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Abstract

This work presents the measurement of the generalized electric αE(Q2) and mag-
netic βM(Q2) polarisabilities (GPs) of the proton. The GPs are de�ned in the
Virtual Compton Scattering (VCS) context, i.e. the reaction γ∗p→ γp, where Q2

is the four-momentum transfer of the virtual photon. The GPs are a generaliza-
tion of polarizabilities measured in real Compton scattering (RCS) by taking into
account the Q2-dependency. They are dynamical properties of the proton when
it is deformed by an applied electromagnetic �eld. αE(Q2) (or βM(Q2)) gives ac-
cess to the local polarization (or magnetization) density of the deformed proton.
The studied VCS process is accessible by the photon-electroproduction reaction
(ep → epγ). The GP e�ect is a 1 − 15% contribution to the the ep → epγ cross
section, requiring a high-precision measurement.

The present work is a part of an experiment conducted by the A1 collaboration
at MAMI. The goal is to extract the electric and magnetic GPs at three new Q2

values: 0.1,0.2 and 0.45 GeV 2. This thesis details the extraction at 0.2 GeV 2. The
experiment uses the 1 GeV electron beam, the 5 cm liquid hydrogen target and
the high-resolution spectrometers spectrometers A (B) to detect the �nal electron
(proton).

The �rst-level analysis includes a detailed calibration of experimental data,
and the use of a simulation of the experiment. The measurement of the unpolar-
ized ep → epγ cross section is described with two of its important features: the
correction of the radiative e�ects and the renormalization.

Two di�erent frameworks are used to extract the GPs. The �rst one is based
on the Low Energy Theorem (LET) and is model independent. The second one
relies on the dispersion relation model (DR). The two extractions lead to results
in good agreement. The world data still raises question about the Q2-behavior of
the GPs.

Keywords: electromagnetic probe, generalized polarizabilities, virtual Comp-
ton scattering, Hadron physics, proton structure, low energy expansion, dispersion
relations.



Zusammenfassung

Diese Arbeit stellt die Messung der elektrische αE(Q2) und magnetische βM(Q2)
Generalisierte Polarisierbarkeiten (GPs) des Protons. Die GPs sind in der Virtuellen
Comptonstreuung (VCS) Kontext de�niert, das heiÿt die γ∗p→ γp Reaktion, und
Q2 ist das Quadrat des Viererimpulsübertrags des virtuellen Photons. Die GPs
sind eine Ausweitung der Polarisierbarkeit in Reelle Comptonstreuung fur Q2 6= 0.
Sie sind dynamische Eigenschaften des Protons in Antwort eines elektromagnetis-
ches Feld. αE(Q2) (βM(Q2)) beschreibt die lokale Polarisation (Magnetisierungs)
Dichte des verformten proton. Der studiert VCS Prozess ist durch die Photonen-
electroproduction Reaktion (ep→ epγ). Der GP-E�ekt ist nur ein 1−15% Beitrag
zu das ep→ epγ Wirkungsquerschnit so daÿ hochgenaue Messungen nötig sind.

Der vorliegenden Arbeit ist ein Teil des �vcsq2� Experiments geführt an MAMI,
durch die A1 Zusammenarbeit. vcsq2 Ziel ist, die elektrischen und magnetischen
GPs für drei neue Q2 Werte zu messen: 0.1,0.2 und 0.45 GeV 2. Diese Arbeit
beschreibt die Extraktion für 0.2 GeV 2. Das Experiment verwendet die 1 GeV
Elektronenstrahl, die 5 cm von �üssigem Wassersto� Kryp-Target und Spektrom-
eter A (B) das endgültige Elektron (Proton) zu detektieren. Die erste Ebene
Analyse beinhaltet eine detaillierte Kalibrierung von experimentellen Daten, und
die Verwendung einer Simulation des Experiments. Die Messung des unpolar-
isierten ep → epγ Wirkungsquerschnitt ist mit zwei wichtigen Korrekturen: die
Strahlungskorrektur und der Renormierung.

Zwei verschiedene Rehmen werden verwendet, um die GP heraus zu ziehen.
Die erste stützt sich auf dem Low-Energy-Theorem (LET) und ist Modell unab-
hängig. Die zweite stützt sich auf die Dispersionsrelation Modell (DR). Die beiden
Extraktionen führen zu Ergebnissen in guter Übereinstimmung. Die Welt Daten
werfen noch Fragen zu den Q2 -Verhalten der GPs.



Résumé

Introduction

Un siècle après sa découverte le proton est encore aujourd'hui un objet complexe
source de questionnements. Nous savons que sa structure interne est gouvernée
par l'interaction forte dont la constante de couplage varie avec l'énergie. Cette
variation induit une dichotomie dans notre interprétation des expériences. A haute
énergie, lorsque la constante de couplage diminue, nous pouvons interpréter les
résultats par l'approche perturbative de la chromodynamique quantique. A�n
de décrire le comportement du proton à basse énergie, alors que la constante de
couplage augmente, nous devons utiliser les degrés de liberté hadroniques tels
qu'ils sont présentés, par exemple, dans la théorie des perturbations chirales. A
échelle d'énergie intermédiaire, dans la région des résonances nucléoniques, nous
ne disposons pas d'une théorie descriptive consensuelle.

Le travail présenté dans cette thèse s'inscrit dans le cadre de ces énergies in-
termédiaires. En e�et les polarisabilités généralisées (GPs) sont des quantités
fondamentales paramétrant la réaction du proton à ces énergies. Les GPs en-
trent en jeu lors du processus de di�usion Compton virtuelle γ∗p → γp (VCS)
où elles dépendent du carré du quadri-moment porté par le photon virtuel : Q2.
Particulièrement, αE(Q2) et βM(Q2) les polarisabilités généralisées électrique et
magnétique du proton décrivent la déformation locale de celui-ci lorsqu'il subit un
champ électromagnétique.

Ces deux quantités furent mesurées par le passé, à di�érentes valeurs de Q2, par
trois expériences VCS à JLab, Bates et MAMI. Les résultats obtenus ont montré
un comportement des GPs en fonction de Q2 en désaccord avec les prédictions
faites par di�érents modèles théoriques. En e�et, la forme dipolaire prédite pour
αE(Q2) est contestée dans la région entourant les résultats de MAMI autour de
Q2 = 0.33 GeV 2.

Il fut donc décidé à MAMI de réaliser des nouvelles mesures de αE(Q2) et
βM(Q2) à trois valeurs inédites de Q2 : 0.1, 0.2 et 0.5 GeV 2. Le travail présenté
décrit les mesures réalisées à Q2 = 0.2 GeV 2. Il est divisé en cinq chapitres ; le
premier décrit le cadre théorique des GPs ; le second présente les di�érent modèles
théoriques et résume les résultats obtenus par les expériences précédentes ; le
troisième chapitre détaille l'appareillage expérimental ; la calibration de celui-ci
est expliquée dans le quatrième chapitre ; le cinquième chapitre est consacré à la
description des �ts de l'e�et des GPs.



Chapitre 1

Le premier chapitre est dédié à la présentation des polarisabilités généralisées, leur
description phénoménologique, leur formalisme et la description cinématique du
processus VCS.

Facteurs de forme du proton

Le chapitre commence par la description d'autre grandeurs fondamentales car-
actérisant la structure interne du proton : les facteurs de forme électrique et
magnétique Gp

E(Q2) et Gp
M(Q2). Ces deux quantités décrivent la répartition des

charges et des moments magnétiques à l'intérieur du proton. Les facteurs de forme
paramètrent la di�usion élastique d'un électron sur le proton. Lors de ce proces-
sus le photon virtuel échangé sonde la structure interne du proton à une échelle
dépendant du quadri-moment transféré Q2. Cette dépendance d'échelle est utilisée
pour obtenir la répartition interne des charges et des moments magnétiques via
une transformée de Fourier. Ainsi, les facteurs de forme du proton permettent par
analogie de comprendre ses polarisabilités généralisées.

Puisque les facteurs de forme interviennent dans tous les processus d'électrody-
namique quantique (QED) ils contribuent aux résultats mesurés dans cette expéri-
ence. Or, leur comportement en fonction de Q2 fut mesuré par plusieurs expéri-
ences et de nombreuses paramétrisations de ce comportement existent. L'incertitude
engendrée par cette diversité est un des points clé de l'analyse, il est détaillé dans
le chapitre cinq.

Les polarisabilités du proton

Les secondes quantités fondamentales du proton présentées dans le premier chapitre
sont les polarisabilités. Ce sont des grandeurs scalaires dé�nies dans le cadre de
la di�usion Compton réelle (RCS), lorsqu'un photon réel interagit avec le proton.
Ces quantités décrivent le proton dans sa globalité, comme peuvent le faire sa
charge ou son moment magnétique, elles sont alors à di�érencier des facteurs de
forme et des polarisabilités généralisées qui décrivent le proton d'un point de vue
local. αE la polarisabilité électrique de RCS quanti�e la déformation du proton
dans un champ électrique, βM la polarisabilité magnétique de RCS quanti�e la
déformation du proton dans un champ magnétique.

Les polarisabilités, mesurées depuis les années 1960, ont prouvé l'extrême rigid-
ité du proton. Celui-ci, placé dans un champ électromagnétique, aura une défor-
mation de l'ordre de quelques centièmes de pourcent de son volume.

Les polarisabilités généralisées du proton

La dernière partie du premier chapitre est consacrée aux polarisabilités général-
isées qui gouvernent le processus de di�usion Compton Virtuelle. Celui-ci est
accessible lors de l'électro-production de photon ep → epγ dont la cinématique
est tout d'abord introduite. L'amplitude totale du processus d'électro-production
de photon est une somme de trois amplitudes : Bethe-Heitler, VCS Born et VCS
non-Born. Leur description théorique, par le théorème d'énergie de Low, permet



d'écrire la section e�cace totale comme un développement en puissance de q′cm
l'impulsion du photon réel produit, en dessous du seuil de production d'un pion.

Le processus est alors décrit comme une somme de deux sections e�caces. La
première, dite de �Bethe-Heitler+Born� et notée σBH+B, correspond aux ampli-
tudes de Bethe-Heitler, de VCS Born et à leur interférence. Elle est parfaitement
calculable grâce à l'électrodynamique quantique et sa valeur dépend seulement du
choix �xant la paramétrisation des facteurs de forme. La seconde correspond aux
interférences entre les amplitudes précédentes et celle de VCS non-Born, elle n'est
déterminée qu'à l'ordre premier du développement en puissance de q′cm. A cet
ordre l'e�et des GPs entre en jeu via l'intermédiaire des fonctions de structure :
PLL − PTT/ε et PLT .

Ainsi en mesurant les sections e�caces expérimentales il est possible, grâce
au théorème d'énergie de Low, de mesurer l'e�et des GPs via les fonctions de
structure. Pour ce faire il su�t de comparer la section e�cace théorique σBH+B à
celle mesurée, la di�érence correspond alors à l'e�et des GPs lorsque l'on néglige
les ordres supérieurs en q′cm.

Chapitre 2

Le chapitre deux est divisé en trois sections ; la première est exclusivement dédiée à
la présentation du modèle des relations de dispersion ; dans la seconde les di�érents
modèles prédictifs sont présentés ; la dernière section décrit et regroupe les résultats
des expériences précédentes.

Le modèle des relations de dispersion

Le modèle des relations de dispersion (modèle DR) a la particularité d'utiliser
αE(Q2) et βM(Q2) comme paramètres libres. Ainsi le modèle permet de calculer
des sections e�caces d'électro-production de photon pour n'importe quelle valeur
des GPs. Il peut alors être utilisé pour mesurer les GPs en comparant les sections
e�caces obtenues dans notre expérience à celles calculées par le modèle. Cette
méthode est l'une des deux approches que nous avons utilisées pour obtenir αE(Q2)
et βM(Q2).

Plus précisément le modèle DR utilise la théorie des relations de dispersion
et des principes fondamentaux de la physique pour construire douze amplitudes
décrivant le processus VCS. La partie réelle de chaque amplitude est reliée à sa
partie imaginaire via des relations, dites de dispersion, semblables aux relations
de Kramers-Kronig. Ensuite la partie imaginaire de ces amplitudes est donnée par
le calcule des processus de photo-absorption. Pour ces calculs seul le diagramme
dominant est considéré, γ∗N → Nπ, et son estimation est basée sur le modèle
MAID. Ce modèle est valable sur un grand domaine de Q2 et aussi au-dessus du
seuil de production de pion, jusque dans la région de la résonance ∆.

Modèles prédictifs

Dans la seconde section de ce chapitre des modèles prédictifs sont présentés. Ils ne
sont pas utilisés pour mesurer les GPs mais peuvent être comparés aux résultats



obtenus. Les modèles sont : le modèle des perturbations chirales, le modèle de La-
grangien e�ectif, le modèle Sigma linéaire et le modèle des quarks non-relativistes.

Pour les polarisabilités issues de RCS ces modèles fournissent des valeurs très
di�érentes, illustrant ainsi la complexité des phénomènes d'énergie intermédiaire.

Les expériences précédentes

La dernière section est un résumé des conditions cinématiques et des résultats des
expériences précédentes. Les deux expériences ayant eu lieu à MAMI ainsi que
celle réalisée à JLab sont présentées. Aussi, est souligné dans cette section, le rôle
particulier de l'expérience Bates qui a permis de révéler l'impact non négligeable
des ordres supérieurs lors d'une analyse basée sur le théorème d'énergie de Low.
Grâce aux résultats de l'expérience Bates les mesures présentées ici sont réalisées
en tenant compte de ces e�ets.

Dans cette section est aussi présentée une expérience parallèle à la nôtre visant
à mesurer la polarisabilité généralisée électrique pour une valeur identique de Q2 =
0.2GeV 2 mais par une méthode di�érente basée sur la résonance ∆ et le modèle
DR.

En�n le chapitre est conclu par la présentation graphique de l'ensemble des
résultats obtenus par les expériences VCS lors d'analyses basées sur le théorème
de Low ou basées sur le modèle DR.

Chapitre 3

Le troisième chapitre décrit l'appareillage utilisé dans la collaboration A1 utilisant
le microtron de Mayence (MAMI). Il est divisé en deux sections, les deux pre-
mières introduisent le dispositif utilisé, la troisième insiste sur un point essentiel
de l'analyse : le choix de l'espace des phases exploré.

Dispositif expérimental

Les deux premières sections présentent une description de l'expérience. Les car-
actéristiques techniques du microtron de Mayence sont détaillées dans la première
section. Dans la seconde le fonctionnement des deux spectromètres du hall A1 est
montré.

Dans l'expérience l'électron initial est fourni par MAMI, la particularité du
microtron est son faisceau dit �à haut cycle utile � particulièrement intéressant
pour les expériences de détection en coïncidence, comme le sont les expériences
VCS. Le proton initial est quant à lui fourni par la cible d'hydrogène liquide. Le
contrôle permanent de la cible lors des expériences réalisées dans le hall A1 permet
de maitriser la luminosité expérimentale.

Les spectromètres, A et B, sont constitué chacun de plusieurs sous-détecteurs
: deux chambres à �ls, deux plans de scintillateurs et un détecteur Cherenkov.
Ils disposent en outre d'un système d'aimants permettant de dévier les particules
détectées en coïncidence : l'électron et le proton.



Choix de l'espace de phase exploré

Dans la dernière section le réglage utilisé pour les spectromètres A et B est expliqué
en fonction des caractéristiques de l'espace des phases. En e�et la sensibilité aux
GPs de la section e�cace mesurée varie en fonction de l'espace des phases. Dans
cette section les critères déterminants pour �xer le réglage des spectromètres sont
présentés.

Chapitre 4

Le quatrième chapitre décrit le traitement des données nécessaire à la mesure des
sections e�caces. Il se divise en six sections. Les deux premières concernent la
calibration brute des détecteurs pour les deux spectromètres. La troisième section
décrit les coupures d'analyse permettant la sélection des évènements d'électro-
production de photon. Les sections quatre et six décrivent la qualité des calibra-
tions en l'illustrant de �gures de contrôle. La section cinq présente la simulation
utilisée.

Calibrations brutes

De nombreuses calibrations sont nécessaires pour tous les sous-détecteurs de cha-
cun des deux spectromètres. Les processus établis pour la calibration sont présen-
tés, ils dépendent des caractéristiques des détecteurs mais aussi de l'expérience et
nécessitent donc d'être adaptés. La deuxième section est consacrée aux calibra-
tions inhabituelles suscitées par des conditions expérimentales particulières. Par
exemple une asymétrie verticale fut observée dans les données, elle résultait d'un
mauvais alignement des spectromètres, elle fut estimée et corrigée.

Sélection des évènements d'electroproduction de photon

La sélection des évènements d'electroproduction de photon est obligatoire. En
e�et, des particules détectées peuvent être issues d'autres processus et, puisque
la mesure de section e�cace est essentiellement un comptage d'évènements, les
évènements non désirés doivent être identi�és puis soustraits. Les sélections sont
basées sur plusieurs critères. Premièrement les protons initiaux, issus de la cible
cryogénique, doivent être au repos et donc ne pas venir des parois de la cible.
Deuxièmement les électrons et les protons �naux doivent être issus du même pro-
cessus VCS et donc détectés en coïncidence. Troisièmement le photon réel �nal
n'étant pas détecté il doit être signé par sa valeur en masse manquante au carré.
Comme cette quantité utilise chaque élément de l'expérience, l'utilisation d'une
sélection sur la masse manquante rend cruciale la qualité des calibrations. Finale-
ment des sélections de type �identi�cation de particules� sont aussi explorées, dans
cette section il est établi qu'elles ne sont pas nécessaires.

Contrôle de la qualité des calibrations

Le contrôle de la qualité des calibrations est tout d'abord assuré par l'observation
directe des grandeurs reconstruites par le dispositif expérimental. Cette approche



permet en outre de véri�er l'optique des spectromètres, le calcul de luminosité et
la sélection d'évènements. Dans une seconde approche les quantités reconstruites
sont comparées avec celles obtenues par la simulation, la qualité de la calibration
est alors véri�ée pour la totalité des observables de l'expérience.

Ce contrôle des calibrations aura permis de trouver et corriger les inconsis-
tances expérimentales, entre autre le mauvais alignement vertical des détecteurs.
Finalement, les rares inconsistances restantes seront traitées dans le calcul �nal
d'erreurs systématiques. Par exemple une erreur de calcul de luminosité, due à
des e�ets locaux d'ébullition de la cible, fut estimée et corrigée. La variation dans
l'application de cette correction engendre une erreur systématique.

La simulation

La simulation d'évènements VCS et d'acceptance des détecteurs est un outil obli-
gatoire à l'obtention d'une mesure de section e�cace précise. L'outil VCSSIM,
développé à l'université de Gent, est divisé en trois étapes. Dans la première
des évènements d'électro-production de photon sont générés selon la section e�-
cace théorique. Les e�ets de perte d'énergie et de di�usions multiples sont aussi
simulés. Dans la seconde étape, les signaux produits sont dégradés par des e�ets
de résolution des détecteurs. La troisième étape consiste en la reconstruction de
ces évènements dans le but de reproduire les distributions expérimentales. Elles
sont ensuite utilisées pour le contrôle des calibrations.

En plus de ces étapes VCSSIM produit un calcul de luminosité simulée dépen-
dant des caractéristiques de la cible d'hydrogène liquide, cette quantité intervient
elle aussi dans la mesure des sections e�caces VCS.

Conclusion

Pour la mesure présentée le travail de calibration est crucial, en e�et l'impact des
GPs ne représente que quelques pourcents de la section e�cace mesurée, celle-ci
doit donc être obtenue avec une excellente précision. La conclusion insiste sur la
qualité de la calibration de ces données.

Chapitre 5

Le chapitre cinq est divisé en huit sections. La première section présente cer-
tains outils à disposition pour l'analyse : les codes de calcul des sections e�caces
théoriques. La seconde section est dédiée aux calculs de corrections radiatives.
La troisième section décrit la mesure des sections e�caces d'electroproduction de
photon. La quatrième section détaille la renormalisation des sections e�caces et
les dernières sections sont consacrées aux �ts des GPs selon les approches basées
sur le théorème d'énergie de Low ou le modèle DR.

Les corrections radiatives

Certains processus sont détectés dans l'expérience et identi�és malgré les sélections
comme étant des évènements ep → epγ. Par exemple les diagrammes d'ordres



supérieurs contenant des boucles de photon virtuel ou représentant l'émission de
photon réel supplémentaire ne peuvent être dissociés du signal mesuré. Il faut donc
appliquer des corrections sous la forme d'une renormalisation des sections e�caces.
Ces corrections sont calculées par une approche théorique ; certains diagrammes
sont parfaitement déterminés grâce à la QED, d'autres, où la structure du proton
intervient, requièrent des estimations. L'ensemble des diagrammes est tout d'abord
présenté ainsi que les di�érentes approximations e�ectuées. Ainsi un facteur de
renormalisation F rad est calculé, il est fonction de l'espace de phase et des choix
théoriques.

Les di�érentes applications du terme F rad sont alors testées dans l'ensemble de
l'espace des phases de l'expérience. Dans cette partie il est démontré que, malgré
ces variations, une valeur moyenne du terme correctif peut être appliquée iden-
tiquement à toutes les sections e�caces mesurées. Les incertitudes ainsi générées
sont estimées et considérées dans les erreurs systématiques.

Mesure des sections e�caces

La mesure des sections e�caces expérimentales est ici décrite. Puisqu'elles dépen-
dent de quantités simulées et de sections e�caces théoriques, di�érentes approches
sont possibles (par exemple un e�et des GPs peut être considéré dans les sec-
tions e�caces théoriques, il sera estimé à partir d'une première itération). Ces
di�érentes approches sont considérées dans le bilan �nal d'erreurs systématiques.
Bien que la section e�cace théorique dépende du choix de paramétrisation des fac-
teurs de forme, il est montré dans cette section que la mesure de la section e�cace
expérimentale, elle, n'en dépend pas. Cette section décrit aussi le calcul d'erreurs
statistiques et présente graphiquement certaines des 7784 mesures e�ectuées.

La renormalisation

Les sections e�caces mesurées dépendent du calcul des luminosités expérimentale
et simulée, de l'e�cacité du détecteur et de la qualité de la simulation. Dans ce
type d'expérience ces facteurs seront toujours déterminés avec un biais intrinsèque.
C'est pourquoi il est nécessaire de renormaliser les sections e�caces. Dans cette
partie le processus de renormalisation est détaillé, il est e�ectué grâce à des con-
�gurations dites �LOW�, a bas q′cm, dans lesquels l'e�et des GPs est faible. Ainsi
en comparant les sections e�caces expérimentales aux sections e�caces théoriques
σBH+B il est possible de calculer, par minimisation de χ2 un facteur de renormal-
isation F norm.

Ce facteur ainsi déterminé sera alors dépendant du choix de paramétrisation
des facteurs de forme utilisée dans les calculs de QED. Néanmoins il est démontré
dans cette section qu'il est important de conserver cette dépendance a�n d'obtenir
une mesure des e�ets de GPs indépendante du choix de facteurs de forme. En
e�et la dépendance induite permet de compenser celle contenue dans les sections
e�caces théoriques lors des extractions des GPs.

Une autre dépendance importante est induite dans le calcul de F norm par le
choix d'utiliser un e�et de GP théorique, même si celui-ci est minime. Cette dépen-
dance doit être soustraite. Ceci est assuré par un processus itératif ; il consiste à



�tter un e�et de GPs pour une normalisation donnée, celui-ci sera ensuite réin-
troduit dans les sections e�caces théoriques pour la détermination d'une nouvelle
renormalisation. Il est ici montré qu'après quelques itérations une convergence
s'établit indépendamment du choix initial de l'e�et des GPs.

Les taux de comptage ayant été corrigés des petites ine�cacités de détecteur le
facteur de renormalisation peut ensuite être considéré comme constant sur l'espace
des phases mesuré. Les sections e�caces sont donc renormalisées globalement et
l'incertitude sur F norm est considérée dans le bilan �nal d'erreurs systématiques.

Extraction des GPs par le théorème d'énergie de Low (�t
�LEX�)

Dans cette partie est présentée l'extraction des fonctions de structure basée sur le
théorème de Low. Les étapes permettant la mesures sont détaillées et le �t �nal
est présenté.

Selon le théorème d'énergie de Low, en négligeant les ordres supérieurs en q′cm, la
section e�cace d'electroproduction de photon s'écrit comme la somme de la section
e�cace σBH+B et d'un terme dépendant de l'espace des phases et des fonctions
de structure. La mesure de celles-ci est alors réalisée lors d'un �t des sections
e�caces expérimentales par minimisation d'un χ2 où les fonctions de structure
sont les deux paramètres libres.

La force de cette approche est qu'elle est indépendante de modèle, sa faiblesse
réside dans l'absence de traitement des ordres supérieurs en q′cm, dont l'e�et n'est
pourtant pas toujours négligeable. Ils sont considérés ici par une sélection d'analyse
inédite. Elle repose sur la détermination de l'e�et des ordres supérieurs par le
modèle DR. En e�et ce modèle permet de calculer des sections e�caces théoriques
complètes, c-à-d contenant aussi l'e�et des ordres supérieurs en q′cm. Donc, pour
un choix arbitraire des GPs, les sections e�caces théoriques obtenues à partir du
modèle DR sont comparées aux sections e�caces théoriques basées sur le théorème
de Low et établies pour des valeurs identiques des GPs. La comparaison permet
d'estimer l'e�et des ordres supérieurs en chaque point de l'espace des phases, un
critère sélectif est ensuite appliqué a�n de limiter leur impact sur la mesure.

La sélection introduit alors deux degrés de liberté : les valeurs théoriques des
fonctions de structure et la valeur du critère sélectif. Dans cette section il est
montré comment ces degrés de liberté sont traités. Un processus itératif permet
de se défaire du choix arbitraire initial des GPs et la stabilité du résultat des �ts
permet de �xer la valeur optimale du critère sélectif.

Finalement, les critères libres étant �xés, un �t dit �nominal� des fonctions de
structure est dé�ni. Son χ2 réduit, de 1.21, déterminé à partir de 944 points traduit
la bonne qualité du �t. Les erreurs statistiques sont elles aussi déduites du �t. Le
modèle DR est ensuite utilisé pour trouver les valeurs de αE(Q2 = 0.2 GeV 2) et
βM(Q2 = 0.2 GeV 2) correspondantes aux fonctions de structure ainsi obtenues.

Extraction des GPs par le modèle DR (�t �DR�)

Dans cette section le modèle DR est utilisé pour obtenir la mesure des GPs et des
fonctions de structure à Q2 = 0.2 GeV 2. Contrairement au �t LEX, l'approche DR



permet d'utiliser tous les points de section e�cace, y compris ceux pour lesquels
q′cm < 126 MeV/c.

Pour cela il faut comparer, lors d'une minimisation de χ2, les sections e�-
caces expérimentales mesurées à celles calculées par le modèle en chaque point
de l'espace des phases et pour di�érentes valeurs de αE(Q2 = 0.2 GeV 2) et
βM(Q2 = 0.2 GeV 2). Ainsi les valeurs des GPs donnant la meilleure correspon-
dance entre les sections e�caces théoriques et expérimentales, sur l'ensemble de
l'espace des phases, seront déterminées.

La première étape du �t consiste donc à déterminer un χ2 correspondant à
un choix de valeurs des GPs discrétisées sur une grille en αE(Q2) , βM(Q2).
L'ensemble des χ2 ainsi déterminé est utilisé pour identi�er la position du mini-
mum sur les n÷uds de la grille. La seconde étape utilise un �t paraboloïde pour
trouver cette position avec plus de précision.

La di�culté technique de la méthode réside dans le calcul d'une très grande
quantité de sections e�caces théoriques. Elles sont obtenues pour chaque point
de l'espace des phases et pour chaque valeur des GPs, représentant un total de 3
024 000 points. Le temps de calcul demandé limite alors la possibilité d'explorer
plusieurs variantes du �t.

Les GPs sont obtenues avec un χ2 minimum �tté assez bon, valant 1.43 pour
4429 points de mesure. Les erreurs statistiques sont déduites des iso-contours du
χ2. Les valeurs des fonctions de structure correspondantes sont aussi obtenues.

Bilan d'erreurs systématiques

Les erreurs systématiques sur les observables : GPs et fonctions de structure, sont
déterminées par deux approches indépendantes.

La première consiste à modi�er la renormalisation des sections e�caces dans le
but de représenter l'e�et de l'ensemble des biais systématiques. Les di�érents biais
sont identi�és et estimés, chacun en terme d'e�ets sur le facteur de renormalisation.
Les estimations reposent sur les observations expérimentales.

La seconde approche est, elle, basée sur plusieurs mesures indépendantes des
fonctions de structure par le théorème d'énergie de Low. Chaque paramètre vari-
able de l'analyse, comme la sévérité des sélections ou les o�sets expérimentaux,
est alors modi�é et son e�et sur les fonctions de structure quanti�é. La somme
quadratique des e�ets permet de déduire l'erreur systématique �nale.

Ces deux approches indépendantes montrent des résultats en parfait accord, la
première méthode est ensuite choisie pour sa simplicité d'utilisation.

Conclusion

Dans le travail présenté les fonctions de structure ont été déterminées à Q2 =
0.2 GeV 2 par deux approches indépendantes, la première basée sur le théorème
d'énergie de Low et la seconde reposant sur le modèle des relations de dispersion.

Soit, pour les fonctions de structure :

PLL − PTT/ε (LEX) = 18.10± 0.56stat ± 3.64syst (GeV −2),
PLT (LEX) = −3.59± 0.31stat ± 1.57syst (GeV −2),



PLL − PTT/ε (DR) = 18.70± 0.38stat ± 3.93syst (GeV −2),
PLT (DR) = −3.48± 0.25stat ± 1.86syst (GeV −2).

Les résultats des deux méthodes indépendantes sont en parfait accord pour
la première fonction de structure. Pour la seconde les résultats obtenus sont en
accord, à condition d'appliquer le critère sélectif basé sur le modèle DR lors du �t
LEX. L'indépendance des deux méthodes est alors diminuée. Cependant il a été
montré qu'il est indispensable de tenir compte de l'e�et des ordres supérieurs en
q′cm dans l'approche basée sur le théorème de Low.

Les mesures des polarisabilités généralisées électrique et magnétique sont elles
aussi réalisées selon les deux approches :

αE(Q2) (LEX) = 3.90± 0.14stat ± 0.92syst (10−4.fm3),
βM(Q2) (LEX) = 1.14± 0.15stat ± 0.78syst (10−4.fm3).

αE(Q2) (DR) = 4.05± 0.10stat ± 0.98syst (10−4.fm3),
βM(Q2) (DR) = 1.08± 0.12stat ± 0.90syst (10−4.fm3).

Les valeurs sont en accord. Les mesures ne sont toutefois pas indépendantes
car l'obtention des résultats par le théorème d'énergie de Low repose en partie sur
le modèle DR, qui a fourni la valeur des GPs de spin.

Tous ces résultats sont déterminés à l'aide d'un grand nombre d'évènements,
réduisant ainsi les erreurs statistiques. L'incertitude est donc dominée par les
erreurs systématiques.

Finalement, les autres mesures de l'expérience, obtenues à Q2 = 0.1 GeV 2 et
Q2 = 0.45 GeV 2 peuvent être regroupées avec celles des expériences précédentes
et celles présentées dans cette thèse pour avoir la vue d'ensemble la plus complète
sur le comportement des GPs selon Q2. La rapide variation de αE(Q2) autour
de 0.33 GeV 2, brisant la forme dipolaire prédite par plusieurs modèles, est main-
tenant accentuée. Elle constitue une interrogation qui n'est pas comprise à l'heure
actuelle.

Quant au comportement de βM(Q2) selon Q2 il est ici établi que les erreurs sys-
tématiques, quoiqu'optimisées dans notre analyse, restent dominantes et limitent
la capacité des mesures à discriminer parmi les prédictions des modèles.
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Introduction

In 1911 Ernest Rutherford discovered that the atoms have a heavy nucleus [1].
Ten years later he was able to perform the �rst arti�cial transmutation and by
this way proved that these nuclei were composed of elementary bricks: the pro-
tons. Thereafter he even anticipated the existence of the neutron which was later
discovered by Chadwick in 1932 [2].

One century after its discovery the proton is still under investigation, and
nowadays it is the proton internal structure which is a source of questioning. We
know that its structure is governed by the strong interaction but we have to face
a dichotomy: the coupling constant of the strong interaction decreases at high
energy and allows for an interpretation of the experiments in terms of perturbative
Quantum ChromoDynamics (QCD), while at low energy, the coupling constant
increases and asks for a description in terms of the hadronic degrees of freedom,
such as Chiral Perturbation Theory.

In between, at excitation energies from ≈ 100 to ≈ 2000 MeV, both perturba-
tion schemes are powerless to fully describe the proton interactions. This is the
region of nucleon resonances which are still not described by a consensual theory.
In order to improve our knowledge, it is therefore essential to precisely extract
hadronic structure information. In this aim the Compton scattering experiments
are precious tools.

The strength of the Compton scattering experiments is that a part of the reac-
tion relies on the electromagnetic interaction which is described by the extremely
precise theory of Quantum ElectroDynamics (QED) [3]. Thus, thanks to its excel-
lent precision, the electromagnetic probe will provide observables which are well
understood and have an unambiguous physical interpretation.

The proton Generalized Polarizabilities (GPs) are one of those observables
accessible via Compton scattering, more precisely via Virtual Compton Scattering
(VCS) when a virtual photon scatters on a proton and a real photon is emitted.
The GPs depend on the virtuality Q2 of the initial photon. In this context the
GPs are dynamical properties which describe the collective behavior of the proton
components when it is submitted to an applied electromagnetic �eld. The emitted
photon, of small energy, can then be seen as the quasi-static electromagnetic �eld
while the virtual photon will be the probe of the deformed proton.

The GPs were �rst introduced for nuclei by Arenhövel and Drechsel [4] as a
concept analogous to the classical description of the light scattering on atoms and
molecules. Later, in 1995, P.A.M Guichon et al. studied the case of the nucleon,
and derived a Low Energy Theorem for VCS on the proton [5], in a formalism
that involves six independent GPs [6] at lowest-order. This triggered a series of
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dedicated VCS experiments throughout the world.
Among the six proton GPs the electric and magnetic GPs are the main topic of

this work. They are scalar quantities which provide information on the proton local
distribution of induced electric and magnetic dipoles and will help to understand
its internal structure. For instance polarizabilities play a role in the proton charge
radius puzzle, through the two-photon exchange process. More speci�cally, the
GPs are probes which help us to understand the contributions from the proton
mesonic cloud and its quark core.

The VCS process γ∗p → γp is accessible via the reaction of exclusive photon
electroproduction ep → epγ. Studies of such a low cross-section process became
possible with high duty-factor electron accelerators, and high-resolution spectrom-
eters. The electric and magnetic GPs were measured for the �rst time at MAMI [7],
later, Bates and JLab experiments were able to provide new values at di�erent
observation scales. However the current world data have shown an unexpected be-
havior with respect to the observation scale in the region around Q2 = 0.33 GeV 2.

The present work is a part of the experiment done at MAMI from 2011 to 2015,
with the aim to understand better the Q2-behavior of the electric and magnetic
GPs of the proton [8]. Measurements were performed at three new values of Q2:
0.1, 0.2 and 0.45 GeV 2 and the present work covers the analysis of the data at
Q2 = 0.2 GeV 2.

The thesis content is as follows. First the theoretical context and physics mo-
tivations are introduced. Then the MAMI accelerator, the high-resolution spec-
trometers and the data-taking conditions are explained. Finally the data analy-
sis is presented in detail and divided in two parts. The �rst-level analysis con-
cerns the treatment of experimental data: calibrations and event selection. The
second-level analysis consists in determining the �ve-fold di�erential cross section
d5σ(ep → epγ) and in extracting the VCS observables: the structure functions
PLL − PTT/ε and PLT , and the electric and magnetic GPs αE(Q2) and βM(Q2) at
Q2 = 0.2 GeV 2.
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Chapter 1

Introduction to Real and Virtual

Compton Scattering

In this chapter the GPs will be presented from their phenomenological description
to the theoretical tool which made possible their extraction from experiments.

In section 1.1 more basic nucleon observables are �rst introduced, i.e. the elec-
tromagnetic form factors. This is because they directly intervene in the GP extrac-
tion and their phenomenological description simplify the physical understanding
of GPs.

Then in section 1.2 the Real Compton scattering polarizabilities are described
in order to introduce the GP formalism.

Finally, in the last section 1.3 the GPs are detailed together with the Virtual
Compton Scattering process which allows to access them.

1.1 Proton form factors

The electric form factor Gp
E(q2) and the magnetic form factor Gp

M(q2) are the most
basic quantities which describe the proton's internal structure. They naturally in-
tervene in quantum electrodynamics (QED) processes when a charged particle
interacts with the proton. The virtual photon is the vector boson of such elec-
tromagnetic interactions and carries a four-momentum squared q2 (q2 = q02 − ~q2

being negative for a space-like photon). The form factors will then depend on q2

which de�nes the scale of the interaction.
The form factors express the spatial properties of the proton. More precisely,

they contain the information about how the charges and the currents are dis-
tributed in the proton volume. This spatial information is encoded in the q2

dependency. To understand how, it is common to express the momentum carried
by the virtual photon in terms of its wavelength. According to de Broglie, the
relation between the wavelength and the momentum is :

λ = h
|~q| , (1.1)

with h the Planck's constant. The de Broglie equation de�nes the link between
the momentum exchanged and the interaction scale. The larger the momentum
is the smaller the wavelength becomes, and so, the more localized the interaction

6



1.1. PROTON FORM FACTORS

is. If the virtual photon's wavelength is large compared to the proton size, the
interacting charged particle will be only sensitive to its global properties, the total
proton charge and magnetic moment. If the photon's wavelength is small enough,
the internal structure of the proton can be probed. The same reasoning can be
applied to the four-momentum q2, yielding: λ = h/

√
−q2.

Then the q2-dependency of form factors can be translated in terms of spatial
distribution via a Fourier transform1. The Fourier transform of the electric or
magnetic form factors will lead to the radial distribution of, respectively, the charge
or the current :

Gp
E(q2)

FT→ ρelectric(~r),

Gp
M(q2)

FT→ ρmagnetization(~r).
(1.2)

In equation 1.2, ρelectric(~r) is the charge density along ~r. However this non-
relativistic representation of the proton charge density is criticized [9].

Indeed at relativistic energy, like in most hadron physics experiments nowadays,
the scattered proton moves at high velocity. As the proton size and shape are
not relativistically invariant quantities, its structure looks di�erent in di�erent
frames. Also the relativistic process of pair creation further compromises a non-
relativistic density interpretation. In his paper, Miller [9] presents another density
representation which is valid in a particular dynamics, the light-front dynamics.
Its use in association with a particular frame, called the Drell-Yan frame, will allow
a relativistic interpretation of the proton charge density: ρ(b) with b the transverse
distance in the frame. Unlike the density from equation 1.2, this new density is
two-dimensional and so is the Fourier transform de�ned in this formalism.

This interpretation has also the advantage to use directly the more fundamental
form factors F1(q2) and F2(q2) called the Dirac and Pauli form factors. Indeed
Gp
E(q2) and Gp

M(q2) are not as fundamental, they are linear combinations of F1(q2)
and F2(q2) built to avoid the interferences due to the F1 × F2 product in the
(ep → ep) elastic cross-section. The physical meaning and the preferential use of
Gp
E(q2) and Gp

M(q2) is then emphasized by the non-relativistic interpretation of
equation 1.2. The linear combinations are, for a space-like virtual photon:

Gp
E(q2) = F1(q2) +

q2

4m2
p

F2(q2), (1.3a)

Gp
M(q2) = F1(q2) + F2(q2), (1.3b)

where mp is the proton mass. So the density interpretation of form factors is
still discussed nowadays. More generally the proton structure can be represented
by two di�erent pictures: a non-relativistic one, described by e�ective �eld theory,
and a relativistic one which uses the quantum theory of quarks and gluons (QCD).
Anyway, none of these descriptions are fully correct [10]. As will be explained in
section 1.3 the two interpretations also impact our representation of generalized
polarizabilities.

1this property of the Fourier transform is shown in a particular frame: the Breit frame. It is
the frame in which the proton momentum is reversed in the scattering process.
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1.1. PROTON FORM FACTORS

1.1.1 Elastic electron-proton scattering

Elastic electron-proton scattering is the main process to measure the proton form
factors, for two reasons. First the electron is a pointlike particle, so the structure
e�ects in the cross section will only be due to the proton. The second reason is
the simplicity of the process, i.e. both the electron and the proton stay in their
ground state and no other particles are created. So in the one-photon exchange
approximation we can perfectly describe the interaction using QED.

In this framework, elastic electron scattering is illustrated in �gure 1.1. The
process contains an incident electron with a four-momentum k = (E,~k) which
exchanges a virtual photon γ∗ with the proton target. The outgoing electron has a
four-momentum k' = (E ′, ~k′). The protons are de�ned by the four-momenta p and
p'. The four-momentum transferred by the virtual photon is q = k−k' = p'−p.

Figure 1.1: Diagram of elastic electron scattering o� the proton. The blob indicates
that the proton's internal structure is probed.

It is common practice to de�ne the quantity Q2, as the opposite of q2 (when
Q2 is smaller the scale of the interaction is also larger). We recall where the form
factors Gp

E(Q2) and Gp
M(Q2) intervene in the elastic cross section.

The general case of elastic electron scattering o� a target is characterized by
the following cross section:

(
dσ
dΩ

)
lab

=
(
dσ
dΩ

)
Mott

E′

E
|F (Q2)|2, (1.4)

where
(
dσ
dΩ

)
Mott

is the Mott cross section [11] corresponding to the particular
case of a spinless-particle target in the relativistic case. It takes the following form:

(
dσ
dΩ

)
Mott

=
Z2α2

QEDcos
2 θe

2

4E2sin4 θe
2

, (1.5)

with Z the charge of the target in units of the elementary charge, αQED the �ne
structure constant 2, and θe the scattering angle of the electron in the laboratory
frame.

In the general case of equation 1.4 the term E′

E
is the target recoil correction

term: E′

E
= 1

1+2 E
Mtarget

sin2 θe
2

which tends to 1 when Mtarget >> E.

2αQED = e2/4πε0~c, with ε0 the vacuum permittivity and ~ = h/2π.
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1.1. PROTON FORM FACTORS

The last term of equation 1.4, |F (Q2)|2, depends on the target internal struc-
ture. F (Q2) is the target form factor that we can express speci�cally for the
proton. According to [12], in the case of an elastic electron scattering o� the
proton, equation 1.4 becomes the Rosenbluth formula:

(
dσ
dΩ

)
=
(
dσ
dΩ

)
Mott

E′

E

[
GpE(Q2)2+τGpM (Q2)2

1 + τ
+ 2τGp

M(Q2)2tan2( θe
2

)
]
, (1.6)

with τ = Q2/4m2
p.

In the limit Q2 = 0, the form factors are normalized to the proton total charge
in units of the electron charge, and to the proton total magnetic moment in units
of the nuclear magneton µN :

Gp
E(0) = 1 ,

Gp
M(0) = 2.793.

1.1.2 Form factor measurements and particular values at
Q2 = 0.2 GeV 2

Experimental procedure

Elastic electron scattering o� the proton was measured since the �fties [13] and
continues nowadays, at Mainz [14] and other laboratories in the world (see [15] for
a review).

There are two kinds of experiments that can access form factors. The �rst
ones measure directly the electron scattering cross section and use equation 1.6 to
extract form factors separately. The second ones require a polarized electron beam
and the knowledge of outgoing-proton polarization to measure the asymmetry and
then deduce the ratio GE/GM .

For the experiments dedicated to cross section measurement the classical way to
extract form factors from cross section is called the Rosenbluth separation (equa-
tion 1.6). This method uses cross sections comparison at the same Q2 but di�er-
ent angles θe to obtain linear combinations of Gp

E(Q2) and Gp
M(Q2) which allow

their extraction. The Rosenbluth separation has the advantage to provide model-
independent results. But one can also do a direct �t of form factors based on a
model shape as it has been done at MAMI [14] recently.

The polarization experiments consist in measuring the longitudinal and trans-
verse polarization components of the recoil proton. The two components are ob-
tained simultaneously by the single measurement of the azimuthal angular distri-
bution of the scattered proton in a focal-plane polarimeter. The ratio GE/GM is
then directly deduced with reduced systematic uncertainties. This constitutes the
major advantage of this method, compared to cross-section measurement.

There is an inconsistency between the results from unpolarized cross-section
and polarization experiments. It is believed to be a consequence of the one-photon-
exchange approximation. Because of the diverging results in the two-photon ex-
change correction, it is so far an unresolved puzzle [14].

There is actually a third method to measure the proton form factors which has
been explored at MAMI recently. It is based on (e, e′) cross-section measurements
in the radiative tail and aimed at determining the form factors at very low Q2 [16].

9



1.1. PROTON FORM FACTORS

Values at Q2 = 0.2 GeV 2

Many experiments led to di�erent Gp
E(Q2) and Gp

M(Q2) results over time, thus
there are many di�erent parametrizations of the form factors versus Q2. However
in order to extract the proton GPs at Q2 = 0.2 GeV 2 we need to �x a form-factor
parametrization. In section 5.4.3 we will see how the choice of proton form factors
impacts our VCS analysis.

At small Q2, the form-factor behavior follows more or less the standard dipole
parametrization de�ned as :

GD = (1 + Q2

0.71
)−2, (1.7)

with Q2 expressed in GeV 2. Most parametrizations exhibit a few percent
deviation from the standard dipole. The agreement between various �reliable�
parametrizations is not better than 1-2%.

So, for our GP extraction, it was decided to use three di�erent parametrizations
of form factors at Q2 = 0.2 GeV 2. The Friedrich-Walcher parametrization [17]
gives �central� values of form factors. The Arrington et al. [18] and Bernauer et
al. [19] parametrizations were chosen for their very di�erent values of Gp

E(Q2) and
Gp
M(Q2) at Q2 = 0.2 GeV 2. The Q2-behavior of those three parametrizations is

presented in �gure 1.2.

Figure 1.2: Behavior of electric (left) and magnetic (right) proton form factors,
divided by the dipole, as a function of Q2. The parametrizations are from Bernauer
et al. [19] (dashed green line), Arrington et al. [18] (red dotted line) and Friedrich-
Walcher [17] (blue full line). The vertical line shows the value at Q2 = 0.2 GeV 2.

At Q2 = 0.2 GeV 2 the use of Arrington et al. or Bernauer et al. parametriza-
tions induces a 1% variation in GE and a 1.4% variation in GM .
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1.2. POLARIZABILITIES OF THE PROTON: REAL COMPTON
SCATTERING

1.2 Polarizabilities of the proton: Real Compton

scattering

Like the form factors, the polarizabilities are fundamental structure constants of
the proton; they are a consequence of its composite nature and characterize the
proton sti�ness in an external electromagnetic �eld.

The polarizabilities are de�ned in the real Compton scattering (RCS) context,
illustrated in �gure 1.3, when an incident real photon with a four-momentum
q = (q0, ~q) interacts with the proton by the reaction γp → γp. There is an
in�nite number of polarizabilities and so far only the six �rst ones3 were extracted.
The electric and magnetic polarizabilities αE and βM describe the response of,
respectively, the proton charge and magnetic moment distributions to the static
external �eld. The four other polarizabilities: γE1, γM1, γE2 and γM2 are quantities
of higher dimension that describe the proton behavior when a �ip of its spin
is involved. Recently, the spin polarizabilities were measured for the �rst time
separately at MAMI [20]. The physical meaning of some other polarizabilities is
detailed in [21].

To better understand the role of the electric and magnetic polarizabilities αE
and βM it is convenient to use the pion cloud model. In this model, neither
proved to be valid or not [10], the proton is represented by three valence quarks
surrounded by a pion cloud. The pions are spinless and considered as neutral or
charged (positively or negatively). The valence quarks are, of course, charged and
do have an intrinsic magnetic moment due to their spin.

One considers that initially the positive and negative charges are distributed
in such a way that they share the same center of distribution. When an electric
�eld ~E is applied to the proton the positive and negative charges are pushed in
opposite directions. This generates an induced electric dipole moment ~d which is
proportional to ~E :

~d = αE ~E, (1.8)

and the factor of proportionality αE is the electric polarizability. αE is ex-
pressed in units of a volume (fm3). Its value is �xed by the proton sti�ness, the
stronger the proton's constituents are bound the smaller αE is.

Now if one applies a magnetic �eld ~H to the proton the valence-quarks magnetic
moment tends to become aligned with ~H and creates a paramagnetic moment ~µ,
whereas ~H will induce currents in the pion cloud which will oppose a diamagnetic
moment to ~H and reduce ~µ. One can express the induced magnetic dipole as:

~µ = βM ~H = (βdiaM + βparaM ) ~H, (1.9)

and due to these opposite e�ects the magnetic polarizability βM will be smaller
than αE.

3First to appear in the q′ development, detailed in section 1.2.1.
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1.2. POLARIZABILITIES OF THE PROTON: REAL COMPTON
SCATTERING

1.2.1 RCS amplitude and cross-section

The RCS process is the tool to access polarizabilities. Its kinematics is de�ned by
the incoming real photon four-momentum q = (q0, ~q), the one of the outgoing real
photon q' and by the initial and �nal protons four-momenta p and p'.

Figure 1.3: Diagram of Real Compton Scattering.

The blob represented in �gure 1.3 illustrates the production of "proton excited
states". Although there is not enough energy to produce such states at low ener-
gies (typically below the pion threshold) they intervene in the process as virtual
intermediate states. So the magnitude of the proton deformation, expressed by
the polarizabilities, depends on the proton excited states and the expression of a
"deformed" proton adopted in this thesis refers to the virtual states e�ect. This is
expressed by the general relation (in a non-relativistic approach at the �rst-order
perturbation), e.g. for the electric polarizability:

αE = 2
∑
N∗ 6=N

| < N∗|dz|N > |2

EN∗ − EN
, (1.10)

where N∗ indicates a nucleon resonance and dz the electric dipole-moment
operator [22].

At very low incident photon energy q0 → 0 the RCS amplitude is perfectly
described by the Thomson amplitude [23]. It depends only on proton's static
properties such as the mass, the charge and the anomalous magnetic moment κ.
When the photon energy increases, but is still below the pion production threshold
(q0
π = 144.7 MeV/c in the lab frame where the proton is at rest), the amplitude

can be expressed as an expansion of terms ordered in powers of q0 and q′0. This
expansion is based on the Low Energy Theorem which �rst appears in the article
of F. E. Low [24]. The complete amplitude was then developed by Petrun'kin [25]
up to the order q′0q0, in the lab frame. The amplitude is therefore:

fPet = − e2

mp
~ε′ · ~ε

+i(q′0 + q0) e2

4m2
p
(1 + 2κ)~σ · (~ε′ × ~ε)

−i(q′0 + q0) e2

4m2
p
(1 + κ)2~σ · [(~n′ × ~ε′)× (~n× ~ε)]

+i e2

2m2
p
(1 + κ)[q′0(~n′ · ~ε)~σ · (~n′ × ~ε′)− q0(~n · ~ε′)~σ · (~n× ~ε)]

+q′0q0 e2

4m3
p
(2κ+ κ2)~ε′ · ~ε

−q′0q0 e2

4m3
p
(1 + κ)2(~n′ × ~ε′) · (~n× ~ε)(~n′ · ~n)

+q′0q0 e2

4m3
p
(~n′ × ~ε′) · (~n× ~ε)

+q′0q0[ᾱE~ε′ · ~ε+ β̄M(~n′ × ~ε′) · (~n× ~ε)]

(1.11)
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SCATTERING

with ~ε and ~ε′ the polarization vectors of the incoming and scattered photons,
~n and ~n′ their unit momentum vector and σ the Pauli spin matrices. In the
Petrun'kin amplitude of equation 1.11 the �rst term is the Thomson scattering
amplitude, the six following lines are due to the proton magnetic moment. The
polarizabilities arise in the last line through ᾱE and β̄M . ᾱE and β̄M are the
polarizabilities that are experimentally accessible, also called �dynamical�. They
di�er from the �static� polarizabilitites αE and βM of the previous subsection by
a corrective term called the retardation correction4. For instance one can write:

ᾱE = αE + e2

3mp
< r2 >, (1.12)

with < r2 > the mean squared radius of the charge distribution.
The Petrun'kin expansion is valid for q0 . 80 MeV ; at higher energy other

terms arise, especially the next-order terms are described by the spin polarizabili-
ties γE1, γM1, γE2 and γM2. Keeping every higher-order term in the squaring of the
Petrun'kin amplitude will lead to the Real Compton Scattering cross section [23]:

(
dσ
dΩ

)
Lab

=
(
dσ
dΩ

)
Powell

− q0q′0( q
′0

q0
)2 e2

mp

[
ᾱE+β̄M

2
(1 + z)2 + ᾱE−β̄M

2
(1− z)2

]
+ o(q3)(1.13)

where z = cos(θγ). The term o(q3) contains other polarizabilities (among which
the spin polarizabilities), it is neglected in the low-energy regime. The Powell cross
section that appears in equation 1.13 expresses the scattering of the photon on a
pointlike proton :

(
dσ
dΩ

)
Powell

= 1
2
( q
′0

q0
)2
(
e2

mp

)2 [
1 + z2 + q0q′0

m2
p

((1− z)2 + a0 + a1z + a2z
2)
]
, (1.14)

with the coe�cients :

a0 = 2κ+
9

2
κ2 + 3κ3 +

3

4
κ4, (1.15a)

a1 = −4κ− 5κ2 − 2κ3, (1.15b)

a2 = 2κ+
1

2
κ2 − κ3 − 1

4
κ4. (1.15c)

Measuring the RCS cross section at di�erent kinematics (di�erent angles θγ and
di�erent q0) will then allow to extract the polarizabilities thanks to equation 1.13.

1.2.2 Proton polarizabilities measurement

The proton polarizabilities in RCS are extracted since 1960, with the �rst pio-
neering experiment [26], and nowadays they are still under investigation. In order
to improve measurements an additional constraint may be added to the global
extraction procedure. It requires the measurement of the total photo-absorption

4The retardation correction is related to the propagation of the electromagnetic wave, of
non-zero frequency, through the �nite size of the nucleon [22].
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cross section σγ(q0). Indeed the uncertainty on polarizabilities may be reduced by
using the Baldin sum rule [27] for the proton:

ᾱE + β̄M = 1
2π

∫∞
q0π

σγ(q0)

q02
dq0 = (13.8± 0.4) · 10−4fm3, (1.16)

where the sum rule value is taken from [23].
The 2014 Particle Data Group [28] gives the following value for the electric and

magnetic polarizabilities of the proton:

ᾱE = (11.5± 0.4) · 10−4 fm3 ,
β̄M = (2.5± 0.4) · 10−4 fm3.

These results demonstrate the extreme proton sti�ness. To better understand
this, it is convenient to compare the proton polarizability to its volume. αE is
of the order of 10−4 times its volume, therefore the proton's internal structure is
barely deformed by quasi-static electric �elds. For an atom the electric polarizabil-
ity is of the order of its volume, therefore the proton components are considerably
more linked by the strong interaction than the atom components are by the elec-
tromagnetic interaction.

1.3 Generalized polarizabilities of the proton

Just like for the form factors, the polarizabilities can be described as a function
of a four-momentum transfer q2. Taking into account this dependency will lead
to Generalized Polarizabilities (GPs). They are fundamental quantities which de-
scribe the proton deformation in an applied electromagnetic �eld, but unlike the
RCS polarizabilities, which express the global deformation, the generalized polar-
izabilities contain the information about the local deformation. The mechanism of
how this local information is encoded in the q2-dependency is similar to the one
described in section 1.1 for form factors.

The generalization of the electric polarizability will then be αE(q2) and will
contain information about the local electric deformation (for simpli�cation the
generalized polarizabilities are written without their bar). Thereafter, in the same
way it was shown for form factors, applying a Fourier transform to αE(q2) will
allow us to draw a representation of this electric deformation along ~r.

Figure 1.4 from [29][30] is one of these representations. It is a theoretical
picture obtained in the framework of the heavy-baryon chiral perturbation theory
(HBχPT O(p3)). The �gure shows the local induced electric dipole moments as
an electric �eld is applied along the x axis; as we can see the local deformation
also possesses a component transverse to the electric �eld.

Similar considerations with an applied magnetic �eld will lead to pictures of the
local magnetic polarization, which is described through the q2-dependency of the
magnetic polarizability, the so-called generalized magnetic polarizability βM(q2).
The other RCS polarizabilities, such as spin polarizabilities, can also be extended
to their q2-dependency.

As mentioned in section 1.1 there are two possible representations of the proton:
one in the standard dynamics and the other in the light-front dynamics. Figure 1.4
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Figure 1.4: Nucleon polarization induced by an electric �eld along the x axis,
calculated in the framework of HBχPT O(p3). Figure taken from [29].

is obtained with the standard dynamics. A recent interpretation of the GPs, which
was performed in the light-front dynamics by Gorchtein et al. [31], is presented
in �gure 1.5. The �gure shows the induced polarization in a proton submitted to
an electric �eld along the x-axis, which is globally a dipole pattern. In ref [31]
it is shown how di�erent parametrizations of the electric GP modify the local
polarization distribution.

Figure 1.5: Induced polarization in a proton of de�nite light-cone helicity when
submitted to an electromagnetic �eld. The light (dark) regions correspond to the
largest (smallest) values. Figure taken from [31].

These two representations of the proton allow us to visualize the deformation
of the charge density in an external �eld and map out the transverse position
space dependence of the induced polarization. But, once again, �gures 1.4 and 1.5
cannot be compared since they are obtained in completely di�erent formalisms.

15



1.3. GENERALIZED POLARIZABILITIES OF THE PROTON

1.3.1 Virtual Compton scattering o� a proton

The tool we used to extract GPs is the Virtual Compton scattering process (VCS)
γ∗ + p → p′ + γ, represented in �gure 1.6 (b) and (c). Indeed, just like for form
factors, it is the virtuality of the photon that allows to explore the local information
inside the nucleon. So the experimentally studied process is e + p → e′ + p′ + γ,
the so-called photon electroproduction which is fully detailed in �gure 1.6.

This reaction is the combination of three sub-processes experimentally indis-
cernible:

- The Bethe-Heitler (BH) process corresponding to electron bremsstrahlung
and represented in �gure 1.6-a.

- The Born part of VCS that is bremsstrahlung from a "non-deformed" proton,
�gure 1.6-b.

- The non-Born part of VCS where virtual excited states intervene, �gure 1.6-
c. In this process the real-photon emission is done by the "deformed" proton and
depends on the GPs.

Figure 1.6: Diagrams of the photon electroproduction process: (a) bremsstrahlung
from the electrons side, (b) Born part of VCS, (c) non-Born part of VCS.

A theoretical convention de�nes a last process as a part of non-Born VCS, it
is the π0 exchange in the t-channel represented in �gure 1.7 (see also �gure 2.5).
Therefore this particular process also contributes to the GPs and more exactly to
the spin-�ip GPs [32].

Figure 1.7: π0 exchange in the t-channel.
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VCS Kinematics

In this section we will describe the VCS kinematics and de�ne its main variables.
In a VCS event the incident electron with a four-momentum k = (E,~k) exchanges
a virtual photon γ∗ with the proton target. The outgoing electron has a four-
momentum k' = (E ′, ~k′). The protons are again de�ned by the four-momenta p
and p'. The four-momentum transferred by the virtual photon is again q = (q0, ~q)

with q0 = E−E ′ and ~q = ~k− ~k′. All those notations are summarized in table 1.3.1.
One has to note that for the VCS process the photon virtuality is equal to: q2 =
(k− k')2 whereas for the BH process the photon virtuality is equal to: (p'− p)2.

Particle e e' γ∗ p p' γ

Four-momentum k k' q = k-k' p p' q'
Mass squared m2

e m2
e q2 = −Q2 < 0 m2

p m2
p 0

Momentum vector ~k ~k′ ~q = ~k − ~k′ ~p ~p′ ~q′

Modulus of momentum vector k k′ q p p′ q′

Helicity and Spin projection h h′ λ σ σ′ λ′

Table 1.3.1 : Main variables of the VCS kinematics.

In this thesis the kinematics will be described in two frames, the virtual-
photon/target-proton center-of-mass (CM) and the laboratory where the initial
proton is at rest. Variables of the CM will be written with the cm index. Lab
variables will be written with no index.

For VCS two planes, presented in �gure 1.8 can be distinguished:
- the scattering plane de�ned by both electron vectors ~k and ~k′.
- the reaction plane de�ned by the recoiling-proton vector ~p′ and the real photon

vector ~q′.
Both planes contain the virtual-photon vector ~q, and so the two planes rotate

around the ~q-axis de�ning the angle ϕ, being the same in the two frames: ϕcm = ϕ.
The angle between the real-photon vector ~q′cm and the virtual-photon vector ~qcm
is θcm. The angle between the electron vectors is θe,cm (θe in the lab frame) .

Because of the Lorentz boost from the CM to the lab system, the recoiling-
protons are contained in a narrow cone around the direction of the virtual photon.
For instance, at Q2 = 0.2 GeV 2 the cone angle varies from θcone = ±5◦to θcone =
±14◦. So having a detector with a relatively small acceptance will be enough to
cover a large range in θcm.

To completely determine the kinematics of the photon-electroproduction reac-
tion �ve independent variables are necessary. Two sets of variables may be used:
(k, k′, θe, θcm, ϕcm) and (qcm, q

′
cm, ε, θcm, ϕcm), where ε is the linear polarization pa-

rameter of the virtual photon.
The following relations (1.17 and 1.18) are used to switch from a set to the

other :
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1.3. GENERALIZED POLARIZABILITIES OF THE PROTON

Figure 1.8: VCS represented in the CM and laboratory frames. (Left) VCS vari-
ables as they are de�ned in the CM. (Right) representation of the �nal proton
boosted in a cone around the virtual photon vector ~q as de�ned in the lab frame.

Q2 = 4kk′sin2

(
θe
2

)
, (1.17a)

s = −Q2 +m2
p + 2mpq

0, (1.17b)

ε = [1 + 2
q2

Q2
tan2

(
θe
2

)
]−1, (1.17c)

with
√
s the total energy in the center-of-mass.

q0
cm =

s−Q2−m2
p

2
√
s

, qcm =
√
Q2 + q0

cm
2,

q′0cm =
s−m2

p

2
√
s
, q′cm = q′0cm,

p0
cm =

s+Q2+m2
p

2
√
s

, pcm = qcm,

p′0cm =
s+m2

p

2
√
s
, p′cm = q′cm.

(1.18)

For our experiment we choose to use the (qcm, q
′
cm, ε, θcm, ϕcm) set. One also has

to consider the Q̃2 variable, introduced in [5], which is Q2 at the limit of q′cm → 0
at a �xed qcm:

Q̃2 = Q2|q′cm→0 = −2mpq̃
0
cm,

q̃0
cm = q0

cm|q′cm→0 = mp −
√
m2
p + q2

cm.
(1.19)

As a consequence, GPs can be considered as function of qcm or Q̃2 equivalently.
In our experiment qcm is considered �xed at 458 MeV/c, which corresponds to

Q̃2 ≈ 0.199 GeV 2 wgile our experimental < Q2 > is 0.2 GeV 2. The two quantities
are close, for now on Q̃2 will be labeled as Q2.
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The three contributions to the photon electroproduction amplitude

Now that the main variables are de�ned we will detail the three contributions
to the photon-electroproduction amplitude and then write the cross section. The
photon-electroproduction contributions, represented in �gure 1.6, lead to the total
amplitude T ee

′γ:

T ee
′γ = TBH + TB + TNB, (1.20)

where TBH , TB and TNB are respectively the amplitude of the Bethe-Heitler,
Born and non-Born processes of �gure 1.6.

The BH process is divided in two sub-processes: the real photon emission by
the electron which is well described by QED and the virtual photon absorption by
the proton which depends on form factors. So to fully calculate the Bethe-Heitler
amplitude TBH one needs to choose a form-factor parametrization.

The Born process also depends only on the knowledge of form factors and TB

can be calculated via QED.
The non-Born amplitude (NB) is the unknown term of equation 1.20 that we

are interested in. The complete NB amplitude is not known analytically but a
�rst-order calculation was performed by Guichon et al. [5]; in section 1.3.3 we will
remind how the GPs arise from the amplitude.

The cross section is of course the object experimentally accessible. For the work
presented in this thesis we measured the unpolarized photon electroproduction
cross-section de�ned as [33]:

d5σexp

dk′dΩk′dΩp′cm
= (2π)−5

64mp
k′

k

s−m2
p

s
M (1.21)

with dΩk′ the �nal-electron solid angle in the lab, and Ωp′cm the �nal-proton
solid angle in the center-of-mass frame. M is the Lorentz invariant de�ned by :

M = 1
4

∑
σσ′hλ′

|T ee′γ|2. (1.22)

For an unpolarized beam and unknown �nal-particles polarization the photon-
electroproduction amplitude squared has to be summed over all initial and �nal
spin states. For experimentalist's convenience the cross section of equation 1.21 is
then written as :

d5σexp = Φq′cm · M (1.23)

where Φq′cm is the phase-space factor given by :

Φq′cm = (2π)−5

64mp
k′

k
2√
s
· q′cm. (1.24)

The amplitude squared is :
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1.3. GENERALIZED POLARIZABILITIES OF THE PROTON

|T ee′γ|2 = |TBH |2 + |TB|2 + |TNB|2
+(TBH∗TB + TBHTB∗) + (TBH∗TNB + TBHTNB∗)
+(TB∗TNB + TBTNB∗).

(1.25)

In the photon electroproduction total cross section the most occurring process
depends on the region of the phase space. TBH is the dominant term in the so-
called Bethe-Heitler peaks when the outgoing photon is emitted in the direction of
one of the electrons. In this particular region it is impossible to extract anything
else than the Bethe-Heitler cross section. In other regions of the phase space the
Born process will sometimes dominate over BH, but the non-Born process is always
small in comparison. Actually only the interference between the non-Born and the
sum of the two other processes allows a GP extraction. So equation 1.25 can be
written as:

|T ee′γ|2 = |TBH+B|2 + |TNB|2 + (TBH+BTNB∗ + TBH+B∗TNB) (1.26)

with |TBH+B|2 that accounts for Born process, Bethe-Heitler process and their
interference.

Figure 1.9 illustrates the importance of each contribution for a given kinemat-
ics. The BH peaks are located in-plane, near θcm = 70◦and θcm = 110◦. The GP
e�ect, theoretically calculated and magni�ed on the �gure, will only modify the
complete photon electroproduction cross section by a few percent. It is this small
e�ect that we want to measure.

1.3.2 Low Energy Theorem

The Low Energy Theorem (LET or LEX for Low energy EXpansion) o�ers a
model-independent way to express the photon electroproduction cross-section. It
is based on perturbation theory and contains only few hypotheses (for instance the
one-photon exchange approximation). The LET for VCS, derived by Guichon et
al. [5] was inspired by the work of F.E. Low [34]. Thanks to the theorem the three
amplitudes of the photon electroproduction process can be expanded in powers of
q′cm, in the vicinity of q′cm = 0, i.e. for the Bethe-Heitler amplitude :

TBH =
aBH−1

q′cm
+ aBH0 + q′cma

BH
1 +OBH(q′cm

2), (1.27)

with the coe�cients aBHi independent of q′cm and OBH(q′cm
2) the higher-order

terms. The Born amplitude will follow the same kind of expansion and is also
known to start at order q′cm

−1.
For the non-Born process, an expansion in powers of q′cm was also proved to be

possible [5] and can be summarized as :

TNB = q′cma
NB
1 +ONB(q′cm

2), (1.28)
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Figure 1.9: In-plane cross section of the photon electroproduction process with re-
spect to θcm: (green dashed line) BH cross section; (light-blue dashed dotted line)
Born cross section; (black full line) cross section of (BH+Born) processes including
their interference; (red dotted line) photon electroproduction cross-section consid-
ering a theoretical GP e�ect, multiplied by 3 for visibility. The kinematics are
de�ned by qcm = 458 MeV/c, q′cm = 100 MeV/c, ε = 0.85 and ϕ = 180◦(negative
θcm) or ϕ = 0◦(positive θcm), leading to Q2 = 0.199 GeV 2.

with aNB1 the only coe�cient of this expansion that is known analytically. So
it appears that in equation 1.25 the only accessible terms are the ones correspond-
ing to aBH−1 × aNB1 , aB−1 × aNB1 and aNB1 × aNB1 , this last one being too small to
be considered in the �rst order. As the Born and BH amplitudes are perfectly
determined by QED the two amplitudes and their interaction are gathered in a
completely known cross-section: σBH+B.

Then from equation 1.21 one can write a LEX cross-section :

σLEX = σBH+B + Φq′cm[M0 −MBH+B
0 ] +O(q′cm

2), (1.29)

with [M0 −MBH+B
0 ] the term corresponding to the interference between the

BH+B amplitude and the non-Born amplitude at lowest order. O(q′cm
2) will then

contain every term of higher order.
So the Low Energy Theorem provides a model-independent expression of the

photon electroproduction cross section σLEX which is valid below the pion pro-
duction threshold: q′cm ≤ 126 MeV/c. In the following part we will detail the
expression of [M0 −MBH+B

0 ].
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1.3.3 Physical Observables

The way that the GPs arise from TNB is well explained in [5] and [33], in this
section we will brie�y summarize the results. The non-Born amplitude is:

TNB(λ′, λ) = ε′∗µ(λ′)Hµν
NBεν(λ), (1.30)

with εν the polarization four-vector in the Lorentz gauge as de�ned in [5]. H
µν
NB

is the hadronic tensor, it is the unknown object parametrized by the GPs.
In order to get an adequate parametrization of Hµν

NB a multipole expansion is
used in the CM frame. The multipole expansion is done in a spherical harmonic
basis with its coe�cients characterized by the multipoles : H(ρ′L′,ρL)S

NB(q′cm, qcm).
These unknown quantities will describe the electromagnetic transitions undergone
by the proton. L (L′) is the angular momentum of the initial (�nal) electromagnetic
transition. S stands for the spin-nature of the transition: S = 0 (or S = 1) for
a non-spin-�ip transition (or a spin-�ip transition). ρ (and ρ′) characterizes the
nature of the initial (�nal) multipole : ρ = 0 (charge), ρ = 1 (magnetic), ρ = 2
(electric) and ρ = 3 (longitudinal). But gauge invariance relates the charge and
longitudinal multipoles, restricting ρ to (0,1,2).

An important step (detailed in [33]) uses parity symmetry, conservation of
angular momentum and kinematical properties to express the expansion with only
ten independent multipoles:

H(11,00)1
NB, H

(11,02)1
NB, H

(11,22)1
NB, H

(11,11)0
NB, H

(11,11)1
NB,

H(21,01)0
NB, H

(21,01)1
NB, H

(21,21)0
NB, H

(21,21)1
NB, H

(21,12)1
NB,

(1.31)

all being functions of qcm and q′cm. The low energy behavior of those multipoles
is parametrized by introducing functions, which are the ten GPs:

P (ρ′L′,ρL)S(qcm) = Limq′cm→0
1
q′cm

1
qLcm

H
(ρ′L′,ρL)S
NB (q′cm, qcm) (1.32)

with ρ′, L', ρ L and S corresponding to the upper indices in equation 1.31.
Drechsel et al. [35] have shown that some of these multipoles can be expressed as
a function of the same GPs, reducing the number of independent GPs [33]:

H(11,00)1
NB(qcm, q

′
cm) = q′cm

(√
3 qcm

2

q̃0cm
P (01,01)1(qcm)− 1√

2
qcm

2P (11,02)1(qcm)
)

+O(q′cm
2),

H(11,02)1
NB(qcm, q

′
cm) = q′cmqcm

2P (11,02)1(qcm) +O(q′cm
2),

H(11,11)S
NB(qcm, q

′
cm) = q′cmqcmP

(11,11)S(qcm) +O(q′cm
2),

H(21,01)S
NB(qcm, q

′
cm) = −q′cmqcm

√
2P (01,01)S(qcm) +O(q′cm

2),

H(21,12)1
NB(qcm, q

′
cm) = −q′cmqcm2

√
2P (01,12)1(qcm) +O(q′cm

2),

H(11,22)1
NB(qcm, q

′
cm) = q′cmqcmP

(11,11)1(qcm) +O(q′cm
2),

H(21,21)0
NB(qcm, q

′
cm) = −q′cmq̃0

cmP
(11,11)0(qcm) +O(q′cm

2),

H(21,21)1
NB(qcm, q

′
cm) = −q′cm

(
2 qcm

2

q̃0cm
P (11,11)1(qcm)−

√
2qcm

2P (01,12)1(qcm)
)

+O(q′cm
2).

(1.33)

Finally only 6 GPs are necessary to parametrized the hadronic tensor at �rst
order in q′cm, They are :
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P (01,01)S=0,1(qcm), P (11,11)S=0,1(qcm), P (11,02)1(qcm), P (01,12)1(qcm). (1.34)

S = 0 and S = 1 correspond respectively to scalar and spin-�ip (or spin) GPs.
This particular de�nition of GPs allows to �nd the connection with the polar-

izabilities from RCS. The electric polarizability is given by:

P (01,01)0(qcm = 0) = −4π
e2

√
2
3
ᾱE. (1.35)

The magnetic polarizability is given by:

P (11,11)0(qcm = 0) = −4π
e2

√
8
3
β̄M . (1.36)

Those relations can also be written atQ2 6= 0, e.g. P (11,11)0(Q2) = −4π
e2

√
8
3
βM(Q2).

The other four GPs are related to the spin-�ip polarizabilities of RCS, the detail
of this link can be found in [36].

Structure functions

Now that the amplitude is parametrized by the six GPs we are able to detail the
term [M0 −MBH+B

0 ] from equation 1.29. To do this it is convenient to de�ne
new observables: the structure functions. They are linear combinations of GPs
expressed as :

PLL(qcm) = −2
√

6mpGEP
(01,01)0(qcm), (1.37a)

PTT (qcm) = −3GM
qcm

2

q̃0
cm

(P (11,11)1(qcm)−
√

2q̃0
cmP

(01,12)1(qcm)), (1.37b)

PLT (qcm) =

√
3

2

mpqcm

Q̃
GEP

(11,11)0(qcm) +
3

2

Q̃qcm
q̃0
cm

GMP
(01,01)1(qcm). (1.37c)

The important features to remind from these equations are the following:
- PLL is proportional to the electric GP αE(Q2).
- PTT is a combination of spin GPs.
- PLT has a term proportional to the magnetic GP βM(Q2) and a term propor-

tional to a spin GP.
- the electric form factor GE multiplies the scalar GPs.
- the magnetic form factor GM multiplies the spin GPs.
The �nal expression of the photon electroproduction cross-section that we need

to extract the GPs is :

σLEX = σBH+B

+Φq′cm[vLL(PLL(qcm)− PTT (qcm)

ε
) + vLTPLT (qcm)] +O(q′cm

2
),

(1.38)

where vLL and vLT are kinematical coe�cients, detailed in appendix A, which
do not depend on q′cm but on (qcm, ε, θcm , ϕ). Here again, σ is a short notation
for d5σexp/dk′dΩk′dΩp′cm .
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Chapter 2

Theoretical models and motivations

for a VCS experiment

In this chapter the theoretical models and their GP predictions are introduced,
then the results obtained by the previous VCS experiments are presented.

Section 2.1 details the dispersion relation model, which has to be separated
from the others since it is the only one which allows a direct extraction of GPs
from an unpolarized experiment. In contrast, the LEX approach described in
chapter 1 only allows to extract structure functions, i.e. linear combinations of
GPs.

Section 2.2 introduces the other theoretical models and presents their GP pre-
dictions.

Section 2.3 reviews the previous experiments and their results.
In the last section 2.4 the context of our GP extraction is presented and the

motivations for performing this new experiment are explained.

2.1 The Dispersion Relation model

The dispersion relation (DR) model was developed by B. Pasquini et al. [37] [38]
for RCS and VCS. One of its features is that it cannot predict the scalar GPs
behavior versus Q2. Indeed, in the model, these GPs contain parameters that are
free. The positive consequence is that we can use the DR model to realize a GP
extraction by comparing its calculation to our experimental data (of course the
extraction will then be model-dependent). In this section only the basics of the
DR model are introduced, the details of our DR analysis will be discussed later in
section 5.6.

2.1.1 Formalism of the model

The polarizabilities are elementary structure constants of every composite system,
from protons to macroscopic media. For each system the dipole polarizabilities
describe how it reacts to an external electromagnetic �eld. For a macroscopic
medium this phenomenological description is done thanks to the dispersion theory
and leads to the Kramers-Kronig dispersion relations. So the idea is to apply the
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2.1. THE DISPERSION RELATION MODEL

dispersion theory to the proton in order to describe the VCS process and access
the GPs.

The twelve DR model amplitudes

The construction of the model for RCS and VCS is presented in [38], and its
particular application to VCS is further detailed in [37]. This part presents only
the three important steps which are related to the three physics principles that
intervene in the model construction: relativistic covariance, causality and unitarity.
The goal is to calculate the particular VCS amplitude:

T V CS = TB + TNB, (2.1)

and more precisely to express the VCS tensor :

Mµν = Mµν
B +Mµν

NB. (2.2)

We start with the de�nition of variables used in the DR formalism, the Man-
delstam variables:

s = (q+ p)2, t = (q− q')2, u = (q− p')2 (2.3)

and an additional variable, ν, de�ned as :

ν = s−u
4mp

. (2.4)

Then the �rst step is to construct a complete set of twelve amplitudes in accor-
dance with relativity principles [39]. An important property for setting up a DR
formalism is for those twelve amplitudes to not contain kinematical singularities,
thereafter the VCS tensor becomes:

Mµν =
12∑
i=1

Fi(Q
2, ν, t)ρµνi , (2.5)

with ρµνi being twelve independent tensors and Fi(Q2, ν, t) the amplitudes.
The second step consists in the application of causality that requires certain

analytic properties of the amplitudes. This leads to relations connecting the real
and imaginary parts of the amplitudes, just like the Kramers-Kronig relation, the
so-called unsubtracted dispersion relation:

Re[FNB
i (Q2, ν, t)] = 2

π
P
∫ +∞
νthr

dν ′ ν
′Ims[Fi(Q2,ν′,t)]

ν′2−ν2 , (2.6)

with Re[FNB
i (Q2, ν, t)] the real part of the non-Born amplitudes at �xed Q2

and t. Ims[Fi(Q
2, ν ′, t)] is the imaginary part of the VCS amplitudes above the

pion production threshold, de�ned1 by: ν ≥ νthr = mπ+(m2
π+ t/2+Q2/2)/(2mp).

1mπ is the pion mass.
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The third and last step is based on the use of unitarity to replace the imaginary
part of equation 2.6 by the absorption amplitudes. The absorption amplitudes
represented in �gure 2.1 represent all possible intermediate statesX other than one
single nucleon. But being at low energy, only the dominant term of an intermediate
pion-nucleon state (πN) is considered in the DR model. The amplitudes for (γ∗p→
πN) and (πN → γp′) are obtained thanks to the MAID model from [40] including
both resonant and non-resonant contributions.

Figure 2.1: The absorptive part of the γ∗p→ γp′ reaction.

Finally, to express GPs from this formalism one has to consider that GPs are
de�ned at the limit q′cm → 0. In the DR model, this corresponds to the limit:
ν → 0 and t → −Q2 at �nite Q2. Therefore, the GPs are expressed as linear
combinations of the invariant amplitudes FNB

i (Q2, ν = 0, t = −Q2).

The particular case of the F1, F5 and F2 amplitudes

To satisfy the dispersion relation 2.6 the imaginary amplitudes have to drop fast
enough at high energy, which is not the case for two of the twelve amplitudes,
F1(Q2, ν, t) and F5(Q2, ν, t). Therefore it was decided to add an asymptotic be-
havior to the dispersion relation 2.6 which becomes:

ReFNB
1,5 (Q2, ν, t) = 2

π
P
∫ νmax
νthr

dν ′ ν
′ImsF1,5(Q2,ν′,t)

ν′2−ν2 + F as
1,5(Q2, ν, t), (2.7)

with νmax �xed in the model at 1.5 GeV and F as
1,5(Q2, ν, t) the asymptotic con-

tribution. The asymptotic contributions are treated di�erently for F5 and F1.
The F5(Q2, ν, t) amplitude intervenes in the determination of the spin-�ip GPs

and its asymptotic contribution is �xed in the model. Therefore the DR model
cannot be used to extract the spin-�ip GPs from experimental data.

The F1(Q2, ν, t) amplitude is related to the magnetic GP βM(Q2) and its asymp-
totic contribution is not �xed in the model. So the F1(Q2, ν = 0, t = −Q2) asymp-
totic contribution depends on a free parameter Λβ which appears in the expression
of βM(Q2) :

βDRM (Q2) = βπNM (Q2) +
[βM (Q2)−βπNM (Q2)]Q2=0

(1+Q2/Λ2
β)2

. (2.8)

Λβ is a free parameter that has to be �tted on experimental data to extract
βM(Q2). The dipole form in equation 2.8 is arbitrary. It provides nevertheless an
easy parametrization of the Q2-dependence of βDRM (Q2) asymptotic part.
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F2(Q2, ν, t) is the next amplitude discussed here, it is related to the sum
βM(Q2) + αE(Q2). Even if this amplitude satis�es the dispersion relation 2.6
one has still to consider contributions beyond πN in the calculation of its imagi-
nary part. Indeed the use of DR to the RCS case has shown that approximating
the imaginary amplitude to πN contributions only, failed to predict βM(Q2 = 0)
precisely enough. One has to consider higher orders that are not calculated yet.
To this aim, an asymptotic contribution is also considered for F2(Q2, ν, t). That
�nally leads to the following DR expression of αE(Q2) :

αDRE (Q2) = απNE (Q2) +
[αE(Q2)−απNE (Q2)]Q2=0

(1+Q2/Λ2
α)2

, (2.9)

where Λα is the second free parameter of the model.

2.1.2 Results of calculation in the DR model

One may wonder which contribution is more relevant in the DR model for the
scalar GPs: the πN one or the asymptotic one. Figure 2.2 displays the asymptotic
and πN contributions for the two scalar GPs (these results are obtained with
an arbitrary choice : Λα = Λβ = 0.7 GeV ). As it appears the electric GP is
dominated by its asymptotic contribution while the magnetic GP is a sensitive
interplay between the two contributions.

Figure 2.2: Scalar GPs from the DR model for �xed parameters Λα = Λβ =
0.7 GeV . The red dashed line is the asymptotic contribution, the blue dotted line
is the πN contribution and the black full line is the sum of the two.

One has to carefully consider the result of �gure 2.2. Indeed the dipole shape
that appears is only caused by our choice to keep the Λ parameters constant for
all Q2. In fact the DR model does not specify a Q2 behavior, and the Λ's are only
intermediate parameters than can vary with Q2. As another illustration of that,
�gure 2.3 shows di�erent values for di�erent Λ from 0.3 to 1.1 GeV (here again the
choice of keeping Λ constant along Q2 determines the shape).
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Figure 2.3: Scalar GPs from the DR model for di�erent values of the Λ parameters.
Red full line Λ = 0.3 GeV , green dashed line Λ = 0.5 GeV , light blue light dashed
line Λ = 0.7 GeV , dark blue dotted line Λ = 0.9 GeV and black line Λ = 1.1 GeV .

Physical interpretations of GP contributions are proposed in the model. For the
magnetic GP, the paramagnetic contribution would correspond to βπNM (Q2) while
βasymptM (Q2) would be the diagmagnetic contribution interpreted as the exchange
of an e�ective σ-meson in the t-channel.

For the electric GP, αasymptE (Q2), i.e. the contributions beyond (πN) ( typically
the (ππN) intermediate states) dominate.

The DR model o�ers a solid description of VCS, it predicts the behavior of
spin-�ip GPs and approximates the behavior of scalar GPs as a function of two
free parameters Λα and Λβ. Thanks to these free parameters one can use the DR
model to extract scalar GPs from experimental data. This model also has the
advantage to be valid above the pion production threshold, up to

√
s = 1.28 GeV ,

and for a broad range of Q2.
Although the model focuses on the VCS process, it has the merit to provide

also the calculation of the full photon electroproduction process, i.e. including the
Bethe-Heitler part, and making it directly comparable to experiment.

It is important to emphasize the role of the DR model in our GP extraction
from the LEX analysis. Since the relation between structure functions and scalar
GPs depends on spin-�ip GPs, which remain experimentally unknown, the LEX
approach based on equation 1.38 is powerless to obtain GPs directly. We will need
a prediction of the spin-�ip GPs in order to �xe these quantities in equations 1.37
and for this task we chose the DR model prediction.

2.2 Other models

The other models are predictive, in the sense that they predict all the GPs with no
free parameters. While they cannot be used for a GP extraction from experiment,
it is still interesting to compare their calculations.
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2.2.1 Chiral perturbation theories

The chiral perturbation theory (χPT) is an e�ective �eld theory that successfully
calculates meson properties. In χPT the chiral symmetry and its breaking are
implemented to a low-energy Lagrangian. Then the theory of perturbation is used
to expand the calculation along a chosen quantity of the considered interaction; for
instance the proton four-momentum and the order n at which the calculation stops
are written as O(pn). That way, chiral perturbation theories predict fundamental
quantities, among which the RCS polarizabilities, the scalar GPs and the spin
GPs. The �rst description of χPT was done by Weinberg [41], more information
about such theories applied to baryons can be found in the review paper from V.
Bernard [42].

For VCS two di�erent chiral perturbation theories give a prediction for the
GPs: the heavy baryon chiral perturbation theory (HBχPT) [43] and the baryon
chiral perturbation theory (BχPT) [44]. For both, all the low-energy constants
that appear in the constructed Lagrangian are known. So these highly constrained
models will predict GP values to compare with experimental data.

The BχPT just extends the theory to include a matter �eld. So a new e�ective
meson-baryon Lagrangian is constructed. The theory only considers the three
low-mass quarks (u,d,s), the SU(3) �avor symmetry and the eight pseudo-scalar
mesons that result from its breaking (the pions, the kaons and the η). The results
presented in table 2.2.1 were obtained by V. Bernard et al. [45] at order O(p3).

In the HBχPT framework the nucleon is considered as extremely heavy, and
so non-relativistic. This idea was introduced by Jenkins and Manohar [46] and
requires to use the SU(2) symmetry instead of SU(3). As a result only three
pseudo-scalars are predicted by the breaking of the symmetry, they are the pions.
Thus the model introduces the nucleon's pion cloud and its interaction with the
VCS photon. Figure 2.4 shows the diagrams typically calculated and the HBχPT
calculation of GPs from [47] is drawn in �gure 2.6.

Figure 2.4: Typical pion loop diagram for Compton scattering.

The ∆(1232)-resonance is ignored by theses theories, but it has been shown that
including the ∆(1232)-resonance as an explicit degree of freedom impacts signi�-
cantly the predictions. Furthermore, in their paper [48] Lensky et al. performed
a new Lorentz-covariant calculation of the RCS electric and magnetic polariz-
abilities. Considering both the ∆(1232)-resonance and the new Lorentz-covariant
calculation deeply impacts the predictions; results obtained by this approach are
labeled as �NEW� in table 2.2.1.

Table 2.2.1 from [48] illustrates a variety of results provided by χPT theories.
The predictions are presented for BχPT and HBχPT; the calculations are done up
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to the order O(p3) and even O(p4) for �NEW� (but the ∆(1232)-resonance is not
considered at the O(p4) order) . The compilation of RCS measurements from [28]
is shown as a comparison.

BχPT BχPT (NEW) HBχPT HBχPT (NEW) PDG [28]
ᾱE (10−4fm3) 6.8 10.8 12.2 20.8 11.5±0.4
β̄M (10−4fm3) -1.8 4.0 1.2 14.7 2.5±0.4

Table 2.2.1 : RCS electric and magnetic polarizability predictions from di�erent
BχPT and HBχPT calculations as presented in [48].

As it appears from table 2.2.1, there is a large sensitivity to the calculation
choice in χPT predictions. Also, BχPT and HBχPT are in poor agreement.

2.2.2 E�ective Lagrangian model

The e�ective Lagrangian model was elaborated by M.Vanderhaeghen [49], it con-
sists in a phenomenological approach to calculate the polarizabilities. The idea is
to evaluate the Non-Born contribution to photon electroproduction by summing
the Feynman diagrams of dominant intermediate states.

This relativistic model calculates the contributions of the non-Born diagrams
represented in �gure 2.5, with N∗ representing the following intermediates states
: ∆(1232), P11(1440), D13(1520), S11(1535), S31(1620), S11(1650) and D33(1700).
The electromagnetic couplings of these resonances are adjusted on photo-decay
amplitude �ts to experimental data. The X symbol of �gure 2.5 stands for the π0

or the σ (ππ) meson and the coupling constants are deduced from other models
(more informations are given in [49]).

The main limitation to the model comes from the evaluation of the πγγ cou-
pling constant. Indeed the experimental photo-decay amplitude only �xes the
on-shell e�ects. This may explain the discrepancy between the experimental RCS
polarizabilities and the ones predicted by the model.

A new determination of polarizabilities was performed in an e�ective Lagrangian
model framework [50]. In this work a more general treatment of the ∆(1232) contri-
bution was implemented by adding an o�-shell degree of freedom. This calculation
is drawn in �gure 2.6. The prediction of αE(Q2 = 0) is still in bad agreement with
the experimental values, as for the work of reference [49].

2.2.3 Linear sigma model

In the linear sigma model (LSM), originally developed in reference [51], the proton
structure is described by a pointlike nucleon that interacts with pions and sigmas.
The LSM was developed for VCS by A. Metz and D. Drechsel [52][32] and was
the �rst model to give a prediction of neutron scalar GPs. It is built in order to
respect all the relevant symmetries like Lorentz symmetry, gauge invariance and
chiral invariance. It also satis�es the partially conserved axial current relation
(PCAC [53][54]) which represents spontaneous breaking of the chiral symmetry
and is an important relation to describe hadron physics at low energy. The PCAC
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Figure 2.5: VCS Non-Born diagrams calculated in the e�ective Lagrangian
model [49]. The N∗ and X symbols are speci�ed in the text.

relation gives rise to the Goldberger-Treiman relation [55] that is used to determine
the pion-nucleon coupling constant gπN :

gπN = gA
mN
Fπ

= 13.4, (2.10)

with mN the nucleon mass, gA the axial coupling constant and Fπ the pion
decay constant. gπN is used to calculate all the one-loop diagrams (�gure 2.4)
contributing to the GPs.

The LSM considers an in�nite sigma mass to avoid all the Feynman diagrams
containing the sigma propagator. The calculation [52][32] predicts the following
RCS polarizabilities:

ᾱE = 7.5 · 10−4 fm3 ,
β̄M = −2 · 10−4 fm3.

Since the LSM ignores the ∆(1232)-resonance the magnetic polarizability is
low. The Q2-behavior of scalar and spin GPs according to LSM is represented in
�gure 2.6.

2.2.4 The non-relativistic quark model nRQM

The nRQM is a general model for nucleon structure which was introduced by O.
W. Greenberg and Resniko� [56]; it was later improved by Isgur and Karl [57].
The strength of the model comes from its simplicity; indeed, in the approximation
of equal masses for quarks only three parameters de�ne the model:

- The quark mass which is �xed thanks to the proton magnetic moment.

31



2.3. PREVIOUS AND CURRENT VCS EXPERIMENTS

- The harmonic oscillator energy which is �xed to reproduce the mass di�erence
between the baryon resonances.

- The chromatic �ne structure constant αs which explains the mass degeneracy
between the proton and the ∆(1232).

The model was then adapted to Compton scattering and polarizabilities by G.
Q. Liu et al. [58]. It considers that the electric polarizability is ruled by the elec-
tromagnetic transition E1 between the proton and its resonances. The magnetic
polarizability is deduced from the M1 transition P→ ∆(1232).

The model was later reconsidered by B. Pasquini, S. Scherer and D. Drech-
sel [59] for a new prediction of GPs. The following resonances were used: D13(1520),
S11(1535), S31(1620), S11(1650), S13(1700), D33(1700) and recoil e�ects were im-
plemented in the model. The following values were predicted for the scalar RCS
polarizabilities:

ᾱE = 5.5 · 10−4 fm3 ,
β̄M = 4.7 · 10−4 fm3.

The predicted behavior of GPs is represented in �gure 2.6. As mentioned
in [59] there is room to improve the model since it does not take into account
important considerations such as relativity, gauge invariance and chiral symmetry.
However the predictions provide an order-of-magnitude estimation for the nucleon
resonance contributions.

As a conclusion, �gure 2.6 from [59] shows the predictions of all the presented
models. Models agree on a smooth fall-o� shape for the electric GP, they also
agree to predict a more complicated shape for the magnetic GP. The spin-�ip GP
predictions are rarely in agreement from a model to another.

As a more general conclusion, the polarizabilities in RCS and furthermore
in VCS are good observables to test the validity of various models of nucleon
structure. Experimental data on polarizabilities are therefore welcome, and the
present thesis is part of this experimental e�ort.

2.3 Previous and current VCS Experiments

In this section we will remind the previous scalar GPs measurements by presenting
the explored phase space, the results and the speci�cities of each analysis. Then we
will brie�y introduce a recent measurement at MAMI that uses the ∆ resonance
to extract the electric GP at Q2 = 0.2 GeV 2.

2.3.1 The �rst MAMI experiment

The very �rst dedicated VCS experiment has been performed in 1996 at MAMI
by the A1 collaboration [7]. This experiment is quite similar to the one presented
in this thesis. The absolute photon electroproduction di�erential cross section has
been measured at a virtuality Q2 = 0.33 GeV 2 and ε = 0.62.

The beam energy was about 855 MeV. The scattered electron and the recoiling
proton were detected in coincidence with the same two high-resolution magnetic
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Figure 2.6: Results for the six GPs in di�erent model calculations as a function
of Q̃2. Full line: nRQM (�CQM*100�) [59], dashed line: linear sigma model [52],
dotted line: e�ective Lagrangian model [50], dashed-dotted lines: HBχPT [47],
full thin lines: dispersion-relation calculation [60]. Figure taken from [61].

spectrometers that we used: A and B. The same liquid hydrogen target of 49.5
mm long was also used.

The explored phase space was de�ned by:
- a range in q′cm going from low q′cm (33.6 MeV/c) for the renormalization, up

to close to the pion production threshold (q′cm(max) = 111.5 MeV/c).
- an in-plane measurement, mostly at ϕ = 180◦(which is the hemisphere oppo-

site to the BH peaks).
- basically all polar angles of the �nal photon, with θcm from -141◦to 6◦.
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The LEX approach was used to extract the structure functions with the fol-
lowing results [7]:

PLL − PTT/ε = (23.7± 2.2± 0.6± 4.3) GeV −2 ,
PLT = (−5.0± 0.8± 1.1± 1.4) GeV −2.

The �rst error is statistical only. The two others are systematic: the �rst one
corresponds to the normalization of the angular distributions, the second one stems
from the distortion of the distributions.

Later, a DR analysis was performed and con�rmed the results [62] (table 4,
method 4):

PLL − PTT/ε(DR) = (23.2± 3.0) GeV −2 ,
PLT (DR) = (−3.2± 2.0) GeV −2,

where the errors are purely statistical.

2.3.2 JLab VCS experiment (E93-050)

The JLab measurements were performed in 1998 [63] [64]. An electron beam of
4.030 GeV energy was directed onto a 15 cm liquid hydrogen target. The two
high-resolution spectrometers of Hall A were used to detect the scattered electron
and the outgoing proton in coincidence.

Extractions of GPs were done at two setups (I and II) corresponding to two
values of Q2 : 0.92 and 1.76 GeV 2 for an ε of respectively 0.95 and 0.88. The
setup-I at Q2 = 0.92 GeV 2 was split in two settings : I-a that contained events
under pion production threshold and I-b that was exploring the ∆(1232) resonance.
Measurements were done with in-plane and out-of-plane data.

The cross sections were calculated using the proton form-factor parametrization
from Brash et al. [65]. Both LEX and DR analysis have been performed (since the
I-b setting was above the pion production threshold no LEX approach was used
for it). Table 2.3.2 presents the results for the structure functions.

analysis Q2 (GeV 2) PLL − PTT/ε (GeV −2) PLT (GeV −2)

I-a LEX 0.92 1.77± 0.24± 0.70 −0.56± 0.12± 0.17
I-a DR 0.92 1.70± 0.21± 0.89 −0.36± 0.10± 0.27
I-b DR 0.92 1.50± 0.18± 0.19 −0.71± 0.07± 0.05
II LEX 1.76 0.54± 0.09± 0.20 −0.04± 0.05± 0.06
II DR 1.76 0.40± 0.05± 0.16 −0.09± 0.02± 0.03

Table 2.3.2 : JLab structure function measurement for all settings and both types
of analysis. The �rst error is statistical, the second is systematic.
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2.3.3 MIT-Bates experiment

The MIT-Bates experiment was performed in 2000-2001 [66][67]. In this experi-
ment the GPs were extracted at a very low Q2 of 0.057 GeV 2 and ε = 0.9. The
target was 1.6 cm of liquid hydrogen and the experiment used Out-of-Plane Spec-
trometers for proton detection.

The Bates VCS experiment was designed to make an azimuthal separation of
PLL − PTT/ε and PLT by taking data simultaneously at ϕ angles of 90◦, 180◦and
270◦, at �xed θcm = 90◦. Data were taken at photon energies q′cm ranging from 43
MeV up to 115 MeV.

Both DR and LEX analyses have been performed with very di�erent results
for PLT :

PLL − PTT/ε(DR) = (46.7± 4.9stat ± 3.4syst) GeV
−2 ,

PLT (DR) = (−8.9± 4.2stat ± 1.4syst) GeV
−2.

PLL − PTT/ε(LEX) = (54.5± 4.8stat ± 3.4syst) GeV
−2 ,

PLT (LEX) = (−20.4± 2.9stat ± 1.4syst) GeV
−2.

The Bates experiment was the �rst one to explicitly show that one has to
carefully use the LEX. Indeed the LEX extraction is only valid in kinematics where
O(q′cm

2) in equation 1.38 is small enough to be neglected. The Bates experiment
proved that the higher orders had a strong impact on its in-plane kinematics (where
ϕ = 180◦) and were responsible of the large di�erence between the LEX and DR
PLT values.

From the RCS electric polarizability and this new measurement one was able
to determine the polarization radius of the proton: < rα >. This radius, which
is about twice larger than the proton charge radius, is an evidence of the mesonic
e�ects in the electric polarizability.

2.3.4 The Doubly polarized VCS experiment at MAMI

In 2005-2006 a new experiment was done at MAMI [68][69]. This experiment has
been performed at ε = 0.645 and at the same Q2 as the �rst one, 0.33 GeV 2,
with the aim of gaining insight into the proton spin-�ip GPs for the �rst time.
This requires to measure doubly polarized VCS. The studied reaction was then
e~p→ e′~p′γ, obtained thanks to the MAMI capacity to produce a polarized electron
beam; the outgoing proton polarization was measured by a focal-plane polarimeter.

The P⊥LT structure function was extracted for the �rst time. Since this experi-
ment is kinematically close to the �rst MAMI experiment the scalar GPs were also
extracted, by an unpolarized analysis, in order to con�rm the previous result.

Only a LEX analysis was performed, with several di�erent parametrizations
for the proton form factors. The PLL − PTT/ε results are in agreement from a
parametrization to an other but important variations were observed for PLT . With
the Friedrich-Walcher parametrization of form factors [17] the following structure
functions were extracted:

PLL − PTT/ε = (27.1± 1.9stat ± 3.0syst) GeV
−2 ,

PLT = (−8.0± 0.7stat ± 2.2syst) GeV
−2.
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An iterative approach was used to determine the �nal values, i.e. the obtained
structure functions were reintroduced in the LEX analysis at each step. The
comparison with the �rst MAMI experiment tends to con�rm the non-trivial Q2

behavior observed in this region.

2.3.5 The �VCS ∆� experiment at MAMI

In parallel to our experiment, another VCS experiment was performed at MAMI in
2013 at Q2 = 0.2 GeV 2 and is currently in the very end of the analysis process [70].
It also uses the standard A1 setup, with the two spectrometers A and B detecting
the outgoing electron and proton and using the 49.5 mm long liquid hydrogen
target. But the measured phase space is di�erent since this experiment explores
the ∆(1232) resonance region, i.e. above the pion production threshold.

So this experiment did not use a LEX approach but measured the in-plane
azimuthal asymmetry of the photon electroproduction cross section:

A(ϕ=0) = [σϕ=0 − σϕ=180]/[σϕ=0 + σϕ=180], (2.11)

which is sensitive to both the electric GP and the Coulomb quadrupole ampli-
tude (C2)2. The experiment aims to extract these two quantities. The sensitivity
to each one varies in a di�erent way versus θcm. A large range in θcm is then
explored in order to extract those two quantities from the same reaction channel.

Above the pion production threshold the only way to access αE(Q2) is thanks
to the DR model, so the experiment will provide a model-dependent extraction of
the electric GP, that will be compared with our own results at the same value of
Q2 = 0.2 GeV 2.

2.4 Motivation for a new experiment: �vcsq2�

This section describes the motivations for our experiment [8] which is designed to
extract the electric and magnetic GP at three new values of Q2 = 0.1; 0.2; 0.45
GeV 2.

Since 1996 a series of VCS experiments performed at MAMI, JLab and Bates
have provided experimental results for the electric and magnetic GPs at di�erent
Q2 values from 0.06 GeV 2 to 1.76 GeV 2. Bates and JLab measurements were at
respectively very low and very high Q2 while MAMI was exploring the intermediate
range. The results are gathered in table 2.4.

2C2 gives us information about the sphericity of the proton.
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Experiment
Q2

ε
PLL − PTT/ε PLT

(GeV 2) (GeV −2) (GeV −2)

LEX analysis

MIT-Bates [67] 0.057 0.90 54.5± 4.8± 3.4 −20.4± 2.9± 1.4
MAMI �rst [62] 0.33 0.62 23.7± 2.2± 0.6± 4.3 −5.0± 0.8± 1.1± 1.4
polar-MAMI [69] 0.33 0.645 27.1± 1.9± 3.0 −8.0± 0.7± 2.2
JLab (I-a) [63] 0.92 0.95 1.77± 0.24± 0.70 −0.56± 0.12± 0.17
JLab (II) [63] 1.76 0.88 0.54± 0.09± 0.20 −0.04± 0.05± 0.06

DR analysis

MIT-Bates [67] 0.057 0.90 46.7± 4.9± 3.4 −8.9± 4.2± 1.4
MAMI �rst [62] 0.33 0.62 23.2± 3.0stat −3.2± 2.0stat
JLab (I-a) [63] 0.92 0.95 1.70± 0.21± 0.89 −0.36± 0.10± 0.27
JLab (I-b) [63] 0.92 0.95 1.50± 0.18± 0.19 −0.71± 0.07± 0.05
JLab (II) [63] 1.76 0.88 0.40± 0.05± 0.16 −0.09± 0.02± 0.03

Table 2.4 : Structure functions world data. The �rst error is statistical, the second
is systematic.

Table 2.4-bis contains the world data for αE(Q2) and βM(Q2). The presented
LEX analyses show values obtained by a DR-subtraction of the spin-�ip GPs.

Experiment
Q2

ε
αE(Q2) βM(Q2)

(GeV 2) (10−4fm3) (10−4fm3)

LEX analysis

MIT-Bates* 0.057 0.9 9.22± 0.85± 0.60 6.77± 1.04± 0.48
MAMI �rst* 0.33 0.62 6.90± 0.72± 1.41 2.52± 0.50± 1.11
polar-MAMI* 0.33 0.645 8.05± 0.62± 0.98 X
JLab (I-a)* 0.92 0.95 1.04± 0.20± 0.57 0.40± 0.18± 0.25
JLab (II)* 1.76 0.88 0.85± 0.19± 0.42 −0.10± 0.17± 0.21

DR analysis

MIT-Bates [67] 0.057 0.90 7.85± 0.87± 0.60 2.69± 1.48± 0.49
MAMI �rst* 0.33 0.62 6.75± 0.98stat 1.39± 1.26stat
JLab (I-a) [63] 0.92 0.95 1.02± 0.18± 0.77 0.13± 0.15± 0.42
JLab (I-b) [63] 0.92 0.95 0.85± 0.15± 0.16 0.66± 0.11± 0.07
JLab (II) [63] 1.76 0.88 0.52± 0.12± 0.35 0.10± 0.07± 0.12

Table 2.4-bis: Generalized polarizabilities world data. The �rst error is statistical,
the second is systematic. The star stands for values that we calculated ourselves
with the DR code (described section 5.1.2) from the published LEX structure
functions of table 2.4, the X means that we were not able to compute a DR value
from the structure function.

Although all models (except the DR model) predict a single-dipole behavior
for αE(Q2) the two MAMI experiments at Q2 = 0.33 GeV 2 seem to contradict this
prediction. The αE(Q2) single-dipole behavior is translated in a smooth fall-o� for
the PLL−PTT/ε structure function (the predictions of the DR model are presented
in appendix B). Figure 2.7 represents the world measurements for the structure
function PLL − PTT/ε. In the �gure the DR prediction, if one �xes Λα = 0.7 GeV

37



2.4. MOTIVATION FOR A NEW EXPERIMENT: �VCSQ2�

for all Q2, is represented as the dashed curve. This clearly shows the tension
between the three-times con�rmed Q2 = 0.33 GeV 2 measurement and the smooth
fall-o� described by the curve and the other data points.

Figure 2.7: World measurements of PLL − PTT/ε performed at JLab, Bates and
MAMI by LEX analysis (empty red crosses) and DR analysis (full blue crosses)
with statistical (inner) and total (quadratically summed, outer) error bars. The
DR model prediction assuming a dipole behavior for the asymptotic part of αE(Q2)
with Λα = 0.7 GeV, and a �xed ε = 0.85 is also plotted (light blue dashed line).
The measurements are done at di�erent ε, the exact values are speci�ed in table 2.4.
Some points are shifted in Q2 for visibility.

This situation was the physical motivation to explore in more depth the in-
termediate Q2 range with a new VCS MAMI-experiment, at Q2 values that will
surround the previous one: Q2 = 0.1 GeV 2, Q2 = 0.2 GeV 2 and Q2 = 0.45 GeV 2.
I was in charge of analysing the Q2 = 0.2 GeV 2 data set and two PHD students
were in charge of the other data sets [71][72].

The world results for the second structure function PLT are represented with
respect to Q2 in �gure 2.8. For PLT , and so for the magnetic GP, some models
predict a Q2-shape that contains an extremum in the low-Q2 region, due to the
interplay between the paramagnetic and the diamagnetic proton responses. But,
since the experimental uncertainties are large relative to the PLT values, it is di�-
cult to con�rm the predictions. However the three new measurements, performed
with a large statistics, may help to clear the picture. Investigating the GPs behav-
ior will allow to gain a deeper understanding of the structure and the dynamics of
the proton.
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Figure 2.8: World measurements of PLT performed at JLab, Bates and MAMI
by LEX analysis (empty red crosses) and DR analysis (full blue crosses) with
statistical (inner) and total (outer) error bars. The DR model prediction assuming
a dipole behavior for the asymptotic part of βM(Q2) with Λα = 0.7 GeV is also
plotted (light blue dashed line). Some points are shifted in Q2 for visibility.
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Chapter 3

Experimental con�guration

The following chapter is dedicated to the experimental con�guration, from the
presentation of the facility and the spectrometers to the presentation of our ex-
perimental choices.

Sections 3.1 and 3.2 are focused on the description of the Mainz Microton and
the three-spectrometer facility of the A1 collaboration.

Section 3.3 explains which experimental con�gurations are more relevant to
perform a GP extraction leading to our choice of kinematical settings.

3.1 MAMI

3.1.1 The Mainz facility

The Mainz Microtron (MAMI), located at the Institut für Kernphysik (KPH), is
an accelerator for electron beams. The MAMI operation principles were developed
by Prof. Dr. Helmut Herminghaus in cooperation with Dr. Karl-Heinz Kaiser [73].
The accelerator, operational since 1979, is regularly improved. The latest stage of
development is MAMI-C, �nalized in 2006, it provides an unpolarized (polarized)
electron beam up to 100 µA (20 µA) and can reach an energy of 1.5 GeV.

The great advantage of MAMI is its capacity to provide a high intensity beam
with a 100% duty cycle. Indeed the frequency of accelerating cavities is 2.45 GHz,
this generates a beam with a neat temporal structure, i.e. each �bunch� of electrons
is separated in time by only 0.4 ns. Thus the beam temporal structure is invisible
for the detectors, for instance of A1, which have a time resolution of the same
order of magnitude. The beam is then called a �continuous wave� beam. Typically
in our experiment, with particles detected in coincidence by two spectrometers,
the high duty cycle of MAMI is essential to increase the ratio of true coincidences
over accidental ones.

Figure 3.1 is a layout of the facility. In each hall a collaboration is in charge of
an experimental setup and follows a speci�c physics program. The A2 collabora-
tion uses tagged real-photons to study processes such as: total photo-absorption,
real Compton scattering and meson photo-production. The A4 collaboration was
focused on parity violation in electron scattering. The physics motivation of the X1
collaboration is centered on the use of X-rays to determine material or biological
properties.
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Figure 3.1: Schematic of MAMI.

3.1.2 Operating principles of MAMI

This section is a brief description of the MAMI design which is more detailed
in [74]. Like in all microtrons the electron acceleration is done through linear
sections. MAMI was designed to realize this acceleration while saving space. Fig-
ure 3.1 shows the electron path through the Mainz Microtron. After the choice of
beam polarization (two di�erent sources are available for polarized and unpolar-
ized electrons) the electrons are sent through the injector. It is a linear accelerator
(LINAC) that will increase the electron energy up to 3.5 MeV before entering the
race-track microtrons (RTM).

A RTM, �gure 3.2, is used to avoid the building of a too long accelerator.
It contains a LINAC combined with two magnets that will bend the electron
trajectory in order to drive it back to the linear section, where the electron will
be accelerated again. So electrons will make several turns and at each turn their
energy increases. The electron trajectory therefore increases in radius at each turn,
giving to the RTM this particular design which inspired its name.

After 18 turns in RTM1 the electrons reach an energy of 14 MeV and are
injected in the second and larger RTM. In RTM2 they again undergo the same
acceleration process and after 51 turns their energy is about 180 MeV. At this
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Figure 3.2: Schematic of a racetrack microtron (RTM) [74].

stage, called MAMI-A, the beam can be directed to experimental halls or sent to
the third and even larger RTM. The electrons will do 90 turns in RTM3 to obtain
an energy of 855.1 MeV. This step is called MAMI-B and here again one can drive
the beam to experimental halls or choose to accelerate it again in the last stage.

At high electron energy like the one provided by MAMI-B the magnets must be
large enough to completely de�ect the electrons. But MAMI-B with its 5m wide
magnets reached the mechanical limit of the RTM concept [73], and is the largest
microtron in the world. Thus the last stage, MAMI-C, is made from another design:
a harmonic double sided microtron (HDSM) accelerator presented in �gure 3.3.

Figure 3.3: Schematic of a harmonic double-sided microtron (HDSM) [74].

A HDSM is composed of four 90◦-bending magnets and two linear accelerators.
The frequency of each LINAC is adjusted in order to prevent the beam from
instabilities. After 43 turns in this last stage the electrons can reach an energy of
1508 MeV before getting directed to experimental halls.
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3.2 A1 experimental hall

The physics program of the A1 collaboration is focused on electroproduction re-
actions on nuclear targets that probe hadron structure, such as: elastic scattering
processes, electroproduction of mesons or photons, etc. The A1 experimental hall
is easily identi�able in �gure 3.1 by its three-spectrometer set-up [75]. These large
and heavy spectrometers can be independently rotated around the central axis
where the target is placed. Each spectrometer can be operated in a single, double
or triple coincidence mode depending on the studied physical process. It is also
possible to raise the spectrometerB in an out-of plane position and thus reach
speci�c regions of the angular phase space.

3.2.1 The liquid hydrogen target

The vacuum scattering chamber, at the pivot point of the three spectrometers,
holds several targets on a ladder. The ladder moves to select which target will be
hit by the beam depending on the need of the experiment. For our experiment the
carbon target was used for calibration, the aluminum oxide screen was needed for
beam position monitoring and the liquid hydrogen target was the one necessary
to realize the actual data taking.

In order to perform our GP extraction we need to control and measure the
luminosity because we measure an absolute cross section. But, the luminosity
of electron scattering experiments depends on target density (and indirectly its
temperature). Furthermore the electrons will deposit energy in the target, warming
it and changing its density. It is thus important to stabilize the target temperature
by a cooling system. The liquid hydrogen target was built on the concept of closed-
circuit loop. The circulation of liquid hydrogen is powered by a ventilator that
ensures a constant �ow in the target. Then the heat deposited by the electron beam
dissipates during the passage of liquid hydrogen in the heat exchanger. The heat
exchanger is cooled by a Philips cryo-generator. The whole scattering chamber
and the Philips-Machine are represented in �gure 3.4.

A second important point is to avoid the local density variation inside the
cryo-target. A too localized and intense beam can even create local boiling. The
"wobbler" mechanism, that displaces the beam transversely by a few millimeters
along a determined pattern at a frequency of several kHz, will prevent the target
from local boiling. The target dimensions are represented in �gure 3.4, its length
is 49.5 mm for a width of 11.5 mm. The cell walls are made of a HAVAR foil of
10µm thickness.

The target average density and temperature are 0.069 g.cm−3 and 22◦K, its
pressure is approximately 2 bar.

3.2.2 The high-resolution spectrometers

In our experiment the particles are detected in coincidence, the electron by spec-
trometer B and the proton by spectrometer A. The de�ecting power of the spec-
trometers allows to reconstruct four particle properties at the target level in the
considered spectrometer frame: θ0 and φ0 the particle vertical and horizontal an-
gles, y0 the coordinate of the particle track along the transverse horizontal axis,
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Figure 3.4: Schematic of the A1 vacuum scattering chamber and the liquid hydro-
gen target (bottom left).

and δ the particle relative momentum (relative to pref the reference momentum
of the spectrometer). (δ, θ0, y0, φ0) are the target coordinates in the spectrometer
frame.

(x, θ, y, φ)fp are the equivalent of those coordinates in the spectrometer focal-
plane frame. They are the coordinates that are actually measured by the detector
package, and then the optical matrix is used to reconstruct the properties at the
target level.

Thereafter the informations from the beam position and both spectrometers
are gathered in order to reconstruct, in the lab frame, the vertex position and the
missing mass.

The following sub-section summarizes the spectrometer reference frames and
optics. In the next subsection the spectrometer A and B characteristics are de-
tailed.

Spectrometer frames, Focal plane frame and optics

Two frames are important to de�ne: the focal plane reference frame where the
track reconstruction is performed; and the spectrometer frame which is at the
target side. The spectrometer frame di�ers from the laboratory frame only by a
rotation corresponding to the spectrometer position in the hall. The focal plane
is a virtual plane located at the exit of the magnets, which is de�ned by an x axis
perpendicular to the particle track and an upwards z-axis in the direction of the
particle trajectory (the coordinates are represented in �gure 3.6).

Figure 3.6 is a schematic representation of a particle track in spectrometer A.
The dashed blue line is the reference track, i.e. the trajectory of a particle of
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Figure 3.5: Schematic of the A1 three-spectrometers setup [75].

momentum pref that enters in the middle of the spectrometer acceptance (δ =
0, θ0 = 0◦, y0 = 0mm,φ0 = 0◦). The red line is the trajectory of an arbitrary
particle. The four focal-plane coordinates (x, θ, y, φ)fp are linked to the target
coordinates in the spectrometer frame (δ, θ0, y0, φ0) by the spectrometer optics,
with: xfp and yfp the coordinates of the intersection point between the focal plane
and the particle; θfp and φfp its vertical and horizontal angles.

The spectrometer optics is a tensor of coe�cients (Dijkl, Tijkl, Yijkl, Pijkl) that
correspond to a �fth-order polynomial expansion:

δ =
5∑

ijkl=0

Dijkl (xfp − xref )i (θfp − θref )j (yfp − yref )k (φfp − φref )l,

θ0 =
5∑

ijkl=0

Tijkl (xfp − xref )i (θfp − θref )j (yfp − yref )k (φfp − φref )l,

y0 =
5∑

ijkl=0

Yijkl (xfp − xref )i (θfp − θref )j (yfp − yref )k (φfp − φref )l,

φ0 =
5∑

ijkl=0

Pijkl (xfp − xref )i (θfp − θref )j (yfp − yref )k (φfp − φref )l,

(3.1)

with (xref , θref , yref , φref ) the focal-plane coordinates of the reference track.
The coe�cients have been determined by calibration measurements on speci�c
targets with speci�c collimators [75].

Spectrometer A and B global characteristics

The spectrometers A and B share the same principle but di�er by their size,
capacity and conception. The spectrometer C, not detailed here, is a scaled-down
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Figure 3.6: Schematic of a particle track in spectrometer A and representation
of frame coordinates. (~x, ~z) is the dispersive plane, (~y, ~z) is the non-dispersive
plane [76].

version of spectrometer A.
The spectrometer A holds four magnets, a quadrupole, a sextupole and two

dipoles, in a so-called QSDD con�guration. The two dipoles generate the particles
dispersion while the quadrupole applies a focus to particles in the transverse di-
rection. The sextupole performs corrections of aberrations in the dispersive plane.
By consequence of this particular quadrupole-sextupole design, the spectrometer's
angular acceptance is large but the reconstruction is parallel-to-point in the trans-
verse direction1, which means that a segment in target coordinates corresponds to
a point in the focal-plane coordinates, and so the reconstruction of yA0 su�ers from
a poor resolution. However this allows the precise �rst-order determination of φA0
through the measurement of yfp [75].

In the dispersive direction the reconstruction is point-to-point2, so the dis-
persive angle θA0 and the relative momentum δA are reconstructed with a good

1Implying < y0|yfp >≈ 0, while point-to-point would imply < ϕ0|yfp >≈ 0.
2Implying < θ0|xfp >= 0.
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resolution.

The spectrometer B compensates the spectrometer A's poor resolution in trans-
verse direction by a more simple design. Indeed it contains a single dipole with
a �eld gradient that adds quadrupole and sextupole contributions to ensure the
focus. As a result, a point-to-point optics is obtained both in the dispersive and
non-dispersive planes, and the momentum and position resolutions of spectrometer
B are high. The counterpart is its small solid-angle and momentum acceptance.
The other important characteristic of spectrometer B is its capacity to be tilted
above the horizontal plane up to 10◦ in the so called out-of-plane position. This
will allows us to measure particles from the photon electroproduction process when
ϕcm 6= 0 and access speci�c and relevant regions of the phase space.

The main properties of the two spectrometers are summarized in table 3.2.2.

units A B

Con�guration QSDD D
dispersive plane point-to-point point-to-point

non dispersive plane parallel-to-point point-to-point
Maximum momentum [MeV/c] 735 870
Reference momentum [MeV/c] 630 810
Central momentum [MeV/c] 665 810

Solid angle [msr] 28 5.6
Scattering Angle
minimum angle 18◦ 7◦

maximum angle 160◦ 62◦

Momentum acceptance 20% 15%
Angular acceptance

dispersive [mrad] 70 70
non-dispersive [mrad] 100 20

Long target acceptance [mm] 50 50
angle of focal plane 45◦ 47◦

length of focal plane [m] 1.80 1.80
length of central trajectory [m] 10.75 12.03

Dispersion (central) [cm/%] 5.77 8.22
Magni�cation (central) 0.53 0.85
Dispersion/Magni�cation [cm/%] 10.83 9.64
momentum resolution 10−4 10−4

angular resolution at target [mrad] <3 <3
position resolution at target [mm] 3-5 1

Table 3.2.2: Parameters of the spectrometers A and B. Values are taken from [77].

3.2.3 Focal-plane detectors

For each spectrometer the standard detector package is composed of two pairs of
vertical drift chambers (VDC), two scintillator planes and a Cerenkov detector
(the con�guration can be changed to use speci�c detectors like a polarimeter). In
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this section, based on [75], the detectors are introduced in an order that follows
the particle trajectory in the spectrometer.

Vertical drift chambers

The vertical drift chambers (VDC) are the �rst stage of detection. They aim to
determine the focal-plane coordinates (x, θ, y, φ)fp.

Their operating principle is represented in �gure 3.7. A VDC has a planar
structure with a plane of wires which is surrounded by two planes of high voltage
cathodes. Two kinds of wires compose the wire plane: the wider wires which are
called potential wires; and the thinner signal wires. The chamber is �lled with a
mixture of equal parts of argon and isobutane, plus 1.5% of ethanol.

When a charged particle passes through the VDC it ionizes the gases generat-
ing secondary electrons. The voltage di�erence between cathodes and wires will
make the electrons drift. Then when they approach a signal wire, the secondary
electrons at their turn start to ionize the gases and generate an electron avalanche.
The potential wires serve to optimize the �eld lines repartition. The start of the
avalanche is detected in the signal wires. The signal of wires close to the parti-
cle trajectory starts earlier than the signal from more distant wires. Figure 3.7
is a schematic representation of the drift time as measured by a time-to-digital
converter (TDC), the common stop being given by the scintillators.

Figure 3.7: Schematic of the electric �eld lines in a VDC when a particle crosses
the detectors and representation of the corresponding recorded signal in TDC
channels, from [78]. The longer signals correspond to closer wires.

Each spectrometer contains two VDCs (1 and 2), as it appears in �gure 3.6 the
VDCs plane is tilted by 45◦ with respect to the reference trajectory. In this way
the number of wires hit by a particle is increased.

To measure the four coordinates in the focal plane each VDC holds two planes
of wires. The X1 and X2 planes, composed of wires parallel to ( ~yfp), determine the
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particle momentum and vertical angle. The S1 and S2 planes, with wires rotated
from 40◦ with respect to the X plane, measure the two other coordinates.

Thanks to this design the overall tracking e�ciency is better than 99.9% (99%
for a single plane) and the following resolutions are achieved [77] :

δxfp = 100 µm
δyfp = 200 µm
δθfp = 0.3 mrad
δφfp = 1 mrad.

Scintillators

The next detectors encountered by a particle are two scintillator planes; one which
is 3 mm thick, called "dE" for energy loss, and the second which is 10 mm thick
and called "ToF" (for Time of Flight). Each plane of spectrometer A (B) has 15
(14) paddles linked via a light-guide to two photomultipliers (PMT). The PMT sig-
nals are sent to time-to-digital converters (TDCs) and analog-to-digital converters
(ADCs) providing informations that have a threefold use:

Firstly, since their response signals are fast they serve as trigger for the data
acquisition.

Secondly, they are used for timing measurements. As mentioned before, scintil-
lators give the stop signal for VDC channels but they also allow a reconstruction
of the coincidence time. When a particle hits the scintillator in, for instance,
spectrometer A, it opens a ≈ 80 ns window. Then the acquisition waits for a sec-
ond signal from the other spectrometer scintillators. The measured time between
these two TDC signals (after �ne corrections) is presented in �gure 3.8 (without
any selection of events). We distinguish two kinds of coincidences: the accidental
coincidences which are randomly distributed in time; and the true coincidences
which are in a peak centered on 0. Figure 3.8 illustrates the very good time reso-
lution (σ ≈ 0.40 ns) and the advantage of a high duty cycle as MAMI (the ratio
of true coincidences over random ones is ≈ 15).

Figure 3.8: Coincidence time measurements by scintillators (after software cor-
rections), before (left) and after (right) zooming the y axis. The accidental coin-
cidences appear as a �at distribution, the true coincidences are distributed in a
narrow peak.
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The third use of scintillators is for particle identi�cation. Indeed the PMT sig-
nal is also integrated by an ADC and this information is proportional to the energy
lost by the particle in the scintillator paddle. A proton of a given momentum will
deliver more energy than a pion of the same momentum in our low-energy regime.

Cherenkov detector

The last sub-detector is a threshold gas Cerenkov counter, which is used for par-
ticle identi�cation between pions and electrons. Pions of a given momentum cross
the detector at a lower speed than electrons of the same momentum, the Cerenkov
detector is adjusted in a way that only the electrons generate Cerenkov light (i.e.
10 MeV electrons are faster than light in the medium which has a refraction in-
dex n = 1.0014). The Cerenkov process occurs in a deca�uorobutane (C4F10) gas
at atmospheric pressure [77]. The emitted light is re�ected by mirrors to photo-
multipliers; there are twelve mirrors in spectrometer A and �ve in spectrometer
B.

3.2.4 Trigger and data acquisition: the A1 software

Trigger and data acquisition

The trigger is independent in each spectrometer and the trigger conditions can
be set di�erently in each spectrometer. The minimal trigger condition is a single
signal in only one scintillator PMT but, to minimize the background, a coincidence
between the left and right PMTs of the scintillator paddle is required. Then one
can ask for the particle to be detected in one of the two planes (dE or ToF) or in
both of them.

After being analyzed by the programmable logic unit (PLU) the signals are
sent to a fast programmable gate array (FPGA) that gather signals from the three
spectrometers. Then if the FPGA accepts an event a signal is sent to the front-
end electronics of spectrometers to start the read-out process of digitized detector
signals. Finally the data are sent to a workstation where the acquisition program
�Aqua++� combines them in the event builder. The trigger process is further
detailed in [75].

After the detection of a particle the recorded informations in the run�le are:
- the drift time of each activated wire
- the TDC and ADC information in each scintillator
- the PMT signal of Cerenkov detectors
- the target conditions
- the wobbler information
- the content of scalers for luminosity calculation.
Those informations are su�cient to reconstruct the particle momentum and

trajectory, and also the vertex position in the target.

The A1 software stack

The A1 collaboration uses an in-house built software package [79] that allows to
read out the detector electronics, do the data acquisition and perform both online
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and o�ine analysis. The four softwares involved are: Mezzo for the slow control,
Aqua++ for the data acquisition, Lumi++ for luminosity calculation, and Cola++
for the analyses.

Mezzo is the slow control software, i.e. it records numerous parameters de-
scribing the status of the apparatus: spectrometers, beam and target. Its readout
is sent directly to the central process via fast Ethernet at a typical frequency of 1
Hz, and thus can be seen by the user to check the experiment conditions online.

Aqua++ merges all data from spectrometers into events and saves them on a
disk. The duration of data collection is limited, a single data-taking is a so-called
run, and the choice of run's length is left to the user.

Coincidence events are recorded, but the single-arm events are also kept for
the use of calibration. For this purpose a counter module is a part of the experi-
mental trigger, it allows the prescale of single-arm events from each spectrometer
separately.

Figure 3.9: Schematic view of the Aqua++ event builder threads, from [79].

Figure 3.9 is a schematic view of the Aqua++ event builder threads [79], it
illustrates how the event builder merges informations from each spectrometer's
front-end, from a user interface (SQL run database) and from the Mezzo slow
control. In this way, the slow control data are also available for o�ine analysis.

Lumi++ is the software used for online and o�ine luminosity calculations. The
integrated luminosity of a run is the product of incident electrons number during
the run, by the number of target nuclei per unit area:

L =
Qtot

e
· ρx̄tgNA

A
, (3.2)

with e = 1.6 · 10−19 C the elementary charge, NA = 6.022 · 1023 mol−1 the
Avogadro constant, A = 1.008 g ·mol−1 the hydrogen molar mass and ρ the target
density. x̄tg is the averaged target length3. The total charge Qtot is obtained by the

3The particular shape of the target with its round endcaps is not considered by Lumi++.
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integration of the beam current (measured by a Foerster probe) in time intervals
(measured by scalers). All these informations are gathered over time and used
by Lumi++. Furthermore the software also uses informations from other scalers
which measure the dead time.

Cola++ is the data analysis software that is used both in online and o�ine
analyses. It reads run �les to build histograms readable by the user and also
provides tools for: the manipulation of four-vectors, the customization of data
cuts, and the design of events weighting. To function properly Cola++ needs
three input �les:

- The run.db �le (for run database �le) contains parameters, ordered in time,
that describe the experimental conditions and have to be calibrated, see chapter 4.

- The .col �le contains the list of histograms to be produced by Cola++ and
the analysis conditions: the events selections, the de�nition of variables elaborated
from raw variables (from run �les), the events weight, etc.

- The .tma �les (for transfer matrix �les) detail the optics parameters de�ned
in section 3.2.2.

3.3 Choice of kinematical settings

The VCS phase space is de�ned by the �ve variables (qcm, q
′
cm, ε, θcm, ϕcm). In the

lab frame particles from the ep → epγ process are emitted in a large range of
directions, but with our spectrometers acceptance we only have access to a limited
part of the VCS phase space. Moreover all the phase-space regions are not of equal
interest. For instance in the Bethe-Heitler peaks the electron bremsstrahlung is
too dominant to perform a GP extraction. So we need to carefully decide where
the extraction will be done and so where the A1 spectrometers are positioned.

3.3.1 The leptonic-side variables

Among the �ve important variables, three are �xed by the leptonic part of VCS
(qcm, q

′
cm, ε). These variables are �xed by the electron lab-frame variables: (k, k′, θe),

and so they are �xed by the electron spectrometer and the beam. Their value is
deduced from three constraints.

First we want to perform our measurement around Q2 = 0.2 GeV 2, this �xes
qcm.

Secondly, since in the LEX equation 1.38 the GP e�ect depends on q′cm, we need
to increase q′cm to magnify the e�ect. But in order to perform our LEX analysis
q′cm has to remain under the pion production threshold.

The third and last constraint is that we want to have ε as high as possible, i.e.
close to 1. Indeed in equation 1.38 ε is in factor of the structure functions through
the vLL and vLT coe�cients.

Another criterion could be considered: it is essential to have a large range in
q′cm to increase the lever arm in our LEX analysis. Fortunately this is ensured by
the large momentum acceptance of the spectrometers.
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3.3.2 The center-of-mass angles of the Compton Scattering
process

We have more freedom in our choice of center-of-mass angles θcm and ϕcm (cf.
�gure 1.8) and it seems a priori that any value out of the Bethe-Heitler peaks
would be relevant for a GP extraction. However it appears that it is not that
simple.

The explored region in θcm and ϕcm depends on the spectrometers acceptance.
It also depends on Q2, the higher Q2 is the narrower will be the cone drawn by the
outgoing proton and the larger will be the phase space probed in our experiment.
But at Q2 = 0.2 GeV 2 it is impossible to explore the whole (θcm,ϕcm) space with
the acceptance of our spectrometers with only one setting. So we have to decide
which settings are relevant and three criteria motivated our choice.

The �rst criterion is the importance of the GP term compared to the cross
section σBH+B. At q′cm = 112.5 MeV/c, �gure 3.10 shows the relative theoretical
GP e�ect according to the LET:

relative GP effect =
Φq′cm[vLL(PLL(qcm)− PTT (qcm)

ε
) + vLTPLT (qcm)]

σBH+B
. (3.3)

Two relevant regions of the (θcm,ϕcm)-plane appear to have an important GP
e�ect:

- The �rst region for ϕcm ≈ 0 and cos(θcm) ≈ −1 with a GP e�ect of approxi-
mately +20%.

- The second region when ϕcm ≈ ±100◦and cos(θcm) ≈ 0 with a GP e�ect of
approximately -10%.

We will now consider these two regions and we will check if they also satisfy
the two remaining criteria. If so, our spectrometers will be �xed in order that their
acceptance roughly corresponds to the considered region.

The second criterion is the weight of each structure function independently
in the GP e�ect of equation 3.3. We wanted to realize two settings, one which
will be more sensitive to the electric GP and another that will be more sensitive
to the magnetic GP. This selective sensitivity is determined by the values of the
coe�cients vLL and vLT , according to equation 1.38. Figures 3.11 and 3.12 show
the theoretical behavior of the coe�cients vLL and vLT in the (cos(θcm),ϕcm)-
plane at �xed qcm = 458 MeV/c and ε = 0.85. The previously selected region for
ϕcm ≈ 0 and cos(θcm) ≈ −1 is still interesting since it corresponds to a domain
where vLL ≈ 0. The second selected region where ϕcm ≈ ±100◦and cos(θcm) ≈ 0
contains points where vLT = 0 and therefore should be highly sensitive to the
PLL − PTT/ε structure function. So the selected regions also satisfy this second
criterion.

The third and last criterion is to have a large range in vLL and vLT coe�cients.
Indeed to realize the �nal structure function �t one has to dispose of a large lever
arm in the coe�cients in order to increase the global sensitivity of our �t. Since
the two selected regions stand for respectively opposite value of the coe�cients, as
it appears on �gures 3.11 and 3.12, they will o�er the necessary lever arm.
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Figure 3.10: Theoretical relative GP e�ect according to the LET and equation 3.3
for PLL − PTT/ε = 20 GeV −2 and PLT = −4 GeV −2 at q′cm = 112.5 MeV/c. The
blank region at the center of the plot is removed for clarity reasons and corresponds
to the Bethe-Heitler peaks.

Figure 3.11: Theoretical behavior of vLL in the (cos(θcm),ϕcm)-plane at �xed qcm =
458 MeV/c and ε = 0.85.
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Figure 3.12: Theoretical behavior of vLT in the (cos(θcm),ϕcm)-plane at �xed qcm =
458 MeV/c and ε = 0.85.

3.3.3 A last criterion: the LEX validity

From the BATES experiment [66][67] we know that ignoring the higher-order terms
in the LEX analysis is not always safe. Indeed the higher-order terms ( O(q′cm

2)
in equation 1.38) depend on the (θcm,ϕcm) angles and become in some cases too
strong to be neglected. So we wanted to identify the regions where higher-order
e�ects are small enough in order to realize a LEX extraction as meaningful as
possible.

To do that we build a theoretically-based criterion which provides an evaluation
of the higher-order e�ect. For a coherent and �xed choice of structure functions we
calculate the theoretical photon electroproduction cross-section from LEX (σLEX),
i.e. truncated at �rst order. We also calculate the theoretical cross section pre-
dicted by the DR model (σDR) where we keep the exact same choice of structure
functions.

Even if the higher-order terms are not speci�cally expressed in the DR cross
section they are included as a whole in the calculation. Then the comparison of
the DR cross section to the LEX one will provide an estimation of the higher-
order terms. So ODR(q′cm

2) is the criterion representing the relative importance
of higher-order terms in the LEX cross section, according to the DR model. It is
written as:

ODR(q′cm
2) =

|σLEX − σDR| ∗ 100

σBH+B
. (3.4)

Figure 3.13 shows the value of this theoretical criterion in the (cos(θcm),ϕcm)-
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plane and also a two-dimensional representation where only the bins whereODR(q′cm
2) <

2% remain (in blue). This second representation helps to identify the considered
acceptance areas which are represented by red perimeters, the dashed black area
stands for the BH peaks. Later in section 5.5.2 we will see how applying a cut on
ODR(q′cm

2) impacts our analysis.
The �rst selected region (for ϕcm ≈ 0 and cos(θcm) ≈ −1) appears to be

of interest since it contains kinematical points where the higher-order e�ect is
negligible according to the DR model. But the region also contains kinematical
points where the higher orders seem to be important and where a LEX analysis
may be adventurous. Later in section 5.5.2 we will show how we can get rid of
these kinematical points. The higher orders appear to be smoother in the second
selected region (ϕcm ≈ ±100◦and cos(θcm) ≈ 0).

Figure 3.13: (Left) behavior of ODR(q′cm
2) in the (cos(θcm),ϕcm)-plane at q′cm =

87.5MeV/c and (right) two-dimensional representation of the angular region where
ODR(q′cm

2) < 2% (blue), the red squares correspond to the two areas of interest to
perform the GP extraction.

To conclude, all the presented criteria are ful�lled by the regions indicated in
red, which were at the basis of the de�nition of our spectrometer settings. The
contour drawn by the spectrometers acceptance is actually larger and varies with
respect to q′cm.

3.3.4 The Q2 = 0.2 GeV 2 settings

Two main settings (corresponding to di�erent spectrometers position) were de-
signed in order to probe the regions of interest. A so-called in-plane setting con-
taining the (ϕcm ≈ 0 and cos(θcm) ≈ −1) region which will be more sensitive
to PLT and βM(Q2), and a so-called out-of-plane setting which used the out-of-
plane capability of spectrometer B to probe the second region more sensitive to
PLL−PTT/ε and αE(Q2). These two settings are centered on values of q′cm as high
as possible but still below the pion threshold.
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An important step of the analysis is the renormalization procedure which will
be presented in section 5.4. To perform it we also need data where the GP e�ect
is very small. This is realized with supplementary settings centered at low values
of q′cm (≈ 25− 50 MeV/c). They are called the low-q′cm settings.

The data taking at Q2 = 0.2 GeV 2 took place in 2011 but a problem was
encountered that required us to redo the out-of-plane setting in 2015. We then
decided to add another setting in a third region of interest, the �forward out-of-
plane setting�. Table 3.3.4 gathers the spectrometers settings analyzed at Q2 =
0.2GeV 2.

setting Ebeam PB θB OOPB PA θA
name (MeV) MeV/c (o) (o) MeV/c (o)

Q2 = 0.2 GeV2

LOW 904.9 723 32.5 0.0 462 52.2
LOW-bis 904.9 715 32.5 0.0 442 52.2
INP 1002.4 766 30.4 0.0 580 51.5
OOP 1002.4 766 29.2 8.5 486 51.0
OOP-forward 1002.4 770 29.2 8.5 411 42.5

Table 3.3.4: The analyzed kinematical settings for spectrometer A and B. (PB,
PA) are the central momenta and (θB, θA) are the spectrometer angles w.r.t. the
beam. The scattered electron and proton are respectively detected in spectrometer
B and A.
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Chapter 4

Experimental Analysis

In this chapter we present the �rst-level analysis work. The detectors need to be
calibrated, the experimental data have to be checked and the VCS events must be
selected.

Sections 4.1 and 4.2 contain the description of detectors calibration. The �rst
section is a brief introduction of standard A1 calibrations while the second section
describes with more detail the unusual issues we encountered. Section 4.3 presents
the data selections and binning. Sections 4.4 and 4.6 gather the control �gures used
to ensure our analysis correctness, while section 4.5 is devoted to the simulation
of the experiment.

4.1 Standard raw data calibration

The calibration of focal-plane detectors is essential for using clean data-selection
and for extracting the GPs with minimized systematic errors. The procedures we
followed are summarized here and described with more details in [71].

The calibrations presented in this section are made thanks to the raw informa-
tions from detectors but also some speci�c variables de�ned in Cola++ (missing
mass, errors estimated on track reconstruction, etc...). The settings are calibrated
independently by following the same procedure. For some calibrations a data
selection is required.

4.1.1 The photon missing-mass squared

The missing-mass squared, M2
X is a relativistic invariant, de�ned as the squared

mass of the undetected particles (the real photon in our experiment) by:

M2
X = E2

X − ~px
2, (4.1)

with EX = (Ep+Ee)−(Ep′+Ee′) the missing energy and ~px = (~k+~p)−(~k′+~p′)
the missing momentum, both being de�ned thanks to conservation laws.

Beside the reaction identi�cation, the missing-mass squared is a powerful tool
to calibrate our detectors. IndeedM2

X is deduced from the four-momentum vectors
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reconstructed by both spectrometers A and B. A wrong calibration will then im-
pact directly its resolution, so by minimizing the resolution ofM2

X one can identify
the optimal o�set values.

For the ep → epγ reaction, the missing-mass squared of the real photon is
centered on 0 MeV 2 with a radiative tail at positive M2

X . The next channel
is the pion production ep → epπ0 which corresponds to a missing-mass squared
M2

X = 18225 MeV 2. This reaction constitutes a second source of true coincidences
that is unwanted in our VCS analysis. Therefore, the missing-mass squared is used
as a selection tool. Figure 4.1 shows an example of the missing-mass squared as
reconstructed by Cola++.

Figure 4.1: The missing-mass squared as reconstructed by Cola++ for all coinci-
dences of the setting INP. The left peak corresponds to ep→ epγ events, the small
peak at the right to the ep→ epπ0 reaction.

The total distribution of �gure 4.1 is a convolution of several ones: the peaks
from γ and π0 events, but also broader distributions that we want to remove from
our analysis. One is from random coincidences (left of �gure 4.2) and the other is
generated by the target walls (right of �gure 4.2).

The random coincidences distribution also presents a tiny peak of ep → epγ
events which is a consequence of the spectrometers time resolution. The target
walls distribution is comprised of random coincidences but also of true coincidences
from ep → epγ and ep → epπ0 reactions on a proton in a nucleus. These events
occur on protons which are not at rest, and so, they are not to analyse. This
spectrum shows also a small peak on hydrogen, due to an imperfect cut on the
vertex position.

The goal of the calibration presented in the following is to have a good control
of the data selections that keep the events from the ep→ epγ reaction.
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Figure 4.2: Setting INP: reconstructed M2
X for random coincidences (left) and

events from the target walls (right).

4.1.2 Calibration of VDCs

Disabling wires

It happens that VDC wires are dead or ine�cient. Such wires are easy to identify
since their counting rate will be unexpectedly smaller than the one of neighbouring
wires. In the same way the so-called �hot wires� with a too high counting rate have
to be disabled since they trigger even when their is no particle passing them. The
procedure is described in [71].

TDC o�sets of drift time

The drift time in VDCs is used for track reconstruction. For each of the four VDC
planes the measured drift time will depend on an o�set that has to be calibrated.
In order to realize the calibration of the four VDCs we use the track-reconstruction
errors of the four focal-plane coordinates provided by Cola++.

So for each VDC we test a range of o�set values, then we calculate, for a run,
the mean value of the error on reconstructed tracks. Figure 4.3 shows how the
mean value of the error on the spectrometer B s2-plane varies with the o�set (in
units of TDC channel). In this way the o�set that minimizes the reconstruction
errors is identi�ed.

Drift velocity

The drift velocity is also a parameter to calibrate; it may vary with time, for
instance when an isobutane bottle change occurs. The calibration is done thanks
to the error on track reconstruction in the same way as for TDC o�sets.

Once the calibration is done one has to ensure that the optimal value is stable
over time, i.e. for each data run of a setting. If it is not, a new calibration is done
and applied to the problematic runs.

Drift time criterion

The timing di�erences between signals in neighbouring wires can be used to di�er-
entiate between �good events� from the ionization of the measured particle and the
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Figure 4.3: Mean value of the error on reconstruction per track with respect to
a range of TDC o�sets, for the spectrometer B S2 layer; the variable is labeled
as �B.s2.chi_sqr� in Cola++. The error bars come from the determination of the
mean by ROOT.

so-called δ-electrons from secondary ionizations. It also prevents from hot-wires
signal. Figure 4.4 is a schematic representation of those events in a VDC plane.

One has to set three parameters in order to �lter out wrong events by this
criterion. The procedure is described in [71].

Figure 4.4: A hot wire, a good event and a δ-electron event in a schematic repre-
sentation of a VDC plane from [71]. The vertical lines represent the time it took
for the signal to arise after the passage of a particle through the VDC.

Tracking quality and e�ciency

The quality of the VDC tracking can be checked over time by plotting the evolution
of the resolution on the four focal plane coordinates in a complete setting (variables
labeled as �∆x,∆y,∆θ,∆φ� in Cola++). This should remain stable and is a good
indication if the calibration is incomplete. This was checked for our �ve settings
and all the instabilities were corrected.

61



4.1. STANDARD RAW DATA CALIBRATION

The e�ciency per wire is at least superior to 90%. Such an e�ciency is enough
to get close to a 100% e�ciency for the tracking. Therefore we do not apply any
correction for tracking ine�ciency.

4.1.3 Calibration of Cerenkov detectors

In our experiment we use the information from the Cerenkov detector in spectrom-
eter B which is dedicated to the separation of electrons from pions. Nevertheless
we did not make use of it since the other analysis cuts were su�cient to supress
the pions (this is presented in section 4.3). So the only calibration we did consists
in shifting the PMT pedestal values to zero in order to align them.

4.1.4 Scintillators

Timing calibrations

The standard calibration of scintillators timing is made in three steps that are not
independent. So one has to do several times the three calibrations in an iterative
process.

The �rst step consists in plotting the coincidence time TAB between the two
spectrometers for the complete setting. Then the global timing o�set is modi�ed
in order to center the TAB distribution on zero, as presented in �gure 4.5.

Secondly, the same type of correction has to be applied per scintillator paddle.
Indeed the signals from some paddles could start sooner and be compensated by
signals from other paddles which start later; this gives a global timing spectrum
which is well centered on zero but wider than it should be. So the per-paddle
signal is homogenized.

The last step is the correction of the �time walk� phenomenon. It occurs when
the detection of a signal triggers thanks to a threshold discriminator. Two pulses
(having more or less a Gaussian shape) that start at the same time will trigger
at di�erent times if their maximum height is di�erent. In Cola++ the true signal
start t0 is approximated by:

t0 = t− b · 1√
QT

, (4.2)

with t the measured start of the signal, QT the total charge collected (in units
of ADC) and b a free parameter to calibrate. To do so, one has to check the
distribution of scintillator timing versus the signal integral measured by the ADC.
If a correlation is observed is has to be removed by changing the free parameter
value. This will modify the global timing calibration.

ADC

Scintillators provide timing information but also measure the energy loss of passing
particles (in units of ADC channel). In our experiment this information can be
used for particle identi�cation between π+ and protons in spectrometer A.

In each paddle the ADC spectrum is composed of two peaks, one corresponding
to pions and the other (at higher energy) to protons. The calibration of the ADC
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Figure 4.5: Setting INP: coincidence time spectrum between spectrometers A and
B before o�set correction. The FWHM of the peak is equal to 0.9 ns.

consists in rescaling the spectrum in such a way that pions and protons peaks are
aligned for each paddle. Thus, if one wants to perform a particle identi�cation
selection the same cut can be applied to every paddle. It has to be done for both
scintillator planes (dE and ToF) of the spectrometer A. The calibration description
is detailed in [71]. In section 4.3.4 we show that the PID selection based on
scintillator is actually unnecessary.

E�ciency

Since the trigger is done by the scintillators, some events may be lost if the scin-
tillators e�ciency is not 100%. Indeed there are small ine�ciencies which change
from a paddle to another. So one has to correct the event loss in order to precisely
measure the ep→ epγ cross section.

For this purpose we use �e�ciency runs� taken with a speci�c target, the carbon
target. Since one cannot measure the e�ciency of the triggering plane, two runs
are required, one with the dE plane as a trigger and the other with the ToF plane
as a trigger.

The e�ciency of a scintillator plane is determined as the ratio:

εeff =
Ntrack

⋂
TDC

Ntrack
, (4.3)

where Ntrack is the number of (single-arm) events having a good VDC track,
and Ntrack

⋂
TDC is the number of events having in addition a TDC information in

the plane under study [80]. The e�ciency is determined in small two-dimensional
bins in the scintillator coordinates (Xscint, Yscint).

The correction is applied to our data as a weight function:

f(Xscint, Yscint) = 1
εeff (Xscint,Yscint)

, (4.4)

for each triggering plane [81]. Usually the e�ciency is superior to 98%, it never
gets lower than 90% for the worst paddles.
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4.1.5 Optics calibration

The spectrometer optics is an essential part of the particle reconstruction. We
used as a starting point the transfer matrix �les of the A1 distribution; then,
adjustments were necessary for our data analysis, due mainly to the high values
of central momenta for spectrometer B, and also partially for spectrometer A (see
table 3.3.4).

The calibration of spectrometers optics is a broad topic, and sometimes in our
case it gives several solutions due to the fact that some adjustments are based
only on the M2

X variable. Indeed it happens that two di�erent o�set choices lead
to comparable results in terms of resolution on missing-mass and vertex recon-
struction. We then have to stick with a reasonable choice and see how using other
optics parameters would a�ect the extraction of physics observables. This will be
considered in the systematic errors presented in section 5.7.

Matrix elements

The �rst step of optics calibration is the adjustment of polynomial coe�cients
presented section 3.2.2 and gathered in a tma �le.

This was done in [82] for spectrometer B thanks to carbon target runs and sieve-
slit collimators which select only particles emitted at well-known angles (θ0, φ0).
The coe�cients Pijkl and Tijkl are adjusted until the reconstructed track reproduces
the sieve-slit holes con�guration.

A second tool is the vertex reconstruction for cryo-target runs. Figure 4.6
shows the typical shape of the target along the beam axis as seen by spectrometer
B; the peaks at the edges are caused by the walls of the target which generate more
particle at our kinematics. The calibration of spectrometer B optics coe�cients
Yijkl is optimal when the peaks are sharper.

Figure 4.6: Vertex reconstruction for the setting INP. V ertex Z is reconstructed
with the standard optics from A1 (black) and with our optimized optics (red), for
which the reconstruction has improved.
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General o�sets

Beside the calibration of polynomial coe�cients we had to adjust supplemen-
tary coe�cients that correspond to global o�sets of the four target coordinates
(δ, θ0, y0, φ0). For instance a 2 mm shift of the target position along the beam axis
is taken into account by a supplementary coe�cient, called ∆Y0(B).

The angular o�sets (∆θ0(A),∆φ0(A),∆θ0(B),∆φ0(B)) were adjusted thanks
to symmetry properties of our cross section. For instance the geometry of our
experiment constrains the (θ0)-spectrum to have symmetrical edges for the in-
plane settings. If it is not the case, global o�sets ∆θ0(A) or ∆θ0(B) are applied
to correct the distribution.

The ∆Y0(B) coe�cient was corrected thanks to carbon runs. We assumed
that the carbon target is well-centered in the A1 hall and used this information to
modify ∆Y0(B) until we obtained a reconstructed vertex centered on z̄carbonfoil = 0.

This simple procedure is complicated by transverse beam position e�ects, as
presented later in section 4.2.1. The consequence is that one has to carefully
select a carbon run with a beam well-centered transversally (xlab = 0) in order
to calibrate ∆Y0(B). The di�culty to select such runs is explained 4.2.1 for the
cryo-target and is the same for the carbon target.

Our calibration of ∆Y0(B) lead to consider an o�-centered cryo-target:

Z lab
cryo−target = −2.2± 0.5 (mm) .

The same order of magnitude of o�-centered values (−2 to −3 mm) was found
for other data sets of our experiment and also con�rmed independently by other
experiments [83].

Magnets saturation in spectrometer A

The spectrometer-A optics we used is valid in a wide momentum range. However,
magnet saturation e�ects occur above a certain �eld value. Typically this will
a�ect the track reconstruction of particles having a momentum larger than ≈ 580
MeV/c. This is the case for the in-plane setting.

A speci�c calibration led to make small changes in the coe�cients P0010, P1010

and T0100 of spectrometer A [84] for this setting.
Beside the coe�cients correction one also has to change the reference momen-

tum in spectrometer A, indeed the saturation of the magnetic �eld changes its
value. To consider this, an analytic parametrization was determined by J. Roche
and is described in her thesis [78]. For our in-plane setting, we applied the following
correction to the spectrometer A central momentum (P central

A = 1.0476203 ∗P ref
A ):

P central
A = 579.954− 0.278(MeV/c),

579.954 being the value measured by the NMR probe.

4.2 Speci�c raw data calibration

After our �rst-pass analysis we observed important inconsistencies in our cross-
section measurements. They were caused by unexpected features. In this section
we present how we successfully solved these issues in our �nal analysis.
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4.2.1 Beam position

During the analysis of our settings an issue concerning the beam position was
found. The beam position is not as stable as we thought. The beam conditions are
checked continuously, but its exact position on the cryo-target (or carbon-target)
cannot be observed by MAMI operators.

At the beginning of data taking the beam position is �xed by eye thanks to
an aluminum screen. Figure 4.7 shows a snapshot of the aluminum screen hit by
the beam. Then the beam is turned o�, the aluminum screen is replaced by the
cryo-target, and the beam is turned on again. At this point there is no possibility
to check its exact position versus time.

Figure 4.7: Snapshot of the aluminum screen hit by the beam. The composition of
the screen makes it glow where the electrons strike it. The bright rectangle shows
the wobbler size in horizontal (x) and vertical (y); here (±2 mm)(±1 mm).

However, there is a way to establish its position over time in the ~xlab direction.
This position, which is averaged over the wobbler, is noted Xbeam,lab. Indeed the
vertex reconstruction by spectrometer B depends directly on Xbeam,lab.

Figure 4.8: (Top view) Schematic representation of the error ∆Z on the recon-
structed vertex position induced by an error on the beam position ∆Xbeam,lab.

Figure 4.8 is a schematic representation of how the beam position acts on the
vertex reconstruction. A change of beam position along ~xlab, from the black line
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to the blue line, induces a change in the reconstructed vertex point, from B to A
in the �gure. The change ∆Z in the longitudinal vertex coordinate is given by:

∆Xbeam,lab = ∆Z ∗ tan(θB). (4.5)

The target centering along ~zlab can be measured run per run, using the V ertex Z
spectrum as shown in �gure 4.6. We make the simple and reasonable assumption
that, in reality, the cryo-target does not move along ~zlab throughout our data
taking.

If we observe some instabilities in the reconstructed Z-position of the target
with time, as shown by the upper plot of �gure 4.9, very likely it was the beam
position which was unstable instead. Then we can adjust the value of Xbeam,lab(t)
in software, in order to stabilize V ertex Z. In practice this is done by adjusting
the parameter Beam.offset.x in the run.db �le, for groups of runs. The result is
shown in the lower plot of �gure 4.9. The spread of the reconstruction has changed
from ±0.5 mm to ±0.2 mm.

Figure 4.9: Mean position of the reconstructed V ertex Z by spectrometer B
for all the runs of the setting INP chronologically ordered. The top �gure is
for Beam.offset.x = 0 and YspecB = 0, the bottom �gure is after corrections:
Beam.offset.x adjusted per groups of runs, plus a global o�set ∆Y0(B). The red
dots stand for runs taken just after a beam positioning using the aluminum screen.

4.2.2 Snow thickness and spectrometer B momentum

The spectrometer B reference-momentum P ref
B is measured by a Hall probe with

a precision not better than a few percent1. If the value considered by Cola++ is
di�erent than the real one this will make the missing mass resolution wider.

1P refA is measured with a much better precision by an NMR probe.
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The cryo-target cell is cooled to around 22 ◦K, which is cold enough to adsorb
any residual gas molecule in the vacuum chamber that comes into contact with its
outer surface. This creates a layer of so-called target snow. The snow quantity
mainly depends on vacuum conditions.

The scattered particles will lose energy in this supplementary snow layer, pro-
portionally to the product of snow density by its thickness. This is a parameter,
considered by Cola++ and the simulation, which a�ects the missing mass recon-
struction, so it has to be correctly estimated. We chose to work at constant density
and adjust only the snow thickness.

The snow thickness and P ref
B are two independent parameters that need to be

calibrated using the missing-mass squared resolution.
The calibration, described in [71] and [85], uses two constraints on the recon-

structed M2
X : the peak width has to be minimized while its position has to be

centered on the simulated one. The calibration consists then to test a range of
values for one of the two parameters and select the optimal o�set that minimizes
the missing-mass squared width while keeping it well-centered. This will a�ect the
second parameter optimal position and will require it to be calibrated in the same
way. Several iterations are needed.

The P ref
B parameter is stable in time but the snow thickness is run-dependent.

Indeed the vacuum conditions are not always stable for a complete setting. So,
once the two parameters are �xed for the �rst runs of a setting, the calibration
of the snow thickness has to be continued for the following runs. Figure 4.10
illustrates for the setting INP how the increasing snow thickness a�ects the M2

X

peak position over time and how we corrected for it.

Figure 4.10: Position of the M2
X peak with respect to the run label, before (black)

and after (red) snow and P ref
B corrections for the setting INP. The error bars are

given by the �t of the mean position. The large gap at run #6 corresponds to a
large snow deposit after a long beam interruption. During this data taking the
snow thickness slowly grows and the peak position slowly increases which result in
a small slope on the present �gure (black points).

Table 4.2.2 contains the estimated snow quantities (averaged over the runs) for
the Q2 = 0.2 GeV 2 settings. The vacuum conditions in 2011 for the OOP-setting
were so bad that the snow quantity hampers the VCS analysis, the OOP data were
collected again in 2015 with perfect vacuum conditions.
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Setting INP LOW LOW-bis 2011 OOP 2015 OOP OOP-forward
Snow

0.781 0.808 1.28 >4 0 0thickness
(mm)

Table 4.2.2: Average snow thickness found for each setting with a snow density
�xed at 1.g.cm−3.

4.2.3 Vertical misalignment

Another complication arose from our three in-plane settings, i.e. INP, LOW and
LOW-bis. Because of the ϕcm-symmetry of the ep → epγ cross-section (see �g-
ure 4.13) the in-plane data should result in a symmetrical ϕcm-distribution of
events. Figure 4.11 shows that for the in-plane setting the negative ϕcm region
contains more events.

Figure 4.11: Experimental ϕcm-distribution for VCS events, setting INP.

We found no combination of spectrometer optics that could give at the same
time a symmetrical ϕcm-distribution and a minimized missing-mass resolution.
Therefore we concluded that our experiment e�ectively su�ers from a vertical
misalignment. The calculation of the ϕcm variable involves both spectrometers
A and B, therefore the origin of this vertical misalignment cannot be identi�ed
unambiguously. We identi�ed four possible causes:

- A vertical beam position o�set
This solution is actually unrealistic. To obtain this kind of ϕcm-asymmetry the

o�set should be too big (>2mm) and would have been seen during the data taking.

- A non-zero out-of-plane angle for spec B
It is possible to imagine that the spectrometer B was not exactly in the in-plane

position during the 2011 data taking. The study has shown that a 2.7 mrad o�set
in spectrometer B vertical angle is needed to correct the ϕcm-asymmetry. This
appears unlikely since it implies a very large spatial displacement at the entrance
of the spectrometer (i.e. 2.7mr ∗ 3.368m ≈ 9mm).
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- A vertical o�set of spectrometer collimators
Although this seems unrealistic for spectrometer B (it would also imply a colli-

mator o�set of 9 mm), it can be considered for spectrometer A. In this spectrom-
eter, a large o�set in vertical angle translates into a small spatial displacement,
due to the small target-to-collimator distance (0.565m).

- A small �oor sagging in A1
The A1 �oor sagging was proven by survey measurements [83] and is probably

the most realistic cause of our vertical misalignment. For our three in-plane set-
tings as our spectrometers are approximately in the same angular position (w.r.t.
the beam, see table 3.3.4) the �oor sagging should lead to the same kind of o�sets.

Our assumption
A combined e�ect of those causes is also possible. It is then hard to identify the

real o�sets, especially because the �oor sagging may a�ect o�sets in a complicated
way. However we assume that for such a small misalignment any vertical o�set
among the four listed is equivalent, and we can use any of them as a representation
of the reality.

This non-trivial assumption is supported by our tests of di�erent vertical o�-
sets, of various nature. They all lead to the same optimized M2

X , the same ϕcm-
distribution and similar cross-section measurement.

We then decided to use the spec-A-collimator o�set to correct the vertical
misalignment, i.e. to be the representation of our vertical misalignment. We did a
missing mass minimization for each of the three settings and obtained three o�set
values, presented in �gure 4.12. This �gure 4.12 shows that the three independent
results are close (as would be the case for the �oor sagging hypothesis). The
average obtained o�set, of -3.35 mrad, corresponds to a reasonably small vertical
displacement of 0.565m∗3.35mr = 1.89 mm at the level of the collimator entrance.

The simulation (see section 4.5) is therefore run with the same spec-A colli-
mator o�set : -3.35 mrad. So the simulated ϕcm-distribution will also be non-
symmetrical but should match the experimental one.

This correction had a strong an positive impact on our measured cross section
as illustrated in �gure 4.13. This cross section is now symmetric w.r.t. ϕcm = 0,
as it should be in theory.

4.2.4 Luminosity corrections

Another unexpected issue arose from the experimental luminosity calculation. The
luminosity is given for each run by Lumi++ as presented in section 3.2.4. This
luminosity-per-run needs to be corrected from the dead time DTrun, i.e. the time
after each event during which the detectors are not able to record another event.
It is calculated by Lumi++ in % and is used to correct the luminosity for run i as:

Lcorrectedi = Lrawi ∗ (1−DTi/100), (4.6)

with the dead time which depends on the kinematics, for instance it is equal to
6% for the settings LOW and OOP, for the settings INP it varies from 5 to 8%.
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Figure 4.12: Spec-A collimator vertical o�set (red line) obtained by missing-mass
resolution minimization for three in-plane settings. The error bars (green area)
correspond to the �t error on the determination of the minimum. The combined
error (dashed blue area) is obtained by the quadratic sum of errors.

The problem was that Lumi++ miscalculated the dead time for some runs.
We then built a correction procedure that uses reliable information to recalculate
the dead time [86].

First we assume that the dead time calculation is stable from a run to another
when the beam conditions are stable. This is the case for a given setting. We
observed that, independently of beam current variations, the dead time can be
expressed as:

DTi = K · Ni

ti
, (4.7)

with Ni the number of events recorded, ti the run duration and K a constant
linked to the setting that we have to determine.

The second step was then the determination ofK. K was adjusted by averaging
it on the runs having an initially reliable dead time value. The third and last step
used equation 4.7 to recalculate the dead time for non-reliable runs.

The errors generated by this method were estimated from the reliable runs.
The error is only up to 1% of the dead time, i.e. negligible.

Later, a modi�ed version of Lumi++ provided by H. Merkel [87] con�rmed our
result, the corrected luminosities-per-run found by the two methods di�er by only
0.09%.
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Figure 4.13: Measured cross section (black crosses) at q′cm = 87.5MeV/c and
cos(θcm) = −0.675 for the setting INP before (top) and after (bottom) vertical
misalignment correction. The curves are the theoretical cross section without
(red) and with (blue) a GP e�ect.

4.3 Choice of 3D Binning and Analysis cuts

Now that our detectors are calibrated and that the distributions are corrected we
can apply selections in order to only consider ep→ epγ events for the cross-section
measurement. In this section the three mandatory selections are detailed �rst and
the necessity of optional selections is then discussed. Afterwards the binning of the
three-dimensional phase-space is presented. Spectrometer-momentum acceptance
selections are always used in addition to the discussed selections. One requires
|δB| < 7.5% and −6% < δA < 15% .

4.3.1 Cut on coincidence time

The time selection is the �rst mandatory cut. The coincidence time, detailed in
section 3.2.3 and provided by scintillators, contains accidental coincidences under
the peak of true coincidences that have to be removed.

So we estimate this amount by counting the number of events in the �at part
of the distribution at each side of the peak, as presented in �gure 4.14. Then
we apply a weighted function that subtracts in the selected region the estimated
number of accidental coincidences.

The random coincidences represent 6% of the events in the peak region in
�gure 4.14.
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Figure 4.14: Setting INP coincidence time measurement. The red areas are used
to estimate the number of accidental coincidences under the peak (blue area). The
coincidence-time cut requires |TAB| < 4 ns.

4.3.2 Vertex selection

The vertex selection is the second mandatory cut. As stated before we need protons
at rest in order to precisely measure the photon electroproduction cross-section.
So we want to remove the population of �gure 4.2 (right plot) from �gure 4.1.

The target walls are identi�ed in �gure 4.6 as peaks, the selection simply consist
in requiring MIN < V ertex Z < MAX with MIN and MAX chosen su�ciently
far from the peaks to include the resolution e�ects.

4.3.3 Missing-mass squared selection

The M2
X selection is the third mandatory cut. As explained in section 4.1.1 the

missing-mass squared is a signature of the produced real-photon, it is therefore
essential to put a cut on M2

X around 0.
The peak has a very long radiative tail for positive M2

X which corresponds
to events which are reconstructed with a poor resolution due to energy loss of
a second radiated photon. The selection will remove them. The cut we applied
depends on the width of the M2

X peak, and so it varies from a setting to another.

Setting INP LOW LOW-bis 2015 OOP OOP-forward
M2

X lower cut
-1000 -1000 -1000 -2000 -2000

(MeV 2/c4)
M2

X upper cut
2500 2000 3000 6000 4000

(MeV 2/c4)
V ertex Z

-17.7 -15.7 -15.7 -16.7 -16.7
lower cut (mm)

V ertex Z
12.3 10.3 10.3 11.3 11.3

upper cut (mm)
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Table 4.3.3: M2
X and V ertex Z cuts for every analyzed setting.

4.3.4 PID selection based on energy deposited

At this point it is still possible a priori for unwanted events to pass the previously
presented cuts, so we tested if a supplementary selection is required, namely the
particle identi�cation (PID) selection based on scintillator ADC signal in spec-
trometer A.

Figure 4.15 shows the energy deposited by protons and pions in spectrometer
A scintillators after their ADC calibration and without the three mandatory selec-
tions. The protons deposit more energy and appear as a clear population at the
top right of the �gure.

Figure 4.15: Energy deposited by protons and pions in spectrometer A scintillators
(in units of ADC channels) after ADC calibration, without any analysis cut, setting
INP.

The PID selection would consist in applying a two-dimensional cut on �g-
ure 4.15, but it is worthless. Indeed after applying the three mandatory selections
the events identi�ed as pions on this �gure are strongly suppressed. As an example,
for the setting LOW, these events represent only 0.1% of the total.

This result was similar for all our settings and we decided to not apply this
selection.

4.3.5 PID selection based on Cerenkov detector

The Cerenkov detector of spectrometer B is used to di�erentiate π− froms elec-
trons. Figure 4.16 shows the measured signal for pions, which appears as a narrow
peak on the left (it is the electronic pedestal), and for electrons, corresponding
to the broad bump. The selection would consist in applying a cut on this �gure.
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However after applying the three mandatory selections the events identi�ed as pi-
ons on this �gure represent only 0.3% of the total, therefore we did not apply any
Cerenkov cut.

Figure 4.16: Setting INP signal (in units of ADC channels) measured by the
spectrometer B Cerenkov detector without analysis selection.

Actually, the three mandatory selections are e�cient and su�cient for all our
settings. Table 4.3.3-b shows the number of events per setting.

Setting INP LOW LOW-bis 2015 OOP OOP-forward
Counts 474925 247685 230970 328116 26815

Table 4.3.3-b: Number of events that pass our three selections in each setting.

4.3.6 Three-dimensional binning of the phase space

The phase-space point depends on the �ve variables of the VCS kinematics (qcm, q
′
cm,

ε, θcm, ϕcm). In our settings, two of these variables cover a narrow range, qcm ≈
458 MeV/c and ε ≈ 0.85 , therefore they are not binned. The three others are
used to build a three-dimensional phase space as presented in table 4.3.6.

q′cm (MeV/c) ϕcm (◦) cos(θcm)

Bin Width 25 10 0.05
Range [0;175] [-180;180] [-1;1]

Number of bins 7 36 40

Table 4.3.6: Data binning of the three-dimensional phase space.

The analysis contains then 7 ∗ 36 ∗ 40 = 10080 bins, but a large number of bins
are actually empty, i.e. out of the acceptance. The bins width is compatible with
the resolution on (q′cm, θcm, ϕcm) which we estimated thanks to the simulation.

4.4 Calibration checks

In this section control plots are gathered in order to conclude on the experimental
calibration.
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4.4.1 Control of the optics quality

The missing-mass squared peak position and the target position in Z are two
quantities which should not depend on the reconstructed target coordinates (x0, θ0,
y0, φ0) or the focal-plane coordinates (x, θ, y, φ)fp. By plotting the reconstructed
coordinate with respect to the missing-mass squared or to the V ertex Z we should
then see no correlation. Correlations would be the sign of a residual default in the
optics (matrix elements or o�sets).

Figure 4.17: Example of optics control plots. (Left) reconstructed θfp angle by
the spectrometer A of the setting LOW-bis versus M2

X . (Right) reconstructed θfp
angle by the spectrometer B of the setting OOP 2015 versus M2

X .

For each spectrometer variable and each setting we checked the absence of
such correlations. Figure 4.17 shows two examples of missing-mass squared control
plots. The left one is obtained for the spectrometer A of the setting LOW-bis, no
correlation appears between θfp(A) and the missing-mass. The right plot shows
a small correlation for the spectrometer B of the 2015 OOP setting. This is
nevertheless the best we could obtain and we consider that such a small correlation
has no consequence on our measurement.

Figure 4.18 illustrates a well-reconstructed V ertex Z. The target shape clearly
appears and does not depend on the reconstructed variable θfp(B).

The optics we used satis�es our correlation criteria, since only small correlations
remain. It is impossible to obtain perfect optics. We chose one optics as a reference
for the nominal analysis, and other solutions for optics have been considered for
the purpose of systematic studies.

4.4.2 Event rate stability

Another control allows to check in the same time the consistency of our data
selection and the quality of our luminosity calculation. It consists in calculating
for each run the number of ep → epγ events divided by the dead-time corrected
luminosity of the run.

For each run i, the number Nep→epγ of ep→ epγ events can be expressed as:

N ep→epγ
i = Lcorrectedi ·

∫
d5σ
dΩ5dΩ5, (4.8)
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Figure 4.18: Reconstructed angle θfp by the spectrometer B of the setting LOW-
bis with respect to the reconstructed vertex position. The darker areas correspond
to the target walls. As expected, the shape of the target does not depend on the
θfp(B) angle.

where the integral (presented in more detail in section 5.3) is essentially run-
independent. So the ratio N ep→epγ

i /Lcorrectedi must be run-independent (for a given
setting).

Figure 4.19 shows this ratio with respect to the run label for the 2015 OOP
setting. Each run has its own length but the ratio is constant over time. This is
not true for one run which will be removed of the analysis (this run was interrupted
during data taking because of detector issues).

The ratio for the INP setting shows a particular shape, �gure 4.20. Indeed
after the run 70 the beam current was increased from 10 µA to 15 µA. This seems
correlated with a ≈2% decrease of the plotted ratio. We believe that the current
was too high for the second part of the data taking and that it was responsible
of a slight local target boiling. This phenomenon changes the target density in a
way that is not always detected by the sensors.

From those data we calculated that the luminosity for the second part of the
setting is overestimated by 2% and this corresponds to a 1% overestimation of
the total INP setting luminosity. So we apply this 1% in our nominal analysis
and consider its e�ect in our calculation of the systematic error (presented in
section 5.7).

The settings LOW and LOW-bis presented a constant ratio. Thanks to this
control plot we know that we can trust the luminosity calculation and the data
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Figure 4.19: Ratio of ep→ epγ events divided by the corrected luminosity for each
run of the setting OOP-2015 with its statistical error. The ratio is expected to be
constant.

Figure 4.20: (Top) ratio of ep → epγ events divided by the corrected luminosity
for each run of the setting INP: The ratio is slightly decreased after the run # 70.
(Bottom) beam current for each run of the setting INP.
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selection.

4.5 The Monte Carlo Simulation: VCSSIM

The simulation is a mandatory tool for VCS analysis. It is necessary for the
determination of the absolute cross section and also provides essential informations
to understand possible experimental problems.

The Monte Carlo simulation VCSSIM was �rst developed at Gent University by
L. Van Hoorebeke for the needs of the �rst VCS experiment at MAMI. It was then
adapted to the JLab hall A spectrometers, and later, Peter Janssens implemented
supplementary useful features [76]. This last version is the one we used for our
GP extraction, up to small modi�cations.

VCSSIM is composed of three separate Fortran codes corresponding to three
steps:

- The �rst step generates photon-electroproduction events at the target level
according to a given cross section. Then energy loss from ionization and multiple
scattering are considered along the path from the target to the spectrometers
entrance in order to reject events out of the experimental acceptance.

- The second step applies spectrometer resolution to the generated events.
The deterioration of target variables in the simulation allows to reproduce the
experimental behavior caused by the VDC resolution.

- The third and last step is the reconstruction of events from the previous
step ouput. The variables thus obtained can be analysed with event selection cuts
and be compared to the experimental spectra. If the whole procedure is correctly
applied the distributions from Cola++ and VCSSIM should match.

In addition to the event generation, VCSSIM also calculates a simulated lu-
minosity Lsim which has to be used for the cross-section measurement (see sec-
tion 5.3.1).

The VCSSIM program is fully detailed in [88]. In this section its main features
are summarized.

Event generation

Before the event generation a simulation phase-space is determined, i.e. a range
of values for each of the �ve variables (k, k′, θe, θcm, ϕcm) is �xed. Two constraints
determine the size of the simulated phase-space. Firstly, it has to be large enough
to generate every particle that could reach the spectrometers acceptance. Since
energy loss and multiple scattering a�ect the direction and momenta of particles,
the simulated phase space has to be larger than the angular and momentum ac-
ceptances of the spectrometers. Secondly, it has to be not too large in order to
save calculation time.

Then the event generation starts and an interaction point is sampled. The
generation takes into account the beam position (including the wobbler informa-
tion) and the beam energy loss in the target. The full photon-electroproduction
kinematics is generated, by sampling uniformly in (k′, θe, ϕ

′
e, ϕcm, cos(θcm)), with

ϕ′e the angle between the scattering plane and the horizontal plane containing the
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axis of the spectrometers. Instead of the acceptance-rejection method used in [88],
here we use all samples that go through the acceptance, and the σBH+B cross sec-
tion is used as a weight to the event. This procedure increases the e�ciency of the
Monte Carlo. The price to pay is a special treatment of the statistical �uctuations
induced by the simulation (see section 5.3.1). The part of the radiative corrections
that is acceptance-dependent (i.e. internal Bremsstralhung) is also included at this
level.

Finally energy losses and multiple scattering are applied to the outgoing par-
ticles which are tracked up to the entrance of the spectrometers. Here, the sim-
ulation rejects events that do not pass through the collimators, or are not in the
momentum bandwidth of the magnets.

Resolution e�ects and event reconstruction

To properly reproduce the experimental spectra resolution e�ects have to be added
to the simulation. This is done by the second step of VCSSIM. It reads the �rst
step output, which are the particles coordinates at the target level, and computes
their focal-plane coordinates using a transfer matrix.

Then, in the focal plane, two types of errors are sampled: the multiple scatter-
ing in the detector materials and the resolution of the wire chambers. Those errors
are propagated back to the target [76], where an additional error is also considered
in order to reproduce e�ects such as: magnetic �elds imperfections, beam position
and energy instabilities, etc.

Finally the simulation's second step provides a �le that contains the target
variables of the two detected particles, degraded by resolution e�ects.

The last step of VCSSIM uses the second step output to reconstruct the kine-
matics of each event in the same way that it is done in the experimental analysis,
i.e. by taking into account the energy loss of the particles in the target. By
coupling informations from the two spectrometers, one reconstructs all important
variables, such asM2

X , or the variables for the three-dimensional binning: q
′
cm, ϕcm

and cos(θcm). Vertex Z is obtained by coupling informations from spectrometer B
and the beam.

Luminosity calculation

The simulated luminosity Lsim is mandatory to measure the photon electropro-
duction cross-section as it is presented in section 5.3. Lsim is calculated at the end
of a simulated run. First a luminosity phase-space (L.P.S) is de�ned, it is smaller
than the acceptance phase-space in the three dimensions (k′e, θe, ϕ

′
e). In the L.P.S

the cross section is integrated and the number of samples N is counted. Then the
simulated luminosity is given by:

Lsim =
N∫

L.P.S
d5σ

dk′dΩe′dΩγγ,cm
dk′dΩe′dΩγγ,cm

(4.9)

times a correction factor related to the full distribution of incoming momentum
ke [88].
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Conclusion

To conclude, VCSSIM is required for two reasons. Firstly, it calculates an 'e�ective
solid angle', i.e. that contains the detector geometry plus the various resolution
e�ects. This quantity is necessary in order to determine a cross section accurately.
Secondly VCSSIM gives insights in order to check the experimental data.

The parallel analysis atQ2 = 0.1GeV 2, described in [71], was performed thanks
to another simulation: Simul++. We bene�ted from having two simulations to
perform agreement tests and the results were in accord at the two percent level.

4.6 Simulated and experimental data comparison

To ensure that both our experimental and simulated data are correctly analyzed we
can compare their distribution of observables. In the following �gures the normal-
ization of the simulation is �xed in order to correspond to the same luminosity as in
experiment, the simulated distributions are obtained by using σBH+B+GP (LEX)
as a weight function. We dispose of a large number of observables, reconstructed
coordinates, vertex, missing-mass squared, particles momentum, etc...

We found a satisfying matching for each setting. Figure 4.21 is the recon-
structed target angle φ0 by the spectrometer A of the setting LOW-bis from VC-
SSIM (blue) and from experiment (red); the �gure shows a perfect matching. Such
agreements are obtained for almost all variables.

Figure 4.21: Reconstructed target angle by the spectrometer A of the setting LOW-
bis from VCSSIM (blue) and from experiment (red). The integral of simulated
events is multiplied by the ratio Lexp/Lsim.

Only a small disagreement remains. The φ0 angle reconstructed by spectrom-
eter A presents a di�erence for one speci�c q′cm bin as presented in �gure 4.22.
Other choices of optics and o�sets can �x this issue but deteriorate other distribu-
tions matching. The choice to keep this small disagreement has been considered
in systematic error studies.

Finally, �gure 4.23 presents the simulated and experimental distributions of
the missing-mass squared for the four settings. The only perfect matching appears
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Figure 4.22: φ0 angle reconstructed by spectrometer A at q′cm = 87.5 MeV/c for
the INP setting. A small disagreement is found on the left edge of the distributions.

for the setting INP (bottom left). This is because we optimized the simulated
resolution on this one, after this optimization the distributions for the 2015-OOP
setting (bottom right) are in less good agreement. This is not an issue since the
missing mass cuts are very far from the main peak. For the low energy settings (top
right and left), the experimental resolution is slightly better than the simulated
one. Globally, the agreement of simulated and experimental distributions for M2

X

is quite satisfactory.

4.7 Conclusion

The calibrations for VCS analysis have been done extensively. The principal un-
expected issues: large snow thickness, vertical misalignment, local target boiling,
magnet saturation e�ects, have been �xed. As an example, the left plot of �g-
ure 4.24 shows that the distributions of ϕcm from the experiment and from VC-
SSIM both present an asymmetry w.r.t zero, which is due to the vertical o�sets we
implemented in the experiment and the simulation. The matching is satisfactory.

The right plot of �gure 4.24 is obtained when implementing a GP e�ect in the
weighted function used by VCSSIM, i.e. the weight is calculated as σBH +B +
GP (LEX). The rather poor agreement observed between experiment and sim-
ulation is due to the omission of the higher-order terms in q′cm in the weighted
function. It illustrates the limits of the LEX extraction which is discussed in the
following chapter.
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Figure 4.23: Missing-mass squared distributions from VCSSIM (blue) and from
the experiment (red) with the �xed normalizations for the four analyzed settings.

Figure 4.24: (Left) setting LOW ϕcm distributions from VCSSIM (blue) and from
the experiment (red) with �xed normalizations at q′cm = 37.5 (MeV/c). (Right)
setting INP ϕcm distributions, at q′cm = 112.5 (MeV/c), when one considers a GP
e�ect in VCSSIM (blue).
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Chapter 5

Photon electroproduction

cross-section and extraction of VCS

observables

This chapter describes the second-level analysis: the cross-section determination
and the LEX and DR �ts yielding the VCS observables: structure functions and
GPs.

Section 5.1 presents the theoretical tools we used in the analysis. In section 5.2
we explain the calculation of radiative corrections at Q2 = 0.2 GeV 2. Section 5.3
is dedicated to cross-section measurement: method and results.

Section 5.4 introduces an important step of the analysis which is the renormal-
ization procedure.

Finally sections 5.5 to 5.8 present the LEX and DR �ts and the results in terms
of structure functions and GPs.

5.1 Theoretical tools

In this section are presented the two analysis tools essential to the LEX and DR ex-
traction of GPs: the two computer codes which provide respectively the theoretical
LEX and DR cross-sections.

In addition to the presented tools we also make use of the A1 software previ-
ously presented, especially Cola++1 .

5.1.1 The BHB code

The BHB code is a C++ program developed by M. Vanderhaeghen [90] which
calculates the photon electroproduction cross-section in a chosen point of the phase
space d5σth(P ).

The parameters required by the code are the parametrizations of the proton
form factors (GE,GM) and the �ve variables (k, k′, θe, θcm, ϕcm) to de�ne the phase-
space point. Then, the user chooses which cross section is calculated by the code
among: BH, Born or BH+B. The user can also enter values of structure functions

1Some graphics contents from Cola++ are drawn thank to ROOT from CERN [89].
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(PLL − PTT/ε, PLT ) to calculate the full photon electroproduction cross-section
according to the LEX equation 1.38.

5.1.2 The DR code

The second theoretical code, used in our analysis, provides the photon electropro-
duction cross-section according to the DR model developed by B.Pasquini [91].
Here again the code calculates the theoretical cross section in a point of the phase
space d5σDR(P ).

In addition to the kinematical parameters from the (qcm, q
′
cm, ε, θcm, ϕcm)-set the

code requires values for the DR parameters Λα and Λβ (presented in section 2.1).
Just like for the BHB code the user also has to specify a choice of proton form-
factor parametrization among the available ones.

To calculate the full DR cross-section the code also needs values of polarizabil-
ities from RCS; they are �xed at the following values from [23]:

ᾱE = 12.1 · 10−4 fm3 ,
β̄M = 1.6 · 10−4 fm3.

5.2 Radiative corrections

Radiative corrections are known to be an important correction to electron scatter-
ing processes in general, due to the fact that the electron is a light particle that
radiates photons easily.

To study the photon electroproduction reaction ep → epγ we only detect the
scattered electron and proton, the real photon is identi�ed by the missing-mass
method. So we do not control all the processes that occur and which impact the
cross-section measurement. For instance an event including a supplementary real
or virtual photon could be counted as a �rst-order photon electroproduction event,
while it is not. Such processes, called radiative processes, must be estimated and
corrected in order to remove their contribution to the cross section, i.e. the cross
section corresponding to the �rst-order graphs only (see �gure 1.6).

This is done by applying a correction factor, F rad, to the measured raw cross-
section:

σexp = σraw ∗ F rad. (5.1)

Radiative corrections to the ep → epγ reaction have been studied extensively
in [92] which served as a basis for the analysis of all VCS experiments. We will
here summarize how we put these calculations into practice, more details can be
found in [93]. Generally F rad is written as a sum of contributions which are noted
as δ-terms, each one corresponding to a speci�c process. We consider the following
sum:

1
F rad = 1 + δvac + δvertex + δr + δ1 + δ

(0)
2 , (5.2)
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where the δ-terms are explained in section 5.2.1 which also details the speci�c
choices that have been done for our F rad estimation. Section 5.2.2 summarizes the
results from [93]: value of the correction and uncertainty.

5.2.1 Physical processes and calculation choices

As can be seen from �g 1.6, the amplitude of the bare diagrams is of order (e3),
leading to a cross-section of order (e6). Radiative corrections have been calcu-
lated [92] to the next order, i.e. including the following contributions:

- the emission of one supplementary real photon (amplitude of order (e4) and
cross-section of order (e8))

- one supplementary virtual photon (amplitude of order (e5) interfering with
the bare amplitude, (e3), which leads to a cross-section of order (e8)).

The supplementary photons can be emitted from the proton side or from the
electron side. The calculation of all the δ-terms requires theoretical approximations
(like neglecting the higher-order corrections) and the use of model (for the proton-
side correction). As a consequence we have to consider a 1% incompressible-
theoretical error [92] in our F rad determination.

Some of the diagrams of physical processes are available in appendix C and so
are the mathematical equations used to estimate the correction terms. Only the
speci�cities of our determination are presented here.

δr: Electron-side supplementary real photon

A large part of the radiative corrections is due to supplementary electron bremsstra-
hlung of a so-called soft photon. This second real photon may be emitted before
or after the hadronic part of the interaction. Figure 5.1 is an example of one of
the considered diagrams, where the Bethe-Heitler process comes with one supple-
mentary real photon in red.

Figure 5.1: One possibility of Bethe-Heitler diagram with one supplementary real
photon (red).

Such processes are taken into account through the δr term expressed as a sum
of two terms: δr = δr1+δr2. δr1 gathers correction terms which depend on ∆Es and
δr2 contains correction terms which do not. ∆Es is the maximum energy that the
soft photon can reach, it depends on the upper cut on the missing-mass squared
used in the event analysis:
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∆E2
s = cut

4
, (5.3)

where cut is de�ned in section 4.3 and depends on the settings as presented in
table 4.3.3. Typically, an upper cut value of M2

X = 2000 MeV 2 corresponds to
∆E2

s = 22 MeV .
δr1 and δr2 are an important part of the radiative corrections since they can

both reach separately 20% in some analysis bins.
δr1 is already implemented in VCSSIM: applying a missing-mass squared cut to

the simulation impacts the �nal measured cross section in the same way it would
be done by adding δr1 to F rad. It is then important to separate δr in those two
terms in order to not consider δr1 twice in our analysis.

So, the corrections due to supplementary real photon considered in our F rad

are only due to the δr2 contribution which is detailed in appendix C.

δvac and δver: supplementary virtual photon

A supplementary virtual photon is produced by three kinds of processes, the vac-
uum polarization process (�gure 5.2): the electron self-energy process (�gure C.2)
and processes with an additional loop between lines (�gure 5.3).

Figure 5.2: Vacuum polarization diagrams. The particles are represented by the
line symbols used before.

The virtual-photon contribution that we used has the same expression as the
virtual-photon radiative correction to the elastic reaction ep → e′p′. Using the
elastic case correction allowed us to avoid the complicated integral calculation
involved in the photon-electroproduction case and due to the grahs 1 to 6 of �g-
ure 5.3. This choice, supported by the work of D. Marchand [94], leads to a ≈ 0.8%
systematic error on the total virtual-photon correction.

The electron self-energy processes, �gure C.2, are not considered in our calcu-
lation but are a part of the 0.8% error already considered.

δ1 and δ
(0)
2 : proton-side corrections

A supplementary photon can also be produced from the proton side, by rare proton
bremsstrahlung and vertex corrections. Unlike corrections from the electron side,
which can be calculated model-independently from QED, the proton-side correc-
tions will depend on a model for the proton structure. This model dependence
will become important if one wants a experimental precision at the 1% level [92].
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Figure 5.3: Vertex process diagrams.

This correction is described through three terms: δ1,δ
(0)
2 and δ(1)

2 , which also
take into account the two-photon exchange process (direct and crossed). The terms
considered are from the elastic case but can be applied for photon electroproduction
with a negligible error [95].

To determine the proton-side corrections we decided to not consider the δ(1)
2

term; this results in a systematic error on our �nal F rad which is estimated to be
±0.002 (this is detailed in appendix C).

Higher-order correction terms

Now, one may consider more supplementary virtual or real photons, the so-called
higher-order correction terms. The work presented in [96] proposes to estimate
the e�ect of higher orders by considering a exponentiated form for the correction
factor:

1

F rad
=

eδver+δr

(1− δvac+δ1+δ
(0)
2

2
)2

(5.4)

By comparing the exponentiated form to equation 5.2, we checked that the
higher-order contribution is e�ectively smaller than the 1% theoretical error which
already accounts for it. We �nally decided to calculate the radiative corrections
by the expression of equation 5.2.

5.2.2 Value of the global radiative correction factor

An important question was to determine if one can apply F rad as a global correction
to the measured cross section or if it varies bin-per-bin in (q′cm, cos(θcm), ϕcm). This
was answered in [93], where the calculation of every correction term in the whole
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analysis phase-space showed only very small variations and leads to the conclusion
that we can apply a global correction:

1
F rad

= 1.057 .

5.2.3 Systematic error on F rad

The �rst error is generated by the phase-space averaging. Figure 5.4 shows the F rad

behavior at q′cm = 112.5MeV/c. For those bins one gets 1/F rad = 1.058±0.002RMS

(the maximum di�erence between the averaged F rad and one bin value is ±0.006).

Figure 5.4: 1/F rad behavior in the (cos(θcm), ϕcm)-plane at q′cm = 112.5 MeV/c.
The central part (white) is removed by the gradient-selection (cf. section 5.5.1).

One also has to check the F rad behavior for the bins at q′cm = 37.5 MeV/c at
which the renormalization is computed (see section 5.4). Figure 5.5 shows that
1/F rad = 1.056±RMS 0.001 (the maximum di�erence calculated is ±0.003) which
means that we can consider the radiative correction as a constant in our whole
phase space.

A second error is induced by the ∆Es quantity. Indeed this one varies from
a setting to another whereas we used it as a constant in the F rad determination.
However we observed that changing it to its maximal variation only induces a
±0.001 change on 1/F rad.

The quadratic sum of these two errors leads us to consider a total error induced
by our phase-space averaging2 of ±0.003 and the maximum variation of F rad is
±0.007.

The complete error budget on F rad is:

2The averaging is done with an acceptance cut (the gradient selection), without it the error
would have been larger.
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Figure 5.5: 1/F rad behavior in the (cos(θcm), ϕcm)-plane at q′cm = 37.5 MeV/c.
The central part (white) is removed by an acceptance selection.

∆
(

1
F rad

)
= ±0.003PSA ± 0.01theo ± 0.008EC ± 0.002PSO
= ±0.014 (quadratic sum)

with:
PSA, the maximum uncertainty brought by our phase-space averaging.
theo, the incompressible theoretical error.
EC, the uncertainty brought by our choice to use the elastic-case determination

of δvertex and δvac.
PSO, the uncertainty brought by the proton-side omission of δ(1)

2 .
As a �nal result, we get:

1
F rad

= 1.057± 0.014,

which is used to correct all our cross-section data, using equation 5.1. This
factor is also considered in the normalization of experimental distributions when
the reconstructed quantities are compared to the simulated ones (section 4.6).
The ±0.014 systematic uncertainty will largely disappear in the renormalization
procedure described in section 5.4, and a small remaining part will contribute to
our systematic errors.

5.3 Measurement of cross sections

Measuring the cross section of equation 1.38 is the �rst step of the second-level
analysis. We want to extract a GP e�ect which is a few percent of the cross section,
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so the measurement requires enough statistics, and systematic errors reduced to
the 1-2% level. To achieve that we used a method based on a simulation (VCSSIM)
which is described in [88]. We summarize it in the next sections.

5.3.1 The simulation-based method

First, the classical formula that expresses the photon electroproduction cross-
section in one bin is:

d5σexp

dk′dΩk′dΩp′cm

=

(
d5σ

dΩ5

)exp
=

N exp

Lexp ·∆Ω5
, (5.5)

with N exp the number of events in the bin, Lexp the experimental luminosity
and ∆Ω5 the solid angle of the �ve-dimensional bin. ∆Ω5 is di�cult to determine
in a simple way because the acceptance is not constant in a single bin. So ∆Ω5 is
reproduced thanks to VCSSIM in order to obtain the cross section by the following
method.

From equation 5.5 we have in one experimental bin (i):

N exp
i = Lexpi

∫∫∫∫∫
σexp(Ω)A(Ω)dΩ5, (5.6)

where A(Ω) is the complicated acceptance function which varies between 0
and 1 in the bin and σexp(Ω) stands for d5σ/dΩ5. We introduce a point P0 of
the di�erential phase-space dΩ5 which is, in our case, the center of the bin. The
di�erential cross section in any point P of the considered bin can be expressed as:

σexp(P ) = σexp(P0)

[
1 +

σexp(P )− σexp(P0)

σexp(P0)

]
. (5.7)

Applying this to equation 5.6 leads to:

N exp
i

Lexp
= σexp(P0)

∫∫∫∫∫ [
1 +

σexp(Ω)− σexp(P0)

σexp(P0)

]
A(Ω)dΩ5. (5.8)

Now, if one makes use of a simulation faithful to the experiment, equation 5.8
can be written for the simulated events as well:

W sim
i

Lsim
= σth(P0)

∫∫∫∫∫ [
1 +

σth(Ω)− σth(P0)

σth(P0)

]
A(Ω)dΩ5, (5.9)

withW sim
i the number of events in the simulated bin (in our case it is a weighted

sum, the weight being the theoretical BH+B cross section). Lsim is the luminosity
calculated by VCSSIM and σth(P0) can be either the BH+B cross section or the
BH+B cross section increased by a theoretical GP e�ect. In our case we did
not implement a GP e�ect in σth(P0) but we considered this possibility in the
systematic studies of section 5.7.2.
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The integrals of equations 5.8 and 5.9 can be considered as very close, since
σth reproduces well the relative variations of the true cross section in the bins.

Finally, using equations 5.8 and 5.9 leads to the important cross-section deter-
mination formula:

σexp(P0) =
N exp
i

W sim
i

· L
sim

Lexp
· σBH+B(P0). (5.10)

To calculate σBH+B(P0) we can choose di�erent form-factor parametrizations as
discussed in section 1.1.2. Here, one just needs to use the same parametrization for
the theoretical cross section (σBH+B(P0)) and for the BH+B cross section used as a
weight event per event, in W sim

i . Indeed, a change of form-factor parametrization
roughly acts as a rescaling of the cross section (see section 5.4.3), which is canceled
in the ratio σBH+B(P0)/W sim

i . In this way the measured cross section will not
depend on the form-factor parametrization choice, in �rst approximation.

5.3.2 Statistical error

Once the experimental cross section from equation 5.10 is measured we have to
determine its statistical error. We considered statistical �uctuations coming from
the experimental and simulated number of counts:

∆σexp

σexp
=

√(
∆N exp

i

N exp
i

)2

+

(
∆W sim

i

W sim
i

)2

. (5.11)

The statistical error on Lsim is negligible, by construction of VCSSIM. The
error on Lexp is of systematic nature and will be addressed in section 5.7.

N exp
i depends on the coincidence selection described in section 4.3. Its statisti-

cal error is then calculated by considering the �uctuations from event counts both
in the coincidence peak and in the accidental plateau.

As explained in section 4.5 we implemented a weight-procedure in VCSSIM:

W sim
i in bin i is equal to the sum

∑Nsim
i

j wj, with wj = σBH+B(j). For such
quantities the statistical �uctuations give [97]:

(∆W sim
i )2 =

Nsim
i

Nsim
i −1

[
(
∑Nsim

i
j w2

j )− (< W sim
i >)2

]
, (5.12)

with < W sim
i > the mean of the weight distribution. In our case it can be

simpli�ed to the following expression [97]:

(∆W sim
i )2 =

∑Nsim
i

j w2
j . (5.13)

The simulation is run on a larger statistics than the experiment, so that the
term ∆W sim

i /W sim
i is not dominant in equation 5.11.
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5.3.3 Cross-section results

We measured 7784 cross-section points distributed in the �ve settings, some of
them are presented in the next �gures. They are obtained without renormalization
factor, but they are corrected from the radiative processes by means of the factor
F rad (i.e σexp = σraw ∗ F rad).

In the analysis some bins have a low number of events, typically bins at the
acceptance edges. These bins are removed at the cross-section level by a cut on
N exp
i :

N exp
i > 20.

No cut was applied on the number of simulated events which are more numerous
per bin in our case.

Figure 5.6: Setting LOW: measured ep → epγ cross section at �xed q′cm =
37.5 MeV/c with respect to ϕcm for the �rst-half of cos(θcm)-bins. The error
bars are statistical. The blue full line is the theoretical cross section σBH+B, the
red dotted line is σBH+B plus a polarizability e�ect calculated by the LEX with
PLL − PTT/ε = 18.1 GeV −2 and PLT = −3.6 GeV −2.

Figures 5.6 and 5.7 present the measured cross section from the setting LOW at
�xed q′cm = 37.5 MeV/c; this setting covers a wide range in (cos(θcm), ϕcm). The
points follow the theoretical curves (BH+B) and (BH+B + GPs), which cannot
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Figure 5.7: Setting LOW: measured ep → epγ cross section at �xed q′cm =
37.5 MeV/c with respect to ϕcm for the second-half of cos(θcm)-bins. The curves
follow the convention of �gure 5.6.

be di�erentiated at such a small q′cm. The symmetry of the cross section in ϕcm is
reproduced, which proves that the vertical misalignment is successfully corrected.

The cross sections for the three other q′cm bins (q′cm = 12.5 / 62.5 / 87.5 MeV/c)
are not presented but are also in agreement with the theory, and so are the cross-
section points from the setting LOW-bis.

Figure 5.8 presents the measured cross section from the setting INP at �xed
q′cm = 112.5 MeV/c. When |ϕcm| → 0 the measured points tend to lie between
the theoretical curves with and without a GP e�ect. This may already indicate
the importance of higher orders in the theoretical curve (BH+B+GPs) which is
built thanks to the LEX formalism (a similar observation was done in �gure 4.24).
This kind of observations motivated us to carefully handle the higher orders in our
LEX extraction (see section 5.5.2).

When |ϕcm| is far from 0 it is hard to distinguish which curve among (BH+B)
and (BH+B + GPs) is more faithful to the data. The GPs, especially βM(Q2)
for this setting, have to be extracted from the small di�erences observed, this
illustrates the di�culty of the analysis.

Finally �gures 5.9 and 5.10 gather the cross section data from the OOP setting.
These points are more sensitive to αE(Q2) but again the GP e�ect is hard to
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Figure 5.8: Setting INP: measured ep → epγ cross section at �xed q′cm =
112.5 MeV/c with respect to ϕcm for all the cos(θcm)-bins. The curves follow
the convention of �gure 5.6.

observe directly.

5.4 Renormalization procedure

The cross sections presented in the previous section may su�er from a global
normalization factor. It could be caused by di�erent sources, for example:

- a global loss of events due to detectors ine�ciencies not fully corrected.
- a miscalculation of the experimental luminosity. Errors may come from ap-

proximation on the target length (due to its shape), target density or residual
biases in the deadtime correction.

- a bad estimation of radiative corrections; as stated in section 5.2, they su�er
from a lack of theoretical knowledge and the calculation has an uncertainty of
1-2%.

So we need to apply a correction factor, F norm, in order to compensate for all
possible biases that act as a global factor:

σexpi = σmeasuredi ∗ F norm, (5.14)
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Figure 5.9: Setting OOP: measured ep → epγ cross section at �xed q′cm =
112.5 MeV/c with respect to ϕcm for the �rst-half of cos(θcm)-bins. The curves
follow the convention of �gure 5.6.

where σmeasured = σraw ∗ F rad.
The F norm factor can be estimated thanks to the low-energy settings (LOW

and LOW-bis). Indeed at low q′cm, i.e. q
′
cm < 50MeV/c the measured cross section

depends only weakly on the GP e�ect, and so, we can normalize it to the theoretical
cross section without including a too important unknown parameter.

An important point is that the renormalization procedure is possible only at low
q′cm (<50 MeV/c). At higher q′cm the e�ects of normalization and polarizabilities
are mixed together and cannot be disentangled.

Another important point is that, when we allow σexp to be renormalized,
the LEX and DR �ts are sensitive only to the shape of the cross section versus
(q′cm, cos(θcm), ϕcm) without being disturbed by the absolute normalization.

Using the low-energy settings we identify F norm thanks to a χ2-minimization:

χ2
norm =

n∑
i=1

(
σmeasuredi ∗ F norm − σthi

∆σmeasuredi (stat) ∗ F norm

)2

, (5.15)

where F norm is the free parameter of the minimization, (i = 1 → n) refers to
bins at low q′cm. Several features arise from the calculation.
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Figure 5.10: Setting OOP: measured ep → epγ cross section at �xed q′cm =
112.5 MeV/c with respect to ϕcm for the second-half of cos(θcm)-bins. The curves
follow the convention of �gure 5.6.

Firstly, the theoretical cross-section σthi has to be as close as possible to the
reality, and so, it must include a theoretical GP e�ect even if it is small at small
q′cm. This e�ect will be calculated thanks to the LEX, following equation 1.38.
It will depend on input values of the structure functions PLL − PTT/ε and PLT .
Typically the GP e�ect is of the order of 0.5% and 1.5% of the total cross-section
at respectively q′cm = 12.5 MeV/c and q′cm = 37.5 MeV/c. In section 5.4.1 we will
present an iterative process that takes care of this dependency.

The second feature concerns the consistency between settings. The data at
Q2 = 0.2 GeV 2 were all collected in the same conditions and the settings were
calibrated by following the same principles. So the need of a renormalization
should be identical for all settings. This is checked further for our settings LOW
and LOW-bis in section 5.4.2.

The last feature is less straightforward. The theoretical cross section depends
on a chosen parametrization of form factors. As stated in section 1.1.2, signi�cant
di�erences exist from a parametrization to another. Actually, the renormalization
factor determined by formula 5.15 will depend on the parametrization chosen in
σthi . We consider three renormalization factors corresponding to three speci�c
form-factor parametrizations:

- F norm
FW for the parametrization from J.Friedrich and T.Walcher [17].

- F norm
B for the parametrization from J. C. Bernauer et al. [19].

- F norm
A for the parametrization from J. Arrington et al. [18].

Consequently the renormalized cross section is also form-factor dependent (for
instance σexpFW = σmeasured ∗F norm

FW ). When no index is speci�ed the quantities refer
to our nominal choice, i.e. the parametrization from J.Friedrich and T.Walcher.
In section 5.4.3 we will see how the form-factor dependency is exploited positively
in our analysis.
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5.4.1 The iterative procedure in the LEX analysis

The iterative procedure is the way to take into account the GP-e�ect dependency
from σth in the estimation of F norm. It consists in extracting the structure functions
by the LEX analysis (presented section 5.5) and using the result to compute a new
theoretical cross section.

Figure 5.11 is a schematic representation of the iterative procedure. It starts
by the χ2 minimization of F norm with any initial choice of theoretical cross sec-
tion. The obtained F norm

0 is then used to renormalize the measured cross section
(equation 5.14). Afterwards these experimental cross sections are used in a LEX
�t to extract the structure functions which will be used to compute a new theo-
retical cross section. This last one is then used for a second determination of the
renormalization factor F norm

1 , and the procedure continues.
The iterative process stops when the di�erence F norm

n−1 −F norm
n = ±0.002, which

is the statistical precision on F norm (deduced from the points corresponding to
χ2
norm + 1). Obviously the iterative process has to be done keeping the form-factor

parametrization �xed, and the bins selection �xed.

Figure 5.11: Schematic representation of the iterative procedure. The �t of F norm

is described by equation 5.15, the LEX �t itself is described in section 5.5 and the
theoretical cross section is calculated thanks to equation 1.38.

The initial choice of the theoretical cross section has no impact, the results
fully converge after a few iterations. As an illustration �gure 5.12 represents the
procedure behavior for three di�erent initial starting points: the red points show
the steps if one considers no GP e�ect in the �rst place, the blue points are
for a so-called �absurd� choice of GP e�ect with PLL − PTT/ε = 40 GeV −2 and
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PLT = 2 GeV −2 (which is far from our �nal result). The black cross is obtained
with PLL − PTT/ε = 19.5 GeV −2 and PLT = −4.0 GeV −2 which are values close
to our �nal result, a so-called �coherent� choice. The renormalization factor F norm

at each step is also indicated in this �gure.

Figure 5.12: Illustration of three iterative processes. Each point is the structure-
function extraction (with statistical errors) obtained from the cross section renor-
malized by the indicated value of F norm. The colors stand for di�erent starting
points of the iterative process as explained in the text. Here all procedures converge
to the point PLL − PTT/ε = 19 GeV −2, PLT = −3.7 GeV −2 and F norm = 0.980.

As a check, we tried very di�erent LEX extractions of structure functions (with
and without the bins selection described in section 5.5) and we found that it weakly
impacts the convergence point of the interations in terms of F norm: ∆F norm =
±0.002.

So the iterative procedure is necessary to get the best determination of F norm.
However, some VCS experiments did not apply any renormalization, for example
because of lack of low-q′cm data [68].

5.4.2 The agreement between settings and between q′cm-bins

In this section we present the consequence on the F norm determination if one
considers di�erent groups of data (various settings and bins) in the minimization
of χ2

norm. The results presented here are obtained with the Friedrich-Walcher
parametrization of form factors. An iterative procedure has been performed and
only the �nal values of F norm are shown. To test the di�erent data groups we
can choose between two low-energy settings (LOW and LOW-bis) and each one of
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them contains two sets of ≈ 700 low-q′cm bins: one set at q′cm = 12.5 MeV/c and
the other at q′cm = 37.5 MeV/c.

Table 5.4.2 gathers the results. The six �rst lines show an excellent agreement,
giving an average value of F norm = 0.979.

Bin(s) Setting(s) F norm χ2
norm

0+1 LOW+LOW-bis 0.983 1.28
0+1 LOW 0.983 1.17
0+1 LOW-bis 0.985 1.20
*1 LOW+LOW-bis 0.980 1.36
1 LOW 0.985 1.26
1 LOW-bis 0.973 1.14
0 LOW+LOW-bis 0.997 1.16
0 LOW 0.95 1.00
0 LOW-bis 1.06 1.13

Table 5.4.2: F norm results after iterative process for several combinations of se-
lected bins and settings; �0� stands for the bin at q′cm = 12.5 MeV/c, �1� is for
q′cm = 37.5 MeV/c and �0+1� means that the two bins are considered. The statis-
tical error on F norm is ±0.002.

The data from settings LOW and LOW-bis were calibrated independently. The
observed good agreement comforts us in the quality of our calibration principles.

The three last lines of the table illustrate the consequence of selecting bins at
the edge of spectrometers acceptance. Indeed the calibration is optimized for the
bins at the center of the spectrometers acceptance, i.e. at q′cm = 37.5 MeV/c for
setting LOW and LOW-bis and at q′cm = 87.5 MeV/c and q′cm = 112.5 MeV/c
for the others. Only data from q′cm = 37.5 MeV/c-bins were considered for the
determination of our �nal renormalization factor (the starred line in table 5.4.2).

Finally we estimated that the renormalization factor is determined to ±0.006,
corresponding to the maximal spread among the six �rst lines of table 5.4.2.

5.4.3 Canceling the form-factor dependency in the LEX ex-
traction

Let's now consider several iterative procedures performed with di�erent form-factor
parametrizations of σthi in equation 5.15. They will inevitably result in di�erent
values of F norm.

Table 5.4.3 presents the di�erent F norm obtained for three choices of form-factor
parametrizations.

Form-factor Friedrich- Arrington Bernauer
parametrization Walcher [17] et al. [18] et al. [19]

F norm F norm
FW = 0.980 F norm

A = 0.969 F norm
B = 0.993

Table 5.4.3: F norm results after di�erent iterative processes, all using q′cm =
37.5 MeV/c-data but considering di�erent form-factor parametrizations.
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Consequently the renormalized cross section will di�er from a parametrization
to another and so we have three sets of experimental cross section:

σexpFW / σexpA / σexpB .

A priori, the form-factor dependency of the renormalized experimental cross-
section appears to be a problem, but, it is actually a strength of the LEX extraction
of structure functions.

Indeed the LEX extraction (presented in section 5.5) consists in computing the
di�erence between the renormalized cross section and a theoretical one, and the
two are form-factor dependent (σexpForm−Factors and σ

th
Form−Factors).

As will be shown below, changing the form-factor parametrization in the (BH+B)
cross section roughly rescales it by a global factor. Therefore the LEX �t can adapt
itself to such a change if we allow also the experimental cross section to be changed
by a global factor. This is the guiding principle of our renormalization procedure.

In�uence of form-factor parametrization on the (BH+B) cross section

We computed the following ratio of theoretical BH+B cross-sections in each anal-
ysis bin (i):

R
A/B
i =

σBH+B
A

σBH+B
B

. (5.16)

The index 'A' still refers to the form-factor parametrization from Arrington et
al. [18], and 'B' to the one from Bernauer et al. [19]. Figures 5.13 and 5.14 show
the ratio for the bins at respectively q′cm = 37.5 MeV/c and q′cm = 112.5 MeV/c.
The observed variations are small, i.e. 0.974 < RA/B < 0.982. So changing the
form-factor paramerization does act like a global rescaling of the theoretical cross
section, to better than 1% at q′cm = 112.5 MeV/c, and to better than 0.4% at
q′cm = 37.5 MeV/c.

Conclusion on the renormalization procedure

form-factor
Structure LEX extraction

F norm

LEX extraction

parametrizations
functions before after
(GeV −2) renormalization renormalization

J.Arrington PLL − PTT/ε 11.7
F norm
A = 0.969

19.3
et al. [18] PLT -6.51 -3.3
J.Friedrich PLL − PTT/ε 14.2

F norm
FW = 0.980

19.3
T.Walcher [17] PLT -5.9 -3.7
J.Bernauer PLL − PTT/ε 17.9

F norm
B = 0.993

19.7
et al. [19] PLT -4.3 -3.5

Table 5.4.3-c: LEX extraction of structure functions before renormalization (F norm =
1) and after (F norm = F norm

form−factor) for the three selected parametrizations of
form factors. For every extraction the statistical errors are ∆PLL − PTT/ε =
±0.64 (GeV −2) and ∆PLT = ±0.34 (GeV −2).
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Figure 5.13: The ratio RA/B of two theoretical BH+B cross-sections in the
(cos(θcm), ϕcm)-plane at q′cm = 37.5 MeV/c.

Figure 5.14: The ratio RA/B of two theoretical BH+B cross-sections in the
(cos(θcm), ϕcm)-plane at q′cm = 112.5 MeV/c.

As a most conclusive test, we realized a LEX extraction with the three di�erent
form-factor parametrizations. Table 5.4.3-c shows the structure function extraction
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for these three di�erent choices, obtained before and after the renormalization.
With F norm = 1, there is no iterative process to do, and the structure func-

tions obtained by the LEX �t are clearly not in agreement within their statistical
error bar. After having done the iterative process, leading to the F norm given in
the table, the extracted structure functions come to very close agreement. This
de�nitively proves the form-factor independency of our analysis and the need of a
renormalization process.

Finally, the extraction presented in the following sections is done with cross-
sections renormalized by:

F norm
FW = 0.980± 0.002stat ± 0.006syst ± 0.002syst,

with the �rst systematic error which is due to acceptance features and the
second one which is a consequence of the use of di�erent conditions for the LEX
�t in the iterative procedure which allows to determine F norm.

5.5 The LEX �t

The LEX extraction of structure functions is based on equation 1.38 and consists
�rst to determine (in each analysis bin) the quantity ∆M related to the di�erence
between the experimental cross section and the BH+B one:

∆M =
σexp − σBH+B

Φq′cm
= [vLL(PLL(qcm)− PTT (qcm)

ε
) + vLTPLT (qcm)] +O(q′cm

2),

(5.17)

where σexp is renormalized with the same form-factor parametrization that is
used to compute σBH+B. One de�nes Ψ0 as the term independent of q′cm:

Ψ0 = ∆M(q′cm → 0) = [vLL(PLL −
PTT
ε

) + vLTPLT ]. (5.18)

If O(q′cm
2) is small enough, ∆M should be independent of q′cm. The q′cm-

independency of ∆M can be checked for �xed values of θcm and ϕcm by plotting
the experimental ∆M term as a function of q′cm at �xed angles (θcm, ϕcm). In
appendix D, �gure D.1 shows this behavior for selected angular bins. In the ideal
case of negligible higher orders our ∆M measurements at �xed (cos(θcm), ϕcm) but
di�erent q′cm are just several measurements of the same Ψexp

0 . Ψexp
0 is then deduced

by averaging the ∆M terms in a (cos(θcm), ϕcm)-bin over the q′cm values.
Thereafter, equation 5.18 can be rewritten as:

Ψ0

vLT
=
vLL
vLT

(PLL −
PTT
ε

) + PLT , (5.19)

and so the structure functions are simply the slope and intercept of a linear
function that can be determined by a χ2-minimization:
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χ2
LEX =

n∑
i=1

(
Ψexp

0 /vLT −Ψth
0 /vLT

∆(Ψexp
0 /vLT )(stat)

)2

, (5.20)

with Ψth
0 /vLT calculated by equation 5.19 where the structure functions are the

free parameters of the �t. Figure 5.15 shows the LEX �t of structure functions, the
points (Ψexp

0 /vLT ) are �tted with a minimum reduced χ2 of 1.26 for n.d.f = 944.
One has to note that changing the cross section global normalization (F norm 6=
0.98) has few impact on χ2

LEX which is more sensitive to phase space depending
factor.

Figure 5.15: Ψexp
0 /vLT with respect to vLL/vLT for the (cos(θcm), ϕcm) bins from

all settings contributing to the LEX �t. The right �gure is obtained after applying
a zoom. The green line is the �nal result of our LEX �t which has PLL−PTT/ε =
18.10 GeV −2 as a slope and PLT = −3.59 GeV −2 as intercept.

It is also possible to extract the structure functions by a more direct �t of the
renormalized experimental cross section:

χ2
LEX,2 =

n∑
i=1

(
σexp − σth

∆σexp(stat)

)2

, (5.21)

with σth the cross-section calculated according to equation 1.38 (withO(q′cm
2) =

0) and the structure functions as free parameters of the �t. To minimize χ2
LEX

or χ2
LEX,2 leads strictly to the same structure-functions result since both �ts are

based on the same assumption.
In the following sections we will discuss the bin selections and their impact on

the LEX �t.

5.5.1 Bin selection: �gradient cut�

The gradient selection is designed in order to remove the Bethe-Heitler peaks from
the analysis. Even if our data are out of this region it is still interesting to build
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the cut for two reasons. First, this selection was also used to identify where the
radiative corrections can be averaged. Secondly the bins removed by this cut are
at the acceptance edges, i.e. where experimental uncertainties are larger.

The selection is detailed in appendix E. It consists in a threshold cut on the
cross-section variation from a bin to its neighbour. It is essentially designed that
way in order to be close to our acceptance edges as presented in �gure E.1. The
use of the gradient selection is not essential to the LEX �t and its omission is
accounted in the systematic error budget on structure functions (see section 5.7).

The impact of this cut is positive in that it improves the minimum χ2 of the
LEX �t. Also, although this cut removes 20% of the analysis bins, it has only a
small impact on the �nal statistical errors. It increases the errors by 3% and 6%
for PLT and PLL − PTT/ε respectively.

5.5.2 Bin selection: �mask selection�

The LEX extraction requires that the higher orders O(q′cm
2) are negligible, but

this is not true in the whole phase space. The �rst warning of the importance of
higher orders was given by the Bates LEX analysis as discussed in section 2.3.3.

In order to identify where the higher-order terms are small enough to be ne-
glected, we designed a cut based on the DR model, the so-called �mask selection�.

The selection uses the estimation of higher orders discussed in section 3.3.3.
As a reminder, we have de�ned ODR(q′cm

2) as the criterion representing the rela-
tive importance of higher-order terms in the LEX expansion according to the DR
model. Now we consider the following cut:

ODR(q′cm
2) =

|σLEX − σDR| ∗ 100

σBH+B
< Kthr, (5.22)

with the cross sections σLEX and σDR being purely theoretical and calculated
with the same input values of the structure functions. In �rst approximation Kthr

may vary from 1-2% to 5-6%. The lower limit is �xed by the magnitude of the
systematic error on σexp. The upper limit is given by the maximum value that
ODR(q′cm

2) can reach, presented in �gure 3.13.
Figure 5.16 shows the angular bins that satisfy the selection with the following

input value of structure functions in equation 5.22 PLL − PTT/ε = 17.9 (GeV −2)
and PLT = −3.7 (GeV −2) and with Kthr = 2.5%. Since at low q′cm the GP e�ect
is small equation 5.22 simply comes to comparing the BH+B cross section with
itself and removes no bins. At q′cm = 112.5 MeV/c the selection becomes very
restrictive but we believe this is a necessity if one wants to get rid of higher-orders
e�ect.

Figure 5.17 shows the e�ect of this selection on the analysis for the q′cm =
112.5 MeV/c-bins. Cross sections are measured in every bin (red and blue) on
this plot but only the blue ones are kept for the LEX analysis. Three regions
corresponding to the three high-q′cm settings are also shown.

This mask selection induces two dependencies that need to be controlled.
Firstly, we have to see the e�ect induced by Kthr variations. Secondly the theo-
retical cross-sections σDR and σLEX depend on input values of structure functions
and we have to study the impact of changing them within a reasonable range.
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Figure 5.16: Bins (in blue) that satisfy the mask selection in the (ϕcm, cos(θcm))-
plane when Kthr = 2.5%, PLL − PTT/ε = 17.9 (GeV −2) and PLT = −3.7 (GeV −2)
at q′cm = 87.5 MeV/c (left) and q′cm = 112.5 MeV/c (right).

Figure 5.17: Bins, in blue, that satisfy the mask selection in the (ϕcm, cos(θcm))-
plane at q′cm = 112.5 MeV/c. The bins in red contain data that are rejected by
this selection.

The Kthr dependency

We tested for a given GP e�ect (PLL − PTT/ε = 17.9 (GeV −2) and PLT =
−3.7 (GeV −2) the consequences on the LEX extraction if one changes the value of
the Kthr criterion. This is represented in �gure 5.18. Two regions arise, one which
is unstable for a restrictive Kthr < 2% (especially for PLT ) and the second, more
stable, for Kthr in the range [2; 5]%.

The red points are obtained when no mask selection is applied, i.e. Kthr =∞ .
It appears that removing this selection has no e�ect on PLT but has an important
e�ect on PLL − PTT/ε. We observed the same behavior with other structure-
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function choices to build the mask criterion.

Figure 5.18: LEX extraction of structure functions with respect to the Kthr crite-
rion for input structure functions respectively �xed to PLL−PTT/ε = 17.9 GeV −2

and PLT = −3.7 GeV −2 to build the mask. The red points are obtained when no
mask selection is applied. The error bars are statistical.

We �nally choose Kthr = 2.5% as a nominal cut.

Theoretical structure functions dependency

We tested the impact of changing the theoretical structure functions when building
the mask selection. We started from a given value and made the structure functions
vary independently over a large range. Table 5.5.2 gathers the results.

Structure functions Theoretical inputs Extracted result
PLL − PTT/ε (GeV −2) No mask 15.14± 0.42

PLT (GeV −2) selection −3.60± 0.21
PLL − PTT/ε (GeV −2) 22.5 18.47± 0.56

PLT (GeV −2) -2.3 −3.47± 0.30
PLL − PTT/ε (GeV −2) 28.2 19.37± 0.62

PLT (GeV −2) -2.3 −3.84± 0.33
PLL − PTT/ε (GeV −2) 13.5 17.46± 0.53

PLT (GeV −2) -2.3 −3.07± 0.30
PLL − PTT/ε (GeV −2) 22.5 18.91± 0.61

PLT (GeV −2) -5.4 −3.91± 0.34
PLL − PTT/ε (GeV −2) 22.5 18.16± 0.57

PLT (GeV −2) -0.5 −3.00± 0.32

Table 5.5.2: LEX extraction of structure functions with various theoretical inputs
to build the mask selection, and �xing Kthr = 2.5% (except in the �rst case). The
error bars of the extracted results are statistical.
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Applying a mask selection has an important impact on the extracted struc-
ture functions, at least for PLL − PTT/ε. Globally, any of the mask selections
of table 5.5.2 gives results in agreement within ±1 GeV −2 for PLL − PTT/ε and
±0.5 GeV −2 for PLT .

To remove this last uncertainty we used another iterative procedure. The
structure functions extracted by the LEX are used to build a new mask selection,
which is used to redo the LEX �t, and so on. The iterations are performed at
constant Kthr.

Similar to the iterative procedure relative to the renormalization process, we
tested two starting points. Firstly, we used as input the structure functions ob-
tained when no mask selection is applied (line 1 of table 5.5.2). Secondly, we tried
to iterate starting from the second line of the table.

The results converge to the following input values of structure functions for the
mask selection:

PLL − PTT/ε(MASK) = 17.9 (GeV −2)
PLT (MASK) = −3.7 (GeV −2)

which also coincide with the outputs of the LEX �t.

5.5.3 Conclusion

Once one trusts the data calibration and the cross-section renormalization, the
main feature of the LEX analysis concerns the handling of higher orders in q′cm.

To this aim, we decided to use a mask selection based on the DR model, even
if by doing so we lose a small part of the model-independency of the LEX analysis.

In our experiment we also have a direct hint of higher-order terms at an early
level: we observed during the data analysis that some experimental distributions
do not follow the simulated ones when we include a GP e�ect in the weight of
simulated events; this is case namely for the ϕcm-distribution (cf. �gure 4.24).
This discrepancy was due to the theoretical GP e�ect which is badly estimated by
the LET and so our data needed to be carefully handled.

LEX extractions can be done by considering di�erent subgroups of settings and
bins, and will provide various results. We believe that the best �t is the one which
gathers all data in order to increase the sensitivity to the two structure functions,
and to increases the lever arm in the vLL and vLT coe�cients. In appendix D.2
the consequences of considering subgroups of data are shown.

Nominal LEX results

Finally we performed the nominal analysis thanks to 946 Ψ0 data points as pre-
sented in table 5.5.3.

Settings
LOW INP, OOP
and and

LOW-bis OOP-forward
Number of

3 3
q′cm-bins used
q′cm-range [0;75] [50;125]
(MeV/c)
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Table 5.5.3: Data used for the �nal LEX �t. As a reminder, the q′cm values have
to be below the pion production threshold.

We found a satisfying reduced χ2, i.e. 1.26 for n.d.f=944 and the extracted
structure functions are3:

PLL − PTT/ε = 18.10± 0.56stat (GeV −2)
PLT = −3.59± 0.31stat (GeV −2).

(5.23)

Figure 5.19 shows the χ2
LEX variations in the (PLL − PTT/ε, PLT )-plane. The

elliptic shape is due to the linearity of the problem. A small correlation is ob-
served between the two structure-function errors. The inner red ellipse expresses
the standard deviation of each structure function separately, these are the errors
mentioned in equation 5.23. The outer red ellipse expresses the standard deviation
of both structure functions simultaneously [98].

Figure 5.19: χ2
LEX variations in the (PLL − PTT/ε, PLT )-plane. The red ellipses

correspond to contours at χ2
min + 1 and χ2

min + 2.41 (where χ2
min is not reduced).

5.5.4 From structure functions to generalized polarizabili-
ties

Once the structure functions are extracted, the LEX analysis is powerless to give
individual GP values. So the next step requires the direct intervention of a model
to �nd the electric and magnetic GPs.

3These results di�er slightly from the ones of Table 5.4.3-c (for the Friedrich-Walcher
parametrization), because of di�erent inputs to build the mask.
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For this purpose we used the DR model. The method simply consists in using
the DR code to �nd the Λ parameters corresponding to our measured values of the
LEX structure functions at Q2 = 0.2 GeV 2, qcm = 458 MeV/c and ε = 0.85. Then
the code is used a second time to �nd the GPs at Q2 = 0.2 GeV 2. In this way
the spin GPs are calculated by the DR model and deducted from the structure
functions.

The procedure will induce a form-factor dependency, but it is small and impacts
the results very weakly.

We found:

αE(Q2 = 0.2 GeV 2) = 3.90± 0.14stat (10−4fm3)
βM(Q2 = 0.2 GeV 2) = 1.14± 0.15stat (10−4fm3) .

5.6 The DR analysis

The second extraction of GPs that we have done is directly based on the DR
model. It requires again the experimental cross sections, renormalized by the factor
F norm
FW = 0.98 which corresponds to using the Friedrich-Walcher parametrization

of proton form factors.
We did not perform a DR �t for three di�erent form-factor parametrizations,

as we did for the LEX �t. It would have required a too long computational time.
However, we expect that the DR extraction of GPs will be essentially independent
of the form-factor choice, since the principles of the �tting method are the same
as for the LEX analysis.

5.6.1 Fit description

Contrary to the LEX �t, the DR �t is not analytical, because the theoretical cross-
section σDR depends on the polarizabilities in a very complex manner. We still
compare our experimental cross sections to the DR calculation by a χ2 method,
but the minimum has to be found purely numerically.

We �rst need to compute a large amount of DR cross sections. Indeed, we
need the cross sections to be calculated in the 10080 bins of our analysis (10080/2
actually because the theoretical cross section is perfectly ϕcm-symmetric) and we
also need them to be calculated for di�erent input values of the GPs.

So for the �rst step, we built a regular grid of 25 values of αE(Q2 = 0.2 GeV 2)
times 24 values of βM(Q2 = 0.2 GeV 2) in the range allowed by the model, i.e.
600 grid nodes, and we computed the 10080/2 cross sections for each of the 600
grid points. We calculated a total of 3, 024, 000 theoretical cross sections, which
represents a long computational time.

The χ2 is then written as:

χ2
DR(αE(Q2), βM(Q2)) =

N∑
i=1

(
σexpFW (i)− σDRFW (i, αE(Q2), βM(Q2))

∆σexpFW (i)(stat)

)2

. (5.24)

The 600 χ2-values show a clear and unique minimum as represented in �g-
ure 5.20, and near the minimum, the χ2 follows a paraboloid shape.
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Figure 5.20: χ2
DR of the DR analysis in the 600 (αE(Q2), βM(Q2))-bins.

Now we have to identify the minimal χ2: the value of χ2
min and its precise

position in (αE(Q2), βM(Q2)) coordinates, which will be the extracted GPs. This
is done by �tting the χ2 to the following paraboloid function:

f(x, y) = A(x−B)2 + C(y −D)2 + E + F (x−B)(y −D), (5.25)

with A,B,C,D,E and F free parameters of the function and x = αE(Q2), y =
βM(Q2). E will be the minimum χ2, B its position along the x-axis (corresponding
to the extracted electric GP) and D its position along the y-axis (corresponding
to the extracted magnetic GP). The �tted function also allows to extract the
statistical errors on αE(Q2) and βM(Q2) by drawing the contour at χ2

min + 1 [98].
In contrary to the LEX �t that requires supplementary selections, none of them

are necessary for the DR �t, which is conceptually much simpler4. Each of the 600
χ2
DR was then calculated thanks to 4431 cross-section points5 distributed in our

di�erent settings, as presented in table 5.6.1. Another di�erence with the LEX
�t is that the DR extraction is valid even above the pion production threshold,
allowing us to use two more q′cm bins, i.e. bins at q′cm = 137.5 MeV/c and q′cm =
162.5 MeV/c.

4the gradient selection was already not mandatory for the LEX �t, for the DR �t its impact
is also small in terms of extracted GPs, so we decided to not use it.

5we measured 7784 cross sections but some are measured several times by di�erent settings,
here the measurements are averaged over settings.
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Settings
LOW INP, OOP
and and

LOW-bis OOP-forward
Number of

4 5
q′cm-bins used
q′cm-range [0;100] [50;175]
(MeV/c)

Table 5.6.1: Data used for the �nal DR �t.

Figure 5.21 is a two-dimensional representation of how the paraboloid function
�ts the χ2 distribution, the contour at χ2

min + 1 shows the statistical uncertainties
on the extracted GPs, the outer black ellipse expresses the standard deviation of
both GPs simultaneously. Almost no correlation is observed between the �tted
values of αE(Q2) and βM(Q2).

Figure 5.21: Non-reduced χ2
DR in the 600 (αE(Q2), βM(Q2))-bins and several

�tting-function contours. The two inner black ellipses correspond to the contours
at χ2

min + 1 and χ2
min + 2.41.

Once the GPs are extracted we need to use again the DR code to �nd the
corresponding structure functions. By doing that we reintroduce a form-factor
dependency, but as in section 5.5.4 it is a very small one.

5.6.2 The results of the DR �t

Finally, we found a reduced χ2 of 1.43 for n.d.f = 4429 and the extracted GPs
are:
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αE(Q2) = 4.05± 0.10stat (10−4.fm3)
βM(Q2) = 1.08± 0.12stat (10−4.fm3) .

The corresponding Λ parameters are:

Λα = 0.631± 0.011stat (GeV )
Λβ = 0.745± 0.021stat (GeV ) ,

which lead to the following structure functions:

PLL − PTT/ε = 18.70± 0.38stat (GeV −2)
PLT = −3.48± 0.25stat (GeV −2) .

The DR �t hides an undiscussed feature. The model depends on the RCS
electric and magnetic polarizabilities used as input in the code. Indeed the RCS
polarizabilities appear in equations 2.8 and 2.9. Moreover, the value of β̄M has
recently changed (β̄M = (2.5± 0.4) · 10−4 fm3 [28]) and may change again in the
future. So, one can wonder if variations of RCS polarizabilities would impact our
DR analysis.

It is likely that a change in the RCS values in equations 2.8 and 2.9 will be
compensated in our DR �t by a change of the �tted Λ parameters, leaving �nally
the GPs and the structure functions unchanged [99]. However, this remains to be
veri�ed.

5.7 Systematic errors

In this section we explain the choice that has been made to estimate the systematic
errors in our analyses. We describe the two estimation methods that we used for
the LEX �t, and we conclude more brie�y for the DR �t.

5.7.1 First method: changing the renormalization of the ex-
perimental cross section

The �rst method consists in using the renormalization factor F norm to estimate
the systematic errors. In this section we assume that the global systematic error
can be obtained by considering a simple change of overall renormalization.

As explained in section 5.4 we believe that the renormalization factor corrects
our data from a global bias with a excellent accuracy. However it does not prevent
our analysis from inhomogeneous issues which can be due for example to:

- angular distortions caused by bias in optics or local loss of events. By obser-
vations of variations between di�erent analyses at di�erent stages of our progress
we can estimate this as a ±0.01 variation of F norm.

- non-homogenous radiative e�ects that are ignored by our averaging of F rad.
This e�ect shows variations that are equivalent at maximum to a ±0.007 variation
of F norm (cf. section 5.2.2).

- non-homogenous renormalization factor. In section 5.4.3 we have observed
that the renormalization factor undergoes variations from a setting to another (cf.
table 5.4.2). We consider that they induce a systematic error of ±0.006 of F norm.
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- error induced by applying a renormalization factor determined by low-energy
settings to other settings. By doing this we assumed that the main part of system-
atic errors have a common origin. But we observed a ±0.006 variation between the
LOW and LOW-bis renormalization factors. We can then estimate the systematic
error brought by this assumption to be about the same order.

- moreover we can add the systematic error induced by the use of di�erent
conditions for the LEX �t in the iterative procedure which allows to determine
F norm. It has been shown in section 5.4.3 that it is a ±0.002 e�ect on F norm.

Finally by summing quadratically those �ve systematic-error sources we esti-
mate our total systematic error as an uncertainty of ±0.015 on the renormalization
factor, or, in other terms, a total systematic uncertainty of ±1.5% on each cross-
section point. This e�ect is propagated to the LEX and DR analysis, by simply
changing the global renormalization factor that enters in the �ts. For the LEX
analysis we �nd that ∆F norm± 0.015 induces the following changes in the physics
observables:

∆PLL − PTT/ε = ∓3.64syst (GeV −2)
∆PLT = ∓1.57syst (GeV −2).

The errors are anti-correlated with respect to ∆F norm.

5.7.2 Second method : multiple LEX analyses

The second method we used to estimate the systematic error is based on multiple
analyses of the data. We had the chance to produce independent LEX analy-
ses with di�erent choices, i.e. di�erent: spectrometers optics, target positioning,
analysis cuts, renormalization factors, bin selection. So we can estimate the main
systematic e�ects, which are the following:

- using the renormalization factor from another analysis to the nominal one
induces structure-function variations of ∆PLL − PTT/ε = ±2.35 (GeV −2) and
∆PLT = ±1.02 (GeV −2).

- changing the cut on the reconstructed vertex by ±6 mm induces structure-
function variations of ∆PLL−PTT/ε = ±0.21 (GeV −2) and ∆PLT = ±0.30 (GeV −2).

- multiplying the upper cut on the missing-mass squared by 2 or 0.5 induces
structure-function variations of ∆PLL − PTT/ε = ±1.67 (GeV −2) and ∆PLT =
±0.33 (GeV −2).

- using a theoretical cross-section in VCSSIM that contains a GP e�ect (based
on our �nal result) induces structure-function variations of ∆PLL − PTT/ε =
±0.15 (GeV −2) and ∆PLT = ±0.11 (GeV −2).

- not considering the local target boiling described in section 4.4.2 induces
structure-function variations of ∆PLL − PTT/ε = ±0.1 (GeV −2) and ∆PLT =
±0.8 (GeV −2).

- considering a supplementary analysis cut in order to remove the unconsistency
of �gure 4.22 for the setting INP induces structure-function variations of ∆PLL −
PTT/ε = ±1.02 (GeV −2) and ∆PLT = ±0.92 (GeV −2).

- considering di�erent form-factor parametrizations induces ∆PLL − PTT/ε =
±0.2 (GeV −2) and ∆PLT = ±0.2 (GeV −2) (cf. table 5.4.3-c).
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- changing the Kthr value (de�ned section 5.5.2) inside the stability plateau of
�gure 5.18 induces ∆PLL − PTT/ε = ±0.5 (GeV −2) and ∆PLT = ±0.1 (GeV −2).

- not using the gradient selection induces structure-functions variations of
∆PLL − PTT/ε = ±0.4 (GeV −2) and ∆PLT = ±0.01 (GeV −2).

If we do the quadratic sum we �nd:

∆PLL − PTT/ε = ±3.14 (GeV −2)
∆PLT = ±1.66 (GeV −2) ,

which agrees well with the previous determination. The correlations of signs
cannot be determined by this method of estimation of systematic errors.

Conclusion on systematic errors

For the LEX �t we have been able to estimate the systematic errors on the �tted
observables by two methods, and they are in good agreement. We decided to use
the �rst method because of its simplicity of application. The systematic errors for
the structure functions, presented in section 5.8, are obtained this way. They are
then propagated to the �LEX� GP determination of section 5.5.4.

For the DR �t we have not done such an extensive study, therefore, thanks to its
simplicity, we will adopt the �rst method, i.e. we apply a change ∆F norm = ±0.015
in order to �nd the systematic error on the observables extracted by the DR �t.
We �nd6:

∆αE(Q2) = ∓0.98syst (10−4.fm3)
∆βM(Q2) = ±0.90syst (10−4.fm3) ,

∆Λα = ∓0.121syst (GeV )
∆Λβ = ∓0.188syst (GeV ) ,

∆PLL − PTT/ε = ∓3.93syst (GeV −2)
∆PLT = ∓1.86syst (GeV −2) .

The correlations of sign with ∆F norm observed here are due to the use of the
�rst method and will not be kept in the following.

5.8 Final results

The �rst �t, based on the LET, is in principle model-independent, technically easy
to implement but requires to be done carefully because of higher-orders in q′cm.

While our LEX result for PLT is almost not impacted by the mask selection,
our LEX result for PLL − PTT/ε is very sensitive to it: the �tted value changes
from 15 GeV −2 (without mask) to 18 GeV −2 (with mask selection), i.e. it changes
by 3 GeV −2, which is almost equal to one systematic standard deviation. This can
be seen as having introduced some degree of DR-model-dependency in our LEX

6The systematic errors present a small asymmetry in positive and negative, the upper limit
is kept to express the error symmetrically.
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�t. The �LEX GPs� extracted in section 5.5.4 depend even more obviously on the
DR model.

The second extraction, based entirely on the DR model, is more straightforward
but is technically harder to implement because of the computational time.

To perform both extractions we used cross sections corrected from radiative
e�ects, and renormalized. We have shown the importance of the renormalization
process which minimizes the systematic e�ects in our analyses and makes the
extractions independent of form-factor parametrizations.

The extracted structure functions are summarized in section 5.8.1 and the
extracted GPs are summarized in section 5.8.2.

Thanks to the strength of the renormalization process we were able to quantify
the systematic errors for both extractions, LEX and DR. And thanks to the �exi-
bility of the LEX �t we were able to check the systematic errors by doing several
independent analyses.

5.8.1 Structure functions

The �nal extracted values for the LEX �t are:

PLL − PTT/ε (LEX) = 18.10± 0.56stat ± 3.64syst (GeV −2)
PLT (LEX) = −3.59± 0.31stat ± 1.57syst (GeV −2),

and the DR �t gives:

PLL − PTT/ε (DR) = 18.70± 0.38stat ± 3.93syst (GeV −2)
PLT (DR) = −3.48± 0.25stat ± 1.86syst (GeV −2).

These two sets of results are in excellent agreement. The agreement is even
more meaningful and satisfying for PLT which, for the LEX extraction, does not
depend on the mask selection and so is entirely independent of the DR model.
Figures 5.22 and 5.23 show those measurements together with the world data.
Figure 5.22 presents a non-simple Q2 behavior of PLL − PTT/ε which demands to
be explored further in the region aroundQ2 = 0.33GeV 2. Our �tted value of PLT is
rather small and also not in smooth agreement with the results at Q2 = 0.33 GeV 2.
Also, the picture at Q2 = 0 GeV 2 may change in the future due to the new
measurements of the RCS polarizabilities.

5.8.2 GPs

The �nal extracted GPs by means of the LEX �t plus DR-subtraction of the
spin-�ip GPs are:

αE(Q2) (LEX) = 3.90± 0.14stat ± 0.92syst (10−4.fm3)
βM(Q2) (LEX) = 1.14± 0.15stat ± 0.78syst (10−4.fm3).

From the DR �t we obtained:
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Figure 5.22: World data for PLL − PTT/ε including the present extractions at
Q2 = 0.2 GeV 2 (in black). The data and curve follow the conventions of Figure 2.7.
The green crosses are the preliminary results from [72] (Q2 = 0.45 GeV 2) and [71]
(Q2 = 0.1 GeV 2).

αE(Q2) (DR) = 4.05± 0.10stat ± 0.98syst (10−4.fm3)
βM(Q2) (DR) = 1.08± 0.12stat ± 0.90syst (10−4.fm3).

The two set of results are in excellent agreement. Figures 5.24 and 5.25 allow to
compare the present measurements with the world data, and the same comments
can be made as for the structure functions.
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Figure 5.23: World data for PLT including the present extractions at Q2 =
0.2 GeV 2 (in black). The data and curve follow the conventions of Figure 2.8.
The green crosses are the preliminary results from [72] (Q2 = 0.45 GeV 2) and [71]
(Q2 = 0.1 GeV 2).
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Figure 5.24: World data for αE(Q2) including the present extractions at Q2 =
0.2 GeV 2 (in black). The data and curve follow the conventions of Figure 2.7.
The green crosses are the preliminary results from [72] (Q2 = 0.45 GeV 2) and [71]
(Q2 = 0.1 GeV 2).
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5.8. FINAL RESULTS

Figure 5.25: World data for βM(Q2) including the present extractions at Q2 =
0.2 GeV 2 (in black). The data and curve follow the conventions of Figure 2.8.
The green crosses are the preliminary results from [72] (Q2 = 0.45 GeV 2) and [71]
(Q2 = 0.1 GeV 2).
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Conclusion

In this thesis we analysed the data of a photon electroproduction (ep → epγ)
experiment at MAMI, at Q2 = 0.2 GeV 2. We extracted a number of observables
characterizing the VCS process at low energy: the structure functions PLL−PTT/ε
and PLT , and the electric and magnetic GPs αE(Q2), βM(Q2).

This study was motivated by the previous VCS experiments. Their results
have raised questions, namely about the Q2-behavior of the electric generalized
polarizability which demanded to be explored. This work is a part of a more
complete experiment that also covered two other Q2-values: 0.1 and 0.45 GeV 2,
in order to obtain a more complete picture of the situation in the region around
Q2 = 0.33 GeV 2.

The �rst di�culty of such experiments is the smallness of the ep → epγ cross
section, requiring to accumulate enough statistics. Our experiment is a high-
statistics one, with ≈ 106 events identi�ed as ep → epγ when summed over our
�ve settings at Q2 = 0.2 GeV 2.

The second and main di�culty to extract GPs comes from their small contribu-
tion (0-15%) to the photon electroproduction cross-section, requiring to measure
this cross section with small systematic uncertainties, of the order of a few percent
at maximum. In order to obtain the systematic precision of ±1.5% our experi-
ment had a few strong points. First, we bene�ted of the MAMI facility and the
A1 spectrometers. The high-duty cycle of the accelerator and the high resolution
of the spectrometers are mandatory for such experiments. The calibration work
was also a determinant part of our analysis. Its relevance was con�rmed by the
use of a Monte Carlo simulation. The last strong aspect is the renormalization
procedure. Indeed our renormalization work highly diminished the impact of the
possible experimental inconsistencies and of the theoretical uncertainties, e.g. the
blur brought by the limited form-factor knowledge.

We were able to extract the structure functions and the GPs by two di�erent
approaches. The �rst one is based on the LET and was widely explored in this
thesis. The second extraction, based on the dispersion relation model, was more
straightforward but explored to a lesser extent. Those two di�erent types of anal-
ysis were already done by previous experiments, but our experiment also contains
two speci�cities.

The �rst one resides in the choice of the analysed phase-space. The measured
cross-section points were distributed in di�erent angular regions of interest, thus
increasing the sensitivity of our analyses to the structure functions and GPs.

The second original feature is the use of the DR model to select the analysed
data in the LEX analysis. The previous observations (from the Bates experiment)
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5.8. FINAL RESULTS

and the ones we did during our analysis are evidences that the higher-order terms
in the �nal photon energy q′cm impact our results. The �mask selection� that we
built, based on the estimation of the higher-order terms by the DR model, is then
an essential feature of our LEX analysis.

The two di�erent extractions, LEX and DR, are in very good agreement, within
their statistical error which is quite small. Actually, the results are dominated by
the systematics which are di�cult to reduce in VCS experiments.

The parallel analyses at Q2 = 0.45 GeV 2 [72] and Q2 = 0.1 GeV 2 [71], associ-
ated with this one, have established a preliminary behavior of the electric GP. This
behavior is not in smooth agreement with the previous MAMI results. Exploring
a GP extraction at Q2 = 0.33 GeV 2 in a wider angular phase space (namely out-
of-plane, as in our experiment) would certainly give more insight in the present
puzzle.

The generalized magnetic polarizability of the proton is smaller and by conse-
quence its extraction is more di�cult due to the systematic errors. This compli-
cates the observation of an extremun in the βM(Q2) (or PLT )Q2-behavior. However
one observes also a non-smooth behavior with respect to the previous MAMI re-
sults. Because of the recent changes in the RCS magnetic polarizability value, we
can anticipate that �gure 5.25 will also change at Q2 = 0 in the future.

To conclude, the study of the GP behavior requires more investigations and
will be hopefully pushed further [100]. In a near future, our �nal electric GP result
will be confronted to the result of another VCS experiment done at MAMI, in the
∆-resonance region, also at Q2 = 0.2 GeV 2 [70].
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Appendix A

VCS coe�cients in the LEX

expansion

In the LET expression, vLL and vLT are angular dependent functions. We recall
their expression here, following the notations of [33]:

vLL(ϕcm, θcm, qcm, ε) = 2K2εv1

vLT (ϕcm, θcm, qcm, ε) = 2K2(v2 −
q̃0
cm

qcm
v3)
√

2ε(1 + ε).
(A.1)

with qcm and ε �xed in our experiment, and:

K2 = e6 qcm
Q̃2

2mp
1−ε

√
2Eq

Eq+mp

Eq =
√
m2
p + q2

cm

v1 = sin(θcm)(w′′sin(θcm)− kTw′cos(θcm)cos(ϕcm))
v2 = −(w′′sin(θcm)cos(ϕcm)− kTw′cos(θcm))
v3 = −(w′′sin(θcm)cos(θcm)cos(ϕcm)− kTw′(1− sin2(θcm)cos2(ϕcm)))

kT = Q̃
√

ε
2(1−ε)

w =

[
−q′cm

(
1

p · q'
+

1

k · q'

)]
q′cm=0

w′ =

[
q′cm

(
1

k' · q'
+

1

k · q'

)]
q′cm=0

w′′ = wqcm − w′
√
k̃′

2

cm − k2
T .

(A.2)
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Appendix B

Spin GPs contribution to the

structure functions according to the

DR model

From equations 1.37a and 1.37b one observes that PLL − PTT/ε is directly pro-
portional to αE(Q2) if one neglects its spin-GP contribution, which is entirely
contained in PTT . Figure B.1 shows the PTT value with respect to Q2 according
to the DR model, it reaches a maximum of ≈ −2 GeV −2 which is, according to
our extractions, a small part of PLL − PTT/ε. This explains the similar behaviors
of PLL − PTT/ε and αE(Q2).

According to the DR model, the spin-GP contribution to PLT is more impor-
tant. In �gure B.1 the value of Kspin · P (01,01)1(qcm) is plotted versus Q2 (Kspin

being de�ned as the coe�cient multiplying the spin GP in PLT in equation 1.37c,
i.e. Kspin = 3GMQ̃qcm/2q̃

0
cm).

Figure B.1: DR model predicted value of KspinP
(01,01)1(qcm) and PTT .
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Appendix C

Radiative corrections to ep→ epγ

This appendix gathers the mathematical expression of δ-correction terms and the
corresponding diagrams. All formulas are taken from [92].

C.1 δr: Electron bremsstrahlung

δr is the correction term for a supplementary real photon. The considered diagrams
are represented in �gure C.1.

Figure C.1: Diagrams accounted in the δr correction term, where one supplemen-
tary real photon (red) is produced.

The soft-photon correction term is:
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C.2. δV AC AND δV ER: SUPPLEMENTARY VIRTUAL PHOTON

δr2 =
αQED
π

(−1
2
ln2( Ẽe

Ẽ′e
) + 1

2
ln2(Q

2

m2
e
)− π2

3
+ Sp(cos2( θ̃e

2
))), (C.1)

with Sp() the Spence function. Ẽe, Ẽ ′e and θ̃e are respectively the energies
of incoming and outgoing electrons and the polar angle of the outgoing electron
de�ned in a particular frame. The considered frame depends on the experiment, i.e.
elastic experiment, (ep → epγ) with photon-detection experiment or (ep → epγ)
with proton-detection experiment. In our case:

Ẽe = mp
Mm2

(Ee − Q2

2mp
− k.p'

mp
)

Ẽ ′e = mp
Mm2

(E ′e + Q2

2mp
− k'.p'

mp
)

sin2(θ̃e/2) = EeE′e
ẼeẼ′e

sin2(θe/2)

Mm2 = 2 ·∆Es.

(C.2)

with ∆Es de�ned in equation 5.3.

C.2 δvac and δver: supplementary virtual photon

Figure C.2: Electron self-energy diagrams.

The vacuum polarization process, presented in �gure 5.2 leads to the following
correction term:

δvac =
αQED
π

2
3
(−5

3
+ ln(Q

2

m2
e
)). (C.3)

The vertex process from �gure 5.3 leads to δver:

δvertex =
αQED
π

(3
2
ln(Q

2

m2
e
)− 2− 1

2
ln2(Q

2

m2
e
) + π2

6
). (C.4)
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C.3. δV AC AND δV ER: PROTON-SIDE CORRECTION

C.3 δvac and δver: proton-side correction

This correction is described through two terms which also take into account the
two-photon exchange process (direct and crossed) :

δ1 = 2αem
π

(ln(4∗(∆Es)2
Q2x

)ln(η) + Sp(1− η
x
)− Sp(1− 1

ηx
) (C.5)

δ
(0)
2 = αem

π
(ln(4∗(∆Es)2

M2
N

)(
E′N
|~P ′N |

ln(x)− 1) + 1

+
E′N
|~P ′N |

(−1
2
ln2(x)− ln(x)ln( ρ2

M2
N

) + lnx− Sp(1− 1
x2

) + 2Sp(− 1
x
) + π2

6
))
(C.6)

With MN the mass of the baryon (here proton), E ′N (|~P ′N |) the lab energy
(momentum) of the recoiling nucleon and:

ρ2 = Q2 + 4M2
N

x = (Q+ρ)2

4M2
N

η = Ee/E
′
el = 1 + Ee(1− cos(θe)/MN

where Ee, E ′el and θe are respectively in the lab frame: the energy of the
incoming electron, the energy of the elastic outgoing electron and the angle between
the outgoing and incoming electrons.

A third term δ
(1)
2 also describes the proton-side processes. It is presented in [92]

as being about the same order of magnitude than δ(0)
2 , i.e. ≈ 0.02% of F rad in our

kinematics. δ(1)
2 was not determined in our analysis but its omission is considered

in the error budget on F rad.
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Appendix D

Supplementary studies for the LEX

�t

D.1 The ∆M stability with respect to q′cm

∆M , as de�ned equation 5.17, is a tool to control the LEX �t. Figure D.1 shows
some typical ∆M behaviors versus q′cm, it allows to check if ∆M is independent
of q′cm as required by the LEX �t, and if the points measured by di�erent settings
are in agreement.

A Ψ0 value is obtained by averaging these measurements, if and only if the bins
pass the mask selection (described in section 5.5.2).

For the �rst two plots at the top of �gure D.1, none of the measurements satisfy
the mask selection and no Ψ0 is calculated. This signi�es that, according to the
DR model, the higher orders are not negligible in these bins, and so, one should
observe a non-�at q′cm behavior of ∆M .

For the two plots in the middle of �gure D.1, the Ψ0 value is not calculated from
all the data, the high q′cm are rejected by the mask selection; the red band corre-
sponds to the averaging of the three di�erent measurements at q′cm = 62.5 MeV/c.

For the two last plots at the bottom of �gure D.1 every measurement passes
the mask selection, this signi�es that according to the DR model one can neglect
the higher orders in those particular bins, and that the di�erent ∆M points should
not depend on q′cm.

Globally on these six plots, the points measured by di�erent settings are in
good agreement. The absence of q′cm-dependence of ∆M is hard to judge by eye,
and for this we rely on the theoretical criterion of our mask selection.

D.2 LEX �ts with various subgroups of data

In section 3.3 we explained the importance of choosing the analyzed phase space
and we detailed the reasons that motivated our choices. In this section we observe
the consequences of ignoring these recommendations, it is illustrated in tables D.2-
a and D.2-b.

Table D.2-a presents the results obtained by considering each setting separately,
the renormalization factor and the analysis selections are applied. One observes
that the setting INP, which is more sensitive to PLT gives a result close to the
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D.2. LEX FITS WITH VARIOUS SUBGROUPS OF DATA

Figure D.1: Measured ∆M with respect to q′cm for six selected bins; cos(θcm) =
−0.675 and 55◦≤ ϕcm ≤105◦. The points are from di�erent settings: INP (black),
OOP(red) and LOW+LOW-bis (green). The light-red area corresponds to the
quantity Ψ0 ± ∆Ψ0 �tted in the (cos(θcm), ϕcm)-bin . Some points are shifted in
q′cm for visibility.

measured one for this structure function. On the contrary, the setting OOP is more
sensitive to PLL−PTT/ε and governs the extraction of this structure function. The
OOP-forward setting presents data collected afterwards, with a low statistics and
gives results with high statistical errors. The two settings at low q′cm are clearly less
sensitive to the GP e�ect and are individually not relevant for a structure-function
extraction.

Settings LOW LOW-bis INP OOP OOP-forward

q′cm-range (MeV/c) [0;75] [0;75] [50;125] [50;125] [50;125]
n.d.f 931 797 347 265 80

χ2,reduced
LEX 1.08 1.03 1.31 1.37 1.01

PLL − PTT/ε 44.51 22.77 19.44 18.00 18.22
(GeV −2) ±5.27 ±4.98 ±1.10 ±0.74 ±8.11
PLT −12.38 −1.20 −3.41 −7.81 −9.68

(GeV −2) ±2.94 ±2.47 ±0.35 ±1.15 ±4.44

Table D.2-a: LEX �ts of structure functions for the �ve settings separately, the
q′cm-range is the one covered by each setting. The errors on the structure functions
are statistical.

Table D.2-b presents the results obtained by considering each q′cm-bin sepa-
rately, the renormalization factor and the analysis selections are applied. It illus-
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D.2. LEX FITS WITH VARIOUS SUBGROUPS OF DATA

trates the irrelevance of the low q′cm for a LEX �t and the importance of gathering
the high-q′cm data; by taking each q′cm individually the results disagree.

q′cm 12.5 37.5 62.5 87.5 112.5
(MeV/c)

Settings used
LOW LOW

All
INP, OOP INP, OOP

and and and and
LOW-bis LOW-bis OOP-forward OOP-forward

n.d.f 447 762 886 447 123
χ2,reduced
LEX 1.23 1.35 1.14 1.74 1.14

PLL − PTT/ε 419.34 58.25 25.65 16.56 14.84
(GeV −2) ±213.49 ±7.56 ±1.91 ±0.86 ±0.91
PLT −93.14 −23.31 −6.74 −0.90 −7.38

(GeV −2) ±93.14 ±3.53 ±0.98 ±0.47 ±0.56

Table D.2-b: LEX �ts of structure functions for the �ve q′cm bins separately. The
value of q′cm is the one at the center of the bin. The errors are statistical.

We believe that the best �t is the one which gathers all data for the reasons
explained in section 3.3.

One can do two side remarks about the numbers in table D.2-b:
- for each bin in q′cm, the number of cross-section points in (cos(θcm), ϕcm)

is given by n.d.f + 2. These cross-section points are the ones passing the mask
criterion, and they are setting-averaged, as indicated in the table.

- the sum of the �ve numbers
∑

(n.d.f.+ 2) is equal to 2675, which is therefore
our total number of setting-averaged cross section points. Figure D.1 allows to
visualize how several individual data points, at di�erent q′cm, are gathered together
in order to yield only one Ψ0 data point. This explains why our nominal LEX �t
(section 5.5.3) uses 946 data points, in terms of Ψ0.
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Appendix E

Gradient selection

The gradient selection is essentially designed to follow the acceptance edges in
(cos(θcm), ϕcm), which themselves depend on q′cm. To test if a bin (i) is kept
we compare its BH+B cross-section with the one of the four direct neighbour-
bins (j = 1 → 4) in the (ϕcm, cos(θcm))-plane and with the one of the four bins
(k = 1→ 4) in the diagonal directions. The eight conditions to satisfy are:

σBH+B
i − σBH+B

j=1→4

1
< 0.4 (pb.MeV −1.sr−2)

σBH+B
i − σBH+B

k=1→4√
2

< 0.4 (pb.MeV −1.sr−2)
(E.1)

This design is the best if one wants to respect our speci�c acceptance; applying a
cut on relative cross-section di�erences would generate complicated and unwanted
shapes. Figure E.1 shows the e�ect of the selection on the data.

Figure E.1: Bins, in blue, that satisfy the gradient selection in the (ϕcm, cos(θcm))-
plane at q′cm = 37.5 MeV/c (left) and q′cm = 112.5 MeV/c (right). The bins in red
are rejected by the selection, they are close to the acceptance edges. The black
crosses show the exact position of the Bethe-Heitler peaks.
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Abstract
This work presents the measurement of the generalized electric αE(Q2) and

magnetic βM(Q2) polarisabilities (GPs) of the proton. The GPs are de�ned in the
Virtual Compton Scattering (VCS) context, i.e. the reaction γ∗p→ γp, where Q2

is the four-momentum transfer of the virtual photon. The GPs are a generaliza-
tion of polarizabilities measured in real Compton scattering (RCS) by taking into
account the Q2-dependency. They are dynamical properties of the proton when
it is deformed by an applied electromagnetic �eld. αE(Q2) (or βM(Q2)) gives ac-
cess to the local polarization (or magnetization) density of the deformed proton.
The studied VCS process is accessible by the photon-electroproduction reaction
(ep → epγ). The GP e�ect is a 1 − 15% contribution to the the ep → epγ cross
section, requiring a high-precision measurement. The present work is a part of
an experiment conducted by the A1 collaboration at MAMI at three new Q2 val-
ues: 0.1,0.2 and 0.45 GeV 2. This thesis details the extraction at 0.2 GeV 2. The
experiment uses the 1 GeV electron beam, the 5 cm liquid hydrogen target and
spectrometers A (B) to detect the �nal electron (proton). The �rst-level analysis
includes a detailed calibration of experimental data, and the use of a simulation
of the experiment. The measurement of the unpolarized ep→ epγ cross section is
described with two of its important features: the correction of the radiative e�ects
and the renormalization. Two di�erent frameworks are used to extract the GPs:
the Low Energy Theorem (LET) and the dispersion relation model (DR). The two
extractions lead to results in good agreement. The world data still raises question
about the Q2-behavior of the GPs.

Keywords: electromagnetic probe, generalized polarizabilities, virtual Compton
scattering, Hadron physics, proton structure, low energy expansion, dispersion
relations.

Résumé
Ce travail présente la mesure des polarisabilités généralisées (GPs) électrique

αE(Q2) et magnétique βM(Q2) du proton à Q2 = 0.2 GeV 2. Les GPs sont dé�nies
dans le contexte de la di�usion Compton virtuelle (VCS), γ∗p → γp, où Q2 est
le quadri-moment de transfert du photon virtuel. Les GPs sont la généralisation
des polarisabilités mesurées en di�usion Compton réelle (RCS) en considérant
leur dépendance en Q2. Ce sont des propriétés dynamiques du proton dé�nissant
sa déformation lorsqu'un champ électromagnétique lui est appliqué. αE(Q2) (ou
βM(Q2)) donne accès à la densité de polarisation (magnétisation) locale du pro-
ton déformé. L'e�et des GPs ne contribuant qu'à 1 − 15% de la section e�cace
ep → epγ une mesure de haute précision est requise. Ce travail s'inscrit dans le
cadre d'une expérience conduite par la collaboration A1 de MAMI à trois valeurs
inédites de Q2 : 0.1, 0.2 et 0.45 GeV 2. L'analyse de premier niveau comporte une
calibration détaillée des données expérimentales et l'utilisation d'une simulation
de l'expérience. L'extraction des GPs requiert la mesure et la renormalisation
des sections e�caces ep → epγ et la correction des e�ets radiatifs. Les résultats
obtenus par le �t �LEX� et �DR� sont en très bon accord.

Mots-clé : sonde électromagnétique, polarisabilités généralisées, di�usion Comp-
ton virtuelle, physique hadronique, structure du proton, théorème de Low, rela-
tions de dispersion.


