Energy Ecient Large Scale Experimental Grids[END_REF], while assuming that P OF F , the consumption of a machine when it is powered o, is equal to 0. We need to enhance the denition by adding the maximum function because with some low power processors we have proled, it happens that t On `tOff is actually greater than the fraction in the rst term of our T s denition. In [START_REF] Lu | Simple and Eective Dynamic Provisioning for Power-Proportional Data Centers[END_REF], Lu et al. describe a similar concept, but in a more theoretical way, as ∆ which they called critical time. We explain how we use T s in the scheduling algorithm described in Chapter 6.

Step 2: Sort Architectures to Keep Only BML Candidates

After having proled all the architectures, the next step consists in analyzing these proles and verifying that all types of machines are appropriate to get close to energy proportionality. This starts by sorting machines according to their maximum performance in decreasing order. Then we verify if power consumption respects this initial ordering. We proceed by comparing sorted architectures in pairs; if an architecture has lower performance than another while consuming more energy, we remove it from the BML candidates as it does not possess the required properties to improve energy proportionality. This process is detailed in Algorithm 2, which is generic and can work with n dierent types of architecture. A list with the relevant architectures for building a BML infrastructure is available at the end of this step. would not help increase the energy proportionality of our infrastructure. We can keep A, B and C because they respect the same ordering for performance and power consumption:

perf max A ą perf max B ą perf max C and power max A ą power max B ą power max C .
Once this initial ltering is complete, architectures are sorted according to their performance so that each of them can be labelled as Big, Medium or Little to increase readability. For our illustration, the result is: A Ð Big, B Ð M edium, and C Ð Little.

Step 3: Finding Crossing Points between Architectures

This step determines how chosen architectures should be combined to create the most power proportional infrastructure. We dene a minimum utilization threshold, denoted minT hreshold i for each architecture i P M, expressed regarding the application performance metric. For instance, if there are two architectures, i as Little and j as Big, then the minimum threshold of architecture j corresponds to the point from which its power consumption becomes more relevant than i's for the considered performance rate. Initially, all minimum thresholds are set to 1. Whilst this threshold will remain 1 for the Little architecture, as it has the lowest idle power consumption, the function described in Algorithm 3 will compute the thresholds for all remaining architectures. These points where an architecture becomes preferable over another are also termed as crossing points as they represent the points where power proles meet. if pcrossP ointsris ´1 % perf max current q "" 0 then 5:

j Ð crossP ointsris 6:
baseLevel Ð crossP ointsris ´1

Final step: Computing Ideal BML Combination

Algorithm 5 details the function that computes the ideal machine combination and its corresponding power consumption to achieve a given performance rate. The building of the BML combination is similar to a bin-packing problem where the architectures and their maximum performance rates represent bins of dierent sizes. The singularity of our problem is that there is only one object to pack, i.e., the target performance rate, but it can be divided into as many pieces as necessary, and of any size considering a certain unit. The cost to minimize is the power consumption. Steps 2 to 4 sort the bins by size and cost, and determine their minimum utilization thresholds that minimize the cost.

What is left, and is performed by this nal step, is to divide the amount of performance into several pieces that can ll the bins. In a rst stage, we consider the architectures sorted from Big to Little and seek to ll completely Big nodes, then M edium nodes, and so on. Architectures are the most energy ecient when running at their maximum performance. In a second stage, we use the minimum utilization thresholds previously computed in order to determine which architectures to choose for achieving the remaining performance rate.

Algorithm 5 idealBM L:

Implementation with Existing Hardware

In this section, we detail our implementation of the BML framework concerning the infrastructure and the application. The following proling results and BML combination are used in the next chapters for evaluations of the proposed scheduling and resource management policies.

Chosen Hardware

We have broaden the range of hardware for these experiments because we want to be able to make the best choices for building the most energy proportional infrastructure.

We keep two of the three machines previously described in Table 3 Chromebook processor. We complete the range of x86 architectures with two other servers, avaible in Grid'5000 [START_REF] Bolze | Grid'5000: A Large Scale And Highly Recongurable Experimental Grid Testbed[END_REF] testbed, that all have dierent type of Intel Xeon processors.

External wattmeters are utilized to monitor the energy consumption of all devices and servers, fetching one power value per second.

Application Choice and Setup

Following the conclusions made in Chapter 3, we choose a stateless web server as usecase application. A web server is a perfect example of application whose load varies over time. Its performance is easily characterized with a unique application metric which is the number of requests processed per second. It is malleable as multiple instances of the web servers can be deployed on several machines, and a load balancer allows to distribute the load among these instances. The fact that the web server is stateless eases the migration process as it would just consist in stopping a server instance on the source and launching a new one on the destination machine, and then updating the load balancer. It also facilitates dealing with heterogeneous computing resources as a dedicated version of the web server can be compiled for each dierent architecture.

Regarding software implementation, we use lighttpd [START_REF]Lighttpd Web Server[END_REF] We choose Siege [START_REF]Siege Benchmark[END_REF] as web benchmark tool. It simulates multiple clients running in parallel that will access the given web server during a specied amount of time. At the end of the benchmark run, it gives some interesting outputs such as the maximum number of requests processed per second, the average response time, average amount of data transferred, and so on.

Our objective in this proling phase is to get the maximum number of requests processed in one second for each type of machine, as well as the power consumption associated with it. To do so, we execute the benchmark with an increasing number of concurrent clients. At one point, the maximum number of requests per second stagnates, and the latency starts increasing, that is what we consider as the maximum requests rate for a guaranteed quality of service. Each benchmarking test runs for 30 seconds, and the maximum performance level is computed as the average of 5 benchmark results. selected as representative executions and their results are averaged to compute maximum performance and its associated power consumption. The rst run selected is the one just after the peak performance result, and all the the other selected executions have a latency lower than a certain threshold, in our case 100 ms. For this architecture, the rate of processed requests stabilizes around 860 requests per second. We can see that since this value is reached, the latency is continuously increasing. The power consumption stabilizes around 223 Watts when delivering this level of performance.

We repeat this same proling methodology for all the chosen architectures. The results are presented in Table 4

Switch On/O Duration and Energy Consumption

We evaluate the time to switch on and o each machine type, as well as the energy consumed during these actions. Figure 4.7 represents the evolution of the power consumption of Paravance server during successive switch on and switch o actions. In this experiment, the switch on process lasts 191 seconds until the machine is eectively on and can answer to a ping request. After staying 20 seconds idle, the server is powered o, which takes 10 seconds in this case.

We repeat ve times each action on each machine type to get average results to constitute the proles. We compute the total energy consumption for each action in Joules by summing up the acquired power data. The execution of Step 2, which consists in sorting and tagging architectures according to their maximum performance and power consumption, results in the removal of the Taurus server. Indeed, its maximum power consumption is higher than Paravance 's (223.7 W against 200.5 W) while delivering lower performance (860 requests/sec against 1331).

The four remaining architectures are tagged as follows: Paravance Ð Big, Graphene Ð M edium1, Chromebook Ð M edium2, Raspberry Ð Little.

Step 3, which computes the crossing points between architectures, reveals that the prole of Graphene (M edium1)

never crosses any other architecture's prole. Consequently, it is removed from the list of candidates architectures as it does not help increasing energy proportionality. Our nal heterogeneous infrastructure comprises three types of machines: Paravance (Big), Chromebook (M edium) and Raspberry (Little). Their minimum utilization thresholds are respectively 1 request per second (requests/s) for Little, 10 requests/s for M edium and 529 requests/s for Big. Additionally, we note maxN b i the maximum number of machines of each architecture i that compose ideal combinations. For example, it pictures the fact that it is not ideally energy ecient to use more maxN b M edium machines, but instead use machines of type Big. In our infrastructure, maxN b Little is 1, maxN b M edium is 16 and maxN b Big has no sense and is set to 8. In fact, as many Big nodes can be utilized, it only depends on the maximum performance needed, or on the maximum number of available Big machines in case of an existing infrastructure.

Energy Proportionality at Server Scale

The ideal BML combination, result of Final Step, is depicted in Figure 4.9. Big architecture's prole is also represented in order to demonstrate the gains of the heterogeneous combination at the server scale. Indeed, the scale of Figure 4.9 is delimited by maximum performance and maximum energy consumption of a single Big server. In addition, we introduce a theoretical architecture termed BM L linear, whose idle power is equal to Little's and maximum power and performance is equal to Big's. It represents here an achievable goal, and allows to show how our solution approaches it. A perfectly proportional architecture would be very close to BM L linear, the only dierence would be its idle power consumption equal to 0.

We evaluate the energy proportionality of our BML infrastructure at the server scale by computing the metrics introduced in 2.1.2. We compute the metrics of our BML architecture which is the resulting from machines combination, therefore the comparison with individual machines is a little biased because we do not consider the switch on and o overheads of the dierent machines of the combination but only considered instantaneous energy consumption. EP characterizes the overall energy eciency, and those results concludes that BML combination is 20,3% more energy proportional than the Big server (EP is 0,7830 against 0,6508).

The two metrics IPR and DR evaluate the dynamic energy consumption range, or Idle-to-Peak ratio. Even if these two metrics characterize a similar aspect, their formulas dier a lot, as well as their results: IPR of BML combination is ´95,5% lower than Big's whereas its DR is 51,1% greater.

As LDR and LD metrics are concerned, their values for Big are both 0 because we made the assumption of linear power consumption for all our proled hardware. Consequently, the results for BML combination are necessarily worse than those of the Big Through this chapter we have explained the BML framework in details and given an implementation with real hardware, as well as its energy proportionality evaluation at server scale. The following Chapters 5 and 6 present two dierent provisioning algorithms and evaluate their relevance and eciency facing real workload traces. We demonstrate the energy proportionality gains of our BML infrastructure compared to homogeneous solutions, while taking all resources recongurations into account.

Chapter 5

Ideal BML Algorithm

This chapter presents our rst algorithm designed for provisioning BML infrastructure.

We also introduce our simulator that we used to evaluate multiple algorithm settings for dierent scenarios with both synthetic and real workload traces.

General Functioning of the Algorithm

This rst scheduling algorithm is called Ideal BML as it is entirely based on the ideal combinations of machines pre-computed as detailed in Chapter 4. These combinations are said ideal because they constitute the most energy proportional infrastructure with the considered set of architectures.

The general functioning of the algorithm is the following:

A load value is selected as the future level of performance needed. In our work, we are considering a perfect knowledge of the future workload. We emulate a load prediction mechanism by considering a sliding look-ahead window over the future load values. Two approaches are used to determine the predicted load: either considering the average of the window values; or picking the maximum value. We discuss the results obtained with these two alternatives as well as the length of the look-ahead window in section 5.3.

The ideal machines combination for providing this future level of performance is computed. If this ideal combination is dierent from the current conguration, a reconguration towards the ideal combination is performed. During the reconguration, no other decision can be taken. This ensures the completion of switch on and o actions before a new reconguration decision is made.

The next window used to predict the load starts from the reconguration completion time. When the prediction results in no changes in hardware combination, the window just slides one time step forwards, which is a second in our case.

BML Simulator

To evaluate our infrastructure with dierent scheduling approaches without any limitations in terms of hardware installation, we have developed a simulator. Thanks to experimental proling, we have all the necessary parameters to compute the energy consumption for dierent scenarios of data centers hosting stateless web servers.

The simulator, coded in Python, takes as inputs the experimental hardware proles, each of them being described in a Json le. It contains all the algorithms described in section 4.3 allowing to sort architectures and build the BML combinations. To run a simulation, it needs a le that describes the evolution of the application workload over time. Then, at each time step, it knows the actual application load and can compute the energy consumed to process the requests by the currently powered on machines, and eventually take reconguration decisions such as switching some nodes on or o.

If requests that arrive at a time step cannot be processed immediately, due to resource under-provisioning, they are put in a simulated web server waiting queue. Then, at each time step, the already waiting requests take priority over requests that have just arrived.

To avoid starvation, requests wait for 2 seconds at maximum before being discarded.

All parameters characterizing the scenario, as well as many parameters describing the execution of the simulation are collected and exported as output in a Json formated le.

This allows to easily extract data for evaluations once the simulations are completed, and to produce graphs that represent the temporal evolution of the simulation.

Among other metrics, we compute the percentage of processed requests among arriving requests, and the percentage of delayed and lost ones. We also dene the metric JpR for Joules per Request which is computed as the total energy consumed during the run over the total number of processed requests, to quantify the energy eciency:

JpR " total energy consumed total processed requests

(5.1)
The percentage of utilization of the infrastructure represents the number of processed requests over the processing capacity of the current infrastructure's conguration. We express it as the average of all utilizations computed for each second:

U tilization P erSecond " processed requests capacity of inf rastructure

(5.2)
As workload traces for our simulations, we use the 1998 World Cup website access logs (available at [START_REF]World Cup Web Site Access Logs[END_REF]). It contains the access records to the World Cup web site. Traces have been collected during a period of 86 days, between April and July 1998. Total received number of requests is over one billion [START_REF] Arlitt | Workload Characterization of the 1998 World Cup Web Site[END_REF]. Figure 5.1 plots the maximum and average requests rate, expressed in number of requests per second, for each day of the World Cup log traces. We can see with the standard deviation that the daily variation is very important. For instance if we focus on the highest peak, which was on the June 23 rd , about 4000 requests per second, the average request rate on this day was approximately of 900 requests per second. We have selected these traces as they contain higly variable load over time and are representative of the use case we are targetting.

Study on Prediction Types and Window Sizes

The algorithm takes reconguration decisions based on future load knowledge. In this section, we study how the future load value should be selected, meaning how far in the future should we look, and which level of performance should be considered. We choose to test two dierent types of prediction: (i) selecting the average value of the look-ahead window; and (ii) considering the maximum value. Regarding the length of sliding window, we also select two alternatives: (i) a short window of 30 seconds; and (ii) a long window of 315 seconds. These numbers correspond to the minimum switching intervals T i s , 30s being the shortest of them, associated to the Little architecture, and 315s the longest, for the Big architecture. The minimum switching interval of the Medium architecture is 33 seconds, and thus very close to Little 's, that is why we only choose one of them for simplication as they both give similar results. Theses choices translate into four dierent settings for future load selection.

To understand the behavior of the scheduling algorithm and be able to easily draw conclusions, a simple generated trace is used for simulations. It consists in one upward and one downward phase of the same length, starting from a request rate of 0 to a maximum request rate of 3993 requests/second, corresponding to 3 times the maximum processing capacity of Big We can clearly see that the system behaves dierently during upward and downward phases. This is due to the dierent temporalities of switch on and switch o actions.

Indeed, when a decision of powering on one or several machines is taken, it takes some time until the machines are eectively on and running, that is why the long window gives better results during the upward period. On the opposite, powering down one or several machines has an immediate action because as soon as the machines start their shutdown process, they are not available for processing anymore. Consequently, the short window is more accurate for the decreasing period.

The only setting leading to zero lost and zero delayed requests is the maximum value over the long window. Regarding energy consumption, it achieves a joules per request metric (JpR) of 0.1730. It is the best choice for applications that are critical and have strong QoS requirements. If the applications are more tolerant, then the choice is less constrained. Both settings with short windows provide similar results: 0.1710 and 0.1706

JpR and only 0.8% and 1.1% of discarded requests for respectively a window size of 30s and 315s. For all the following results concerning the Ideal BML algorithm, we choose the setting of the maximum value over the long window as it allows to process all the incoming requests without delay nor loss.

Big Only, Big-Medium or BML?

To evaluate the gains brought by heterogeneity, we compared the BML infrastructure against other congurations: a homogeneous infrastructure composed only of Big machines, and a heterogeneous infrastructure but composed of both Big (Paravance) and Medium (Chromebook) nodes.

We run the simulations for the three dierent scenarios with the traces from the 1998

World Cup [START_REF]World Cup Web Site Access Logs[END_REF]. We focus on the 48 th day as it is one comprising the largest number of requests: the average request rate is about 566 requests per second, with a peak demand at 1867 requests per second. The setting is a prediction based on the maximum value on a long window of 315 seconds, as though the application were critical. This enables us to compare the dierent results with the same number of total processed requests. • Per Day UpperBound pictures a data center composed of homogeneous Big servers.

In this scenario, the infrastructure is dimensioned each day according to the daily maximum rate. This is an example of coarse grain capacity planning.

• Ideal BML is our BML infrastructure and the Ideal BML provisioning algorithm described in this chapter, with the same settings as for previous section: a prediction based on the maximum value over a long look-ahead window of 315 seconds. The total consumption per day contains the energy consumed by computation and the energy from on/o recongurations made during the day.

• Theoretical LowerBound represents the minimum computing energy achievable with our BML infrastructure if the data center could be dimensioned every second with the ideal BML combination. This is an unreachable lower bound considering no on/o latency and no on/o energy costs. This lower bound pictures also the maximum energy proportionality we could reach with our infrastructure.

Conclusions and Limitations of this Algorithm

Our BML infrastructure combined with this Ideal BML algorithm allows to get closer to energy proportionality, as it drastically reduces the energy consumption compared to homogeneous infrastructures and classical over-provisioned data centers. We also demonstrate that our algorithm provides results close to the theoretical BML lower bound, which is very satisfying as this lower bound does not consider reconguration overheads.

However, we discuss that the length of the look-ahead window needs to be long if the application has strict QoS requirements. This can result in slightly over-provisioned congurations. We believe that it should not be necessary to make a compromise and choose only one long window, but that several look-ahead windows can be considered.

Moreover, with Ideal BML we only authorize machine combinations that are part of the pre-computed ideal combinations. Unfortunately, this can incur some heavy recongurations that may not be ideal. For example this happens when the load rapidly oscillates between two performance levels that are quite close but correspond to two very dierent machine combinations. To illustrate, we can imagine two successive ideal combinations (not corresponding to the actual hardware we have presented): combination C 1 composed of 1 Medium node and 4 Little nodes, and combination C 2 , more powerful, composed of 2 Medium nodes. If the current conguration is C 1 and the load forecast is a short peak, it could be more ecient to power on an additional Little machine for a short amount of time, resulting in a temporary conguration with 5 Little nodes that is not part of ideal combinations, than to perform the complex reconguration towards C 2 consisting in powering on 1 Medium machine and switching o 4 Little ones.

We aim at tackling these limitations with the scheduling algorithm described in Chapter 6. It considers multiple look-ahead windows and takes into account recongurations overheads in the decision process.

Chapter 6

Multi-Terms Algorithm

In this chapter, we describe the second provisioning algorithm we have designed to deal with the limitations of the rst version. We give a comparative evaluation of their results facing the same scenarios. We also discuss some characteristics of the infrastructure that are required for this algorithm to be more ecient.

Motivations for this Algorithm

We aim at solving the limitations of Ideal BML algorithm by taking some distances with the pre-computed BML combinations and allowing more possible congurations. We no longer think only regarding ideal combinations but consider the switch on and o actions of the dierent machines separately.

An objective of this algorithm is to take full advantage of the BML heterogeneous infrastructure with all its specications, and no matter the hardware implementation.

Indeed, this algorithm is meant to be totally generic and eective whatever is the number of dierent architecture types. One limitation of the Ideal BML algorithm is its unique look-ahead window and that its length is forced to be set according to the longest minimum switching interval T s to make the most relevant recongurations decisions. In fact, as we have shown when proling real hardware in Chapter 4, machines can have very dierent switch on durations and then very dierent switching intervals. Therefore this algorithm considers as many look-ahead windows for switch on actions as there are dierent switch on durations.

In addition, switch on and switch o durations are also very dierent. We have observed that for most machines, switch o takes less time than switch on. But what is more important to take into account is that switch o actions have an immediate eect on the infrastructure. That is why Ideal BML algorithm and its long look-ahead window can not be the most optimal to decide when to power o machines. In this algorithm, we consider dierent look-ahead windows for switch o than for switch on actions.

We name this new approach Generic Multi-Terms algorithm to highlight its two most important characteristics: the genericity in terms of considered infrastructure, and the multiple look-ahead windows of dierent lengths and starting at dierent times in the future. The functioning of the algorithm is dened in details in the next section.

Description of the Algorithm

Our Multi-Terms Algorithm is composed of two main categories of actions: (i) loadreactive actions and (ii) energy-saving actions, which put together translate into three dierent types of actions : Switch-On, Switch-O, and Back-to-Ideal. The rst two consist in actions of machines switch on or o, considered independently, while the last one considers all the powered-on machines as a combination and decides to recongure the infrastructure towards a more energy-ecient combination if possible. At each time step, the algorithm starts by proposing load-reactive actions. In case no reactive actions are needed, which means that the capacity of the current infrastructure composition is sucient to process the incoming workload, the algorithm may propose an energy-saving action. We detail the implementation of all these reconguration decisions in the following explanations.

In our work, we assume that the data center operator executing our dynamic provisioning algorithm has complete knowledge of the workload ahead of time, and consequently, our algorithm will provision exactly to always satisfy the peak loads. As we want to take advantages of the dierent temporalities of the recongurations actions, the algorithm analyzes the future load knowledge via dierent look-ahead windows whose sizes are precisely chosen. In our case, we consider the maximum load value of a window to be the future performance rate used for provisioning.

Because our algorithm takes reconguration decisions that will take place at dierent moments in the future, we assume there is a system memorizing the decisions, therefore knowing at any moment what are the ongoing switch-on or o actions. Consequently, it is possible to compute the future processing capacity of the infrastructure knowing the current one and the ongoing actions.

Load-Reactive Actions

At each time step, the algorithm proposes load-reactive actions. It tries to nd what switch-on or -o actions are the most appropriate reactions to the incoming workload.

• Switch-On actions:

Let denote current time t now . To decide if any switch-on actions are needed for machines of a given architecture i, the considered look-ahead window must start at t now tOn i . Indeed, as machine of type i will take t On i seconds before being ready to compute, it is not necessary to look at future load before this point. As we want to avoid overprovisioning as much as possible, we decide to take one time step ∆t as window length. For each architecture i, we note window i short its future load window used to decide switch- on actions.

On Figure 6.1 are pictured the look-ahead windows for switch-on actions for an illustrative example of a data center containing three architecture types noted A, B and C, which would correspond respectively to Little, M edium, and Big. We also consider that their switch on and switch o durations, as well as T s , follow the same order as their performances. We discuss as the end of this chapter what are the consequences if this condition is not fullled. To ease the notations in the following and avoid repeating t now , we consider that t now " t 0 " 0. We detail in the following the successive steps for the computation of the quantity of machines to switch on. We assume that we are not limited in the quantity of machines of each type. Because we want to respect the QoS, the algorithm makes the decision to switch on as many machines as needed to answer the predicted future load dierence. But in order not to switch on all types of machines and thus results in an over-provisioned architecture, the decision to switch on some machines of architecture i is only taken if the predicted load dierence is superior or equal to the minimum utilization threshold minT hresh i of this architecture.

The decision process for Switch-On actions is as follows: For all architecture types i P M : 1. Compute the load prediction for window i short .

2. Compute the maximum dierence dif f i short between the load prediction and the future capacity of the infrastructure during the considered window.

3. If this dierence is greater than or equal to the minimum utilization threshold minT hresh i , it means that machines of type i need to be switched on; Then compute the minimum quantity of machines i necessary to process the predicted load dierence:

nbOn i " t dif f i short { perf i max u 4.
Else, no machine of type i needs to be switched on, nbOn i " 0.

• Switch-O actions:

Switch-o actions are also part of load-reactive actions because we want to shut down all machines becoming unnecessary when the load decreases in order to save energy. We discussed the minimum switching interval T i s in the prerequisites, it justies that the look-ahead windows must start from current time t now and have a length of T i s . Switch-O actions are decided as follows:

1. For all architecture types i P M whose current quantity of machines powered on nb i is positive; Propose switch-o actions:

(a) Compute the load prediction for window i imm .

(b) Compute the maximum dierence dif f i imm between the load prediction and the future capacity of the infrastructure during the considered window.

(c) If this dierence is negative, meaning that the load is decreasing, Then compute the maximum quantity of machines of type i that can be turned o:

nbOf f i " minpt |dif f i imm | { perf i max u, nb i
On q (d) Else, no machine of type i can be switched o, nbOf f i " 0. Then perform this reconguration.

(b) Else, perform the switch-o reconguration with the biggest impact in term of processing capacity.

Energy-Saving Actions

• Back-to-Ideal actions:

If no load-reactive actions have been proposed in the rst phase of the algorithm, this second phase tries to propose an energy-saving action by reconguring the infrastructure towards an ideal and energy-ecient combination of machines. In fact, we consider as Back-to-Ideal action a reconguration which will turn o some (combination of) not energy-ecient machines and replace them by turning on some (combination of) more energy-ecient machines, according to the considered future load. As those actions can consist in an important reconguration, we want to perform it only towards a quite stable situation, and only if the reconguration overhead is not too high. That is why we use long term look-ahead windows.

We dene window M AX as the maximum look-ahead window used to decide energysaving actions, and also used to check if the future load is globally increasing or decreasing.

This window starts at minpt On i q and ends at maxpt On i `T i s q. For all architectures i we note window i long the look-ahead window starting at t On i and ending like window M AX at maxpt On i `T i s q. There are all represented on Figure 6.3, and we explain in the following their use in the algorithm. actions not yet completed. Of course, another prerequisite of performing such an action is that the current combination of machines should not already be an ideal combination for any of the look-ahead windows.

Assuming these conditions are fullled, it exists two dierent situations when a Backto-Ideal action is needed: (i) The load decreases in the future, and the current combination is sucient to process it, but is also over-provisioned in a way that it is not possible to turn o any machines because there are all utilized. (ii) The load increases in the future, meaning that we will need to turn on new machines but the current combination is already far from ideal considering energy consumption.

Here is the detailed process to decide a Back-to-Ideal action:

1. Compute the load prediction for window M AX , and the reconguration reconf Ideal towards the associated ideal combination.

2. If the load prediction is lower than the processing capacity of the current infrastructure, the load is decreasing, Then:

(a) Compare all consecutive window i long to assure that the load is monotonically decreasing. (Else, exit). (c) If t arch On is dierent from minpt On i q, it means that it is not optimal to perform the reconguration towards the ideal combination for window M AX but instead window arch long should be considered;

Then compute the load prediction on window arch long and update reconf Ideal to the new associated reconguration.

(Else, keep the previous reconf Ideal). Then perform Switch-On actions of reconf Ideal.

(Else, exit).

3. Else, it means that the load prediction is greater than the processing capacity of the current infrastructure, hence the load is increasing, Then:

(a) Check if the current combination of machines is already far from ideal; It consists in verifying that any quantity of machines of type i is greater than maxN b i . (Else, exit).

(b) Compare all consecutive window i long to assure that the load is monotonically increasing. (Else, exit).

With Real Traces

Figure 6.6 compares the results of the two algorithms for day 65 of the 1998 World Cup traces [START_REF]World Cup Web Site Access Logs[END_REF]. Day 65 has an average requests rate of 639 requests per second, while having a maximum peak rate of 4071 requests per second. We can observe on Figures 6.6(a) and 6.6(b) that the load prole of this day is quite low until approximately 50000 seconds, and contains two successive load peaks afterward. Table 6.6(c) gathers metrics to evaluate in details how the behaviors of the two algorithms dier.

As we already explained with the synthetic traces, the main dierence between the two versions is the maximum quantity of utilized Little machines. For Ideal BML algorithm this quantity does not overpass 1 as it is the maximum number of Little nodes in precomputed Ideal machine combinations. As for Multi-Terms algorithm, we consider that we can utilize as many machines as needed from each architecture types. In the case of day 65, it results in using until 41 Little machines. For Big and Medium machines, the maximum quantities are the same for both algorithms, respectively 3 and 16.

Multi-Terms algorithm gives a total energy consumption lower than Ideal BML algorithm. If we separate this total with compute energy on one side, and energy consumed during switch on/o actions on the other, we observe that the reduction is made on the compute part, while the on/o part being almost doubled. Of course this is due to the higher number of Little nodes utilized and the consequent higher number of recongurations actions. Multi-Terms algorithm reaches an infrastructure utilization over 81%, against 76% for Ideal BML version. Even if many Little machines are not considered ideal , using them permits to adapt the infrastructure's processing capacity very nely and increases its utilization while reducing the overall consumed energy for the whole day. Figure 6.7 gathers comparative results concerning the two algorithms and the lower bound for all days of the World Cup traces. On average for the 86 days, Multi-Terms consumes -6% less than Ideal BML, the maximum dierence and thus best result is -24.4% for day 22, and minimum dierence or worst result is -0.5% for day 61. Table 6.7(a) also presents the dierence percentage of Multi-Terms algorithm compared to the same theoretical lower bound we presented in section 5.5. The comparison of Ideal BML with upper bounds has already been done in this same section 5.5, and as the two algorithms provide quite close results, we focus this comparison only on them.

Results at Larger Scale

With the original traces of the 1998 World Cup, there are some days where no Big machines are needed but only combinations of Medium and Little nodes are sucient to sustain the load. To provide evaluations at larger scale, we decided to create a modied version of these traces by multiplying all the original request rates by ten. We will refer to this modied traces as Traces x10 in opposition to the Original Traces.

We have repeated the simulations with these large scale traces and Figure 6.8 provides the comparative results between the two algorithms and with the lower bound. As stated in Table 6

Discussions

This chapter aims at answering some questions the reader may have at this point, as well as discussing some topics around our approach that we consider important. The goal is to place our work in a larger perspective by addressing issues such as implementation practicability, potential target applications and use cases, evolution of our proposition with future hardware, and impacts on the data center considered as a whole.

Are Ideal Combinations really Ideal?

The rst algorithm we designed, Ideal BML, lays on the ideal combinations computed based on hardware proles. We have decided to build those combinations only with performance and power consumption information. Consequently, the main characteristic of these combinations is that they are ideal if we consider them as instantaneous congurations for given performance rates. Depending on the current combination of powered on machines, the ideal combination for the predicted load may not necessarily be one of the pre-computed ideal combinations. Indeed, it depends on the longevity of this predicted performance rate is it just a brief peak/drop? or will the load continue increasing/decreasing after? and also on the energy overheads of the switch on and o actions needed to recongure the infrastructure towards the ideal combination.

This observation has lead us towards designing the second algorithm, Multi-Terms, that is not limited by pre-computed ideal combinations and takes into account the dierent temporalities as well as the overheads of the dierent reconguration actions. However, with our assumption of unlimited quantity of machines of each architecture type, we have shown that for some specic load patterns, it leads to a high number of utilized Little machines and thus a higher energy consumption. Of course, this behavior would not be possible in practice with a xed heterogeneous data center topology, but this raises the following question: if we authorize more machines than the ones composing pre-computed ideal combinations, what is the optimal quantity of machines of each type the data center should contain? It is not easy to compute as it is dependent on the dierent characteristics of the hardware proles and on the load evolutions.

What are the Impacts of Load Prediction Errors?

In our work we consider having a perfect knowledge of the application workload over time. In practice, this eventuality is very rare, and in most cases, future workload would be predicted thanks to models based on past workload data. Prediction models represent a whole research eld and is out of the scope of this thesis. Nevertheless, it is necessary to discuss about the potential impacts of prediction errors on our approach. Depending on many parameters the application, the knowledge of the user demand, the inuence of unpredictable events -prediction models can be more or less accurate.

A classical approach to prevent QoS degradation due to prediction errors is overprovisioning. If the infrastructure is dimensioned for a greater capacity than the predicted load, in case of underestimation it would be ready to process it, but in case of overestimation the infrastructure would be even more over-provisioned, resulting in energy wasting that we want to avoid. Regarding our work, Multi-Terms algorithm is more suitable to cope with prediction errors as it makes reconguration actions which take eect at dierent moments in the future. Indeed, this algorithm can provision the infrastructure for long-term load predictions with machines having longer switch on durations, and then using machines with fast switch on actions to adjust the infrastructure's capacity to more accurate short-term predictions that may dier from the previous long-term vision. With the unique look-ahead window of Ideal BML algorithm, over-provisioning on the long-term would be the only solution to respect QoS requirements with prediction errors, and would consequently consumes more energy than Multi-Terms algorithm.

What can be the other Target Applications Types?

In this thesis, we focus on a specic application that is a stateless web server. As it relaxes many constraints, it allows to demonstrate the full benets of our heterogeneous BML infrastructure. The question of applicability of this approach to other types of application is predominant. THul applications raise the issue of longer and more expensive migrations due to the amount of data to transfer. Moreover, the size of the state can vary during the life of the application, thus the duration of migration too, and this complicates how to take these extra overheads in consideration for recongurations decisions. Another parameter which can inuence the migration costs is the number of machines in the current combination versus the future combination, as the number of application instances depends on the number of available nodes.

Furthermore, not all applications are malleable and the number of instances of an application can be xed. In such cases, BML combinations and the general way of provisioning the infrastructure will be constrained by this number. The resulting energy savings will be a little reduced compared to those for stateless web servers as the number of possible combinations of machines will be bounded.

We can also imagine dealing with multi-tiers applications. Each tier can be proled on each type of hardware and have dierent scheduling schemes depending on their specic load evolutions. In any case, the essential characteristics for target applications are to have a variable workload over time, and the ability to be executed and migrated across dierent architectures.

7.4 How will BML evolve with Hardware Evolutions?

The implementation of BML infrastructure that we have presented in this thesis has been built with pieces of hardware which we have chosen and which were available at that time.

Since then, new hardware has appeared with even better energy eciency characteristics.

Some examples are ARM 64-bits processors, available in the last generation of Raspberry Pi 3, or the Intel Core M series of processor engraved with the 14nm (nanometer) technology. It would be interesting to prole them and see how much energy gains they can bring in a heterogeneous infrastructure.

Other kinds of hardware oer attractive energy eciency, like GPU, FPGA (Field-Programmable Gate Array), or DSP (Digital Signal Processor). However, they are very specialized and are not suitable or relevant for all types of workload. Moreover, most of them require dedicated programming languages and thus the target application needs to have a version of its program written specically for one of this processor to be able to include it in the infrastructure.

The technological improvements continue and more and more powerful and energy ecient hardware will be built in the future. Even if we do not know if a perfectly energy proportional server will be developed one day, one can wonder if our work will still be protable with very ecient and almost proportional hardware. Our point of view is that there are good chances that heterogeneity will still exist in the future. With dierent application types having dierent performance anities and energy consumption with each type of processors, heterogeneity aware scheduling is always needed. Also at a very large scale, even if idle power consumption is low, switching o unused machines can lead to important energy savings, and dierent switch on durations need to be known and considered to turn them back on in time eciently.

7.5 Can the Whole Data Center be Energy Proportional and Sustainable?

In our work, we focus only on the energy proportionality of the computing resources.

A similar approach can be applied to the other high consuming component of the data center that is the cooling system.

With an energy proportional infrastructure, meaning that its energy consumption follows the evolutions of the workload, it also implies that the heat generated by the servers vary over time, and consequently the air conditioning system needs to be congurable to adjust its cooling power. Indeed, too much heat can be prejudicial for IT equipments, but too much cold also. That is why during periods of low load when only low power machines are powered on, the cooling system can not continue to cool the data center room as if all servers were on.

It is necessary to develop a coordinate approach between computing resources and the cooling system in order to reach energy proportionality for the whole data center.

Without neglecting that the energy provider and power supply installations should be aware and adapted to variations.

Building a BML infrastructure implies that we are adding more machines in the data center that are not always utilized. The relevance of this solution can be questioned regarding sustainability: Are the energy savings made when powering computing resources greater than the additional cost of producing, shipping and installing these machines in the data center?

Life Cycle Analysis (LCA) is a procedure that assess the environmental repercussion of a system by quantifying the impacts of all its life's stages from raw material extraction, manufacturing, distribution, use, maintenance, to disposal or recycling. In a rst place, it would be very interesting to be able to know the full LCA of a data center. And in a second place, it would be valuable for our work to evaluate the LCA of our BML infrastructure against a typical homogeneous data center.

Chapter 8

Conclusions and Perspectives

This chapter summarizes the main contributions of this thesis and details the dierent perspectives that can be explored to pursue this work.

Conclusions

Because our world is relying more and more on internet services, companies are building more and more data centers. But these infrastructures have non negligible impacts on our environment, therefore it is necessary to reduce their energy consumption as much as possible to protect our planet.

The goal of this thesis was to nd a way to achieve a data center whose energy consumption is proportional to its actual load. We wanted to tackle the issue of important static costs in classical data centers which are due to resource over-provisioning and servers' high idle consumption. We were inspired by the work done in the mobile world as hardware designers and software developers have to make eorts to limit the energy consumption of these devices which are battery-powered. We have decided to generalize the concept of the heterogeneous mobile processor ARM big.LITTLE to a larger scale by creating a highly heterogeneous data center, composed of dierent types of machines, from very low power mobile processors to very powerful servers. We name our approach BML for Big, Medium, Little to picture the generalization. The idea is to be able to dynamically adjust the composition of the infrastructure, and consequently its energy consumption, to the evolutions of the load over time.

Our contributions can be divided into two main parts:

• Design of an Energy Proportional Heterogeneous Infrastructure

We have proposed a step by step approach for building an energy proportional infrastructure with heterogeneous computing resources which are chosen for their energy eciency. It begins by a proling step whose objective is to measure the performance and energy consumption characteristics of the dierent types of available hardware for the target application. Then the following steps analyze the dierent proles to nd how the machines should be combined to achieve the most 8.2. PERSPECTIVES and sort them in a list of second choice machines which would be switched on only when no more ecient machines are available. It would allow to take the most advantage from the infrastructure when possible, and limiting the static costs due to powering the least energy ecient machines.

Another step toward actual implementation would be to face workload which is not known in advance. This would require using a load prediction system tted to the target application, and adapting the provisioning algorithm to cope with the eventual prediction errors. We can imagine adding a little over-provisioning to our approach. It can consist in considering a greater load of a certain percentage of the prediction, or even leaving some Little machines always on if they have a very small idle consumption. Experiments and evaluations are needed to determine which solution would be the most energy proportional while oering a good quality of service for the application.

Extending our approach to other types of applications is another direction that we want to address. We worked with stateless web servers in this thesis because they relax some constraints that were dicult to consider in a rst step, but we know this kind of application is quite rare in reality. Stateful applications are the next type of target applications that we want to consider. They add the novelty of a state to carry with the application while migrating it, but they can be fully malleable like the stateless applications we consider until then. The size of the state will have an important impact on the duration of the migration. We need to add a proling phase considering the network in order to predict how long will last the migration depending on the size of the state and the two, or more, machines impacted by the transfer. If the size of the state varies over time, its evolution would be another parameter that the prediction model would need to anticipate.

4 First

 4 Two alternatives for virtual machines architectures: using emulation or virtualization extensions . 3.2 Average power consumption (Watts) regarding the number of iterations per second of the same ARM program (IDEA benchmark) on 3 dierent hardware devices . 3.3 Average power consumption (Watts) regarding the number of iterations per second of the same x86 program (IDEA benchmark) on 3 dierent hardware devices . 3.4 ARM solution compared to ideal proportionality (IDEA benchmark) . . . 3.5 x86 solution compared to ideal proportionality (IDEA benchmark) 3.6 Dynamic power consumption (Watts) during live migration of ARM virtual machine from Big (HP 7800 Workstation) to Little (Samsung Chromebook) 4.1 BML Framework Overview . 4.2 Power and performance proles of 4 illustrative architectures A, B, C and D. Vertical line is the maximum performance of one machine, and beyond is the cumulated power for multiple machines of the same architecture. . 4.3 Architectures A, B and C are good candidates for BML infrastructure, but Architecture D will be removed from consideration due to its poor energy eciency compared to architectures A, B and C. 4.step of crossing points computation between Little and M edium, and between M edium and Big . 4.5 BML combination after second step crossing points between Little and Medium, and between combinations of Medium-Little and Big 4.6 Performance, quality of service and power proles of lighttpd web server running on Taurus (x86 Intel Xeon) for dierent number of concurrent clients 4.7 Power consumption of Paravance server during switch on and switch o actions . 4.8 Power and performance proles of web servers acquired from experiments of ve dierent architectures . xi LIST OF FIGURES 4.9 Consumption of BML combination over an increasing performance rate, until perf max Big , compared to Big and BM L linear (BML combination is composed of 1 Big, 16 M edium and 1 Little machines.) 4.10 Normalized Energy Eciency of BML combination compared to Big and BM L linear . 5.1 Maximum and average requests rates for all days of 98 World Cup traces 5.2 Comparison of dierent prediction settings and same short window length on an input trace consisting of regular upward and downward slopes. . . 5.3 Comparison of dierent prediction settings and same long window length on an input trace consisting of regular upward and downward slopes. . . 5.4 Comparison of dierent infrastructure scenarios for Day 48. 5.5 Total energy consumption comparison with lower and upper bounds for all days. .

6 . 7 4 Energy

 674 All days -Comparison between Ideal BML and Multi-Terms algorithms and the lower bound. 6.8 All days -Traces x10 -Comparison between Ideal BML and Multi-Terms algorithms. and containerization solutions 3.2 Summary of selected hardware and their characteristics 3.3 Native vs Emulated performances for each hardware. Colum Int refers to IDEA encryption, and Float to Fourier coecients of nbench benchmark, while Overhead represents the ratio between emulated and native performances. 4.1 Summary of selected hardware and their characteristics 4.2 Performance and power proles of each architecture. 4.3 On/O duration and energy consumption, and minimum switching intervals of each architecture . 4.Proportionality metrics computed for BML combination and Big (Paravance) server. 5.1 Total energy dierence percentages of BML infrastructure compared to Big-Medium and Big only scenarios . 5.2 Total energy dierence percentages of Ideal BML algorithm compared to lower and upper bounds . 6.1 Total energy dierence of Multi-Terms algorithm version BML Normal and version BML with Modied Little compared to Multi-Terms algorithm with Big-Medium infrastructure .

Figure 2 . 2 :

 22 Figure 2.2: Dynamic and static parts for a typical server power consumption

Figure 2 . 3 :

 23 Figure 2.3: Actual, linear and ideal proportional power consumption curves

 Mediatek went even further by designing the rst three-cluster processor, the Helio x20. It is a deca-core processor composed of a dual-core ARM Cortex-A72 operating at a frequency up to 2.3 GHz, a quad-core ARM Cortex-A53 up to 1.85 GHz and another quad-core Cortex-A53 up to 1.4 GHz. It is embedded in the smartphone Meizu MX6 available since July 2016. Mediatek has recently revealed its new Helio x30 processor, using a 10nm manufacturing process, containing ARM Cortex-A73 and A35 cores, with

 Therefore, full virtualization of ARM platform has not been explored a lot, and suered from poor performances. The development of ARM virtualization has really started when hardware virtualization extensions have been created in the latest ARMv7 and ARMv8 architectures. For instance, ARM Cortex-A15 was the rst ARM processor with virtualization support. It has been released in 2012, and its rst implementation was the Samsung 5 Dual board inside the Samsung Chromebook Series 3, and later in the Google Nexus 10 tablet.

Figure 3 . 1 :

 31 Figure 3.1: Two alternatives for virtual machines architectures: using emulation or virtualization extensions

 Figures 3.2 and 3.3 represent the average instantaneous power consumption for hardware over an evolving performance level from 0 to maximum, expressed in number of iterations per second of the IDEA encryption benchmark. The starting point of each curve corresponds to the average power consumption in idle state, and the ending point to the average power consumed during a complete execution of the benchmark. To obtain intermediate data points, we have slightly modied the nbench benchmark by introducing nanosleep calls in order to reduce the maximum performance. The benchmark is run ve times with ve dierent durations of sleep, resulting in ve data points for each hardware, approximated with a linear tting to get the nal curves. Each graph plots three curves corresponding to our three selected hardware presented in Table3.2. The most powerful is the Parapluie server, and it denes the maximum scales of our graphic. The two other curves are also endless because we repeat the power consumption prole to simulate the fact of having multiple servers of each type. The least powerful hardware is the ARM Chromebook, but because of its very low consumption it can be repeated several times and still t in the graph. The maximum performance of one single Chromebook is symbolized by the vertical dashed line. On the opposite, when we repeat server Taurus, it shortly becomes out of scale because its static idle consumption is too important.

Figure 3 . 2 :Figure 3 . 3 :Figure 3 . 4 :Figure 3 . 5 :Figure 3 . 2

 3233343532 Figure 3.2: Average power consumption (Watts) regarding the number of iterations per second of the same ARM program (IDEA benchmark) on 3 dierent hardware devices

Figure 3 .

 3 Figure 3.6 presents the dynamic power consumption of each host during the process of virtual machine migration. To be able to compare the two curves more easily, we substract the idle consumption to the measured consumption of each machine to show only the impacts on dynamic power (The idle consumptions are respectively 5 Watts for Chromebook and 149 Watts for HP 7800 server).

Figure 3 . 6 :

 36 Figure 3.6: Dynamic power consumption (Watts) during live migration of ARM virtual machine from Big (HP 7800 Workstation) to Little (Samsung Chromebook)

Figure 4 . 1 :

 41 Figure 4.1: BML Framework Overview

Figure 4 .

 4 Figure 4.2 gathers four dierent proles of theoretical architectures named A, B, C, and D that we use to illustrate the explanations. On each graph is plotted the result of the function powerF or i . All four graphs have the same scale. On each of them a vertical line represents the maximum performance of the machine type, and beyond this line is the power consumption of multiple machines of the same architecture type. We consider for the following steps that the set of available architectures is M " tA,B,C,Du.

Figure 4 . 2 :

 42 Figure 4.2: Power and performance proles of 4 illustrative architectures A, B, C and D.

Figure 4 .

 4 Figure 4.3 gathers the proles of the four architectures A, B, C, and D. After execut-ing Algorithm 2 on this set, only three architectures are kept as good candidates for a BML infrastructure, namely A, B and C. Architecture D is discarded because its maximum power consumption is greater than that of A, which is the most powerful machine, i.e., perf max D ă perf max A but power max D ą power max A . This implies that architecture D

Figure 4 . 3 :

 43 Figure 4.3: Architectures A, B and C are good candidates for BML infrastructure, but Architecture D will be removed from consideration due to its poor energy eciency compared to architectures A, B and C.

Figure 4 .Algorithm 3 7 : while j ď perf max next 8 :Figure 4 . 4 :

 437844 Figure 4.4 illustrates this step with architectures A, B and C, now denoted Big,M edium and Little. The utilisation threshold of M edium starts around a performance rate of 150. Before this point, it is more ecient to use up to ve Little nodes. The minimum utilization threshold of Big architecture corresponds to the maximum performance rate of a M edium node. A substantial jump in power consumption results from switching from M edium to Big since this crossing point is not optimal. The next step is needed to improve it.

j ď perf max next and 9 :Figure 4 . 5 :

 945 Figure 4.5: BML combination after second step crossing points between Little and Medium, and between combinations of Medium-Little and Big

Figure 4 . 6 :

 46 Figure 4.6: Performance, quality of service and power proles of lighttpd web server running on Taurus (x86 Intel Xeon) for dierent number of concurrent clients

Figure 4 .

 4 Figure 4.6 pictures this proling phase for Taurus server. Five benchmark runs are

Figure 4 . 7 :Figure 4 . 8

 4748 Figure 4.7: Power consumption of Paravance server during switch on and switch o actions

Figure 4 . 8 :

 48 Figure 4.8: Power and performance proles of web servers acquired from experiments of ve dierent architectures

Figure 4 . 9 :

 49 Figure 4.9: Consumption of BML combination over an increasing performance rate, until perf max Big , compared to Big and BM L linear (BML combination is composed of 1 Big,

 server. LD pictures the overall deviation from linearity (0,1983) while LDR focus only on the maximum deviation (0,5268), which explain their dierent results. The maximum linear deviation is indicated on Figure4.9 .

Figure 4 . 10 :

 410 Figure 4.10: Normalized Energy Eciency of BML combination compared to Big and BM L linear

Figure 5 . 1 :

 51 Figure 5.1: Maximum and average requests rates for all days of 98 World Cup traces

Figure 5 . 2 :

 52 Figure 5.2: Comparison of dierent prediction settings and same short window length on an input trace consisting of regular upward and downward slopes.

Figures 5 .

 5 Figures 5.2 and 5.3 present the simulation results for the four dierent settings. For each simulation it shows a table with evaluation metrics: percentage of total processed requests, percentage of requests processed with a delay of 1 or 2 seconds, percentage of discarded requests, joules consumed per processed request (JpR), infrastructure utilization and the number of reconguration decisions. These metrics are computed separately for the upward and downward phases (from 0 to 2267s and from 2268 to 4536s), as well as for the total length of the simulation. Each graph represents the temporal evolution of the simulation: arriving requests, maximum processing capacity of the BML combination, waiting requests and discarded requests over time. The vertical lines correspond to the periods when a reconguration is on-going.

Figures 5 .

 5 4(a), 5.4(b) and 5.4(c) show the temporal evolution of the simulation for respectively the B, BM and BML cases. Apart from the processed requests and the maximum processing capacity of the infrastructure, we also show the number of each type of machines over time, and vertical lines corresponding to reconguration periods.

Figure 5 . 4 :

 54 Figure 5.4: Comparison of dierent infrastructure scenarios for Day 48.

Figure 5 .

 5 Figure 5.5 summarizes the results. It must be interpreted per day as the energy costs of on/o actions between days are not taken into account. Our Ideal BML solution is very close to the theoretical lower bound. On average over these 86 days, our Ideal BML algorithm results in a total energy consumption 31% higher than the theoretical lower bound, the minimum being 6.6% for day 52 and the maximum 149.9% for day 23.Dierence percentages of Ideal BML energy consumption compared to lower bound and both upper bounds are summarized in Table5.2. The graph of Figure5.5 demonstrates the high static costs coming from classical over-provisioned data centers represented by Global UpperBound, and allows to see the objective reached with our solution that is an energy consumption more proportional to the actual daily load. This energy proportionality is clearly noticeable on Figure5.6, which is a scatter plot of the daily total energy consumption of the infrastructure regarding the daily cumulated number of requests. We observe the important waste of energy in the two homogeneous upper bound cases compared to our dynamically recongured heterogeneous infrastructure whose energy consumption follows the load evolution. Moreover, the proximity of our solution with the theoretical lower bound proves the relevance of the infrastructure recongurations and that the energy consumed by switching machines on and o does not represent a signicant overhead.

Figure 5 . 5 :

 55 Figure 5.5: Total energy consumption comparison with lower and upper bounds for all days.

Figure 5 . 6 :

 56 Figure 5.6: Energy proportionality comparison with lower and upper bounds

Figure 6 . 1 :

 61 Figure 6.1: Short look-ahead windows used for switch-on actions.

Figure

6. 2

 2 illustrates these switch-o windows for illustrative architectures A, B and C, denoted window i imm as they begin immediately.

Figure 6 . 2 :

 62 Figure 6.2: Immediate look-ahead windows used for switch-o actions.

2 .

 2 Compute all possible switch-o recongurations as the combinations of all proposed switch-o actions. 3. Remove the switch-o recongurations which do not respect the QoS during their associated window imm . 4. Sort the switch-o recongurations in the decreasing order of their impact in term of processing capacity. 5. Choose the most appropriate switch-o reconguration: (a) For all switch-o combinations:If one of them allows to recongure the infrastructure towards an ideal combination for any window i imm ,

 (b) Analyze reconf Ideal to know which architecture arch taking part in this reconguration has the maximum switch-on duration t arch On .

(d)

 d Compute the energy overhead of the reconguration reconf Ideal: the sum of all Switch-On and Switch-O energy overheads. (e) Compute the over-consumption due to staying in the current combination for the predicted load. (f) If the overhead of the reconguration is lower than the over-consumption of the current combination:

 (c) Same as Step 2) b). (d) Same as Step 2) c).(e) Perform Switch-On actions of reconf Ideal.Note that we only perform the Switch-On actions of the chosen Back-to-Ideal because the switch-o actions will automatically be done later as a load-reactive action.

 (a) Ideal BML -Total Energy Consumption: 832 692 J -JpR: 0,1838 (b) Multi-Terms BML -Total Energy Consumption: 814 046 J -JpR: 0,1797

Figure 6 . 4 :

 64 Figure 6.4: Steep Slopes : Multi-Terms performs better than Ideal BML.

 (a) Ideal BML -Total Energy Consumption: 1 566 862 J -JpR: 0,1730 (b) Multi-Terms BML -Total Energy Cons.: 2 266 933 J -JpR: 0,2503

Figure 6 . 5 :

 65 Figure 6.5: Low Slopes : Multi-Terms performs worse than Ideal BML.

Figure 6 .Figure 6 . 7 :

 667 Figure 6.7(b) represents graphically the daily energy consumption dierences between the two algorithms and this lower bound, while Figure 6.7(c) shows the comparison regarding daily energy proportionality. We can see that Multi-Terms BML stands just under Ideal BML as it increases the energy reduction by 6%. The maximum quantities of machines for Ideal BML are 3 Big, 16 M edium and 1 Little as we only authorize ideal combinations. Regarding Multi-Terms, the maximum numbers of utilized Big and M edium machines are the same as with Ideal BML, while the maximum number of Little nodes is 59.

Figure 6 . 8 :

 68 Figure 6.8: All days -Traces x10 -Comparison between Ideal BML and Multi-Terms algorithms.

 The paper of Hsu et al.[START_REF] Hsu | Measuring Server Energy Proportionality[END_REF], published in 2015, is the most recent study. It covers all SPECpower results from 2007 to 2014, and evaluates the evolution of the ve metrics previously described. It is clearly observable that servers have been increasingly energy

	whose results are
	published by the Standard Performance Evaluation Corporation (SPEC)	1 . The results
	contain entries from several hardware vendors since 2007. Each entry contains idle power
	consumption as well as power measurements corresponding to ten dierent utilization
	levels, thus all the data needed to compute energy proportionality metrics.

proportional over these seven years. In 2007, servers' EP was between 0.2 and 0.4 while last entries from 2014 are around 0.7 and 0.8. As DR and IPR metrics are quite similar, they observed the same positive evolution. In contrast, the progression of the metrics LD and LDR which characterize linearity is unclear. Varsamopoulos et al.

[START_REF] Varsamopoulos | Trends and Eects of Energy Proportionality on Server Provisioning in Data Centers[END_REF]

provided an interesting study showing that as IPR has improved over time, meaning that servers have greater dynamic power range, LDR is getting worse. And more specically, two trends are noticeable: servers are mostly deviating from linearity positively, i.e., above the linear curve, but few servers are negatively diverging from linearity.

 Type 2 runs an existing OS on the hardware and run both virtual machines and applications on top of this OS. Usually, this type of hypervisor slightly modies the host OS to facilitate the execution of virtual machines. For instance, KVM is an example of type 2 hypervisor and is integrated in Linux and available as a loadable driver.

On x86 platforms, virtualization has already existed since the late 1990s, but it needed complex software techniques. In 2005 and 2006, both Intel and AMD introduced new

 3.2. STUDY OF VIRTUALIZATION SOLUTIONS FOR ARM AND X86two implementations that seem to have interesting characteristics, and studied if we can use them for our purpose. OpenVZ, whose initial release was in 2005, uses a patched Linux kernel and works both on x86 and ARM. Its advantage is that it has a live migration feature. Unfortunately, this live migration technique has a longer downtime than virtual machine's migration, and is not operational on ARM architectures. LXC, also known as Linux Containers, initially released in 2008, uses the cgroups functionality of the Linux kernel which enables resources limiting and prioritizing concerning CPU, memory, I/O, etc. It is consequently available in the mainline Linux kernel since version 2.6.29. It has gained more attention in 2014 because a company called Docker was using it to propose a promising tool to package any application and run it on any Linux platform. It quickly became popular and since then its development has never stopped growing. LXC is also working both on x86 and ARM, but does not have any live migration feature. The CRIU project, standing for

Checkpoint/Restore In Userspace, was launched to achieve the goal of checkpointing and restarting Linux containers, but it was not yet completed when we started this study, and is still under development now.

Table 3 .

 3 .1. 1: Comparison of virtualization and containerization solutionsThis comparison leads us to further study the virtual machine solution. It is the most common approach in data centers and also the most generic solution as it imposes the least number of restrictions. KVM was our favorite technology for its easy availability in the Linux kernel and because it is closely linked with QEMU, short version of Quick Emulator. This technology can run a variety of unmodied guests by emulating the guest hardware and processor with binary translation. The way QEMU/KVM works is the following: if the host and the guest architectures are the same and the host features virtualization extensions, KVM uses them and run the guest at a near-native speed; if .3 Performance Comparison between ARM and x863.3.1 Intended Use of Virtualization and EmulationWe have seen that virtualization extensions are available on both ARM and x86 architectures. But as we propose to gather both types of machines in the same infrastructure, we want to be able to migrate virtual machines across all physical machines. The architecture of the virtual machine is xed and can not change during its execution. The idea is that this virtual machine is executed using virtualization extensions if it running on the right architecture, while executed via emulation when it is on a dierent architecture. Indeed, emulation allows to translate a binary code written in one instruction set, the source, towards another instruction set, the target. As QEMU/KVM automatically detects if the

		Virtual machines	Containers
		Xen	KVM	LXC	OpenVZ
	On x86	yes	yes	since 2.6.29	patched kernel
	On ARM	since 3.7	since 3.9	since 2.6.29	patched kernel
	Live migration	yes	yes	not yet (CRIU project)	yes, but only x86
	Guest OS	any	any	only Linux based	only Linux based

the guest has a dierent architecture from the host, QEMU uses binary translation to do emulation, which implies some computation overheads. We focus on this emulation technology as it appears to be a solution to make ARM and x86 architectures cohabit in the same data center. But rst we need to measure and evaluate the emulation overheads to see if they are bearable costs or not.

3hardware has virtualization capabilities, our assumption is that when migrating a virtual machine between two dierent types of host, the software will automatically switch from emulation to virtualization extensions, or the opposite. Figure

3

.1 pictures the two alternatives for the virtual machine architecture and their underlying functioning. First and last cases have low or no overhead thanks to the virtualization extensions, while the two cases needing binary translation suer from performance degradations due to emulation.

Table 3 .

 3

	Codename	Chromebook	Taurus	Parapluie
	Fullname	Samsung / HP 11	Dell	HP Proliant
		Chromebook	PowerEdge R720	DL165 G7
	Architecture	ARMv7 32 bits	x86 64 bits	x86 64 bits
	CPU	1 x	2 x	2 x
		Cortex-A15	Intel Xeon E5-2630	AMD Opteron 6164
	Total Nb of Cores	2	12	24
	Range of Power			
	Consumption	5 25 W	96 227 W	180 280 W
	Release year	2012 / 2013	2012	2010

2: Summary of selected hardware and their characteristics 3.3.3 Benchmark Results: Native vs. Emulated Performances Performance Only

Table 3 .

 3

		Native	Emulated	Overhead
		(Iterations/sec)	(Iterations/sec)	Native/Emulated
		Int	Float	Int	Float	Int	Float
	Chromebook (ARM)	8233,9	27 251	932,46	604,07 8,83	45,11
	Taurus (x86)	102 893,9 380 437 11 479,22 11 153,06 8,96	34,11
	Parapluie (x86)	113 569,8 320 823 15 239,46 12 599,76 7,45	25,46

[START_REF] Amur | Idlepower: Application-Aware Management of Processor Idle States[END_REF]

shows the native and emulated performances for the three machines previously described. Results are expressed as the maximum number of iterations per second reached during the benchmark execution. The column Overhead represents the ratio between emulated and native performances.

Table 3 .

 3 3: Native vs Emulated performances for each hardware. Colum Int refers to IDEA encryption, and Float to Fourier coecients of nbench benchmark, while

 1 powerF or i : Computes instantaneous power consumption for a given architecture i and a given perf Rate Input: Architecture: i, Performance rate: perf Rate Output: Power consumption: totalP ower 1: nbF ullN odes Ð t perf Rate { perf max i u 2: remainingRate Ð perf Rate ´p nbF ullN odes ˆperf max

						i q
	3: remainingP ower Ð 0			
	4: if remainingRate ą 0 then		
	5:	slope Ð p power max	i ´power idle	i q { perf max	i
	6:	remainingP ower Ð p slope ˆremainingRate q `power idle	i
	7: end if			
	8: totalP ower Ð p nbF ullN odes ˆpower max	i q `remainingP ower
	9: return totalP ower			

 Algorithm 2 candidatesBM L: Sorts architectures and keeps only good candidates for

	BML infrastructure			
		Input: Architectures: archList
		Output: BML candidates: BM L
	1: BM L Ð r s				
	2: archList.sortpperf max	i , descendingq
	3: previous Ð archListr0s	
	4: BM L.appendppreviousq	
	5: for i P r1, archList.length ´1s do
	6:	current Ð archListris	
	7:	if power max	current ă power max	previous or power idle	current ă power idle	previous then
	8:	BM L.appendpcurrentq	
	9:	previous Ð current	
	10:	end if				
	11: end for				
			(perf max	D ,power max	D)
							(perf max	A ,power max	A)
					(perf max	B ,power max	B)
		(perf max	C ,power max	C)

 Little nodes to M edium combinations help improving power proportionality and reduce the gap between M edium and Big architectures. The function, detailed in Algorithm 4, re-evaluates the minimum utilization thresholds of the most powerful architectures of the infrastructure. For our illustrative example, it re-computes the crossing point between M edium and Big. Of course the minimum threshold of Little stays at 1, and the one of M edium can not change because only homogeneous combinations of Little nodes can be used before switching to a M edium node. Algorithm 4 calls the function idealBM L detailed in next step in Algorithm 5, which computes the combination of Little and M edium nodes. The fact that the minimum threshold for Big has not been updated at this stage is not relevant since Big will not be part of the computed combination. CrossP oints Step2 : Finds crossing points between architectures and combinations of small architectures Input: BML candidates: BM L, Crossing points: crossP oints Output: Updated BML architectures: BM L 1: for i P r1, crossP oints.length ´1s do

	2:	current Ð LM Bris
	3:	next Ð LM Bri `1s
	4:	

This step is required when there are more than two architectures. The previous step computes the crossing points between homogeneous combinations of machines, but with three architectures and more, one must determine whether adding A last phase, performed at the end of Algorithm 4, checks if all architectures are utilized in the BML combination. If there exists an architecture i whose minT hreshold i is greater than or equal to its perf max i , it means that the utilization range of this archi- tecture is empty, and thus it must be removed from the infrastructure. Under such case, algorithms 3 and 4 should be executed again with the updated list of BML candidates.

Algorithm 4

 Computes ideal BML combination and its instantaneous power consumption for perf RateInput: Sorted BML list: BM L, Performance rate: perf Rate

		Output: BML combination: combination, Combination's power consumption:
		power	
	1: combination Ð r s	
	2: power Ð 0	
	3: remainingRate Ð perf Rate
	4: for arch P BM L do	
	5:	nbN odes Ð t remainingRate { perf max	arch u
	6:	remainingRate Ð remainingRate ´p nbN odes ˆperf max	arch q
	7:	power Ð power `p nbN odes ˆpower max	arch q
	8:	if remainingRate ě minT hreshold arch then
	9:	nbN odes Ð nbN odes	`1
	10:	power Ð power `powerF or arch premainingRateq
	11:	remainingRate Ð 0	
	12:	end if	
	13:	combination.appendpnbN odesq
	14: end for	
	15: return combination, power	

 .2 of Chapter 3, which are Taurus (x86 Intel Xeon) and Samsung Chromebook (ARM Cortex-A15). To complete the selection we add the Raspberry Pi 2 Model B, a credit card-sized board computer containing another ARM processor, the ARM Cortex-A7, that consumes less than the

Table 4

 4

	.1 summarizes the characteristics of

Table 4 .

 4

1: Summary of selected hardware and their characteristics

 To craft requests of heterogeneous sizes, the number of loop iterations is also chosen randomly between 1000 and 2000. A response to a request is formed by a static html page that contains the integer representing the number of iterations.

	4.4.3 Proling Phase (Step 1)
	Application Performance and Power Consumption

as web server. It is an open source solution that is easily available with Debian based environments, which exist both for ARM and x86 architectures. The content of the web server is a cgi script written in Python. Each request consists in a loop of random number generation.

Table 4 .

 4 .2 and the proles are plotted in Figure 4.8.perf max power max power idle

	Architecture	(Requests/s)	(Watts)	(Watts)
	Paravance	1331	200.5	69.9
	Taurus	860	223.7	95.8
	Graphene	272	123.8	47.7
	Chromebook	33	7.6	4
	Raspberry	9	3.7	3.1

2: Performance and power proles of each architecture.

Table 4

 4 .3 presents these results. The minimum switching intervals T s computed for all architectures are presented in last column of Table4.3. On (s) e On (J) t Of f (s) e Of f (J) T s (s)

	Paravance	189	21341	10	657	315
	Taurus	164	20628	11	1173	228
	Graphene	71	4940	16	760	119
	Chromebook	12	49.3	21	77.6	33
	Raspberry	16	40.5	14	36.2	30

Architecture

t

Table 4 .

 4

	3: On/O duration and energy consumption, and minimum switching intervals
	of each architecture

Table 4 .

 4

	4: Energy Proportionality metrics computed for BML combination and Big (Par-
	avance) server.

Table 4 .

 4 4 gathers the metrics values for the BML combination and the Big server, while the Ideal line recalls what would be the values for a perfectly proportional server.

 architecture.

	Period	%Process.	%Delay.	%Lost	JpR	%Util.	NbRec
	Up	98.3	18.3	1.7	0.1783	93.5	49
	Down	100	0	0	0.1638	85.9	44
	Total	99.2	9.1	0.8	0.1710	89.7	93
	(a) Evaluation Metrics for Prediction: Maximum -Window: 30s
	(b) Temporal Evolution for Prediction: Maximum -Window: 30s
	Period	%Process.	%Delay.	%Lost	JpR	%Util.	NbRec
	Up	97.8	38.5	2.2	0.1782	95.9	51
	Down	99.99	3.8	0.01	0.1632	88.4	45
	Total	98.9	21	1.1	0.1706	92.1	96
	(c) Evaluation Metrics for Prediction: Average -Window: 30s
	(d) Temporal Evolution for Prediction: Average -Window: 30s

Table 5 .

 5

	2: Total energy dierence percentages of Ideal BML algorithm compared to lower
	and upper bounds				
	Energy	Compared to	Compared to	Compared to
	Dierence	Lower Bound	Upper Bound (Day)	Upper Bound (Global)
	Best per day	+6.6 %	(day 52)	-92.6% (day 8)	-98.1 % (day 8)
	Worst per day	+149.9 % (day 23)	-11.6 % (day 54)	-55.3 % (day 66)
	Average per day	+31 %		-65.1 %	-85.9 %

 .8(a), on average Multi-Terms consumes -0.85% less than Ideal BML, the best dierence is -7% for day 23. For some days, Multi-Terms consume more than Ideal BML, the maximum positive dierence, and worst result, is +6% for day 91. The maximum number of machines utilized for all days is 31 Big, 16 M edium and 1 Little for Ideal BML version, whereas Multi-Terms utilizes same number of Big and M edium nodes, but 130 Little machines.

	Energy Dierence	Compared to Ideal BML	Compared to Lower Bound
	Best per day	-7 % (day 23)	+0.64% (day 81)
	Worst per day	+6 % (day 91)	+123.8 % (day 23)
	Average per day	-0.85 %	+33.5 %

Table 6 .

 6 1: Total energy dierence of Multi-Terms algorithm version BML Normal and version BML with Modied Little compared to Multi-Terms algorithm with Big-Medium

	infrastructure		
	Energy Di. to BM	BML Real	BML with Little Modied
	Best per day	-2.5 % (day 85)	-8.1% (day 85)
	Worst per day	+27.2 % (day 23)	+0.3 % (day 48)
	Average per day	+2.4 %	-1.6 %

HP Chromebook 11 is now supported by Linux as its dts le was included in mainline Linux kernel in

M edium and 1 Little machines.)

Acknowledgments / Remerciements

I would like to thank the members of the jury: Helen Karatza and Domenico Talia for reviewing my manuscript, Christine Morin and Veronika Rehn-Sonigo for having accepted to evaluate my work, and I thank them all especially for their presence at the defense of my thesis.

The small dierence between BML and BM infrastructure stems from the fact that our BML combination is not optimal. Indeed, the Little architecture has a small utilization range of only 9 requests. This explains why its presence in the infrastructure cannot bring signicant improvements. Nevertheless, we observe that in the BML infrastructure, there is a higher number of recongurations than in the BM case, exactly 75 recongurations more, while the results in terms of joules per request are better. It means that we still benet from a more heterogeneous platform even if the utilization range of the additional architecture is small.

Ideally, it would be preferable for each architecture to have the same range of utilization to improve the results signicantly.

Comparison with Lower and Upper Bounds

In this section we evaluate our Ideal BML algorithm to a theoretical BML lower bound, and two homogeneous upper bounds corresponding to existing data center management.

We run the simulations for days 6 to 92 of 1998 World Cup traces [START_REF]World Cup Web Site Access Logs[END_REF].

The considered scenarios are as follows:

• Global UpperBound corresponds to a data center with a constant number of homogeneous Big servers during the whole duration of the World Cup, computed according to the maximum request rate. In these traces, the peak rate is 4089 requests per second during day 73. Consequently, the infrastructure contains 4 Big machines that are always powered on. This upper bound is an example of a classical over-provisioned data center.

Comparative Evaluations of the two Algorithms

With Synthetic Traces

As we designed Multi-Terms algorithm to answer some limitations of the previously described Ideal BML algorithm, it is logical to evaluate this second algorithm by comparison with the rst one. Note that QoS is not discussed in this chapter as we consider perfect knowledge of future load, and use look-ahead windows enough long to perform recongurations in time.

For a rst comparison, we decide to use two simple generated traces consisting in two successive upward and downward phases of equal lengths. Both of them starts from a request rate of 0 to a maximum request rate of 3993 requests per second (corresponding to 3 times the maximum processing capacity of Big architecture), and down again to 0. We have generated two versions: a low slope with each phase lasting 2267 seconds, (which is the same we used in section 5.3), and a steep slope which has the same peak rate but is two times shorter as each phase lasts 1134 seconds.

Figure 6.4 presents the results for the steep slopes. In this case, Generic Multi-Terms algorithm gives better results than Ideal BML concerning total energy consumption and energy eciency as the Joules per Request (JpR) metrics is 0,1797 against 0,1838. We can observe from visual comparison of the two graphs that Multi-Terms algorithm reduces the over-provisioning during the upward slope that was due to the long look-ahead window of Ideal BML algorithm. This comes from Load-Reactive actions that switch on Little nodes progressively as the load increases. Because the slope is steep, the system can predict the high raise and decide to switch on Big machines in advance.

Figure 6.5 displays the results for the low slopes. We realize that the two algorithms perform very dierently, and we conclude from the energy metrics that Multi-Terms version produces worse results than Ideal BML as JpR is 0,2503 against 0,1730. This signicant dierence can be easily explained by the quantity of Little nodes that explodes during the upward slope and reaches 396. The increasing slope is too low and the scheduler keeps switching on Little nodes to answer the little load raise. The important issue is that our algorithm prioritize Load-Reactive actions as Back-to-Ideal actions are only performed if no other actions need to be done. We observe that this characteristic of our Multi-Terms algorithm can be a disadvantage for this very specic case.

Of course this behavior is a consequence of our assumption on unlimited computing resources of each type. With a limited data center topology, this result would not be possible as the scheduler would not be able to switch on as many Little nodes and would consequently switch on available machines of the architectures sorted just after, in our case Medium, and then Big. This remark, as well as the comparative results of Multi-Terms algorithm against Ideal BML with real traces that we comment just after in 6.

Big-Medium versus BML

As we have done in previous chapter in section 5.4, we want to evaluate the gains brought by heterogeneity with comparative evaluations of our algorithm with the full BML infrastructure against the same algorithm but with only Big and Medium machines.

Unfortunately, the doubts we had concerning the interest of the Little architecture were conrmed. Multi-Terms algorithm and BML infrastructure results in more energy consumption than this algorithm with an infrastructure composed of Big and Medium machines. On average on all original days of the World Cup traces, Multi-Terms BML consumes 2.4% more than Multi-Terms Big-Medium, the best result being -2.5% for day 85 and the worst +27.2% for day 23.

These disappointing results come from the fact that Little infrastructure has a switch on duration longer than Medium 's. The Little machine (Raspberry Pi) takes 16 seconds to power on, whereas the Medium architecture (Chromebook) takes 12 seconds. Indeed, the sorting and tagging done during the building of BML combinations only consider performance and power, but not the switch on durations. The minimum utilization threshold of Little machine is set to 1 and thus for any load increase, Little machines will be switched on. The minimum utilization of Medium is set accordingly to its performance and power ratio compared to Little, which is 10 requests per second in our case. Consequently, for load increases greater than 10 requests per second, Medium machines will be powered on in addition of Little ones. This issue is that these Little nodes will in fact be ready to process requests after Medium nodes, and will then be useless. This explains how in this specic infrastructure, more heterogeneity does not bring better results. These experiments allow us to highlight another important characteristic required for building a relevant BML infrastructure which is that switch on durations should follow the same order as performance and power.

To demonstrate this armation, we have modied the prole of the Little architecture by divided by two its switch on and o durations and energy consumption. This translates in two BML infrastructures dened as follows:

• Real BML: Existing hardware proles as detailed in Tables 4.2 and 4.3.

• Modied Little BML: Existing hardware proles for Big and Medium architectures, and Little 's on and o durations and energy overheads divided by two.

The new values are:

t Little On : 8 s, e Little On : 20.25 J; t Little Of f : 7 s, e Little Of f : 18.1 J; and T s : 15 s.

We have run the simulations with original traces for Multi-Terms algorithm with the Modied Little BML infrastructure, and the results compared to Big-Medium infrastructure are much more encouraging. On average Multi-Terms with Modied Little BML consumes -1.6% less than Multi-Terms Big-Medium. The best result is -8.1% for day 85 and the worst is +0.3% for day 48. Table 6.1 gathers the comparative results of the two dierent BML infrastructures against Big-Medium scenario. Even with Modied Little BML there are some days where the introduction of Little architecture implies a small increase in energy consumption compared to Big-Medium. This is still due to the small range of utilization of the Little architecture as we already discussed in section 5.4.

energy proportional infrastructure. The nal step computes what we call the ideal machines combinations. The methodology we have dened is generic and can be adapted to any number of architectures.

• Dynamic Provisioning of Heterogeneous Computing Resources

Once the composition of the infrastructure has been dened, an ecient scheduling and provisioning algorithm is needed to take advantage of the dierent characteristics of the heterogeneous computing resources. We have developed two versions of provisioning algorithm: the rst one, Ideal BML that only considers pre-computed machines combinations as conguration possibilities; and the second one, Multi-Terms, that performs more complex recongurations as it takes into account the dierent temporalities and overheads of the dierent switch on and o actions in the decision process.

We have performed proling experiments on a set of real hardware, for the chosen use case application which is a stateless web server. Our methodology has allowed us to keep only the most energy ecient ones, and lead to an implementation of the BML infrastructure with three dierent types of architectures. To evaluate our provisioning algorithms, we have developed a simulator based on the machines proles acquired experimentally. It enables to try multiple infrastructure congurations as well as dierent algorithm settings, for any trace le given as input.

Consequently, we have been able to demonstrate the energy gains of our solution against classical over-provisioned data center composed of homogeneous servers, for real workload traces of a web site. We have shown that BML infrastructure with our dynamic provisioning algorithms manage to save signicant amounts of energy, especially during periods of low loads when classical data centers suer from high static costs. Our solution reaches energy proportionality as we have proved that its results are very close to the theoretical lower bound corresponding to a perfect provisioning of BML resources without considering any energy and time overheads from the recongurations.

Finally, we have provided a comparative study of the two provisioning algorithms we proposed, and discussed the dierences between the two approaches which mostly concern the consideration of ideal machines combinations. We have demonstrated that Multi-Terms algorithm achieves the best results as it allows to adjust more nely the infrastructure to the load. We also assume that this characteristic would make it more robust to load prediction errors, however more evaluations are needed to prove it experimentally. This is considered as future work, as well as the other perspectives detailed in the following section.

Perspectives

Our contributions can be extended in several directions. Many of them concern the dierent topics to address to be able to actually implement our approach.

The rst one would be to deal with a xed data center topology. Only small modications in our BML building methodology and dynamic provisioning algorithm are needed to consider an already built heterogeneous infrastructure. In such cases, we would not remove from consideration the least energy ecient hardware, but we would keep them