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Chapter 1

Introduction

For several years we have witnessed an overwhelming growth of the data
available around us. This could not have been possible without the worldwide
expansion of the Internet, and its ease of access for a significant majority of the
users, through both personal computer and mobile devices. This vast access
and availability have generated a significant increase in the volume of data
generated daily. According to IBM’s report, about 2.5 quintillion bytes of data
are created every day'. To illustrate, every minute are uploaded hundreds
of hours of videos on YouTube?; an average of 350,000 tweets per minute on
Twitter®; and 300 millions of new photos are posted on Facebook every day™.

Though the full access to a wide range of data can be helpful for the users,
this huge amount of data becomes useless whether it is not properly classified,
filtered, or displayed. In this overwhelming scenario, as users, we need to re-
ceive the data in an appropriate manner, after a thorough processing capable
of offering the valuable information to fulfill our needs. Particularly, we can
collect rewarding information after answering the following questions: how
do I find similar data in this huge set of data?, how do I find similar things
to those I like in a vast world as Internet?, or how can I find similar pho-
tos/music/books to those that I have seen/listened /read before?

K-Nearest Neighbors (KNN) is the basis of numerous approaches able to
answer these questions. In this thesis, we focus on KNN algorithms, which
have proved to be an efficient technique to find similar data among a large set
of it. To do so, in a nutshell, KNN searches through the set, it compares the
data, and finally delivers a list of those elements which are similar.

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
2http://expandedramblings.com/index.php/youtube-statistics/
PBhttp://www.internetlivestats.com/twitter-statistics/
https://zephoria.com/top- 15-valuable-facebook-statistics/
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Although KNN is not the only method available, it has certainly grown
in popularity [117], which is mainly due to its capacity, simplicity and ver-
satility. To illustrate its versatility, we can easily find KNN applications in
many diverse fields such as business [27, 73, 115], medicine [2, 58, 61, 122],
music [34, 36, 56, 105], urban planning [29, 75], or computer science (specially
on recommender systems, image classification, and information retrieval),
among others [3, 19, 121]. For instance, KNN can be used in an image clas-
sification context to find similar images in a large catalog. In a recommender
system scenario, we can use KNN algorithm to trace those users with simi-
lar tastes, taking advantage of their similarity to recommend them new items
to consume. Alternatively, assuming a business context, KNN can be a good
tool to recognize similar patterns in the stock market and thus predict fluc-
tuations in the stock price, for example. Furthermore, an extensive research
has been done on multiple applications of KNN algorithms, demonstrating its
adaptability to different contexts, and its capacity to achieve excellent results.

However, such an efficient and versatile algorithm, always comes at a cost.
Such a cost can be exorbitant, particularly nowadays where the set of data
available is continuously growing at unimaginable rates. This growth creates
new challenges in the development of more efficient techniques to process
data, more energy-efficient hardware, and also more powerful, reliable, and
easy to use computing systems.

In a world where data changes continuously, performing efficient KNN
computations on large datasets requires significant amounts of memory. Al-
though the basic idea behind KNN does not change considerably, data repre-
sented and processed may vary significantly across the different applications.
For instance, applying KNN to find similar images, means to handle large
catalogs of images in memory, spanning gigabytes or beyond for each image,
specially on satellite images, one of the most complex cases.

Besides, along with the large memory footprints generated for handling
large sets of data, performing KNN queries turns to be a very time-consuming
task by itself. In this regard, while searching similar data among large set of
data impacts the time consumption, the cost is dominated by comparing this
data [14, 32].

On account of the fact that KNN queries on large datasets are often a
resource-greedy computation, many works have proposed a wide range of al-
gorithms to efficiently leverage the resources of single machines or distributed
systems. In the one hand, the use of single machines brings new challenges
on the use of the often limited memory available in such a setup. It is a well-
known fact that the most efficient algorithms leverage fast accesses delivered
by modern RAM cards, instead of using virtual memory or disk. Those re-
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sources” bandwidth -despite the progress in the development of faster devices-
is still slower than that of a RAM. Unfortunately, storing the whole set of
KNN data in main memory is not always affordable. Despite the fact that
the main memory available in modern computers has grown considerably
over the years, so it has the amount of data to process. On the other hand,
notwithstanding that distributed systems overcome the limitation of the avail-
able memory in single machines, the design, implementation, and deployment
of distributed algorithms still remain challenging. This is a consequence of the
fact that KNN’s data does not necessarily show a good extent of spatial local-
ity. Data accessed during similarity comparisons could be stored anywhere,
probably on different machines, consequently data access is costly, affecting
considerably algorithms” performance. In other words, this lack of locality
increases the communication among machines during the process of compar-
isons, thereby increasing the global runtime of the algorithm.

As a direct consequence of its high cost, we may observe on some the state-
of-the-art works [13, 14, 32], specially those processing KNN queries on very
large datasets, that the KNN computation is often performed offline. In other
words, offline periods are those when the system is not working or is run-
ning under a reduced workload. Generally, KNN algorithms represent just
a layer of major systems, hence they very seldom have access to the full set
of computational resources at any time. For instance, in a recommender sys-
tem application, KNN searches similar users to generate a set of recommenda-
tions based on users’ similarity. KNN computation, in this context, represents
only one phase of the system’s processing, the remaining time is used on the
recommendation tasks, and some system’s maintenance works. As the KNN
processing is a time /resource-consuming task, it is performed offline (at night
generally), allocating available system’s resources to prioritize online tasks.
Although offline KNN computation decongest system’s load to expedite on-
line tasks, offline process runs over static or outdated data, which may be
harmful for the quality of the KNN outcome. Computing KNN offline, on
data obtained in long-time window periods, makes us lose valuable informa-
tion arising from the inherent dynamism of data, particularly in contexts like
social networks, where the data flow is enormous every second.

The high-cost of computing KNN not only leads to its offline computation,
but also to a simplification regarding data dynamism. Current state-of-the-
art works on KNN handle only static sets of data throughout the computa-
tion. This simplification aims to reduce the computational complexity and
runtime of the algorithm. Unfortunately, despite it brings benefits, it also in-
duces a downside. Computing on static data does not reflect appropriately its
true dynamic nature, affecting the potential results. In these days, where data
flows and changes rapidly, the processing of static data (or data updated daily
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or even less frequently), makes us lose some valuable information that arises
from the dynamism observed on a much smaller scale, at the level of minutes,
seconds or even less.

It is reasonable to think that updating data during the computation adds
new complexities to the algorithm, specially if we consider that this data is
continuously accessed to perform comparisons. Furthermore, as data changes
rapidly, updating data in an online fashion would force the algorithm to pro-
cess, not only its own KNN task, but also to handle large streams of dynamic
data simultaneously. Such a multiple processing brings new challenges in the
design and implementation of algorithms capable of computing KNN on data
that changes continuously and rapidly over time.

1.1 Contributions

The main goal of this thesis is to propose an efficient solution for scaling
the computation of the K-Nearest Neighbors algorithm on single machines. A
scalable solution must be capable of processing large current datasets within
a reasonable time, considering the limitations imposed by a restricted set of
computational resources. The motivation behind the use of single machines
instead of more complex distributed systems, is the ease of access to this sort
of computational resource and its lower cost with respect to that of distributed
systems. In algorithms designed for running on single machines, synchroniza-
tion, data consistency, and some others well-known issues in distributed sys-
tems, do not need to be addressed. Besides, single machines have shown good
performance running well-designed algorithms, along with a good extent of
simplicity in the design, coding, and deployment of complex algorithms.

In this work, we do not only aim to scale the KNN computation, but we
also aim to build a lightweight approach, able to leverage the limited resources
of a single commodity machine. Thus, becoming an inexpensive, but not less
efficient, approach. A lightweight approach would lend itself as a solution for
performing online KNN computation, mainly due to its capacity to run well
using fewer resources. It is worth mentioning again that KNN algorithms are
usually only a layer of more complex systems, therefore it is not appropriate to
assume that all resources will be available for the KNN process. Therefore, an
online KNN approach is a valuable solution whether, along with using fewer
resources, it runs within reasonable times.

Along with scaling the KNN computation, we also aim to propose an ef-
ficient solution for processing updates on data during the KNN computation.
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As we mentioned above, the dynamic nature of data has not been properly
reflected and adequately handled on static algorithms, as current KNN state-
of-the-art approaches do.

In this thesis, we fulfill these goals through two main contributions, which
we describe in the following.

1.1.1 Pons

Our first contribution is Pons [24]: an out-of-core algorithm for comput-
ing KNN on large datasets that do not completely fit in memory. To do so,
Pons leverages efficiently both disk and the available memory. Our approach
is able to compute KNN incurring a minimal cost, by storing all data in hard
disk, loading and processing this data from disk into a limited section of the
main memory. The main rationale of our approach is to minimize random ac-

cesses to disk, and to favor, as much as possible, sequential reading of large
blocks of data from disk.

The specific contributions of this work are as follow: We propose Pons,
an out-of-core approach for computing KNN on large datasets, using at most
the available memory, and not the total amount required for a fully in-memory
approach. Pons has been designed to solve efficiently the non-trivial challenge
of finding neighbors’ neighbors of each entity during the KNN computation.

Our experiments performed on large-scale datasets show that Pons com-
putes KNN in only around 7% of the time required by an in-memory com-
putation. Pons shows to be also capable of computing online, using only a
limited fraction of the system’s memory, freeing up resources for other tasks
if needed. Pons’ performance relies on its ability to partition the data into
smaller chunks such that the subsequent accesses to these data segments dur-
ing the computation is highly efficient, while adhering to the limited memory
constraint. Our evaluation shows Pons’ capability for computing KNN on
machines with memory constraints, being also a good solution for computing
KNN online, devoting few resources to this specific task.

112 UpKNN

Our second contribution is UpKNN [53]: a scalable and memory efficient,
thread-based approach for processing real-time updates in KNN algorithms.
UpKNN processes large streams of updates, while it still computes KNN effi-
ciently on large datasets.
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By using a thread-based approach to access and partition the updates in
real-time, UpKNN processes millions of updates online, on a single commod-
ity PC. This is achieved by moving away from traditional random access ap-
proaches towards a more efficient partition-based idea. Instead of directing a
stream of updates directly towards users, we propose to partition the updates,
based on the existing partition-based KNN approach (such as in Pons [24]).

The specific contributions on UpKNN are as follow: We propose an
efficient multithreading approach that addresses the challenge of perform-
ing real-time updates on KNN data. To achieve good performance, Up-
KNN greatly reduces the number of disk operations performed during the
computation, favoring the reading and writing of large chunks of data from
disk. Our carefully designed multithreading approach leverages the use of
two-layer in-memory buffers to reduce synchronization between threads and
concurrency issues in I/O operations.

We perform an extensive set of experiments to demonstrate UpKNN's gain
in performance, with respect to that of the baseline approach. The baseline ap-
plies the updates directly from a non-partitioned stream of data. As well as
UpKNN, the baseline was implemented using the multithreading program-
ming model. The set of experiments were performed on a single commodity
machine using a well-known publicly available dataset and a large proprietary
dataset.

The experimental results show UpKNN'’s capability to update 100 millions
of items in roughly 40 seconds, scaling both in the number of updates pro-
cessed and the threads used in the computation. Thereby, UpKNN achieves
speedups ranging from 13.64X to 49.5X in the processing of millions of up-
dates, with respect to the performance of a non-partitioned baseline.

Various experiments prove that UpKNN’s performance is achieved by a
the right combination between the reduction of the random disk operations
and our efficient multithreading design. This design minimizes the need
of thread synchronization, aiming to exploit full parallelism. Besides, we
show that these results have been achieved by performing roughly 1% of the
disk operations performed by the baseline. Experiments also show that Up-
KNN processes an average of 3.2 millions updates per second, making our
approach a good solution for online KNN processing.
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1.2 Publications

The contributions in this thesis are reflected in the following publications:
As the main author:™

Chiluka Nitin, Kermarrec Anne-Marie, and Olivares Javier. The Out-of-Core
KNN Awakens: The light side of computation force on large datasets. In the
4th International Conference on Networked Systems (NETYS), Marrakech,
Morocco, 2016. Springer International Publishing. Best paper award. [24]

Kermarrec Anne-Marie, Mittal Nupur, and Olivares Javier. Multithreading
approach to process real-time updates in KNN algorithms. (In submission,
notification 15th November 2016) 25th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP), St.
Petersburg, Russia, 2017. IEEE. [53]

Chiluka Nitin, Kermarrec Anne-Marie, and Olivares Javier. Scaling KNN
computation over large graphs on a PC. In the ACM/IFIP /USENIX
Middleware conference, Bordeaux, France, 2014. ACM. [23]

As one the main authors:

Rodas Jorge, Olivares Javier, Galindo José, and Benavides David. Hacia el
uso de sistemas de recomendacion en sistemas de alta variabilidad. In
Congreso Espafiol de Informatica (CEDI), Salamanca, Spain, 2016. [89]

1.3 Organization of the manuscript

The remainder of this thesis is organized as follows:

Chapter §2 describes and defines the K-Nearest Neighbors problem and
its computational challenges. This chapter provides the general background
to understand the contributions presented on this thesis. Additionally, this
chapter presents the most important works belonging to the state-of-the-art
on KNN computation.

Chapter §3 presents our preliminary work on KNN computation [23]. This
work is a first approach that led us to discover the main challenges of scaling
the KNN computation on single machines. Thereby, [23] becomes an initial

The lists of authors are arranged alphabetically
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version of our main contribution Pons, which successfully addresses the com-
putational challenges and drawbacks discovered in [23].

Chapter §4 describes in details our main contribution Pons [24], an out-of-
core algorithm for computing KNN on large datasets respecting the computa-
tional limitations imposed by the use of single machines.

Chapter §5 presents UpKNN [53], our second contribution, a multithread-
ing approach for processing large streams of profiles’ updates in KNN algo-
rithms.

Chapter §6 concludes this work and presents some perspectives and future
work.



Chapter 2
Background and state-of-the-art

In this chapter, we describe in details the K-Nearest Neighbor method, its
main computational challenges, and the fundamental concepts required to un-
derstand the main contributions of this work. Additionally, we present the
most significant works on each topic addressed in this thesis.

In Section §2.1 we define the concepts that support the KNN computa-
tion. To understand its importance, and growth in popularity, in Section §2.2
we exhibit various applications that have made use of the KNN algorithm,
demonstrating that it is a powerful tool for a wide variety of areas. Then, in
Section §2.3 we present the two general approaches for computing the KNN.
In Section §2.4 and §2.5 we describe a set of works that perform KNN compu-
tations implementing distributed or out-of-core algorithms, respectively. Fi-
nally, in Section §2.6 we motivate the need of computing KNN over data that
changes continuously over time, and we present the most relevant works be-
longing to the state-of-the-art in this specific topic.

2.1 Definition and notation

A K-Nearest Neighbors algorithm (KNN onwards) is a method used to
solve several data classification problems [26]. KNN, a specific case of the
general problem of the nearest neighbors (NN) search, is formally defined as
follow [8]. Given a set V of data points or entities (|V| = N), defined in a D-
dimensional data space, find the K closer (more similar) points to each data
point v in such a data space.

The process of searching the K-nearest neighbors of a data point is based
on two fundamental elements: data points” profiles on which similarities are
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computed, and a well-defined distance (similarity) function [17, 83]. On the
one hand, each entity v € V is represented by a profile F,, being F, the set of
data that describes, defines or represents v in the D-dimensional data space.
On the other hand, the distance (similarity) function is used to determine the
distance (closeness) or similarity between two data points in the data space.
Consequently, two data points (entities) are similar if their profiles are similar,
based on the comparison made using a similarity or distance metric such as
cosine similarity or Jaccard coefficient [17, 33, 68].

While there are many different methods to address the problem, the gen-
eral procedure to perform the search of v’s similar entities remains fairly intu-
itive: Vs profile is compared either against the whole set of data points V or
a bounded fraction of it. After comparing the set of profiles, the list of the K
most similar entities become B,,, the KNN of v. In Section §2.3, we describe in
depth the general methods to perform the computation of KNN.

2.2 Applications

The use of the KNN algorithm has been widely spread to very different
areas of application as medicine [2, 58, 61, 122], business [27, 73, 115], mu-
sic [34, 36, 56, 105], as well as computer science [13, 30, 47, 89, 109, 112, 127],
among others [3, 19, 121]. Specifically, it is in computer science where KNN
has reached its maximum level of development, spanning years of research
in several topics such as recommender systems [11-13], image classifica-
tion [10, 78, 113], or information retrieval [30, 51, 116].

Regarding its application on recommender systems, KNN algorithm has
been a fundamental tool in content-based [104, 130], user-based [11-13] and
item-based [84, 92] collaborative filtering (CF).

Firstly, KNN is used in content-based approaches to search similar items
among a set of them. To clarify its use in content-based recommender systems,
let us consider the following example. Let a list of books be the set of items
in a recommender system. Each book is represented by a profile, which may
consist of the book’s genre, publication year, number of pages, author, etc.
In this example, two books are consider as similar if their profiles exhibit a
high degree of similarity, based on a given similarity metric. Therefore, the
following two George R.R. Martin’s books: A Clash of Kings and A Feast for
Crows, may be considered as similar because they share the genre, author
and number of pages. Once the algorithm finds similar items, it generates
recommendations to users who have rated at least one of the items in the list
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of similar items. This action is based on the assumption that users who have
rated a type of items in the past are likely to rate/like items that are similar
to those previously rated. In our example, a reader of A Clash of Kings is
likely to be interested in reading A Feast for Crows, based on the high extent
of similarity between the books.

Secondly, in a user-based recommender system, each user possesses a pro-
tile, which is made of the content consumed /purchased/liked for her. Conse-
quently, KNN searches for similar users, based on the comparison of their pro-
files. With the result of the KNN search, the recommender system advices each
user to consume/purchase some specific items that were consumed /liked for
those users similar to her.

Similarly, in an item-based recommender system, each item has a profile,
which is built from the set of users that have consumed /purchased/liked such
an item. In this case, the KNN algorithm is used to find the most similar items
among the set. Particularly, two items are similar if their profiles are similar,
that is to say, if the sets of users consuming both items exhibit a high degree
of likeness.

Although the different types of recommender systems have their specific
strengths and weaknesses depending on the application served, there have
been some works that try to unify user-based and item-based algorithms in
one [109], using KNN algorithms in a similar fashion. The main goal of this
attempt of unification is to merge the main strengths of both worlds in a more
robust algorithm.

Research in databases has also witnessed the strengths of KNN in several
works [9, 118, 125, 127]. In this regard, multiple database applications have
implemented the KNN algorithm as a tool in the Knowledge Discovery pro-
cess. Process which analyzes databases searching for new and valuable infor-
mation that can be obtained from the similarity or closenesses of the stored
data. In this sense, one of the main operations supported is the KNN join,
which leverages KNN's capacity to find similar data points in large datasets.
These sets are the result of a join operation of several databases. As well as a
part of the knowledge discovery process, we hypothesize that KNN algorithm
can also be implemented to find similar data in databases, aiming to optimize
the process of data placement. Under the assumption that similar data is likely
to be retrieved by the same query, storing similar data physically close, using
proactive fetching or caching adequately can improve significantly databases’
performance [129].

Beyond databases, KNN has been used in the process of image classifica-
tion. In such a case, the algorithm of KNN searches similar images among
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a catalog of them, based on some specific representation of the images. In
this context, works as [21, 47, 112] have proposed various proficient meth-
ods to compute KNN on large images. Particularly, computing KNN in this
case brings several computational challenges due to the fact that the images’
profiles typically are represented by high-dimensional data, which may span
thousands or millions of dimensions in some cases. Handling and processing
large images’ representations pose several computational challenges due to
the large memory footprints and runtimes. The phase of profile comparison,
which often dominates the runtime in KNN algorithms, is particularly costly
in computing KNN on high-dimensional data. Besides, high-dimensional pro-
files may suffer the curse of dimensionality [52, 94], which occurs when an
important fraction of the profile dimensions does not contain a value. Un-
fortunately, as a large portion of the stored data does not represent valuable
information, much of the resources are misused.

Finally, research in text classification [30, 40, 102, 103, 123, 124] also har-
nesses KNN's features. In this subject, KNN algorithms have been imple-
mented to organize, categorize, and classify information in large sets of text
collections. Specifically, KNN can be adapted to classify new documents based
on similar documents already classified into the text collections. Thus, mak-
ing use of KNN’s outcome, each new document is classified according to its
neighbors’ category. Thereby, as similar documents are associated to the same
category, the subsequent search and access to related information is more effi-
cient. Similarly, KNN has been implemented to find similar content within a
document or a set of documents.

Based on these multiple applications, and many others not mentioned in
this thesis, we can argue that KNN’s popularity relies on some facts that are
easily observed on the state-of-the-art: it is simple, thus easy to understand;
it is very versatile, it easily adapts to various applications; and it has shown
very good results in most of the applications. Yet, the implementation and use
of KNN algorithms still remain challenging as data increases in volume and
dynamism.

2.3 General approaches to compute KNN

In this section, we analyze the most important techniques for computing
KNN algorithm, paying particular attention to how they deal with the chal-
lenges faced by such an algorithm, namely, data growth and scalability, high-
dimensional data, and data’s dynamism. First, in Subsection §2.3.1 we de-
scribe the two general approaches for computing KNN: the brute-force al-
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gorithm and approximate algorithms. Subsection §2.3.2 describes how the
graphs lend themselves particularly well to model and process data in the
KNN computation. Specifically, in the last subsection, we describe the specific
KNN algorithm implemented in our main contribution.

2.3.1 Brute-force versus approximate approaches

There have been presented several works that propose techniques to com-
pute KNN efficiently in terms of computational performance, resource con-
sumption and algorithm’s precision. Based on all those works, KNN algo-
rithms can be divided in two general approaches: brute-force algorithms, and
approximate algorithms.

On the one hand, a brute-force approach computes the K-nearest neighbors
in the following manner (Algorithm §1). For a set V of N entities (|V| = N),
computing exact KNN of a given entity v in a brute-force fashion means that
each entity v’s profile F, is compared with all other N — 1 entities” profiles
(lines §3-§9), using the aforementioned distance/similarity function (line §7),
namely cosine similarity or Jaccard [17, 68]. Then, the K closest entities are
chosen as v's KNN (line §9). Unfortunately such an approach is time-efficient
only when the number of entities to compare is small. Such an approach has
a time complexity of O(N?), making it very inefficient for a large N.

Algorithm 1: Brute-force KNN pseudo-code

Data: Set of entities V (|V| = N), Set of profiles F
Result: Each entity v € V finds its KNN B,

1 begin

2 B+~ o /* KNN data structure of size N «/
3 foreachv € V do

4 TopK « ¢ /% TopK: heap of size K x/
5 foreachu € V do

6 if v # u then

7 SimValue «+ SimFunction(F,, F,)

8 L Update(TopK, u, SimValue)

9 B, « TopK

On the other hand, the second type of approach for computing KNN are
those in the category of approximate approaches. Unlike exact approaches,
approximate KNN computation searches iteratively the nearest neighbors of
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an entity, based on a rather local search of closer neighbors, improving re-
sults as the iterations of the algorithm progress. Although approximate ap-
proaches do not find exact results as brute-force approaches do, after some
iterations they are able to gradually improve results, reaching in most cases,
high-precision results. These good results come along with a significant re-
duction of the computational complexity, scaling better than the brute-force
approaches, particularly running on very large datasets.

In spite of the high-cost of computing exact KNN using brute-force ap-
proaches, some works [37, 38, 60, 70, 71, 97] have taken advantage of the pro-
cessing power of Graphics Processing Units (GPU) to overcome the challenges
imposed by such an intensive computation. These works perform fully par-
allel operations of profile comparisons, based on the observation that these
operations are completely independent. Although profiles are accessed con-
currently in the process, there is no need of synchronization between threads,
since all threads perform only read operations on the profiles. Such a parallel
access to the memory delivers the best performance possible on GPU-based
algorithms. Despite the good results observed on these works, they still fail to
show good scalability on very large datasets.

As a result of the computational cost and lack of scalability of the brute-
force approaches, a long list of approximate KNN algorithms have surged
to overcome the drawbacks observed. The main advantage of the approxi-
mate algorithms is that they significantly decrease the computation complex-
ity, while the results’ quality remains high. Approximate KNN computation
differs from brute-force in the fact that, instead of searching better neighbors
among the whole set of entities, it performs iterative local searches of closer
neighbors, limiting the search space. This optimization reduces computational
complexity in terms of runtime and memory overhead, without affecting sig-
nificantly algorithm’s precision.

As we mentioned above in Section §2.2, one the greatest challenges in com-
puting KNN is the high dimensionality of the profiles. Bearing this in mind,
some approximate approaches have been proposed to perform KNN opera-
tions efficiently on high-dimensional data. One of such approaches are those
based on Local Sensitive Hashing (LSH) [28, 39, 41, 81, 101]. LSH-based ap-
proaches use locality sensitive hashing functions to map similar data into the
same hash bucket. Specifically, LSH has been used to perform approximate
KNN computation on high-dimensional datasets due to its capacity to reduce
significantly data dimensionality. A D-dimensional data point, using one or
more carefully selected hash functions, is mapped into a 1-dimensional space,
and assigned to a specific hash bucket. The use of multiple hash functions
aims to cope the collision problem observed on hash-based applications. Due
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to the locality ensured by these functions, the set of data mapped in a bucket
shows a high probability of being a good candidate for the KNN of an entity
v assigned to the same bucket. As a consequence, to perform the KNN query
for a data point v, other data points assigned to v’s hash bucket are compared,
selecting the K most similar.

Unfortunately, despite the results showed in these works, the efficiency
and performance of LSH-based algorithms remains highly dependent on the
right choice of the hash functions.

Alternatively, Yu et al. in [126] proposed iDistance, a KNN method for
processing high-dimensional data. In this work, they presented a three-phase
approach to perform both efficient KNN search and similarity range search.
First, high-dimensional data is divided in m partitions. Second, for each par-
tition, a reference point is identified. Third, based on the reference points,
each high-dimensional point is mapped to a single dimension space based
on its distance to the nearest reference point. Once high-dimensional points
are mapped to a single dimension space, they are indexed using a B*-tree.
This data structure supports efficient one-dimensional search. While iDis-
tance [126] shows good results, it is strongly dependent on the partitioning
used and the reference points selected.

With a similar goal in mind, Chen et al. in [20] proposed an iterative divide
and conquer procedure to compute KNN on multidimensional data. This di-
vide and conquer approach uses a Lanczos procedure to divide recursively
the data into two subsets, computing KNN for these smaller subsets. A sec-
ond stage of the algorithm, the conquer phase, gathers the results into the
final KNN graph. Aiming to improve performance through the reduction of
comparison operations, this work uses a hash table to store the comparison
already performed, avoiding duplicated operations.

2.3.2 Approximate approach: KNN as a graph

In recent years, graph processing has become a hot topic in computer sci-
ence. This growing interest arises from the huge amount of data that can be
naturally represented as a graph. In simple terms, a graph G is way of encod-
ing pairwise relationships among a set of entities. Formally, a graph G consists
of a collection of |V| vertices (or nodes) and |E| edges, each of which connects
two vertices [55]. To illustrate, we can represent in a graph the data of events,
road networks, neuronal networks, large-scale computer networks, or social
networks, among others.
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The main advantage of representing data as a graph is the existence of
well-studied graph algorithms. They allow us to extract valuable information
from the topology of the graph, its degree of connection/disconnection, or its
evolution over time. As well as useful, extracting data from graphs is also
extremely challenging, mainly because these graphs nowadays are massive,
hence, processing them is highly computationally expensive. Today, the size
of real graphs is very large, for instance, Facebook graph has millions of ver-
tices (users) and billions of edges (friendship between two users). Another
current example is the Twitter graph, which represents millions of users and
billions of edges (follow relationships). Along with the size of the data, graph
processing is also challenging since the supported operations are often com-
plex. Consequently, designing and coding efficient graph algorithms requires
a significant amount of time and a non-negligible computational power [108].
Particularly regarding the latter, a scalable processing on large graphs requires
efficient usage of disk and main memory, along with high-performance data
structures.

The computation on large-scale graphs and its computational challenges
concern to KNN as follows. Approximate K-Nearest Neighbors computation
is often seen as the iterative construction of a graph G!Y = (V, E), where V is
the set of entities, and E the set of edges that connect each entity with its K
nearest neighbors at the iteration t.

In this matter, Dong et al. [32] have presented NN-Descent, a scalable algo-
rithm for constructing iteratively the KNN graph using an arbitrary similarity
metric. NN-Descent starts from a fully random graph, and builds iteratively a
more precise KNN graph, based on the principle that a neighbor of a neighbor
is also likely to be a neighbor [32]. In fact, NN-Descent demonstrates the high
probability of finding closer neighbors among the list of neighbors’ neighbors
of a vertex in the KNN graph.

As we show in Algorithm §2, to improve the graph iteratively, NN-Descent
works as follows. In a set of vertices V, let B, be v's KNN, and R, = {u €
V|v € B,} be the reverse KNN of v. Then B[v] = B,UR, is the general set of Vs
neighbors. Based on B[v]’s elements, the algorithm reaches all v’s neighbors’
neighbors to perform the profile similarity comparisons, and selects the v’s
K-closer vertices in the current iteration. Such an iterative search stops when
the number of updates in vertices’ neighborhoods is less than 6KN, being & a
precision parameter.
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Algorithm 2: NN-Descent pseudo-code

Data: Entities set V (|V| = N), Profile set F, similarity metric o,
Result: Each entity v € V finds a good KNN approximation B,
begin

[y

2 foreachv € V do

3 L B, < RndSample(V,K) /+ K random entities from V =/
4 while ¢ > dKN do

5 c—20

6 foreachv € V do

7 R, —{ueViveB,}

8 B[v] « B, UR,

9 foreachv € V do

10 foreach u; € B[v], u; € By] do

11 SimValue + o(F,, Fy,)

12 Update(B,, uy, SimValue)  /+ B, heap of size K x/
13 if B, has changed then

14 L c—c+1

Several other works developed approaches for building the KNN graph,
using the graph as a fundamental data structure to support various opera-
tions [25, 35, 42, 45, 82, 83], such as nearest neighbor search and range similar-
ity search. In all these works, KNN graph’s popularity relies on its capacity to
help in reducing costly distance computation operations. Similarly, Hajebi et
al. [42] developed a nearest neighbor search algorithm based on a hill-climbing
process. At first, this work builds an offline KNN graph. Later, to find the
nearest neighbors of a new point Q, it starts from a random node of the KNN
graph and moves forward employing a greedy hill-climbing search, selecting
closer neighbors based on a distance measure. The hill-climbing search stops
after a fixed number of moves.

Additionally, Paredes et al. [82, 83] also build and use a KNN graph to
perform proximity search, more specifically in finding similar data in large
databases. In these works, the KNN graph indexes the database, allowing fast
retrieval and reduction of the number of distance computations performed for
searching similar data.

In turn HyRec [13], a decentralized recommender system, employs the
construction of the KNN graph to find similar users in the system, recom-
mending new items to the users based on their similarity. Due to its impor-
tance in this thesis, in the following Subsection §2.3.2.1 we will describe this
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approach in more depth.

Similarly, Gossple [7] a fully decentralized social network, leverages near-
est neighbors graph construction to build an implicit social network based on
users’ similarity. Using this similarity-based network, the system improves
users’ navigation experience, personalizing the data that users receive, guided
by similar users” preferences. Consequently, users only receive information of
their interest, avoiding the flood of information that exists nowadays.

Although the list of works building an approximate KNN graph exhibit
outstanding results in terms of the approximation’s quality, and runtime, they
were all implemented several years ago, using the resources available of that
time, and they processed graph much more smaller than those found these
days. As we already mentioned, processing massive graphs brings a wider
range of new computational challenges.

2.3.2.1 HyRec

In this section we describe the KNN algorithm implemented in HyRec [13],
a recommender system running on a hybrid architecture. As a matter of fact,
HyRec’s KNN algorithm is a decentralized version of Gossple’s KNN algo-
rithm [7]. In HyRec, the KNN algorithm identifies similar users in the system,
according to a given similarity metric. Afterwards, the recommender system,
based on users’ similarity, recommends new items to them. The simplicity and
excellent results showed by HyRec’s KNN approach leads us to adopt this al-
gorithm in our work, scaling its computation on single machines, as we detail
in Chapter §4.

As we observe in Algorithm §3, HyRec’s KNN algorithm works iteratively
as follows. At each iteration t, each entity’s v current K-nearest neighbors
B, are selected from the candidate set S,. The candidate set S, (line §5) con-
tains the current set of v's neighbors, v's neighbors” neighbors (or two-hops
neighbors), and K random entities (random entities prevents the search from
getting stuck into a local optimum). To select v's KNN from S,, the system
compares V’s profile with that of each user in S, (line §9) using the cosine sim-
ilarity metric [33], and selects the list of the K most similar to v (line §11). Al-
though HyRec’s KNN algorithm exhibits some resemblance with Dong’s NN-
Descent approach, it yields a major difference in the elements of the candidate
set. HyRec’s KNN algorithm does not consider reverse KNN as NN-Descent
does. While this optimization in HyRec reduces computational complexity,
it does not significantly impact KNN’s graph quality. Additionally, Hyrec’s
main contribution is the fact that the computation of the KNN is distributed,
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NN-Descent, meanwhile, works in a centralized fashion.

Algorithm 3: HyRec’s KNN algorithm pseudo-code

Data: Set of entities V (V| = N), Set of profiles F
Result: Each entity v € V finds a good KNN approximation B,
begin

[y

2 foreachv € V do

3 | B, «— RndSample(V,K) /+ KNN data structure of size N +/
4 foreach Iteration t do

5 Sy & By U (Uyep, Bu) URNA(K)

6 foreachv € V do

7 TopK +— ¢ /* TopK: heap of size K x/

8 foreachc € S, do

9 SimValue + SimFunction(F,, F.)

10 L Update(TopK, c, SimValue)

11 B, « TopK

In the following example in Figure §2.1, we observe the candidate set for
the user Cliff, highlighted in a blue circle. Cliff’s candidate set consists of the
list of his neighbors (connected through blue lines) Kirk, Alice, and Jason; the
list of his neighbors” neighbors (connected through green lines) John, James,
and Janis; and K (3 in this example) random neighbors (highlighted in an or-
ange circle) Lars, Dave and Robert. From this candidate set, the algorithm
selects the K-most similar users as the new Cliff's KNN.

2.4 Distributed computation

Within the last years, the volume of data to process has reached limits that
makes its computation a very challenging task. Current large-scale datasets
demand an important computational power, spanning terabytes of data to be
stored and processed appropriately. As we can observe, computing terabytes
of data efficiently requires large amounts of main memory. Unfortunately, the
cost of the main memory has not decreased as the cost of hard disks or SSDs
does, making it unfordable in many cases.

Regarding what concerns us, running KNN algorithms on large current
datasets requires large amount of resources. KNN algorithms not only main-
tain data structures handling the list of current K-nearest neighbors of each
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Figure 2.1: Example of HyRec’s KNN candidate set.

entity, but also the large set of entities” profiles. Each entity in a KNN compu-
tation is represented by a profile, which varies depending on the application
using the KNN algorithm. In a recommender systems case, each entity rep-
resents a user of the system, and profiles constitute users’ tastes, books read,
purchased products, movies seen, etc. Considering an information retrieval
application, entities become data in a database, and profiles store some data’s
metadata that defines or characterizes it. With the growth of data volume over
the years, handling large entities” profiles becomes a greater challenge.

Looking for a solution to address these challenges, we may find in dis-
tributed systems an efficient technique to handle large volumes of data. To
do so, distributed systems gather the computational resources of a set of ma-
chines, making them available for the user as a whole. The set of machines be-
hind a distributed system communicates through a network, creating a single
global vision of the available resources. As we mentioned above, computing
large amount of data in commodity single machines requires a large amount
of resources, which are not always available. Rather, distributed systems al-
low us to gather the resources of a set of machines, and devote the whole to
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the computation, allowing the user to have access to larger sets of resources,
enough to process the increasingly larger volumes of data that we can observe
nowadays.

Due to the growth of data volume mentioned above, research in KNN com-
putation has also made use of distributed systems [6, 41, 86, 98, 128] to achieve
much greater computing power in terms of available memory and storage ca-
pacity. Besides computing power itself, the use of distributed systems to run
KNN algorithms call for designs able to face the challenges posed by charac-
teristics of the KNN graph. Firstly, a graph that shows a near-random access
to data. Secondly, a graph that often generates load unbalance due to some
highly-connected entities, a common fact in scale-free networks [4].

While processing larger datasets is possible on distributed systems, a good
algorithm’s design may lead to better performance, surpassing performance
achieved even on highly optimized algorithms running on single machines
or clusters. But, this remarkable performance always comes at a high cost in
terms of design, coding, and deployment effort.

In the following, we describe some approaches that address the problem
of computing KNN in a distributed fashion, along with the major challenges
arising from this type of computation.

2.4.1 Cluster-based approach

Plaku and Kavraki [86] proposed a distributed framework for comput-
ing KNN algorithm on a cluster of processors through a message-passing
approach. They divide the computation in two tasks: firstly, each proces-
sor handles a partition of the set of entities, computing a local KNN query.
Second, each processor receives messages from other processors, querying
its own data to answer external requests. Finally, it sends the results of the
queries to the other processors. Communication between processors is per-
formed through a cache, which is filled with external queries. Aiming to ob-
tain the best possible performance, each processor answers external queries in
the cache as soon as possible, reducing others processors’ idle time. Each re-
quest in the cache receives a weight, which is directly proportional to its wait-
ing time in the cache, and inversely proportional to the number of requests in
the cache owned by the same processor. Local processing of each processor is
delayed until all requests in cache have been issued.
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2.4.2 MapReduce approaches

Zhang et al. [128] address the challenge of performing distributed KNN
join operations on large datasets. For doing so, they proposed a MapReduce
parallel approach that performs both the join operation and the KNN search.
The authors proposed in a prior work, a similar approach implementing a
block nested loop join, which unfortunately did not show good scalability
on large and multidimensional data. These results led the authors to pro-
pose a more efficient approach, which maps multidimensional data into one-
dimension data using space-filling curves. As a consequence, KNN join opera-
tion becomes a much more simple one-dimensional range search, significantly
improving system’s performance.

Following a similar deployment in a MapReduce infrastructure, Stupar
et al. proposed RankReduce [100], an approach that uses Locality Sensitive
Hashing (LSH) to assign similar data closer in the distributed file system, im-
proving in that way, nearest neighbors query’s performance.

Although MapReduce paradigm has shown good results running com-
plex algorithms, it sadly does not exhibit such a performance on algorithms
as KNN or some other graph-based algorithms [22, 74, 77]. These dissimi-
lar results are mainly explained by the near-random access pattern needed to
process many graphs, specially those composed of highly-connected compo-
nents. Consequently, these near-random accesses degrade performance due
to the increase in the data exchanged between machines during the profile
comparisons.

2.4.3 P2P approaches

Leveraging the benefits of this well-known type of distributed system,
some works as [6, 41] have implemented a fully decentralized approach (P2P)
to compute KNN queries. They take advantage of the resources provided
by a set of machines, being able to process in parallel larger sets of query
objects. In this regard, Batko et al. [6] proposed an extension of their previ-
ous work [5], a distributed metric structure named GHT* to support nearest
neighbors queries. To do so, each peer in the P2P network stores data objects in
buckets, which are retrieved when the nearest neighbor query is performed.
GHT?, using a Address Search Tree (AST), navigates through the set of dis-
tributed buckets when is needed. Consequently, the nearest neighbor search
occurs in the following manner. Each new object q is inserted using a func-
tion 1 that traverses the AST to find the right bucket for q. Later, a nearest
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neighbor search for q starts comparing q with all the other objects inserted in
its bucket. From the list of its K most similar, the K-th object is used as a radius
for a range search of nearest neighbors, in other words, the current K-th near-
est neighbor is an upper bound for similarity. Similarly, the range search finds
all neighbors with similarity greater or equal to its K-th object in its KNN list.
Using this approach, nearest neighbor query for q returns the exact answer.

In the same context of P2P systems, Haghani et al. in [41] investigate the
use of Locality Sensitive Hashing (LSH) functions to assign similar data into
the same peer. Such an assignation improves nearest neighbors search queries
in terms of network messages sent over the network. In this work, a p-stable
LSH is used to fulfill two major requirements: assignment of similar data in
the same peer, and good load balance. Based on this p-stable LSH schema,
the system assigns similar data in the same bucket, and similar buckets in
the same peer. This assignation increases the probability of answering nearest
neighbors search using only peer-local data. Consequently, it reduces signif-
icantly the communication through the network. A nearest neighbors search
query for some data q starts on the peer that stores g, then continues in the pre-
decessor and successor peers (in a Chord-based P2P network [99]). Whether
among the buckets of these peers, it does not find more similar neighbors, the
search stops. Otherwise, it continues on the next peers in the ring.

In the same line we find WhatsUp [11], a news recommender system,
which deploys a P2P system to scale the computation and deal with the pos-
sible privacy issues faced in systems with a central authority having control
over users’ profiles. This P2P-based news recommender maintains a dynamic
social network based on links between nodes in the system. These nodes are
linked based on their similar interests. Although WhatsUp is not primarily
computing KNN as such, it is, roughly speaking, a nearest neighbors-wise
recommender system.

WhatsUp uses this similarity-based network to disseminate content
among similar users, relying on the assumption that users with similar in-
terests in the past are likely to share tastes in the future. In order to maintain
this similar users linked, WhatsUp samples, for each user, a fraction of the net-
work looking for some more similar users. This sampling process compares
users’ profiles using a specific similarity metric, which favors the connection
between users that share more common items in their profiles.

Finally, Gossple [7] is a decentralized approach to enhance web navigation
based on an anonymous and implicit social network. Gossple uses the nearest
neighbors concept to create a network of anonymous acquaintances for each
user in the system. This implicit acquaintance network is created based on the
similarity between users’ profiles. The main difference with an explicit social
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network as Facebook is that Gossple links users based on their preferences,
without revealing other users’ profiles, preserving anonymity and privacy.

In Gossple, each user has a personalized view of the network, which lever-
ages to improve her navigation. This view is composed for a set of similar
users found across the whole network using a Random Peer Sampling proto-
col (RPS) [49] and a multi-interest clustering protocol called GNet. From this
set of samples, for each user in the system, it selects the most similar users,
comparing their profiles using a specific similarity metric.

Gossple leverages the features of P2P to ensure scalability and privacy,
while it reduces the bandwidth consumption. The latter is accomplish by an
efficient exchange protocol during profile comparisons. Initially, this protocol
does not exchange the entire profile but only a compressed version of them
obtained through a Bloom Filter. Then, the filtered profiles are compared,
revealing if these profiles may be similar. In this point, only if the compressed
profiles seem to be similar, the system exchanges the real profiles, consuming
network bandwidth only when it is needed.

244 Challenges in KNN distributed computation

One of the major challenges in distributed computation is the finding of an
efficient partitioning algorithm [46]. As data cannot be stored and processed
on a single machine, it should be partitioned across a set of machines. Thereby,
each machine handles a fraction of the data, performs the corresponding com-
putation, and communicates with other machines through the network. This
communication is performed to deliver partial or global results to other ma-
chines.

Although many research has been done on this issue, specially applied to
large graphs [1, 54, 87, 106, 107, 114, 120, 131], partitioning is still a challeng-
ing and open area. This operation is particularly complex nowadays due to
the growth of the volume of data to partition, and the variety of applications
using partitioned data. One of such application is the partitioning of large
KNN graphs across several machines. In this sense, to support efficient dis-
tributed KNN computation, an effective partitioning algorithm has to exhibit
at least the following features: i) Minimal edge-cut of neighbors and neigh-
bors’ neighbors, ii) edge/vertex balance across partitions, and iii) lightweight
processing.

Firstly, a distributed KNN partitioning algorithm must reduce edge-cut
of edges between neighbors and neighbors” neighbors. In a KNN context,
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edge-cut means that an entity and its neighbors or neighbors’ neighbors are
partitioned across different machines. Thus, during the profile comparison
process the distributed algorithm incurs in inter-machine operations, there-
fore the performance of this process depends on the network bandwidth. In
contrast, when there is no edge-cut, an entity and its neighbors and neigh-
bors” neighbors share the same machine, hence the process of profile com-
parison entails only intra-machine operations. Consequently, operation’s per-
formance is bounded only for the main memory bandwidth, which generally
shows higher bandwidth compared to that of the network.

Secondly, an efficient distributed KNN partitioning algorithm must exhibit
a good balance in the number of edges/vertices assigned to each partition.
An unbalanced partitioning algorithm leads to partitions that handle more
data than others, therefore, some machines are overloaded, either by their own
computations or by the communication with other machines. In other words,
a machine handling a larger set of vertices of the graph, computes KNN over
a larger set of vertices, having more communication tasks to perform. Such an
unbalance, considerably affects performance, because algorithm’s completion
is bounded by the performance of the most loaded machine.

Thirdly, a partitioning KNN algorithm must be lightweight. KNN graph
changes over time, each entity in the graph has K out-edges to its K most sim-
ilar neighbors at the current iteration. Therefore as iterations progress, each
entity changes its neighbors. At the beginning of the computation, neighbor-
hoods evolve fast, after some iterations, they change very little [66]. As a con-
sequence of the changes in entities’ neighborhoods, edge-cut and partitions
balance are modified, affecting overall algorithm’s performance.

In order to maintain edge-cut and partitions balance optimized, data must
be re-partitioned at each iteration, adding an extra overhead to the compu-
tation. Bearing this overhead in mind, the partitioning algorithm must be
as lightweight as possible. While we could say that partitioning data only
at the beginning of the computation eliminates such an overhead, unfortu-
nately edge-cut and balance change continuously over iterations. Therefore,
as a result of a static partitioning, the system suffers a degradation, performing
poorly. Accordingly, we observe a trade-off between re-partitioning overhead
and system’s performance. Thus, a good approach to face this trade-off is the
implementation of a lightweight algorithm that re-partitions the data at each
iteration, requiring little time to complete the task.
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2.5 Out-of-core computation

In this section, we describe the concepts behind the out-of-core algorithms.
This approach has shown to be an efficient way to scale the processing of large
datasets running on single machines.

2.5.1 Motivation

Even though using distributed systems seems to be a good option to ad-
dress the problem of computing KNN on large datasets, the processes of cod-
ing, debugging, optimizing and testing efficient distributed algorithms, in-
volve a great effort. Moreover, the deployment and subsequent performance
of the distributed algorithms are limited by the availability and capacity of
the machines that compose the system. It should be mentioned that the use of
large set of machines is not always possible, either by the lack of resources or
higher demand from users.

Considering the above, the efficient use of commodity single machines
brings new opportunities in the development of more efficient and lower cost
algorithms. As we can observe, nowadays the access to cheaper personal com-
puters is possible for almost everyone. Thus, the development of scalable al-
gorithms running on single machines opens a new range of possibilities, avail-
able to a wider range of users.

Despite its advantage in terms of cost, processing KNN on large datasets
using single commodity machines brings several computational issues. The
main challenge arises from the fact that the set of entities” profiles, along with
the graph structure, may have larger memory footprints than those that a sin-
gle machine can handle. Consequently, data cannot be completely loaded in
memory, resulting in algorithms with poor performance caused by the use of
virtual memory [31]. Although useful as an abstraction, virtual memory is
much slower than the real memory. In this context, aiming to get better per-
formance, appear the out-of-core algorithms!.

Out-of-core algorithms are those that use the disk as an extension of the
main memory, in cases where the data cannot be completely loaded in mem-
ory [111]. This sort of algorithm loads in memory the data required for the
current computation, while the remaining is stored in disk, and retrieved only
when needed. Because of this usual retrieval, the main challenge of using out-
of-core algorithms emerges from the non-contiguous accesses to data, one of

"Some authors use the terms External memory algorithms or I/O algorithms instead
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the most common cases in graph algorithms [76]. Regular algorithm’s opera-
tion accesses blocks of data in disk, and load them to main memory, therefore,
if such a disk accesses are random, I/O operations become a major bottleneck.
Additionally, the lack of data locality adversely affects performance in out-of-
core algorithms [85].

In such a scenario, a smart design of out-of-core algorithms is fundamental
for exploiting data locality and for reducing I/O costs. For such a purpose,
it is important to make optimal use of disk read operations. In other words,
reading at once as large and sequential blocks of data as possible. Reading
sequentially large blocks of data, instead of randomly, reduces I/O cost con-
siderably [110]. Accordingly, a smart data placement is highly beneficial for
creating data locality, and to favor sequential disk accesses rather than ran-
dom. Along with leveraging locality and making good use of read operations,
it is important that out-of-core algorithms use main memory in an efficient
way, avoiding the use of virtual memory, because it does not perform simi-
larly.

2.5.2 Scaling out-of-core algorithms

An important amount of research has been done during the last years on
efficient out-of-core algorithms. In this regard, large graph processing has re-
ceived most of the attention [43, 63, 64, 90, 91, 119, 132]. This growing interest
has led to algorithms capable of processing graphs of billions of edges or be-
yond, in the most recent works. In the effort of processing increasingly larger
graphs, researchers have designed highly efficient algorithms running both on
single commodity machines [43, 63, 64, 91, 119], as well as on clusters [90, 132].

Motivated by the fact that the design, implementation, and deployment
of distributed system is extremely time-consuming and expensive, Kyrola et
al. proposed GraphChi [63], an out-of-core graph processing system, which
is capable of executing well-known graph algorithms [62], and database op-
erations [64], on graphs with billions of edges on a single machine. The eval-
uation of this work shows that GraphChi handles large graphs in reasonable
time, running on a commodity PC, therefore the cost and effort of develop-
ment is less than that of distributed cases.

GraphChi’s performance relies on an efficient method to store data sequen-
tially in disk, improving performance during the process of data loading from
disk. To perform the computation on edges, these are retrieved from disk us-
ing a parallel sliding window, which reduces the non-sequential disk accesses.
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Based on a similar motivation, X-Stream [91] proposes a single machine
approach to perform several graph computations. X-Stream is a edge-centric
approach based on a scatter-gather programming model, which iterates over
the list of edges of the graph to perform the computation. X-Stream outper-
forms GraphChi [63] by avoiding edge pre-processing time. In this sense, X-
Stream does not sort edges as GraphChi does, conversely, X-Stream streams
sequentially the unsorted set of edges from disk, based on the observation that
sequential accesses to Solid State Drives (SSD), Hard Disks (HDD) or RAM de-
liver better bandwidth than random accesses.

Moreover, aiming to go further, Han et al. proposed TurboGraph [43], a
graph engine that runs graph algorithms on billion-edge graphs. To do so,
TurboGraph is implemented as a multithreading approach to run on multi-
core machines. TurboGraph’s design improves two performance issues ob-
served in GraphChi [63]. First, they noticed that GraphChi does not exhibit
full parallelism throughout the computation. Second, GraphChi performs two
separate phases for I/O and computation. It is important to highlight that the
processing of large graph implies a significant amount of I/O operations on
out-of-core algorithms, therefore, overlapping I/O and computation is a key
optimization to improve system’s performance.

TurboGraph implements a pin-and-slide model, which divides vertices in
pages. Later, to process a vertex of the graph, it pins vertex’s list of pages
in memory;, it applies some kind of computation on them, and unpins these
pages when they are no longer needed. The set of vertices is processed in
parallel, overlapping I/O requests (for reading vertex’s pages from disk) and
the actual computation on vertices” pages already pinned to memory. Along
with the overlapping of I/O and computation, TurboGraph also exploits in-
ternal parallelism in modern SSDs, achieving good performance. As a result
of its careful design, TurboGraph outperforms Graphchi [63] by 4 orders of
magnitude.

Thinking about a much simpler yet efficient design, MMap [72] introduces
the concept of Memory Mapping on graph processing approaches. Memory
mapping is a OS mechanism that maps data on disk to the virtual memory
space, giving us the impression that data is already in memory. The inclusion
of memory mapping on out-of-core algorithms simplifies the design and im-
plementation of disk-based approaches, assigning the tasks of accessing mem-
ory or disk and code optimization to the operating system.

The works presented above have shown to be extremely efficient out-of-
core approaches, running on graphs whose structure remains static during the
entire computation. Unfortunately, they do not show same efficiency when
the graph changes over time, as the case of the KNN computation. Besides, to
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the best of our knowledge, there are no recent works scaling KNN on single
machines through an out-of-core algorithm.

Improving I/0O operation’s performance

As it was mentioned above, I/O operations on out-of-core algorithms con-
sume a significant fraction of the time. With this in mind, Zhu et al. designed
GridGraph [119], a graph processing system that proposes a two-level par-
titioning method to process vertices efficiently, in such a way that I/O op-
erations are reduced. GridGraph creates 1-dimensional chunks of vertices,
and a 2-dimensional edge blocks. Such a grid-based approach, supports the
streaming of large blocks of edges from disk using a sliding window, reducing
the I/O operations. Besides, GridGraph implements a selective scheduling of
the blocks of edges to process, avoiding I/O requests for loading unnecessary
data.

Aiming to increase throughput and process larger graphs with respect to
a single machine, FlashGraph [132] uses a cluster of machines to reach an ag-
gregated memory larger than the size of the graphs. This approach leverages
parallelism and Input/Output Operations Per Second (IOPS) of an array of
SSDs to perform graph computations. As well as TurboGraph [43], Flash-
Graph hides latency by overlapping 1/O requests and computation. Addi-
tionally, FlashGraph improves 1/0O throughput by merging I/O requests.

With a similar goal in mind, Chaos [90], an out-of-core graph processing
system, exploits aggregated bandwidth, and storage capacity of a cluster of
machines. Chaos is based on the streaming partition idea of X-Stream [91]
to improve sequential accesses to the storage units, while the data is pro-
cessed in parallel. Chaos’ good performance steams from the decreasing of
pre-processing times, along with an efficient method to partition the graph
uniformly across the servers. Such a partitioning aims to reach a good load
balance, maximize parallelism, and minimize network communication over-
head. Additionally, Chaos implements a work-stealing method to improve
load balance among servers. The careful design and efficient implementation
of Chaos, makes the system able to handle a graph of a trillion of edges, a
milestone in the area of the graph processing systems.

The main concept that we can extract from this section is the overlapping
of I/O requests and actual computation. This optimization hides the high
latency of I/O operations to improve algorithm’s performance. We observe
even better performances if the overlap leverages the internal parallelism of
modern SSDs. This feature implies that multiple I/O requests are served in
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parallel, exhibiting better throughput than HDDs. Multiple I/O requests in
parallel, along with parallel computing, have shown excellent results in previ-
ous works, specially improving the performance on I/O intensive algorithms.

Consequently, in Chapter §5 we use the idea of overlapping I/O request
and computation to improve the performance on our I/O-intensive computa-
tion.

2.6 Updating profiles on KNN algorithms

In this section, we describe the motivation behind updating profiles on
KNN algorithms and the main challenges posed by such a computation. Be-
sides, we present the very few works that address these challenges. Finally,
we describe the benefits arising from the profile update process, specifically
those concerning the recommender systems.

2.6.1 Motivation and challenges

We have mentioned in Chapter §1 that KNN computation is mainly based
on entities similarity (or proximity) comparisons. Two entities are neighbors
if they exhibit an extent of similarity, which is computed comparing entities’
profiles. Consequently, profiles are a fundamental component of the KNN
computation: they define or represent the set of entities in the system. For in-
stance, in a social network, profiles represent the knowledge about the things
users liked, their actions in the network, social relationships with other users,
etc. By comparing users’ profiles in the social network, a KNN algorithm is ca-
pable to point out these users as neighbors, if their profiles are similar accord-
ing to a given similarity metric. In recommender systems, profiles store valu-
able information about users’ actions, items purchased, books read, movies
rated, etc. Based on these profiles, the system maintains useful information,
which is used to generate the recommendation of unrated or unknown items.

Moreover, it is a well-known fact that available data changes fast over
time [57, 59]. Millions of new tweets are posted every day, millions of pho-
tographies posted in Facebook, new books, new movies, new music, new TV
show episodes are released every day. Such an overwhelming amount of new
data leads users to change their profiles in social networks [59]. It should be
mentioned that users change their preferences not only in the short term (min-
utes, hours or days) but also in the long term, users’ preferences in their youth,
probably will not be the same in their adulthood [96].
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Although the computation on dynamic profiles obviously impacts sys-
tem’s performance, it also brings several benefits on KNN-based applications.
Specifically, the recommender systems are one of the applications that have
taken advantage of the KNN algorithms [11, 13, 14]. In recommender sys-
tems’ contexts, users change their profiles quite often, hence the system have
to take into account those profile updates as soon as possible, and as fast as
possible. Several works [16, 18, 50, 65, 67] have shown the importance of up-
dating users’ profiles over time to generate better recommendations. In this
sense, Koren [57] presents a methodology to model users” preferences over
time. This work analyzes the time as a key factor in recommendations” qual-
ity, having in mind that users change continuously their preference over time.
Finally, the author concludes that the incorporation of temporal information
improves considerably recommendation’s quality.

Besides the temporal aspect, profile updating over time favors diversity in
profiles and users’ neighborhoods. Diversity in recommendation systems has
proved to be a good way to improve recommendation quality [67, 88]. As it is
claimed in [50], users like to have new and better recommendations, process
whose main support is the incorporation of new ratings or items into their
profiles throughout the computation.

Regarding the computational challenges, besides the high-cost of comput-
ing KNN, processing online profile updates is a computational-intensive task,
specially when the set of new items’ profiles to process is large. Initially, this
set must be read and processed accordingly, which can be extremely costly
and complex. This is specially true whether the stream is composed by mil-
lions or billions of new items, as can be the case in an online social network as
Facebook or Twitter.

The cost does not come only from the reading of the stream, but also from
the fact that updates have to be incorporated or merged with existing versions
of the profiles. Due to the growth of data stored on entities” profiles, it is dif-
ficult to say that all data can be handled in memory. Hence, updating profiles
operations incurs in multiple reading of profiles from data storage devices.
Modern data storage devices, even SSDs with high bandwidth, deliver lower
bandwidth than RAM. As a consequence, I/O operations performed during
the process of profile update considerably affect performance, especially when
the stream of updates spans millions of new items or beyond. Thinking of
a distributed environment, this processing cost is also increased by network
communication.

Despite the large amount of research on KNN algorithms, none of the pre-
vious works have studied in depth some of the performance issues in com-
puting KNN on large datasets for dynamic profiles, except for [79]. Nasraoui
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et al. studied performance concerns in recommender systems running on ma-
chines with limited memory. To the best of our knowledge, they were the
first work that does not assume unlimited memory for KNN computation on
recommender systems.

2.6.2 Current situation

Unfortunately, many KNN algorithms, specially those applied to recom-
mender systems purposes [11, 13, 14, 57, 92, 109], do not consider profile up-
dating in their processing. In general, those algorithms rely on profiles that
remain static throughout the computation or on profiles that change after a
long time window [67]. In both cases, we can observe the same drawback:
computation is performed on profiles that do not represent exactly users’ be-
havior or dynamism in users’ preferences.

In the case of more generic KNN applications, the situation is not so dif-
ferent [66], profiles remain static over the computation, and they are updated
in batches, not frequently, and in an offline manner. KNN computation over
large datasets poses big challenges, both for obtaining good performance and
good results in terms of classification quality (in this work we focus mainly
in the former). KNN operations are generally very time-consuming and
resource-greedy, specially running on large datasets. Such a high cost only
worsens in cases where entities’ profiles change over time.

Additionally, due to the high computational cost, KNN algorithms are
mainly performed offline [9, 25, 30, 32, 35, 38, 41, 42, 47, 60, 70, 71, 81, 83,
118, 125, 126]. That is to say, KNN computation and profile updating process
are performed during periods where the system is offline or under periods of
lower traffic. Although it reduces cost, offline KNN computation does not con-
sider short-term updated profiles, losing valuable information that emerges
from the dynamism of user preferences.

Notwithstanding that updating profiles is a great challenge, some recent
works [95, 96] have considered somehow the evolution of users” preferences
over time. New items for users’ profiles are modeled as a stream of data, al-
lowing online streaming clustering. However, users’ preferences are not only
those in the stream, but also those already observed. Siddiqui et al. in [96],
present xStreams, which address this concern. They use a multi-relational
stream clustering, computing users’ similarity based on profiles composed
by preferences associated to them in different moments in time. To do so,
xStreams processes the stream of new items, and gathers these items with
previously obtained users’ profiles.



2.7. Summary 49

In order to consider time-evolving preferences, xStreams combines two
factors in the computation of users similarity: a similarity based on their past
preferences, and a similarity based on their new items on the stream. The
process of maintaining users’ profiles up to date is performed by a back-end
process.

The authors of xStreams properly assess the system in terms of the quality
of the results obtained, but they do not consider in their evaluation the perfor-
mance of the system in terms of memory footprint, runtime and scalability. In
this sense, even though the system is a good tool for computing KNN on dy-
namic data, it does not considered the performance of the system, a key factor
to support fast online computations.

Yu et al. [127] highlight the existence of well-designed KNN algorithm
for static datasets, but unable to handle updates efficiently. Addressing such
a current situation, they proposed kNNJoin*, an incremental approach that
supports KNN join operations on high-dimensional databases, computing on
profiles that change over time. To do so, they incorporate a KNN join ta-
ble, which can be updated efficiently when updates appear. One of the most
interesting contributions of this work is the incremental join process, which
joins new updates on the existing results, avoiding the re-computation of the
KNN join. This work shows excellent results in terms of quality and runtime
with respect to the baseline, unfortunately, with the results showed in [127]
is not possible to draw conclusions regarding system’s scalability in terms of
updates processed.

2.7 Summary

In this chapter, we have presented the K-Nearest Neighbors (KNN)
method, an efficient tool to find similar data in large datasets. Although effi-
cient, KNN is also a very challenging and resource-greedy computation, par-
ticularly in large scale scenarios. The efficient processing of very large datasets
requires large amounts of memory, and significant computation times. In this
regard, approximate KNN algorithms have grown in popularity due to their
capacity to achieve a good trade-off between computational complexity and
quality of the results.

Additionally, we have studied a set of novel approaches computing KNN
in a distributed fashion. The main benefit of these works is the fact that
they leverage distributed systems’ power to scale the computation. These ap-
proaches are able to scale the computation on very large datasets by dividing
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the work among multiple machines. Unfortunately, distributed systems have
a main drawback: high cost. Designing, implementing, and deploying effi-
cient distributed algorithms is expensive, both in terms of time and money.

Overcoming this high cost, we highlight the out-of-core algorithms, which
explode disk and memory to scale complex computations running on single
machines. To do so, we have to pay special attention to I/O requests, a critical
point in KNN algorithms, and by far the most costly operation in out-of-core
approaches.

Finally, we reviewed the state-of-the-art in KNN algorithms regarding
their capacity to face a big challenge posed by data nowadays: it changes con-
tinuously and rapidly.

In brief, these are the challenges we address in the following. Scaling the
KNN computation on large datasets, considering their large memory foot-
prints. To do so, we aim to use only single machines, as a less expensive,
yet efficient, way to deal with large datasets. Additionally, we also address
the computational challenges of handling data that changes rapidly over time
while the KNN computation is performed.
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Chapter 3

Towards a scalable out-of-core KNN
computation

In this chapter, we explore a novel approach to compute K-Nearest Neigh-
bors (KNN) algorithm on a large set of users by leveraging disk and memory
efficiently on a commodity PC [23]. The system is designed to minimize ran-
dom accesses to disk as well as the amount of data loaded /unloaded from/to
disk so as to better utilize the computational power, thus improving the algo-
rithmic efficiency.

In [23], we study the effect of loading/unloading data from/to disk in
some specific orders, based on the premise that the KNN results do not de-
pend on the order in which we process the data. By analyzing these alterna-
tives, we aim to find an efficient way to reduce the amount of data loaded
from disk as well as to improve the memory usage.

The design described in this chapter is a preliminary approach towards
a scalable algorithm for computing KNN on single machines. Consequently,
this work helped us to discover and understand in depth the main compu-
tational challenges behind an out-of-core KNN algorithm running on such a
computational setup. Observing the actual implementation and the experi-
mental results, we analyze in Section §3.3, the main drawbacks of this prelim-
inary approach, which are addressed later in our main contribution in Chap-
ter §4.
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3.1 Introduction

Frameworks such as GraphChi [63] and X-Stream [91] are increasingly
gaining attention for their ability to perform scalable computation on large
graphs by leveraging disk and memory on a single commodity PC. These
frameworks rely on the graph structure to remain the same for the entire pe-
riod of computation of various algorithms such as PageRank [80] and triangle
counting [93]. As a consequence, these frameworks are not applicable to al-
gorithms that require the graph structure to change during their computation.
In this work, we focus on one such algorithm: K-Nearest Neighbors (KNN).

In simple words, the KNN computation proceeds in iterations, as follows.
At each iteration t, computing KNN of a user i requires a similarity compar-
ison of its profile with each of the profiles of all its neighbors and neighbors’
neighbors, and then the top-K most similar users from this neighborhood con-
stitute the new KNN of user i for the next iteration t + 1. Although there are
plenty of different implementations of the algorithm, we have chosen that of
HyRec [13] (detailed in Section §2.3.2.1) due to its simplicity and efficiency.

We model the collection of KNN of each user by a directed graph G(t)
where each (user) vertex has at most K-outdegree neighbors. KNN computa-
tion changes the graph from G(t) to G(t+1), requiring the removal of edges to
former neighbors and the addition of edges to new neighbors. Such features
are not supported in either GraphChi or X-Stream. In addition to G(t), we
have a set of user profiles F(t) at iteration t, which can also change over time
toF(t+1).

3.2 System design

Given the system constraints of a commodity PC with limited memory, our
system aims to scale KNN for a large number of users whose profiles change
over time by leveraging memory and disk in an efficient manner. The main
rationale of our approach is to minimize random accesses to disk as well as
the amount of data loaded/unloaded from/to disk. We note that inefficient
accesses of disk leads to poor utility in terms of computational power, thus
affecting the algorithmic efficiency of KNN computation.
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3.2.1 Overview

Our approach for computing KNN at each iteration t proceeds in five
phases, as shown in Figure §3.1. Firstly, the KNN graph G(t) is partitioned
in m partitions such that the disk and memory operations in the future phases
are minimized. Secondly, we build a hash table to hold all the unique tuples
(s,d) where s is a user and d is either a neighbor or a neighbor’s neighbor
of s. Thirdly, we create a partition interaction graph which helps in deciding
the order in which partitions are loaded and unloaded so as to calculate the
similarity between users in tuples generated in the previous phase efficiently.
We develop some heuristics to minimize the number of operations performed
to complete the process. Fourthly, we generate each user’s top-K most similar
neighbors from its set of neighbors and neighbors” neighbors, thus resulting
overall in the new KNN graph G(t + 1). Finally, all the changes in the user
profiles during this iteration t are lazily updated to F(t + 1) for the next itera-
tion.

3.2.2 KNN iteration
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Figure 3.1: 5 phases: input G(t), 1) KNN graph partitioning, 2) Hash Table, 3)
Partition Interaction Graph, 4) KNN computation, 5) Updating profiles.
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3.2.2.1 Partitioning

The first phase of our approach performs KNN graph partitioning such
that only a few small pieces of the graph as well as related data structures
can be stored in memory at any given point in time while the rest are stored
on disk which can be accessed efficiently later. The input of this phase is a
directed KNN graph G(t) at iteration t which could be at any stage in the
computation: initial, intermediate, or near-convergence.

We divide G(t) into m partitions, each of which corresponds to a fixed
number of users - where n is the number of users in G(t). A partition R;
is composed of a subset V; of - users, both the in-edges and out-edges of the
users V;, and the profiles of these users. The criteria for partitioning G(t) is that
the total sum of the (unique) source vertices Ni™ of in-edges and the (unique)
destination vertices N{** of out-edges in each partition i is minimized:

min ) (Ni*+ N (3.1)

i=1

Such a partitioning mechanism enables a greater extent of data locality in
the fourth phase.

For efficient access of neighbors” neighbors, we sort the in-edges {(s,Vv) €
Ri} and the out-edges {(v,d) € R;}, where v € V; and vertices s and d belong
to any of the m partitions, by the vertex id v in their respective lists. One can
now read the files of in-edge and out-edge lists sequentially to generate tuples
(s, d) which are essentially neighbors’ neighbors, since the vertex v acts as a
bridge between s and d.

3.2.2.2 Hash table

The second phase of our approach is the creation and population of a hash
table H. We use a hash table to avoid generating duplicate tuples which can
occur due to cycles (e.g., vertices a, b and ¢ have edges to each other) or paths
with same start and end vertices but with a different bridge vertex (e.g., vertex
a has out-edges to vertices b and c each of which in turn have out-edges to
vertex d).

H is populated with unique tuples (s, d) representing neighbors’ neighbors
obtained on the first phase, as well as directed edges from the graph G(t).
Once H has all the tuples, the system has to compare the profiles of all tuples
{(s,d) € H} to calculate the similarity values in phase 4. Since each tuple’s



3.2. System design 57

s and d could belong to different partitions, accessing their profiles from re-
spective partitions in an arbitrary fashion can lead to poor performance due
to various random accesses to disk as well as loading /unloading of partitions
from/to disk.

3.2.2.3 Partition Interaction Graph

The third phase is the creation and traversal of the partition interaction
graph which helps in deciding the order in which all the tuples’ similarity
scores are computed. In the partition interaction graph, each node represents
a partition R; from the first phase, and a directed edge (R;, R;) represents all
the tuples {(s, d) € H} such that s € R; and d € R;. In our memory constrained
environment, we load the profiles of at most two partitions R; and R; at any
point in order to compute the similarity scores of all the tuples {(a, b)} such
that vertices a and b belong to either of R; and R;. We note that when all the
edges in the partition interaction graph are parsed, it means that the similarity
scores of all the corresponding tuples in H have been computed.

3.2.24 KNN computation

The fourth phase performs KNN computation using the partition interac-
tion graph and the profiles F(t) to generate G(t 4 1) which is the new KNN
graph for the next iteration. First, the partition interaction graph is parsed in
the order specified by one of the heuristics detailed in Section §3.2.3, such that
the profiles of at most two partitions R; and R; are loaded into memory at a
time. Next, each tuple (s, d) where s € R; and d € R; is read sequentially, and
then a similarity score sim(s, d) is computed based on their profiles. When the
similarity scores for all tuples in each partition are computed, we can generate
the K-most similar neighbors for each user, resulting in G(t + 1).

3.2.2.5 Update profiles

Finally, the fifth phase is responsible for updating user profiles from F(t) to
F(t+1). Throughout the iteration t, any changes in the profiles of the users are
stored in a queue q but not incorporated into F(t). In this phase, the queue is
read to update the profiles to F(t + 1). After completing this phase, the system
returns to the first phase of the next iteration t + 1, while the queue is ready
for new profile updates to store.
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Datasets [69] Nodes | Edges | Sequential | High-Low | Low-High

Wikipedia Vote 7,115 | 100,762 211,856 204,706 202,290
General Relativity || 5,241 | 14,484 34,506 32,220 31,256
High Energy 12,006 | 118,489 252,754 242,132 240,872
Astro Physics 18,771 | 198,050 420,442 400,050 401,770
E-mail 36,692 | 183,831 399,604 382,928 379,312
Gnutella 26,518 | 65,369 157,040 144,072 132,710

Table 3.1: Number of load/unload operations using partition interaction

graph.
3.2.3 Heuristics for processing the Partition Interaction Graph

We describe a few heuristics to decide the order in which the partition in-
teraction graph is parsed in phase 4. The sequential heuristic loads the parti-
tion starting from number 1, processes all its edges in the partition interaction
graph, removes this partition from further consideration, and continues with
next partition number 2, and so on until all edges and nodes are parsed. The
degree-based heuristic has two versions depending on the order for the next
edge executed. The first version starts processing vertices with the highest
degree, choosing the next edge to be processed according to the degree of the
destination vertex from highest to lowest degrees. The other version of this
algorithm also starts processing vertices with the highest degree, but the next
edge is selected on the criteria from lowest to highest degrees of the destina-
tion vertices.

Table §3.1 presents a preliminary evaluation of these heuristics on various
datasets. If the partition interaction graph structure were to resemble these
networks, we observe that our simple degree-based heuristics typically have
5-15% fewer partition load/unload operations than the sequential one, sug-
gesting scope for improvement with better heuristics.

3.3 Concluding remarks

In this chapter we presented a preliminary design for scaling the KNN
computation on a memory-constrained machine. Along with the algorithm’s
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design, we presented few heuristics that aim to reduce the number of data
load /unload operations performed to process the set of partitions involved in
the KNN computation. Our observation is that the order in which the parti-
tions are processed impacts the number of load /unload operations. Our pre-
liminary evaluation showed that a good heuristic can reduce the number of
operations in a 5-15% with respect to those of a sequential heuristic. These
results give us some space for improvement through better heuristics adapted
to the intrinsic characteristics of the data.

Unfortunately, despite the fact that we observe that some heuristics are an
efficient method to reduce the number of load /unload operations, we also re-
mark few drawbacks on our initial design. Firstly, at phase 1, the algorithm
sorts both the list of in-edges and out-edges of the graph. Such a sorting op-
eration is costly, particularly for those large graphs that span billions of edges
or more.

Secondly, our algorithm generates the set of tuples containing users’ neigh-
bors and neighbors’ neighbors, which are written to disk in phase 2, incurring
in O(N(2K + K?)) operations, being N the number of vertices (users) in the
graph, and K the number of neighbors of each vertex. Additionally, same
number of operations are performed while the partition interaction graph is
parsed on the phase 3 to read the tuples from disk. This set of tuples in disk is
continuously accessed while the algorithm performs the profile comparisons
to select the next tuple to process. Accordingly, for a large numbers of users
in the system N, writing/reading operations performed on phases 2 and 3
respectively, adversely affect algorithm’s scalability.

Finally, we observe that the hash table, populated in phase 2, is a useful
tool to reduce the amount of duplicated tuples computed during the KNN
computation. But, while the hash table presents few advantages over others
data structures, it generates large memory footprints, particularly for large
number of tuples, as is the normal case on processing large graphs. Besides,
we observe that a hash table does not perform well for lookups, a fundamental
operation on phase 2.

In Chapter §4, we present our main contribution, a scalable out-of-core
algorithm for computing KNN, which addresses the main drawbacks of our
preliminary design detailed above.
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Chapter 4

Out-of-core KNN approach

In this chapter, we focus on the challenge of KNN computation over large
datasets on a single commodity PC with limited memory. In this chapter, we
leverage the experience gathered in our preliminary study (Chapter §3) to pro-
pose a novel approach to compute KNN on large datasets. Consequently, in
this chapter we present Pons [24], a memory-efficient out-of-core algorithm
for computing KNN on a single commodity PC. The main rationale of our ap-
proach is to minimize random accesses to disk, maximize sequential accesses
to data and efficient usage of only the available memory.

We evaluate our approach on large datasets, in terms of performance and
memory consumption. The evaluation shows that our approach requires only
7% of the time needed by an in-memory baseline to compute a KNN graph.

In the remainder of this chapter, we first discuss the motivations behind
this work in Section §4.1. In Section §4.2 we introduce some preliminaries on
the K-nearest neighbors problem, along with two basic approaches for com-
puting KNN: in-memory approach (Section §4.2.1), and disk-based approach
(Section §4.2.2). In Section §4.3 we describe in details our out-of-core approach
for computing KNN on large datasets. Then, in Section §4.5 we describe the
experimental setup used to evaluate Pons in Section §4.6. Finally, we present
our conclusions in Section §4.7.

41 Introduction

Our first motivation for this work is derived from the fact that processing
KNN efficiently on large datasets calls for in-memory solutions, this sort of
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approach intends to store all data into memory for performing better in com-
parison to disk-based approaches. To do so, current datasets demand large
memory, whose cost is not always affordable. Access to powerful machines
is often limited, either by lack of resources for all users’ needs, or by their
complete absence.

The second motivation is that KNN computation has to be often performed
offline, because it consumes significant resources. KNN algorithms usually
cohabit on a given machine with other applications. Consequently, it is very
seldom that it can enjoy the usage of the entire set of machine’s resources, be
it memory or CPU. For instance, HyRec [13], a hybrid recommender system,
implements a KNN strategy to search similar users. HyRec devotes only a
small fraction of its runtime and system resources for KNN computation. The
rest is dedicated to recommendation tasks or system maintenance.

Finally, our last motivation comes from the fact that current graph frame-
works [43, 63, 91] can efficiently compute well-known graph algorithms, pro-
cessing large datasets in a short time. Those systems rely on the static nature
of the data, i.e., data remaining the same for the entire period of computa-
tion. Unfortunately, to the best of our knowledge, they do not efficiently sup-
port some KNN fundamental operations such as neighborhood modification
or neighbors’ neighbors accesses. Typically they do not support any operation
that modifies the graph itself [63, 91]. KNN’s goal is precisely to change the

graph topology.

Summarizing, our work is motivated by the fact that: (i) KNN is compu-
tationally expensive, (ii) KNN has to be mainly performed offline, and (iii)
current graph processing frameworks do not support efficiently operations
required for KNN computation.

We present Pons, an out-of-core algorithm for computing KNN on large
datasets that do not completely fit in memory, leveraging efficiently both disk
and the available memory. The main rationale of our approach is to minimize
random accesses to disk, and to favor, as much as possible, sequential reading
of large blocks of data from disk. Our main contributions of the paper are as
follows:

e We propose Pons, an out-of-core approach for computing KNN on large
datasets, using at most the available memory, and not the total amount
required for a fully in-memory approach.

e Pons is designed to solve the non-trivial challenge of finding neighbors’
neighbors of each entity during the KNN computation.
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e Our experiments performed on large-scale datasets show that Pons com-
putes KNN in only around 7% of the time required by an in-memory
computation.

e Pons shows to be also capable of computing online, using only a limited
fraction of the system’s memory, freeing up resources for other tasks if
needed.

4.2 Preliminaries

Given N entities with their profiles in a D-dimensional space, the K-
Nearest Neighbors (KNN) algorithm aims to find the K-closest neighbors for
each entity. The distance between any two entities is computed based on a
given metric (as cosine similarity or Jaccard coefficient) that compares their
profiles. A classic application of KNN includes finding the K-most similar
users for any given user in a system such as IMDb, where a user’s profile
comprises of her preferences of various movies.

For computing the exact KNN it can be employed a brute-force approach,
which has a time complexity of O(N?) profile comparisons being very inef-
ficient for a large N. To address this concern, approximate KNN algorithms
(KNN now onwards) adopt an iterative approach. At the first iteration (t = 0),
each entity v chooses uniformly at random a set of K entities as its neighbors.
Each subsequent iteration t proceeds as follows: each entity v selects K-closest
neighbors among its candidate set, comprising its K current neighbors, its K?
neighbors” neighbors, and K random entities [13]. At the end of iteration t,
each entity’s new K-closest neighbors are used in the computation for the next
iteration t + 1. The algorithm ends when the average distance between each
entity and its neighbors does not change considerably over several iterations.

The KNN state at each iteration t can be modeled by a directed graph G =
(V,EY)), where V is a set of N(= |V|) entities and E'Y) represents edges between
each entity and its neighbors. A directed edge (u,v) € EM denotes (i) v is
u’s out-neighbor and (ii) u is v’s in-neighbor. Let B, denote the set of out-
neighbors of the entity v. Furthermore, each entity v has exactly K(= |B,|) out-
neighbors, while having any number (including 0 to N — 1) of in-neighbors.
Also, we note that the total number of out-edges and in-edges in G'¥ is NX.

Let F represent the set of profiles of all entities, and F, denote the profile
of entity v. In many scenarios in the fields of recommender systems and in-
formation retrieval, the profiles of entities are typically sparse. For instance,
in IMDDb, the number of movies an average user rates is significantly less than
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the total number of movies, D, present in its database. In such a scenario,
a user v's profile can be represented by a sparse vector F, in a D-dimensional
space ([F,| << D). For the sake of simplicity, we consider each entity v’s profile
length to be utmost P (> [F,|). In image classification and clustering systems,
however, each entity v’s profile (e.g., feature vector) is typically of high di-
mension in the sense that v’s profile length is approximately [F,| ~ D. With
the above notation, we formally define the average distance (AD) for all enti-
ties and their respective neighbors at iteration t as:

> wev 2vep, Dist(Fu, Fy)

ADWY =
NK

(4.1)

Dist(F,, F,) measures the distance between the profiles of u and v. The
KNN computation is considered converged when the difference between the
average distances across iterations is minimal: |[AD") — ADWU| < ¢, for a
small e.

4.2.1 In-memory approach

A simple, yet efficient, way to implement KNN is using an in-memory
approach, where all the data structures required during the entire period of
computation are stored in memory. Algorithm §4 shows the pseudo-code for

an in-memory implementation. Initially, the graph Ggﬂem) and profiles F are
loaded into memory from disk (lines §2-§3). At each iteration t, each vertex
v selects K-closest neighbors from its candidate set C, comprising its neigh-
bors (B,), its neighbors’ neighbors (| J, 5, Bu), and a set of K random vertices

(Rnd(K)). Closest neighbors of all vertices put together results in the graph
Gt

(mem

,»i.e., KNN graph of the next iteration.

In each iteration, every vertex performs up to O(2K + K?) profile compar-
isons. If a distance metric such as cosine similarity or Euclidean distance is
used for profile comparisons, the overall time complexity for each iteration is
O(NP(2K +K?)). We note that the impact of heap updates (line §14) on overall
time is little, since we are often interested in small values of K(~ 10 — 20) [13].
In terms of space complexity, this approach requires O(N(2K + P)) memory.

Each of the KNN graphs of the current and the next iterations (G Ezem), G E::;%))
consume O(NK) memory, while the profiles consume O(NP) memory. Al-
though highly efficient, such an approach is feasible only when all data struc-

tures consume less than the memory limit of the machine.
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Algorithm 4: In-memory KNN

Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v € G finds its KNN.

1 begin

2 Ggfiem) + Read initial graph from File(G)
3 Fimem) ¢ Read all profiles from File(F)

4 foreach Iteration t until convergence do
5 Gy &

6 foreach Vertexv € Ggem) do

7 Read B, from ngem)

8 Cy & By U (Uyep, Bu) URNA(K)

9 TopK + ¢

10 Read F, from Finem)

11 foreach Candidate w € C, do

12 Read F,, from Finem)

13 distValue « Dist(F,, F,)

14 UpdateHeap(TopK, w, distValue)
15 Insert(G E::e]%), v, TopK)

4.2.2 Disk-based approach

In contrast to the above in-memory approach, the disk-based approach
stores all the data —the two KNN graphs and the profiles— on disk and ac-
cesses small segments of this data at any instance. Algorithm §5 shows the
pseudo-code for a disk-based implementation of the KNN algorithm. Each
iteration t proceeds as follows. In order to form a candidate set C,, a vertex v
first obtains its out-neighbors B, by reading the KNN graph G&)isk) stored on
disk (line §4), and then obtains each of its neighbors’ neighbors by reading the
disk again (lines §6-§8), and finally selects a set of K random vertices which
does not require any disk operations. For profile comparisons, first the pro-
file F, is read from the profiles file (line §11) into memory. Vertex v’s K closest
neighbors are obtained by comparing its profile with each vertex w in the can-
didate set C, whose profile F,, is read into memory from the profiles file one at
a time (lines §12-§15). Vertex v’s new K closest neighbors are written into the
new iteration’s KNN graph file (line §16).

Although the in-memory and disk-based approaches perform the same
KNN computation, the way these approaches access data is significantly dif-
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Algorithm 5: Disk-based KNN

Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v € G finds its KNN.

1 begin

2 foreach Iteration t until convergence do
3 foreach Vertexv € G &)isk) do

4 Read B, from File(GEz)isk))

5 Initialize candidate set C, « B,

6 foreach Neighbor w € B, do

7 Read B,, from File(GE?isk))

8 C, « C,uUB,,

9 C, «+ C, URnd(K)

10 TopK « ¢

11 Read F, from File(F)

12 foreach Candidate w € C, do

13 Read F,, from File(F)

14 distValue « Dist(F,,F,)

15 UpdateHeap(TopK, w, distValue)
16 File(G|y.y,)- Write(v, TopK)

ferent. The in-memory approach accesses all data—the two KNN graphs and
the profiles—in the machine’s main memory. In contrast, the disk-based ap-
proach accesses the same data via various disk operations such as random
seeks, sequential reads, and writes, which are orders of magnitude slower
in comparison to memory-based operations. On the upside, the disk-based
approach consumes minimal memory with a space complexity of O(K? + P).
More specifically, a vertex v's candidate set C, occupies upto O(2K+K?) mem-
ory, and the heap consumes O(2K) memory, while only two profiles are loaded
into memory at any instance thus consuming O(2P) memory.

4.3 Pons

Thus the challenge of KNN computation can be essentially viewed as a
trade-off between computational efficiency and memory consumption. Al-
though efficient, an in-memory approach (Section §4.2.1) consumes a sig-
nificant amount of memory. In contrast, a fully disk-based approach (Sec-
tion §4.2.2) is very inefficient due to disk operations, albeit consuming little
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memory. In this section, we propose Pons™, an out-of-core approach which
aims to address this trade-off.

4.3.1 Overview

Pons is primarily designed to efficiently compute the KNN algorithm
on a large set of vertices’ profiles in a stand-alone memory-constrained ma-
chine. More specifically, given a large set of vertices” profiles and an upper
bound of main-memory Xinit, that can be allocated for the KNN computa-
tion, Pons leverages this limited main memory as well as the machine’s disk
to perform KNN computation in an efficient manner.

The performance of Pons relies on its ability to divide all the data -KNN
graph and vertices” profiles— into smaller segments such that the subsequent
access to these data segments during the computation is highly efficient, while
adhering to the limited memory constraint. Pons is designed following two
fundamental principles: (i) write once, read multiple times, since KNN com-
putation requires multiple lookups of various vertices’ neighbors and profiles,
and (ii) make maximum usage of the data loaded into memory, since disk op-
erations are very expensive in terms of efficiency.

Algorithm 6: Pons
Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v € G finds its KNN.

1 begin

2 foreach Iteration t do

3 1. Partioning(GlobalOutEdges)

4 2. Create In-edge Partition Files

5

6

7

8

3. Create Out-edge Partition Files
4. Write Profile Partition Files

5. Compute Distances
Update(GlobalOutEdges)

We now present a brief overview of our approach, as illustrated in Al-
gorithm §6, and Figure §4.1. Pons takes two input files containing vertices,
their random out-neighbors, and their profiles. It performs the KNN com-
putation iteratively as follows. The goal of each iteration t is to compute
K-closest neighbors for each vertex. To do so, iteration t executes 5 phases
(Algorithm §6, lines §2-§8 and Figure §4.1). First phase divides the vertices

MThe term ‘pons’ is Latin for ‘bridge’.
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into M partitions such that a single partition is assigned up to [N/M] ver-
tices. This phase parses the global out-edge file containing vertices and their
out-neighbors and generates a K-out-neighborhood file for each partition.

We note here that the choice of the number of partitions (M) depends on
factors such as the memory limit (Xiimit), the number of vertices (N), the num-
ber of neighbors K, the vertices” profile length (P), and other auxiliary data
structures that are instantiated. Pons is designed such that utmost (i) a heap
of O(|[N/M]K) size with respect to a partition i, (ii) profiles of two partitions i
and j consuming O(|N/M|P) memory, (iii) other auxiliary data structures can
be accommodated into memory all at the same time, while adhering to the
memory limit (Xiimit).

Based on the partitions created, phases 2, 3, and 4 generate various files
corresponding to each partition. In the phase 5, these files enable efficient (i)
finding of neighbors” neighbors of each vertex, and (ii) distance computation
of the profiles of neighbors” neighbors with that of the vertex. The second
phase uses each partition i’s K-out-neighborhood file to generate i’s in-edge
partition files. Each partition i’s in-edge files represent a set of vertices (which
could belong to any partition) and their in-neighbors which belong to partition
i. The third phase parses the global out-edge file to generate each partition
j’s out-edge partition files. Each partition j’s out-edge files represent a set of
vertices (which could belong to any partition) and their out-neighbors which
belong to partition j. The fourth phase parses the global profile file to generate
each partition’s profile file.

The fifth phase aims to generate an output of a set of new K-closest neigh-
bors for each vertex for the next iteration t+1. We recall that the next iteration’s
new K-closest neighbors is selected from a candidate set of vertices which in-
cludes neighbors, neighbors’ neighbors, and a set of random vertices. While
accessing each vertex’s neighbors in the global out-edge file or generating a set
of random vertices is straightforward, finding each vertex’s neighbors’ neigh-
bors efficiently is non-trivial.

We now describe the main intuition behind Pons” mechanism for finding a
vertex’s neighbors’ neighbors. By comparing i’s in-edge partition file with j’s
out-edge partition file, Pons identifies the common ‘bridge” vertices between
these partitions i and j. A bridge vertex b indicates that there exists a source
vertex s belonging to partition i having an out-edge (s, b) to the bridge vertex
b, and there exists a destination vertex d belonging to partition j having an
in-edge (b, d) from the bridge vertex b. Here b is in essence a bridge between
s and d, thus enabling s to find its neighbor b’s neighbor d. Using this ap-
proach for each pair of partitions i and j, the distance of a vertex and each of
its neighbors’ neighbors can be computed.
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Figure 4.1: Pons executes 5 phases: (1) Partitioning, (2) In-Edge Partition Files,
(3) Out-Edge Partition Files, (4) Profile Partition Files, and (5) Distance Com-
putation.

As Pons is designed to accommodate the profiles of only two partitions
at a time in memory, Pons adopts the following approach for each partition
i. First, it loads into memory i’s profile as well as the bridge vertices of i’s
in-edge partition file. Next, an empty heap is allocated for each vertex which
is assigned to partition i. A vertex s” heap is used to accommodate utmost
K-closest neighbors. For each partition j, the common bridge vertices with i
are identified and subsequently all the relevant pairs (s, d) are generated with
s and d belonging to i and j respectively, as discussed above. For each gener-
ated pair (s, d), the distance between the source vertex s and the destination
vertex d are computed, and then the heap corresponding to the source vertex
s is updated with the distance score and the destination vertex d. Once all the
partitions j = [1, M] are processed, the heaps of each vertex s belonging to par-
tition i would effectively have the new K-closest neighbors, which are written
to the next iteration’s global out-edge file. Once all the partitions i = [1, M]
are processed, Pons moves on to the next iteration t + 1.

4.3.1.1 Example

Figure §4.2 shows an example graph containing N = 6 nodes and M =
3 partitions. Let vertices A and T be assigned to partition 1 (red), U and C
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to partition 2 (blue), and W and I to partition 3 (green). Figure §4.3 shows
various in-edge and out-edge partition files corresponding to their respective
partitions. For instance, in the 1.1in.nbrs file, U and W (denoted by dotted
circles) can be considered as bridge vertices with A (bold red), which belongs
to partition 1, as the in-neighbor for both of them.

To generate A’s neighbors’ neighbors, 1.1in.nbrs is compared with each
partition j’s out-edge file j.out .nbrs. For instance, if 1.1in.nbrs is com-
pared with 3.out .nbrs, 2 common bridge vertices U and W are found. This
implies that U and W can facilitate in finding A’s neighbors’ neighbors which
belong to partition 3. As shown in Figure §4.4, vertex A finds its neighbors’
neighbor I, via bridge vertices U and W.

Partition 1 Partition 2 Partition 3

EOEG|EO

Figure 4.2: Example graph. A’s out-neighbors and A’s neighbors” neighbors.

4.4 KNN iteration

At iteration t, Pons takes two input files: global out-edge file containing
the KNN graph G'Y, and global profile file containing the set of vertices” pro-
files. Global out-edge file stores contiguously each vertex id v along with its K
initial out-neighbors’ ids. Vertex ids range from 0 to N — 1. The global profile
file stores contiguously each vertex id and all the P items of its profile. These
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Figure 4.4: A’s neighbors’ neighbors found using bridge vertices.

files are in binary format which helps in better I/O performance (particularly
for random lookups) as well as saves storage space.
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4.4.1 Phase 1: Partitioning

The memory constraint of the system limits the loading of the whole graph
as well as the profiles into memory. To address this issue, we divide these data
structures into M partitions, each corresponding to roughly [N/M] distinct
vertices, such that the profiles of utmost two partitions (O([N/M]P)) and a K-
neighborhood heap of one partition (O([N/M]K)) can be accommodated into
memory at any instance.

We adapt the one-pass streaming graph partitioning approach proposed
in [1]. More specifically, at an iteration t, we perform a single pass on the
KNN graph file GV as follows. Each vertex v € G'Y is assigned as a master
replica to the partition that shares most vertices considering its id v and its
neighbors’ ids B,. When v is assigned as a master replica to a partition j, all
its neighbors B, are assigned as slave replicas to the partition j. Formally, the
vertex partitioning objective can be defined as:

min » Wi N Ry st. Wi < [N/M] (4.2)
i#

where Wi, represents the set of vertices assigned as master to the partition
iand R; represents the set of vertices assigned as either master or slave to the
partition j. The partitioning follows the load balancing constraint of allocating
utmost [N/M | master replicas per partition.

For efficient partitioning, we use a vector of N booleans Bool_Vec(j) for
each partition j. A bit v set to 1 in Bool_Vec(j) means that either vertex v
is assigned as a master or a slave replica to partition j. For an unassigned
vertex v, the algorithm searches all available partitions {j s.t. [W;| < [N/M]},
measuring number of common (master or slave) replicas between v and its
out-neighbors (v U B,) and itself, by checking the corresponding set bits in
the vector Bool_Vec(j). The available partition j with the maximum overlap
is selected as the master partition for the vertex v. The vertex v and its out-
neighbors B, are assigned as master and slave replicas respectively to the par-
tition j, along with setting their corresponding bits in the vector Bool_Vec(j).

Figure §4.5 shows an example of our partitioning algorithm, where mas-
ter and slave replicas are depicted with bold and dotted circles respectively.
Let A be an unassigned vertex with its out-neighbors B and C, which needs
to be assigned to one of the available partitions. In this example, partition i
shares two common replicas (B and C) with A and its neighbors. On the other
hand, partition j shares only one element (C) with A and its neighbors. Finally,
vertex A is assigned as a master to i.
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Figure 4.5: Partitioning example.

When a vertex v is assigned as a master replica to partition j, the vertex
v and its out-neighbors B, are written to j’s K-out-neighborhood file j.knn
that contains all the master replicas of the partition j and their respective out-
neighbors.

4.4.2 Phase 2: In-edge partition files

This phase takes each partition i’s K-out-neighborhood file i .knn as in-
put and generates two output files representing bridge vertices and their in-
neighbors. For a vertex v assigned as a master replica to partition i, each of
its out-neighbors w € B, is regarded as a ‘bridge vertex’ to its in-neighbor v
in this phase. We note here that the master replica of a bridge vertex w € B,
could belong to any partition.

The first file 1 . in. deg stores a list of (i) all bridge vertices b whose master
replica could belong to any partition, and (ii) the number of b’s in-neighbors
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whose master replicas belong to partition i. This list is sorted by the id of each
bridge vertex b. The second file i . in.nbrs stores the ids of the in-neighbors
of each bridge vertex b stored contiguously according to the bridge vertices’
sorted ids in the i . in.degq file.

To efficiently convert the i.knn file into i.in.deg and i.in.nbrs
files, we use the following approach. We first allocate in-memory (i) bridge
buffer of O(N) memory for bridge vertices, and (ii) in-neighbor buffer of
O([N/M]K) memory for their in-neighbors. For each vertex v and its out-
neighbors B, in the i.knn file, we note that the master replica of v belongs
to the partition i while each of its out-neighbors w € B, could belong to any
partition. We then perform two passes on the i .knn file. Firstly, we populate
the bridge buffer with each bridge vertex b observed in i .knn and the num-
ber of vertices that have out-edges to b. In the second pass, we populate the
in-neighbor buffer with each bridge vertex’s in-neighbor at its corresponding
position. Finally, the bridge buffer and the in-neighbor buffer are written to
i.in.degand i.in.nbrs respectively.

4.4.3 Phase 3: Out-edge partition files

This phase takes the global out-edge file as input and generates two out-
put files per partition representing bridge vertices and their out-neighbors,
similar to the previous phase. For each partition j, the first file j.out.deg
stores a list of (i) all bridge vertices b whose master replica could belong to
any partition, and (ii) the number of b’s out-neighbors whose master replicas
belong to partition j. This list is sorted by the id of each bridge vertex b. The
second file j.out.nbrs stores the ids of the out-neighbors of each bridge
vertex b stored contiguously according to the bridge vertices” sorted ids in the
j.out .degq file. These files are used in the Phase 5 (in Section §4.4.5) for the
KNN computation.

To efficiently convert the global out-edge file into j.out.deg and
j.out .nbrs files, we leverage the format of the global out-edge file which
stores vertices’” ids in a sorted fashion. For each vertex v, we divide its
out-neighbors B, into M non-overlapping sets according to their respective
vertices” (w € B,) master partitions. With v as a bridge vertex, each non-
overlapping set corresponding to partition j is written to their respective
files: the number of vertices in j.out .deg, and the vertices themselves in
j.out.nbrs.
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4.4.4 Phase 4: Profile partition files

This phase takes the global profile file and generates M profile partition
files as output. Each vertex v’s profile F, is read from the global profile file, and
then written to the profile partition file corresponding to the partition of its
master replica. At the end, each profile partition file j.prof consumes upto
O([N/M]P) memory or disk space. Each profile partition file subsequently
allows the fast loading of the profiles of all master vertices in its partition in
the Phase 5, as it facilitates sequential reading of the entire file without any
random disk operations.

4.4.5 Phase 5: Distance computation

This phase uses each partition’s in-edge, out-edge, and partition profile
files to compute the distances between each vertex and a collection of its neigh-
bors, neighbors” neighbors, and random vertices, generating the set of new
K-closest neighbors for the next iteration.

Algorithm §7 shows the pseudo-code for this phase. Distance computation
is performed at the granularity of a partition, processing sequentially each one
from 1 to M (line §2-§25). Once a partition i is completely processed, each
vertex v € W, assigned to i has a set of new K-closest neighbors.

The processing of partition i primarily employs four in-memory data struc-
tures: InProf, InBrid, HeapTopK, and tuple T. First, InProf stores the pro-
files of vertices (W;) in partition i read from the i.prof file (line §3). Sec-
ond, InBrid stores the bridge vertices and their corresponding number of
in-neighbors in partition i read from the i.in.deg file (line §4). Third,
HeapTopK is a heap, which is initially empty (line §5), then it stores the scores
and ids of the K-closest neighbors for each vertex v € W;. Finally, tuple T stores
neighbors, neighbors’ neighbors, and random neighbors’ tuples for distance
computation.

For computing the new KNN for each vertex s € W;, all partitions starting
from 1 to M are parsed one at a time (lines §6-§25) as follows. For a partition
j, its profile file j.prof and its out-edge bridge file j. out . deg are read into
two in-memory data structures OutProf and OutBrid, respectively (lines §7-
§8). Similar to i’s in-memory data structures, OutProf stores the profiles of
vertices (Wj) in partition j, and OutBrid stores the bridge vertices and their
corresponding number of out-neighbors in partition j. By identifying a set of
common bridge vertices between InBrid and OutBrid, we generate in paral-



76 Chapter 4. Out-of-core KNN approach

lel, all ordered tuples of neighbors’ neighbors as follows:
(s,d)|s € Wi, d € W, (s,b) € E(b,d) € EY,b € (InBrid N OutBrid)(4.3)

Here, each ordered tuple (s, d) represents a source vertex s € W; and a
destination vertex d € Wj, with an out-edge (s, b) from s and an-inedge (b, d)
to a bridge vertex b that is common to both InBrid and OutBrid. We also
generate in parallel, all ordered tuples of each vertex s € W; and its imme-
diate neighbors (w|w € B, N Wj) which belong to the partition j. A distance
metric such as cosine similarity or euclidean distance is then used to compute
the distance score (Dist(F, Fq)) between each ordered tuple’s source vertex s
and destination vertex d. The top-K heap (HeapTopK[s]) corresponding to the
source vertex s is updated with the destination vertex d’s id and the computed
distance score (Dist(Fs, Fq)).

4.5 Experimental setup

In this section, we describe the experimental setup used to show how
Pons achieves the proposed goals.

4.5.1 Machine

We perform our experiments on a Apple MacBook Pro laptop, with an Intel
Core i7 processor (Cache 2: 256 KB, Cache 3: 6 MB) of 4 cores, 16 GB of RAM
(DDRS3, 1600 MHz) and a 500 GB (6 Gb/s) solid state drive (SSD).

4.5.2 Datasets

We evaluate Pons on both sparse- and dense- dimensional datasets. For
sparse datasets, we use Friendster [69] and Twitter [15]™ traces. Both in
Friendster and Twitter, vertices represent users, and profiles are their lists of
friends in the social network.

For dense datasets, we use a large computer vision dataset (ANN-SIFT-
100M) [48] which has vectors of 128 dimensions each. In this dataset, vertices
represent high-dimensional vectors and their profiles represent SIFT descrip-
tors. The SIFT descriptors are typically high dimensional feature vectors used

2Twitter dataset available on: http://konect.uni-koblenz.de/networks/twitter_ mpi
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Algorithm 7: NNComputation(): Neighbors” neighbors computation

Data: In-edge partition files, Out-edge partition files, Profiles F
Result: New K-nearest neighbors for each vertex
begin

1

2 foreach (In-edge) Partition i do

3 Read InProf from File(i.prof)

4 Read InBrid from File(i.in.deq)

5 HeapTopK[Wi] « ¢

6 foreach (Out-edge) Partition j do

7 Read OutProf from File(j.prof)

8 Read OutBrid + from File(j.out .deq)
9 Initialize tuple T «+ ¢

10 CndBrid «+ (InBrid N OutBrid) U (W; N OutBrid)
1 foreach Bridge b € CndBrid do

12 in parallel

13 Src + ReadInNeig(i.in.nbrs, b)

14 Dst « ReadOutNeig(j.out.nbrs, b)
15 AddTuples(T, Src x Dst)

16 foreach (s,d) € T do

17 in parallel

18 dist « Dist(Fs, Fq)

19 UpdateHeap(HeapTopK][s], d, dist)
20 foreach s € W, do

21 in parallel

22 Dst «+ Rnd(K) e W

23 Compute tuples s x Dst

24 Update HeapTopK][s] as above

25 File(G**1). Write(HeapTopK)

in identifying objects in computer vision. In our experiments, we use subsets
of 30 and 50 millions vectors from this dataset.

4.5.3 Evaluation metrics

We measure the performance of Pons in terms of execution time and mem-
ory consumption. Execution time is the (wall clock) time required for com-
pleting a defined number of KNN iterations. Memory consumption is mea-
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Dataset Vertices | P | K | Virtual Mem. [GDb]
ANN-SIFT 30M (30M) 30M 128 | 10 19.35
ANN-SIFT 50M (50M) 50M 128 | 10 30.88

Friendster (FRI) 38M 124 | 10 23.26
Twitter (TWI) 44M 80 | 10 19.43

Table 4.1: Datasets.

sured by the maximum memory footprint observed during the execution of
the algorithm. Thus, we use maximum resident set size (RSS) of the program
for measuring its peak memory consumption during the entire computation,
along with this virtual memory size (VM).

4.6 Evaluation

We evaluate the performance of Pons on large datasets that do not fit in
memory (Table §4.1 shows the size of the memory required to load the whole
dataset). We compare our results with a fully in-memory implementation of
the KNN algorithm (INM). We show that our solution is able to compute KNN
on large datasets using only the available memory, regardless of the size of the
data.

4.6.1 Performance

We evaluate Pons on both sparse and dense datasets. We ran one iteration
of KNN both on Pons and on INM. We divide the vertex set on M partitions
(detailed in Table §4.2), respecting the maximum available memory of the ma-
chine. For this experiment both approaches run on 8 threads.

4.6.1.1 Execution time

In Table §4.2 we present the percentage of execution time consumed by
Pons compared to INM’s execution time for various datasets. Pons performs
the computation in only a small percentage of the time required by INM for
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the same computation. For instance, Pons computes KNN on the Twitter
dataset in 8.27% of the time used by INM. Similar values are observed on other
datasets. These results are explained by the capacity of Pons to use only the
available memory of the machine, regardless of the size of the dataset. On the
other hand, an in-memory implementation of KNN needs to store the whole
dataset in memory for achieving good performance. As the data does not fit
in memory, the process often incurs swapping, performing poorly compared
to Pons.

Exec. Time RSS[GB] Virtual Mem.[GB]
Dataset M || Pons/INM % || Pons || INM | Pons INM
Friendster (FRI) 5 6.95 11.23 || 12.79 || 16.86 23.26
Twitter (TWI) 4 8.27 13.04 || 13.78 || 15.55 19.43
ANN 50M (50M) || 9 4.34 12.77 || 13.16 || 15.48 30.88

Table 4.2: Relative performance Pons/INM, and memory footprint.

4.6.1.2 Memory footprint

As we show in Table §4.2, our approach allocates at most the available
memory of the machine. However, INM runs out of memory, requiring more
than 23 GB in the case of Friendster. As a result, an in-memory KNN compu-
tation might not be able to efficiently accomplish the task.

4.6.2 Multithreading performance

We evaluate the performance of Pons and INM, in terms of execution time,
on different number of threads. The memory consumption is not presented be-
cause the memory footprint is almost not impacted by the number of threads,
only few small data structures are created for supporting the parallel process-
ing.

Figure §4.6 shows the execution time of one KNN iteration on both ap-
proaches. The results confirm the capability of Pons to leverage multithread-
ing to obtain better performance. Although the values do not show perfect
scalability, results clearly show that Pons’ performance increases with the
number of threads. The fact that is not a linear increase is due to that some
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phases do not run in parallel, mainly due to the nature of the computation,
requiring multiple areas of coordination that would affect the overall perfor-
mance.

1E+6
Z 1E+5
(] “®-FRI (Pons)
E o FRI (INM)
1E+4 30M (Pons)
0\‘\’*. ><30M (INM)
1E+3
1 2 4 8
Threads

Figure 4.6: Impact of multithreading on Pons.

4.6.3 Performance on different memory availability

One of the motivation of this work is to find an efficient way of comput-
ing KNN online, specifically considering contexts where not all resources are
available for this task. KNN computation is often just one of the layers of a
larger system, therefore online computation might only afford a fraction of
the resources. In this regard, we evaluate Pons’ capacity of performing well
when only a fraction of the memory is available for the computation. Fig-
ure §4.7 shows the percentage of execution time taken by Pons compared to
INM, for computing KNN running on a memory-constrained machine.

If only 20% of the memory is allocated to KNN, Pons requires only 12% of
the execution time taken by INM on a dense dataset. In the case of a sparse
dataset, Pons computes KNN in only 20% of the time taken by INM, when the
memory is constrained to 20% of the total. On the other hand, when 80% of
the memory is available for KNN, Pons requires only 4%, and 8% of the INM
execution time, on dense and sparse data set, respectively. These results show
the ability of Pons of leveraging only a fraction of the memory for computing
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Figure 4.7: Impact of the available memory on Pons.

KNN, regardless of the size of data. Therefore, Pons lends itself to perform
online KNN computation using only available resources, leaving the rest free
for other processes.

4.6.4 Evaluating the number of partitions

Pons’ capability to compute KNN efficiently only using the available mem-
ory relies on the appropriate choice of the number of partitions M. Larger val-
ues of M decrease the memory footprint, diminishing likewise algorithm’s
performance, this is due to the increase in the number of I/O operations.
On the other hand, smaller values of M increase the memory footprint, but
also decrease performance caused by the usage of virtual memory and conse-
quently expensive swapping operations. An appropriate value of M allows
Pons to achieve better performance.

4.6.4.1 Execution time

We evaluate the performance of Pons for different number of partitions.
Figures §4.8 and §4.9 show the runtime for the optimal value, and two subop-
timal values of M. The smaller suboptimal value of M causes larger runtimes
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Figure 4.9: Runtime: The impact of the number of partitions M. Twitter
dataset.

due to the fact that the machine runs out of memory, allocating virtual mem-
ory for completing the task. Although runtime increases, it remains lower
than INM runtime (roughly 7% of INM runtime). Larger suboptimal value of
M affects performance as well, by allocating less memory than it is available,
thus misspending resources in cases of full availability.
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4.6.4.2 Memory footprint

Figure §4.10 and §4.11 show the memory footprint for the optimal value of
M, and two suboptimal values. In both cases, smaller values of M increase
RSS, reaching the maximum available, unfortunately, virtual memory foot-
print increase as well, affecting the performance. The optimal value of M
increases RSS to almost 16 GB, but virtual memory consumption remains low,
allowing much of the task being performed in memory. On the other hand, a
larger value of M decreases both RSS and the virtual memory footprint, per-
forming sub optimally. Although, larger values of M affect performance, this
fact allows our algorithm to perform KNN computation on machines that do
not have all resources available for this task, regardless the size of the data.
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Figure 4.10: Memory footprint: The impact of M. ANN-SIFT 50M dataset.
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Figure 4.11: Memory footprint: The impact of M. Twitter dataset.

4,7 Conclusions

In this chapter we proposed Pons, an out-of-core algorithm for comput-
ing KNN on large datasets, leveraging efficiently both disk and the available
memory. Pons’ performance relies on its ability to partition a KNN graph and
profiles into smaller chunks such that the subsequent accesses to these data
segments during the computation is highly efficient, while adhering to the
limited memory constraint.

We evaluate Pons’ performance in terms of execution time and memory
consumption compared with a fully in-memory algorithm. We demonstrated
that Pons is able to compute KNN on large datasets, using only the mem-
ory available. Pons outperforms an in-memory baseline, computing KNN on
roughly 7% of the in-memory’s time, using efficiently the available memory.
Our evaluation showed Pons’ capability for computing KNN on machines
with memory constraints, being also a good solution for computing KNN on-
line, devoting few resources to this specific task.
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Chapter 5

Updating profiles in KNN
algorithms

In this chapter, we focus on the challenge of computing KNN on data that
changes continuously and rapidly over time. As we have mentioned previ-
ously, computing KNN is a memory intensive operation, which is aggravated
with the increasing size of the datasets. Doing these computations on dynamic
datasets will only increase the memory bottleneck and consequently the run-
time.

In this chapter, we present UpKNN [53]: a scalable and memory-efficient,
thread-based approach to take the updates on a dataset into account and still
compute the KNN efficiently, keeping a check on the wall-time. Our contribu-
tion UpKNN processes millions of updates in real-time, running on a single
commodity PC.

Our extensive experiments, performed on both dense and sparse datasets,
confirm the scalability of UpKNN, both in number of updates processed and
the threads used in the computation. UpKNN achieves speedups ranging
from 13.64X to 49.5X in the processing of millions of updates, with respect
to the performance of a non-partitioned baseline. These results have been
achieved by performing roughly 1% of the disk operations performed by the
baseline. Experiments also show that UpKNN is able to process an average
of 3.2 millions updates per second, making our approach a good solution for
online KNN processing.

The remainder of this chapter is organized as follows. Section §5.1 intro-
duces this work. Section §5.2 provides an intuition and background, giving
the notations to formally describe the problem addressed in this work. Sec-
tion §5.3 presents our contribution UpKNN in details. In addition we also
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show how our solution is implemented on top of Pons [24], our out-of-core
approach for computing KNN on static profiles. Section §5.4 describes the
experimental setup used to evaluate our approach. The evaluation and anal-
ysis of the results obtained are presented in Section §5.5. Finally, Section §5.6
summarizes our work in UpKNN.

5.1 Introduction

As we have already discussed, some of the applications involving the use
of KNN witness changes in profiles over time, but the principle of KNN, com-
puting similarities between pairs of users, makes it very difficult to take these
changes into account.

Previous works [14, 32] have shown that the majority of the computation
time involved in the whole process is spent on computing these similarity val-
ues. For instance, a brute-force approach for computing the K-nearest neigh-
bor graph of a N entities system has a complexity of O(N?). Any kind of addi-
tional updates in the profiles of users will only mean more of such similarity
computations, thereby increasing the computation time considerably, making
the algorithm less and less scalable.

Due to this cost, many current state-of-the-art approaches [14, 23, 24, 32]
simplify the processing assuming the dataset remains static throughout the
computation. Unfortunately, performing KNN computation on static data
brings a major downside. As we know, nowadays data changes continuously
at unimaginable rates, specially on those web-based, social networks or rec-
ommendation systems” applications. Consequently, the computation of KNN
on static datasets does not consider data’s dynamism, relying on content that
is always outdated. Although there are some current approaches [11, 13] that
re-compute the KNN periodically to consider changes in profiles, to the best
of our knowledge, there are no works updating profiles throughout the KNN
computation.

Hence, in this chapter, we focus on this particular aspect of KNN, i.e., ac-
counting for the changes in user preferences. As a result we propose Up-
KNN, a multithreading approach for processing real-time updates in KNN
algorithms. The main novelty in our contribution is the use of a set of paral-
lel computing bricks to design and code an efficient approach to address the
challenges in this specific problem.

UpKNN is designed to avoid random accesses to disk, applying updates
in profiles all together in parallel, thereby achieving a better performance. In
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UpKNN, we move away from traditional random access approaches towards
a more efficient partition-based idea. Instead of directing a stream of updates
directly towards users, we propose to partition the updates, based on the ex-
isting partition based KNN approach (such as in Pons [24]).

UpKNN is designed to perform well on a single commodity PC, through
an efficient out-of-core approach that leverages disk and main memory effi-
ciently. The most recent works [43, 63, 91, 119, 132] have shown the out-of-core
algorithms as an efficient, inexpensive and more accessible way of implement-
ing complex algorithms on single machines. Although distributed algorithms
exhibit good scalability for processing large datasets, we observe that design-
ing, coding and debugging these algorithms is more complex than those run-
ning on single machines.

This partition of the update stream is carefully designed in two phases,
employing a multithreading approach. While the first phase, classify, reads
from the update stream to classify the user-item tuples read, into their corre-
sponding partitions, the second phase, merge, is responsible for adding these
updates in the existing user-profiles, stored in disk. Such an idea of directing
the updates avoids the random updates all together, thereby achieving a better
performance in computation time.

We perform extensive experiments to highlight this performance against a
baseline approach - where the updates are applied from a non-partitioned set
of data, using a multithreading programming model also. Our experiments
show that UpKNN scales in the number of updates processed, being able to
process 100 millions of updates in roughly 40 seconds on a commodity PC. Be-
sides, UpKNN scales linearly with respect to the number of threads devoted
to the computation.

In summary, our main contributions of the paper are as follows:

e We propose UpKNN, an efficient multithreading approach that ad-
dresses the challenge of performing real-time updates on KNN profiles.

e UpKNN reduces the number of disk operations performed during the
computation, favoring the reading and writing of large chunks of data
from disk.

e Our carefully designed multithreading approach leverages the use of
two-layer in-memory buffers to reduce synchronization between threads
and concurrency issues in I/O operations.

e UpKNN implements a two-phase approach that overlaps I/O requests
and computations to improve the performance by keeping the CPU busy,
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running several independent tasks together.

5.2 Background

The applications served by the well-known KNN algorithm often has tem-
poral user-profiles, i.e., the profiles of users that change and evolve over time.
For the sake of clarity, we focus on user-based KNN, where users add new
items to their profiles. For example, in a recommendation system for a movies
website, users will view /rate more movies over time either as the new movies
are released or by simply continuing to watch movies. Therefore, in systems
with changing user-profiles, a KNN also needs to account for these changes.
The challenge in considering the updates of the user-profiles is that it will con-
siderably increase the time taken for the KNN computations i.e., the run-time
of the process) and in addition to it, will make the memory requirements of
KNN surge. These challenges become more significant when we aim to use
a single commodity PC. With the growing number of updates in the stream,
this process continues to become increasingly challenging.

As a result, we propose UpKNN, a novel way of integrating a stream of
user updates to compute the KNN in an online fashion, promising high scala-
bility in terms of the number of updates that can be performed without com-
promising on the evaluation metrics. To give a detailed description of the
UpKNN algorithm in Section §5.3, we first lay a background of notations and
assumptions in Section §5.2.1. Once we have defined the data-structures and
representations, we continue by giving a formal definition of the problem in
Section §5.2.2.

5.2.1 Notations and assumptions

Let us consider a set of entities V = {vy, vy, ..., v}, [V| = N, associated with
a set items denoted by I = {i;,1,,...,iv}, |I]| = Y. UpKNN assumes that the
underlying KNN approach partitions the N entities into M partitions and the
size of each such partition is denoted by SP, where SP = [N/M|. (M is a system
parameter for UpKNN). With the aim of using a single machine for the com-
putations, we divide the large datasets, that otherwise cannot be completely
loaded into the memory, into M partitions. We chose the number of partitions
such that at least one partition can be fully loaded and processed in memory
at a time. As the partitioning algorithm goes beyond the focus of this work,
we simply assume a random partitioning of the N entities.
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Each entity v has associated a profile F,, which is an array of items associ-
ated to her. Corresponding to each of the m partitions there is a partition file
PF,, stored in disk, which stores the profiles F of all the entities belonging to
partition m:

PF.={F./luemlvymeM

To update the set of profiles, UpKNN receives an unsorted stream/set of
updates S consisting of entity-item pairs:

S={<vi>|veViel}

As we have pointed out, one of the driving factors behind the performance
of UpKNN is the carefully designed partition scheme. As a result, UpKNN,
relying on a multithreading partition based approach, reads the updates to
classify and write them into M update files, UF,,.

5.2.2 Problem definition

The principal objective of this work is to consider the temporal changes
in entities” profiles while constructing the KNN graph. Due to the response
time requirements of the applications using KNN, it is of utmost importance
that these changes are integrated and computed in real-time. Like any other
algorithm, we are bound by memory and resources availability. Keeping these
constraints in mind, we target to perform the updates on profiles and compute
the KNN on a single commodity PC, maximizing the number of updates that
UpKNN can sustain.

Therefore, given a stream/set of updates S, for an underlying graph with
entities V associated to an item set I, UpKNN'’s goal is to compute the KNN
graph considering S in real-time, on a single commodity PC, minimizing al-
gorithm’s computational time.

5.3 UpKNN algorithm

As we have pointed out earlier, UpKNN targets to compute KNN on a
single commodity PC, while sustaining a large number of real-time updates
on KNN profiles. We propose to achieve this by using a two phase approach.
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Our approach is based on a simple observation: the read operations from disk
are costly in time. Intuitively, the more read operations, the larger is the time
required to perform them. With UpKNN, we propose to parallelize these read
operations and other computations to perform the updates on the profiles.

UpKNN carefully employs threads and buffers to perform the disk
read /write operations efficiently, which results in impressively efficient KNN
computations in terms of the wall-time, even while considering millions of
updates on the profiles.

5.3.1 Classify-Merge phases

In brief, UpKNN is designed around two phases, namely: Classify and
Merge. As the name suggests, these two phases, classify and merge, are re-
sponsible for the classification of the updates, explained shortly, and integrat-
ing them to the existing profiles respectively.

The goal of the classify phase is to read the entity-item tuples from the
set/stream of updates S, and put them in their corresponding m update files
UF,,. Following this phase, merge takes the UF,, files as input to produce
updated profiles, i.e., it merges the items of PF,, with the items of the corre-
sponding UF,, and writes the contents back to the PF,,.

5.3.1.1 Classify

The idea behind this phase is to group the updates, that will be performed
on a similarly grouped data in an attempt to minimize the number of expen-
sive read /write operations on disk.

In a nutshell, this phase is responsible for classifying the updates from
the update set S. In order to achieve this classify, it reads the entity-item
tuples from the update stream and classifies them as per entities” partition
(derived from the underlying KNN algorithm). A general data structure
EntitytoPartition is available to know univocally each entity’s partition.

As we have pointed out earlier, classify phase is designed to reduce disk
operations. This is achieved by using two-layer in-memory buffers, which are
read and written using a multithreading approach. With this, UpKINN makes
sure that while performing the expensive read operations (to read the update
set from disk), there are threads classifying the already read data, thereby
achieving a higher throughput.
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Let S be the stream of updates that contains new items for users i and j:
<1i,1>,<j,2>,and < i,3 >. An inefficient updating of these profiles results
in the reading of i’s profile from disk twice. The system reads i’s profile from
disk, inserts item 1, and writes it back to disk. Then, it processes j’s item. Now,
a new item appears for user i, which leads to a new reading of i’s profile from

disk.

In general, a set of updates does not exhibit a specific appearance order of
the new items. Updating profiles following such unsorted pattern results in
multiple profile readings/writings from/to disk. Consequently, the number
of disk operations increases, affecting system’s performance.

Aiming to reduce disk operations by minimizing profiles reading/writing
from/to disk, we classify updates per the entities” partition, such that all up-
dates of the same partition be applied at once. The computation of all the up-
dates of a partition implies loading profiles once, without further operations
over an already updated profile during the current computation.

To elaborate on this, we present Figure §5.1, depicting the complete phase
of classify in details.

Local Buffer 1

Global Buffer
1
2 I
T\:rd* UF1
=
UF,
M UF,
UFm

Stream of Updates Local Buffer X

Figure 5.1: Classify phase. Reader threads in continuous lines, classifier
threads in dashed lines.

As we can see in the figure, a stream of updates S having unsorted entity-
item tuples is present in the disk. The classification process implying the use
of various threads and buffers, explained shortly, classifies these updates and
stores them into M update files, denoted by UF,.
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A priori, we have pairs of threads which we call reader-classifier threads,
denoted by T,; and T, respectively, as shown in the Figures §5.1 and §5.2. Each
of these T,; — T; pair shares a unique communication channel, denoted by C;
in the figure. When the stream S is available, each reader thread T, reads one
of the equal-sized slices of S. The stream S is sliced so as to parallelize the
process of reading in general, and update on a whole.

Once the T, has read a slice from S, it puts that part of the stream in the
communication channel and notifies the corresponding T, of its presence. As
T. receives the notification, it accesses data from the communication channel,
freeing it for new data (from T.), and hence T, is notified.

We should note that the T, — T, threads communicate via a communication
channel C, which leads to reduce unnecessary synchronization between them
(only T, accesses its slice of S on disk). As a direct result, we save computation
time with this. While T, performs longer I/O operations, T. classify updates
into partitions. This is a simple yet carefully designed and chosen mechanism
to reduce the overhead involved in updating the profiles and hence to have a
higher scalability.

Reader Thread Tr Classifier Thread Tc
— 4— camm ¢ @
Writes the buffer Readls the buffer

Communication Channel

Stream of Updates

Figure 5.2: T, /T. /C configuration. (T, in continuous lines, T, in dashed lines).

A key factor to achieve high performance in our multithreading approach
is the overlap of computations and I/O operations. While a reader thread
is obtaining data from the stream (I/O request), a classifier thread is reading
the data from the communication channel, and classifying updates in parti-
tions, preliminarily stored in local buffers and later written into the corre-
sponding update files. Both tasks are performed concurrently, reducing the
idle CPU time. Such I/O-computation overlap has improved the performance
in I/O-intensive algorithms [43, 90, 119], of which KNN is a significant exam-
ple. With such observations, we have carefully designed the classify phase
of UpKNN deploying threads and buffers at various levels. Our evaluation
Section §5.5 shows how such careful deployment helps in updating millions
of updates on large number of profiles in online-computations.
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Once the data has been read from S and is available for T, it is ready to be
classified in the corresponding update file UF,,,. To achieve this, each classifier
thread T.; has access to its M partitioned local buffer LB;, each of size M x
4Imb]. Therefore, the partition m belonging to the local buffer LB; of thread
T.; is denoted by LB;,,,. The data read by T, (from the communication channel)
might have a large set of entity-item tuples to be updates belonging to different
partitions. Keeping the large size of updates in mind, we implement a second
level of buffer, mostly to reduce synchronizations and I/O operations. This
buffer, having M partitions, is called Global buffer, common to all the classifier
threads T.. Due to this fact, each of the M partitions in the Global buffer is
protected by a mutex, which prevents multiple classifiers to access the same
partition concurrently. The size of the Global buffer, in our approach has been
fixed to 8 [mb] per partition, thus leading to a total size of M x 8[mb]. This
size is experimentally selected by searching for the size that achieves the best
performance.

Using the data read from C;, the thread T; classifies the entity-item tuples
and stores them into their corresponding local buffer partitions: LB;,. As
soon as a partition m of any local buffer LB; becomes full, its data is put into
the corresponding partition of the global buffer by the corresponding T;. This
process of putting the data, first into the partitions of local buffers followed
by those of the global buffer, continues until any of the partitions of the global
buffer becomes full. Once the global buffer partition is full, only then the data
of that particular partition is written into the corresponding update profile file
UF,,, stored in the disk. The thread T.;*, who is responsible to write the update
profile file, is the one who last wrote the data into the partition of the global
buffer making it full.

Global Buffer

Local Buffer
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4 > <——
<Jon,sword> Chani > Melisandre, fire. 2 )
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Figure 5.3: Classification example.

Figure §5.3 presents an example of how the classification works. A reader
thread T, reads its chunk of the stream and sends it to its classifier T, through
the communication channel C. T classifies the list of updates into their re-
spective partitions. In the example, the local buffer of partition m is full, then
T. writes the content of this buffer into m’s partition of the global buffer. As
this partition on the global buffer is also full, T *, the last thread who wrote in
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the global buffer, will write the content of partition m’s global buffer into the
corresponding file UF,,.

We use a two-layer buffer in order to perform the classification process in-
memory as much as possible. With experimental values, we can see how the
use of a global buffer, in addition to the local buffers, reduces the disk writ-
ing operations which are computationally more expensive as compared to the
storage in buffers. The cost of writing a buffer, including the synchronization
operations runtime, is several times lower than writing a file in parallel. In
our design, as only one thread has access to the global buffer of some partition
m, when this is full, there is no need of synchronization to write UF,, file.

To stop the computation, when a reader thread has nothing else to read
from the stream, it notifies its classifier thread. Once the classifier has been
notified, it checks the communication channel for one last time to see if there
are any updates left to be classified. In case there are, it reads from them from
the communication channel, continuing the whole process and terminating
the thread by writing the contents of the corresponding local buffer into the
global buffer.

The last classifier thread alive is in-charge of writing everything that re-
mains on the global buffer into the updates files UF. We use a counter of alive
classifiers so that each thread would know whether it is the last thread alive or
not. To ensure consistency and integrity, we implement a checking condition
to be sure that all reader and classifier threads are terminated, and nothing has
been left unclassified.

5.3.1.2 Merge

The classify phase has already completed half of this task, i.e., classifying
the updates read from the update stream into M files stored in the disk. The
merge phase adds the updates from these UF,, files to the already existing M
profile files PF,, in the disk.

Thus, the input of this merge phase is the set of update files UF,,, generated
as a result of the classify phase. To carry out this phase effectively, a set of
threads process the updates from these files in parallel. Noticeably, an obvious
choice of the number of threads is same as the number of files, which in turn
is same as the number of partitions, i.e., M. In other words, we ensure that we
have enough threads T, so that each thread accesses one update file at a time
and hence all the files can be read and merged in parallel, leveraging internal
I/0O parallelism observed on modern high-speed SSDs, while adhering to the
limited memory constraint of a single machine.
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To perform the merge, each thread T, loads the updates from the corre-
sponding update file UF,, into memory. These updates are inserted sequen-
tially into a heap to sort them, in this case, by entities’ id. Sequential access to
updates stored in files, implies sequential disk accesses, thus leading to better
performance.

Once the updates are present into the heap, T, proceeds to complete the
process. The purpose of sorting the updates by entities” id on the heap is to
have all the occurrences of a particular user continuously. Now that the up-
dates are sorted by entities” id, T,, proceeds to read from disk the contents of
the corresponding profile file PF,, (obtained from the underlying KNN ap-
proach) and to merge them with the updates from the heap (also read se-
quentially). The process of merging old profiles with new items is performed
in-memory. Finally, the same thread T,, writes the updates profiles into the
profile file PF,,,. Using the same thread for reading and writing, avoids syn-
chronization operations and related costs, and hence, achieves full parallelism
in I/O operations.

Figure §5.4 shows an example of how the merge phase works. Let one
of the threads T be in charge of processing the update partition file PF;. T;
inserts the whole set of updates from the corresponding file into a heap. It
then sequentially accesses the heap to apply the updates. We note that sorting
the heap by entities” id helps the thread to apply all the updates of a user
simultaneously, saving multiple read operations for each user. In this example,
user Jon, has two items to merge into his profile. By accessing sequentially the
heap, the algorithm obtains the list of Jon’s updates. Once the thread Tj has
all items of user Jon, it loads Jon’s profile from the corresponding partition file
PT;, and merges these two updates in the profile (bolded items in PF;). Finally,
it writes back the modified profile to the corresponding profile file PF;.

PF;

D Item )
) - Update profiles J | hield d
UF/ inserted| Jon | shield on | gloves [ shield |swor

. » 4
—om ol |y [ Jon |sword <Jon, shield sword >,

| <Oberyn, helmet>, Cersei
<Oberyn,helmet> Oberyn |helmet—>] PN \\A

<Jon,sword>

- - Oberyn| spear |helmet
List of items per user

On disk

In-memory Heap

Figure 5.4: Merge example.
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5.3.2 Implementing UpKNN on Pons

Although UpKNN is independent of the underlying KNN algorithm, we
show a particular instance of its implementation on Pons [24]. Pons is mul-
tithreading out-of-core approach for computing KNN on large datasets. For
this purpose, the algorithm is adapted to run on a stand-alone machine, parti-
tioning data accordingly to the available memory.

As a remainder of Chapter §4, Pons performs the approximate KNN com-
putation iteratively. At iteration t, the data is modeled by a directed graph
G = (V,EM), where V is the set of N = |V| entities, and E) represents edges
between each entity and its current K-nearest neighbors. Each entity v has a
profile F, of fixed length P.

For computing KNN, Pons divides the set of users in M equal-sized
partitions, respecting the memory constraints. Pons executes iteratively 5
phases. Firstly, divides the set of users into M partitions. Secondly, creates
in-edge/out-edge partition files, required for some phases of the computa-
tion. After, it creates the profile partition files j.prof, which store the profile
of all users assigned to partition j. This set of files is one of the inputs of
UpKNN (PF,, in UpKNN). It is important to mention that Pons stores the
profiles sequentially sorted by the user id. This feature helps to improve the
performance of the update phase, because updates inserted in the heap are
also sorted by user id, thus the reading/writing of profiles from/to disk is
also sequential.

Algorithm 8: Pons and UpKNN
Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v € G finds its KNN.

1 begin

2 foreach Iteration t do

3 1. Partitioning(GlobalOutEdges)

4 2. Create In-edge Partition Files

5 3. Create Out-edge Partition Files

6

7

8

9

4. Write Profile Partition Files: PF,,
5. Update Profiles

5.1 Classify Phase
5.2 Merge Phase
10 6. Compute Distances
11 Update(GlobalOutEdges)

Algorithm §8 shows the pseudo-code of how UpKNN runs within a Pons’
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execution. As we mentioned above, UpKNN requires the set of partition pro-
tiles PF,, to perform the updates, these files are created in line §6. Even though
our approach works well within Pons, it can be implemented on top of other
approaches as well, it is only required the access to the partitioned set of users
profiles. Best performance is obtain when the accesses to the set of profile do
not incur in random disk operations.

UpKNN is executed in lines §7-§9, when Pons has already created the set
of profile files. The output of UpKNN is the new set of profiles that includes
all new items added by the users. Pons continues the execution in the phase 6,
performing distance computation, by comparing the profiles of a user and its
current neighbors, neighbors” neighbors and K random neighbors (detailed in
Section §4.4.5).

5.4 Experimental setup

UpKNN is extensively evaluated on two datasets, Movielens [44] and Me-
diego, detailed in Section §5.4.2

We have implemented UpKNN in roughly 1000 lines of C++ code, com-
piled on clang-omp++ 3.5.0, using -O2 optimization. In addition, we have
used Openmp and Pthreads to enable multithreading computation.

5.4.1 Machine

We have performed our experiments on a MacBook Pro laptop, equipped
with an Intel Core i7 processor (Cache 2: 256 KB, Cache 3: 6 MB) consisting of
4 cores, 16 GB of RAM (DDR3, 1600 MHz) and a 500 GB (6 Gb/s) solid state
drive (SSD).

5.4.2 Datasets

Out of the two datasets that we use to evaluate UpKINN, Movielens is pub-
licly available, while the other one, Mediego'!, is not. These datasets represent
two entirely different domains, one where users have shown their preferences
in a huge set of movies (Movielens), and the other which has a collection of
users of content edition web-sites (Mediego).

http://www.mediego.com/
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1. Movielens: provides the movie-rating data gathered from the Movie-

lens recommender website over a duration of around 7 months. In this
dataset, the items are the movies. In a typical setting, a user has a rat-
ing associated to the movie she has watched. These affinities, in form
of ratings from 1-5 are reflected in user-profiles. But in our case, we
do not require the ratings, and hence only consider the users and their
associated movies. Hence, these user-movie(s) associations are used to
construct the user profiles for UpKNN.

. Mediego: consists of users and the web-pages they visit from various

different websites™. Each user activity has a timestamp associated to it,
which is used to partition the profiles into initial profiles and the up-
dates.

Table §5.1 shows the statistics of the datasets in terms of number of users
and items. In both the datasets, each user activity has a timestamp associated
to it, which is used to partition the profiles into initial profiles and the update
stream. We use 20% of the items as the initial profiles, and the remaining 80%
items are used to populate the update stream S. Table §5.1 details the total
number of updates (80% of items). 20%-80% division is done on the basis of
the timestamps present for each user-item interaction. As a result, the first
20% of the profiles sorted on timestamps become the initial profiles and the
remaining 80% that follow in time constitute the updates.

Dataset H Users ‘ Items ‘ #Updates (80% items)
Movielens (MOV) || 138,493 | 20,000,263 16,000,210
Mediego (MED) | 4,130,101 | 7,954,018 6,363,214

Table 5.1: Datasets description in number of users, items and number of up-
dates (80% of the dataset size).

5.5 Evaluation

In this section, we present the results and evaluate the performance of Up-

KNN around various parameters.

f2as it is a proprietary database, we cannot disclose the names
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We do an extensive analysis of the results obtained for the datasets consid-
ered and of various factors related to the datasets and of the approach itself.
Specifically, we present the results and evaluate the performance of UpKNN,
in terms of wall-time, which is the total time taken to integrate the updates in
the existing profiles from the time of receiving them.

As we show in this section, UpKNN performs efficient profile updates in
sparse and dense datasets, scaling linearly with respect to the number of up-
date processed. Additionally, UpKNN is able to process 3.2 millions of up-
dates per second in average. These good results are based on a carefully de-
signed multithreading approach along with the use of in-memory buffers to
perform faster operations, and the reduction of disk operations to avoid the
impact of the disk latency in performance.

5.5.1 Performance

We evaluate the performance of UpKNN on both the datasets, i.e., Movie-
lens and Mediego, over various parameters.

As we have mentioned earlier, to the best of our knowledge, currently there
are no algorithms that consider the updates on entities” profiles while comput-
ing the KNN in an online fashion. This renders it difficult for us to compare
UpKNN against other approaches. To overcome this, we choose a natural
baseline, against which we can compare UpKNN. For a fair comparison the
baseline also uses a multithreading approach where several threads read the
updates from the update stream and add them to the respective profiles. In
other words, a thread reads a entity-item tuple value from the stream of up-
dates, and accordingly loads the corresponding entity’s profile from the disk
and modifies it with this new item. Once the profile has been modified, it is
written back to the disk.

We now compare the performance of UpKNN with the baseline that we
have set.

5.5.1.1 Runtime

Table §5.2 shows UpKNN'’s and baseline’s wall-time for computing a
certain number of updates on each of the datasets, along with UpKNN's
speedup. Logically, as we see in the table, more the number of updates,
higher is the time taken for the process. We have highlighted in bold, the
best speedups achieved by UpKNN when considering the 80% of updates on
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20% of the initial profiles™. We also experiment with 100M updates, by using
random updates (as the maximum number of updates for each of the dataset
is less than 100M), to test UpKINN's scalability, and also to see the difference
with the baseline. As the datasets these days cross over billions of users, we
claim that these numbers (10M, 100M updates) are a good representation of

the reality.

Dataset || #Updates | UpKNN [sec] | Baseline [sec] | Speedup
MOV 1M 0.795 10.869 13.67X
MOV 10M 3.635 105.747 29.08X
MOV 20/80 3.687 184.513 49.5X
MOV 100M 39.662 1055.804 26.61X
MED 1M 5.658 20.509 3.62X
MED 20/80 1.543 72.576 47X
MED 10M 17.665 198.658 11.24X
MED 100M 47.329 1931.154 40.80X

Table 5.2: UpKNN'’s runtime and speedup (with respect to the baseline) in
updating entities’ profiles.

As highlighted in bold, we see that UpKNN considerably outperforms the
baseline, for both the datasets. UpKINN achieves a speedup of 49.5X for the
Movielens dataset, taking only 3.687 seconds for about 16 million updates.
Similarly, we obtain a speedup as high as 47X for the Mediego dataset.

Although UpKNN performs consistently good whether the updates are or-
dered according to time or randomly, there is a difference in performance. This
difference in performance can be attributed to the high user activity around a
given timestamp. For example, while rating movies, a user is more likely to
rate several movies at one time than to rate movie as per the time she watches
them. Similarly, while reading the news, a user tends to go through several
news items around a given timestamp rather than consulting one news article
every 15 minutes or 1 hour. This kind of clustering of user activity around
time, lets UpKINN process more updates per second when the updates are or-
dered in time, as compared to random updates. Such ordering favors heap’s
performance in merge phase.

We notice from Table §5.3, that UpKNN is capable of processing more than

3Table §5.1 details the actual values
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4 million [updates/sec], for both the datasets considered. This is consistent
with the motivation of our work. Our solution not only performs on a single
commodity PC, but it also performs in real-time, making it a novel approach
in itself. Moreover, we analyze the wall-time taken by UpKINN when the up-
dates to be applied are chosen randomly instead of ordering them by times-
tamp. The results are shown in Table §5.3 (3rd and 4th row). Again, for both
the datasets, we are able to process more than 2 million [updates/second],
even when the updates are not ordered according to the timestamp.

Dataset | #Updates | Time[s] | #Updates/second
MOV || 20/80 (16M) | 3.678 4.33M
MED || 20/80 (6.3M) | 1.543 4.12M
MOV 100M 39.662 2.52M
MED 100M 46.329 211M

Table 5.3: Number of updates processed by second on UpKNN.

In addition to the very little time taken by UpKNN to process millions of
updates, with Figure §5.5, we also verify its scalability in terms of updates
processed. We see that even after increasing the number of updates from 10M
to 100M, the execution time increases only by a factor of 10.

Moreover, we show in Table §5.4, the rate at which the updates are pro-
cessed per KNN iteration. For this, we measure the wall-time of one KNN
iteration, and the number of updates processed per second (from Table §5.3).

A KNN iteration compares entities” profiles to select K-nearest neighbors
of each entity in the system. However, profiles compared during the KNN
computation are not affected by the update processing, since the profile com-
parison are made using a prior version of the profiles.

We observe high numbers of updates processed during one KNN iteration,
specifically in those longer iterations. This fact shows an opportunity to up-
date the profiles while the KNN computation runs. To do so efficiently, we
use only a small fraction of the resources to update the profiles, preventing
the KNN computation’s performance from getting adversely affected.
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Figure 5.5: Scalability in terms of updates processed.

Dataset #Updates/second | Iteration Timel[s] | #Updates/iteration
MOV 20/80 4.33M 7.489 32.4M
MOV 100M 2.52M 50.671 127,6M
MED 20/80 4.12M 127.930 527M
MED 100M 2.11M 253.294 534.4M

Table 5.4: Number of updates processed in a KNN iteration.

5.5.1.2 Disk operations

The crux of UpKNN is a careful employment of threads and two-layered
buffers to accelerate the processing of updates. This acceleration is achieved
as a direct result of the reduction in the number of disk operations.

To underline the performance of UpKNN, we present an overview of vari-
ous disk operations involved in the implementation and execution of UpKNN.
We also compare our results to the baseline set earlier (multithreading algo-
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rithm to read the data stream and classify it sequentially, unlike in UpKNN).
Table §5.5 presents the number of disk seeks, bytes read and written, and num-
ber of read and write operations for both UpKNN and the baseline. Columns
% present the percentage of operations performed by UpKNN with respect to
those performed by the baseline.

As evident from the Table §5.5, UpKNN reduces considerably the number
of disk operations performed throughout the updating process. In the case of
ordering the updates in time (as they appear in the source datasets) and taking
the first 20% to construct initial profiles and the remaining 80% to constitute
the update stream, we obtain better results than the case where the updates
are randomly put in the stream (and not ordered in time). In the former case,
UpKNN takes only 0.0006% of the seeks performed by the baseline. Similarly,
the number of bytes written in our approach (with 20/80 division of profiles,
ordered in time) is reduced to only 1.98% of those of the baseline, and the
total bytes read is reduced to 3.88% with respect to the number of bytes read
for the baseline. These differences are explained by UpKNN'’s capability to
apply all the updates for a profile at once. A profile is read from disk once,
modified in memory, and written back to disk once. In the other case, the
baseline reads/writes the whole profile each time there is an update for it.

We also observe similar differences in case of updates applied randomly.
As shown in Table §5.5, UpKNN consumes very few disk operations as com-
pared to the baseline. For updating Mediego dataset using 100 millions ran-
dom updates, our approach performs only 2.753% of the disk seek operations
performed by the baseline. The percentage of written bytes on our approach
is only 6.11%, and read bytes is only 7.933% compared to the number of these
operations performed by the baseline.

UpKNN’s performance relies on its capacity to reduce disk operations
throughout each phase of the computation. For instance, the stream of up-
dates (read from disk) is accessed only once on the classification process.
In addition, the utilization of a heap reduces the need of multiple profile
reads/writes from and to the disk. As a result of this optimization, each profile
is read /written only once.
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MOV 20/80 MED 20/80
UpKNN Baseline % UpKNN Baseline Yo
Disk seeks 29 48M | 0.0006 27 19M | 0.0001
Write [bytes] 128M 6400M | 1.98 50M 2570M | 1.98
Write [times] 12 16M | 0.0001 10 oM 0.0001
Read [bytes] 256M 6592M | 3.88 101M 2621IM | 3.88
Read [times] 127 32M | 0.0004 55 12M | 0.0004
MOV 1M MED 1M
UpKNN Baseline % UpKNN Baseline %
Disk seeks 276K 3M 9.22 1.7M 3M 59.221
Write [bytes] 64M 404M | 15.821 || 367M 404M | 90.81
Write [times] 138K M 13.842 888K 1M 88.83
Read [bytes] 72M 412M | 17.456 || 375M 412M | 90.99
Read [times] 138K 2M 6.921 888K 2M 44.41
MOV 10M MED 10M
UpKNN Baseline % UpKNN Baseline Yo
Disk seeks 277K 30M 0.923 7.5M 30M | 25.101
Write [bytes] 136M 4040M | 3.365 || 1601M  4040M | 39.632
Write [times] 138K 10M 1.385 3.7M 10M | 37.651
Read [bytes] 216M 4120M | 5.241 1681M 4120M | 40.804
Read [times] 138K 20M 0.692 3.7M 20M | 18.826
MOV 100M MED 100M
UpKNN Baseline % UpKNN Baseline Yo
Disk seeks 277K 300M | 0.092 8M 300M | 2.753
Write [bytes] 856M 40KM | 2118 || 2468M  40KM | 6.110
Write [times] 138K 100M 0.138 4.1M 100M 4.130
Read [bytes] || 1656M  41KM | 4.019 | 3268M  41KM | 7.933
Read [times] 139K 200M | 0.069 41M 200M | 2.065

Table 5.5: Disk operations. % of UpKNN's operations with respect to those of

the baseline.
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5.5.1.3 Number of threads

In this section, we evaluate UpKINN's capacity to scale with respect to the
number of threads available to perform the computations. We show that our
approach leverages the computational resources to perform better. Figure 5.6
presents the wall-time required to execute 100 millions updates, using various
numbers of threads. We observe near-linear decrease in the runtime when the
number of threads increases. When the number of threads available for the
computation grows, the wall-time decreases near-linearly, the small difference
is mainly due to the increase in the synchronization among threads.
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Figure 5.6: Threads scalability.

5.5.2 Evaluating usage of data in memory

We observe that one of the most costly operations performed throughout
the computation is the reading of profiles from disk, when they have to be
updated. Our approach is designed to make an efficient usage of the data
loaded in memory, by applying all updates of the same profile immediately,
with no further loading of the same profile from disk. UpKNN's performance
improves even more when a profile has numerous updates, thereby reducing
the disk reads significantly.
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We note that it is possible to face a scenario where the reading of profiles
is done to apply only one update at a time. This possible scenario degrades
performance, the time of a I/O request for reading a profile from disk is larger
than the negligible time of adding only one item in memory. Our approach has
been designed to apply several items into the profiles at once. Therefore, the
larger the number of items applied per profile, the better the use of such profile
in memory. In the next experiment, we evaluate UpKNN's performance when
this worst case happens.

To evaluate the performance in such a case, we used a modified version of
the datasets. Each user updates her profile with only one item (#Updates =
N).

For the sake of a fair comparison, we compare UpKNN'’s update time with
respect to the time needed to perform exactly the same number of updates,
but in an average case. This average case means that a profile may be updated
with 0, 1 or more items (in total #Updates = N).

Table §5.6 compares runtime of UpKNN facing the worst case scenario de-
scribed above, and a more common case (average case in the table). Table §5.6
shows that UpKNN'’s runtime does not increase considerably. Despite the
overhead caused by the loading of a profile for only a small task in memory,
UpKNN continues to perform well.

Dataset | #Updates = N | Worst case [sec] | Average case [sec]

MOV 138,493 0.642 0.502
MED 4,130,101 16.418 11.830

Table 5.6: Worst case (1 update per user) vs average case (same number of
updates but distributed among all users).

5.5.3 Evaluating design decisions

A fundamental optimization in the code is the implementation of a heap
to store all updates for the same user sequentially. By doing so, each profile
is fully updated at once. Such an operation helps in reducing the number of
profile reads/writes from/to disk, the most time-consuming tasks performed
on UpKNN.
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While the heap reduces such costly operations, it also creates an additional
overhead. The heap must sort the updates by the id of the entity, increasing
runtime when the number of updates is large.

In the following, we apply 100 millions random updates, and we measure
the runtime of such processing in two cases, when UpKNN implements the
heap, and when it does not.

Figures §5.7 and §5.8 show the time required for the modification of the
profiles applying 100 millions random updates. Despite the fact that the us-
age of a heap adds an overhead to the computation, in both the datasets the
heap improves considerably the performance of the system. The runtime of
updating profiles in Movielens and Mediego datasets is only roughly 4% of
the time without using the heap. We conclude that the additional overhead
incurred by the use of the heap is negligible, and it is essential to reach perfor-
mance.

80 —
@ 60
£
= 40
20
0 Le 4

Heap No Heap

Figure 5.7: Heap improvement (Movielens Dataset).

Table §5.7 helps to understand how, despite the overhead incurred by the
use of a heap, UpKNN achieves such a performance. The table presents the
number of disk operations performed to update the profiles, comparing an
execution that uses the heap, with other that does not. The % columns com-
pare the number of operations performed using a heap with respect to those
without a heap.

We observe that the heap helps to reduce the number of disk seeks,
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Figure 5.8: Heap improvement (Mediego Dataset).

MOV 100M (random) MED 100M (random)
Heap No Heap % Heap No Heap Yo
Disk Seeks 27 32M 0.00008 || 27 12.7M | 0.00021
Write [bytes] || 50.9M  6592M 0772 || 51IM  2621M 1.941
Write [times] 10 16M 0.00006 | 10 6.3M 0.0001
Read [bytes] || 230M  6720M 3419 | 102M  2672M 3.809
Read [times] 55 16M 0.0003 55 6.3M 0.0008

Table 5.7: Disk operations heap/no heap.

read /written bytes and number of I/O operations. Without the heap, are re-
quired multiple I/O operations, each time a profile is modified. The algorithm
should perform I/O tasks to read the profile from disk and write it back when
the modification is done. In the opposite case, using the heap, the profile is
read only once from disk, updated simultaneously with all its updates, and
written back to disk.
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5.6 Conclusions

We presented UpKNN, a multithreading approach for computing K-
Nearest Neighbors with temporal user preferences on very large datasets. We
have shown extensive experiments to claim that this scalable solution can be
achieved on a single commodity PC.

This novel approach achieves high performance (measured in terms of
wall-time) by moving away from traditional random access approaches to-
wards a more efficient partition-based idea. The performance of our im-
plementation relies on a carefully designed multithreading approach which
makes use of two-layer in-memory buffers that overlap I/O requests and CPU
computation throughout the processing. Such an overlap of operations is re-
sponsible for the optimization of I/O operations to read and write large blocks
of data from and to disk. These overlapped operations also reduce the disk
seeks and random read/write operations which are usually the main bottle-
neck in disk-based algorithms.

Along with a detailed description of the two-phase UpKNN, we have also
supported our results with an exhaustive evaluation of UpKNN on a single
commodity machine, using a well-known publicly available dataset and an-
other larger proprietary dataset. UpKINN shows the capability to update 100
millions of items in roughly 40 seconds, achieving speedups ranging from 26X
up to 50X compared to the baseline. We also showed that UpKNN scales both
in the number of updates processed and the threads devoted to the computa-
tion.

Various experiments prove that UpKNN's performance is a combination
of the reduction of the random disk operations and efficient multithreading
design that minimizes the need of thread synchronization, aiming to exploit
full parallelism.
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Chapter 6

Conclusions

In this chapter, we conclude this thesis contrasting the initial objectives of
this work (Chapter§l) with the actual research done and the results achieved
(Chapters §3, §4 and §5). Furthermore, we draw some lines of the future work,
based on some open research lines stemming from this work.

6.1 Thesis summary

In this thesis we addressed the challenges of scaling the computation of
the K-Nearest Neighbors (KNN) algorithm on single machines. Specifically,
as we mentioned in Chapter §1, performing efficient KNN computation on
very large datasets requires a significant amount of memory. As if that were
not enough, this type of computation is a very time-consuming task. In this re-
gard, many works have been proposed to make an efficient use of both single
machines as well as distributed systems. In the one hand, using single ma-
chines to compute this algorithm brings new challenges in the development
of more efficient approaches, able to process efficiently despite the fact that the
memory footprints observed on very datasets go far beyond what a single ma-
chine is capable of handling. Although we may say that the single machines
have increased their capacity over the years, unfortunately, the amount of data
to be processed grows incredibly faster. On the other hand, notwithstanding
that distributed systems overcome the limitation of the available memory in
single machines, the design, implementation, and deployment of distributed
algorithms still remain challenging. Besides the cost in terms of workload,
distributed systems bring a significant monetary cost. Implementing efficient
distributed algorithms requires a not small set of machines running together
to perform the computation. Sadly, not all the potential users (namely modest
research environments or small companies) can afford it.
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Due to its high cost, many works on KNN computation, specially those
processing KNN queries on very large datasets, perform the computation in
an offline fashion. In other words, offline periods when the system is not
working or only executing a reduced workload. In general, KNN algorithms
represent just a layer of major systems, hence they do not have access to the
full set of resources at any time. Although this offline processing decongests
system’s load to prioritize online tasks, it may harm the quality of the KNN
outcome.

Furthermore, the high-cost of computing KNN leads to a simplification re-
garding data dynamism. Current state-of-the-art works only deal with static
sets of data throughout the computation. This simplification reduces the com-
putational complexity and runtime of the algorithm. Unfortunately, despite
it brings some benefits, it also induces a significant shortcoming. Computing
on static data does not reflect appropriately its true dynamic nature, affecting
the potential results. In these days, data flows and changes rapidly, thus pro-
cessing on static data (or updated infrequently), makes us lose some valuable
information that arises from the dynamism observed on a small time scale.

Updating data during the computation adds new complexities to the algo-
rithm, specially if this data is continuously accessed, as KNN does to perform
the comparisons. Furthermore, as data changes rapidly, updating data in an
online fashion would force the algorithm to process, not only its own KNN
task, but also large streams of dynamic data simultaneously. Such a concur-
rent processing brings new challenges in the design and implementation of al-
gorithms capable of computing KNN on data that changes continuously and
rapidly over time.

6.2 Objectives of this thesis

In this general context, this work aimed to scale the computation of the K-
Nearest Neighbors algorithm on single machines. A scalable solution must be
capable of processing large current datasets within a reasonable time, consid-
ering the limitations imposed by a restricted set of computational resources.
The motivation behind the use of single machines instead of more complex
distributed systems, is the ease of access to this sort of computational resource
and its lower cost with respect to that of the distributed systems, both in mon-
etary terms as well as human workload. In algorithms designed for running
on single machines, synchronization, data consistency, and some others well-
known issues in distributed systems, do not need to be addressed. Besides,
single machines have shown good performance running well-designed algo-
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rithms, along with a good extent of simplicity in the design, coding, and de-
ployment of complex algorithms.

In this work, we do not only aimed to scale the KNN computation, but
we also aimed to build a lightweight approach, able to leverage the limited
resources of a single commodity machine. Thus, becoming an inexpensive, but
not less efficient, approach. A lightweight approach lends itself as a solution
for performing online KNN computation, mainly due to its capacity to run
well using fewer resources. Therefore, an online KNN approach is a valuable
solution whether, along with using fewer resources, it runs within reasonable
times.

Finally, another objective of this thesis was to propose an efficient solution
for processing updates on data during the KNN computation. As we men-
tioned above, the dynamic nature of data has not been properly reflected and
adequately handled on static algorithms, as current KNN state-of-the-art ap-
proaches do.

In this thesis, we fulfilled these objectives through two main contributions,
which we summarize in the following.

6.3 Contributions

6.3.1 Pons [24]

In Chapter §4 we have presented Pons, an out-of-core algorithm for com-
puting KNN on large datasets that do not completely fit in memory. Our ap-
proach computes KNN incurring a minimal cost, by storing all data in hard
disk, loading and processing this data from disk into a limited section of the
main memory. The main rationale of our approach is to minimize random ac-
cesses to disk, and to favor sequential readings from disk. Pons’ performance
relies on its ability to partition the data into chunks such that the subsequent
accesses to these data segments is highly efficient, while adhering to the lim-
ited memory constraint of a single machine.

The experimental evaluation performed on large-scale datasets showed
that Pons computes the KNN in roughly 7% of the time required by a fully
in-memory implementation. Pons has shown to be also capable of computing
online on machines with memory constraints, using only a limited fraction of
the system’s memory, freeing up resources for other tasks.
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6.32 UpKNN [53]

In Chapter §5 we have presented UpKNNN, a scalable and memory efficient,
thread-based approach for processing real-time updates in KNN algorithms.
By using a thread-based approach we accessed and partitioned the updates in
real-time, processing millions of updates online, on a single commodity PC.

To achieve a good performance, UpKNN greatly reduces the number of
disk operations performed during the computation, favoring the reading and
writing of large chunks of data from disk. Our carefully designed multithread-
ing approach leverages the use of two-layer in-memory buffers to reduce syn-
chronization between threads and concurrency issues in I/O operations.

The experimental results showed UpKNN's capability to update 100 mil-
lions of items in roughly 40 seconds, scaling both in the number of up-
dates processed and the threads used in the computation. Thereby, Up-
KNN achieves speedups ranging from 13.64X to 49.5X in the processing of
millions of updates, with respect to the performance of the baseline.

Various experiments proved that UpKNN'’s performance is achieved by
the right combination between the reduction of the random disk operations
and our efficient multithreading design. In this regard, we showed that these
results have been achieved by performing roughly 1% of the disk operations
performed by the baseline. Experiments also showed that UpKINN processes
an average of 3.2 millions updates per second, making our approach a good
solution for online KNN processing.

6.4 Perspectives

In this section we look forward, describing what is beyond this work. To
do so, we firstly look back upon our contributions, spotlighting the limitations
of our proposal. We describe some ideas both to improve the scalability and to
make a better use of the resources on our contributions. Secondly, we describe
a set of possible extensions of our work for the future.

Pons

Having a look at Pons, we observe the use of a fixed profile size to im-
prove the efficiency of I/O operations. Fixing this value allows us to know
beforehand the size of the blocks read/written from/to disk, improving the
efficiency of the I/O requests by handling optimized blocks of data during the
computation. Although such an approach improves the performance, it does
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not agree with reality in every case. Datasets used in KNN algorithms rarely
exhibit identical profile size across the whole set of profiles. Therefore, this as-
sumption increases the memory footprint of the algorithm, allocating wasted
memory space for profiles that may contain less items than the memory re-
served. Otherwise the opposite case is also possible, which implies an under-
estimation of the space in memory assigned to the profiles, in other words, the
profiles contain more items than the fixed size assumed in the algorithm. In
order to address this issue, we propose to study the possibility of maintaining
a fix profile length, but it can be fixed dynamically based on certain properties
of the dataset as average profile length. This dynamic fixation allows us to
keep the benefits of fixed block sizes but adapting the length according to the
data.

Another critical point that we observe in Pons is the amount of data re-
read and re-written over iterations. Our approach reads/writes a set of files
for both in-edges and out-edges of the graph at each iteration of the algo-
rithm, even if the edges did not change during the previous iteration. Unfor-
tunately, these operations are a major bottleneck in I/O-intensive algorithms,
such as KNN. We propose to study the feasibility of an optimized way of read-
ing/writing only in cases when the data has changed. An efficient way to
optimize these operations is to mark changed data, and perform the I/O oper-
ations only when necessary. Reducing these I/O operations we will undoubt-
edly improve algorithm’s scalability and performance.

A final possible adjustment for Pons is to optimize the partitioning algo-
rithm. In Pons, we implemented a specific partitioning algorithm to increase
the probability of assigning neighbors to the same partition. Such an opti-
mization improves performance of the algorithm, through the favoring of pro-
file comparison of entities in the same partition. In other words we aimed to
promote intra-partition comparisons, thus reducing the inter-partition oper-
ations, which are considerably more expensive. A possible improvement on
this algorithm is to also favor neighbors’ neighbors assignation into the same
partition. As well as our current partitioning algorithm, this optimization will
also aim to favor intra-partition operations, processing more comparisons in
the same partition, reducing costly inter-partition communications.

UpKNN

Regarding UpKNN, we can point out few issues to improve in order to
get better performance and scalability. Firstly, we observe the merge phase of
UpKNN, which is devoted to incorporate updates into profiles by using a set
of threads to perform this operation. Each thread processes the whole update
set of a partition, loading the updates and the set of profiles in such parti-
tion completely in memory. As the set of threads does the same operation
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concurrently, we note that the total memory footprint can exceed the bound-
aries of the machine. This incurs in multiple accesses to the virtual memory,
degrading performance. As a consequence, we observe in our experiments
evaluating UpKNN's scalability that the improvement is near-linear when the
number of threads increases. This defect is mostly caused by the impact of the
virtual memory in the processing. Consequently, we suggest to improve this
operation by limiting the memory allocated, dividing it adequately among
threads, favoring multithreading as much as possible.

Finally, we draw some lines regarding future work. Firstly, having in mind
the fast growth of data, we need to increase the scale of the datasets tested
on our contributions. The primary objective leading this thesis is to scale the
computation on single machines, considering that this computational setup
provides us an inexpensive albeit restricted set of resources. Although we
have proved that it is feasible to scale the KNN computation on single ma-
chines, it is impossible not to notice that this scalability obviously has a limit.
To go beyond, we necessarily need to think of large scale distributed systems
as an option. Both distributed algorithms as well as cloud-based approaches
allow us to scale the computation considerably. Although feasible, we have to
address carefully a set of well-known issues in distributed systems, namely,
consistency, fault tolerance, synchronization, among others.

Considering a larger scale distributed extension of our work, as we already
mentioned in Chapter §2, a key issue in distributed computing is the difficulty
of finding an appropriate partitioning algorithm. On the basis of distributed
algorithms is the fact that the data is divided and then processed by several
machines simultaneously. To divide this data we need to partition it across the
machines, fulfilling the needs of this specific KNN algorithm. A fundamen-
tal feature of this partitioning algorithm will be its capacity to favor, as much
as possible, the assignation of both neighbors as well as neighbors” neighbors
into the same machine. Such an assignation would favor intra-machine rather
than inter-machine operations, thereby improving the performance of the al-
gorithm.

In the same distributed environment, another focus of our future work is to
find an enhanced profile representation as well as an efficient distributed stor-
age of them. A decentralized version of the profiles has to be both lightweight
as well as an accurate version of them, considering that the profiles are com-
municated through the network during the profile comparisons. Additionally,
a good profile representation should support updates over time, considering
that these profile are handled by several machines, which are probably geo-
graphically far apart, hence the communication cost is non negligible at all.
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Chapter 7

Résumé

Depuis plusieurs années, nous avons assisté a une croissance écrasante
des données générées. Selon le rapport d'IBM, environ 2,5 trillions octets
de donnés sont créés chaque jour™. Par exemple, des centaines d’heures
de vidéos sont visionnées chaque minute sur YouTube'; il y a en moyenne
350 000 tweets émis par minute sur Twitter'®; et 300 millions de photos sont
envoyées sur Facebook chaque jour'.

Bien que l'accés a une grande variété de données peut étre utile pour
les utilisateurs, cette énorme quantité de données devient inutile si elle est
mal classée, filtrée, ou affichée. En particulier, il est possible de recueil-
lir de I'information pertinente aprés avoir répondu aux questions suivantes:
(1) Comment puis-je trouver des données similaires dans un vaste ensemble
de données ? (2) Comment puis-je trouver des éléments semblables a ceux que
j’aime dans un vaste monde tel qu’Internet ? Et plus précisemment, (3) Com-
ment puis-je trouver de la musique, des photos, et des livres similaires a ceux
que je connais déja?

La méthode des K-plus proches voisins (dénoté KNN pour l’anglais
K-Nearest Neighbors) est le socle de nombreuses approches capables de
répondre a ces questions. Dans cette these, nous nous concentrons sur des
algorithmes de KNN, qui se sont révélés étre une technique efficace pour trou-
ver des données similaires au sein d"un grand ensemble de données. Bien que
le KNN n’est pas la seule méthode existente, il a certainement gagné en pop-
ularité [117] grace a sa qualité, sa simplicité et sa polyvalence.

Cependant, comme tout algorithme efficace et polyvalent, le KNN est

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
2http://expandedramblings.com/index.php/youtube-statistics/
PBhttp://www.internetlivestats.com/twitter-statistics/
https://zephoria.com/top- 15-valuable-facebook-statistics/
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cotiteux. Ce cofit peut étre exorbitant, surtout au vu de la croissance effrénée
de la quantité de données générées.

Dans un monde ou les données changent continuellement, effectuer des
calculs efficaces de KNN sur de grandes bases de données nécessite des
quantités importantes de mémoire. Par ailleurs, en plus du besoin impor-
tant en mémoire, 1'exécution du KNN se révele étre un processus cotiteux
en lui-méme. Compte tenu de ces faits, de nombreux travaux ont proposé
plusieurs algorithmes pour tirer parti de maniére efficace des ressources lo-
cales aux machines isolées et des ressources partagées dans les systéemes
répartis. D’une part, 1'utilisation de machines isolées apporte de nouveaux
défis sur l'utilisation de la mémoire, qui est généralement limitée. Mal-
heureusement, stocker 'ensemble des données d'un KNN dans la mémoire
n’est pas toujours possible. D’autre part, nonobstant le fait que les systéemes
répartis ont surmonté la limitation en mémoire disponible pour les machines,
la conception, la mise en ceuvre et le déploiement d’algorithmes répartis
restent encore trés complexe.

Comme conséquence directe de son cofit élevé, nous pouvons observer sur
certains travaux de 1’état de 1’art [13, 14, 32] que le calcul de KNN est souvent
effectué hors-ligne (généralement pendant la nuit). Bien que le calcul hors
ligne de KNN décongestionne la charge du systéme pour laisser de la place
aux processus plus importants, il s’éxécute malheureusement sur des données

statiques ou obsoletes, ce qui pourrait étre nocif pour la qualité des résultats
du KNN.

Le cotit élevé des calculs de KNN conduit également & une simplifica-
tion en ce qui concerne le dynamisme de données. Des travaux récents dans
I’état de I’art traitant du KNN ne considére uniquement que des ensembles de
donnée statiques, et ce tout au long des calculs. Cela vise a accélérer les calculs
et ainsi réduire le temps d’exécution. Malheureusement, les calculs effectués
sur des données statiques ne refletent pas de maniere appropriée la véritable
nature dynamique des données. Dans le monde actuel, ot les données circu-
lent et changent constamment, le traitement sur données statiques (ou sur des
données mises a jour qu'une seule fois par jour, voire moins souvent) nous
fait perdre de précieuses informations découlant de la dynamique observée a
une plus fine granularité, que ce soit au niveau des minutes, secondes, voire
moins.
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7.1 Contributions

L’objectif principal de cette these est de proposer une solution efficace pour
le passage a l'échelle du calcul de 1'algorithme des K-plus proches voisins
(KNN) sur des machines isolées. Une solution appropriée doit étre capable
de traiter de grands ensembles de données dans un délai raisonnable, compte
tenu des limites imposées par les ressources d’'une machine.

La motivation derriere 1'utilisation des machines isolées au lieu des
systemes distribués plus complexes, est la facilité d’acces a ce type de
ressource de calcul et de son cofit plus faible par rapport a celle des systemes
répartis.

Dans ce travail, nous cherchons également a construire une approche
légere, capable de tirer parti des ressources limitées d’une machine. Ainsi,
nous souhaitons proposer une approche mois cotiteuse, mais non moins effi-
cace. Une approche légere est une solution évidente pour effectuer le calcul en
ligne de KNN, principalement en raison de sa capacité a fonctionner correcte-
ment en utilisant moins de ressources.

Enfin, nous proposons une solution efficace pour le traitement des mises a
jour de données lors du calcul de KNN. Comme mentionné auparavant, 1’état
del’art en KNN ne reflete pas correctement ni ne traite adéquatement la nature
dynamique des données traitée par des algorithmes statiques.

7.1.1 Pons

Notre premiere contribution est Pons [24]: un algorithme out-of-core pour
le calcul de KNN sur de grands ensembles de données qui ne rentrent pas en
mémoire. Pour ce faire, Pons exploite efficacement a la fois le stockage sur
disque dur et la mémoire disponible. Notre approche est capable de faire le
calcul de KNN a un cotit minimal, en stockant toutes les données sur le disque
dur, et en chargeant ensuite ces données sur une section limitée de la mémoire
pour pouvoir les traiter.

Nos expériences effectuées sur de grands ensembles de donnés montrent
que Pons calcule le KNN en uniquemet 7% du temps requis par un cal-
cul en mémoire. Notre évaluation montre la capacité de Pons au calcul de
KNN sur des machines avec des contraintes de mémoire, ce qui est également
une bonne solution pour le calcul de KNN en ligne, en consacrant peu de
ressources a cette tache spécifique.
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712 UpKNN

Notre deuxieme contribution est UpKNN [53]: une approche économe en
mémoire et multithread passant efficacement a 1’échelle, pour le traitement
des mises a jour en temps réel dans les algorithmes KNN. UpKNN traite
des millions de mises a jour en ligne, alors qu’il calcule encore le KNN ef-
ficacement sur des grands ensembles de données, en utilisant une unique
machine isolée. Pour obtenir de bonnes performances, UpKNN réduit con-
sidérablement le nombre d’opérations sur disque dur effectuées lors du cal-
cul, ce qui favorise la lecture et 1’écriture de gros blocs de données a partir du
disque.

Les résultats expérimentaux montrent la capacité de UpKNN de mettre a
jour 100 millions d’éléments en environ 40 secondes, ce qui montre un passage
a I’échelle efficace a la fois en nombre de mises a jour traitées et et en nombre
de threads utilisés pour le calcul. Les expériences montrent également que
UpKNN traite une moyenne de 3,2 millions de mises a jour par seconde, indi-
quant que notre approche est une bonne solution pour le traitement du KNN
en ligne.

7.2 Perspectives

7.2.1 Pons

En ayant du recul sur Pons, nous observons l'utilisation d’une taille de
profil fixe pour améliorer 1'efficacité des opérations sur disque dur. Cette
valeur fixe nous permet de connaitre a 'avance la taille des blocs lus et écrits
depuis et sur le disque, pour I'améliorer 'efficacité des requétes sur disque
pendant le calcul. Malheureusement, les ensembles de données utilisés dans
les algorithmes KNN présentent rarement des tailles de profil identiques dans
I’ensemble des profils. Par conséquent, cette hypothese augmente I'empreinte
en mémoire de l'algorithme en allouant de I'espace mémoire inutile pour des
profils contenant moins d’éléments. Hélas, le cas contraire est également pos-
sible. Pour résoudre ce probleme, nous proposons d’étudier la possibilité de
maintenir une taille de profil fixe, mais qui peut étre définie de maniére dy-
namique en fonction de certaines propriétés de ’ensemble de données comme
la taille de profil moyen. Cette définition dynamique conserve les avantages
des tailles de bloc fixes, mais en adaptant cette taille en fonction des données.

Un autre point essentiel que nous observons dans Pons est la quantité de
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données lues et écrites de multiple fois itération apres itération. Notre ap-
proche lit et écrit un ensemble de fichiers a la fois pour les arrétes entrantes et
pour les arrétes sortantes du graph a chaque itération de l'algorithme, méme
si les arrétes ne changent pas d’une itération a une autre. Nous proposons
d’étudier la faisabilité d"un méchanisme optimisé afin de lire et écrire unique-
ment lorsque les données changent entre des itérations consécutives. Un
moyen efficace pour optimiser ces opérations consiste a marquer les données
modifiées, et effectuer les opérations sur disque uniquement si nécessaire.

Un dernier ajustement possible pour Pons est d’optimiser 1’algorithme de
partitionnement. Dans Pons, nous avons implémenté un algorithme de parti-
tionnement spécifique pour augmenter la probabilité d’assigner des membres
voisins a la méme partition. Une telle optimisation favorise les comparaisons
des profils des entités dans la méme partition, ce qui réduit les calculs inter-
partition, qui sont beaucoup plus chers. Une amélioration possible sur cet al-
gorithme est de favoriser également I’assignation des voisins des voisins dans
la méme partition.

7.22 UpKNN

Des améliorations peuvent étre apportées a la phase de fusion de UpKNN,
qui est consacré a incorporer les mises a jour dans les profils en utilisant un
ensemble de threads pour effectuer cette opération. Chaque thread traite en-
semble toute les mises a jour d'une partition, en chargeant des mises a jour
et I'ensemble des profils d"une partition complétement en mémoire. Comme
I'ensemble des threads effectuent la méme opération au méme moment, nous
notons que l"utilisation mémoire totale peut dépasser les limites de la machine.
Cela entraine donc des acces multiples a la mémoire virtuelle, ce qui dégrade
les performances. Par conséquent, nous suggérons d’améliorer cette opération
en limitant la mémoire allouée, divisant de maniere adéquate entre les threads,
ce qui favorise la concurrence, autant que possible.

7.3 Future Work

Ayant a l'esprit la croissance rapide de la quantité de données, nous avons
besoin d’augmenter la taille des ensembles de données testés sur nos contri-
butions. L'objectif principal motivant cette thése est de mettre a 1’échelle du
calcul sur des machines isolées, étant donné que cette configuration de calcul
nous donne des ressources peu coliteuses mais aussi restreintes. Bien que nous
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ayons prouvé qu’il est possible de mettre a 1’échelle le calcul de KNN sur une
machine isolée, ce passage a I’échelle a une limite. Pour aller au-dela, nous de-
vons nécessairement penser a des systémes répartis a grande échelle comme
une option. Les deux algorithmes répartis ainsi que des approches basées sur
le nuage nous permettent de passer a 1’échelle le calcul consid’erablement.
Bien que possible, nous devons aborder une séérie de questions bien con-
nues dans les systemes répartis, a savoir, la synchronisation, la cohérence, et
la tolérance aux pannes, entre autres.

Une question clé dans le KNN réparti est I’algorithme de partitionnement.
Le socle commun des algorithmes de KNN répartis est le fait que les données
sont divisées, et ensuite traitées par plusieurs machines en parallele. Pour
optimiser les calculs de KNN, l'algorithme de partitionnement doit favoriser
l'attribution des deux voisins, ainsi que les voisins des voisins dans la méme
machine. Une telle assignation favoriserait des calculs intra-machine plutot
que inter-machines, ce qui améliore les performances du calcul de KNN.

Dans le méme environnement réparti, un autre objectif de notre travail
futur est de trouver une représentation de profil amélioré. Un stockage
décentralisé de profils doit étre a la fois léger, et exact, étant donné que les
profils sont transmis par le réseau lors de la comparaison des profils. En outre,
une bonne représentation des profils devrait soutenir les mises a jour au fil du
temps, étant donné que les profils sont traités par plusieurs machines, prob-
ablement géographiquement éloignés, le cotit de la communication n’est pas
négligeable.
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Abstract

The K-Nearest Neighbors (KNN) is an efficient method to find similar data
among a large set of it. Over the years, a huge number of applications have
used KNN'’s capabilities to discover similarities within the data generated in
diverse areas such as business, medicine, music, and computer science. De-
spite years of research have brought several approaches of this algorithm, its
implementation still remains a challenge, particularly today where the data is
growing at unthinkable rates. In this context, running KNN on large datasets
brings two major issues: huge memory footprints and very long runtimes. Be-
cause of these high costs in terms of computational resources and time, KNN
state-of-the-art works do not consider the fact that data can change over time,
assuming always that the data remains static throughout the computation,
which unfortunately does not conform to reality at all.

In this thesis, we address these challenges in our contributions. Firstly, we
propose an out-of-core approach to compute KNN on large datasets, using a
commodity single PC. We advocate this approach as an inexpensive way to
scale the KNN computation compared to the high cost of a distributed algo-
rithm, both in terms of computational resources as well as coding, debugging
and deployment effort. Secondly, we propose a multithreading out-of-core ap-
proach to face the challenges of computing KNN on data that changes rapidly
and continuously over time.

After a thorough evaluation, we observe that our main contributions ad-
dress the challenges of computing the KNN on large datasets, leveraging the
restricted resources of a single machine, decreasing runtimes compared to
that of the baselines, and scaling the computation both on static and dynamic
datasets.



Résumé

La technique des K-plus proches voisins (K-Nearest Neighbors (KNN) en
Anglais) est une méthode efficace pour trouver des données similaires au
sein d'un grand ensemble de données. Au fil des années, un grand nombre
d’applications ont utilisé les capacités du KNN pour découvrir des similitudes
dans des jeux de données de divers domaines tels que les affaires, la médecine,
la musique, ou l'informatique. Bien que des années de recherche aient apporté
plusieurs approches de cet algorithme, sa mise en ceuvre reste un défi, en par-
ticulier aujourd’hui alors que les quantités de données croissent a des vitesses
inimaginables. Dans ce contexte, I'exécution du KNN sur de grands ensem-
bles pose deux problémes majeurs: d’énormes empreintes mémoire et de tres
longs temps d’exécution. En raison de ces cofit élevés en termes de ressources
de calcul et de temps, les travaux de 1’état de 1’art ne considerent pas le fait
que les données peuvent changer au fil du temps, et supposent toujours que
les données restent statiques tout au long du calcul, ce qui n’est malheureuse-
ment pas du tout conforme a la réalité.

Nos contributions dans cette thése répondent a ces défis. Tout d’abord,
nous proposons une approche out-of-core pour calculer les KNN sur de
grands ensembles de données en utilisant un seul ordinateur. Nous
préconisons cette approche comme un moyen moins cofiteux pour faire passer
a I'échelle le calcul des KNN par rapport au cofit élevé d'un algorithme dis-
tribué, tant en termes de ressources de calcul que de temps de développement,
de débogage et de déploiement. Deuxiemement, nous proposons une ap-
proche out-of-core multithreadée (i.e. utilisant plusieurs fils d’exécution) pour
faire face aux défis du calcul des KNN sur des données qui changent rapide-
ment et continuellement au cours du temps.

Apres une évaluation approfondie, nous constatons que nos principales
contributions font face aux défis du calcul des KNN sur de grands ensembles
de données, en tirant parti des ressources limitées d"une machine unique, en
diminuant les temps d’exécution par rapport aux performances actuelles, et en
permettant le passage a 1’échelle du calcul, a la fois sur des données statiques
et des données dynamiques.
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