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Abstract

The increasing number of data centers raises serious concerns regarding their energy
consumption. These infrastructures are often over-provisioned and contain servers that
are not fully utilized. The problem is that inactive servers can consume as high as 50%
of their peak power consumption.

This thesis proposes a novel approach for building data centers so that their energy
consumption is proportional to the actual load. We propose an original infrastructure
named BML for "Big, Medium, Little", composed of heterogeneous computing resources:
from low power processors to classical servers. The idea is to take advantage of their
di�erent characteristics in terms of energy consumption, performance, and switch on
reactivity to adjust the composition of the infrastructure according to the load evolutions.
We de�ne a generic methodology to compute the most energy proportional combinations
of machines based on hardware pro�ling data.

We focus on web applications whose load varies over time and design a scheduler that
dynamically recon�gures the infrastructure, with application migrations and machines
switch on and o�, to minimize the infrastructure energy consumption according to the
current application requirements.

We have developed two di�erent dynamic provisioning algorithms which take into
account the time and energy overheads of the di�erent recon�guration actions in the
decision process. We demonstrate through simulations based on experimentally acquired
hardware pro�les that we achieve important energy savings compared to classical data
center infrastructures and management.

v





Résumé

La consommation énergétique des centres de calculs et de données, aussi appelés � data
centers �, représentait 2% de la consommation mondiale d'électricité en 2012. Leur
nombre est en augmentation et suit l'évolution croissante des objets connectés, services,
applications, et des données collectées. Ces infrastructures, très consommatrices en én-
ergie, sont souvent sur-dimensionnées et les serveurs en permanence allumés. Quand la
charge de travail est faible, l'électricité consommée par les serveurs inutilisés est gaspillée,
et un serveur inactif peut consommer jusqu'à la moitié de sa consommation maximale.
Cette thèse s'attaque à ce problème en concevant un data center ayant une consommation
énergétique proportionnelle à sa charge.

Nous proposons un data center hétérogène, nommé BML pour � Big, Medium, Little
�, composé de plusieurs types de machines : des processeurs très basse consommation
et des serveurs classiques. L'idée est de pro�ter de leurs di�érentes caractéristiques de
performance, consommation, et réactivité d'allumage, pour adapter dynamiquement la
composition de l'infrastructure aux évolutions de charge. Nous décrivons une méthode
générique pour calculer les combinaisons de machines les plus énergétiquement e�caces
à partir de données de pro�lage de performance et d'énergie acquis expérimentalement
considérant une application cible, ayant une charge variable au cours du temps, dans
notre cas un serveur web.

Nous avons développé deux algorithmes prenant des décisions de recon�guration de
l'infrastructure et de placement des instances de l'application en fonction de la charge
future. Les di�érentes temporalités des actions de recon�guration ainsi que leur coûts
énergétiques sont pris en compte dans le processus de décision. Nous montrons par
simulations que nous atteignons une consommation proportionnelle à la charge, et faisons
d'importantes économies d'énergie par rapport aux gestions classiques des data centers.
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� Chapter 1 �

Introduction

In the last decade, our society has witnessed an explosion of the use of on-line services and
applications in the daily life. This evolution goes with the ubiquity of connected mobile
devices: smartphones, tablets, watches, cars, and so on. Social networks and medias
are now an inherent part of our habits. The web site www.internetlivestats.com lists
internet activity happening in one second. At the time of the writing, it reports that
in one second, 2780 Tweets have been sent, 732 Instagram photos have been uploaded,
127177 YouTube videos have been viewed and 55 323 Google searches have been done.

What users sometimes do not realize, is that at the other end of these applications,
there are data centers � huge facilities �lled with lots of computers, that are processing,
computing, storing, retrieving and sending data to make applications available 24/7 from
(almost) anywhere on the planet � which consume a large amount of energy.

A recent report [53] estimates that data centers in the United States consumed 70
terawatt-hours (TWh) in 2014, accounting for about 1.8% of total U.S. electricity con-
sumption. It represents a 4% increase from 2010 to 2014, which is a large shift from the
estimated 24% increase for the period 2005-2010. And the energy consumption of data
centers is expected to continue increasing in the future. This same report projects that
U.S data centers will consume approximately 73 TWh in 2020.

Apart from being an important �nancial limitation for data center's operators, these
high amounts of electricity can also be seen as CO2 emissions, participating in the green-
house e�ect. According to several weather agencies, 2015 has been the warmest year on
records. Before that, 2014 was the champion, and now 2016 is on track to surpass the
record as several months of this year are already the hottest observed.

The consciousness starts to reach a worldwide level. During the 2015 United Nations
Climate Change Conference (COP21) in Paris, nearly 200 countries took part in nego-
tiations and agreed on tackling climate change. The agreement contains measures to
drastically reduce greenhouse gas emissions and curb global warming to less than 2 ˝C
by the end of the century. It is urgent to listen to the messages from our planet and be
conscious of the inevitable issue we are facing.

In this thesis, we propose to make these infrastructures more e�cient by improving
their ability to adapt their energy consumption to the workload evolutions over time.
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CHAPTER 1. INTRODUCTION

1.1 Large-Scale Distributed Systems

A distributed system is de�ned as a set of several computers, interconnected with a net-
work, that coordinate their actions by exchanging messages in order to achieve a common
goal. This goal di�ers depending on the purpose served by the distributed system. It
can be to provide websites, applications or services such as mail, instant messaging or
�le hosting. These systems can also be meant to complete complex computations for ap-
plications requiring an important computing power, such as weather forecasting or DNA
sequencing. This is usually referred to as High Performance Computing (HPC).

Concretely, these computers, commonly referred to as servers or nodes, are stored
vertically into cabinets called racks, themselves organized horizontally into ails inside a
room, a �oor, or a dedicated warehouse. Such facilities are known as data centers, or
supercomputers in the HPC case.

Distributed systems dedicated to computing can be classi�ed into di�erent categories.
The order used for their description also follows the chronological order of their appear-
ance in research.

• Cluster de�nes a distributed system composed of tightly connected nodes, gener-
ally of homogeneous hardware, situated in the same location, which can be consid-
ered as a single computing resource. When private, a cluster is in general managed
and used exclusively by one company.

• Grid quali�es a set of interconnected clusters, usually geographically distributed
and possibly composed of heterogeneous servers. A software layer is necessary to
homogenize the infrastructure in order to use it in a transparent manner.

• Cloud computing refers to a shared infrastructure that can be used on-demand by
any customers, who will pay the cloud provider according to their usage. Resources
are considered elastic as they are dynamically provisioned according to the users'
needs. Cloud computing is divided in three main types of services :

� Software-as-a-Service (SaaS), denotes software and applications made avail-
able via internet browsers. Users have access to the services from anywhere,
usually after having created an account, and without having to handle soft-
ware updates or licenses.
Examples of such services are: Google Drive for �le storage and synchronized
document editing, and Flickr for to image and video hosting and sharing.

� Platform-as-a-Service (PaaS), allows the users to build their own applications
and deploy them on the provided platform. Users can focus on the develop-
ment of their applications and launch them immediately when their are ready
without having to build an managed the infrastructure to host them.
Google App Engine is an example of PaaS. Applications are hosted in data
centers managed by Google, where the resource scaling is automatically done.

2



1.2. MOTIVATIONS FOR ENERGY SAVINGS IN DATA CENTERS

� Infrastructure-as-a-Service (IaaS) gives users direct access to machines they
can fully set up, con�gure, manage and use according to their needs. Users can
rent bare-metal servers but most of the time, cloud providers o�er di�erent
con�gurations of virtual machines (VM). Virtualization is a key technology
which has enabled the expansion of cloud computing. It allows several inde-
pendent operating systems to coexist on a single physical machine. Multiple
virtual machines can be hosted on the same server while each of them being
totally isolated from the others.
Amazon Elastic Compute Cloud (EC2) is arguably the most famous cloud
provider, while OVH is a French server and cloud provider.

1.2 Motivations for Energy Savings in Data Centers

The electricity consumed by a server is used to power its many components and perform
computations, but a part of it is transformed and rejected in the form of heat. Unfor-
tunately, a server is not able to bear high heats and its probability of failure increases
with the temperature. Even if failures are most frequent at high temperatures, operators
prefer to adopt conservative approach to increase hardware reliability as much as possi-
ble [20]. Inside a data center room, the high density of servers in racks worsen the heat
dissipation issue. That is why data center facilities need an important cooling system,
with air conditioning units and fans, to extract the generated heat and keep the room at
a reasonable temperature. The consumption of the cooling system generally accounts for
30 to 50% of the total electricity consumed by the data center [19].

Indeed, in a data center, not all the consumed energy goes to computing. This is
highlighted by the Power Usage E�ectiveness (PUE) metric, promoted by the Green
Grid consortium in 2007 [27]. It is de�ned as a ratio of the total energy consumed by the
whole data center over the e�ective energy consumed only by computing servers. This
metric reveals all the overhead electricity consumed by cooling infrastructures, power
supplies, lights, and so on. The ideal PUE is 1.0 as it means that all of the energy is used
for computing. While a recent survey [58] estimates that the average PUE of respondents'
largest data centers is around 1.7, Google advertises an average PUE of 1.12 for all their
data centers in quarter 2 of 2016 [25]. Despite all the controversy about how companies
compute and sometimes use this metric only for publicity purpose, the PUE can also be
criticized because it does not show the real energy e�ciency of the infrastructure.

Most data centers are over-provisioned to be ready to sustain unexpected load peaks,
but they sometimes also contain numerous servers that are not fully utilized. An Uptime
Institute survey [58] suggests that close to 30% of servers in U.S. enterprises' data centers
are comatose, meaning that they are consuming power but not doing any useful work.
This comes from the poor management of the infrastructure once it is operational. Aging
or partly faulty servers remain in the data center, consuming energy, instead of being
decommissioned. In such situations, the energy consumed by these inactive servers is
e�ectively consumed by IT equipment, accounting positively for to the PUE metric, but
is in really a bad energy utilization.
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1.3 Focus on Energy Proportionality

In addition, people usually only focus on the maximum energy consumption of a data
center, but not enough on the day to day consumption which varies a lot. Having a good
energy e�ciency at full load is important, but also when the load is low, and this aspect is
sometimes forgotten. This issue has been exposed by Luiz Andre Barroso and Urs Holzle
in 2007 [9]. They have observed more than �ve thousand servers from a Google data
center, and noticed that they are mostly utilized at a load between 10 and 50%. This
means they are rarely completely unused, and therefore in a state where they could be
shut down, and also rarely at full performance, where they are the most energy e�cient.

The main problem is that when a server is idle, i.e., powered on but without activity,
its energy consumption is already signi�cant. Some idle servers can consume as high
as 50% of their peak power consumption [9]. This amount of energy consumed when a
machine is idle is called the static consumption. With our researches we want to �nd
how the static costs of a data center can be reduced as much as possible in order to
have an energy consumption fully dynamic and only dependent on its utilization. The
objective of this thesis is to answer the following question: An infrastructure whose energy
consumption is proportional to its actual load is it achievable?

1.4 Contributions

In this thesis, we propose to reach energy proportionality with an original data center
design composed of heterogeneous computing resources. We name this infrastructure
BML for �Big, Medium, Little� to highlight the di�erences of characteristics of the cho-
sen hardware. The heterogeneity in our infrastructure is considered at the level of the
architecture. We propose to gather di�erent types of architectures, as opposite as x86
and ARM, inside the same data center, to bene�t from their speci�c performance and
energy consumption characteristics.

To achieve energy proportionality, the objective is to always use the least energy
consuming hardware, or combination of hardware, that meets the current needs of the
running applications. This concept of adaptability is particularly relevant when facing
applications whose workloads vary over time. In our infrastructure, we consider that,
at any time, only the most appropriate set of hardware for the current load is powered
on. The unused nodes are switched o�, or put in a suspend or hibernate mode, allowing
us to reduce static costs. Around this heterogeneous infrastructure we propose a sched-
uler that handles recon�guration decisions, such as dynamic application migrations and
management of computing resources by switch on and o� actions.

The relevance of recon�guration decisions relies on the preliminary phase of machine
pro�ling that allows to know perfectly the energy and performance behaviors of the di�er-
ent types of machine for the target application. This enables to compute the most energy
e�cient combinations of machines for di�erent application performance levels. Based on
the knowledge of the application workload pro�le, the scheduler enforces infrastructure
recon�gurations to reduce energy consumption while respecting QoS constraints of the
application. The design of our BML infrastructure with its general framework, as well as
our �rst experimental results have been published in the proceedings of BDCloud 2014
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[C4], and in Parallel Processing Letters 2015 journal [J1] in an extended version.
We propose two versions of scheduling algorithms: the �rst one called Ideal BML,

only considers the machine combinations computed in the preliminary pro�ling phase.
It has been the subject of two publications, a short paper at Cluster 2016 conference
[C1], and a full paper at ICPADS 2016 [C3]. The second algorithm named Multi-Terms,
allows more recon�guration possibilities and take care of the di�erent temporalities of
these actions. It is explained in details in a paper published at Sbac-Pad 2016 confer-
ence [C2]. We have made experimental evaluations which demonstrate that we are saving
substantial amounts of energy compared to classical data center managements as we dras-
tically reduce the static energy costs thanks to dynamic recon�gurations of heterogeneous
computing resources.

1.5 Structure of the Manuscript

The structure of the manuscript is the following: Chapter 2 provides an overview of
the researches concerning energy proportional computing. This state of the art study
leads us to heterogeneous computing resources as a key to reach energy proportionality.
Hence we develop in Chapter 3 the technological challenges brought by heterogeneity
inside a data center and justify our choices. We detail in Chapter 4 our framework
�Big, Medium, Little� and its speci�cations. We especially focus on the step by step
process for building the heterogeneous combinations of computing resources. Chapter
5 presents our �rst scheduler version named Ideal BML algorithm with its evaluation.
Chapter 6 describes the second version of the scheduler calledMulti-Terms algorithm. We
evaluate it considering the same scenarios to highlight the di�erences compared to the
previous version. Chapter 7 contains discussions about the relevance of our proposition,
the hardware choices, the possible improvements, and how we picture the evolutions of
this approach in the future. Finally, Chapter 8 concludes our work by summarizing our
achievements and gives insights for actual implementation and directions for future works.
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� Chapter 2 �

Energy Proportional Computing:
State of the Art

This chapter presents the state of the art of researches concerning energy proportional
computing. Although this term has been de�ned relatively recently, many works trying
to enhance energy e�ciency of servers and data centers can be seen within the energy
proportionality goal.

2.1 Energy Proportionality

2.1.1 De�nitions and Goals

Andre Barroso and Urs Hölzle, two engineers at Google, published a paper in 2007 enti-
tled: �The Case for Energy-Proportional Computing� [9]. In this work, they exposed the
energy ine�ciency of servers with measurements done inside data centers of their own
company. Their two key �ndings are: (i) Servers are utilized on average between 10%
and 50% of their maximum capacity; (ii) When idle, a server can consume up to 50% of
its peak energy consumption.

After making these observations, their conclusion is that energy proportional servers
would bring large energy savings. Therefore, they urged hardware designers to enhance
the energy proportionality of servers and data center operators to improve the resource
management in their infrastructures. Themselves did not give solutions to achieve these
goals but they opened the research �eld of Energy Proportional Computing.

In mathematics, two variables are said proportional if a change in one is always ac-
companied by a change in the other, and if the changes are always related by use of a
constant multiplier. Applying this de�nition to our problem, we want the energy con-
sumption and the utilization of a server to be proportional. By utilization we mean the
load of the server, which is characterized by the amount of work performed. Consequently,
a perfectly proportional server is a machine consuming 0 when idle and having an energy
consumption always proportional to the amount of work produced until its maximum
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capacity. The constant multiplier is in our case the energy e�ciency coe�cient, de�ned
as utilization level divided by the corresponding energy consumption.

Figure 2.1: Typical power consumption of a server from 0 to 100% utilization (from [9])

On Figure 2.1, extracted from [9], the upper green curve represents the typical energy
consumption of a 2007 server from 0 to 100% utilization, while the lower red curve
depicts its energy e�ciency. As the idle consumption of this server accounts for 50% of
its peak consumption, its energy e�ciency is very poor for the lower range of utilization.
Unfortunately, the typical utilization range Barroso and Hölzle have observed was between
10% and 50%, which corresponds to a low energy e�ciency. That is why an energy
proportional server which has a constant energy e�ciency regarding its utilization would
enable important energy savings.
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Figure 2.2: Dynamic and static parts for a typical server power consumption
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Figure 2.2 pictures another point of view of the problem that is static versus dynamic
parts of power consumption. Indeed, the area from zero to idle consumption is considered
as the static consumption part. This �xed amount of power consumption no matter the
utilization is the one that prevents a server from being energy proportional. Our goal
of energy proportionality can be reached only if static costs disappear and the power
consumption of a server is only composed of one dynamic part.

2.1.2 Metrics

As it is elementary to know how to measure and quantify a phenomenon in order to
understand it fully, several works de�ned metrics to express energy proportionality char-
acteristics of servers.

Ryckbosch et al. [50] proposed a metric which is computed using the area between the
actual power consumption curve of the server, and the ideal proportional consumption
curve, i.e., starting at zero in idle state and being proportional towards peak power and
performance, as represented on Figure 2.3. This metric, named EP for Energy Propor-
tionality, is de�ned like this:

EP “ 1´
areaactual ´ areaideal

areaideal
(2.1)

It quanti�es in a global way how the server is close to perfect energy proportionality:
an EP of 1 results from perfect proportionality while 0 characterizes a server consuming
a constant amount of power irrespective of its utilization level. The server pictured in
Figure 2.1, whose idle power consumption is 50% of its peak power, has an EP of 0.5.
Although this metric gives a good hint about the energy proportionality of a machine, it
can be reductive as two machines can have the same EP score while having two di�erent
power consumption curves.
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Figure 2.3: Actual, linear and ideal proportional power consumption curves
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Hence, following works [60, 62] re�ned this work by proposing two metrics to quantify
the two di�erent aspects that portray energy proportionality.

The �rst one is the dynamic power range i.e., the di�erence between the idle and the
peak power consumption. Varsamopoulos et al. [60] de�ned the IPR metric for Ideal to
Peak Ratio. It is computed as the ratio of the power consumed when idle over the power
consumed at full utilization:

IPR “
poweridle
powerpeak

(2.2)

A lower IPR denotes a larger range of dynamic consumption and thus a more energy
proportional server. In the same idea, Wong et al. [62] proposed the DR metric, standing
for Dynamic Range. It also uses idle and peak power consumption values, but is computed
as follows:

DR “
powerpeak ´ poweridle

powerpeak
(2.3)

An energy proportional system would have a dynamic power range DR of 1.

The second aspect that needs to be evaluated is the linearity of the consumption. For
that aim, it needs the de�nition of a hypothetical linear power curves which starts at
same idle consumption and ends at same peak consumption as the considered system,
but is linear between these two points. Varsamopoulos et al. and Wong et al. de�ned
again two quite similar metrics to characterize linearity. They are respectively LDR for
Linear Deviation Ratio in [60] and LD for Linear Deviation in [62], computed as such:

LDR “
|.|

max
i

´ poweriactual
powerilinear

´ 1
¯

(2.4)

LD “
areaactual
arealinear

´ 1 (2.5)

The LDR and LD metrics have another advantage compared to the EP metric because
the result keeps the sign of the maximum deviation from the linear curve. This means
that depending wether the value is positive or negative, we know if the server's power
curve is over or under the theoretical straight line. A LD or LDR value of 0 corresponds to
a perfectly proportional, or linear, power curve. Negative values indicate under-linearity,
which sometimes implies that a server consumes less than the proportional goal. It is
better than over-linearity concerning energy savings, but it can signify that a server is
not the most energy e�cient at full utilization, which can be di�cult to take into account
in scheduling algorithms.

We present these metrics for actual hardware, allowing to highlight and discuss their
di�erences with actual examples in section 4.4.5.
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2.1.3 Recent Evolutions

Once metrics have been de�ned, these works [60, 50, 62] studied existing servers to
evaluate how energy proportionality has evolved over di�erent successive generations. All
their analyzes are based on the SPECpower_ssj2008 benchmark [26] whose results are
published by the Standard Performance Evaluation Corporation (SPEC) 1. The results
contain entries from several hardware vendors since 2007. Each entry contains idle power
consumption as well as power measurements corresponding to ten di�erent utilization
levels, thus all the data needed to compute energy proportionality metrics.

The paper of Hsu et al. [30], published in 2015, is the most recent study. It covers
all SPECpower results from 2007 to 2014, and evaluates the evolution of the �ve metrics
previously described. It is clearly observable that servers have been increasingly energy
proportional over these seven years. In 2007, servers' EP was between 0.2 and 0.4 while
last entries from 2014 are around 0.7 and 0.8. As DR and IPR metrics are quite similar,
they observed the same positive evolution. In contrast, the progression of the metrics
LD and LDR which characterize linearity is unclear. Varsamopoulos et al. [60] provided
an interesting study showing that as IPR has improved over time, meaning that servers
have greater dynamic power range, LDR is getting worse. And more speci�cally, two
trends are noticeable: servers are mostly deviating from linearity positively, i.e., above
the linear curve, but few servers are negatively diverging from linearity.

As a conclusion, despite an improved energy proportionality, current servers' consump-
tion is still not perfectly proportional to their load. Moreover, hardware manufacturers
have put e�ort on increasing dynamic power range, but at the cost of a degraded linearity.
Therefore there is still room for improvements regarding energy proportional computing.
In the following sections, we describe the many di�erent approaches that aim at getting
closer to this objective with existing non proportional hardware.

2.2 Energy E�ciency of Homogeneous Clusters

2.2.1 At Software Level

E�orts can be made during software development in order to save energy during its execu-
tion. Indeed, a software program that is not coded with the awareness of the underlying
hardware on which it will run, can lead to substantial energy wastes. Energy-aware
programming practices are often referred to as Green Coding or Green Programming.

The concept of Race to Idle is quite simple: increasing the software performance,
leading to minimizing its running time, saves also energy because the faster the execution
is completed, the earlier the computer is back to idle and can be put in an energy
saving mode. Thus, a �rst green programming practice consists in developing e�cient
algorithms using for example multithreading and vectorization for parallel executions.
Sabharwal et al. [51] described such recommendations and techniques to build energy
e�cient software, and focused on reducing energy consumed by idle software instances.
Authors have studied di�erent idle applications, e.g., a media player which is open but
not playing anything, or an open internet browser not displaying any site, and measured

1SPECpower_ssj2008 results are available at https://www.spec.org/power_ssj2008/results/.

11

https://www.spec.org/power_ssj2008/results/


CHAPTER 2. ENERGY PROPORTIONAL COMPUTING: STATE OF THE ART

their power consumption. They advise programmers to limit as much as possible waiting
loops and active polling that frequently wake up the CPU and result in wasting electricity.

In the same lines as energy proportional computing, Saxe [52] claimed that the amount
of resources consumed should be in direct relation with the amount of work actually
done by the application. He detailed some key principles to reach this objective such as
reducing unnecessary computation, using event-triggered actions instead of active waiting.
He also recommends to perform input and output accesses in batches as well as avoiding
memory leaks and freeing no longer needed memory.

More optimizations can also be done during the code compiling process. This is what
Fakhar et al. [23] proposed with their green compiler. It aims at making code more energy
e�cient by applying several techniques which are cache skipping, using register operands,
clustering and reordering instructions, loop optimization and so on.

While these green programming practices are important to consider when possible,
sometimes users are not authorized to modify the code of the applications they are work-
ing with. Even if they can, it may be fastidious to modify a large number of existing
lines of code, and the impact on server's energy consumption may not always be worth
the e�ort. That is why it is necessary to couple green coding with energy savings actions
at runtime.

2.2.2 At Server Level

At the server level, two main approaches can be distinguished: shutdown, which focuses on
improving switches towards energy saving modes and back, and slowdown, which consists
in making the dynamic consumption more related to the actual work performed.

Static costs are tackled by shutdown approaches, which propose to put the processor
in some low power modes when it is not active. The Advanced Con�guration and Power
Interface (ACPI) speci�cation [2] de�nes di�erent C-states : C0, the operating state dur-
ing which P-States can be chosen, and C1 to Cn, the idle states during which some
processor's components are disabled to save energy. The higher the number of Cn, the
less energy the processor consumes and the longer it takes to make it active again. ACPI
also de�nes several sleep states S-states, during which most of the system is powered
o�, except the network card that stays active to support Wake-on-LAN. S-States include
Suspend-to-RAM, commonly called Standby mode, and Suspend-to-Disk, also referred to
as Hibernate mode.

As transitions between idle or sleep states and active state are quite long, idle pe-
riods should be enough long to bene�t from these techniques and save energy. Indeed,
in [3], Amur et al. proposed IdlePower, a solution that batches timing interrupts sent
to virtual machines in order to maximize the duration of idle periods and consequently
the amount of time spent in deep C-states. However, they also noticed that application
performance is degraded when idle management is too aggressive because deep C-state
incurs cache losses. PowerNap [41] models how quickly servers would have to switch to
and back from sleep states to achieve energy proportionality for several workloads. Meis-
ner et al. conclude that a transition time of 10ms or less is necessary to achieve signi�cant
energy savings. Unfortunately, today's server are very far from this objective.
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On another level, slowdown approaches concern only the dynamic part of the power
consumption. DVFS, standing forDynamic Voltage and Frequency Scaling is a well known
technique which allows to reduce power consumption of computing systems by adapting
both their voltage and frequency according to the processed workloads. By reducing
the operating frequency of a processor, its voltage can also be lowered, which leads to
a decreased consumption of electricity. Several commercial processors support DVFS
technology, e.g. PowerNow! and Cool'n'Quiet from AMD and SpeedStep from Intel.
Each of these processors can operate at di�erent performance states with prede�ned
frequencies, which are called P-states. On Linux operating systems, CPUfreq enables
to change the frequency according to the chosen governor policy among these several
implementations: performance, which always selects the highest frequency; user-space,
allowing the user to set manually the frequency; on-demand, which automatically adjusts
the frequency; conservative, which also adjusts automatically the frequency but increasing
it progressively; and powersave, which always chooses the lowest frequency.

The limitation of DVFS is that it reduces the performance and consequently lengthens
the execution time. Therefore, it is necessary to determine the most appropriate frequency
scaling in order not to increase the overall energy consumption. Dargie showed in [18],
where he studied the impacts of DVFS in a multimedia server use case, that this technique
enables important gains for I/O bound workload, but it is generally unfavorable when
the CPU is utilized at more than 40% on average. Moreover, this work highlighted that
it is necessary to know the workload to be able to correctly choose the most appropriate
governor policy. As the transitions between frequencies are not instantaneous, on-demand
policy may not be relevant for very bursty workload.

Another server power management technique has been developed by Intel in their
Sandy Bridge processors. It is named RAPL, standing for Running Average Power Limit.
Via this mechanism, a user can specify a power consumption threshold that the proces-
sor will not exceed during a given period. The system then automatically regulates
its behavior to keep its consumption under the limit. The energy savings achieved by
RAPL have been evaluated facing di�erent use-case applications: Subramaniam and Feng
et al. focused on data stores in [55] and Lo et al. on latency critical workloads in [35]. This
power capping technology o�ers better results than DVFS because it can be controlled
at a �ner grain.

All these works at server level are focused mainly on CPU because it is almost always
the most consuming component of a server. According to Barroso et al. in their study
considering data center as a computer [8], CPUs account for approximately 42% of the
energy consumption of a classical data center in 2012. However, other parts are responsi-
ble for the disproportionality of the energy consumed by a server and some improvements
can also be done in those �elds. Memory and storage systems are also responsible for a
substantial amount of a server's energy consumption. Malladi et al. [39] wanted to coun-
teract the energy ine�ciency of Dynamic Random Access Memory (DRAM) by using in
servers memory systems that are originally designed for mobile platforms. As storage
systems are concerned, slowdown and shutdown methods also exist, consisting in reduc-
ing the spinning speed of the disk for instance. Kim and Rotem [31] proposed to reduce
the energy consumed by storage systems by exploiting the data replication usually done
in data centers. As data is replicated, it is easier to get the data from an already spinning
disk instead of waking up a disk that is in sleep mode.
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2.2.3 At Cluster Level

So far we have seen methods to improve the energy proportionality of individual servers,
but we will now change perspective and look at the energy proportionality at the cluster
level. Of course if a cluster is composed of energy proportional servers, there is no doubt
that the cluster will itself have a perfect proportional energy consumption. However,
as such servers do not exist yet, there are actions that can be done at the cluster level
to reach energy proportionality even if it is composed of non proportional servers. The
whole idea resides in powering on only the machines that are needed to meet the current
demand. All unused servers are kept powered o� and are switched on only when they
become necessary. This allows to enhance the energy proportionality of a cluster as its
composition is dynamically adapted to the load �uctuations. Nevertheless, this idea is
not as simple as it seems because switching o� and on a server takes time and consumes
extra power. Hence these actions must be well decided to actually save energy.

Many works have been conducted exploring this idea, and several have named this
approach cluster resizing, or Dynamic Provisioning. In one of the earliest works, in
2001, Pinheiro et al. have proved with simple experiments the potential energy savings of
dynamic provisioning for a small cluster of 8 servers serving web applications [47]. The
minimum of physical nodes is powered on while the load is balanced among them.

Later, with the apparition of virtualization technologies, the concept of Consolida-
tion, which consists in colocating several virtual machines on the same physical server in
order to minimize the quantity of utilized resources, has allowed to broaden the range
of applications. It was made possible thanks to the mechanism of Live Migration [14],
which is used to dynamically move virtual machines from a physical server to another
without much impacting the performances of the applications running inside. When sev-
eral virtual machines have little load, they can be hosted on the same server, and as soon
as one of them needs more resources, a new physical machine can be provisioned and this
virtual machine migrated to it.

Most consolidation approaches are based on heuristics algorithms, whose goal is to
solve variants of the bin packing problem, where virtual machines must be packed on
physical servers while respecting their resources requirements e.g., CPU or memory uti-
lizations. More original alternatives have been proposed, for instance Feller et al. [24]
have developed a nature-inspired algorithm based on the Ant-Colony meta-heuristic to
compute the workload placement dynamically according to the current load. Hermenier
et al. used constraint programming in [29], allowing them to take recon�guration over-
heads into account. Live migration being a costly process in terms of time and energy, it is
necessary to use it wisely. Balouek-Thomert et al. [7] proposed to perform dynamic server
provisioning at the middleware level, while taking into account energy-related events and
user preferences concerning performance and energy ratio. A more complex problem has
been approached by Ardagna et al. as they focused on web services placement across
multiple geographically distributed cloud sites [4]. Consequently, they have de�ned two
types of actions: resource provisioning at mid-long term across di�erent cloud sites, and
virtual machine provisioning inside a same site at short term.

Tolia et al. [57] have widen their study of cluster level energy proportionality as they
also measure the energy consumed by cooling systems. Indeed, they proposed a predictive
approach to control the fans. They showed that both servers and cooling systems can get
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closer to energy proportionality is they are well managed.
Finally, Wong and Annavaramn [61] have evaluated the in�uence of server level energy

proportionality on cluster level. As servers are becoming more and more proportional,
they wanted to know if highly energy proportional servers would exempt more energy
managements at cluster level. The conclusion is that even if server level proportionality
has a direct impact on cluster level, since idle servers' consumption is not close to zero
and on/o� switches are still lasting too long, there is still a need for more energy e�cient
managements at cluster level.

The main limitation of these cluster-level actions resides in the homogeneity of com-
puting resources that does not allow a �ne grained provisioning. Servers have an im-
portant processing capacity and an important energy consumption, thus a decision of
switching on or o� a server has a big impact on the infrastructure. Therefore, some
researchers have recently gained interest for low power processors and started to study if
they can o�er more energy e�cient platforms.

2.2.4 Low Power Processors Clusters

With the emergence of mobile devices, hardware designers have been constrained to con-
ceive low power processors to extend battery life. Moreover, they were also encouraged to
build more and more powerful processors as many applications running on smartphones
and tablets are highly resource intensive, e.g., games, video streaming, geolocalized ap-
plications. Mobile processors are mainly based on ARM architecture, which uses Reduced
Instruction Set Computing (RISC). Design of RISC processors requires less transistors
than traditional x86 processors based on Complex Instruction Set Computing (CISC),
that is why their power consumption and costs are reduced.

As mobile processors feature a good performance to power ratio, they seem to be
good candidates for building energy e�cient supercomputers. The European project
called Mont-Blanc, started in 2011 [56], aims at designing a new type of architecture for
HPC using energy e�cient mobile processors. They were the �rst to propose a prototype
HPC cluster built from ARM multicore processors, which they named Tibidabo. They
performed many experiments with HPC workloads and concluded that applications that
scale to a larger number of parallel nodes bene�t from this platform having competitive
performance and energy e�ciency compared to standard servers [48]. However, they also
found some limitations as their prototype was based on �rst generation of 32-bit ARM
processors. Indeed, the new 64-bit ARMv8 architecture brought some improvements and
in particular double-precision �oating-point computing.

Other works have studied the use of low power processors for handling data center
workloads like web servers and big data applications. Varghese et al. [59] showed that
the popular Raspberry Pi is e�cient for hosting static web servers while consuming less
power than a standard server. Loghin et al. [36] also concluded that ARM processors of-
fer interesting consumption-performance ratios for database query processing compared
to an Intel Xeon processor. On the other hand, these studies show performance limita-
tions, concluding that these low power equipments cannot compete with standard servers
for more demanding workloads such as dynamic web servers or I/O intensive big data
applications.
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Several hardware vendors have started to propose server solutions based on ARM
processors, and HP Moonshot [45] is one example. It exploits the concept of Disaggre-
gated Server design where servers are disaggregated and resources, such as processors,
memory and I/O ports are arranged in resource pools constructing processing pools,
memory pools and I/O pools. The HP Moonshot system is a software-de�ned server as
the company proposes to choose among di�erent processors to optimize performances for
speci�c workloads. Their ARM based solution is said to be optimal for web infrastructure.

As a conclusion, clusters composed of low power processors are very promising re-
garding energy proportionality, but are not necessarily suitable for all types of workloads.
That is why heterogeneity seems to be the solution to take advantage of both low power
processors and powerful servers.

2.3 Bene�ts of Heterogeneity in the Infrastructure

2.3.1 Inspirations from the Mobile World

To be even more e�cient and further extend the battery life of mobile devices, hetero-
geneous multicore processors were introduced. ARM was the �rst to propose a hetero-
geneous architecture, which they called ARM big.LITTLE, [6] consisting in putting two
di�erent processors on the same board. The idea is to o�er a processor with very low
power consumption that delivers low-level performance, and a more powerful, and con-
sequently more power consuming processor, to process more intensive tasks. Indeed, this
technology takes advantage of the dynamic usage pattern of smartphones and tablets.
These devices alternate between highly intensive tasks such as initial web page render-
ing and game physics calculation, and low processing intensity tasks such as reading a
web page, waiting for user input, and light tasks like texting, e-mail and audio. ARM
big.LITTLE has a total of eight cores, four cores for each type of processors: �little� is a
Cortex-A7 and �big� is a Cortex-A15. The two processors are connected through a cache
coherent interconnect which allow transparent and e�cient data transfer between them.

When the processor �rst came out, its �rst implementation, termed Clustered Switch-
ing, only allowed to use one cluster at a time, either the big or the little one. Then the
In-kernel switching approach proposed to pair each big core to a little one, resulting in a
4 core heterogeneous processor as only one core of each pair could be used at a time. To
bene�t from the full potential of big.LITTLE, the best model is Global Task Scheduling
(GTS), giving the ability to schedule tasks on all the cores at the same time. ARM has
also developed a kernel space patch based on GTS that keeps track of load history as
each thread runs, and uses this data to anticipate the performance needs of the thread
next time it runs.

Samsung has implemented this architecture in their Exynos Octa boards. They can
be found for example in Samsung Galaxy S4 ans S5 smartphones. Once 64-bit ARMv8
architecture was released, a new version of ARM big.LITTLE has been created with the
two processors Cortex-A53 and Cortex-A57. This latter powered Samsung Galaxy Note
4 and Galaxy S6 series among others.

Mediatek went even further by designing the �rst three-cluster processor, the Helio
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x20. It is a deca-core processor composed of a dual-core ARM Cortex-A72 operating at
a frequency up to 2.3 GHz, a quad-core ARM Cortex-A53 up to 1.85 GHz and another
quad-core Cortex-A53 up to 1.4 GHz. It is embedded in the smartphone Meizu MX6
available since July 2016. Mediatek has recently revealed its new Helio x30 processor,
using a 10nm manufacturing process, containing ARM Cortex-A73 and A35 cores, with
huge performance capabilities and an improved power management.

2.3.2 Motivations for Heterogeneity in Data Centers

The trend of heterogeneous multi-core processors, in the same inspiration as the archi-
tecture of ARM big.LITTLE, has emerged in data centers. An example is the prototype
QuickIA by Intel. This heterogeneous platform gathers one Intel Atom processor and one
Intel Xeon processor, which are representative of two opposite architectures. The Xeon
is a high-performance server-class architecture, while the Atom is a low-power micro-
architecture targeted for mobile devices. Cong and Yuan [15] have developed a scheduling
approach to take advantage of this heterogeneous platform. They used a regression model
to estimate the energy consumption of each processor and take scheduling decisions ac-
cordingly. The drawback is that this approach requires the code to be instrumented to
be able to predict the execution time and associated energy consumption.

Wong et al. have proposed KnightShift [62]. It consists in a motherboard containing
a regular server processor, called Primary Server, and a low power processor, called the
Knight. This latter is always powered on, and wakes up the primary server only in
case of high load. In fact, they have de�ned several possible architectures and studied
di�erent processor candidates. As it is not simple to design custom motherboard, they
have implemented KnightShift at the server level by using an Intel Xeon and an Intel
Atom connected through their network interfaces.

In the European project CoolEmAll [33], that aimed at improving energy e�ciency
of data center by working on models, simulations and visualization tools, they used a
heterogeneous server board called RECS for Resource E�cient Computing System devel-
oped by Christmann [12]. This server has a very high density as it consists in 18 single
CPU modules of three di�erent architecture types, from Intel Atom to Intel i7, and each
node is equipped with thermal and energy sensors which facilitates monitoring.

The heterogeneity can also come from a computing architecture di�erent from tradi-
tional processors. Nvidia introduced in 1999 the �rst Graphics Processing Unit (GPU),
which is a specialized electronic circuit dedicated to graphics rendering. A GPU is able
to render images faster than a CPU because it has a parallel processing architecture that
allows to process large blocks of data as multiple calculations are done at the same time.
This characteristics made the GPU an interesting processing unit for High Performance
Computing (HPC). Indeed, if a computation is performed faster, it often implies that
the energy consumed is decreased, but GPU represent also an energy overhead compared
to CPU, that is why some researchers started to evaluate GPU's energy e�ciency. Enos
et al. [22] evaluated the energy improvement, quanti�ed in performance-per-watt, for four
di�erent applications that have been ported to work on GPU. Authors concluded that
although using GPU increases signi�cantly power consumption, the resulting acceleration
also incurs a reduction of the overall energy consumption.
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The fact of using GPU to process computation that is traditionally handled by CPU,
is called General-Purpose Computing on Graphics Processing Units (GP-GPU). It is fa-
cilitated by the framework Open Computing Language (OpenCL), which allows to write
programs that will be executed across heterogeneous platforms, i.e., both on CPU and
GPU. Thanks to this framework, it is no longer necessary to write two versions of the
same code: one dedicated to run on GPU and one for CPU. CUDA is a parallel computing
language by Nvidia and an implementation of the OpenCL standard. Ma et al. proposed
GreenGPU [38], an energy management framework for GPU-CPU heterogeneous archi-
tectures. Their work consists in two steps: First, workloads are dynamically split and
distributed to GPU and CPU based on their characteristics, so that both sides can �nish
approximately at the same time. Therefore, the energy consumed when staying idle and
waiting for the slower side to �nish is minimized. Second, the frequencies of CPU, GPU
cores and memory are dynamically adjusted, based on their utilizations. They achieved
important energy savings thanks to this advanced management.

Custom heterogeneous boards are not easy to build nor maintain, and GPU requires
extra programming e�orts. Heterogeneity can simply resides in the fact of using di�erent
types of servers in the same data center. This idea is not brand new as heterogeneity
tends to naturally appear in data centers with time. Heath et al. [28] argued that main-
tenance can result in replacing some components with more powerful ones as computing
needs were increasing drastically a decade ago, while cost versus performance ratios were
decreasing. They advocated the use of an e�ciency metric and the need to model the
di�erent types of nodes with respect to this metric. In their work, they used modeling
and optimization to minimize the energy consumed per request in a web server use case.

Nathuji et al. [43] have also shown that resource heterogeneity can be exploited
to improve energy e�ciency. They were able to perform an e�cient workload allocation
with an analytical prediction model for computing power and performance of the di�erent
architectures with their respective power management capabilities.

While these two approaches consider successfully bene�t from resource heterogeneity,
they mostly consider it as a fatality. With the democratization of low power processors,
several following works, including this thesis, support the idea of deliberately choosing a
set of heterogeneous machines when building a data center. Chun et al. [13] made the
case for hybrid data centers, meaning composed of heterogeneous machines, based on
the observation that some applications have signi�cantly di�erent performance per watt
on di�erent platforms. Indeed, they have also selected the Intel Atom processor for its
low power consumption, and Intel Xeon for high performance. They have performed
experiments with various workloads such as web services, data mining, video conversion,
and they highlighted that workload characterization is crucial to decide which processor
will perform the most e�ciently. The work of Krioukov et al. [32] also used these two
same processors while focusing on web services. They have proposed several dynamic
provisioning algorithm, computing the number of machines that should be on or o�
depending on the load evolution, but their evaluations are not based on real load traces.

Da Costa compared the energy e�ciency of three di�erent processors: Intel I7, Intel
Atom and ARM Raspberry Pi, and evaluated the energy savings that could be achieved
in a heterogeneous data center serving web services [16]. This work has only shown pre-
liminary results for a best-case scenario, without taking into account energy and time
overheads of machines switches on and o�.
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To wrap up, these heterogeneous solutions either rely on very speci�c and complex
designs, or lack some aspects that prevent them to be implemented in reality. In this
thesis, we are building a heterogeneous data center with existing hardware, and we develop
scheduling algorithms which consider the di�erent overheads and temporalities of the
recon�guration actions.
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� Chapter 3 �

Feasibility of Highly Heterogeneous
Data Centers

In this chapter we describe the preliminary studies and experiments concerning the virtu-
alization technologies and how they can be used with heterogeneous computing resources.
The results that we have drawn from these studies have guided us for the rest of our work.

3.1 Description of the Goals and Problems

Our main goal is to save energy by building an energy proportional data center with
a set of heterogeneous machines to bene�t from their di�erent power consumption and
performance characteristics. We consider a high heterogeneity because we want to mix
ARM low power processors and x86 traditional servers inside a same infrastructure. The
problem is that these two kinds of machines have di�erent Instructions Set Architecture
(ISA). Consequently, it is necessary to evaluate the challenges brought by this hetero-
geneity, and to �nd the possible solutions to make these architectures compatible and
both e�cient.

Ideally, the objective would be to have the least amount of constraints concerning the
applications types, and the fewest possible changes from typical data center management.
That is why we have lead a study on the virtualization solutions available both on ARM
and x86 architectures. Indeed, virtual machines or containers can embody any types of
applications. The goal of this technical study is to determine if there exists a solution,
whichever it is, that would enable executing applications across heterogeneous computing
resources, and migrating application instances from one type of machine to another.

3.2 Study of Virtualization Solutions for ARM and x86

3.2.1 Virtual Machines

Virtualization allows multiple operating systems (OS) to execute concurrently on the
same physical hardware, usually called the host. The operating system running on the
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host is consequently named host OS. Each virtual machines (VM) can have its own oper-
ating system, also referred to as guest OS. The virtualization software, called hypervisor,
is supposed to simulate hardware components so that each guest can concurrently access
them. However, several levels of virtualization are de�ned. In full virtualization, every-
thing is perfectly simulated in a way that all guest OS can run with no prior modi�cations.
It is opposed to paravirtualization, where not all the hardware parts are simulated for per-
formance improvements, and the guest can sometimes bypass the hypervisor and execute
some tasks directly in the host domain.

We also distinguish two types of hypervisors. Type 1 is a separate software component
that runs directly on the hardware and provides an abstraction to the virtual machines
running on top of the hypervisor. A popular example of type 1 hypervisor is Xen. Type 2
runs an existing OS on the hardware and run both virtual machines and applications on
top of this OS. Usually, this type of hypervisor slightly modi�es the host OS to facilitate
the execution of virtual machines. For instance, KVM is an example of type 2 hypervisor
and is integrated in Linux and available as a loadable driver.

On x86 platforms, virtualization has already existed since the late 1990s, but it needed
complex software techniques. In 2005 and 2006, both Intel and AMD introduced new
processor extensions designed to ease the virtualization processes. This approach is known
as hardware-assisted virtualization or accelerated virtualization.

ARM architecture di�ers a lot from x86 and it is not classically virtualizable [46].
Therefore, full virtualization of ARM platform has not been explored a lot, and su�ered
from poor performances. The development of ARM virtualization has really started
when hardware virtualization extensions have been created in the latest ARMv7 and
ARMv8 architectures. For instance, ARM Cortex-A15 was the �rst ARM processor with
virtualization support. It has been released in 2012, and its �rst implementation was the
Samsung 5 Dual board inside the Samsung Chromebook Series 3, and later in the Google
Nexus 10 tablet.

KVM/ARM was the �rst hypervisor to use ARM virtualization extensions to run
unmodi�ed guest operating systems [17]. As a result, KVM is available on all ARM
platforms running a recent version of the Linux kernel as KVM/ARM has been merged
in Linux kernel version 3.9, released in April 2013. Xen on ARM has been available since
Linux kernel 3.7, but it necessitates some drivers development for the guest OS to be
executed with paravirtualization.

3.2.2 Containers

As we are not tied to the virtual machine technology, but are only looking for a way to
easily migrate applications between heterogeneous machines, we have studied the solution
o�ered by containers. It is a technique of virtualization at the operating system level. In
this case, the kernel of the host OS is shared and accessed by multiple isolated user-space
instances. All these instances, called containers or sometimes jails in reference to their
isolation property, look like real servers from the users point of view. This technique
implies very little to no overhead and does not require any hardware virtualization ex-
tensions. However, it is not �exible as all containers instances can only be running the
same operating system and even the same kernel as the host. Some proprietary solutions
exist for Windows, but the majority of approaches are based on Linux. We have selected
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two implementations that seem to have interesting characteristics, and studied if we can
use them for our purpose.

OpenVZ, whose initial release was in 2005, uses a patched Linux kernel and works both
on x86 and ARM. Its advantage is that it has a live migration feature. Unfortunately,
this live migration technique has a longer downtime than virtual machine's migration,
and is not operational on ARM architectures. LXC, also known as Linux Containers,
initially released in 2008, uses the cgroups functionality of the Linux kernel which enables
resources limiting and prioritizing concerning CPU, memory, I/O, etc. It is consequently
available in the mainline Linux kernel since version 2.6.29. It has gained more attention
in 2014 because a company called Docker was using it to propose a promising tool to
package any application and run it on any Linux platform. It quickly became popular and
since then its development has never stopped growing. LXC is also working both on x86
and ARM, but does not have any live migration feature. The CRIU project, standing for
Checkpoint/Restore In Userspace, was launched to achieve the goal of checkpointing and
restarting Linux containers, but it was not yet completed when we started this study,
and is still under development now.

3.2.3 Synthesis and Preliminary Choices

All the characteristics of chosen virtualization and containerization solutions are synthe-
sized in Table 3.1.

Virtual machines Containers
Xen KVM LXC OpenVZ

On x86 yes yes since 2.6.29 patched kernel
On ARM since 3.7 since 3.9 since 2.6.29 patched kernel
Live migration yes yes not yet (CRIU project) yes, but only x86
Guest OS any any only Linux based only Linux based

Table 3.1: Comparison of virtualization and containerization solutions

This comparison leads us to further study the virtual machine solution. It is the most
common approach in data centers and also the most generic solution as it imposes the
least number of restrictions. KVM was our favorite technology for its easy availability
in the Linux kernel and because it is closely linked with QEMU, short version of Quick
Emulator. This technology can run a variety of unmodi�ed guests by emulating the
guest hardware and processor with binary translation. The way QEMU/KVM works is
the following: if the host and the guest architectures are the same and the host features
virtualization extensions, KVM uses them and run the guest at a near-native speed; if
the guest has a di�erent architecture from the host, QEMU uses binary translation to
do emulation, which implies some computation overheads. We focus on this emulation
technology as it appears to be a solution to make ARM and x86 architectures cohabit in
the same data center. But �rst we need to measure and evaluate the emulation overheads
to see if they are bearable costs or not.
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3.3 Performance Comparison between ARM and x86

3.3.1 Intended Use of Virtualization and Emulation

We have seen that virtualization extensions are available on both ARM and x86 architec-
tures. But as we propose to gather both types of machines in the same infrastructure, we
want to be able to migrate virtual machines across all physical machines. The architecture
of the virtual machine is �xed and can not change during its execution. The idea is that
this virtual machine is executed using virtualization extensions if it running on the right
architecture, while executed via emulation when it is on a di�erent architecture. Indeed,
emulation allows to translate a binary code written in one instruction set, the source, to-
wards another instruction set, the target. As QEMU/KVM automatically detects if the
hardware has virtualization capabilities, our assumption is that when migrating a virtual
machine between two di�erent types of host, the software will automatically switch from
emulation to virtualization extensions, or the opposite.

Figure 3.1 pictures the two alternatives for the virtual machine architecture and their
underlying functioning. First and last cases have low or no overhead thanks to the virtual-
ization extensions, while the two cases needing binary translation su�er from performance
degradations due to emulation.
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Figure 3.1: Two alternatives for virtual machines architectures: using emulation or vir-
tualization extensions

We lead a performance study of emulation for both architectures in order to decide
which solution would be the best. As emulation is very compute intensive, we already
supposed before starting the experiments that emulation on ARM host would not provide
excellent results. Giving the high performance of x86 servers, our hope was that emulating
the ARM instruction set would not be too costly and would still provide better results
than a native ARM processor. Nevertheless we wanted to measure the performances of
both alternatives in order to have a complete study.

The emulation software QEMU features di�erent operating modes. The �rst one is
system emulation, which emulates a full computer system, including its peripherals, run-
ning any guest OS. The second one is user-mode emulation, which only runs programs
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that were compiled for a di�erent instruction set. Even if system emulation of x86 pro-
cessor is available on the ARM version of QEMU, we have never managed to successfully
boot an x86 based virtual machine on the ARM processor we used. Consequently, to be
able to complete a full study of both sides, we decided to use user-mode emulation and
compare two types of executions: native or emulated, of two program versions: compiled
for ARM or x86.

3.3.2 Selected Hardware and Setup

ARM Cortex-A15 is the chosen processor to represent ARM architecture as it is the �rst
to implement virtualization extensions. It was �rst available in the Samsung Chromebook
in 2012, and inside the HP 11 Chromebook in 2013, which both feature the same system-
on-chip (SoC), the Samsung Exynos 5250, containing a dual core ARM Cortex-A15 with
a frequency of 1.7 to 2 GHz. Note that Cortex-A15 is the same processor as the �big�
processor of ARM big.LITTLE. As their code names suggest, these notebooks come with
Google Chrome OS. To be able to use KVM software and bene�t from the virtualization
extensions it is necessary to install a Linux distribution, and in particular the Linux
kernel version must be equal or posterior to 3.9. In fact, Chrome OS is already a Linux-
based OS, but for these Chromebook it uses a kernel version of 3.8.11, not supporting
virtualization extensions. Moreover, installing Linux on ARM platforms is not as easy
as it can be for x86 architecture. ARM systems lack ways for hardware discovery such
as a standard BIOS or PCI bus. As a consequence, Linux kernel developers must write
speci�c �les, called device tree sources (dts) describing each ARM hardware.

At the time we worked with the HP Chromebook, it was not supported by Linux as
its dts �le did not exist yet 1. Instead we made it run an Ubuntu distribution based on
the same kernel of the Chrome OS already installed. To measure its power consumption,
we use the powerstat Ubuntu package which retrieves monitoring data from the battery
via the Advanced Con�guration and Power Interface (ACPI).

On the contrary, Samsung Chromebook was already supported because as the �rst
available device with the ARM Cortex-A15 processor, it was of great interest for de-
velopers to be able to use virtualization extensions. We have installed on the Samsung
Chromebook an Ubuntu version 12.04 with a Linux kernel 3.13, and installed QEMU
2.0 with KVM acceleration capabilities. We used an external watt-meter called Plogg to
measure the instantaneous power consumption of the machine.

We have selected x86 servers available on the Grid'5000 testbed for our experiments.
Grid'5000 is a French experimental platform, geographically distributed over 11 sites in
France and Luxembourg, dedicated to scienti�c research concerning large scale infras-
tructures [10]. It is very convenient as some clusters are equipped with power monitoring
systems accessible via an API named Kwapi [49]. We have chosen an Intel Xeon processor
and an AMD Opteron from monitored clusters located respectively in the cluster named
Taurus of Lyon and the Parapluie cluster of Rennes. We �nd relevant to select two kinds
of x86 servers because it allows to highlight the possible di�erences between two gener-
ations and two constructors of quite similar servers. Both servers run a Debian Wheezy

1HP Chromebook 11 is now supported by Linux as its dts �le was included in mainline Linux kernel
in 2015.
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operating system with QEMU 1.7 installed. In Lyon, electrical consumption is acquired
with wattmeters from Omegawatt, whereas in Rennes monitored Power Distribution Units
(PDU) from EATON are used and power data is fetched via SNMP requests.

Characteristics of the hardware are gathered in Table 3.2. One striking point is the
huge di�erence between idle consumptions. Parapluie's idle power is more than 20 times
greater than the Chromebook 's, and 2 times greater than Taurus 's. The upper bound
corresponds to the maximum power consumption measured when the processor is fully
loaded, using as many instances of cpuburn benchmark as the number of cores.

Codename Chromebook Taurus Parapluie
Fullname Samsung / HP 11 Dell HP Proliant

Chromebook PowerEdge R720 DL165 G7
Architecture ARMv7 32 bits x86 64 bits x86 64 bits
CPU 1 x 2 x 2 x

Cortex-A15 Intel Xeon E5-2630 AMD Opteron 6164
Total Nb of Cores 2 12 24
Range of Power
Consumption 5 � 25 W 96 � 227 W 180 � 280 W
Release year 2012 / 2013 2012 2010

Table 3.2: Summary of selected hardware and their characteristics

3.3.3 Benchmark Results: Native vs. Emulated Performances

Performance Only

We made experiments with QEMU User Emulation, a tool which allows to execute bi-
naries compiled for a di�erent architecture by dynamically translating the instructions
during the execution. Not all types of program can be executed through dynamic trans-
lation, it needs to be an application compiled with statically linked libraries. We have
selected the synthetic benchmark program nbench [40]. It is a simple program written
in C, which is composed of several subprograms designed to test CPU capabilities of
a machine. Among those subprograms, we have chosen the IDEA encryption bench-
mark to evaluate integer computation, and the Fourier coe�cients algorithm for �oat
computation. We have compiled the program with static libraries in two versions: one
compiled for ARM architecture, the other for x86. We have executed these two versions
on each selected machines: natively when the architectures of the host and the program
are the same, and with QEMU in user emulation mode for binary translation when the
architectures di�er.

Table 3.3 shows the native and emulated performances for the three machines previ-
ously described. Results are expressed as the maximum number of iterations per second
reached during the benchmark execution. The column �Overhead� represents the ratio
between emulated and native performances.
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Native Emulated Overhead

(Iterations/sec) (Iterations/sec) Native/Emulated
Int Float Int Float Int Float

Chromebook (ARM) 8233,9 27 251 932,46 604,07 8,83 45,11

Taurus (x86) 102 893,9 380 437 11 479,22 11 153,06 8,96 34,11

Parapluie (x86) 113 569,8 320 823 15 239,46 12 599,76 7,45 25,46

Table 3.3: Native vs Emulated performances for each hardware. Colum �Int� refers
to IDEA encryption, and �Float� to Fourier coe�cients of nbench benchmark, while
�Overhead� represents the ratio between emulated and native performances.

We realize that the order of magnitude of the overhead is the same no matter the
underlying physical architecture. For integer computation the emulation is between 7 to
9 times slower, while for �oat computation the overhead is much more important, from 25
to 45 times, the largest being not surprisingly for the ARM processor of the Chromebook.

Even if x86 processors are natively more powerful than ARM processors, (about 12 to
13 times in our selection) the important overhead causes the emulation to slow down a lot
all the processors. We can even notice for �oat computing that the ARM native execution
is in fact more powerful than the emulated execution on x86 servers. Indeed, if we consider
the ARM compiled �oat benchmark, the Chromebook reaches 27 251 iterations per second
whereas Taurus and Parapluie reach respectively 11 153,03 and 12 599,76 iterations per
second.

Performance and Power Consumption

As we are aiming at reaching energy proportionality, we are not only interested in per-
formances but also in the associated power consumption. That is why we measured the
power consumed by the machines during benchmark executions. Figures 3.2 and 3.3
represent the average instantaneous power consumption for hardware over an evolving
performance level from 0 to maximum, expressed in number of iterations per second of
the IDEA encryption benchmark. The starting point of each curve corresponds to the
average power consumption in idle state, and the ending point to the average power
consumed during a complete execution of the benchmark. To obtain intermediate data
points, we have slightly modi�ed the nbench benchmark by introducing nanosleep calls
in order to reduce the maximum performance. The benchmark is run �ve times with �ve
di�erent durations of sleep, resulting in �ve data points for each hardware, approximated
with a linear �tting to get the �nal curves.

Each graph plots three curves corresponding to our three selected hardware presented
in Table 3.2. The most powerful is the Parapluie server, and it de�nes the maximum
scales of our graphic. The two other curves are also endless because we repeat the power
consumption pro�le to simulate the fact of having multiple servers of each type. The least
powerful hardware is the ARM Chromebook, but because of its very low consumption it
can be repeated several times and still �t in the graph. The maximum performance of one
single Chromebook is symbolized by the vertical dashed line. On the opposite, when we
repeat server Taurus, it shortly becomes out of scale because its static idle consumption
is too important.
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Figure 3.2: Average power consumption (Watts) regarding the number of iterations per
second of the same ARM program (IDEA benchmark) on 3 di�erent hardware devices
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Figure 3.3: Average power consumption (Watts) regarding the number of iterations per
second of the same x86 program (IDEA benchmark) on 3 di�erent hardware devices
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Figure 3.4: ARM solution compared to ideal proportionality (IDEA benchmark)
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Figure 3.5: x86 solution compared to ideal proportionality (IDEA benchmark)
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Figure 3.2 corresponds to the case depicted in Figure 3.1(b) where the executed pro-
gram is compiled for ARM architecture. The program is executed natively on Chromebook
and through dynamic translation on Taurus and Parapluie. On the opposite, Figure 3.3
represents what happens in the case of Figure 3.1(a) where the target architecture is
x86 and the emulation only concerns Chromebook. When we compare the two graphs,
and especially when we observe the maximum number of iterations per second, we can
�nd the overhead of emulation discussed in Table 3.3. The overall total performance is
reduced by 7.45 times when we use an ARM binary.

For the ARM alternative on Figure 3.2, we see that x86 architectures o�er poor per-
formance for power ratios because if the execution of the program could be distributed on
two ARM machines, then it would always be the most relevant con�guration concerning
energy consumption. If we cannot consider program parallelization, then Taurus would
be the chosen platform from approximately 8000 to 110 000 iterations per second, and
Parapluie would be the most e�cient passed this level of performance. This creates a
result not far from energy proportionality as we observe on Figure 3.4.

On the other hand, for x86 program on Figure 3.3, the performance of ARM platform
is very low as it is drastically reduced due to dynamic translation. Consequently, what
we can observe on the zoom area is that the Chromebook would be chosen until about
900 iterations per second if no parallelization, and until approximately 3600 iterations
per second, which represents 4 Chromebook nodes, if parallel execution is possible. Con-
sidering the last perspective, the energy consumption is thus reduced for the �rst 1/30th
of the total performance, and the global shape is still far from proportionality as shows
Figure 3.5.

With Figures 3.4 and 3.5, we want to picture how far from proportionality this so-
lution could be. For each level of performance, it shows only the most energy e�cient
hardware. We also plot an ideal curve which starts from 0 and is strictly proportional
until the maximum point, corresponding to the average power consumption when the
most powerful hardware of our platform reaches its maximum number of iterations rate.
Only a 1-1 relation is considered here as if parallelization would not be possible.

When analyzing the ARM alternative pictured in Figure 3.4, we can see that the
ARM hardware leads to important energy savings. In fact, its curve is way under the
ideal, except for the very beginning because its idle power consumption is not equal to
zero. Moreover, having these two di�erent x86 servers is also a good leverage and allows
to better stick to the ideal proportionality line. This con�rms the assumption we made
when selecting two di�erent kinds of x86 hardware, and we can interpolate and imagine
that even more recent servers would add more proportionality. Nevertheless, even if this
alternative seems not far from proportionality, it is not optimal because it wastes the
potential performance of x86 servers.

In the x86 alternative shown in Figure 3.5, the gains from ARM hardware are only
pro�table for a reduced part of low performance, that we can only see on the zoomed part
of the graph. The most predominant hardware is Taurus, and we realize that Parapluie
only brings a small improvement in performance but consumes a lot more than Taurus
most of the time. This can be justi�ed by the fact that the Dell PowerEdge R720 (i.e., the
Taurus hardware) is the most recent server of our selection, and the energy e�ciency
aspect must have been better considered during its design.
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3.4 Virtual Machine Migration between ARM and x86

We have performed some experiments of live migration with an ARM based virtual ma-
chine. As previously explained, we could only use an ARM virtual machine because
x86 emulation on ARM devices with QEMU was not fully e�ective at the moment. We
have built an ARM virtual machine with Debian Wheezy OS that emulates the board
Versatile Express A15 containing one virtual ARM Cortex-A15 processor, with a 4 Go
virtual disk. As it has one virtual CPU, it only executes itself on one core of each host
machine. We used Libvirt version 1.2.9 as VM manager. Hardware used is an HP 7800
server with an Intel Xeon E5620 CPU, and the ARM Samsung Chromebook. They are
both monitored with external wattmeters WattsUp Pro and power data is acquired and
stored with Kwapi API [49].

Due to technical limitations, we only managed to migrate the virtual machine from
the x86 server to the Chromebook, and not the opposite way. The virtual machine is �rst
started on the server where it is executed thanks to emulation. The migration is launched
with Libvirt, and as soon as the virtual machine is fully migrated on the Chromebook,
it is executed using KVM and the virtualization extensions. The virtual machine was
running a web server serving static contents, which stays operational after the migration.

Figure 3.6 presents the dynamic power consumption of each host during the process
of virtual machine migration. To be able to compare the two curves more easily, we
substract the idle consumption to the measured consumption of each machine to show
only the impacts on dynamic power (The idle consumptions are respectively 5 Watts for
Chromebook and 149 Watts for HP 7800 server).
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Figure 3.6: Dynamic power consumption (Watts) during live migration of ARM virtual
machine from Big (HP 7800 Workstation) to Little (Samsung Chromebook)

31



CHAPTER 3. FEASIBILITY OF HIGHLY HETEROGENEOUS DATA CENTERS

The live migration duration is 8 seconds for this example, which corresponds to a data
transfer of 53 Megabytes. The two physical machines are linked with a 1GB switch and
cables, but as the Chromebook does not have an Ethernet port, we use an Ethernet to USB
2.0 adapter which may reduce the network throughput. Concerning power consumption,
we notice a signi�cant overhead for the source host, about 9 watts when starting the
migration. On the destination host there is an increase in power consumption when
receiving the virtual machine but then the power stabilizes shortly.

3.5 Discussions and Conclusions

The benchmarks results shown in this chapter con�rm the interest of having both ARM
and x86 architectures in the same infrastructure to approach energy proportionality.
Indeed, the ARM processor we have studied, ARM Cortex-A15, has a very low power
consumption compared to standard x86 servers. But not surprisingly its performances
are also lower, especially for �oat computation. It results in a large performance gap
between ARM Cortex-A15 and x86 servers for this type of applications. This gap can be
reduced if parallel execution on multiple ARM nodes is possible. Additionally, it could
be interesting to broaden the range of architecture types and look for ones that �t inside
the gap regarding performance and energy consumption. Our intuition is that ARMv8
64bits architecture, which promises better performances than Cortex-A15 (ARMv7 32
bits) could allow to get even closer to energy proportionality.

We have explored possible solutions to use the two architectures in a transparent
manner. We consider two main categories: virtual machines and containers. We focus
on open source solutions, that is why we selected KVM and Xen hypervisors for virtu-
alization, and LXC and OpenVZ for containers. Even if containers have recently gained
much attention from the cloud community, they do not seem appropriate to ful�ll our
goal. We put our focus on virtualization and emulation to bene�t from the recent virtu-
alization extensions introduced by ARM. Unfortunately, the emulation performances are
disappointing, and especially because we did not expect the emulation overhead to be
this important for powerful x86 servers. Maybe the technology can be improved in both
translation ways. A Russian company, Eltechs, is commercializing a product to run x86
applications on ARM devices, and claims that it is 4.5 faster than QEMU, but we could
not test it as it is a proprietary solution.

Our �rst experiments on virtual machine migration between ARM and x86 were quite
promising, but they remained at a proof of concept stage. All these experiments were
done in early 2014, and we were working with recent technologies, that were still in
development and need to be enhanced, which requires a lot of engineering work.

For the moment, we found that the best solution is to run applications natively on
all hardware to bene�t from their full performances to be able to reach energy propor-
tionality. Consequently, we decided to work with applications that can be compiled and
executed on both types of architectures, have the ability to be migrated with no or few
constraints, and support parallel distribution. That is why in the following work pre-
sented in this thesis, we focus on stateless web servers. We detail the characteristics of
the chosen type of application as well as the speci�cations of our proposed framework in
the next chapter.
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� Chapter 4 �

Design of �BML�:
Energy Proportional Data Center

This chapter details our framework with all its speci�cations. We particularly focus on
the infrastructure part by describing its building process step by step. Then we give an
implementation of the infrastructure with existing heterogeneous hardware and provide
its energy proportionality evaluation at the server level.

4.1 General Overview of BML Framework

The framework we propose is called �BML�, for �Big, Medium, Little�. It is meant
to handle the management of a heterogeneous cluster, from application placement to
resource recon�gurations with the objective of energy proportionality. This name high-
lights the inspiration from ARM big.LITTLE, but with the introduction of the term
Medium, we generalize it to any number of architectures. Indeed, BML does not signify
that only three types of machines are considered, but that we take into account a set
composed of multiple architectures that each has a di�erent range of performance and
energy consumption characteristics.

Figure 4.1 shows the connections between the di�erent components of the BML frame-
work. On the left, the di�erent architectures are gathered in a heterogeneous infrastruc-
ture. We explain in details in section 4.3 how each type of hardware needs to be pro�led,
and how these pro�les are used to compute the ideal energy proportional combinations
of machines. On the right of Figure 4.1, the application and its load pro�le are depicted.
The evolution of the load over time may be known a-priori or predicted as we discuss in
section 4.2, together with other speci�cations regarding applications characteristics.

The general functioning is the following: the load prediction module gives as output a
prediction concerning the performance rate that the application will require at a certain
point in the future. Given this information, the scheduler consults the BML combination
module to compute the ideal combination of machines needed to achieve this performance
rate. Then, depending on its settings, the scheduler can decide to perform some recon-
�gurations towards this new combination. If such a decision is taken, the recon�guration
plan is transferred to the resource manager, which is responsible for triggering all recon-
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�guration actions. These actions consist in switching on and o� the machines involved
and migrating the applications from one or more sources to one or more destinations.

LOAD PREDICTOR

Predicting Application Load

Performance rate

time
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Big Big
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Migration OnOf

Profiling, Sorting, Tagging

 BML Combination 

Figure 4.1: BML Framework Overview

Of course, this framework is a generic overview, and each module implementation can
vary in many possible ways: the architectures characteristics, the applications, the load
prediction system, but also the scheduling and resource management policies. We give an
implementation of the infrastructure in section 4.4, and two scheduler implementations
with their evaluations in the chapters 5 and 6.

4.2 Characterizing the Application and its Load

We target applications with variable load over time and we aim at adapting the compu-
tational capacity of the infrastructure to load conditions so that the energy consumption
more closely matches resource utilization. Load variations are particularly present in
cloud web services, but also often appear in HPC applications [11]. For such goal, the
application performance needs to be characterized using an application metric. This met-
ric represents the amount of work produced by the application over a given time unit,
that is why we sometimes refer to it as performance rate. It is important that this metric
is unique and independent of the underlying architecture running the application. BML
framework seeks to minimize the energy consumption by dynamically taking provisioning
decisions, but the energy consumption is not to be reduced at the expense of performance.

The Quality of Service (QoS) required by the application is carefully taken into ac-
count, and the intended QoS level directly impacts the relevance of recon�guration deci-
sions. Applications can be classi�ed regarding their performance and QoS requirements.
They can either be critical, if applications have stringent performance requirements, or
tolerant, if they have soft QoS requirements. For example, critical applications can be
found in banking and medical areas where delays have serious consequences. More toler-
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ant applications are found in enterprise services, or services with �exible deadlines such
as backup systems. It is possible that certain applications lie in between these two classes,
and hence, depending on the use-case, several intermediate classes be de�ned.

An important characteristic is the application malleability, i.e., as de�ned in [42] its
ability to be executed in a distributed manner across several processors or machines.
In some cases, the malleability can be constrained, and the minimum and maximum
number of application instances should be speci�ed. This criterion poses a constraint
when computing the possible machine combinations for running the application. If the
application is fully malleable, meaning that the number of instances is not limited, the
infrastructure can be exploited without constraints. It is also necessary to determine the
ability for the application to be migrated across machines. This is de�ned by how the
application maintains state and on the amount of data to transfer. In case of stateful
applications, the migration overhead should be evaluated, both in terms of duration and
energy consumption.

The knowledge of the load evolution is a crucial parameter in our system as it has a
direct impact on the relevance of the resource recon�gurations. This knowledge can be
perfect if the load can be determined with a sure precision. It can be partial if certain
characteristics are known, such as weekly, diurnal, hourly patterns, but the accuracy of
load variations is not precise. Finally the load can be unknown if no a priori information
is available. In such case, the load must be predicted for future intervals using for example
learning techniques upon historical data.

4.3 Building BML Infrastructure Step by Step

Through this section we detail step by step the process we use to build a BML infras-
tructure, which corresponds to the BML builder module of Figure 4.1. It begins with the
pro�ling of hardware and ends with the computation of ideal combinations of machines.
We consider a scenario where multiple machine types are available to choose from, and
there is no limitation in the number of machines of each type. This scenario enables to
create perfect combinations of machines, and is equivalent to a capacity planning where
a data center infrastructure is built speci�cally for the purpose of the target application
with the objective of being energy proportional. With some minor changes, this work
can be adapted to consider cases where a heterogeneous infrastructure has already been
established, and there are thus limited numbers of machines of each type.

The �rst step towards building an energy proportional infrastructure is to deter-
mine the energy consumption and performance characteristics of the available hardware.
Hence, each machine type needs to be pro�led while running the target application to eval-
uate the maximum performance rate it can reach and the amount of energy it consumes.
The overheads of switching on and o� a machine are also part of its characterization
pro�le. Both the time and the energy consumption required during these actions are
measured. Once all pro�les are built, a computational phase is conducted to build the
ideal machine combinations to achieve energy proportionality.

To ease the step by step explanations, we illustrate the process with four theoretical
examples of architectures as input. However, this methodology is generic and can work
with n di�erent types of architecture.
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4.3.1 Step 1: Characterizing Each Architecture Pro�le

A pro�le characterizes the behavior of an architecture in terms of power consumption and
performance when running the target application. A machine pro�le contains at least two
data points, namely its idle power consumption and its energy consumption at maximum
performance. This maximum performance rate is expressed with an application metric
that represents the amount of work performed over a given time step denoted ∆t. In
our experiments, we use as metric the number of requests processed per second by a web
server, but for example it can be frame rate for an application of video rendering.

To achieve an energy proportional infrastructure, the machines are dynamically pow-
ered on and o� to reduce the impact of their static power consumption when their are
inactive. This implies to measure the time duration and energy consumption of the switch
on and o� actions for each machine type, in order to take them into account when making
recon�guration decisions.

Following is a summary of the data we acquire during the pro�ling phase. LetM be
the set of architectures available to compose our heterogeneous infrastructure, for each
architecture i PM, we collect from pro�ling:

• perfmax
i: maximum performance rate reached by architecture i, expressed regarding

an application metric.

• powermax
i: average instantaneous power consumed by architecture i when achieving

perfmax
i, expressed in Watts. If the time step ∆t is not equal to one second,

powermax
i “ emax

i{∆t, (where emax
i is the energy consumed by architecture i during

one time step ∆t when achieving perfmax
i, expressed in Joules).

• poweridle
i: average instantaneous power consumed by architecture i in idle state,

expressed in Watts.

• tOn
i: time required to power on architecture i, expressed in seconds.

• tOff
i: time required to power o� architecture i, expressed in seconds.

• eOn
i: energy consumed during the power-on period of architecture i, expressed in

Joules.

• eOff
i: energy consumed during the shut-down period of architecture i, expressed

in Joules.

Given this information and assuming that the power consumption is linear between
poweridle

i and perfmax
i, a function, named powerFori, is created to compute the power

consumed by a given architecture i for the speci�ed performance rate perfRate given
in input. The assumption we make on linear power consumption might lead to small
under- or over-estimation, as studied by Rivoire et al. [21]. Yet, this approximation is
precise enough for our solution, and eases the pro�ling phase. Although acquiring more
intermediate data points, if the application allows, or considering potential DVFS, would
enable more precision, our methodology would not be a�ected.

Algorithm 1 details the function powerFori, where the computed power represents
the instantaneous power consumption of the needed number of machines of architecture i
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to provide the performance rate perfRate. If another model than linearity is considered
for energy modeling, then this function would have an increased complexity.

Algorithm 1 powerFori: Computes instantaneous power consumption for a given ar-
chitecture i and a given perfRate

Input: Architecture: i, Performance rate: perfRate
Output: Power consumption: totalPower

1: nbFullNodesÐ t perfRate { perfmax
i

u

2: remainingRateÐ perfRate´ p nbFullNodesˆ perfmax
i
q

3: remainingPower Ð 0
4: if remainingRate ą 0 then
5: slopeÐ p powermax

i ´ poweridle
i q { perfmax

i

6: remainingPower Ð p slopeˆ remainingRate q ` poweridle
i

7: end if
8: totalPower Ð p nbFullNodesˆ powermax

i q ` remainingPower
9: return totalPower

Figure 4.2 gathers four di�erent pro�les of theoretical architectures named A, B, C,
and D that we use to illustrate the explanations. On each graph is plotted the result of
the function powerFori. All four graphs have the same scale. On each of them a vertical
line represents the maximum performance of the machine type, and beyond this line is
the power consumption of multiple machines of the same architecture type. We consider
for the following steps that the set of available architectures isM “ tA,B,C,Du.

perfmax
C

perfmax
B

perfmax
A

Architecture A Architecture B

Architecture C

perfmax
D

Architecture D

Figure 4.2: Power and performance pro�les of 4 illustrative architectures A, B, C and D.
Vertical line is the maximum performance of one machine, and beyond is the cumulated
power for multiple machines of the same architecture.
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Concerning switch on and o� actions, it is fundamental to consider their overheads
and understand in which conditions it is bene�cial to perform such an action and when
it is not. Indeed, we aim at saving energy by turning o� unused machines, but we also
want to respect QoS requirements, that is why we need to power on machines perfectly
in time to process the incoming workload. As a consequence, the decision of turning o�
a machine must be taken carefully, with knowledge that this machine will stay powered
o� for a certain minimum interval.

For this purpose, we de�ne the Minimum Switching Interval, noted T i
s , as the

minimum amount of time for which it is more e�cient to switch o� machine i than to
keep it powered on but idle. It is computed as follows:

T i
s “ max p

eOn
i ` eOff

i

poweridlei
, tOn

i ` tOff
i q

This interval is inspired from the de�nition of Orgerie et al. in [44], while assuming
that POFF , the consumption of a machine when it is powered o�, is equal to 0. We
need to enhance the de�nition by adding the maximum function because with some low
power processors we have pro�led, it happens that tOn` tOff is actually greater than the
fraction in the �rst term of our Ts de�nition. In [37], Lu et al. describe a similar concept,
but in a more theoretical way, as ∆ which they called critical time. We explain how we
use Ts in the scheduling algorithm described in Chapter 6.

4.3.2 Step 2: Sort Architectures to Keep Only BML Candidates

After having pro�led all the architectures, the next step consists in analyzing these pro�les
and verifying that all types of machines are appropriate to get close to energy propor-
tionality. This starts by sorting machines according to their maximum performance in
decreasing order. Then we verify if power consumption respects this initial ordering. We
proceed by comparing sorted architectures in pairs; if an architecture has lower perfor-
mance than another while consuming more energy, we remove it from the BML candidates
as it does not possess the required properties to improve energy proportionality. This
process is detailed in Algorithm 2, which is generic and can work with n di�erent types
of architecture. A list with the relevant architectures for building a BML infrastructure
is available at the end of this step.

Figure 4.3 gathers the pro�les of the four architectures A, B, C, and D. After execut-
ing Algorithm 2 on this set, only three architectures are kept as good candidates for a
BML infrastructure, namely A, B and C. Architecture D is discarded because its maxi-
mum power consumption is greater than that of A, which is the most powerful machine,
i.e., perfmax

D
ă perfmax

A but powermax
D ą powermax

A. This implies that architecture D
would not help increase the energy proportionality of our infrastructure. We can keep A,
B and C because they respect the same ordering for performance and power consumption:
perfmax

A
ą perfmax

B
ą perfmax

C and powermax
A ą powermax

B ą powermax
C .

Once this initial �ltering is complete, architectures are sorted according to their per-
formance so that each of them can be labelled as Big, Medium or Little to increase
readability. For our illustration, the result is: A Ð Big, B ÐMedium, and C Ð Little.
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Algorithm 2 candidatesBML: Sorts architectures and keeps only good candidates for
BML infrastructure

Input: Architectures: archList
Output: BML candidates: BML

1: BMLÐ r s

2: archList.sortpperfmax
i, descendingq

3: previousÐ archListr0s
4: BML.appendppreviousq
5: for i P r1, archList.length´ 1s do
6: currentÐ archListris
7: if powermax

current ă powermax
previous or poweridle

current ă poweridle
previous then

8: BML.appendpcurrentq
9: previousÐ current
10: end if
11: end for

(perfmax
A,powermax

A)

(perfmax
D,powermax

D)

(perfmax
C,powermax

C)

(perfmax
B,powermax

B)

Figure 4.3: Architectures A, B and C are good candidates for BML infrastructure, but
Architecture D will be removed from consideration due to its poor energy e�ciency
compared to architectures A, B and C.
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4.3.3 Step 3: Finding Crossing Points between Architectures

This step determines how chosen architectures should be combined to create the most
power proportional infrastructure. We de�ne a minimum utilization threshold, denoted
minThresholdi for each architecture i P M, expressed regarding the application per-
formance metric. For instance, if there are two architectures, i as Little and j as Big,
then the minimum threshold of architecture j corresponds to the point from which its
power consumption becomes more relevant than i's for the considered performance rate.
Initially, all minimum thresholds are set to 1. Whilst this threshold will remain 1 for the
Little architecture, as it has the lowest idle power consumption, the function described
in Algorithm 3 will compute the thresholds for all remaining architectures. These points
where an architecture becomes preferable over another are also termed as crossing points
as they represent the points where power pro�les meet.

Figure 4.4 illustrates this step with architectures A, B and C, now denoted Big,
Medium and Little. The utilisation threshold of Medium starts around a performance
rate of 150. Before this point, it is more e�cient to use up to �ve Little nodes. The
minimum utilization threshold of Big architecture corresponds to the maximum perfor-
mance rate of a Medium node. A substantial jump in power consumption results from
switching from Medium to Big since this crossing point is not optimal. The next step is
needed to improve it.

Algorithm 3 CrossPointsStep1: Finds crossing points between architectures
Input: BML candidates: BML
Output: Crossing points: crossPoints, Updated BML candidates: BML

1: LMB Ð BML.reversepq
2: crossPointsÐ r s

3: j Ð 1
4: for i P r0, LMB.length´ 2s do
5: currentÐ LMBris
6: nextÐ LMBri` 1s
7: while j ď perfmax

next

8: and powerForcurrentpjq ă powerFornextpjq do
9: j Ð j ` 1
10: end while
11: crossPoints.appendpjq
12: minThresholdnext Ð j
13: end for
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minThreshold
MEDIUM

minThreshold
BIG

perf    MEDIUM
max perf   BIG

max

Figure 4.4: First step of crossing points computation between Little and Medium, and
between Medium and Big

4.3.4 Step 4: Finding Crossing Points between Architectures and
Combinations of Smaller Architectures

This step is required when there are more than two architectures. The previous step com-
putes the crossing points between homogeneous combinations of machines, but with three
architectures and more, one must determine whether adding Little nodes to Medium
combinations help improving power proportionality and reduce the gap between Medium
and Big architectures. The function, detailed in Algorithm 4, re-evaluates the minimum
utilization thresholds of the most powerful architectures of the infrastructure. For our
illustrative example, it re-computes the crossing point between Medium and Big. Of
course the minimum threshold of Little stays at 1, and the one ofMedium can not change
because only homogeneous combinations of Little nodes can be used before switching to
a Medium node. Algorithm 4 calls the function idealBML detailed in next step in Al-
gorithm 5, which computes the combination of Little and Medium nodes. The fact that
the minimum threshold for Big has not been updated at this stage is not relevant since
Big will not be part of the computed combination.

A last phase, performed at the end of Algorithm 4, checks if all architectures are
utilized in the BML combination. If there exists an architecture i whose minThresholdi

is greater than or equal to its perfmax
i, it means that the utilization range of this archi-

tecture is empty, and thus it must be removed from the infrastructure. Under such case,
algorithms 3 and 4 should be executed again with the updated list of BML candidates.
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Algorithm 4 CrossPointsStep2: Finds crossing points between architectures and com-
binations of small architectures

Input: BML candidates: BML, Crossing points: crossPoints
Output: Updated BML architectures: BML

1: for i P r1, crossPoints.length´ 1s do
2: currentÐ LMBris
3: nextÐ LMBri` 1s
4: if pcrossPointsris ´ 1 % perfmax

current
q ““ 0 then

5: j Ð crossPointsris
6: baseLevel Ð crossPointsris ´ 1
7: comb, power Ð idealBMLpj ´ baseLevelq
8: while j ď perfmax

next and
9: power ă powerFornextpj ´ baseLevelq do
10: j Ð j ` 1
11: comb, power Ð idealBMLpj ´ baseLevelq
12: end while
13: minThresholdnext Ð j
14: end if
15: end for

perf    MEDIUM

minThreshold
MEDIUM

minThreshold
BIG

max perf   BIG
max

Figure 4.5: BML combination after second step crossing points between Little and
Medium, and between combinations of Medium-Little and Big
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4.3.5 Final step: Computing Ideal BML Combination

Algorithm 5 details the function that computes the ideal machine combination and its
corresponding power consumption to achieve a given performance rate. The building of
the BML combination is similar to a bin-packing problem where the architectures and
their maximum performance rates represent bins of di�erent sizes. The singularity of our
problem is that there is only one object to pack, i.e., the target performance rate, but
it can be divided into as many pieces as necessary, and of any size considering a certain
unit. The cost to minimize is the power consumption. Steps 2 to 4 sort the bins by size
and cost, and determine their minimum utilization thresholds that minimize the cost.
What is left, and is performed by this �nal step, is to divide the amount of performance
into several pieces that can �ll the bins. In a �rst stage, we consider the architectures
sorted from Big to Little and seek to �ll completely Big nodes, then Medium nodes,
and so on. Architectures are the most energy e�cient when running at their maximum
performance. In a second stage, we use the minimum utilization thresholds previously
computed in order to determine which architectures to choose for achieving the remaining
performance rate.

Algorithm 5 idealBML: Computes ideal BML combination and its instantaneous power
consumption for perfRate

Input: Sorted BML list: BML, Performance rate: perfRate
Output: BML combination: combination, Combination's power consumption:
power

1: combinationÐ r s

2: power Ð 0
3: remainingRateÐ perfRate
4: for arch P BML do
5: nbNodesÐ t remainingRate { perfmax

arch
u

6: remainingRateÐ remainingRate´ p nbNodesˆ perfmax
arch

q

7: power Ð power ` p nbNodesˆ powermax
arch q

8: if remainingRate ě minThresholdarch then
9: nbNodesÐ nbNodes` 1
10: power Ð power ` powerForarchpremainingRateq
11: remainingRateÐ 0
12: end if
13: combination.appendpnbNodesq
14: end for
15: return combination, power
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4.4 Implementation with Existing Hardware

In this section, we detail our implementation of the BML framework concerning the
infrastructure and the application. The following pro�ling results and BML combination
are used in the next chapters for evaluations of the proposed scheduling and resource
management policies.

4.4.1 Chosen Hardware

We have broaden the range of hardware for these experiments because we want to be
able to make the best choices for building the most energy proportional infrastructure.
We keep two of the three machines previously described in Table 3.2 of Chapter 3, which
are Taurus (x86 Intel Xeon) and Samsung Chromebook (ARM Cortex-A15). To complete
the selection we add the Raspberry Pi 2 Model B, a credit card-sized board computer
containing another ARM processor, the ARM Cortex-A7, that consumes less than the
Chromebook processor. We complete the range of x86 architectures with two other servers,
avaible in Grid'5000 [10] testbed, that all have di�erent type of Intel Xeon processors.
External wattmeters are utilized to monitor the energy consumption of all devices and
servers, fetching one power value per second. Table 4.1 summarizes the characteristics of
the chosen hardware.

Codename Fullname Processor Nb cores
Paravance Dell PowerEdge R630 x86 Intel Xeon E5-2630v3 2 x 8
Taurus Dell PowerEdge R720 x86 Intel Xeon E5-2630 2 x 6
Graphene Carri System CS-5393B x86 Intel Xeon X3440 1 x 4
Chromebook Samsung Chromebook ARM Cortex-A15 1 x 2
Raspberry Raspberry Pi 2 Model B ARM Cortex-A7 1 x 4

Table 4.1: Summary of selected hardware and their characteristics

4.4.2 Application Choice and Setup

Following the conclusions made in Chapter 3, we choose a stateless web server as use-
case application. A web server is a perfect example of application whose load varies over
time. Its performance is easily characterized with a unique application metric which is the
number of requests processed per second. It is malleable as multiple instances of the web
servers can be deployed on several machines, and a load balancer allows to distribute the
load among these instances. The fact that the web server is stateless eases the migration
process as it would just consist in stopping a server instance on the source and launching
a new one on the destination machine, and then updating the load balancer. It also
facilitates dealing with heterogeneous computing resources as a dedicated version of the
web server can be compiled for each di�erent architecture.

Regarding software implementation, we use lighttpd [34] as web server. It is an open
source solution that is easily available with Debian based environments, which exist both
for ARM and x86 architectures. The content of the web server is a cgi script written in
Python. Each request consists in a loop of random number generation. To craft requests
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of heterogeneous sizes, the number of loop iterations is also chosen randomly between
1000 and 2000. A response to a request is formed by a static html page that contains the
integer representing the number of iterations.

4.4.3 Pro�ling Phase (Step 1)

Application Performance and Power Consumption

We choose Siege [54] as web benchmark tool. It simulates multiple clients running in
parallel that will access the given web server during a speci�ed amount of time. At
the end of the benchmark run, it gives some interesting outputs such as the maximum
number of requests processed per second, the average response time, average amount of
data transferred, and so on.

Our objective in this pro�ling phase is to get the maximum number of requests pro-
cessed in one second for each type of machine, as well as the power consumption associated
with it. To do so, we execute the benchmark with an increasing number of concurrent
clients. At one point, the maximum number of requests per second stagnates, and the
latency starts increasing, that is what we consider as the maximum requests rate for
a guaranteed quality of service. Each benchmarking test runs for 30 seconds, and the
maximum performance level is computed as the average of 5 benchmark results.
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Figure 4.6: Performance, quality of service and power pro�les of lighttpd web server
running on Taurus (x86 Intel Xeon) for di�erent number of concurrent clients
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Figure 4.6 pictures this pro�ling phase for Taurus server. Five benchmark runs are
selected as representative executions and their results are averaged to compute maximum
performance and its associated power consumption. The �rst run selected is the one
just after the peak performance result, and all the the other selected executions have a
latency lower than a certain threshold, in our case 100 ms. For this architecture, the rate
of processed requests stabilizes around 860 requests per second. We can see that since
this value is reached, the latency is continuously increasing. The power consumption
stabilizes around 223 Watts when delivering this level of performance.

We repeat this same pro�ling methodology for all the chosen architectures. The results
are presented in Table 4.2 and the pro�les are plotted in Figure 4.8.

perfmax powermax poweridle
Architecture (Requests/s) (Watts) (Watts)
Paravance 1331 200.5 69.9
Taurus 860 223.7 95.8
Graphene 272 123.8 47.7
Chromebook 33 7.6 4
Raspberry 9 3.7 3.1

Table 4.2: Performance and power pro�les of each architecture.

Switch On/O� Duration and Energy Consumption

We evaluate the time to switch on and o� each machine type, as well as the energy
consumed during these actions. Figure 4.7 represents the evolution of the power con-
sumption of Paravance server during successive switch on and switch o� actions. In this
experiment, the switch on process lasts 191 seconds until the machine is e�ectively on
and can answer to a ping request. After staying 20 seconds idle, the server is powered
o�, which takes 10 seconds in this case.

We repeat �ve times each action on each machine type to get average results to
constitute the pro�les. We compute the total energy consumption for each action in Joules
by summing up the acquired power data. Table 4.3 presents these results. The minimum
switching intervals Ts computed for all architectures are presented in last column of Table
4.3.

Architecture tOn (s) eOn (J) tOff (s) eOff (J) Ts (s)
Paravance 189 21341 10 657 315
Taurus 164 20628 11 1173 228
Graphene 71 4940 16 760 119
Chromebook 12 49.3 21 77.6 33
Raspberry 16 40.5 14 36.2 30

Table 4.3: On/O� duration and energy consumption, and minimum switching intervals
of each architecture

46



4.4. IMPLEMENTATION WITH EXISTING HARDWARE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
s
)

Time (s)

0
Start ON

191
ON

212
Start
OFF

222
OFF

Idle

Figure 4.7: Power consumption of Paravance server during switch on and switch o�
actions

47



CHAPTER 4. DESIGN OF �BML�: ENERGY PROPORTIONAL DATA CENTER

4.4.4 Combining Phase (Steps 2 to 4)

Figure 4.8 shows the pro�les for the �ve chosen machines, which correspond to the result
of Step 1. All curves are unlimited because they are the repetition of the experimental
pro�le to picture multiple machines of the same architecture.

The execution of Step 2, which consists in sorting and tagging architectures according
to their maximum performance and power consumption, results in the removal of the Tau-
rus server. Indeed, its maximum power consumption is higher than Paravance's (223.7
W against 200.5 W) while delivering lower performance (860 requests/sec against 1331).
The four remaining architectures are tagged as follows: Paravance Ð Big, Graphene
Ð Medium1, Chromebook Ð Medium2, Raspberry Ð Little. Step 3, which computes
the crossing points between architectures, reveals that the pro�le of Graphene (Medium1)
never crosses any other architecture's pro�le. Consequently, it is removed from the list
of candidates architectures as it does not help increasing energy proportionality.

Figure 4.8: Power and performance pro�les of web servers acquired from experiments of
�ve di�erent architectures

4.4.5 BML Ideal Combination (Final Step)

Our �nal heterogeneous infrastructure comprises three types of machines: Paravance
(Big), Chromebook (Medium) and Raspberry (Little). Their minimum utilization thresh-
olds are respectively 1 request per second (requests/s) for Little, 10 requests/s forMedium
and 529 requests/s for Big. Additionally, we note maxNbi the maximum number of ma-
chines of each architecture i that compose ideal combinations. For example, it pictures
the fact that it is not ideally energy e�cient to use more maxNbMedium machines, but
instead use machines of type Big. In our infrastructure, maxNbLittle is 1, maxNbMedium
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is 16 and maxNbBig has no sense and is set to 8. In fact, as many Big nodes can be uti-
lized, it only depends on the maximum performance needed, or on the maximum number
of available Big machines in case of an existing infrastructure.

Energy Proportionality at Server Scale

The ideal BML combination, result of Final Step, is depicted in Figure 4.9. Big architec-
ture's pro�le is also represented in order to demonstrate the gains of the heterogeneous
combination at the server scale. Indeed, the scale of Figure 4.9 is delimited by maximum
performance and maximum energy consumption of a single Big server. In addition, we
introduce a theoretical architecture termed BML linear, whose idle power is equal to
Little's and maximum power and performance is equal to Big's. It represents here an
achievable goal, and allows to show how our solution approaches it. A perfectly propor-
tional architecture would be very close to BML linear, the only di�erence would be its
idle power consumption equal to 0.

We evaluate the energy proportionality of our BML infrastructure at the server scale
by computing the metrics introduced in 2.1.2. We compute the metrics of our BML
architecture which is the resulting from machines combination, therefore the comparison
with individual machines is a little biased because we do not consider the switch on and o�
overheads of the di�erent machines of the combination but only considered instantaneous
energy consumption.

Figure 4.9: Consumption of BML combination over an increasing performance rate, until
perfmax

Big, compared to Big and BML linear (BML combination is composed of 1 Big,
16 Medium and 1 Little machines.)
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Metric EP IPR DR LDR LD

Ideal 1 0 1 0 0

Big pParavanceq 0,6508 0,3486 0,6513 0 0

BML Combination 0,7830 0,0154 0,9845 0,5268 0,1983

Table 4.4: Energy Proportionality metrics computed for BML combination and Big (Par-
avance) server.

Table 4.4 gathers the metrics values for the BML combination and the Big server,
while the �Ideal� line recalls what would be the values for a perfectly proportional server.

EP characterizes the overall energy e�ciency, and those results concludes that BML
combination is 20,3% more energy proportional than the Big server (EP is 0,7830 against
0,6508).

The two metrics IPR and DR evaluate the dynamic energy consumption range, or
Idle-to-Peak ratio. Even if these two metrics characterize a similar aspect, their formulas
di�er a lot, as well as their results: IPR of BML combination is ´95,5% lower than Big's
whereas its DR is 51,1% greater.

As LDR and LD metrics are concerned, their values for Big are both 0 because we
made the assumption of linear power consumption for all our pro�led hardware. Con-
sequently, the results for BML combination are necessarily worse than those of the Big
server. LD pictures the overall deviation from linearity (0,1983) while LDR focus only
on the maximum deviation (0,5268), which explain their di�erent results. The maximum
linear deviation is indicated on Figure 4.9 .

Figure 4.10: Normalized Energy E�ciency of BML combination compared to Big and
BML linear
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Another perspective of the BML combination is provided in Figure 4.10 by presenting
its energy e�ciency, and comparing it to the e�ciencies of Big and BML linear. Energy
e�ciency is de�ned as Utilization divided by Power consumption [9]. In our case, utiliza-
tion is expressed as request rate, perfmax

Big considering 100% utilization. The energy
e�ciency is normalized considering that (perfmax

Big,powermax
Big) represents maximum

energy e�ciency. The BML combination improves a lot energy e�ciency compared to a
single Big machine, especially for the �rst third of utilization range, being around 60%
e�ciency.

Through this chapter we have explained the BML framework in details and given an
implementation with real hardware, as well as its energy proportionality evaluation at
server scale. The following Chapters 5 and 6 present two di�erent provisioning algorithms
and evaluate their relevance and e�ciency facing real workload traces. We demonstrate
the energy proportionality gains of our BML infrastructure compared to homogeneous
solutions, while taking all resources recon�gurations into account.
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� Chapter 5 �

Ideal BML Algorithm

This chapter presents our �rst algorithm designed for provisioning BML infrastructure.
We also introduce our simulator that we used to evaluate multiple algorithm settings for
di�erent scenarios with both synthetic and real workload traces.

5.1 General Functioning of the Algorithm

This �rst scheduling algorithm is called Ideal BML as it is entirely based on the ideal
combinations of machines pre-computed as detailed in Chapter 4. These combinations
are said ideal because they constitute the most energy proportional infrastructure with
the considered set of architectures.

The general functioning of the algorithm is the following:

A load value is selected as the future level of performance needed. In our work, we
are considering a perfect knowledge of the future workload. We emulate a load prediction
mechanism by considering a sliding look-ahead window over the future load values. Two
approaches are used to determine the predicted load: either considering the average of
the window values; or picking the maximum value. We discuss the results obtained with
these two alternatives as well as the length of the look-ahead window in section 5.3.

The ideal machines combination for providing this future level of performance is com-
puted. If this ideal combination is di�erent from the current con�guration, a recon�gu-
ration towards the ideal combination is performed. During the recon�guration, no other
decision can be taken. This ensures the completion of switch on and o� actions before a
new recon�guration decision is made.

The next window used to predict the load starts from the recon�guration completion
time. When the prediction results in no changes in hardware combination, the window
just slides one time step forwards, which is a second in our case.
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5.2 BML Simulator

To evaluate our infrastructure with di�erent scheduling approaches without any limi-
tations in terms of hardware installation, we have developed a simulator. Thanks to
experimental pro�ling, we have all the necessary parameters to compute the energy con-
sumption for di�erent scenarios of data centers hosting stateless web servers.

The simulator, coded in Python, takes as inputs the experimental hardware pro�les,
each of them being described in a Json �le. It contains all the algorithms described in
section 4.3 allowing to sort architectures and build the BML combinations. To run a
simulation, it needs a �le that describes the evolution of the application workload over
time. Then, at each time step, it knows the actual application load and can compute
the energy consumed to process the requests by the currently powered on machines, and
eventually take recon�guration decisions such as switching some nodes on or o�.

If requests that arrive at a time step cannot be processed immediately, due to resource
under-provisioning, they are put in a simulated web server waiting queue. Then, at each
time step, the already waiting requests take priority over requests that have just arrived.
To avoid starvation, requests wait for 2 seconds at maximum before being discarded.

All parameters characterizing the scenario, as well as many parameters describing the
execution of the simulation are collected and exported as output in a Json formated �le.
This allows to easily extract data for evaluations once the simulations are completed, and
to produce graphs that represent the temporal evolution of the simulation.

Among other metrics, we compute the percentage of processed requests among arriving
requests, and the percentage of delayed and lost ones. We also de�ne the metric JpR for
Joules per Request which is computed as the total energy consumed during the run over
the total number of processed requests, to quantify the energy e�ciency:

JpR “
total energy consumed

total processed requests
(5.1)

The percentage of utilization of the infrastructure represents the number of processed
requests over the processing capacity of the current infrastructure's con�guration. We
express it as the average of all utilizations computed for each second:

UtilizationPerSecond “
processed requests

capacity of infrastructure
(5.2)

As workload traces for our simulations, we use the 1998 World Cup website access logs
(available at [1]). It contains the access records to the World Cup web site. Traces have
been collected during a period of 86 days, between April and July 1998. Total received
number of requests is over one billion [5]. Figure 5.1 plots the maximum and average
requests rate, expressed in number of requests per second, for each day of the World
Cup log traces. We can see with the standard deviation that the daily variation is very
important. For instance if we focus on the highest peak, which was on the June 23rd,
about 4000 requests per second, the average request rate on this day was approximately
of 900 requests per second. We have selected these traces as they contain higly variable
load over time and are representative of the use case we are targetting.
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Figure 5.1: Maximum and average requests rates for all days of 98 World Cup traces

5.3 Study on Prediction Types and Window Sizes

The algorithm takes recon�guration decisions based on future load knowledge. In this
section, we study how the future load value should be selected, meaning how far in the
future should we look, and which level of performance should be considered. We choose
to test two di�erent types of prediction: (i) selecting the average value of the look-ahead
window; and (ii) considering the maximum value. Regarding the length of sliding window,
we also select two alternatives: (i) a short window of 30 seconds; and (ii) a long window
of 315 seconds. These numbers correspond to the minimum switching intervals T i

s , 30s
being the shortest of them, associated to the Little architecture, and 315s the longest,
for the Big architecture. The minimum switching interval of the Medium architecture
is 33 seconds, and thus very close to Little's, that is why we only choose one of them
for simpli�cation as they both give similar results. Theses choices translate into four
di�erent settings for future load selection.

To understand the behavior of the scheduling algorithm and be able to easily draw
conclusions, a simple generated trace is used for simulations. It consists in one upward
and one downward phase of the same length, starting from a request rate of 0 to a
maximum request rate of 3993 requests/second, corresponding to 3 times the maximum
processing capacity of Big architecture.
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Period %Process. %Delay. %Lost JpR %Util. NbRec
Up 98.3 18.3 1.7 0.1783 93.5 49

Down 100 0 0 0.1638 85.9 44
Total 99.2 9.1 0.8 0.1710 89.7 93

(a) Evaluation Metrics for Prediction: Maximum - Window: 30s

(b) Temporal Evolution for Prediction: Maximum - Window: 30s

Period %Process. %Delay. %Lost JpR %Util. NbRec
Up 97.8 38.5 2.2 0.1782 95.9 51

Down 99.99 3.8 0.01 0.1632 88.4 45
Total 98.9 21 1.1 0.1706 92.1 96

(c) Evaluation Metrics for Prediction: Average - Window: 30s

(d) Temporal Evolution for Prediction: Average - Window: 30s

Figure 5.2: Comparison of di�erent prediction settings and same short window length on
an input trace consisting of regular upward and downward slopes.
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Period %Process. %Delay. %Lost JpR %Util. NbRec
Up 100 0 0 0.1822 70.1 34

Down 100 0 0 0.1638 85.9 44
Total 100 0 0 0.1730 78 78

(a) Evaluation Metrics for Prediction: Maximum - Window: 315s

(b) Temporal Evolution for Prediction: Maximum - Window: 315s

Period %Process. %Delay. %Lost JpR %Util. NbRec
Up 99.95 0.9 0.05 0.1822 81.9 42

Down 94.5 50.3 5.5 0.1609 94.5 49
Total 97.2 24.9 2.8 0.1718 88.2 91

(c) Evaluation Metrics for Prediction: Average - Window: 315s

(d) Temporal Evolution for Prediction: Average - Window: 315s

Figure 5.3: Comparison of di�erent prediction settings and same long window length on
an input trace consisting of regular upward and downward slopes.
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Figures 5.2 and 5.3 present the simulation results for the four di�erent settings. For
each simulation it shows a table with evaluation metrics: percentage of total processed
requests, percentage of requests processed with a delay of 1 or 2 seconds, percentage of
discarded requests, joules consumed per processed request (JpR), infrastructure utiliza-
tion and the number of recon�guration decisions. These metrics are computed separately
for the upward and downward phases (from 0 to 2267s and from 2268 to 4536s), as well
as for the total length of the simulation. Each graph represents the temporal evolution
of the simulation: arriving requests, maximum processing capacity of the BML combina-
tion, waiting requests and discarded requests over time. The vertical lines correspond to
the periods when a recon�guration is on-going.

We can clearly see that the system behaves di�erently during upward and downward
phases. This is due to the di�erent temporalities of switch on and switch o� actions.
Indeed, when a decision of powering on one or several machines is taken, it takes some
time until the machines are e�ectively on and running, that is why the long window gives
better results during the upward period. On the opposite, powering down one or several
machines has an immediate action because as soon as the machines start their shutdown
process, they are not available for processing anymore. Consequently, the short window
is more accurate for the decreasing period.

The only setting leading to zero lost and zero delayed requests is the maximum value
over the long window. Regarding energy consumption, it achieves a joules per request
metric (JpR) of 0.1730. It is the best choice for applications that are critical and have
strong QoS requirements. If the applications are more tolerant, then the choice is less
constrained. Both settings with short windows provide similar results: 0.1710 and 0.1706
JpR and only 0.8% and 1.1% of discarded requests for respectively a window size of 30s
and 315s. For all the following results concerning the Ideal BML algorithm, we choose
the setting of the maximum value over the long window as it allows to process all the
incoming requests without delay nor loss.

5.4 Big Only, Big-Medium or BML?

To evaluate the gains brought by heterogeneity, we compared the BML infrastructure
against other con�gurations: a homogeneous infrastructure composed only of Big ma-
chines, and a heterogeneous infrastructure but composed of both Big (Paravance) and
Medium (Chromebook) nodes.

We run the simulations for the three di�erent scenarios with the traces from the 1998
World Cup [1]. We focus on the 48th day as it is one comprising the largest number of
requests: the average request rate is about 566 requests per second, with a peak demand
at 1867 requests per second. The setting is a prediction based on the maximum value on
a long window of 315 seconds, as though the application were critical. This enables us to
compare the di�erent results with the same number of total processed requests. Figures
5.4(a), 5.4(b) and 5.4(c) show the temporal evolution of the simulation for respectively the
B, BM and BML cases. Apart from the processed requests and the maximum processing
capacity of the infrastructure, we also show the number of each type of machines over
time, and vertical lines corresponding to recon�guration periods.
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(a) Big only - JpR: 0.2266, Utilization: 40.8%, NbReconf: 4

(b) Big-Medium - JpR: 0.2153, Utilization: 69.5%, NbReconf: 146

(c) Big-Medium-Little - JpR: 0.2152, Util.: 70.1%, NbReconf: 221

Figure 5.4: Comparison of di�erent infrastructure scenarios for Day 48.
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Table 5.1: Total energy di�erence percentages of BML infrastructure compared to Big-
Medium and Big only scenarios

Energy Di�erence Compared to Big-Medium Compared to Big only
Best per day -5% % (day 91) -92.6% (day 8)
Worst per day -0.05% (day 62) -2% (day 43)
Average per day -1.05% -57.9%

We see that heterogeneity allows to adapt the infrastructure's maximum capacity at
�ner grain. It consequently leads to higher utilization; 70.1% for BML, 69.5% for BM
against only 40.8% for the Big only infrastructure. The energy waste is reduced by higher
utilization, especially during periods of low load as in the 50 000 �rst seconds of the day.
Similar conclusion can be drawn from the joules per request metric: 0.2152 JpR for BML,
0.2153 JpR for BM against 0.2266 JpR in Big only case.

The comparative results of the di�erent scenarios over all the 86 days of the World Cup
are shown in Table 5.1. The BML con�guration consumes on average -1.05% less energy
than the Big-Medium version, the minimum di�erence being -0.05% and the maximum
-5%. In comparison to the homogeneous infrastructure only composed of Big nodes, the
BML version consumes on average -57.9% less, the maximum di�erence being -92.6% and
the minimum -2%.

The small di�erence between BML and BM infrastructure stems from the fact that our
BML combination is not optimal. Indeed, the Little architecture has a small utilization
range of only 9 requests. This explains why its presence in the infrastructure cannot bring
signi�cant improvements. Nevertheless, we observe that in the BML infrastructure, there
is a higher number of recon�gurations than in the BM case, exactly 75 recon�gurations
more, while the results in terms of joules per request are better. It means that we still
bene�t from a more heterogeneous platform even if the utilization range of the additional
architecture is small.

Ideally, it would be preferable for each architecture to have the same range of utiliza-
tion to improve the results signi�cantly.

5.5 Comparison with Lower and Upper Bounds

In this section we evaluate our Ideal BML algorithm to a theoretical BML lower bound,
and two homogeneous upper bounds corresponding to existing data center management.
We run the simulations for days 6 to 92 of 1998 World Cup traces [1].

The considered scenarios are as follows:

• Global UpperBound corresponds to a data center with a constant number of ho-
mogeneous Big servers during the whole duration of the World Cup, computed
according to the maximum request rate. In these traces, the peak rate is 4089
requests per second during day 73. Consequently, the infrastructure contains 4 Big
machines that are always powered on. This upper bound is an example of a classical
over-provisioned data center.
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• Per Day UpperBound pictures a data center composed of homogeneous Big servers.
In this scenario, the infrastructure is dimensioned each day according to the daily
maximum rate. This is an example of coarse grain capacity planning.

• Ideal BML is our BML infrastructure and the Ideal BML provisioning algorithm
described in this chapter, with the same settings as for previous section: a prediction
based on the maximum value over a long look-ahead window of 315 seconds. The
total consumption per day contains the energy consumed by computation and the
energy from on/o� recon�gurations made during the day.

• Theoretical LowerBound represents the minimum computing energy achievable with
our BML infrastructure if the data center could be dimensioned every second with
the ideal BML combination. This is an unreachable lower bound considering no
on/o� latency and no on/o� energy costs. This lower bound pictures also the
maximum energy proportionality we could reach with our infrastructure.

Figure 5.5 summarizes the results. It must be interpreted per day as the energy costs
of on/o� actions between days are not taken into account. Our Ideal BML solution is
very close to the theoretical lower bound. On average over these 86 days, our Ideal
BML algorithm results in a total energy consumption 31% higher than the theoretical
lower bound, the minimum being 6.6% for day 52 and the maximum 149.9% for day 23.
Di�erence percentages of Ideal BML energy consumption compared to lower bound and
both upper bounds are summarized in Table 5.2. The graph of Figure 5.5 demonstrates
the high static costs coming from classical over-provisioned data centers represented by
Global UpperBound, and allows to see the objective reached with our solution that is an
energy consumption more proportional to the actual daily load.

This energy proportionality is clearly noticeable on Figure 5.6, which is a scatter plot
of the daily total energy consumption of the infrastructure regarding the daily cumulated
number of requests. We observe the important waste of energy in the two homogeneous
upper bound cases compared to our dynamically recon�gured heterogeneous infrastruc-
ture whose energy consumption follows the load evolution. Moreover, the proximity of
our solution with the theoretical lower bound proves the relevance of the infrastructure
recon�gurations and that the energy consumed by switching machines on and o� does
not represent a signi�cant overhead.

Table 5.2: Total energy di�erence percentages of Ideal BML algorithm compared to lower
and upper bounds
Energy Compared to Compared to Compared to
Di�erence Lower Bound Upper Bound (Day) Upper Bound (Global)
Best per day +6.6 % (day 52) -92.6% (day 8) -98.1 % (day 8)
Worst per day +149.9 % (day 23) -11.6 % (day 54) -55.3 % (day 66)
Average per day +31 % -65.1 % -85.9 %
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Figure 5.5: Total energy consumption comparison with lower and upper bounds for all
days.

Figure 5.6: Energy proportionality comparison with lower and upper bounds
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5.6 Conclusions and Limitations of this Algorithm

Our BML infrastructure combined with this Ideal BML algorithm allows to get closer
to energy proportionality, as it drastically reduces the energy consumption compared to
homogeneous infrastructures and classical over-provisioned data centers. We also demon-
strate that our algorithm provides results close to the theoretical BML lower bound,
which is very satisfying as this lower bound does not consider recon�guration overheads.

However, we discuss that the length of the look-ahead window needs to be long if
the application has strict QoS requirements. This can result in slightly over-provisioned
con�gurations. We believe that it should not be necessary to make a compromise and
choose only one long window, but that several look-ahead windows can be considered.

Moreover, with Ideal BML we only authorize machine combinations that are part of
the pre-computed ideal combinations. Unfortunately, this can incur some heavy recon�g-
urations that may not be ideal. For example this happens when the load rapidly oscillates
between two performance levels that are quite close but correspond to two very di�erent
machine combinations. To illustrate, we can imagine two successive ideal combinations
(not corresponding to the actual hardware we have presented): combination C1 composed
of 1 Medium node and 4 Little nodes, and combination C2, more powerful, composed of
2 Medium nodes. If the current con�guration is C1 and the load forecast is a short peak,
it could be more e�cient to power on an additional Little machine for a short amount
of time, resulting in a temporary con�guration with 5 Little nodes that is not part of
ideal combinations, than to perform the complex recon�guration towards C2 consisting
in powering on 1 Medium machine and switching o� 4 Little ones.

We aim at tackling these limitations with the scheduling algorithm described in Chap-
ter 6. It considers multiple look-ahead windows and takes into account recon�gurations
overheads in the decision process.
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� Chapter 6 �

Multi-Terms Algorithm

In this chapter, we describe the second provisioning algorithm we have designed to deal
with the limitations of the �rst version. We give a comparative evaluation of their results
facing the same scenarios. We also discuss some characteristics of the infrastructure that
are required for this algorithm to be more e�cient.

6.1 Motivations for this Algorithm

We aim at solving the limitations of Ideal BML algorithm by taking some distances with
the pre-computed BML combinations and allowing more possible con�gurations. We no
longer think only regarding ideal combinations but consider the switch on and o� actions
of the di�erent machines separately.

An objective of this algorithm is to take full advantage of the BML heterogeneous
infrastructure with all its speci�cations, and no matter the hardware implementation.
Indeed, this algorithm is meant to be totally generic and e�ective whatever is the num-
ber of di�erent architecture types. One limitation of the Ideal BML algorithm is its
unique look-ahead window and that its length is forced to be set according to the longest
minimum switching interval Ts to make the most relevant recon�gurations decisions. In
fact, as we have shown when pro�ling real hardware in Chapter 4, machines can have
very di�erent switch on durations and then very di�erent switching intervals. Therefore
this algorithm considers as many look-ahead windows for switch on actions as there are
di�erent switch on durations.

In addition, switch on and switch o� durations are also very di�erent. We have
observed that for most machines, switch o� takes less time than switch on. But what is
more important to take into account is that switch o� actions have an immediate e�ect
on the infrastructure. That is why Ideal BML algorithm and its long look-ahead window
can not be the most optimal to decide when to power o� machines. In this algorithm,
we consider di�erent look-ahead windows for switch o� than for switch on actions.

We name this new approach Generic Multi-Terms algorithm to highlight its two most
important characteristics: the genericity in terms of considered infrastructure, and the
multiple look-ahead windows of di�erent lengths and starting at di�erent times in the
future. The functioning of the algorithm is de�ned in details in the next section.
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6.2 Description of the Algorithm

Our Multi-Terms Algorithm is composed of two main categories of actions: (i) load-
reactive actions and (ii) energy-saving actions, which put together translate into three
di�erent types of actions : Switch-On, Switch-O�, and Back-to-Ideal. The �rst two
consist in actions of machines switch on or o�, considered independently, while the last
one considers all the powered-on machines as a combination and decides to recon�gure
the infrastructure towards a more energy-e�cient combination if possible. At each time
step, the algorithm starts by proposing load-reactive actions. In case no reactive actions
are needed, which means that the capacity of the current infrastructure composition is
su�cient to process the incoming workload, the algorithm may propose an energy-saving
action. We detail the implementation of all these recon�guration decisions in the following
explanations.

In our work, we assume that the data center operator � executing our dynamic pro-
visioning algorithm � has complete knowledge of the workload ahead of time, and con-
sequently, our algorithm will provision exactly to always satisfy the peak loads. As we
want to take advantages of the di�erent temporalities of the recon�gurations actions, the
algorithm analyzes the future load knowledge via di�erent look-ahead windows whose
sizes are precisely chosen. In our case, we consider the maximum load value of a window
to be the future performance rate used for provisioning.

Because our algorithm takes recon�guration decisions that will take place at di�erent
moments in the future, we assume there is a system memorizing the decisions, therefore
knowing at any moment what are the ongoing switch-on or o� actions. Consequently, it
is possible to compute the future processing capacity of the infrastructure knowing the
current one and the ongoing actions.

6.2.1 Load-Reactive Actions

At each time step, the algorithm proposes load-reactive actions. It tries to �nd what
switch-on or -o� actions are the most appropriate reactions to the incoming workload.

• Switch-On actions:

Let denote current time tnow. To decide if any switch-on actions are needed for
machines of a given architecture i, the considered look-ahead window must start at tnow`
tOn

i. Indeed, as machine of type i will take tOn
i seconds before being ready to compute,

it is not necessary to look at future load before this point. As we want to avoid over-
provisioning as much as possible, we decide to take one time step ∆t as window length.
For each architecture i, we note windowi

short its future load window used to decide switch-
on actions.

On Figure 6.1 are pictured the look-ahead windows for switch-on actions for an il-
lustrative example of a data center containing three architecture types noted A,B and
C, which would correspond respectively to Little, Medium, and Big. We also consider
that their switch on and switch o� durations, as well as Ts, follow the same order as their
performances. We discuss as the end of this chapter what are the consequences if this
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condition is not ful�lled. To ease the notations in the following and avoid repeating tnow,
we consider that tnow “ t0 “ 0.

t0

tOn
A

tOn
A
+∆t

tOn
B tOn

C

tOn
B
+∆t tOn

C
+∆t

t

windowC

short
windowB

short
windowA

short
z}|{z}|{z}|{

Figure 6.1: Short look-ahead windows used for switch-on actions.

We detail in the following the successive steps for the computation of the quantity of
machines to switch on. We assume that we are not limited in the quantity of machines
of each type. Because we want to respect the QoS, the algorithm makes the decision to
switch on as many machines as needed to answer the predicted future load di�erence.
But in order not to switch on all types of machines and thus results in an over-provisioned
architecture, the decision to switch on some machines of architecture i is only taken if
the predicted load di�erence is superior or equal to the minimum utilization threshold
minThreshi of this architecture.

The decision process for Switch-On actions is as follows:

For all architecture types i PM :

1. Compute the load prediction for windowi
short.

2. Compute the maximum di�erence diff i
short between the load prediction and the

future capacity of the infrastructure during the considered window.

3. If this di�erence is greater than or equal to the minimum utilization threshold
minThreshi, it means that machines of type i need to be switched on;
Then compute the minimum quantity of machines i necessary to process the pre-
dicted load di�erence:
nbOni “ t diff i

short { perf
i
max u

4. Else, no machine of type i needs to be switched on, nbOni “ 0.

• Switch-O� actions:

Switch-o� actions are also part of load-reactive actions because we want to shut down
all machines becoming unnecessary when the load decreases in order to save energy. We
discussed the minimum switching interval T i

s in the prerequisites, it justi�es that the
look-ahead windows must start from current time tnow and have a length of T i

s . Figure
6.2 illustrates these switch-o� windows for illustrative architectures A,B and C, denoted
windowi

imm as they begin immediately.
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Figure 6.2: Immediate look-ahead windows used for switch-o� actions.

Switch-O� actions are decided as follows:

1. For all architecture types i PM whose current quantity of machines powered on
nbi is positive; Propose switch-o� actions:

(a) Compute the load prediction for windowi
imm.

(b) Compute the maximum di�erence diff i
imm between the load prediction and

the future capacity of the infrastructure during the considered window.

(c) If this di�erence is negative, meaning that the load is decreasing,
Then compute the maximum quantity of machines of type i that can be turned
o�:
nbOff i “ minpt |diff i

imm| { perf
i
max u, nbiOnq

(d) Else, no machine of type i can be switched o�, nbOff i “ 0.

2. Compute all possible switch-o� recon�gurations as the combinations of all proposed
switch-o� actions.

3. Remove the switch-o� recon�gurations which do not respect the QoS during their
associated windowimm.

4. Sort the switch-o� recon�gurations in the decreasing order of their impact in term
of processing capacity.

5. Choose the most appropriate switch-o� recon�guration:

(a) For all switch-o� combinations:
If one of them allows to recon�gure the infrastructure towards an ideal com-
bination for any windowi

imm,
Then perform this recon�guration.

(b) Else, perform the switch-o� recon�guration with the biggest impact in term
of processing capacity.
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6.2.2 Energy-Saving Actions

• Back-to-Ideal actions:

If no load-reactive actions have been proposed in the �rst phase of the algorithm, this
second phase tries to propose an energy-saving action by recon�guring the infrastructure
towards an ideal and energy-e�cient combination of machines. In fact, we consider as
Back-to-Ideal action a recon�guration which will turn o� some (combination of) not
energy-e�cient machines and replace them by turning on some (combination of) more
energy-e�cient machines, according to the considered future load. As those actions can
consist in an important recon�guration, we want to perform it only towards a quite stable
situation, and only if the recon�guration overhead is not too high. That is why we use
long term look-ahead windows.

We de�ne windowMAX as the maximum look-ahead window used to decide energy-
saving actions, and also used to check if the future load is globally increasing or decreasing.
This window starts at minptOn

iq and ends at maxptOn
i ` T i

sq. For all architectures i we
note windowi

long the look-ahead window starting at tOn
i and ending like windowMAX at

maxptOn
i ` T i

sq. There are all represented on Figure 6.3, and we explain in the following
their use in the algorithm.

t0 t
tOn

A tOn
B tOn

C

tOn
C
+ TC

s

z }| {

z }| {

z }| {

windowC
long

windowB
long

windowA
long = windowMAX

Figure 6.3: Long look-ahead windows used for Back-to-Ideal actions.

The decision of Back-to-Ideal action is only taken if no load-reactive actions have been
proposed, and if there are currently no other ongoing recon�gurations, i.e., switch on/o�
actions not yet completed. Of course, another prerequisite of performing such an action
is that the current combination of machines should not already be an ideal combination
for any of the look-ahead windows.

Assuming these conditions are ful�lled, it exists two di�erent situations when a Back-
to-Ideal action is needed: (i) The load decreases in the future, and the current combina-
tion is su�cient to process it, but is also over-provisioned in a way that it is not possible
to turn o� any machines because there are all utilized. (ii) The load increases in the
future, meaning that we will need to turn on new machines but the current combination
is already far from ideal considering energy consumption.
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Here is the detailed process to decide a Back-to-Ideal action:

1. Compute the load prediction for windowMAX , and the recon�guration reconfIdeal
towards the associated ideal combination.

2. If the load prediction is lower than the processing capacity of the current infras-
tructure, the load is decreasing,
Then:

(a) Compare all consecutive windowi
long to assure that the load is monotonically

decreasing. (Else, exit).

(b) Analyze reconfIdeal to know which architecture arch taking part in this re-
con�guration has the maximum switch-on duration tarchOn .

(c) If tarchOn is di�erent from minptOn
iq, it means that it is not optimal to perform

the recon�guration towards the ideal combination for windowMAX but instead
windowarch

long should be considered;
Then compute the load prediction on windowarch

long and update reconfIdeal to
the new associated recon�guration.
(Else, keep the previous reconfIdeal).

(d) Compute the energy overhead of the recon�guration reconfIdeal: the sum of
all Switch-On and Switch-O� energy overheads.

(e) Compute the over-consumption due to staying in the current combination for
the predicted load.

(f) If the overhead of the recon�guration is lower than the over-consumption of
the current combination:
Then perform Switch-On actions of reconfIdeal.
(Else, exit).

3. Else, it means that the load prediction is greater than the processing capacity of
the current infrastructure, hence the load is increasing,
Then:

(a) Check if the current combination of machines is already far from ideal; It
consists in verifying that any quantity of machines of type i is greater than
maxNbi. (Else, exit).

(b) Compare all consecutive windowi
long to assure that the load is monotonically

increasing. (Else, exit).

(c) Same as Step 2) b).

(d) Same as Step 2) c).

(e) Perform Switch-On actions of reconfIdeal.

Note that we only perform the Switch-On actions of the chosen Back-to-Ideal because
the switch-o� actions will automatically be done later as a load-reactive action.
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6.3 Comparative Evaluations of the two Algorithms

6.3.1 With Synthetic Traces

As we designed Multi-Terms algorithm to answer some limitations of the previously de-
scribed Ideal BML algorithm, it is logical to evaluate this second algorithm by comparison
with the �rst one. Note that QoS is not discussed in this chapter as we consider perfect
knowledge of future load, and use look-ahead windows enough long to perform recon�g-
urations in time.

For a �rst comparison, we decide to use two simple generated traces consisting in two
successive upward and downward phases of equal lengths. Both of them starts from a
request rate of 0 to a maximum request rate of 3993 requests per second (corresponding
to 3 times the maximum processing capacity of Big architecture), and down again to
0. We have generated two versions: a low slope with each phase lasting 2267 seconds,
(which is the same we used in section 5.3), and a steep slope which has the same peak
rate but is two times shorter as each phase lasts 1134 seconds.

Figure 6.4 presents the results for the steep slopes. In this case, Generic Multi-Terms
algorithm gives better results than Ideal BML concerning total energy consumption and
energy e�ciency as the Joules per Request (JpR) metrics is 0,1797 against 0,1838. We can
observe from visual comparison of the two graphs that Multi-Terms algorithm reduces the
over-provisioning during the upward slope that was due to the long look-ahead window
of Ideal BML algorithm. This comes from Load-Reactive actions that switch on Little
nodes progressively as the load increases. Because the slope is steep, the system can
predict the high raise and decide to switch on Big machines in advance.

Figure 6.5 displays the results for the low slopes. We realize that the two algorithms
perform very di�erently, and we conclude from the energy metrics that Multi-Terms
version produces worse results than Ideal BML as JpR is 0,2503 against 0,1730. This
signi�cant di�erence can be easily explained by the quantity of Little nodes that explodes
during the upward slope and reaches 396. The increasing slope is too low and the scheduler
keeps switching on Little nodes to answer the little load raise. The important issue is
that our algorithm prioritize Load-Reactive actions as Back-to-Ideal actions are only
performed if no other actions need to be done. We observe that this characteristic of our
Multi-Terms algorithm can be a disadvantage for this very speci�c case.

Of course this behavior is a consequence of our assumption on unlimited computing
resources of each type. With a limited data center topology, this result would not be
possible as the scheduler would not be able to switch on as many Little nodes and would
consequently switch on available machines of the architectures sorted just after, in our
case Medium, and then Big. This remark, as well as the comparative results of Multi-
Terms algorithm against Ideal BML with real traces that we comment just after in 6.3.2,
strengthens the many advantages of this scheduler version.

Regarding the downward slope, Multi-Term algorithm performs similarly no matter
the gradient of the slope. Indeed, as the load decreases, Load-Reactive actions are de-
cided, resulting in switching o� unused machines. Once all of them have been switched
o�, if the load continues to decrease, then the scheduler will decide to perform a Back-to-
Ideal action consisting in switching on smaller nodes. This will allow to switch o� one of
the biggest node, then be able to progressively switch o� the smaller machines afterward.
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(a) Ideal BML - Total Energy Consumption: 832 692 J - JpR: 0,1838

(b) Multi-Terms BML - Total Energy Consumption: 814 046 J - JpR: 0,1797

Figure 6.4: Steep Slopes : Multi-Terms performs better than Ideal BML.
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(a) Ideal BML - Total Energy Consumption: 1 566 862 J - JpR: 0,1730

(b) Multi-Terms BML - Total Energy Cons.: 2 266 933 J - JpR: 0,2503

Figure 6.5: Low Slopes : Multi-Terms performs worse than Ideal BML.
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6.3.2 With Real Traces

Figure 6.6 compares the results of the two algorithms for day 65 of the 1998 World Cup
traces [1]. Day 65 has an average requests rate of 639 requests per second, while having a
maximum peak rate of 4071 requests per second. We can observe on Figures 6.6(a) and
6.6(b) that the load pro�le of this day is quite low until approximately 50000 seconds, and
contains two successive load peaks afterward. Table 6.6(c) gathers metrics to evaluate in
details how the behaviors of the two algorithms di�er.

As we already explained with the synthetic traces, the main di�erence between the two
versions is the maximum quantity of utilized Little machines. For Ideal BML algorithm
this quantity does not overpass 1 as it is the maximum number of Little nodes in pre-
computed Ideal machine combinations. As for Multi-Terms algorithm, we consider that
we can utilize as many machines as needed from each architecture types. In the case of
day 65, it results in using until 41 Little machines. For Big and Medium machines, the
maximum quantities are the same for both algorithms, respectively 3 and 16.

Multi-Terms algorithm gives a total energy consumption lower than Ideal BML algo-
rithm. If we separate this total with compute energy on one side, and energy consumed
during switch on/o� actions on the other, we observe that the reduction is made on the
compute part, while the on/o� part being almost doubled. Of course this is due to the
higher number of Little nodes utilized and the consequent higher number of recon�gu-
rations actions. Multi-Terms algorithm reaches an infrastructure utilization over 81%,
against 76% for Ideal BML version. Even if many Little machines are not considered
�ideal�, using them permits to adapt the infrastructure's processing capacity very �nely
and increases its utilization while reducing the overall consumed energy for the whole
day.

Figure 6.7 gathers comparative results concerning the two algorithms and the lower
bound for all days of the World Cup traces. On average for the 86 days, Multi-Terms
consumes -6% less than Ideal BML, the maximum di�erence and thus best result is -24.4%
for day 22, and minimum di�erence or worst result is -0.5% for day 61. Table 6.7(a)
also presents the di�erence percentage of Multi-Terms algorithm compared to the same
theoretical lower bound we presented in section 5.5. The comparison of Ideal BML with
upper bounds has already been done in this same section 5.5, and as the two algorithms
provide quite close results, we focus this comparison only on them.

Figure 6.7(b) represents graphically the daily energy consumption di�erences between
the two algorithms and this lower bound, while Figure 6.7(c) shows the comparison
regarding daily energy proportionality. We can see that Multi-Terms BML stands just
under Ideal BML as it increases the energy reduction by 6%. The maximum quantities
of machines for Ideal BML are 3 Big, 16 Medium and 1 Little as we only authorize
ideal combinations. Regarding Multi-Terms, the maximum numbers of utilized Big and
Medium machines are the same as with Ideal BML, while the maximum number of Little
nodes is 59.
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(a) Ideal BML

(b) Multi-Terms BML

Total Compute On/O� Nb Max Nb
Algorithm Energy Energy Energy JpR %Util. Reconf [B,M,L]
Ideal BML 12430959.6 12240790.7 190168.9 0.1998 76.3% 294 [3,16,1]
Multi-Terms 12332962.2 11964347.6 368614.6 0.1982 81.1% 2809 [3,16,41]

(c) Evaluation Metrics

Figure 6.6: Day 65 - Comparison between Ideal BML and Multi-Terms algorithms.
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Energy Di�erence Compared to Ideal BML Compared to Lower Bound
Best per day -25.2 % (day 22) +5.6% (day 46)
Worst per day -0.5 % (day 61) +97.2 % (day 23)
Average per day -6 % +21.9 %

(a) Total energy di�erence percentages

(b) Total energy consumption comparison

(c) Energy proportionality comparison

Figure 6.7: All days - Comparison between Ideal BML and Multi-Terms algorithms and
the lower bound.
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6.4 Results at Larger Scale

With the original traces of the 1998 World Cup, there are some days where no Big
machines are needed but only combinations of Medium and Little nodes are su�cient to
sustain the load. To provide evaluations at larger scale, we decided to create a modi�ed
version of these traces by multiplying all the original request rates by ten. We will refer
to this modi�ed traces as Traces x10 in opposition to the Original Traces.

We have repeated the simulations with these large scale traces and Figure 6.8 provides
the comparative results between the two algorithms and with the lower bound. As stated
in Table 6.8(a), on average Multi-Terms consumes -0.85% less than Ideal BML, the best
di�erence is -7% for day 23. For some days, Multi-Terms consume more than Ideal BML,
the maximum positive di�erence, and worst result, is +6% for day 91. The maximum
number of machines utilized for all days is 31 Big, 16 Medium and 1 Little for Ideal
BML version, whereas Multi-Terms utilizes same number of Big and Medium nodes, but
130 Little machines.
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Energy Di�erence Compared to Ideal BML Compared to Lower Bound
Best per day -7 % (day 23) +0.64% (day 81)
Worst per day +6 % (day 91) +123.8 % (day 23)
Average per day -0.85 % +33.5 %

(a) Total energy di�erence percentages

(b) Total energy consumption comparison

(c) Energy proportionality comparison

Figure 6.8: All days - Traces x10 - Comparison between Ideal BML and Multi-Terms
algorithms.
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6.5 Big-Medium versus BML

As we have done in previous chapter in section 5.4, we want to evaluate the gains brought
by heterogeneity with comparative evaluations of our algorithm with the full BML in-
frastructure against the same algorithm but with only Big and Medium machines.

Unfortunately, the doubts we had concerning the interest of the Little architecture
were con�rmed. Multi-Terms algorithm and BML infrastructure results in more energy
consumption than this algorithm with an infrastructure composed of Big and Medium
machines. On average on all original days of the World Cup traces, Multi-Terms BML
consumes 2.4% more than Multi-Terms Big-Medium, the best result being -2.5% for day
85 and the worst +27.2% for day 23.

These disappointing results come from the fact that Little infrastructure has a switch
on duration longer thanMedium's. The Little machine (Raspberry Pi) takes 16 seconds to
power on, whereas the Medium architecture (Chromebook) takes 12 seconds. Indeed, the
sorting and tagging done during the building of BML combinations only consider perfor-
mance and power, but not the switch on durations. The minimum utilization threshold of
Little machine is set to 1 and thus for any load increase, Little machines will be switched
on. The minimum utilization of Medium is set accordingly to its performance and power
ratio compared to Little, which is 10 requests per second in our case. Consequently, for
load increases greater than 10 requests per second, Medium machines will be powered
on in addition of Little ones. This issue is that these Little nodes will in fact be ready
to process requests after Medium nodes, and will then be useless. This explains how
in this speci�c infrastructure, more heterogeneity does not bring better results. These
experiments allow us to highlight another important characteristic required for building
a relevant BML infrastructure which is that switch on durations should follow the same
order as performance and power.

To demonstrate this a�rmation, we have modi�ed the pro�le of the Little architecture
by divided by two its switch on and o� durations and energy consumption. This translates
in two BML infrastructures de�ned as follows:

• Real BML: Existing hardware pro�les as detailed in Tables 4.2 and 4.3.

• Modi�ed Little BML: Existing hardware pro�les for Big and Medium architectures,
and Little's on and o� durations and energy overheads divided by two.
The new values are:
tLittleOn : 8 s, eLittleOn : 20.25 J; tLittleOff : 7 s, eLittleOff : 18.1 J; and Ts: 15 s.

We have run the simulations with original traces for Multi-Terms algorithm with the
Modi�ed Little BML infrastructure, and the results compared to Big-Medium infrastruc-
ture are much more encouraging. On average Multi-Terms with Modi�ed Little BML
consumes -1.6% less than Multi-Terms Big-Medium. The best result is -8.1% for day 85
and the worst is +0.3% for day 48. Table 6.1 gathers the comparative results of the two
di�erent BML infrastructures against Big-Medium scenario. Even with Modi�ed Little
BML there are some days where the introduction of Little architecture implies a small
increase in energy consumption compared to Big-Medium. This is still due to the small
range of utilization of the Little architecture as we already discussed in section 5.4.
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Moreover, another di�erence with the Modi�ed Little BML scenario compared to Real
BML is the utilization of the di�erent architectures types. The maximum number of Big
machine is still 3, but 27 Medium nodes and 6 Little are used (compared to respectively
16 and 59 for Real BML).

Table 6.1: Total energy di�erence of Multi-Terms algorithm version BML Normal and
version BML with Modi�ed Little compared to Multi-Terms algorithm with Big-Medium
infrastructure

Energy Di�. to BM BML Real BML with Little Modi�ed
Best per day -2.5 % (day 85) -8.1% (day 85)
Worst per day +27.2 % (day 23) +0.3 % (day 48)
Average per day +2.4 % -1.6 %
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� Chapter 7 �

Discussions

This chapter aims at answering some questions the reader may have at this point, as well
as discussing some topics around our approach that we consider important. The goal is
to place our work in a larger perspective by addressing issues such as implementation
practicability, potential target applications and use cases, evolution of our proposition
with future hardware, and impacts on the data center considered as a whole.

7.1 Are Ideal Combinations really Ideal?

The �rst algorithm we designed, Ideal BML, lays on the ideal combinations computed
based on hardware pro�les. We have decided to build those combinations only with per-
formance and power consumption information. Consequently, the main characteristic of
these combinations is that they are ideal if we consider them as instantaneous con�gura-
tions for given performance rates. Depending on the current combination of powered on
machines, the ideal combination for the predicted load may not necessarily be one of the
pre-computed ideal combinations. Indeed, it depends on the longevity of this predicted
performance rate � is it just a brief peak/drop? or will the load continue increasing/de-
creasing after? � and also on the energy overheads of the switch on and o� actions needed
to recon�gure the infrastructure towards the ideal combination.

This observation has lead us towards designing the second algorithm, Multi-Terms,
that is not limited by pre-computed ideal combinations and takes into account the di�er-
ent temporalities as well as the overheads of the di�erent recon�guration actions. How-
ever, with our assumption of unlimited quantity of machines of each architecture type,
we have shown that for some speci�c load patterns, it leads to a high number of utilized
Little machines and thus a higher energy consumption. Of course, this behavior would
not be possible in practice with a �xed heterogeneous data center topology, but this
raises the following question: if we authorize more machines than the ones composing
pre-computed ideal combinations, what is the optimal quantity of machines of each type
the data center should contain? It is not easy to compute as it is dependent on the
di�erent characteristics of the hardware pro�les and on the load evolutions.
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7.2 What are the Impacts of Load Prediction Errors?

In our work we consider having a perfect knowledge of the application workload over
time. In practice, this eventuality is very rare, and in most cases, future workload would
be predicted thanks to models based on past workload data. Prediction models represent
a whole research �eld and is out of the scope of this thesis. Nevertheless, it is necessary
to discuss about the potential impacts of prediction errors on our approach. Depending
on many parameters � the application, the knowledge of the user demand, the in�uence
of unpredictable events - prediction models can be more or less accurate.

A classical approach to prevent QoS degradation due to prediction errors is over-
provisioning. If the infrastructure is dimensioned for a greater capacity than the pre-
dicted load, in case of underestimation it would be ready to process it, but in case of
overestimation the infrastructure would be even more over-provisioned, resulting in en-
ergy wasting that we want to avoid. Regarding our work, Multi-Terms algorithm is more
suitable to cope with prediction errors as it makes recon�guration actions which take
e�ect at di�erent moments in the future. Indeed, this algorithm can provision the infras-
tructure for long-term load predictions with machines having longer switch on durations,
and then using machines with fast switch on actions to adjust the infrastructure's capac-
ity to more accurate short-term predictions that may di�er from the previous long-term
vision. With the unique look-ahead window of Ideal BML algorithm, over-provisioning
on the long-term would be the only solution to respect QoS requirements with prediction
errors, and would consequently consumes more energy than Multi-Terms algorithm.

7.3 What can be the other Target Applications Types?

In this thesis, we focus on a speci�c application that is a stateless web server. As it relaxes
many constraints, it allows to demonstrate the full bene�ts of our heterogeneous BML
infrastructure. The question of applicability of this approach to other types of application
is predominant. THul applications raise the issue of longer and more expensive migrations
due to the amount of data to transfer. Moreover, the size of the state can vary during
the life of the application, thus the duration of migration too, and this complicates how
to take these extra overheads in consideration for recon�gurations decisions. Another
parameter which can in�uence the migration costs is the number of machines in the
current combination versus the future combination, as the number of application instances
depends on the number of available nodes.

Furthermore, not all applications are malleable and the number of instances of an
application can be �xed. In such cases, BML combinations and the general way of
provisioning the infrastructure will be constrained by this number. The resulting energy
savings will be a little reduced compared to those for stateless web servers as the number
of possible combinations of machines will be bounded.

We can also imagine dealing with multi-tiers applications. Each tier can be pro�led on
each type of hardware and have di�erent scheduling schemes depending on their speci�c
load evolutions. In any case, the essential characteristics for target applications are to
have a variable workload over time, and the ability to be executed and migrated across
di�erent architectures.
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7.4 How will BML evolve with Hardware Evolutions?

The implementation of BML infrastructure that we have presented in this thesis has been
built with pieces of hardware which we have chosen and which were available at that time.
Since then, new hardware has appeared with even better energy e�ciency characteristics.
Some examples are ARM 64-bits processors, available in the last generation of Raspberry
Pi 3, or the Intel Core M series of processor engraved with the 14nm (nanometer) tech-
nology. It would be interesting to pro�le them and see how much energy gains they can
bring in a heterogeneous infrastructure.

Other kinds of hardware o�er attractive energy e�ciency, like GPU, FPGA (Field-
Programmable Gate Array), or DSP (Digital Signal Processor). However, they are very
specialized and are not suitable or relevant for all types of workload. Moreover, most of
them require dedicated programming languages and thus the target application needs to
have a version of its program written speci�cally for one of this processor to be able to
include it in the infrastructure.

The technological improvements continue and more and more powerful and energy
e�cient hardware will be built in the future. Even if we do not know if a perfectly
energy proportional server will be developed one day, one can wonder if our work will
still be pro�table with very e�cient and almost proportional hardware. Our point of
view is that there are good chances that heterogeneity will still exist in the future. With
di�erent application types having di�erent performance a�nities and energy consumption
with each type of processors, heterogeneity aware scheduling is always needed. Also at
a very large scale, even if idle power consumption is low, switching o� unused machines
can lead to important energy savings, and di�erent switch on durations need to be known
and considered to turn them back on in time e�ciently.

7.5 Can the Whole Data Center be Energy Propor-

tional and Sustainable?

In our work, we focus only on the energy proportionality of the computing resources.
A similar approach can be applied to the other high consuming component of the data
center that is the cooling system.

With an energy proportional infrastructure, meaning that its energy consumption fol-
lows the evolutions of the workload, it also implies that the heat generated by the servers
vary over time, and consequently the air conditioning system needs to be con�gurable to
adjust its cooling power. Indeed, too much heat can be prejudicial for IT equipments,
but too much cold also. That is why during periods of low load when only low power
machines are powered on, the cooling system can not continue to cool the data center
room as if all servers were on.

It is necessary to develop a coordinate approach between computing resources and
the cooling system in order to reach energy proportionality for the whole data center.
Without neglecting that the energy provider and power supply installations should be
aware and adapted to variations.
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Building a BML infrastructure implies that we are adding more machines in the data
center that are not always utilized. The relevance of this solution can be questioned re-
garding sustainability: Are the energy savings made when powering computing resources
greater than the additional cost of producing, shipping and installing these machines in
the data center?

Life Cycle Analysis (LCA) is a procedure that assess the environmental repercussion
of a system by quantifying the impacts of all its life's stages from raw material extraction,
manufacturing, distribution, use, maintenance, to disposal or recycling. In a �rst place,
it would be very interesting to be able to know the full LCA of a data center. And
in a second place, it would be valuable for our work to evaluate the LCA of our BML
infrastructure against a typical homogeneous data center.
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� Chapter 8 �

Conclusions and Perspectives

This chapter summarizes the main contributions of this thesis and details the di�erent
perspectives that can be explored to pursue this work.

8.1 Conclusions

Because our world is relying more and more on internet services, companies are building
more and more data centers. But these infrastructures have non negligible impacts on
our environment, therefore it is necessary to reduce their energy consumption as much
as possible to protect our planet.

The goal of this thesis was to �nd a way to achieve a data center whose energy
consumption is proportional to its actual load. We wanted to tackle the issue of impor-
tant static costs in classical data centers which are due to resource over-provisioning and
servers' high idle consumption. We were inspired by the work done in the mobile world
as hardware designers and software developers have to make e�orts to limit the energy
consumption of these devices which are battery-powered. We have decided to generalize
the concept of the heterogeneous mobile processor ARM big.LITTLE to a larger scale
by creating a highly heterogeneous data center, composed of di�erent types of machines,
from very low power mobile processors to very powerful servers. We name our approach
BML for �Big, Medium, Little� to picture the generalization. The idea is to be able to
dynamically adjust the composition of the infrastructure, and consequently its energy
consumption, to the evolutions of the load over time.

Our contributions can be divided into two main parts:

• Design of an Energy Proportional Heterogeneous Infrastructure

We have proposed a step by step approach for building an energy proportional
infrastructure with heterogeneous computing resources which are chosen for their
energy e�ciency. It begins by a pro�ling step whose objective is to measure the
performance and energy consumption characteristics of the di�erent types of avail-
able hardware for the target application. Then the following steps analyze the
di�erent pro�les to �nd how the machines should be combined to achieve the most
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energy proportional infrastructure. The �nal step computes what we call the ideal
machines combinations. The methodology we have de�ned is generic and can be
adapted to any number of architectures.

• Dynamic Provisioning of Heterogeneous Computing Resources

Once the composition of the infrastructure has been de�ned, an e�cient scheduling
and provisioning algorithm is needed to take advantage of the di�erent characteris-
tics of the heterogeneous computing resources. We have developed two versions of
provisioning algorithm: the �rst one, Ideal BML that only considers pre-computed
machines combinations as con�guration possibilities; and the second one, Multi-
Terms, that performs more complex recon�gurations as it takes into account the
di�erent temporalities and overheads of the di�erent switch on and o� actions in
the decision process.

We have performed pro�ling experiments on a set of real hardware, for the chosen
use case application which is a stateless web server. Our methodology has allowed us
to keep only the most energy e�cient ones, and lead to an implementation of the BML
infrastructure with three di�erent types of architectures. To evaluate our provisioning
algorithms, we have developed a simulator based on the machines pro�les acquired ex-
perimentally. It enables to try multiple infrastructure con�gurations as well as di�erent
algorithm settings, for any trace �le given as input.

Consequently, we have been able to demonstrate the energy gains of our solution
against classical over-provisioned data center composed of homogeneous servers, for real
workload traces of a web site. We have shown that BML infrastructure with our dynamic
provisioning algorithms manage to save signi�cant amounts of energy, especially during
periods of low loads when classical data centers su�er from high static costs. Our solution
reaches energy proportionality as we have proved that its results are very close to the
theoretical lower bound corresponding to a perfect provisioning of BML resources without
considering any energy and time overheads from the recon�gurations.

Finally, we have provided a comparative study of the two provisioning algorithms
we proposed, and discussed the di�erences between the two approaches which mostly
concern the consideration of ideal machines combinations. We have demonstrated that
Multi-Terms algorithm achieves the best results as it allows to adjust more �nely the
infrastructure to the load. We also assume that this characteristic would make it more
robust to load prediction errors, however more evaluations are needed to prove it experi-
mentally. This is considered as future work, as well as the other perspectives detailed in
the following section.

8.2 Perspectives

Our contributions can be extended in several directions. Many of them concern the
di�erent topics to address to be able to actually implement our approach.

The �rst one would be to deal with a �xed data center topology. Only small modi�ca-
tions in our BML building methodology and dynamic provisioning algorithm are needed
to consider an already built heterogeneous infrastructure. In such cases, we would not
remove from consideration the least energy e�cient hardware, but we would keep them
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and sort them in a list of second choice machines which would be switched on only when
no more e�cient machines are available. It would allow to take the most advantage from
the infrastructure when possible, and limiting the static costs due to powering the least
energy e�cient machines.

Another step toward actual implementation would be to face workload which is not
known in advance. This would require using a load prediction system �tted to the target
application, and adapting the provisioning algorithm to cope with the eventual prediction
errors. We can imagine adding a little over-provisioning to our approach. It can consist in
considering a greater load of a certain percentage of the prediction, or even leaving some
Little machines always on if they have a very small idle consumption. Experiments and
evaluations are needed to determine which solution would be the most energy proportional
while o�ering a good quality of service for the application.

Extending our approach to other types of applications is another direction that we
want to address. We worked with stateless web servers in this thesis because they relax
some constraints that were di�cult to consider in a �rst step, but we know this kind
of application is quite rare in reality. Stateful applications are the next type of target
applications that we want to consider. They add the novelty of a state to carry with
the application while migrating it, but they can be fully malleable like the stateless
applications we consider until then. The size of the state will have an important impact
on the duration of the migration. We need to add a pro�ling phase considering the
network in order to predict how long will last the migration depending on the size of the
state and the two, or more, machines impacted by the transfer. If the size of the state
varies over time, its evolution would be another parameter that the prediction model
would need to anticipate.
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