
ANNÉE 2016

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

David Wolinski
préparée à l’unité de recherche UMR 6074 IRISA
et au centre INRIA - Rennes Bretagne Atlantique

ISTIC

Microscopic Crowd

Simulation: Evaluation and

Development of Algorithms

Thèse soutenue à Rennes
le 22 janvier 2016

devant le jury composé de :

Yiorgos Chrysanthou
Professeur, University of Cyprus / rapporteur

Pierre Degond
Professeur, Imperial College London / rapporteur

Ming Lin
Professeur, University of North Carolina / examinateur

Armin Seyfried
Professeur, Jülich Supercomputing Centre / examinateur

Kadi Bouatouch
Professeur, Université de Rennes 1 / examinateur

Julien Pettré
Chargé de recherche, Université de Rennes 1 / directeur de
thèse

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1 Problem . 2
2 Approach . 3
3 Contributions . 4

2 Background 7
1 Introduction . 7
2 Autonomous Agent-based Algorithms . 8

2.1 First-Order Algorithms . 8
2.2 Second-Order Algorithms . 9

2.2.1 Repulsive-Forces from Future Collisions 9
2.2.2 Collision-Free Velocities 10
2.2.3 Other Predictive Approaches 11

2.3 Summary . 12
3 Centralized Algorithms . 13

3.1 Cellular Automata . 13
3.2 Data-Driven Algorithms . 14
3.3 Tiles and Patches . 16
3.4 Macroscopic Algorithms . 18

4 Conclusion . 20

3 Craal: Parameter Estimation and Comparative Evaluation of
Crowd Simulations 21
1 Introduction . 22
2 Related Work . 23

2.1 Evaluation . 23
2.2 Parameters . 24
2.3 Discussion . 26

3 Optimization Framework . 26
3.1 Overview of Approach . 26
3.2 Optimization Metrics . 29

3.2.1 Microscopic Data Metrics 29
3.2.2 Macroscopic Data Metrics 29

iii

CONTENTS

3.3 Optimization Techniques . 30
3.3.1 Greedy approach (G) . 30
3.3.2 Simulated annealing (SA) 30
3.3.3 Genetic algorithm (GA) 30
3.3.4 Covariance Matrix Adapation (CMA) 30

4 Results . 31
4.1 Data Categories . 31

4.1.1 Microscopic data . 31
4.1.2 Macroscopic data . 33
4.1.3 Sketch-like data . 35

4.2 Benchmarks . 35
5 Analysis and Conclusions . 39

4 WarpDriver: Context-Aware Probabilistic Motion Prediction for
Crowd Simulation 43
1 Introduction . 44
2 Summary of Related Work . 45
3 Overview . 47
4 Notations and Setup . 48
5 Perception: collision probability Fields . 49

5.1 The Intrinsic Field . 50
5.2 Warp Operators . 50

5.2.1 Agent-Related Operators 50
5.2.2 Context-Related Operators 51
5.2.3 Composition of Warp Operators 52

5.3 Combining collision probability Fields 53
6 Solving the Collision-Avoidance Problem 53
7 Results . 54

7.1 Large and Dense Cases . 54
7.1.1 Test case 1: Big Groups 55
7.1.2 Test case 2: Crossing . 55
7.1.3 Analysis . 55

7.2 Non-Linear Scenarios . 57
7.2.1 Test case 3: Curved Flows 57
7.2.2 Test case 4: Curved Obstacle 58
7.2.3 Analysis . 59

7.3 History-based Anticipation . 59
7.3.1 Test case 5: Zig-Zags . 60
7.3.2 Test case 6: Danger Corridor 60
7.3.3 Analysis . 61

7.4 Highly-constrained Case . 63
7.4.1 Test case 7: Plane . 63
7.4.2 Analysis . 64

7.5 Benchmarks . 64
8 Discussion and Limitations . 65
9 Conclusion . 66

iv

CONTENTS

5 Applications to Evaluation and Parameter Estimation 69
1 Application to Insect Simulation . 71

1.1 Introduction . 71
1.1.1 Working Arrangements 72

1.2 Related Work . 72
1.2.1 Graphics Point of View 73
1.2.2 Biology Point of View . 73
1.2.3 Discussion . 74

1.3 Approach Overview . 75
1.3.1 Pre-Processing Stage: Data 75
1.3.2 Runtime Stage: Three Levels of Simulation 76

1.4 Results . 79
1.4.1 Simulation . 79
1.4.2 Evaluation . 81

1.5 Conclusion . 83
2 Application to Pedestrian Tracking . 85

2.1 Introduction . 85
2.1.1 Working Arrangements 86

2.2 Related Work . 86
2.2.1 General Object Tracking 86
2.2.2 Crowd Motion Priors . 89
2.2.3 Summary . 89

2.3 Mixture Motion Model . 90
2.3.1 Overview and Notations 90
2.3.2 Particle Filter for Tracking 91
2.3.3 Parameterized Motion Model 92
2.3.4 Mixture of Motion Models 92

2.4 Implementation and Results . 95
2.4.1 Motion Models . 95
2.4.2 Evaluation . 97

2.5 Limitations, Conclusions, and Future Work 99

6 Conclusion and Future Work 101
1 Contributions . 101
2 Future Work . 103
3 Summary . 104

7 Résumé en Français 105
1 Problème . 106
2 Approche . 107
3 Contributions . 108

Appendices i

A Craal: Parameter Estimation and Comparative Evaluation of
Crowd Simulations i
1 Metrics . i

v

CONTENTS

1.1 Microscopic Data Metrics . i
1.2 Macroscopic Data Metrics . ii

2 Optimization Techniques . ii
2.1 Greedy algorithm . ii
2.2 Simulated annealing . ii

2.2.1 Genetic algorithm . iii
2.2.2 Covariance Matrix Adaptation iv

3 Optimization Comparison . iv
4 Initial Parameters for Optimization . viii

B WarpDriver: Context-Aware Probabilistic Motion Prediction for
Crowd Simulation xiii
1 Warp Operators . xiii

1.1 Agent-Related Operators . xiii
1.2 Context-Related Operators . xiv

Bibliography xxviii

vi

List of Figures

2.1 Boids flocking rules. 9
2.2 Second-order and first-order algorithms. 10
2.3 Steering away from future collisions. 10
2.4 Quantizing orientation and speed changes for collision avoidance. 11
2.5 Algorithms reasoning in velocity-space. 11
2.6 Other predictive algorithms. 12
2.7 Matrix of preferred transitions for an agent. 13
2.8 Conflict between two agents. 13
2.9 Data-driven algorithms’ usual workflow. 14
2.10 Data-driven data-base example. 15
2.11 Heterogeneous data-driven crowd. 16
2.12 Tile-based algorithm examples. 17
2.13 Patch-based algorithm. 18
2.14 Overview of macroscopic approaches. 18
2.15 Data-driven data-base example. 19
2.16 Crowds generated with macroscpic crowd simulation algorithms. 20

3.1 Parameter Optimization Applied to Crowd Data 21
3.2 Examples of test scenarios. 24
3.3 Examples of ground-truth comparisons. 25
3.4 Parameter optimization system overview. 27
3.5 Examples of calibration results, 2-6 agents. 32
3.6 Examples of calibration results, 24 agents. 33
3.7 Examples of calibration results, ∼150 agents. 34
3.8 Cultural variation in fundamental diagrams [Chattaraj et al. 2009]. 36
3.9 illustration of high-density errors. 37
3.10 Sketch-based simulation of vortices. 37
3.11 Sketch-based simulation of dynamic-sized groups. 38
3.12 Sketch-based simulation of groups merging in corridors. 38
3.13 Simulation algorithm comparison benchmarks. 40

4.1 Two 1027-agent groups exchange positions. 43
4.2 Overview of the Algorithmic Framework of WarpDriver. 46
4.3 Illustration of collision avoidance on a curved path. 48
4.4 Cases using context-related Warp Operators. 51
4.5 Dual Big Groups example. 54
4.6 Crossing example. 55
4.7 Crossing example, number of jammed agents and crossing line orientations. . 56

vii

LIST OF FIGURES

4.8 Curved Flows example. 57
4.9 Curved Flows example, effects of path curve on flow speed. 58
4.10 Curved Obstacle example. 58
4.11 Curved Obstacle example, agent traces. 59
4.12 Zig-Zag example. 60
4.13 Danger Corridor example. 60
4.14 Zig-Zag and Danger Corridor example, deviation angles. 61
4.15 Zig-Zag and Danger Corridor example, backtracking agents. 62
4.16 Plane example. 63
4.17 Plane example, number of evacuated agents. 63
4.18 Benchmarks. 65

5.1 Simulation of butterflies moving on a prairie. 71
5.2 Insect simulator [WJDZ14]. 74
5.3 The schematic view of our simulation pipeline. 75
5.4 Evaluation results of three steering algorithms. 79
5.5 Comparison of simulations using different sampling techniques. 80
5.6 Insect simulation results. 80
5.7 Example sketches (3D) with density fields derived from the Gaussian distribution. 81
5.8 Swarm-level obstacle avoidance. 81
5.9 Effect of sampling technique on distance to swarm centroid. 82
5.10 Effect of sampling technique on polarization score. 82
5.11 Real-time trajectory computation with our mixture motion model. 85
5.12 Overview of our real time tracking algorithm. 90
5.13 Our parameter optimization algorithm. 92
5.14 Comparing the score of the different optimization approaches. 94
5.15 Parameter optimization time for each motion model. 94
5.16 Results of our approach on some challenging datasets. 99
5.17 Error in the predicted position compared to the ground truth. 100
5.18 Computation cost comparison. 100

A.1 Illustration of reference data used for batch testing. vi
A.2 Figures extracted from [Chattaraj et al. 2009 vii
A.3 Summary of the experiment testing optimization algorithms. ix
A.4 Anova and signed rank tests on score. x
A.5 Anova and signed rank tests on computation time. xi

B.1 Environment graphs. xvi

viii

List of Tables

4.1 FPS per number of agents. 65

5.1 Initial motion model parameters for optimization. 95
5.2 Crowd Scenes used as Benchmarks. 97
5.3 Comparison of successful tracks and ID switches. (1) 98
5.4 Comparison of successful tracks and ID switches. (2) 98
5.5 Comparison of MOTA and MOTP values. 98

A.1 Ranking of optimization algorithms, score. v
A.2 Ranking of optimization algorithms, time. vii
A.3 Default values for simulation parameters. viii

ix

1Introduction

The demand for crowd simulation has sky-rocketted in recent years, with entertainment
and safety at the forefront of its applications. Evermore ambitious and epic movies and
video games call for ever larger armies or background crowds, while ever stricter safety
rules require urban designers and architects to make increasingly accurate predictions of
crowd behaviors.

Blockbuster movies in particular have recently made the transition from calling upon
large numbers of “extras” to using computer-generated crowds (“crowds” here loosely
refer to any collection of on-screen entities) in order to populate their scenes. Thus,
one can now watch synthesized crowds in varied works and contexts. For instance, very
large armies have been a central aspect of movies or television shows such as Lord of The

Rings, 300, Game of Thrones etc. Computer-generated crowds can also be found in other
forms, such as large amounts of swarming zombies in World War Z, apes (and humans)
in Dawn of the Planet of the Apes, minions in the Despicable Me franchise etc. The
main requirement in bringing these animated crowds to life (in addition to the quality of
motion), is a high level of control of the artist over the simulation, directing the behaviors
and styles as needed to fit a particular project.

In video games, crowd simulators are tasked with the steering of every dynamic (in-
teractable) non player character, ranging from pedestrians roaming the streets of As-

sassin’s Creed games to the countless soldiers of the Dynasty Warriors franchise. While
both video games and movies require a high level of control over the simulations as well
as a high level of realism/believability, video games (and any other interactive experi-
ence) additionally need the synthesized characters to be interactable: agents need to be
autonomous and the simulation needs to be real-time.

In terms of security and urban planning, crowd simulation is similarly widely appli-
cable. For instance, organizers of large “open” events (e.g. concerts) can use simulators
to make statistical predictions on the crowd’s behavior, in order to improve the layout of
their installations and/or intended routes (hopefully avoiding disasters such as the one
during the Love Parade music festival in Duisburg, Germany, in July 2010). Obviously,
similar approaches can also be adopted when designing a new building/structure, such
as an airport/train station, a mall, offices, cruise-ships etc. Additionally, in the case of
such buildings it is also possible to track people during an evacuation in order to make
predictions on the availability of exit points, and ultimately to guide the evacuees along
optimal routes, avoiding congestion. As a more specific application, one can also use
queueing simulators to optimize waiting lines at amusement parks, airports/train sta-
tions etc. Overall, in these cases, the most important aspect is the (mostly statistical)
accuracy of the simulated crowds as well as their ability to predict situations’ outcomes,
with some situations such as evacuations also requiring real-time performance.

1

CHAPTER 1. INTRODUCTION

With this wide variety of applications, many algorithms have been developed, often
for specific purposes. Consequently, the choice of which algorithm to use for a given task
is not an easy one.

1 Problem

Assuming a pool of available algorithms to simulate crowds in a user’s target application,
the task of such a user when choosing the appropriate algorithm is to answer a few
fundamental questions.

Performance How fast does the algorithm need to be? Interactive experiences (e.g.
video games) require real-time crowds while movies can make do with more time con-
suming offline computation. Similarly, a system which directs pedestrians along the
optimal path during an evacuation needs to adapt quickly to changing situations, while
the validation of new building’s design is less urgent.

Autonomy The next question is: how much user intervention is required for the algo-
rithm to satisfactorily achieve the desired effect? For instance, can the simulator produce
the right result with the user simply specifying “1000 humans, from here to here, mov-
ing fast, scared”, or is the user required to manually check and correct the behavior of
each simulated individual (keeping in mind that each individual change could impact the
whole simulation)?

Control Another facet is the issue of control (or flexibility), i.e. can the user profitably
direct the simulation algorithm to fit another particular need? Could the same simulator
produce a different crowd with another specification such as “1000 tourists, from here to
here, moving slowly, curious” or does it have a limited domain of application?

Realism The last question is also an immediate one: how accurate/realistic will the
simulation be? An algorithm would not be of much use to an artist if the simulated
characters broke the audience’s immersion, nor would it be of much use to an architect
studying evacuation cases if the simulated pedestrians did not sufficiently behave like
humans. As a simulator could be more suited for certain applications than others, this
is also related to the question of the validity domain of an algorithm: assuming a pool of
available algorithms, which one is most suitable for a given application?

While all these questions need to be considered when choosing (or developing) an
algorithm, they are not equally easy to answer. The question of performance is an easy
one, the theoretical algorithmic complexity of a simulator is not difficult to assess, and
as a last resort simply running the simulator gives an idea of its performance and scaling
ability. The questions of autonomy and control are trickier, as they require a deeper
knowledge of the considered algorithm’s capabilities: mainly its applicability domain
(possible instabilities at certain densities, holonomic/non-holonomic agents etc.) and
the effects of parameters (affecting for instance how cautious simulated characters are

2

2. APPROACH

of each other). Finally, the question of realism is by far the most difficult to answer
as: (1) in many cases there is no clear definition to what “realistic” means, and (2) some
algorithms could in theory achieve the target result but their tuning to do so is not known
nor trivial.

Thus the main objective of this thesis is to globally improve crowd simulation algo-
rithms’ realism by: (1) designing a generally applicable scheme to evaluate the realism
of simulation algorithms (while keeping in mind the questions of autonomy and control),
and (2) further developing more capable simulation algorithms.

2 Approach

As a basis for our work, we chose to approach this question of realism from the perspec-
tive of microscopic, agent-based crowd simulators (detailed in Section 2) as they are a
widely used class of algorithms, thanks to their ease of use and implementation as well
as their flexibilty.

From this perspective, we first focused on the evaluation of crowd simulation algo-
rithms. The two main objectives of this work were to validate existing algorithms and
to develop a framework which we could later use to validate future ideas. We based
this framework’s evaluation scheme on real-world data, using various metrics to compare
tracked pedestrians’ trajectories and the corresponding ones from the simulated agents’.
As a second component, we incorporated parameter estimation into this framework, al-
lowing us to do two things. The first is a fair comparison between algorithms, as each
algorithm is optimally tuned during the testing, an the second is the exploration of the
question of control, as the tuning of parameters according to different criteria can be
used for instance to help artists adapt a given algorithm to varied situations.

During this work, it became clear that even with recent progress on microscopic,
agent-based algorithms, many artifacts and simulation errors persist. This led to the sec-
ond main piece of work presented in this document, concerning the development of crowd
simulation algorithms. Broadly, while “first-order” algorithms (see Chapter 2, Section 2)
are intuitive to implement, extend and use, their simulation results are not as good as
that of “second-order” algorithms (algorithms which anticipate collisions by linear tra-
jectory extrapolation), which in turn are however more difficult to extend, and also still
produce noticeable artifacts. In order to further improve simulation results, we designed
an easily extendable algorithm which works in the 3-dimensional space (2D positions
plus time) and where agents perceive probabilities of colliding with each other. These
probabilities are computed on the basis of an intrinsic field which represents agents’ col-
lision probabilities that are due to their co-existence (i.e. agents are not reduced to a
point), and every source of information that we wish to take into account further warps

this field. Thus, we implemented warp operators which model: agents’ perception error
(agents perceive imminent situations better than ones further into the future), agents’ ra-
dius, agents’ future trajectory prediction based on velocity (linear), perception errors due
to velocity, prediction based on the environment layout (non-linear), prediction based on
agents’ past trajectories (non-linear) and prediction based on agents’ interactions with
obstacles (i.e. the impossibility for an agent to traverse obstacles; also non-linear). Fur-
thermore we can easily visualize these collision probabilities when checking simulation

3

CHAPTER 1. INTRODUCTION

results, thus making it easier to analyze and extend the algorithm.
In parallel, while exploring and looking for available ground-truth data, the work on

evaluation and parameter estimation has lead to two further applications. In these ap-
plications we approach the question of the validity domain of each simulation algorithm.
Thus, we use our work as a simulation algorithm selector in order to determine which
simulator is most suitable for a (1) simulation or (2) an instant during a simulation:

The first application concerned the simulation of swarms of insects, as data on in-
dividual flying insects’ trajectories had recently been made available. Consequently, we
applied our work in order to design a data-driven insect swarm simulator. We used the
parameter estimation to select the most appropriate collision-avoidance algorithm and
tune it in order to reproduce low-level insect behaviors, and then completed the ap-
proach with additional statistical mechanisms taking care of the “zig-zaggy” nature of
each insect’s trajectory and their high-level swarm behavior respectively.

The second project prompted by the work on evaluation and parameter estimation
concerned tracking. Here, we based ourselves on an already explored approach where
a tracker is paired with a simulation algorithm which helps the tracker by predicting
where pedestrians are likely to move. We worked on perfecting this tracker-simulator
approach in a general, simulator-agnostic way. As confirmed during our work on param-
eter estimation, it is easier to fully reproduce crowd behaviors at all times and under all
circumstances with several, well tuned algorithms than with a single simulator with a
general parameter set. Thus, we use already tracked portions of tracked pedestrians’ tra-
jectories to estimate the optimal parameters of several, concurrently running simulators.
Then, we select the (tuned) simulator which best matches these already-known portions
to predict the pedestrians’ next positions to help the tracker, thus much improving the
overall tracking accuracy.

3 Contributions

As per the title of this thesis “Microscopic Crowd Simulation: Evaluation and Devel-
opment of Algorithms”, our two main contributions (as first author) are as follows:

Evaluation and Parameter Estimation, Chapter 3 We propose a framework/method
which aims to provide an objective and fair evaluation of the realism of crowd simulation
algorithms. “Objective” here means the use of various metrics quantifying the similarity
between simulations and ground-truth data acquired with real pedestrians. “Fair” here
means the use, along with the similarity metrics, of parameter estimation to automat-
ically tune the tested algorithms in order to match the ground-truth data as closely as
possible (with respect to the metrics), thus effectively allowing to compare algorithms
at the best of their capability. We also explore how this process can increase the level
of crontrol a user has on the simulation while simultaneously reducing the amount of
necessary user intervention.

Collision Avoidance, Chapter 4 We propose a new collision-avoidance algorithm,
solving artifacts which still persist in current approaches. In order to achieve this, where
current algorithms predict collisions by linearly extrapolating agents’ trajectories, we

4

3. CONTRIBUTIONS

introduce an algorithm which better predicts agents’ future motions in a probabilistic,
non-linear way, taking into account the environment layout, agent’s past trajectories
and interactions with other obstacles among other cues. The resulting simulations do
away with commonly observed artifacts such as: slowdowns and visually erroneous agent
agglutinations, unnatural oscillation motions, or exaggerated/last-minute/false-positive
avoidance manoeuvres.

Applications to Evaluation and Parameter Estimation Additionally, we also
present two other contributions in the form of two applications to the parameter estima-
tion and evaluation framework (as second author):

Insect Simulation, Chapter 5, Part 1 First author: Weizi Li, PhD student at the
Gamma Group from the University of Carolina at Chapel Hill, NC, USA. In this work,
we simulate biologically-inspired insects, i.e. insects leading to swarming behaviors as
close as possible to ones observable in nature. Thanks to multiple available simulation
algorithms, local similarity metrics and parameter estimation, agents’ local interactions
are as close as possible to real insects’, while their noisy/zig-zaggy trajectories and global
swarm structures are also learned from collected data. The resulting simulations repro-
duce real swarm behaviors as measured by metrics classically-used in the field of insect
simulation.

Pedestrian Tracking, Chapter 5, Part 2 First author: Aniket Bera, PhD stu-
dent at the Gamma Group from the University of Carolina at Chapel Hill, NC, USA. In
this work, we track pedestrians using a method which benefits from motion prior. The
approach is itself not new: a tracking algorithm provides position information to a crowd
simulator which predicts the pedestrians’ next positions and informs the tracking algo-
rithm, which in turn improves its accuracy. The novelty of our work lies in the prediction
of the pedestrians’ next positions: instead of using a single algorithm, we use similarity
metrics and parameter estimation in real-time to tune several simulation algorithms in
order to match the already observed trajectories as well as possible and then select the
algorithm that matches them best. This way, we effectively optimize our prediction ca-
pability and, consequently we much improve tracking accuracy in challenging conditions
of lighting and inter-agent occlusions.

5

2Background

Contents

1 Introduction . 7
2 Autonomous Agent-based Algorithms . 8

2.1 First-Order Algorithms . 8
2.2 Second-Order Algorithms . 9
2.3 Summary . 12

3 Centralized Algorithms . 13
3.1 Cellular Automata . 13
3.2 Data-Driven Algorithms . 14
3.3 Tiles and Patches . 16
3.4 Macroscopic Algorithms . 18

4 Conclusion . 20

While the following chapters present work touching upon various topics including
evaluation, insects, pedestrian tracking, and collision avoidance, this chapter aims to
provide some common ground for the rest of this thesis in the form of related work in
the field of crowd simulation. Thus, we here give an overview of the various algorithms
that have been devised over the years to simulate crowds, that is collections of agents,
possibly ranging from insects to humans.

1 Introduction

Due to the numerous and varied applications to crowd simulation, and thus due to the
numerous and varied properties required by each of these applications, a large number
of simulation algorithms have been proposed. These algorithms vary in their scope:
ranging from microscopic (crowds formed of interacting agents) to macroscopic (crowds
simulated as a whole, at the expense of individual agents). They vary in their intention:
either trying to replicate real, observed crowds or trying to build them from the ground
up. And of course, most of all, they vary in their approaches: they can be physics-derived,
vision-based, geometric, rule-based, probabilistic etc.

Thus, we give an overview of crowd simulation algorithms grouped by approach type.
First we detail microscopic, autonomous agent-based algorithms by increasing level of
complexity in Section 2, as they are the focus of this thesis, then we list other types
of algorithms according to their scale in Section 3. Overall, we start with microscopic
algorithms and end with macroscopic algorithms.

7

CHAPTER 2. BACKGROUND

2 Autonomous Agent-based Algorithms

Agent-based algorithms, which are the focus of this thesis, aim to build crowds as a
result of combining interacting agents. As already mentioned, to design such an algo-
rithm, one needs to define three things: agents, interaction rules between agents, and
the mechanism which combines interactions between several agents. Traditionally, these
interaction rules focus on collision avoidance, as it has the biggest influence on agents’
trajectories, and is still challenging in certain conditions. Nonetheless, the advantage
of agent-based algorithms is that even simple rules may lead to surprisingly complex
crowds. This means that one can design an algorithm which can simulate a crowd well at
the global level all the while focusing on making interactions between individual agents
as realistic as possible.

Thus, the complexity of interaction rules in agent-based algorithms has slowly in-
creased with each new proposed approach. Broadly, one can identify first-order algo-
rithms, where the dominant cue for interaction is the position of the agents, and the
more recent second-order algorithms, which started predicting where and when collisions
will take place in order to avoid them with anticipation.

2.1 First-Order Algorithms

To define the interaction rules, agent-based algorithms have started by focusing on
agents’ positions. In his seminal work, Reynolds [Rey87] builds flocks of Boids by defin-
ing three rules:

1. Separation pushes boids away from each other as repulsive forces between neigh-
bors (Figure 2.1(a)).

2. Cohesion keeps boids from dispersing, by making them attempt to move towards
the center of the flock (Figure 2.1(b)).

3. Alignment keeps boids flying in the same general direction, in order to have a
coordinated flock behavior (Figure 2.1(c)).

Vicsek and colleagues similarly define self-driven particles [VCBJ+95] where the speed
of each particle is fixed but the orientation is set as the average orientation of neighbor
particles with some random perturbation (similar to the Alignment rule from Boids).

Repulsive forces between agents were further investigated by algorithms such as So-
cial Forces [HM95, HFV00]. This formulation models agents as particles subjected to
various forces, such as repulsion from neighbor agents and attraction to their destina-
tion. The moton of an agent is thus defined by an equation analogous to Newton’s
second law of motion:

d−→v α

dt
=
−→
F α(t) + fluctuations, [HM95] (2.1)

where the agent’s velocity −→v α is computed from various forces
−→
F α. Additionally to

repulsion from neighbor agents (collision avoidance) and attraction to destinations, other

8

2. AUTONOMOUS AGENT-BASED ALGORITHMS

(a) Separation (b) Cohesion (c) Alignment

Figure 2.1 – Boids flocking rules [Rey99].

forces can be defined, such as time-varying attraction forces to friends, store fronts or
other points of interest. For instance, this algorithm has been extended to take into
account the speeds of the agents as well as their relative angles in the computation of the
forces [JHS07].

The main advantages of these algorithms are their ease of implementation and ex-
tendability, justifying their wide use. Implementing these interaction rules can be done
in a matter of minutes, and additional rules and forces can be quickly and intuitively
defined and integrated into the algorithms. Additionally, even with these simple rules,
one can simulate flocks and crowds which display convincing group behaviors. However
locally, individual agents’ trajectories are not always very convincing and many patho-
logical situations must be taken care of for a robust implementation: at higher densities
for instance, Social-Forces based algorithms (akin to a physics simualtion) can become
unstable.

2.2 Second-Order Algorithms

Solving many artifacts found in these previous approaches, algorithms predicting future
collisions have been investigated. As opposed to previous methods where interactions are
based on positions (first-order), these algorithms consider agents’ instantaneous veloci-
ties (second-order) to linearly extrapolate their future trajectories, and thus to predict
collisions. Some effects of second-order algorithms over first-order ones can be seen in
Figure 2.2.

2.2.1 Repulsive-Forces from Future Collisions

Some algorithms, such as those found in [Rey99] (an extension to the Boids algorithm),
[KHBO09] or [PESVG09], predict where a collision between two agents will take place
and steer agents away from it, through various repulsive forces (Figure 2.3). Lamarche
and Donikian similarly compute future collisions, but then discretize them and identify if
those are rear, front, back, or static collisions, with a velocity-adaptation module defined
for each type [LD04].

9

CHAPTER 2. BACKGROUND

(a) [POO+09] (b) [vdBLM08] (c) [Rey99] (d) [HM95]

Figure 2.2 – Simulation results of two interacting agents [POO+09] with second-order
algorithms (a-c) and a first-order algorithm (d), as compared to ground-truth data. Real
trajectories are in red and simulated ones are in blue, the hatched area thus represents the
simulation error. Second-order algorithms have a lower error than the first-order one.

(a) [Rey99] (b) [KHBO09] (c) [PESVG09]

Figure 2.3 – Steering away from future collisions. (a) and (b) Repulsion forces are di-
rected similarly, Fij is directed by vector −−→cjci in (b). (c) Agents are subjected to repulsive
forces originating from each other’s future point of closest approach (e.g. force on agent s1
directed by −−→c2s1).

2.2.2 Collision-Free Velocities

Other algorithms solve collisions in a different way, by searching for a velocity (both
the orientation and speed of and agent, usually a two-dimensional vector) leading to a
collision-free trajectory. Although the problem is three-dimensional (trajectories are sets
of points with a two-dimensional position and a time component), by using agents’ in-
stantaneous velocities to linearly extrapolate their future trajectories, the problem can
easily be simplified to a two-dimensional one. Consequently, many approaches to colli-
sion avoidance have proposed such a simplification, followed by a corresponding solution.
For instance, Feurtey defines a disc of points that are reachable with specific velocities in
∆ time [Feu00], and chooses agents’ velocity adaptations from this disc based on a cost
(cost of colliding, changing direction and changing speed).

Overall, certain velocities lead to a collision while others are collision-free: they are
qualified as inadmissible and admissible velocities, respectively. Consequently, Paris et
al. [PPD07] divide the space in front of an agent into sections, corresponding to differ-
ent orientations of said agent (different colors in Figure 2.4(a)). Then for each section,
they determine the speeds that lead to a collision-free motion (in blue in Figure 2.4(b)).

10

2. AUTONOMOUS AGENT-BASED ALGORITHMS

Finally, the agent chooses among these sections and speeds (combined they form the
admissible velocities) those which minimize the velocity adaptation.

(a) Dividing orientations. (b) Dividing speeds.

Figure 2.4 – Agents divide their possible orientation changes (left) and corresponding
speed changes (right) during collision avoidance [PPD07]. Purple discs represent the other
agent’s positions at diffirent moments in the future. The blue ares on the right represent
admissible velocities four one section of possible orientations (each colored area on the left
is such a section).

Later algorithms look for admissible velocities in a different way [vdBLM08, GCK+09,
POO+09, GCLM12], and choose instead to reason in the two-dimensional velocity-space
(see Figure 2.5), where admissible velocities can be quickly found amongst linear con-
straints.

(a) [vdBLM08] (b) [POO+09]

Figure 2.5 – Algorithms reasoning in velocity-space. Left: the main agent (dark gray)
is looking for collision-free velocities (white areas) in velocity-space. Light gray areas rep-
resent inadmissible velocities leading to collisions with other agents. Right: two agents
interacting from the perspective of the bottom left one, with the green area representing
inadmissible velocities. The goal of that agent is to move its current velocity (in red) out
of the green area to make it an admissible velocity.

2.2.3 Other Predictive Approaches

Finally, some other algorithms have also been proposed, using very different approaches
but which are also predictive in nature; the remainder of this section details three such
examples.

11

CHAPTER 2. BACKGROUND

Kapadia and colleagues propose a model of ego-centric affordance [KSHF09], where
space around an agent is discretized (Figure 2.6(a)) into cells containing information
about neighbor agents visiting them in the future; collisions are then solved by choosing
an orientation and speed which steer the agent towards the most neighbor-free cells.

Moussaïd and colleagues [MHT11] compute for every direction an agent could follow,
a cost based on the time to collision (assuming the agent follows this direction at the
current speed, and other agents continue with their current velocity) and the deviation
from the destination. They then choose the direction with the lowest cost and adapt the
speed of the agent so that the time to collision falls under a certain threshold.

A vision-based algorithm has also been proposed [OPOD10] which simulates agents’
optic flow, and computes for each pixel, the time to closest approach (if there will be a
collision, this would then be the time to collision) and the time-derivative of the bearing
angle (the angle between the agent’s orientation and a neighbor). Essentially, as the time
to interaction decreases (but remains positive) and the derivative of the bearing angle
stays close to zero, agents are headed for collision. Thus an agent steers as to keep these
two quantities around certain preferred values (see Figure 2.6(b)).

In the last example [KSG14], agents are subjected to forces (computed based on
linear extrapolations of each agent’s velocity) which have been empirically defined by
analyzing recorded ground-truth data, and finding a predictive power law which governs
pedestrians’ motions (Figure 2.6(c)).

(a) [KSHF09] (b) [OPOD10] (c) [KSG14]

Figure 2.6 – Other predictive algorithms. (a) Illustration of the egocentric discretization
of space around an agent, future interactions are stored in these cells. (b) A trajectory is
considered collision-free while values of time to closest approach and the time-derivative of
the bearing angle stay outside the blue curves. (c) Interaction energy as a function of time
to closest approach, extracted from a specific data-set.

2.3 Summary

As a common assumption, these second-order algorithms all linearly extrapolate agents’
future motions from their positions and instantaneous velocities, making it possible to
anticipate collisions up to a certain time horizon and improve simulations over first-order
algorithms [OMCP12, GvdBL+12, WGO+14].

However this remains a linear extrapolation, which in many more challenging sit-
uations does not always yield truly satisfactory results, prompting additional work to

12

3. CENTRALIZED ALGORITHMS

strengthen the quality of simulations. Kim et al [KGL+14]. introduced a probabilistic
component to the algorithm presented in [vdBLM08], while Golas and colleagues [GNL13]
added look-ahead to adaptively increase the time horizon in an efficient way for large
groups of agents. Finally, this same algorithm has been extended to include agents’
acceleration constraints [vdBSGM11]. All three aproaches have thus extended this algo-
rithm to further improve results.

3 Centralized Algorithms

3.1 Cellular Automata

Cellular automata [Sch01, KS08] discretize the simulation space into a grid where each
cell can be either free or occupied by one agent (or obstacle). In order to steer agents,
these algorithms define rules dictating the probabilities agents have of transitioning into
neighbor cells.

The simulation is then carried out as a series of rounds where all agents act in parallel.
Each agent first chooses its preferred exit which is the neighbor cell it would attain fol-
lowing its preferred velocity during that round (Figure 2.7). Afterwards, agents attempt
to transition into their preferred exits, while obeying all the rules they are subjected to.

Figure 2.7 – Matrix of preferred transitions for an agent [Sch01].

Figure 2.8 – Conflict between two agents, solved by comparing relative transiton proba-
bilities [Sch01].

13

CHAPTER 2. BACKGROUND

Transition rules can be local: an agent can’t transition into a cell that is already oc-
cupied by another agent and if two agents were to attempt transitioning into the same
cell, the one with the highest relative probability is given priority, thus solving extreme
congestion cases (Figure 2.8). Rules can also be defined at a larger scale. For instance,
it has been observed that two large groups crossing ways lead to the formation of lanes
where pedestrians tend to follow the ones in front of them; similarly, pedestrians tend
to follow trodden paths rather than unexplored routes. Cellular automata can easily be
extended with floor fields to display these phenomena: by increasing agents transition
probabilities to recently visited cells, lanes and previously paths will more easily be fol-
lowed by subsequent agents. Additionally, these probability increases can be made to
decay over time, thus allowing the patterns to change, and preventing the crowds from
reducing to a few lanes.

Due to their probabilistic nature, cellular automata allow to evaluate possible out-
comes of a given situation. Additionally, thanks to the simplicity of their governing
rules, these algorithms scale well. This ability to scale well allows to study the cou-
pling/transition from microscopic properties to macroscopic phenomena, such as the for-
mation of diagonal patterns between two intersecting traffic flows [CARH13]. For these
reasons, they are often used in the field of evacuation dynamics. Due to their discrete
nature, these algorithms are not however well suited for computer graphics applications.

3.2 Data-Driven Algorithms

Figure 2.9 – Data-driven algorithms’ usual workflow; from [LCL07].

Data-driven algorithms attempt to learn crowd behaviors from real-world sources
such as motion capture or camera footage, hugely benefitting from recent advances in
tracking. With large data-sets of real-world pedestrian trajectories available to them,
these methods construct data-bases of motions which they then query to synthesize re-
alistically behaving crowds. This usual workflow of data-driven algorithms is shown on
Figure 2.9.

In their work, Lerner at al. [LCL07] aim to determine what influences (and how)
pedestrians’ trajectory decisions. Their data-base then consists of pedestrian-interaction
examples (see Figure 2.10). Each example focuses on one subject pedestrian and captures

14

3. CENTRALIZED ALGORITHMS

a short moment around a time t. Examples have two components: a portion of the
trajectory of the subject, as well as a portion of the trajectories of nearby pedestrians
(and other dynamic/static gemoetry such as walls). As seen on Figure 2.10, examples
are centered on the subject and all information is recorded in this referential, additionally,
each point in this referential has a certain influence value (colored areas in Figure 2.10).
Each influencing pedestrian (and geometry) is given an influence value corresponding to
the highest influence value along their trajctory portion. At run-time, for every agent,
the simulation algorithm computes a query and thanks to a similarity function using the
influence values, finds the closest example. The trajectory of the subject in the closest
example then determines how the queried agent will behave in the simualtion.

(a) (b) (c)

Figure 2.10 – An example as defined in [LCL07]. (a) Configuration of an example, with
the subject in the center and nearby influencing pedestrians. Colored areas represent var-
ious levels of influence (darker is more influent). (b) The top-right pedestrian’s trajctory
portion, the most influential position determines the pedestrian’s influence. (c) All pedes-
trians colored according to their influence on the subject.

Other data-driven algorithms follow similar principles. Lee et al. [LCHL07] construct
data-bases of state-actions which record information about the subject pedestrian (state:
such as speed, neighbors, pivots aka. special objects near which special behaviors take
place etc.) and what the pedestrian did. Again, at run-time, this data-base is queried to
determine agents’ trajectories.

Ju et al. [JCP+10] developed an algorithm which learns crowd formations (as distri-
butions of the four closest neighbors’ positions) and motions (as trajectory segments) in
order to learn different crowd styles. As a result, it is possible to interpolate between
different models, thus leading to visually heterogeneous crowds as seen on Figure 2.11.

More recently, Charalambous and Chrysanthou [CC14] constructed their data-base in
the form of a graph. In this graph, nodes represent the current state of an agent, defined
as a series of temporally consecutive visibility patterns (free space in an agent’s field of
vision), and edges are actions which allow to transition from state to state. Thanks to
this graph structure, run-time queries are easier (the query result is very probably in the
agent’s current node) thereby reducing the computational cost as compared to previous
algorithms. Additionally, since agents traverse the graph with limited jumping between
non-connected nodes (unless they drift too much from the states stored in the current
node), their behaviors are more consistent.

Overall, data-driven algorithms are a great method to populate areas. Crowds with

15

CHAPTER 2. BACKGROUND

Figure 2.11 – Heterogeneous crowd obtained by interpolating between various styles
[JCP+10].

specific styles as well as artist-generated ones can be recorded and used to build the
data-bases allowing to synthesize a wide variety of crowds. Additionally, crowds can
be randomly initialized (or with some guidance as in [JCP+10]) and the agents would
continue moving according to the learned behaviors seemingly indefinitely without the
need for the animator to specify individual goals for each agent. But this lack of explicit
goal-management makes agents more difficult to control during run-time. Moreover, the
resulting simulations heavily depend on the quality and situation-coverage of the source
data. Obviously, situations which are not in the data-base cannot be reproduced and the
algorithms can have a hard time when the simulations start straying away from what
is learned. Finally, although [CC14] improved run-time performance, these algorithms
remain computationally expensive, and are thus better suited for non-interactive appli-
cations.

3.3 Tiles and Patches

Tile-based algorithms essentially allow to precompute motions. Using this approach,
a virtual environment is assembled from a library of tiles which contain velocity infor-
mation, or flows. During simulation, pedestrians are modeled as particles which are
advected along these flows, resulting in simulations with a low computational cost. The
first technical question then revolves around the construction of these tiles. For instance,
Chenney proposes a method [Che04] to create divergence-free tiles, respecting bound-
ary conditions imposed by the environment (Figure 2.12(a)), while Courty and Corpetti
propose to learn the flows from video data [CC07](Figure 2.12(b)).

Since all particles (simulated pedestrians) are advected following the same flow fields,
these algorithms forgo local collision-avoidance mechanisms. In theory, if particles are
initialized as non-intersecting, and allow a certain buffer distance between themselves
accounting for the possible compression resulting from the flow fields, collisions should
be avoided. In practice however, especially at higher densities collisions do occur. Ad-
ditionally, the particles have no individual goals and it is hard to simulate intersecting
flows (unless explicitly stacking tiles on top of each other, applicable to specific particles,

16

3. CENTRALIZED ALGORITHMS

(a) [Che04] (b) [CC07]

Figure 2.12 – (a) Virtual pedestrians walking on tiled streets in a city. (b) Overview of a
data-driven tile-based crowd simulation algorithm.

as stated in the future work for these algorithms).

Consequently, Patil and colleagues propose to use a unified solution [PvdBC+11]
combining a global planner, flow tiles and a local collision-avoidance algorithm. As a
result, each agent can select a route along the flow fields (where two opposing flows can
intersect) and follow the flow fields, with collisions being solved by the local collision-
avoidance algorithm.

While tile-based algorithms create “shared tracks” which advect simulated pedestri-
ans, patch-based algorithms take this principle further by creating a track per pedestrian
and later assembling them. Thus, Kim et al. build motion patches capturing actors’ in-
teractions (hand-shaking, carrying objects etc.), segment them and assemble them dur-
ing simulation to create crowds of interacting characters [KHHL12]. While these whole-
body motion patches allow to create crowds of interacting characters, the assembly of
patches remains computationally expensive, especially if one wants to keep extending
the synthesized scenes. Yersin and colleagues solve this problem [YMPT09] by defining
patches which contain periodic character trajectories. By building a library of patches
which have matching periodicity and boundary conditions, they are able to effortlessly
and endlessly combine patches in all directions, while guaranteeing that the simulation
will continue playing forever thanks to its periodicity (Figure 2.13).

The main advantage of tile- and patch-based algorithms is their ability to populate
virtual areas with large crowds obeying easily controllable pedestrian flows, all at a lesser
computational cost during simulation. This property comes at a price however, which is
the static nature of the resulting simulations. As all simulated pedestrians are “on tracks”
and have no individual navigation (except in the work found in [PvdBC+11] where the
cost increases due to the local collision-avoidance algorithm), the synthesized crowds are
non-interactable. Furthermore in the case of tile-based algorithms (and the method from
[KHHL12]) on the one hand, edits made to the environment require a re-computation of
the tiling, at least to solve any boundary conditions, divergence or singularities that may
arise. For the algorithm from [YMPT09] on the other hand, while patches can easily
be changed by picking other patches with matching boundary conditions, the efficient
(pre-)computation of these patches remains difficult.

17

CHAPTER 2. BACKGROUND

(a) (b)

Figure 2.13 – Crowd patches algorithm [YMPT09]. (a) Example of two patches (one
period of animation) that can be assembled thanks to matching boundary conditions. (b)
Scene assembled from Crowd Patches.

3.4 Macroscopic Algorithms

Crowd simulation algorithms based on fluid-dynamics aim to control very large crowds
at the global - or macroscopic - level. Treating the crowd as a flowing continuum, these
methods rely on continuous equations, defining flows that the agents (modeled as parti-
cles) then follow.

In an extension to the work found in [Hug03], Treuille et al. [TCP06] simulate large,
moderately dense crowds of particle-like agents. This method works by combining several
fields (discretized into grids), such as goals, speed, density etc. and using the resulting
potential field to move agents (see overview Figure 2.14). Inter-agent interactions are
solved thanks to the density field: when the density increases it dominates the field
equations, thereby pushing agents away from each other (note that this is only ensured
down to the level of the grid, meaning that two agents in the same cell can intersect).

Figure 2.14 – Overview of the method from [TCP06].

To improve the agents’ local behavior, Narain et al. [NGCL09] introduced a hybrid
method combining fluid-dynamics and a local collision-avoidance method. For each

18

3. CENTRALIZED ALGORITHMS

agent, a global planner determines the desired velocity (direction and speed), this ve-
locity is then tranformed along the agent’s position into flow information contained in a
grid. Compressibility constraints are then applied to this flow, so that the crowd is not
compressed beyond a threshold. Finally, the corrected flow information is transferred in
the form of updated velocities to the agents where pair-wise interactions are solved by
the local collision-avoidance algorithm. Figure 2.15 shows an overview of this algorithm
(left) as well as a resulting crowd (right).

These simulators result from a “top-down” process: fluid dynamics-like equations are
used to move aprticles, thus defining the local behavior. Some work has also been done
from the opposite perspective, as a “bottom-up” process where macroscopic laws are
derived from microscopic algorithms (e.g. [BMP11, DARM+13, DARPT13] repectively
derive macroscopic models from (1) cellular automata, and algorithms from (2) [MHT11]
and (3) [OPOD10]). This type of derivation can then be used to analyze various aspetcs
of crowd motion, such as the formation of clusters of agents for instance.

(a) (b)

Figure 2.15 – Algorithm from [NGCL09]. (a) Workflow overview. (b) Resulting crowd.

As they steer crowds as a whole and with simplifying assumptions such as shared
goals, these macroscopic crowd simulation algorithms scale very well (Figures 2.15(b)
and 2.16(a)) into the tens of thousands of agents at interactive frame-rates. Addition-
ally, the resulting simulations seem realistic at the global level and allow the emergence
of patterns (e.g. formation of a vortex for four groups crossing ways, Figure 2.16(b)).
They also allow controlling a crowd’s density and discover related phenomena such as
bottlenecks (Figure 2.16(c)). However, these algorithms rely almost exclusively on ter-
rain/environment cues to determine the motion of the agents. Additionally, agents are
mostly modeled as particles carried by the flow. As a result, agents can have erratic
trajectories (going forward/backward and sideways, equally), complex interactions be-
tween individual agents are lacking at the local (or microscopic) level, and individual
trajectories have little impact on the crowd.

19

CHAPTER 2. BACKGROUND

(a) (b) (c)

Figure 2.16 – Crowds generated with macroscpic crowd simulation algorithms. (a) A
large army chasing another one. (b) A vortex forms as four groups cross ways. (c) Office
evacuation simulation.

4 Conclusion

The first conclusion is that the pool of available algorithms is very large, and the al-
gorithms themselves can vary significantly. Each category of algorithms results from a
certain need: macroscopic algorithms allow to simulate large crowds observable from a
distance/as a whole, tiles and patches allow to easily direct agents with low performance
impacts, data-driven algorithms allow to populate areas by “copy-pasting” crowds, cel-
lular automata allow to simulate individual agents for statistical purposes, while agent-
based algorithms are used for their versatility and general ease of use.

Overall, among all these types of simulation algorithms, each with their strengths
and preferred application domains, agent-based algorithms remain the most popular,
thanks to their ease of implementation and use but also their flexibility, being intuitively
extendable with additional interaction rules and scripting. Agent-based algorithms also
yield interactive crowds with consistent levels of realism at all scales: local interaction
rules allow to convincingly simulate local behaviors while the resulting crowds display
emergent global phenomena observable in real life.

However, despite all the available agent-based algorithms and successive improve-
ments, some artifacts still persist in certain scenarios, such as: slowdowns and visu-
ally erroneous agent agglutinations, unnatural oscillation motions, or exaggerated/last-
minute/false-positive avoidance manoeuvres. Furthermore, one can observe that there
are many different simulation algorithms, and that each simulator has its own strengths
and weaknesses. To quantify these differences and be able to further develop and improve
on existing work, one needs a robust evaluation process. The next chapter (Chapter 3)
deals with this topic: after a review of previous work on evaluation in Section 2, we pro-
pose a general evaluation framework, which served as the first step in the work presented
in this document.

20

3Craal: Parameter Estimation and
Comparative Evaluation of Crowd
Simulations

Figure 3.1 – Parameter Optimization Applied to Crowd Data (a) motion capture
session for recording reference trajectories for six human agents (b) reference data plot
(circles are initial positions) (c) paths taken by simulated agents with default parameters
(d) paths taken by simulated agents with optimized parameters. The stock parameters of
a simulation model often do not match closely with actual paths humans take in the same
situation. Using our parameter optimization technique, the resulting simulation can be
made to better match the human trajectories.

Contents

1 Introduction . 22
2 Related Work . 23

2.1 Evaluation . 23
2.2 Parameters . 24
2.3 Discussion . 26

3 Optimization Framework . 26
3.1 Overview of Approach . 26
3.2 Optimization Metrics . 29
3.3 Optimization Techniques . 30

4 Results . 31
4.1 Data Categories . 31
4.2 Benchmarks . 35

5 Analysis and Conclusions . 39

21

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

1 Introduction

Creating simulation models of crowds has recently received considerable attention in
computer animation, pedestrian dynamics, and virtual reality. As already mentioned in
the previous chapter (Chapter 2), many approaches have been investigated that suggest
different techniques to simulate crowds, and a variety of simulation algorithms are known
in the literature. These include multi-agent simulation algorithms that are widely used
in computer games, virtual reality, animation, and pedestrian dynamics.

A key research issue in this area is to perform a formal or rigorous evaluation of these
algorithms. One widely used criterion is to perform comparative evaluation of simulation
algorithms against some real-world reference datasets. However, a major challenge is to
estimate the best set of parameters for a given algorithm that would result in the optimal

match with the reference data.

The issue of optimal parameter selection is critical, because most of existing crowd
simulation algorithms depend on various parameters and the resulting trajectories or
behaviors can vary noticeably based on the choices of parameters. There is no standard
way to make comparative evaluation of simulation algorithms. At the same time, data
capture of real-world human crowd motion is becoming increasingly ubiquitous. Such
datasets can in fact help in describing and analyzing specific crowd phenomena, as well
as in calibrating and evaluating crowd simulation models. Given the increase in the
number of crowd simulation algorithms and real-world datasets, we need rigorous and
automatic techniques to evaluate them.

In this work, we present a novel framework that can be used to evaluate different
crowd simulation algorithms against reference datasets. In this context, we address the
problem of computing optimal parameters for a crowd simulation algorithm and present
a general scheme that is applicable to a broad class of algorithms and reference datasets.
We formulate the evaluation of a simulation algorithm as an optimization problem. First,
we find a set of parameters that enables the best match between each simulation algo-
rithm and the reference data. Second, we compare the objective function scores (i.e.,
distance to reference data) for the given set of algorithms. Our framework is general and
capable of supporting a wide range of comparison metrics and simulation techniques.

We illustrate the benefits of our evaluation framework over several existing multi-
agent crowd simulation algorithms. Moreover, we consider heterogenous types of refer-
ence datasets: recorded individual trajectories, macroscopic quantities, or even anima-
tion sketches. We gather a set of relevant metrics to compare simulated crowds with
reference data. We highlight the benefits of parameter estimation by demonstrating its
application to example-based simulation and behavior modeling with cultural variation.
Our framework is available as an open-source package and can be used by others to
evaluate different simulation algorithms and metrics. We demonstrate its performance
on many widely-used multi-agent simulations and consider different scenarios with a
varying number of agents. In our benchmarks, we observe that velocity-based crowd
simulation algorithms (e.g. RVO2, [POO+09], etc...) result in lower errors as compared
to techniques based on Boids or social forces.

The rest of the chapter is organized as follows. In Section 2, we give an overview

22

2. RELATED WORK

on related work in parameter calibration and crowd simulation algorithm evaluation,
as a complement to the related work on crowd simulation algorithms from Chapter 2.
Section 3 describes our parameter estimation framework and its key components: algo-
rithms, metrics, reference data, and optimization techniques. A wide range of concrete
examples and applications are presented in section 4 to demonstrate the benefits of our
solution. Finally, we conclude in Section 5.

2 Related Work

The necessity of evaluating crowd simulation algorithms arises both in the case of a
prospective user when choosing an appropriate simulator, and in the case of researchers
and developers when justifying the development of a new one.

The main observation from related work in this aspect is that evaluation is frag-
mented across many works and that, while some efforts have been made, no standardized
benchmarks are defined and widely accepted in the field of crowd simulation. The reason
for this lack of standardized testing is the variety of applications for crowd simulators,
leading to the emergence of a wide range of works focusing on very different aspects: by
necessity the amount of test cases needs to be large and not all test cases always apply.
Section 2.1 summarizes existing evaluation approaches.

In addition to the lack of a standardized evaluation scheme, one can observe the lack
of a standardized evaluation protocol. Mainly, the issue of the simulators’ parameters is
rarely taken into account. Thus, resulting comparisons between algorithms can in theory
be contested, as “some parameter tweaking” might considerably change the simulations
and consequently the comparison results. Related work on the issue of parameters is
presented in Section 2.2

2.1 Evaluation

In this section we present related work on evaluation, first dealing with the fragmented
approaches to this issue and then moving onto attempts at defining standardized testing
schemes or benchmarks.

The most direct form of evaluation is the qualitative observation of the simulated
crowds. Thus, a number of scenarios are typically chosen to display the ability of a sim-
ulator to reproduce known emergent crowd behaviors (Figure 3.2). Prominent examples
of such behaviors include the circular aggregation of pedestrians around a door/passage,
a flow of pedestrians passing throught such passages, and the formation of lanes between
two or more flows of pedestrians [HM95, HFV00, PPD07, OPOD10, GCLM12]. In con-
trast to these scenarios, which reproduce situations that are readily observable in the
real world, other (more artificial) scenarios have subsequently been designed to test how
agents interact. In particular, one can force simulated pedestrians to deal with increasing
numbers of neighbors by arranging them into a circle and then setting their destinations
as the antipodal positions on this circle, effectively maximizing the number of exected
interactions. This specific situation, while rarely observed in the real world (and thus
lacking ground-truth observations), allows to look for collisions between pedestrians in
progressively changing density conditions [vdBLM08, GCK+09, OPOD10].

23

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

(a) [HFV00] (b) [GCLM12] (c) [PPD07] (d) [OPOD10]

(e) [OPOD10]

Figure 3.2 – Examples of test scenarios. (a)-(b) Examples where pedestrians are known
to agglutinate in a circular way around a door/passage. (c) Pedestrians traversing a funnel-
shaped passage. (d) Lanes forming between two opposing flows of pedestrians. (e) Circle
situation where pedestrians attempt to reach the antipodal positions.

In addition to these typical scenarios, some works have also proposed quantitative
evaluations by comparing simulated pedestrians’ trajectories to ones recorded on hu-
mans [PPD07, POO+09, PESVG09] (Figures 3.3(a) and 3.3(b)). In these cases, metrics
included differences between simulated and recorded pedestrians and the minimum pre-
dicted distance (distance between two interacting pedestrians when they will be closest
to each-other). Guy and colleagues further developed a more complex entropy metric
which compares decisions taken by simulated and recorded pedestrians at each step of
their trajectories, resulting in a statistical similarity measure between ground-truth and
simulation (Figure 3.3(d)). Finally, the fundamental diagram (speed of agents in a flow
as a function of their surrounding density) can be used (from the field of pedestrian
dynamics and evacuation) to evaluate simulated crowds (Figure 3.3(c)).

Finally, Singh and colleagues introduced a framework [SKFR09] as an attempt to
standardize the evaluation of crowd simulation algorithms. This framework contains
a collection of situations destined to cover the range of possible, expected simulation
situations (with the question of coverage being explored more in [KWS+11]). It also
contains a collection of metrics measuring for instance the time an agent takes to reach
its goal, the energy that has been spent in doing so etc. Similarly, Lerner and colleagues
[LCSCO09, LCSCO10] propose a system where a data-base is constructed from trajec-
tories extracted from video clips and a set of metrics is used to rate simulated crowds.

2.2 Parameters

When using crowd simulation algorithms, one must keep in mind the algorithms’ pa-
rameters, which can range from common ones, such as agent radius or time horizon (if
the algorithm is predictive), to algorithm-specific ones such as force magnitude (Social-
Forces [HM95] algorithm and similar), various thresholds (e.g. for the time derivative of

24

2. RELATED WORK

(a) [POO+09] (b) [PESVG09] (c) [CSC09]

(d) [GvdBL+12]

Figure 3.3 – Examples of ground-truth comparisons. (a) Metric: minimum predicted
distance. (b) Comparison of real and simulated trajectories. (c) Fundamental diagram
(in this case, difference between German and Indian people for single-line following). (d)
The entropy metric compares possibly erroneous simulation decisions (red) to recorded
positions (black) at every step.

the bearing angle in the case of the vision-based algorithm [OPOD10]) etc. These pa-
rameters are very important as they can have a large impact on the resulting crowds, for
instance the wrong value for the force magnitude in the Social-Forces algorithm could
lead to agents either colliding (too low value) or walking too far apart/being unstable
(too high value). Consequently, this issue greatly influences the evaluation of simulation
algorithms, as it is natural to select values for simulators’ parameters that would lead to
the best possible results.

The most direct way of setting parameter values is via manual tweaking: the user
repeatedly uses the simulation algorithm on various scenarios and gradually settles on
values which lead to mostly satisfactory results (either by plotting results or by rule
of thumb) [OPOD10]. Paris and colleagues [PPD07] manually set parameter values by
checking their results on ground-truth data of two recorded interacting human pedes-
trians. Karamouzas and colleagues [KHBO09] plotted results of their algorithm on the
various scenarios from the framework presented in [SKFR09] and set their values accord-
ingly.

However, this process of manual tweaking is very tedious and some works have au-
tomated this process. Pellegrini and colleagues [PESVG09] (seeking to apply their algo-
rithm to tracking of humans from video) “train” their algorithm on recorded trajectories
using gradient descent and a genetic algorithm. Pettre and colleagues [POO+09] set their
parameter values using Maximum Likelihood Estimation based on recorded trajectories
of two interacting humans.

More recently, Karamouzas and colleagues [KSG14] derived their algorithm from the
power law they had found from collections of real-world data.

25

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

2.3 Discussion

Overall in terms of evaluation, one can observe the emergence of test cases commonly
used to validate simulation algorithms (such as opposing flows of pedestrians, doors/passages
etc.) as well as phenomena commonly sought in simulation results (lanes, vortices etc.).
Following this trend, a framework has also been proposed regrouping many such test
cases and metrics. It is difficult however to quantify how realistic analgorithm is based
on these examples alone. Thus, some works have proposed using real-world in the form
of pedestrian trajectories or other statistics (e.g. fundamental diagram). One can also
observe that parameters play a role in simulation results (and thus evaluation) as they
have been explicitly dealt with in a number of works.

However, one can also observe that, there is no unified evaluation scheme:

� based on real-world data, or more generally, arbitrary data

� independent of the simulation algorithm

� involving automatic parameter estimation

3 Optimization Framework

Our framework brings together three components: crowd simulation algorithms, refer-
ence data, and a set of metrics for measuring how well the simulation algorithm matches
the data. This section provides the details of our parameter optimization algorithm and
gives an overview of different simulation models, data sources, and comparison metrics
used in our evaluations. We also give a brief summary of the global optimization tech-
niques used in our work. Additional information, including a more detailed description
of our metrics and optimization algorithms as well as a comparison of these optimization
algorithms can be found in Appendix A.

3.1 Overview of Approach

We define a crowd simulator as an algorithm which takes a collection of agent states (i.e.,
positions and velocities of agents in the crowd) and produces a new set of agent states
representing the movement of the crowd over a timestep ∆t. We introduce the following
notation for specifying a crowd simulation algorithm: let k be a given timestep, then xk

will represent the positions of all agents at timestep k, vk the velocity of all agents, and
g the goals of all agents. We can then formally define a crowd simulation algorithm f as
follows:

[

xk+1

vk+1

]

= f(xk,vk,g). (3.1)

In general, a crowd simulation algorithm may have several tunable parameters that affect
the behavior of an agent computed by the simulator. Common examples of parameters
include an agent’s preferred speed or some notion of personal space. While the exact

26

3. OPTIMIZATION FRAMEWORK

Figure 3.4 – System Overview Our approach optimizes simulation parameters to
match target data. Our framework has 3 components: an optimization technique, met-
rics, and reference data.

nature of the agent parameters are specific to each algorithm, our framework assumes
that these parameters can be defined separately for each agent. Given an agent i, we use
pi to denote the current parameter set for that agent, and p = {p1 · · ·pn} to denote the
vector of parameters over all n agents.

We can now introduce the notion of a Parameterized Crowd Simulation as an al-
gorithm f where crowd parameters are part of the input. Formally, for each timestep
k:

[

xk+1

vk+1

]

= f(xk,vk,g,p). (3.2)

Simulation Models Several common crowd simulation models fit the form described
by Equation (3.2). We focus on five widely used agent-based simulation algorithms:

1. In the Boids model [Rey99], f is a function of the agents’ position at some specified
future time (current time plus constant). When the predicted distance between
agents gets too low, a separation force is computed and added to an attraction
force which is pulling towards the agent’s goal. Parameters are: radius (size of 2D
circle agents) and comfort speed (i.e., speed when no interactions occur).

2. In the Helbing Social Force model [HFV00], f is a function of the agents’ positions.
Repulsive forces are computed between agents and combined with attraction forces
toward goals. Parameters are: radius and comfort speed.

3. In the RVO2 model [vdBLM08], which computes an agent’s admissible velocity
space (space which remains collision-free in a future time window), f returns the

27

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

optimal admissible velocity. Parameters are: comfort speed, neighbor distance
(only agents within this distance are considered for local interactions), radius, and
time horizon (only future collisions within this horizon are considered for local
interactions).

4. In the Synthetic Vision model [OPOD10], which is based on principles from human
cognition and visual navigation, f is a function of perceptual variables derived from
synthetic optic flow. Parameters are: comfort speed and (a, b, c), which define a
threshold function; perceived values under this threshold are considered for local
interactions.

5. In the Tangent model [POO+09], which works in the velocity space and considers
possible perception errors, f returns the optimal admissible velocity. Parameters
are: comfort speed, radius and two error-quantifying parameters.

The parameter set p for each of these models can be found in Appendix A Section 4.
Given a parameterized crowd simulation (Eqn. (3.2), our goal is to find a parameter

set popt which leads to the closest match between a model and some user-defined ref-
erence data, which can vary per timestep zk. Over all timesteps m, we can define the
reference data as follows:

z =
m
⋃

k=1

zk. (3.3)

In the same way, we can define a complete simulation as all states of a simulator initial-
ized with the reference data:

[

x

v

]

= f(z,p) =
m
⋃

k=1

f(xk,vk,g,p), (3.4)

initialized with x1 = z1, v1 = speed(z1) and g = zm.
Given this complete simulation and reference data, plus some user defined distance

metric, dist(), we can formally define our framework as computing

popt,f = argmin
p

dist(f(z,p), z), (3.5)

where popt,f is the parameter set which matches the reference data closest for a given
simulation method f .

In general, the optimization problem that we propose in Equation (3.5) is very high-
dimensional (dim(p) =

∑n
i=1 dim(pi)), making it difficult to optimize consistently across

a wide range of similarity metrics, reference data, and simulation methods. We describe
our optimization algorithm in Section 3.3, which is designed to deal with such high-
dimensional problems.

Once an optimal parameter set popt has been computed, we can fairly compare two
different simulation methods, f1 and f2, by examining their optimal distance from the ref-
erence data. Formally, we declare simulation method f1 better than simulation method
f2 if and only if:

dist(f1(z,p
opt,f1), z) < dist(f2(z,p

opt,f2), z). (3.6)

28

3. OPTIMIZATION FRAMEWORK

3.2 Optimization Metrics

The role of reference data is to provide a description of the desired behavior or motion
trajectories that the simulation should generate. This data can either come from mea-
surements of real motion (e.g., from an overhead camera or motion-capture devices) or
can be generated. Generated data can come from artists (flow fields) or some other high-
level simulation algorithms. The function dist() in Equation (3.5) should capture how
close a simulation state comes to matching the reference data. The exact representation
of dist() depends on the nature of the reference data and on the features of the data
which the user considers most salient for his or her application.

At a high level, there are two fundamentally different types of reference data that can
be used in Equation (3.5):

� microscopic data, which specifies the exact trajectory of each agent in the data,
and

� macroscopic data, which describes aggregate measures of the overall crowd motion.

Below we briefly describe various metrics that can be easily used in our framework,
a more detailed description as well as their mathematical representation can be found in
Appendix A Section 1.

3.2.1 Microscopic Data Metrics

� absolute difference metric (D) computes the total distance in position over all
agents over all timesteps,

� path length metric (L) compares the difference in total length traveled between
agents in the reference data and the simulated agents,

� inter-pedestrian distance metric (I) compares the difference in average distance (as
a 2-norm) between every pair of agents,

� progressive difference metric (P) measures the absolute difference between the sim-
ulated agents and the reference data when the simulation is reinitialized at each

timestep.

3.2.2 Macroscopic Data Metrics

� vorticity metric (V) measures the vorticity (as defined in fluid mechanics) of the
crowd flow,

� fundamental diagram metric (F) compares the speed of an agent to the density of
agents in its location. This metric is inspired by the field of pedestrian dynamics,
where it is commonly used to measure pedestrian flow rates (e.g., [CM12]).

29

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

3.3 Optimization Techniques

Once a user has chosen the reference data and an appropriate optimization metric, Equa-
tion (3.5) can be optimized using different combinatorial optimization algorithms. Be-
cause several parameters need to be chosen for every agent in the simulation, the result
is a very high-dimensional search problem (hundreds of dimensions) and the complexity
of finding an optimal solution is very high. We have analyzed three different widely-used
optimization techniques that can be applied to these high-dimensional search spaces.

Each optimization technique uses a different strategy to sample plausible parameters
for each agent, maximizing the match of the simulation algorithm to the reference data.
All three methods proceed by choosing perspective values for the per-agent simulation
parameters from a user-specified domain of reasonable values. A list of the parameter
distributions used in our experiments is given in Appendix A Section 4.

3.3.1 Greedy approach (G)

This approach works by replacing one parameter from p at a time for each agent. If this
replacement lowers the optimization function, the new parameter value is chosen; if not,
the previous value is restored. This method can get stuck in local minima.

3.3.2 Simulated annealing (SA)

A variant of the greedy approach, this approach attempts to avoid local minima by occa-
sionally using new parameter sets that are “worse” (have higher value of the optimization
function) than the old ones [KJV83]. The likelihood of accepting a worse parameter set
decreases over time. Given an unlimited amount of time, SA will compute the global
minimum.

3.3.3 Genetic algorithm (GA)

Methods based on genetic algorithms also seek to avoid local minima, and do so by
maintaining a pool of parameters that can lead to different local minima [Hol92]. New
pools of parameters are computed by combining and modifying previously successful
candidates.

3.3.4 Covariance Matrix Adapation (CMA)

A solution-pool based method [HO96] similar to GA, which generates new solutions from
ditributions defined by a covariance matrix that is adapted at each iteration.

After a comparison in terms of convergence and time of convergence, a combination of
genetic and greedy algorithms (GA+G) has been chosen as offering the best compromise
between score optimization and runtime performance. While there is no estimation of
how close they come to the real optima, the simulated annealing method should provide
a good indication as it can theoretically find a global optimum given an infinite compu-
tation time. More results on this comparison can be found in Appendix A Section 3;
pseudocode for the above methods can be found in Appendix A, Section 2.

30

4. RESULTS

Other global optimization techniques, such as Particle Swarm Optimizations (PSO)
[PKB07] or the adjoint method [MTPS04], can be applied to optimize Equation (3.5).
Multiple methods can be combined or applied sequentially.

4 Results

The primary benefit of this framework is its generality: it can automatically find the best
parameters for any simulation algorithm, based on any metric, for any reference data. In
this section, we highlight some advantages and benefits of our parameter-optimization
and the framework. First, we present different types of ground-truth data, which are
a basis for model comparison, along with examples of model comparisons for each type.
Second, we present scores obtained by our implementations of the Boids-like, Social-force
and RVO2 models, in the form of a benchmark chart and its analysis.

4.1 Data Categories

4.1.1 Microscopic data

Microscopic data, 2-5 agents This data category regroups various cases of 2-5
pedestrians crossing ways. The following are two visual examples showing model com-
parisons based on this data using the Difference metric:

� a simple crossing scenario between two pedestrians. With default parameters, none
of the algorithms correctly replicate the avoidance strategy of the pedestrians; after
calibration, only the Vision-based algorithm can reproduce it (Figure 3.5(a)). This
is consistent with its goal, which is to reproduce human-like reactions to impending
obstacles.

� a scenario where trajectories are correct but the agents are ill-synchronized with
the real pedestrians, i.e. their speeds along the trajectories are incorrect. After
calibration, the Tangent simulation model [POO+09] gives a better speed profile
than the other algorithm, because its agents accelerate and decelerate when needed
and are better synchronized with pedestrians (Figure 3.5(b)).

Microscopic data, 6-24 agents This data category is similar to the previous, except
that more pedestrians are present (6-24) and they are organized into circles, with their
goal being to get to the antipodal positions. Here are two examples of comparisons:

� six pedestrians case: before calibration all trajectories are far from the real ones;
after calibration, RVO2 trajectories are near-identical to real-world data (Fig-
ure 3.5(c)).

� twenty-four pedestrians case: after calibration, Social-force agents agglomerate in
the center without anticipation, while RVO2 agents anticipate future collisions and
are spread in a pattern more similar to that of the real pedestrians (Figure 3.6).

31

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

(a) Pair-wise crossing.

(b) Four-agent crossing.

(c) Six agents in a circle going for antipodal positions.

Figure 3.5 – Examples of calibration results of algorithms with the Difference metric in
different scenarios, which enables their fair comparison. Colored area represents error be-
tween real (red) and simulated (blue) trajectories identifiable through the color gradient.
Left: reference data trajectories (ending positions in bright). (a) Middle: RVO2, incor-
rect trajectories. Right: Vision-based model, correct trajectories. (b) Middle: the RVO2
model’s agents are ill-synchronized with real pedestrians. Right: Tangent correctly syn-
chronizes agents with pedestrians. (c) Middle: RVO2; copes well with these more complex
interactions. Right: Vision-based model; incorrect paths.

32

4. RESULTS

Figure 3.6 – Example of a result of the calibration of two models with the Difference
metric in the case of 24 pedestrians in a circle with the goal to cross said circle. Left:
reference data trajectories (ending positions in bright). Top row: five consecutive positions
of real (red) and simulated (blue) agents in the case of the RVO2 model. Button row:
same for the Social-force model. With the lack of anticipation, the Social-force model’s
agents tend to agglomerate in the center before solving their interactions. On the contrary,
the RVO2 model’s agents anticipate interactions and spread in a way more similar to the
original data.

Microscopic data, ∼150 agents This data [PCBS11] contains ∼150 people in two
groups crossing ways. Due to the nature of this data (pedestrians constantly appearing
and disappearing from the cameras’ field of view), a time-window is extracted and only
a subset of all simulated pedestrians are evaluated (their positions and velocities are
then known during the entirety of the time-window; the more numerous the controlled
pedestrians are, the shorter the time-window is). Here are two examples:

� 111 agents total, 5 controlled, traveling from left to right: RVO2 leads to slightly
higher errors than the Boids-like model (Figure 3.7(a)).

� 152 agents total, 5 controlled, traveling from left to right: RVO2 leads to lower
errors than the Boids-like model (Figure 3.7(b)).

4.1.2 Macroscopic data

In many scenarios, the goal is not to match a specific motion, but to produce an over-
all characteristic flow. Our framework can be used in these scenarios. For example,
there are well-documented cultural differences between the flow rates of Germans and
Indians [CSC09]. These cultural flow differences can be described by two different fun-
damental diagrams.

We can match these fundamental diagrams in different situations with different sim-
ulation methods. To this end, we consider the fundamental diagrams of German and
Indian people as described in [CSC09] and, in the case of 30-pedestrian crowds, constrain
the Boids-like, Social-Force and RVO2 models to follow them. To constrain these models
to the fundamental diagrams, we set them to 6 consecutive density-velocity points on
each diagram (at 0.75, 1.0, 1.25, 1.50, 1.75 and 2.0 pedestrians per square meter).

33

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

(a) Five controlled agents (blue) amidst a flow of 111 agents.

(b) Five controlled agents (blue) amidst a flow of 152 agents.

Figure 3.7 – Example of a result of the calibration of two models with the Difference
metric in the case of ∼150 agents; 5 of them are controlled by simulation algorithms. Col-
ored area represents error between real (red) and simulated (blue) trajectories identifiable
through the color gradient. Left: reference data; only recent trajectories are shown for
clarity (ending positions in bright). Middle: Boids-like. Right: RVO2. (a) RVO2 leads to a
slightly increased error compared to the Boids-like model. (b) RVO2 leads to a decreased
error compared to Boids-like.

34

4. RESULTS

The diagrams obtained after merging the data for these 6 points are represented on
Figure 3.8, along with the original data found in [CSC09].

These diagrams are very useful in setting up evacuation scenarios and adapting them
to different cultures. Additionally, the framework can also help decide which model
is best suited to a task. For example, here the Boids-like algorithm gets easily stuck
in the corridor, and the resulting diagrams are far from the original data. However,
the Social-force and RVO2 algorithms fit the data well; RVO2 ultimately matches the
fundamental diagrams better at higher densities. This is largely due to the Social-force
agents displaying instabilities near walls at high densities (as seen in Figure 3.9).

4.1.3 Sketch-like data

Our framework also has a broader application as a metric-driven animation tool for
artists animating crowd scenes. If an animator provides a rough idea of a motion (in the
form of a metric), our framework can be used to indicate which is the best algorithm
to generate the animation, and can also provide the best parameters for the task. This
spares the animator the tedious task of setting each agent’s trajectory individually or
building new mechanics into the model he is using. Additonally, this process is indepen-
dent of the simulation algorithm. We provide three examples below. The first example
is a group of pedestrians that are made to walk close to each other, then separate, and
finally regroup. In order to simulate such behavior, we define three zones based on way-
points, where a distance metric is applied to determine pedestrian distance from one
another. This metric is then used to maintain a low inter-agent distance in the first zone,
a higher distance in the second zone, and a lower distance in the last zone. Figure 3.11
shows the resulting animations at various stages for the RVO2 algorithm.

The second example involves the vorticity metric used to create vortex-like patterns.
Figure 3.10 shows results obtained with Boids and RVO2. Here, the Boids-like model
lacks anticipation and fails to completely recreate the wanted behavior; RVO2 is more
successful, thanks to anticipation.

Figure 3.12 shows another example with three corridors. Two groups enter through
two corridors and exit as one group through a third corridor. They are made to be sparse
when entering and dense when exiting.

4.2 Benchmarks

Figure 3.13 summarizes scores obtained by the Boids-like, Social-force and RVO2 algo-
rithms for the various data categories in a benchmark fashion. These three algorithms
were chosen for this benchmarking analysis as they are broadly applicable, make few
assumptions about the scenarios being used in, and are representative of the types of
simulation strategies commonly found in games and VR.

Examining the results, some trends can be seen to emerge across various dataset and
metrics. For example, across many datasets and metrics the RVO2 algorithm tends to
lead to better scores than our simple Boids-style simulation and Social-force models. This
is likely due to RVO2 being the only one of the three methods to incorporate predictive
collision avoidance. In fact, as the number of agents (and complexity of the scenario)
increased, the advantage of RVO2 decreased significantly. This trend can be seen most

35

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

Figure 3.8 – Cultural variation in fundamental diagrams [Chattaraj et al. 2009]. Top
left: original data; top right: Boids-like model fit to the fundamental diagrams; bottom
left: Social-force; bottom right: RVO2. Boids poorly fits the data while Social-force and
RVO2 models offer better matches. Social-force agents travel too fast at high densities
compared to RVO2.

36

4. RESULTS

RVO2 model’s agents Social-force model’s agents

Figure 3.9 – High density (2 agents per square meter) illustration (“tails” indicating re-
cent movement) after calibrating to a fundamental diagram. RVO2 agents on the left go
straight. Social-force agents on right become unstable and bounce off of walls causing them
to accelerate (explains the excess speed in the fundamental diagram in Figure 3.8).

Figure 3.10 – Sketch-based simulation. Left: desired trajectories, four groups forming
a vortex-like pattern. Top row: optimized solution for the Boids-like model. Bottom
row: same for RVO2. Boids only offers radius and speed parameters, and doesn’t include
anticipation, it is unable to maintain significant distances between groups of agents without
breaking them apart. RVO2 anticipates over a parameterized time horizon, allowing it to
keep groups distant while maintaining members of a same group close.

37

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

Figure 3.11 – Sketch-based simulation. RVO2 agents are made to travel grouped, then
disperse and then regroup again. Four consecutive states are shown.

Figure 3.12 – Sketch-based simulation where two sparse groups enter through two corri-
dors and merge into a dense group when exiting through a third corridor. Two consecutive
states are shown.

38

5. ANALYSIS AND CONCLUSIONS

clearly in the difference metric. The convergence of the performance is expected, in
part, because there is little room to anticipate trajectories in dense scenarios with 100s
of individuals in close quarters. RVO2 and the Social-force model score similarly in the
Fundamental diagram metric for similar reasons.

Applying our framework to sketch-like data can also reveal interesting aspects of
the simulation techniques. For example, the smooth group behaviors produced by the
Boids-like simulation work well in capturing the desired behavior in separate & regroup
benchmark. In contrast, the vortex scenario shows how RVO2’s anticipation can be used
to create novel behaviors difficult for the other methods such as keeping high distances
between groups of agents while keeping agents belonging to a same group close to each
other.

5 Analysis and Conclusions

In this work, we have addressed the problem of comparing various crowd simulation
algorithms. We have formulated the estimation problem in a generalized way as an
optimization problem. We have optimized the set of simulation parameters to provide
the closest match between the simulation results and target reference data provided by
users. We have implemented several comparison metrics to evaluate various aspects of
simulation results. The resulting framework can be widely applied and supports different
optimization metrics to match a user’s target application.

Our approach has several important properties. First, our technique is very generally
applicable. We have shown our ability to use the framework with a variety of simula-
tion models (force-based, rule-based, velocity-based, etc.); a variety of types of metrics
(microscopic, macroscopic); a variety of reference data (real data, example trajectories,
macroscopic measures, sketch-based, etc.). Second, we have explored the problem in its
full dimensionality; each agent given individualized parameter values while maintaining
reasonable computing requirements. Finally, we have demonstrated the applications of
our framework in various contexts.

Our results demonstrate the importance of parameter estimation: the same model
can show very different behaviors depending on the parameters of the simulation. It is
therefore crucial that researchers account for the effects of parameters when evaluating
and comparing simulation models. Our framework has sought to address this question
in a generalized way, and we hope this contribution opens various perspectives for future
work. We would first like to add more models and more metrics to the framework (and
try combining our approach with [SKFR09, KWS+11]). This would facilitate the use
of the framework by the research community at large and facilitate efforts for more ex-
haustive comparisons for different simulation methods. We have also demonstrated the
applicability of this framework to the creation of fully animated simulations from high-
level specifications of desired behavior. Such cases were previously handled by means
of scripts or tedious waypoint sequences that had to be defined by animators. We have
shown that our parameter-estimation approach can alleviate some of this tedious work to
assist in crowd animation. Further exploration of this area, perhaps with human subject
studies, is a very promising research direction.
Limitations Along with the above contributions, our method has some limitations still

39

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

Figure 3.13 – Benchmarks. Comparative scores (lower is better) of the Boids-like (red),
Social-force (green) and RVO2 (blue) models in five data categories: microscopic data
with 2-5 agents, microscopic data with 6-24 agents, microscopic data with ∼150 agents,
macroscopic, and sketch-based.

40

5. ANALYSIS AND CONCLUSIONS

to be addressed. Most importantly, because a simulation’s parameter-space is so high-
dimensional, large scenarios with hundreds of agents are still time-consuming. It is not
easy to estimate the complexity of our framework because of all the components involved.
One metric evaluation step is usually equivalent to running a whole simulation based on
the reference data and then comparing the results with the data. Our framework is thus
very dependent on the complexities of the metrics and simulation algorithms as well as
reference data. For instance, a longer time-window in the reference data or the lack of
an accelerating structure (e.g. kd-tree) in the simulation algorithm’s implementation can
greatly impact the time an evaluation call takes. As for optimization algorithms, only the
complexity (in terms of evaluation calls) of an iteration can be theoretically estimated:
O(nm) for the greedy algorithm and simulated annealing (n number of agents, m number
of parameters per agent); constant (solution pool size) for the genetic algorithm. Some
indicative times can be found in Figure A.3 from Appendix A. It is possible to address
the question of performance and scalability by using parallel versions of optimization
algorithms and simulators (this is less of a problem when evaluating multiple simula-
tion algorithms on multiple scenarios which is easily parallelizable - e.g. one thread per
scenario).

From here, in terms of future work, it could be interesting to study how parameters
can be generalized beyond a given scenario or metric: can a certain set of parameters
work well across various scenarios? Can a “style” be exported and kept for much larger
crowds? In situations where there is not a single metric or a single piece of reference
data to fit, it would be desirable to find parameter sets that are “good enough” in some
high-level sense, or a set of scenarios that are semantically related and provide a good
coverage of the problem domain. Such a goal will likely involve user studies and be
greatly affected by perceptual factors. Finally, a key point in future studies will have to
focus on the metrics. This would include determining which metrics (or combinations
of metrics) are best adapted to various scenarios. But also defining metrics that are
immune to the variability of agent behavior to similar conditions and that are able to
capture high-level aspects that remain consistent across different data.

The first aspect (essentially learning parameters) is explored in Chapter 1, where a
large quantity of insect data is used to train simulation algorithms. In that chapter,
we also use the current work as a selector, in order to find which collision-avoidance
algorithm is most suitable to reproduce observed behaviors (data). Additionally, an
application to this work which had not been envisioned at first is explored in Chapter 2,.
There, the process of evaluation and parameter estimation is used in an online tracking
context, selecting the most appropriate simulator at every moment of the tracking in
order to best predict the next state of the crowd, thus improving the real-time tracking of
pedestrians. In these two applications, our framework is used most notably as a selector,
allowing to use the correct simulator for a given behavior (insect swarming in the first
application) and for a given moment (current/instantaneous pedestrian movement in the
second application).

Finally, during this work, while using the developed framework, it became clear that
despite recent progress on crowd modeling, more work needs to be done in order to
further improve simulation results, thus motivating the development of a new simulation
algorithm. Further, assuming such an algorithm is developed, we now have a tool that
we can use to evaluate it. This is the other main project presented in this document,

41

CHAPTER 3. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

which can be found in the next chapter (Chapter 4).

42

4
WarpDriver: Context-Aware
Probabilistic Motion Prediction for
Crowd Simulation

Figure 4.1 – Two 1027-agent groups exchange positions. Each row is a sequence of tem-
porally consecutive stills of the simulations, with stills directly below/above each other at
the same timesteps. The third image of each row is a third-person view from a red agent’s
perspective. Top: our algorithm, groups merge with the formation of lanes. Bottom:
ORCA algorithm, groups collide and spread before agents are able to resolve the situation.
Overall, our algorithm resolves the situation more quickly and fluidly than ORCA.

Contents

1 Introduction . 44
2 Summary of Related Work . 45
3 Overview . 47
4 Notations and Setup . 48
5 Perception: collision probability Fields . 49

5.1 The Intrinsic Field . 50
5.2 Warp Operators . 50
5.3 Combining collision probability Fields . 53

6 Solving the Collision-Avoidance Problem . 53
7 Results . 54

7.1 Large and Dense Cases . 54
7.2 Non-Linear Scenarios . 57
7.3 History-based Anticipation . 59
7.4 Highly-constrained Case . 63
7.5 Benchmarks . 64

8 Discussion and Limitations . 65
9 Conclusion . 66

43

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

1 Introduction

Much attention has recently been devoted to crowd simulation due to its applications in
pedestrian dynamics, virtual reality and digital entertainment. As noted in the Back-

ground chapter (Chapter 2) and confirmed by the evaluation framework we presented in
the previous chapter (Chapter 3), the most recent, velocity-based, microscopic, crowd
simulation algorithms [PPD07, vdBLM08] introduced significant progress both in terms
of realism and quality. These algorithms and their follow-on works are all based on
the same principle: a linear trajectory prediction for future motion using each agent’s
position and assumed constant velocity. Motion prediction, which humans perform for
anticipated reactions [OMCP12], results in smoother trajectories and improves the visual
quality of the velocity-based simulations in many ways compared to first-order position-
based techniques [HM95].

Nevertheless, even when using state-of-the-art simulation algorithms, visual arti-
facts or other non-satisfactory results can still often be observed: (1) aggregations of
agents and exaggerated avoidance behaviors when dense crowds are involved, (2) last-
minute collision-avoidance manoeuvres in seemingly simple/moderately dense situations
or (3) agents reacting for no obvious reason to other agents, again even in seemingly
simple situations. The causes for these artifacts lie in the basic assumptions of avail-
able crowd-simulation methods, including both first-order and velocity-based algorithms.
Firstly, first-order motion prediction algorithms cannot anticipate future dense-spots,
while velocity-based algorithms look for collision-free velocities in velocity space; the ve-
locity space can quickly get saturated when crowd density is high. In addition, further-
in-time interactions are treated in the same way as imminent interactions. Secondly,
velocity-based motion prediction techniques linearly extrapolate agents’ future motions,
so agents moving along non-linear trajectories cannot be detected by other agents except
at the last moment when a collision is about to happen (note that agents can interact
only at the last moment in first-order algorithms). Finally, agents’ instantaneous veloc-
ities are used when extrapolating their future motions: agents exhibiting jerky motions
for instance, create “false” constraints over other agents (they also unnecessarily affect
other agents when passing too closely to each other in first-order algorithms).

In order to address these simulation artifacts, we introduce a new algorithm that has
the following characteristics: First, agent interactions are modeled as space-time colli-
sion probabilities, that agents steer away from: agents can then fluidly navigate along
the minima of the collision probability function even in highly-constrained situations.
Second, to construct these collision probabilities, we propose an efficient, easily exten-
sible collision probability sampling algorithm. This algorithm starts with a collision
probability field that is intrinsic to all agents, and warps this Intrinsic Field using Warp

Operators for each information source to be considered. Third, we propose a variety of
Warp Operators, allowing us to anticipate agents’ future motions in a non-linear fashion,
by taking into account: agent/obstacle positions and velocities, sensing uncertainties,
environment layouts, interaction outcomes with obstacles, and past trajectories among
other cues.

In summary, in this chapter we propose a novel, easily extensible collision-avoidance

44

2. SUMMARY OF RELATED WORK

algorithm for microscopic crowd simulation. Our algorithm addresses the visually no-
ticeable artifacts as mentioned above.

� Its probabilistic nature minimizes aggregations of agents and better supports avoid-
ance maneuvers in dense crowds (first artifact).

� By using appropriate Warp Operators, agents extrapolate each-others’ near-term
trajectories adaptively in a non-linear manner, avoiding last-minute collision-avoidance
maneuvering (second artifact).

� By using appropriate Warp Operators, this method can use agents’ motion history
to correctly anticipate future events, thereby avoiding agents reacting to each other
with no apparent reason (third artifact).

Due to its heavy reliance on Warp Operators, we name this algorithm “WarpDriver”.
The chapter is organized as follows. In Section 2, we give a summary of related work

already given in Chapter 2, describing how the evolution of agent-based algorithms leads
to WarpDriver. In Section 3, we give an overview of our algorithm. We present the no-
tations and problem setting in Section 4, while Section 5 describes our sampling method
(Intrinsic Field and Warp Operators), and Section 6 details how steering decisions are
taken. In Section 7, we apply our crowd-simulation algorithm to a wide range of chal-
lenging scenarios, testing how it solves the aforementioned artifacts. We demonstrate the
benefits of our method in highly constrained environments and situations where other al-
gorithms need per-case handling and scripting. Finally, we discuss the limitations of our
approach in Section 8, and conclude in Section 9.

2 Summary of Related Work

As related work on the topic of crowd simulation algorithms has already been presented
in Chapter 2, this section will simply serve to summarize it.

Following the many applications of crowd simulation in pedestrian dynamics, vir-
tual reality and cinematic entertainment, many algorithms spanning several categories
and each with its own characteristics have been devised. Macroscopic crowd simula-
tion algorithms [NGCL09, TCP06] animate crowds at the global level, aiming to capture
statistical quantities such as flows or densities, while tile- and patch-based algorithms
facilitate the control of these global features. In contrast, microscopic algorithms model
interactions between individual pedestrians, with the emergence of movement patterns
at the crowd level. For instance, algorithms based on cellular automata discretize space
into grids where pedestrians are moved based on transition probabilities [KS08, Sch01].
Other, agent-based algorithms model pedestrians as agents, with various levels of com-
plexity. Finally, example-based algorithms maintain databases of crowd motions which
can be reused depending on the context [LCL07, JCP+10].

Among these works, agent-based algorithms remain very popular, due to their ease
of implementation and their flexibility through various extensions and scripting. To
reproduce local interactions between people, these algorithms have always focused on
the most readily availabe and easily useable information: agents’ positions (first-order
algorithms). This has been the case starting with Reynolds’ seminal work with the Boids

45

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

Figure 4.2 – Overview of the Algorithmic Framework of WarpDriver.

algorithm [Rey87], later the Social-Forces algorithm by [HM95, HFV00] and many of
their derivatives ever since.

However, anticipation of each other’s trajectories is key to people’s interactions, and
efficient, collision-free navigation [OMCP12, KSG14]. In light of this observation, major
advances recently came from second-order, velocity-based algorithms. [Rey99] intro-
duced the point of closest approach between agents, where, if the distance between the
concerned agents was to be low enough at this point (reflecting a collision), they would
steer away from it. Later, in an algorithm derived from Social-Forces, [KHBO09] used
this point of closest approach as a source of repulsive forces; and [PESVG09] used the dis-
tance of the closest approach to refrain from choosing velocities which might lead to col-
lisions. In parallel, other algorithms [Feu00, PPD07] work in space-time (2-dimensional
space plus one more dimension of time) to, again, select permitted, collision-free ve-
locities. This method of choosing permissible velocities was further accelerated by al-
gorithms that reasoned in 2-dimensional velocity-space such as [vdBLM08, GCK+09,
GCLM12, POO+09]. Finally, other algorithms used instantaneous velocities in other
ways, such as affordance fields [KSHF09] and velocity-derived values processed from the
synthetic visual flows of agents [OPOD10].

As a common assumption, these algorithms all linearly extrapolate agents’ future mo-
tions from their positions and velocities, making it possible to anticipate collisions up to
a certain time horizon and improve simulation results [OMCP12, GvdBL+12, WGO+14].
However, this linear extrapolation remains simplistic, and in many more challenging sit-
uations, does not yield truly satisfactory results. Consequently, [KGL+14] introduced a
probabilistic component to the algorithm presented by [vdBLM08], while [GNL13] added
look-ahead to adaptively increase the time horizon in an efficient way for large groups.
Finally, [vdBSGM11] incorporated agents’ acceleration constraints into this same algo-
rithm.

This underlying assumption of linear motion prediction, however, does not hold in
many cases, and we suggest that constraining a crowd simulator to only information on
positions and instantaneous velocities is often insufficient. By addressing these issues,
we introduce an approach that enables agents to efficiently take into account arbitrary
sources of information in a stochastic framework when anticipating each other’s future
motions.

46

3. OVERVIEW

3 Overview

Our algorithm builds on an agent-based modeling framework and the resulting simula-
tion captures complex interactions among agents. In this section, we provide a high-level
overview (Figure 4.2) of our approach, i.e. how we model interactions between agents
and steer them.

Before describing “WarpDriver”, we first need to define what we consider an agent
in our formulation. An agent is any entity that the algorithm would steer or any other
entity that could affect another agent’s steering decisions. Agents can be, for instance,
pedestrians, cars or walls, and they can further have various properties: size, shape,
position, velocity, followed path, etc.

In our formulation, interactions between agents are resolved in space-time. To simu-
late these interactions, we identify the perceiving agent (the agent we are currently steer-
ing) and the perceived agents (the agents that are to be avoided). Interactions among
agents are modeled in three main steps:

Step 1, Setup: The perceiving agent starts by defining its space-time projected trajec-

tory: the trajectory it would follow if no collisions were to happen (Step 1 on Fig-
ure 4.2 and red dotted line on Figure 4.3; detailed in Section 4).

Step 2, Perceive: This agent then constructs its perception of other perceived agents’
future motions in the form of space-time collision probabilities (Step 2 on Figure 4.2
and color gradient on Figure 4.3; detailed in Section 5).

Step 3, Solve: Finally, the agent intersects its projected trajectory with these collision
probabilities (thus evaluating the chances of collision along the projected trajectory)
and modifies its projected trajectory by performing one step of gradient descent to
lower its collision probabilities along this trajectory (Step 3 on Figure 4.2 and green
dotted line on Figure 4.3; detailed in Section 6).

The most important aspect of our approach is then how the perceiving agent derives
collision probabilities from the perceived agents. It is through this process that we can
model any non-linear behavior of both perceiving and perceived agents.

Our goal for the collision probability formulation process (Step 2) is to be able to han-
dle each property separately. Thus, we define the Intrinsic Field as the lowest common
denominator among all agents: the fact that they occupy a volume in space-time; this is
a collision probability field. We then model any additional property as a Warp Operator

which further warps the Intrinsic Field.
In order to define a clean system pipeline for implementation, we further associate ev-

ery agent with its own agent-centric space-time. Step 2 is then described by the following
three sub-steps:

� Every perceived agent is modeled as an Intrinsic Field in its agent-centric space-
time (blue rectangle in Figure 4.2).

� Warp Operators progressively warp every perceived agent’s Intrinsic Field from its
agent-centric space-time into the perceiving agent’s agent-centric space-time (green
rectangle in Figure 4.2).

47

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

Figure 4.3 – Illustration of collision avoidance between two agents a and b on a curved
path. On the left is the full 3D representation (space and time) of collision probabilities; on
the right is a simplified 2D view. The color gradient represents a’s probability of collision
with b, as perceived by a. The red dotted line represents a’s initial projected trajectory.
The green dotted line represents a’s final, corrected, projected trajectory (exaggerated).
The red line in between both dotted ones represents the correction agent a will perform
(exaggerated for illustration). Note that thanks to Warp Operators, the projected trajectory

is a curve instead of a straight line.

� These warped collision probability fields (in the perceiving agent’s agent-centric

space-time) are then combined into a single collision probability field (red rectangle
in Figure 4.2).

Note that by confining agents’ properties to Step 2, the perceiving agent’s projected

trajectory can be simply defined as a line in its agent-centric space-time, which simplifies
further computations (more detail in Sections 4, 6).

4 Notations and Setup

In this section, we describe the notations used throughout the chapter and detail how a
perceiving agent constructs its projected trajectory, i.e. its current trajectory in space-
time assuming no collisions take place (Step 1 of our approach, see Figure 4.2):

� ·,×, ◦, ⋆ and ∗ respectively denote the dot product, cross product, function compo-
sition, component-wise multiplication and convolution.

�

−→
∇ is the nabla operator. For a continuous field f ,

−→
∇ · f is the gradient of f .

� ∪ is the union operator and
⋃

is the union operator over a set.

� A is the set of all agents, a, b ∈ A are two such agents; note that a usually denotes
the perceiving agent while b usually denotes the perceived agent.

� S is a 3D space-time with basis {x, y, t}, where x and y form the space of 2D
positions and t is the time. A point in such a space-time is noted s = (x, y, t) ∈
S. Note the difference between bold-face vectors (e.g. x) and normal-font scalar
quantities (e.g. x).

48

5. PERCEPTION: COLLISION PROBABILITY FIELDS

� Sa,k is the agent-centric space-time S centered on an agent a at timestep k such
that, in this space-time, agent a is at position o = (0, 0, 0) ∈ Sa,k and faces along
the local x axis, positive values along the local t axis represent the future.

� ra,k is agent a’s projected trajectory in Sa,k.

� ∀s ∈ Sa,k, pa→b,k(s) is what agent a perceives to be its collision probability with
agent b.

� I, the Intrinsic Field, gives the probability of colliding with any agent b in space-

time Sb,k.
−→
∇ · I is the gradient of I.

� W denotes a Warp Operator that warps I for every property of an agent. W =
Wn ◦ ... ◦W1 further denotes the composition of operators {W1, ...,Wn}.

� W−1 is used to apply the inverse of a Warp Operator W to probabilities and proba-
bility gradients. Assuming a collection of operators {W1, ...,Wn} where W(Sa,k) =
Sb,k, then W−1 = W−1

1 ◦ ... ◦W
−1
n and ∀s ∈ Sa,k:

(W−1 ◦ I ◦W)(s) = pa→b,k(s), (4.1)

(W−1 ◦ (
−→
∇ · I) ◦W)(s) =

−→
∇ · pa→b,k(s). (4.2)

With these notations, in Step 1 of our approach, the perceiving agent a constructs its
projected trajectory ra,k in its agent-centric space-time Sa,k. We further assume that the
perceiving agent a is a point in its agent-centric space-time, Sa,k is then its configuration-
space. As mentioned in Section 3, since the processing of agents’ properties is confined
to Step 2, the perceiving agent’s projected trajectory can be defined as a line.

Specifically, assuming agent a has an instantaneous speed va,k at timestep k, its pro-

jected trajectory is expressed as ra,k = line(o, va,kx + t). Further, at any time t ∈ R

in the future, the perceiving agent a projects to be at point ra,k(t) = o + t(va,kx + t) in
space-time Sa,k.

5 Perception: collision probability Fields

We here describe how the perceiving agent constructs collision probabilities from the
perceived agents. As mentioned in Section 3, this is a three-step process where:

� the Intrinsic Field I is defined for each perceived agent b in its agent-centric space-
time Sb,k,

� Warp Operators warp I from each Sb,k into the perceiving agent a’s agent-centric

space-time Sa,k, thus modeling agents’ properties,

� the resulting collision probability fields are combined.

We detail each of these three steps in the following sub-sections.

49

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

5.1 The Intrinsic Field

As defined in Section 3, the Intrinsic Field is the lowest common denominator between
agents, independently of their properties. It is also a continuous collision probability
field: for each point s in a perceived agent b’s agent-centric space-time Sb,k, it gives the
probability of colliding with b at that point I(s) ∈ [0, 1].

Since the perceiving agent a is a point in its agent-centric configuration-space Sa,k,
any perceived agent b should therefore be perceived as a configuration-space obstacle (the
Minkowski sum of agents a and b). As we want the Intrinsic Field to be independent of
agents’ properties (including size and shape) we define the Minkowski sum of agents a
and b as a disk with a normalized radius of 1, this is the step function g:

∀s = (x, y, t) ∈ Sb,k, g(s) =

{

1, if
√

x2 + y2 ≤ 1

0, otherwise

We further model the perception error in the form of a Gaussian function: ∀s = (x, y, t) ∈

Sb,k, f(s) = exp(−(x
2+y2

2σ2)).
Consequently, we define the Intrinsic Field as the convolution of functions f and g:

∀s ∈ Sb,k, I(s) = (f ∗ g)(s). (4.3)

It is computed up to a normalized time of 1 second in the future. An illustration of the
Intrinsic Field can be found on Figure 4.2 (cylinder on the right side of the figure).

5.2 Warp Operators

Warp Operators model each agent property that we want to include in the algorithm. As
mentioned in Section 3, these could be: shape, size, position, velocity, followed path, etc.
Mechanically, Warp Operators warp the Intrinsic Field defined for each perceived agent b
in its agent-centric space-time Sb,k into the perceiving agent a’s agent-centric space-time
Sa,k.

In this sub-section, we describe Warp Operators modeling agent-related and context-
related properties. Note that their formal expressions are given in Appendix B.

5.2.1 Agent-Related Operators

The following Warp Operators model properties which only depend on agents:

Position and Orientation The Warp Operator Wlocal models the agents’ position and
orientation properties. It is a simple change of referential between Sa,k and Sb,k.

Time Horizon To avoid collisions in a time horizon T (beyond the normalized 1 second
in the Intrinsic Field), we define a time horizon operator Wth.

Time Uncertainty The Wtu operators models the increased uncertainty on the states
of other agents the further we look in time.

50

5. PERCEPTION: COLLISION PROBABILITY FIELDS

Radius The Wr operator changes the radius of the agents by dilating space along the x

and y axes.

Velocity The Wv operator models the agent’s instantaneous velocity as a displacement
along the x axis.

Velocity Uncertainty Depending on the speed of an agent, that agent could be more
or less likely to make certain adaptations to its trajectory. For instance, the faster
an agent travels, the more likely it is to accelerate/decelerate rather that turn. This
is modeled by the Wvu operator.

5.2.2 Context-Related Operators

The following operators provide information based on the Environment Layout (opera-
tor Wel), Interactions with Obstacles (operator Wio) and Observed Behaviors of agents
(operator Wob). These operators, where applicable, replace the Local Space operator

Wlocal. We call Wref the resulting operator: Wref = {Wlocal or Wel or Wio or Wob }.

(a) Wel: T-junction, the agent could turn left or
right.

(b) Wel: Predicted motion of an agent on a
curved path.

(c) Wio: The agent can not go further than the
wall, either go left or right.

(d) Wob: Predicted motion based on observed
past motion.

Figure 4.4 – Cases using context-related Warp Operators (Section 5.2.2). Each case
represents one context-related Warp Operator combined with all agent-related ones (Sec-
tion 5.2.1). Same simplified 2D representation as in Figure 4.3(right).

Environment Layout When navigating in an environment, based on its layout, we
can predict what trajectories other pedestrians are likely to follow. In a series of hallways,

51

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

for instance, when not threatened by collisions with other pedestrians, one would stay
roughly in the middle of the hallway and take smooth turning trajectories at intersections
(an agent could turn either left or right in Figure 4.4(a)). When navigating on curved
paths, one would, again, have a tendency to stay roughly in the middle, resulting in a
curved trajectory (Figure 4.4(b)). The operator Wel models this knowledge by warping
space to “align” it with these probable trajectories.

Interactions With Obstacles Where the environment layout operator focuses on
other agents’ probable trajectories assuming they will continue travelling, this operator
Wio takes care of possible interactions between agents and obstacles. These interactions
are essentially much more drastic changes to an agent’s locomotion than paths, such as
full stops. These can occur if, for instance, an agent comes up to a wall (Figure 4.4(c))
(to interact with an ATM, look out the window, check a map...). This can also happen
with an agent coming into contact with a small/temporary/unexpected obstacle which
could force it to stop and then “hug” the obstacle to get around it.

To achieve this, we construct a graph around each obstacle (an obstacle being mod-
eled as a series of connected line segments). When an agent’s projected trajectory inter-
sects with an obstacle, we extend the graph to that agent and “align” space-time wih this
graph.

Observed Behaviors With the last operator Wob, we aim to improve the prediction
of agents’ future motions by looking at their past ones. In the worst case, we might
not find any useful information, which won’t impact the prediction. However, we might
also find some behaviors similar to what the agent is currently doing (e.g. turning in a
particular way) or, in the best case, we might find patterns (e.g. agents going in near-
circles, zig-zags...) that we can extend to the currently-observed situation (Figure 4.4(d)
shows anticipation on a zig-zagging agent).

In order to take this information into account for an agent a at timestp k, we keep a
history of this agent’s positions during h previous timesteps. These past positions form
a graph which we repeat on the current position of the agent and then “align” space-time
with it.

5.2.3 Composition of Warp Operators

As defined in Section 3, we can compose all these operators {Wref ,Wth,Wtu,Wr,Wv,Wvu}:

W = Wref ◦Wth ◦Wtu ◦Wr ◦Wv ◦Wvu,

W−1 = W−1
vu ◦W

−1
v ◦W

−1
r ◦W

−1
tu ◦W

−1
th ◦W

−1
ref .

For any point s in perceiving agent a’s agent-centric space-time Sa,k:

pa→b,k(s) = (W−1 ◦ I ◦W)(s),
−→
∇ · pa→b,k(s) = (W−1 ◦ (

−→
∇ · I) ◦W)(s).

52

6. SOLVING THE COLLISION-AVOIDANCE PROBLEM

5.3 Combining collision probability Fields

Before the collision avoidance problem can be solved, one last mechanic still needs to be
defined which is how pair-wise interactions can be combined (Step 3 on Figure 4.2). Let
a be the perceiving agent, and b, c ∈ A, b 6= a, c 6= a be a pair of perceived agents. At
timestep k, we have access to the following collision probabilities: pa→b,k and pa→c,k. We
can then define the probability agent a has of colliding with either b or c:

pa→{b,c},k = pa→b,k + pa→c,k − pa→b,kpa→c,k.

And we can similarly define its gradient:

−→
∇ · pa→{b,c},k =

−→
∇ · pa→b,k +

−→
∇ · pa→c,k

− pa→b,k

−→
∇ · pa→c,k

− pa→c,k

−→
∇ · pa→b,k

Finally, considering the whole set of agents A, the probability agent a has of colliding
with any other agent b ∈ A \ a is obtained in the same manner and noted pa→A\a,k, with

the corresponding gradient
−→
∇ · pa→A\a,k.

6 Solving the Collision-Avoidance Problem

This section details the third and final step in our approach: how the perceiving agent
modifies its projected trajectory to reduce the collision probabilities along it.

To solve the collision-avoidance problem, the perceiving agent samples collision prob-
abilities and their gradients pa,k along its projected trajectory ra,k (this is the cost func-
tion and its gradient), and performs one step of gradient descent to modify its projected

trajectory. First, we compute the overall probability an agent a has of colliding with

other agents pa,k, its gradient
−→
∇ · pa,k and application point sa,k (red continuous line in

Figure 4.3), when traveling along its projected trajectory ra,k (red dotted curve in Fig-
ure 4.3). We compute these quantities for a time horizon T ∗ until a collision with a wall
is detected: T ∗ ≤ T . With the following normalization factor Na,k, and t ∈ [0, T ∗]:

Na,k =

∫

t

pa→A\a,k(ra,k(t)), (4.4)

We compute pa,k,
−→
∇ · pa,k and sa,k:

pa,k =
1

Na,k

∫

t

pa→A\a,k(ra,k(t))
2, (4.5)

−→
∇ · pa,k =

1

Na,k

∫

t

pa→A\a,k(ra,k(t)) (
−→
∇ · pa→A\a,k)(ra,k(t)), (4.6)

sa,k =
1

Na,k

∫

t

pa→A\a,k(ra,k(t)) ra,k(t). (4.7)

53

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

From these quantities, given a user-set parameter α, we compute the new projected
trajectory that agent a should follow in Sa,k to lower its collision probability (green dotted
curve in Figure 4.3) :

r∗a,k = line(o, sa,k − αpa,k
−→
∇ · pa,k). (4.8)

7 Results

In this section, we show the benefits of our WarpDriver algorithm with various types of
results, including large, dense test cases, scenarios with non-linear routes, history-based
anticipation cases and a highly-constrained situation. Finally, we present the results of
the benchmarks on previously studied data and the performance of our algorithm.

7.1 Large and Dense Cases

Figure 4.5 – Dual Big Groups example. Top: number of emerging sub-groups. Low
number for WarpDriver and high number for ORCA. Bottom: spread of agents. Warp-
Driver agents stay compact, ORCA agents spread widely. Note that WarpDriver achieves
simulation goals four times faster than ORCA.

We start with simulation tests involving a large number of agents and high densities
(agents are within contact distance of each other), testing our algorithm’s ability to
navigate agents while subject to many, simultaneous interactions.

54

7. RESULTS

(a) WarpDriver.

(b) ORCA.

Figure 4.6 – Crossing example: two flows of agents in corridors cross at a right angle (red
ones going to the top and blue ones going to the right) simulated by WarpDriver (top) and
ORCA (bottom).

7.1.1 Test case 1: Big Groups

This first test case involves two 1027-agent groups exchanging positions as seen on Fig-
ure 4.1. In this kind of example, we expect agents to be able to traverse through the
opposing group and reach their destinations. This expected behavior implies a certain
level of organization of the agents; thus we measure how many sub-groups emerge (using
the method from [ZTW12]) and how widely agents might spread (Figure 4.5, top and
bottom respectively).

7.1.2 Test case 2: Crossing

The second test case involves two corridors intersecting at a right angle, each with a
uni-directional flow of agents (Figure 4.6). This kind of situation is well studied and
45◦ lines should form between agents of each flow at the intersection [CARH13], facil-
itating their movement. We measure this by detecting sub-groups with the previously
mentioned method and perform linear regression on the agents, results are reported on
Figure 4.7(middle, bottom). Furthermore, as the situation is very constrained (agents
at contact distance from each other with the presence of walls), we also measure how
many agents are jammed (travel at less than 0.1m/s) during the simulations, as shown
in Figure 4.7(top).

7.1.3 Analysis

In the Big Groups example (Figure 4.1), agents simulated with our algorithm are able
to do two things. First, front-line agents are able to find points of entry in the oppos-
ing group (which correspond to the minima of the collision probability function) and
consequently enter through them. Second, non-front-line agents are able to anticipate
the front-liners’ continuing motion and align themselves behind them. In the resulting
motion, agents re-organize themselves into lanes and are able to fluidly reach their des-
tinations. This re-organization can be observed through the low number of emerging

55

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

Figure 4.7 – Crossing example. Top: number of jammed agents (speed lower than 0.1
m/s). WarpDriver has almost none while ORCA has increasingly high numbers. Middle:
angles of agent lines formed at intersection for WarpDriver, lines form with angles around
-45◦. Bottom: angles of agent lines formed at intersection for ORCA, very few lines form
(absence and/or disorganization of agents).

sub-groups (Figure 4.5(top)) which correspond to the formed lanes, and through the
relatively low spread of the agents (Figure 4.5(bottom)). In the ORCA simulation, how-
ever, when agents of both groups meet, their solution spaces are quickly saturated, thus
forcing them to start spreading on the sides in order to free up the velocity space and
be able to continue their motion. As a result, groups collide and spread until agents are
able to pass through to their goals and that takes much more time. This disorganization
can be observed through the high number of emerging sub-groups (Figure 4.5(top)) cor-

56

7. RESULTS

responding to agents searching for less saturated solution space, thereby spreading over
larger distances (Figure 4.5(bottom)). Also note that our algorithm solves the situation
much more quickly than ORCA (much shorter blue graphs than red ones in Figure 4.5).

In the Crossing situation (Figure 4.6), as expected agents simulated with our algo-
rithm are able to cross without congestion (Figure 4.7, top: no jammed agents) forming
the expected 45◦ crossing patterns (Figure 4.7, middle). ORCA agents on the other hand,
quickly get into a congestion (Figure 4.7, top: increasing numbers of jammed agents) and
no patterns can be found, explaining the lack of points on the bottom graph in Figure 4.7.

Overall, our algorithm is able to better find (and take advantage) of small spaces
between agents (local minima in the collision probability fields) thus producing more
visually pleasing results than ORCA, which often has more binary reactions, leading to
stopping agents in congested scenes.

7.2 Non-Linear Scenarios

(a) WarpDriver. (b) ORCA.

Figure 4.8 – Curved Flows example with agents on a curved path (blue ones turn clock-
wise, red ones counter-clockwise) simulated by WarpDriver (left) and ORCA (right).

With the following test cases, we investigate how our algorithm copes with situations
where agents’ future motions are non-linear. To this end, we make agents interact with
each other and with obstacles, while traveling along curved paths.

7.2.1 Test case 3: Curved Flows

In this situation (Figure 4.8), we set two opposing flows of agents (moderate density,
about a meter between agents) in a curved corridor. Here, with the moderate density, we
expect agents to fluidly navigate to the other end of the corridor. To measure the impact
the curved corridor has on the agents, we reproduced the experiment in all aspects (same
number and density of agents, same corridor length and width) except for one: we made
the corridor straight. We then measured the average speed of the agents first in the
straight version and then in the curved version, as seen in Figure 4.9.

57

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

Figure 4.9 – Curved Flows example. Top: average speed of agents in curved vs. straight
corridors for WarpDriver, the speed remains similar. Top: average speed of agents in
curved vs. straight corridors for ORCA, an important loss of speed occurs in the curved
path.

(a) WarpDriver. (b) ORCA.

Figure 4.10 – Curved Obstacle example with a small obstacle on a curved path simulated
by WarpDriver (left) and ORCA (right).

7.2.2 Test case 4: Curved Obstacle

This situation is a simplification of the previous test case: one uni-directional flow of
agents is made to travel the same curved corridor with one small obstacle in the middle
as shown on Figure 4.10. In this simple test case, we expect the agents to easily bypass
the obstacle on the side that is most direct, i.e. if an agent is on the outer (resp. inner
side) side of the corridor it should bypass the obstacle on the outer side (resp. inner side).
We thus looked at the paths agents followed (Figure 4.11.

58

7. RESULTS

Figure 4.11 – Curved Obstacle example. Top: agent traces obtained with WarpDriver,
agents bypass the obstacle on both sides. Bottom: agent traces obtained with ORCA,
agents bypass the obstacle on the right (unless too crowded, then on the left).

7.2.3 Analysis

In the Curved Flows example (Figure 4.8), agents simulated with our algorithm are able
to avoid each other correctly, eventually leading to the emergence of two opposing lanes
(red agents travel on the outer rim while blue agents are on the inner rim). In Figure 4.9,
we can see that using our algorithm, agents travel at the same overall speed in both
the straight and curved versions. With the ORCA algorithm, on the other hand, agents
quickly get stuck in a congestion (Figure 4.8). We can observe this in Figure 4.9, with an
important loss of agents’ speed on the curved version of the corridor as compared to the
straight one.

The Curved Obstacle situation shows the phenomenon more clearly. With our al-
gorithm, agents anticipate the obstacle about 3m in advance (see Figure 4.11, left) and
choose the most direct (expected) side. ORCA agents on the other hand can be seen
to all prefer the outer side (with respect to the curve) of the obstacle and some agents
backtrack (see Figure 4.11, right) and use the inner side when a bottleneck situation
forms.

The difference between algorithms in both cases is that agents simulated with Warp-
Driver anticipate their own (and others’) future trajectories as curved along the corri-
dor, thus perceiving interactions where they most probably will occur (thus they see
the opposite-flow agents and obstacle from the two previous examples well in advance).
ORCA agents in these cases exhibit artifacts linked to their linear extrapolation of tra-
jectories based on instantaneous velocities: they can only perceive interactions that will
occur roughly on a line tangent to the corridor curve at their position (thus they do not
see the opposite-flow agents nor the obstacle from the two previous examples until the
very last moment).

7.3 History-based Anticipation

As instantaneous velocities can vary very rapidly and not be representative of agents’
overall motions, we next test situations where agents or obstacles behave according to
pattern-like movements. We test two easily-recognizable behaviors: zig-zagging and re-
volving motions.

59

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

(a) WarpDriver. (b) ORCA.

Figure 4.12 – Zig-Zag example, agents (blue) avoid a zig-zagging agent (red) simulated
by WarpDriver (left) and ORCA (right).

(a) WarpDriver. (b) ORCA.

Figure 4.13 – Danger Corridor example, agents (blue) avoid turning obstacles (red) sim-
ulated by WarpDriver (left) and ORCA (right).

7.3.1 Test case 5: Zig-Zags

In this scenario (Figure 4.12), we set up a uni-directional flow of moderately-spaced
agents (in blue) traveling along a straight corridor and further add an agent (in red)
which travels counter-flow with a zig-zagging trajectory. Figure 4.12 shows the setup
where the red agent has a narrow zig-zagging motion (another version with wider zig-
zags can be found in the companion video). In this example, we expect the blue agents
to recognize and anticipate the red one’s motion pattern and easily avoid it. We mea-
sured how easily blue agents are able to avoid the red one by recording the angle between
the agents’ orientation and their goal direction (their deviation from their goal) on Fig-
ure 4.14(top: narrow zig-zags situation, middle: wide zig-zags situation). We also report
what proportion of the simulated frames contain backtracking agents (180◦ deviations)
on Figure 4.15.

7.3.2 Test case 6: Danger Corridor

This scenario (Figure 4.13) is largely similar to the previous one in that a uni-directional
flow of agents (in blue) travel down a corridor, except that we set nine slowly revolving
pillars (in red) in the middle of the path. We then expect agents to be able to recognize

60

7. RESULTS

Figure 4.14 – Top: Zig-Zag example, deviation angles of agents from their goals for
narrow zig-zagging motions. Middle: Zig-Zag example, deviation angles of agents from
their goals for wide zig-zagging motions. Bottom: Danger Corridor example, deviation
angles of agents from their goals. Overall: WarpDriver agents deviate very little from their
intended trajectories while ORCA agents deviate much more.

how these pillars move and easily work out a path through them. Again, we measure
the agents’ deviation form their goals which we report on Figure 4.14(bottom) and the
proportion of frames containing backtracking agents on Figure 4.15.

7.3.3 Analysis

In the Zig-Zag example (Figure 4.12), agents (in blue) simulated with WarpDriver are
able to anticipate the zig-zagging agent (in red) in advance and minimally adapt their

61

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

Figure 4.15 – Narrow/Wide Zig-Zags and Danger Corridor examples, proportion of
frames containing backtracking agents per example. WarpDriver has no frames with back-
tracking agents (except a few in the last example) while the majority of frames simulated
with ORCA contain backtracking agents.

trajectories to avoid it. This is confirmed by Figure 4.14(top and bottom, corresponding
to narrow and wide zig-zags respectively) which show that the heading direction of the
agents is very close to 0◦ (heading in their preferred direction). ORCA agents, on the
other hand, have more trouble anticipating the jerky motion of the zig-zagging agent
and noticeably over-react as a result. This is confirmed by Figure 4.14(top and bottom)
where agents often deviate by ±180◦ (backtracking from their goal).

The Danger Corridor example (Figure 4.13) yields results largely similar to the Zig-
Zags one (but more pronounced). WarpDriver agents are able to fluidly avoid the revolv-
ing obstacles while ORCA agents have more trouble doing so. Again, Figure 4.14(bot-
tom) shows the agents’ deviations from their goals (low for WarpDriver and high for
ORCA).

Additionally, as shown in Figure 4.15, when using WarpDriver the resulting sim-
ulations contain no backtracking agents for Zig-Zags and only 11% of frames contain
backtracking agents in the Danger Corridor. When using ORCA, on the other hand, the
Narrow Zig-Zags, Wide Zig-Zags and Danger Corridor are simulated with respectively
68%, 54% and 90% of frames containing backtracking agents.

Overall, the differences can be explained by the fact that in these cases, the instanta-
neous velocities of the zig-zagging agent and revolving obstacles are constantly changing
and their trajectories are not straight. Thus, ORCA first linearly extrapolates (incorrect)
future motions and then faces these extrapolations constantly changing. ORCA agents
thus avoid many, ever-changing and possibly non-existent future interactions. These ar-
tifacts are addressed by WarpDriver: first, it detects patterns in the past motions and
learns from them to anticipate future motions; second, when anticipating future motions
it does so non-linearly. As a result, WarpDriver agents are able to correctly anticipate

62

7. RESULTS

and avoid colliding contacts with other agents.

7.4 Highly-constrained Case

(a) WarpDriver. (b) ORCA.

Figure 4.16 – Plane exit situation simulated by our method (left) and ORCA (right).

Figure 4.17 – Plane example: number of agents evacuated during the simulation. Warp-
Driver agents evacuate regularly while ORCA agents get congested and have trouble evac-
uating.

In the last scenario, we test how our algorithm copes with highly-constrained sce-
narios in confined spaces, where agents are within contact distance and many encounter
path intersections.

7.4.1 Test case 7: Plane

This example features a plane egress scenario with 80 agents. Figure 4.16 features two
sequences of stills, one for each algorithm (left: WarpDriver, right: ORCA) captured at

63

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

the same moments, showing the successive states of the simulations. Here, we expect
agents to orderly exit the plane starting with the ones close to the exit and with more
far-away agents exiting last. To see how agents are able to cope with this situation, we
recorded how many agents have successfully exited the plane during the simulation on
Figure 4.17.

7.4.2 Analysis

On the left sequence of stills from Figure 4.16, with our algorithm (left column), agents
in the back allow agents up front to exit first. This behavior leads to an orderly exiting
process, where all agents are progressively evacuated as evidenced by the regular blue
plot from Figure 4.17. On the contrary, with the ORCA algorithm (right column), all
agents try to exit at the same time which, with the very constrained space (little room
for maneuvers) leads to dead locks. This general difficulty of the agents to exit is con-
firmed by the stagnating number of evacuated agents depicted by the red graph from
Figure 4.17.

The behavior obtained with our algorithm results from a combination of factors.
First, agents are able to predict which way the others will go: into the alley and then
towards the exit (note that these paths are non-linear since they contain a right turn).
Second, agents in the front rows are closer to the exit than the others and they are
thus perceived as obstacles blocking the exit from the other agents (and conversely front
agents perceive other agents as being “behind”), thus creating a hierarchy. Finally, the
agents easily navigate between the chairs by following the local minima of the collision
probabilities defined by these obstacles. On the contrary, ORCA agents navigate with
their solution-spaces saturated (both by obstacles and other agents) and without any
sense of emerging hierarchy.

7.5 Benchmarks

Finally, we compared our algorithm with the Boids [Rey87], Social-Forces [HM95] and
ORCA [vdBLM08] on previously-studied test cases using the method from [WGO+14].
In these tests, the difference between our algorithm and the others is not always as pro-
nounced as in the previously shown scenarios. This is due to the nature of the available
ground truth data which only captures simple interactions: (1) simple crossing situations
between 2-5 agents, and (2) 6-24 agents exchanging positions on a circle. Nonetheless, as
Figure 4.18 shows, on these test cases, our method (in blue) gives comparable results to
ORCA (red), occasionally outperforming it (and almost always outperforming the other
algorithms).

The benefits of our algorithm shown here over previous methods come at a higher
computational cost, however. We measured this cost by simulating increasing numbers of
agents in the worst possible configuration: circles of agents trying to get to the antipodal
positions (an example with 200 agents can be found in the companion video). The reason
why this configuration is the most computationally intensive for our algorithm is that our
current implementation has no limit on neighbors. Additionally in this configuration,
agents all initially converge towards the center of the circle. Consequently, all agents
interact with all other agents, thus reaching our algorithm’s maximum complexity of

64

8. DISCUSSION AND LIMITATIONS

Figure 4.18 – Benchmarks results using the method from [WGO+14], lower is better.

O(n2). We report the performance of our algorithm compared to ORCA (super-linear
complexity thanks to neighbor culling and a space-optimizing structure) in frames per
second in Table 4.1.

Many options can be explored to improve the performance of our algorithm as com-
pared to its current un-optimized implementation. Some simple options include better
selection strategies when sampling along the projected trajectory (currently fixed step,
fixed number of samples), choosing/limiting neighbors, and space-optimization struc-
tures (e.g. kd-tree). And more optimization strategies can be borrowed from the ray-
tracing literature, such as parallel sampling, level-of-detail on perceived agents’ collision-
probability fields, caching, etc.

Table 4.1 – FPS per number of agents.

10 100 200 300 400 500
WarpDriver 1555 46 16 9 6 5

ORCA 156272 10289 4468 3107 2260 1920

8 Discussion and Limitations

We present a novel probabilistic motion prediction algorithm for crowd simulation that
takes into account of the contextual interaction between the agent and its surrounding,
including other agents, the environment layout, motion anticipation, etc.

We assume that the environments can be annotated with probable routes to be fol-
lowed by agents. This step does not present any difficulty – it just needs to be done once
for each new environment. This environment annotation could be easily automated in

65

CHAPTER 4. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION FOR
CROWD SIMULATION

various ways. First, the geometry of probable routes could be extracted automatically
based-on smoothed Voronoï diagrams or any technique to compute static obstacles’ me-
dial axes, or even learned from real data (e.g. camera feeds). More interestingly, our
representation could be extended with route selection probabilities.

Although in this chapter we have limited the application of motion prediction to
mostly collision avoidance for crowd simulation, motion prediction is generally at the
core of numerous types of interactions among humans and it represents the most basic
software module of all crowd simulators. Thus, our crowd simulator can and should be
extended to handle other types of interactions, including following, fleeing, intercepting,
grouping behaviors, etc.

A possible limitation concerns our probabilistic modeling of risk of collision. The cur-
rent implementation does not make any distinction among various origins of the collision
risks. As a result, for example, equivalent collision probabilities between a neighboring
agent moving in the same direction and one moving in the opposite direction are pro-
cessed the same way. They, however, do not result in the same energy of collision, which
should be integrated into the notion of risk of collision. Theoretically, our method can
handle any kind of moving obstacles. Extending the notion of risk of collision would al-
low us to mix into our simulations other types of moving obstacles (e.g. cars) with their
corresponding dangerousness.

Addressing each of these issues can lead to promising directions for future work.
While we have presented noticeable improvements in terms of motion quality for agents
in this work, investigating each of these aspects would likely result in new-generation
crowd simulators that may match real observations even more accurately in the near
term.

9 Conclusion

A new motion prediction algorithm for crowd simulation has been presented in this chap-
ter. The main novelties of this approach are two-fold.

The first novelty is the non-deterministic and probabilistic nature of our motion pre-
dictions. Agents do not perceive future collisions in a binary manner like in most of the
existing methods; instead, they perceive a probability of future collision. This approach
has several advantages. First, this characteristics results in smoother motion because the
probability field is continuous. Agents adapt their motion to lower the probability of col-
lision by following the gradient of the probability field. Second, some agent’s oscillations
between two binary future collision states that could be observed in previous techniques
are avoided. Third, our anticipation considers several possible hypotheses, the notion of
routes can be used when future position probabilities are propagated in time. Fourth,
the non-determinism allows us to simulate uncertainty due to sensing or variety in lo-
comotion trajectories. As we increase the uncertainty of agents’ future positions the
further they are in time, we change the relative importance of agents that may collide
sooner as opposed to those that may collide later. This aspect makes a large difference
as compared to most of the previous algorithms, which give the same importance to all
neighboring agents.

The second innovation is related the contextually-aware technique, which not only

66

9. CONCLUSION

depends on agents’ states, but also on external and contextual cues. This makes a ma-
jor difference with all previous methods that assume agents keep moving with the same
current velocity vector. One can easily conceive that agents’ current velocity vectors
are, most of the time, not representative of the intention of future motion, especially in
crowds, where we are constantly adapting our locomotion trajectory to the presence of
others. For this reason, our motion anticipation is based on factors such as the environ-
ment’s layout, interactions with other agents, the recent history of agents’ movements,
etc. and can be extended to include social protocols for instance. In addition, the mech-
anism to update agents’ velocities in order to avoid highest risks of collision is also re-
visited accordingly. Whereas previous techniques searched for admissible velocities that
presented no risks of future collision in the near term, our technique aims to lower the
risk of future collisions.

Through a set of challenging evaluation scenarios, as well as quantitative evaluations,
we have demonstrated that we considerably improve the quality of visual simulation
of crowds and alleviate visual artifacts commonly known in the current state-of-the-art
collision-avoidance algorithms. There are several avenues for future research, as listed
in the previous section. We plan to address a number of them first. We would like to
adapt our simulator to consider other types of local interactions than collision avoidance.
More importantly, our system also opens new possibilities to be explored. One promising
research direction is to learn future position likelihood based on real observations. This
would allow us to automatically adapt our simulator to a specific situation. In a given
place, the probability of future positions depends on the nature of people who frequent
this specific place, and on the exact activities they perform there. Without the need to
explicitly specify this knowledge, we could easily learn the resulting probability fields. It
enables crowd simulations to reach a new level of predictive capability that is not possible
with existing solutions.

67

5Applications to Evaluation and
Parameter Estimation

Contents

1 Application to Insect Simulation . 71
1.1 Introduction . 71
1.2 Related Work . 72
1.3 Approach Overview . 75
1.4 Results . 79
1.5 Conclusion . 83

2 Application to Pedestrian Tracking . 85
2.1 Introduction . 85
2.2 Related Work . 86
2.3 Mixture Motion Model . 90
2.4 Implementation and Results . 95
2.5 Limitations, Conclusions, and Future Work 99

In Chapter 3, we introduced a framework for the evaluation of crowd simulation
algorithms and the estimation of their parameters. In that context, we applied it to the
evaluation of algorithms, and also showed how it could help users in achieving certain
simulation goals. In this chapter, we show how this work can be used to approach the
question of the validity domain of each simulator: determining for each application which
simulation algorithm is the most appropriate. Thus, we use our framework as a selector,
first on a per-simulation basis, and second on a per-moment basis.

The first application deals with insect simulation. There, our framework allows to
select the simulation algorithm which best describes a given behavior: that of the swarm-
ing insects in our ground-truth data. The selected simulator (also correctly configured
parameter-wise) is used for the local interactions of our simulated insects.

The second application deals with pedestrian tracking. There, our framework allows
to select the simulation algorithm which best describes a crowd at a given moment: the
instantaneous navigation decisions of pedestrians in data acquired in real time. The
selected simulator (also correctly configured parameter-wise) is used to predict the next
state of the tracked crowd.

69

1. APPLICATION TO INSECT SIMULATION

1 Application to Insect Simulation

Figure 5.1 – Simulation of butterflies moving on a prairie.

1.1 Introduction

This chapter describes a project on which I collaborated with Weizi Li, a PhD student
at the Gamma Group from the University of Carolina at Chapel Hill, NC, USA. It pro-
poses an application of the evaluation and parameter estimation framework presented in
Chapter 3.

The work presented in this chapter is geared towards insect simulation, which in
graphics, with increasingly realistic animation of various life forms, can enhance the
visual realism of many graphical applications from virtual environments, to computer
games, and cinematography. The variety of insect behaviors, arising from the hetero-
geneity in sensing and cognitive abilities, survival strategies, interpretations of environ-
mental factors etc. [CDF+03] makes the simulation of insects a challenging computa-
tional problem. A complete model able to capture the different and complex phenomena
is conceptually difficult and can introduce an near unmanageable amount of parameter
tuning and tweaking. To overcome this difficulty, we propose a general, biologically-
inspired framework to analyze, evaluate, and simulate insect swarms. We also evaluate
simulation results both qualitatively and quantitatively.

Swarming insects often exhibit complex global patterns, yet frequently combines lo-
cal randomness and chaotic individual movements. The motion of insect swarms can
be generally decomposed into different spatial scales [Oku86]. At the microscopic scale,
insects have local interactions among them (e.g. collision avoidance). At some interme-
diate mesoscopic scale, insects move in some preferred direction and form trajectories of
various shapes. At the macroscopic level, more coherently, global structures emerge from
collections of individual movements. Various reasons have been proposed to what drives
the overall direction of an insect swarm, including food seeking and hunting, predator
avoidance and evasion, courtship and mating, and seasonal migration, etc.

Given the complex causalities leading to insect swarming, we propose a multi-scale
approach that is biologically inspired [Sum10] and experimentally validated. Our objec-
tive is to recreate realistic visual simulation of insect swarms by learning from real insect

71

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

motion data. We analyze the insect motion data at micro-, meso- and macroscopic scales
to configure and estimate parameters of various components residing in our simulation
system. More specifically the captured data enables us to (1) automatically select and
configure the most suitable local steering algorithm, (2) generate statistically accurate
waypoints at the mesoscopic level using segmented piecewise-linear trajectories, and (3)
parameterize a global guiding field that captures swarming spatial patterns.

Since insect motion data is not always readily available and sometimes animators
prefer to have direct control over the resulting simulation, our system can further serve
as an assistive animation tool that empowers artists and amateurs. Our system can
interpret sketch-like input and generate similar patterns; or the user can provide “guiding
simulation results” with specifications on motion models and related parameters, our
simulation can then re-target the motion onto different swarming behaviors.

In summary, the main contributions of this work are the following:

� A general, biologically-inspired system is developed to analyze, evaluate and simu-
late insect swarms (Section 1.3).

� Comparative evaluations of various local steering algorithms are performed to se-
lect and configure the best model for insect local collision avoidance (Section 1.3.2).

� A statistical learning and evaluation approach is developed for modeling individual
behaviors within the swarm and preserving spatial structures of the swarm (Section
1.3.2 and 1.3.2).

� The resulting framework can serve as an assistive animation tool for users to ei-
ther turn sketched patterns into animations or utilize existing simulations for re-
targeting purposes (Section 1.4).

1.1.1 Working Arrangements

While Weizi focused on the mesoscopic and macroscopic parts of the system, assembling
the complete system together and generating the results, my primary focus was at the
microscopic level: the adaptation of the evaluation and parameter estimation framework
from Chapter 3 (mainly retaining an advisory role for the rest). As such, the “technical
section” of this chapter also focuses on this same part, only briefly describing the rest of
the approach.

The rest of the chapter is then organized as follows. In Section 1.2, we review existing
work in the field of pedestrian tracking. The approach is described in Section 1.3, and
results are presented in Section 1.4. Finally we conclude in Section 1.5.

1.2 Related Work

Insect swarms can be viewed as multi-agent systems, which have been a flourishing re-
search topic for nearly three decades. Many aspects including local collision avoidance,
global path planning, behavior modeling, group motion and user interaction have had
striking results. A large portion of simulation aspects applicable to insects have been
addressed under the focus of crowd simulation. In this section, we will first discuss

72

1. APPLICATION TO INSECT SIMULATION

techniques that were proposed to generate agents’ local and global behaviors from the
point of view of graphics applications, then proceed to approaches developed from the
perspective of swarm studies in biology, physics and mathematics.

1.2.1 Graphics Point of View

From the graphics point of view, a swarm of insects can be approached with crowd
simulation techniques. At the microscopic level, for local collision avoidance, many algo-
rithms can be used. As already listed in Chapter 2, Section 2, these algorithms can range
from first-order ones such as Boids [Rey87] and Social Forces [HM95], to second-order
ones including velocity obstacles [vdBLM08], future collision-place avoidance [KHBO09],
synthetic vision [OPOD10], etc. The difference with human pedestrian applications how-
ever, is that insect swarms present more readily visible global behaviors. While these
local collision-avoidance algorithms can lead to emergent patterns at the macroscopic
level, they alone may not account for all observed macroscopic swarm behaviors.

These macroscopic aspects could then be taken care of by using macroscopic algo-
rithms (see Chapter 2, Section 3.4) which model crowds using scalable quantities such
as density [Hug03, TCP06, NGCL09]. Additonally, these techniques can be made more
flexible by using potential fields [TCP06] and navigation fields [PvdBC+11] to alter agent
flows. Furthermore, techniques have been devised to edit group motions, which can gen-
erate believable agent formations. Approaches include the work by Kwon and colleagues
[KLLT08] who model group motions as graphs whose vertices represent agents’ positions
at given frames and which can be deformed, split and merged as necessary. Takahashi
and colleagues [TYK+09] model formations using connectivity graphs from which they
can extract Laplacian matrices; by interpolating between matrices (and thus underly-
ing graphs) corresponding to different foramtions, they are thus able to transition from
formation to formation.

Following from these approaches to macroscopic crowd simulation, Wang and col-
leagues [WJDZ14] proposed an insect swarm simulator where agents are advected along
two fields. A three-dimensional velocity noise field, procedurally generated using the
Perlin noise algorithm and further modified to be divergence-free and bound, models the
noisy nature of insects’ individual trajectories. A three-dimensional velocity, minimum-
cost field represents the path (also allowing the swarm to avoid environment obstacles,
splitting itself if necessary) that agents should take in case of a migratory behavior. The
combination of these fields yields coherent swarms which can move around in an envi-
ronment avoiding large obstacles.

1.2.2 Biology Point of View

In addition to the previous multi-agent analogy in graphics, a swarm of insects can be
more generally viewed as a self-organized particle system. As such, swarms are thus one
of many possible applications to research lead in the fields of mathematics and physics, in
addition to obvious interest in the field of biology. From these perspectives and similar to
what can be found in graphics, both individual-based and continuum approaches exist.

Individual-based approaches include self-propelled particles (SPP) [VCBJ+95] and
their variants [CkJ+02, DCBC06], force-based techniques [FGLO99] and Brownian par-
ticles [SESG08]. Again, parallels can be made between these techniques and those found

73

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

(a)

(b) (c)

Figure 5.2 – Insect simulator [WJDZ14]. (a) Environment with obstacles. The signed
distance to obstacles (left) is used to compute the minimum-cost field (center), further
combined with the noise field (right). (b) A swarm which was previously split to avoid
obstacles (left) merges back into one (right). (c) A synthesized swarm of moths near a
lamp.

in graphics. Self-propelled particles for instance, are defined to have a velocity which
has a fixed norm and a direction that is the mean direction of the velocities of neighbor
particles to which some noise is added, reminiscent of the “alignment” rule from the Boids
algorithm ([Rey87], Chapter 2, Section 2.1). Even with simple rules, these individual-
based approaches have been experimentally confirmed to model specific aspects of insect
behavior. For instance, Buhl et al. show that self-propelled aprticles can replicate tran-
sitions from individual to collective behaviors in locusts [BSC+06].

Much work has also been carried out from a continuum point of view. As continuum
techniques found in graphics derive from this work, much of what can be said for them
also holds true here, with the exception that many more aspects have been studied in
biology/physics/mathematics. For instance, Mogilner and Edelstein-Keshet [MEK99]
have studied how modifying advection-diffusion equations can result in swarms with
sharp edges and a constant internal density. Similarly, Topaz and colleagues [TBL06]
investigate the formation of population “clumps”, sharpness of their edges, evolution of
the internal density under increasing population, etc.

1.2.3 Discussion

In addition to these efforts, other works have then focused on many different aspects of
insect simulation. For instance, while many of the studied approaches are deterministic,
studies also suggest a need for randomness. Yates and colleagues [YEE+09] show that in
groups of locusts with low alignment, more random individual behaviors allow the group
“to find (and remain in) a highly aligned state more easily”. Additionally, Brecht et al.
[BKBS13] show how randomly selecting only a subset of neighbors in individual-based
algorithms can be sufficient, as opposed to every agent interacting with every other agent.

74

1. APPLICATION TO INSECT SIMULATION

Figure 5.3 – The schematic view of our simulation pipeline.

Other investigated aspects include mating strategies [BMD+13] or phase transitions and
kinematic fluctuations [VCBJ+95, ACC+13] for example.

On a general note, while many aspects of animal aggregation have been studied, these
works very often focus on very specific aspects, and the effectiveness of applying these
approaches on graphical applications is unclear and comparative evaluations of these ap-
proaches seem scarce. In addition, noted by Butail et al. [BMD+13], few models are
validated against reference data giving that animals motion tracking task is non-trivial.
In comparison to previous work, our system takes a data-driven approach (given the re-
cent availability of insect data), independent of insect species, automatically conducting
model evaluation and configuration, and generates realistic insect swarming behaviors
on multiple scales.

1.3 Approach Overview

In this section, we give an overview of our framework. As part of the off-line process, our
pipeline processes the insect motion data into a collection of linear trajectory segments
and a density field. We then use this information to (1) perform automatic selection
of local steering algorithms, (2) construct probability distribution functions used in the
generation of intermediate waypoints for insect travel, and (3) capture the spatial struc-
ture of swarms. We describe how we combine these components into the final simulation
system. The process is illustrated in Figure 5.3.

1.3.1 Pre-Processing Stage: Data

Insects’ trajectories have been observed to be zig-zags [Oku86]. Inspired by this observa-
tion, we divide the trajectories into successive linear segments using the piecewise linear
regression [NWK90] with a goodness of fit R2 = 0.9. These segments will serve to set up
the mesoscopic goal-selecting algorithm.

Formally, the data [KO13, PKO14] z can be defined as containing the agents’ position

75

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

information at any timestep k. Thus, assuming m timesteps are recorded in the data:

z =
m
⋃

k=1

zk. (5.1)

For a given trajectory segment s of the ith agent, the data zsi is:

zsi =
⋃

k∈si

zk, (5.2)

where si = [s1i , ..., s
n
i] groups all timesteps in the linear section, starting with s1i ≥ 1 and

ending with sni ≤ m.

Piecewise-linear segments and turning angles (between consecutive segments) are
automatically extracted to establish corresponding segment length and turning angle
distributions. For the experiments, we used approximately one million video frames,
containing more than 500 insects recorded at 100 FPS. Given about 100,000 extracted
segments, the average segment length is 14.57 mm (median = 7.22, standard deviation
= 19.01) and the average turning angles are around 2.34 degrees (median = 2.73, stan-
dard deviation = 40.02). We also discretized the simulation space into a number of cells
and calculated the visiting frequency of all insects within each cell to construct a static
density distribution.

While this work is inspired by zig-zag traveling fashion of common insects, as a merit
of the piecewise linear regression, our approach does not require “zig-zag" trajectories.
The data processing steps and simulation methods are general, independent of insect
species, and applicable to smooth insect trajectories as well.

1.3.2 Runtime Stage: Three Levels of Simulation

Our system is composed of three levels:

� microscopic level: a local collision avoidance algorithm is selected and configured
to compute each insect’s successive positions,

� mesoscopic level: waypoints guiding the collision avoidance algorithm are con-
structed by sampling from the learned segment length and turning angle distri-
butions,

� macroscopic level: the Metropolis-Hastings criterion is used to accept or reject (and
thus re-sample) new mesoscopic waypoints.

We develop each of these levels in the next paragraphs, focusing on the application of
the framework from Chapter 3 (microscopic level), and only briefly describing the rest,
which can be found in [LWPCL15].

76

1. APPLICATION TO INSECT SIMULATION

Microscopic Level At the lowest level of our simulation pipeline, lies the collision
avoidance algorithm which ensures no insects would collide into each other. A collision
avoidance algorithm can be defined as a function f which, given the current timestep k,
the current positions of all agents xk, the agents’ current velocities vk as well as their
goals g, computes the agents’ positions and velocities at the next timestep:

[

xk+1

vk+1

]

= f (xk,vk,g) . (5.3)

At this level, we use the framework described in Chapter 3 to automatically configure
candidate local steering algorithms. This configuration aims to find the best performance
for each steering algorithm to best approximate the actual trajectories conatined in the
ground-truth data. After finding the optimal parameters for each steering algorithm, we
can perform comparative evaluations and determine which model is the most suitable to
simulate insect behaviors at the microscopic level. The major differences with Chapter 3
is that (1) the framework has been adapted to work with 3D data and collision-avoidance
algorithms, and (2) the comparisons are performed on (a large collection of) linear seg-
ments of insects’s trajectories rather than the complete trajectories. We here recall the
framework’s principle in the current context and present some related results.

A collision-avoidance algorithm (as defined in Equation 5.3) usually has several tun-
able parameters (e.g. agents’ size, agents’ preferred velocity...) which can influence the
simulation results. With all agents’ parameters p, such an algorithm f (Equation 5.3)
can be extended to the parameterized version as:

[

xk+1

vk+1

]

= f (xk,vk,g,p) . (5.4)

Considering a parameterized collision avoidance algorithm, a simulation on a linear sec-
tion zs of the data at the mesoscopic level can be defined as follows:

f (zs,p) =
⋃

k∈s

f (xk,vk,g,p) , (5.5)

initialized with xsstart = zsstart , vsstart = speed (zsstart) and g = zsend
.

Now, given a distance metric dist () between the data zs and the simulation f (zs,p),
we seek the parameter set popt that minimizes this distance:

popt,f = argmin
p

dist (f (zs,p) , zs) . (5.6)

Once this parameter set is found, we can rank collision avoidance algorithms. For two
such algorithms f1 and f2, we can say that f1 is better than f2 if and only if:

dist(f1(zs,p
opt,f1), zs) < dist(f2(zs,p

opt,f2), zs). (5.7)

To perform what is described in Equations 5.6, 5.7, we rely on the framework’s combi-
natorial algorithms including Greedy, Genetic, Simulated Annealing, and hybrid versions
of these algorithms to handle high-dimensional tasks such as the multi-agent simulation.

77

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

Further, to evaluate insect movements and derive optimal parameters of a model that
can provide the best approximation of a simulation to the reference data, we use the mi-
croscopic metric Progressive Difference. This metric measures the difference between
the simulated and the reference trajectory between the starting and ending points of a
segment while resetting the simulation to configurations of the reference data at each
time step. The reason for us to pick this metric is that the data contains many frames
representing long and split trajectories (not losing track of insects during the motion
capture is very challenging). Thus, to learn the collision-avoidance behavior of the in-
sects, it makes sense to focus on decisions being made at any given moment with limited
influence from the past states of the swarm.

The specific steering algorithms we are evaluating are the Boids model [Rey87], So-
cial Force model [HM95] and ORCA model [vdBSGM11]. In particular, for the Boids
model, we only examine its collision-avoidance mechanism without other flocking rules.
Since the distribution of evaluation scores appears to be non-Gaussian, we choose non-
parametric within-subject tests to analyze differences between these models. The eval-
uation results shown in Figure 5.4 depict the median of scores across different steering
algorithms before and after various optimization techniques have been applied. As all
metrics are measuring the distance between simulated and reference trajectories, smaller
scores indicate better algorithms. Note that each time, these scores are normalized by
the worst algorithm’s score (i.e. the optimization techniques did not degrade Boids and
Social Force scores, as one could at first think by looking at the figure).

Using default parameters, a Friedman test revealed a significant effect of different
steering algorithms on their scores (p < 0.01). A post-hoc test of pairwise comparisons
using Wilcoxon signed rank tests with Bonferroni correction showed significant differ-
ences between all paired groups (p < 0.01). As results, Boids performed better than
Social Force and the latter performed better than ORCA.

However, after applying the optimization techniques, across all evaluations, the Fried-
man test revealed a significance effect on different models and the post-hoc tests showed
no significant difference between Boids and Social Force (p > 0.01), but significant differ-
ence between Boids and ORCA, and Social Force and ORCA (p < 0.01). These results
indicate that, after optimization, the Boids and Social Force algorithms performed rela-
tively similarly, while ORCA outperforms both.

Further, we measure the relationship between the number of timesteps that a segment
contains and its corresponding evaluation score, by performing correlation and causality
tests. To be more specific, pearman’s rank test shows that these two variables are very
weakly correlated (Spearman’s ρ ≈ 0.27, p < 0.01) and the constructed linear models
show no significant effect of one variable on predicting the other (Intercept p > 0.01
and Slope p > 0.01). This indicates that the two variables are in general independent
of each other. Thus we can use a specific steering model consistently rather than a
mixture of steering algorithms switched at certain timesteps. The latter option may
provide marginal improvement but at the cost of efficiency. Based on these results, we
use ORCA for the local collision avoidance task with its statistically optimal parameters.

Mesoscopic Level Once we have chosen the best local steering algorithm, in order to
actually generate trajectories for each insect agent, we need a goal destination. We define
this destination as a series of waypoints. To achieve that, the segment length and turning

78

1. APPLICATION TO INSECT SIMULATION

Figure 5.4 – Evaluation results of three steering algorithms under the Progressive Differ-
ence metric with various optimization techniques.

angle distributions constructed at the data pre-processing phase are sampled, and used
to calculate a new waypoint every time an agent reaches its current one. Assuming at
timestep k, an agent i, its position xi,k, its previous (κ frames ago) goal gi,k−κ, its current
goal gi,k, and new (to be computed goal) gi,k+1. If that agent reaches its current goal at
frame k, i.e. ‖ gi,k − xi,k ‖≤ ǫ, we have:

gi,k+1 = gi,k + li,kTi,k
gi,k − gi,k−κ

‖ gi,k − gi,k−κ ‖
, (5.8)

where li,k is the sampled length, and Ti,k is a rotation matrix from the sampled turning
angles. This statistical approach aims to replicate the noisy and chaotic aspects of insect
local behaviors.

Macroscopic Level The sole computation of waypoints at the mesoscopic level would
result in the agents’ dissemination over the whole simulation space. To deal with this,
we need a method at the macroscopic level to preserve the insects’ spatial pattern and
density distribution which are essential aspects of insect collective behaviors [CDF+03].
Thus, we use the Metropolis-Hastings criterion in order to either reject or accept newly
computed waypoints, based on values stored in a three-dimensional grid, which can be
either learned from the ground-truth data or input manually.

1.4 Results

In this section, we show our simulation results illustrated in several examples and provide
both qualitative and quantitative evaluations.

1.4.1 Simulation

Our first example (Figure 5.5) shows the simulation of 100 insects moving in a con-
fined space. This setting aims at mimicking the capturing environment of the collected
data [PKO14]. In this example, we compare simulations of random sampling approach,
meso-scale sampling approach, our combined meso- and macro-scales sampling approach,
with the reference data. Using random sampling method, agents’ trajectories tend to be

79

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

Figure 5.5 – Comparison of simulations using different sampling techniques with the
reference data. Accumulated density distributions during the simulations are also shown.

Figure 5.6 – (Left) Simulation of 200 midges swarming around a lantern. (Right) Simu-
lation of 50 butterflies moving on a prairie.

very smooth; after applying meso-scale sampling method, agents start to exhibit swerv-
ing and zig-zaging behaviors. However, since there exists no macroscopic-level guidance
for governing the spatial pattern, agents would eventually spread out the simulation
space. By adding the macroscopic level method, our technique finally closely approx-
imates the reference data, preserving the swarming spatial pattern. The accumulative
density information during entire simulations is also shown in Figure 5.5.

Our framework can also be adopted as an assistive animation tool to interpret sketch-
like input and generate corresponding simulations. By combining features learned from
the captured data (e.g. segment length and turning angle distributions) and user specifi-
cations including sketched trajectory and other settings (e.g. density distribution, steer-
ing models and parameters). Our framework is capable of creating insect simulations of
the same or variable sizes – even with different species of insects.

To better demonstrate, we embedded the simulation in virtual environments1. The
first example (Figure 5.6, left) shows an interpretation of a circle sketch (Figure 5.7,
left): we obtain sampled trajectories – within the density field derived from the Gaussian
distribution along the sketch – for multiple agents. In this particular scene, we simulate
200 insects orbiting around a lantern. Similarly, taking the sketch from the right side of
Figure 5.7 as input, we generated a simulation with 50 butterflies moving on a prairie
(Figure 5.6, right). Our technique can also be easily integrated with existing global
path planning algorithms. An example shown in Figure 5.8 demonstrates our framework
incorporated with a navigation algorithm similar to the one presented in [PvdBC+11].

1The virtual environments’ creation and design are inspired by Andrew Price.

80

1. APPLICATION TO INSECT SIMULATION

Figure 5.7 – Example sketches (3D) with density fields derived from the Gaussian distri-
bution.

Figure 5.8 – A swarm of insects is traveling to successive light sources while avoiding
obstacles.

1.4.2 Evaluation

To evaluate our technique, we conform the size of our simulation domain to the same scale
as the data capture environment, and adopt both qualitative and quantitative measure-
ments.

To start with, one of the most prominent features of swarming phenomena is the spa-
tial pattern and corresponding density information. Comparison results can be seen in
Figure 5.5. Between the random waypoint sampling and our mesoscopic waypoint sam-
pling approaches, the latter tends to have small clusters (reflected on the small intensity
sub-figures in the bottom-right corners) due to the fact that most processed segments
have relatively small lengths compared to the capturing environment. Thus by sampling
the segment length distribution, agents travel frequently in short distances. After com-
bining with the macroscopic level sampling, the density distribution of our simulation
closely approximates the data and demonstrates the spherical pattern as is the case in
the data. In this case, the density decreases when the distance to the swarm’s centroid in-
creases resulting in an aggregation gclose to the centroid. This finding is consistent with
previous literature in biology and also dispels the assumption that insects can be sim-
ulated in a purely random fashion which would result in roughly uniform distributions
within any predefined simulation space.

While visual similarity is an intuitive way to evaluate the results, for large dynamic
systems, we also need quantitative measurements. In particular, as we are using the
Metropolis-Hastings criterion to govern the mesoscopic-level waypoint generation based
on discrete density distributions constructed from the data, different discretizing scales
of the simulation space could alter simulation qualities. In Figure 5.9, we show by al-
tering cell numbers, the change of average distance of all agents to the swarm centroid
during a period of time. Notably, adding mesoscopic level computation increases the

81

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

Figure 5.9 – Agents’ average distances of different sampling techniques on various dis-
cretizing scales comparing to the motion data.

Figure 5.10 – Polarization scores of different sampling techniques on various discretizing
scales comparing to the motion data.

average distance and the reason is probably that by traveling short distances and with
random assigned initial locations, agents tend to stay close to their initial positions while
under random assigned waypoints agents travel across the whole space more frequently
resulting in shorter distances to the centroid during many timesteps.

Another notable feature of biological systems is the order in collective behaviors.
While swarms of flies are rarely similar to other animal species (e.g. fish) that would
polarize their state and make the group behave as a whole, they have been reported do
show some features as collective behaviors [ACC+13]. To measure such an order, we
use the polarization factor which is a common metric in studying the collective animal
behavior [VCBJ+95]. The polarization Φ of a swarm is calculated as follows:

Φ = ‖
1

N

N
∑

i=1

−→vi
‖vi‖
‖ (5.9)

where −→vi indicates the velocity of ith agent and N is the total number of agents. When
Φ is zero, it means all individual velocities are canceling each other in terms of the
direction. When Φ is close to one, it means velocities of all agents have nearly parallel
directions. The values of polarization Φ at different discretizing scales under various
sampling methods are shown in Figure 5.10. In general, by combining more waypoints
sampling techniques we get Φ closer to the reference data.

It is worth noting that for both the average distance and polarization factor analy-
ses, when the number of cells gets either too small or too large, the Metropolis-Hasting
criterion appears to be less effective. This is due to the scale of the discretization which
affects the visiting frequency of each cell and further influences the spread of the under-
lying density distribution. At the extremes, either the generated waypoints would be far

82

1. APPLICATION TO INSECT SIMULATION

away from each other (effectively skipping cells), or many successive waypoints would be
in the same cells (and not necessarily moving to neighbors). Either way, this would result
in some cells being under-visited.

In terms of performance, the pre-processing time and memory complexities are O (n)
where n is the number of frames and the sampling methods take O (1) time. On a typical
laptop (Intel i5-3230@2.60GHz, 6GB RAM, Windows 8.1 64 bits), the simulation of 100
agents, using ORCA, runs at 4,900 FPS.

1.5 Conclusion

In this chapter, we show how our work on evaluation and parameter estimation can be
applied in the context of insect simulation. This resulted in a multi-scale, data-driven
system for the visual simulation of insect swarms. We simulate each insect as an indi-
vidual agent; at each stage of the simulation, we select the appropriate techniques or
parameters based on the analysis of observed/captured insect motion data. Like many
agent-based methods, our method consists of a local avoidance module and a waypoint
synthesis module to capture local interaction among insects and noisy individual trajec-
tories that result in the coherent macroscopic motion patterns of a swarm.

We show how to automatically tune each module of our method based on observed
insect motion data. In general, it is very difficult for an animator to control a swarm mo-
tion, as it is nearly impossible to specify motion trajectories for each individual insect,
simulation is the most efficient way to create insect swarms. However, the parameter
space is large and a desired result can be achieved only after a very time-consuming,
manual trial-and-error process. Our system avoids this tedious tuning task and repro-
duces the visual animation of insect swarming motion with ease. Our method is also
user-friendly, as it enables direct manipulation of large-scale insect swarming motion by
allowing the animator to sketch out a desirable path and incorporate this user input into
density gradient maps without changing other modules. In addition, as our approach
runs at very high interactive rates, animators can apply iterative refinement on simula-
tions until the visual quality of the animation results is satisfactory.

We tested, evaluated, and demonstrated our approach on several scenarios both qual-
itatively through visual inspection and quantitatively using scoring metrics. In partic-
ular, our quantitative comparisons illustrate the ability of our simulator to reproduce
statistically significant measurements.

The main future direction for this work is the exploration of data from other in-
sect species. Our current implementation assumes that local interactions among insects
are largely driven by local collision avoidance and that each behaves according to the
same statistical laws for simplicity and efficiency in simulation, as commonly done by
many multi-agent simulations. In reality, there may be multiple types of insects inter-
acting with each other and their swarming behaviors can vary. Clustering trajectories
before processing them may introduce a new ability to consider mixed data from mul-
tiple species or more complex insect behaviors. Or, one can imagine different factors to
consider and evaluate them for different types of insects (e.g. crawling vs. flying).

While we consider 3D motion data as a more general case for testing our algorithm,
our method is perfectly able to handle 2D insect motion data. Adapting our data pro-

83

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

cessing pipeline to such a situation is straightforward. However, due to the lack of 2D
insect motion data, we have not tested our method on insects moving on a 2D plane
(crawling). In addition, we consider a static density field to guide the global, aggregate
insect motion using the Metropolis-Hastings criterion. It would be interesting to con-
sider dynamic fields and to automatically adapt these fields to significant changes in the
surrounding environment. Finally, the promising results of this work suggest the possi-
bility of developing more novel tools for animators to guide simulated swarm motion for
artistic control.

84

2. APPLICATION TO PEDESTRIAN TRACKING

2 Application to Pedestrian Tracking

Figure 5.11 – Our mixture motion model can accurately compute the trajectories in real
time. We highlight different motion models (Boids, Social-Forces, or reciprocal velocity
obstacles) used for the same pedestrian (marked in red) over different frames. We believe
that it is not possible to model the trajectory of all pedestrians based on a single, uniform
model. Instead, we adaptively choose the best-fit model for every pedestrian in the scene
that can be adapted to the environment or the crowd conditions.

2.1 Introduction

This chapter describes a project on which I collaborated with Aniket Bera, a PhD stu-
dent at the Gamma Group from the University of Carolina at Chapel Hill, NC, USA.
It proposes another application to the evaluation and parameter estimation framework
presented in Chapter 3.

The work presented in this chapter is geared towards pedestrian and crowd traffic
management, which compared with car or vehicular traffic, does not yet benefit from a
large set of technologies to perform traffic forecast, modeling, surveillance, disaster pre-
vention, etc. Typically, a pedestrian traffic management system is made of three compo-
nents: a tracker to estimate the current traffic or movement conditions, a simulator to
predict short-term traffic evolutions, and active systems to adapt to the traffic forecast
(e.g. traffic signs, automatic gateways, etc.). Some examples of recent computer assisted
pedestrian traffic systems are described in [SF15, HHD14]. One of the major problems
is the tracking of pedestrian and crowd motions and trajectories in indoor or outdoor
scenes. This is a key problem for estimating traffic conditions, modeling the pedestrian
flow as well as the design of architectural and urban structures (sidewalks, crossings...)
[SBR14, ZMMS15]. Despite many recent advances in image processing, traffic manage-
ment and computer vision, it is still difficult to accurately track pedestrians in real-world
scenarios, especially as the crowd density increases [ABV14, BM09, SBR14, ZMMS15].
There are many challenges that arise, including intra-pedestrian occlusions (pedestrians
blocking one another) that vary between frames, changes in lighting and pedestrian ap-
pearance (e.g. shadows or partial visibility), and the difficulty of modeling the pedestrian
behavior and intent of each pedestrian. In this context, our objective is to improve the
accuracy of tracking algorithms that can be widely used for traffic management.

85

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

In the context of pedestrian and crowd traffic management, online probabilistic track-
ers (Section 2.2.1) better answer the needs of crowd management, since they perform
real-time tracking that captures complex pedestrian dynamics in heterogeneous crowds
that arise frequently in traffic management systems. The accuracy of this category of
trackers is improved by using realistic crowd motion models for computing motion priors
(Section 2.2.2). Generally, a single, homogeneous motion model is used for the compu-
tation of this motion prior. As already mentioned in Chapters 2 and 3, every motion
model relies upon one or more assumptions and has a limited validity range. It is far eas-
ier to describe a crowd’s behavior at all times and under all circumstances with several,
well tuned algorithms than with a single, generally-configured one. The configuration
of these simulators is done through their underlying parameters, which may correspond
to the size, speed, anticipation period, or local navigation constraints of each pedes-
trian. As the behavior of each pedestrian responds to changes in a dynamic environment
(due to other pedestrians or obstacles such as vehicles), these model parameters should
be recomputed or updated to improve the resulting motion model’s accuracy. Overall,
we need efficient techniques that can take into account heterogeneous behaviors based on
constantly changing models and underlying parameters. We refer to this set of constantly
tuned motion models as Mixture of Motion Models.

2.1.1 Working Arrangements

While Aniket focused on the tracker itself, interfacing it with the Mixture of Motion
Models, and the generation of results with the complete system, I focused on the Mixture
of Motion Models itself. As such, the “technical section” of this chapter also focuses on
this same part, only briefly describing the rest of the approach.

The rest of the chapter is then organized as follows. In Section 2.2, we review existing
work in the field of pedestrian tracking. The approach is described in Section 2.3, and
results are presented in Section 2.4. Finally we conclude in Section 2.5.

2.2 Related Work

The problem of tracking objects and pedestrians has been studied in computer vision, im-
age processing and broader traffic management, resulting in a variety of approaches. The
following paragraphs aim to give a general idea of recent advances in multi-object/pedestrian
tracking and to introduce approaches on which our work relies. For a more complete in-
troduction to object detection (and tracking), we direct the reader to [YJS06] for a survey
and to [EG09, WLY13] for benchmarks and comparisons.

2.2.1 General Object Tracking

Before even a single object can be tracked, one needs to be able to detect it in im-
ages/video sequences. A variety of approaches exist to solve this task, including point
detectors which look for objects’ points which have special properties, background sub-
traction where a representation of the scene is learned and objects are thus any devia-
tions that appear, image segmentation where related regions are detected, and supervised

86

2. APPLICATION TO PEDESTRIAN TRACKING

learning where a representation of the object is learned and subsequently detected in new
frames.

These object detection techniques can then be leveraged to track objects as follows.

Appearance-Based Tracking Appearance-based algorithms, also known as “tracking-
by-detection” or “tracking by repeated recognition”, seek to track objects by recognizing
these same objects in consecutive frames. In one such recent approach, Grabner and
colleagues[GGB06] proposed a semi-supervised learning algorithm which assumes the
tracked object has been detected/labeled in the first frame. They use Haar-like features
to classify regions of frames as object or non-object (binary classifiers). They then use
adaptive boosting (or AdaBoost) to combine these weak classifiers (typically classifiers
which only need to perform a little better than random, i.e. 50% in the present case of
binary classifiers) into a strong classifier being able to reliably detect the tracked object.
These classifiers are further continuously updated at each frame: assuming the object
has been detected in a frame, a sampling module will generate samples in the neighbor-
ing area and a labeler will assign labels to these samples. For instance, a sample on the
object would be used as a positive sample, further-away samples with significant overlap
with the object would be ignored, and still further samples with little to no overlap with
the object would be used as negative samples. Finally, these labeled samples are used to
update the classifiers.

In this and related approaches, the most common issue that emerges is the drift which
results from sub-optimal update samples, where positive samples may not fully contain
the target object for instance (online update noise). Subsequent works have then sought
to solve this issue. One such approach is to use Multi-Instance Learning (MIL) where,
instead of using labeled samples, the algorithm uses labeled bags of samples [BYB11,
SHN12]. Bags are labeled positive if they contain at least one sample which would have
been labeled positive, and negative otherwise. This way, the ambiguity is passed from the
labeling module to the learning module, which has been shown to improve the tracking
accuracy.

With the progress achieved with these approaches (and others further improving ro-
bustness to online update noise [HST11, ZZY12]), the tracking of objects has become
very robust, even in real time. Despite these advances (applicable to multi-target track-
ing), pedestrian tracking in crowded environments remains challenging as the image-size
of targets (pedestrians) can be very low making it difficult to reliably extract features
from targets (and thus distinguish between them), which additionally further exacer-
bates problems such as object occlusion.

Data-Association In order to cope with these more challenging types of data, where
tracking errors are common (e.g. inter-object occlusions often lead to mix-ups between
target objects, i.e. ID switches), various data association techniques have been proposed
(also known as “detect-then-track”). The purpose of these techniques is to combine target
object detection responses into tracks, while correcting possible errors.

One possible approach to this association problem is to use flow networks [ZLN08,
BC13]. Li and colleagues [ZLN08] build a flow network where, for each target object
detection response i, they create two nodes ui and vi and arcs (ui,vi), (s,ui), and (vi,t),
where s and t are the source and sink of the flow network. Additonally, a detected

87

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

possible transition between two responses i and j (corresponding to a possible object
track) is modeled as a corresponding (vi,uj) arc. Then, by assigning cost and flow values
to each arc, it is possible to run a min-cost flow algorithm, thereby computing the flows
of the network corresponding to the tracked objects’ trajectories.

Other approaches to the association problem include using the Hungarian algorithm
[PSH+06], as well as linear programming [JFL07, BFF09]. While data-association meth-
ods much improve multi-object tracking, they are not suited for real-time tracking ap-
plications as they rely on a global optimization process which requires the data to have
already been fully acquired.

Particle Filters Particle filters are a technique which is commonly used for tasks in-
volving (noisy) measurements or observations of an otherwise unknown quantity (hidden
markov model). Given such a quantity x and the corresponding observation y, at the cur-
rent timestep k, by using Bayes’ rule, one can express the probability of the quantity xk

conditioned by all the previous observations y1:k:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
. (5.10)

Through marginalization, we have:

p(yk|y1:k−1) =

∫

p(yk|xk)p(xk|y1:k−1)dxk, (5.11)

which is constant, resulting in this denominator being treated as a normalization con-
stant (since p(xk|y1:k) is a probability density function and thus must integrate to 1).
Additionally:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (5.12)

As a result we can write the optimal Bayesian filter:

p(xk|y1:k) = αp(yk|xk)

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (5.13)

Then, a particle filter is this same equation with a Monte-Carlo approximation of
the integral which does not have a closed-form solution. Assuming a set of m particles
{x(i)}i ∈ {1..m} and corresponding weights {π(i)}i ∈ {1..m}, the particle filter is written:

p(xk|y1:k) ≈ αp(yk|xk)
∑

i∈{1..m}

π
(i)
k−1p(xk|x

(i)
k−1). (5.14)

This technique is well suited for (and commonly used in) tracking [KBD04, OTDF+04,
BRL+09, HF09, BCM12, LCLM14, BM14], as in this last formulation, the probability
p(xk|y1:k) of the object being at xk given all past observations y1:k is computed with: a
normalization constant α, the probability p(yk|xk) of observing the object at xk (con-

fidence of the object detector) and the transition probability p(xk|x
(i)
k−1) (based on an

internal model of the obejct’s motion) of particle i (which is a possible state of the ob-

ject, with probability/weight π
(i)
k−1). This technique makes choices on current frames

given only the previous ones, thus being applicable to real-time tracking.

88

2. APPLICATION TO PEDESTRIAN TRACKING

2.2.2 Crowd Motion Priors

In addition to the previously discussed multi-object (general) tracking techniques, some
approaches have been designed specifically to track crowds by using motion priors in
order to have an idea where to look for the pedestrians in the following frames.

For instance, Ali and Shah [AS08] use a cellular automaton, where the image space
is discretized into cells. Each individual is represented by a template pixels around a
centroid particle. When tracking such an individual, the algorithm computes the prob-
abilities of this centroid particle to transition to neighboring cells. These probabilities
are based on the match of the template at the new cell, as well as three floor fields.
These floor fields here capture the motion prior; the Static Floor Field represents con-
stant properties of the scene such as preferred paths or exits, the Boundary Flow Field
models the presence of obstacles, and the Dynamical Floor Field represents the current
state of the crowd’s motion. In this manner, the motion prior is tightly integrated in
the tracking process. Similarly, Rodriguez and colleagues [RS11] track pedestrians by
matching video features to previously learned motion patterns from a database, and use
these motion priors in a Kalman Filter-based tracker. Kratz and Nishino [KN12] use mo-
tion priors in the form of a set of hidden Markov models trained on regions of the video
(cuboids) which contain direction statistics of pedestrians at those locations. Other ap-
proaches infer individual pedestrians’ motions from priors in theform of motion patterns
[YN12, ZGM12].

Other approaches compute these motion priors from crowd simulation algorithms.
Antonini and colleagues [AMBT06] estimate for each pedestrian the cost of doing spe-
cific navigation choices. They discretize a pedestrian’s velocity space, and compute for
each cell the cost or“utility” of that cell based on a number of factors, such as other
pedestrians’ presence in the direction defined by the cell, the pedestrian’s destination,
the walking directions of other pedestrians, and the cell’s implied velocity adaptation.
The resulting motion prior is then incorporated into a Bayesian filter. Pellegrini et al.
[PESVG09] compute a confidence for patches of pixels based on a normalized cross cor-
relation similarity metric and the predicted position of the pedestrians computed with
a simulation algorithm (already mentioned in Chapter 2, Section 2.2.1), and Yamaguchi
and colleagues propose a similar approach based on their energy-based simulation algo-
rithm [YBOB11].

Finally, it should be noted that the afore-mentioned particle filters include a transi-

tion probability term p(xk|x
(i)
k−1), meaning that they wourld greatly benefit from more

acurate motion priors. Thus, some works [JB12, LCLM14, BM14] have integrated par-
ticle filter tracking with a crowd simulation algorithm (introduced in [vdBLM08], see
Chapter 2, Section 2.2.2).

2.2.3 Summary

Despite the recent progress on appearance-based algorithms, they still struggle on crowded
scenes. Data-association algorithms are able to solve some these issues but they are ill-
suited to real-time applications as they often require all of the video data to be available
for global optimization. Particle filters on the other hand, make decisions on only past
frames of the video data, and have been successfully employed in rela-time applications.
Tracking techniques relying on motion priors also allow to improve tracking results by

89

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

Figure 5.12 – Overview of our real time tracking algorithm. The symbols used in this
figure are explained in Section 2.3.1. We use the trajectory computed over prior k frames,
expressed as a succession of states, to compute the new motion model; we use our mixture
motion model to compute the next states using a particle filter.

approximating the underlying behaviors of the tracked pedestrians. Finally, crowd sim-
ulation algorithms have successfully been coupled with tracking algortihms as motion
priors, and in particluar, with particle filters. However, as crowd simulation algorithms
have their strengths and weaknesses in simulating various types of crowds and in various
circumstances, by matching them closer to the observed trajectories, one should be able
to further improve tracking results.

2.3 Mixture Motion Model

In this section, we introduce the notion of a parameterized motion model. We then
describe the different parameterized motion models that form the basis of the mixture
motion model. Finally, we describe the mixture motion model itself.

2.3.1 Overview and Notations

We present a method that uses particle filters to perform real time pedestrian tracking
in moderately crowded scenes. Our approach can be viewed as a feedback pipeline (Fig-
ure 5.12), where we use (1) the most recent estimated agent states to (2) compute the
best-fit motion model for each pedestrian, which is then used as motion prior for (3) a
particle-filter based tracker:
Data Representation Our algorithm keeps track of the state (i.e. position and veloc-
ity) of each pedestrian for the last k timesteps or frames. These are referred to as the
k-states of each pedestrian. These k-states are initialized by pre-computing the states
from the first k timesteps. The k-states are updated at each timestep by removing the
agents’ state from the oldest frame and adding the latest tracker-estimated state.
The mixture motion model is a combination of several independent motion models.
This mixture motion model is used to compute the best motion model for the agents
during each frame. First, based on an optimization algorithm, we “configure” the motion

90

2. APPLICATION TO PEDESTRIAN TRACKING

models to “best” match the recent k-states data and select the best model based on a
specific metric. Second, we use the “best configured” motion model to make a prediction
on the agents’ next state.
The tracker is a particle-filter based tracker that uses the motion prior, obtained from
the Mixture of Motion Models, to estimate the agents’ next state. This tracker further
uses a confidence estimation stage to dynamically compute the number of particles that
balance the trade-offs between the computation cost and accuracy.

We use the following notations in the remainder of the text:

� x represents the “real” state (position and velocity) of an arbitrary pedestrian,

� y represents an observation of the “real” state (position and velocity) of an arbitrary
pedestrian,

� m represents the “best configured” motion model from the Mixture of Motion Mod-
els {f1, f2, ...},

� bold fonts are used to represent values for all the pedestrians in the crowd; for
example y represents the states (positions and velocities) of all pedestrians as com-
puted by the tracker,

� subscripts are used to indicate time; for example mt represents the “best configured”
motion model at timestep t, and xt−k:t represents all states of all agents for all
successive timesteps between t− k and t, as computed by the tracker.

The “best configured” motion model can then be used as follows: xt+1 = mt(xt) or
xt+1 = mt(xt) to compute the motion of one arbitrary pedestrian or all pedestrians,
respectively.

2.3.2 Particle Filter for Tracking

Though any online tracker that requires a motion prior system can be used, we use
particle filters as the underlying tracker algorithm. As already defined in Section 2.2.1,
particle filtering is an approach that solves Markovian estimation problems. We recall
the expression of a particle filter for an arbitrary pedestrian:

p(xt|yt−k:t) ≈ αp(yt|xt)
n

∑

i=1

π
(i)
t−1p(xt|x

(i)
t−1). (5.15)

In our formulation, we compute the dynamic transition p(xt|x
(i)
t−1) = N (mt(x

(i)
t−1),Γ)

thanks to the “best configured” motion model mt at timestep t (N here denotes the
bidimensional Gaussian probability distribution, and Γ is a diagonal covariance matrix
of noise).

The particle filter which we use further adapts the number of particles for each agent
in order to make a compromise between accuracy and computation cost, more can be
found on this topic in [BM14].

91

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

2.3.3 Parameterized Motion Model

A motion model is defined as an algorithm f , which from a collection of agent states
xt, derives new states xt+1 for these agents, representing their motion over a timestep
towards the agents’ immediate goals g:

xt+1 = f(xt,g). (5.16)

Motion algorithms usually have several parameters that can be tuned in order to
change the agents’ behaviors. We assume that each parameter can have a different value
for each pedestrian. By changing the value of these parameters, we get some variation in
the resulting trajectory prediction algorithm. We use p to denote all the parameters of
all the pedestrians. Typically, for a crowd of 50 pedestrians, the dimension of p could be
anywhere in the range of 150-300 depending on the motion model. In our formulation,
we denote the resulting parameterized motion model as:

xt+1 = f(xt,g,p). (5.17)

2.3.4 Mixture of Motion Models

Figure 5.13 – Our parameter optimization algorithm used in Figure 5.12. Based on the
error metric, we compute optimal parameters for each motion model. The best motion
model (from RVO2, Social Forces or Boids) is used for trajectory extraction and to predict
the next state.

We now present the algorithm to compute the mixture motion model (Figure 5.13),
which essentially corresponds to computing the “best” motion model at any given timestep.
In this case, the “best” motion model is the one that most accurately matches agents’ im-
mediately past states, as per a given error metric. This “best” motion model is determined
by an optimization framework, which automatically finds the parameters that minimize
the error metric. In Chapter 3 we designed an optimization framework for evaluating
crowd motion models, which computes optimal parameters of simulation algorithms in
offline situations. Here we use an adapted, online version which iteratively computes the
best heterogeneous motion every few frames and chooses the most optimized crowd pa-
rameters at a given time. The computation cost is considerably lower and hence useable
for real-time tracking.

92

2. APPLICATION TO PEDESTRIAN TRACKING

Formalization Formally, at any timestep t, we define the agents’ k-states (as com-
puted by the tracker) xt−k:t:

xt−k:t =
t
⋃

i=t−k+1

xi. (5.18)

Similarly, a motion model’s corresponding computed agents’ states f(xt−k:t,p) can
be defined as:

f(xt−k:t,p) =
t
⋃

i=t−k+1

f(x′
i,g,p), with x′

t+1 = f(x′
t,g,p) (5.19)

initialized with x′
t−k+1 = xt−k+1 and g = xt.

At timestep t, considering the agents’ k-states xt−k:t, computed states f(xt−k:t,p),
and a user-defined error metric error(), our algorithm computes:

p
opt,f
t = argmin

p

error(f(xt−k:t,p),xt−k:t), (5.20)

where p
opt,f
t is the parameter set which, at timestep t, leads to the closest match between

the states computed by the motion algorithm f and the agents’ k-states.
For several motion algorithms {f1, f2, ...}, we can then compute the algorithm which

best matches the agents’ k-states xt−k:t at timestep t:

mt = f opt
t = argmin

f
error(f(xt−k:t,p

opt,f
t),xt−k:t), (5.21)

and consequently, the best (as per the error in the error() metric itself) prediction for
the agents’ next state obtainable from the motion algorithms for timestep t+ 1 is:

xt+1 = mt(xt). (5.22)

Optimization Algorithm and Error Metric The optimization of crowd parame-
ters is a unique and challenging problem. Because most simulation methods have several
parameters to tune for each agent, even moderately-sized scenarios with a few dozen
agents can become a hundred-dimensional optimization problem.

In total, we tested three global optimization approaches which we described in Chap-
ter 3, Section 3.3 and Appendix A, Section 2:Greedy Algorithm, Simulated Annealing,
and Genetic Algorithm.

We have tested these algorithms both in terms of how well they minimize the error
metric and in terms of how fast they converge. Figure 5.14 shows the scores after opti-
mization with all three methods, for the Boids, Social-forces and RVO2 motion models
(separately), as well as the Mixture of Motion Models. As can be observed, the genetic
algorithm leads to the lowest scores, followed by the simulated annealing and greedy al-
gorithms. Note that as expected, the Mixture of Motion Models gives the lowest error
scores as it consistently selects the best motion model for each situation. Similarly, Fig-
ure 5.15 shows the convergence times for each optimization method and motion model.
The greedy algorithm is here the fastest, followed by the genetic and simulated annealing

93

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

algorithms. Note that the Mixture of Motion Models is only marginally slower than the
other methods as the optimizations for the models constituent of the Mixture are per-
formed in parallel. From these comparisons, we chose the genetic algorithm to generate
all further results.

Figure 5.14 – Comparing the score of the different optimization approaches. Each graph
is a range of the scores (minimum and maximum) and the black dot is the mean score.
We compute the score from the normalized error metric. A lower value indicates better
optimization. MMM or the ‘Motion-Model Mixture’ is our approach.

Figure 5.15 – This graph shows the time taken for each computation of every set of
optimal parameters corresponding to each motion model. MMM is our approach. Time
computed is in milliseconds. Each graph is a range of the scores (minimum and maximum)
and the black dot is the mean score. We compute the score from the normalized error
metric.

An error metric is also needed to compute the term in Equation (5.20). In our case,
we have chosen a metric that simply computes the average 2-norm between the observed
agent positions and the tracker-computed positions. Formally, this metric is defined at
timestep t as follows:

error(f(xt−k:t,p),xt−k:t) =
t

∑

i=t−k+1

‖x′
i − xi‖, (5.23)

where the x′
i are from f(xt−k:t,p) as per Equation (5.19).

94

2. APPLICATION TO PEDESTRIAN TRACKING

2.4 Implementation and Results

In this section we present our implementation details and highlight the performance on
14 different crowd video datasets.

2.4.1 Motion Models

Our Mixture Motion Model can include any generic motion model that conforms to
Equation (5.17). Here we describe the three component motion models that currently
make up the Mixture Motion Model in our current implementation (and give their initial
parameters in Table 5.1). We selected 3 motion models: the Reciprocal Velocity Obstacle
model (RVO2), the Boids model, and the Social-Forces model. As detailed below, they
cover complementary ranges of crowd densities. The Social-Forces model simulates local
interactions between pedestrians as sets of repulsive forces. This is representative of
what happens in dense situations, where people may enter in contact with one another.
In lower densities, but still with highly cohesive motions, the Boids model simulates well
how each pedestrian aligns his own motion with his or her nearest neighbors. Finally,
in less dense scenarios, trajectories are individualized and anticipation plays a great role
in interactions: RVO2 is the only one of the three techniques capable of simulating such
behaviors.

Model / Parameters min max mean
Boids model
radius (m) 0.1 1 0.3
comfort speed (m/s) 1 2 1.5
Social-Forces model
radius (m) 0.1 1 0.3
comfort speed (m/s) 1 2 1.5
RVO2 model
comfort speed (m/s) 1 2 1.5
neighbor distance (m) 2 20 11
radius (m) 0.2 0.8 0.5
agent time horizon (s) 0.1 5 2
obstacle time horizon (s) 0.1 5 2

Table 5.1 – Initial motion model parameters for optimization.

Reciprocal Velocity Obstacles RVO2 is a local collision-avoidance and navigation
algorithm. Given each agent’s state at a certain timestep, it computes a collision-free
state for the next timestep [vdBLM08]. Each agent is represented as a 2D circle on the
plane, and the parameters (used for optimization) for each agent consist of the represen-
tative circle’s radius, maximum speed, neighbor distance, and time horizon (only future
collisions within this time horizon are considered for local interactions).

Let Vpref be the preferred velocity for a pedestrian that is based on the immediate
goal location. The RVO2 formulation takes into account the position and velocity of

95

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

each neighboring pedestrian to compute the new velocity. The velocities of the neighbors
are used to formulate the ORCA constraints for local collision avoidance [vdBLM08].
The computation of the new velocity is expressed as an optimization problem for each
pedestrian. If an agent’s preferred velocity is forbidden by the ORCA constraints, that
agent chooses the closest velocity that lies in the feasible region:

VRV O = argmax
V /∈ORCA

‖V − Vpref‖. (5.24)

More details and mathematical formulations of the ORCA constraints are given
in [vdBLM08]. As per Equation (5.17), f returns the states obtained with the admissible
velocity that is closest to the preferred velocity. The parameters are radius (size of 2D
circle agents), comfort speed (i.e., speed when no interactions occur), neighbor distance
(how close should neighbor agents be in order to be considered for collision avoidance),
agent time horizon (agent collisions further in time than this horizon will not be taken
into account) obstacle time horizon (same but for wall-like obstacles).

The Boids Model Initially developed to simulate the flocking behavior of birds, the
use of this model has been extended to pedestrian motion in a crowd. Broadly, three
rules are enforced on Boids agents:

� Separation: steer to avoid crowding local agents.

� Alignment: steer towards the average heading of local agents

� Cohesion: steer to move toward the average position (center of mass) of local
agents

Thus, as per Equation (5.17), f is a function of agents’ positions at some specified
future time (current time plus constant). When the predicted distance between the
pedestrians gets too low, a separation force is computed and added to the attraction
force that is pulling the agents toward their goal. The parameters are radius and comfort
speed.

Social-Forces Model The social forces model is defined by the combination of three
different forces:

� Personal Motivation force (FM): he incentive to move at a certain preferred
velocity in a certain direction.

� Social-Forces (F S): the repulsive forces from other agents and obstacles.

� Physical Constraints (F P): the hard constraints other than the environment
and other agents.

The net force FC = FM + F S + F P then defines an agent’s chosen new velocity. For
a detailed explanation of the method, refer to [HM95].

As per Equation (5.17), f is a function of the agents’ positions from which all com-
puted forces are derived. The parameters are radius and comfort speed.

96

2. APPLICATION TO PEDESTRIAN TRACKING

2.4.2 Evaluation

We use 14 different datasets accross three levels of density (low, medium, high) as sum-
marized in Table 5.2. Some of these are challenging datasets [BM14] which are available
publicly, as well as some standard datasets from the pedestrian tracking community
[PEVG10].

Dataset Challenges Density Agents
NDLS-1 BV, PO, IC High 131
IITF-1 BV, PO, IC, CO High 167
IITF-3 BV, PO, IC, CO High 189
IITF-5 BV, PO, IC, CO High 71
NPLC-1 BV, PO, IC Medium 79
NPLC-3 BV, PO, IC, CO Medium 144
IITF-2 BV, PO, IC, CO Medium 68
IITF-4 BV, PO, IC, CO Medium 116
NDLS-2 BV, PO, IC, CO Low 72
NPLC-2 BV, PO Low 56
seq_hotel IC, PO Low 390
seq_eth BV, IC, PO Low 360
zara01 BV, IC, PO Low 148
zara02 BV, IC, PO Low 204

Table 5.2 – Crowd Scenes used as Benchmarks. We highlight many attributes of crowd
videos including density and the number of pedestrians tracked. We use the following
abbreviations about the underlying scene: Background Variations(BV), Partial Occlu-
sion(PO), Complete Occlusion(CO), and Illumination Changes(IC).

Successful Tracks and ID Switches We highlight the performance of our Mixture
of Motion Models algorithm on these different benchmarks (partially illustrated in Fig-
ure 5.16), comparing the performance of our algorithm with single, homogeneous motion
model methods: constant velocity model (LIN), LTA [PESVG09], Social-Forces [YBOB11],
Boids [Rey99], and RVO2 [vdBLM08]. LIN models the velocities of pedestrians as con-
stant, and is the underlying motion model frequently used in the standard particle filter.
The other four models compute the pedestrian states based on optimizing functions,
which model collision avoidance, destinations of pedestrians, and the desired speed.
In our implementation, we replace the state transition process of a standard particle-
filtering algorithm with different motion models. We also compare our performance to a
baseline mean-shift tracker.

We show the number of successfully tracked pedestrians and the number of ID switches.
A track is counted as “successful” when the estimated mean error between the tracking
result and the ground-truth value is less than 0.8 meter in groundspace. The average
human stride length is about 0.8 meter and we consider the tracking to be incorrect if
the mean error is more than this value. As can be seen in Tables 5.3 and 5.4, our method
consistently outperforms other approaches with more successful tracks (ST) and fewer
ID switches (IS).

97

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

High Density Medium Density Low Density
NDLS-1 IITF-1 IITF-3 IITF-5 NPLC-1 NPLC-3 IITF-2 IITF-4 NDLS-2 NPLC-2
ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS

LIN 53 17 63 27 51 35 59 18 67 15 60 29 36 22 52 36 68 23 69 21
Boids 58 15 66 23 56 33 65 14 73 13 65 26 40 19 52 35 70 22 72 19

Social Forces 56 16 66 26 52 33 62 15 74 11 68 23 41 19 59 31 75 18 72 14
LTA 54 17 65 22 51 32 60 17 68 11 62 28 42 18 54 32 69 23 70 20

RVO2 57 14 69 20 53 29 64 13 71 10 64 26 42 18 53 32 72 20 74 16
MeanShift 27 32 31 38 23 52 34 29 39 36 41 31 22 33 39 45 31 28 45 28

MMM 63 12 73 19 57 27 67 10 77 7 71 20 44 16 63 28 79 17 78 14

Table 5.3 – We compare the percentage of successful tracks (ST) and ID switches (IS)
of our Mixture Motion Model algorithm (MMM) with homogeneous motion models - LIN,
Boids, Social Force, LTA, RVO2, and a baseline mean-shift tracker. Our method provides
higher accuracy compared to homogeneous motion models and fewer ID switches. The
benefits of our approach are higher, as the crowd density increases. These datasets are
publicly available at http://gamma.cs.unc.edu/RCrowdT/.

seq_hotel seq_eth zara01 zara02
ST IS ST IS ST IS ST IS

LIN 182 92 187 58 51 27 49 27
Boids 192 78 202 59 52 27 54 26

Social Forces 221 73 232 48 54 26 55 25
LTA 238 70 249 42 60 24 62 25

RVO2 241 71 258 37 61 22 65 23
MeanShift 98 171 112 139 32 41 33 39

MMM 252 68 267 34 63 20 68 21

Table 5.4 – We compare the percentage of successful tracks (ST) and ID switches (IS)
of our Mixture Motion Model algorithm (MMM) with homogeneous motion models - LIN,
Boids, Social Forces, LTA, RVO2 and a baseline mean-shift tracker with standard datasets
- seq_hotel , seq_eth , zara01 , zara02 [PEVG10]. Again, our method provides higher
accuracy compared to homogeneous motion models and fewer ID switches.

CLEAR MOT metrics We also use the CLEAR MOT [KR08] evaluation metrics
to analyze the performance, specifically, the MOTP and MOTA metrics. MOTP
evaluates the alignment of tracks with the ground truth while MOTA produces a score
based on the amount of false positives, missed detections, and identity switches. These
metrics have become standard for evaluation of detection and tracking algorithms in the
computer vision community, and we refer the interested reader to [KR08] for a more
detailed explanation.

We use these metrics across the density groups and the different motion models.
As shown in Table 5.5, the scores obtained with our Mixture of Motion Models are
consistantly better (higher).

LIN Boids Social-Forces RVO2 MMM
LD MD HD LD MD HD LD MD HD LD MD HD LD MD HD

MOTP 64.42% 52.82% 40.31% 67.24% 57.10% 43.14% 70.52% 61.33% 49.88% 72.19% 63.17% 51.31% 73.98% 69.23% 54.29%
MOTA 49.42% 35.3% 31.37% 50.59% 26.42% 30.88% 53.28% 44.19% 33.51% 53.95% 48.81% 35.83% 54.18% 50.16% 38.83%

Table 5.5 – We compare the MOTA and MOTP values across the density groups and the
different motion models.

98

2. APPLICATION TO PEDESTRIAN TRACKING

Figure 5.16 – The results of our approach on some challenging datasets. From top to
bottom, left to right: IITF-1, IITF-2, NPLC-1, IITF-3, NDLS-2, NDLS-1, NLPC-2, IITF-
4, IITF-5.

Independently of the overall tracking, we compare the position prediction ability of our
Mixture of Motion Models. As Figure 5.17 shows, our approach is able to more accurately
predict agents’ future states (thus offering a better motion prior for the tracker); and the
more so as the density increases.

Computation cost Finally, we evaluate the computational overhead of our optimiza-
tion framework with the particle filter system in terms of computation time. As can be
seen on Figure 5.18, the computational cost of the Mixture of Motion Models is small
compared to the overall system.

2.5 Limitations, Conclusions, and Future Work

In this chapter, we show how our work on evaluation and parameter estimation can be
applied in the context of pedestrian tracking. This resulted in a real time algorithm for
pedestrian tracking in crowded scenes that are needed for next generation traffic manage-
ment systems as well as the design of architectural models and urban environments. We
highlight the performance of our approach on many pedestrian datasets, showing that it
can track crowded scenes in real time on a PC with a multi-core CPU. Furthermore, we
highlight the improved accuracy and the performance in complex benchmarks with low,
medium, and high density crowds.

Just like the evaluation and parameter estimation framework on which this approach
relies, it is simulator-agnostic, meaning that any simulation algorithm can be added to
the Mixture. Our approach’s main limitations are therefore related to our motion model

99

CHAPTER 5. APPLICATIONS TO EVALUATION AND PARAMETER ESTIMATION

Figure 5.17 – This is the root-mean-square error in the predicted position compared
to the ground truth. For an unbiased comparison, all measurements are in ground-space
(meters). We have divided our dataset into 3 categories (refer to Table 2): (a) Low-density
datasets (b) Medium-density datasets (c) High-density datasets. We find that our approach
considerably lowers error for future-state prediction as the density increases.

Figure 5.18 – Computation cost comparison between the particle filter system and the
optimization framework. The x-axis represents the number of tracked people and the y-axis
represents the computation time (in milliseconds)

set. Our motion model set does not take into account physiological and psychological
pedestrian traits. All pedestrians are modeled with the same sensitivity towards gender
and density; our model set does not take into account heterogeneous agent characteris-
tics, which affect the final behavior. These behavior characteristics can introduce addi-
tional errors in our confidence estimation. In practice, the performance of the algorithm
can vary based on various other attributes of the input video.

As part of our future work, we would like to incorporate the personality characteris-
tics of the pedestrians, along with other characteristics, such as “fundamental diagrams”
from pedestrian dynamics. Essentially, we would like to use improved algorithms (such
as WarpDriver, presented in Chapter 4, which was not yet finished during this project)
to increase the accuracy of our tracker and use them in complex environments where we
can simultaneously track the pedestrians and vehicles for traffic management systems.

100

6Conclusion and Future Work

In this work, we have addressed the realism of crowd simulation algorithms from the
point of view of both evaluation and design. We have tackled the evaluation of simu-
lation algorithms from a data-driven point of view, and investigated the effects of their
parameters on both their evaluation and flexibility. We have then followed research op-
portunities opened by this work with applications to insect simulation and pedestrian
tracking. Finally, with observations resulting from these projects, we have proposed a
new crowd simulation algorithm, solving common simulation artifacts of previous ap-
proaches. In this section, we summarize our contributions and discuss possible future
work.

1 Contributions

Evaluation and Parameter Estimation We first focused on the evaluation of crowd
simulation algorithms. Our goal being to rate how realistic algorithms are with respect
to each other, we approached this topic from a data-driven point of view. Additionally, as
parameter values have a profound effect on the resulting simulations, we have integrated
them into our approach as well.

Consequently, we propose a general framework for the evaluation of crowd simulation
algorithms, where metrics are used both to quantify the similarity between ground-truth,
real-world data and the corresponding simulations, and to tune the simulation algo-
rithms in order for them to perform as best as possible. The direct result is a means to
objectively and fairly compare algorithms among each other, where none can be tweaked
post-comparison to improve its score. In addition to comparisons of algorithms, we have
also studied how we can use this process to tune algorithms to adapt them to certain
tasks, such as replicating either German or Indian pedestrians. Finally, we have in-
vestigated how this process can help artists/animators in simulating certain situations
without individually tweaking each agent’s trajectory.

Collision Avoidance In our last contribution, we have focused on collision avoidance.
Collision avoidance is at the base of every crowd simulator and is largely responsible for
the plausibility of the synthesized crowd. While existing approaches have used first-order
information (positions) followed by second-order information (instantaneous velocities),
progressively improving the quality of simulations, many artifacts still persist, suggesting
that these sources of information are not enough. Thus, we have sought to solve the
remaining artifacts by considering more sources of information while performing collision
avoidance.

101

CHAPTER 6. CONCLUSION AND FUTURE WORK

As a result, we propose a new collision-avoidance algorithm, where steering decisions
are based on perceived probabilities of collision between agents. In order to compute
these probabilities, we first define the Intrinsic Field which gives the collision probabil-
ities between agents that are only due to their co-existance (assuming an agent is not
reduced to a point). We further warp this field using Warp Operators which model every
source of information we take into account. Our simulated agents are thus capable of
avoiding collisions based on multiple sources of information, such as positions, velocities,
future perception uncertainty, environment layout (non-linear), interactions with obsta-
cles (non-linear), and past trajectories (non-linear). By taking into account these vari-
ous sources of information, we are able to solve commonly observed simulation artifacts
of previous techniques such as slowdowns and visually erroneous agent agglutinations,
unnatural oscillation motions, or exaggerated/last-minute/false-positive avoidance ma-
noeuvres.

Applications to Evaluation and Parameter Estimation We have first applied
our work on evaluation and parameter estimation to insect simulation. With the recent
availability of data on swarming insects’ trajectories, we have applied our previous work
to the simulation of such swarms. With a lack of available data-driven solutions for
this task, we have sought to fill this void by implementing the three observed levels of
insect behavior: microscopic, mesoscopic, and macroscopic. We propose a data-driven,
biologically-inspired insect simulator, where parameter estimation is used to select and
tune a collision-avoidance algorithm for microscopic behavior, statistically correct meso-
scopic trajectories are generated from observed noisy trajectories, and where the global
swarm behavior is ensured by the Metropolis-Hastings algorithm. The resulting simu-
lations are easy to control by artists/animators (e.g. using sketches), the swarms can
avoid obstacles in the environment and it is also possible to give them different shapes
and behaviors. Overall, the produced simulations are realistic as evidences by commonly
used metrics.

Second, we have applied our work on evaluation and parameter estimation to pedes-
trian tracking. For this application, we based ourselves on particle filters, which are a
commonly used tracking approach that yields good tracking results and that is appli-
cable in real time. This particle filter approach futher has the property of relying on
motion priors to track pedestrians. Thus, we propose an improved particle-filter-based
tracking algorithm where the motion prior is given not by one simulator with a static
set of parameter values, but by a mixture of simulators with varying parameter values.
At each frame of video data, we use our parameter estimation and evaluation work to
tune all available crowd simulation algorithms to match the past observed pedestrian
trajectories as closely as possible, and subsequently select the best simulator. This best
simulator with the optimal set of parameter values is then used as motion prior for the
particle filter. With this approach, we are able to considerably improve tracking accuracy
as evidenced by our tests on challenging datasets.

102

2. FUTURE WORK

2 Future Work

Evaluation Following our work on evaluation and parameter estimation, we would
like to study how parameters can be generalized beyond a given scenario. In our current
applications, particular sets of parameters are very specific to the situation they were
“learned on”, during evaluation, we wish the algorithm to perform as well as possible
on the tested case, and in tracking we wish the algorithm to describe (reproduce) the
currently observed situation as closely as possible. We have already dealt a bit with this
generalization in our work on insects, though purely thanks to the relatively “massive”
amount of trajectory data involved. More generally, this question ties into the question
of the “representativeness” of the data: can we find situations which are widely repre-
sentative of most types of interactions? This is also a good reason to collect more data,
hence the need for a good tracking algorithm for instance.

The second research direction, given that parameter values optimal with respect to a
current situation yield better results than general-purpose ones, is to tune a simulation
algorithm’s agent’s parameter values with respect to the “context” the agent is in (similar
to what we have done in the context of pedestrian tracking). An agent could thus have a
certain set of values when walking out in the open with few interactions, and a different
set when part of a dense crowd at a concert for instance. Though these two examples are
trivially different, a method could be devised to automatically tune agents during much
subtler changes of context.

Collision Avoidance Finally, in terms of collision avoidance, many possible evolu-
tions are possible. First, as the approach is very flexible, we could investigate additional
sources of information, such as social factors: left/right conventions, yielding to elders,
etc. The approach is also suitable to incorporate the dangerousness of interactions: one
would likely be willing to collide with another person if it meant avoiding a collision with
a car. The information on environment layout could also be learned from data (similar
to estimating the pedestrian flows during tracking, as mentioned earlier).

Another direction is the commonly studied case of group motion, which could be
trivially implemented by changing the Intrinsic Field. Finally, the approach can benefit
a lot from work on accelerating it, mainly work on raytracing from the field of rendering
(as the simulator can be viewed as a ray-marching algorithm).

Applications to Evaluation and Parameter Estimation The first direction for
future work in terms of insect simulation is the extension of our approach to mixed
interactions of various types of insects. This would likely involve work on differentiating
the trajectories (e.g. through clustering) of each type of insect found in the source data.
Of course, it would also involve collecting the necessary data. Thus far, we have used our
simulation pipeline on 3D insect trajectories exlusively. While our approach is capable
of handling 2D motions we have not been able to test this as we lack the necessary
data (again highlighting the need to collect more data). Finally, we use a static field to
guide the global motion of insects, and it would be interesting to consider dynamic fields,
automatically adapting to changes of destination and environment.

103

CHAPTER 6. CONCLUSION AND FUTURE WORK

In terms of pedestrian tracking, our current algorithm only considers the sources
of information that are classically used by microscopic, agent-based crowd simulation
algorithms (mainly due to the available simulators). We would like to extend this to
take other sources of information into account. Concretely, other tracking approaches
detect agent flows in videos which they then use as motion prior. For instance with
our new simulator WarpDriver (which uses sources of information such as the layout
of the environment) as part of the tracker, we could detect pedestrian flows and feed
them as environment layout information to WarpDriver. Adding such types of additional
information to the tracking system would likely further improve tracking results.

3 Summary

Overall, many of the investigated topics as well as research avenues for future work are
linked between these various topics. Our new simulation algorithm WarpDriver has ben-
efited from observations made while working on evaluation, and the progress we made de-
veloping this simulator can improve our tracking approach (especially considering adding
more sources of information), which in turn can help us collect more data, based on which
we can learn context-dependent sets of parameter values, that could further push forward
the realism of crowd simulation algorithms.

104

7Résumé en Français

La demande pour la simulation de foules a fortement progressé au cours des dernières
années, avec l’industrie du divertissement et la sécurité urbaine au premier rang de ses
applications. Des longs-métrages et jeux vidéo de plus en plus ambitieux font appel à
des armées et foules d’arrière-plan de plus en plus conséquentes, tandis que des règles de
sécurité de plus en plus strictes requièrent des architectes une prédiction de plus en plus
précise des comportements de foules.

Les superproductions en particulier préfèrent maintenant les foules numériques (“foules”
se réfère ici à toute collection d’entités représentées à l’écran) à l’emploi de grandes
quantités de figurants en vue de peupler leurs scènes. Ainsi, il est mainetant possible
d’observer des foules synthétiques dans des travaux et contextes variés. Par exemple,
de très larges armées sont au centre de longs-métrages ou séries télévisées tels que Le

Seigneur des anneaux, 300, Le Trône de fer, etc. Ces foules numériques peuvent aussi
prendre d’autres formes telles que les larges quantités de zombies dans World War Z, de
singes dans La Planète des singes : l’affrontement, de minions dans la saga Moi moche

et méchant, etc. Le pré-requis principal pour animer ces foules (en plus de la qualité des
mouvements), est un degré élevé de contrôle de l’artiste sur la simulation, imposant les
comportements et les styles nécessaires à chaque projet.

Dans les jeux vidéo, les simulateurs sont en charge des déplacements de tout person-
nage (interactif) non joueur, allant des passants déambulant les rues d’Assassin’ Creed

aux innombrables soldats de la série de jeux Dynasty Warriors. Alors que les jeux vidéo
requièrent tout comme les œuvres télévisuelles des forts degrés de contrôle et de réal-
isme/crédibilité, les jeux vidéo nécessitent en plus que les personnages soient interactifs
et donc autonomes, avec des simulateurs les animant en temps réel.

En termes des sécurité et de conception urbaine, la simulation de foules est simi-
lairement largement d’actualité. Par exemple, les organisateurs de larges évènements
“ouverts” (e.g. concerts) peuvent utiliser des simulateurs pour faire des prédictions statis-
tiques sur le comportement des participants dans le but d’améliorer leurs installations ou
projets de parcours (espérant éviter des drames comme ce fut le cas durant le festival de
musique Love Parade à Duisburg, en Allemagne, en juillet 2010). Evidemment, des tech-
niques similaires peuvent être employées pendant la conception de nouveaux bâtiments
tels que les aéroports/gares, galleries commerciales, bureaux, bateaux de croisière, etc.
De plus, dans le cas de telles structures, il est aussi possible de suivre les personnes
pendant les évacuations pour anticiper l’accès aux sorties, et finalement de guider les
personnes le long d’itinéraires optimaux, évitant les congestions. Il est aussi possible
d’utiliser un simulateur pour des applications plus spécifiques comme l’amélioration de
files d’attentes dans les parcs d’attractions, aéroports/gares, etc. Globalement, dans ces
cas, l’aspect le plus important est la précision (principalement statistique) des foules

105

CHAPTER 7. RÉSUMÉ EN FRANÇAIS

simulées ainsi que leur capacité à anticiper les issues possibles à une situation spécifique,
avec des cas tels que les évacuations nécessitant aussi de fonctionner en temps réel.

Avec cette multitude d’applications, de nombreux algorithmes ont été développés,
souvent dans des buts bien précis. Par conséquent, le choix d’un algorithme pour une
tâche particulière n’est pas simple.

1 Problème

Supposant un large éventail d’algorithmes disponibles pour simuler des foules dans un
projet donné, la tâche de l’utilisateur faisant le choix de quel algorithme utiliser est de
répondre à un certain nombre de questions fondamentales.

Performances A quel point l’algorithme doit-il être rapide ? Les applications interac-
tives (e.g. les jeux vidéo) requièrent des foules animées en temps réel alors que les œuvres
télévisuelles peuvent se permettre d’utiliser des techniques plus coûteuses. De même, un
système de guidage pendant une évacuation doit pouvoir s’adapter rapidement à toute
éventualité alors que la validation d’un nouveau bâtiment est moins urgente.

Autonomie La question suivante est : quel est le degré d’implication nécessaire de
l’utilisateur pour réaliser son but ? L’utilisateur peut-il s’attendre à un résultat correct
en précisant juste “1000 humains, d’ici à ici, bougeant vite, apeurés”, ou doit-il vérifier
et modifier le comportement de chaque individu à la main (tout en ayant conscience que
toute modification peut causer une réaction en chaîne affectant la simulation dans son
ensemble) ?

Contrôle Une autre facette concerne le contrôle (ou flexibilité), i.e. est-ce possible
pour l’utilisateur d’utiliser le simulateur pour arriver à ses fins ? Ce même simula-
teur pourrait-il produire une autre foule suivant une autre spécification telle que “1000
touristes, d’ici à ici, bougeant lentement, curieux” ou a-t-il un domaine de validité re-
streint ?

Réalisme La dernière question est évidente : la simulation sera-t-elle réaliste/crédible
? Un algorithme ne serait pas d’une grande utilité à un artiste si les entité simulées
brisaient l’immersion des spectateurs, où à un architecte étudiant les cas d’évacuation
si les personnages simulés ne se comportaient pas suffisemment comme des humains.
Un simulateur pouvant être plus adapté à certains usages que d’autres, cette question
est aussi liée à celle du domaine de validité de l’algorithme : supposant une palette
d’algorithmes, lequel est le plus adapté à un usage donné ?

Alors que toutes ces questions doivent être considérées lors du choix (ou du développe-
ment) d’un algorithme, certaines sont plus difficiles que d’autres. En règle générale, la
question des performances a une réponse simple, soit par estimation de la complexité
théorique de l’algorithme, soit en l’essayant brièvement. Les questions d’autonomie et
de contrôle sont plus difficiles, puisqu’elles demandent un degré de familiarité avec les

106

2. APPROCHE

capacité d’un algorithme : principalement sont domaine de de validité (instabilités à cer-
taines densités, personnages holonomes/non-holonomes, etc.) et les effets des paramètres
(influençant par exemple le degré de “méfiance” des personnages entre eux). Enfin, la
question du réalisme est de loin la plus difficile puisque : (1) dans bien des cas “réalisme”
n’a pas de définition nette, et (2) certains algorithmes pourraient en théorie produire le
résultat attendu mais leur paramétrisation n’est ni connue ni triviale.

Ainsi, l’objectif principal de cette thèse est d’améliorer de manière générale le réal-
isme des algorithmes de simulation de foules en : (1) mettant au point un schéma général
pour l’évaluation du degré de réalisme des algorithmes (tout en gardant à l’esprit les ques-
tions d’autonomie et de contrôle), et en (2) développant des algorithmes plus avancés.

2 Approche

En tant que point de départ à notre travail, nous avons choisi d’approcher cette question
du réalisme du point de vue des algorithmes microscopiques basés agent (détaillés dans
la Section 2), puisqu’ils représentent une classe d’algorithmes fortement utilisés grâce à
leur facilité d’utilisation et d’implémentation ainsi que leur flexibilité.

De ce point de vue, nous avons abordé en premier l’évaluation des algorithmes de
simualtion de foules. Les deux objectifs principaux de ce travail étaient de valider les
algorithmes existants et de développer un cadre de travail pour valider les idées fu-
tures. Nous avons appuyé notre schéma d’évaluation sur des données réelles, en util-
isant des métriques variées pour comparer les simulations aux comportement réels. En
complément, nous avons aussi incorporé à cette méthode l’estimation automatique de
paramètres nous permettant de faire deux choses. Premièrement la possiblité de com-
paraisons impartiales des algorithmes, chacun d’eux étant configuré de manière optimale
pendant les tests, deuxièmement l’exploration de la question du contrôle, la configura-
tion automatique des simulateurs pouvant aider l’utilisateur à les adapter à différentes
tâches.

Durant ce travail il est devenu évident que malgré les avancées récentes sur les simula-
teur microscopiques basés agent, il reste de nombreux artéfacts et erreurs de simulation.
Cela nous a conduit au deuxième travail principal du présent document, consernant le
développement d’algorithmes de simulation. Succintement, alors que les algorithmes
de “premier ordre” (voir Chapitre 2, Section 2) sont simples à implémenter, étendre et
utiliser, leurs résultats de simulation ne sont pas aussi bons que ceux produits par les
algorithmes de “second ordre” (qui anticipent les collisions par extrapolation linéaire du
mouvement des agents), qui sont par contre plus complexes à étendre, et produisent
aussi des artéfacts évidents. Pour continuer d’améliorer les résultats de simulation,
nous avons conçu un algorithme facilement extensible, fonctionnant dans un espace tri-
dimensionnel (positions 2D plus temps) où les agents perçoivent les probabilités de col-
lision entre eux. Ces probabilités sont calculées sur la base d’un champs intrinsèque de
probabilités de collision, qui représente les probabilités de collisions induites par leur
co-existence (les agents ne sont pas réduits à des points), et qui est ensuite déformé

par chaque source d’informations que nous souhaitons prendre en compte. Ainsi, nous
avons implémenté des opérateurs de distortion qui modélisent : l’erreur de perception
des agents (il perçoivent mieux les situations imminentes que celles plus éloignées dans le

107

CHAPTER 7. RÉSUMÉ EN FRANÇAIS

temps), la taille des agents, l’anticipation de trajectoires par extrapolation (linéaire) de
leur vitesse , les erreurs de perception liées à la vitesse, la’anticipation liée à l’agencement
de l’environnement (non-linéaire), l’anticipation liée aux trajectoires passées des agents
(non-linéaire), et l’anticipation liée aux conséquences des interactions entre les agents et
les obstacles (i.e. l’impossibilité d’un agent de traverse un obstacle; non-linéaire). De
plus, nous pouvons facilement visualiser ces probabilités de collision pendant la vérifica-
tion des résultats de simulation, rendant l’algorithme plus simple à analyser et étendre.

En parallèle, en explorant et cherchant des données, notre travail sur l’évaluation
et l’estimation de paramètres a donné lieu à deux autres applications. Dans ces ap-
plications, nous abordons la question du domaine de validité de chaque algorithme de
simulation. Ainsi, nous utilisons notre travail en tant qu’outil de sélection pour déter-
miner quel algorithme est le plus approprié pour (1) une simulation ou (2) un instant
d’une simulation.

La première application concerne la simulation d’essaims d’insectes, puisque des don-
nées sur leurs trajectoires de vol ont récemment été rendus accessibles. Par conséquent,
nous avons utilisé lors de la conception d’un simulateur d’insectes basé données. Nous
avons utilisé l’estimation de paramètres pour choisir l’algorithme le plus approprié et le
configurer pour reproduire les comportements de bas niveau des insectes, puis nous avons
complété le système avec des méchanismes statistiques supplémentaires pour prendre en
charge les trajectoires en “zig-zags” des insectes (niveau intermédiaire) et leur comporte-
ment de haut-niveau au sein de l’essaim.

La seconde application découlant de notre travail sur l’évaluation et l’estimation de
paramètres concerne le suivi de piétons. Ici, nous avons adopté une approche connue
où un algorithme de suivi est associé à un simulateur qui l’aide et prédisant le mouve-
ment des piétons. Nous nous sommes occupés à améliorer cette approche d’une manière
générale et indépendante des simulateurs utilisés. Conformément à nos observations lors
de notre travail sur l’estimation de paramètres, il est plus facile de reproduire complète-
ment le comportement de foule à tout instant avec plusieurs simulateurs bien configurés
plutôt qu’avec un seul algorithme avec un seul jeu de paramètres. Ainsi, nous utilisons
les portions de trajectoires déjà identifiées pour estimer les paramètres optimaux de
plusieurs simulateurs concurrents. Ensuite, nous sélectionnons le simulateur (configuré)
qui décrit le mieux ces portions déjà connues pour prédire les positions suivantes des
piétons et ainsi aider l’algorithme de suivi, améliorant fortment la qualité du suivi.

3 Contributions

Suivant le titre de cette thèse, “Simulation microscopique de foules : évaluation et
développement d’algorithmes”, nos deux contributions principales (en tant que pre-
mier auteur) sont comme suit :

Evaluation et estimation de paramètres, Chapitre 3 Nous proposons une méth-
ode visant à évaluer le réalisme des algorithmes de simulation de foules d’une manière ob-
jective et impartiale. “Objective” grâce à des métriques quantifiant la similitude entre les
simulations et des donnés acquises en situation réelle. “Impartiale” grâce à l’estimation de
paramètres permettant d’étalonner automatiquement les algorithmes en vue de décrire

108

3. CONTRIBUTIONS

au mieux les données (par rapport aux métriques), permettant de comparer les algo-
rithmes au mieux de leur capacité. Nous explorons aussi comment ce processus permet
d’augmenter le niveau de contrôle d’un utilisateur sur la simulation tout en réduisant son
implication.

Evitement de collision, Chapitre 4 Nous proposons un nouvel algorithme d’évitement
de collisions. Alors que les algorithmes existants prédisent les collisions en extrapolant
linéairement les trajectoires des agents, nous allons au-delà grâce à une approche proba-
biliste et non-linéaire, prenant en compte entre autres la configuration de l’environnement,
les trajectoires passées et les interactions avec les obstacles. Nous éliminons ainsi des
simulations résultantes des artéfacts tels que: les ralentissements et les agglomérats
dérangeants d’agents, les mouvements oscillatoires non naturels, ou encore les manœvres
d’évitement exagérées/fausses/de dernière minute.

Evaluation et estimation de paramètres : applications Dans une troisième con-
tribution, nous abordons aussi l’utilisation de notre travail sur l’évaluation et l’estimation
de paramètres dans le cadre de systèmes plus larges (en tant que second auteur).

Simulation d’insectes, Chapitre 5, Partie 1 Premier auteur : Weizi Li, étudiant
en thèse au Gamma Group de l’université de Caroline du Nord à Chapel Hill, Caroline
du Nord, Etats-Unis. Nous appliquons notre travail à la simulation d’insectes, prenant
en charge leur comportement local. Après avoir complété le système aux niveaux inter-
médiaire et global, cette approche basée-données est capable de simuler correctement des
essaims d’insectes.

Suivi de piétons, Chapitre 5, Partie 2 Premier auteur : Aniket Bera, étudiant en
thèse au Gamma Group de l’université de Caroline du Nord à Chapel Hill, Caroline du
Nord, Etats-Unis. Nous appliquons aussi notre travail au suivi de piétons, construisant
un “méta-algorithme” servant à calculer la probabilité de transition d’un filtre particu-
laire, et surpassant les systèmes existants.

109

Appendices

111

A
Craal: Parameter Estimation and
Comparative Evaluation of Crowd
Simulations

1 Metrics

Below we describe various metrics that can be easily used in our framework. While a
metric can take any form, for ease of notation we describe the following ones as their
value at a given timestep. The complete metric (M) is then the absolute value of the
sum of its results over all timesteps (Mk):

M = |
m
∑

k=1

Mk|. (A.1)

Note that all metrics are defined to have a value of zero whenever the simulated motion
exactly matches the reference data.

1.1 Microscopic Data Metrics

In general, microscopic data can be used with a wide variety of similarity metrics, which
capture different aspects of the data. Here we summarize several microscopic metrics
tested in this work. In all cases of microscopic data, we assume the reference data zk
consists of a vector of positions for all the agents.

The absolute difference metric (D) computes the total distance in position over
all agents over all timesteps:

Dk = ‖zk − xk‖. (A.2)

The path length metric (L) compares the difference in total length traveled be-
tween agents in the reference data and the simulated agents:

Lk = (zk+1 − zk)− (xk+1 − xk). (A.3)

The inter-pedestrian distance metric (I) compares the difference in average dis-
tance (as a 2-norm) between every pair of agents. If P is the ensemble of all agent pairs
P =

⋃

{i, j}, then:

Ik =
∑

P

|xi
k − x

j
k| −

∑

P

|zik − z
j
k|. (A.4)

i

APPENDIX A. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

The progressive difference metric (P) measures the absolute difference between
the simulated agents and the reference data when the simulation is reinitialized at each

timestep.

Pk = ‖zk+1 − f(zk, speed(zk), zm,p)‖. (A.5)

1.2 Macroscopic Data Metrics

Unlike microscopic metrics, which are computed per agent, macroscopic metrics are com-
puted over all the agents. In these cases, the form of the reference data (zk) generally
varies for each metric.

The vorticity metric (V) measures the vorticity of the crowd flow. First a velocity
field −→v is generated from the agents’ motion, then:

Vk = zk − (∇×−→v), (A.6)

where zk is the target vorticity for the current timestep.
Finally, the fundamental diagram metric (F) compares the speed of an agent to

the density of agents in its location. This metric is inspired by the field of pedestrian
dynamics, where it is commonly used to measure pedestrian flow rates (e.g., [CM12]).
Our implementation of the metric defines a “gate” area on the agent’s path (as in [CSC09],
which allows us to compute the density of population (numberAgentsInsideGate

areaOfGate
) at an agent’s

location when the agent is inside this gate.

Fk = |zk(dk)− ‖vk‖|, (A.7)

where dk is the density at the location of each agent while inside the gate, and the
reference data zk is a function that maps density to speed based on results known from
human motion studies.

2 Optimization Techniques

2.1 Greedy algorithm

The greedy approach works by first selecting random parameters for every agent. The
chosen data similarity metric is then evaluated to establish a baseline measure of how
well the simulation matches the data. The algorithm then performs several iterations,
where in each iteration starts with the best set of simulation parameter seen so far and
one simulation parameter is randomly replaced by a sample from the user defined dis-
tribution. This new set of parameters is evaluated, whichever set of parameters has the
lowest error metric over all the iterations is chosen as the optimal parameters for the
agents.

2.2 Simulated annealing

The main limitation with a greedy approach is that it will get stuck in local minimum in
search space. Simulated Annealing (SA) address this problem by occasionally accepting

ii

2. OPTIMIZATION TECHNIQUES

a slightly worse evaluation as the current best parameter set. This allows the procedure
to “jump out" of a local minimum with some non-zero probability. By convention, the
probability of choosing a parameter set with worse evaluation decreases over time, and
decreases if the new evaluation is much worse than the old one.

Algorithm 1: Simulated annealing.

k ← 0 // initialize loop counter

while k < K do
T ← temperature(k,K) // compute temperature

snew ← neighborState(s) // try new neighbor

enew ← cost(s) // compute cost

if move(e, enew, T) then // is new state better?

s← snew; e← enew // yes, change state

end
if e < ebest then // did we find a new minimum?

sbest ← s; ebest ← e // save new optimum

k ← 0 // reset loop counter

end
k ← k + 1 // increase loop counter

end

Algorithm 1 gives the pseudocode for the process where:

neighborState(): pick a new random value for a random parameter according to the
parameter’s base distribution

move(): is True iff enew < eold, exp(
eold−enew

T
).

temperature(): is K−k
K

, k being the number of iterations with no improvement and K
the number of such iterations allowed.

cost(): the cost as returned by the currently used metric.

2.2.1 Genetic algorithm

Like simulated annealing, genetic algorithms seek to overcome the problem of local min-
ima in optimization. This is accomplished by keeping a pool of parameter sets which
have performed well so far and during each iteration creating a new pool of potential
states based on combining and modifying the previously successful candidates.

Algorithm 2 provides pseudocode for the method given the following functions:

initialize(): parameters randomly initialized in accordance with the base distribution
for each parameter.

selection(): individuals are sorted according to their score and divided into 3 groups:
Best (of size m), Middle (of size n) and Worst (the remaining individuals).

iii

APPENDIX A. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

Algorithm 2: Genetic algorithm.

pop← initialize() // initialize population

while true do
selection(pop) // evaluate and select fittest

if termination() then // should we terminate?

stop // yes, stop loop

end
pop← reproduction(pop) // new generation

end

termination(): the algorithm is terminated after finding K successive loop iterations
without any new optimum.

reproduction(): based on which group it belongs to, a parameter set is attributed
three probabilities α, β and γ. For each parameter of this individual, α decides
if the value is changed or not, β decides if the value is changed by crossover or
mutation and, finally, γ decides which type of mutation is done.

� crossover: a crossover is done by copying a value from an individual belonging
to the Best group.

� mutation: a mutation is done by picking a new value at random based on
either the base distribution or the current real distribution of an individual
from the Best group (according to γ).

2.2.2 Covariance Matrix Adaptation

Lastly, we also tested the CMA optimization algorithm [HO96], implemented in the
Shark Machine Learning Library [Sha]. Being a solution-pool based technique it shares
the same general algorithm 2 as the genetic algorithm except it generates new solutions
by picking values from distributions defined by a covariance matrix that is continuously
modified over the iterations.

3 Optimization Comparison

Optimizing crowd parameters is a unique and challenging problem. Because most simula-
tion methods have several parameters to tune for each agent, even moderately-sized sce-
narios with a few dozen agents can become hundred-dimensional optimization problems.
We tested several different combinatorial optimization strategies on different scenarios
to measure how they perform on two measures: computational speed (how long it takes
to converge to an answer) and quality (how close the answer is to the true optimum).

In total we tested 8 optimization algorithms: the four algorithms described above
(Greedy algorithm (G), Simulated Annealing (SA), a Genetic Algorithm (GA), and
CMA), as well as four hybrid approaches. The first hybrid approach was to take the solu-
tion from the Genetic Algorithm approach (which searches broadly in parameter space)

iv

3. OPTIMIZATION COMPARISON

Crossing {GA+G, GA+SA} > GA > SA > {G, CMA+SA} > CMA+G > CMA
Hallway {SA, GA+SA, CMA+SA} > GA+G > {G, GA, CMA+G} > CMA
Circle-24 (P) CMA+G > {G, GA+G} > GA+SA > {GA, SA, CMA+SA} > CMA
Circle-24 (I) {CMA+G, GA+SA, CMA+SA} > GA+G > {G, GA, SA} > CMA

Table A.1 – This shows which optimization algorithms most successfully optimize the
metrics, the formulation A > B means A optimizes better than B. In the Circle-24(a)
example, we have used the Progressive Difference metric, while in the Circle-24(b) example,
we have used the Inter-pedestrian distance metric, with the same data in both cases.

and refine it using Greedy optimization, denoted as (GA+G). In a similar manner, we
have also tried refining the output of the Genetic Algorithm with Simulated Annealing
(GA+SA), then CMA+G and CMA+SA.

We evaluated the optimization techniques on four different crowd simulation meth-
ods: the RVO2 algorithm, a Boids-like steering model, the Helbing Social Force model,
and the Vision-based steering model. The initial parameter sets for each of these meth-
ods are given in Section 4.

The optimization methods were tested across different scenarios. Because of the
stochastic nature of the optimization techniques, each scenario was run multiple times
with each simulation method to ensure a statistically meaningful comparison. First, we
found that the scores for various metrics were improved by all optimization methods, and
by a statistically significant margin (Friedman test [Fri37] at the p=0.05 level). Second,
we performed a statistical ranking test between optimization methods (post-hoc analy-
sis with the Wilcoxon signed-rank test [Wil45] at the p=0.0018 level). For each pair of
optimization methods, this second test measures whether the improvement in simulation
scores differs between the two methods.

We batched several tests into three sets of scenarios. The first set of scenarios (Fig
A.1a) involved a small number of agents (2-5 agents) crossing paths to reach their goals;
for this evaluation, we used the Difference metric (D). Here GA+G and GA+SA algo-
rithms give the best score improvements and the CMA algorithm is the fastest. The
second set of scenarios comes from the data in [ZKSS12] (Fig A.1c). In this set of sce-
narios, many agents (between 30 and 100 agents) walked down a hallway; we evaluated
these using the Fundamental Diagram metric. Here, SA, GA+SA and CMA+SA algo-
rithms performed best at optimizing the metric, and the GA and CMA algorithms are
the fastest. In the final scenario (Fig A.1b), 24 agents walked to antipodal positions in a
circle and were tested using the Progressive Difference (P) and Inter-pedestrian Distance
(I) metrics. Here, the CMA+G algorithm (resp. CMA+G, GA+SA and CMA+SA) gave
the best score improvements, and the CMA algorithm (resp. CMA) is the fastest based
on the Progressive Difference metric (resp. Inter-pedestrian Distance).

The complete ranking of the algorithms by their ability to optimize the simulation
metrics is given Table 1. A ranking by their computational speed is given in Table 2.
As can be seen in these tables, GA+G provided the best balance between runtime and
performance.

Figure A.3 shows the raw score and runtime results. Notations for optimization meth-
ods are: (G) Greedy, (SA) Simulated Annealing, (GA) Genetic Algorithm, (CMA) Co-
variance Matrix Adaptation. Figure A.4 shows the Friedman and Wilcoxon tests’ results

v

APPENDIX A. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

(a) Crossing Scenario

(b) Circle-24 Scenario

(c) Hallway Scenario

Figure A.1 – Illustration of reference data used for batch testing. (a) A few people
standing on a circle are asked to reach the antipodal positions, they were motion-captured
to record their global trajectories. (b) The same experiment as the previous one with a
larger number of subjects (up to 24). (c) Several subjects walk through a hallway while
being recording with optical tracking equipment ([Zhang et al. 2012]).

vi

3. OPTIMIZATION COMPARISON

Crossing CMA < G < CMA+G < {SA, GA, GA+G} < CMA+SA < GA+SA
Hallway {GA, CMA} < G < CMA+G < GA+G < GA+SA < SA, {CMA+SA}
Circle-24 (P) CMA < GA < {G, CMA+G} < GA+G < GA+SA < CMA+SA < SA
Circle-24 (I) CMA < {G, GA, CMA+G} < GA+SA < {SA, GA+SA, CMA+SA}

Table A.2 – This shows which optimization algorithms most quickly optimize the metrics,
the formulation A < B means A is faster than B. In the Circle-24(a) example, we have used
the Progressive Difference metric, while in the Circle-24(b) example, we have used the
Inter-pedestrian Distance metric, with the same data in both cases.

Figure A.2 – .
]Figures extracted from [Chattaraj et al. 2009]. Subjects from India (top) and Ger-
many (bottom) were asked to walk in a line. Video analysis was performed to extract
fundamental diagrams (speed vs. density).

vii

APPENDIX A. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

for the score. Figure A.5 shows the Friedman and Wilcoxon tests’ results for runtime.

4 Initial Parameters for Optimization

Parameter min max mean std. dev.
Boids model
radius (m) 0.1 1 0.3 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
Helbing model
radius (m) 0.1 1 0.3 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
RVO2 model
comfort speed (m.s−1) 1 2 1.5 0.5
neighbor distance (m) 10 20 15 5
radius (m) 0.2 0.8 0.5 0.25
agent time horizon (s) 0.1 5 2 2
obstacle time horizon (s) 0.1 5 2 2
Vision model
a 0 1 0.5 0.2
b 0.5 1.5 1 0.2
c 1 2 1.5 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
Tangent model
comfort speed (m.s−1) 1 2 1.5 0.5
radius (m) 0.2 0.8 0.5 0.25
a 0 1 0.5 0.4
b 0 0.6 0.3 0.2

Table A.3 – Default values for simulation parameters for the 5 models integrated to the
framework

viii

4. INITIAL PARAMETERS FOR OPTIMIZATION

Figure A.3 – Summary of the experiment testing optimization algorithms. Each row
shows results for a different type of data. In each row, the left side describes the data
and metric. The middle shows scoreAfterClibration

scoreBeforeClibration with a lower value indicating better
optimization. The right shows time in seconds. Each graph shows its results for each
model for each optimization method.

ix

APPENDIX A. CRAAL: PARAMETER ESTIMATION AND COMPARATIVE EVALUATION OF
CROWD SIMULATIONS

Figure A.4 – Statistical results of the Friedman’s Anova and Post-Hoc Wilcoxon signed
rank tests on the score depending on the optimization algorithm. Mean values are reported
for each algorithm. Friedman’s Anova showed an influence of the optimization algorithm
on the score for each type of data (Few Agents, Hallway, 24-Agents (a), 24-Agents (b)).
Significant differences between algorithms are represented through a line (p < 0.0018).

x

4. INITIAL PARAMETERS FOR OPTIMIZATION

Figure A.5 – Statistical results of the Friedman’s Anova and Post-Hoc Wilcoxon signed
rank tests on the computation time depending on the optimization algorithm. Mean values
(s) are reported for each algorithm. Friedman’s Anova showed an influence of the opti-
mization algorithm on the computation time foreach type of data (Few Agents, Hallway,
24-Agents (a), 24-Agents (b)). Significant differences between algorithms are represented
through a line (p < 0.0018).

xi

BWarpDriver: Context-Aware
Probabilistic Motion Prediction for
Crowd Simulation

1 Warp Operators

Warp Operators model each agent property that we want to include in the algorithm.
As mentioned in Chapter 4 Section 3, these could be: shape, size, position, velocity,
followed path, etc. Mechanically, Warp Operators warp the Intrinsic Field defined for
each perceived agent b in its agent-centric space-time Sb,k into the perceiving agent a’s
agent-centric space-time Sa,k.

In this sub-section, we describe Warp Operators modeling agent-related and context-
related properties.

1.1 Agent-Related Operators

This section details Warp Operators modeling agent-related properties. For each Warp

Operator W, we give its direct and inverse expressions:

� W (s) for a point s ∈ S,

� W−1(p) for a probability p ∈ [0, 1],

� and W−1(g) for a probability gradient g ∈ R
3.

Position and Orientation The Warp Operator Wlocal models the agents’ position and
orientation properties. It is a simple change of referential between Sa,k and Sb,k.

Time Horizon To avoid collisions in a time horizon T (beyond the normalized 1 sec-
ond in the Intrinsic Field), we define a time horizon operator Wth such that:

Wth(s) = s ⋆ (1, 1, 1/T), (B.1)

W−1
th (p) = p, (B.2)

W−1
th (g) = g. (B.3)

xiii

APPENDIX B. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION
FOR CROWD SIMULATION

Time Uncertainty This operator Wtu models the increased uncertainty on the states
of other agents the further we look in time. It is a dilation by a coefficient which scales
from 1 at t = 0 to 1 + α at t = 1 (α being a user-set parameter):

Wtu(s) = s ⋆ (β, β, 1), (B.4)

W−1
tu (p) = pβ2, (B.5)

W−1
tu (g) = (βg.x, βg.y, γ1g.x+ γ2g.y + g.t), (B.6)

where β = 1/(1 + αs.t), γ1 = −αβ
2s.x, γ2 = −αβ

2s.y.

Radius To change the radius of the agents, we dilate space along the x and y axes by
a factor equal to the sum α of the perceiving and perceived agents’ radii (radius of their
Minkowski Sum):

Wr(s) = s ⋆ (1/α, 1/α, 1), (B.7)

W−1
r (p) = p, (B.8)

W−1
r (g) = g. (B.9)

Velocity We model the agent’s instantaneous velocity as a displacement along the x

axis:

Wv(s) = s+ (−va,ks.t, 0, 0), (B.10)

W−1
v (p) = p, (B.11)

W−1
v (g) = g + (0, 0, −va,kg.x). (B.12)

Velocity Uncertainty Depending on the speed of an agent, that agent could be more
or less likely to make certain adaptations to its trajectory. For instance, the faster an
agent travels, the more likely it is to accelerate/decelerate rather that turn. Given two
user-set parameters α1 and α2 and the agent’s preferred speed vpref :

Wvu(s) = s ⋆ (β1, β2, 1), (B.13)

W−1
vu (p) = pβ1β2, (B.14)

W−1
vu (g) = g ⋆ (β1, β2, 1), (B.15)

where: β1 = 1/(1 + α1
va,k
vpref

), β2 = 1 + α2
va,k
vpref

.

1.2 Context-Related Operators

The following operators provide information based on the Environment Layout (opera-
tor Wel), Interactions with Obstacles (operator Wio) and Observed Behaviors of agents
(operator Wob). These operators, where applicable, replace the Local Space operator

Wlocal,a→b. We call Wref the resulting operator: Wref = {Wlocal or Wel or Wio or Wob }. To
achieve their goals, these operators rely on a common algorithm (although there can be
variations in the implementation to accelerate the execution time where possible) which
can deform (and split) space to arbitrary shapes defined as graphs. We first introduce
the algorithm and then describe what shapes/graphs we use for each operator. Chapter 4
Figure 4.4 shows examples of curved motion prediction.

xiv

1. WARP OPERATORS

Warping Space to Arbitrary Shapes To describe the graph-based, arbitray-shape-
warping algorithm, we first introduce a few more notations.

� N is the set of nodes composing the input, shape-defining graph.

� n ∈ N with various subscripts denotes nodes from this set. All operations that
apply to points s ∈ S also apply to nodes. na is the node that is closest to an agent
a.

� ∀v ∈ R
3, ‖v‖ denotes the norm of v.

� ∀n1, n2 ∈ N , edgeDistance(n1, n2) is the distance between nodes n1 and n2 along
the shortest path linking them in the graph.

� ∀n1, n2 ∈ N , vn1,n2
denotes the vector between nodes n1 and n2.

� ∀v1, v2 ∈ R
3, angle(v1, v2) is the angle in radians between vectors v1 and v2.

� ∀s ∈ S, ∀α ∈ R, ∀v ∈ R
3, rotateα,v(s) rotates s around v by α radians.

Given these notations, the procedure is described in Algorithm 3. First, we find the
starting node na which is the closest node to the considered agent a. Then, we find the
two nodes n1 and n2 that are closest to point sin and reorder them so that, from these
two nodes, nc is the node that is closer to na and nf is further from na (first four lines
in Algorithm 3). Given these two nodes, slocal represents sin’s coordinates in the new,
local, referential, where nc is the local origin and vnc,nf

is the local x axis (next three
lines in Algorithm 3). Finally, from this local point slocal, we can compute the final sout
coordinates (last line in Algorithm 3). sout’s x coordinate is the distance between na and
slocal’s projection on the local x axis (sum of edgeDistance(nc, na) and slocal · x). sout’s
y coordinate is slocal’s y coordinate (sout · y). And, finally, the time coordinate is left
unchanged.

Algorithm 3: Algorithm which aligns space with a graph. From a point sin ∈ S, it
gives the new coordinates sout along a graph N .

n1 ← argminn∈N‖sin − n‖
n2 ← argminn∈N\n1

‖sin − n‖

nc ← argminn∈{n1,n2} edgeDistance(n, na)

nf ← argmaxn∈{n1,n2} edgeDistance(n, na)

α← angle(x, vnc,nf
)

slocal ← sin − nc

slocal ← rotate−α,t(slocal)
sout ← (edgeDistance(nc, na) + slocal · x, slocal · y, sin · t)

xv

APPENDIX B. WARPDRIVER: CONTEXT-AWARE PROBABILISTIC MOTION PREDICTION
FOR CROWD SIMULATION

(a) Layout graph. (b) Obstacle graph.

(c) History graph.

Figure B.1 – Graphs. (a): Example of a graph (in black) defining probable trajectories
at an intersection between three hallways (walls in red). (b): Example of an interaction
between an agent (blue) and an obstacle (red). In black is the obstacle graph and in green
are the temporary agent and intersection nodes (as well as their connections to the obstacle
graph). (c): Simple example of a prediction based on an agent’s observed history. In black
is the past, observed trajectory of the agent (in blue), in green is the predicted trajectory
based on the current node and the node most similar to it.

Environment Layout When navigating in an environment, based on its layout, we
can predict what trajectories other pedestrians are likely to follow. In a series of hallways,
for instance, when not threatened by collisions with other pedestrians, one would stay
roughly in the middle of the hallway and take smooth turning trajectories at intersections
(an agent could turn either left or right in Figure 4.4(a)). When navigating on curved
paths, one would, again, have a tendency to stay roughly in the middle, resulting in a
curved trajectory (Figure 4.4(b)). The operator Wel models this knowledge by warping
space to “align” it with these probable trajectories, which are ultimately very similar to
navigation graphs as shown on Figure B.1(a). The space-shape-warping algorithm then
uses such a graph as its input.

Interactions With Obstacles Where the environment layout operator focuses on
other agents’ probable trajectories assuming they will continue travelling, this operator
Wio takes care of possible interactions between agents and obstacles. These interactions
are essentially much more drastic changes to an agent’s locomotion than paths, such as
full stops. These can occur if, for instance, an agent comes up to a wall (Figure 4.4(c))
(to interact with an ATM, look out the window, check a map...). This can also happen
with an agent coming into contact with a small/temporary/unexpected obstacle which
could force it to stop and then “hug” the obstacle to get around it.

xvi

1. WARP OPERATORS

To achieve this, we construct a graph around each obstacle (an obstacle being mod-
elled as a series of connected line segments) as shown in Figure B.1(b). When an agent’s
predicted trajectory intersects with an obstacle, we construct two additional nodes, one
at the agent’s position and one at the intersection between the predicted trajectory and
the obstacle’s graph. The intersection’s node is then connected to the agent’s node as
well as the obstacle’s two closest nodes (see Figure B.1(b)). The resulting graph is then
used as input for the space-shape-warping algorithm.

Observed Behaviors With the last operator Wob, we aim to improve the prediction of
agents’ future motions by looking at their past ones. In the worst case, we might not find
any useful information, which won’t impact the prediction. However, we might also find
some behaviors similar to what the agent is currently doing (e.g. turning in a particular
way) or, in the best case, we might find patterns (e.g. agents going in near-circles, zig-
zags...) that we can extend to the currently-observed situation.

In order to take this information into account for an agent a at timestp k, we keep a
history of this agent’s positions during h previous timesteps. For each of these timesteps
i ∈ [k − h, k − 1], we record a node na,i to which we associate the agent’s position at that
timestep as well as the change of orientation αa,i = angle(vna,i,na,i−1

, vna,i−1,na,i−2
). An

agent a’s history H is then the collection of these h nodes H = {na,k−h, ..., na,k−1}. Then,
at timestep k, we look for the most similar timestep in the past i∗ = argmini∈[k−h,k−1]|αa,i−
αa,k| (note that is is possible to use more than one node to check the similarity). If
|αa,i∗ − αa,k| is under a certain threshold β, the situation is similar enough and can be
used. In that case, we link the nodes na,k and na,i∗ (effectively making timestep i∗’s future
become timestep k’s future) and the resulting, updated graph (as seen on Figure B.1(c))
can be used as input for the space-shape-warping algorithm.

xvii

Bibliography

[ABV14] A. Alahi, M. Bierlaire, and P. Vandergheynst. Robust real-time pedestri-
ans detection in urban environments with low-resolution cameras. Trans-

portation Research Part C: Emerging Technologies, 39(0):113 – 128, 2014.
85

[ACC+13] Alessandro Attanasi, Andrea Cavagna, Lorenzo Del Castello, Irene Giar-
dina, Stefania Melillo, Leonardo Parisi, Oliver Pohl, Bruno Rossaro, Ed-
ward Shen, Edmondo Silvestri, and Massimiliano Viale. Collective be-
haviour without collective order in wild swarms of midges. Cornell Uni-

versity Library, arXiv:1307.5631, 2013. 75, 82

[AMBT06] Gianluca Antonini, Santiago Venegas Martinez, Michel Bierlaire, and
Jean Philippe Thiran. Behavioral priors for detection and tracking of
pedestrians in video sequences. International Journal of Computer Vi-

sion, 69(2):159–180, 2006. 89

[AS08] Saad Ali and Mubarak Shah. Floor fields for tracking in high density crowd
scenes. In ECCV, pages 1–14. 2008. 89

[BC13] Abbas Ali Butt and Robert T Collins. Multi-target tracking by lagrangian
relaxation to min-cost network flow. In Computer Vision and Pattern

Recognition (CVPR), 2013 IEEE Conference on, pages 1846–1853. IEEE,
2013. 87

[BCM12] Loris Bazzani, Marco Cristani, and Vittorio Murino. Decentralized parti-
cle filter for joint individual-group tracking. In Computer Vision and Pat-

tern Recognition (CVPR), 2012 IEEE Conference on, pages 1886–1893.
IEEE, 2012. 88

[BFF09] Jerome Berclaz, Francois Fleuret, and Pascal Fua. Multiple object track-
ing using flow linear programming. In Performance Evaluation of Track-

ing and Surveillance (PETS-Winter), 2009 Twelfth IEEE International

Workshop on, pages 1–8. IEEE, 2009. 88

[BKBS13] James Brecht, Theodore Kolokolnikov, AndreaL. Bertozzi, and Hui Sun.
Swarming on random graphs. Journal of Statistical Physics, 151(1-2):150–
173, 2013. 74

[BM09] Laurence Boudet and Sophie Midenet. Pedestrian crossing detection based
on evidential fusion of video-sensors. Transportation Research Part C:

xix

BIBLIOGRAPHY

Emerging Technologies, 17(5):484 – 497, 2009. Artificial Intelligence in
Transportation Analysis: Approaches, Methods, and Applications. 85

[BM14] Aniket Bera and Dinesh Manocha. Realtime multilevel crowd tracking us-
ing reciprocal velocity obstacles. In Proceedings of Conference on Pattern

Recognition, Sweden, 2014. 88, 89, 91, 97

[BMD+13] Sachit Butail, Nicholas Manoukis, Moussa Diallo, José M. C. Ribeiro, and
Derek Paley. The dance of male anopheles gambiae in wild mating swarms.
J. Med. Entomol., 50(3):552–559, 2013. 75

[BMP11] Martin Burger, Peter Markowich, and Jan-Frederik Pietschmann. Contin-
uous limit of a crowd motion and herding model: analysis and numerical
simulations. Kinet. Relat. Models, 4(4):1025–1047, 2011. 19

[BRL+09] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-
Meier, and Luc Van Gool. Robust tracking-by-detection using a detector
confidence particle filter. In Computer Vision, 2009 IEEE 12th Interna-

tional Conference on, pages 1515–1522. IEEE, 2009. 88

[BSC+06] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R.
Miller, and S. J. Simpson. From disorder to order in marching locusts.
Science, 312(5778):1402–1406, 2006. 74

[BYB11] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object
tracking with online multiple instance learning. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 33(8):1619–1632, 2011. 87

[CARH13] Julien Cividini, Cecile Appert-Rolland, and Hendrik-Jan Hilhorst. Diag-
onal patterns and chevron effect in intersecting traffic flows. EPL (Euro-

physics Letters), 102(2):20002, 2013. 14, 55

[CC07] Nicolas Courty and Thomas Corpetti. Crowd motion capture. Computer

Animation and Virtual Worlds, 18(4-5):361–370, 2007. 16, 17

[CC14] P. Charalambous and Y. Chrysanthou. The pag crowd: A graph based
approach for efficient data-driven crowd simulation. Computer Graphics

Forum, 33(8):95–108, 2014. 15, 16

[CDF+03] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd,
Guy Theraulaz, and Eric Bonabeau. Self-Organization in Biological Sys-

tems. Princeton University Press, 2003. 71, 79

[Che04] S. Chenney. Flow tiles. In Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 233–
242, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Associa-
tion. 16, 17

[CkJ+02] Iain D. Couzin, Jens krause, Richard James, Graeme D. Ruxton, and
Nigel R. Franks. Collective memory and spatial sorting in animal groups.
J. Theory. Biol, 218:1–11, 2002. 73

xx

BIBLIOGRAPHY

[CM12] Sean Curtis and Dinesh Manocha. Pedestrian simulation using geomet-
ric reasoning in velocity space. In Pedestrian and Evacuation Dynamics

(PEDS), 2012. 29, ii

[CSC09] Ujjal Chattaraj, Armin Seyfried, and Partha Chakroborty. Comparison of
pedestrian fundamental diagram across cultures. In Advances in Complex

Systems, pages 393–405, 2009. 25, 33, 35, ii

[DARM+13] Pierre Degond, Cécile Appert-Rolland, Mehdi Moussaid, Julien Pettré,
and Guy Theraulaz. A hierarchy of heuristic-based models of crowd dy-
namics. Journal of Statistical Physics, 152(6):1033–1068, 2013. 19

[DARPT13] Pierre Degond, Cécile Appert-Rolland, Julien Pettré, and Guy Ther-
aulaz. Vision-based macroscopic pedestrian models. arXiv preprint

arXiv:1307.1953, 2013. 19

[DCBC06] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-
propelled particles with soft-core interactions: Patterns, stability, and col-
lapse. Phys. Rev. Lett., 96:104302, 2006. 73

[EG09] Markus Enzweiler and Dariu M Gavrila. Monocular pedestrian detection:
Survey and experiments. PAMI, pages 2179–2195, 2009. 86

[Feu00] Franck Feurtey. Simulating the collision avoidance behavior of pedestri-
ans. Master’s thesis, Department of Electronic Engineering, University of
Tokyo, 2000. 10, 46

[FGLO99] G. Flierl, D. Grünbaum, S. Levins, and D. Olson. From individuals to ag-
gregations: the interplay between behavior and physics. Journal of Theo-

retical Biology, 196(4):397–454, 1999. 73

[Fri37] Milton Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical

Association, 32(200):675–701, 1937. v

[GCK+09] Stephen. J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming
Lin, Dinesh Manocha, and Pradeep Dubey. Clearpath: Highly paral-
lel collision avoidance for multi-agent simulation. In Proceedings of the

2009 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-

tion, SCA ’09, pages 177–187, New York, NY, USA, 2009. ACM. 11, 23,
46

[GCLM12] Stephen J. Guy, Sean Curtis, Ming C. Lin, and Dinesh Manocha. Least-
effort trajectories lead to emergent crowd behaviors. Phys. Rev. E,
85:016110, Jan 2012. 11, 23, 24, 46

[GGB06] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking
via on-line boosting. In BMVC, volume 1, page 6, 2006. 87

xxi

BIBLIOGRAPHY

[GNL13] Abhinav Golas, Rahul Narain, and Ming Lin. Hybrid long-range collision
avoidance for crowd simulation. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, I3D ’13, pages 29–36,
New York, NY, USA, 2013. ACM. 13, 46

[GvdBL+12] Stephen J. Guy, Jur van den Berg, Wenxi Liu, Rynson Lau, Ming C. Lin,
and Dinesh Manocha. A statistical similarity measure for aggregate crowd
dynamics. ACM Trans. Graph., 31(6):190:1–190:11, November 2012. 12,
25, 46

[HF09] Rob Hess and Alan Fern. Discriminatively trained particle filters for com-
plex multi-object tracking. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 240–247. IEEE, 2009. 88

[HFV00] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of
escape panic. Nature, 407(6803):487–490, 2000. 8, 23, 24, 27, 46

[HHD14] Qing He, K. Larry Head, and Jun Ding. Multi-modal traffic signal control
with priority, signal actuation and coordination. Transportation Research

Part C: Emerging Technologies, 46(0):65 – 82, 2014. 85

[HM95] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynam-
ics. Physical Review E, 51(5):4282–4286, 1995. 8, 10, 23, 24, 44, 46, 64, 73,
78, 96

[HO96] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distri-
butions in evolution strategies: the covariance matrix adaptation. In Evo-

lutionary Computation, 1996., Proceedings of IEEE International Confer-

ence on, pages 312–317, May 1996. 30, iv

[Hol92] John H Holland. Genetic algorithms. Scientific american, 267(1):66–72,
1992. 30

[HST11] Sam Hare, Amir Saffari, and Philip HS Torr. Struck: Structured output
tracking with kernels. In Computer Vision (ICCV), 2011 IEEE Interna-

tional Conference on, pages 263–270. IEEE, 2011. 87

[Hug03] Roger L Hughes. The flow of human crowds. Annual review of fluid me-

chanics, 35(1):169–182, 2003. 18, 73

[JB12] Zhixing Jin and Bir Bhanu. Single camera multi-person tracking based on
crowd simulation. In Pattern Recognition (ICPR), 2012 21st International

Conference on, pages 3660–3663. IEEE, 2012. 89

[JCP+10] E. Ju, M.G. Choi, M. Park, J. Lee, K.H. Lee, and S. Takahashi. Morphable
crowds. ACM Trans. Graph., 29:140:1–140:10, 2010. 15, 16, 45

[JFL07] Hao Jiang, Sidney Fels, and James J Little. A linear programming ap-
proach for multiple object tracking. In Computer Vision and Pattern

Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007. 88

xxii

BIBLIOGRAPHY

[JHS07] Anders Johansson, Dirk Helbing, and Pradyumn K Shukla. Specification
of the social force pedestrian model by evolutionary adjustment to video
tracking data. Advances in complex systems, 10(supp02):271–288, 2007. 9

[KBD04] Zia Khan, Tucker Balch, and Frank Dellaert. An mcmc-based particle
filter for tracking multiple interacting targets. In Computer Vision-ECCV

2004, pages 279–290. Springer, 2004. 88

[KGL+14] Sujeong Kim, Stephen J. Guy, Wenxi Liu, David Wilkie, Rynson W.H.
Lau, Ming C. Lin, and Dinesh Manocha. Brvo: Predicting pedestrian
trajectories using velocity-space reasoning. The International Journal of

Robotics Research, 2014. 13, 46

[KHBO09] Ioannis Karamouzas, Peter Heil, Pascal Beek, and Mark H. Overmars. A
predictive collision avoidance model for pedestrian simulation. In Proceed-

ings of the 2Nd International Workshop on Motion in Games, MIG ’09,
pages 41–52, Berlin, Heidelberg, 2009. Springer-Verlag. 9, 10, 25, 46, 73

[KHHL12] Manmyung Kim, Youngseok Hwang, Kyunglyul Hyun, and Jehee
Lee. Tiling motion patches. In Proceedings of the 11th ACM SIG-

GRAPH/Eurographics conference on Computer Animation, pages 117–
126. Eurographics Association, 2012. 17

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. Optimization by
simulated annealing. science, 220:671–680, 1983. 30

[KLLT08] Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and Shigeo Takahashi. Group
motion editing. In Proc. of the 2008 ACM SIGGRAPH Conference, SIG-
GRAPH ’08, pages 1–8, 2008. 73

[KN12] Louis Kratz and Ko Nishino. Going with the flow: pedestrian efficiency in
crowded scenes. In ECCV, pages 558–572. 2012. 89

[KO13] Douglas Kelley and Nicholas Ouellette. Emergent dynamics of laboratory
insect swarms. Scientific Reports, 3(1073), 2013. 75

[KR08] Bernardin Keni and Stiefelhagen Rainer. Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Image and

Video Processing, 2008, 2008. 98

[KS08] Tobias Kretz and Michael Schreckenberg. The f.a.s.t.-model. CoRR,
abs/0804.1893, 2008. 13, 45

[KSG14] Ioannis Karamouzas, Brian Skinner, and Stephen J. Guy. Universal power
law governing pedestrian interactions. Phys. Rev. Lett., 113:238701, Dec
2014. 12, 25, 46

[KSHF09] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos.
Egocentric affordance fields in pedestrian steering. In Proceedings of the

2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pages
215–223, New York, NY, USA, 2009. ACM. 12, 46

xxiii

BIBLIOGRAPHY

[KWS+11] Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, and Petros
Faloutsos. Scenario space: characterizing coverage, quality, and failure of
steering algorithms. In Proc. of the 2011 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’11, pages 53–62, New York,
NY, USA, 2011. ACM. 24, 39

[LCHL07] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee Lee. Group
behavior from video: a data-driven approach to crowd simulation. In Pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Com-

puter animation, pages 109–118. Eurographics Association, 2007. 15

[LCL07] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by ex-
ample. Computer Graphics Forum, 26(3):655–664, 2007. 14, 15, 45

[LCLM14] Wenxi Liu, Antoni B. Chan, Rynson W. H. Lau, and Dinesh Manocha.
Leveraging long-term predictions and online-learning in agent-based mul-
tiple person tracking. 2014. 88, 89

[LCSCO09] Alon Lerner, Yiorgos Chrysanthou, Ariel Shamir, and Daniel Cohen-Or.
Data driven evaluation of crowds. In Proc. of the 2nd International Work-

shop on Motion in Games, MIG ’09, pages 75–83, Berlin, Heidelberg, 2009.
Springer-Verlag. 24

[LCSCO10] Alon Lerner, Yiorgos Chrysanthou, Ariel Shamir, and Daniel Cohen-Or.
Context-dependent crowd evaluation. In Computer Graphics Forum, vol-
ume 29, pages 2197–2206. Wiley Online Library, 2010. 24

[LD04] Fabrice Lamarche and Stéphane Donikian. Crowd of virtual humans: a
new approach for real time navigation in complex and structured environ-
ments. In Computer Graphics Forum, volume 23, pages 509–518. Wiley
Online Library, 2004. 9

[LWPCL15] Weizi Li, David Wolinski, Julien Pettré, and Ming C. Lin. Biologically-
inspired visual simulation of insect swarms. Computer Graphics Forum,
34(2):425–434, 2015. 76

[MEK99] Alexander Mogilner and Leah Edelstein-Keshet. A non-local model for a
swarm. Journal of Mathematical Biology, 38(6):534–570, 1999. 74

[MHT11] Mehdi Moussaïd, Dirk Helbing, and Guy Theraulaz. How simple rules
determine pedestrian behavior and crowd disasters. Proceedings of the

National Academy of Sciences, 108(17):6884–6888, 2011. 12, 19

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid
control using the adjoint method. In ACM Transactions On Graphics

(TOG), volume 23, pages 449–456. ACM, 2004. 31

[NGCL09] Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C. Lin. Aggregate
dynamics for dense crowd simulation. ACM Transactions on Graphics,
28:122:1–122:8, 2009. 18, 19, 45, 73

xxiv

BIBLIOGRAPHY

[NWK90] J. Neter, W. Wasserman, and M.H. Kutner. Applied Linear Statistical

Models, 3rd edition. Burr Ridge, 1990. 75

[Oku86] Akira Okubo. Dynamical aspects of animal grouping: Swarms, schools,
flocks, and herds. Adv. Biophys., 22:1–94, 1986. 71, 75

[OMCP12] Anne-Hélène Olivier, Antoine Marin, Armel Crétual, and Julien Pettré.
Minimal predicted distance: A common metric for collision avoidance dur-
ing pairwise interactions between walkers. Gait & posture, 36(3):399–404,
2012. 12, 44, 46

[OPOD10] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian. A synthetic-vision
based steering approach for crowd simulation. ACM Trans. Graph.,
29(4):123:1–123:9, July 2010. 12, 19, 23, 24, 25, 28, 46, 73

[OTDF+04] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and
David G Lowe. A boosted particle filter: Multitarget detection and track-
ing. In Computer Vision-ECCV 2004, pages 28–39. Springer, 2004. 88

[PCBS11] Matthias Plaue, Minjie Chen, Günter Bärwolff, and Hartmut Schwandt.
Trajectory extraction and density analysis of intersecting pedestrian flows
from video recordings. In Proc. of the 2011 ISPRS conference on Pho-

togrammetric image analysis, PIA’11, pages 285–296, Berlin, Heidelberg,
2011. Springer-Verlag. 33

[PESVG09] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll never walk
alone: Modeling social behavior for multi-target tracking. In Computer

Vision, 2009 IEEE 12th International Conference on, pages 261–268, Sept
2009. 9, 10, 24, 25, 46, 89, 97

[PEVG10] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data as-
sociation by joint modeling of pedestrian trajectories and groupings. In
Computer Vision–ECCV 2010, pages 452–465. Springer, 2010. 97, 98

[PKB07] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm opti-
mization. Swarm intelligence, 1(1):33–57, 2007. 31

[PKO14] James Puckett, Douglas Kelley, and Nicholas Ouellette. Searching for ef-
fective forces in laboratory insect swarms. Scientific Reports, 4(4766),
2014. 75, 79

[POO+09] Julien Pettré, Jan Ondřej, Anne-Hélène Olivier, Armel Cretual, and
Stéphane Donikian. Experiment-based modeling, simulation and valida-
tion of interactions between virtual walkers. In Proceedings of the 2009

ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’09, pages 189–198, New York, NY, USA, 2009. ACM. 10, 11, 22,
24, 25, 28, 31, 46

xxv

BIBLIOGRAPHY

[PPD07] Sébastien Paris, Julien Pettré, and Stéphane Donikian. Pedestrian reac-
tive navigation for crowd simulation: a predictive approach. Computer

Graphics Forum, 26(3):665–674, 2007. 10, 11, 23, 24, 25, 44, 46

[PSH+06] A.G.A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and Wensheng Hu.
Multi-object tracking through simultaneous long occlusions and split-
merge conditions. In Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, volume 1, pages 666–673, June
2006. 88

[PvdBC+11] Sachin Patil, Jur van den Berg, Sean Curtis, Ming C. Lin, and Di-
nesh Manocha. Directing crowd simulations using navigation fields.
IEEE Transactions on Visualization and Computer Graphics, 17:244–254,
February 2011. 17, 73, 80

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Computer Graphics, 21(4):25–34, 1987. 8, 46, 64, 73,
74, 78

[Rey99] C.W. Reynolds. Steering behaviors for autonomous characters. In Game

Developers Conference 1999, pages 763–782, 1999. 9, 10, 27, 46, 97

[RS11] Mikel Rodriguez and Josef et al. Sivic. Data-driven crowd analysis in
videos. In ICCV, pages 1235–1242, 2011. 89

[SBR14] Stefan Seer, Norbert Brändle, and Carlo Ratti. Kinects and human ki-
netics: A new approach for studying pedestrian behavior. Transportation

Research Part C: Emerging Technologies, 48(0):212 – 228, 2014. 85

[Sch01] Andreas Schadschneider. Cellular automaton approach to pedestrian dy-
namics - theory. page 11, 2001. 13, 45

[SESG08] Jessica Strefler, Udo Erdmann, and Lutz Schimansky-Geier. Swarming in
three dimensions. Phys. Rev. E, 78(3):031927, 2008. 73

[SF15] Sebastian Seriani and Rodrigo Fernandez. Pedestrian traffic management
of boarding and alighting in metro stations. Transportation Research Part

C: Emerging Technologies, 53(0):76 – 92, 2015. 85

[Sha] Shark. http://image.diku.dk/shark/sphinx_pages/build/html/

index.html. iv

[SHN12] Pramod Sharma, Chang Huang, and Ram Nevatia. Unsupervised incre-
mental learning for improved object detection in a video. In CVPR, pages
3298–3305, 2012. 87

[SKFR09] Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and Glenn Reinman.
Steerbench: a benchmark suite for evaluating steering behaviors. Com-

puter Animation and Virtual Worlds, 20(5-6):533–548, 2009. 24, 25, 39

xxvi

http://image.diku.dk/shark/sphinx_pages/build/html/index.html
http://image.diku.dk/shark/sphinx_pages/build/html/index.html

BIBLIOGRAPHY

[Sum10] DJT Sumpter. Collective Animal behavior. Princeton University Press,
2010. 71

[TBL06] Chad Topaz, Andrea Bertozzi, and Mark Lewis. A nonlocal contin-
uum model for biological aggregations. Bulletin of Mathematical Biology,
68(7):1601–1623, 2006. 74

[TCP06] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. In SIGGRAPH

’06, pages 1160–1168, New York, NY, USA, 2006. ACM. 18, 45, 73

[TYK+09] Shigeo Takahashi, Kenichi Yoshida, Taesoo Kwon, Kang Hoon Lee, Jehee
Lee, and Sung Yong Shin. Spectral-based group formation control. Com-

puter Graphics Forum, 28(2):639–648, 2009. 73

[VCBJ+95] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer
Shochet. Novel type of phase transition in a system of self-driven particles.
Physical Review Letters, 75(6):1226–1229, 1995. 8, 73, 75, 82

[vdBLM08] J. van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles
for real-time multi-agent navigation. In IEEE International Conference

on Robotics and Automation, pages 1928–1935, May 2008. 10, 11, 13, 23,
27, 44, 46, 64, 73, 89, 95, 96, 97

[vdBSGM11] J. van den Berg, J. Snape, S.J. Guy, and D. Manocha. Reciprocal collision
avoidance with acceleration-velocity obstacles. In Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, pages 3475–3482,
May 2011. 13, 46, 78

[WGO+14] David Wolinski, Stephen Guy, Anne-Helene Olivier, Ming Lin, Dinesh
Manocha, and Julien Pettré. Parameter Estimation and Comparative
Evaluation of Crowd Simulations. Computer Graphics Forum, 33(2):303–
312, 2014. 12, 46, 64, 65

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics

bulletin, 1(6):80–83, 1945. v

[WJDZ14] Xinjie Wang, Xiaogang Jin, Zhigang Deng, and Linling Zhou. Inherent
noise-aware insect swarm simulation. Computer Graphics Forum, 2014.
viii, 73, 74

[WLY13] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A
benchmark. pages 2411–2418, 2013. 86

[YBOB11] Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and Tamara L Berg.
Who are you with and where are you going? In CVPR, pages 1345–1352,
2011. 89, 97

[YEE+09] Christian A. Yates, Radek Erban, Carlos Escudero, Iain D. Couzin,
Jerome Buhl, Ioannis G. Kevrekidis, Philip K. Maini, and David J. T.

xxvii

BIBLIOGRAPHY

Sumpter. Inherent noise can facilitate coherence in collective swarm mo-
tion. Proceedings of the National Academy of Sciences, 106(14):5464–5469,
2009. 74

[YJS06] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A sur-
vey. Acm Computing Surveys (CSUR), 2006. 86

[YMPT09] Barbara Yersin, Jonathan Maïm, Julien Pettré, and Daniel Thalmann.
Crowd patches: populating large-scale virtual environments for real-time
applications. In Proceedings of the 2009 symposium on Interactive 3D

graphics and games, pages 207–214. ACM, 2009. 17, 18

[YN12] Bo Yang and Ram Nevatia. Multi-target tracking by online learning of
non-linear motion patterns and robust appearance models. In Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
1918–1925. IEEE, 2012. 89

[ZGM12] Xuemei Zhao, Dian Gong, and Gérard Medioni. Tracking using motion
patterns for very crowded scenes. In ECCV, pages 315–328. 2012. 89

[ZKSS12] J Zhang, W Klingsch, A Schadschneider, and A Seyfried. Ordering
in bidirectional pedestrian flows and its influence on the fundamental
diagram. Journal of Statistical Mechanics: Theory and Experiment,
2012(02):P02002, 2012. v

[ZLN08] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for
multi-object tracking using network flows. In Computer Vision and Pat-

tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008. 87

[ZMMS15] Sohail Zangenehpour, Luis F. Miranda-Moreno, and Nicolas Saunier. Au-
tomated classification based on video data at intersections with heavy
pedestrian and bicycle traffic: Methodology and application. Transporta-

tion Research Part C: Emerging Technologies, 56(0):161 – 176, 2015. 85

[ZTW12] Bolei Zhou, Xiaoou Tang, and Xiaogang Wang. Coherent filtering: de-
tecting coherent motions from crowd clutters. In Computer Vision–ECCV

2012, pages 857–871. Springer, 2012. 55

[ZZY12] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. Real-time compressive
tracking. In ECCV, pages 864–877. 2012. 87

xxviii

	List of Figures
	List of Tables
	Introduction
	Problem
	Approach
	Contributions

	Background
	Introduction
	Autonomous Agent-based Algorithms
	First-Order Algorithms
	Second-Order Algorithms
	Repulsive-Forces from Future Collisions
	Collision-Free Velocities
	Other Predictive Approaches

	Summary

	Centralized Algorithms
	Cellular Automata
	Data-Driven Algorithms
	Tiles and Patches
	Macroscopic Algorithms

	Conclusion

	Craal: Parameter Estimation and Comparative Evaluation of Crowd Simulations
	Introduction
	Related Work
	Evaluation
	Parameters
	Discussion

	Optimization Framework
	Overview of Approach
	Optimization Metrics
	Microscopic Data Metrics
	Macroscopic Data Metrics

	Optimization Techniques
	Greedy approach (G)
	Simulated annealing (SA)
	Genetic algorithm (GA)
	Covariance Matrix Adapation (CMA)

	Results
	Data Categories
	Microscopic data
	Macroscopic data
	Sketch-like data

	Benchmarks

	Analysis and Conclusions

	WarpDriver: Context-Aware Probabilistic Motion Prediction for Crowd Simulation
	Introduction
	Summary of Related Work
	Overview
	Notations and Setup
	Perception: collision probability Fields
	The Intrinsic Field
	Warp Operators
	Agent-Related Operators
	Context-Related Operators
	Composition of Warp Operators

	Combining collision probability Fields

	Solving the Collision-Avoidance Problem
	Results
	Large and Dense Cases
	Test case 1: Big Groups
	Test case 2: Crossing
	Analysis

	Non-Linear Scenarios
	Test case 3: Curved Flows
	Test case 4: Curved Obstacle
	Analysis

	History-based Anticipation
	Test case 5: Zig-Zags
	Test case 6: Danger Corridor
	Analysis

	Highly-constrained Case
	Test case 7: Plane
	Analysis

	Benchmarks

	Discussion and Limitations
	Conclusion

	Applications to Evaluation and Parameter Estimation
	Application to Insect Simulation
	Introduction
	Working Arrangements

	Related Work
	Graphics Point of View
	Biology Point of View
	Discussion

	Approach Overview
	Pre-Processing Stage: Data
	Runtime Stage: Three Levels of Simulation

	Results
	Simulation
	Evaluation

	Conclusion

	Application to Pedestrian Tracking
	Introduction
	Working Arrangements

	Related Work
	General Object Tracking
	Crowd Motion Priors
	Summary

	Mixture Motion Model
	Overview and Notations
	Particle Filter for Tracking
	Parameterized Motion Model
	Mixture of Motion Models

	Implementation and Results
	Motion Models
	Evaluation

	Limitations, Conclusions, and Future Work

	Conclusion and Future Work
	Contributions
	Future Work
	Summary

	Résumé en Français
	Problème
	Approche
	Contributions

	Appendices
	Craal: Parameter Estimation and Comparative Evaluation of Crowd Simulations
	Metrics
	Microscopic Data Metrics
	Macroscopic Data Metrics

	Optimization Techniques
	Greedy algorithm
	Simulated annealing
	Genetic algorithm
	Covariance Matrix Adaptation

	Optimization Comparison
	Initial Parameters for Optimization

	WarpDriver: Context-Aware Probabilistic Motion Prediction for Crowd Simulation
	Warp Operators
	Agent-Related Operators
	Context-Related Operators

	Bibliography

