N

N
N

HAL

open science

Automatic classification of dynamic graphs

Mohammed Yessin Neggaz

» To cite this version:

Mohammed Yessin Neggaz. Automatic classification of dynamic graphs. Other [cs.OH]. Université de

Bordeaux, 2016. English. NNT: 2016BORD0169 . tel-01419691

HAL Id: tel-01419691
https://theses.hal.science/tel-01419691
Submitted on 19 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01419691
https://hal.archives-ouvertes.fr

? Jniversie
“BORDEAUX

THESE

PRESENTEE A

L’UNIVERSITE DE BORDEAUX
ECOLE DOCTORALE DE MATHEMATIQUES ET INFORMATIQUE

PAR

MOHAMMED YESSIN NEGGAZ

POUR OBTENIR LE GRADE DE

DOCTEUR

SPECIALITE : INFORMATIQUE

AUTOMATIC CLASSIFICATION OF
DYNAMIC GRAPHS

These encadrée par :

Arnaud CASTEIGTS (co-encadrant), Serge CHAUMETTE (co-directeur)
et Colette JOHNEN (co-directrice)

Soutenue le 24 octobre 2016

Devant la commission d’examen composée de :

CASTEIGTS, Arnaud MC., Univ. de Bordeaux Co-encadrant
CHAUMETTE, Serge  PR., Univ. de Bordeaux Co-directeur
GUINAND, Frédéric ~ PR., Univ. Le Havre Rapporteur et Président
JOHNEN, Colette PR., Univ. de Bordeaux Co-directrice

SOHIER, Devan MC., Univ. de Versailles UVSQ Examinateur

VILLAIN, Vincent PR., Univ. de Picardie Jules Verne = Rapporteur

- 2016 —






Acknowledgments

It is a great pleasure to thank the many people who supported me during my Ph.D.
studies.

I would first like to express my sincere thanks to Arnaud Casteigts, Serge
Chaumette and Colette Johnen for their support throughout these three years of
thesis and well before that. It is thanks to their pedagogy and their open-mindedness
that I chose this way during my master’s degree, and it is thanks to their help and
guidance that I was able to go all the way. I cannot say how valuable our exchanges
and their advice have been. I enjoyed a lot their positive attitude to make a friendly
work atmosphere.

I thank a lot Ralf Klasing and Joseph Peters for having involved me in several
works. I really appreciated the opportunity to collaborate with them. Our discus-
sions, always very fruitful, have greatly influenced the direction of my research and
the completion of these three years.

I warmly thank Frédéric Guinand and Vincent Villain for agreeing to be the review-
ers of my thesis and for their careful reading. Their comments and suggestions,
all very constructive, helped me a lot. 1 am very grateful to Devan Sohier for
participating in my thesis jury and thank him sincerely.

I would also like to thank my colleagues, both Vincent, Matthieu, Christelle, David,
Antoine, Sebastien, Daouda, Martin, Duy and Jigar for their sympathy and good
humor during these three years. Thanks to all the members of the LaBRI and
ENSEIRB-MATMECA with whom I have had productive exchanges.

I thank all the teachers that I had during my academic career and who encouraged
me to go further. A special thought for Malika, she was the best.

Many thanks to my friends who always supported me and with whom I had a
pleasant time. Thanks to Omar (Reda Hlou), Nadia, without forgetting their little
Assyia, Nesrine, Wejdi, Akram, (little) Omar, Fethi (3ayrad), Soukaina, Massi,
Khelaf, Carvajal (not to forget anyone), Salma, Charlotte, Mohamed, Samia,
Rachida, Kawther, Médine (better known as Munevver), Sadetdin, Fatih and their
parents. They greatly alleviated the stress experienced while writing this thesis.
A special thanks to Omar (Moulkhaloua), Riazi, Benallel, Mhimda, Zino, Ghoul,
Vansalah and Benkrama family.

Of course, I can not conclude without thanking my family wholeheartedly, my
parents and my grandmother, my brothers and sisters who, during the three years
of thesis, have always supported and encouraged me, as usual.

Automatic Classification of Dynamic Graphs ii



I learned during these three years that the only way in order not to miss any case
and to visit all the possibilities is to present things formally. I therefore propose a
formal description of these acknowledgments.

Formal presentation of acknowledgments

The set of people and their interactions can be represented as a dynamic graph
G = (V,{E;}) where V = U{ friends, advisor, teachers, colleagues, family,
reviewers, jury}. A solution to the problem would be to use a predicate thanked
directly for all the nodes of the graph. This centralized algorithm, which can be
described simply as follows: V person € V, thanked (me, person) = true,
has as a condition for the success of its execution the fact that everyone must read
this document. This limits its use to categories of graphs that do not correspond
to real practical contexts, while a distributed approach could make the problem
solvable in a more realistic models. A dynamic graph representing a social network
of this type is often part of the class source connectivity (Def. 1.13) where there
exist at least one node from which there is a journey to all other nodes (Property 1).
I propose bellow a distributed event-based acknowledgments algorithm that uses
the propagation of information in dynamic graphs. Property I is proved to be a
necessary and sufficient condition for the success of this algorithm (in this class of
graphs, everyone will be thanked if at least one person reads this document). See
Section 1.2.1 for details.

Distributed acknowledgments algorithm executed on every node v € V':

onReading this document:
source < author;
thank(source,v);
thanked ¢« true;

O S I

=

nContact with person € V\{v}:

if thanked A person ¢ thankedNodes then
send(source);
add(person,thankedNodes);

® N & w»n

9 onReception of message m:
10 if - thanked then

1 source - getContent(m);
12 thank(source,v);
13 thanked < true;

v Mohammed Yessin NEGGAZ






Title Automatic Classification of Dynamic Graphs.

Abstract Dynamic networks consist of entities making contact over time with one
another. A major challenge in dynamic networks is to predict mobility patterns and
decide whether the evolution of the topology satisfies requirements for the success
of a given algorithm. The types of dynamics resulting from these networks are var-
ied in scale and nature. For instance, some of these networks remain connected
at all times; others are always disconnected but still offer some kind of connectiv-
ity over time and space (temporal connectivity); others are recurrently connected,
periodic, etc. All of these contexts can be represented as dynamic graph classes
corresponding to necessary or sufficient conditions for given distributed problems
or algorithms. Given a dynamic graph, a natural question to ask is to which of the
classes this graph belongs. In this work we provide a contribution to the automa-
tion of dynamic graphs classification. We provide strategies for testing membership
of a dynamic graph to a given class and a generic framework to test properties in
dynamic graphs. We also attempt to understand what can still be done in a context
where no property on the graph is guaranteed through the distributed problem of
maintaining a spanning forest in highly dynamic graphs.

Titre Classification automatique de graphes dynamiques.

Résumé Les réseaux dynamiques sont constitués d’entités établissant des con-
tacts les unes avec les autres dans le temps. Un défi majeur dans les réseaux dy-
namiques est de prédire les modeles de mobilité et de décider si I’évolution de la
topologie satisfait aux exigences du succes d’un algorithme donné. Les types de dy-
namique résultant de ces réseaux sont varié€s en échelle et en nature. Par exemple,
certains de ces réseaux restent connexes tout le temps; d’autres sont toujours décon-
nectés mais offrent toujours une sorte de connexité dans le temps et dans I’espace
(connexité temporelle); d’autres sont connexes de maniere récurrente, périodique,
etc. Tous ces contextes peuvent étre représentés sous forme de classes de graphes
dynamiques correspondant a des conditions nécessaires et/ou suffisantes pour des
problémes ou algorithmes distribués donnés. Etant donné un graphe dynamique,
une question naturelle est de savoir a quelles classes appartient ce graphe. Dans
ce travail, nous apportons une contribution a I’automatisation de la classification de
graphes dynamiques. Nous proposons des stratégies pour tester I’appartenance d’un
graphe dynamique a une classe donnée et nous définissons un cadre générique pour
le test de propriétés dans les graphes dynamiques. Nous explorons également le cas
ou aucune propriété sur le graphe n’est garantie, a travers 1’étude du probleme de
maintien d’une forét d’arbres couvrants dans un graphe dynamique.

vi Mohammed Yessin NEGGAZ



Keywords Dynamic graphs, dynamic networks, delay-tolerant networks, mobile
networks, evolving graphs, time-varying graphs, graphs, journeys, classes, classifi-
cation, connectivity, graph algorithms, distributed algorithms.

Mots-clés Graphes dynamiques, réseaux dynamiques, réseaux mobiles, systemes
répartis dynamiques, graphes évolutifs, graphes variants dans le temps, graphes,
trajets, classes, classification, connexité, algorithmes sur les graphes, algorithmes
distribués.

Laboratoire d’accueil Laboratoire Bordelais de Recherche en Informatique.
351, cours de la Libération, 33405 Talence.

Automatic Classification of Dynamic Graphs vii



Résumé long

Parmi les évolutions majeures dans le domaine de I’'informatique, on note 1I’émerge-
nce des réseaux dynamiques. Ces réseaux sont constitués d’entités entrant en con-
tact les unes avec les autres dans le temps, ce qui les différencie des réseaux sta-
tiques ou la topologie reste inchangée. Plus tot, plusieurs études ont été faites
dans cette discipline pour développer de nouvelles techniques, modeles et analy-
ses afin d’étudier et de résoudre des problemes importants dans un contexte ou les
changements du réseau sont considérés comme des défauts (tolérance aux pannes,
algorithmes auto-stabilisants, efc.). Au cours de la derniere décennie, la commu-
nauté a exploré des contextes ou la dynamique est considérée comme une propriété
du réseau plutot qu’une exception. La recherche a mis en évidence 1’importance
d’étudier et de définir des modeles de mobilité, de caractériser les propriétés tem-
porelles et d’analyser le comportement des algorithmes dans un tel contexte dy-
namique. Dans un contexte statique, la stabilité permet a un concepteur d’algorith-
mes d’avoir tous les parametres pour prévisualiser une exécution sur un réseau
donné. Un défi majeur dans les réseaux dynamiques est de prédire la mobilité et
de décider si I’évolution de la topologie permet le succes d’un algorithme. De ce
point de vue, nous distinguons deux types de réseaux dynamiques : les réseaux dy-
namiques controlés ou les contacts et les changements topologiques peuvent Etre
dirigés d’une maniere telle qu’ils s’adaptent a 1’exécution de 1’algorithme; réseaux
non contrdlés ou I’évolution de la topologie du réseau est totalement indépen-
dante de I’exécution et imprévisible sans aucune analyse. Cette derniere catégorie
représente une partie importante des contextes pratiques, tels que les réseaux de
véhicules, les réseaux téléphoniques, les réseaux sociaux, efc., ou les mouvements
des unités communicantes dépendent des mouvements des objets mobiles sous-
jacents. Les types de dynamique résultant de ces réseaux varient en échelle et en
nature. Par exemple, certains de ces réseaux restent connexes tout le temps (O’ Dell
and Wattenhofer [2005]); d’autres sont toujours déconnectés (Jain er al. [2004])
mais offrent une sorte de connexité dans le temps et dans I’espace (connexité tem-
porelle); d’autres sont connexes de maniere récurrente, périodiques, efc. Tous ces
contextes peuvent étre représentés sous forme de classes de graphes dynamiques.
Une douzaine de classes ont été identifiées et organisées en une hiérarchie (Casteigts
et al. [2012]).

Les réseaux dynamiques peuvent étre modélisés de plusieurs manieres. Il est
souvent commode, quand on considere la topologie d’un point de vue global (par
exemple, une trace enregistrée), d’utiliser des graphes dynamiques représentés com-
me une suite de graphes statiques G = {G1, Gs, ..., Gs}, chaque graphe G, corre-
spond a I’état du systeme a un instant ¢ ou pendant un intervalle de temps [, + 1)
(connu sous le nom de graphes évolutifs (Bui-Xuan er al. [2003])). Etant donné
un graphe dynamique, une question naturelle qui se pose est de savoir a quelles
classes il appartient. Cette question est intéressante parce que la plupart des classes

viii Mohammed Yessin NEGGAZ



connues de graphes dynamiques correspondent a des conditions nécessaires et/ou
suffisantes pour des problemes ou des algorithmes distribués (diffusion, élection, ar-
bres d’extension, transfert de jetons, efc.). Ainsi, étre capable de classer un graphe
dans la hiérarchie est utile pour déterminer quels problemes distribués (ou algo-
rithmes) peuvent étre résolus (exécutés) avec succes sur ce graphe. De plus, des out-
ils de classification, tels que des algorithmes pour tester I’appartenance de graphes
a des classes données et pour tester des propriétés topologiques et temporelles, peu-
vent étre utiles pour choisir un bon algorithme dans des contextes ol 1’évolution
d’un réseau n’est pas connue a I’avance. Un concepteur d’algorithmes peut en-
registrer des traces topologiques du monde réel et ensuite tester si les graphes dy-
namiques correspondants sont inclus dans les classes correspondant aux conditions
topologiques nécessaires pour résoudre les problemes a portée de main. Alterna-
tivement, les algorithmes en ligne qui traitent des graphes dynamiques a mesure
qu’ils évoluent pourraient atteindre le méme objectif sans avoir besoin de recueillir
des traces. Dans ce travail, nous apportons une contribution a 1’automatisation de
la classification des graphes dynamiques. Nous proposons des stratégies pour tester
I’appartenance d’un graphe dynamique a une classe donnée et nous définissons un
cadre générique pour le test de propriétés dans les graphes dynamiques. Nous ex-
plorons également le cas ou aucune propriété sur le graphe n’est garantie a travers
I’étude du probleme de maintien d’une forét d’arbres recouvrants dans un graphe
dynamique.

La premiere classe de graphes dynamiques que nous étudions est la classe con-
nexité temporelle. Dans le chapitre 2, nous abordons le probleme de tester si un
graphe dynamique donné G est temporellement connexe, c’est-a-dire un chemin
temporel (également appelé un trajet) existe entre toutes les paires de noceuds. En
supposant que le réseau est représenté sous la forme d’une séquence G = {G1, G, . ..
G}, deux variantes du probleme sont étudiées, selon que 1’on autorise la traversée
consécutive d’un seul ou d’un nombre illimité d’arcs a chaque étape (trajets stricts
vs non-stricts). Dans le cas des trajets stricts, deux algorithmes pré-existants pour
d’autres problemes peuvent étre adaptés. Cependant, nous montrons qu’une ap-
proche dédiée permet d’obtenir une meilleure complexité en temps que le premier
algorithme dans tous les cas, et que le second dans certaines familles de graphes,
notamment les graphes dont la densité est faible a tout instant (bien que potentielle-
ment élevée a travers le temps). La complexité de notre algorithme est en O(dun),
ol § est le nombre d’étapes |G| et u = maxz(|E;|) est le nombre maximal d’arcs
pouvant exister a un instant donné. Ce parameétre est a contraster avec m = | U Ey/,
I’union de tous les arcs apparaissant au cours du temps. En effet, il n’est pas rare
qu’un scénario de mobilité exhibe a la fois un p petit et un m grand. Nous carac-
térisons les principales valeurs charnieres de d, 4 et m permettant de décider quel
algorithme utiliser. Dans le cas de trajets non-stricts, pour lesquels nous ne con-
naissons pas d’algorithme existant, nous montrons qu’un prétraitement du graphe
d’entrée nous permet de réutiliser le méme algorithme qu’auparavant. Par hasard,

Automatic Classification of Dynamic Graphs ix



ces opérations cofitent a nouveau O(dun) temps, ce qui implique que le deuxieéme
probleme n’est pas plus difficile que le premier. Nos deux algorithmes construisent
graduellement la fermeture transitive des trajets stricts (notée G7,) ou non-stricts
(notée G*) a mesure que les arcs sont examinés. Ce sont des algorithmes de type
streaming qui sont aussi capables d’arréter leur exécution sitdt la connexité tem-
porelle atteinte. Un sous-produit intéressant est de rendre G}, et G* disponibles
pour de futures requétes d’accessibilité temporelle de type source-destination. Les
travaux présentés dans ce chapitre ont été publiés dans les actes d’AlgoTel (Bar-
jon et al. [2014c]) et AETOS International Conference (RCFRUS) (Barjon et al.
[2014b]).

Une autre classe étudiée est la classe T-intervalle connexité. Un graphe dy-
namique est dit T-intervalle connexe si pour tout ¢ € [1,6 — T+ 1] tous les graphes
{G4, Gy, ..., Gyor_1} partagent un méme sous-graphe recouvrant connexe. Cette
classe a été identifiée comme jouant un rdle important dans plusieurs problemes
distribués, tels que la détermination de la taille d’un réseau ou le calcul d’une fonc-
tion des entrées initiales des noeuds. Nous proposons dans le chapitre 3 une so-
lution au probleme de décider si un graphe dynamique donné G est T-intervalle
connexe pour un 7' donné. Nous considérons également le probleme lié de trou-
ver le plus grand 1" pour lequel un graphe G donné est T-intervalle connexe. Nous
supposons que les changements entre deux graphes consécutifs sont arbitraires et
qu’une approche opérant a 1’échelle globale de la séquence est donc appropriée.
Précisément, nous considérons deux opérations élémentaires qui sont [’intersection
binaire (étant donné deux graphes, calculer leur intersection) et le test de connexité
(étant donné un graphe, déterminer s’il est connexe). Nous montrons d’abord que
les deux problémes nécessitent 2(§) de telles opérations en utilisant 1’argument de
base que chaque graphe de la séquence doit étre considéré au moins une fois. Plus
étonnamment, nous montrons que les deux problemes peuvent étre résolus en util-
isant seulement 0(0) de telles opérations et nous développons des algorithmes en
ligne optimaux qui atteignent cette borne. Par conséquent, le colit des opérations
(linéaire en nombre d’arétes) est contrebalancé par une logique de haut niveau effi-
cace qui pourrait, par exemple, bénéficier de circuits dédiés (ou code optimisé) pour
les deux opérations. Nous présentons une deuxieme stratégie, donnant des bornes
supérieures de O(d log d) opérations pour les deux problemes. Son intérét princi-
pal est dans le fait que ca peut €tre parallélisé, et ceci nous permet de classer les
deux problemes comme étant dans NC (Nick’s class). Les résultats présentés dans
ce chapitre ont été publiés dans les actes de la 9¢eme International Conference on
Algorithms and Complexity CIAC (Casteigts et al. [2015a]) et AlgoTel (Casteigts
et al. [2015b]).

Dans le chapitre 4, nous présentons une généralisation du framework présenté
dans le chapitre 3 qui permet de tester d’autres classes et propriétés. Suivant le
méme principe, mais en utilisant des opérations différentes (c’est-a-dire en rem-

X Mohammed Yessin NEGGAZ



placant intersection et test de connectivité par d’autres opérations), d’autres prob-
lemes de classification peuvent étre résolus avec la méme logique. Nous présentons
une solution optimale générale pour trois problemes différents : nous nous intéres-
sons a la classe B des graphes dynamiques avec réapparition bornée dans le temps
des arétes. Cette classe est définie par une propriété sur la récurrence des arétes dans
le temps dans un graphe dynamique. Un graphe a une réapparition bornée dans le
temps des arétes avec une borne b si le temps entre deux apparences de n’importe
quelle aréte dans le graphe G est au plus b. Le probléme considéré est celui de trou-
ver la plus petite borne b telle que G ait une réapparition bornée dans le temps des
arétes. Nous considérons, aussi, le probleme de trouver le (pire) diameétre temporel
d’un graphe dynamique donné G, c’est-a-dire la plus petite durée dans laquelle il
existe un trajet depuis n’importe quel noeud vers tous les autres noeuds. Enfin, nous
étudions un probléme un peu plus complexe, celui de calculer le diametre temporel
aller-retour d’un graphe donné G, c’est-a-dire la plus petite durée dans laquelle il y
a un trajet aller-retour de n’importe quel nceud vers tous les autres nceuds. Cette ap-
proche convient pour une étude de haut-niveau de ces problemes lorsque les détails
des changements entre des graphes successifs dans une séquence sont arbitraires. Si
I’évolution du graphe dynamique est limitée a certains égards (par exemple, nom-
bre limité de changements entre graphes), on pourrait tirer profit de 1’utilisation de
structures de données plus sophistiquées pour réduire la complexité, ce que nous
suggérons comme perspective.

Outre la classification, nous sommes €galement intéressés par 1I’algorithmique
distribué dans les graphes dynamiques. Le chapitre 5 est une tentative de compren-
dre ce qui peut encore Etre calculé (et garanti) quand aucune hypothese n’est faite
sur la dynamique du graphe : ni sur le taux de changement, ni sur leur simultanéité,
ni sur la connexité globale. En d’autres termes, nous supposons que le graphe
n’appartient a aucune des classes présentées. Dans ce contexte chaotique, nous
présentons un algorithme qui vise a maintenir le moins possible d’arbres couvrants
par composante connexe, tout en garantissant certaines propriétés. Notre algorithme
est I’adaptation d’un algorithme haut-niveau (ré-étiquetage de graphe), de Casteigts
et al. [2013a] et Casteigts [2006], dans un modele de passage de message synchrone
(pour les réseaux dynamiques). Alors que les principes de la variante haut-niveau
sont préservés, le nouvel algorithme s’avere beaucoup plus complexe. En partic-
ulier, il implique une nouvelle technique qui consiste a maintenir une permutation
distribuée de I’ensemble de tous les IDs des nceuds tout au long de 1’exécution.
L’algorithme hérite également des propriétés de sa variante originale : il repose
sur des décisions purement localisées, pour lesquelles aucune information globale
n’est jamais collectée par les nceuds, et pourtant il maintient un certain nombre de
propriétés critiques quelle que soit la fréquence et 1’échelle des changements. En
particulier, le graphe reste toujours recouvert par une forét d’arbres dans laquelle 1)
aucun cycle ne peut jamais apparaitre, 2) chaque nceud appartient a un arbre, et 3)
apres un nombre arbitraire de disparition d’arétes, tous les sous-arbres maximaux

Automatic Classification of Dynamic Graphs xi



régénerent exactement et immédiatement un jeton (a leur racine). Ces propriétés
sont assurées quelle que soit la dynamique, méme si les changement se poursuiv-
ent pendant une longue période arbitraire. L’optimalité n’est pas 1’objet de cette
étude, cependant le nombre d’arbres par composante connexe, la métrique d’intérét
ici, finit par converger a un arbre unique si le réseau cesse de changer (ce qui n’est
attendu). Les travaux de ce chapitre ont été publiés dans les actes de la 18eme In-
ternational Conference on Principles of Distributed Systems OPODIS (Barjon e al.
[2014a]).

Xii Mohammed Yessin NEGGAZ



Contents

Introduction

1 Background on Dynamic Graphs and Classification Problems
Dynamic Graphs . . . . . . ... ... ... ... .. ...,

1.1

1.2

1.3

1.1.1
1.1.2

Dynamic Graphs Models . . . . . .. ... ... ......
Basic Definitions on Dynamic Graphs . . . . ... ... ..

Dynamic Graph Classes . . . . . . . .. .. ... ... .......

1.2.1

Temporal Properties and Dynamic Graph Classes . . . . . .

Automatic Classification . . . . . . . . . . . . .. ...

2 Testing Temporal Connectivity

2.1
22

2.3

Introduction . . . . . . ...
Model and Definitions . . . . . . . . ... ...
22.1 RelatedWorks . . .. .. ... ... .. L.
Testing Temporal Connectivity in Sparse Dynamic Graphs . . . . .
2.3.1 Computation of the Transitive Closure for Strict Journeys
(strict transitive closure) . . . . . . . . .. ... ... ...
2.3.2  Computation of the Transitive Closure for Non-strict Jour-
neys (non-strict transitive closure) . . . . . .. ... .. ..
233 CompariSOn . . . . . . . . ot

3 Testing T-interval Connectivity
Model, Definitions and Basic Observations . . . . . . . . ... ..

3.1

32

33

34

3.1.1

Bound on Computation Time . . . . . . .. .. ... ....

Row-Based Strategy . . . . . .. .. ... .

3.2.1

Parallel Algorithm . . . . ... ... ... .. .......

Optimal Solution . . . . . .. .. ... ... Lo

3.3.1

Online Algorithms . . . . . . ... ... ... ... ....

Dynamic Online Interval Connectivity . . . . . .. ... ... ...

4 A Generic Framework for Testing Properties in Dynamic Graphs
Introduction . . . . . .. ...
4.2 Model and Definitions . . . . . . . . .. ... ... ...

4.1

11
13
13
21

23
24
24
27
28

29

32
33

37
38
41
43
46
47
55
55



CONTENTS

4.3 Generic Framework . . . . . .. ... ... ... ... . ... ... 64
4.3.1 Generic Algorithm for Minimization Problems . . . . . . . 64

4.4 Bounded Realization of the Footprint . . . . . . . ... ... .... 66
4.4.1 Instantiation of the Algorithm . . . . ... ... ... ... 68

4.5 Temporal Diameter . . . . . .. ... ... ... .. ........ 69
4.5.1 Instantiation of the Algorithm . . . . . ... ... .. ... 73

4.6 Round-trip Temporal Diameter . . . . . . . ... ... ....... 74
4.6.1 Instantiation of the Algorithm . . . .. ... ... .. ... 79

5 Maintaining a Spanning Forest in Highly Dynamic Graphs 81
5.1 Introduction . . . . ... .. ... ... ... ... 82
5.1.1 RelatedWork . . . ... ... ... ... .......... 83

5.1.2  The Spanning Forest Principle . . . . . ... ... ... .. 84

5.1.3 OurContribution . . . ... ... ... ... ........ 85

5.2 Model and Notations . . . . . . .. ... .. ... ......... 86

5.3 The Spanning Forest Algorithm . . . . . ... ... ........ 87
5.3.1 State Variables . . . ... ... .. ... .......... 87

5.3.2  Structure of a Message (and associated variables) . . . . . . 88

5.3.3 Informal Description of the Algorithm . . . . . . . ... .. 89

5.4 Outline of the Correctness Analysis . . . . . ... ... ...... 96
5.4.1 Helping Definitions . . . . . . .. ... ... ........ 97

542 ConsiStency . . . . . .o i e e e e 97

543 Correctnessofthe Forest . . . . . . ... ... ....... 98

5.5 Detailed Proofs . . . ... .. ... ... .. ... .. ... ..., 99
551 ConsSiStency . . . . . . oo e e e e 99

5.5.2 Correctnessofthe Forest . . . . .. ... ... ....... 103

5.6 Simulation on Real World Traces (Infocomm 2006) . . . . ... .. 108
Conclusion 113
X1iv Mohammed Yessin NEGGAZ



List of Figures

1.1 ExampleofaTVG. . . . . ... ... ... .. ... . ... 9
1.2 Example representation of a dynamic graph as an evolving graph. . 10
1.3 Example representation of a dynamic graph as an untimed evolving
graph. . . . .. e 10
1.4 Dynamic graph classes hierarchy. . . . . . . . ... ... ... ... 18
1.5 A TVG G; the labels on the edges indicate the time intervals in
which those edges are present. The edge latencyis ¢ < 1.. ... .. 19
1.6 Automatic testing of algorithms relevance to dynamic contexts (Casteigts
etal. [2009]). . . .. 21
2.1 Example of strict (GZ,) and non-strict (G*) transitive closure of jour-
neysinadynamic graph G. . . . . ... ..., 27
2.2 Example of strict transitive closure computation. . . . . . .. . .. 30
2.3 Example of non-strict transitive closure computation. . . . . . . . . 33

3.1 Example of a 4-interval connected dynamic graph G of length = 8. 40
3.2 Example of an intersection hierarchy for a given dynamic graph G
oflengthd =8. . . . . . . .. ... 42
3.3 Example of computation of the intersection graph G2[5] correspond-
ing to the sequence {GS5, Gg, G7, Gs, Gg, G109, G11, G12} based on

powerrows graphs. . . . . . . ... Lo 44
3.4 Example of T-interval connectivity testing based on the computa-

tion Of POWET TOWS. . . . . . . . v v v e e e 45
3.5 Example of interval connectivity testing based on the computation

of powerrows. Here 6 = 16and 7"=11.. . . . . . ... ... ... 45

3.6 Example of computation of the intersection graphs G'°[3] = N{G3, Gy, ..., G2}
and G'°[4] = N{G4, G5, ..., G13} based on the computed graphs on

differentrows. . . . . . . ... L 48
3.7 Examples of intersection rectangle computation based on left and
rightladders. . . . . . . ... .. .. o 49

3.8 Examples of the execution of the optimal algorithm for 7’-INTERVAL-
CONNECTIVITY with 7' < /2 (a) and T' > ¢/2 (b). G is T-interval
connected in both examples. . . . . . ... ... ... ....... 50

XV



LIST OF FIGURES

3.9 Example of the execution of the optimal algorithm for INTERVAL-
CONNECTIVITY. (It is a coincidence that the rightmost ladder
matches the outer face.) . . . . . . . . ... .

3.10 Example of the execution of the STABILITY algorithm. . . . . . ..

4.1 Example of the execution of the generic algorithm for minimization
problems. . . . . ...

4.2 Example of a transitive closure hierarchy for a given dynamic graph
Goflengthd =8. . . . . . . .. ... ...

4.3 Example of transitive closures concatenation. . . . . . ... .. ..
4.4 Example of a potentially incorrect compution of the transitive clo-
sure G4,13) from Gygyand G 1) - - . . . .o

4.5 Example of a round trip transitive closure of journeys of a round
trip temporally connected dynamic graph G of length = 3.

4.6 Example of round trip transitive closures concatenation. . . . . . . .

5.1 Spanning forest principle (high-level representation). Black nodes
are those having a token. Black directed edges denote child-to-
parent relationships. Gray vertical arrows represent transitions.

5.2 Example of the high level spanning forest algorithm execution. Black
nodes are those having a token. Black directed edges denote child-
to-parent relationships. Labels on edges (right or above edges)
show rules application. vy = Merging rule, ro = Circulation rule,
r3 = Regenerationrule. . . . . . . . .. .. ... ... . ... ...

5.3 Example of the system evolution over time. . . . . ... ... ...

5.4 Example of local merging operation during round ¢ in the two pos-
sible cases: e € F; and e € F;. We suppose that ID=score on all
nodes. . . . ... e e e

5.5 Example of local token circulation operation from node 1 to node 2
during round ¢ in the two possible cases: e € F; and e ¢ F;. The
possession of the token by a node is represented by its black filling
color. We suppose that ID=scoreonallnodes. . .. ... .. ..

5.6 Example of local token regeneration operation by a node 2 during
round i. The possession of the token by a node is represented by its
black filling color. We suppose that ID=score on all nodes. . . . .

5.7 Example of execution of the algorithm which illustrates all types of
operations: parent selection (s —), token circulation (f —), and
tree disconnection (X <—). The first two symbols represent FLIP or
SELECT messages to be sent in the next round. Black (resp. white)
nodes are those (not) having a token at the beginning of the round.
Tree edges are represented by bold directed edges. Dash edges have
justdisappeared. . . . . . . ... ...

57

85

92

Mohammed Yessin NEGGAZ



LIST OF FIGURES

5.8 (a) Example of cycle formation in the case where the unique score
technique is not used. (b) Example of cycle formation avoidance

using the unique score technique. . . . . . . ... ... ... .... 94
5.9 Example of adjacent trees insulation. . . . . . . .. .. ... ... 94
5.10 Number of roots per connected components, assuming 10 rounds

persecond. . . . ... L. 109
5.11 Number of roots per connected components, assuming only 1 round

persecond. . . ... ... 110

Automatic Classification of Dynamic Graphs XVvii



LIST OF FIGURES

xviii Mohammed Yessin NEGGAZ



List of Tables

2.1 Running time comparison between the proposed algorithm and the
adaptation of the algorithm from Bui-Xuan ez al. [2003]. . . . . ..

5.1 List of local variables

Xix



LIST OF TABLES

XX

Mohammed Yessin NEGGAZ



Introduction

Among the major evolutions in the field of computer science, we note the emer-
gence of dynamic networks. These networks consist of entities making contact over
time with one another, which makes them different from static networks where the
topology remains unchanged. Earlier, several studies have been made in this disci-
pline to develop new techniques, models, and analyses in order to investigate and
solve substantial problems in a context where the network changes are considered
as faults (fault-tolerance, self stabilizing algorithms etc.). Over the last decade, the
community has explored contexts where the dynamic is considered as a property
of the network, rather then exception. Research has highlighted the importance
of studying and defining mobility patterns, characterizing dynamic properties, and
analysing the behaviour of algorithms in a dynamic context. In a static context, the
stability allows an algorithm designer to have all parameters to preview the execu-
tion on a given network. A major challenge in dynamic networks is difficulties to
predict mobility patterns and decide whether the evolution of the topology satis-
fies requirements for the success of a given algorithm. From this point of view we
distinguish two types of dynamic networks: Controlled dynamic networks where
contacts and topological changes can be directed in a way such that they adapt to
the execution of the algorithm; non-controlled networks where the evolution of the
network topology is completely independent from the execution and unpredictable
without any analysis. The latter category represents a significant part of the practi-
cal contexts, as vehicular networks, telephone networks, social networks etc. where
the movements of communicating and computing units depend on the movements
of the underlying mobile objects. The types of dynamics resulting from these net-
works are varied in scale and nature. For instance, some of these networks remain
connected at all times (O’Dell and Wattenhofer [2005]); others are always discon-
nected (Jain er al. [2004]) but still offer some kind of connectivity over time and
space (temporal connectivity); others are recurrently connected, periodic, etc. All
of these contexts can be represented as dynamic graph classes. A dozen such classes
were identified and organized into a hierarchy (Casteigts ef al. [2012]).

Dynamic networks can be modelled in a number of ways. It is often convenient,
when looking at the topology from a global standpoint (e.g. a recorded trace), to use
dynamic graphs represented as a sequence of static graphs G = {G1, Gs, ..., Gs},
each graph G; corresponds to the state of the network during the time interval



[t,t + 1) (known as evolving graphs (Bui-Xuan er al. [2003])) or at a time ¢ in
the discrete domain (known as untimed evolving graphs). Given a dynamic graph,
a natural question to ask is to which of the classes this graph belongs. This ques-
tion is interesting because most of the known classes of dynamic graphs correspond
to necessary or sufficient conditions for given distributed problems or algorithms
(broadcast, election, spanning trees, token forwarding, etc.). Thus, being able to
classify a graph in the hierarchy is useful for determining which distributed prob-
lems (or algorithms) can be successfully solved (executed) on that graph. Further-
more, classification tools, such as algorithms for testing the membership to given
classes and for testing properties, can be useful for choosing a good algorithm in
settings where the evolution of a network is not known in advance. An algorithm
designer can record topological traces from the real world and then test whether the
corresponding dynamic graphs are included in classes that correspond to the topo-
logical conditions for the problem at hand. Alternatively, online algorithms that
process dynamic graphs as they evolve could accomplish the same goal without the
need to collect traces. In this work we provide a contribution to the automation
of dynamic graphs classification. We provide strategies for testing the member-
ship of a dynamic graph to a given class and a generic framework to test properties
in dynamic graphs. We also explore the case where no property on the graph is
guaranteed through the problem of maintaining a spanning forest in highly dynamic
graphs.

The first dynamic graph class that we study is the class temporal connectivity.
In Chapter 2, we address the problem of testing whether a given dynamic graph G is
temporally connected, i.e. a temporal path (also called a journey) exists between all
pairs of nodes. Assuming the network is represented as a sequence {G1, G, ..., G5},
two cases are studied depending on whether a single edge or an unlimited number
of edges can be crossed in a same (G (respectively, strict journeys vs non-strict
journeys). In the case of strict journeys, a number of existing algorithms designed
for more general problems can be adapted. We adapt one of them to the above
formulation of the problem and characterize its running time complexity. The pa-
rameters of interest are the length of the graph sequence ¢, the maximum instant
density = max(|E;]), and the cumulated density m = | U E;|. Our algorithm has
a time complexity of O(dun), where n is the number of nodes. This complexity
is compared to that of the other solutions: one is always more costly (although it
solves a more general problem), the other one is more or less costly depending on
the interplay between instant density and cumulated density. Our solution is rele-
vant for sparse mobility scenarios (e.g. robots or UAVs exploring an area) where
the number of neighbors at a given time is low, though many nodes can be seen over
the whole execution. In the case of non-strict journeys, for which no algorithm is
known, we show that some pre-processing of the input graph allows us to re-use
the same algorithm than before. By chance, these operations happen to cost again
O(dpn) time, which implies that the second problem is not more difficult than the

2 Mohammed Yessin NEGGAZ



Introduction

first. Both algorithms gradually build the transitive closure of strict journeys or non-
strict journeys as the edges are examined; these are streaming algorithms. They stop
their execution whenever temporal connectivity is satisfied (or after the whole graph
has been examined). A by-product of the execution is to make the transitive clo-
sure available for further connectivity queries (in a temporal version), these queries
being then reduced to simple adjacency tests in a static graph. The work presented
in this chapter has been published in AlgoTel (Barjon er al. [2014c]) and AETOS
International Conference (RCFRUS) (Barjon et al. [2014b]).

Another studied class is T-interval connectivity. A dynamic graph is said to be
T-interval connected if for all ¢ € [1,6 — T + 1] all graphs {G}, Gi41, ..., Gior—1}
share a common connected spanning subgraph. The class of T-interval connected
graphs was identified as playing an important role in several distributed problems,
such as determining the size of a network or computing a function of the initial
inputs of the nodes. We propose in Chapter 3 a solution to the problem of decid-
ing whether a given dynamic graph G is 7T-interval connected for a given 7. We
also consider the related problem of finding the largest 7" for which the given G is
T-interval connected. We assume that the changes between two consecutive graphs
are arbitrary and that no specific data structure is used to represent the sequence of
graphs. As such, we focus on high-level strategies that work directly at the level of
the graph sequence. Precisely, we consider two graph-level operations as building
blocks, which are binary intersection (given two graphs, compute their intersection)
and connectivity testing (given a graph, test if it is connected). Put together, these
operations have a strong and natural connection with the problems at stake. We first
show that both problems require €2(J) such operations using the basic argument that
every graph of the sequence must be considered at least once. More surprisingly,
we show that both problems can be solved using only ©(¢) such operations and we
develop optimal online algorithms that achieve these matching bounds. Hence, the
cost of the operations — both linear in the number of edges — is counterbalanced by
efficient high-level logic that could, for instance, benefit from dedicated circuits (or
optimized code) for both operations. We present a second strategy, yielding upper
bounds of O(d log d) operations for both problems. Its main interest is in the fact
that it can be parallelized, and this allows us to classify both problems as being in
NC (i.e. Nick’s class). The results presented in this chapter were published in the
Oth International Conference on Algorithms and Complexity CIAC (Casteigts et al.
[2015a]) and AlgoTel (Casteigts ef al. [2015b]).

In Chapter 4 we present a generalization of the framework presented in Chapter
3 that allows one to test other classes and properties. Following the same principle,
but using different operations (i.e. replacing intersection and connectivity test by
other operations), other classification problems can be solved with the same high-
level logic. We present a general optimal solution for three different problems: We
are interested in the Class B of those dynamic graphs with Time-bounded reappear-

Automatic Classification of Dynamic Graphs 3



ance of edges. This class is defined by a property on edges recurrence over time
in a dynamic graph. A graph has a time-bounded edges reappearance with a bound
b if the time between two appearances of the same edge in the graph G is at most
b. The considered problem is that of finding the smallest bound b such that G has
a time-bounded edges reappearance. Then, we consider the problem of finding the
(worst) temporal diameter of a given dynamic graph G i.e. the smallest duration in
which there exist a journey from any node to all other nodes. Finally, we investi-
gate a somewhat more complex problem, that of computing the round trip diameter
of a given graph G i.e. the smallest duration in which there exist a back-and-forth
journey from any node to all other nodes. This approach is suitable for a high-level
study of these problems when the details of changes between successive graphs in a
sequence are arbitrary. If the evolution of the dynamic graph is constrained in some
ways (e.g., bounded number of changes between graphs), then one could benefit
from the use of more sophisticated data structures to lower the complexity of the
problem, which we suggest as a perspective. The work in this chapter is the most
recent in the thesis and has not yet been published.

Besides the classification, we are also interested in distributed algorithms in dy-
namic graphs. Chapter 5 is an attempt to understand what can still be computed
(and guaranteed) when no assumptions are made on the graph dynamics: neither on
the rate of change, nor on their simultaneity, nor on global connectivity. In other
words, we do not assume that the graph belongs to any of presented classes. In this
seemingly chaotic context, we present an algorithm that strives to maintain as few
trees per components as possible, while always guaranteeing some properties. Our
algorithm is the adaptation of a coarse-grain interaction algorithm, from Casteigts
et al. [2013a] and Casteigts [2006], into the synchronous message passing model
(for dynamic networks). While the high-level principles of the coarse-grain variant
are preserved, the new algorithm turns out to be significantly more complex. In
particular, it involves a new technique that consists of maintaining a distributed per-
mutation of the set of all nodes IDs throughout the execution. The algorithm also
inherits the properties of its original variant: It relies on purely localized decisions,
for which no global information is ever collected at the nodes, and yet it maintains
a number of critical properties whatever the frequency and scale of the changes.
In particular, the graph remains always covered by a spanning forest in which 1)
no cycle can ever appear, 2) every node belongs to a tree, and 3) after an arbitrary
number of edge disappearance, all maximal sub-trees immediately restore exactly
one token (at their root). These properties are ensured whatever the dynamics, even
if it keeps going for an arbitrary long period of time. Optimality is not the focus
here, however the number of tree per components — the metric of interest here —
eventually converges to one if the network stops changing (which is never expected
to happen,though). The work in this chapter has been published in the 18th Inter-
national Conference on Principles of Distributed Systems OPODIS (Barjon et al.
[2014a]).

4 Mohammed Yessin NEGGAZ



Introduction

S N

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Dependencies between the chapters of this thesis.

Dashed links represents weak dependencies.

Automatic Classification of Dynamic Graphs



Mohammed Yessin NEGGAZ



Chapter 1

Background on Dynamic Graphs and
Classification Problems

Contents
1.1 DynamicGraphs . ... ......... ... 8
1.1.1 Dynamic Graphs Models . . . . . . ... .. ... ... 8
1.1.2  Basic Definitions on Dynamic Graphs . . . . . ... .. 11
1.2 DynamicGraphClasses . . . . . ... ... ... 13
1.2.1 Temporal Properties and Dynamic Graph Classes . . . . 13
1.3 Automatic Classification. . . . . ... ............. 21

In this chapter we give definitions of general concepts and notations that will
be used in this document. In Section 1.1, we present different representations of
dynamic graphs and we define related concepts. In Section 1.2, we define some
important properties and hierarchy of dynamic graph classes. Finally, Section 1.3
presents the motivation of our work and introduces some of the problems we will
address on dynamic graph classification.



1.1. Dynamic Graphs

1.1 Dynamic Graphs

In this section we present various representations of dynamic graphs and some basic
notions and concepts that will be used in this thesis.

1.1.1 Dynamic Graphs Models

In a dynamic context, networks can be represented in many ways, it depends on the
definition of the temporal domain in which the system evolves. We review below
some of the models used in the literature.

Time-Varying Graphs: Let’s first start with the most general case (continuous
time, arbitrary dynamics):

Definition 1.1 (Time-varying Graph Casteigts ef al. [2012]). A Time-Varying Graph
denoted TVG is a quintuplet G = (V, E, T, p, () where:

e V is a static set of nodes and ;
o [ is the set of possible edges;

o T C T is the life time of the system (the time interval wherein the system
exists), the temporal domain T is generally assumed to be R™ for continuous-
time systems or N for discrete-time systems;

e p: EXT — {0,1} is a function that determines the presence of a given edge
at a given time.

o (: ExT — Tisafunction that determines the latency (the time a message
takes to cross the edge) of a given edge at a given time.

This model can be extended further by adding a node presence function 1) :
V x T — {0,1} (i.e., the presence of nodes varies) or a node latency function
vV xT — T (accounting e.g. for local processing times at routers), etc.

Notation Gj; j denotes the subgraph of G = (V, E, T, p,() induced by the pe-
riod [i,j] C T, ie. Gy = (V, E,[i, 7], p, Q).

Figure 1.1 shows an example of a TVG where labels on the edges indicate the
time intervals in which these edges are present (according to the function p).

Definition 1.2 (The Footprint of a dynamic graph). We define the footprint of the
dynamic graph G by the simple graph G = (V, E) where V' is the static set of nodes
in the dynamic graph and E is the set of all edges that exist at least for a time in the

8 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

life time of the graph. This concept is also referred to as underlying graph in the
literature (except that the underlying graph may contain edges that do not appear).

[z1]
i&d

Figure 1.1: Example of a TVG.

Evolving graphs: It is often convenient to look at the evolution of the network
as a sequence of global snapshots. One such model is called evolving graphs (Fer-
reira [2002]). Two variants exist, depending on the way time is associated with the
sequence. In the most general case, the evolution of the graph is modelled by an
indexed sequence of graphs {G; = (V, E;)}, each graph G; being associated to a
time interval [t;, ¢; 1) during which it is available. Formally:

Definition 1.3 (Evolving Graph). Let G = (V, E) be a graph, an evolving graph G
is represented by a triplet G = (G, Sg, St) where:

o S¢ is an indexed sequence {G; = (V, E;)} of G subgraphs;

e S7 C T C NorRisthe associated sequence of dates ty, ts, ... where Ve € E;,
e is present in the time interval [t;,t;,1) (only the graph G is present in this
interval).

From a mathematical point of view, evolving graphs are almost equivalent to
time-varying graphs. The only difference is that the topological events are required
to be countable (due to the representation as a sequence), whereas they can be arbi-
trary with time-varying graphs. This leads to strong differences in the expressivity
of both models and thus to the potential strength of an adversary in distributed net-
works (Casteigts et al. [2013b]). From a usage point of view, the main difference
is in the convenience of the formalism (notations), which makes evolving graph
often useful in a discrete setting, while TVGs are particularly useful to describe
distributed algorithms in a continuous-time settings (or, as we will see, to express
general properties on the network dynamics).

Automatic Classification of Dynamic Graphs 9



1.1. Dynamic Graphs

t1 — to to — t3 ts3 — tg ta — ts
a>f\.e a./c\le aMe aVe
b d b d b d b L7
Gl G2 G3 G4

Figure 1.2: Example representation of a dynamic graph as an evolving graph.

We show in Figure 1.2 a representation of an evolving graph G in the form of a
sequence based representation corresponding to the sequences S¢ and Sy. Note that
evolving graphs can also be represented in a compact way like the one of Figure 1.1.

To simplify the model and adapt it to our problems (most of which are in dis-
crete time), we will use throughout this document a lightened model called untimed
evolving graphs where the durations of the periods are ignored. A dynamic graph
in the following is represented by a mere sequence of indexed graphs whose only
the order describes the evolution of the graph:

Definition 1.4 (Untimed Evolving Graph). An untimed evolving graph is an in-
dexed sequence {G; = (V, E;)} where V is a static set of nodes and E; C E is a
dynamically changing set of edges.

We use in the following chapters:

o {G1,(y,...,Gs} to denote a finite untimed evolving graph of length 6;

e 1 to denote the number of nodes |V|;

e § = |G| to denote the length of the graph i.e. the number of graphs in G;

e {G1,(y, ...} to denote an infinite untimed evolving graph.

We consider in a general case that there is no assumptions and no restrictions on

the set of edges changing function (changes are arbitrary), if there is one in a later
context, this will be specified.

a:..\ c ec a>\:e a>\:e QI c - &e aI‘/c<e
b d b d b d b d b d
G1 Go G3

Figure 1.3: Example representation of a dynamic graph as an untimed evolving
graph.

10 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

Figure 1.3 shows a representation of an untimed evolving graph G = {G1, G, . ..
, G5} of length 0 = 5. We consider the general case where edges are directed.

Other models that are widely used exist in the literature, like temporal networks
Kempe et al. [2000] link streams Viard et al. [2016].

1.1.2 Basic Definitions on Dynamic Graphs

An important property in dynamic graphs is the connectivity between nodes. Let
us first look at this property in the context of untimed evolving graphs. In Figure
1.3, at no time, the graph G is connected in a classical sense. In other words, no
graph in {G; : 1 > i > 5} is connected. We can note that at any time 7, a graph
G, allows only to a limited number of nodes to be connected (with a path). For
instance, at no time ¢, a is connected to e. But by allowing the combination of edges
from different graphs, e can be reached from a by means of a temporal path, e.g:
((a,c) € Ey,(c,e) € E,). This temporal aspect of a path gives the notion of journey
(temporal path). If we consider the possibility of crossing only one edge per graph, a
could reach e as shown above but it could not reach d. While if it is allowed to cross
several edges per graph, a can use the journey ((a, c) € Ey, (c,e) € Ey, (e,d) € Ey)
to reach d. This restriction gives two types of journeys: in the first case we talk about
strict journey represented by dashed arrows in Figure 1.3, in the second case, with
the relaxation of the constraint we used a non-strict journey (or journey in general)
represented by dotted arrows in Figure 1.3. More formally, it is defined as follows:

Definition 1.5 (Non-strict Journey). J(u,v) = {(e1,t1), (€2, t2), ..., (ep, tp)} (T
when the context is implicit), such that e; € Ey,, is a non-strict journey from u to v
inGifandonlyife;, ey, ..., e, is apathfromutov andforalli € 1.p—1, t,11 > t,.
The existence of a non-strict journey from u to v, when the context is implicit, is
noted u ~ .

Definition 1.6 (Strict Journey). J**(u,v) = {(e1,t1), (e, t2), ..., (ep, tp)} (T
when the context is implicit), such that e; € E,, is a strict journey from u to v in
G if and only if e1, ez, ..., €, is a path from u to v and for all i € 1..p—1, t;11 > t,.
Note that the inequality t; 1 > t; is strict, i.e. at most one edge can be crossed in
a single step t; (as opposed to an unlimited number for non-strict journeys). The

. o .. e st
existence of a strict journey from u to v, when the context is implicit, is noted u ~~ v.

In the general case of TVG (time varying graph) we define a journey as follows:

Automatic Classification of Dynamic Graphs 11



1.1. Dynamic Graphs

Definition 1.7 (Journey in TVG). J(u,v) = {(e1,t1), (€2, ta),. .., (ep,tp)} (
when the context is implicit) is a journey from uto vina TVG G = (V, E, T, p,
if and only if ey, e, ...,e, is a path from u to v and for all 1 € 1..p—1, Vt
[ti, g(@i, tl)], ,0(6@', t) =1and ti+1 2 tz -+ C(ei, tl)

The existence of a journey from u to v, when the context is implicit, is noted
U~ 0.

m W

For example, in Figure 1.1, with ¢ < 1, {((a,b), 1), ((b,d),2),((d,e),3)} is a
journey from a to e. There is no journey from a to e that uses the sequence of edges
(a,b), (b, c), (c,d), because (c, d) appears always before any appearance of (b, c).

Note that the temporal nature of the dynamic graph gives an orientation to the
journey even if the graph G is not directed, i.e the existence of a journey from a to
e does not implies the existence of a journey from e to a.

Definition 1.8 (Departure of a journey). The departure departure(J(u,v)) of a
Journey J (u,v) = {(e1,t1), (e2,t2), ..., (ep, t,)} is the date t,.

Definition 1.9 (Arrival of a journey). The arrival arrival(J (u,v)) of a journey
J(u,v) ={(e1,t1), (e2,t2), ..., (ep, ty)} is the date t,+((ep, t,,) (arrival (T (u,v))
= t, in untimed evolving graph model where communication latency on existing
edges is ignored).

In general (whatever the model used), we denote the set of all possible journeys
in dynamic graph G as J*(G) and the set of all possible journeys in a period [i, j|
as J*(G,i,j) (J*(i,j) when the context is implicit). Similarly J*(u,v,G) de-
notes the set of possible journeys from « to v in all the graph G and J*(u, v, G, 1, j)
(J*(u,v,1,7) when the context is implicit) denotes the set of possible journeys from
u to v in the graph G in a period [, j].

As a path in a static graph, a journey J (u,v) in a dynamic graph has a topo-
logical length which corresponds to the number of hops in it, i.e. p for a journey
{(e1,t1), (e2,t2), ..., (ep,tp)}. It also has a temporal length (or duration), which
is the time a message takes to reach v departing from u i.e. arrival(J (u,v)) —
departure(J (u,v)). This notion gives the concept of temporal distance in a graph:

Definition 1.10 (Temporal distance at time t). Let J*(u,v,G,t) be the set of jour-
neys from u to v whose departure > t. We define the temporal distance t Dis(u,v,G
,t) from u to v at time t by the duration min{arrival(J (u,v)) —t : J(u,v) €
J*(u,v,G, 1)}

12 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

From this, we define the concept of temporal diameter. Informally, the temporal
diameter of a graph at time ¢ (step in untimed evolving graphs) is the largest tempo-
ral distance between any pair of nodes at this time. Formally:

Definition 1.11 (Temporal diameter at time t). The temporal diameter t Diam(G, t)
of a dynamic graph G at time t is the largest temporal distance between any pair of
nodes at this time: max{tDis(u,v,G,t) : u,v € V}.

Definition 1.12 (Temporal diameter of a dynamic graph G). The temporal diameter
tmpDiam(G) of a dynamic graph G is the largest temporal diameter t Diam(G,t)
at any time t: max{tDiam(G,t):t € T }.

1.2 Dynamic Graph Classes

In this section we define some classes of dynamic graphs based on topological and
temporal properties. Then, we introduce the main topic of this work, which is the
automatic classification of dynamic graphs.

1.2.1 Temporal Properties and Dynamic Graph Classes

After defining the most important concepts, we are interested in topological and
temporal properties in dynamic graphs. In our context, a question is what gives
sense to a given property and makes it interesting to consider. An efficient approach
is to analyze distributed algorithms and to look at the assumptions made on the dy-
namic graph.

Characterizing temporal properties

Casteigts et al. [2009] propose a framework that allows to examine what impact
a property has on the execution of a distributed algorithm. Their general method-
ology consists in considering a problem, then characterizing the necessary and/or
sufficient conditions for the success of its algorithm execution in terms of network
dynamics. The framework is based on the combination of local computations by
means of graph relabelings (Litovsky et al. [1999]), and evolving graphs as formal-
ism for dynamic networks.

They model this in two predicates: objective and condition. The objective O 4
defines the success of the execution of an algorithm A. Precisely the system con-
figuration we want to achieve at the end of the execution formally expressed by

Automatic Classification of Dynamic Graphs 13



1.2. Dynamic Graph Classes

a terminal state. In this case we talk about a type of algorithms whose execution
ends with the achievement of a precise desired state. Another type of algorithms are
executed in order to maintain a correct system configuration during the execution
(infinite execution in some cases). The corresponding objective should describe, in
this case, the desired state of the system for a series of steps in the execution corre-
sponding to a sequence of graphs in the dynamic graph.

The conditions are represented by temporal and topological properties of the
dynamic graph G. There are two types of conditions that can be put in relation with
the objective of an algorithm: i) Necessary condition C,s, without which the objec-
tive can not be reached. ii) Sufficient condition Cs, which guarantees the objective
(given some additional assumptions on the interaction scheduler). Formally:

i) VG, ~Cn(G) = ~04(G)
ii) VG,Cs(G) = 04(G)

For example, the distinction between a strict journey and a non-strict journey
was introduced in Casteigts ef al. [2009] to report on necessary or sufficient con-
ditions on the dynamics of the graph, regarding distributed algorithms based on
pairwise interactions. The analysed algorithm A is a propagation algorithm, which
consists in transmitting an information / from a node u to all the other nodes of the
graph. In this instance, the objective O 4 that the execution must reach is the final
state where Vv € V, v has the information /.

We define two properties based on the notion of journey:

Property 1 There exists a journey from a node u to all other nodes of the graph:
JueV : YveVu~uv.

Property 2 There exists a strict journey from a node u to all other nodes of the
graph: Ju e V : Vv e Vu N

As explained in Casteigts et al. [2009], Property 1, with u = the initial emitter,
is a necessary condition so that the algorithm A can achieve the objective O 4. The
proof is based on the argument that the existence of a journey u ~- v is necessary
in order to transmit information from u to v. With the assumption (al) that the
transition GG; — ;41 allows time to each node that has the information at time ¢
to transmit it to all its neighbors at least once, it was as well shown that Property
2 is a sufficient condition. Property I is not sufficient because in the assumption
(al) the transmission is guaranteed only for nodes having the information at time ¢

14 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

but a non-strict journey can make multiple hops in the same graph. So nodes that
receive the information during the interval (4,74 1) do not necessarily have the time
to transmit it in turn to all their neighbors.

Note that the conditions discussed here are tight. However, this is not always
the case. The tightness of necessary or sufficient conditions in this particular frame-
work is discussed in Marchand de Kerchove and Guinand [2012] .

Dynamic graph classes

We present here some of the dynamic graph classes introduced in Casteigts et al.
[2009] and Casteigts et al. [2012]. The numbers and names of classes used here
might be different from those in these articles, which are themselves different from
one another.

From Property I and Property 2 we define the following two classes of dynamic
graphs:

Definition 1.13 (Source Connectivity, Class 1). A dynamic graph G is in the class
Source Connectivity iff there exists a journey from a node u to all other nodes of the
graph: Ju € V,.Yv € V,u ~» v.

Definition 1.14 (Strict Source Connectivity, Class 2). A dynamic graph G is in the
class Strict Source Connectivity iff there exists a strict journey from a node u to all

other nodes of the graph: Ju € V,Yv € V,u .
An other class based on the concept of journey is the class Sink Connectivity:

Definition 1.15 (Sink Connectivity, Class 3). A dynamic graph G is in the class
Sink Connectivity iff there exists a journey to a node u from all other nodes of the
graph: Fu € V.Yv € V v ~~ w.

In a dynamic graph, this condition is necessary for collecting information by a
node from the other nodes. This allows for example a node to compute a function
whose inputs are distributed on the other nodes. Or solve the counting problem in
the graph.

A class that is included in the three classes presented above is that of Temporal
Connected graphs:

Automatic Classification of Dynamic Graphs 15



1.2. Dynamic Graph Classes

Definition 1.16 (Temporal Connectivity, Class 4). A dynamic graph G is tempo-
rally connected iff for all pairs of nodes u,v € V, there exist a journey u ~~ v:
Yu,v € V,u ~ v.

Definition 1.17 (Strict Temporal Connectivity, Class 5). In the same way, a dynamic
graph G is strictly temporally connected iff for all pairs of nodes u,v € V, there

. . . st st
exist a strict journey u ~~ v: Yu,v € V,u ~> v.

The class Temporal Connectivity defines the set of graphs in which any node
can perform a broadcast to all other nodes, and can collect information from all the
other nodes.

Definition 1.18 (Round Trip Temporal Connectivity, Class 6). A dynamic graph
G is round trip temporally connected iff for all pairs of nodes uw,v € V, there
exist a journey J(u,v) and a journey J(v,u) such that departure(J(v,u)) >
arrival(J (u,v)). Formally, Vu,v € V, 3J € J*(u,v),3T € T*(v,u),
departure(J) > arrival(J).

This condition is necessary, for example, for the success of different distributed
algorithms requiring a termination detection.

Definition 1.19 (Recurrent Temporal Connectivity, Class 7). A dynamic graph G
has a Recurrent Temporal Connectivity iff any subgraph Gy ) of the graph G is
temporally connected: Yu,v € V.Vt € T,3T € J*(u,v),departure(J) > t.

This condition is often implicitly assumed in the context of delay tolerant net-
works.

So far we have presented classes whose definitions are based on the concept of
journey. Other classes are defined by properties on direct contacts between nodes:

Definition 1.20 (Temporal star, Class 8). A dynamic graph G is a temporal star iff
the footprint G has a spanning subgraph G' C G that is a star: Ju € V,Yv €
V, (u,v) € E(G).

Definition 1.21 (Temporal Completeness, Class 9). A dynamic graph G is tempo-
rally complete iff the footprint G is complete: Yu,v € V, (u,v) € E(G).

Definition 1.22 (Recurrent Temporal Completeness, Class 10). A dynamic graph G
has a Recurrent Temporal Completeness iff any subgraph Gy, ;) of the graph G is
temporally complete: Yu,v € V¥t € T,3t' > t, p((u,v),t') = 1.

16 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

Now we are interested in the instant-connectivity of the graph and its evolution
over time. The four following classes make sense only in the sequence based model
(untimed evolving graphs)

Definition 1.23 (Constant Connectivity, Class 11). A dynamic graph G = {G; =
(V, E;)} is constantly connected iff all the graphs {G; = (V, E;)} are connected:
VG; € G, G, is connected.

Definition 1.24 (T-interval Connectivity, Class 12). A dynamic graph G = {G; =
(V, E;)} is T-interval connected iff every sequence of length T in the dynamic graph
G shares a common connected spanning subgraph: ¥t € [1,0 — T + 1],3G" C
G, V(@) =V(Q),G" is connected, and Vi' € [t,t +T — 1],G" C Gy.

Definition 1.25 (Recurrent Instant-Connectivity, Class 13). An infinite dynamic
graph G = {G1, G, ...} has a Recurrent instant-Connectivity iff there is always
a future step i such that G; is connected: ¥t € N, 3t' € Nt' > t, Gy is connected.

Definition 1.26 (Recurrent Instant-Routability, Class 14). An infinite dynamic graph
G = {G1, Gy, ...} has a Recurrent instant-Routability iff for any pair of nodes there
is always a future step i such that a path exists between these two nodes in the graph
G;: Yu,v € V)Vt € N, 3t € N, t' > t, a path exists from u to v in Gy .

The dynamics of the graph is characterized by the permanent change of the
edges set. It would therefore be interesting to look at the classes defined by patterns
on the reappearance of the edges:

Definition 1.27 (Recurrence of Edges, Class 15 or Class R). A dynamic graph G
has a Reappearance of Edges iff any edge in the footprint reappears infinity often:
Ve € E(G),Yt € T,3t" > t, p(e,t') = 1.

Definition 1.28 (Time-bounded Reappearance of Edges, Class 16 or Class B). A
dynamic graph G has a Time-bounded Reappearance of Edges with bound b iff the
waiting time between two appearances of the same edge in the graph G is less than
b and G is connected: Ve € E(G),Vt € T,3t' € [t,t +b),p(e,t') = 1, for some
b € T and G is connected.

Definition 1.29 (Periodic Reappearance of Edges, Class 17 or class P). A dynamic
graph G has a Periodic Reappearance of Edges with period p iff the number of steps

Automatic Classification of Dynamic Graphs 17



1.2. Dynamic Graph Classes

between two consecutive appearances of the same edge in the graph G is p and G
is connected: Ve € E(G),Vt € T,Vk € N, p(e,t) = p(e,t + kp), for some p € T
and G is connected.

Figure 1.4 shows the inclusion relationship between classes.

Class 3

Class 10

Class 15 Class 14

Class 16 Class 13
Class 17 Class 11

B

B
=

d

Class 12

Figure 1.4: Dynamic graph classes hierarchy.

18 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

Problem comparison using the dynamic graph hierarchy

A hierarchy of this type can be useful in several studies and formal analyses, in
particular, the possibility to transpose results or to compare solutions or problems.

Casteigts et al. [2014] are interested in the last three classes R, B, and P. They
focus on the problem of reaching from a source node the other nodes of a dynamic
graph. The proposed solution and analysis apply to dynamic networks represented
asaTVG G = (V,E, T,p,(). More precisely the authors address the problem of
broadcast with termination detection, denoted 7'D B, based on the concept of jour-
ney and that according to three optimal modes detailed in Bui-Xuan e al. [2003]:

e Foremost: The messages reach the destinations the earliest possible. For ex-
ample from the source node a in Figure 1.5, the journeys taken for a foremost
broadcast are J(a,b) = {((a,b),1)}, J(a,c) = {((a,b),1),((b,c),1 4+ ()}
and J(a,d) = {((a,b),1),((b,c),1 + (), ((c,d),5)}. With edges latency
c<1.

e Shortest: The messages take journeys of minimum hop length to reach the
destinations (J(a,b) = {((a,b),1)}, J(a,c) = {((a,¢),2)}, T(a,d) =
{((a,¢),2),((c,d),5)}, Figure 1.5).

e Fastest: The period of transit of messages to reach the destinations is mini-
mized (J (a,b) = {((a,0),2)}, I (a, ¢) = {((a,¢),2)}, T (a,d) = {((a, ), 5—

¢)
,((c,d),5)}, Figure 1.5).

Figure 1.5: A TVG G; the labels on the edges indicate the time intervals in which
those edges are present. The edge latency is ( < 1.

In Casteigts et al. [2014], an analysis of the computational relationship between
the three classes (R, B, and P) was presented by examining the feasibility of the

Automatic Classification of Dynamic Graphs 19



1.2. Dynamic Graph Classes

T DB problem with different levels of knowledge and the reusability of the result-
ing broadcast trees in these three classes of graphs.

They proved that 7'D B is not feasible in any of the three classes of graphs with-
out any knowledge on the graph. The minimum knowledge required is n the number
of nodes, which allows us to make a foremost TDB in Class ‘R in an unbounded time,
in O(n.b) in Class B, and also in Class P. Being in Class R and knowing n is not
sufficient to perform a 7'D B in the two other modes (shortest and fastest). Being in
Class B and knowing b is sufficient to make a shortest TDB, p in class P to be able
to perform a fastest TDB. This therefore limits the feasibility of the fastest TDB to
the class P and makes shortest TDB feasible in class P and in Class B in O(nb).
This led to show that the set of problems solvable in Class R knowing n is strictly
included in the set of those solvable in Class B with a knowledge of b. This later set
is strictly included in turn in the set of problems solvable in class P knowing p.

The distributed algorithms for 7D B are described in Casteigts et al. [2014].
Besides the feasibility analysis, The authors are interested more generally in the
message and time complexity of the algorithms. The more the algorithm has knowl-
edge about the graph, the better we can do and the less will be the complexity. The
algorithm uses two types of messages: information messages for the broadcast and
control messages for termination detection. To reach all the graph nodes with a
broadcast, | E'| information messages are needed in all cases. However, having more
knowledge about the graph prevents some actions like exchange of some control
messages. For example in the case of a foremost TDB, with the knowledge of b we
go from O(n?) to O(n) control messages. By knowing b and n, the termination is
detected without an exchanging of control messages.

The authors describe the computational relationship between the three differ-
ent problems by a hierarchical relation summarizing the results of the analysis.
If we consider the universe of classes with different levels of knowledge U =
{Rn, By, By, Bsnys Py Py Piony. Pp} where Cj, denotes class C' with knowledge
k, then foremost TDB < shortest TDB < fastest TDB, such that if P < P’ then P is
feasible in Cj, if P’ is, and there exists C}, in which P is feasible but not P’.

After the first broadcast, the computed tree can be reused by the succeeding
broadcasts. In shortest TDB we are interested only in journeys length, this makes
the resulting tree reusable for the subsequent broadcasts and reduces the amount of
information messages from O(m) to O(n). However in foremost and fastest TDB
computed trees can be reused only in class P with knowledge of p.

20 Mohammed Yessin NEGGAZ



1. Background on Dynamic Graphs and Classification Problems

1.3 Automatic Classification

In addition to the usefulness of this dynamic graph hierarchy to transpose results
and to compare problems, it provides a basis for an analysis process to verify the
correct behavior of an algorithm in a given mobility context by testing the member-
ship of this latter to the corresponding classes of dynamic graphs.

Casteigts et al. [2009] propose a framework that aims to characterize how ap-
propriate a given algorithm is to a given dynamic context. The workflow is pre-
sented in Figure 1.6. A first step is that algorithms are analyzed to characterize nec-
essary/sufficient conditions. This produces classes of dynamic graphs. Dynamic
graphs instances can be obtained from network traces generated using mobility
models and real-world networks. Then checking how given instances are spread
on given classes can give an indication about the suitability of a given algorithm in
a mobility context.

Algorithm Conditions —— Dynamic Graph Classes \

Mobility Model Network Traces ~.
Dynamic Graph Instances / \/
Real Network Collection ) Network Traces ~ Yes No

@nclusion Checking)

Figure 1.6: Automatic testing of algorithms relevance to dynamic contexts
(Casteigts et al. [2009]).

A key issue is that of understanding how far such a framework could be au-
tomated. In this work we provide a contribution to the automation of the core
operation of Inclusion checking. We will present, in this thesis, strategies for the
automatic classification of dynamic graphs. We first focus on two specific classes
(Chapters 2 and 3), then we provide a generic framework for testing properties in
dynamic graphs (Chapter 4).

Chapter 5 discusses the case where no property is guaranteed (the graph is as-
sumed to be in any class). Some concepts and notations that are used only in this
chapter are defined there.

Automatic Classification of Dynamic Graphs 21



1.3. Automatic Classification

22

Mohammed Yessin NEGGAZ



Chapter 2

Testing Temporal Connectivity

Contents
21 Introduction . .........c.o0 it 24
2.2 Model and Definitions . . . . .. ... ... ... .. ... 24
221 RelatedWorks . .. ... ... ... . 27
2.3 Testing Temporal Connectivity in Sparse Dynamic Graphs . 28
2.3.1 Computation of the Transitive Closure for Strict Jour-

232

233

neys (strict transitive closure) . . . . . . .. ... ... 29

Computation of the Transitive Closure for Non-strict Jour-
neys (non-strict transitive closure) . . . . . .. ... .. 32

Comparison . . . . . . . .. oL 33

In this chapter, we address the problem of testing whether a given dynamic
graph is temporally connected, i.e. a temporal path (also called a journey) exists be-
tween all pairs of nodes. We consider a discrete version of the problem, where the
topology is given as an evolving graph G = {G, G, ..., G5 } see Chapter 1 for defi-
nitions). Two cases are studied, depending on whether a single edge or an unlimited
number of edges can be crossed in a same G; (strict journeys vs non-strict journeys).

The results presented in this chapter were published in AlgoTel (Barjon et al.
[2014c]) and AETOS International Conference (RCFRUS) (Barjon ef al. [2014b]).

23



2.1. Introduction

2.1 Introduction

Connected and mobile devices such as mobile phones, satellites, cars, or robots
form highly dynamic networks in which connectivity between nodes evolves rapidly
and continuously. Furthermore, the topology of such a network at a given time is
generally not connected, and even extremely sparse in the case of exploration or
surveillance scenarios (Burgard ef al. [2000]; Flocchini et al. [2013]), or when pas-
sive mobility is considered with humans or animals (Jea ez al. [2005]; Shah er al.
[2003]). However, even in these extreme cases, a form of connectivity arises over
time and space, by means of delay tolerant communications, where messages are
retained until an opportunity of transmission appears (mechanisms of type "store-
carry-forward"). This type of connectivity is referred to as temporal connectivity,
it is characterised by the fact that each node in a dynamic graph can join all other
nodes by means of a temporal path. The concept of temporal connectivity is rela-
tively old and dates back at least to the article Awerbuch and Even [1984b]. This
property defines a class of dynamic graphs called temporally connected dynamic
graphs (Class 4, Def. 1.16). In this chapter, the problem that we study is to test
whether a given dynamic graph belongs to this class or not.

This chapter is organized as follows. In 2.2 we present the main definitions and
makes some basic observations. In section 2.2.1 we present some existing works
that can be adapted to solve the problem in the case of strict journeys. In Section
2.3 we propose a solution for strict temporal connectivity and non-strict temporal
connectivity, and we compare its time complexity with that of the adapted solutions.

2.2 Model and Definitions

We consider, in this chapter, dynamic graphs that are given as untimed evolving
graphs (Def. 1.4), that is, a sequence G = {G1, G2, ..., G5} such that G; = (V| E;)
describes the network topology at (discrete) time . We assume that the changes
between two consecutive graphs are arbitrary. We distinguish two parameters to
report on the number of edges in the graph: the maximal number of edges that exist
at each single step, i.e. © = maz(|E;|), and the total number of edges that exist
over time, i.e. m = | U E;|. Of course, whatever the considered graph, we have
m > . Moreover, as already discussed, it is common that the graph is sparse, it
is not rare that a practical scenario verifies 1 = o(n), or even y = O(1), while
m = O(nlogn) or m = O(n?).

We are interested in this chapter in the class of dynamic graphs Temporal Con-
nectivity (Class 4, Def. 1.16):

24 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

Definition 2.1 (Temporal Connectivity, Class 4, Def. 1.16 ). A dynamic graph
G = {G; = (V, E;)} is temporally connected iff for all pairs of nodes (u,v) € V?,
there exist a journey u ~~ 0.

Definition 2.2 (Strict Temporal Connectivity, Class 5, Def. 1.17). In the same way,
a dynamic graph G = {G,; = (V, E;)} is strictly temporally connected iff for all

: . o t
pairs of nodes (u,v) € V2, there exist a strict journey u 5.

We consider, in this chapter, the problem of testing whether a dynamic graph is
(strictly) temporally connected or not. In other words, we want to decide if there is
a (strict) journey between every pair of nodes in a given dynamic graph.

Definition 2.3. We will use TEMPORAL-CONNECTIVITY to refer to the problem of
deciding if a dynamic graph G is temporally connected or not.

Definition 2.4. We will use STRICT-TEMPORAL-CONNECTIVITY fo refer to the
problem of deciding if a dynamic graph G is strictly temporally connected or not.

A key concept for this problem is that of transitive closure of journeys, intro-
duced in Bhadra and Ferreira [2003]. This is a static directed graph G* whose edges
represent the potential journeys in a dynamic graph G. Once this structure is com-
puted from the dynamic graph the property of temporal connectivity becomes trivial
to test.

Definition 2.5 (Strict Transitive Closure). The strict transitive closure of journeys
in G is the static directed graph G, = (V, E%,) where (u,v) € Ef, < u <5 v.

Definition 2.6 (Non-strict Transitive Closure). We define, in the same way, the non-
strict transitive closure of journeys in the dynamic graph G by the static directed
graph G* = (V, E*) such that (u,v) € E* < u ~> v.

It should be noted that the transitive closure graph of journeys in G is directed
whatever the nature (directed or not) of the edges in G. This is due to the temporal
dimension that, by nature, implies an orientation.

We address in this chapter the computation of the transitive closure in the case
of strict journeys (G7,) or non-strict journeys (G*) given a dynamic graph G. In the
case of strict journey (resp. non-strict journey) a single edge (resp. several edges) of

Automatic Classification of Dynamic Graphs 25



2.2. Model and Definitions

G; can be crossed. From the transitive closure structure, the membership of a given
dynamic graph to several classes of dynamic graphs can be decided (Casteigts ef al.
[2009]).

e G* contains an out-dominating set of size | < G € Class I (3ueV : Vv €
Viu ~> ).

e G, contains an out-dominating set of size | & G € Class2 (Ju eV : Vv €
Vou S v).

e G* contains an in-dominating set of size 1 & G € Class 3 (Ju eV : Vv €
Viv ~ u).

Observation 2.1. Regarding our problem, testing whether a dynamic graph is (strictly)
temporally connected comes to test whether its (strict) transitive closure is com-
plete.

e G*is a complete graph < G € Class 4 (Yu,v € V,u ~ v).

e G, is a complete graph < G € Class 5 (VYu,v € V,u % v).

Figure 2.1 shows the strict and non-strict transitive closures of journeys in the
dynamic graph G presented in the same Figure. Each edge on G* (resp. G,) rep-
resents the existence of a journey (resp. strict journey) in G. In GZ,, the absence of
(e,a), (e,b) and (d, e) indicates the non-existence of strict journeys from e to a and

band from btoein G (e e a,e % pand d 5 e). As the temporal connectivity
of a dynamic graph is equivalent to the completeness of its transitive closure, the
absence of at least one edge in G, asserts that the dynamic graph G is not strictly
temporally connected. By definition, a strict journey is a non-strict journey. This
implies that a strict transitive closure of journeys in a dynamic graph G is always
contained in its non-strict transitive closure. In our example G* contains, in addition
to the strict transitive closure G, all the edges corresponding to the impossible strict
journeys in G: (e, a), (e,b) and (d, e) as a result of the presence of the respective
non-strict journeys e ~ a, a ~» b and b ~» e. This makes G* complete. Therefore,
G is temporally connected but not strictly temporally connected.

26 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

b N~ d b N~ 7 d
a c ec a>f\:e a:>s\:e GI f/rle GI/<6
bAd b d b d b d b d
G1 G2 G3 G4 GS

Figure 2.1: Example of strict (G},) and non-strict (G*) transitive closure of journeys
in a dynamic graph G.

2.2.1 Related Works

Different studies have addressed problems related to testing connectivity or related
problems in dynamic graphs in literature. In the case of strict journeys, several al-
gorithms can be adapted to compute G,.

1. Different algorithms are given in Bui-Xuan et al. [2003], each computing op-
timal journeys according to a given criterion (foremost, shortest, fastest) in
a timed evolving graph model. Any of these algorithms can be adapted to
compute G, by using the appropriate parameters. Precisely, these algorithms
compute the journeys taking into account the duration of edges crossing (la-
tency) and the duration of each graph G;. If we assign to each G; a unit
duration that also corresponds to the duration of edges crossing, then, for a
given source node, the result is the set of strict journeys. The algorithm has to
be executed n times, once from each node, in order to compute the transitive
closure of the journeys. The most efficient of the three algorithms (foremost
journeys) has an execution time of O(m log § + nlogn), hence a total time of
O(n(mlogd + nlogn)).

2. An algorithm computing a generalization of the transitive closure of jour-
neys was proposed in Whitbeck er al. [2012]. This generalization, called
dynamic reachability graph, corresponds to a transitive closure of journeys
parametrized by a starting date, a maximal duration of the journeys, and a
traversal time for edges. It applies to dynamic graphs represented as TVGs

Automatic Classification of Dynamic Graphs 27



2.3. Testing Temporal Connectivity in Sparse Dynamic Graphs

(T = R* in the case of Whitbeck er al. [2012]). This algorithm can be used
to compute G, as follows:

- First create a TVG whose edges presence dates (function p) are all mul-
tiples of some unit value that also corresponds to the latency given by
function ( (here, a constant);

- Then, the constraint on journeys duration is set to +o00 and the departure
date is set to 0;

- Finally G, is obtained by executing the algorithm from Whitbeck et al.
[2012] on the created TVG.

Informally, the strategy of that algorithm is to compose reachability graphs
incrementally over increasing periods of time, namely each graph covering 2°
time steps is obtained by composition of two graphs covering 2°~! time steps
(for i from 1 to log 0). The complexity of this algorithm is O(¢ log § mn logn).
The authors do not exclude the possibility to get rid of the trailing log n factor,
potentially linked to an implementation choice (see Section 4.3 of Whitbeck
et al. [2012]).

3. Various adaptations of the Bellman-Ford principle to dynamic graphs, such
as Kossinets ef al. [2008] in the case of link stream. One component of our
algorithm also falls into this category.

2.3 Testing Temporal Connectivity in Sparse Dynamic
Graphs

We propose, to test whether a graph is (strictly) temporally connected, a dedicated
approach for computing the transitive closure (strict at first) of journeys in an un-
timed directed evolving graph G which has a better time complexity than the adap-
tation of Whitbeck ez al. [2012], and than the adaptation of Bui-Xuan er al. [2003]
for a range of dynamic graphs, in particular those whose density is low at any time
(sparse dynamic graphs), though arbitrarily dense over time. The algorithm con-
sists of a temporal adaptation of the Bellman-Ford principle used in static graphs
to compute distances between nodes. This principle was also adapted in Kossinets
et al. [2008] to compute time lags between entities based on a contact history (e.g.
a sequence of dated emails). Our adaptation is quite straight and its time com-
plexity is O(dun) with the considered data structure (a mere sequence of sets of
edges). As discussed above, the distinction between p and m is relevant in a num-
ber of scenarios based on mobile communicating entities. Furthermore, this type

28 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

of graphs typically corresponds to those in which the question of the temporal con-
nectivity occurs, since it is not a priori granted. In the case of non-strict journeys,
for which we do not know any existing algorithm, we show that the graph can be
pre-processed in such a way that the same solution can be directly adapted with
the same time complexity: O(dun). This variant is based on a double transitive
closure: a static transitive closure applied to each G; independently, and a temporal
one (as in the case of strict journeys) applied to the sequence of those static closures.

Both algorithms gradually build the transitive closure as the edges are examined;
these are online algorithms. They stop their execution as soon as the temporal
connectivity is satisfied (or after the whole dynamic graph has been examined). A
by-product of the execution is to make G}, and G* available for further connectivity
queries, these queries being then reduced to simple adjacency tests in a static graph.
Time complexity is analysed throughout the chapter. We provide in Section 2.3.3
a more detailed comparison that indicates the values of 9, ;» and m for which our
solution performs better than the adaptation from Bui-Xuan ef al. [2003].

2.3.1 Computation of the Transitive Closure for Strict Journeys
(strict transitive closure)

We propose below an algorithm for computing the strict transitive closure G, in the
general case where G is directed. The principle of the algorithm is to build, step by

step, the set of all the predecessors of each node v, i.e., the set {u : u Z v}. Each
step i of the algorithm works on a static graph G; of G. Let P(v,t) be the set of
known predecessors of v by the end of the ¢ first steps of the algorithm (i.e. after
taking into account edge sets: F1, ..., F};). The core of step i is to add P(u, i — 1) to
P(v,i) for each edge (u,v) € E;. In practice, only two variables P(v) and P*(v)
are maintained for each node v. P*(v) contains the new predecessors of v (com-
puted during the current step). At the end of the current step P (v) is merged to
P(v), the set of all predecessors of v. The detailed operations are given in Algo-
rithm 1.

We show in Figure 2.2 an example of a strict transitive closure computation.
In the example, the graph G = {G; = (V, E;)} of length 6 = 4 is represented in
the first line of the table. The second line of the table shows the four computation
steps results. At each step ¢ (for each graph (), the set of predecessors of each
node is computed according to the algorithm: P;(v) = P;_1(v) U P;_1(u) for all
(u,v) € E;. We also show the evolution of a’s predecessors set P4(a) computation
by a bold text that points the involved sets. P4(a) is the final output used to compute
the strict-transitive closure G, and it corresponds to the set of a’s predecessors up
to (G4. This output is a result of a series of computations. Let’s start from this
final result and go back to the initial values to illustrate the computation process.
In G4, the only incoming edge on a is (b, a) represented with a thick edge, P, (a)

Automatic Classification of Dynamic Graphs 29



2.3. Testing Temporal Connectivity in Sparse Dynamic Graphs

in this case (4" step) is computed from Ps(b) which is merged with Ps(a). At this
step P3(a) contains already Ps(b), this can be explained by the the fact that P(b)
remains unchanged in the steps 2 and 3 (P;3(b) = P2(b)) due to the absence of an
incoming edge on b in Gs. So, the value of Ps(a) is retained for Py(a). The same
operation is applied at the 3" step since the state of a in the graph G5 is the same as
in G4, which adds the node d to P»(a) to give as a result P3(a). P2(b) is computed
from Py (c) merged with P; (b) upon the appearance of the edge (¢, b) in Go. In the
same step, Po(a) is computed in the same way because of the presence of (c, a)
in G5 but this time by merging P;(a) with P;(c). Following the same principle,
Pi(a), P1(b) and P;(c) are computed from the initial sets Py(a), Poy(b), Po(c) and
Po(d). Similarly, the last sets of predecessors: {P,(v) : v € V'} of all nodes are
computed (using the same steps), then it is used to get the strict transitive closure

Y = (V. EY) of G where (u,v) € EY < u € Py(v). It can be seen in our case on
the transitive closure, from the fact that it is not a complete graph, that the dynamic
graph G is not strictly temporally connected.

be od b A« d b >\- d bI "/l d b I/¢< d
Initial G1 Ga Gs3 Ga
Po(a) ={a} | Pi(a) ={a} P2(a) ={a,c, b} Ps3(a) ={a,c,b,d} | Pa(a) ={a,c,b,d}
Po(b) = {b} | P1(b) ={b,c,d} | P2(b) ={b,c,d,a} | P3(b) ={b,c,d,a} | Pa(b) ={b,c,d,a,e}
Po(c) ={c} | Pi(c) ={c,a,b} | P2(c) ={c,a,b} Ps(c) = {c,a,b, e} Pa(c) = {c,a,b,e,d}
Po(d) ={d} | Pi(d) ={d,c} Pa(d) = {d, c,a,b} Ps3(d) = {d,c,a,b, e} Pa(d) = {d,c,a,b, e}
Po(e) = {e} Pi(e) = {e} Pa(e) = {e} Pa(e) = {e} Pa(e) = {e}

C

AN

NS

o g

Figure 2.2: Example of strict transitive closure computation.

Time complexity

This section provides an analysis of the time complexity of the algorithm. In this
analysis, we consider the use of ser data structures, for which the union has at worst
a linear cost in the number of items of the two considered sets. We also assume
that the size of a set can be known in constant time, which is the case with most
of the existing libraries that implements this kind of data structure (this value being

30 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

N A W N -

10
11

12
13
14
15
16
17

18

Input : A dynamic graph G given as (V, {E;})
Output: A set of edges £* such that G, = (V, E*)
// Initialization

foreach v in V' do
Pv) «+ {v}; // Each node is its own predecessor

Pt(v) + 0

reach E; in {E;} do
UpdateV « 0 ; // List of nodes whose predecessors

will be updated

// List predecessors induced by the edges in E;

foreach (u,v) in E; do

Pt(v) Pt (v) UP(u);

UpdateV < UpdateV U {v}

// Add found predecessors to known predecessors

foreach v in UpdateV do

Pv) « P(v) UPT(v);

Pt(v) « 0;

// Test whether transitive closure is complete;
if so, terminates

isComplete < true;

foreach v in V do

if [P(v)| < |V| then
isComplete < false;

break;

if t.sComplete then

// The algorithm terminates returning a
complete graph (edges)

return V' x V' \ {loops}

// Build transitive closure based on predecessors
E*+ 0
foreach vin V do

foreach v in P(v) \ {v} do
| E* <« E*U(u,v)

return £*

Algorithm 1: Computation of the strict transitive closure G,

maintained as the set is modified).

Lemma 2.1. Forallv € V,

predecessors.

Automatic Classification of Dynamic Graphs

P(v)| < ou, ie., a node cannot have more than o



2.3. Testing Temporal Connectivity in Sparse Dynamic Graphs

Proof (by contradiction). If there is a node v such that |P(v) \ v| > dpu, then, by
definition, there exists more than d nodes u different from v such that u ~~ v. Each
of these nodes is thus the origin of at least one edge, which means that more than
o distinct edges existed. ]

Theorem 2.1. STRICT-TEMPORAL-CONNECTIVITY can be solved in O(Sun) us-
ing Algorithm 1 that computes the strict transitive closure of journeys in a graph G.

Proof. The initialization loop (line 1) is linear in n. The main loop (line 4) iterates
as many times as the number of steps in G, i.e. d times. The main loop has three sub-
loops (lines 6, 9 and 13), each being dominated by O(|E;|-n) = O(un). Finally, the
construction of the transitive closure (line 20) , if it is not complete before the end
(worst case), consists of a loop that, for each node, iterates over its predecessors.
Since the number of predecessor of a given node cannot exceed du (Lemma 2.1),
this latter loop is also dominated by O(dun). O

2.3.2 Computation of the Transitive Closure for Non-strict Jour-
neys (non-strict transitive closure)

In this section, we focus on the computation of G*, i.e. the transitive closure of
the journeys for which an unlimited number of edges can be crossed at each step
(non-strict journey). Indeed, the relaxation of the constraint that the journeys are
strict implies that at each step i, if a path (in the classic acceptance of the word)
exists from u to v, then u can join v at the same step. A simple observation al-
lows us to reuse Algorithm 1 almost directly. The algorithm therefore consists in
pre-computing, at each step, the transitive closure, in the classic static meaning of
this term, of the edges present in G, resulting in a graph G, each edge of which
corresponds to a path in G;. Then Algorithm 1, applied to the dynamic graph {G},
produces directly the non-strict transitive closure G*. In Figure 2.3, {G}} (second
line of the table) represents the sequence of static paths transitive closures computed
from the dynamic graph G (first line of the table). G* is the result of applying our
algorithm for strict transitive closure (Algorithm 1) on {G}}. In some way, the non-
strict transitive closure G* of journeys in a dynamic graph G is the strict transitive
closure of journeys in its sequence of static transitive closures {G}.

Time complexity
Theorem 2.2. TEMPORAL-CONNECTIVITY can be solved in O(6un).

As we use the same algorithm for strict transitive closure on the sequence of
static transitive closure {G7 }, the time complexity of this algorithm essentially de-
pends on the cost of the computation of the static transitive closure G of journeys

32 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

e € a e a
[ }

d b d b
G1 GS G4
C C

a e a 7\ . € \ » a
b d d b
GY G5 G3 G}

T
) o

V&

Figure 2.3: Example of non-strict transitive closure computation.

in the graphs GG;. This can be done by a depth first search (DFS) or by a breadth first
search (BFS) run from each node in (z;. Each of these runs having an execution cost
in O(|E;|) = O(p) and thus, the extra cost of this operation remains within O(éun)
time.

2.3.3 Comparison

This section compares the complexity of the proposed algorithm with the adapta-
tion of that from Bui-Xuan et al. [2003] (based on foremost journeys), which has a
running time of O(n(mlogd +nlogn)), where m # p is the total number of edges
existing over time, i.e. | U £;|.

The question is therefore to compare this complexity to O(dun), or after simpli-
fication by n, to compare O(du) to O(m log 6 +nlogn). These complexities belong
to a four-dimensional space : 11, m, § and n; it is therefore not easy to compare them.
We propose to study them asymptotically in n, by varying the values of p, m and
0. Precisely, we vary the order of 1 and m (instant density vs. cumulated density)
for several ratios of possibles values of 6 and n (i.e. the length of the sequence G
in function of n). Table 2.1 contains 60 results, including a dozen that show the

Automatic Classification of Dynamic Graphs 33



2.3. Testing Temporal Connectivity in Sparse Dynamic Graphs

transition in efficiency between both solutions (the others can be extrapolated with-
out computation by considering the relative impact of factors J and log ¢ in both
formulas). The symbols —, 4+ and = indicate respectively the ranges of values for
which our solution has a lower, higher asymptotic complexity and a complexity of
the same order. Empty cells at the right of a + (resp. left of a n/a) are filled with
+ (resp. n/a). To make the verification of these results simpler, we provide in the
right column an intermediate expression, obtained after replacing 1 and m in both
expressions O(du) and O(mlogd + nlogn).

In summary, the table confirms that the proposed solution becomes more relevant
as the difference between instant density and cumulated density increases, which
is not surprising. It is also not surprising, given the presence of the factor ¢ versus
log 9, that our solution is less efficient when the number of time steps increases. The
table reveals some ranges of realistic values where the proposed solution behaves
better than the other, for instance when the values of p, m, and § are respectively
(0(n), ©(n), 0(n)): o (O(log n), An log n), O(n)); or (O(y/n)), 2n), O(y/n)).
Finally, the fact that the algorithm terminates as soon as temporal connectivity is
satisfied allows us to put in perspective the impact of parameter 9.

p=00) | m=e() 5—=0(logn) | s=0(Vn) | §=0n) | §=6Mm?) Intermediate computation
0(.)+06(.)

logn n n/a =~ + dlogn +nlogd+ nlogn
vn n n/a - + dv/n+nlogd +nlogn
n n = + on+tnlogd+nlogn

logn nlogn n/a — + dlogn + (nlogn)logd
vn nlogn n/a + dv/n £ (nlogn)logé
n nlogn — + + on £ (nlogn)logd

nlogn nlogn + 0+ logé

logn n? n/a ~ dlogn £n?logé
vn n? n/a + 5v/m £ n?logé
n n? n/a — + on £ n?logé

nlogn n? n/a s + §(nlogn) £ n2logé

ny/n n? n/a - + §(ny/n) £n2logd
n? n? + on? £ n?logé

Table 2.1: Running time comparison between the proposed algorithm and the adap-
tation of the algorithm from Bui-Xuan ez al. [2003].

Conclusion

In this chapter we addressed the problem of testing whether a given dynamic graph
is temporally connected, i.e. a temporal path (also called a journey) exists between
all pairs of nodes. We considered a discrete version of the problem, where the
topology is given as an evolving graph G = {G;, G, ..., Gs} whose set of nodes
is invariant and the set of (directed) edges varies over time. Two cases have been
studied, depending on whether a single edge or an unlimited number of edges can

34 Mohammed Yessin NEGGAZ



2. Testing Temporal Connectivity

be crossed in a same (; (strict journeys vs non-strict journeys).

In the case of strict journeys, we investigated algorithmic solutions based on the
computation of the transitive closure of journeys in the graph that have time com-
plexity of O(dun). In this case of (strict journeys), a number of existing algorithms
designed for more general problems can be adapted (Bui-Xuan er al. [2003]). We
adapted one of them to the above formulation of the problem and characterized its
running time complexity. The parameters of interest were the length of the graph
sequence 0 = |G|, the maximum instant density © = maz(|E;|), and the cumu-
lated density m = | U E;|. We proved that our algorithm has a time complexity
of O(dun), where n is the number of nodes. We compared the complexity of our
algorithm to that of the adaptation of the other solutions: the solution presented in
Whitbeck er al. [2012] is always more costly (keep in mind that it solves a more
general problem), the other solution presented in Bui-Xuan ez a/. [2003] is more or
less costly depending on the interplay between instant density and cumulated den-
sity. The length § of the sequence also plays a role. We characterized the key values
of 0, u and m for which either algorithm should be used. Our solution is shown
to be relevant for sparse mobility scenario (e.g. robots or UAVs exploring an area)
where the number of neighbors at a given time is low, though many nodes can be
seen over the whole execution.

In the case of non-strict journeys, for which no algorithm is known, we showed
that some pre-processing of the input graph allows us to re-use the same algorithm
than before. By chance, these operations happens to cost again O(dun) time, which
implies that the second problem is not more difficult than the first.

Automatic Classification of Dynamic Graphs 35



2.3. Testing Temporal Connectivity in Sparse Dynamic Graphs

36

Mohammed Yessin NEGGAZ



Chapter 3

Testing T-interval Connectivity

Contents
3.1 Model, Definitions and Basic Observations . ......... 38
3.1.1 Bound on Computation Time . . . . ... ........ 41
3.2 Row-BasedStrategy . ... .........c00vetue.ns 43
3.2.1 Parallel Algorithm . . . .. ... ... ......... 46
33 OptimalSolution. . . .........000iieeeens 47
3.3.1 Online Algorithms . . . . .. ... ... ... ..... 55
3.4 Dynamic Online Interval Connectivity . . . . ... ... ... 55

In this chapter, we look at the problem of deciding whether a given sequence
G is T-interval connected for a given 7. We also consider the related problem of
finding the largest 7" for which the given G is T-interval connected. We focus on
high-level strategies that consider graphs as block boxes. We first show that both
problems require €2(0) elementary operations using the basic argument that every
graph of the sequence must be considered at least once. More surprisingly, we show
that both problems can be solved using only O(¢) such operations and we develop
optimal online algorithms that achieve these matching bounds. Hence, the cost of
the operations — both of them linear in the number of edges — is counterbalanced by
efficient high-level logic that could, for instance, benefit from dedicated circuits (or

optimized code) for both operations.

37



3.1. Model, Definitions and Basic Observations

The chapter is organized as follows. Section 3.1 presents the main definitions
and makes some basic observations, including the fact that both problems can be
solved using O(4?) elementary operations by a naive strategy that examines O(5?)
intermediate graphs. Section 3.2 presents a second strategy, yielding upper bounds
of O(d log 0) operations for both problems. Its main interest is in the fact that it can
be parallelized, and this allows us to classify both problems as being in NC (i.e.
Nick’s class). In Section 3.3 we present an optimal strategy which we use to solve
both problems online in O(d) operations. This strategy exploits structural proper-
ties of the problems to construct carefully selected subsequences of the intermediate
graphs. In particular, only O(§) of the O(d?) intermediate graphs are selected for
evaluation by the algorithms. In Section 3.4, we extend our online algorithms to a
dynamic setting in which the measure of connectivity is based on the recent evolu-
tion of the network.

The results presented in this chapter were published in the 9th International Con-
ference on Algorithms and Complexity CIAC (Casteigts e al. [2015a]) and AlgoTel
(Casteigts et al. [2015b]).

3.1 Model, Definitions and Basic Observations

In this chapter, we consider dynamic graphs that are given as untimed evolving
graphs (Def. 1.4), that is, a sequence G = {G1, Gy, ..., G5} of length ¢ such that
G; = (V, E;) describes the network topology at (discrete) time . We assume that
the changes between two consecutive graphs are arbitrary.

In a dynamic context, an important analysis would be to measure a form of sta-
bility of the graph. We suppose that it is too strong and meaningless to consider the
overall stability of the entire graph for a period, it would remove even the dynamic
aspect from the graph. However, since one of the most important properties of a
dynamic graph is the connectivity, it would be interesting to consider a form of sta-
bility based on the existence of a spanning connected component for a duration.

The class of T-interval connected graphs was identified in Kuhn ez al. [2010] as
playing an important role in several distributed problems, such as determining the
size of a network or computing a function of the initial inputs of the nodes. Infor-
mally, T-interval connectivity requires that, for every 7' consecutive graphs in the
sequence G, there exists a common connected spanning subgraph.

Kuhn ef al. [2010] focus on two problems: the counting problem which con-
sists in computing the size of the graph and the k-token dissemination problem in
which k pieces of information, initially on & nodes, must be collected by all the

38 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

nodes of the graph. For for k-token dissemination, the authors were interested in
the case where £ = n with, initially, one piece of information on each node. To
solve this problem, nodes need to determine the size of the graph in order to know
the number of pieces of information to collect. The resolution of this problem al-
lows the computation of any function of the initial states of the nodes. It was shown
that both problems can be solved in O(n?) rounds in 1-interval connected graphs.
For T-interval connected graphs with 7" > 1, they show that both problems can be
solved in O(min{n? n + n*log(n)/T}) rounds with unknown 7. If T" is known,
they prove that both problems are solvable in O(n+n?/T') time complexity. Results
are presented on a model where nodes can start the computation at different rounds
if the graph is 2-interval connected.

The class of T-interval connected dynamic graphs generalizes the class of dy-
namic graphs that are connected at all time instants (O’ Dell and Wattenhofer [2005]).
Indeed, the latter corresponds to the case that 7' = 1. From a set-theoretic view-
point, however, every 7' > 1 induces a class of graphs that is a strict subset of the
class in O’Dell and Wattenhofer [2005] because a graph that is 7-interval connected
is obviously 1-interval connected.

Let us start by defining 7-interval connectivity formally:

Definition 3.1 (T-interval connectivity , def. 1.24). A dynamic graph G is said to be
T-interval connected if for everyt € [1,0—T+1], all graphs in {Gy, Gy11, ..., Gryr—1}
share a common connected spanning subgraph. In other words, every sequence of
length T in the dynamic graph G shares a common connected spanning subgraph.

Throughout the chapter we consider undirected edges, which is the setting in
which T-interval connectivity was originally introduced. We do not make any
assumptions about the data structures that are used to represent the sequence of
graphs. As such, we focus on high-level strategies that work directly at the graph
level. The fact that our algorithms are high-level allows them to work exactly the
same for 7-interval strong connectivity, which is the analogue of 7-interval con-
nectivity for directed graphs (Kuhn ez al. [2010]) (i.e. forevery ¢t € [1,0 — T + 1],
all graphs in {Gy, G411, ..., G¢yr—1} share a common connected strongly spanning
subgraph), provided that connectivity test operation is replaced by strong connec-
tivity test. As we shall discuss, these operations have linear cost in the number of
edges in both directed and undirected graphs.

Figure 3.1 shows an Example of a 4-interval connected dynamic graph G of
length 6 = 8. In G each sequence (G;, G 11, G2, Git3) of length 4 has a common
spanning subgraph G;;y3) for 1 < i < 5. In the general case G, j) is called
intersection graph and it is defined as follows:

Automatic Classification of Dynamic Graphs 39



3.1. Model, Definitions and Basic Observations

ZIZEZEZZ

G2 G30) Gar

giZIiZIEIiZiXZZ

G1 G2 Gg G4 G5 GG G7

Figure 3.1: Example of a 4-interval connected dynamic graph G of length § = 8.

Definition 3.2 (Intersection graph). Given a (finite) set S of graphs
{G; = (V,E),G; = (V.E;),....,Gr, = (V.E;)}, we call the graph
(V.0{E;,E;,...,Ey}) the intersection graph of S and denote it by
"{G;,Gj,... Gr}. When the set consists of only two graphs, we talk about
binary intersection and use the infix notation G; N G;. If the intersection involves
a consecutive subsequence {G;,Gii1,...,G;} of a dynamic graph G, then we
denote the intersection graph N{G;,Git1,...,G;} simply as G ;) and we say
that G; ;) covers the sequence {G;,G;;1,...,G;}. We say that the intersection
graphs {G(m),G(i .., G jn} cover the sequence {G;,Giy1,...,Gn} if
WGy Grgrys -Gy} = MGi,Giga, ... ,Gjn}. We define the size of an
intersection graph as the length of the sequence that it covers, the size of G ;) is
Jj—i+ 1

We consider in this chapter the decision problem of testing whether a dynamic
graph G is T-interval connected or not. We are also interested in the related problem
of finding the largest 1" for which G is T-interval connected.

Definition 3.3 (Testing T-interval connectivity). We denote as T-INTERVAL-
CONNECTIVITY the problem of deciding whether a dynamic graph G is T-interval
connected for a given T

Definition 3.4 (Testing Interval connectivity). We denote as INTERVAL-
CONNECTIVITY the problem of finding max{T : G is T-interval connected} for
a given G.

Definition 3.5 (Intersection hierarchy). We call an intersection hierarchy the struc-
ture formed by the superposition of rows represented by sequences of intersection
graphs of the same size. Let GT = {Gary),Gori), - Go—ri1,6) ) Wecall GT the
T row in G’s intersection hierarchy, as depicted in Fig. 3.2. A particular case is
G'=G. Forany1 <1i <6 —T + 1, we define G"[i] = G i17—1). We call G']i]
the i element of row G and i is called the index of GT[i] in row G7.

40 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

Figure 3.2 shows an example of an intersection hierarchy for a given dynamic
graph G of length 6 = 8. In the example, G is 3-interval connected, but not 4-
interval connected; G* contains a disconnected graph G(s 5) because G2, G3, G4, G5
share no connected spanning subgraph.

Observation 3.1 (7-interval connectivity in the intersection hierarchy). A dynamic
graph G is T-interval connected if and only if all graphs in G* are connected.
Formally, a dynamic graph G is T-interval connected if and only if the intersection
graph Gy y17_1) is connected for every t € [1,6 — T + 1].

3.1.1 Bound on Computation Time

As shown in Observation 3.1, the concept of 7T'-interval connectivity can be refor-
mulated quite naturally in terms of the connectivity of some intersection graphs. For
this reason, we consider two building block operations: binary intersection (given
two graphs, compute their intersection) and connectivity testing (given a graph, test
if it is connected). This approach is suitable for a high-level study of these problems
when the details of changes between successive graphs in a sequence are arbitrary.
If more structural information about the evolution of the dynamic graphs is known,
for example, if it is known that the number of changes between each pair of con-
secutive graphs is bounded by a constant, then other algorithms could benefit from
the use of sophisticated data structures and a lower-level approach might be more
appropriate.

Cost of the operations: Using an adjacency list data structure for the graphs, a
binary intersection can be performed in linear time in the number of edges.

Checking connectivity of a graph can also be done in linear time in the number
of edges. In the case of undirected graphs, it can be done by building a depth-first
search tree from an arbitrary root node and testing whether all nodes are reachable
from the root node. Tarjan’s algorithm for strongly connected components can be
used for directed graphs.

Hence, both the intersection operation and the connectivity testing operation
have similar costs. In what follows, we will refer to them as elementary operations.

One advantage of using these elementary operations is that the high-level logic
of the algorithms becomes elegant and simple. Also, their cost can be counterbal-
anced by the fact that they are highly generic and thus could benefit from dedicated
circuits (e.g., FPGA) or optimized code.

Naive Upper Bound: It suffices to compute the rows of G’s intersection hierarchy
incrementally using the fact that each graph G ; ;) can be obtained as G'(; jr—1) N
G'(i+1,i+k)- For instance, G35y = G35 N G in Fig. 3.2. Hence, each row &
can be computed from row k£ — 1 using O(J) binary intersections. In the case of
T-INTERVAL-CONNECTIVITY, one simply has to repeat the operation until the 7"

Automatic Classification of Dynamic Graphs 41



3.1. Model, Definitions and Basic Observations

g‘*iiiO;OiiZZ

Gaa  Ges  Gee  Gun 5.8)

gl

Figure 3.2: Example of an intersection hierarchy for a given dynamic graph G of
length § = 8.

row, then answer t rue iff all graphs in this row are connected. The total cost is
O(8T) = O(6?) binary intersections, plus § — 7'+ 1 = O(§) connectivity tests for
the T row

Solving INTERVAL-CONNECTIVITY is similar except that one needs to test the
connectivity of all new graphs during the process. If a disconnected graph is first
found in some row k, then the answer is £ — 1. If all graphs are connected up to row
d, then § is the answer. Since there are O(d?) graphs in the intersection hierarchy,
the total number of connectivity tests and binary intersections is O(5?).

Lower Bound. The following lower bound is valid for any algorithm that uses only
the two elementary operations binary intersection and connectivity test.

Lemma 3.1. Q(0) elementary operations are necessary to solve T-INTERVAL-
CONNECTIVITY.

Proof. (by contradiction). Let A be an algorithm that uses only elementary oper-
ations and that decides whether any sequence of graphs is 7-interval connected in
o(9) operations. Then, for any sequence G, at least one graph in G is never accessed
by A. Let G; be a sequence that is T-interval connected and suppose that A decides
that G, is T-interval connected without accessing graph G. Now, consider a se-
quence G, that is identical to G; except Gy, is replaced by a disconnected graph Gj.
Since (), is never accessed, the executions of A on G; and G, are identical and A
incorrectly decides that G, is T-interval connected. ]

A similar argument can be used for INTERVAL-CONNECTIVITY by making the
answer 1" dependent on the graph G, that is never accessed.

From the naive strategy, one can see that the computation of some intersection
graphs is not required. Using the same example of the intersection graph G(3¢) =

42 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

G N G4 N Gs N Gg , we see that to compute G(36), we do not really need G 35
and G(46). One can simply compute it from G(34) N G5 Whose result covers
the whole sequence {G3, G4, G5, Gg}. This can significantly reduce the amount of
computation and gives the idea for a new row-based strategy.

3.2 Row-Based Strategy

In this section, we present a basic strategy that improves upon the previous naive
strategy, yielding upper bounds of O(d log §) operations for both problems. Its main
interest is in the fact that it can be parallelized, and this allows us to show that both
problems are in NC, i.e. parallelizable on a PRAM with a polylogarithmic running
time. We first describe the algorithms for a sequential machine (RAM).

Informally, the general strategy is to compute only some of the rows of G’s in-
tersection hierarchy as each intersection graph requires two graphs to be computed,
it is sufficient that these two graphs cover the entire corresponding sequence. As we
follow a row based strategy, the two graphs should be on the same row (we will see
later that it is not necessary, and it will give a strategy for the optimal solution). The
computation of a graph on the 7" row requires the two used graphs to be in a row G
with ¢ > T'/2 as the height of an intersection graph equals the length of the sequence
that it covers in the graph G. The two graphs are computed in the same manner based
on 4 graphs in the row G*/? and so on. Following this principle it is possible, starting
from the graph G in the base of the intersection hierarchy, to compute only necessary
rows, namely G2 (“power rows”). Figure 3.3 shows the necessary computation to
compute the intersection graph G8[5] = N{G5, Gg, G7, Gs, Gy, G109, G11, G12}. The
figure represents the intersection hierarchy of the graph G of length 6 = 16 (the
base). Nodes colored in gray represent computed power rows graphs and the initial
graph sequence.

Formally, the computation of “power rows” is based on the following lemma:

Lemma 3.2. If some row G* is already computed, then any row G* fork +1 < ¢ <
2k can be computed with O(0) elementary operations.

Proof. Assume that row G* is already computed and that one wants to compute
row G¢ for some k + 1 < ¢ < 2k. Note that row G’ consists of the entries
G‘[1],...,G*6 — £ + 1]. Now, observe that for any k£ +1 < ¢ < 2k and for any 1 <
i <O0—0+1,G"i] = Gire-1) = Glaith-1)NG (ir—kive—1) = GF[I]NG i + € — k).
Hence, § — {4+ 1 = O(9) intersections are sufficient to compute all of the entries of
row G-. O

Automatic Classification of Dynamic Graphs 43



3.2. Row-Based Strategy

Figure 3.3: Example of computation of the intersection graph G®[5] corresponding
to the sequence {Gs, Gg, G7, Gs, Go, G19, G11, G712} based on power rows graphs.

T-INTERVAL-CONNECTIVITY

Using Lemma 3.2, we can incrementally compute “power rows” G? for all ¢ from
1 to [log, T'| — 1 without computing the intermediate rows. Then, we compute row
G7 directly from row G2"**"""" (again using Lemma 3.2). This way, we compute
[log, T'] = O(log ) rows using O(d log ) intersections, after which we perform
O(d) connectivity tests.

In Figure 3.4 we show a T-interval testing based on power rows computation of
the graph G of length 6 = 16 with 7" = 11. Red (dark) nodes represent the graphs
of the T*" row. The computation of the power rows stops upon reaching G® which
is the last power row before G'! (the first power row after G''/2). The graph of the
T*" row are then computed from the intersection graph G® using binary intersection
according to Lemma 3.2, e.g G*' [2] = G®[2]NG®[5]. Finally, T-interval connectivity
is tested by testing the connectivity of each graph in G'!.

INTERVAL-CONNECTIVITY

Here, we incrementally compute rows G2 until we find a row that contains a dis-
connected graph (thus, a connectivity test is performed after each intersection). By
Lemma 3.2, each of these rows can be computed using O(4) intersections. Suppose
that row G2’ is the first power row that contains a disconnected graph, and that
ng is the row computed before QQHI. Next, we do a binary search of the rows
between G2 and G¥"': compute and test the middle row G¥ 2", then continue
the same way between rows G2’ and G¥ 2" if this latter contains at least one dis-
connected graph, otherwise, between G2+2 "' and G¥"'. This is continued until
we find the row G with the highest row number 7" such that all graphs on this row
are connected (see Fig. 3.5 for an illustration of the algorithm). The computation of

44 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

0000
00000 T
eeeeee - (
§O89000

O
O
O
O
O
O
O
O

@]
(@
(@]
@]
(@]
@]
(@]
o
(@]
(@]
Q.
(@]
Q.
(@]
O 50O
O

Figure 3.4: Example of T-interval connectivity testing based on the computation of
POWET rows.

><OQQQQ

“

000080 -
0000000

Figure 3.5: Example of interval connectivity testing based on the computation of
power rows. Here 6 = 16 and 7" = 11.

each of these rows is based on row G2 and takes O(4) intersections by Lemma 3.2.
Overall, we compute at most 2[log, 7' = O(log ¢) rows using O(d log ) intersec-
tions and the same number of connectivity tests.

Figure 3.5 shows an example of interval connectivity testing based on the com-
putation of the power rows. In this example § = 16 and the found value of 7" is 11.
The computation of power rows stops upon reaching G'¢ which contains a discon-
nected graph (x). So necessarily 16 > 7" > 8. A binary search between rows G®
and G'6 is then used to find G!!, the highest row where all graphs are connected.

Automatic Classification of Dynamic Graphs 45



3.2. Row-Based Strategy

3.2.1 Parallel Algorithm

In the row-based strategy we can see that the computation of each power row de-
pends on the computation of the previous one which requires a logarithmic factor in
the complexity. However, each computed graph is used in the construction of a con-
stant number of graphs. This can be used to compute a linear number of graphs of
the same row simultaneously using a linear number of processors. We now present a
parallel version of the row-based algorithm on a EREW PRAM model. We specify
that we always follow a high-level strategy, where the only parameter of the input
size is ¢ (ignoring n and m).

Definition 3.6 (EREW PRAM). The Parallel Random Access Machine (PRAM)
model is a generalization of the RAM model of sequential computation. It consists
in a collection of numbered RAM processors Py, Py, Ps, ..., a collection of shared
memory cells M|[0], M[1], M[2],.... Each P; has its own local memory (registers)
and knows its index i. In the Exclusive Read Exclusive Write (EREW) PRAM variant
only one processor can read and write at a given time in a shared memory cell.

Lemma 3.3. If some row G* is already computed, then any row between G**1 and
G? can be computed in O(1) time on an EREW PRAM with O(5) processors.

Proof. Assume that row G* is already computed, and that one wants to compute
row G*, consisting of the entries G*[1], ..., G*[6 — £ + 1], for some k + 1 < ¢ < 2k.
Since G‘li] = G*[i] N G¥[i + ¢ — k], 1 < i < § — £ + 1, the computation of row G*
can be implemented on an EREW PRAM with § — £+ 1 processors in two rounds as
follows. Let P;, 1 < i < § —{+1, be the processor dedicated to computing Gt [i]. In
the first round P, reads G*[i], and in the second round P; reads G*[i + ¢ — k]. This
guarantees that each P, has exclusive access to the entries of row G* that it needs
for its computation. Hence, row G* can be computed in O(1) time on an EREW
PRAM using O(d) processors. O

Now we establish that 7T-INTERVAL-CONNECTIVITY and INTERVAL-
CONNECTIVITY are in Nick’s class (NC) by showing that our algorithms are
efficiently parallelizable.

46 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

Time complexity on an EREW PRAM

T-INTERVAL-CONNECTIVITY on an EREW PRAM: The sequential algorithm
for this problem computes O(log §) rows. By Lemma 3.3, each of these rows can
be computed in O(1) time on an EREW PRAM with O(J) processors. Therefore,
all of the rows (and hence all necessary intersections) can be computed in O(log d)
time with O(§) processors. The O(d) connectivity tests for row G7 can be done in
O(1) time with O(0) processors. Then, the processors can establish whether or not
all graphs in row G7 are connected by computing the logical AND of the results
of the O(d) connectivity tests in time O(logd) on an EREW PRAM with O(0)
processors using standard techniques (see Gibbons and Rytter [1988]; JaJa [1992]).
The total time is O(log d) on an EREW PRAM with O(d) processors.

INTERVAL-CONNECTIVITY on an EREW PRAM: The sequential algorithm
for this problem computes O(logd) rows. Differently from 7T-INTERVAL-
CONNECTIVITY, a connectivity test is done for each of the computed graphs
(rather than just those of the last row) and it has to be determined for each
computed row whether or not all of the graphs are connected. This takes O(log d)
time for each of the O(log¢d) computed rows using the same techniques as for
T-INTERVAL-CONNECTIVITY. The total time is O(log® §) on an EREW PRAM
with O(d) processors.

3.3 Optimal Solution

We now present our strategy for solving both T-INTERVAL-CONNECTIVITY and
INTERVAL-CONNECTIVITY using a linear number of elementary operations (in the
length ¢ of G), matching the 2(d) lower bound presented in Section 3.1.

To go from the row-based strategy to the optimal strategy we first note that two
graphs used in the computation of an intersection graph can be on different rows in
the hierarchy of intersection.

We show in Figure 3.6 an example of intersection graph G*°[3] = G5 12) com-
puted from the two graphs G°[3] that we call left intermediate intersection graph
and G*(9)] called right intermediate intersection graph shown in dark gray that cov-
ers the entire corresponding sequence in G (G°[3] = G(3.12) = G*[9] N G°[3)).

It is desirable that the already computed intermediate graphs can be reusable
for computing other intermediate graphs or other graphs on the row that we want
to compute. We show in Figure 3.6 the computation of the subsequent graph
G'°[4] = G(4,13) on row T'. For an efficient use of intermediate graphs, two from
these four graphs can be computed directly from the other two. According to the
order of computation of the graphs in the row 7', we can specify an order for com-

Automatic Classification of Dynamic Graphs 47



3.3. Optimal Solution

Figure 3.6: Example of computation of the intersection graphs G!°[3] =
N{G3,Gy,...,G1a} and G[4] = N{G4, G5, ...,G13} based on the computed
graphs on different rows.

puting intermediate graphs. Let us consider the left to right direction. We use for the
computation of G'°[3] to compute both graphs G*[9] and G%[3], the computation of
the latter (G%[3]) requires the graph G°[4] to be computed first. Then, for the compu-
tation of the graph G'°[4], it remains only to compute the intermediate graph G5[9]
directly from G*[9] N G3. If we continue to walk right into row 7', we see that for
each computed graph, the right intermediate graph is computed directly from that of
the previous graphs in the row, but the left intermediate graph can not be computed
from that of the previous one but used to compute it, so it must be computed before.
To make things clearer we introduce the notion of ladder. Informally, a ladder is a
sequence of intermediate graphs that “climbs” the intersection hierarchy bottom-up.

Definition 3.7. The right ladder of length [ at index i, denoted by R'[i], is the se-
quence of intersection graphs (G*[i], k = 1,2,...,1).

The left ladder of length [ at index i, denoted by L'[i], is the sequence (G*[i — k + 1],
k=1,2,...,0).

A right (resp. left) ladder of length | — 1 at index i is said to be incremented when
graph G'[i] (resp. G'i — | + 1)) is added to it, and the resulting sequence of inter-
section graphs is called the increment of that ladder.

Lemma 3.4. A ladder of length | can be computed using | — 1 binary intersections.

Proof. Consider a right ladder R![i]. For any k € [2,]] it holds that G*[i] =
G* 4] N Gyisx—1. Indeed, by definition, G*71[i] = N{G;,Gi11, ..., Gisp_o}. The
ladder can thus be built bottom-up using a single new intersection at each level.

Consider a left ladder £!'[i]. For any k € [2,1] it holds that G¥[i — k + 1] =
Gi_ry1 N GF i — k +2]. Indeed, by definition, G*1[i — k + 2] = N{G;_r42,

48 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

l— ® o@k)
]
(Z?]_l)
o (jok—j+1) “r
o
J

Figure 3.7: Examples of intersection rectangle computation based on left and right
ladders.

Gi_k+3,-.-,G;}. The ladder can thus be built bottom-up using a single new inter-
section at each level. 0

Definition 3.8 (Intersection rectangle). Given L![j — 1] and R"[j), the set of graphs
G*[i] suchthat j—1 < i < jand j—i < k < j—i+r, forms an intersection rectan-
gle defined by the triplet (j,1,r) delimited by the two ladders and the two lines that
are parallel to the two ladders as shown in Figure 3.7. The graphs G*[i] defined by
the constraints above, shown in light gray in the figure, include all graphs that are
strictly inside the rectangle, and all graphs on the parallel lines. Notice that graphs
on the two ladders are excluded.

Lemma 3.5. Given a pair (i, k), the graph G*[i| can be computed as G*[i] N
GF2[i + z] such that 1 < x < k.

PI‘OOf: By deﬁnition, Qk[z} = H{GZ, Gi+1, ceey Gi+k71} and Q” [Z] = m{G“ G/L'Jrl,
oy Gizp1} and GF7[i+ 2] = N{Gita, Gigat1y o Girho1} (Gigorho =
Giir_1). It follows that G*[i] = G*[i] N G*~2[i + x]. O

Corollary 3.1. Given an intersection rectangle (j,1,r), any graph G*[i] in the
intersection rectangle can be computed by a single binary intersection, namely

GHli] = GI7i] N GFIH).

Proof. From Lemma 3.5, with j — i = z, we have G*[i] = G7~[¢] N GFITi[j].
By definition, G''[i] € L![j — 1] and G¥=7T[j] € R"[j], so only a single binary
intersection is needed. [

Automatic Classification of Dynamic Graphs 49



3.3. Optimal Solution

(a) (b)
0000000
000000000 j

OJOXOXONOXOROXOXOXO)
00000000000

Figure 3.8: Examples of the execution of the optimal algorithm for 7'-INTERVAL-
CONNECTIVITY with 7" < 6/2 (a) and T' > §/2 (b). G is T-interval connected in
both examples.

T-INTERVAL-CONNECTIVITY

We describe our optimal algorithm for this problem with reference to Fig. 3.8 below
which shows two examples of the execution of the algorithm (see Algorithm 2 for
details). The algorithm traverses the T*" row in the intersection hierarchy from left
to right, starting at QT[l]. If a disconnected graph is found, the algorithm returns
false and terminates (line 14). If the algorithm reaches the last graph in the row,
ie. GT[6 —T + 1], and no disconnected graph was found, then it returns true
(line 16). The graphs GT[1],G"[2],...,G*[6 — T + 1] are computed based on the
set of ladders § = {LT[T], R*7'[T + 1], LT[2T), RT-'[2T + 1], ...}, which are
constructed as follows. Each left ladder is built entirely (from bottom to top, line
function computeLeftLadder) when the traversal arrives at its top location in
row T’ (i.e. where the last increment is to take place, variable next). For instance,
LT[T] is built when the walk (current intersection graph) is at index 1 in row 7,
LT[2T7 is built at index T + 1, and so on. If a disconnected graph is found in the
process, the execution terminates returning false.

50 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

4 // walk until stepping out of the intersection hierarchy
5 whilei <§—k+1do

16 return true

1 kT /I current row (non-changing)
2 141 /I current index in the row
3 next <1 /I trigger for next ladder construction

6 if i = next then

7 next < i+ k

8 /lcompute L*[next — 1]

9 if ~computeLeftLadder (k,next) then

10 return false

11 else

12 /lcompute G*[i] and GK—"¢*1 i [next]
computeFromIntersection (k,1,next)

13 if ~isConnected (G*[i]) then

14 | return false

15 14—1+1

17 function computelLeftLadder (k,next) : // compute the left ladder £*[next — 1]
18 E 1 // row of first increment
19 i’ < next — 1 // index of first increment
20 while &’ < k do

21 if ~isConnected(G* [i']) then

22 ‘ return false // a disconnected graph was found
23 E+—k+1

24 i =1

2 GF[i") « GF [’ + 1] NGy // “increment” the ladder
26 function computeFromIntersection (k,i, next) : /l “increment” the right ladder
27 k' <k —next+1 // row of increment (right ladder), always k' > 1
28 incrementRightLadder(k’, ¢, next)

29 function incrementRightLadder (K, i, next) : /l “increment” the right ladder
30 G¥ [next] — GF ~V[next] N Gretsr—1 // “increment” right ladder
31 GF[i] « Grewt=i[i] N G [next) // compute intersection based on Corollary 3.1

Algorithm 2: Optimal algorithm for 7-INTERVAL-CONNECTIVITY

Automatic Classification of Dynamic Graphs

51




3.3. Optimal Solution

Differently from left ladders, right ladders are constructed gradually as the traver-
sal proceeds. Each time that the traversal moves right to a new index in the 7" row,
the current right ladder is incremented and the new top element of this right ladder
is used immediately to compute the graph at the current index in the 7" row (using
Corollary 3.1). This continues until the right ladder reaches row 7" — 1 after which
a new left ladder is built.

Theorem 3.1. T-INTERVAL-CONNECTIVITY can be solved with O(9) elementary
operations, which is optimal (to within a constant factor).

Proof. The set S of ladders constructed by the algorithm includes at most [6/7"]
left ladders and [6/T'] right ladders, each of length at most 7. By Lemma 3.4, the
set of ladders S can be computed using less than 2§ binary intersections. Based on
Corollary 3.1, each of the § — T + 1 graphs G*[i] in row T can be computed at the
cost of a single intersection of two graphs in S. At most 6 — T+ 1 connectivity
tests are performed for row 7'. This establishes the following result which matches
the lower bound of Lemma 3.1. [

INTERVAL-CONNECTIVITY

The strategy of our optimal algorithm for this problem is in the same spirit as the one
for T-INTERVAL-CONNECTIVITY. However, it is more complex and corresponds
to a walk in the two dimensions of the intersection hierarchy. It is best understood
with reference to Fig. 3.9 which shows an example of the execution of the algorithm
(see Algorithm 3 for details).

2000000

Figure 3.9: Example of the execution of the optimal algorithm for INTERVAL-
CONNECTIVITY. (It is a coincidence that the rightmost ladder matches the outer

face.)

The walk starts at the graph G'[1] and builds a right ladder incrementally until
it encounters a disconnected graph (first loop, line 5). If G°[1] is reached and is
connected, then G is d-interval connected and the execution terminates returning 9.
Otherwise, suppose that a disconnected graph is first found in row &£ + 1. Then

52 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

1 k1 // current row

2 941 // current index in the row

3 next < 2 // trigger for next ladder construction

4 // builds a right ladder until a disconnected graph is found

s while isConnected (G*[1]) do

6 k+—k+1

7 if £ > ¢ then

8 ‘ return /I the graph is §-interval connected

9 else

10 | GF[1] « GM 1] N Gk // “increment” the right ladder

1 if £k = 1 then

12 ‘ return 0 /I the graph is O-interval connected

B k—k-1 // move down

141+ 1+1 // move right

15 // walk until stepping out of the hierarchy

16 while: <6 —k+1do

17 if © = next then

18 next < i+ k

19 computelLeftLadder (k, i, next)

20 else

21 computeFromIntersection (k,1,next)

22 if ~isConnected (G*[i]) then

23 | k< k-1

24 if £ = 0 then

25 ‘ return O

26 1—1+1

27 returnk

28 function computelLeftLadder (k,i,next) : /I compute the left ladder Ck[nemt —1]

29 K +—1 // row of first increment

30 i < next — 1 // index of first increment

31 while ¥’ < k do

32 if ~isConnected(G¥ [i']) then

33 kK —1 /I move the original walk..

34 i+i+1 /I ..below-right disconnected graph,

35 return // abort function

36 K+ Kk +1

37 i =1

38 GF'[i'] «~ GF [/ +1] N Gy /I “increment” the ladder

39 function computeFromIntersection (k,i, next) : /I “increment” the right ladder
(same function as for Algorithm 2)

40 k' <k —next+1 // row of increment (right ladder), always k' > 1

41 incrementRightLadder(k’, 7, next)

42 function incrementRightLadder (k',i,next) : // “increment” the right ladder (same
function as for Algorithm 2)

3 G¥ [next] «— G ~V[next] N Gretsr—1 // “increment” right ladder

44 GFJi] « Grewt=i[i] N G [next) // compute intersection based on Corollary 3.1

Algorithm 3: Optimal algorithm for INTERVAL-CONNECTIVITY

Automatic Classification of Dynamic Graphs 53



3.3. Optimal Solution

k is an upper bound on the connectivity of G and the walk drops down a level to
G*[2] which is the next graph in row k that needs to be checked. This requires
the construction of a left ladder £*[k + 1] of length k ending at G*[2] (function
coputeFromRight). The walk proceeds rightward on row k using a similar
traversal strategy to the algorithm for 7-INTERVAL-CONNECTIVITY. Here, how-
ever, every time that a disconnected graph is found, the walk drops down by one
row. The dropping down operation, say, from some G*[i], is made in two steps
(curved line in Fig. 3.9). First it goes to G*![i], which is necessarily connected
because G*[i — 1] is connected (so a connectivity test is not needed here), and then
it moves one unit right to G*¥~1[i + 1] (line 22). If the walk eventually reaches the
rightmost graph of some row and this graph is connected, then the algorithm ter-
minates returning the corresponding row number as 7. Otherwise the walk will
terminate at a disconnected graph in row 1 and G is not T-interval connected for
any 7. In this case, the algorithm returns 7" = 0.

Similarly to the algorithm for 7-INTERVAL-CONNECTIVITY, the computations
of the graphs in a walk by Algorithm 3 (for INTERVAL-CONNECTIVITY) use binary
intersections based on Lemma 3.4 and Corollary 3.1. If the algorithm returns that G
is T-interval connected, then each graph G7[1],G7[2],...,GT[6 — T + 1] must be
connected. The graphs that are on the walk are checked directly by the algorithm.

Lemma 3.6. If an intersection graph G ; ;) is connected then any graph G ;s ;i such
thati' > i and j' < j is connected.

Proof. By definition G; ;) is connected implies that the sequence {G;, Gi11, ..., G, }
shares a common connected spanning subgraph. As the sequence {G/, Gi41, ..., G}
is a subsequence of {G;, G;41, ..., G, }, then it shares the same common connected
spanning subgraph. 1.

According to Lemma 3.6, for each graph G” [i] on row T that is below the walk,
there is a graph G7[i] with j > T that is on the walk and is connected and this
implies that G7 [i] is connected.

Theorem 3.2. INTERVAL-CONNECTIVITY can be solved with ©(6) elementary op-
erations, which is optimal (up to a constant factor).

Proof. The ranges of the indices covered by the left ladders that are constructed
by the process are disjoint, so their total length is O(5). The first right ladder has
length at most ¢ and each subsequent right ladder has length less than the left ladder
that precedes it so the total length of the right ladders is also O(9). Therefore,
this algorithm performs at most O(d) binary intersections and O(d) connectivity
tests. This establishes that INTERVAL-CONNECTIVITY can be solved with O(J)
elementary operations, which matches the lower bound of Lemma 3.1. [l

54 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

3.3.1 Online Algorithms

The optimal algorithms for 7-INTERVAL-CONNECTIVITY and INTERVAL-
CONNECTIVITY can be adapted to an online setting in which the sequence of
graphs G, G5, Gs, ... of a dynamic graph G is processed in the order that the
graphs are received. In the case of T-INTERVAL-CONNECTIVITY, the algorithm
cannot provide an answer until at least 7' graphs have been received. When the
T graph is received, the algorithm builds the first left ladder using 7' — 1 binary
intersections. It can then perform a connectivity test and answer whether or not the
sequence is T-interval connected so far. After this initial period, a T'-connectivity
test can be performed for the 7" most recently received graphs (by performing a
connectivity test on the corresponding graph in row 7°) after the receipt of each new
graph.

Theorem 3.3. T-INTERVAL-CONNECTIVITY and INTERVAL-CONNECTIVITY can
be solved online with an amortized cost of ©(1) elementary operations per graph
received.

Proof. At no time does the number of intersections performed to build left ladders
exceed the number of graphs received and the same is true for right ladders. Further-
more, each new graph after the first 7'— 1 corresponds to a graph in row 7" which can
be computed with one intersection by Corollary 3.1. In summary, the amortized cost
is O(1) elementary operations for each graph received and for each T-connectivity
test after the initial period. The analysis for INTERVAL-CONNECTIVITY is similar
except the algorithm can report the connectedness of the sequence so far starting
with the first graph received. ]

By adapting our strategy directly to an online version, a graph whose prefix is
not 7-interval connected will never be 7"-interval connected for 77 > T. If we
take the T-INTERVAL-CONNECTIVITY as a form of stability, it would be interest-
ing therefore to consider only the recent state of the graph. Considering a dynamic
online version allows to characterize the stability during the last term.

3.4 Dynamic Online Interval Connectivity

The algorithms in this section are motivated by Internet protocols like TCP (Trans-
mission Control Protocol) which adjust their behaviour dynamically in response to
recent network events and conditions such as dropped packets and congestion. 7'-
interval connectivity is a measure of the stability of a network. Generally, larger
values of 71" indicate that communication is more reliable, so it is natural to consider
a dynamic version of interval connectivity that is based only on the recent states of
a network rather than the entire history of a network. We formalize this notion of

Automatic Classification of Dynamic Graphs 55



3.4. Dynamic Online Interval Connectivity

recent history by introducing the concept of 7'-stable graphs. We then define the
dynamic online versions of both T-INTERVAL-CONNECTIVITY and INTERVAL-
CONNECTIVITY in terms of 7'-stable graphs.

Definition 3.9 (T-stable graph). A graph G;, i > T, of a sequence
G = {G1,Gs,..,Gs} is T-stable for a given T iff the subsequence
Gi—r-1), Gi—(r-2), - - -, Gi—1, G; is T-interval connected.

Definition 3.10 (Testing T'-STABILITY). The T-STABILITY problem for a given

T is the problem of deciding for each received graph G;, i > T, whether G; is
T'-stable.

Definition 3.11 (Testing STABILITY). We use the term STABILITY to refer to the
problem of finding T; = max{T : G; is T-stable} for each received graph G;.

As before, the first problem is a decision problem with true/false output, while
the second is a maximization problem with integer output. Here, however, one such
output is required after each graph in the sequence is received.

T-STABILITY

Our algorithm for 7-STABILITY is similar to Algorithm 2 for 7-INTERVAL-
CONNECTIVITY. The differences are that the algorithm for 7'-STABILITY produces
an output after each graph of a sequence is received, and the algorithm does not ter-
minate if a disconnected graph is found on row 7’ of the hierarchy. Instead, it contin-
ues until the last graph in the sequence is received. The ladders constructed by the
algorithm for 7-STABILITY are the same as the ladders that would be constructed
by Algorithm 2 for a dynamic graph that is 7-interval connected (see Figure 3.8 for
examples). Given a dynamic graph G = {G1, Ga, ..., G5}, T-STABILITY is unde-
fined for the graphs G; with ¢ < T, so the algorithm returns L after each of the
first T — 1 graphs is received. When G is received, the algorithm builds a left
ladder and returns t rue (resp. false) if the top graph of the ladder (i.e. G7[1]) is
connected (resp. disconnected). Then the walk progresses rightward along row T’
every time that a graph is received, alternately building left and right ladders in such
a way that the graph G [i — (T — 1)] can always be computed from G; with a single
intersection (using Corollary 3.1). G; is T-stable iff GT[i — (T — 1)] is connected
and t rue or false is output as appropriate.

Theorem 3.4. T'-STABILITY can be solved online with an amortized cost of ©(1)
elementary operations per graph received.

Proof. By the same analysis as the analysis for the online version of Algorithm 2,
the number of intersections performed to build left ladders never exceeds the num-
ber of graphs received, and the same is true for the number of intersections to build
right ladders and the number of connectivity tests. 0

56 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

®
"0

0000000
0000000
) OO0 @0 0<T

czv}rrent graph G4

Figure 3.10: Example of the execution of the STABILITY algorithm.

STABILITY

The algorithm for this problem must find 7; = max{7T : G, is T-stable} for each
received graph G;. Our algorithm for STABILITY generalizes the strategy that we
used in the algorithm for INTERVAL-CONNECTIVITY by trying to climb as high
as possible in the hierarchy, even after a disconnected intersection graph is found.
This is necessary because the sequence of values 77, 75,75, ... for STABILITY is
not necessarily monotonic.

The algorithm for STABILITY uses right and left ladders to walk through the
intersection hierarchy. The general idea is that the walk goes up when the cur-
rent intersection graph is connected and down when it is disconnected (unless the
walk is on the bottom level of the hierarchy in which case it goes right to the next
graph). This is different from the algorithm for INTERVAL-CONNECTIVITY which
only goes up during the construction of the first right ladder and goes right or down
in all other cases. We will describe the algorithm for STABILITY with reference to
Fig. 3.10 which shows an example of the execution of the algorithm. See Algo-
rithm 4 for complete details.

The walk begins by constructing a right ladder. In each step, if a computed in-
tersection graph G*[j] is connected, and G;, i = j + k — 1, is the most recently
received graph, then the value & is returned to indicate that G, is k-stable. Then the
walk climbs one row in the hierarchy to G**1[;] which takes into consideration the
next graph G, ;. If a computed intersection graph G*[j], k > 1, is disconnected,
then the walk descends to the next graph in the row below, i.e. to G¥71[j + 1]. In
this case no value is returned because the next graph in G has not yet been consid-
ered. If a graph G 1 [7] is disconnected, then 0 is returned, and the walk moves right
to the next graph.

As in the previous algorithms, the right ladders are constructed incrementally as
the walk goes up, even though each graph G*[;] can be computed from G*~1[j] N
G'j1k—1, because this prepares the ladders needed to compute the intersection graphs

Automatic Classification of Dynamic Graphs 57



3.4. Dynamic Online Interval Connectivity

if the walk goes down. This is illustrated by the second right ladder R°[7] in
Fig. 3.10. If a disconnected graph G*[;] is found while building a right ladder,
the walk jumps to the next graph in the row just below, i.e. to G¥~1[j + 1], to avoid
unnecessary computations. For example, in Fig. 3.10 the walk jumps from G5(7]
which is disconnected to G*[8] without computing G7[5] and G5[6].

If a graph G*[j] cannot be computed using the current ladders, then a complete
new left ladder £*[k + j — 1] is constructed as high as possible until it reaches a
previously computed graph or until it encounters a disconnected graph. The former
case is illustrated by the left ladder £°[6] in Fig. 3.10 which is built when the walk
descends from G°[1] to G°[2]. The latter case is illustrated by the left ladder £[11]
which encounters the disconnected graph G*[8]. In this case the walk resumes from
the previous graph in the ladder (G[9] in the example). In contrast, a new left lad-
der is not needed when the walk descends three times from G[2] to G?[5] because
the ladders £°[6] and R3[7] that exist at this point can be used to compute these
intersections.

In the example in Fig. 3.10, the sequence of values 71,715,753, ..., 114 that the
algorithm outputs is 1,2, 3,4,5,5,6,7,5,6,3,4,5,6.

Theorem 3.5. STABILITY can be solved with an amortized cost of ©(1) elementary
operations per graph received.

Proof. The complexity analysis of the algorithm is similar to the analysis of the on-
line algorithm for INTERVAL-CONNECTIVITY. The number of intersection graphs
in right ladders never exceeds the number of graphs received and the same is true
for left ladders. Each intersection graph in a ladder is computed using one binary
intersection operation. Each time the walk climbs in the intersection hierarchy,
one connectivity test is performed and a single graph is processed. When the walk
descends, a new graph in G is not processed, but the number of descents cannot
exceed the number of ascents, and each descent uses at most one connectivity test.
This results in a constant amortized cost for each received graph. [

Conclusion

In this chapter, we studied the problem of testing whether a given dynamic graph
G = {G1, Gy, ...,Gs} is T-interval connected. We also considered the related prob-
lem of finding the largest 7" for which a given G is T-interval connected. We
investigated algorithmic solutions that use two elementary operations, binary in-
tersection and connectivity testing, to solve the problems. We developed efficient
algorithms that use only O(¢) elementary operations, asymptotically matching the
lower bound of £2(0). We presented PRAM algorithms that show that both problems

58 Mohammed Yessin NEGGAZ



3. Testing T-interval Connectivity

1 k1

2 941 // current index in the row
3 next < 2 // trigger for next ladder construction
4 output < 0

5 // until the last graph is received
6 while receiving graphs do

7 while isConnected (G*[i]) do

8 output < k; k +— k+1

9 computeFromIntersection (k,1,next) /l “increment” the right ladder
10 while —isConnected (G*[i]) do

11 if £ = 1 then

12 ‘ output < 0; next <1+ 2

13 else

14 | k< k-1

15 i—i+1

16 if ¢ = next then

17 ‘ next < i + k; computeLeftLadder (k, i, next)

18 else

19 ‘ computeFromIntersection (k,t,next)
20 function computeLeftLadder (k,i,next) : // compute the left ladder £¥[i]
21 K+ 1 // row of first increment
22 i <+ next — 1 // index of first increment
23 while £’ < k do
24 if ~isConnected(G¥ [i']) then
25 k<« Kk —1 // move the original walk..
26 1+1i +1 /I ..below-right disconnected graph,
27 return / abort function
28 Kk +1;¢ <4 -1
29 GF[i") « GF i’ + 1] N Gy // “increment” the ladder
30 function computeFromIntersection (k,i, next) :
31 if © = next — 1 then
32 ‘ Q’“[z] — Qkfl[i] N Gijukfl
33 else
34 k' <+ k —next +1 /I row of increment (right ladder)
35 G¥ [next] <+ G ~[neat] N Grewtsr—1 // “increment” right ladder
36 if ~isConnected(G* [next]) then
37 | i< nexti k< K
38 else
39 | G*[i] + Gt~ [i] N G¥ [newt] // compute intersection based on Corollary 3.1

Algorithm 4: Optimal algorithm for STABILITY

can be solved efficiently in parallel, and online algorithms that use ©(1) elementary
operations per graph received. We also presented dynamic versions of the online
algorithms that report connectivity based on recent network history.

Distributed algorithms for all of these problems, in which a node in the graph

Automatic Classification of Dynamic Graphs 59



3.4. Dynamic Online Interval Connectivity

only sees its local neighbourhood, would also be of interest. For example, dis-
tributed versions of the dynamic algorithms for 7-INTERVAL-CONNECTIVITY in
Section 3.4 could be used to supplement the information available to distributed In-
ternet routing protocols such as OSPF (Open-Shortest Path First) which are used to
construct routing tables. Our dynamic algorithms have ©(1) amortized complexity,
and distributed versions with ©(1) amortized complexity could provide real-time
information about network connectivity to OSPF.

60 Mohammed Yessin NEGGAZ



Chapter 4

A Generic Framework for Testing
Properties in Dynamic Graphs

Contents
41 Introduction . ... ........0. ittt 62
4.2 Model and Definitions . . . . . ... .............. 63
43 GenericFramework . ... ................... 64
4.3.1 Generic Algorithm for Minimization Problems . . . . . 64
4.4 Bounded Realization of the Footprint . .. .......... 66
4.4.1 Instantiation of the Algorithm . . . . . ... ... ... 68
4.5 Temporal Diameter ... ............c0000... 69
4.5.1 Instantiation of the Algorithm . . . . . ... ... ... 73
4.6 Round-trip Temporal Diameter . ............... 74
4.6.1 Instantiation of the Algorithm . . . . . .. ... .. .. 79

In this chapter we propose a generic framework for testing properties in sequence-
based dynamic graphs. This framework is a generalization of the framework pre-
sented in Chapter 3 to solve the problem of testing T-interval connectivity and that
of finding the largest 7" for which the graph is T-interval connected. This work
aims to formalize a testing process that allows to hide details related to low-level
structures and focus on a high-level study of the problem.

61



4.1. Introduction

4.1 Introduction

In Chapter 3 we presented a solution to the problem of testing the membership of
a graph to the class 7'-interval connectivity for given 7', and the related problem of
finding the largest 7" for which the graph is 7-interval connected.

The proposed framework was based on two elementary operations: intersection
and connectivity test. These operations were used to walk through a hierarchy of
intersection graphs and eventually answer the question. In this chapter, we present a
generalization of this framework that allows one to test other classes and properties.
Following the same principle, but using different operations (i.e. replacing intersec-
tion and connectivity test by other operations), other classification problems can be
solved with the same high-level logic. Beyond the operations, we had reformulated
the problem INTERVAL-CONNECTIVITY as a maximization problem, i.e. it con-
sists in finding the largest value T corresponding to the highest row in the hierarchy
for which the graph is T-interval connected. Some problems may however take the
form of minimization problems.

In what follows, we will look at this kind of problems that unlike INTERVAL-
CONNECTIVITY, consists in finding a minimum value corresponding to a lower
level (row) in the hierarchy. For both kinds of problems (minimization and maxi-
mization problems) the optimal strategy presented for INTERVAL-CONNECTIVITY
can be used and adapted to the problem (i.e the walk strategy and the use of ladders).
In the case of maximization problems, the algorithm first searches a larger value by
climbing the hierarchy as the test is positive. Then, the walk goes down the hierar-
chy in every step if the test is negative. In the case of a minimization problem, the
walk moves up when the test is negative, otherwise it moves forward on the same
TOW.

The chapter is organized as follows. Section 5.2 presents the model, basic defi-
nitions, and a generalization of the framework. In Section 4.3 we provide a generic
algorithm for minimization problems. Then, in the remaining three sections we
propose solutions based on three different problems using the presented generic al-
gorithm. In Section 4.4, the framework is adapted to find the smallest duration for
which all edges of the footprint appear, whatever the starting date (Class B). In
Section 4.5, we consider the problem of finding the (worst) temporal diameter of
a given dynamic graph G over its lifetime. Finally, we investigate in Section 4.6 a
somewhat more complex problem, that of computing the round trip diameter of a
given graph G.

62 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

4.2 Model and Definitions

In this chapter, we consider the same graph model as in Chapter 3. The dynamic
graph is given as an untimed evolving graph. We assume that the changes between
two consecutive graphs are arbitrary.

For a generalization of the framework presented in Chapter 3, we first define
what is common in any use. We remind that the framework is based on two oper-
ations: a composition operation and a fest operation. In the case of 7-INTERVAL-
CONNECTIVITY, the composition operation was intersection of two graphs and the
test operation was connectivity testing of one graph. To generalize this concept,
we use the notion of super node, i.e. a graph that is considered as a node in an-
other graph. In Chapter 3 the super nodes were the graphs of the initial sequence
{G1, Gy, ...} as well as all the graphs which results from intersecting subsequences
of these graphs (intersection hierarchy). To be more general, we will assume that
a pre-processing can be made on the initial graphs {G, Go, ... } giving as a result
the sequence {G/; )} that may or may not be equal to {G1, G, ...} (some of our
examples uses such a pre-processing). Thus, the initial G;s are not super nodes
themselves, but all G(; ;s are. We now define all these notions more precisely.

Definition 4.1 (Composition of super nodes). We call composition operation any
binary operation that maps two graphs into another graph. Given such an opera-
tion comp and possibly some restrictions on its application (that depends upon the
problem considered), we define the set of super nodes S = {G; ;) : i < j} recur-
sively by starting from the {G;;}s and adding all elements that can be obtained
through composing two elements from S (a super node G ; ) relates to the sequence
{Gli)s Gltrir1): Gsoira)s - - - Gy ). In mathematical terms, S is the closure
of {Gi.s)} under the composition operation (with restrictions), and the latter has
for signature comp: S x S — S.

An example of restriction that we will use, for one of the problem, is that if some
G|;,5) is composed with some G ;s ;), then 7’ must be equal to j 4 1 (which is by
chance the case with the high-level algorithm). In the cases that we will discuss,
super nodes are graphs (they can take other forms in general). We say that the
super node G; ;) corresponds to the sequence {G;, Gi11,...G—1, G;}. We also use
G’~"*1[i] to denote the super node G;

Definition 4.2 (Hierarchy). We call hierarchy the structure formed by the superpo-
sition of rows G*, G2, ..., G’ where G' = {G 1,5y, G(2,i+1), - - - » G(5—i+1.6) }-

Definition 4.3 (Test operation). The test operation is the elementary operation test :
S — boolean that applies to a super node, and which allows the algorithm to de-
termine in each step the next move (explained in the next section), until termination.

Automatic Classification of Dynamic Graphs 63



4.3. Generic Framework

4.3 Generic Framework

In order to reuse the proposed framework for other classes of dynamic graphs, the
question must be reformulated as a minimization or maximization problem. Con-
sider, for instance, the class studied in Chapter 2, temporal connectivity. As this
class is defined by a general property on the entire graph without any parameter on
it (as 7" in T'-interval connectivity), it would not be significantly beneficial to use the
framework to solve the decision problem of testing the membership of a dynamic
graph to this class (an efficient algorithm is proposed in Chapter 2). However we
can investigate the minimization problem of finding the temporal diameter d of a
dynamic graph i.e. the smallest d such that in every subsequence of length d in the
sequence G, journeys exist from any node to all other nodes.

The related class Round trip temporal connectivity also could be interesting to
study. In this case the aim would be to compute the round trip diameter rtd i.e.
the smallest rtd such that in every subsequence of length rtd in the sequence G,
back-and-forth journeys exist from any node to all other nodes.

One among the most relevant classes to our framework is the class Time-Bounded
reappearance of edges (Class B). The problem that we can consider is that of find-
ing the smallest bound b for which the graph has a bounded realization of the foot-
print i.e. the smallest b such that in every subsequence of length 0 in the sequence
G, all the edges of the footprint appear at least once.

The considered problem must be formulated in the context of our framework
(in terms of rows and super nodes). In a minimization problem, the aim is to find
the smallest parameter (as 7" in INTERVAL-CONNECTIVITY) for which the dynamic
graph has the considered property. In our context, it comes to find the lowest row in
the hierarchy where any super node satisfies the zest operation.

In this section, we propose a generic algorithm. We will describe the algorithm
at a high level using elementary operations (composition and test operations de-
fined above). Then, the algorithm can be used directly, as we will show later, to
solve specific minimization problems by defining the appropriate operations. We
will not consider the decision variant of each problem since their algorithms can be
deduced readily from those for the minimisation/maximization variant in general.

4.3.1 Generic Algorithm for Minimization Problems

To solve a given minimization problem, the generic algorithm for minimization
problems follows almost the same principle as that for INTERVAL-CONNECTIVITY.
The basics of the algorithm remain almost unchanged. An appropriate composition

64 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

operation is used to compute super nodes in the same way based on ladders also
computed in the same manner. Only the walk is affected by the change of the pur-
pose (finding the lowest row where any super node satisfies the test operation). In
this case, the walk goes up in the hierarchy if the test is negative (instead of mov-
ing down as in the algorithm for INTERVAL-CONNECTIVITY), otherwise it moves
forward on the same row. If the algorithm hits the right side of the hierarchy and
the last visited super node G*[6 — k + 1] in the row G* satisfies the test operation,
then it terminates and returns the corresponding . Otherwise, the walk climbs the
right side of the hierarchy (G¥*1[6 — k], G¥*2[§ — k — 1],...) until the test is posi-
tive. If the walk reaches G' [0] and the test is negative, then, the algorithm returns 0
indicating that the dynamic graph does not have the property. Algorithm 5 provides
a high-level formal description. Figure 4.1 shows an example of execution of the
generic algorithm for minimization problems. This figure will be used as a refer-
ence to describe the application of the algorithm to solve the minimization problems
we will study.

Super nodes computation (Function compute ()): Intermediate super nodes
(ladders) are computed the same way as in the algorithm for INTERVAL-
CONNECTIVITY using the corresponding composition operation (instead of
intersection). The super nodes resulting from the walk (red super nodes in Figure
4.1) are computed almost the same way. We describe computation (Function
compute () in Algorithm 5) with reference to Figure 4.1. When the walk moves
one step forward on the same row, the next super node is computed from the right
and the left ladders (G*[6] = comp(G?[6], G*[8])) or from the ladder to which it
belongs and a super node in the first row (G*[4] = comp(G'[4], G3[5])). If the walk
climbs (moves up) a step in the hierarchy, then the next super node is computed
from the preceding super node in the walk and the next super node in G! (instead
of using ladders), such as building a left ladder, (G°[6] = comp(G*[6], G'[10])).
Although this computation does not require the use of ladders, the process contin-
ues to build a right ladder as the walk goes up for later use (if after-ward the walk
moves forward on the same row, G° [7]). As it turns out, this generic algorithm for
minimization problems, as well as its maximization analogue in Chapter 3, have
a convenient property which will prove important for correctness for the last two
problems (TEMPORAL-DIAMETER, ROUND-TRIP-TEMPORAL-DIAMETER).

Lemma 4.1 (Disjoint sequences property). If the algorithm performs a composition
of two super nodes G ; ;) and G s jr, then the corresponding sequences {G;, G 1,
... G} and {G},Gysq,...,Gy} are disjoint and consecutive. That is, in any
execution, G; jy = comp(G; ), G jn) = j =1 — L

Proof. According to the algorithm, any super node of the hierarchy is computed
from: 1) two super nodes of two different ladders, a left one and a right one 2)
a super node of a ladder and a super node in the first row 3) a super node of the

Automatic Classification of Dynamic Graphs 65



4.4. Bounded Realization of the Footprint

walk and a super node in the first row. In the three cases the two sequences cov-
ered by the two super nodes used are disjoint and consecutive: in any execution,
Gy = comp(Gigy, G ) = J =i = L

Theorem 4.1. The generic algorithm for minimization problems has a cost of ©(0)
elementary operations.

Proof. As the algorithm for INTERVAL-CONNECTIVITY, the total length of right
and left ladders is O(d). It was shown in Chapter 3 that any super node can be
computed using a single composition operation based on ladders (Lemma 3.1). Ac-
cording to the algorithm, the number of super nodes computed by the walk is O(9)
and any computed super node is tested at most once. So, the generic algorithm for
minimization problems performs O(J) composition operations and O(J) test opera-
tions. 0

ORORONORONORORON
OOOOOOOOO

Figure 4.1: Example of the execution of the generic algorithm for minimization
problems.

4.4 Bounded Realization of the Footprint

In this section, we illustrate the use of the generic framework in the context of Class
B of those dynamic graphs with Time-bounded reappearance of edges (def 1.28).
This class is defined by a property on edges recurrence over time in a dynamic
graph. Let us first define an analogue of Class B in a discrete context (untimed
evolving graphs). A graph has a time-bounded reappearance of edges with a bound
b if the number of steps between two appearances of the same edge in the graph G
is at most b. Formally:

Definition 4.4 (Class Time-bounded reappearance of edges (Class B, Def. 1.28)).
Let G = {G; = (V,E;)} of length 6 be a dynamic graph and G = (V, E) its
footprint, G has a time-bounded reappearance of edges within b iff Ve € E Vt €

66 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

1141 // current index in the row
2 k1 /I current row
3 while £ < § do

4 compute (gk[i])

5 if test (G¥[i]) then

6 if i=06—k+1then

7 return k // return the number of the current row if
8 /I the test on the right-most super node is true
9 else
10 | i++ // move a step forward
11 else
12 if i=0 —k+1then
13 ‘ i——k++ // climb a step on the right side of the hierarchy
14 else

15 ‘ k++ // move up if the test on the super node is negative
16 return 0 // return 0 if the test on G°[1] is negative

Algorithm 5: Generic algorithm for minimization problems

1,6 —b+1),3t' € [t,t +b—1],e € Ep. It belongs to Class B if, in addition, the
footprint G is connected. (In this discrete variant of B we ignore aspects related to
communication latency on existing edges).

We have seen in Chapter 1 that this property, together with the knowledge of
n (the number of nodes) and b, allows the feasibility of shortest broadcast with
termination detection (Casteigts er al. [2014]). Besides that, the value b deter-
mines a bound on the temporal diameter of the dynamic graph which is at most
b.Diameter(G).

Observation 4.1 (Bound on the footprint realization). The bound b of edges reap-
pearance in a dynamic graph G defines a bound on the footprint realization. In
other words in any period (subsequence) of length b in the graph G, all the edges of
the footprint appears.

The problem we study in this section is to find the smallest bound on the foot-
print realization defined by the smallest reappearance bound of edges b in a dynamic
graph G. We can start by formulating a definition of the property based on our model
and structure. The fact that there is a bound b on the footprint realization in a dy-
namic graph G implies that in any period b all edges of the footprint appear at least
once. From our first definition of the property (Def. 4.4), we can say that b is a
bound on the footprint realization if in each sequence of length b in the graph G all
edges of the footprint appear at least once.

Automatic Classification of Dynamic Graphs 67



4.4. Bounded Realization of the Footprint

Definition 4.5 (BOUNDED-REALIZATION-OF-THE-FOOTPRINT). We will
use BOUNDED-REALIZATION-OF-THE-FOOTPRINT to refer to the problem
of finding min{b : VG' = {G; Gii1,....,Gixp-1} € G, Ve € E(G),e €
U{E;, Eis1, ..., Eiyp1}} for a given G.

Composition and test operations: The composition operation we will use is the
union between two super nodes, which yields a union hierarchy. The test operation
we will use is equality to the footprint (equality for short). The choice of these op-
erations is explained next in the description of the algorithm.

Observation 4.2 (Cost of the operations). Using adjacency matrix, union operation
and equality test can be done in O(n?). Note that since we address an offline anal-
ysis context, we consider that the same node in different graphs can be identified,
thus isomorphism is not an issue.

Lemma 4.2. Let G; jy and G jiy be two super nodes and G ; jiy = G(; jy U G j»).
G(i,j) equals the footprint G = G ; j»y equals the footprint G.

Proof. We have G; ;1) = G(; j) UG ;) = Gujy € Gajn. So, if G ;) equals the
footprint G, then G; ;) equals the footprint G. [

Observation 4.3. Our minimization problem BOUNDED-REALIZATION-OF-THE-
FOOTPRINT comes to finding the lowest row G® where any super node G°[i] for
i €[1,0 — b+ 1] equals the footprint G.

4.4.1 Instantiation of the Algorithm

We describe our algorithm for this problem with reference to Figure 4.1. The algo-
rithm begins first with computing the footprint from the initial sequence {G1, Go, . . .
, Gs}. As this time we study a minimization problem (finding the smallest duration).
We can directly use the the generic algorithm. In our example the walk starts from
G'[1] and moves a step forward because G'[1] equals the footprint (by chance). This
operation is repeated until G'[3] that does not equal the footprint. In this case the
walk goes up a step to G?[3] computed from union(G*[3], G'[4]). After the negative
equality test result on G?|3], the algorithm computes G?[3] from union(G?[3], G'[5])
which in turn does not equal the footprint. The walk moves up to G*[3] that equals
the footprint and continues forward as the equality test is positive. The same com-
putations and tests are repeated until the walk traverses the hierarchy. When the
walk hits the right side of the hierarchy, the algorithm returns the number b of the

68 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

current row if the super node G°[§ — b+ 1] (current super node) equals the footprint.
Otherwise (in the example the super node G’[10] does not equal the footprint) the
algorithm returns b+ 1 because of the insured equality of the super node G*+1[§ — b]
(the last super node in the row G**1) to the footprint (G®[9] = G (9,16 in the exam-
ple) implied by the fact that at least one of the super nodes {G‘[d — 0] : 1 < i < b}
equals the footprint (Lemma 4.2). In the example, the algorithm returns b = 8. If
the walk reaches the super node 95[1] = ((1,6), that is, the footprint (by definition),
then the algorithm returns ¢ indicating that the bound on the footprint realization is
the lifetime of G. Intermediate super nodes (ladders) are computed the same way
as the algorithm for INTERVAL-CONNECTIVITY using union this time (instead of
intersection).

Lemma 4.3. Let G(6 — b + 1] be the last visited super node at the termination of
the algorithm. If G°[6 — b+ 1] equals the footprint G, then Vi € [1,0 — b, G®[i] (all
super nodes in the row G°) equals the footprint G.

Proof. According to the algorithm, the walk moves one step on the same row if the
visited super node equals the footprint GG and it goes up if the visited super node
does not equal the footprint G. So, if G®[§ — b + 1] is the last visited super node at
the termination of the algorithm and it equals the footprint G, then VG*[i] = G ;
with i € [1,d — b], 3G, ;) that equals the footprint G (red super nodes in the walk),
such that, G(; jy = G(; ;) UGy . From Lemma 4.2, Vi € [1,6 — b], G*[i] = G; ;)
equals the footprint G. [

Theorem 4.2. BOUNDED-REALIZATION-OF-THE-FOOTPRINT can be solved us-
ing ©(0) elementary operations.

Proof. From Theorem 4.1 and Lemma 4.3, the algorithm performs ©(4) elemen-
tary operations (union and equality test) to solve BOUNDED-REALIZATION-OF-
THE-FOOTPRINT.

4.5 Temporal Diameter

In this section, we are interested in the minimization problem of finding the tempo-
ral diameter of a given graph G. We remind that, informally, the temporal diameter
of a graph at time ¢ (step in untimed evolving graphs) is the largest temporal dis-
tance between any pair of nodes at this time, where the temporal distance between
two nodes v and v at time ¢ in a dynamic graph is the smallest duration (number
of steps in untimed evolving graphs) necessary to go from u to v starting at time
t using a journey. We consider the general case of non-strict journeys, that is, an

Automatic Classification of Dynamic Graphs 69



4.5. Temporal Diameter

arbitrary number of hops can be performed in the same graph of the sequence §
(the problem in the case of strict journey can be solved in the same way as we will
illustrate later on). Formally:

Definition 4.6 (Temporal distance at time t). Let J*(u, v, G, t) be the set of journeys
from u to v whose departure > t. We define the temporal distance tDis(u, v, G,t)
from w to v at time t by the duration min{arrival(J (u,v)) —t : J(u,v) €

J*(u,v,G, 1)}

Definition 4.7 (Temporal diameter at time t). The temporal diameter t Diam(G,t)
of a dynamic graph G at time t is the largest temporal distance between any pair of
nodes at this time: max{tDis(u,v,G,t) : u,v € V}.

Observation 4.4. Computing the temporal diameter of a dynamic graph G at time t
comes to finding the smallest duration d such that the sequence {Gy, Gy 1, ..., Gira-1}
is temporally connected.

Definition 4.8 (Temporal diameter of a dynamic graph G). The temporal diameter
tmpDiam/(G) of a dynamic graph G is the largest temporal diameter t Diam(G,t)
at any time t: max{tDiam(G,t) : t € T }.

Observation 4.5. Computing the temporal diameter of a dynamic graph G comes to
finding the smallest duration d such that any sequence of length d in G is temporally
connected.

Definition 4.9 (TEMPORAL-DIAMETER). We will use TEMPORAL-DIAMETER to
refer to the problem of finding min{d : VG' C G with |G'| = d, G' is temporally
connected} for a given G.

To find the temporal diameter d we must first be able to test whether a sequence
is temporally connected. It was shown in Chapter 2, that a sequence of length d
is temporally connected iff its transitive closure of journeys (i.e. a directed graph
where an edge (u,v) exists iff a journey from wu to v exists in the corresponding
sequence) is complete. Starting from the dynamic graph we can build a hierarchy
of transitive closures as super nodes. Figure 4.2 shows an example of a transitive
closure hierarchy. The base of the hierarchy (first row) in this case (non-strict jour-
neys) is the sequence {G7, G35, ..., G5}, where G is the classical transitive closure
of G; i.e. an edge (u,v) exists in G} iff a path from u to v exists in G;. As usual,
G i) denotes the super node G'[i], and thus G7 in this case. Similarly, G i5), With
1 < j, corresponds to the transitive closure of the journeys within the sequence
{G;,Gi41, ..., G,}. In the example (Figure 4.2), the smallest d for which all the se-
quences of length d in G are temporally connected is d = 4, because their transitive

70 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

closures of journeys (super nodes of row 4) are complete graphs. So the dynamic
graph G has temporal diameter d = 4.

94%%%%%

G, 2,5) 36) Gun  Geg)

G’ %gﬁ
%@%;’E@’ hze

Gaz Ges Gza Gus Goe Gern Gag

L= {7} §<§§ B O o o X X X
Gany Ge2 Gsz Guay Ges  Geg) (g(lﬁ) Gss
g ?—>O O O ;z

8

G1 G2 Gg G4 G5 G6 G7

Figure 4.2: Example of a transitive closure hierarchy for a given dynamic graph G
of length § = 8.

Observation 4.6. The temporal diameter of a temporally connected dynamic graph
G is the smallest d such that all transitive closure graphs in G¢ are complete. For-
mally, d is the temporal diameter of a temporally connected dynamic graph G iff
the transitive closure graph G[i] = G; ;1) is complete Vi € [1,6 — d + 1] and
G = Gl gy with @' € [1,0 — d + 2] such that G*~'[i'] is not complete.

Composition operation: To solve the minimization problem TEMPORAL-
DIAMETER, it is suitable to use concatenation of transitive closures as a composi-
tion operation (concatenation for short). The concatenation of transitive closures is
the binary operation cat(G; j), G( j»y) that computes the transitive closure of jour-
neys of the sequence {G;, Giy1, ..., Gj, Gir, Girt1, ..., Gy} from transitive closures
of journeys of the two sequences {G;, Gi41, ..., G;} and {Gi, Girtq, ..., Gy }.

A simple algorithm can compute the union graph G(; jy U Gy ;- then add an extra-
edge (u,v) to the resulting graph if a node w exists such that (u,w) € E(G; ;)
and (w,v) € FE(G ). Figure 4.3 shows an example of transitive closures
concatenation. To get concatenation result, G(; ;) U Gy is computed, then
extra-edges are added (G ; j)—(i,j7))-

Automatic Classification of Dynamic Graphs 71



4.5. Temporal Diameter

cat :%UN:%

Gg) Gagy  GupUGayy Guj—ig)

Figure 4.3: Example of transitive closures concatenation.

Observation 4.7. The concatenation operation presented above decides whether
a journey exists in a sequence {G;, Gi11, ..., G } from existing journeys in two se-
quences {G;, Gis1, ...,G;} and {Gy, Girt, ..., G } using the computation of extra-
edges. In order for the concatenation operation to be consistent (the existence of
an edge (journey) in G; ;) and an edge in Gy j implies the existence of a new
edge in G(; j»)), the two used sequences {G;, Giy1, ..., G} and {Gy, Gyyq, ..., Gy}
must neither overlap nor be separated, we should have j = i — 1 or j = 7.
Otherwise, the computation of a transitive closure does not always allow a cor-
rect result. Figure 4.4 shows an example where the concatenation of two transi-
tive closures of journeys G a5y and G g 13y of the two sequences {G4, G5, ..., Gs}
and {Gg, G7, ..., G13} does not always give a correct transitive closure of journeys
Ga,13) of the sequence {G4, G5, ..., G13}. Assume that only one node w exists such
that (u,w) € E(Gug)) and (w,v) € E(G,13)) and that (u,w) corresponds to a
Journey u ~» w whose arrival = 8 and (w, v) represents the existence of a journey
w ~» v with departure = 6. In this case the concatenation operation adds an edge
(u,v) to G413y even if no journey is implied by the existence of the two later ones.
Actually, the concatenation operation computes in this case the transitive closure of
Journeys in the sequence {Gy, G5, ...,Gs, Gg, G7, ..., G13}.

Lemma 4.4. Any computed transitive closure is correct.

Proof. According to the disjoint sequences property (Lemma 4.1) guaranteed by
the algorithm, in any execution, G(; jy = cat(G; ), G j) = j = ¢ — 1. So, any
computed transitive closure is correct. 0

Test operation: To test the temporal connectivity of a sequence, it suffices to apply
a completeness test on the transitive closure corresponding to the sequence. The
completeness of a transitive closure G, ;) can be tested by comparing n(n — 1) with
|E(G;,j))| that can be maintained during the construction of the transitive closure.

Observation 4.8 (Cost of the operations). Regarding the concatenation operation,
the union of two transitive closures G ; jy and G ;) can be computed in linear time
in number of edges using an adjacency list data structure. This latter operation is
dominated by the compution of extra-edges that costs O(|E(Gy ;)| - n). The com-
pleteness test of a transitive closure G ; ;) can be done in constant time by checking
|E(G i j))| maintained during the construction of the transitive closure graph.

72 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

Figure 4.4: Example of a potentially incorrect compution of the transitive closure
G(4,13) from G4 g) and G(g 13).-

Lemma4.5. Let G; j) and G (i j1y be two super nodes and G ; j1y = cat(G(m), G(i’,j’))~
G, is complete = G ; jy is complete.

Proof. We have G; jiy = cat(G i), G ) = Gaj) € Gajny- So, if G 5 is com-
plete, then G; jy is complete. [

4.5.1 Instantiation of the Algorithm

The algorithm for TEMPORAL-DIAMETER is the same as for BOUNDED-
REALIZATION-OF-THE-FOOTPRINT. To find the lowest row G¢ in which all
transitive closures are complete, we directly use the generic algorithm. The
super nodes of the hierarchy are computed using concatenation of transitive
closures operation. The walk is directed by the test operation that in this case
is completeness test. It goes up only if the test is negative. When the algorithm
reaches the right side of the hierarchy, it returns the number d of the current row
G, if the last super node is complete. Otherwise, it returns d + 1 (G116 — d,
the last super node in the row G9!, is necessarily complete because of the
completeness of at least one of the transitive closures {G'[0 —d] : 1 < ¢ < d},
Lemma 4.5). If the last visited super node is G°[1] and it is not complete, then the
algorithm returns 0 indicating that the dynamic graph G is not temporally connected.

Lemma 4.6. Let G[6 — b + 1] be the last visited super node at the termination of
the algorithm. If G°[6 — b + 1] is complete, then Vi € [1,§ — b, G®[i] (all super
nodes in the row G) is complete.

Proof. The same argument as for Theorem 4.3 is valid. According to the algorithm,
the walk moves one step on the same row if the visited super node is complete and

Automatic Classification of Dynamic Graphs 73



4.6. Round-trip Temporal Diameter

it goes up if the visited super node is not complete. So, if G°[6 — b + 1] is the
last visited super node at the termination of the algorithm and it is complete, then
VG[i] = G jn withi € [1,6 — b, 3G, that is complete (red super nodes in
the walk in Figure 4.1), such that, G(; jy = G ;) U G ;). From Lemma 4.5,
Vi e [1,6 —b], G°i] = Gy; ;) is complete. O

Theorem 4.3. TEMPORAL-DIAMETER can be solved using ©(0) elementary oper-
ations.

Proof. From Theorem 4.1 and Lemma 4.6, the algorithm performs ©(4) elementary
operations (concatenation and completeness test) to solve TEMPORAL-DIAMETER.

4.6 Round-trip Temporal Diameter

We will see in this section a slightly more complex case. We will look at the class
Round-trip temporal connectivity of temporally connected graphs where there is a
back-and-forth journey from each node to all other nodes (Class 6, Def. 1.18). This
class characterizes an important property for distributed solutions with a termina-
tion detection or information collection algorithms. This property is defined by the
fact that there is a journey 7 (u, v) from any node w in the graph to all other nodes
v € V — u and there is a journey J'(v, u) from v to u which starts after the arrival
of the journey J (u,v). This property of a dynamic graph G does not simply mean
that G is a succession of two temporally connected sequences. It is not that sim-
ple. A back-and-forth journey from a node u to a node v (7 (u,v), J'(v,u)) can
arrive (arrival(J'(v,u))) even before a back-and-forth journey from a node v’ to
anode v’ (J(u',v"), J'(v',u)) starts (departure(J (u',v"))). Also the time inter-
vals of the two back-and-forth journeys can overlap (e.g. departure(J'(u,v)) <
arrival(J (v, u))).

Let us first formally define the class in a discrete context (untimed evolving
graphs).

Definition 4.10 (Round-Trip Temporal Connectivity, Class 6). A dynamic graph
G = {G1,Gs,...,Gs} is round trip temporally connected iff for all pairs of nodes
u,v € V, there exists a back-and-forth journey, that is, Yu,v € V, 37 (u,v), J' (v, u) :
arrival(J (u,v)) < departure(J'(v,u)).

What can be interesting to examine in this context using our framework is the
minimization problem of finding the round trip temporal diameter rtd defined by
the smallest duration in which there exist a back-and-forth journey from each node
w to all other nodes v € V' — u.

74 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

Definition 4.11 (Round-Trip Temporal diameter). rtd is round-trip temporal diam-
eter for a dynamic graph G = {G1,Gs,...,Gs} iff all sub-sequences G' C G of
length |G'| = rtd are round-trip temporally connected, that is,

Vu,vo € Vit € [1,0 — rtd + 1], 3T (u,v), T'(v,u) : t < departure(J (u,v)),
arrival(J (u,v)) < departure(J'(v,w)), and arrival(J' (v,u)) < t + rtd — 1.

Definition 4.12 (ROUND-TRIP-TEMPORAL-DIAMETER). We will use ROUND-TRIP-
TEMPORAL-DIAMETER to refer to the problem of finding min{rtd : VG’ C G with
|G'| = rtd, G is Round-Trip temporally connected} for a given G.

As ROUND-TRIP-TEMPORAL-DIAMETER is a minimization problem, the al-
gorithm will be based on the same high-level strategy used to solve BOUNDED-
REALIZATION-OF-THE-FOOTPRINT and TEMPORAL-DIAMETER. The composi-
tion and test operations must be adapted to this problem. First, let us see what test
can be done on what structure to check whether a sequence is round trip temporally
connected or not. In TEMPORAL-CONNECTIVITY where simple journeys must ex-
ist between every pair of nodes, we have seen that the most suitable structure for
testing this condition was the transitive closure of journeys. The fact that a journey
exists between two nodes adds an edge in the corresponding transitive closure. The
test was then to verify if the transitive closure is a complete graph. In ROUND-
TRIP-TEMPORAL-DIAMETER, back-and-forth journeys make things a little more
complex.

To verify that a back-and-forth journey exists between two nodes in a given se-
quence of graphs G, we need to find existing journeys between these two nodes in
both directions and know their dates of departure and arrival. Then to check, it suf-
fice to test for a pair u, v the existence of journeys J(u,v) and J'(v,u) in G with
arrival(J (u,v)) < departure(J'(v,u)). So one can build a hierarchy of transi-
tive closures, as super nodes, with dates of journeys on edges (round trip transitive
closures) and test for each pair u, v if there is a back-and-forth journey.

Note that to test the existence of a back-and-forth journey in a given sequence,
it is not required to record all dates. We can simply use the journey 7 (u, v) with the
earliest arrival and the journey with the latest departure [J'(v, u) in the sequence.
This is sufficient for the test and also sufficient for the compution of a round trip
transitive closure with the right dates of journeys (earliest arrival and latest depar-
ture) from two other ones.

Automatic Classification of Dynamic Graphs 75



4.6. Round-trip Temporal Diameter

Definition 4.13 (Round trip transitive closure). A round trip transitive
closure G ;) is a transitive closure of journeys where edges represent
the existence of a set of journeys (J*(u,v,i,j) is not empty), that Iis,
(u,v) € Guy iff at least a journey w ~» v exists in the sequence
{Gi,Git1,....G;}. And edges {(u,v) € E(Gj))} are labeled with two dates:
arrival(u,v,G ) = min{arrival(J (u,v)) : J(u,v) € JT*(u,v,i,7)} and
departure(u,v, G j)) = maz{departure(J(u,v)) : J(u,v) € T*(u,v,4,7)}
Labels on the same edge may or may not be departure and arrival dates of the
same journey.

Figure 4.5 shows an example of a round trip transitive closures hierarchy of a dy-

s d
namic graph G of length 6 = 3. Labels arr and dep on an edge u aneEp

represent respectively arrival(u, v, G j)) and departure(u, v, G ;).

The hierarchy is built using the composition operation from the first row which
in this case is the sequence of classical transitive closures {G(; ;) = G} of graphs
{G;} with dates arrival(u,v,Gy)) = departure(u,v,Ggz) = @ for all edges
{(u,v) € E(G;,))}. Indeed, all paths in a given graph are (non-strict) journeys.

Composition operation: The composition operation in our case is the con-
catenation of round trip transitive closures with a maintenance of dates on the
edges. The concatenation of round trip transitive closures is the binary operation
rtcat(G j), G ;) that computes the round trip transitive closure of journeys of
the sequence {G;,Gi11,....,G;, Gy, Gy, ..., Gy} from round trip transitive clo-
sures of journeys of the two sequences {G;, G411, ...,G;} and {Gy, Girgq, ..., Gy}
The algorithm computes first the graph GY° = Ggj; U2 Gy
which is the union graph G(j; U Gy with arrival(u,v,GY°) =
min(arrival(u,v, G j)), arrival(u, v, Gy ;) and departure(u,v,,GY°)
mazx(departure(u, v, G j)), departure(u, v, G ;) if (u,v) € Gajy N G .
Otherwise, the edge is added with the initial dates.

A graph of extra-edges G ; jy— ;) is then computed as follows:

(u,v) € G j)—@,y iff a set of nodes extra = {w : (u,w) € E(Gj)) and
(w,v) € E(G )} exists (not empty).

arrival(u, v, G jy—@ 1) = minfarrival(w, v, G ;) } and

departure(u,v, G @ jy) = maz{departure(u,w, G )} : w € extra.

Finally, the round trip transitive closure rtcat(G(; j), G j1)) = G°U° G jy—(.57)

Figure 4.6 shows an example of round trip transitive closures concatenation
rteat(Ga 5y, Gs,m) = G n- In this example, to get G(1.7), G(1,5 U° G (g7 is com-
puted then round trip extra-edges are added (G 1 5)—(6,7)) from Gy 5) u® G 6,7 ue

76 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

Gy Gy G

Figure 4.5: Example of a round trip transitive closure of journeys of a round trip
temporally connected dynamic graph G of length § = 3.

G (1,5)-(6,7)-

Test operation: The test operation used for this problem is the round trip complete-
ness test (completeness test for short), that is, testing if a sequence {G;, G;+1, ..., G;}
is round trip temporally connected comes to test if its round trip transitive closure
Gi,;) is acomplete graph and for all edges {(u,v) € E(G i)}, arrival(u, v, G ;)
< departure(v,u, G ;). If the test is positive, G(; ;) is said to be round trip com-
plete.

Automatic Classification of Dynamic Graphs 77



4.6. Round-trip Temporal Diameter

G1.5)-67)

Figure 4.6: Example of round trip transitive closures concatenation.

Observation 4.9 (Cost of the operations). As the concatenation operation for
TEMPORAL-DIAMETER, the concatenation of two round trip transitive closures
G(ijy and Gy jry can be computed in O(|E(G v j»y)| - n). The completeness test
can be done in time linear in the number of edges by verifying the condition on the
dates for each pair of edges (u,v), (v, u).

Lemma 4.7. Let G; j and Gy jiy be two super nodes and
Gy = rteat(G jy, G jry). Gy is round trip complete = G, jry is round trip
complete.

Proof. Let G; j»y = rtcat(G ), G jr)). According to the round trip
concatenation operation described above, we have:

(a) G is round trip complete = G, jy is a complete graph.

(b) According to the disjoint sequences property (Lemma 4.1), we have:

G i, is round trip complete = Y(u, v) € E(G),
arrival(u,v, G jn) = arrival(u, v, G ;) and
departure(u,v, G ) > departure(u,v, G j)).

(c) G(; ) is round trip complete = V(u,v) € E(G),
arrival(u,v, G j)) < departure(v,u, G ;) (a back-and-forth journey
exists from u to v).

78 Mohammed Yessin NEGGAZ



4. A Generic Framework for Testing Properties in Dynamic Graphs

From (a), (b), and (c), G; ;) is round trip complete = G/; jy is a complete graph
and V(u,v) € E(G), arrival(u,v, G ) < departure(v, u, G ;). So, G j) is
round trip complete = G; ;) is round trip complete. [

4.6.1 Instantiation of the Algorithm

The algorithm for ROUND-TRIP-TEMPORAL-DIAMETER is the same as that for
TEMPORAL-DIAMETER. It uses concatenation of round trip transitive closures
and round trip completeness test as composition and test operation.

When the walk hits the right side of the hierarchy, it returns the number rtd of the
current row if the completeness test on the last super node of this row is positive,
otherwise it returns rtd + 1 (same argument as for TEMPORAL-DIAMETER). If the
last visited super node is G°[1] and the test is negative, then 0 is returned indicating
that G is not round trip temporally connected. Super nodes are computed the
same way as in the algorithm for TEMPORAL-DIAMETER. The disjoint sequences
property from Lemma 4.1 is always guaranteed and ensures the correctness of the
concatenation of round trip transitive closures operation in the same way as for
TEMPORAL-DIAMETER (the same argument as in Observation 4.7 and Lemma
4.4).

Lemma 4.8. Let G°[6 — b + 1] be the last visited super node at the termination of
the algorithm. If G°[§ — b+ 1] is round trip complete, then Vi € (1,5 — b, G®[i] (all
super nodes in the row G°) is round trip complete.

Proof. The same argument as for Theorem 4.6 is valid. According to the algo-
rithm, the walk moves one step on the same row if the visited super node is round
trip complete and it goes up if the visited super node is not round trip complete.
So, if gb[5 — b+ 1] is the last visited super node at the termination of the algo-
rithm and it is round trip complete, then VG[i] = G(; j» withi € [1,8 — b, 3G, ;)
that is round trip complete (red super nodes in the walk in Figure 4.1), such that,
G(i,j/) = G(@j) U G(ir,j/). From Lemma 4.7, Vi € [1, 0 — b], Gb[l] = G(i’jr) is round
trip complete. [

Theorem 4.4. ROUND-TRIP-TEMPORAL-DIAMETER can be solved using ©(0)
elementary operations.

Proof. From Theorem 4.1 and Lemma 4.8, the algorithm performs ©(¢§) elemen-
tary operations (round trip concatenation and round trip completeness test) to solve
ROUND-TRIP-TEMPORAL-DIAMETER.

Automatic Classification of Dynamic Graphs 79



4.6. Round-trip Temporal Diameter

Conclusions

In this chapter we generalized the presented framework and the algorithm for
INTERVAL-CONNECTIVITY to solve other problems on dynamic graphs. We
studied the minimization problems of finding the temporal diameter, the round trip
temporal diameter of a given dynamic graph G = {G, G, ..., Gs} and the bound
of its footprint realization. We proposed algorithms for these problems within the
same framework.

In our study, we focused on algorithms using only two elementary operations com-
position and test operations. This approach is suitable for a high-level study of these
problems when the details of changes between successive graphs in a sequence are
arbitrary. If the evolution of the dynamic graph is constrained in some ways (e.g.,
bounded number of changes between graphs), then one could benefit from the use
of more sophisticated data structures to lower the complexity of the problem.

A natural extension of our investigation would be a similar study for other
classes and properties of dynamic graphs, as identified in Casteigts et al. [2012].

80 Mohammed Yessin NEGGAZ



Chapter 5

Maintaining a Spanning Forest in
Highly Dynamic Graphs

Contents
51 Introduction . ............00iiiiiiiieen. 82
5.1.1 RelatedWork . . . ... ... ... .. ... .. ... 83
5.1.2 The Spanning Forest Principle . . . . . . ... ... .. 84
5.1.3 Our Contribution . . . . . . ... ... .. ....... 85
5.2 ModelandNotations. . . ... ........ccvvv.. 86
5.3 The Spanning Forest Algorithm . ............... 87
5.3.1 State Variables . . . . ... ... ... ... 87
5.3.2  Structure of a Message (and associated variables) . . . . 88
5.3.3 Informal Description of the Algorithm . . . . . . . . .. 89
5.4 Outline of the Correctness Analysis . ............. 96
5.4.1 Helping Definitions . . . . . . ... .. ... ...... 97
542 Consistency . . . . . . ... oo 97
5.4.3 Correctness of the Forest . . . . . ... .. ... .... 98
5.5 DetailedProofs . . . ... .... ... . i, 99
551 Consistency . . . . . . .o .o i 99
5.5.2 Correctness of the Forest . . . . ... ... ... .... 103
5.6 Simulation on Real World Traces (Infocomm 2006) . . . .. 108

81



5.1. Introduction

In this chapter, we propose a solution based on random walk of tokens to main-
tain a forest of spanning trees in a dynamic graph. The proposed algorithm is the
adaptation of a coarse-grain interaction algorithm (Casteigts et al. [2013a]) to the
synchronous message passing model. It relies on purely localized decisions, where
no global information on the graph is collected. This work is an attempt to study
what can still be done in a context where no property can be guaranteed on the
graph.

The results presented in this chapter were published in the 18th International
Conference on Principles of Distributed Systems OPODIS (Barjon ef al. [2014a]).

5.1 Introduction

In the context of dynamic graphs where the topology changes permanently, not only
changes are frequent, but in general, they even make the graph partitioned. Clearly,
the usual assumption of connectivity does not hold here, although the temporal
connectivity property is often available. Also, the classical view of a graph whose
dynamics corresponds to failures is no longer suitable in these scenarios, where dy-
namics is the norm rather than the exception.

This induces a shift in paradigm that strongly impacts algorithms. In fact, it
even impacts the problems themselves. What does it mean, for instance, to elect a
leader in such a graph? Is the objective to distinguish a unique global leader, whose
leadership then takes place over time and space, or is it to maintain a leader in each
connected component, so that the decisions concerning each component are taken
quickly and locally. The same remark holds for spanning trees. Should an algorithm
construct a unique, global tree whose logical edges survive intermittence, or should
it build and maintain a forest of trees that strive to cover collectively all components
in each instant? Both viewpoints make sense, and so far, were little studied in dis-
tributed computing (see e.g. Awerbuch and Even [1984a]; Casteigts et al. [2014]
for temporal trees, Awerbuch et al. [2008]; Casteigts e al. [2013a] for maintained
trees).

We focus on the second interpretation (maintenance), which reflects a variety of
scenarios where the expected output of the algorithm should relate to the immediate
configuration (e.g. direct social networking, swarming of flying robots, vehicles
platooning on the road). A particular feature of this type of algorithms is that they
never terminate. More significantly, in highly dynamic graphs, they are not even ex-
pected to stabilize to an optimal state (here, a single tree per component), unless the
changes stop, which never happens. This precludes, in particular, all approaches
whereby the computation of a new solution requires the previous computation to

82 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

have completed.

This chapter is an attempt to understand what can still be computed (and guar-
anteed) when no assumptions are made on the graph dynamics: neither on the rate
of change, nor on their simultaneity, nor on global connectivity. In other words, we
do not assume that the graph belongs to any of presented classes. In this seemingly
chaotic context, we present an algorithm that strives to maintain as few trees per
components as possible, while always guaranteeing some properties.

5.1.1 Related Work

Several works have addressed the spanning tree problem in dynamic graphs, with
different goals and assumptions. Burman and Kutten [2007] and Kravchik and Kut-
ten [2013] consider a self-stabilizing approach where the legal state corresponds to
having a (single) minimum spanning tree and the faults are topological changes.
The strategy consists in recomputing the entire tree whenever changes occur. This
general approach, sometimes called the “blast away” approach, is meaningful if sta-
ble periods of time exist, which is not assumed here.

Many spanning tree algorithms rely on random walks for their elegance and
simplicity, as well as for the inherent localized paradigm they offer. In particular,
approaches that involve multiple coalescing random walks allow for uniform ini-
tialization (each node starts with the same state) and topology independence (same
strategy whatever the graph). Pioneering studies involving such processes include
Bar-Ilan and Zernik [1989] (for the problem of election and spanning tree), [sraeli
and Jalfon [1990] (mutual exclusion), and Chapter 14 of Aldous and Fill [2002] (for
general analysis).

The principle of using coalescing random walks to build spanning trees in mildly
dynamic graphs was used by Abbas e al. [2006] and Baala e al. [2003], where to-
kens are annexing territories gradually by capturing each other. Regarding dynam-
icity, both algorithms require the nodes to know an upper bound on the cover time
of the random walk, in order to regenerate a token if they are not visited during a
long-enough period of time. Besides the strength of this assumption (akin to know-
ing the number of nodes n, or the size of components in our case), the efficiency of
the timeout approach decreases dramatically with the rate of topological changes.
In particular, if they are more frequent than the cover time (itself in O(n?)), then the
tree is constantly fragmented into “dead” pieces that lack a root, and thus a leader.

Another algorithm based on random walks is proposed by Bernard ez al. [2013].
Here, the tree is constantly redefined as the token moves (in a way that reminds the
snake game). Since the token moves only over present edges, those edges that have
disappeared are naturally cleaned out of the tree as the walk proceeds. Hence, the

Automatic Classification of Dynamic Graphs 83



5.1. Introduction

algorithm can tolerate failure of the tree edges. However it still suffers from detect-
ing the disappearance of tokens using timeouts based on the cover time, which as
we have seen, suits only slow dynamics.

A recent work by Awerbuch ef al. [2008] addresses the maintenance of minimum
spanning trees in dynamic graphs. The paper shows that a solution to the problem
can be updated after a topological change using O(n) messages (and same time),
while the O(m) messages of the “blast away” approach was thought to be optimal.
(This demonstrates, incidentally, the relevance of updating a solution rather than
recomputing it from scratch in the case of minimum spanning trees.) The algorithm
has good properties for highly dynamic graphs. For instance, it considers as natural
the fact that components may split or merge perpetually. Furthermore, it tolerates
new topological events while an ongoing update operation is executing. In this case,
update operations are enqueued and consistently executed one after the other. While
this mechanism allows for an arbitrary number of topological events at times, it still
requires that such burst of changes are only episodical and that the graph remains
eventually stable for (at least) a linear amount of time in the number of nodes, in
order for the update operations to complete and thus the logical tree to be consistent
with physical reality.

All the aforementioned algorithms either assume that global update operations
(e.g. wave mechanisms) can be performed contemporaneously, or at least eventu-
ally, or that some node can collect global information about the tree structure. As
far as dynamics is concerned, this forbids arbitrary and ever going changes to occur
in the graph.

5.1.2 The Spanning Forest Principle

A purely localized scheme was proposed in Casteigts et al. [2013a] and Casteigts
[2006] for the maintenance of a (non-minimum) spanning forest in unrestricted dy-
namic graphs, using a coarse grain interaction model inspired from graph relabeling
systems (Litovsky ef al. [2001]). It can be described informally as follows:

Initially every node hosts a token and is the root of its own individual tree.
Whenever two roots arrive at the endpoints of a same edge (see merging rule on
Figure 5.1), one of them destroys its tokens and selects the other as parent (i.e.
the trees are merged). The rest of the time, each token executes a random walk
within its own tree in the search for other merging opportunities (circulation rule).
Tree relations are flipped accordingly. The fact that the random walk is confined to
the underlying tree is crucial and different from all algorithms discussed above, in
which they were free to roam everywhere without restriction. This simple feature
induces very attractive properties for highly dynamic graphs. In particular, when-
ever an edge of the tree disappears, the child side of that edge knows instantly that

84 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

no token remains on its whole subtree. It can thus regenerate a token (i.e. become
root) instantly, without global concertation nor further information collection. As a
result, both merging and splitting of trees are managed in a purely localized fashion.

Figure 5.2 shows an example of the algorithm execution. The transition between
two steps is induced by applying one or more rules on one or different edges and /
or a topology change on the graph. The choice of edges here for the application of
the rules is made in a way that helps to show the evolution of the execution. In the
general model, the only assumption on the rules scheduler is that a node should not
be involved in several rules at the same time.

oe--o e<—O o
@<—O o—>0e [ J
(a) Merging rule (b) Circulation rule (c) Regeneration rule

Figure 5.1: Spanning forest principle (high-level representation). Black nodes are
those having a token. Black directed edges denote child-to-parent relationships.
Gray vertical arrows represent transitions.

At an abstract graph level, this very simple scheme guarantees that the graph
remains covered by a spanning forest at any time, in which 1) no cycle can ever
appear, 2) maximal subtrees are always directed rooted trees (with a token at the
root), and 3) every node always belongs to such a tree, whatever the chaos of topo-
logical changes. On the other hand, it is not expected to reach an optimal state
where a single tree covers each connected component. Even if the graph were to
stabilize, convergence to the optimum (though easy to be made certain) would not
be expected to occur fast. Whether this general principle could be implemented in
a message passing model remained an open question.

5.1.3 Our Contribution

This chapter provides an implementation of the spanning forest principle in the
synchronous message-passing model. Due to the loss of atomicity and exclusivity
in the interaction, the algorithm turns out to be much more sophisticated than its
original counterpart. While still reflecting the very same high-level principle, it
faces new problems that require conceptual differences. In particular, the original
model prevented a node from both selecting a parent and being selected as parent
simultaneously, making it easier to avoid cycle creations. One of the ingredients in
the new algorithm to circumvent this problem is an original technique (which we
refer to as the unique score technique) that consists of maintaining, graph-wide, a
set of score variables that always remain a permutation of the set of nodes IDs.
This mechanism allows us to break symmetry and avoid the formation of cycles

Automatic Classification of Dynamic Graphs 85



5.2. Model and Notations

3

R @ -
C LAl S A
d o T W

Figure 5.2: Example of the high level spanning forest algorithm execution. Black
nodes are those having a token. Black directed edges denote child-to-parent rela-
tionships. Labels on edges (right or above edges) show rules application. r| =
Merging rule, ro = Circulation rule, r3 = Regeneration rule.

T2

39
2o

in a context where IDs alone could not. The paper is organized as follows. In
Section 5.2, we present the model and notations that we use throughout the paper.
Then Section 5.3 presents the algorithm, whose correctness analysis is outlined in
Section 5.4 and detailed in Section 5.5. Section 5.6 presents experimental results
that validate our algorithm.

5.2 Model and Notations

We consider in this chapter dynamic graphs that are represented as untimed evolving
graph G = {G, Go, ... }, such that G; = (V, E;) (Def. 1.4). Following Kuhn er al.
[2010], we consider a synchronous (thus rounded) computational model, where in
each round ¢, the adversary chooses the set of edges F; that are present. In our
case, this set is arbitrary (i.e. the adversary is unrestricted). At the beginning of
each round, each node sends a message that it has prepared at the end of the pre-
vious round. This message is sent to all its neighbors in FE;, although the list of
these neighbors is not known by the node. Then it receives all messages sent by
its neighbors (in the same round), and finally computes its new state and the next
message. Hence, each round corresponds to three phases (send, receive,
compute), which corresponds to a rotation of the original model of Kuhn er al.
[2010] where the phases are (compute, send, receive). This adaptation
is not necessary, but it allows us to formulate correctness of our algorithm in terms
of the state of the nodes after each round rather than in the middle of rounds.

We assume that the nodes have a unique identifier taken from a totally ordered
set, that is, for any two nodes u and v, it either holds that /D(u) > ID(v) or
ID(u) < ID(v). A node can specify what neighbor its message is intended to

86 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

2. .0 L AL LA,
Ci1 Go Gs Gy Gs

A\ A
-~ -~ -~ -~ ~

roundl |, round?2 , round3 , round4 , roundb

1e—f i i | | i
5 e is rci é i i !
>< l ><>< l l l

X
3@— | | | | |
10— | | | | |
Co Cl C2 C3 C4 C'5

Figure 5.3: Example of the system evolution over time.

(although all neighbors will receive it) by setting the target field of that message.
Symmetrically, the I D of the emitter of a message can be read in the sender field
of that message. Since the edges are undirected, if u receives a message from v at
round ¢, then v also receives a message from w at that round. And if u does not
receive a message from v at round 7, then v also does not receive a message from u
at that round. We call this property the reciprocity principle and it is an important
ingredient for the correctness of our algorithm.

Definition 5.1 (Configuration). A configuration C; corresponds to the state of the
system after round i (except for Cy, the initial state). Each configuration consists of
the union of all nodes variables, defined later.

Definition 5.2 (Execution). Using synchronous rounds allows us to represent the
execution as a sequence of configurations (Cy, C1, Cy, ..., C;).

Figure 5.3 shows the evolution of the execution on a four nodes dynamic graph.
The exchange of messages (steps s and r) and the local computation (step c) are
illustrated in two rounds between the two nodes 2 and 3 (the same process is exe-
cuted by all nodes) to show the possible cases (reception and loss of messages) and
consistency with the state of the graph.

5.3 The Spanning Forest Algorithm

5.3.1 State Variables

Besides the ID variable, which we assume is externally initialized, each node has
a set of variables that reflects its situation in the tree: status accounts for the
possession of a token (T if it has a token, N if it does not); parent contains the ID

Automatic Classification of Dynamic Graphs 87



5.3. The Spanning Forest Algorithm

of this node’s parent (L if it has none); children contains the set of this node’s
children () if it has none). Observe that both variables status and parent are
somewhat redundant, since in the spanning forest principle (see Section 5.1.2) the
possession of a token is equivalent to being a root. Our algorithm enforces this
equivalence, yet, keeping both variables separated simplifies the description of the
algorithm and our ability to think of it intuitively. Variable neighbors contains
the set of nodes from which a message was received in the last reception. These
neighbors may or may not belong to the same tree as the current node. Variable
contender contains the ID of a neighbor that the current node considers selecting
as parent in the next round (or L if there is no such node). Finally, the variable
score is the main ingredient of our cycle-avoidance mechanism, whose role is
described below.

Initial values

All the nodes are uniformly initialized. They are initially the root of their own in-
dividual tree (i.e. status = T, parent = L, and children = ()). They know
none of their neighbors (neighbors = (), have no contenders (contender = 1),
and their score is set to their own ID.

To summarize:

Variable Description Initial value
. . . Integer in
ID Unique node identifier. i n%
)
status T if the current node has a token, N if it does not. T
parent ID of current node’s parent. €L
children | Set of current node’s children ID. 0
, Set of nodes IDs from which a message was re-
neighbors 0

ceived in the last reception.

ID of a neighbor that the current node considers
selecting as parent in the next round.

Unique integer used for cycle-avoidance mecha-

score . 1D
nism.

l_

contender

Table 5.1: List of local variables.

5.3.2 Structure of a Message (and associated variables)

Messages are composed of a number of fields: sender is the ID of the send-
ing node; senderStatus its status (either T or N); and score its score when the

88 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

message was prepared. The field actionisoneof { FLIP,SELECT, HELLO}.
Informally, SELECT messages are sent by a root node to another root node to sig-
nify that it “adopts” it as a parent (merging operation); F'L[ P messages are sent
by a root node to circulate the token to one of its children (circulation operation);
HELLO messages are sent by a node by default, when none of the other messages
are sent, to make its presence and status known by its neighbors. Finally, target
is the ID of the neighbor to which a FLIP or a SELECT message are intended (L
for HELLO messages).

Received messages are stored in a variable ma i 1box, which is a map collection
whose keys are the senders ID (i.e., a message whose sender ID is u can be accessed
asmailbox [u]). In each round, the algorithm makes use of a RECEIVE () func-
tion that clears the mailbox and fill it with all the messages received in that round
(one for each physical neighbor). A node can thus update the set of its neighbors by
fetching the keys of its mailbox. Similarly, it can eliminate from its list of children
those nodes which are no more neighbor.

As mentioned above, every node prepares at the end of a round the message
to be sent at the beginning of the next round. This message is stored in a variable
outMessage. We allow the short hand m <— (a, b, ¢, d, €) to define a new message
m whose emitter is node a (with status b and score e); target is node d; and action
is c.

Initial values

The mailbox is initially empty (mailbox = (}) and outMessage is initialized to
(ID,THELLO, L ID).

5.3.3 Informal Description of the Algorithm

The algorithm implements the general scheme presented in Section 5.1.2. In this
Section we explain how each of the three core operations (merging, circulation,
regeneration) is implemented. Then we discuss the specificities of the merging
operation in more detail and the problems that arise due to its entanglement with
the circulation operation, a fact due to the loss of atomicity in the message passing
model. The resulting solution is substantially more sophisticated than its original
scheme, and yet it faithfully reflects the same high-level principle. Let us start
with some generalities. In each round, each node broadcasts to its neighbors a
message containing, among others, its status (T or N) and an action (SELECT, FLIP,
or HELLO). Whether or not the message is intended to a specific target (which is
the case for SELECT and FLIP messages), all the nodes who receive it can possibly
use this information for their own decisions. More generally, based on the received
information and the local state, each node computes at the end of the round its

Automatic Classification of Dynamic Graphs 89



5.3. The Spanning Forest Algorithm

1 2
H Cio

Case 1 Case 2
e€ F; e g FE;
1 s 2 1 s 2
< >< Pra—
hello | hello
parent < 2 .
status < N children.add(1)
\ \

1 2 1 2
% 3 &
Figure 5.4: Example of local merging operation during round ¢ in the two possible
cases: ¢ € F; and e ¢ E;. We suppose that ID=score on all nodes.

new status and the local structure of its tree (variables children and parent),
then it prepares the next message to be sent. We now describe the three operations.
Throughout the explanations, the reader is invited to refer to Figure 5.7, where an
example of execution involving all of them is shown. All details are also given in
the listings of Algorithm 6 and 7.

Merging

If a root (i.e. a node having a token), say v, detects the existence of a neighbor
root with higher score than its own, then it considers that node as a possible
contender, i.e. as a node that it might select as a parent in the next round. If
several such roots exist, then the one with highest score, say u, is chosen. At the
beginning of the next round, v sends a SELFECT message to u to inform it that it
is its new parent. Two cases are possible: either the considered edge is still present
in that round, or it disappeared in-between both rounds. If it is still present, then
u receives the message and adds v to its children list, among others (Line 16). As
for v, it sets its parent variable to u and its status to N (Lines 8 and 9). If the
edge disappeared, then u does not receive the message, which is lost. However, due
to the reciprocity of message exchange, v does not receive a message from u either
and thus simply does not executes the corresponding changes. By the end of the
round, either the trees are properly merged, or they are properly separated. Figure
5.4 shows the merging at round ¢ of two trees with roots v with score 1 and u with
score 2. The figure shows the local operation in the two possible cases: (u,v) € E;
and (u,v) & E;.

90 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

1 2

Case 1 Case 2
e€ F; € g E;
1 f 2 1 f 2
- > — X
— Ty
| hello | | hello
parent <1 t 1
ggﬁi@t:]% children.add(1) children.remove(2) gggtﬁ :T

\L statu\sL — i/ \L
1 2 1 2
3—€ P &

Figure 5.5: Example of local token circulation operation from node 1 to node 2
during round ¢ in the two possible cases: ¢ € FE; and e ¢ FE;. The possession
of the token by a node is represented by its black filling color. We suppose that
ID=score on all nodes.

Circulation

If a root v does not detect another root with higher score, then it selects one of its
children at random, if it has any (see Line 27), otherwise it simply remains root.
Randomness is not a strict requirement of our algorithm and replacing it with any
deterministic strategy would not affect correctness of the algorithm. Once the child
is chosen, say u, the root prepares a FLIP message intended to u, and sends it at the
beginning of the next round. Two cases are again possible, whether or not the edge
(u, v) is still present in that round. If it is still present, then u receives the message, it
updates its status and adds v to its children list, among others (Lines 15 and Line 16).
As for v, it sets its parent variable to u and its status to N (Lines 8 and 9). If
the edge disappeared, then v can detect it as before simply does not executes the
corresponding changes. Node u, on the other hand, detects that the edge leading to
its current parent disappeared, thus it regenerates a token (discussed next). Notice
that in the absence of a merging opportunity, a node receiving the token in round ¢
will immediately prepare a FLIP message to circulate the token in the next round.
Unless the tree is composed of a single node, the tokens are thus moved in each
round. In order for them to remain detectable in this case, the status announced in
FLIP messages is T (whereas it is N for SELECT messages). Figure 5.5 shows
the token circulation operation from node v with the score 1 to node u with the score
2 during round i in the two cases: (u,v) € E; and (u,v) & E;.

Automatic Classification of Dynamic Graphs 91



5.3. The Spanning Forest Algorithm

Regeneration

The first thing a non-root node does after receiving the messages of the current
round is to check whether the edge leading to its current parent is still present. If
the edge disappeared, then the node regenerates a root directly (Line 7). A nice
property of the spanning forest principle is that this cannot happen twice in the
same tree. And if a tree is broken into several pieces simultaneously, then each of
the resulting subtree will have exactly one node performing this operation. Figure
5.6 shows the regeneration local operation by the node v with the score 2 in round
..

| parent <L

children.remove(2) ‘status < T

1 2
O o{— C,

Figure 5.6: Example of local token regeneration operation by a node 2 during round
1. The possession of the token by a node is represented by its black filling color. We
suppose that ID=score on all nodes.

The unique score technique

Unlike the high-level graph model from Casteigts ef al. [2013a], in which the merg-
ing operation involved two nodes in an exclusive way, the non-atomic nature of
message passing allows for a chain of selection that may involve an arbitrary long
sequence of nodes (e.g. a selects b, b selects ¢, and so on). This has both advan-
tages and drawbacks. On the good side, it makes the initial merging process very
fast (see rounds 1 and 2 in Figure 5.7 to get an example). On the bad side, it is
the reason why scores need to be introduced to avoid cycles. Indeed, relying only
on a mere comparison of ID to avoid cycles is not sufficient. Consider a chain of
selection in round ¢ that ends up at some root node u. Nothing prevents u to have
passed the token to a lower-ID child, say v, in the previous round ¢ — 1 (that same
round when u’s status 7" was overheard by the next-to-last root in the chain). Now,

92 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

1y 4

(b) round 2

4
e

(d) round 4 (e) round 5 (f) round 6

Figure 5.7: Example of execution of the algorithm which illustrates all types of
operations: parent selection (s —), token circulation (f —), and tree disconnection
(X <=). The first two symbols represent FLIP or SELECT messages to be sent in
the next round. Black (resp. white) nodes are those (not) having a token at the
beginning of the round. Tree edges are represented by bold directed edges. Dash
edges have just disappeared.

nothing again prevents v to have selected one of the nodes in the selection chain in
round ¢, thereby creating a cycle. The score mechanism prevents such a situation by
enforcing that after each FLIP, the new root has a larger score than its predecessor
(see Lines 9 and 13 in Algorithm 7). The score mechanism also guarantees that
the current set of scores (graph-wide) is always a permutation of the initial set of
scores. Hence, scores are always unique. All of these elements are crucial ingre-
dients in the proofs of correctness of Section 5.4. Figure 5.8 shows an example of
cycle formation from a configuration C;;_; in the case where the score technique is
not used (a). The figure shows in the second case the execution of the algorithm on
the same sequence of graphs and from the same configuration C;_; using the score
technique allowing the cycle formation avoidance.

Automatic Classification of Dynamic Graphs 93



5.3. The Spanning Forest Algorithm

(a) The case without
scores permutation:

(b) The case with
scores permutation:

5, .4 5. 4
e § h — 1 —
j —
W
27173 2 3
round 1 round ¢+ 1
5, .4 1, 4
1}( § h — 5 —
= _) T
2773 2 3
round 1 round 1+ 1

round 1 + 2

Figure 5.8: (a) Example of cycle formation in the case where the unique score
technique is not used. (b) Example of cycle formation avoidance using the unique

score technique.

A note about convergence

Each token performs a random walk in its underlying tree. Hence, unless some
of the trees are bipartite (Figure 5.9), the configuration will eventually (and with
high probability) stabilize into a single tree per connected component if the graph
stops changing. Although convergence is not the main focus here, we believe that
pathetic scenarios (Figure 5.9) where some trees are bipartite can easily be avoided,
by making the tokens stop for a random additional round at the nodes (lazy walk).
This way, the symmetry of bipartiteness is eventually broken w.A.p.

+

&N

6 2 3
round 1

1 5 4 1 5 4
Lk
6 2 3 6/72 3
round i+ 1 round 1 + 2

Figure 5.9: Example of adjacent trees insulation.

94

Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

10
11
12
13
14
15
16

17
18

19
20

21
22
23
24
25
26
27
28
29

30 ;

repeat

SEND (outMessage) ;

mailbox < RECEIVE () ; // Received messages,
indexed by sender ID

neighbors < mailbox.keys(); // All the senders
IDs

children < children N neighbors

// Regenerates a token if parent link is lost

if status=N A parent ¢ neighbors then
| BECOME_ROOT ();

// Checks if the outgoing FLIP or SELECT (if any)
was successful

if outMessage.action € {(FLIP,SELECT} A
outMessage.target € neighbors then
| ADOPT_PARENT (outMessage)

// Processes the received messages

contender «+ 1;

contenderScore + (;

forall message € mailbox do

if message.target = ID then

if message.action = FLIP then

| BECOME_ROOT () ;

ADOPT_CHILD (message) ; // called for both
FLIP or SELECT

else

if nessage.status=T N message.score

> contenderScore then
contender < message.ID;
contenderScore < message.score;

// Prepares the message to be sent

outMessage < L
if status =T then
if contenderScore > score then
‘ PREPARE_MESSAGE (SELECT, contender);
else
if children # () then
‘ PREPARE_MESSAGE (FLIP, random(children));
if outMessage = | then
| PREPARE_MESSAGE (HELLO, L1);

Algorithm 6: Main Algorithm

Automatic Classification of Dynamic Graphs

95



5.4. Outline of the Correctness Analysis

1 procedure BECOME_ROOT
2 status < T;
parent « 1;

w

procedure ADOPT_PARENT (outMessage)
status < N;
parent < outMessage.target;
if outMessage.action = FLIP then
children < children\parent;
score < min(score, mailbox[parent].score);

DT -REEEN B LY B N

10 procedure ADOPT_CHILD (message)

11 children.add (message.ID) ;
12 if message.action = FLIP then
13 score < max (score, message.score);

14 procedure PREPARE_MESSAGE (action, target)

15 switch actiondo

16 case SELECT

17 outMessage <« (ID, N, SELECT, target,
score);

18 case FLIP

19 ‘ outMessage <« (ID, T, FLIP, target, score);

20 case HELLO

21 ‘ outMessage <« (ID, status, L1, L, score);

Algorithm 7: Functions called in Algorithm 6.

5.4 Outline of the Correctness Analysis

This section summarizes the correctness analysis of our algorithm, whose detail
(proofs of all lemmas and theorems) can be found in Section 5.5. We first define
a handful of instrumental concepts that help minimize the number of properties
to be proven. Then, as we start formulating the key properties to be proved, we
adopt concise notations regarding the state of the system. Precisely, we denote by
(17 )u.varname (resp. (i*)u.varname) the value of variable varname at node
u before (resp. after) round 7. Notice that for any node u, round ¢, and variable
varname, we have (it)u.varname = ((i + 1)”)u.varname. We use whichever
notation is the most convenient in the given context.

96 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

5.4.1 Helping Definitions

These definitions are not specific to our algorithm, they are general graph concepts
that simplify the subsequent proofs.

Definition 5.3 (Pseudotree and pseudoforest). A directed graph whose vertices have
outdegree at most 1 is a pseudoforest. A vertex whose outdegree is 0 is called a root.
The weakly connected components of a pseudoforest are called pseudotrees.

Lemma 5.1. A pseudotree has at most one root.

Proof. By definition, a pseudotree 7 = (V7, E'r) is connected, thus |Er| > |Vr| —
1. If 7 has several roots, then at least two nodes in V7 have no outgoing edge.
Since the others have at most one, we must have |Er| < |V7| — 2, which is a
contradiction. [

Lemma 5.2. If a pseudotree T contains a root r, then it has no cycle.

Proof. Let V; C T be the set of nodes at distance 1 from Vj, = {r}. Since r has
outdegree 0, there is an edge from each node in V; to r. Since 7 is a pseudotree,
these nodes have no other outgoing edge than those ending up in V. The same
argument can be applied inductively, all nodes at distance ¢ having no other outgoing
edges than those ending up in V;_;. [

Definition 5.4 (Correct tree and correct forest). At the light of Lemma 5.1 and 5.2,
we define a correct tree (or simply a tree) as a pseudotree in which a root can be
found. We naturally define a correct forest (or simply a forest) as a pseudoforest
whose pseudotrees are trees.

Finally, because forests are considered in a spanning context, we say that a
pseudoforest F is a correct forest on graph G iff F is a correct forest and F is a
subgraph of G. Defining correct trees as pseudotrees in which a root can be found
is the key. When the moment arrives, this will allow us to reduce the correctness of
our algorithm to the presence of a root in each pseudotree.

5.4.2 Consistency
Forest consistency

At the end of a round, the state of an edge (whether it belongs to a tree, and if so, in
what direction) must be consistently decided at both endpoints:

Definition 5.5 (forest consistency). The configuration C; is forest consistent if and
only if for all nodes u, (i*)u.parent = v < u € (i7)v.children.

The proof of forest consistency is inductively established by Theorem 5.1, based
on consistency of the initial configuration (Lemma 5.3) and the maintenance the
consistency over the rounds (Lemma 5.18). Forest consistency allows us to reduce
the output of interest of the algorithm after each round ¢ to the mere parent vari-
able.

Automatic Classification of Dynamic Graphs 97



5.4. Outline of the Correctness Analysis

Graph consistency

At the end of round 7, the values of all parent variables should be consistent with
the underlying graph G,.

Definition 5.6 (graph consistency). The configuration C; is graph consistent if and
only if for all nodes u, (i*)u.parent = v = (u,v) € E;.

This property is established by Corollary 5.1. Graph consistency allows us to
say that the output of the algorithm forms a pseudoforest on G;.

Definition 5.7 (Resulting forest). Given a round i > 1, occurring on graph G, the
directed graph F; = (V, Ex,) such that Ex, = {(u,v) : (u,v) € E;, (i")u.parent =
v} is called the pseudoforest resulting from round i.

State consistency

As explained in Section 5.3.1, the variables parent and status are somewhat
redundant, since the possession of a token is synonymous with being a root. The
equivalence between both variables after each round is established in Lemma 5.4.
The main advantage of this equivalence is that it allows us to formulate and prove
a large number of lemmas based on whichever of the two variables is the most
convenient (and intuitive) for the considered property.

5.4.3 Correctness of the Forest

In this section, we prove that the resulting forest is always correct (Definition 5.4).
To achieve that goal, we first define a validity criterion at the node level, which
recursively ensures the correctness of the pseudotree this node belongs to thanks to
Definition 5.4 (i.e. the existence of a root implies correctness).

Definition 5.8. A node u is said to be valid at the beginning of round i if either
(17 )u.status =T or (i~ )u.parent is valid.

The correctness of the whole forest can thus be established through showing
that, first, it is initially correct (Lemma 5.3) and, second, if it is correct after round
1, then it is correct after round ¢+1 (Theorem 5.2). The latter is difficult to prove, and
it involves a number of intermediate steps that correspond to a case analysis based
on every action a node can perform (sending FLIP messages, SELECT messages,
etc.).

We first prove that a node u that sends a successful FLIP to v in a round, is valid
at the end of that round (lemma 5.23) because at the end of that round v is a root.
The proof relies on the fact that during a given round, a node cannot receive a FLIP
and send a SELECT or a FLIP (Iemma 5.20).

We then prove some necessary properties on the score variable at each node.
For instance, a node changes its score at most once during a round (Lemma 5.25

98 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

and 5.26). Also, the set of all scores are a permutation of the node identifiers after
each round (Lemma 5.27).

Then we prove that a node that sends a successful SELECT in a round ¢, is valid
at the end of that round (Lemma 5.36). This part is the most technical and is the one
that proves that chains of selection can not create cycles thanks to the property that
score variables remain a permutation of all nodes IDs.

Finally, we prove that all roots at the beginning of a round are still valid at the
end of the round (lemma 5.37). Therefore, if all nodes are valid at the beginning of
round, then they are also valid at the end of the round (theorem 5.2). Since they are
initially valid (Lemma 5.3), we conclude by induction on the number of rounds.

5.5 Detailed Proofs

5.5.1 Consistency

Lemma 5.3. The configuration Cy is forest consistent and graph consistent. In Cj,
the resulting pseudoforest is correct.

Proof. The parent variable is initialized to L. So, the configuration Cj is forest
consistent and graph consistent. Any node u belonging to the pseudotree 7, =
({u},0). Each of these pseudotrees contains a root (u itself) and is therefore a
correct tree. [

We say that uw sends a FLIP (resp. SELECT) in round ¢ if and only if
(17 )u.outMessage.action = FLIP (resp. SELECT). We say that it sends it fo
node v if and only if (i~ )u.out Message.target = v. Finally the FLIP or SELECT
is said to be successful (resp. failed) if (u,v) € E; (resp. (u,v) ¢ E;).

Lemma 5.4 (state consistency). For all roundi > 0, and for all node u, (i*)u.status
=T & (i)u.parent = L

Proof. Initially, at any node u, u.status = T and u.parent = L. The change
of u.status to N always comes with the assignment of a non-null identifier
(outMessage.target) to u.parent (procedure ADOPT_PARENT () ), and assign-
ing the value T' to u.status is always followed by the change of u.parent to L
(procedure BECOME_ROOT () ). So at any configuration, v.parent = L if and only
if v.status =1T. O

Lemma 5.5. If u does not send a FLIP or SELECT in round i, then u does not
execute the procedure ADOPT_PARENT () during round 1.

Proof. The execution of the procedure ADOPT_PARENT () by u is conditioned by
the sending of a SELECT or a FLIP by u during the current round (line 8). [l

Automatic Classification of Dynamic Graphs 99



5.5. Detailed Proofs

Observation 5.1. At time where a node u prepares its message to be sent during
the round i, we have u.parent = ((i — 1) )u.parent (resp. children, status).

Lemma 5.6. If u sends a FLIP or SELECT in round i, then (i~ )u.status = T.

Proof. u sends in round ¢ the message prepared in round ¢ — 1. If uw sends a FLIP
or a SELECT in round ¢ then in round 7 — 1 PREPARE_MESSAGE () is called with
FLIP or SELECT as action (lines 24 or 27). Both instructions are conditioned by
status = T. [

Lemma 5.7. If v sends a message containing T" in round i, then (i~ )v.status = T.

Proof.
The procedure PREPARE_MESSAGE () is executed by a node » in round 7 — 1 to

construct the message m to be sent in round 7. In all cases PREPARE_MESSAGE ()

sets m.senderStatus to T only if u.status = T.
O]

Lemma 5.8. If u sends a SELECT to v in round i, then (i~ )u.score < ((i —
1)7)v.score.

Proof. The value of the score field in the message sent by a node v in round 7 — 1
is ((1 — 1)7)v.score.

Assumes that the node u sends a SELECT to v in a round ¢. So, during the
round 7 — 1, u sets its contender variable to v and its contenderScore variable
to message.score message being the message sent by v at the begining of round
1 — 1. From that time to the end of round ¢ — 1, u.score is not modified.

So (i7" )u.score < ((i—1)~)v.score, if u sends a SELECT to v inaround i. [J

Lemma 5.9. If at the beginning of round 1, the configuration is forest consistent
then only (i~ )u.parent can send a FLIP at destination of u during the round i.

Proof. A node v can prepare a FLIP message to the node « at then end of round
i — 1only if u € (i")v.children. We have (i~ )u.parent = v according to the
hypothesis (forest consistency at the beginning of round). Therefore, only the node
(17)u.parent can prepare a FLIP message at destination of u, at the end of round
1 — 1. [

Graph consistency

Lemma 5.10. Let u be a node such that (i~ )u.parent # v A (i1)u.parent = v.
Then u sends a successful FLIP or SELECT to v during the round i.

100 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

Proof.
The only change of parent by u to a non-null identifier v in a round ¢ is at the exe-

cution of the procedure ADOPT_PARENT () which is conditioned by the reception
of a message from v (line 9). If w receives the message of v during round ¢ then v
effectively receives the message sent by v (reciprocal reception property).

Lemma 5.11. Let u be a node such that (i~ )u.parent = v A (i*)u.parent = v. We
have (u,v) € E;.

Proof.
By Lemma 5.4, we have (i~ )u.status = N. So, u does not send a FLIP or SELECT

during the round ¢ (Lemma 5.6). Then, u does not execute ADOPT_PARENT ()
during the round i according to Lemma 5.5. Since (i")u.parent = v we conclude
that u does not execute the procedure BECOME_ROOT () during the round 7. So u

did receive a message from (i~ )u.parent in round i. We have (u,v) € E;.
]

Corollary 5.1 (graph consistency). Every configuration is graph consistent.

Proof. The configuration reached after any round is graph consistent (Lemmas 5.10
and 5.11). ]

Forest consistency

Lemma 5.12. If (i")u.parent = v then (i*)u.parent = v or (i*)u.parent = L.

Proof. According to Lemma 5.4, we have (i~ )u.status = N, so u cannot send
a FLIP or a SELECT in round ¢ (by Lemma 5.6). Therefore, u does not execute
ADOPT_PARENT () in round i (Lemma 5.5). We conclude that (i%)u.parent = v
or (i) u.parent = L. O

Lemma 5.13. Assume that at the beginning of round 1, the configuration is forest
consistent. If u receives a FLIP in round 1, then it does not send a FLIP nor a
SELECT in round 1.

Proof. We will establish the contraposition of the lemma statement: if u sends a
FLIP or a SELECT in round ¢, then it does not receive a FLIP in round 7. By Lemma
5.6, we have (i~ )u.status = T. According to Lemma 5.4, (i~ )u.parent = L.
Thus according to the hypothesis (forest consistency at the beginning of round), for
any node v, u ¢ (i~ )v.children. Therefore no node has prepared a FLIP message
at destination of u, in round 7 — 1. So u cannot receive a FLIP in round :. OJ

Lemma 5.14. Assume that at the beginning of round i, the configuration is for-
est consistent. If in round i, u changes u.parent to v then u € (i*)v.children :
(i7)u.parent # v A (it)u.parent = v = u € (i*)v.children.

Automatic Classification of Dynamic Graphs 101



5.5. Detailed Proofs

Proof. u sets u.parent to v only if the FLIP or SELECT was successful (Lemma
5.10). Therefore v has received the FLIP or SELECT message sent by w.

The addition of a node u to v.children by v is done during the excution of
the procedure ADOPT_CHILD () which is conditioned by the reception of a FLIP
or a SELECT message m, from u (m,.target = wv, line 16). The procedure
ADOPT_CHILD () is executed after line 5 which is the only instruction that could
remove u from v.children. So, u € (i*)v.children. We have (i~ )u.parent #
v A (iT)u.parent = v = u € (i")v.children. O

Lemma 5.15. Assume that at the beginning of round 1, the configuration is forest
consistent. If in round i, v adds u to v.children then (i*)u.parent = v : u ¢
(i7)v.children AN u € (i%)v.children = (i*)u.parent = v.

Proof. v adds u to v.children only if it excutes the procedure ADOPT_CHILD ()
which is conditioned by the reception of a FLIP or a SELECT sent by u. As the re-
ception of messages is reciprocal, u also receives in round ¢ a message from v. This
satisfies the condition for u to execute the procedure ADOPT_PARENT () which
sets u.parent to v.

Only the execution of BECOME_ROOT () (at line 15) could modify the value of
u.parent. This procedure would be executed only if u has received a FLIP during
round ¢ which cannot be the case. Notice that u does not receive a FLIP during the
round ¢ (Lemma 5.13). [

Lemma 5.16. Assume that at the beginning of round 1, the configuration is forest
consistent. If in round i, u changes u.parent from v to another value then u ¢
(iT)v.children : (i~ )u.parent = v A (i*)u.parent # v = u & (i*)v.children.

Proof.
If u changes (i1)u.parent then we have (i*)u.parent = 1 (Lemma 5.12). Only

the execution of BECOME_ROOT () by u sets u.parent to L. The procedure
BECOME_ROOT () is executed in two cases: at the detection of a disconnection

(line 7), and at the reception of a FLIP message (line 15).
In the first case, the reciprocal reception property ensures that v does not receive

the message sent by u. So, v removes u from children (line 5).

In the second case, u receives a FLIP from (i~ )u.parent (Lemma 5.9). According
to the reciprocal reception property, v receives the message sent by u during the
round i. So, v executes ADOPT_PARENT ((i~)v.outMessage) which removes u
(i.e. (i7)v.out Message.target) from v.children (line 9).

[
Lemma 5.17. Assume that at the beginning of round 1, the configuration is forest

consistent. If in round i, v removes u from v.children then (i*)u.parent # v :
w € (i7)v.children AN u & (iT)v.children = (i*)u.parent # v.

102 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

Proof.
v removes u from wv.children in two cases: at the detection of a disconnec-

tion (v does not receive a message from u, line 5), and when v executes

(ADOPT_PARENT ((i").v.outMessage) , line 9)
In the first case, the reciprocal reception property ensures that u does not receive

the message sent by v during the round ¢. So, u becomes a root: it executes the
procedure BECOME_ROOT () (line 7).

In the second case, v executes ADOPT_PARENT ((i").v.out Message). So v
did send a successful FLIP or SELECT (Lemma 5.5). As v removes u from
v.children during the execution of ADOPT_PARENT ((i").v.outMessage), we
have (i~).v.out Message.target = w and (i~ ).v.outMessage.action = FLIP
(see the procedure ADOPT_PARENT (outMessage)). So v sends a success-
ful FLIP to u during round ¢. Therefore, in round ¢, u executes the procedure
BECOME_ROOT () (line 15): u sets u.parent to L.

]

Lemma 5.18 (Forest Consistency). Let ¢ be a round starting from a forest consistent
configuration. The configuration reached at the end of round 1 is forest consistent

Proof. The configuration after the round : is forest consistent according to Lemmas
5.14, 5.15, 5.16, 5.17. Notice that in the case where u does not change the value
of its parent variable (resp. w stays in v.children) during round ¢, at the end of
round ¢ the forest consistency property is preserved according to the contraposition
of Lemma 5.17 (resp. contraposition of Lemma 5.16) and the hypothesis. [

Theorem 5.1 (Consistency). Every configuration is forest consistent.

Proof. C) is forest consistent (Lemma 5.3). The configuration reached after any
round is forest consistent (Lemma 5.18). ]

5.5.2 Correctness of the Forest
Correctness of the resulting forest after token circulation

Lemma 5.19. Let v be a node. Only (i~ )v.parent can send a FLIP at destination
of v during the round 1.

Proof. At the beginning of round ¢, the configuration is forest consistent (Theo-
rem 5.1). Therefore, only the node (i~ )v.parent can prepare a FLIP message at
destination of v, at the end of round ¢ — 1 (Lemma 5.9). O

Lemma 5.20. If u receives a FLIP in round 1, then it does not send a FLIP nor a
SELECT in round 1.

Automatic Classification of Dynamic Graphs 103



5.5. Detailed Proofs

Proof. At the beginning of round ¢, the configuration is forest consistent (Theorem
5.1). Therefore no node has prepared a FLIP message at destination of u, in round
1 — 1 (Lemma 5.13). [

Lemma 5.21 (Adoption). If u sends a successful FLIP or SELECT to v in round 1,
then (i")u.status = N and (i*)u.parent = v.

Proof.
In round i, w.outMessage.action = FLIP or SELECT and
v € (i")u.neighbors. During the round i, u executes the procedure

ADOPT_PARENT () (line 9) which sets (i")u.parent to v. According to
Lemma 5.20, u did not receive any FLIP message during the round ¢. Only an
execution of BECOME_ROOT () by w at line 15 can change the value of u.parent

during the round <. This line is not executed during round .
]

Lemma 5.22. [f u sends a successful FLIP to v, then (i")v.status = T.

Proof.
v received mu in round ¢, so (u,v) € E;. v executes the procedure

BECOME_ROOT () that changes v.status to I'. After the execution of line 9, no

instruction can set v.status to N until the end of round i. So (i")v.status = T.
[

Lemma 5.23. If u sends a successful FLIP in round 1, then u is valid after round 1.

Proof. By Lemmas 5.21 and 5.22 u’s parent has a status 7" after round :. [

Proofs on score permutations

Lemma 5.24. [f u sends a successful FLIP to v, then (i~ )u.score < (i*)v.score.

Proof. u sent a message mu to v at the beginning of round ¢ such that mu.action =
FLIP, mu.target = v.ID and mu.score = (i~ )u.score. v received mu in round
i, so (u,v) € E;. v executes the procedure ADOPT_CHILD (mu) at line 16 in
round . This procedure sets the current score of v to max(v.score, mu.score),
as mu.score = (i~ )u.score. After the execution of this instruction, we have
mu.score = (i~ )u.score < v.score. We notice that after this operation, no in-
struction can change the value of v.score (Lemma 5.19. [

Lemma 5.25. (i7" )u.score = (i*)u.score unless u sends or receives a successful
FLIP in round i.

Proof. u changes its score value only by executing ADOPT_PARENT (m,) or
ADOPT_CHILD (m,) . Both instructions that changes u.score value in these pro-
cedures (Algorithm 7, line 9, 16) are conditioned by m,,.action = FLIP. O

104 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

Lemma 5.26. A node u changes u.score at most once during a round.

Proof. A node sends at most one FLIP message during a round. A node receives
at most one FLIP message during a round (Lemma 5.19). Either a node receives
a FLIP, sends one, or it does not receive and does not send a FLIP during a given
round (Lemma 5.20). So, according to Lemma 5.25, a node changes u.score at
most once during a round. 0

Lemma 5.27. Before each round, the set of scores is a permutation of the set of
identifiers.

Proof. After the initialization in each node u, u.score = u.ID. A node u changes
its score only by executing ADOPT_PARENT () or ADOPT_CHILD (). We will
do a proof by induction. We assume at the beginning of round i, the set of scores
is a a permutation of the set of indentifiers. We have for any node u, mu.score =
(17 )u.score.

According to Lemma 5.25, only a node sending or receiving a successful FLIP
may change its score value. Assume that the node u changes its score value during
round 7. Without lost of generality, we assume u sends the successful FLIP to a
node v in round <.

By hypothesis, u changes its score to (i~ )v.score during the execution of
ADOPT_PARENT () in round 7. We have (i~ )u.score geq(i~)v.score. v executes
the procedure ADOPT_CHILD (mu) atline 16 in round ¢. This procedure sets the
current score of v to max(v.score, mu.score), as mu.score = (i~ )u.score. After
the execution of this instruction, we have v.score = (i~ )u.score.

According lemma 5.26, we have (i")v.score = (i~ )u.score and (i*)u.score =
(i7" )v.score. O

Correctness of the resulting forest after mergings

In lemmas 5.31 and 5.32, we establish that if © sends a successful SELECT to v
in round i either (i~ )v.status = T or (i~ )v.parent.status = T. In the first case,
we have (i~ )u.score < (i~ )v.score, and in the second case, we have (i~ )u.score <
(i7)v.parent.score. Let ch be a series of nodes ug, u1, us such that (i*)u;.parent =
uj4+1 and such that ug sends a successful SELECT to u; during the round ¢. As a
ch’s subchain of nodes having strictly increasing scores at the beginning of round ¢
may be built: ch has not loop. So ch ends by a node having a token: all nodes on
that chain are valid.

Lemma 5.28. If v sends a message containing T in round i and (i*)v.status = N,
let w = (i")v.parent, then (i*)w.status = T.

Automatic Classification of Dynamic Graphs 105



5.5. Detailed Proofs

Proof. If v sends a message containing 7" in round i, then (i*)v.status = T. If
(i*)v.status = N, then v has executed ADOPT_PARENT () in round ¢, because
it is the only procedure that sets v.status to N. v executes ADOPT_PARENT ()
only if it has sent a FLIP message m, to a node w (m,.action # SELECT be-
cause m,.senderStatus = T), and if w has received the message m, (reciprocal
reception property). At the reception of m, by w, w executes BECOME_ROOT ()
(line 16) which sets w.status to T" and from this line until the end of the round no
instruction can change w.status to N. So (i")w.status = T.

At the execution of ADOPT_PARENT () by v, v sets v.parent to w. After
this instruction there is only BECOMES_ROOT () that can modifie the value of
v.parent, and which is conditioned by the reception of a FLIP message. According
to lemma 5.20 v cannot call BECOMES_ROOT () because it cannot receive a FLIP
message. So w = (i )v.parent.

So, if v sends a message containing 7" in round ¢ and (i%)v.status = N, and
w = (iT)v.parent, then (i*)w.status = T. O

Lemma 5.29. If v sends a message containing T in round i and (i*)v.status = N,
let w = (i")v.parent, then (i*)w.score > (i~ )v.score.

Proof. We have (i~ )v.status = T because in round ¢ — 1, v.status cannot be mod-
ified after the execution of PREPARE_MESSAGE () . If (i~ )v.children # () then v
sends a FLIP message to one of its children, named u, in round i. Either (u, v) € Fj,
then (i")u.parent = v, (i*)v.status = T and (i*)u.score < (i7)v.score (see

Lemmas 5.22 and 5.24). Otherwise (i*)v.status = T. O
Lemma 5.30. [fu sends a successful SELECT to v in round i then ((i—1) " )v.status
=T.

Proof.

Node u prepared a SELECT message to v in round ¢ — 1, thus it had u.contender =
v, which implies it received from v a message containing 7". We have then ((i —
1)7)v.status = T because after the execution of PREPERE_MESSAGE () by v in

round ¢ — 2, v.status cannot be changed.
O

Lemma 5.31. If u sends a successful SELECT to v in round i and (i~ )v.status =
T, then (i~ )u.score < (i~ )v.score.

Proof.
By Lemma 5.30 ((¢ — 1)”)v.status = T. Then Lemmas 5.8 and 5.25 respectively

imply that (i~ )u.score < ((i — 1)")v.score and ((i — 1)~ )v.score = (i~ )v.score.
0

Lemma 5.32. [f u sends a successful SELECT to v in round i and (i~ )v.status =
N, then let w = (i~ )v.parent. It holds that (i~ )w.status = T and (i~ )u.score <
(17)w.score.

106 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

Proof.
By Lemma 5.30 we have ((i — 1) )v.status = T. Then Lemmas 5.8 and 5.29

respectively imply that (i~ )u.score < ((i — 1) )v.score and ((i — 1) )v.score <

(17 )w.score. Lemma 5.28 implies that (i~ )w.status = T.
O

Lemma 5.33 (Cancellation). If u sends a failed FLIP or SELECT in round i, then
(it)u.status = T.

Proof. By lemma 5.6, we have (i~ )u.status = T. v did not receive the message
from w implies that (u,v) ¢ E;. So, in round i, v ¢ u.neighbors (u did not receive
the message from v). Only during the execution of ADOPT_PARENT (), called in
line 9, u can change its status to N. This procedure is not executed during the
round 1. [

Lemma 5.34 (Conservation). If (i~ )u.status = T and u does not send a FLIP or
SELECT in round i, then (i*)u.status = T.

Proof. By lemma 5.5, u does not execute the procedure ADOPT_PARENT () dur-

ing the round ¢. u can set st atus variable to NV only if it executes ADOPT_PARENT
(). ]

Lemma 5.35. If (i~ )u.status = T and u does not send a successful SELECT in
round 1, then u is valid after the round i.

Proof. According to Lemma 5.23, after the successful sending of a FLIP message
in round ¢, u is valid at the end of round 7. If « sends a failed SELECT or a failed
FLIP then w is valid after the round ¢ by Lemma 5.33. otherwise, v did not send
a SELECT or a FLIP during the round: it is also valid at the end of the round by
Lemma 5.34. O

Lemma 5.36. If a node sends a successful SELECT in round i, then it is valid at
the end of round 1.

Proof. Let S be the set of nodes that send a successful SELECT in round ¢ and are
not valid at the end of round i. We will prove, by contradiction, that S is empty.
Assume S is non-empty and consider the node in S that had the largest score at
the beginning of round (say, node u). Such a node exists by Lemma 5.27. We will
prove that w is valid after the round, which is a contradiction. Let v be the recipient
of u’s successful SELECT. By Lemma 5.21 (i*)u.parent = v, thus is enough to
show that v is valid after round  to get our contradiction. Let us examine both cases
whether (i~ )v.state = T or N.

If (i~ )v.status = T, then either v also sends a successful SELECT in round 4,
or it does not. If it does not, then it is valid after round ¢ (Lemma 5.35). If it does,
then it must be valid otherwise u is not maximal in .S (Lemma 5.31).

Automatic Classification of Dynamic Graphs 107



5.6. Simulation on Real World Traces (Infocomm 2006)

If (i7)v.status = N, then let w = (i~ )v.parent. Two cases are considered,
whether (v,w) € E; or not. If (v,w) ¢ E; then (i%)v.status = T because the
condition forces u to call the procedure BECOME_ROOT () in line 7 which makes
it take the status 7. After, u can takes the status N, only during the execution of
the procedure ADOPT_PARENT () 1n line 9. This procedure is called by « only
if u did send a FLIP or a SELECT at the beginning of round ¢ by lemma 5.5. By
Lemma 5.6, this cannot happen. Thus v is valid after round 7. If (v, w) € E;, we
use the fact that (i~ )w.status = T (Lemma 5.28) to apply the same idea as we did
above: either w also sends a successful SELECT in round i, or it does not. If it
does not, then it is valid after round 7 (Lemma 5.35). If it does, then it must be valid
otherwise u is not maximal in S (Lemma 5.32). O

Correctness of resulting forest

Lemma 5.37. If (i " )u.status = T then u is valid after round i.

Proof. According to Lemma 5.36, after the successful sending of a SELECT mes-
sage in round ¢, u is valid at the end of round 7. According to Lemma 5.23, after
the successful sending of a FLIP message in round 7, u is valid at the end of round
. If u sends a failed SELECT or a failed FLIP then w is valid after the round by
Lemma 5.33. In otherwise, « is also valid the round by Lemma 5.34.

O

Theorem 5.2 (Resulting forest correctness). If all nodes are valid at the beginning
of the round i, then all nodes are valid after round .

Proof. Assume that a node v is invalid after round i. According to Lemma 5.37,
(i )v.status = N.

Let ug, uy, ug, ..., ug be the finite series of nodes such that for j € [0,k — 1],
(i7)uj.parent = ujiq, (i~ )ug.status = T, and uy = v. This series exists because
u 1s valid at the beginning of round .

Let ), uy, ..., be the infinite series of nodes such that forall j > 1 (i")u/;.parent
= wu;4+1, and (17)v.parent = u}. This series exists because v is invalid (by hypoth-
esis).

According to Lemma 5.12, j € [1, k], u; = u’;. According to Lemma 5.37, uy is
valid. So all nodes of the series ug, w1, us, ..., up are valid. There is a contradiction.

]

5.6 Simulation on Real World Traces (Infocomm 2006)

We verified the applicability of our algorithm to real world situations. The algorithm
was implemented in the JBotSim simulator (Casteigts [2013]) and tested upon the
InfocommO6 dataset (Scott er al. [2006]). This dataset is a record of the possible

108 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

interactions between people during the Infocomm’06 conference. The resulting
graph has the following characteristics: the number of nodes is 78 and the average
node degree is 1.3. It should also be noted that an edge can appear at any time but
the fact that it is still present is thereafter only tested every 120 seconds; this means
that the presence time of an edge is a multiple of 120 seconds. Two cases were
considered, based on the number of rounds one can assume to occur per second.
The results show the average number of trees per connected component, averaged
over 100 runs. In the first case (Figure 5.10), we assume that 10 rounds can be
performed per second, which seems reasonable, yet optimistic. In the second case,

80

$ — % number of Corlnponents
—a&— number of Trees

number of Trees/number of Components g
numpber of Trees/number of Components smoothed & &%

70 F

60 | - T

w
=
a
=
o
o
£
8
© ‘s
2 l
@ [sh]
5 50 {135 £
o =
E i =
8 ' 5
o 40 # it th 1 3 3
[af] [at]
= - ; : | &
= e ) =
g 30 R 425 ¢
£ P | E
=0 ¥ |
= i =
[ ;' c
20 [ o 42 8
e S
Y g
i =l
10 |- 115 &

0 I T //TK , e ) |

o 50000 100000 150000 200000 250000 300000 350000

time in seconds

Figure 5.10: Number of roots per connected components, assuming 10 rounds per
second.

we lower our expectations by assuming that only one round can be performed per
second (Figure 5.11). These results show that the number of trees per connected
component, averaged over time, is very close to 1 (about 1.027 in the first case,
and 1.080 in the second case). Furthermore, the algorithm achieves an optimal
configuration of a single spanning tree per connected component about 47% of the
time in the first case (32.68% in the second case), which is encouraging. These
results also validate the relevance of our algorithm in real-world scenarios.

Automatic Classification of Dynamic Graphs 109



5.6. Simulation on Real World Traces (Infocomm 2006)

80

$ — % number of Corﬁponents

—=— number of Trees

number of Trees/number of Components

= lUmber of Trees/number of Components smoothed

60 |

50 |-

40

30

number of Trees/Components

20

1
w
ratio between number of Trees an number of Components

10 | 4z
0 o ST /-/:K . TR, I s T 1
0 50000 100000 150000 200000 250000 300000 350000

time in seconds

Figure 5.11: Number of roots per connected components, assuming only 1 round
per second.

Conclusion

We presented in this chapter an algorithm that strives to maintain a forest of span-
ning trees in highly dynamic graphs, without any kind of assumption on the rate
of changes. Our algorithm is the adaptation of a coarse-grain interaction algorithm
(Casteigts et al. [2013a]) to the synchronous message passing model (for dynamic
graphs). While the high-level principles of the coarse-grain variant are preserved,
the new algorithm turns out to be significantly more complex. In particular, it in-
volves a new technique that consists of maintaining a distributed permutation of
the set of all nodes IDs throughout the execution. The algorithm also inherits the
properties of its original variant: It relies on purely localized decisions, for which
no global information is ever collected at the nodes, and yet it maintains a number
of critical properties whatever the frequency and scale of the changes. In particu-
lar, the graph remains always covered by a spanning forest in which 1) no cycle can
ever appear, 2) every node belongs to a tree, and 3) after an arbitrary number of edge
disappearance, all maximal subtrees immediately restore exactly one token (at their
root). These properties are ensured whatever the dynamics, even if it keeps going
for an arbitrary long period of time. Optimality is not the focus here, however the
number of tree per components — the metric of interest here — eventually converges
to one if the graph stops changing (which is never expected to happen, though). The

110 Mohammed Yessin NEGGAZ



5. Maintaining a Spanning Forest in Highly Dynamic Graphs

algorithm correctness is proven and its behavior is tested through experimentation.

Automatic Classification of Dynamic Graphs 111



5.6. Simulation on Real World Traces (Infocomm 2006)

112 Mohammed Yessin NEGGAZ



Conclusion

In this thesis we dealt with dynamic graphs classes and distributed algorithms in
dynamic graphs. We contributed to the automation of dynamic graph classification.
The proposed methods are part of a more general framework used to verify the cor-
rect behavior of a distributed algorithm and its appropriateness to a mobility model
that represents an analytical alternative to the classical approach of simulations (ex-
ecuting the algorithm on instances of a mobility models or real network traces).
Contrary to simulations whose results are difficult to reproduce and generalize, the
automatic classification process can test whether a set of algorithms (whose topo-
logical requirements are already defined) can be executed successfully in a given
dynamic graph by testing its membership to a class characterized by conditions
necessary or sufficient for the success of theses algorithms.

We provided in this work new strategies and techniques allowing one to test the
membership of a given dynamic graph to a given class and to compute parameters
on two categories of temporal properties characterized by two types of problems,
minimization and maximization problems. Another purpose of this work was to at-
tempt to understand the case where the dynamics of the graph is unrestricted through
the problem of maintaining a forest of spanning trees in a model where no assump-
tions about the dynamics of the graph is made. These contributions are summarized
below.

Classification Algorithms for Specific Classes

As a first contribution we proposed strategies to test the membership of a given dy-
namic graph to two specific classes.

We addressed, in Chapter 2, the problem of testing whether a given dynamic
graph is temporally connected, i.e. a journey exists between all pairs of nodes. We
represented the the dynamic graph G as a sequence of graphs (untimed evolving
graph). We studied two cases, the case of strict journeys where a single edge can be
crossed in a step (G; and the case of non-strict journeys where an unlimited number
of edges can be crossed in a same step G;. In the case of strict journeys, we inves-
tigated algorithmic solutions based on the computation of the transitive closure of

113



journeys. We compared the complexity of our algorithm to that of the adaptation
of the other solutions: the solution presented in Whitbeck er al. [2012] is always
more costly (keep in mind that it solves a more general problem), the other solution
presented in Bui-Xuan ef al. [2003] is more or less costly depending on the inter-
play between instant density and cumulated density. Our solution is shown to be
relevant for sparse mobility scenario (e.g. robots or UAVs exploring an area) where
the number of neighbors at a given time is low, though many nodes can be seen over
the whole execution. In the case of non-strict journeys, for which no algorithm is
known, we showed that some pre-processing of the input graph allows us to re-use
the same algorithm than before. By chance, these operations have the same cost as
that of the application of the first algorithm, which implies that the second problem
is not more difficult than the first.

In Chapter 3, a second problem we studied is that of testing whether a given
dynamic graph G is T-interval connected. We also considered the related problem
of finding the largest 7" for which a given G is T-interval connected. We assumed
that the dynamic graph G is a sequence of graphs. We investigated algorithmic
solutions that use two elementary operations, binary intersection and connectivity
testing. For this problems, we developed efficient algorithms that use linear number
of elementary operations in the length of the graph, which asymptotically matches
the lower bound. We presented PRAM algorithms that show that both problems can
be solved efficiently in parallel and we provided online versions of the algorithms
that use a constant number of elementary operations per graph received. We also
presented dynamic versions of the online algorithms that report connectivity based
on recent network history.

Generic Framework for Testing Properties

The presented framework used to solve the problem of testing 7-interval connec-
tivity is generalized, in Chapter 4, to solve other problems. The generic framework
and algorithm are proposed to solve a category of problems called minimization
problems i.e. finding the smallest value corresponding to a parameter of a property
(as the problem of finding 7" for which a graph is 7-interval connected, which in this
case is a maximization problem). We illustrate the use of our generic framework by
applying the generic algorithm to solve the three problems of finding: the temporal
diameter, the round trip temporal diameter of a given dynamic graph G and a bound
on the realization of its footprint.

We focused on algorithms using only two elementary operations composition
and fest operations. This approach is suitable for a high-level study when the details
of changes between successive graphs in a sequence are arbitrary. If the evolution of
the dynamic graph is constrained in some ways (e.g., bounded number of changes

114 Mohammed Yessin NEGGAZ



Conclusion

between graphs), then one could benefit from the use of more sophisticated data
structures to lower the complexity of the problem.

Distributed Algorithms in Arbitrary Dynamic graphs

In Chapter 5 we attempted to understand what can still be computed (and guaran-
teed) when no assumptions are made on the graph dynamics: neither on the rate
of change, nor on their simultaneity, nor on global connectivity. In other words,
we do not assume that the graph belongs to any of presented classes. In this seem-
ingly chaotic context, we presented an algorithm that strives to maintain a forest
few trees per components as possible, while always guaranteeing some properties.
The algorithm relies on purely localized decisions, for which no global information
is ever collected at the nodes, and yet it maintains a number of critical properties
whatever the frequency and scale of the changes. In particular, the graph remains
always covered by a spanning forest in which 1) no cycle can ever appear, 2) ev-
ery node belongs to a tree, and 3) after an arbitrary number of edge disappearance,
all maximal subtrees immediately restore exactly one token (at their root). These
properties are ensured whatever the dynamics, even if it keeps going for an arbitrary
long period of time.

Open Questions and Future Works

A natural extension of our investigation would be a similar study for other classes
and properties of dynamic graphs, as identified in Casteigts ef al. [2012]. Other
strategies and algorithms could be proposed to test other specific classes and the
use of the proposed generic framework for the resolution of other minimization
problems could also be interesting to aim for.

Distributed algorithms for other classification problems, in which a node in the
graph only sees its local neighbourhood, would be of interest. In this case, each
node must compute an output that 1) answers a decision question like deciding
whether the dynamic graph or a part of it has a given temporal property or not, e.g.
is there a bound on the realization of the footprint graph (bound on the reappearance
of edges), or 2) represents a value of a metric or a parameter e.g. what is the bound
on the footprint graph realization? This kind of algorithms allows a distributed algo-
rithm executed in a higher layer, to collect information on the dynamic of the graph
and adapt its behavior based on this information. For example, the algorithm for the
maintenance of a spanning forest in highly dynamic networks, that we presented,
can depend on an algorithm in a lower layer that informs each node about the bound
of communication links reappearance in the local network (adjacent links). This al-
lows, for example, to avoid breaking a spanning tree and regenerating a token if the
links disappear for a period considered as relatively short. Another example is that
of T'-Interval connectivity. Distributed versions of the dynamic algorithms proposed

Automatic Classification of Dynamic Graphs 115



for T'-interval connectivity could be used to supplement the information available
to distributed Internet routing protocols such as OSPF (Open-Shortest Path First)
which are used to construct routing tables. Our dynamic algorithms have constant
amortized complexity, and distributed versions with constant amortized complexity
could provide real-time information about network connectivity to OSPF.

Beside this extensions of this thesis work, the characterization of new necessary
or sufficient conditions for distributed problems (and the discovery of new corre-
sponding classes of dynamic graphs) seems a promising avenue for future work.

116 Mohammed Yessin NEGGAZ



Bibliography

ABBAS, Sheila, MOSBAH, Mohamed and ZEMMARI, Akka, 2006. Distributed com-
putation of a spanning tree in a dynamic graph by mobile agents. Dans Proc. of
IEEE Int. Conference on Engineering of Intelligent Systems (ICEIS), pages 1-6.
doi:10.1109/1CEIS.2006.1703205.

ALDOUS, David and FILL, Jim, 2002. Reversible markov chains and random walks
on graphs.

AWERBUCH, Baruch, CIDON, Israel and KUTTEN, Shay, 2008. Optimal main-
tenance of a spanning tree. J. ACM, 55(4):18:1-18:45. doi:10.1145/1391289.
1391292.

URL http://doi.acm.org/10.1145/1391289.1391292

AWERBUCH, Baruch and EVEN, Shimon, 1984a. Efficient and reliable broadcast
is achievable in an eventually connected network. Dans Proceedings of the third
annual ACM symposium on Principles of distributed computing, pages 278-281.
ACM.

AWERBUCH, Baruch and EVEN, Shimon, 1984b. Efficient and reliable broadcast
is achievable in an eventually connected network(extended abstract). Dans Pro-
ceedings of the Third Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’84, pages 278-281. ACM, New York, NY, USA. ISBN 0-89791-
143-1. doi:10.1145/800222.806754.

URL http://doi.acm.org/10.1145/800222.806754

BAALA, Hichem, FLAUzAcC, Olivier, GABER, Jaafar, Bul, Marc and EL-
GHAZAWI, Tarek, 2003. A self-stabilizing distributed algorithm for spanning
tree construction in wireless ad hoc networks. Journal of Parallel and Distributed
Computing, 63:97-104.

BAR-ILAN, Judit and ZERNIK, Dror, 1989. Random leaders and random spanning
trees. Dans Jean-Claude Bermond and Michel Raynal, rédacteurs, Workshop
on Distributed Algorithms (WDAG), tome 392 de Lecture Notes in Computer
Science, pages 1-12. Springer Berlin Heidelberg. ISBN 978-3-540-51687-3. doi:
10.1007/3-540-51687-5_27.

URL http://dx.doi.org/10.1007/3-540-51687-5_27

117


http://doi.acm.org/10.1145/1391289.1391292
http://doi.acm.org/10.1145/800222.806754
http://dx.doi.org/10.1007/3-540-51687-5_27

BIBLIOGRAPHY

BARJON, M., CASTEIGTS, A., CHAUMETTE, S., JOHNEN, C. and NEGGAZ, Y.,
2014a. Maintaining a spanning forest in highly dynamic networks: The syn-
chronous case. Dans /8th Int. Conference on Principles of Distributed Systems
(OPODIS), numéro 8878 dans Lecture Notes in Computer Science, pages 277—
292.

BARJON, Matthieu, CASTEIGTS, Arnaud, CHAUMETTE, Serge, JOHNEN, Colette
and NEGGAZ, Yessin M., 2014b. Testing temporal connectivity in sparse dy-
namic graphs. CoRR, abs/1404.7634:8p. A French version appeared in Proc. of
ALGOTEL (2014).

BARJON, Matthieu, CASTEIGTS, Arnaud, CHAUMETTE, Serge, JOHNEN, Colette
and NEGGAZ, Yessin M., 2014c. Un algorithme de test pour la connexité tem-
porelle dans les graphes dynamiques de faible densité. Dans ALGOTEL 2014 -
16émes Rencontres Francophones sur les Aspects Algorithmiques de Télécom-
munications ALGOTEL.

BERNARD, Thibault, BUI, Alain and SOHIER, Devan, 2013. Universal adaptive
self-stabilizing traversal scheme: Random walk and reloading wave. J. Parallel

Distrib. Comput., 73(2):137-149.

BHADRA, Sandeep and FERREIRA, Afonso, 2003. Complexity of connected com-
ponents in evolving graphs and the computation of multicast trees in dynamic
networks. Dans Second international conference on Ad-Hoc, Mobile, and Wire-
less Networks (ADHOCNOW), LNCS 2865, pages 259-270. Springer.

BUI-XUAN, Binh-Minh, FERREIRA, Afonso and JARRY, Aubin, 2003. Computing
shortest, fastest, and foremost journeys in dynamic networks. Int. J. of Founda-
tions of Computer Science, 14(02):267-285. doi:10.1142/S0129054103001728.
URL http://www.worldscientific.com/doi/abs/10.1142/
50129054103001728

BURGARD, Wolfram, MOORS, Mark, FoX, Dieter, SIMMONS, Reid and THRUN,
Sebastian, 2000. Collaborative multi-robot exploration. Dans IEEE International
Conference on Robotics and Automation (ICRA), pages 476—481. IEEE.

BURMAN, Janna and KUTTEN, Shay, 2007. Time optimal asynchronous self-
stabilizing spanning tree. Dans Andrzej Pelc, rédacteur, Distributed Computing,
tome 4731 de Lecture Notes in Computer Science, pages 92—107. Springer Berlin
Heidelberg. ISBN 978-3-540-75141-0. doi:10.1007/978-3-540-75142-7_10.
URL http://dx.doi.org/10.1007/978-3-540-75142-7_10

CASTEIGTS, A., 2006. Model driven capabilities of the DA-GRS model. Dans Proc.
of Ist Intl. Conference on Autonomic and Autonomous Systems (ICAS’06), pages
24-32. IEEE Computer Society, Washington, DC, USA. ISBN 0-7695-2653-5.
doi:http://dx.doi.org/10.1109/ICAS.2006.35.

118 Mohammed Yessin NEGGAZ


http://www.worldscientific.com/doi/abs/10.1142/S0129054103001728
http://www.worldscientific.com/doi/abs/10.1142/S0129054103001728
http://dx.doi.org/10.1007/978-3-540-75142-7_10

BIBLIOGRAPHY

CASTEIGTS, A., CHAUMETTE, S. and FERREIRA, A., 2009. Characterizing topo-
logical assumptions of distributed algorithms in dynamic networks. Dans Proc.
of SIROCCO, pages 126-140. Springer, Piran, Slovenia. (Full version in CoRR,
abs/1102.5529).

CASTEIGTS, A., FLOCCHINI, P., QUATTROCIOCCHI, W. and SANTORO, N., 2012.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387-408. doi:10.1080/17445760.2012.
668546.

CASTEIGTS, Arnaud, 2013. The JBotSim library. CoRR, abs/1001.1435. See also
the project website at http://jbotsim.sourceforge.net.

CASTEIGTS, Arnaud, CHAUMETTE, Serge, GUINAND, Frédéric and PIGNE,
Yoann, 2013a. Distributed maintenance of anytime available spanning trees in
dynamic networks. Dans Proceedings of 12th conf. on Adhoc, Mobile, and Wire-
less Networks (ADHOC-NOW), tome 7960 de Lecture Notes in Computer Sci-
ence, pages 99—-110. Wroclaw, Poland.

CASTEIGTS, Arnaud, FLOCCHINI, Paola, GODARD, Emmanuel, SANTORO, Nicola
and YAMASHITA, Masafumi, 2013b. Expressivity of time-varying graphs. Dans
19th International Symposium on Fundamentals of Computation Theory (FCT).
Liverpool, United Kingdom.

CASTEIGTS, Arnaud, FLOCCHINI, Paola, MANS, Bernard and SANTORO, Nicola,

2014. Measuring temporal lags in delay-tolerant networks. IEEE Transactions
on Computers, 63(2):397-410.

CASTEIGTS, Arnaud, KLASING, Ralf, NEGGAZ, Yessin M. and PETERS,
Joseph G., 2015a. Efficiently testing t-interval connectivity in dynamic graphs.
Dans CIAC 2015-9th Int. Conference on Algorithms and Complexity CIAC, Lec-
ture Notes in Computer Science. Paris, France.

CASTEIGTS, Arnaud, KLASING, Ralf, NEGGAZ, Yessin M. and PETERS,
Joseph G., 2015b. Tester efficacement la T-intervalle connexité dans les graphes
dynamiques. Dans ALGOTEL 2015 - 17émes Rencontres Francophones sur les
Aspects Algorithmiques de Télécommunications ALGOTEL, ALGOTEL 2015 -
17émes Rencontres Francophones sur les Aspects Algorithmiques des Télécom-
munications. Beaune, France.

URL https://hal.archives—-ouvertes.fr/hal-01147110

FERREIRA, Afonso, 2002. On models and algorithms for dynamic communication
networks: The case for evolving graphs. Dans Proc. of 4e rencontres franco-
phones sur les Aspects Algorithmiques des Télécommunications (ALGOTEL).

Automatic Classification of Dynamic Graphs 119


http://jbotsim.sourceforge.net
https://hal.archives-ouvertes.fr/hal-01147110

BIBLIOGRAPHY

FLOCCHINI, P., MANS, B. and SANTORO, N., 2013. On the exploration of time-
varying networks. Theoretical Computer Science, 469:53—68. doi:10.1016/j.tcs.
2012.10.029.

URL http://dx.doi.org/10.1016/5.tcs.2012.10.029

GIBBONS, Alan and RYTTER, Wojciech, 1988. Efficient parallel algorithms. Cam-
bridge University Press. ISBN 978-0-521-38841-2.

ISRAELI, Amos and JALFON, Marc, 1990. Token management schemes and random
walks yield self-stabilizing mutual exclusion. Dans Proceedings of the ninth
annual ACM symposium on Principles of distributed computing, pages 119—131.
ACM.

JAIN, S., FALL, K. and PATRA, R., 2004. Routing in a delay tolerant network. Dans
Proc. of SIGCOMM, pages 145-158.

JAJA, Joseph, 1992. An Introduction to Parallel Algorithms. Addison-Wesley.
ISBN 0-201-54856-9.

JEA, David, SOMASUNDARA, Arun and SRIVASTAVA, Mani, 2005. Multiple con-
trolled mobile elements (data mules) for data collection in sensor networks. Dans

First IEEE international conference on Distributed Computing in Sensor Sys-
tems(DCOSS’2005), pages 244-257. Springer.

KEMPE, David, KLEINBERG, Jon and KUMAR, Amit, 2000. Connectivity and in-
ference problems for temporal networks. Dans Proceedings of the Thirty-second
Annual ACM Symposium on Theory of Computing, STOC 00, pages 504-513.
ACM, New York, NY, USA. ISBN 1-58113-184-4. doi:10.1145/335305.335364.
URL http://doi.acm.org/10.1145/335305.335364

KOSSINETS, Gueorgi, KLEINBERG, Jon and WATTS, Duncan, 2008. The structure
of information pathways in a social communication network. Dans Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 435-443. ACM.

KRAVCHIK, Alex and KUTTEN, Shay, 2013. Time optimal synchronous self stabi-
lizing spanning tree. Dans Yehuda Afek, rédacteur, Distributed Computing, tome
8205 de Lecture Notes in Computer Science, pages 91-105. Springer Berlin Hei-
delberg. ISBN 978-3-642-41526-5. doi:10.1007/978-3-642-41527-2_7.

URL http://dx.doi.org/10.1007/978-3-642-41527-2_7

KUHN, F,, LYNCH, N. and OSHMAN, R., 2010. Distributed computation in dynamic
networks. Dans Proc. of STOC, pages 513-522. ACM, Cambridge, USA.

LITOVSKY, Igor, METIVIER, Yves and SOPENA, Eric, 1999. Handbook of graph
grammars and computing by graph transformation. chapitre Graph Relabelling

120 Mohammed Yessin NEGGAZ


http://dx.doi.org/10.1016/j.tcs.2012.10.029
http://doi.acm.org/10.1145/335305.335364
http://dx.doi.org/10.1007/978-3-642-41527-2_7

BIBLIOGRAPHY

Systems and Distributed Algorithms, pages 1-56. World Scientific Publishing
Co., Inc., River Edge, NJ, USA. ISBN 9-810240-21-X.
URL http://dl.acm.org/citation.cfm?1d=320647.320649

LiTOVSKY, Igor, METIVIER, Yves and SOPENA, Eric, 2001. Graph relabelling
systems and distributed algorithms. Dans Handbook of graph grammars and
computing by graph transformation. Citeseer.

MARCHAND DE KERCHOVE, Florent and GUINAND, Frédéric, 2012. Strength-
ening Topological Conditions for Relabeling Algorithms in Evolving Graphs.
Working paper or preprint.

URL https://hal.archives—-ouvertes.fr/hal-00743565

O’DELL, R. and WATTENHOFER, R., 2005. Information dissemination in highly
dynamic graphs. Dans Proc. of DIALM-POMC, pages 104-110. ACM, Cologne,
Germany. ISBN 1-59593-092-2.

ScoTT, James, GASS, Richard, CROWCROFT, Jon, HuIl, Pan,
Diot, Christophe and CHAINTREAU, Augustin, 2006. Craw-
dad trace cambridge/haggle/imote/infocom (v. 2006-01-31).
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom.

SHAH, Rahul C, ROY, Sumit, JAIN, Sushant and BRUNETTE, Waylon, 2003. Data

mules: Modeling and analysis of a three-tier architecture for sparse sensor net-
works. Ad Hoc Networks, 1(2):215-233.

VIARD, Tiphaine, LATAPY, Matthieu and MAGNIEN, Clémence, 2016. Computing
maximal cliques in link streams. Theoretical Computer Science, 609 Part 1:245—
252. doi:10.1016/j.tcs.2015.09.030.

URL https://hal.archives—ouvertes.fr/hal-01112627

WHITBECK, John, DIAS DE AMORIM, Marcelo, CONAN, Vania and GUILLAUME,
Jean-Loup, 2012. Temporal reachability graphs. Dans Proc. of MOBICOM,
pages 377-388. ACM.

Automatic Classification of Dynamic Graphs 121


http://dl.acm.org/citation.cfm?id=320647.320649
https://hal.archives-ouvertes.fr/hal-00743565
https://hal.archives-ouvertes.fr/hal-01112627

	Introduction
	Background on Dynamic Graphs and Classification Problems
	Dynamic Graphs
	Dynamic Graphs Models
	Basic Definitions on Dynamic Graphs

	Dynamic Graph Classes
	Temporal Properties and Dynamic Graph Classes

	Automatic Classification

	Testing Temporal Connectivity
	Introduction
	Model and Definitions
	Related Works

	Testing Temporal Connectivity in Sparse Dynamic Graphs
	Computation of the Transitive Closure for Strict Journeys (strict transitive closure)
	Computation of the Transitive Closure for Non-strict Journeys (non-strict transitive closure)
	Comparison


	Testing T-interval Connectivity
	Model, Definitions and Basic Observations
	Bound on Computation Time

	Row-Based Strategy
	Parallel Algorithm

	Optimal Solution
	Online Algorithms

	Dynamic Online Interval Connectivity

	A Generic Framework for Testing Properties in Dynamic Graphs
	Introduction
	Model and Definitions
	Generic Framework
	Generic Algorithm for Minimization Problems

	Bounded Realization of the Footprint
	Instantiation of the Algorithm

	Temporal Diameter
	Instantiation of the Algorithm

	Round-trip Temporal Diameter
	Instantiation of the Algorithm


	Maintaining a Spanning Forest in Highly Dynamic Graphs
	Introduction
	Related Work
	The Spanning Forest Principle
	Our Contribution

	Model and Notations
	The Spanning Forest Algorithm
	State Variables
	Structure of a Message (and associated variables)
	Informal Description of the Algorithm

	Outline of the Correctness Analysis
	Helping Definitions
	Consistency
	Correctness of the Forest

	Detailed Proofs
	Consistency
	Correctness of the Forest

	Simulation on Real World Traces (Infocomm 2006)

	Conclusion

