
HAL Id: tel-01419975
https://theses.hal.science/tel-01419975v2

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance-cost trade-offs in heterogeneous clouds
Ancuta Iordache

To cite this version:
Ancuta Iordache. Performance-cost trade-offs in heterogeneous clouds. Operating Systems [cs.OS].
Université Rennes 1, 2016. English. �NNT : 2016REN1S045�. �tel-01419975v2�

https://theses.hal.science/tel-01419975v2
https://hal.archives-ouvertes.fr

ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale MATISSE

présentée par

Anca Iordache
préparée à l’unité de recherche no 6074 - IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
ISTIC

Performance-Cost

Trade-Offs in

Heterogeneous Clouds

Thèse soutenue à Rennes

le 9 septembre 2016

devant le jury composé de :

Alexander Wolf
Professeur, Imperial College London / rappor-
teur

Thilo Kielmann
Professeur associé, VU University Amsterdam /
rapporteur

Lionel Seinturier
Professeur, Université de Lille 1 / examinateur

François Täıani
Professeur, Université de Rennes 1 / examina-
teur

Christine Morin
Directrice de recherche, INRIA / examinateur

Guillaume Pierre
Professeur, Université de Rennes 1/directeur de
thèse

Publications

Our contributions are published or under submission in peer-reviewed conferences, books
and workshops.

International Conferences

◦ Heterogeneous Resource Selection for Arbitrary HPC Applications in the Cloud.
Anca Iordache, Eliya Buyukkaya and Guillaume Pierre. In Proceedings of the 10th
International Federated Conference on Distributed Computing Techniques (DAIS
2015), Grenoble, France, June 2015.

◦ High Performance in the Cloud with FPGA Groups. Anca Iordache, Peter Sanders,
Jose Gabriel de Figueiredo Coutinho, Mark Stillwell and Guillaume Pierre. In Pro-
ceedings of the 9th IEEE/ACM International Conference on Utility and Cloud Com-
puting (UCC 2016), Shanghai, China, December 2016.

Book Chapters

◦ The HARNESS Platform: A Hardware- and Network-Enhanced Software System for
Cloud Computing. Jose Gabriel de Figueiredo Coutinho, Mark Stillwell, Katerina
Argyraki, George Ioannidis, Anca Iordache, Christoph Kleineweber, John McGlone,
Guillaume Pierre, Carmelo Ragusa, Peter Sanders, and Thorsten Schütt. Book
chapter in “Software Architecture for Big Data and the Cloud“, Elsevier. To appear
in 2017.

Posters

◦ Accelerating Clouds with FPGA Virtualization. Anca Iordache, Peter Sanders, Jose
Gabriel de Figueiredo Coutinho, Mark Stillwell and Guillaume Pierre. EIT Digital
Symposium on Future Cloud Computing, Rennes, France, 2015.

1

Résumé

La soumission d’une application sur une infrastructure de cloud, est précédée par les
besoins des utilisateurs en ce qui concerne le coût et la durée de son exécution. Selon
les circonstances, un utilisateur peut choisir l’exécution la plus rapide, la plus chère, ou
un compromis entre les deux. De plus, les besoins des utilisateurs peuvent varier dans le
temps. Faire des compromis entre coût et performance demande à avoir controle sur les
propriétés de l’application qui influent le coût et la performance de son exécution.

L’exécution d’une application est largement influencée par la configuration des ressources
de calcul, stockage et réseaux qu’elle utilise. La configuration des ressources est répresentée
par un ensemble des paramétrés qui définissent des propriétés caractérisant les ressources
utilises. Ces propriétés peuvent etre des types de ressources (calcul, stockage, etc.), des
détails internes des ressources, le nombre de ressources d’un certain type, la connexion en-
tre les differentes ressources dans la configuration, etc. La variation des paramétrés genére
un grand nombre de configurations ayant des différents niveaux de performance. L’objectif
de cette thèse est d’etudier des techniques pour controler l’execution des applications en
choisissant prudemment les ressources qu’elles utilisent.

Dans les environnements de calcul traditionels, pour modifier la configuration des
ressources, il faut realiser des opérations complexes comme l’aquisition des nouveaux
équipements, leur installation, etc. Cependant, grâce aux environnements informatiques
de type cloud on a l’opportunité de varier les réssources des applications plus facilement.
Les infrastructures de cloud fournissent de larges capacités de calcul sur demande basées
sur le modle de tarification à l’usage (pay-as-you-go). Depuis quelques annees, ces infras-
tructures sont constituees de groupes de serveurs homogenes. De plus l’adoption rapide des
technologies du cloud par les utilisateurs du domaine de HPC, a conduit a une grande di-
versification des équipements informatiques disponibles. Ces utilisateurs ont généralement
besoin d’une grande capacité de calcul. Aujourd’hui, ces utilisateurs peuvent choisir entre
une grande diversité d’instances virtuelles optimisées pour différents cas: des instances
avec une faible taille de memoire/CPU/disque pour le developpement des applications et
l’exécution des applications moins exigentes; des instances optimisées stockage SSD- et
HDD pour des applications données-intensives; des instances optimisées pour des applica-
tions HPC (calcul, memoire, GPU), etc. On peut dire que cette tendance à diversifier les
ressources du cloud va continuer avec l’intégration des accélérateurs de type FPGA. Les
industriels ont fortement investit dans cette demarche, comme c’est le cas de l’aquisition
d’Altera par Intel et l’integration des FPGA dans les datacenters de Microsoft. Cette
diversification des ressources du cloud donne une grande flexibilité pour les utilisateurs
à choisir les ressources selon leurs besoins et notamment faire des compromis entre la
performance et le coût de l’exécution de leurs applications.

Le choix des ressources de cloud pour exécuter une application en respectant un com-
promis coût-peformance est très difficile. D’abord, les utilisateurs ont des difficultés à
estimer avec précision la performance de leurs applications dans certaines circonstances.
Différentes types des ressources fournissent différents degrées de performance, quelquefois
contre-intuitifs. Par exemple, une ressource à bas prix execute une application lentement
et génère un coût total d’exécution élevé alors qu’une ressource apparemment plus chere
est plus rapide et génère un coût total plus bas. De plus, varier le nombre de ressources
utilisées pour l’exécution peut aussi fournir des compromis coût-performance interesants.
Face à cette grande diversité de configurations, le choix du nombre et du type des ressources
à utiliser pour obtenir le compromis coût-performance que les utilisateurs exigent constitue
un défi majeur.

2

Dans cette thèse, nous soutenons que le choix optimal des ressources est trop complexe
pour être accompli de façon réaliste par des utilisateurs. Au contraire, cette tâche difficile
doit être automatisée avec des systemes informatiques. Ces systemés recoivent des appli-
cations arbitraires ainsi que les attentes des utilisateurs et choisissent la configuration des
ressources satisfaissant la demande. L’implémentation d’un tel système peut radicalement
simplifier l’usage des systemes de cloud pour les futurs utilisateurs.

Objectifs

Le choix des ressources pour exécuter une application conforme aux besoins des utilisa-
teurs doit prendre en compte deux aspects. Premièrement, il est important d’optimiser
l’utilisation des ressources allouées. Cela implique d’utiliser les ressources au maximum
pour justifier leur coût. Deuxièmement, le choix des ressources satisfaissant un certain
compromis coût-performance demandé par l’utilisateur doit être fait de manière efficace.

Objectif #1 : Bon usage des ressources : maximiser leur utilisation

Pour obtenir des excellents compromis coût-performance, nous devons d’abord utiliser
les ressources attribuées à une application au maximum de leur capacité. Maximiser
l’utilisation de ces ressources implique qu’on pourrait faire plus pour le même coût. Toute-
fois, le développement rapide du matériel informatique rend plus difficile pour les appli-
cations d’utiliser pleinement les ressources informatiques disponibles. Cette remarque
est particulièrement vraie pour des accélérateurs comme les FPGAs et les GPUs. La
sous-utilisation de ces ressources produit toutes sortes de problèmes comme du gaspillage
d’énergie, faible disponibilité des ressources, coûts de gestion augmenté, etc.

Une technique courante que les clouds emploient pour maximiser l’utilisation de ressources
est de partager ces ressources entre plusieurs utilisateurs. Cela est réalisé par virtualisation
qui consiste partager une ressource matérielle en exposant les ressources virtuelles comme
des composants autonomes de cette machine. La virtualisation permet à plusieurs appli-
cations de partager la même machine physique en même temps, ce qui facilite l’utilisation
des ressources au maximum.

Les technologies de virtualisation ont été essentielles pour le développement des tech-
niques de calcul dans le cloud. De nombreux efforts sont entrepris pour rechercher et
developper des technologies de virtualisation pour partager les ressources des serveurs
(processeur, mémoire, disque), du réseau et de stockage. Cependant, les exigences crois-
santes pour la capacité de calcul ont entrâıné l’integration des accélérateurs comme des
GPUs et des FPGAs dans les infrastructures des clouds [1, 2]. Des nombreux travaux
de recherche ont été orientés en particulier sur la virtualisation des GPUs, alors que les
FPGAs n’ont commencé que récemment d’être integré dans le cloud. Par example, dans le
projet Catapult, Microsoft a utilisé des FPGAs pour accélérer des operations pour leur mo-
teur de recherche Bing. Ceci a eu pour résultat l’accroissement de la performance de 95%
avec seulement 10% de consommation énergétique supplémentaire [3]. En même temps,
Intel a lancé un proceseur Xeon avec un FPGA intégrée, suivi de l’acquisition d’Altera,
le deuxième grand fabricant des FPGAs. De plus, Intel affirme que pour 2020, 30% des
serveurs des centres de données contiendront la technologie FPGA[4]. La virtualisation de
ce type de ressource est un réel défi à cause de son architecture qui n’a pas été conçue pour
cela. C’est à présent un sujet de recherche important pour l’avenir des centres de données.
L’intégration des FPGAs dans les infrastructures de cloud permet un accès grand public
à cette technologie qui est devenue de plus en plus populaire ; et offrira des possibilités
pour maximiser leur utilisation en les partageant entre plusieurs utilisateurs.

3

Nous considérons que la maximisation de l’utilisation des FPGAs est la responsabilité
de la plateforme de cloud et leur virtualisation doit être gérée automatiquement par la
plateforme. Nous proposons comme contribution de cette thèse, une méthode de virtuali-
sation pour groupes des FPGAs dans l’objectif de maximiser leur utilisation.

Objectif #2 : Bon choix des ressources

La seconde technique qui permet aux utilisateurs de contrôller les compromis côut-
performance est le choix soigné de la configuration des ressources. La sélection des
ressources sur lesquelles une application est exécutée conformément aux objectifs des util-
isateurs est très difficile. Cela est dû au fait que, dans les clouds hétérogènes, l’espace
de toutes les configurations des ressources possibles est très grand. La recherche des con-
figurations optimales consiste à modeler la performance d’une application et comprendre
comment les différentes configurations des ressources peuvent influencer son comportement
pendant l’exécution.

Pour illustrer cela, Amazon EC2 propose aux utilisatuers d’essayer plusieurs types des
ressources de façon empirique et choisir celle qui leur convient le mieux [5]. Chercher
les configurations des ressources optimales selon la manière décrite par Amazon est très
difficile au cause du grand espace des configurations possible. De plus, ce processus est
long et côuteux. Les utilisateurs devraient analyser chaque exécution et sélectionner la
configuration suivante pour être testée. Il est donc impossible pour les utilisateurs de gèrer
efficacement ce processus de recherche.

Nous proposons que les plateformes de cloud gèrent automatiquement la sélection des
ressources pour exécuter des applications conformément aux objectifs des utilisateurs.
Pour cela, une plateforme doit analyser le comportement d’une application en l’exécutant
plusieurs fois avec des configurations différentes. Après l’analyse de chaque exécution, la
plateforme doit trouver les paramètres qui ont un impact sur la performance et le côut de
l’exécution. La variation de ces paramètres peut générer des configurations de ressources
intéressantes qui fournissent des bons compromis côut-performance.

En déléguant le choix de ressources aux platformes de cloud, l’effort de l’utilisateur
pour exécuter des applications est donc réduit. Cela peut rendre les plateformes de cloud
plus attractives pour les utilisateurs qui pourront consacrer leur temps et efforts pour
améliorer le fonctionnement de leurs applications.

Nous proposons dans une seconde contribution de cette thèse, des méthodes de profilage
pour la modélisation de la demande en ressources des applications. L’objectif de ces
méthodes est de fournir des bons compromis coût-performance.

Contributions

Les contributions principales des cette thèse sont les suivantes:

Contribution #1 : Améliorer l’utilisation des FPGA par la virtualisation

Nous proposons une architecture de cloud pour l’intégration des accélérateurs de type
FPGA dans des environnement multi-utilisateurs (partagées). Au lieu de considerer les
FPGAs comme des dispositifs attachés à un seul serveur, nous placons un certain nombre
des FPGA dans un serveur dédié qui est accessible via un réseau á faible latence. Ce place-
ment augmente la disponibilité en permettant l’accès à un grand nombre d’utilisateurs a
des FPGA. Cela permet à plusieurs FPGAs d’être utilisés par des applications executées
sur des autres serveurs et aussi d’avoir des FPGA partagés entre plusieurs applications.
Nous définissons un FPGA virtuel comme un groupe de FPGAs implémentant le même
modèle hardware. Ce modèle hardware représente une description d’un circuit électronique
implementé dans le FPGA. Le FPGA virtuel est consideré comme une ressource de cloud

4

de première classe plutôt qu’une propriété de base d’une machine virtuelle. Cela permet
l’addition/suppression facile des FPGAs dans un groupe pour controler la performance
d’une application. L’élasticité du FPGA virtuel est essentiele pour augmenter son util-
isation. En conséquence, il nous est necessaire de varier automatiquement la taille des
FPGAs virtuels conformément à leur charges de travail. Pour cela, nous proposons un
algorithme de partage de temps pour implementer des migrations des FPGA physiques
entre les FPGA virtuels. Automatiser l’adaptation à de differentes charges de travail a des
nombreux avantages. Premierement, il augmente l’utilisation des FPGAs réduissant ainsi
le temps de réponse des tâches soumises par les applications. Deuxièmement, la libération
des ressources inutilisées d’un groupe reduit le coût du FPGA virtuel. Troisiemement, les
FPGA inutilisés peuvent être migré dans des FPGA virtuels nouvellement créés, augmen-
tant ainsi le nombre des applications qui ont acces à des FPGA.

Contribution #2: Automatiser le choix des ressources hétérogènes

Pour automatiser le choix des ressources de cloud pour exécuter des applications ar-
bitraires et non-intéractives, nous proposons un nombre des méthodes de profilage qui
ont l’objectif de trouver les configurations des ressources fournissant des bons compromis
coût-performance. Le profilage represente l’analyse de l’exécution d’une application sur
differentes configurations de ressources. Après chaque execution, le profileur actualise le
modèle courant et choisit la configuration suivante à tester. La première méthode que nous
proposons est basée sur un profilage “bôıte noire” qui utilise un algorithme d’otimisation
globale pour effectuer une recherche des configurations optimales de ressources. L’avantage
de cette méthode est qu’elle gère des applications et des ressources sans avoir des détails
sur leur fonctionalités. Pour cette raison, cette méthode est adéquate pour des applica-
tions arbitraires executées dans des environnments de cloud hétérogènes. Le noyau de
la méthode consiste à explorer l’espace des toutes les configurations possibles en prenant
uniquement en considération les configurations qui semblent fournir un bon compromis
coût-performance.

Cependant, malgré la flexibilité à gèrer des ressources hétérogènes, la méthode a des
limitations. Quand on gère des ressources sans avoir de détailes sur leurs fonctionalités,
on perd l’opportunité d’optimiser le choix des ressources. Par exemple, une ressource
de stockage peut fournir des informations sur l’espace maximal qu’une application utilise
pendant son exécution. Cet information nous permettrait de réserver l’espace exact de
stockage que l’application requiert et, en conséquence, reduire le coût de l’exécution. Pour
surmonter ces limitations, nous proposons une extension avec une méthode “bôıte blanche”
qui exploite des informations sur l’utilisation des ressources pour améliorer le choix des
configurations. Cette méthode va accelerer la recherche en se concentrant sur les parame-
tres des ressources sous- et/ou sur-utilisées. En comparaison avec la méthode bôıte noire,
cette méthode diminue le nombre des itérations effectuées pour identifier des bonnes con-
figurations des ressources intéressantes. Toutefois, dans le cas d’une application traitant
de grandes quantités de données avec un temps detreécution considérable, le coût et la
durée du profilage sont encore trop élevés.

Pour aborder ce problème, nous proposons une méthode complémentaire appellée “pro-
filage extrapolé”. Elle exploite des données d’entrée de dimension réduite pour diminuer
le nombre d’itérations. Cette méthode suppose que la performance de l’application à
des caractéristiques qui peuvent être observées en exécutant une fraction des données
d’entrée. Elle consiste à effectuer une recherche ”blackbox+whitebox“ sur des données
d’entrée de dimension réduite pour identifier rapidement des configurations de ressources
intéressantes. Ensuite, parmi ces configurations nous en sélectionnons un certain nombre
pour être testées avec les données d’entrée entières. Nous utilisons la corrélation entre

5

les temps d’exécution de l’application sur les deux jeux de données pour prédire la per-
formance des configurations inconnues sur des larges données d’entrée. Cette methode
réduit la durée et le côut du profilage et, selon la complexité de l’application, fournit des
predictions raisonnables.

Contribution #3 : L’intégration des prototypes dans une platforme de
Cloud hétérogènes

Nous avons conçu et implémenté un prototype pour chacune des contributions. Ils ont
ensuite été intégrées dans une platforme de Cloud hétérogène developé dans le cadre du
projet européen HARNESS1. Cette intégration valide nos contributions et nous en montre
un exemple d’usage.

1www.harness-project.eu

6

Contents

1 Introduction 9

1.1 Problem . 10

1.1.1 Making Good Use of Resources : Maximizing Utilisation 12

1.1.2 Making Good Choice of Resources 12

1.2 Contributions . 13

1.3 Organization . 15

2 Background 17

2.1 Maximizing Resource Utilization in IaaS Clouds 19

2.1.1 Server Virtualization Technologies 20

2.1.2 Accelerator Virtualization . 24

2.1.3 Network Virtualization . 27

2.1.4 Conclusion . 28

2.2 Performance-Cost Trade-Offs in PaaS Clouds 28

2.2.1 Requirements . 29

2.2.2 Utilization-based Approaches . 30

2.2.3 Performance Modelling Approaches 32

2.2.4 Conclusion . 33

3 FPGA Virtualization 35

3.1 State of the Art . 38

3.2 FPGA Virtualization . 39

3.2.1 The FPGA-Server Appliance . 39

3.2.2 Resource Management . 40

3.2.3 FPGA Groups . 40

3.2.4 Discussion . 42

3.3 Elasticity and Autoscaling . 43

3.3.1 Elasticity of Virtual FPGAs . 43

3.3.2 Autoscaling of Virtual FPGAs . 43

3.4 Evaluation . 45

3.4.1 Virtualization Overhead . 46

3.4.2 FPGA Group Elasticity . 47

3.4.3 FPGA Group Autoscaling . 48

3.5 Conclusion . 51

4 Performance Modelling 53

4.1 State of the Art . 55

4.2 Handling Arbitrary Applications . 57

4.2.1 Describing Arbitrary Applications with Application Manifests 57

7

4.2.2 Specifying User’s Expectations with Service-Level Objectives 59
4.2.3 System Architecture . 59
4.2.4 Cloud Model . 60

4.3 Profiling Principles . 61
4.3.1 Assumptions . 61
4.3.2 Search Space . 62
4.3.3 Mapping Discrete Parameters . 62
4.3.4 Identifying Optimal Configurations 63
4.3.5 Profiling Policies . 63

4.4 Profiling Methods . 64
4.4.1 Blackbox profiling . 65
4.4.2 Blackbox+Whitebox profiling . 67
4.4.3 Extrapolated profiling . 69

4.5 Evaluation . 73
4.5.1 Input-Independent Methods . 74
4.5.2 Input-Dependent Search Methods . 79

4.6 Conclusion . 85

5 Integration 87
5.1 The HARNESS Heterogeneous Cloud . 88

5.1.1 The Infrastructure-as-a-Service Layer 88
5.1.2 The Platform-as-a-Service Layer . 90
5.1.3 The Virtual Execution Layer . 91

5.2 Integration of Virtual FPGA Resources . 91
5.3 Enabling Performance-Cost Trade-Offs . 92
5.4 Discussion . 95

5.4.1 Virtual FPGAs . 95
5.4.2 Performance Modelling . 95

6 Conclusions and Perspectives 97
6.1 Contributions . 98
6.2 Perspectives . 100

6.2.1 Short-term Perspectives . 100
6.2.2 Long-term Perspectives . 100

A Application Manifest 103
A.1 RTM Manifest . 103
A.2 DeltaMerge Manifest . 104
A.3 Manifest Template . 105

8

Chapter 1

Introduction

Contents

1.1 Problem . 10

1.1.1 Making Good Use of Resources : Maximizing Utilisation 12

1.1.2 Making Good Choice of Resources 12

1.2 Contributions . 13

1.3 Organization . 15

This thesis addresses the problem of making good usage and choice of resources in
heterogeneous clouds for executing arbitrary applications according to users’ expectations.
It focuses mainly on maximizing resource utilization and efficient resource selection to
enable performance-cost trade-offs in cloud platforms.

9

10 CHAPTER 1. INTRODUCTION

1.1 Problem

Every user who launches a computation on a cloud infrastructure has implicit or explicit
expectations regarding the performance and cost of its execution. Depending on the cir-
cumstances, a user may want the fastest possible execution, the cheapest, or any trade-off
between the two. Moreover, users expectations may also vary over time. For example, Re-
verse Time Migration (RTM) is a compute-intensive algorithm used for creating 3D models
of underground geological structures from data collected during measurement campaigns
in specific areas. It is often used for oil exploration in deep-water areas. Geologists typ-
ically first execute RTM over data collected across a very large zone. Having to deal
initially with large data sets, geologists may arguably be willing to trade-off execution
time in favor of reducing the cost of the processing. However, once they identify a poten-
tially interesting structure, they typically start to refine the geological model by running
RTM repetitively on that particular area with various choice of configuration parameters.
This time, reducing execution time becomes important because they need to wait for one
execution to complete before they can choose the next set of configuration parameters.
Users may therefore prefer to minimize the processing time of the data set representing
the target area in order to quickly proceed with the geological model analysis.

Enabling performance-cost trade-offs requires control over the properties of an appli-
cation which impact the performance and the cost of execution. The performance and the
cost of a specific application typically depends on the following elements: input datasets,
application implementation, and resource configuration. First, different input datasets
may produce different performance by exercising different paths/branches of the applica-
tion or augmenting the number of similar operations to perform [6][7]. Manipulating the
properties of the input data would therefore allow one to change the runtime behaviour
of an application. However, as the input dataset is given by the user, modifying its prop-
erties would change the purpose of the application execution. We therefore exclude this
possibility from the discussion. Second, the performance and cost of application execu-
tion is often influenced by the implementation of the application. An application can be
implemented in various ways to target different software and hardware platforms while
providing the same functionality. For example, the aforementioned RTM application can
be implemented using different algorithms which trade computation for storage [8]. Aside
from CPU-based implementations, many algorithms can be implemented to offload core
computation parts on accelerators such as field-programmable gate arrays (FPGAs) or
general-purpose graphics processing units (GPGPUs). Making these implementation de-
cisions has a strong impact on the performance and cost of the execution, and optimizing
application implementations to exhaust a given set of resources is actively addressed in
the area of high performance computing (HPC). However, optimizing an application is a
laborious process which takes time. Every time the underlying hardware is upgraded, the
application must be again optimized to exploit it efficiently. This becomes a burden for
users when having to deal with a high number of applications. Because of this, in this
thesis, we discard the approach of optimizing the implementation and rely on users to
provide proper application code for a target resource type.

Finally, the runtime behaviour of an application is driven by the configuration of
compute, storage and network resources used for execution. A resource configuration is
defined by a set of parameters representing different properties of the involved resources.
Such properties are the nature of the resources (compute, storage), internal details of
resources, the number/size of resources of a specific type, the interconnection between
different resources in the configuration etc. Varying these parameters generates a large

1.1. PROBLEM 11

number of configurations which exhibit disparate performance levels. Thus, the purpose of
this thesis is to study how one may control the runtime behaviour of arbitrary applications
by carefully choosing and managing the resources used for their execution.

In traditional computing environments, varying resource configurations implies com-
plex operations which require hardware purchases, installation, etc. However, thanks to
cloud environments, we now have the opportunity to easily vary the resource configura-
tions of applications. Cloud infrastructures provide on-demand large computing capacities
based on a pay-as-you-go pricing model. A few years ago, they used to consist of large sets
of homogeneous commodity servers. But, the quick adoption of cloud technologies by end-
users from HPC domains having high compute requirements, has lead to a diversification of
available hardware. Nowadays, users can select between a large number of virtual instances
optimized to fit different use cases: general purpose instances with low memory/CPU/disk
sizes for application development and running light workload use cases; SSD- and HDD-
storage-optimized instances for data-intensive applications; compute-, memory-optimized
and GPU instances for HPC applications, etc [9]. Arguably this trend is going to continue
with the integration of FPGAs as cloud computing resources. Industry is heavily investing
in this as exemplified by Intel’s purchase of Altera and Microsoft’s effort in integrating
FPGAs in its datacenters [10][3]. This unprecedented level of flexibility creates great op-
portunities for cloud users to fine-tune their resource usage according to the needs of their
applications and the performance-cost trade-offs they want to achieve.

Moreover, selecting the appropriate cloud resources to execute an application such that
it respects a given performance-cost trade-off is difficult. First, users often find it very dif-
ficult to accurately estimate the performance of their applications in given circumstances.
In HPC systems where the choice of resources is more limited than cloud environments,
users often overestimate their computing requirements to avoid having their job killed be-
fore its completion [11] [12] [13]. This performance estimation problem escalates in cloud
environments due to the huge diversity of resource configurations the user has to choose
from. Cloud resources of different instance types deliver distinct performance-cost trade-
offs which are sometimes counter-intuitive. A cheap resource may, for example, perform
so slow that it generates a high total execution cost whereas an apparently more expensive
resource may perform faster and end up with a lower execution cost. Moreover, varying
the number of resources for a given execution also provides interesting trade-offs. When
the runtime behaviour of an application can be varied by horizontal scaling, the addition
and removal of resources generates many new possible configurations with different impact
on the performance and cost of the execution. Because of the very large variety of possible
configurations, deciding which and how many resources are needed in order to achieve an
expected level of performance and/or execution costs is extremely challenging.

We claim in this thesis that the choice of optimal resource configurations is too complex
to be realistically performed by end-users. Instead, this difficult task should be handled by
generic automated systems which can take arbitrary applications and user requirements
as input, and automatically optimize the resource configurations which should be used.
Designing and implementing such a system may radically simplify the usage of cloud
technologies for many current and future cloud tenants.

Choosing the right resource configuration to execute an application according to the
expectations of the user must consider two aspects. First, it is important to optimize the
use of allocated resources. This implies utilizing the resources at their maximum capacity
to get as much work as possible in return for the cost of the resources. Second, we need
to make a good selection of resources that satisfies the performance-cost constraints given
by the user. We discuss these two aspect in the following sections.

12 CHAPTER 1. INTRODUCTION

1.1.1 Making Good Use of Resources : Maximizing Utilisation

The first way to obtain excellent performance-cost trade-offs is to make the best possible
usage of the resources given to an application. Maximizing the utilization of resources
implies that more work is done at the same cost. However, the rapid advances in hardware
development often make it difficult for applications to generate constant work to keep the
resources fully utilized. This is particularly true for accelerator devices such as FPGAs
and GPUs. The underutilization of such resources creates issues as wasted energy, limited
resource availability, increased management costs etc.

The standard technique by which clouds maximize their resource utilization is by shar-
ing the hardware resources between multiple tenants. This is achieved using virtualization,
which consists in partitioning a physical resource and exposing virtual resources as stand-
alone encapsulations of the underlying machine. Virtualization allows many applications
to share a same physical host at the same time, and therefore to use physical resources at
their full capacity.

Virtualization technologies became a main focus point with the emergence of cloud
computing. Many efforts have been made on researching and developing virtualization
technologies for server resources (CPU, memory, disk), network and storage. However,
the increasing computation requirements now lead to the integration of accelerators such
as GPUs and FPGAs in cloud infrastructures [1][2]. In particular, while many research
works focused on GPU virtualization, FPGAs have only recently started to draw more
attention as promising cloud resources for high-performance computations. For example,
Microsoft’s Catapult project makes use of FPGAs to speed-up Bing search. This results
in a gain of 95% more throughput with an increase of 10% in energy consumption [3]. At
the same time, Intel released a Xeon chip with an integrated FPGA followed recently by
the acquisition of Altera, second main FPGA manufacturer. Intel predicts that, by 2020,
up to 30% of the servers in a datacenter will host an FPGA[4]. Virtualizing this kind
of device constitutes a challenge as by design FPGAs were not intended for virtualiza-
tion. Therefore, virtualization of FPGAs is becoming a hot research topic for the future
datacenters. Integrating FPGAs in clouds can enable public access to this increasingly
popular technology and will offer opportunities to increase their utilization by sharing
them between tenants, thereby reducing their total utilization cost for the cloud tenants.

We consider that maximizing FPGA utilization is a responsability of the cloud platform
and that its virtualization should be managed automatically by the cloud platform. We
propose as a contribution of this thesis a method to virtualize pools of FPGAs with the
goal of maximizing their utilization.

1.1.2 Making Good Choice of Resources

The second technique to allow cloud tenants to control their performance/cost trade-offs
is to carefully select resource configurations. Selecting the right resource configurations
for specific applications and user requirements is a difficult task because of the very large
space of possible resource configurations that heterogeneous clouds provide. The search
for optimal configurations consists in modelling the performance of an application and
understanding how various resource configurations influence its runtime behaviour. To
illustrate this simple idea, Amazon EC2 proposes to empirically try a variety of instance
types and choose the one which works best [5].

“Because you can launch and terminate instances as desired, profiling and load
testing across a variety of instance types is simple and cost effective. Unlike

1.2. CONTRIBUTIONS 13

a traditional environment where you are locked in to a particular hardware
configuration for an extended period of time, you can easily change instance
types as your needs change. You can even profile multiple instance types as
part of your Continuous Integration process and use a different set of instance
types for each minor release.”

(Jeff Barr. Choosing the Right EC2 Instance Type for Your Application)

However, the main difficulty when searching optimal configurations in the way rec-
ommended by Amazon, is the extremely large number of possible resource combinations
we can use. For example, let us consider a IaaS cloud providing 30 predefined instance
types. An application using five instances can choose among a total of 305=24.3 millions
possible resource configurations. A more complicated scenario consists in using clouds
providing dynamic configurations within the limits of their servers’ capacity. In this case,
the number of all possible resource configurations is much larger. Moreover, the search of
optimal configurations is a long and costly process. Users are burdened with the analysis
of every execution and the selection of the next configurations to be tested. Therefore, it
is impossible for users to manage efficiently the search process.

We claim that cloud platforms should automatically manage the choice of the right
resource configuration according to predefined user objectives. For this, the cloud platform
must analyse the runtime behaviour of an application by executing it several times using
different resource configurations. After the analysis of each execution, the cloud platform
must derive the configuration parameters with an impact on the performance and cost of
the execution. The variation of these parameters may generate new interesting configura-
tions with good trade-offs. For example, let’s consider an application which was executed
on a configuration with 10 CPU cores and 100 GB of storage. The analysis of the runtime
shows that the application, while intensively using the allocated cores, it did not use more
than 50 GB of the allocated storage. This implies that a resource configuration with only
50 GB of allocated storage instead of 100 GB, may offer the same performance yet at a
reduced cost. Furthermore, another configuration with a higher number or cores may also
provide an interesting performance-cost trade-off as it may speed up the execution.

Putting the performance modelling process out of the hands of the user will therefore
reduce the effort to manage the execution of applications on cloud platforms. This may
make cloud platforms more attractive to users who will be able to dedicate their time
and effort on application-level concerns rather than trying to understand the resource
requirements of their applications.

The second main contribution of this thesis proposes methodologies for modelling ap-
plication resource requirements in order to enable cost-performance trade-offs.

1.2 Contributions

The main contributions of this thesis are as follows:

Contribution #1: Improving FPGA utilization by means of virtualization.
We propose a cloud architecture which supports FPGAs in a multi-tenant environment.
Instead of considering FPGAs as local accelerator devices attached to a single server, we
co-locate a number of FPGAs in dedicated servers accessed through a low-latency network.
This setup increases availability by enabling a full many-to-many mapping between FPGAs
and clients accessing them. This allows FPGAs to be used by applications located in
different servers and even be shared between multiple applications.

14 CHAPTER 1. INTRODUCTION

We define a virtual FPGA as a group of FPGAs configured with the same hardware
design. A hardware design is a description of the digital circuit to be implemented in
the FPGA. The virtual FPGA is considered a first-class cloud resource rather than an
attribute of a virtual machine. This allows to easily add/remove FPGAs from a group
in order to control the performance of an application. The elasticity of virtual FPGAs is
essential in maximizing their utilization. We therefore propose to automatically scale the
virtual FPGAs based on their workload. For this, we introduce a time-sharing algorithm to
implement physical FPGAs trade-offs between virtual FPGAs. Automating the adaptation
to different workload demands provides several benefits. First, it increases the utilization
of FPGAs which means lower response times for tasks submitted by applications. Second,
removing unused physical FPGAs from a virtual FPGA decreases the cost of the virtual
FPGA supported by users. Third, it maximizes the number of applications having access
to FPGAs as running virtual FPGAs may trade their unused physical FPGAs to the newly
created ones.

Contribution #2: Automating heterogeneous resource selection. To auto-
mate the selection of cloud resources for the execution of arbitrary non-interactive appli-
cations, we propose a number of profiling methodologies to find optimal resource configu-
rations providing good performance-cost trade-offs. Profiling consists in investigating and
analyzing the runtime behaviour of an application being executed on different configura-
tions. After each execution, the profiler updates its current model and decides on the next
configuration to test.

The basic method is based on blackbox profiling which uses a global optimization al-
gorithm to perform a resource-agnostic search of optimal configurations to execute an
application. Its main advantage is that it operates on applications and resources without
having any knowledge on their inner workings. Therefore, this is a suitable method to
apply for arbitrary applications executed in heterogeneous cloud environments. The core
functionality of the method relies on strategically exploring large configurations spaces
by focusing on configurations which appear to provide good performance-cost trade-offs.
However, in spite of the flexibility in managing heterogeneous resources, the resource ag-
nosticity brings some limitations. When handling resources without specific knowledge on
their internal workings, we miss the opportunity to optimize the resource selection based
on resource-specific knowledge. For example, a storage resource may provide an upper
bound for the disk space the profiler should not exceed when making a storage request; a
cpu-based resource may provide help in determining if the application is multi-threaded
or not etc.

To overcome these limitations, we propose to extend the blackbox approach with a
whitebox approach which uses resource utilisation to help selecting configurations which
have a better chance than others to provide interesting performance-cost trade-offs. This
speeds up the profiling process by focusing on the resource parameters that are considered
to be over- or under-utilized. In comparison with blackbox profiling, the blackbox + white-
box approach reduces the number of iterations to be performed until good configurations
are reached. However, it still induces significant profiling delays and costs overhead when
dealing with applications processing large amounts of data where one run may take long
time and, consequently, having a high cost.

To address this issue, we propose a complementary method named extrapolated pro-
filing which exploits smaller input datasets and minimizes the number of runs with large
datasets. This method assumes that application performance characteristics may be ob-
served using input datasets representing a fraction of the ones used in production. We call
these reduced inputs benchmarking input datasets. The extrapolated profiling approach

1.3. ORGANIZATION 15

consists in running blackbox + whitebox profiling to parse the resource configuration space
using a benchmarking input dataset. We then select a number of identified configurations
to run the production input dataset; and use the correlation between the performance
on the two datasets as a basis to predict the performance of the large input dataset on
untested configurations. This approach minimizes profiling cost and runtime and, based
on application’s complexity, provides acceptable predictions for the tested applications.

Contribution #3: Prototype integration in a heterogeneous cloud platform.
The integration of the prototypes in a cloud platform in the context of the European project
HARNESS [14] validates our contributions. Moreover, it demonstrates how the methodolo-
gies we propose for maximizing resource utilization and making good choice of resources
can be realistically integrated in future heterogeneous cloud platforms. We developed
code prototypes for both previous contributions: an IaaS component called Autoscaler
implementing the FPGA virtualization method; and a PaaS component called Application
Manager (AM) implementing the profiling methodologies and resource selection based on
user objectives.

1.3 Organization

This thesis is organized in five main chapters.
Chapter 2 discusses the background of this work. We start by providing an overview on

virtualization technologies of resources and cloud resource heterogeneity. We discuss the
role of accelerators in cloud environments and the current limitations for their integration
as first-class resources. Finally, we introduce the application and resource management
mechanisms implemented in current PaaS platforms and how user objectives are expressed
and enforced on/by the PaaS platforms.

Chapter 3 of this documents introduces our first contribution: the FPGA virtualization
technology. We start by presenting FPGA specific approaches to virtualization followed
by a cloud setup enabling the approach we propose. Then, we show the benefits of the
approach by presenting evaluation results.

Chapter 4 focuses on automating the resource selection to enable performance-cost
trade-offs. We start by describing blackbox profiling and evaluate several search strategies
of optimal configurations it can implement. Further we discuss the limitations of blackbox
profiling and the approaches to overcome them: whitebox and extrapolation profiling
followed by their evaluation.

Chapter 5 presents technical details of our two prototypes. We provide the generic
cloud platform architecture designed in the context of the HARNESS project and the
placement of our prototypes in it. We also discuss the requirements future PaaS must
satisfy in order to integrate our prototypes.

Chapter 6 summarizes this thesis and provides future work directions.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Contents

2.1 Maximizing Resource Utilization in IaaS Clouds 19

2.1.1 Server Virtualization Technologies 20

2.1.2 Accelerator Virtualization . 24

2.1.3 Network Virtualization . 27

2.1.4 Conclusion . 28

2.2 Performance-Cost Trade-Offs in PaaS Clouds 28

2.2.1 Requirements . 29

2.2.2 Utilization-based Approaches . 30

2.2.3 Performance Modelling Approaches 32

2.2.4 Conclusion . 33

17

18 CHAPTER 2. BACKGROUND

Traditionally, a large part of the IT investment capital of an organization has been
into the acquisition of hardware resources and in the employment of engineers to make it
operational. Meanwhile, the time and effort of running applications concentrating the core
business is much smaller than the time and effort spent for these operating processes [15,
16]. The cloud computing paradigm provides opportunities for organizations to cut these
operating expenses and focus on the core business processes which are the ones essential
in generating revenue. One of the most important economic benefits coming along with
the use of clouds is the cost of running applications, as organizations now have the ability
to provision cloud resources and services when they require them and release them when
they do not need them anymore. Moreover, the cost of running applications can be easily
calculated in advance due to the transparent cost model for cloud resources and resource
billing based on a predefined time-unit. The support to run applications is implemented
by the two fundamental cloud models: Infrastructure-as-a-Service (IaaS) and Platform-
as-a-Service (PaaS).

IaaS clouds offer on-demand access to large varieties of virtual resources running on
commodity hardware. The pay-per-use pricing model applied to cloud resources provides
significant benefits for applications where users do not need constant accessibility to the
resources. The key benefits such as instant availability and scalability of virtual resources
make IaaS cloud attractive to users from different computing domains. However, there are
several challenges for current cloud infrastructures to support the execution of workloads
which are outside their original scope. Primarily, cloud infrastructures were built to host
multi-tier web applications whose performance could be easily controlled by scaling out
or up the resource configurations. Following the same principle, embarrassingly parallel
applications such as MapReduce and Bag-of-Tasks applications are also suitable to be
executed on cloud infrastructures because there is little or no dependency between their
parallel tasks. This leaves out applications which have more complex resource demands
and high connection inter-dependencies such as applications from the domain of high-
performance computing (HPC).

HPC applications often require specialized compute devices, high-performance storage
and fast interconnects. Satisfying these requirements is very challenging in a cloud envi-
ronment where there are no guarantees of the level of performance of virtual instances and
low-latency communication [17, 18]. HPC systems often encompass specialized devices as
GPUs and FPGAs [19, 20] while communication mostly relies on high-speed interconnects
as Infiniband [21].

However, current public clouds mostly rely on commodity hardware and offer limited
access to GPU-enabled virtual instances with 10Gbps Ethernet as the fastest intercon-
nect [22] while, for the time being, FPGAs are not yet provided as cloud resources. Because
of this, cloud systems are not a great competitor to HPC systems for performance-critical
applications. Therefore, incorporating not only specialized computing resources but also
low-latency interconnects as cloud resources is a main requirement for current and future
clouds to support new types of application and, consequently, attract new users with de-
manding applications. Nevertheless, the integration of new types of resources must take
into consideration methods to virtualize them and maximize their utilization. These are
important challenges cloud providers have to deal with in order to broaden the use of
their infrastructures and to maximize their profit by exploiting them more efficiently. We
address the problem of integrating FPGA-based accelerators in cloud infrastructures as
the first contribution of this thesis.

PaaS clouds provide on-demand access to configured environments and services to
automatically manage the execution of applications on virtual resource configurations pro-

2.1. MAXIMIZING RESOURCE UTILIZATION IN IAAS CLOUDS 19

vided by IaaS clouds. This cloud level enables the optimization of different metrics through
the control of different attributes of application execution. Although there are many met-
rics users may be concerned with (e.g. response time, carbon footprint, resource utiliza-
tion, cost), we choose to focus only on the performance (execution time) and the cost of
executing an application.

Enabling performance-cost trade-offs is a very difficult task because of the huge diver-
sity of applications having complex resource requirements and the increasing diversification
of IaaS cloud resources. The main cause for application diversity is the diversification of
IaaS cloud resources which provides flexibility in implementing applications as users would
have access to new types of resources. Consequently, this diversity offers a richer context
to make trade-offs for application execution.

The main motivation for enabling performance-cost trade-offs is to facilitate the se-
lection of IaaS cloud resources to use. We consider it is necessary for PaaS platforms to
enable trade-offs between these metrics to allow the optimization of application execu-
tion according to user expectations. We propose as the second contribution of this thesis,
several approaches to resource selection in heterogeneous clouds.

2.1 Maximizing Resource Utilization in IaaS Clouds

Low utilization rates of computing resources constitute a major problem that IaaS providers
constantly have to deal with. The main cause for low utilisation is that applications are
not always able to produce sustained loads to exploit the underlying resources at their
maximum capacity. Research studies have reported that most of the servers in a data-
center have an average utilization rate below 25% [23]. The utilization of the underlying
infrastructure has an indirect impact on the pricing of the virtual resources provided by
an IaaS cloud. For example, Amazon seeks to reduce their datacenter power consumption,
hardware and operational cost which results in passing savings back to users in the form
of lower pricing [24].

Underutilized resources create several issues an IaaS cloud provider must work through.
First, idle resources consume a significant amount of energy without any productive pur-
pose. A typical datacenter has been shown to consume 30 times the energy required to
perform actual computations [25]. This means the maintenance cost greatly exceeds the
computing cost of user services which are the ones generating profit for the datacenter
providers. Second, another cause for underutilization is the resource fragmentation and
the scattered distribution of workloads in the datacenter [26]. This raises difficulties in
making an efficient capacity planning to accommodate future workloads. Furthermore,
users often over-provision their applications to ensure a desired performance level is met.
This excess of resources inflicts a cost overhead for the execution of applications with no
return benefits [27].

Important progress is being made in cloud technologies in order to address these issues,
mostly based on virtualization technologies. Virtualization at its most basic level provides
multiple isolated views of the same physical resource. This allows multiple applications,
previously each requiring one physical resource, to make use of virtual resources sharing
the same physical host.

However, the placement policies of virtual resources on the physical hosts is very im-
portant in making efficient usage. Many approaches to consolidation of resources were
therefore developed in order to maximize resource utilization and minimize energy con-
sumption [28, 29]. Consolidation refers to the process of placing/migrating virtual re-
sources on a minimum number of physical hosts [30, 31]. A particular case of server

20 CHAPTER 2. BACKGROUND

Figure 2.1: Server consolidation. Adapted from [28]

consolidation is depicted in Figure 2.1. The main goal of resource consolidation is to in-
crease the utilization of active physical resources while allowing the powering off of the idle
ones. Having a smaller number of active resources provides several benefits such as a more
efficient management of virtual resources, lower energy consumption and operating costs.
Furthermore, packing up the virtual resources on less physical resources also increases the
resource availability for future demands.

Nevertheless, resource consolidation may not always result in effective usage of a cloud
infrastructure as there are many issues affecting the consolidation process (e.g. appli-
cation resource utilization patterns, workload variations, restrictions on the location of
application components). These issues may make the consolidation process too long and
inefficient from a power consumption and running cost perspective. Moreover, there is
still the issue of the interference between co-located virtual resources [32]. Although over
time, the performance overhead of virtual resources was reduced, they are not yet noise
free.

2.1.1 Server Virtualization Technologies

A first barrier to overcome underutilization of resources is to enable multiple applica-
tions to use the same resource simultaneously. However, placing applications belonging
to different tenants on the same machine creates numerous security issues. For this, vir-
tualization emerged as a method to share a resource between different applications which
are nevertheless totally isolated from each other. Virtualization organizes the partitioning
of physical resources and exposes as virtual resources stand-alone representations of the
underlying ones. The concept of virtualization first appeared in 1960 when IBM developed

2.1. MAXIMIZING RESOURCE UTILIZATION IN IAAS CLOUDS 21

(a) Type 1 Hypervisor

NICMemory Disk

(b) Type 2 Hypervisor

Figure 2.2: Popular cloud server virtualization technologies.

the idea of a virtual machine (VM) in order to give applications concurrent access to a
mainframe computer [33].

The development of virtualization technologies has accelerated with the emergence of
cloud computing whose foundation primarily relies on the virtualization of the resources
in underlying datacenters. Infrastructure-as-a-Service (IaaS) clouds provide large pools of
compute, storage and network resources and rely in particular on virtualization of server
machines with the purpose to maximize the utilization of their infrastructure and increase
their revenue.

The modern concept of virtualization refers to an abstract virtual layer with the main
goal of hiding physical resources from virtual resources through the use of different virtual
interfaces. Instructions on the virtual interfaces are translated by the virtualization layer
into instructions on the physical resource. We focus further on the two most popular
virtualization technologies implemented in a cloud infrastructure to share the resources of
server machines.

Hardware virtualization

The most popular type of virtualization technologies employed in IaaS clouds relies on
hardware virtualization (system-level virtualization) which provides virtual resources called
virtual machines (VMs) as representations of full servers with the same hardware compo-
nents as the physical ones. This technology enables a server(host) to run simultaneously
other operating systems (guest) on top of its own.

The virtualization layer, Hypervisor also called Virtual Machine Monitor (VMM) con-
trols the flow of instructions between the guest OSs and the physical hardware. As depicted
in Figure 2.2, a hypervisor can be implemented in different layers of the virtualization soft-
ware stack:

◦ Type 1 Hypervisor, running directly on the bare-metal machine, has complete control
over the physical server. It is used to coordinate the low-level interactions between
virtual machines and physical hardware. A controlling domain (Dom0) runs as a
privileged VM to manage the host server and to control the other guest VMs. Ex-

22 CHAPTER 2. BACKGROUND

amples of type 1 hypervisors are Xen [34], VMware vSphere ESXi [35] and Microsoft
Hyper-V [36].

◦ Type 2 Hypervisor does not run directly on the hardware but on top of the operating
system of the host and uses the interfaces provided by the host operating system to
interact with the hardware. Examples of type 2 hypervisors are KVM [37] and
VirtualBox [38].

Hypervisors implement different techniques for virtualizing the resources of a x86-based
server machine such as CPU, storage, memory, and I/O devices. There are three main
approaches for this.

First, the full virtualization approach delivers VMs which are complete representations
of the underlying hardware running unmodified OSes and applications. Thus, decoupling
the software from the underlying hardware allows to run VMs with proprietary OSes such
as MacOS and Microsoft Windows. As the most reliable approach currently available, full
virtualization provides the best isolation and security for VMs. However, it may incur large
performance overheads because of the usage of binary translation (BT) which consists in
replacing the code that the kernel of the guest OS wants to execute with a “safe” and
slightly longer translated version [39]. Hence, user applications running on top of the
guest OS can be executed straight on CPU without being translated. A full virtualization
solution is implemented in the Linux KVM hypervisor.

Second, the paravirtualization approach aims to minimize virtualization performance
overhead by modifying the guest OS to replace non-virtualizable instructions with hy-
percalls that communicate directly with the hypervisor [34]. It also provides hypercalls
for critical kernel operations such as memory management, interrupt handling and time
keeping. Therefore, the hypervisor and the guest OS work together more efficiently and
deliver higher performance for some application than fully virtualization system. As an
example, this approach is implemented in the hypervisor researched by Xen open-source
project which virtualizes the CPU and memory using a modified Linux kernel and the I/O
devices using custom guest OS device drivers [40]. However, paravirtualized hypervisors
do not support guest VMs with unmodified OSes such as Windows 2000/XP, which limits
compatibility and portability. Thus, the performance gain must be weighted against the
maintenance and support cost for running modified guest OSes.

Third, the hardware-assisted approach relies on CPU features offered by newer gener-
ation processors, with Intel Virtualization Technology (Intel VT) or AMD Virtualization
(AMD-V) technology, targeting privileged instructions with a new CPU execution mode
feature that allows the hypervisor to run in a new root mode below the one with the
highest priority in the x86 CPU ring architecture. A VMware’s early research study on
the first generation of processors offering this feature, showed that its BT-based virtual-
ization outperforms the hardware-assisted virtualization [41]. The overhead incurred by
the hardware-assisted virtualization is associated with the mechanisms employed by the
hypervisor to map virtual memory addresses to physical memory addresses.

However, with the afterward introduction of hardware support for memory virtualiza-
tion, address mapping is done through Extended Page Table (Intel) [42] or Rapid Virtu-
alization Indexing (AMD) [43] support built into the Memory Management Unit (MMU).
VMware studies show that this hardware-assisted memory mapping provides a significant
performance boost compared to doing memory translation in software [44, 45]. Later ad-
jacent research works focused on the optimization of memory paging in hardware-assisted
virtualized systems [46, 47].

2.1. MAXIMIZING RESOURCE UTILIZATION IN IAAS CLOUDS 23

NICMemory Disk

Figure 2.3: OS-level virtualization.

Most popular hypervisors such as KVM, Xen, VMware vSphere, Microsoft Hyper-V
contain hardware-assisted virtualization extensions (Intel VT or AMD-V). Some research
studies analyzed the performance of these hypervisors and show performance variations
determined by the application type and requirements [48, 49]. They conclude that there
is no ideal hypervisor to match all applications’ needs.

Operating System-level Virtualization

The second increasingly popular type of virtualization technologies based on operating
system-level virtualization aim to avoid the overhead incurred by the hypervisor-based
approaches. Considering an OS having generally two layers: the kernel managing the
hardware and the user space running processes, the OS-level virtualization refers to the
virtualization of the kernel interface of the OS. This type of virtualization provides an
alternative to VMs commonly known as containers which are virtual environments isolated
with kernel Control Groups (cgroups) and kernel Namespaces [50]. The layout of OS-
level virtualization is presented in Figure 2.3 where multiple user-spaces run in parallel
on the same host and share the same kernel. However, the user-space layer must be
compatible with the underlying kernel. For instance, it is not possible to run Microsoft
Windows/MacOS user-spaces on top of the Linux kernel.

Although limited to running Linux-based guests and with a weaker isolation in compar-
ison with a hypervisor-based virtualization, OS-virtualization provides some compelling
advantages. One important advantage is the minimal performance overhead. Containers
provide nearly native performance as the user-space applications and kernel run directly
on the physical hardware. Consequently, resource requirements are also reduced. Another
advantage is the real-time resource allocation as it does not require to load a full kernel
for each new container.

Examples of container technologies are LXC [51], Docker containers [52], OpenVZ [53],
Linux VServer [54] and BSD Jails [55].

Containers are becoming increasingly popular due to the rapid adoption of platforms
as Docker which allows to easily build and manage Linux-based containers [52]. Although
in the beginning Docker used LXC containers, more recent versions make use of libcon-
tainer to integrate low-level Kernel namespace and cgroups features directly. The key
difference between LXC and Docker containers is that LXC creates a container with mul-

24 CHAPTER 2. BACKGROUND

Figure 2.4: GPU architecture.

tiple processes while Docker reduces it to a single process. Various software systems have
been developed to facilitate the scheduling, management and orchestration of distributed
deployments of Docker containers. Examples of such systems are Swarm [56], Fleet [57]
and Kubernetes [58].

Several research works investigated the overhead incurred for different use cases by
several container-based technologies, some of them in comparison with hypervisor-based
technologies [59, 60, 61, 62].

2.1.2 Accelerator Virtualization

An interesting category of I/O devices is represented by computational accelerators such as
general-purpose graphics processing units (GPGPUs) and field-programmable gate arrays
(FPGAs). Many compute intensive algorithms may benefit from using these accelerators
as they offer orders of magnitude in performance improvement while being more energy
efficient [63, 64].

However, only certain tasks of an application can be off-loaded to accelerators [65].
As a consequence, accelerators may be underutilized during the runtime of CPU sections
of the application. To address this issue, virtualization techniques for accelerators are
intensively researched in order to maximize their utilization.

GPGPUs

GPGPU processors are a popular compute device for accelerating computationally intense
functions in many domains. An overview of the GPGPU architecture is presented in
Figure 2.4. A GPGPU consists in a number of streaming multi-processors that contain
a number of small processing elements and shared resources. This architecture allows to
efficiently run thousands of threads to operate over a single dataset. Threads are run
in groups which, in turn, are independently executed by the streaming multi-processors.
Therefore, synchronization between groups is not possible during execution.

Code for GPGPU can be developed using C-based languages such as CUDA and
OpenCL. Developers create special functions, called kernels, that are run on the GPGPU.

Client programs running on traditional machines typically use a GPGPU as a co-
processor device. Applications access the GPGPUs via local library functions designed to
issue kernel executions via the PCIe bus.

Integrating GPGPUs in a virtualized environment requires one to rethink the com-
munication between the client program which runs within a virtual machine, and the

2.1. MAXIMIZING RESOURCE UTILIZATION IN IAAS CLOUDS 25

VM Application

Accelerator

VM Application

Accelerator

API remoting

Host
API proxy

VM Application

API remoting

VM Application

API remoting

VM Application

API remoting

Accelerator

Host
API proxy

a) b)

c)

High-speed Network

PCI passthrough

Figure 2.5: Local and remote virtualization of accelerators; (a) using PCI passthrough;
(b) using API remoting locally; and (c) using API remoting remotely.

GPGPU. Ideally, this communication should exhibit as little overhead as possible so as
not to reduce the interest of using accelerators. It should also allow any VM to make use of
any accelerator device, regardless of the physical location of the VM and the accelerator.
There exist three main techniques for this, which have been applied to support access to
GPGPUs.

I/O passthrough consists of exposing the accelerator to a virtual machine running on
the same server using the ‘passthrough’ feature supported by all modern hypervi-
sors [66]. This technique, illustrated in Figure 2.5(a), is for example used by Amazon
EC2 to create GPU-enabled virtual machine instances [67]. I/O passthrough deliv-
ers performance levels similar to the native capacity of the PCI bus. However, it
restricts the usage of an accelerator only to the VMs running on the same host.
In addition, it currently does not allow multiple co-located VMs to share the same
physical GPGPU.

Paravirtualization allows multiple VMs to share a physical accelerator by providing a
device model that is backed by the hypervisor, as well as the guest operating sys-
tem and the device driver. Examples of approaches utilizing paravirtualization in-
clude GPUvm [68] and pvFPGA [69] supporting GPGPUs and FPGAs, respectively.
However, this technique suffers from performance overheads and remains limited to
sharing the accelerator between VMs running on the same server machine.

API remoting, shown in Figure 2.5(b), allows multiple applications to use a common
accelerator API such as OpenCL or CUDA. Calls to the API are intercepted in the
VM and passed through to the host OS on which the accelerator is accessible. Each

26 CHAPTER 2. BACKGROUND

Figure 2.6: FPGA Architecture.

VM appears to have exclusive access to the accelerator and software on the host
to resolves any contention. A number of technologies employ API remoting in a
tightly coupled systems including vCUDA [70], gVirtuS [71] and LoGV [72]. In such
a case the issue of sharing becomes one of scheduling and the applications obtain a
fraction of the accelerator dependent on the other users and the scheduling algorithm
employed.

API remoting also allows accessing a (possibly shared) accelerator remotely, as shown
in Figure 2.5(c). In this case, the choice of network technology becomes very impor-
tant as it can become the dominating performance factor.

FPGAs

FPGAs (Field-Programmable Gate Arrays) have the potential of complementing the cur-
rent landscape of accelerator devices for high-performance computations. When applied to
suitable problems, they deliver excellent performance, computational density and energy
consumption.

Figure 2.6 presents an overview of the architecture of an FPGA. FPGAs are semicon-
ductor devices organized as two-dimensional or three-dimensional arrays of Configurable
Logic Blocks (CLBs) [73]. Each CLB is an elementary circuit which can be programmat-
ically configured to realize a variety of simple logical functions, such as AND/OR/NOT
digital gates, flip-flops and 1-bit full adders. The interconnection between CLBs is highly
reconfigurable as well, allowing one to produce any digital electronic circuit — within the
size limits of the gate array — by proper reconfiguration of the CLBs and their intercon-
nection matrix. FPGA boards are often also equipped with external memory and a PCI
Express R© interface for high-performance communication with their host machine.

Although they are more difficult to program than a GPU accelerator, FPGAs provide
the flexibility in what they can be programmed to do. FPGAs are well suited for repetitive
digital processing tasks which need consistent timing: digital filters, signal processing,
video/image processing etc.

2.1. MAXIMIZING RESOURCE UTILIZATION IN IAAS CLOUDS 27

Figure 2.7: Difference in MPI bandwidth and latency for virtualized Infiniband and Ama-
zon’s 10GigE. Adapted from Glen K. Lockwood’s blog [79].

FPGA circuit designs are usually implemented using hardware description languages
such as Verilog and VHDL, which operate at a very low level of abstraction using logic
elements such as digital gates, registers and multiplexors. These descriptions can also
be automatically derived from higher-level programming languages similar to C, Java or
OpenCL [74, 75] through a process called high-level synthesis (HLS). However, to obtain
the best possible performance, FPGA programmers must still have a deep understanding
of the mapping between a high-level program and its low-level translation, and annotate
their code with appropriate optimization guidelines [76]. Efficient programming of FPGAs
therefore requires specific training and experience, which effectively creates a barrier to
entry for new developers to exploit the full potential of FPGAs. For this reason, FPGA
manufacturers propose off-the-shelf highly-optimized library implementations for specific
computations. Although many of these implementations are domain-specific, they can also
provide generic functions such as various types of data analysis computations, multimedia
processing, and machine learning [77, 78].

FPGAs can outperform CPU-based compute resources by at least one order of magni-
tude while running at considerably lower clock frequencies due to the fact that the physical
organization of a hardware design can closely match the dataflow logic of the implemented
algorithm and be realized by a deep pipelined architecture. This allows multiple function
executions to operate in parallel over different parts of the gate array, providing high-
throughput performance. A typical usage pattern therefore consists for a client program
to issue large batches of task execution requests which can then be efficiently pipelined by
the FPGA.

The issues and solutions for FPGA virtualization are very similar to the ones of
GPGPU devices. However, FPGA virtualization has only recently started to be inten-
sively studied because of the interest of major IT companies as Microsoft and Intel in
exploiting these accelerators [3, 4].

2.1.3 Network Virtualization

Despite the advancements in virtualization technologies, I/O device virtualization still
remains the major source for performance degradation. This problem aggravates in par-
ticular when dealing with network-intensive applications. Virtualization of network devices
is an important concern especially when sharing remote accelerators.

28 CHAPTER 2. BACKGROUND

Current virtualization technologies for network devices can be classified as software-
based and hardware-based approaches. In software-based approaches, the network device
cannot be accessed directly by the guest VMs/containers and each I/O operation is virtual-
ized by several software layers : guest VM, hypervisor, privileged VM (xen). This solutions
incur significant performance overheads. In the hardware-based approaches, the guest VM
has direct hardware access. These approaches are relying on I/O virtualization support
in the PCI Express adapters implementing the Single-Root I/O Virtualization (SR-IOV)
standard [80, 81]. According to this standard specification, a PCIe device is presented
as multiple separated devices called virtual functions. Virtual functions are lightweight
representations of physical PCIe functions. [82] studies the performance of SR-IOV and
software-based virtualization for 10Gb Ethernet and InfiniBand interconnects and draws
the conclusion that SR-IOV provides substantial improvement in latency and negligible
bandwidth overheads when compared with the software-based approach.

InfiniBand

The primary challenge towards cloud adoption for HPC is the virtualization of high-speed
networking devices. HPC system are deployed widely with interconnects as InfiniBand,
while cloud systems typically offer 10GigE as the fastest interconnect. Furthermore, In-
finiband offers features as Remote Direct Memory Access(RDMA) which allows a host to
write data directly into the memory of another host; and IP-over-Infiniband which enables
TCP/IP over the Infiniband network. For these reasons, Infiniband is increasingly being
deployed in clouds.

Virtualized Infiniband with SR-IOV provides comparable performance to the native
Infiniband [83]. Figure 2.7 shows a comparison between the performance of a SR-IOV
virtualized Infiniband and Amazon’s 10GigE with software-based virtualization.

The usage of low-latency interconnects such as Infiniband in a cloud infrastructure is
the dominant performance factors to efficiently virtualize remote accelerators [84].

2.1.4 Conclusion

Virtualization technologies for server and network resources made significant progress in
reducing the performance overhead. GPU virtualization has developed dramatically over
the last few years fueled by their integration in virtualized environments. However, FPGA-
based accelerators only recently have started to be considered for the integration in virtu-
alized environments. Very few reasearch works propose methods for FPGA virtualization
and integration in cloud infrastructures which lack certain properties that FPGAs require
in order to be considered first-class cloud resources [2, 85, 86]. Therefore, we propose as
our first contribution a solution for virtualizing FPGAs and integrating them in cloud
infrastructures with the purpose to increase their utilization. This first contribution is
presented in Chapter 3.

2.2 Performance-Cost Trade-Offs in PaaS Clouds

IaaS clouds provide their tenants with a large diversity of on-demand virtual resources in
order to satisfy various application requirements. The virtualization methodologies and
the management of physical resources are hidden behind APIs which greatly facilitate the
reservation and release of virtual heterogeneous resources [87, 88]. However, the deploy-
ment and execution of applications may be a burden for most users as they need to choose
the right set of virtual resources for their applications, reserve them and then prepare

2.2. PERFORMANCE-COST TRADE-OFFS IN PAAS CLOUDS 29

the environment to execute their applications. It becomes even more complicated when
applications need to adapt at runtime to certain events such as varying workload, resource
failures, crashes of child processes etc.

To address these issues, the PaaS model offers to automate these laborious tasks by
providing configured virtual execution environments ready to manage the execution of user
applications. Current PaaS systems offer several specialized virtual execution platforms.
These execution platforms are designed to support applications implemented using a spe-
cific programming language (e.g., Python, Ruby and Java) and PaaS-specific tools and
APIs for service management.

PaaS systems may rely on resources provided by IaaS clouds employing different de-
ployment models: private, public and different combinations of public and private. Popular
public IaaS providers also offer various PaaS services running on their infrastructures. For
example, Amazon provides services as Amazon Elastic MapReduce [89] for data analytics
applications running on top of the Hadoop framework; Amazon Dynamo DB and Amazon
Relational Database System for database systems; and Amazon Beanstalk [90] for hosting
web applications. Google’s AppEngine [91], Microsoft’s Windows Azure Web Services [92]
and Rackspace’s Cloud Sites [93] also provide support for hosting web applications on
their infrastructure. Other PaaS providers such as Heroku [94] may not have private
computing resources to run services and rather choose to rely on resources provided by
public clouds such as Amazon and Salesforce. Open-source PaaS solutions follow the same
approach. Examples of open-source platforms are ConPaaS [95], CloudFoundry [96] and
AppScale [97].

The interactions between tenants and PaaS systems are in general governed by Service-
Level Agreements (SLAs) establishing the criteria a PaaS should guarantee for the proper
functioning of user applications. However, SLAs from popular PaaS providers focus mostly
on resource availability and uptime while no guarantee is provided to optimize the perfor-
mance of user applications [98, 99].

Despite the flexibility provided by the current PaaS systems in deploying and managing
the execution of an application, there are still a number of issues to be considered when
choosing a platform to use. Most PaaS systems provide only limited help in choosing the
set of virtual resources whose performance-cost trade-off meet users’ expectations. This is
difficult because of the lack of performance guarantees for virtual resources which creates
uncertainty in predicting the runtime behaviour of applications [100]. The choice of the
type and number of virtual resources to be used is therefore delegated to the users when
requesting the creation of a virtual execution platform [101, 102, 103]. However, users
notoriously find it difficult to accurately estimate the exact needs of their applications [11,
12, 13]. This leads to higher execution costs than what could be achieved if the resources
were selected with adequate knowledge.

2.2.1 Requirements

Enabling performance-cost trade-offs allows cloud users to have more control over the
execution of their applications. We identify several criteria a platform should ideally meet
in order to provide good performance-cost trade-offs and facilitate cloud usage.

◦ Application agnosticity. Many cloud platforms are limited to the management of
specific types of applications such as Web and MapReduce applications. This leaves
out important application families such as scientific applications, which may have
complex implementations and resource requirements. These applications also could
benefit from having access to the large variety of heterogeneous resources that clouds

30 CHAPTER 2. BACKGROUND

provide to exploit a mix of traditional VMs and accelerators. Therefore, a good cloud
platform should be able to handle a wide range of applications in a generic manner.

◦ Heterogeneous resources support. Cloud heterogeneity is not limited to a discrete
set of configurations of server-based virtual resources. Specialized devices such as
GPUs and FPGAs are also gaining traction in cloud infrastructures. This diversi-
fication of resources allows the execution of applications with different performance
and cost levels. Therefore, it is important for PaaS systems to be able to manage
heterogeneous resources and offer to include them in their performance models.

◦ Minimum human effort. Enabling performance-cost trade-offs for arbitrary applica-
tions requires a careful analysis of their resource requirements. Because of the large
variety of heterogeneous resources that cloud provide, modelling the performance of
applications may consider a large number of resource parameters which makes the
process very complicated and difficult to be performed by users alone. Therefore,
a good PaaS system should reduce the time and effort users would have to spend
when analysing the behaviour of applications.

◦ Modelling time and cost. Analysing the behaviour of an application may require one
to execute it repeatedly in different conditions (e.g., different resource configurations,
input data) until the system can get a good understanding of its requirements. This
can produce a significant cost and delay that users may not always be willing to
accept. Therefore, performing the analysis with a low cost and time overhead is an
important requirement for PaaS system in order to increase its attractiveness for
users.

◦ Support for variable input sizes. Many applications are optimized to perform high-
volume, repetitive tasks where successive executions process inputs with the same
size and runtime behaviour. Targeting these applications first allows one to focus
on exploring the large space of resource configurations to use for their execution.
However, a good platform should also be able to manage the execution of applica-
tions with variable input sizes which can have a different impact on their runtime
behaviour.

A cloud platform satisfying all the aforementioned requirements would facilitate the
execution of applications in heterogeneous clouds. This may lead to attract more users
having applications which can exploit the resource heterogeneity or encourage current users
to adapt their applications to make use of different types of resources offering interesting
performance-cost trade-off.

2.2.2 Utilization-based Approaches

Seeking to maximize resource utilization may not always be the best approach towards
identifying different performance-cost trade-offs for the execution of an application. This
is determined by the way the application makes use of resources.

Applications with complex resource requirements often exhibit a complicated resource
utilization pattern for which it is very difficult to choose better resource configurations.
For instance, Figure 2.8 presents a way a hypothetical application may make use of a set
of resources (i.e., memory, CPU and FPGA). We can see several utilization peak switches
between different types of resources (i.e., CPU and FPGA). Deciding which resource to
add or remove in order to maximize utilization is challenging in this case because there

2.2. PERFORMANCE-COST TRADE-OFFS IN PAAS CLOUDS 31

Figure 2.8: Example of a hypothetical application’s resource utilization pattern.

is no single dominant resource determining the runtime behaviour. In such conditions,
deciding which resources to scale in order to vary the runtime behaviour of the application
is not trivial.

Based on their resource requirements, applications can be classified as static and dy-
namic. Static applications require a fixed set of resources which cannot be changed during
their execution. Therefore, one must choose a good set of resources before launching
them. Most batch applications (e.g., MPI applications) have this static nature. On the
other hand, dynamic applications can adapt to changes in the resource set at runtime (e.g.,
MapReduce and Web applications). To model the behaviour of an application, one must
carefully consider its static or dynamic nature. The performance of static applications is
determined by the total runtime whether for dynamic applications is the response time for
user requests.

Dynamic applications such as multi-tier web systems are popular cloud workloads
exploiting features such as on-demand provisioning to maintain a certain level of quality
of service. Most popular PaaS systems provide mechanisms to automate the adaptation of
dynamic applications to changes in their workload. These mechanisms imply monitoring
and autoscaling the resource configuration according to predefined elasticity rules.

Amazon Auto Scaling [104]. It is an Amazon PaaS service used to scale horizontally
a resource configuration based on Amazon CloudWatch metrics, or predictably according
to a schedule that users define. It gives users control over the resource configuration
running their application. For example, users may set conditions to add more instances
when the average utilization of the resource configuration is high. Similarly, when resources
are underused, they may set conditions to remove instances. It makes use of CloudWatch
alarms which are objects that watch over single metrics (e.g, the average CPU utilization
of the EC2 instances in a resource set) over a specified time period. When the values of the
metrics breach the thresholds that users defined, the alarms fire up Auto Scaling to make

32 CHAPTER 2. BACKGROUND

a scaling decision based on the user conditions. Auto Scaling is well suited for dynamic
applications where the resource demand is a function of resource utilization.

Google Compute Engine (GCE) Autoscaler [105]. This service is similar to
Amazon Auto Scaling; it horizontally scales a group of homogeneous resources based on
user predefined thresholds for certain metrics. Autoscaler works with metrics such as CPU
utilization and requests/second/instance.

Rackspace Cloud Autoscale [106]. It offers similar horizontal scaling capabilities
to Amazon’s and GCE’s systems. However, this system is noteworthy for its support for
vertical scaling. For example, a user can create two sets of resources of two different flavour
instances: small-flavour and high-flavour. Vertical scaling relies on switching between
these two groups in certain conditions. When demand is low, the group with small-flavour
instances may be horizontally scaled to couple with the demand. For high demands, the
high-flavour group can scale up while the small-flavour group shrinks to zero. This way,
it switches from using a small-flavour-based resource configuration to a high-flavour-based
resource configuration. However, it does not allow the use of mixed-flavoured groups of
instances.

2.2.3 Performance Modelling Approaches

Performance modelling is a complex process of analysing the runtime of an application in
order to create a model to be used in predicting its behaviour in a given scenario. The
accuracy of the prediction greatly depends on the time and effort invested in building a
model. There are three main approaches to model the performance of an application.

◦ Analytical modelling. This approach requires developers to provide models of
their applications. These analytical models are potentially very accurate, but build-
ing them is labor-intensive and difficult to automate. Moreover, user estimates of
application runtimes are often highly inaccurate [12, 11, 13]. Several research stud-
ies implemented analytical models employing different techniques such as queueing
networks and statistics to model the behaviour of multi-tiered applications [107, 108,
109, 110, 111, 112]. Furthermore, the analytical models can be refined to capture
burstiness and utilization variability [113].

◦ Code analysis. This approach relies on tools which automatically analyse appli-
cation code to create a model of execution paths. An example of a cloud system
employing code analysis is [114].

◦ Profiling. This approach relies on profiling methodologies which gather information
from experimenting and analysing executions with different application and resource
parameters. Profiling methodologies often use machine learning techniques to extract
utilization patterns from historical traces. Examples of research works employing
profiling are [115], [116] and [117]. The techniques proposed in this dissertation
belong to this profiling family.

The most popular class of applications executed in clouds consists of online appli-
cations which are interactive systems deployed permanently whose processing demands
vary over time according to user access patterns. Representatives of this class are the
multi-tiered web applications. Web applications are distributed systems containing web
servers, application servers, database systems and load balancers. As the dominant cloud
workload, they are engineered to scale horizontally in response to demand. The met-
rics considered for scaling are the response time, throughput and cost. Modelling the

2.2. PERFORMANCE-COST TRADE-OFFS IN PAAS CLOUDS 33

performance of web applications is done through different techniques relying on analyt-
ical models based on queueing networks and probability theory; and machine learning
techniques to extract user access patterns. The models aim to derive good resource al-
locations to satisfy the current demand and ensure low response times while minimizing
the cost. Research studies propose models using queueing network [107], machine learn-
ing and statistics methods [116, 118, 111] to achieve a required quality of service (QoS)
while optimizing running costs. Nikravesh et al. [117] propose to improve the accuracy of
predictive autoscaling systems by choosing appropriate time-series prediction algorithms
based on incoming workload patterns. Vasic et al. [116] propose a cost-saving resource
allocation methodology based on the analysis of past past workloads and the performance
of the allocated resources using machine learning techniques such as clustering and clas-
sification. Fernandez et al. [118] propose to scale web applications in heterogeneous cloud
infrastructures based on different performance-cost trade-offs implemented in a number of
predefined QoS levels.

Another interesting class of applications being executed in clouds consists of batch,
non-interactive applications having a limited runtime. Research studies focused on per-
formance modelling specific types of batch applications such as bag-of-tasks [119] and
MapReduce [120, 121] applications. They automatically derive based on the performance
of a subset of their tasks, a resource scaling strategy to satisfy certain time and cost con-
straints. Oprescu et al. [119] propose a scheduler for executing bag-of-tasks applications
in heterogeneous clouds within a user-given budget and without apriori knowledge on the
task runtimes. It however assumes there is a form of task runtime distribution and uses
stochastic methods to determine it at runtime.

Table 2.1 briefly presents several recent research works for modelling the performance
of the two classes of applications according to the criteria defined in 2.2.1. Many of them
rely on profiling instance types to identify their performance capabilities and use these
profiles to make a schedule that meets constraints as minimizing execution cost within a
given deadline, minimize cost while considering a specific level of QoS or minimize runtime
within a given budget. Current performance modelling studies focus on specific classes of
applications using heterogeneous resources limited to a small number of instance types.
Moreover, the parameters of the performance model usually consists of an aggregation of
properties of the programming model the application implements and parameters of the
instance type’s profile.

In conclusion, we have not found a single method that fully satisfies all the requirements
defined in 2.2.1 and, therefore, we need better techniques such as the ones presented in
this dissertation.

2.2.4 Conclusion

Current PaaS systems do not offer any support in making a good choice of heteroge-
neous resources when executing applications. This is an important issue becoming more
prominent with the increasing heterogeneity of cloud infrastructures which also drives out
the diversification of applications. Enabling control over performance-cost trade-offs is a
desirable PaaS functionality which would simplify and assist in making a good resource
selection which satisfies user expectations.

Therefore, we propose as our second contribution a solution for selecting heteroge-
neous resources to enable cost-performance trade-offs to run arbitrary applications. This
contribution is presented in Chapter 4.

34 CHAPTER 2. BACKGROUND

T
ab

le
2.

1:
A

su
m

m
ar

y
of

re
la

te
d

w
or

k
.

R
es

ea
rc

h
W

or
k
s

A
p

p
li

ca
ti

on
s

H
et

er
og

en
eo

u
s

re
-

so
u

rc
es

U
se

r
eff

or
t

M
o
d

el
li

n
g

ov
er

h
ea

d
V

ar
ia

b
le

in
p

u
t

si
ze

s
M

o
d

el
li

n
g

O
b

je
ct

iv
e

[1
04

],
[1

05
]

w
eb

n
o

h
ig

h
n

o
y
es

(t
im

e-
va

ry
in

g
w

or
k
lo

ad
)

(u
se

r-
d

efi
n

ed
m

et
ri

c)
-b

a
se

d
sc

a
li

n
g

[1
06

]
w

eb
v
er

y
li
m

it
ed

h
ig

h
n

o
y
es

(t
im

e-
va

ry
in

g
w

or
k
lo

ad
)

(u
se

r-
d

efi
n

ed
m

et
ri

c)
-b

a
se

d
sc

a
li

n
g

D
ej

aV
u

[1
16

]
w

eb
n

o
h

ig
h

fa
ir

y
es

(t
im

e-
va

ry
in

g
w

or
k
lo

ad
)

M
in

im
iz

e
p

ro
v
is

io
n

in
g

co
st

B
aT

s
[1

19
]

B
ag

-o
f-

T
as

k
s

y
es

(p
re

d
efi

n
ed

in
st

an
ce

ty
p

es
)

v
er

y
lo

w
n

o
y
es

B
u

d
g
et

co
n

st
ra

in
ed

ex
ec

u
ti

o
n

[1
18

]
w

eb
y
es

(m
ix

of
p

re
-

d
efi

n
ed

in
st

an
ce

ty
p

es
)

-
-

y
es

(t
im

e-
va

ry
in

g
w

or
k
lo

ad
)

S
a
ti

sf
y

se
le

ct
ed

le
ve

l
o
f

Q
o
S

re
q
u

ir
e-

m
en

ts

[1
21

]
M

ap
R

ed
u

ce
,

M
on

te
C

ar
lo

si
m

u
la

ti
on

s

y
es

(d
iff

er
en

t
in

-
st

an
ce

ty
p

es
)

-
fa

ir
y
es

C
o
st

-P
er

fo
rm

a
n

ce
T

ra
d

e-
o
ff

s

[1
22

]
M

ap
R

ed
u

ce
y
es

(m
ix

of
d

if
-

fe
re

n
t

in
st

an
ce

ty
p

es
)

-
-

y
es

C
o
st

-P
er

fo
rm

a
n

ce
T

ra
d

e-
o
ff

s

S
O

M
P

I[
12

3]
,

[1
24

]
M

P
I

n
o

(S
p

ot
In

-
st

an
ce

s)
;

-
-

n
o

M
in

im
iz

e
ex

ec
u

ti
o
n

co
st

w
it

h
d

ea
d

-
li

n
e

co
n

st
ra

in
ts

Chapter 3

FPGA Virtualization

Contents

3.1 State of the Art . 38

3.2 FPGA Virtualization . 39

3.2.1 The FPGA-Server Appliance . 39

3.2.2 Resource Management . 40

3.2.3 FPGA Groups . 40

3.2.4 Discussion . 42

3.3 Elasticity and Autoscaling . 43

3.3.1 Elasticity of Virtual FPGAs . 43

3.3.2 Autoscaling of Virtual FPGAs 43

3.4 Evaluation . 45

3.4.1 Virtualization Overhead . 46

3.4.2 FPGA Group Elasticity . 47

3.4.3 FPGA Group Autoscaling . 48

3.5 Conclusion . 51

The work described in this chapter was done during a 6-months internship at Maxeler Technologies
under the guidance of Peter Sanders and has been submitted for publication.

35

36 CHAPTER 3. FPGA VIRTUALIZATION

Many efforts have been made on researching and developing virtualization technologies
for different resources such as CPU, memory, disk, network and storage in order to maxi-
mize their utilization. However, the increasing computation requirements now lead to the
integration in cloud infrastructures of new resources such as GPUs and FPGAs [1][2]. In
particular, while many research works focused on GPU virtualization, FPGAs have only
recently started to draw more attention as promising cloud resources for high-performance
computations. They can offer invaluable computational performance for many compute-
intensive algorithms. In particular, FPGAs have become increasingly popular within the
high-performance computing community for their excellent computation density, perfor-
mance/price and performance/energy ratios [125]. For instance, FPGAs are 40 times faster
than CPUs at processing some of Microsoft Bing’s algorithms [126]. FPGAs are commonly
used in domains a diverse as financial market data processing [127], signal processing [128],
and DNA sequence alignment [129].

Virtualization of FPGAs is becoming a hot research topic for the future datacenters
as Intel claims that in the next few years up to 30% of the servers in the datacenters may
host an FPGA. Therefore, integrating FPGAs in clouds can enable public access to this
increasingly popular technology and will offer opportunities to increase their utilization
by sharing them between tenants. This may justify the relatively high purchase and
administration costs of such devices. However, maximizing utilization may be difficult for
many applications whose computation needs are well below the capacity of one FPGA, or
whose workload intensity significantly varies over time. The owners of such applications
are therefore likely to ignore the benefits of FPGAs and prefer less efficient but more
flexible solutions.

We claim that making FPGAs available in a cloud environment would lower the bar-
rier and make them attractive to new classes of applications. For example, FPGAs can
be programmed to execute the AdPredictor click-through rate prediction algorithm [130]
orders of magnitude faster than its counterpart implementations based on CPUs [131]. A
personalized advertisement service using this algorithm could exploit this performance to
process incoming new facts in real-time to continuously adapt its recommendations to any
change in user behavior. However, simply providing entire physical FPGAs attached to a
virtual machine instance (similar to the GPU-enabled instance types proposed by Amazon
Web Services) would not be sufficient, as the workload of a personalized advertisement
service may vary considerably over time. Maximizing the FPGA utilization therefore re-
quires one to deliver elastic processing capacities ranging from fractions of a single device’s
capability to that of multiple devices merged together.

Turning complex FPGA devices into easy-to-use virtual cloud resources requires one
to address two main issues. First, programming FPGAs requires skills and expertise.
FPGAs are essentially a set of logical gates (AND, OR, NOT) which can be dynamically
wired programmatically. The best performance is obtained when the FPGA design closely
matches the data-flow logic of the program itself, following a pipelined architecture. Such
circuit designs are typically compiled from high-level programming languages, but this
process still requires specific skills and experience [74]. While such difficulties are not a
major issue for large organizations willing to invest massively in FPGA technologies, they
can be a significant hurdle for other users.

The second issue is the lack of satisfactory techniques for virtualizing FPGAs. Current
solutions are based either on statically partitioning the gate array between multiple appli-
cations (i.e., sharing the FPGA in space), or on naive context switching (i.e., sharing the
FPGA in time). As extensively discussed in Section 3.1, both techniques exhibit signifi-
cant problems: sharing in space implies that each application must be implemented with

37

a smaller number of digital gates, thereby negatively impacting performance. Conversely,
naive time sharing incurs prohibitive context-switching costs, as reconfiguring an FPGA
from one circuit design to another may take in the order of a couple of seconds.

To become fully integrated as regular cloud resources, virtual FPGAs should exhibit
the following properties:

Management. Physical FPGAs should expose an abstract interface that allows them to
be actively managed by the cloud platform, including tasks that deal with reserva-
tion and deallocation, deployment and execution, as well as providing monitoring
information about their utilization.

Programmability. Once FPGAs have been provisioned to cloud tenants, they should be
programmable to tailor their application needs, similar to CPU compute resources.

Sharing. Like other types of cloud resources, FPGAs should be virtualized, allowing
multiple instances of the same physical device to be used as isolated resources, in
order to maximize resource utilization and the availability of resources.

Accessibility. To facilitate sharing, FPGAs should not only be made available to virtual
machines executing on the same host. Rather, they should be organized as a pool
of resources accessible from any host.

Performance. To retain the high performance/price ratio of physical FPGAs, the per-
formance overhead of FPGA virtualization should remain minimal.

High utilization. When multiple virtual FPGAs compete for a limited set of physical
resources, the processing capacity of physical FPGAs should be dynamically assigned
to the virtual FPGAs which need it the most.

Isolation. Sharing resources requires that each resource instance is completely isolated
from each other, not allowing tenants to access each other’s data through the shared
device.

We propose a new virtualization technique for FPGAs called FPGA groups. An FPGA
group is composed of one or more physical FPGAs which are configured with the exact
same circuit design. By load-balancing incoming execution requests between its members,
an FPGA group can be considered by its clients as a virtual FPGA with aggregates the
computational capacity of multiple physical FPGAs. FPGA groups are elastic, as one can
easily add or remove physical devices to/from a group. An FPGA group may, for example,
be created by a cloud tenant whose computational needs exceed the capacity of a single
FPGA.

FPGA groups may also be shared among multiple tenants who wish to use the same
circuit design. Although this condition is very unlikely in the case where tenants compile
their own circuit designs from custom code, we claim it is realistic in the case of circuit
designs chosen from a standard library. Such a library would typically contain highly-
optimized circuits for common types of functions in domains such as data analysis (with
functions such as regression, correlation and clustering), multimedia (with functions such
as video encoding and fast Fourier transform), and machine learning (with functions for
Bayesian and neural networks).

Finally, multiple FPGA groups may also compete for the use of a limited set of physical
devices. In this case, we present an autoscaling algorithm which dynamically assigns
FPGAs to FPGA groups. This algorithm maximizes FPGA utilization (which improves

38 CHAPTER 3. FPGA VIRTUALIZATION

Table 3.1: A summary of related work.

Approach
Accelerator

type
Sharing method Accessibility

Sharing
type

Amazon EC2 [67] GPGPU None (PCI passthrough) Host Many-to-one
GPUvm [68] GPGPU Paravirtualization Host Many-to-one
pvFPGA [69] FPGA Paravirtualization Host Many-to-one
vCUDA [70], gVirtuS [71] GPGPU API remoting Host Many-to-one
rCUDA [132], DS-CUDA [133] GPGPU API remoting Network Many-to-one
Byma et al [85], Chen et al [134] FPGA Partial reconfiguration Host Many-to-one
Shared FPGA groups FPGA Time-Sharing Network Many-to-many

the cloud provider’s revenues), while reducing individual task execution times in most
cases.

Our experiments show that FPGA groups incur a low overhead in the order of 0.09 ms
per submitted task, while effectively aggregating the processing capacity of multiple FPGAs.
When faced with a challenging workload, our autoscaling algorithm increases resource uti-
lization from 52% to 61% compared to a static resource allocation, while reducing the
average task execution latency by 61%.

This chapter is organized as follows. Section 3.1 introduces the background and related
work. Section 3.2 presents the design of FPGA groups, and Section 3.3 discusses elasticity
and autoscaling. Finally, Section 4.5 evaluates our work and Section 3.5 concludes.

3.1 State of the Art

Allowing cloud tenants to reserve fractions of an FPGA’s processing capacity requires a
cloud operator to share FPGA devices among multiple tenants. Most of the research on
accelerator virtualization is focused on the many-to-one solution where several applications
share a single accelerator, since the accelerator is the expensive device that needs to be
shared.

Sharing in space consists of running multiple independent FPGA designs (possibly be-
longing to different tenants) next to each other in the gate array. This is made pos-
sible by a technique called partial reconfiguration where the FPGA area is divided
in multiple regions, allowing each region to be reconfigured with a particular circuit
design [85, 134]. This approach effectively parallelizes the execution of the different
designs, and increases the device’s utilization. However, space sharing reduces the
area that is made available to host an FPGA design, which can have a considerable
performance impact because it limits the number of functional units that can work
in parallel. Sharing in space also requires some switching logic in the FPGA to route
incoming requests to the appropriate design, which can add additional overhead.

Sharing in time consists of executing a single FPGA design at any point of time, but of
switching the FPGA usage from tenant to tenant over time (similarly to operating
system process-level context switching). This approach is often overlooked in the
FPGA community due to the very high reconfiguration costs from one design to
another: a naive implementation would impose prohibitive context switching costs
in the order of a couple of seconds.

The shared FPGA groups we propose belong to the sharing-in-time category. In order
to avoid issuing costly FPGA reconfigurations each time a new task is submitted, shared
FPGA groups retain the same configuration across large numbers of task submissions,

3.2. FPGA VIRTUALIZATION 39

and incur reconfiguration costs only when an FPGA needs to removed from one group
and added to another. Apart from this infrequent operation, tasks submitted by multiple
tenants can therefore execute with no reconfiguration delay.

A summary of related work described in this section is presented in Table 3.1. These
approaches focus on many-to-one scenarios allowing multiple VMs to share a single FPGA.
To our best knowledge, our approach is the first virtualization method which also consid-
ers the one-to-many and the many-to-many situations where an application uses what it
considers to be a single (virtual) accelerator which is backed by multiple physical FPGAs.

3.2 FPGA Virtualization

A client application using FPGAs usually executes on a host that has an FPGA board
connected via a dedicated bus, such as PCI Express R©. The application must first recon-
figure the FPGA with a specific design which provides the appropriate function, and then
perform a sequence of I/O operations on the FPGA, including initializing static data on
the FPGA, streaming input data to it, and streaming results from it. The computation is
performed on the data as it flows through the logic of the FPGA design.

However, in this architecture the FPGAs are accessible only to applications running on
the host machine, which limits the number of applications that can share the FPGAs. To
support full many-to-many mapping between FPGAs and the VMs accessing them, our
solution is to co-locate a number of FPGAs in specific “FPGA-Server” appliances which
can be communicated with using the API remoting technique over an Infiniband network.
This solution allows the client applications to run on commercial servers and use FPGAs
where necessary on the FPGA-Server appliance.

3.2.1 The FPGA-Server Appliance

Figure 3.1 provides an overview of an FPGA-Server. In this setup, tasks and results are
sent to the appliance across an Infiniband network. This network technology is particularly
suitable for such usage thanks to its low packet latency, and RDMA support which avoids
unnecessary data copying within the FPGA-Server.

The switch fabric of the FPGA-Server manages the arrival and execution of tasks on
the appropriate FPGA. Although it would seem natural to implement it in software, and
to execute it in a standard processor within the FPGA-Server device, such design is likely
to incur in significant performance overheads without RDMA support [135, 136]. Instead,
we decided to implement the switch fabric directly in hardware. As the FPGA-Server is
only concerned with the efficient execution of tasks on FPGAs, it can be designed solely
for this purpose so its performance is not be impacted by the side effects of running the
application’s CPU code.

We envisage that a cloud infrastructure supporting FPGAs in a multi-tenant envi-
ronment will consist of multiple FPGA-Server appliances interconnected with (some of)
the CPU machines using Infiniband networks. Each FPGA-Server provides a number of
FPGA devices accessible to any CPU client machine via the Infiniband network.

Our FPGA-Server appliances include eight FPGAs — each equipped with 48 GB of
RAM — and two Infiniband interfaces to overcome any bandwidth limitation of the In-
finiband connection.

40 CHAPTER 3. FPGA VIRTUALIZATION

RAM
48GB

FPGA

RAM
48GB

FPGA

RAM
48GB

FPGA
...

In
fin

ib
a n

d
ne

tw
or

k

Switch
fabric

Figure 3.1: An FPGA-Server with eight FPGAs and two Infiniband interfaces.

3.2.2 Resource Management

FPGA-Servers and physical FPGAs are passive hardware devices. They have no oper-
ating system nor embedded software that can handle even basic resource management
operations such as allocating/deallocating FPGAs, sharing them between applications,
and establishing a connection with authorized client programs.

These operations are handled by a software component called the Orchestrator, as
shown in Figure 3.2. The Orchestrator runs in a regular server machine connected to the
same Infiniband network as the FPGA-Servers and the client machines. Similar to cloud
resource manager services such as OpenStack Nova, the Orchestrator is in charge of main-
taining the reservation state of each FPGA, including whether it is currently reserved and
by which tenant. When a client reserves one or more (physical) FPGAs, the Orchestrator
chooses available FPGAs, updates their reservation state, and returns a handle to the
client containing the address of the FPGA-Server it belongs to and a local identifier. The
Orchestrator is also in charge of managing the FPGA groups, as we discuss next.

3.2.3 FPGA Groups

A client application which requires the combined processing capacity of multiple FPGAs
can obviously reserve the devices it needs, configure all FPGAs with the same design, and
load-balance its task execution requests across them. However, this introduces complexity
in the application as it would need to decide how many FPGAs to request and then
load balance the tasks across those FPGAs. Sharing these FPGAs across multiple client
machines is even more challenging.

We propose a virtualization infrastructure using so-called FPGA groups. An FPGA
group presents itself to an application as a single virtualized FPGA. However this virtual
computational resource can be backed by a pool of physical FPGAs that perform the actual
computation. All the FPGAs within the group are configured with the same hardware
design. The client application submits tasks to the virtual FPGA in exactly the same way
it would of a single physical FPGA.

As shown in Figure 3.2, in our current implementation, an FPGA group resides entirely
within a single FPGA-Server. When the Orchestrator receives a request to create a new

3.2. FPGA VIRTUALIZATION 41

Figure 3.2: A simplified system architecture with two FPGA-Server appliances on the
right-hand side and three application VMs on the left-hand side. Application A is using
the function f() provided by the an FPGA group composed of five physical FPGAs.
Applications B and C are sharing the FPGA group supplying the function g(), which is
composed of three physical FPGAs. The figure also shows the Orchestrator and Autoscaler
management components. All the components are connected with an Infiniband network.

group, it allocates the required number of FPGAs within one FPGA-Server. It then sets
up a new receive (Rx) buffer to hold the arriving tasks requests and a number of queues
equal to the number of physical FPGAs in the FPGA-Server (regardless of the number
of FPGAs assigned to this group). A new set of Rx buffer and queues is created each
time a new client application wants to use the FPGA group, and deleted after the client
application terminates. For example, in Figure 3.2, the FPGA group holding function g()
is shared between application B and application C; each application access its own Rx
buffer and queues in the FPGA server.

On the application side the group is represented as a fixed-size in-flight queue which
holds knowledge of all the tasks that are being processed on the FPGA-Server. There is
also a wait queue which stores the waiting tasks and is not bounded in size.

We carefully designed this organization to minimize the task-submission overhead.
Each application can submit its own tasks from the client-side wait queue to the group-side
queues with no interference with other clients. When a task arrives in the FPGA-Server’s
Rx buffer, the FPGA-Server places the tasks into the task queue with the shortest length.
The request is then placed into the task queue with the shortest length.

Creating as many task queues as there are FPGAs in the FPGA-Server implies that
the number of task queues is always greater or equal to the number of FPGAs in a group.
This allows (as we discuss in the next section) to minimize the time taken to dynamically
scale the group at runtime. When a queue has at least one task to execute, it attempts
to lock an FPGA from the pool of FPGAs in the group. When a lock has been obtained,

42 CHAPTER 3. FPGA VIRTUALIZATION

the task is executed on the corresponding FPGA. After execution, the FPGA is unlocked
and the task result is sent back to the application. Thus, each queue has a simple and
sequential behavior. Note that tasks in the same task queue do not necessarily execute on
the same FPGA.

An additional benefit of creating a separate Rx buffer per client application is that it
makes it easy to revoke an application’s access to the FPGA group, for example if the
tenant decides to stop using a shared FPGA group.

3.2.4 Discussion

We now discuss a number of specific issues about virtual FPGAs.

Memory isolation. One important issue for virtual FPGAs is memory isolation between
multiple independent tasks running simultaneously in the same FPGA group, but
potentially belonging to different tenants. FPGAs do not have Memory Management
Units (MMUs) nor kernel/userspace separation, which makes it impossible for them
to page memory the same way CPU-based servers do. When an FPGA group is
used by a single user (e.g., to serve tasks issued by an elastic set of VMs), the FPGA
group will consider all incoming tasks as if they had been issued by a single VM. In
multi-tenant scenarios, our system currently does not address isolation issues. As
a consequence, we restrict this multi-tenant scenario to the use of stateless FPGA
designs such as signal processing and video encoding.

Inter-task dependencies. We assumed so far that tasks are independent from each
other: this allows us to execute incoming tasks in a worker thread-pool pattern.
However, one may for example want to stream large amounts of data and to perform
statistical analysis across multiple tasks. To address these issues, a client can send a
pseudo-task to the FPGA group which performs a ‘lock” function. This then reserves
a queue and its associated FPGA exclusively for this client until the ‘unlock” function
is sent. Obviously, we can lock only a finite number of concurrent times – i.e., the
number of FPGAs.

Orchestrator scalability. Although we represented the Orchestrator (and the Autoscaler
introduced in the next section) as a single server in our architecture, they maintain
very simple state which may be stored in a fault-tolerant key-value store: for each
FPGA group they essentially store a copy of the circuit design (which represents
about 40 MB per design) and the list of FPGAs which are currently part of the
group. This allows for easy replication and/or partitioning across the data-center.
In addition, any temporary unavailability of the Orchestrator would only impair the
ability to start/delete/resize FPGA groups, without affecting the availability of the
existing FPGA groups, or their functionality.

Scaling an FPGA group beyond a single FPGA-Server. There is no fundamental
reason why FPGA groups cannot span more than one FPGA-Server. This is essen-
tially a limitation of our current implementation: spreading FPGA groups across
multiple servers would simply require an additional load-balancing mechanism at
the client side, which implies that the client-side library must receive notifications
upon every update in the list of FPGA-Servers belonging to a group. This feature
is currently under development.

3.3. ELASTICITY AND AUTOSCALING 43

3.3 Elasticity and Autoscaling

What has been described so far uses a fixed number of physical FPGAs in each FPGA
group. However this virtualization structure allows the easy addition and removal of
FPGAs from a group without any disruption to executing tasks or any interaction with
the client application. We discuss FPGA group elasticity first, then present our algorithms
for automatically controlling FPGA group sizes to maximize resource utilization.

3.3.1 Elasticity of Virtual FPGAs

The design of FPGA groups makes it easy to add or remove FPGAs to/from an FPGA
group located in the same FPGA-Server. All that has to be done is reconfigure the FPGA
with the appropriate design and update the load-balancing information in the task queues
at the server side. The resized group still presents itself to an application as a single
virtualized FPGA, however this virtual computational resource has a varying number of
physical FPGAs that will perform the actual computation.

This elasticity allows a cloud provider to place multiple FPGA groups on the same
FPGA-Server and dynamically reassign physical FPGAs to groups according to the de-
mand each group is experiencing, similar to the way hypervisors can dynamically reallocate
the CPU shares granted to virtual CPUs. This automatic elasticity is managed by a soft-
ware component called the Autoscaler, as shown in Figure 3.2.

3.3.2 Autoscaling of Virtual FPGAs

The workload incurred by FPGA groups may significantly vary over time. Such varia-
tions may be caused by fluctuations in the workload experienced by the groups’ client
applications themselves, as well as the arrival or departure of client applications making
use of each group. Increasing the number of applications using the same group raises the
contention of the FPGAs in the group and consequently it affects the performance of indi-
vidual applications. The resource utilization of each group is monitored by the Autoscaler
which takes FPGAs from under-utilized groups and attaches them to groups with a higher
utilization.

The aim of the autoscaling algorithm is to maximize the utilization of the infrastructure
while improving the overall application completion time. Therefore, more applications get
access to the FPGAs, which in turn is also beneficial for the cloud provider.

The Autoscaler periodically computes the average task runtime for each FPGA group
(defined as the sum of the queuing time and the processing time). It then resizes the groups
to minimize the average runtime across all groups which share the same FPGA-Server.

Note that resizing FPGA groups is an expensive operation, as it requires to reconfigure
one or more FPGAs with a new hardware design. To avoid spending more time reconfig-
uring FPGAs than using them for processing incoming tasks, the periodicity (currently
set by the adminstrators) at which group size is updated should be at least an order of
magnitude greater than the reconfiguration time, which we have observed to be in the
order of a few seconds in our appliances (see Section 4.5).

When the Autoscaler is triggered, it first computes the total queue length per client
application and per FPGA group. A group with empty task queues is scaled down to
the minimum working size of one FPGA, allowing other groups with higher workloads to
utilize the idle FPGAs. When not enough FPGAs are available to satisfy all the demands,
the Autoscaler balances the groups by assigning FPGAs in proportion to their workloads.

44 CHAPTER 3. FPGA VIRTUALIZATION

t1

t2 t3

Client
2

Client
3

Client
1

r 1 r 3r 2

G1 G2FPGA FPGA FPGA FPGA FPGA FPGA

Figure 3.3: Two FPGA groups receiving tasks. Group G1 contains four FPGAs and is
servicing tasks from two client applications. Group G2 contains two FPGAs and services
tasks from one application. The runtime of all outstanding tasks is rGi and the task time
for each client application is ti.

Figure 3.3 shows the metrics of interest in FPGA group scaling. Tasks from applica-
tions can have a different runtime ti. We define T as the total runtime of all tasks in an
application’s queue Q corresponding to a group G:

T = t× size(Q) (3.1)

The total processing time for all tasks submitted to a group G is the sum of the total
processing time of all the queues in the group.

RG =
∑

Ti (3.2)

The objective of the autoscaler is to balance the overall completion times for the n
groups sharing FPGAs of the same FPGA-Server. This is achieved by minimizing the
mean of absolute values of RGi differences:

minimize

n∑
i=1

n∑
j=1

| RGi −RGj |

n2
(3.3)

Solving this optimization problem requires knowing the size of the queues using a
group and the runtime t of every task. The information concerning the number of tasks
in the queue can be retrieved periodically from the Orchestrator. On the other hand,
the runtime of a task is unknown in the system. In order to determine it we rely on
the periodical measurements the Autoscaler is retrieving from the Orchestrator. These
measurements express how many tasks of each type have been executed in the measuring
interval. Aggregating this information for several measurements helps in building a linear
equation system where the unknown variables are the runtimes of tasks corresponding
to the queues connected to a FPGA group and the coefficients are the number of tasks
executed in one measurement interval.

The resulting system for one group is the following:

3.4. EVALUATION 45

Algorithm 1 Autoscaling Algorithm

Input: Groups G = {G1, G2, . . . , Gn}
Output: Group sizes Snew

1: I = scaling interval (e.g. 10s)
2: S ← {S1, S2, . . . , Sn} where Si is the current size of Gi ∈ G
3: initialize Snew = {0, 0, · · · , 0}
4: for i = 1 to |G| do
5: A ← {A1, A2, . . . , An} number of executed tasks for each queue of group Gi in the last

measurement interval I
6: T ← {T1, T2, . . . , Tn} total runtime estimates for Ai on Gi of size Si using NNLS
7: t← {Tj/Si} for j ∈ {1 . . . n} runtime estimate of Tj on single FPGA
8: TW ← tasks waiting to be executed on Gi

9: Ri ←
∑
TW × t required processing time for Gi

10: Snew ← {
Ri×

∑n
j=0 Sj∑n

j=0 Rj
} for i ∈ {1 . . . n}

11: return Snew

A11 × t1 + A12 × t2 + · · · + A1n × tn = I

A21 × t1 + A22 × t2 + · · · + A2n × tn = I

· · ·
Am1 × t1 + Am2 × t2 + · · · + Amn × tn = I

(3.4)

where:
n = number of applications using the group;
m = number of past measurements of task execution;
I = measuring interval;
ti = task runtime corresponding to queue i;
Aij = number of executed tasks of type j in the interval i

Note that the Autoscaler builds a system for each group. In order to solve the sys-
tem and calculate the runtimes ti we apply a non-negative least-squares (NNLS) algo-
rithm [137]: given an m × n matrix A and an m-vector I, the algorithm computes an
n-vector T that solves the least squares problem A× T = I , subject to T ≥ 0.

The solution of the linear system provides an approximation of the task runtimes
which are then used in calculating the total processing time required of a group. Using
this information the Autoscaler assigns an FPGA share proportional to the demand on
each group. A simplified view of the scaling algorithm is presented in Algorithm 1.

This algorithm tries to treat all applications as fairly as possible in order to minimize
the overall runtime of the current workload. An extension to this work might rather
prioritize certain applications that are considered more valuable.

3.4 Evaluation

We now evaluate the performance of FPGA groups considering two perspectives: (i) the
cloud provider’s interest to maximize the utilization of its infrastructure and to accom-
modate more client applications in order to increase revenue; and (ii) client applications
aiming to minimize the runtime and cost of the jobs by using elastic virtual FPGAs.

Our experiments are based on a single FPGA-Server equipped with eight FPGAs and
two Infiniband interfaces. In our experiments, the average time to configure the FPGA
when resizing a group is 3.78 s± 0.13, but the actual time for moving an FPGA from one

46 CHAPTER 3. FPGA VIRTUALIZATION

0 100 200 300 400 500 600
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

L
at

en
cy

(m
s)

Physical FPGA

V irtual FPGA

(a) Task execution delays

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

0

1

2

3

4

5

6

P
ro

ba
bi

lit
y

de
ns

it
y

0.78

0.87

0.33

Task
runtime

Physical FPGA

V irtual FPGA

(b) Statistical distribution of task execution delays

Figure 3.4: FPGA virtualization overhead.

group to another is slightly larger because of the need to wait until currently-running tasks
have finished executing. The Autoscaler is configured to re-evaluate the FPGA group sizes
every 10 seconds. An additional server machine submits tasks to the FPGAs.

3.4.1 Virtualization Overhead

We first evaluate the performance overhead due to virtualization. To do this, we submit a
simple task workload to a single FPGA. We chose the workload so that it does not overload
the FPGAs: the client issues one task requiring 0.33 ms every second. We compare the task
execution latency when the application addresses a single non-virtualized FPGA (without
FPGA groups) and a virtualized FPGA group composed of a single FPGA.

The results are shown in Figure 3.4. We can see that, even in the fastest case, the
client-side task submission and network transfers between the client machine and the
FPGA add a total execution latency in the order of 0.45 ms. This is the reason why
FPGA programmers typically submit large batches of task execution requests together:

3.4. EVALUATION 47

0 1 2 3 4 5 6 7 8
FPGA Group Size

10−1

100

101

102

103

A
ve

ra
ge

L
at

en
cy

(m
s)

1500 tasks/s

3000 tasks/s

6000 tasks/s

Figure 3.5: Effects of FPGA group elasticity.

this incurs the network overhead only once for the whole batch rather than once for every
task.

We can also see the performance overhead due to virtualization: the latency of tasks
submitted to the virtual FPGA is on average 0.09 ms greater than when submitted to the
physical FPGA. This difference is due to the additional queues introduced by FPGA
groups. We can however note that virtualization does not increase the variability of
execution latencies compared to a non-virtualized scenario.

3.4.2 FPGA Group Elasticity

We now turn to evaluating the effectiveness of FGPA group elasticity to handle large task
execution workloads. Here, we issued a constant load of 1500 tasks/second, 3000 tasks/second
or 6000 tasks/second to FPGA groups of various sizes. Each task has an execution time
on the FPGA of 1 ms. Each workload lasted 300 seconds.

Figure 3.5 shows the effect of varying the FPGA group sizes when handling these
workloads. The smaller workload (1500 tasks/second) can in principle be handled using
only two FPGAs. We can see that, when using only one FPGA, task execution requests
pile up in the queues. As a result, execution latencies are very high, and also show very
high variability. However, with a group of size 2, the task execution latency decreases to
roughly 0.64 ms, with almost no variability. When increasing the group size further, the
average task execution latency decreases even further down to 0.23 ms.

We can observe similar behavior from the more challenging workloads: whenever the
FPGA group is too small to handle the incoming stream of task execution requests, the
task execution latency is very high, with very large standard deviation. As soon as the
group becomes sufficiently large to handle the tasks, latencies decrease drastically with
very low standard deviation.

This demonstrates that FPGA groups can actually aggregate the processing capacity
of multiple physical FPGAs. Varying the group size effectively allows one to control the

48 CHAPTER 3. FPGA VIRTUALIZATION

capacity of the virtual FPGA, while keeping these operations totally invisible for the client
application.

3.4.3 FPGA Group Autoscaling

We now turn to evaluating the FPGA group autoscaling algorithm. To this extent, we de-
fined three synthetic applications that can be executed using FPGA groups which compete
for resource usage:

Application A consists of tasks which require 0.33 ms of execution time. An example
of such a task is a Fast Fourier Transform operated over a buffer of 262,144 double-
precision values. To maximize the execution efficiency, tasks are submitted in batches
where each batch contains 300 tasks. For simplicity, we implemented Application A
as a simple sleep function.

Application B consists of longer tasks which require 1 ms of execution time. Here as
well, tasks are sent by batches of 300 tasks.

Application C consists of long-running tasks which require 100 ms of execution time.
Tasks are sent by batches of 3 tasks.

Figures 3.6 and 3.7 compare the behavior and performance of static-size and autoscaled
FPGA groups based on two workload scenarios. For both figures the static-size groups
were provisioned with two FPGAs for application A, four for application B, and two for
application C. We chose these numbers such that the group sizes would be proportional
to the total workload execution time of each application.

Figure 3.6 shows a scenario with a relatively light workload where the FPGA server has
more than enough resources to process all incoming requests, despite workload variations
in applications A, B and C (depicted in the top part of the figure). In this situation, the
static FPGA allocation reaches an average resource utilization of 32%, while keeping low
individual batch execution latencies (on average 0.43 s per batch).

In this scenario where no group resizing is necessary, the autoscaling system incurs the
overhead of FPGA group reconfiguration while having nothing to gain from this operation.
It would be very easy to adjust Algorithm 1 so that it refrains from any resizing operation
when all current queue lengths are small enough. We however decided to let the Autoscaler
overreact to workload variations to highlight the overhead of FPGA group reconfiguration.

The bottom half of Figure 3.6 shows the resizing decisions taken by the Autoscaler,
as well as the consequences of these decisions on resource utilization and batch execution
latency. We clearly see a spike in execution latency each time an significant resizing
operation takes place. The reason for this is threefold: first, upon any reconfiguration
there is a period of several seconds during which less FPGAs are available to process batch
execution requests; second, the FPGA group which gets shrunk may not have sufficient
resources to process its workload, so requests queue up until the next resizing operation
where the system has an opportunity to increase the group size again; and, finally, in this
particular experiment these unavoidable costs are not compensated by any benefits from
the useless rescaling operation.

Figure 3.7 shows the same system in a scenario with twice as much workload as pre-
viously. Here, the static FPGA groups cannot efficiently process all incoming requests.
In particular, application A does not have enough resources to handle its peak workload,
so batch execution latencies for application A grow substantially, up to 22 s per batch.
On the other hand, during peak activity of application A, application B underutilizes its

3.4. EVALUATION 49

2

4

6

8

10

Su
bm

it
te

d
Jo

bs
/s

ec
.

A B C

50

100

St
at

ic
G

ro
up

s
U

ti
lis

at
io

n
(%

)

32.53%±18.02

Time (s)

2

4

6

St
at

ic
G

ro
up

s
Jo

b
L

at
en

cy
(s

)

Overall average : 0.43s±0.15

50

100

E
la

st
ic

G
ro

up
s

U
ti

lis
at

io
n

(%
)

38.05%±19.12

Time (s)

2

4

6

E
la

st
ic

G
ro

up
s

Jo
b

L
at

en
cy

(s
)

Overall average : 0.59s±0.64

0 100 200 300 400 500 600
Time (s)

0

2

4

6

8

E
la

st
ic

G
ro

up
s

Si
ze

Figure 3.6: FPGA group autoscaling (low workload).

50 CHAPTER 3. FPGA VIRTUALIZATION

5

10

15

Su
bm

it
te

d
Jo

bs
/s

ec
.

A B C

50

100

St
at

ic
G

ro
up

s
U

ti
lis

at
io

n
(%

)

51.94%±23.24

Time (s)

5

10

15

20

St
at

ic
G

ro
up

s
Jo

b
L

at
en

cy
(s

)

Overall average : 6.49s±6.68

50

100

E
la

st
ic

G
ro

up
s

U
ti

lis
at

io
n

(%
)

60.91%±28.59

Time (s)

5

10

15

20

E
la

st
ic

G
ro

up
s

Jo
b

L
at

en
cy

(s
)

Overall average : 2.55s±2.76

0 100 200 300 400 500 600
Time (s)

0

2

4

6

8

E
la

st
ic

G
ro

up
s

Si
ze

Figure 3.7: FPGA group autoscaling (high workload).

3.5. CONCLUSION 51

own resources so the obvious solution is to temporarily reassign FPGAs from application
B to application A. This is exactly what the Autoscaler does in this case. As a result,
application A now shows much better performance, at the expense of slightly slowing down
application B.

Another interesting aspect can be seen in Figure 3.7 between times 150 s and 200 s.
Here, both applications A and B experience high workloads, which once put together
exceed the total processing capacity of the system. In this situation, the Autoscaler
maintains a reasonable fairness between all applications.

These experiments highlight the interest of dynamically resizing FPGA groups in sit-
uations where multiple applications compete for limited resources. On the one hand, the
cloud provider’s interest is to maximize the utilization of its infrastructure and to accom-
modate more client-applications in order to increase revenue. We can see that autoscaling
increases the average resource utilization from 52% to 61%, and manages to handle all three
workloads simultaneously using only one FPGA server. Using static groups only, the ad-
ministrator of application A would probably rather decide to reserve additional FPGAs
to handle high-workload scenarios, thereby reducing the average resource utilization.

On the other hand, cloud tenants aim to minimize the runtime of their batches, while
reducing their consumption of expensive FPGA resources. The Autoscaler reduces the
average batch execution latency by 61%, from 6.49 s to 2.55 s while using the same total
number of resources, thanks to a better usage of these resources.

3.5 Conclusion

FPGAs have the potential of complementing the current landscape of accelerator devices
for high-performance computations. When applied to suitable problems, they deliver
excellent performance, computational density and energy consumption. However, without
virtualization techniques, FPGAs remain limited to scenarios where a single entire device
is attached to one client application. Maximizing FPGA utilization in such conditions is
not always easy.

As the first contribution of this thesis, we proposed to virtualize FPGAs as a way to
increase their usage flexibility. With FPGA groups, one can create virtual FPGAs which
aggregate the processing capacity of one or more physical FPGAs. FPGA groups can
be resized manually or automatically to maximize device utilization and further improve
user’s experience. FPGA groups can be used by a single tenant, or shared between multiple
tenants. However, to isolate tenants from each other, this second scenario should be limited
to stateless FPGA designs, i.e., designs that do not keep state from one job to another.

Enjoying the performance benefits of virtual FPGAs using a pay-as-you-go model,
and without having to master their complex programming model, would arguably help
democratize FPGA-based high performance in the cloud.

52 CHAPTER 3. FPGA VIRTUALIZATION

Chapter 4

Performance Modelling

Contents

4.1 State of the Art . 55

4.2 Handling Arbitrary Applications 57

4.2.1 Describing Arbitrary Applications with Application Manifests . . 57

4.2.2 Specifying User’s Expectations with Service-Level Objectives . . 59

4.2.3 System Architecture . 59

4.2.4 Cloud Model . 60

4.3 Profiling Principles . 61

4.3.1 Assumptions . 61

4.3.2 Search Space . 62

4.3.3 Mapping Discrete Parameters . 62

4.3.4 Identifying Optimal Configurations 63

4.3.5 Profiling Policies . 63

4.4 Profiling Methods . 64

4.4.1 Blackbox profiling . 65

4.4.2 Blackbox+Whitebox profiling . 67

4.4.3 Extrapolated profiling . 69

4.5 Evaluation . 73

4.5.1 Input-Independent Methods . 74

4.5.2 Input-Dependent Search Methods 79

4.6 Conclusion . 85

Parts of this chapter were previously reported in [138].

53

54 CHAPTER 4. PERFORMANCE MODELLING

Having access to a large variety of resource configurations allows one to select the
exact amount and type of resources an application needs to run according to specific
objectives. However, selecting the right resource configurations for specific applications
and user requirements is a difficult task because of the very large space of possible resource
configurations that heterogeneous clouds provide. Moreover, users often find it very hard
to accurately estimate the resource requirements of complex applications [12].

Cloud platforms offer very little support to help users choose appropriate resources.
Autoscaling systems such as Amazon AutoScale allow users to define their own rules,
but without guiding them in writing efficient rules. Other platforms designed for online
applications usually choose a single instance type and vary only the number of instances
when the load changes. Such techniques are however not well suited for batch applications
which often cannot adjust their choice of resources during execution.

Selecting the “right” set of resources for a batch application requires a fine-grained
understanding of the relationship between a set of resources and the performance that
the application will have using these resources. This is challenging because the space of
all possible resource configurations one may choose from is usually extremely large. For
example, Amazon EC2 currently proposes 40 different instance types. An application
requiring just five nodes must therefore in principle choose one out of 405 = 102, 400, 000
possible configurations.

In a cloud computing environment, achieving the lowest possible execution time for
a batch application is not always desirable, as the fastest execution often requires using
expensive resources. Depending on the circumstances, a user may want to choose the
fastest configuration, the cheapest, or any configuration implementing a trade-off between
these two extremes.

We propose to automate the choice of resources that should be assigned to arbitrary
non-interactive applications that get executed repeatedly. Upon the first few executions of
the application, the system tries a different resource configuration for each execution. It
then uses the resulting execution times and costs to build a custom performance model for
the concerned application. Once this model has been built, cloud users can simply specify
the execution time or the financial cost they are ready to tolerate for each execution, and
let the system automatically choose the resource configuration which best satisfies this
constraint.

The main assumption facilitating this resource selection is that the execution time
and cost are deterministic with respect to a given resource configuration and input size.
Although slightly limiting, this assumption is met in many HPC applications which are
optimized to perform high-volume, repetitive tasks where successive executions process
inputs with the same size and runtime behaviour. This is the case in particular of the two
real-world applications we use in our evaluations (one in the domain of oil exploration,
the other in the domain of high-performance database maintenance). Furthermore, we
propose to address the question of applications which process inputs of varying sizes by
studying the correlation between the execution times of the different input sizes on a
resource configuration.

Allowing the automatic selection of computing resources for arbitrary batch applica-
tions requires one to address a number of challenges. First, we need to describe arbitrary
applications in such a way that a generic application manager can automate the choice
of resources that the application may use. Second, we need efficient search methods to
quickly identify the resource configurations that should be tested. Finally, we need to
generate performance models that easily allow one to choose resources according to the
performance/cost expectations of the users.

4.1. STATE OF THE ART 55

We address these challenges in the following sections as follows. In Section 4.1 we
discuss the related work. In Section 4.2, we show how to describe different types of appli-
cations in an abstract manner such that they are easily handled by a generic system. This
is followed by a description of the general architecture of such a system. In Section 4.3 we
present our general profiling approach for automating the selection of resources in hetero-
geneous clouds. In Section 4.4 we propose three complementary profiling methodologies
to automate the resource selection: Blackbox, Blackbox+Whitebox and Extrapolated pro-
filing. These methodologies aim to identify good performance-cost trade-offs for executing
applications. We evaluate how they perform in Section 4.5. Finally, in Section 4.6 we
conclude this chapter which represents the second contribution of this thesis.

4.1 State of the Art

Many efforts have been dedicated to performance modeling in HPC or cloud environments.
HPC aims at executing applications as efficiently as possible, in order to optimize a variety
of metrics such as the makespan of a set of jobs, high throughput, and low average stretch.
In consequence, performance modeling has always been a priority concern in this area [139].
HPC environments usually consist of large supercomputers where users have direct access
to the bare-metal machine. This is useful for getting the best possible performance, and
it also helps performance modeling because the computing resources often expose their
detailed hardware configuration.

HPC modeling techniques can be classified into analytical predictive methods, code
analysis and profiling [139, 140]. Analytical methods require developers to provide a model
of their application. They are potentially very accurate, but building new analytical mod-
els is labor-intensive and difficult to automate. Moreover, user estimates of application
runtimes are often highly inaccurate [12]. Code analysis automates this process, but it
usually restricts itself to coarse-grained decisions such as the choice of the best acceleration
device for optimizing performance [114]. Finally, Ipek et al. [141] proposed an automatic
profiling-based approach which consists of training artificial neural networks using per-
formance results from application executions on a target HPC platform. However, they
use this technique to study the impact of varying the input size on a fixed configuration
of resources. Moreover, it requires a very large number of executions in order to predict
application performance within 5%-7% errors. The work described in this chapter is com-
plementary to this one by studying the impact of varying the resource configuration in
order to provide different performance-cost trade-offs. Furthermore, we also make use of
the performance correlation between different input sizes to predict the behaviour on a
specific configuration.

Web Applications

In cloud environments, performance modeling was studied for a number of specific types
of applications such as Web applications. Besides the numerous techniques which dynam-
ically vary the number of identically-configured resources to follow the request workload,
one can study historical traces in order to define horizontal and vertical scaling rules to
handle various types of workloads.

Vasic et al. [116] propose to reuse optimized VM allocations in order to meet SLOs
more efficiently when workload changes, and lower the cost for the cloud provider. This
work relies on the assumption that changes in the workload of network services follow
a repeating time-based pattern. They cache the results of past VM allocation decisions

56 CHAPTER 4. PERFORMANCE MODELLING

in order to quickly reuse them when facing similar workloads. This paper reports cost
savings of up to 60% when scaling horizontally the resource configuration. They also
address vertical scaling limited to the use of only two distinct types of VM instances.

Watson et al. [142] propose a probabilistic approach for modelling the performance
of three-tier Web applications by exploiting the relationship between CPU allocation and
contention and application response time. The generated probabilistic model is used to
estimate response time distributions with a less than 6% mean absolute error. Their study
is however focused on CPU resources only while claiming the methodology to be generally
applicable to other non-CPU virtualized resources.

Jiang et al. [143] address the problem of dynamically provisioning heterogeneous re-
sources for multi-tier web applications. They model the web application as a queueing
network where each tier represents a separate queue. Then, they benchmark the perfor-
mance of newly allocated VM instances and generate a performance profile. This profile
is used to select the tier the resource should be assigned to or to adjust load-balancing to
get homogeneous performance. This work focuses on efficiently exploiting newly allocated
heterogeneous resources in order to achieve a target response time. However, they do not
specify on which basis they select the new instance type to be provisioned which is the
actual focus of our work.

Fernandez et al. [118] propose an autoscaling system implementing different scaling
policies for web applications where one may dynamically choose the best resource type
based on short-term traffic predictions. They enable users to make performance-cost trade-
offs through a number of predefined QoS levels. Each QoS level is expressed using a metal
classification scheme (gold, silver, and bronze users) where each class is backed up by
a scaling strategy operating over a number of different instance types. Therefore, the
heterogeneity of the resource configuration to be used is limited by the scaling strategy
backing up each QoS class. This makes the exploitation of a high diversity of resource
configurations difficult as it would require one to define many different QoS classes to
express the cost-performance trade-offs that different combinations of resources provide.

Bags-of-Tasks Applications

Performance modeling has been also addressed for specific types of scientific applications.
For bags-of-tasks applications, Oprescu et al. [119] propose a scheduling method for large
bags of tasks to be executed on cloud resources with different CPU performance and cost.
They rely on the fact that one can observe the statistical distribution of task execution
times, and automatically derive task scheduling strategies to execute the bag under certain
time and budget constraints. They address resource heterogeneity through the use of
machine clusters of different instance types. Contrary to this work, we do not make
assumptions on the distribution of execution times of individual tasks and consider a
single task is to be executed under user constraints. Therefore, the problem we address
becomes a resource selection problem rather than a scheduling one.

MapReduce Applications

Similar work has been done for MapReduce applications. Verma et al. [120] propose a
framework consisting of a MapReduce job profiler, a MapReduce job model and a sched-
uler. Its main purpose is to allocate the appropriate amount of resources to execute the
MapReduce job within a required deadline. Tian et al. [121] propose a regression-based
model to predict the performance of MapReduce jobs. The model parameters are extracted
from test runs. Similarly to [120], the model allows the selection of the appropriate amount

4.2. HANDLING ARBITRARY APPLICATIONS 57

of resources to execute MapReduce jobs under different time or cost constraints. However,
these works focus mainly on determining the amount of identical resources to be used in
order to perform according with a imposed budget or deadline.

Arbitrary Applications

For batch applications which do not fit the MapReduce or the bags-of-tasks models, the
only solution currently proposed by Amazon EC2 is to empirically try a variety of instance
types [5], evaluate the most important performance metrics for their application, and,
choose the instance type which works best.

“Because you can launch and terminate instances as desired, profiling and load
testing across a variety of instance types is simple and cost effective. Unlike
a traditional environment where you are locked in to a particular hardware
configuration for an extended period of time, you can easily change instance
types as your needs change. You can even profile multiple instance types as
part of your Continuous Integration process and use a different set of instance
types for each minor release.”

(Jeff Barr. Choosing the Right EC2 Instance Type for Your Application)

This is a clear incitation for cloud tenants to profile their applications using a variety of
instance types. However, Amazon does not give any hint about the way such profiling
should be organized. As discussed earlier, this is not a trivial exercise.

The purpose of this chapter is to define best practices and automated tools to facilitate
the profiling process for arbitrary cloud tenants and applications.

4.2 Handling Arbitrary Applications

Batch applications can be extremely different from each other. They may require different
sets of libraries, parameters, input/output files, etc. This is also true for the selection
of resources they may execute on: some applications expect specific type of hardware, or
constrain the number of machines they use. For example, some applications may require
the number of machines to be a power of two or they may require mutually dependent CPU
numbers and memory sizes. In order to handle such applications, a generic application
manager must provide a flexible way to describe any application with unique characteristics
and resource requirements.

To address this issue, we rely on two specification files. The Application Manifest
describes the application’s structure and constraints about the resource types it needs. It
is typically written by the application developer. On the other hand, the Service-Level
Objective describes a user’s expectations about acceptable execution times or costs, and
is thus typically written by the application user.

4.2.1 Describing Arbitrary Applications with Application Manifests

A manifest file is the specification of an application’s structure and the type of resources it
depends on to execute correctly. It describes the application input parameters, the types
of resources supported by the application, the constraints between input parameters and
resources, and the way the application can be deployed and executed on each resource type.
Figure 4.1 shows the most important parts of a manifest file represented by the description

58 CHAPTER 4. PERFORMANCE MODELLING

ApplicationName: HelloWorld

Parameters {
Parameter1 (

Name: Parameter1
Type: Integer

Values: {v1,v2,...,vn}
Default: v1

), ...

}

Resources {
Resource1 (

Type: Virtual Machine

Number: 1

Configuration: {
Cores: {1..16}
Memory: {2,4,6,8,12,16,24,48,64,96,124}

}
Role: Master

), ...

}

Figure 4.1: Application Manifest Example

ManifestUrl: www.cloud.org/../manifest

ExecutionParameters: {v1, ...}
Objective: {

Constraints: [cost <= 100]

Optimize: execution time

}

Figure 4.2: Service-Level Objective Example

of input parameters and resource requirements. A complete version of a manifest template
file is also available in Appendix A.

The manifest provides the information a generic application manager needs in order
to deploy an application and execute it on a resource configuration. Thanks to this, the
application manager can be application- and resource-agnostic.

Input Parameters

The important factors influencing the behaviour of an application on a resource configura-
tion can be expressed as input parameters. These imput parameters may impose different
execution paths inside the application structure or may point to different datasets the ap-
plication should process. For example, an application performing image compression may
get as input parameters the path to the data volume it has to proces, the compression
algorithm to apply, the quality of the compression etc.

4.2. HANDLING ARBITRARY APPLICATIONS 59

In order to model the performance of such an application, it is important to identify
these performance-critical input parameters. This has to be done by an application expert
(typically its developer). Each parameter is modeled as a (type, set-of-acceptable-values,
default-value) tuple.

Resources

The Application Manifest describes the types of resources the application needs, with their
number, configuration and role. For any type of required resource, a manifest may specify
either a fixed value, or a set of acceptable values to choose from. For instance, a sequential
application needs a single VM in order to run while a distributed application may make
use of a variable number of VMs. The Configuration attribute describes the properties
that resources may have. A computing resource may thus for example specify a number of
cores and memory size, while a storage resource may describe properties such as the disk
size and supported IOPS (Input/Output Operations Per Second).

Depending on supported functionalities of the underlying IaaS cloud, the manifest may
also specify constraints such as the network capacity between different resources. This
feature is, for example, used in the HARNESS cloud to allocate resources in locations
which match these requirements (see Chapter 5). However, as most of the IaaS clouds
do not provide yet support to reserve virtual link capacity, we focus mostly here on the
configuration of the virtual machine instances.

Finally, one may assign a Role to a resource. This allows us to describe applications
with multiple components potentially having specific requirements. For example, a mas-
ter/slave application may separately describe Master and Slave resources.

4.2.2 Specifying User’s Expectations with Service-Level Objectives

A Service-Level Objective (SLO) file describes a user’s request for executing an application.
As shown in Figure 4.2, it contains a reference to the application’s manifest, the list of
parameters that should be passed to the application, and the user’s expectations in terms
of execution time and/or cost.

Users’ expectations can take two different forms. In Figure 4.2 the user imposes a
maximum execution cost, with a secondary goal to execute the application as fast as
possible. Alternatively one could rather impose a maximum execution time, while trying
to spend as little as possible under this constraint.

The application manager uses the information provided by the SLO file to filter and
select the appropriate resource configuration for the execution of the application.

4.2.3 System Architecture

Our system architecture is depicted in Figure 4.3. A user triggers an execution of the
application by submitting an SLO and a manifest file to the application manager. The
application manager is a generic element which does not need any application-specific
information besides the application manifest and the SLO. It is in charge of choosing and
provisioning resources, deploying of the application onto these resources, launching the
execution of the application, and of measuring the execution time and implied costs.

Initially, the application manager has no knowledge about the types of resources it
should choose for a newly-submitted application. After loading the manifest and SLOs
files, in case no performance model is specified, the Controller forwards the application

60 CHAPTER 4. PERFORMANCE MODELLING

Application Manager

Dynamic Resource Scheduler

Manifest
+ SLOs

+

VM VM VM...

User

Model
(Performance, Cost)

Execute Application

Execution
Manager

Configuration
Designer Profiler

Controller

Provision Configuration

Figure 4.3: System overview

to the Profiler which executes the application repeatedly using a different resource con-
figuration every time. This profiling process continues until either a predefined number of
executions has been performed or a profiling budget has been exceeded.

The result of these executions is used to build a performance model which is sent to
the Configuration Designer. If a performance model was already specified in the manifest,
the Controller skips the Profiler and sends the application and its model directly to the
Configuration Designer. Based on this model, the Configuration Designer then selects a
configuration that satisfies the SLOs and launches the execution.

In both cases, the execution is handled by the Execution Manager which provisions the
configuration through a Dynamic Resource Scheduler and finally executes the application
on it.

Each time an application execution is triggered, the system monitors its total execution
time and cost, and learns the relation between the choices made for this execution and the
observed result:

(ExecT ime,Cost) = Runapp(Parameters,Resources)

The results generated after several executions with various resource configurations can
be plotted as shown in Figure 4.4. In this figure, each point represents the execution time
and cost that are incurred by one particular resource configuration. The figure shows the
result of an exhaustive exploration of a search space with 176 possible configurations. In
a more challenging scenario the number of configurations would be much greater, and this
type of exhaustive exploration would be practically unfeasible.

4.2.4 Cloud Model

In this work we assume a cloud infrastructure capable of dynamically creating virtual
resources based on a fine-grained description of its properties such as number of cores,
memory, core frequency etc. Such fine-grained configuration specifications are for example
supported by the OCCI standard [87].

Note that this model creates considerably larger configuration search spaces than tra-
ditional clouds which offer a handful of fixed instance types. It is therefore trivial to adapt
this work to EC2-like clouds, by simply disabling resource configurations which do not
match one of the predefined instance types.

4.3. PROFILING PRINCIPLES 61

0 1 2 3 4 5
Cost ()

0

20

40

60

80

100

120

Ex
ec

ut
io

nT
im

e
(m

in
)

2cores,24GB memory2cores,24GB memory2cores,24GB memory2cores,24GB memory2cores,24GB memory2cores,24GB memory

Figure 4.4: Exhaustive exploration of the resource configuration space

We also assume that the cloud can dynamically generate a financial cost for any re-
source type that can be requested. Our system makes no assumption about the form that
this cost model takes, and can therefore adjust to the specificities of any cloud’s pricing
model. In our experiments, however, we use a pricing model which charges resources on a
per-minute basis according to a linear model:

Cost(R) = R1 ∗ CostunitR1 +R2 ∗ CostunitR2 + ...

As an example, for a virtual machine (VM) with the configuration { N Cores, M GB
of Memory }, the cost per time unit may be calculated as:

Cost(VM) = N ∗ Cost1core +M ∗ Cost1GB

where Cost1core may vary based on the frequency, amount of cache, etc.

4.3 Profiling Principles

The main issue when building the performance model of an application is that the space
of all possible configurations is usually much too large to allow an exhaustive exploration.
We therefore need to carefully choose which configurations should be tested, such that we
identify the optimal configurations as quickly as possible.

4.3.1 Assumptions

The input of an application and the resource configuration it runs on are the main factors
influencing its execution. However, as both can have a large variety of values, exploring
the search space created by aggregating them would be extremely difficult. Therefore,
we chose to focus primarily on modelling applications whose performance is independent
from the input. This allows us to model the impact of resource variability on the their
performance. For example, an application can be executed periodically on inputs with
different content but of the same size. This is the case of the RTM application that we
target for evaluation.

62 CHAPTER 4. PERFORMANCE MODELLING

0 1

Intel-32 AMD-64
Architecture

0 1

2 4 8 16 32Memory

0 1

1 2 4 8 16Cores

Figure 4.5: Uniform distribution on the continuous interval [0, 1] for the sets of discrete
values that VM properties such as CPU architecture, number of CPU cores and memory
size may take.

However, in Section 4.4.3, we relax this initial assumption and study how to model
applications whose performance may be expressed as a function of the input data size and
the resource configuration it runs on.

4.3.2 Search Space

The search space of resource configurations to explore for an application is generated using
the application manifest. Each resource parameter which should be chosen by the platform
constitutes one dimension of the space. The number of possible configurations therefore
increases exponentially as new dimensions are added, an issue often referred to as the curse
of dimensionality.

In the example from Figure 4.1, the search space of the application has 2 dimensions
(corresponding to 16 possible numbers of cores and 11 possible memory sizes). This creates
a total of 16 × 11 = 176 possible configurations. Within these 176 configurations, only a
subset of them may offer interesting trade-offs between performance and cost.

4.3.3 Mapping Discrete Parameters

As shown in the manifest presented in the Figure 4.1, resource parameters take values
from a discrete set. This ensures an efficient exploration of the search space. For some
resource properties, assigning values that are very close from each other (e.g., by exploring
available memory in steps of 1 MB) would provide no benefit as the performance would
be largely the same.

While describing resource parameters using discrete values works well in many cases,
exploring the search space defined by “truly discrete” dimensions is more difficult. For
example, one dimension may represent the choice of a particular CPU architecture among
a list (Intel-32, AMD-64, etc.). To tackle this problem and to be able to simplify the search
process, we map all the dimensions of the search space on the continuous interval [0, 1].
For each dimension, we generate a step unit function by placing an equal weight on each
discrete value as observed in Figure 4.5. This mapping allows us to apply agnostically
different algorithms for function minimization without having to worry about the type of
the parameters.

An important aspect to be noticed is that this mapping allows us to work also on
configurations spaces consisting of predefined instance types as the ones offered by Amazon

4.3. PROFILING PRINCIPLES 63

0.5 1.0 1.5 2.0
Cost ()

0

10

20

30

40

50

60

Ex
ec

ut
io

nT
im

e
(m

in
)

Figure 4.6: Resource configuration space of a real application. The set of Pareto-optimal
configurations is shown in black.

EC2. In this scenario, the search space would contain only one dimension where each
predefined instance type is represented by a discrete value.

4.3.4 Identifying Optimal Configurations

It is interesting to notice that not all configurations provide interesting properties. Re-
gardless of the application, a user is always interested in minimizing the execution time,
the financial cost, or in finding a sweet spot between these two2.

Figure 4.6 presents the search space of a real application used later in the evaluation.
Configurations which appear at the top-right of the figure are both slow and expensive.
Such configurations can be discarded as soon as we discover another configuration which
is both faster and cheaper. The remaining configurations form the Pareto frontier of the
explored search space. The figure highlights the set of Pareto-optimal points of this ap-
plication: they all implement interesting trade-offs between performance and cost: points
on the top-left represent inexpensive-but-slow configurations, while points on the bottom-
right represent fast-but-expensive configurations.

The Pareto frontier (and the set of configurations leading to these points) forms the
performance model that the application manager uses to choose configurations satisfying
the user’s SLOs. If an SLO imposes a maximum execution time, the system discards
the Pareto configurations which are too slow, and selects the cheapest remaining one.
Conversely, if the SLO imposes a maximum cost, it discards the Pareto configurations
which are too expensive, and selects the fastest remaining one.

4.3.5 Profiling Policies

Profiling an application requires one to execute it a number of times in order to measure its
performance and cost under various resource configurations. This process may be handled
in two different ways, depending on the user’s preferences:

2An interesting extension of this work would be to consider additional evaluation metrics such as energy
consumption. This can be easily done as long as the relevant metrics are designed such that a lower value
indicates a better evaluation.

64 CHAPTER 4. PERFORMANCE MODELLING

1. The offline approach triggers artificial executions of the application whose only pur-
pose is to generate a performance model. In this case, the output of executions is
simply discarded.

2. The online approach opportunistically uses the first actual executions requested by
the user to try various resource configurations and lazily build a performance model.

Choosing one of these approaches requires the user to make a simple trade-off. In
offline profiling, the user will incur delays and costs of the profiling executions before a
performance model has been built. On the other hand, all the subsequent executions will
benefit from a complete performance model. In online profiling, the user should be aware
of the fact that the first executions may not fulfill their SLO until a performance model
has been built. On the other hand, the overall marginal cost and delays caused by the
profiling will be reduced. We evaluate the impact of this choice in Section 4.5.1.

4.4 Profiling Methods

The purpose of the profiling process is to perform a search through the space of possible
configurations and to quickly identify configurations which implement interesting per-
formance/cost trade-offs, without having to explore every configuration from the search
space. Notably, it does not only aim to find the fastest nor the cheapest configuration, but
it also aims to identify as many configurations as possible which offer interesting trade-offs
between these two extremes. However, because the search space is too large for us to
test all the resource configurations, we need heuristics that identify promising resource
configurations in a time- and cost-efficient manner.

We propose three profiling methods for modelling arbitrary applications in heteroge-
neous clouds without having prior knowledge about them. The first two methods are
designed for applications whose performance is independent of their input while the last
one addresses applications whose dependency between different input sizes is reflected in
its performance on similar resource configurations.

◦ Blackbox : this generic method is input-independent and relies only on the perfor-
mance and the cost of an execution to issue new resource configurations to test.
Being application- and resource-agnostic, it automatically profiles arbitrary cloud
applications written using any programming language or framework, and requiring
any set of cloud resources. On the other hand, it may require a large number of
iterations until good performance-cost trade-offs are discovered which makes the
profiling process long running and costly. Moreover, when a failure occurs because
of unsufficient amount of resources, it marks it as “bad” and may continue to test
other similar configurations which are very likely to fail as well. This induces an
additional cost and runtime overhead.

◦ Blackbox+Whitebox : this method is input-independent and aims to minimize the
number of iterations performed by blackbox profiling in order to reach faster to good
performance-cost trade-offs. It relies on the feedback from a “whitebox” plugin model
to drive the search towards better resource configurations. A whitebox plugin is a
specialized component that may provide useful recommendations to the blackbox
model in order to optimize the selection of resource configurations and avoid bad
configurations. As a consequence of minimizing the number of iterations and avoiding
failures, it reduces the total runtime and cost of the profiling process.

4.4. PROFILING METHODS 65

Execution time + costApplication

Input data + parameters
(provided by user)

Resource configuration

Output data

Blackbox
modeling

Choose a resource
configuration for the

next execution

Figure 4.7: Blackbox profiling.

◦ Extrapolated profiling : this input-dependent method relies on application input size
dependency to find good configurations. HPC applications regularly run for a long
period of time. This makes Blackbox and Blackbox+Whitebox profiling to have a
very long runtime and, consequently, induce a high cost overhead. However, in many
cases, it may not be necessary to let the application run for hours to produce good
insights in its performance profile. Some good insights may sometimes be obtained
using smaller inputs which produce shorter executions. Extrapolated profiling aims
to radically reduce the profiling time and cost overhead for long running applications
by making use of the correlation between a short-running benchmarking input size
and the long-running production input size that an application is executed with. It
explores the search space using the benchmarking input size which is less costly and
time-consuming and uses the correlation to predict the performance of the applica-
tions on the production input size. Besides reducing the total cost and runtime of the
profiling, it also may provide acceptable performance-cost trade-offs although they
may not be better than the ones identified with Blackbox and Blackbox+Whitebox
profiling.

We discuss each profiling methodologies in the following sections.

4.4.1 Blackbox profiling

The first input-independent profiling method we propose is entitled “Blackbox profiling”
and implements application- and resource-agnostic search strategies to identify resource
configurations providing good performance-cost trade-offs. Figure 4.7 presents the basic
workflow of this method. Its main feature is being application- and resource-agnostic and,
therefore, it operates effectively on arbitrary applications and heterogeneous clouds.

We define two generic search algorithms that can be implemented by a Blackbox pro-
filing process to explore a configuration space without any specific knowledge besides the
execution time and cost:

Uniform Search

This algorithm explores stepwise points in the resource search space to select a configura-
tion for the profiling process. As shown in Algorithm 2, the application is executed for all
combinations of stepwise resource values (lines 2-5). When executed with low exploration
steps, it may cover very well the configuration search space and eventually identify very
good performance-cost trade-offs. On the other hand, it may waste time exploring large

66 CHAPTER 4. PERFORMANCE MODELLING

Algorithm 2 Uniform Search

Input: Application A, Resources R = {R1, R2, ..., Rn}
Output: Set of configurations, their execution time and cost Sr,t,c

1: Sr,t,c ← ∅
2: for r1 = min1 to max1 by step1 do
3: for r2 = min2 to max2 by step2 do
4: ...
5: for rn = minn to maxn by stepn do
6: r ← {r1, r2, ..., rn}
7: (t, c)← execution time and cost of running A on r
8: Sr,t,c ← Sr,t,c ∪ {(r, t, c)}
9: ...

areas which are unlikely to deliver interesting performance/cost trade-offs. Therefore, low
exploration step values result in high complexity, while using high step values (to reduce
the complexity) may skip relevant configurations.

Simulated Annealing (SA)

Simulated Annealing is a well-known generic algorithm for global optimization prob-
lems [144]. It initially tries a wide variety of configurations, then gradually focuses its
search around configurations which were already found to be interesting. It relies on a
global time-varying parameter called the temperature to decrease the probability to accept
bad configurations. Accepting bad configurations is fundamental in avoiding to get stuck
in local minima.

Algorithm 3 shows the SA algorithm applied to the resource configurations. The algo-
rithm starts with a random resource configuration (line 1), and explores new configurations
in the neighborhood of the current configuration (line 5). The neighbor() function deter-
mines a new configuration by drawing random values around the current configuration
using a normal distribution determined by the temperature. ratelearn is a scale constant
for adjusting updates and upper and lower are the parameter r’s interval bounds. The
temperature decreases gradually (line 10), which means that the algorithm accepts new
configurations to explore with slowly decreasing probability (lines 8-10). Due to its conver-
gence to optimal solution in a fixed amount of time, simulated annealing quickly explores
the search space, focusing most of its efforts in the “interesting” parts of the search space.

In order for the algorithm to explore configurations that are both cost- and performance-
efficient, we evaluate each configuration based on the product between the cost and the
execution time it generates:

utility = ExecT ime× Cost

The minimization of the product requires the minimization of at least one of them, and
preferably both. Using this utility function the algorithm explores the entire Pareto fron-
tier, instead of focusing on optimizing only the execution time or the cost.

Contrary to Uniform Search, this algorithm avoids exploring areas with uninteresting
performance-cost trade-offs and reaches good configurations considerably faster.

It is important to remark there are many other optimization algorithms which might
be applied similarly such as ant colony optimization, particle swarm optimization and
genetic algorithms. It would be an interesting research direction to study and evaluate
which optimization algorithm provides the best results when applied to resource selection.

4.4. PROFILING METHODS 67

Algorithm 3 SA

Input: Application A, Resources R, Temperatures Tcooling and Tcurrent
Output: Set of configurations, their execution time and cost Sr,t,c

1: r ← {r1, r2, ..., rn} , ri is random value of resource Ri ∈ R
2: (t, c)← execution time and cost of running A with resource configuration r
3: Sr,t,c ← {(r, t, c)}
4: while Tcurrent > Tcooling do
5: rnew ← neighbor(r, Tcurrent)
6: (tnew, cnew)← execution time and cost of running A with resource configuration rnew
7: Sr,t,c ← Sr,t,c ∪ {(rnew, tnew, cnew)}
8: if ProbabilityAcceptance((t, c), (tnew, cnew), Tcurrent) > random() then
9: r, t, c← rnew, tnew, cnew

10: decrease Tcurrent

neighbor(r, Tcurrent)

1: σ ← min(sqrt(Tcurrent), (upper − lower)/(3 ∗ ratelearn))
2: updates← random.Normal(0, σ, size(r))
3: rnew ← r + updates ∗ ratelearn
4: return rnew

However, we rather decided to focus our efforts on improving profiling methods based on
resource utilization information, as we discuss next.

4.4.2 Blackbox+Whitebox profiling

Although Blackbox profiling performs without any specific knowledge, it is often a long-
running and consequently expensive process. This is caused by the large number of iter-
ations we have to perform until good resource configurations are identified. However, the
IaaS clouds may provide ways to monitor the actual utilization of a resource configura-
tion during its reservation. This allows one to retrieve the utilization of resources after
every application execution and therefore make use of this information without breaking
the agnosticity of the blackbox model. For example, if a resource (CPU, memory) had
a high utilization for a significant fraction of the execution time, then scaling up this re-
source is likely to reduce the execution time. Similarly, if the resource has been mostly
under-utilized, then scaling it down may reduce the execution cost without significantly
impacting the execution time.

We therefore propose to complement the blackbox modeling method with one or more
“whitebox” plugins. Unlike the generic blackbox method, a whitebox plugin can be spe-
cialized for a certain type of application or resource. Each whitebox plugin aims to detect
well-defined characteristics of application executions, and to provide useful “hints” when
possible to the blackbox method. It does not need to always provide useful information,
but when it does provide a hint, the requirement is that this hint should always be correct.
The integration between blackbox and whitebox methods is presented in Figure 4.8.

We propose two additional search algorithms which make use of the feedback from a
whitebox model which monitors the utilization of a resource configuration and points out
a direction to drive the search towards possibly better one. The implementation of the
whitebox method is presented in Algorithm 4. The algorithm receives the specification of
a resource configuration and, based on its utilisation data it acquires during execution, it
issues a “increase” or “decrease” action for each particular resource in the configuration. If
no action can be derived from the utilization data, the whitebox algorithm returns “none”.

68 CHAPTER 4. PERFORMANCE MODELLING

Application

Input data + parameters
(provided by user)

Resource configuration

Output data

Execution time + cost

Blackbox
modeling

Choose a resource
configuration for the

next execution

Whitebox
modeling

Resource scaling
 recommendation

Figure 4.8: Integrated Blackbox+Whitebox Modeling Method.

Algorithm 4 WhiteboxModel

Input: Resources r = {r1, r2, ..., rn}
Output: Resources r′ = {r′1, r′2, ..., r′n}
1: r′ ← {r1, r2, ..., rn}
2: for i = 1 to |r| do
3: if ri is over- or underutilized then
4: if ri is overutilized then
5: r′i ← “increase”
6: else if ri is underutilized then
7: r′i ← “decrease”
8: else
9: r′i ← “none”

Utilization-Driven

This algorithm simulates the utilization-based autoscaling systems. It iteratively refines
an initial resource configuration by monitoring the resource utilization generated by the
application. As shown in Algorithm 5, the algorithm starts with a random resource con-
figuration (lines 1-2), and following each execution it retrieves the actions the whitebox
plugin recommends to be performed (lines 8). If the whitebox plugin issues an “increase”
action, the algorithm then allocates a higher amount of this resource in the hope of deliv-
ering better performance (lines 10-11). On the other hand, if the whitebox plugin issues a
“decrease” action, the algorithm then reduces this resource amount in the hope of reduc-
ing resource costs (lines 12-13). Otherwise, it stops its exploration once there is no useful
feedback from the whitebox plugin.

This algorithm is simple and intuitive and it converges quickly to good configurations.
However, because it is highly dependant on the whitebox feedback, it may stop prematurely
whenever the whitebox plugin cannot provide any hints for improvements. This may be
interpreted as getting stuck in a local minima as the algorithm has no options to further
extend the search.

4.4. PROFILING METHODS 69

Algorithm 5 Utilization-Driven

Input: Application A, Resources R = {R1, R2, ..., Rn}
Output: Set of configurations, their execution time and cost Sr,t,c

1: r ← {r1, r2, ..., rn} where ri is random value of resource Ri ∈ R
2: Q← {r}
3: Sr,t,c ← ∅
4: while Q 6= ∅ do
5: r ← dequeue(Q)
6: (t, c)← execution time and cost of running A with resource configuration r
7: Sr,t,c ← Sr,t,c ∪ {(r, t, c)}
8: r′ ← WhiteboxModel(r)
9: for i = 1 to |r′| do

10: if r′i is “increase” then
11: r′′i ← next value of Ri (value after ri)
12: else if r′i is “decrease” then
13: r′′i ← previous value of Ri (value before ri)
14: else
15: continue
16: enqueue(Q, {r1, r2, ..., r′′i , ..., rn})

Directed Simulated Annealing

This is a variant of the simulated annealing algorithm presented previously. As shown in
Algorithm 6, the difference lies in the implementation of the neighbor() function: instead
of choosing configurations randomly around the current best one, Directed Simulated
Annealing uses resource utilization information provided by a whitebox plugin to drive
the search towards better configurations. The whitebox plugin issues hints in the form
of a request to increase or decrease a resource amount. This allows to focus the search
of optimal configurations towards resource configurations of which the application can
make good use. If a resource is under-utilized (resp. over-utilized), Directed SA increases
(resp. decreases) this resource value by a random amount. Otherwise, if the whitebox
plugin cannot offer any direction to drive the search, Directed SA updates the resource
value in any direction. This algorithm can therefore be seen as a combination of the
Utilization-Driven and the Simulated Annealing algorithms which may benefit from the
quick convergence of the Utilization-Driven and the SA capability to avoid local minima.

4.4.3 Extrapolated profiling

The integrated blackbox+whitebox profiling performs well in reducing the runtime/cost of
the profiling process. However, many HPC applications executed with production-input
sizes may have a very long indivdual execution runtime. Therefore, executing them mul-
tiple times would generate signigicant cost and runtime overheads even when applying
the blackbox+whitebox approach. Another difficulty is handling applications whose in-
put size may vary from one run to the next, since in principle the entire blackbox and
blackbox+whitebox profiling process should be redone for every new input size.

To overcome these limitations, we designed a method named “extrapolated profiling”
which relies on the assumption that the important application performance characteristics
may be observed using “benchmarking” input sizes representing a fraction of the ones used
in production. This approach performs most of the profiling phase using relatively small
benchmarking input sizes (which speeds up this part of the profiling), and then uses only
a handful of the identified resource configurations to run the production input sizes and

70 CHAPTER 4. PERFORMANCE MODELLING

Algorithm 6 NeighborDirectedSA(r, Tcurrent)

1: if Probabilitydirected < random() then
2: r′ ← WhiteboxModel(r)
3: for i = 1 to |r′| do
4: if r′i is “increase” then
5: σ ← 1− ri
6: rnewi ← ri + random.Normal(0, σ, 1)
7: else if r′i is “decrease” then
8: σ ← ri
9: rnewi

← ri + random.Normal(0, σ, 1)
10: else
11: rnewi

← ri

12: if no update has been done then
13: rnew ← neighbor(r, Tcurrent)

14: else
15: rnew ← neighbor(r, Tcurrent)

16: return rnew

generate a correlation between the runtimes. Then, it uses this correlation to extrapolate
the benchmarking model to a larger scale. An overview of its workflow is presented in
Figure 4.9.

The extrapolated profiling process consists of two main phases:

The discovery phase makes use of the blackbox+whitebox profiling method presented
above to discover a number of resource configurations by executing the application
using a (small) benchmarking input set. The aim is to characterize the general
application behavior as quickly and efficiently as possible.

The extrapolating phase aims to extrapolate the first model to production-sized input
data. It selects a small number of configurations in order to run the production input
size. The runtimes observed on the selected configurations are used to generate a
performance model. This performance model captures the relationship between the
impact of the benchmarking input and the production input on a configuration.

Once the relationship between the application execution times of benchmarking-sized
and production-sized inputs is known, we can efficiently test any new configuration using
the small benchmarking-sized input, and extrapolate the result to production-sized inputs.
The full algorithm of the Extrapolated Profiling method is presented in Algorithm 7.

Although this idea is very simple, it works surprisingly well in many scenarios. How-
ever, to turn it into a practical profiling technique, we need to face two main issues:

1. Estimating the relationship between execution times using the benchmarking and
production input sizes sometimes requires a large number of data points. When
the application’s computational complexity versus its input size is known a priori
(for example, the RTM application has perfectly linear complexity with respect to
the input size) then a small number of executions is sufficient to accurately char-
acterize the relationship. However, when the computational complexity is complex
or unknown, establishing the extrapolation function may require a large number of
executions, which defeats the purpose of extrapolated profiling. For this reason, we
restrict the use of extrapolated profiling to scenarios where the general form of the
extrapolation function is known (e.g., linear, quadratic, exponential).

4.4. PROFILING METHODS 71

Algorithm 7 Extrapolation Modeling

Input: Application A, Resources R, Benchmark Input IB , Production Input I
Output: Performance Model f
1: confsbenchmark ← Blackbox+Whitebox(IB)
2: confstest ← select 7 elements from confsbenchmark

3: confsI ← ∅
4: confsIB ← ∅
5: constraints← ∅
6: while confstest 6= ∅ do
7: C ← confstest.dequeue()
8: success, runtime,monitor ← execute(A, I, C)
9: if success then

10: confstrain.enqueue(C, runtime)
11: else
12: bottlenecks← getbottlenecksfrommonitor
13: parameters← getvariablepropertiesofC
14: if bottlenecks 6= ∅ then
15: Cnew ← copy(C)
16: for p in bottlenecks do
17: Cnew[p]← nextvalue(Interval(p))

18: success, runtime← execute(A, I, Cnew)
19: if success then
20: confsI .enqueue(Cnew, runtime)
21: constraints.enqueue(p ≥ Cnew[p])
22: else
23: go to 16

24: else
25: for p in parameters do
26: Cnew ← copy(C)
27: Cnew[p]← maxvalue(Interval(p))
28: success, runtime,monitor ← execute(A, I, Cnew)
29: if success then
30: confsI .enqueue(Cnew, runtime)
31: constraints.enqueue(p > C[p])
32: break
33: else
34: continue
35: for C in confsI do
36: if C 6∈ confsbenchmarked then
37: runtime← execute(A, IB , C)
38: confsIB .enqueue(C, runtime)
39: else
40: confsIB .enqueue(C, get runtime(C, confsbenchmarked))

41: f = fit(confsIB , confsI)
42: return f

72 CHAPTER 4. PERFORMANCE MODELLING

Profiled Configurations

Execution time
 + cost

Application

Benchmark Input
data + Parameters

Resource
configuration

Output data

Blackbox
profiling

Choose a resource
configuration for

the next execution

Phase 1

Whitebox
modeling

Reduce the
search space

of valid
configurations

Phase 2

Execution time
 + cost

Application

Production Input
data + Parameters

Resource
configuration

Output data

Modeler

 - Choose a profiled
configuration for execution
- Generate a mathematical
model

Performance Model

Figure 4.9: Extrapolated modeling method.

2. Depending on the application, in some cases a resource configuration which works
well for the benchmarking-sized input may not be sufficient to process the production-
sized input and generate a crash. This is common for example for applications whose
memory usage depends on the input data size. In such situations, we use the relevant
whitebox plugins to identify the reason for the crash and subsequently exclude all
the other configurations which are likely to exerience the same insufficient resource
problem. This issue is further discussed in the next section.

Bottleneck Detection

When dealing with variable input sizes, many of the configurations that run successfully
with the benchmarking dataset may fail when running the production-sized one. For
example, an application which loads the entire input data into memory in order to process
it, would require only a very small memory size to run the benchmarking input. However,
this memory size would obviously be insufficient when running the production input, and
may cause the execution to fail. Each such failed execution generates additional cost and
runtime to the profiling process. Therefore, once an application crashes, it is important to
detect the resource which may have caused it and avoid testing other configurations with
similar defficiencies.

Extrapolated profiling addresses this issue by inspecting the utilisation feedback from
resource managers to identify resource bottlenecks that crash the application. Once the
bottleneck resource is identified, this profiling method avoids testing configurations that
may trigger the same problem. By doing this, we minimise the number of failures and
consequently the additional runtime and cost they induce. More specifically, the Extrapo-
lated profiling selects a number of optimal and non-optimal configurations discovered using
Blackbox profiling targeting a benchmarking dataset. Then, the selected configurations
are tested with the production-sized dataset.

The resource utilization information that can be retrieved from the IaaS cloud can
provide useful hints for detecting the resources that may cause applications to crash. The

4.5. EVALUATION 73

0

20

40

60

80

100

U
ti

lis
a
ti

o
n

 (
%

)

Memory : 4096, Cores :10

Cores Memory

0 100 200 300 400 500 600 700
Runtime (s)

0

20

40

60

80

100

U
ti

lis
a
ti

o
n

 (
%

)

Memory : 8192, Cores :10

RTM crash

Figure 4.10: Bottleneck detection mechanism.

reason for such failures is usually the allocation of insufficient capacities than what the
application requires to run. By analysing the resource utilization of a failed application,
we may derive the resource whose capacity must be increased in order to have a successful
execution. An example of such a scenario is presented in Figure 4.10. The figure on top
presents the utilization feedback for a failed execution of a real application on a configura-
tion with 4 GB of memory and 10 cores. The utilization feedback shows a memory usage
growing close to 100% before the application crashes. Hence, to validate this assumption
we generate a configuration with 8 GB of memory to execute the application. As the
execution is successful, the memory proves to be the bottleneck-resource (bottom figure).

4.5 Evaluation

This evaluation of the different profiling methods is organized in two parts. First, we
evaluate and compare the search methods for applications whose runtimes are independent
of their input data. Second, we evaluate the benefits provided by the Extrapolated profiling
for applications with predictable input-determined runtime. We compare Extrapolated
profiling with the Blackbox and the Blackbox+Whitebox profiling and outline the different
trade-offs we can make for executing applications.

We base our evaluations on two real HPC applications:

• Reverse Time Migration (RTM) is a computationally intensive algorithm used in
the domain of computational seismography for creating 3D models of underground
geological structures [145]. It is typically used by oil exploration companies to repeat-
edly analyze the geology of fixed-sized areas. We use a single-node, multithreaded
implementation of this application.

• Delta Merge (DM) is a re-implementation of an important maintenance process
in the SAP HANA in-memory database [146]. This operation is used to merge a
table snapshot with subsequent update operations (which are kept separately) in

74 CHAPTER 4. PERFORMANCE MODELLING

order to generate a new snapshot. For consistency reasons the database table must
remain locked during the entire operation. It is therefore important to minimize the
execution time of Delta-Merge as much as possible.

4.5.1 Input-Independent Methods

This section evaluates the search strategies for Blackbox and Blackbox-Whitebox profil-
ing. We focus on three evaluation criteria: (i) the convergence speed of different search
strategies towards identifying the full set of Pareto-optimal configurations; (ii) the quality
of configurations we can derive from these results when facing various SLO requirements;
and (iii) the costs and delays imposed by offline vs. online profiling.

The manifests for our two applications define resource configurations between 1 and
16 CPU cores and 11 discrete values between 2 and 124 GB of memory. We simplify the
RTM case by setting a static CPU frequency of 2.2 GHz while for DM we assign 4 possible
values. This creates a relatively small search space with 172 configurations for RTM and
a much larger one for DM with 704 configurations. Figure 4.4 shows the result of this
exhaustive evaluation for RTM.

We perform all experiments using the Grid’5000 experimentation testbed [147]. For
RTM, we use machines from the “paranoia” cluster equipped with 2 Intel CPUs with
10 cores each running at 2.2 GHz, 128 GB of RAM and a 10 Gbps Ethernet connectivity.
Additional machines with different CPU frequency, number of cores and amount of memory
are used for executing the DM application.

All machines run a 64-bit Debian Squeeze 6.0 operating system (OS) with the Linux-
2.6.32-5-amd64 kernel. We use QEMU/KVM version 0.12.5 as the hypervisor. We deploy
the OpenNebula cloud infrastructure in these machines so our application manager can
request any VM configuration via the OCCI interface. We repeated all experiments three
times, and kept the average values for execution time.

Although we can use Grid’5000 at no cost, we defined a simple cost model to emulate
the situation of a commercial cloud. Our applications typically run within tens of minutes
so we based our pricing scheme on a one-minute pricing granularity. Longer-running
applications would probably use a more classical one-hour granularity. Similarly, our
model charges the user for each resource separately. The parameters of this model are
derived from a linear regression over the price of cloud resources at Amazon EC2:

Costmin = 0.0396 ∗NCores + 0.0186 ∗NMemory(GB) + 0.0417

When using cores of different frequency, their cost is scaled accordingly.

Note that our system does not rely on this particular cost model. It is general enough
to accept any other function capable of giving a cost for any VM configuration.

Convergence speed

To understand which search algorithm identifies efficient configurations faster, we compute
the Pareto frontiers produced by different algorithms after 10 and 20 executions. This helps
us to observe which algorithm converges fastest to the real Pareto frontier. The results
are presented in Figure 4.11.

In the case of Uniform Search, we use a step equal to the unit for each dimension of
the search space. It therefore actually completes an exhaustive search of the configuration
space. We can observe that this algorithm converges very slowly. It eventually finds the
full Pareto frontier, but only after it completes its exhaustive space exploration.

4.5. EVALUATION 75

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Cost ()

0

20

40

60

80

100

Ex
ec

ut
io

nT
im

e
(m

in
) 1 Core(s),2GB Mem

16 Core(s),124GB Mem

3 Core(s),6GB Mem

1 Core(s),2GB Mem

Uniform Search
Utilization Driven
Standard SA
Directed SA

(a) RTM after 1 execution

0.00 0.01 0.02 0.03 0.04
Cost ()

0

1

2

3

4

5

6

7

Ex
ec

ut
io

nT
im

e
(m

in
)

1 Core(s),2.0GHz,6GB Mem

8 Core(s),2.2GHz,24GB Mem

5 Core(s),2.93GHz,12GB Mem

6 Core(s),2.4GHz,16GB Mem

(b) DM after 1 execution

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Cost ()

0

20

40

60

80

100

Ex
ec

ut
io

nT
im

e
(m

in
)

(c) RTM after 10 executions

0.00 0.01 0.02 0.03 0.04
Cost ()

0

1

2

3

4

5

6

7
Ex

ec
ut

io
nT

im
e

(m
in

)

(d) DM after 10 executions

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Cost ()

0

10

20

30

40

50

60

Ex
ec

ut
io

nT
im

e
(m

in
)

(e) RTM after 20 executions

0.00 0.01 0.02 0.03 0.04
Cost ()

0

1

2

3

4

5

6

7

Ex
ec

ut
io

nT
im

e
(m

in
)

(f) DM after 20 executions

Figure 4.11: Pareto frontiers for RTM (a,c,e) and DM (b,d,f).

76 CHAPTER 4. PERFORMANCE MODELLING

The Utilization-Driven algorithm starts from a randomly generated configuration in
the search space. This randomly-chosen starting point creates a different search path for
each run of this algorithm. In the worst case, this algorithm starts with a configuration
which neither over- nor underutilizes its resources, so the search stops after a single run.
In the best case, the algorithm starts from a configuration already very close to the Pareto
frontier, in which case it actually identifies a number of good configurations. We show here
an average case (neither the best nor the worst we have observed): it quickly identifies a
few interesting configurations but then stops prematurely so it does not identify the entire
frontier.

Finally, Standard SA and Directed SA also start from randomly generated configu-
rations. We can however observe that they converge faster than the others towards the
actual Pareto frontier. For both applications, after just 10 iterations they already identi-
fied many interesting configurations. We can note that Directed SA converges faster than
Standard SA, which confirms the usefulness of using resource utilization information to
optimize the profiling methods.

SLO Satisfaction Ratio

An interesting perspective from which to evaluate the search results is the range of SLO
requirements it can fulfill, and the quality of the configurations that will be chosen by
the platform under these SLOs. We now compare the quality of solutions proposed by
the different search algorithms after having had the opportunity to issue just 10 profiling
executions.

Table 4.1 presents the execution times that would be observed with the RTM appli-
cation if the SLO imposed various values of maximum cost. Several search algorithm rely
on random behavior so we compute the average and standard deviations of 100 runs of
each profiling technique. We also show the number of runs where the algorithm failed to
propose a configuration for a given SLO. Conversely, Table 4.2 shows the costs that would
be obtained with the RTM application after defining a maximum execution time. For both
tables we also show the performance that would result from an exhaustive search of the
entire space. Tables 4.3 and 4.4 show similar results for the DM application.

It is clear from all the tables that Directed SA provides better configurations for the
majority of the SLOs. With its good approximation of the entire Pareto frontier, it can
handle all SLOs from the table. However, when facing challenging SLOs, Utilization-
Driven may sometimes happen to provide better configurations than Directed SA, but
with a high failure rate. This means than in most of the cases it fails to provide a con-
figuration satisfying the SLO. The other algorithms have only a partial or sub-optimal
frontier and cannot find configurations for demanding SLOs. At the same time, when sev-
eral algorithms can propose solutions that match the SLO constraint, the overall solutions
found by Directed Simulated Annealing are almost always better, with a lower standard
deviation and failure rate.

Profiling Costs

An important aspect to evaluate the efficiency of a search algorithm is the time and
cost incurred by the profiling process. The iterations performed until Pareto-optimal
configurations are reached, incur an additional cost and duration which can be minimized
based on user’s choice on profiling approach: offline or online.

Table 4.5 presents the cost and duration overhead of offline profiling for the RTM
application using 20 experiments. Offline profiling using the utilization-driven algorithm

4.5. EVALUATION 77

XXXXXXXXXXXAlgorithm
SLO

C < 0.15e C < 0.25e C <0.35e

Uniform Search Fail = 100% T = 60.21 min ± 0.00, Fail = 0% T = 58.91 min ± 0.00, Fail = 0%
Utilization-driven T = 16.82 min ± 4.50, Fail = 83% T = 18.56 min ± 7.44, Fail = 1% T = 18.62 min ± 7.77, Fail = 0%
Standard SA T = 13.01 min ± 2.17, Fail = 15% T = 13.12 min ± 5.74, Fail = 2% T = 11.46 min ± 3.78, Fail = 1%
Directed SA T = 12.67 min ± 1.58, Fail = 0% T = 12.00 min ± 0.24, Fail = 0% T = 11.34 min ± 1.21, Fail = 0%
Exhaustive search T = 12.07 min T = 11.84 min T = 9.12 min

Table 4.1: Performance after 10 executions of RTM under cost (C) constraints. The values
correspond to the average and standard deviation of 100 runs of the search techniques.

XXXXXXXXXXXAlgorithm
SLO

T < 10.00 min T < 20.00 min T< 30.00 min

Uniform Search Fail = 100% Fail = 100% Fail = 100%
Utilization-driven C = 0.28e ± 0.00, Fail = 98% C = 0.16e ± 0.01, Fail = 33% C = 0.17e ± 0.05, Fail = 6%
Standard SA C = 0.35e ± 0.08, Fail = 36% C = 0.16e ± 0.05, Fail = 0% C = 0.15e ± 0.05, Fail = 0%
Directed SA C = 0.40e ± 0.08, Fail = 30% C = 0.14e ± 0.00, Fail = 0% C = 0.14e ± 0.00, Fail = 0%
Exhaustive search C = 0.28e C = 0.13e C = 0.13e

Table 4.2: Performance after 10 executions of RTM under time (T) constraints. The values
correspond to the average and standard deviation of 100 runs of the search techniques.

XXXXXXXXXXXAlgorithm
SLO

C < 0.02e C < 0.04e C <0.06e

Uniform Search T = 2.23 min ± 0.00, Fail = 0% T = 2.10 min ± 0.00, Fail = 0% T = 2.10 min ± 0.00, Fail = 0%
Utilization-driven T = 2.11 min ± 0.25, Fail = 74% T = 2.14 min ± 0.64, Fail = 22% T = 2.20 min ± 0.91, Fail = 12%
Standard SA T = 3.47 min ± 1.42, Fail = 26% T = 2.14 min ± 0.92, Fail = 5% T = 1.97 min ± 0.63, Fail = 3%
Directed SA T = 2.62 min ± 1.10, Fail = 7% T = 1.66 min ± 0.18, Fail = 0% T = 1.60 min ± 0.16, Fail = 0%
Exhaustive search T = 1.81 min T = 1.46 min T = 1.46 min

Table 4.3: Performance after 10 executions of DM under cost (C) constraints. The values
correspond to the average and standard deviation of 100 runs of the search techniques.

XXXXXXXXXXXAlgorithm
SLO

T < 2.00 min T < 3.00 min T< 4.00 min

Uniform Search Fail = 100% C = 0.02e ± 0.00, Fail = 0% C = 0.02e ± 0.00, Fail = 0%
Utilization-driven C = 0.03e ± 0.02, Fail = 49% C = 0.03e ± 0.02, Fail = 10% C = 0.03e ± 0.02, Fail = 4%
Standard SA C = 0.04e ± 0.02, Fail = 28% C = 0.02e ± 0.01, Fail = 6% C = 0.02e ± 0.01, Fail = 1%
Directed SA C = 0.02e ± 0.01, Fail = 1% C = 0.02e ± 0.00, Fail = 0% C = 0.02e ± 0.00, Fail = 0%
Exhaustive search C = 0.01e C = 0.01e C = 0.01e

Table 4.4: Performance after 10 executions of DM under time (T) constraints. The values
correspond to the average and standard deviation of 100 runs of the search techniques.

appears to be both cheap and fast. However, this is only due to the fact that this algorithm
stops long before having identified the full Pareto frontier. Uniform Search starts its
exploration from the slowest available resource types which may incur long execution
times, and therefore become overall very expensive.

Standard SA is slightly cheaper and faster than Directed SA. This is due to the fact that
we decided to keep the simulated annealing implementation standard (using the implemen-
tation from SciPy [148]). In our experience, the initial temperature chosen by the Standard
SA implementation is sometimes too low, which means that the algorithm converges too
quickly afterward. Occasionally the algorithm stops before issuing 20 executions, which
explains its relatively low cost and profiling time.

Directed SA does not have this limitation as it does not rely always on the temperature
to choose a next configuration. This algorithm therefore explores more configurations, thus
having a higher total cost and execution time than Standard SA. On the other hand, it
identifies more optimal configurations.

Figure 4.12 shows the execution times and costs incurred by the user using the Di-
rected Simulated Annealing algorithm in conjunction with online profiling. In this case,

78 CHAPTER 4. PERFORMANCE MODELLING

Algorithm Total cost Duration
Uniform Search 19.92 e 1727.93 min
Utilization-Driven 2.63 e 234.51 min
Standard SA 7.09 e 426.41 min
Directed SA 9.38 e 635.39 min

Table 4.5: Total cost and duration overhead for an offline profiling of RTM limited to 20
executions. The values represent the average of 100 profiling processes with each search
technique.

0 5 10 15 200.0
0.1
0.2
0.3
0.4
0.5
0.6

Co
st

 (
)

-0
.1

4

-0
.0

6

+
0.

68

-0
.1

3

+
0.

07

-0
.1

6

-0
.0

2

+
0.

05

-0
.1

0

-0
.1

5

-0
.1

5

-0
.1

6

+
0.

13

+
0.

02

-0
.0

5

-0
.1

5

+
0.

19

+
0.

15

-0
.0

8

-0
.1

5

SL
O

 :
Co

st
 <

=
 0

.3

0 5 10 15 20
Execution

0
10
20
30
40
50
60

Ex
ec

ut
io

nT
im

e
(m

in
)

-1
0.

43

+
1.

23

-7
.5

8

-1
6.

39

+
34

.4
2

-1
6.

43

-2
0.

88

+
80

.1
1

+
71

.6
8

+
1.

79

+
15

.7
5

-1
7.

93

-1
9.

48

-1
7.

83

-1
4.

05

-1
4.

87

-1
9.

84

-2
0.

90

-1
2.

24

-1
6.

95

SL
O

 :
Ti

m
e

<
=

 3
0.

0
m

in

Figure 4.12: Cost and Execution Time fluctuation in an online profiling of RTM limited
to 20 executions.

no artificial execution is generated. On the other hand, as we can see in the figure, many
executions violate an arbitrary SLO of 0.30e. However, it is interesting to notice that
the overall group of execution remains within its aggregated budget (with a cost saving
of 0.21e). Similarly, when applying an arbitrary SLO of 30 minutes of execution time,
numerous individual executions violate the SLO but overall they perform faster than the
aggregated execution time tolerated (20.82 minutes).

For this first part of the evaluation, we conclude that the Blackbox+Whitebox method
based on the Directed Simulated Annealing algorithm shows the fastest convergence to
optimal configurations and provides a better satisfaction for the majority of the SLOs. It
generates good configurations to be used when creating an application profile in a smaller
number of executions.

For users willing to tolerate SLO violations on individual executions, the online profiling
method provides obvious benefits: it remains within the aggregate time or budget of the
overall profiling phase, and therefore offers fast and cost-effective generation of a full
performance model. On the other hand users unwilling or unable to tolerate individual
SLO violations can revert to the offline method, at the expense of artificial executions
which consume both time and money.

4.5. EVALUATION 79

4.5.2 Input-Dependent Search Methods

In order to show the benefits provided by exploiting dependencies between application
input data, we now compare the Extrapolated Profiling with the Blackbox and Black-
box+Whitebox profiling based on several criteria: (i) profiling performance when we im-
pose different stopping conditions; (ii) the time and cost overhead when we limit the pro-
filing to a certain number of iterations; (iii) the impact of failures on the profiling process;
and (iv) the quality of configurations we can derive when facing SLO requirements.

These evaluations are based on the previous two use-case applications: RTM and DM.
The application manifests define resource configurations between 2 and 16 CPU cores and
5 discrete values between 2 and 32 GB of memory. Note that we ignore the application
deployment time since it is mostly constant, and only consider the execution time of the
application. We apply the same cost model derived from Amazon’s pricing model presented
in Section 4.5.1.

Duration- and Budget-Constrained Profiling

The benefits of Extrapolated profiling can be studied from different perspectives. One such
perspective relies on evaluating how well Extrapolated profiling can perform given a time
or cost budget dedicated to the profiling phase. For each search algorithm, we analyze
how many resource configurations for running production input sizes it can identify until
the time or budget limit is reached.

Figure 4.13 presents the averaged results for the RTM application of 100 profiling
processes performed with each search algorithm under different cost and time budgets.
The top figure shows successively the total profiling runtime, cost and number of working
configurations versus the number of failed configurations identified by each profiling process
when the stopping criteria was set to different budget limits (i.e. 1e, 2e and 3e). As we
can observe, Extrapolated profiling identifies the greatest number of working configurations
under all budgets. Directed SA and Uniform Search make use entirely of the given budget.
However, while Directed SA identifies a reasonable number of working configurations and
avoids failing configurations thanks to the whitebox feedback, Uniform Search makes bad
use of the budget by incurring significant number of failed configurations. Standard SA and
Utilization-Driven algorithms stop before spending the given budget. As these methods do
not implement any bottleneck detection mechanism, they incurr a large number of failures
and, consequently, get trapped in a local minima. The bottom figure presents similar
results for the profiling performed under different time limits (i.e. 400min, 600min and
800 min).

Similarly to RTM, Figure 4.14 presents the results for DM. As concluded in the first
part of this evaluation, Blackbox+Whitebox implementing Directed SA provides the best
results when compared with the other input-independent strategies. Therefore, we choose
to focus the rest of the evaluation on Blackbox+Whitebox and Extrapolation profiling.

Cost and Time Overhead

Extrapolated profiling aims at reducing the cost and time overhead of profiling applica-
tions. In order to evaluate the cost and time overhead it produces, we set the profiling
process to stop after a predefined number of iterations has been performed.

Table 4.6 presents a comparison of the total cost and runtime of profiling RTM and
DM with Blackbox+Whitebox and Extrapolated profiling. The values correspond to the
average of 100 profiling processes.

80 CHAPTER 4. PERFORMANCE MODELLING

0
1

2
3

A
v
e
ra

g
e
 P

ro
fi
lin

g
 C

o
st

 (
)

U
n
if
o
rm

 S
e
a
rc

h
(G

e
n
e
ri

c
B

la
ck

b
o
x
)

U
ti

liz
a
ti

o
n
-D

ri
v
e
n

(B
la

ck
b
o
x
+

W
h
it

e
b
o
x
)

S
ta

n
d
a
rd

 S
A

(G
e
n
e
ri

c
B

la
ck

b
o
x
)

D
ir

e
ct

e
d
 S

A
(B

la
ck

b
o
x
+

W
h
it

e
b
o
x
)

E
x
tr

a
p
o
la

te
d

P
ro

fi
lin

g

B
u
d
g
e
t

~
 1

.0
0

~
 2

.0
0

~
 3

.0
0

Fa
ilu

re
s

0
2

0
0

4
0

0
6

0
0

A
v
e
ra

g
e
 P

ro
fi
lin

g
 R

u
n
ti

m
e
 (

m
in

)
0

5
1

0
1

5
2

0
#

 o
f

C
o
n
fi
g
u
ra

ti
o
n
s

0
1

2
3

4
A

v
e
ra

g
e
 P

ro
fi
lin

g
 C

o
st

 (
)

U
n
if
o
rm

 S
e
a
rc

h
(G

e
n
e
ri

c
B

la
ck

b
o
x
)

U
ti

liz
a
ti

o
n
-D

ri
v
e
n

(B
la

ck
b
o
x
+

W
h
it

e
b
o
x
)

S
ta

n
d
a
rd

 S
A

(G
e
n
e
ri

c
B

la
ck

b
o
x
)

D
ir

e
ct

e
d
 S

A
(B

la
ck

b
o
x
+

W
h
it

e
b
o
x
)

E
x
tr

a
p
o
la

te
d

P
ro

fi
lin

g

D
u
ra

ti
o
n
 ~

 4
0

0
.0

0
m

in
~

 6
0

0
.0

0
m

in
~

 8
0

0
.0

0
m

in
Fa

ilu
re

s

0
2

0
0

4
0

0
6

0
0

8
0

0
A

v
e
ra

g
e
 P

ro
fi
lin

g
 R

u
n
ti

m
e
 (

m
in

)
0

5
1

0
1

5
2

0
2

5
#

 o
f

C
o
n
fi
g
u
ra

ti
o
n
s

F
ig

u
re

4.
13

:
A

ve
ra

ge
to

ta
l

co
st

an
d

ru
n
ti

m
e

of
R

T
M

p
ro

fi
li

n
g

p
er

fo
rm

ed
w

it
h

in
u

se
r-

d
efi

n
ed

b
u

d
g
et

a
n

d
d

u
ra

ti
o
n

li
m

it
s.

4.5. EVALUATION 81

0
.0

0
.1

0
.2

0
.3

0
.4

A
v
e
ra

g
e
 P

ro
fi
lin

g
 C

o
st

 (
)

U
n
if
o
rm

 S
e
a
rc

h
(G

e
n
e
ri

c
B

la
ck

b
o
x
)

U
ti

liz
a
ti

o
n
-D

ri
v
e
n

(B
la

ck
b
o
x
+

W
h
it

e
b
o
x
)

S
ta

n
d
a
rd

 S
A

(G
e
n
e
ri

c
B

la
ck

b
o
x
)

D
ir

e
ct

e
d
 S

A
(B

la
ck

b
o
x
+

W
h
it

e
b
o
x
)

E
x
tr

a
p
o
la

te
d

P
ro

fi
lin

g

B
u
d
g
e
t

~
 0

.1
0

~
 0

.2
0

~
 0

.3
0

Fa
ilu

re
s

0
1

0
2

0
3

0
4

0
A

v
e
ra

g
e
 P

ro
fi
lin

g
 R

u
n
ti

m
e
 (

m
in

)
0

1
0

2
0

3
0

#
 o

f
C

o
n
fi
g
u
ra

ti
o
n
s

0
.0

0
.1

0
.2

0
.3

A
v
e
ra

g
e
 P

ro
fi
lin

g
 C

o
st

 (
)

U
n
if
o
rm

 S
e
a
rc

h
(G

e
n
e
ri

c
B

la
ck

b
o
x
)

U
ti

liz
a
ti

o
n
-D

ri
v
e
n

(B
la

ck
b
o
x
+

W
h
it

e
b
o
x
)

S
ta

n
d
a
rd

 S
A

(G
e
n
e
ri

c
B

la
ck

b
o
x
)

D
ir

e
ct

e
d
 S

A
(B

la
ck

b
o
x
+

W
h
it

e
b
o
x
)

E
x
tr

a
p
o
la

te
d

P
ro

fi
lin

g

D
u
ra

ti
o
n
 ~

 1
0

.0
0

m
in

~
 2

0
.0

0
m

in
~

 3
0

.0
0

m
in

Fa
ilu

re
s

0
1

0
2

0
3

0
A

v
e
ra

g
e
 P

ro
fi
lin

g
 R

u
n
ti

m
e
 (

m
in

)
0

5
1

0
1

5
2

0
2

5
#

 o
f

C
o
n
fi
g
u
ra

ti
o
n
s

F
ig

u
re

4.
14

:
A

ve
ra

ge
to

ta
l

co
st

an
d

ru
n
ti

m
e

of
D

M
p

ro
fi

li
n

g
p

er
fo

rm
ed

w
it

h
in

u
se

r-
d

efi
n

ed
b

u
d

g
et

a
n

d
d

u
ra

ti
o
n

li
m

it
s.

82 CHAPTER 4. PERFORMANCE MODELLING

Application Profiling method Runtime Cost # of failed
(minutes) (e) executions

RTM Blackbox+Whitebox 818.57 4.68 1
Extrapolated 693.71 3.32 1

DM Blackbox+Whitebox 40.61 0.39 1
Extrapolated 31.72 0.27 2

Table 4.6: Total cost and duration of profiling. The values correspond to the average
values of 100 profiling processes. Blackbox+Whitebox stops when reaching 15 iterations
while Extrapolated profiling stops after 15 iterations with benchmarking input and 7 with
the production input. An iteration corresponds to a successful execution. As expected,
Extrapolated profiling runs faster and cheaper because of its use of the benchmarking
input to explore the search space.

For both applications, the extrapolated profiling requires 10-20% less profiling time
than the Blackbox+Whitebox method, and 30-35% less financial costs. This latter result
is largely due to the fact that the extrapolated method issues long and expensive profiling
executions only for configurations which are likely to deliver interesting performance. We
can therefore conclude that Extrapolated profiling reached its objective of reducing the
total cost and runtime of the profiling process. We study the quality of the identified
configurations in the next section.

Results Quality

However, when aiming to reduce the overhead of profiling, we need to consider that Ex-
trapolated profiling may fail to provide better performance-cost trade-offs when compared
with the Blackbox+Whitebox approach. We focus further on this aspect by evaluating the
Extrapolate profiling from a Pareto Frontier perspective. We study a particular scenario
based on the two profiling methods where we compare the Pareto frontiers generated.

Figure 4.15 presents the configurations identified when profiling RTM and DM with
these two approaches. The extrapolated approach shows two sets of points: one set rep-
resents the benchmarking-sized inputs, and the other set represents the production-sized
inputs. We can observe that both methods produce close Pareto frontiers for both RTM
and DM which means that they may produce similar results after the profiling phase, and
therefore exhibit similar levels of SLO satisfaction.

Failures Overhead

In order to better understand the impact of the failures on the profiling process, we eval-
uate the bottleneck detection mechanism we implemented in the Extrapolated profiling
based on three criteria: failure runtime ratio to the total runtime of the profiling process;
failure cost ratio to the total cost of the profiling process; and failed iterations ratio to the
total iterations of the profiling process. For this, we consider the average cost and runtime
induced by bottlenecks during the extrapolation phase. Therefore, we compare two sce-
narios: extrapolation without bottleneck detection mechanisms, and extrapolation with
an utilisation-based bottleneck detection mechanism. Each scenario consists in profiling
RTM and DM 100 times and compute the average number of failures with the assigned
cost and runtime.

4.5. EVALUATION 83

(a) RTM application

(b) DM application

Figure 4.15: Optimal configurations identified by the Blackbox+Whitebox and extrapo-
lated profiling methods.

84 CHAPTER 4. PERFORMANCE MODELLING

10−2

10−1

100

101

102

B
ot

tl
en

ec
ks

R
at

io
(%

)

N
o

bo
tt

le
ne

ck
de

te
ct

io
n

B
ot

tl
en

ec
k

de
te

ct
io

n

Runtime Cost Iterations

(a) RTM

101

102

B
ot

tl
en

ec
ks

R
at

io
(%

)

N
o

bo
tt

le
ne

ck
de

te
ct

io
n

B
ot

tl
en

ec
k

de
te

ct
io

n

Runtime Cost Iterations

(b) DM

Figure 4.16: The bottleneck ratio in the total profiling runtime and cost. The later the
application crashes, the higher the bottleneck overhead is. The utilisation-based detection
mechanism allows to reduce the bottleneck overhead for both RTM and DM (lower, the
better).

Figure 4.16 presents the results for the RTM and DM applications. In the case of
RTM, the total runtime and cost overhead induced by the bottlenecks is negligible. This
is because RTM fails right in the beginning of the execution when there is no sufficient
memory allocated to load data; the failure runtime is less than 0.2% of the total time. In
the case of DM, on average, 26% of the total number of configurations failed to execute the
production-sized dataset. The runtime and cost of the failed configurations represented
24% and 19% of the total. On the other hand, the extrapolation employing the utilisation-
based bottleneck detection mechanism generated 15% less failures with a minimization of
19% for runtime and 15% for cost. This significant overhead is caused by DM failing long
after the beginning of the execution.

In both cases, extrapolating with utilisation-based bottleneck detection lowers the
number of failed executions and, consequently, minimizes the runtime and cost of the
profiling process.

SLO Satisfaction

An interesting perspective from which to study the profiling is the control over the quality
of configurations that we can derive. For this, we profile RTM and DM under a range of
profiling budgets and inspect the improvement in the proposed configurations satisfying
an SLO.

Figure 4.17 (a) presents the results for RTM. The SLO imposed requires the selection
of a configuration with a cost smaller than 0.35 e. As expected, increasing the budget
of profiling impacts the quality of the proposed configurations. With a higher budget
allocated to the profiling process, the system chooses faster configurations that satisfy the
SLO and therefore, makes a better performance-cost trade-off. As we can observe, the
failure rate to satisfy the SLO is minimized with the budget increase. Another aspect
to notice in this case is that Extrapolated profiling provides better configurations than
Blackbox+Whitebox when limited to a low profiling budget. This is due to the fairly
linear complexity of the RTM application which allows Extrapolated profiling to focus on
good performance-cost trade-offs.

4.5. EVALUATION 85

0.5 1.0 1.5 2.0 2.5 3.0
Profiling Budget ()

30

32

34

36

38

40

B
e
st

 E
x
e
cu

ti
o
n
 T

im
e
 (

m
in

)
30% fail

8% fail

5% fail

0% fail

0% fail
0% fail

12% fail

10% fail

0% fail

2% fail
0% fail

0% fail

Blackbox+Whitebox

Extrapolated Profiling

(a) RTM application. As expected, increasing the profiling budget allows the discovery of faster
resource configurations performing under 0.35 e(imposed SLO).

0.05 0.10 0.15 0.20 0.25 0.30
Profiling Budget ()

2.35

2.40

2.45

2.50

2.55

2.60

2.65

B
e
st

 E
x
e
cu

ti
o
n
 T

im
e
 (

m
in

)

10% fail

2% fail

0% fail

0% fail

0% fail

0% fail

11% fail

2% fail
2% fail

0% fail
0% fail

0% fail

Blackbox+Whitebox

Extrapolated Profiling

(b) DM application. Similarly to RTM, setting a higher profiling budget provides faster resource
configurations performing under 0.026 e(imposed SLO for DM).

Figure 4.17: Performance of best configurations identified by the Blackbox+Whitebox
and Extrapolated profiling methods under cost constraints.The values correspond to the
average of 100 profiling processes for each method.

Figure 4.17 (b) presents similar results for DM when we impose an slo requiring a
configuration having a cost smaller than 0.026 e. However, in this case, the quality of
the configurations proposed by Extrapolated profiling is slightly worse than in the case
of Blackbox+Whitebox. This is because Extrapolated profiling cannot derive a good
correlation between the performance of the benchmarking and the production input on
the same configuration. The main cause for this is that there is no fairly predictable
relationship between the performance of different input sizes of DM on the same resource
configuration.

To conclude this evaluation, Extrapolated profiling provides good performance and
SLO satisfaction when applied to applications where the relationship between the perfor-
mance of different input sizes can be determined from a very small number of tests. An
example of such a “good” behaving application is RTM. On the other hand, for applica-
tions as DM where the relationship is not easily determined and it may depend on settings
in the input, Blackbox+Whitebox outperforms the Extrapolated profiling.

4.6 Conclusion

Making a good resource selection in order to enable different performance-cost trade-offs
for the execution of arbitrary applications is a difficult problem. In this chapter, we have
presented several approaches to enable application performance-cost trade-offs through
profiling. Our approaches range from input-independent search strategies making use
only of minimial execution information such as runtime and cost to approaches making
use of specific knowledge such as resource utilization, application input dependencies etc.

86 CHAPTER 4. PERFORMANCE MODELLING

Chapter 5

Integration in a heterogeneous
IaaS-PaaS Cloud System

Contents

5.1 The HARNESS Heterogeneous Cloud 88

5.1.1 The Infrastructure-as-a-Service Layer 88

5.1.2 The Platform-as-a-Service Layer 90

5.1.3 The Virtual Execution Layer . 91

5.2 Integration of Virtual FPGA Resources 91

5.3 Enabling Performance-Cost Trade-Offs 92

5.4 Discussion . 95

5.4.1 Virtual FPGAs . 95

5.4.2 Performance Modelling . 95

This work was done in collaboration with partners from the HARNESS consortium. It is reported in
the HARNESS white paper[149] and in a book chapter submitted for publication.

87

88 CHAPTER 5. INTEGRATION

5.1 The HARNESS Heterogeneous Cloud

This thesis was conducted in the context of the HARNESS European project [14]. HAR-
NESS aimed to incorporate heterogeneous hardware and network technologies in cloud
platforms and to facilitate the execution of arbitrary applications with complex resource
requirements according to user expectations. We therefore developed the first two contri-
butions of this thesis in the HARNESS prototype, demonstrating how these technologies
may be employed and integrated in future public or private heterogeneous clouds. We first
focus on the overall architecture of the HARNESS platform. The next sections discuss
the integration of the FPGA virtualization and performance modelling technologies in this
platform.

A simplified overview of the HARNESS platform’s architecture is presented in Fig-
ure 5.1. It consists in three main parts: (1) a Platform-as-a-Service layer in charge of
managing applications; (2) an Infrastructure-as-a-Service layer for resource management;
and (3) a virtual execution layer where the applications actually run. This architecture
includes the minimum set of components providing management of physical resources, cre-
ation of virtual execution platforms and deployment of generic applications on the virtual
execution platforms. The red-framed components incorporate our prototypes. The tech-
niques for FPGA virtualization and autoscaling are implemented in the Orchestrator and
Autoscaler, coupled with Maxeler’s MPC-X and its FPGA-based Dataflow Engine Cards
(DFE) as the FPGA-server. The profiling methodologies enabling the performance-cost
trade-offs are implemented in the platform layer and additional components running in
the virtual execution platform.

5.1.1 The Infrastructure-as-a-Service Layer

The IaaS layer of a cloud is responsible for the management of physical resources such
as servers, storage, network devices, accelerators (e.g., GPU, FPGA), and the on-demand
allocation of virtual resources based on them. Current cloud offerings of virtual resources
are based on instance types with predefined configurations and limited placement options
which are charged at a set price. However, a tenant’s application may have different
resource requirements and may not fully exploit a predefined instance configuration. This
means that a part of the resources coming with the predefined configuration may be
underutilized although the tenant supports its cost. Cloud interfaces such as OCCI have
been proposed to enable the allocation of custom instance types [87]. However, they rely on
built-in models for their resource types which makes it difficult to add new heterogeneous
resources on-the-fly.

The HARNESS IaaS layer addresses this issue by enabling the allocation of custom
configurations of resources through the use of flexible models for virtual resources. A
custom configuration of resources consists of a set of virtual heterogeneous resources and
network dependencies between them. The characteristics of a resource such as type, num-
ber, internal configuration can be fully specified by the tenants according to their needs.
Clearly, these characteristics must fit within the capacity limit of cloud’s hardware re-
sources. Custom heterogeneous configurations may allow to reduce the cost of executing
applications by avoiding over-provisioning resources required by their applications. But
they potentially increase resource fragmentation.

The key components of the HARNESS IaaS cloud managing the allocation of custom
resource configurations are as follows:

5.1. THE HARNESS HETEROGENEOUS CLOUD 89

submit application feedback

feedback
submit

Application (manifest + SLO files)

ConPaaSConPaaS

Application Manager (AM)Application Manager (AM)
Application Manager (AM)Application Manager (AM)

Graphical Interface

Director

Users
Users

MaxelerOS

Application
Module

ConPaaS agent Whitebox Plugin

virtual machines/containers

allocation request feedback

deploy and execute
services + applications

Platform
Layer

Infrastructure
Layer

Virtual Execution Platform

IRM-XtreemFS
Storage Devices

IRM-XtreemFS
Storage Devices

Cross-Resource Scheduler (CRS)Cross-Resource Scheduler (CRS)

Orchestrator
 Autoscaler

switches

Network AgentNetwork Agent

manage

servers

Compute AgentCompute Agent

manage
FGPA

reservation/scaling

Infiniband
FPGAFPGA

DFE

DFE
FPGAFPGA

FPGAFPGA

DFE

DFE
FPGAFPGA

MPC-X

FPGAFPGA

DFE

DFE
FPGAFPGA

FPGAFPGA

DFE

DFE
FPGAFPGA

IRM-SHEPARD
HW Accelerators

IRM-SHEPARD
HW Accelerators

IRM-NET
Networked VMs/Containers

IRM-NET
Networked VMs/Containers

IRM-NEUTRON
network resources

IRM-NEUTRON
network resources

available resources
feedback

reservation
request

IRM-NOVA
VMs/Containers

IRM-NOVA
VMs/Containers

Figure 5.1: The architecture of the HARNESS platform with the outlined components
implementing the contributions of this dissertation.

90 CHAPTER 5. INTEGRATION

◦ Infrastructure Resource Managers (IRMs) are resource-specific compo-
nents in charge of the allocation and release of virtual resources; an IRM operates
over a single specific class of resources only, such as servers, storage, network and
accelerators. IRMs allow heterogeneous and specialized hardware such as general-
purpose graphics processing units (GPGPUs), FPGA-based cards, XtreemFS storage
devices and software-defined networking (SDN) switches to be exposed in a generic
manner as first-class cloud resources. All IRMs implement the same API dedi-
cated to the discovery, specification, reservation and feedback of resources. Some
IRMs may make use of resource-specific solutions such as OpenStack components
(Nova, Neutron) to implement these standard functions. Moreover, IRMs can be
hierarchically combined in order to manage complex resource requirements. For
instance, in Figure 5.1, the composition of IRM-NOVA, IRM-NEUTRON and IRM-
NET is organized in a hierarchical fashion in order to be able to manage groups of
VMs/containers.

◦ The Cross-Resource Scheduler (CRS) is a resource-agnostic component act-
ing as the entry point of the HARNESS IaaS cloud. The CRS has complete knowl-
edge on resource availability in the system and is in charge of scheduling dynamic
sets of heterogeneous virtual resources without having specific knowledge on the re-
source types. The scheduling process consists in selecting the physical host from the
available resources on which to allocate the virtual resources. Once the CRS chooses
a schedule, it delegates the resource-specific virtual resource creation requests to
IRMs which have better understanding on how to allocate and release the requested
type of resources.

For example, an application may send a request to the CRS to reserve a group of
resources consisting of one VM, one FPGA and a virtual network link with a bounded
latency between them. The CRS first interogates a network IRM (IRM-NET) on
the proximity measurements such as latency and available bandwidth between the
physical hosts for VMs and FPGAs. The CRS filters the available physical resources
satisfying the network constraint specified in the reservation request, and selects the
physical resources on which to allocate the VM and virtual FPGA. Once the physical
resources have been selected, the CRS delegates the requests to provision the VM
and virtual FPGA to the corresponding IRMs (IRM-NOVA and IRM-SHEPARD).

This flexible design allows the HARNESS platform to be customized to manage not
only existing heterogeneous hardware devices but also to be resilient to new forms of
heterogeneity which may become available in the future.

5.1.2 The Platform-as-a-Service Layer

The PaaS layer of HARNESS handles the management of arbitrary applications on custom
heterogeneous resource configurations. This layer is implemented by ConPaaS, an open-
source runtime environment for hosting applications in cloud infrastructures [95, 150].
ConPaaS serves as the interface between the HARNESS platform and the end-users. The
main components of the platform are as follows:

◦ a Graphical User Interface is provided through a web server for tenants to
submit applications and their specifications.

◦ the Director is a service in charge of user authentication and deployment of appli-
cation managers when an application is submitted through the graphical interface.

5.2. INTEGRATION OF VIRTUAL FPGA RESOURCES 91

Any user request concerning the management of an application is forwarded by the
Director to the Application Manager in charge of its execution.

◦ Application Managers (AMs) are in charge of controlling the lifecycle of appli-
cations. An AM is a generic and application-agnostic component in order to support
any class of applications. It operates within a VM/container provisioned using the
HARNESS IaaS layer. It takes as input a manifest describing the structure of the
application with its resource requirements and an SLO file describing the expectation
of the user for its execution, as previously discussed in Chapter 4. The functionality
of the AM consists in interpreting the manifest and SLO files, building a performance
model for the assigned application, choosing the type and number of resources to run
the application according to the SLO, deploying the application in the provisioned
resources and finally collecting resource utilization feedback. For every submitted
application, the Director instantiates one dedicated AM to manage its execution.
The AM is therefore the component where performance profiling is integrated, as
further discussed in Section 5.3.

Any resource provisioning request issued either by the Director or an AM, is made
through requests to the CRS.

5.1.3 The Virtual Execution Layer

The virtual execution platform is the layer where applications are actually executed. It
consists of a group of heterogeneous virtual resources provisioned through the CRS. An
example of a virtual execution layer is presented in Figure 5.2.

The configuration of the virtual resources is chosen by the AM according to the spec-
ifications in the application manifest. Aside the application’s code itself and drivers
for different types of resources, the virtual execution platform contains also ConPaaS
agents running on CPU-based virtual instances (VMs or containers). These agents exe-
cute commands on behalf of the AM to set up the runtime environment for the application,
start/stop the application, monitor its resource utilization, etc.

The interactions between different types of resources encompassed in the virtual plat-
form are also shown in Figure 5.2. Usually, a virtual platform requires at least one CPU-
based VM/container as the main point to control the processing and data movement. For
example, an application cannot be executed on a virtual platform consisting of one storage
volume and one virtual FPGA as it needs at least one CPU to coordinate data movements
between the two.

5.2 Integration of Virtual FPGA Resources

FPGAs have only recently started to draw more attention as promising cloud resources for
high-performance computations. Although few methods have been proposed for integrat-
ing FPGAs in cloud systems, we still lack an efficient method to virtualize and expose them
as first-class resources. We addressed this issue in Chapter 3 of this dissertation where we
proposed an approach to share FPGAs in a multi-tenant environment. Figure 5.3 provides
a magnified view on the integration of the FPGA-based servers and the two components
managing the creation and scaling of virtual FPGAs in the HARNESS IaaS layer. As we
can observe, we make use of an FPGA-specific IRM, entitled IRM-SHEPARD, in charge
of managing the resource-agnostic requests issued by the CRS. These requests are trans-
lated into requests for virtual FPGAs and forwarded to the Orchestrator managing the

92 CHAPTER 5. INTEGRATION

MaxelerOS
API to access Virtual FPGA

XtreemFS client
POSIX

VM / Container

ConPaaS
Agent

Whitebox
Plugin

POSIXPOSIXPOSIXPOSIX

APPLICATION

VM / Container

XtreemFS Volume

Virtual FPGA

FPGAFPGA

DFE

FPGAFPGA

DFE

In
f i

n
iB

a
n

d

AMAM
Run cmds / Get feedback

Read/Write Data

Process Data

Figure 5.2: Example of a virtual execution platform consisting of two VMs, one XtreemFS
storage volume and one virtual FPGA backed up by two physical devices.

Cross-Resource Scheduler (CRS)Cross-Resource Scheduler (CRS)

Orchestrator
 Autoscaler

FGPA
reservation / scaling

Infiniband

servers

Compute AgentCompute Agent

FPGAFPGA

DFE

DFE
FPGAFPGA

FPGAFPGA

DFE

DFE
FPGAFPGA

MPC-X

FPGAFPGA

DFE

DFE
FPGAFPGA

FPGAFPGA

DFE

DFE
FPGAFPGA

IRM-SHEPARD
HW Accelerators

IRM-SHEPARD
HW Accelerators

Infrastructure
Layer

Figure 5.3: Integration of FPGAs in the HARNESS IaaS layer.

FPGA-servers. The IRM-SHEPARD delegates some of its functionality. As any other
IRM, IRM-SHEPARD implements the generic HARNESS API.

Running side-by-side with the Orchestrator, the Autoscaler component periodically
monitors the workload of the virtual FPGAs with elastic properties and triggers their
autoscaling according to the workload demand. We described the Orchestrator and Au-
toscaler and their functionalities in Chapter 3.

In order to send tasks to a virtual FPGA, an application uses the API implemented
in the Maxeler OS drivers which should be pre-installed on the virtual execution platform
before launching the application.

5.3 Enabling Performance-Cost Trade-Offs

Making a good choice of cloud resources to execute arbitrary applications according to
user expectations is very difficult because of the large space of heterogeneous resource
configurations an application may use. To address this problem, we proposed several

5.3. ENABLING PERFORMANCE-COST TRADE-OFFS 93

ConPaaS Agent

Virtual Execution Platform

Make schedule

Reserve resources

Return virtual resources

Group reservations

CRSCRS

Release resources

IRMsIRMsIRMsIRMsIRMIRM

Create virtual resource

AMAM

 Application
 (manifest + SLO)

Reserve configuration

Return addresses of
 virtual resources Deploy and execute application

Return execution time Execute application

Release configuration

Stop?No

A
na

ly
z e

 e
xe

cu
ti o

n
a

nd
 g

e n
e r

a t
e

 n
e w

 r
e s

ou
rc

e
co

n f
ig

ur
a

tio
n

Yes

P
r o

fi
li

n
g

 m
et

h
o

d
o

lo
g

y

Build model
and select
configuration
satisfying SLO

E
n

f o
rc

e
S

L
O

Figure 5.4: Application management.

approaches to enable performance-cost trade-offs through performance profiling. These
approaches for profiling arbitrary applications are presented in Chapter 4 of this thesis.

To demonstrate how these approaches may be employed in cloud platforms, we built
profilers implementing the Blackbox and Extrapolated profiling methods, and integrated
them in the AM component of the HARNESS platform. The requirements and the internal
architecture of the AM are discussed in Chapter 4. We therefore focus here on describing
the life-cycle of arbitrary applications and interaction between the components of the
HARNESS platform.

The life-cycle of an arbitrary application consists in the following steps depicted in
Figure 5.4:

1. An users submits an application to the HARNESS platform using the Frontend ser-
vices, and provides a manifest file and the SLO. The manifest describes the structure
of the application and the resources it requires to run. For example, the manifest
can specify the type of resources, their number and internal characteristics that can
satisfy the needs of the application. The SLO describes the required execution time
or budget for its execution. The manifest and SLO are submitted to the Director,
which creates an AM instance in charge of handling this particular application.

2. The AM runs the profiling process in order to identify the optimal configurations
providing good performance-cost tradeoffs. It does so by issuing several runs of
the application on different resource configurations selected according to the search
strategy implemented and reserved through the CRS.

3. The CRS, upon receiving a reservation request from the application manager, ac-
tivates the resource scheduling process and searches for a good mapping of the re-
quested configuration to available resources. It then contacts the relevant IRMs to
create the virtual resources. The response returned to the AM consists of a list
of addresses for each virtual resource requested in the configuration. These virtual
resources constitute the virtual execution platform used to run the application.

94 CHAPTER 5. INTEGRATION

Figure 5.5: Profiling RTM using the HARNESS cloud.

5.3. ENABLING PERFORMANCE-COST TRADE-OFFS 95

Figure 5.6: Comparison of the Extrapolated and Blackbox profiling results for the RTM
application.

4. The AM sets up the environment and deploys the application through commands
issued to a ConPaaS agent running in the VM/container instances in the virtual
execution platform. Figure 5.5 provides a visualization of the profiling process for
the RTM use-case.

5. Once the application has been profiled, based on the resulting performance model,
the AM chooses the resource configuration which best satisfies the SLO and issues
one request to the CRS for this resource configuration to be provisioned.

Figure 5.6 provides the results of an experiment run on the HARNESS platform. The
experiment consisted in running in parallel the blackbox and extrapolated profiling in order
to build a performance model for the RTM application having as input a medium sized
dataset. The extrapolated profiling uses as a benchmarking dataset a dataset representing
15% of the medium sized dataset. We set blackbox profiling to stop after 15 iterations while
extrapolated profiling runs 15 iterations on the benchmarking dataset and 7 iterations
on the medium dataset. In this particular experiment, extrapolated profiling discovers
better performance-cost trade-offs than the blackbox profiling with roughly 30% decrease
in profiling time. This is due to the fairly linear complexity of RTM which provides
good predictions based on the correlation between different input datasets. Moreover,
bottleneck detection provides also an advantage for extrapolated profiling by enabling it
to avoid most of bad configurations.

5.4 Discussion

In this chapter we have demonstrated how our contributions can be integrated in the
heterogeneous HARNESS cloud platform. We hope that this implementation may serve
as a blueprint for integrating these techniques in other cloud platforms such as Amazon
Web Services (AWS). We discuss further several approaches to integrate them in a public
cloud platform.

5.4.1 Virtual FPGAs

Amazon may choose to deliver virtual FPGAs to their users in two different forms. First,
Amazon may augment their compute resource offering by providing virtual FPGAs as
a first-level resource type managed by a service similar to Amazon EC2 (for VMs) or
Amazon EBS (for volumes). A very important requirement for the integration of FPGA-
based servers in Amazon’s infrastructure is to have a low latency interconnect between
the VMs’ hosts and FPGAs. The Orchestrator would provide the interface implementing
the reservation and release of virtual FPGAs. A tenant may therefore reserve a virtual
FPGA as a standalone resource and, later, link it to its VMs. She may also specify it as
an property of a VM through the EC2 interface in a similar way to an EBS volume. For
instance, an EBS volume may be specified in addition to the root device volume when
creating a VM in Amazon EC2. Virtual FPGAs can be charged based on the number of
physical devices backing it up and their configuration.

Second, a PaaS service similar to the Amazon DynamoDB [151] or Amazon Machine
Learning [90] may use shared FPGA groups to offer efficient high-level services for standard
algorithms such as Fast Fourier transform, machine learning and video compression. Users
would issue regular API calls to this service without necessarily realizing that FPGAs are
being used by the service. The Autoscaler would then be in charge with maintaining the
quality of service by autoscaling the FPGA groups according to their workloads. This
service can be charged on an API call-basis.

5.4.2 Performance Modelling

The integration of the AM implementing our profiling methodologies in a profiling service
of Amazon’s PaaS would enable the support for performance-cost trade-offs and facilitate
the virtual resource selection. The profiling service would function similarly to Amazon
Elastic Beanstalk configured with Auto Scaling[152]. The user would submit an application
together with its description and expectations, and the profiling service would manage it
without further involvement of the user.

The AM would require little modification in order to handle the predefined types
exposed by Amazon EC2. However, searching for performance-cost trade-offs implies to
be able to evaluate these two metrics on Amazon EC2. While the performance (execution
time) can be independently measured, the cost cannot be easily estimated on resource
release without support from Amazon EC2. Therefore, the integration of the AM would
require for Amazon EC2 to provide through its API on VM release the total cost incurred.
Alternatively, another metric being of user-interest which could be measured independently
may be selected to replace the cost.

The profiling service can be charged similarly to Amazon Elastic MapReduce (EMR).
Amazon EMR incurs additional hourly fees varying with the price of the resources used.

96 CHAPTER 5. INTEGRATION

Chapter 6

Conclusions and Perspectives

Contents

6.1 Contributions . 98

6.2 Perspectives . 100

6.2.1 Short-term Perspectives . 100

6.2.2 Long-term Perspectives . 100

97

98 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Cloud infrastructures provide on-demand access to a large variety of computing devices
with different performance and cost. This creates many opportunities for cloud users to
run applications having complex resource requirements, starting from large numbers of
servers with low-latency interconnects, to specialized devices such as GPUs and FPGAs.
However, selecting the right amount and type of resources to run applications according
to user expectations is very challenging. First, it is important to optimize the usage of
the allocated resources by maximizing their utilization. In particular accelerator-based
resources often have low utilization rates because of their usage as CPU co-processors.
In cloud environments, the access of applications to accelerators is also limited by the
location of accelerators and the available interconnects between CPUs and accelerators.
Second, making a good selection of resources is difficult because of the huge search space
created by all the possible combinations of resources capable of running an application.

We proposed in this dissertation to enable performance-cost trade-offs for application
execution in heterogeneous clouds. This would facilitate the use of the heterogeneous cloud
platforms by allowing users to have more control over the execution of their applications
as they would be able to specify an expected cost or runtime of their execution. As for
the cloud providers, making good use of resources implies reducing the underutilisation of
their cloud infrastructures and consequently their operating cost. This has a great impact
on the providers’ revenue and the availability of resources for future reservations.

The work described in this thesis addresses the challenge of enabling performance-cost
trade-offs by focusing on the following objectives:

• Improving the utilisation of FPGA-based accelerators by means of virtualization;

• Automating the selection of heterogeneous resources for executing applications under
user-provided SLOs;

• Demonstrating how these technologies can be implemented in heterogeneous cloud
platforms.

6.1 Contributions

The contributions of this dissertation are as follows:
Improving FPGA utilization by means of virtualization. Field-Programmable

Gate Arrays are integrated circuits that can be reprogrammed at runtime to implement
any given circuit design. They are increasingly getting used as accelerators in cloud in-
frastructures to speed up specific computations. However, they are not yet put at the
disposal of cloud users which could also benefit from them. An important challenge in
making FPGA first-class cloud resources is to share them among multiple tenants and to
maximize their utilization. To address this challenge, we propose a cloud infrastructure
supporting FPGAs in a multi-tenant environment. Instead of considering FPGAs as local
accelerator devices attached to a single server, we co-locate a number of FPGAs in dedi-
cated machines accessed through a low-latency network. This setup increases availability
by enabling a full many-to-many mapping between FPGAs and the clients accessing them.
This allows FPGAs to be used by applications located in different servers and even to be
shared between different applications. We define a virtual FPGA as an elastic group of
physical FPGAs configured with the same circuit design. A virtual FPGA is exposed
as a first-class cloud resource instead of being specified as a property of a virtual ma-
chine/container. Our experiments showed that a virtual FPGA resource incurs a low
overhead in the order of 0.09 ms per submitted task. Addition and removal of FPGAs

6.1. CONTRIBUTIONS 99

from the group backing up the virtual FPGA is done seamlessly, without disturbing the
computation. To maximize the utilization of an FPGA-based cloud infrastructure, we
propose an algorithm which automatically resizes virtual FPGAs to maximise resource
utilisation and reduce user-perceived computation latencies. When dealing with challeng-
ing workloads, our autoscaling algorithm increases resource utilisation compared to a static
resource allocation while reducing the average task execution latency. In our experiments,
the autoscaling increased the average resource utilization from 52% to 61% and reduced the
average batch execution latency by 61% while using the same total number of resources.

Automating heterogeneous resource selection. Selecting the right number and
type of resources to use to execute arbitrary applications according to user-specific re-
quirements is very difficult. The reason why is that heterogeneous clouds are offering
large and diverse pools of resources which generate a huge number of possible resource
configurations to be used. To address this issue, we propose a number of profiling method-
ologies to find optimal resource configurations providing good performance-cost trade-offs.
The basic approach, entitled “blackbox profiling”, uses a global optimization algorithm to
search for optimal resource configurations. It is a very general method, since it can auto-
matically profile arbitrary cloud applications written using any programming language or
framework, and requiring any set of cloud resources. On the other hand, it may require a
significant number of profiling executions before discovering configurations providing good
performance-cost trade-offs.

Therefore, using the blackbox approach to profile complex applications where the space
of all possible resource configurations is very large may induce significant time and cost
overheads. To address this, we propose to extend the blackbox profiling with a “whitebox
approach” which makes use of resource utilization data to reduce the number of iterations
performed until good configurations are reached. Although this approach provides im-
provements over the pure blackbox approach, running applications having a long runtime
may still induce significant time and cost overheads.

To further reduce these overheads, we propose a complementary profiling approach
named “extrapolated profiling.” This approach relies on exploiting small input datasets
with shorter runtime to explore the resource configuration space and reuse selected con-
figurations for processing larger input datasets. We then use the correlation between the
performance on the two datasets as a basis to predict the performance of the large input
dataset on untested configurations. This approach minimizes profiling cost and runtime
by performing less iterations on large datasets and by avoiding most of the resource con-
figurations that may fail to run successfully.

An extensive evaluation of the profiling approaches based on two HPC applications
demonstrates the benefits provided of each approach. We studied different aspects such as
the convergence speed to the optimal resource configurations, the satisfaction rate of differ-
ent predefined SLOs, the runtime and cost overhead of the profiling process; and the detec-
tion of failing configurations (bottlenecks). In our experiments, the blackbox+whitebox
profiling performed better than the agnostic blackbox approach with a maximum fail-
ure rate of 7% - 30% to satisfy an user-given service-level objective. A further comparison
between the blackbox-whitebox and extrapolated profiling approach showed that for appli-
cations with an estimable correlation of their complexity, extrapolated profiling performs
better with a 10-20% decrease of the profiling time, a 30-35% decrease in financial cost
time and 15-20% less failures.

Prototype integration in a heterogeneous cloud platform. The solutions we
propose for FPGA virtualization and heterogeneous resource selection are designed to be
easily implemented in heterogeneous cloud platforms. We demonstrate how this can be

100 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

done by integrating the prototypes of our solutions in a heterogeneous cloud platform
developed in the context of HARNESS European project. We address also the problem of
their integration in a public cloud system such as Amazon Web Services.

6.2 Perspectives

Our contributions present several interesting research directions for future work. We de-
scribe further the short- and long-term research perspectives of our contributions.

6.2.1 Short-term Perspectives

Impact of interconnect virtualization on data-intensive accelerated applica-
tions. The virtual FPGAs implemented as elastic groups of FPGAs enable accelerated
applications to have better control over their performance. However, it would be very
interesting to extend our evaluation of virtual FPGAs to study the impact of the network
virtualization on the task runtime of data-intensive accelerated applications. This would
allow us to identify the processing limits of the FPGA-server when taking into considera-
tion the network performance in a multi-tenant scenario. Slow data transfer in comparison
with fast FPGA processing rates would be the main challenge in any cloud infrastructure
encompassing FPGA-servers.

Application profiling with predefined instance types. The profiling method-
ologies we proposed assume that IaaS clouds can provide custom resource configurations
within the limits of their infrastructure. This is an important aspect in optimizing the
performance, cost and resource utilization. However, current IaaS clouds provide a lim-
ited set of predefined instance types. It would be interesting to evaluate the impact on
the profiling profiling process when using predefined instance types. We need to choose
instance types to test such that we minimize their underutilization during application exe-
cution. The difficulty lies in the limited vertical scaling which does not allow the addition
or removal of specific amounts of resources from a virtual instance determined by their
utilization.

Exploring input datasets inter-dependencies. We proposed extrapolated profil-
ing as a methodology to capture the relationship between a benchmarking and a production
dataset. This allows us to test new resource configurations using the small benchmarking
dataset and extrapolate the obtained results for the production dataset. It would be an
interesting research direction to extend the extrapolated methodology to provide perfor-
mance models for new datasets without having to run them on any configuration. This
requires to determine the relationship between different datasets and use this relationship
to extrapolate the performance of new datasets. This strategy would provide benefits such
as a high decrease in cost and runtime profiling overheads.

6.2.2 Long-term Perspectives

PaaS system for developing accelerated applications. FPGA circuit design is usu-
ally done using standard hardware design languages as VHDL and Verilog. Developers are
usually limited in exploiting FPGAs due to the need to think like a hardware engineer.
However, tools and frameworks are being developed to support implementation of circuit
description in higher-level programming languages, compilation to bitfiles, generating the
interface between CPU host and the FPGA. In order to make use of the functions imple-
mented in an FPGA, an application must include in its code the interface generated after

6.2. PERSPECTIVES 101

the compilation to bitfiles. We consider it would be interesting to further democratize the
use of FPGAs by offering PaaS systems to support the development and compilation of
accelerated applications.

Resource utilisation profiles for application runtime prediction. Analysing
the pattern of resource utilization from one execution to another may provide new means
to refine the resource selection. For example, an application may spend the first 30% of
its total runtime to load data in memory, then 60% to process it and the rest to write
the results to disk. Automatically identifying this utilisation pattern and correlating the
runtime ratio for each phase may be an interesting approach to predict the remaining
runtime after the first phase of the execution. Based on this, we could optimize resource
utilization and the running costs by allocating resources only when they are needed during
the execution of an application.

102 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Appendix A

Application Manifest

A.1 RTM Manifest

{

"Name": "RTM",

"Author": "User",

"Modules": [

{

"ModuleName": "Main",

"Parameters": [

{

"Var": "%arg1",

"Name": "input",

"Values": ["rtm_parameters_medium"]

}

],

"Implementations": [

{

"ImplementationName": "RTM-CPU",

"Resources": {

"Groups": [

{

"GroupID": "id0",

"Role": "MASTER",

"Type": "Machine",

"NumInstances": {

"Value": 1

},

"Attributes": {

"Memory": {

"Var": "%master_mem",

"Values": [

2048,

4096,

6144,

8192,

103

104 APPENDIX A. APPLICATION MANIFEST

16384,

32768

]

},

"Cores": {

"Var": "%master_cores",

"Range": [

2,

16

]

}

}

}

],

"Constraints": []

},

"GlobalConstraints": [],

"EnvironmentVars": { "OMP_NUM_THREADS": "%master_cores" },

"Tarball": "http://cloud.fr/apps/rtm/archive.tar.gz",

"DeploymentArgs": "",

"ExecutionArgs": "%arg1"

}

]

}

]

}

A.2 DeltaMerge Manifest

{

"Name": "DM",

"Author": "User",

"Modules": [

{

"ModuleName": "Main",

"ModuleType": "generic",

"Online": 0,

"Parameters": [

{

"Var": "%arg1",

"Name": "input",

"Values": ["http://cloud.fr/apps/deltamerge/tabel-size-0.tar.gz"]

}

],

"Implementations": [

{

"ImplementationName": "DM",

"Resources": {

A.3. MANIFEST TEMPLATE 105

"Groups": [

{

"GroupID": "id0",

"Role": "MASTER",

"Type": "Machine",

"NumInstances": {

"Value": 1

},

"Attributes": {

"Memory": {

"Var": "%master_mem",

"Values": [

6144,

8192,

16384,

32768

]

},

"Cores": {

"Var": "%master_cores",

"Range": [

1,

16

]

}

}

}

],

"Constraints": []

},

"GlobalConstraints": [],

"EnvironmentVars": {},

"Tarball": "http://cloud.fr/apps/deltamerge/archive.tar.gz",

"DeploymentArgs": "%arg1",

"ExecutionArgs": ""

}

]

}

]

}

A.3 Manifest Template

{

/* Application Name */

"Name": "Hello World",

"Author": "User",

/* The application consists of one or more modules

106 APPENDIX A. APPLICATION MANIFEST

(services that are required to run the application) */

"Modules": [{

"ModuleName": "Main",

/* The "Parameters" field contains the list of input parameters

use the AM to evaluate their impact at runtime */

"Parameters": [{

"Var": "%arg1",

"Name": "<parameter name>",

"Type": "STR",

"Values": ["<parameter value1>", ...]

}],

/* List of implementations that can realise the module. Only one

is chosen at a given time */

"Implementations": [{

"ImplementationName": "ImplementationName",

/* The "Resources" field specifies groups of resources associated

to a particular role, and placement constraints */

"Resources": {

"Groups": [{

"GroupID": "id0",

/* Role is a label associated to one or more groups of

resources, which can be referenced during the deployment

phase */

"Role": "MASTER",

/* Resource Type */

"Type": "Machine",

/* Number of resource instances required. For a static number

of instances use the field { Value : <number>}, otherwise, for

a dynamic number of instances, use

{ Var : <var_id>, Values/Range :[...]} */

"NumInstances": {

"Value": 1

},

/* Attributes used for allocation requests.

For each attribute, a value or range of values can be

specified.

*/

"Attributes": {

"Memory": {

"Var": "%master_ram",

"Values": [1024, 2048, 4096, 8192]

},

"Cores": {

A.3. MANIFEST TEMPLATE 107

"Var": "%master_cores",

"Range": [1, 7]

}

}

}, {

"GroupID": "id1",

"Role": "SLAVE",

"Type": "Machine",

"NumInstances": {

"Value": 1

},

"Attributes": {

"Memory": {

"Var": "%master_ram",

"Values": [1024, 2048, 4096, 8192]

},

"Cores": {

"Var": "%master_cores",

"Range": [1, 7]

}

}

}, {

"GroupID": "id2",

"Role": "None",

"Type": "ResourceX",

"NumInstances": {

"Value": 1

},

"Attributes": {

/* ... */

}

}],

/* Placement constraints between groups of resources */

"Distances": [{

"Source": "id0",

"Target": "id1",

"Constraints": ["hops < 1"]

}]

},

/* Specifies global dependencies between groups of resources,

input parameters, etc.*/

"GlobalConstraints": ["%master_ram > 1024 * %master_cores", ...],

/* Environment variables to be set when deploying and launching

this implementation */

"EnvironmentVars": {

"MASTER_IP": "%master_address",

...

},

/* URL where the application tarball can be downloaded from

(Mandatory) */

"Tarball": "<tarball URL>",

/* Input arguments for deployment scripts */

"DeploymentArgs": "<%arg1 %arg2 static_arg ...>",

/* Input arguments for execution scripts */

"ExecutionArgs": "<%arg1 %arg2 static_arg ...>"

}

...

]

}]

}

108 APPENDIX A. APPLICATION MANIFEST

Bibliography

[1] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang, D. Modium,
K. Singh, J. Suh, and J. Walters, “Heterogeneous Cloud Computing,” in Proceed-
ings of the 2011 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 378–385, Sept 2011.

[2] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “En-
abling FPGAs in the Cloud,” in Proceedings of the 11th ACM Conference on Com-
puting Frontiers, CF ’14, (New York, NY, USA), pp. 3:1–3:10, ACM, 2014.

[3] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger, “A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services,” in Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, (Piscataway, NJ, USA), pp. 13–24, IEEE Press,
2014.

[4] FPGA in future datacenters, “Intel’s acquisition of Altera.” http:

//intelacquiresaltera.transactionannouncement.com/wp-content/uploads/

2015/06/Investor-Deck.pdf. Accessed: 2016-03-30.

[5] Jeff Barr, “Choosing the Right EC2 Instance Type
for Your Application.” http://aws.amazon.com/blogs/aws/

choosing-the-right-ec2-instance-type-for-your-application/. Accessed:
2016-03-30.

[6] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Quantifying the Impact of
Input Data Sets on Program Behavior and its Applications,” Journal of Instruction-
Level Parallelism, vol. 5, pp. 1–33, 2003.

[7] W. C. Hsu, H. Chen, P. C. Yew, and D.-Y. Chen, “On the Predictability of Program
Behavior Using Different Input Data Sets,” in Proceedings of the Sixth Annual Work-
shop on Interaction Between Compilers and Computer Architectures, INTERACT
’02, (Washington, DC, USA), pp. 45–53, IEEE Computer Society, 2002.

[8] RTM, “RTM implementations.” http://www.harness-project.eu/wp-content/

uploads/2014/02/HARNESS-D2.3.pdf. Accessed: 2016-03-30.

[9] Amazon GPU, “Amazon Cluster GPU Instance.” https://aws.amazon.com/ec2/

instance-types/. Accessed: 2016-03-30.

[10] Intel, “Intel’s acquisition of Altera.” http://newsroom.intel.com/community/

intel_newsroom/blog/2015/12/28/intel-completes-acquisition-of-altera.
Accessed: 2016-03-30.

109

http://intelacquiresaltera.transactionannouncement.com/wp-content/uploads/2015/06/Investor-Deck.pdf
http://intelacquiresaltera.transactionannouncement.com/wp-content/uploads/2015/06/Investor-Deck.pdf
http://intelacquiresaltera.transactionannouncement.com/wp-content/uploads/2015/06/Investor-Deck.pdf
http://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application/
http://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application/
http://www.harness-project.eu/wp-content/uploads/2014/02/HARNESS-D2.3.pdf
http://www.harness-project.eu/wp-content/uploads/2014/02/HARNESS-D2.3.pdf
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://newsroom.intel.com/community/intel_newsroom/blog/2015/12/28/intel-completes-acquisition-of-altera
http://newsroom.intel.com/community/intel_newsroom/blog/2015/12/28/intel-completes-acquisition-of-altera

110 BIBLIOGRAPHY

[11] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User Runtime Esti-
mates Inherently Inaccurate?,” in Job Scheduling Strategies for Parallel Processing
(D. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds.), vol. 3277 of Lecture Notes
in Computer Science, pp. 253–263, Springer Berlin Heidelberg, 2005.

[12] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Job scheduling with adjusted run-
time estimates on production supercomputers,” Journal of Parallel and Distributed
Computing, vol. 73, no. 7, pp. 926 – 938, 2013. Best Papers: International Parallel
and Distributed Processing Symposium (IPDPS) 2010, 2011 and 2012.

[13] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling,” IEEE Transactions
on Parallel and Distributed Systems, vol. 12, pp. 529–543, June 2001.

[14] HARNESS, “HARNESS.” http://www.harness-project.eu//. Accessed: 2016-
03-30.

[15] Microsoft, “The Economics of the Cloud.” http://news.microsoft.com/

download/archived/presskits/cloud/docs/the-economics-of-the-cloud.

pdf. Accessed: 2016-03-30.

[16] Rackspace, “The Economics of Cloud Comuputing.” http://broadcast.

rackspace.com/hosting_knowledge/whitepapers/Cloudonomics-The_

Economics_of_Cloud_Computing.pdf. Accessed: 2016-03-30.

[17] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 Performance Analysis for Resource Pro-
visioning of Service-oriented Applications,” in Proceedings of the 2009 International
Conference on Service-oriented Computing, ICSOC/ServiceWave’09, (Berlin, Hei-
delberg), pp. 197–207, Springer-Verlag, 2009.

[18] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, Cloud
Computing: First International Conference, CloudComp 2009 Munich, Germany,
October 19–21, 2009 Revised Selected Papers, ch. A Performance Analysis of EC2
Cloud Computing Services for Scientific Computing, pp. 115–131. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010.

[19] Titan, “Titan.” https://www.olcf.ornl.gov/titan/. Accessed: 2016-03-30.

[20] Janus2, “JanusII.” http://www.janus-computer.com/janusII. Accessed: 2016-
03-30.

[21] IB, “InfiniBand.” http://www.infinibandta.org/content/pages.php?pg=

technology_overview. Accessed: 2016-03-30.

[22] P. Zaspel and M. Griebel, “Massively Parallel Fluid Simulations on Amazon’s HPC
Cloud,” in Proceedings of the 2011 First International Symposium on Network Cloud
Computing and Applications (NCCA), Nov 2011.

[23] M. Pawlish, A. S. Varde, and S. A. Robila, “Analyzing utilization rates in data
centers for optimizing energy management,” in Proceedings of the 2012 International
Green Computing Conference (IGCC), pp. 1–6, June 2012.

[24] Amazon White Paper, “How AWS Pricing Works.” https://media.

amazonwebservices.com/AWS_Pricing_Overview.pdf, 2015. Accessed: 2016-
03-30.

http://www.harness-project.eu//
http://news.microsoft.com/download/archived/presskits/cloud/docs/the-economics-of-the-cloud.pdf
http://news.microsoft.com/download/archived/presskits/cloud/docs/the-economics-of-the-cloud.pdf
http://news.microsoft.com/download/archived/presskits/cloud/docs/the-economics-of-the-cloud.pdf
http://broadcast.rackspace.com/hosting_knowledge/whitepapers/Cloudonomics-The_Economics_of_Cloud_Computing.pdf
http://broadcast.rackspace.com/hosting_knowledge/whitepapers/Cloudonomics-The_Economics_of_Cloud_Computing.pdf
http://broadcast.rackspace.com/hosting_knowledge/whitepapers/Cloudonomics-The_Economics_of_Cloud_Computing.pdf
https://www.olcf.ornl.gov/titan/
http://www.janus-computer.com/janusII
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://www.infinibandta.org/content/pages.php?pg=technology_overview
https://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
https://media.amazonwebservices.com/AWS_Pricing_Overview.pdf

BIBLIOGRAPHY 111

[25] M. Aggar, “The it energy efficiency imperative..” White paper, 2011.

[26] K. Sunil Rao and P. Santhi Thilagam, “Heuristics Based Server Consolidation with
Residual Resource Defragmentation in Cloud Data Centers,” Future Gener. Comput.
Syst., vol. 50, pp. 87–98, Sept. 2015.

[27] Sharon Wagner, “The Great Hope of Cloud Economics and the Over-
provisioning Epidemic.” https://www.cloudyn.com/wp-content/uploads/2013/

06/The_Great_Hope_of_Cloud_Economics.pdf. Accessed: 2016-03-30.

[28] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and F. Xia,
“A Survey on Virtual Machine Migration and Server Consolidation Frameworks
for Cloud Data Centers,” Journal of Network and Computer Applications, vol. 52,
pp. 11–25, June 2015.

[29] R. Zhang, R. Routray, D. M. Eyers, D. Chambliss, P. Sarkar, D. Willcocks, and
P. Pietzuch, “IO Tetris: Deep Storage Consolidation for the Cloud via Fine-Grained
Workload Analysis,” in Proceedings of the 2011 IEEE International Conference on
Cloud Computing (CLOUD), pp. 700–707, July 2011.

[30] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy:
A Consolidation Manager for Clusters,” in Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’09, (New York, NY, USA), pp. 41–50, ACM, 2009.

[31] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy Aware Consolidation for Cloud
Computing,” in Proceedings of the 2008 Conference on Power Aware Computing
and Systems, HotPower’08, (Berkeley, CA, USA), pp. 10–10, USENIX Association,
2008.

[32] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting performance interference
in cloud-based web services,” in Proceedings of the 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 423–431, May 2015.

[33] Bill Bitner, Susan Greenlee , “z/VM A Brief Review of Its 40 Year History .”
http://www.vm.ibm.com/vm40hist.pdf. Accessed: 2016-03-30.

[34] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in Proceedings of the
19th ACM Symposium on Operating Systems Principles, SOSP ’03, (New York, NY,
USA), pp. 164–177, ACM, 2003.

[35] VMware, “vSphere Hypervisor.” Available at https://www.vmware.com/products/
vsphere-hypervisor. Accessed: 2016-03-30.

[36] Microsoft, “Hyper-V Hypervisor.” https://technet.microsoft.com/library/

hh831531.aspx. Accessed: 2016-03-30.

[37] KVM, “Kernel-based Virtual Machine.” http://www.linux-kvm.org/.

[38] Oracle, “VirtualBox.” Available at https://www.virtualbox.org/. Accessed:
2016-03-30.

[39] Geert Jansen, “Binary Translation.” https://www.ravellosystems.com/blog/

nested-virtualization-with-binary-translation/. Accessed: 2016-03-30.

https://www.cloudyn.com/wp-content/uploads/2013/06/The_Great_Hope_of_Cloud_Economics.pdf
https://www.cloudyn.com/wp-content/uploads/2013/06/The_Great_Hope_of_Cloud_Economics.pdf
http://www.vm.ibm.com/vm40hist.pdf
https://www.vmware.com/products/vsphere-hypervisor
https://www.vmware.com/products/vsphere-hypervisor
https://technet.microsoft.com/library/hh831531.aspx
https://technet.microsoft.com/library/hh831531.aspx
http://www.linux-kvm.org/
https://www.virtualbox.org/
https://www.ravellosystems.com/blog/nested-virtualization-with-binary-translation/
https://www.ravellosystems.com/blog/nested-virtualization-with-binary-translation/

112 BIBLIOGRAPHY

[40] Xen Open Source Project, “Paravirtualization.” http://wiki.xen.org/wiki/

Paravirtualization_(PV). Accessed: 2016-03-30.

[41] K. Adams and O. Agesen, “A comparison of software and hardware techniques for
x86 virtualization,” in Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS XII,
(New York, NY, USA), pp. 2–13, ACM, 2006.

[42] Matthew Gillespie, “Intel EPTand VT-d.” https://software.intel.com/en-us/

articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d.
Accessed: 2016-03-30.

[43] Jason (blog), “AMD Rapid Virtualization Indexing (RVI).” http://www.boche.

net/blog/index.php/2009/03/08/rapid-virtualization-indexing-rvi/. Ac-
cessed: 2016-03-30.

[44] VMware, “Intel EPT.” http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.

pdf. Accessed: 2016-03-30.

[45] VMware, “AMD RVI.” http://www.cse.iitd.ernet.in/~sbansal/csl862-virt/

2010/readings/RVI_performance.pdf. Accessed: 2016-03-30.

[46] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted page walks for virtual-
ized systems,” in Proceedings of the 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pp. 476–487, June 2012.

[47] X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li, “Selective hardware/software memory
virtualization,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’11, (New York, NY, USA),
pp. 217–226, ACM, 2011.

[48] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu, “Performance overhead
among three hypervisors: An experimental study using hadoop benchmarks,” in Pro-
ceedings of the 2013 IEEE International Congress on Big Data (BigData Congress),
pp. 9–16, June 2013.

[49] J. Hwang, S. Zeng, F. y. Wu, and T. Wood, “A component-based performance
comparison of four hypervisors,” in Proceedings of the 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), pp. 269–276, May 2013.

[50] Namespaces, “Namespaces.” https://lwn.net/Articles/531114/. Accessed:
2016-03-30.

[51] Linux containers, “Linux LXC.” https://linuxcontainers.org/. Accessed: 2016-
03-30.

[52] Docker, “Docker.” https://www.docker.com/. Accessed: 2016-03-30.

[53] Virtuozzo, “OpenVZ.” https://openvz.org/Main_Page. Accessed: 2016-03-30.

[54] Linux VServer, “Linux VServer.” http://linux-vserver.org/Welcome_to_

Linux-VServer.org. Accessed: 2016-03-30.

[55] Matteo Riondato, “BSD Jails.” https://www.freebsd.org/doc/handbook/jails.

html. Accessed: 2016-03-30.

http://wiki.xen.org/wiki/Paravirtualization_(PV)
http://wiki.xen.org/wiki/Paravirtualization_(PV)
https://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d
https://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d
http://www.boche.net/blog/index.php/2009/03/08/rapid-virtualization-indexing-rvi/
http://www.boche.net/blog/index.php/2009/03/08/rapid-virtualization-indexing-rvi/
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
http://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
https://lwn.net/Articles/531114/
https://linuxcontainers.org/
https://www.docker.com/
https://openvz.org/Main_Page
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
https://www.freebsd.org/doc/handbook/jails.html
https://www.freebsd.org/doc/handbook/jails.html

BIBLIOGRAPHY 113

[56] Docker, “Docker Swarm.” https://docs.docker.com/swarm/. Accessed: 2016-03-
30.

[57] CoreOS, “Fleet.” https://coreos.com/fleet/. Accessed: 2016-03-30.

[58] Kubernetes, “Kubernetes.” http://kubernetes.io/. Accessed: 2016-03-30.

[59] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers,” in Proceedings of the 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), pp. 171–172, March 2015.

[60] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D.
Rose, “Performance Evaluation of Container-Based Virtualization for High Perfor-
mance Computing Environments,” in 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP 2013, Belfast, United
Kingdom, February 27 - March 1, 2013, pp. 233–240, 2013.

[61] M. Gomes Xavier, M. Veiga Neves, and C. Fonticielha de Rose, “A Performance
Comparison of Container-Based Virtualization Systems for MapReduce Clusters,”
in Proceedings of the 2014 22nd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP),, pp. 299–306, Feb 2014.

[62] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight virtualiza-
tion: A performance comparison,” in Proceedings of the 2015 IEEE International
Conference on Cloud Engineering (IC2E), pp. 386–393, March 2015.

[63] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a Ran-
dom Forest Classifier: Multi-Core, GP-GPU, or FPGA?,” in Proceedings of the
2012 IEEE 20th International Symposium on Field-Programmable Custom Comput-
ing Machines, FCCM ’12, (Washington, DC, USA), pp. 232–239, IEEE Computer
Society, 2012.

[64] S. Mittal and J. S. Vetter, “A Survey of Methods for Analyzing and Improving GPU
Energy Efficiency,” ACM Comput. Surv., vol. 47, pp. 19:1–19:23, Aug. 2014.

[65] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips,
and W. M. Hwu, “GPU clusters for high-performance computing,” in Proceedings
of the 2009 IEEE International Conference on Cluster Computing and Workshops
(CLUSTER), pp. 1–8, Aug 2009.

[66] J. P. Walters, A. J. Younge, D.-I. Kang, K.-T. Yao, M. Kang, S. P. Crago, and G. C.
Fox, “GPU-Passthrough Performance: A Comparison of KVM, Xen, VMWare ESXi,
and LXC for CUDA and OpenCL Applications,” in Proceedings of the 7th IEEE
International Conference on Cloud Computing (CLOUD), June 2014.

[67] Amazon Web Services, “EC2: Elastic Compute Cloud.” http://aws.amazon.com/

ec2/. Accessed: 2016-03-30.

[68] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: why not virtualizing GPUs
at the hypervisor?,” in Proceedings of the USENIX Annual Technical Conference,
June 2014.

https://docs.docker.com/swarm/
https://coreos.com/fleet/
http://kubernetes.io/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

114 BIBLIOGRAPHY

[69] W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an FPGA-based Hard-
ware Accelerator in a Paravirtualized Environment,” in Proceedings of the 9th
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS ’13, (Piscataway, NJ, USA), pp. 10:1–10:9, IEEE
Press, 2013.

[70] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-accelerated high-performance
computing in virtual machines,” IEEE Transactions on Computers, vol. 61, no. 6,
pp. 804–816, 2012.

[71] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU transparent virtu-
alization component for high performance computing clouds,” in Proceedings of the
International Euro-Par Conference on Parallel Processing, 2010.

[72] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa, “LoGV: Low-
overhead GPGPU Virtualization,” in Proceedings of the International Workshop on
Frontiers of Heterogeneous Computing, Nov. 2013.

[73] D. W. Page, “Dynamic data re-programmable PLA.” http://www.google.com/

patents/US4524430, June 1985. U.S. patent US 4524430 A.

[74] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA Programming for the Masses,”
ACM Queue, vol. 11, Feb. 2013.

[75] J. M. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable Architec-
tures. Springer, 2009.

[76] P. Grigoraş, X. Niu, J. G. Coutinho, W. Luk, J. Bower, and O. Pell, “Aspect Driven
Compilation for Dataflow Designs,” in Proceedings of the IEEE International Con-
ference on Application-Specific Systems, Architectures and Processors (ASAP), June
2013.

[77] Maxeler Technologies, “Maxeler AppGallery.” http://appgallery.maxeler.com/.
Accessed: 2016-03-30.

[78] Xilinx Inc., “Applications.” http://www.xilinx.com/applications.html. Ac-
cessed: 2016-03-30.

[79] Glen K. Lockwood, “InfiniBand SR-IOV Evaluation.” http://glennklockwood.

blogspot.fr/2013/12/high-performance-virtualization-sr-iov_14.html.
Accessed: 2016-03-30.

[80] Intel, “PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Tech-
nology.” http://www.intel.com/content/www/us/en/pci-express/

pci-sig-sr-iov-primer-sr-iov-technology-paper.html. Accessed: 2016-
03-30.

[81] IOV, “IOV.” https://pcisig.com/specifications/iov. Accessed: 2016-03-30.

[82] Lockwood, Glenn K. and Tatineni, Mahidhar and Wagner, Rick, “SR-IOV: Per-
formance Benefits for Virtualized Interconnects.” https://www.sdsc.edu/assets/

docs/SR-IOV-XSEDE14.pdf. Accessed: 2016-03-30.

http://www.google.com/patents/US4524430
http://www.google.com/patents/US4524430
http://appgallery.maxeler.com/
http://www.xilinx.com/applications.html
http://glennklockwood.blogspot.fr/2013/12/high-performance-virtualization-sr-iov_14.html
http://glennklockwood.blogspot.fr/2013/12/high-performance-virtualization-sr-iov_14.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
https://pcisig.com/specifications/iov
https://www.sdsc.edu/assets/docs/SR-IOV-XSEDE14.pdf
https://www.sdsc.edu/assets/docs/SR-IOV-XSEDE14.pdf

BIBLIOGRAPHY 115

[83] J. Jose, M. Li, X. Lu, K. Kandalla, M. Arnold, and D. Panda, “SR-IOV Support for
Virtualization on InfiniBand Clusters: Early Experience,” in Proceedings of the 2013
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2013.

[84] C. Reaño, F. Silla, G. Shainer, and S. Schultz, “Local and Remote GPUs Perform
Similar with EDR 100G InfiniBand,” in Proceedings of the Industrial Track of the
16th International Middleware Conference, Middleware Industry ’15, (New York,
NY, USA), pp. 4:1–4:7, ACM, 2015.

[85] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in the
Cloud: Booting Virtualized Hardware Accelerators with OpenStack,” in Proceedings
of the IEEE International Symposium on Field-Programmable Custom Computing
Machines, May 2014.

[86] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FPGAs in
Hyperscale Data Centers,” in Proceedings of the 2015 IEEE International Conference
on Cloud and Big Data Computing (CBDCom), 2015.

[87] occi-wg.org, “OCCI.” http://occi-wg.org/. Accessed: 2016-03-30.

[88] Amazon EC2 API, “Amazon EC2 API.” http://aws.amazon.com/documentation/

ec2/. Accessed: 2016-03-30.

[89] A. W. Services, “Amazon elastic mapreduce.” http://aws.amazon.com/

elasticmapreduce/. Accessed: 2016-03-30.

[90] Amazon Web Services, “Amazon Machine Learning.” http://aws.amazon.com/

aml/. Accessed: 2016-03-30.

[91] Google AppEngine, “Google AppEngine.” https://cloud.google.com/

appengine/docs. Accessed: 2016-03-30.

[92] Microsoft, “Windows azure web services.” http://azure.microsoft.com/en-us/

services/. Accessed: 2016-03-30.

[93] Rackspace, “Cloud Sites.” https://www.rackspace.com/cloud/sitessss. Ac-
cessed: 2016-03-30.

[94] Heroku, “Heroku.” http://docs.cloudfoundry.org/buildpacks/. Accessed:
2016-03-30.

[95] G. Pierre and C. Stratan, “ConPaaS: A Platform for Hosting Elastic Cloud Appli-
cations,” IEEE Internet Computing, vol. 16, no. 5, pp. 88–92, 2012.

[96] CloudFoundry, “CloudFoundry buildpacks.” http://docs.cloudfoundry.org/

buildpacks/. Accessed: 2016-03-30.

[97] AppScale, “AppScale.” https://github.com/AppScale/appscale. Accessed:
2016-03-30.

[98] Amazon EC2, “Amazon EC2 SLA.” http://aws.amazon.com/ec2/sla/. Accessed:
2016-03-30.

http://occi-wg.org/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/aml/
http://aws.amazon.com/aml/
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs
http://azure.microsoft.com/en-us/services/
http://azure.microsoft.com/en-us/services/
https://www.rackspace.com/cloud/sitessss
http://docs.cloudfoundry.org/buildpacks/
http://docs.cloudfoundry.org/buildpacks/
http://docs.cloudfoundry.org/buildpacks/
https://github.com/AppScale/appscale
http://aws.amazon.com/ec2/sla/

116 BIBLIOGRAPHY

[99] Rackspace, “Rackspace SLA.” https://www.rackspace.com/information/legal/

cloud/sla. Accessed: 2016-03-30.

[100] A. V. Papadopoulos, “Design and performance guarantees in cloud computing: chal-
lenges and opportunities,” in 10th International Workshop on Feedback Computing,
2015.

[101] Amazon EMR Documentation, “Amazon EMR API.” http://docs.aws.amazon.

com/ElasticMapReduce/latest/API/API_RunJobFlow.html. Accessed: 2016-03-
30.

[102] Amazon Elastic BeanStalk Documentation, “Amazon Elastic BeanStalk
API.” http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_

EnvironmentResourceDescription.html. Accessed: 2016-03-30.

[103] AppEngine Documentation, “AppEngine Applications.” https://cloud.google.

com/appengine/docs/python/scaling#introduction_to_instances. Accessed:
2016-03-30.

[104] Amazon AWS, “Auto Scaling.” https://aws.amazon.com/autoscaling/. Ac-
cessed: 2016-03-30.

[105] Google AppEngine, “Autoscaler.” https://cloud.google.com/compute/docs/

autoscaler/. Accessed: 2016-03-30.

[106] Rackspace, “Rackspace Auto Scale tips and how-to’s.” https://support.

rackspace.com/how-to/rackspace-auto-scale-tips-and-how-tos/. Accessed:
2016-03-30.

[107] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An Analytical
Model for Multi-tier Internet Services and Its Applications,” in Proceedings of the
2005 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’05, (New York, NY, USA), pp. 291–302, ACM,
2005.

[108] Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based Analytic Model for
Dynamic Resource Provisioning of Multi-Tier Applications,” in Proceedings of the
Fourth International Conference on Autonomic Computing, ICAC ’07, (Washington,
DC, USA), pp. 27–, IEEE Computer Society, 2007.

[109] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic Provisioning Modeling for Virtu-
alized Multi-tier Applications in Cloud Data Center,” in Proceedings of the 2010
IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 370–377,
July 2010.

[110] L. Lu, X. Zhu, R. Griffith, P. Padala, A. Parikh, P. Shah, and E. Smirni,
“Application-driven dynamic vertical scaling of virtual machines in resource pools,”
in Proceedings of the 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–9, May 2014.

[111] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang, “Proba-
bilistic Performance Modeling of Virtualized Resource Allocation,” in Proceedings of
the 7th International Conference on Autonomic Computing, ICAC ’10, (New York,
NY, USA), pp. 99–108, ACM, 2010.

https://www.rackspace.com/information/legal/cloud/sla
https://www.rackspace.com/information/legal/cloud/sla
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_RunJobFlow.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_RunJobFlow.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_EnvironmentResourceDescription.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_EnvironmentResourceDescription.html
https://cloud.google.com/appengine/docs/python/scaling#introduction_to_instances
https://cloud.google.com/appengine/docs/python/scaling#introduction_to_instances
https://aws.amazon.com/autoscaling/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://support.rackspace.com/how-to/rackspace-auto-scale-tips-and-how-tos/
https://support.rackspace.com/how-to/rackspace-auto-scale-tips-and-how-tos/

BIBLIOGRAPHY 117

[112] M. Turowski and A. Lenk, Service-Oriented Computing - ICSOC 2014 Work-
shops: WESOA; SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA and Satel-
lite Events, Paris, France, November 3-6, 2014, Revised Selected Papers, ch. Vertical
Scaling Capability of OpenStack, pp. 351–362. Cham: Springer International Pub-
lishing, 2015.

[113] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in Multi-tier Ap-
plications: Symptoms, Causes, and New Models,” in Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08,
(New York, NY, USA), pp. 265–286, Springer-Verlag New York, Inc., 2008.

[114] T. H. Beach, O. F. Rana, and N. J. Avis, “Integrating Acceleration Devices Using
CometCloud,” in Proceedings of the 1st ACM Workshop on Optimization Techniques
for Resources Management in Clouds, ORMaCloud ’13, (New York, NY, USA),
pp. 17–24, ACM, 2013.

[115] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Shopping for a cloud
made easy,” in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, (Berkeley, CA, USA), pp. 5–5, USENIX Association, 2010.

[116] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “DejaVu: Acceler-
ating Resource Allocation in Virtualized Environments,” in Proceedings of the 17th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, (New York, NY, USA), pp. 423–436, ACM, 2012.

[117] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, “Towards an autonomic auto-scaling
prediction system for cloud resource provisioning,” in Proceedings of the 10th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’15, (Piscataway, NJ, USA), pp. 35–45, IEEE Press, 2015.

[118] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling Web Applications in Het-
erogeneous Cloud Infrastructures,” in Proceedings of the 2014 IEEE International
Conference on Cloud Engineering (IC2E), pp. 195–204, March 2014.

[119] A.-M. Oprescu, T. Kielmann, and H. Leahu, “Budget estimation and control for
bag-of-tasks scheduling in clouds,” Parallel Processing Letters, vol. 21, June 2011.

[120] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic Resource Infer-
ence and Allocation for Mapreduce Environments,” in Proceedings of the 8th ACM
International Conference on Autonomic Computing, ICAC ’11, (New York, NY,
USA), pp. 235–244, ACM, 2011.

[121] F. Tian and K. Chen, “Towards Optimal Resource Provisioning for Running MapRe-
duce Programs in Public Clouds,” in Proceedings of the 2011 IEEE 4th International
Conference on Cloud Computing, CLOUD ’11, (Washington, DC, USA), pp. 155–
162, IEEE Computer Society, 2011.

[122] A. Ruiz-Alvarez, I. K. Kim, and M. Humphrey, “Toward Optimal Resource Provi-
sioning for Cloud MapReduce and Hybrid Cloud Applications,” in Proceedings of the
2015 IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 669–
677, June 2015.

118 BIBLIOGRAPHY

[123] Y. Gong, B. He, and A. C. Zhou, “Monetary Cost Optimizations for MPI-based
HPC Applications on Amazon Clouds: Checkpoints and Replicated Execution,”
in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, (New York, NY, USA), pp. 32:1–32:12,
ACM, 2015.

[124] A. Marathe, R. Harris, D. Lowenthal, B. R. de Supinski, B. Rountree, and M. Schulz,
“Exploiting Redundancy for Cost-effective, Time-constrained Execution of HPC Ap-
plications on Amazon EC2,” in Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, HPDC ’14, (New York, NY,
USA), pp. 279–290, ACM, 2014.

[125] S. Sirowy and A. Forin, “Wheres the Beef? Why FPGAs Are So Fast,” Tech. Rep.
MSR-TR-2008-130, Microsoft Research, Sept. 2008.

[126] R. McMillan, “Microsoft supercharges Bing search with programmable chips.” http:

//www.wired.com/2014/06/microsoft-fpga/, july 2014. Wired, Accessed: 2016-
03-30.

[127] S. Parsons, D. E. Taylor, D. V. Schuehler, M. A. Franklin, and R. D. Chamberlain,
“High speed processing of financial information using FPGA devices.” https://

www.google.com/patents/US7921046, April 2011. U.S. patent US7921046 B2.

[128] R. Woods, J. McAllister, Y. Yi, and G. Lightbody, FPGA-based Implementation of
Signal Processing Systems. Wiley, 2008.

[129] J. Arram, W. Luk, and P. Jiang, “Ramethy: Reconfigurable Acceleration of Bisul-
fite Sequence Alignment,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Feb. 2015.

[130] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-Scale Bayesian
Click-Through Rate Prediction for Sponsored Search Advertising in Microsofts Bing
Search Engine,” in Proceedings of the 27th International Conference on Machine
Learning (ICML), June 2010. Invited Applications Track.

[131] J. G. Coutinho, O. Pell, E. ONeill, P. Sanders, J. McGlone, P. Grigoras, W. Luk, and
C. Ragusa, “HARNESS Project: Managing Heterogeneous Computing Resources for
a Cloud Platform,” in Reconfigurable Computing: Architectures, Tools, and Appli-
cations, vol. 8405 of Lecture Notes in Computer Science, Springer, 2014.

[132] C. Reaño, R. Mayo, E. S. Quintana-Orti, F. Silla, J. Duato, and A. J. Peña, “In-
fluence of InfiniBand FDR on the Performance of Remote GPU Virtualization,” in
Proceedings of the International Conference on Cluster Computing, Sept. 2013.

[133] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi, “Distributed-Shared CUDA:
Virtualization of Large-Scale GPU Systems for Programmability and Reliability,”
Proceedings of the International Conference on Future Computational Technologies
and Applications, July 2012.

[134] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “En-
abling FPGAs in the Cloud,” in Proceedings of the 11th ACM Conference on Com-
puting Frontiers, May 2014.

http://www.wired.com/2014/06/microsoft-fpga/
http://www.wired.com/2014/06/microsoft-fpga/
https://www.google.com/patents/US7921046
https://www.google.com/patents/US7921046

BIBLIOGRAPHY 119

[135] Maxeler Technologies, “New Maxeler MPC-X series: Maximum Performance Com-
puting for Big Data applications.” http://bit.ly/1Mk7UxO. Accessed: 2016-03-30.

[136] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. Panda, “Efficient
inter-node MPI communication using GPUDirect RDMA for InfiniBand clusters with
NVIDIA GPUs,” in Proceedings of the 42nd International Conference on Parallel
Processing (ICPP), Oct. 2013.

[137] Turku PET Centre, “libtpcmodel.” http://www.turkupetcentre.net/software/

libdoc/libtpcmodel/nnls_8c_source.html. Accessed: 2016-03-30.

[138] A. Iordache, E. Buyukkaya, and G. Pierre, Distributed Applications and Interoperable
Systems: 15th IFIP WG 6.1 International Conference, DAIS 2015, Held as Part of
the 10th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, ch. Heterogeneous
Resource Selection for Arbitrary HPC Applications in the Cloud, pp. 108–123. Cham:
Springer International Publishing, 2015.

[139] R. Allan, “Survey of HPC Performance Modelling and Prediction Tools,” Tech. Rep.
DL-TR-2010-006, Science and Technology Facilities Council, July 2009.

[140] S. Pllana, I. Brandic, and S. Benkner, “Performance Modeling and Prediction of
Parallel and Distributed Computing Systems: A Survey of the State of the Art,”
in Proceedings of the 2007 1st International Conference on Complex, Intelligent and
Software Intensive Systems(CISIS), pp. 279–284, April 2007.

[141] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An Approach to Perfor-
mance Prediction for Parallel Applications,” in Proceedings of the 11th International
Euro-Par Conference on Parallel Processing, Euro-Par’05, pp. 196–205, Berlin, Hei-
delberg: Springer-Verlag, 2005.

[142] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang, “Proba-
bilistic Performance Modeling of Virtualized Resource Allocation,” in Proceedings of
the 7th International Conference on Autonomic Computing, ICAC ’10, (New York,
NY, USA), pp. 99–108, ACM, 2010.

[143] J. Dejun, G. Pierre, and C.-H. Chi, “Resource Provisioning of Web Applications
in Heterogeneous Clouds,” in Proceedings of the 2nd USENIX Conference on Web
Application Development, WebApps’11, (Berkeley, CA, USA), pp. 5–5, USENIX
Association, 2011.

[144] I. O. Bohachevsky, M. E. Johnson, and M. L. Stein, “Generalized Simulated Anneal-
ing for Function Optimization,” Technometrics, vol. 28, pp. 209–217, Aug. 1986.

[145] CGC, “Reverse time migration.” http://www.cgg.com/default.aspx?cid=2358.
Accessed: 2016-03-30.

[146] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd, “Efficient
Transaction Processing in SAP HANA Database: The End of a Column Store Myth,”
in Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, (New York, NY, USA), pp. 731–742, ACM, 2012.

[147] Grid’5000. http://www.grid5000.fr/. Accessed: 2016-03-30.

http://bit.ly/1Mk7UxO
http://www.turkupetcentre.net/software/libdoc/libtpcmodel/nnls_8c_source.html
http://www.turkupetcentre.net/software/libdoc/libtpcmodel/nnls_8c_source.html
http://www.cgg.com/default.aspx?cid=2358

120 BIBLIOGRAPHY

[148] SciPy, “Scipy.” http://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.anneal.html#scipy.optimize.anneal. Accessed: 2016-03-30.

[149] HARNESS consortium, “HARNESS White Paper.” http://www.

harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.

pdf. Accessed: 2016-03-30.

[150] ConPaaS, “ConPaaS.” http://www.conpaas.eu. Accessed: 2016-03-30.

[151] Amazon AWS, “Amazon DynamoDB.” https://aws.amazon.com/dynamodb/. Ac-
cessed: 2016-03-30.

[152] Amazon AWS, “Amazon Elastic Beanstalk.” http://docs.aws.amazon.com/

elasticbeanstalk/latest/dg/using-features.managing.as.html. Accessed:
2016-03-30.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.anneal.html#scipy.optimize.anneal
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.anneal.html#scipy.optimize.anneal
http://www.harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.pdf
http://www.harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.pdf
http://www.harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.pdf
http://www.conpaas.eu
https://aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html

	Introduction
	Problem
	Making Good Use of Resources : Maximizing Utilisation
	Making Good Choice of Resources

	Contributions
	Organization

	Background
	Maximizing Resource Utilization in IaaS Clouds
	Server Virtualization Technologies
	Accelerator Virtualization
	Network Virtualization
	Conclusion

	Performance-Cost Trade-Offs in PaaS Clouds
	Requirements
	Utilization-based Approaches
	Performance Modelling Approaches
	Conclusion

	FPGA Virtualization
	State of the Art
	FPGA Virtualization
	The FPGA-Server Appliance
	Resource Management
	FPGA Groups
	Discussion

	Elasticity and Autoscaling
	Elasticity of Virtual FPGAs
	Autoscaling of Virtual FPGAs

	Evaluation
	Virtualization Overhead
	FPGA Group Elasticity
	FPGA Group Autoscaling

	Conclusion

	Performance Modelling
	State of the Art
	Handling Arbitrary Applications
	Describing Arbitrary Applications with Application Manifests
	Specifying User's Expectations with Service-Level Objectives
	System Architecture
	Cloud Model

	Profiling Principles
	Assumptions
	Search Space
	Mapping Discrete Parameters
	Identifying Optimal Configurations
	Profiling Policies

	Profiling Methods
	Blackbox profiling
	Blackbox+Whitebox profiling
	Extrapolated profiling

	Evaluation
	Input-Independent Methods
	Input-Dependent Search Methods

	Conclusion

	Integration
	The HARNESS Heterogeneous Cloud
	The Infrastructure-as-a-Service Layer
	The Platform-as-a-Service Layer
	The Virtual Execution Layer

	Integration of Virtual FPGA Resources
	Enabling Performance-Cost Trade-Offs
	Discussion
	Virtual FPGAs
	Performance Modelling

	Conclusions and Perspectives
	Contributions
	Perspectives
	Short-term Perspectives
	Long-term Perspectives

	Application Manifest
	RTM Manifest
	DeltaMerge Manifest
	Manifest Template

