A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. Smola, Distributed large-scale natural graph factorization, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.37-48, 2013.
DOI : 10.1145/2488388.2488393

URL : https://hal.archives-ouvertes.fr/hal-00918478

M. Ankerst, G. Kastenmüllerkastenm¨kastenmüller, H. Kriegel, and T. Seidl, Nearest neighbor classification in 3D protein databases, Proceedings of the International Conference on Intelligent Systems for Molecular Biology (ISMB), pp.34-43, 1999.

M. Attique, H. Cho, and T. Chung, CORE: Continuous Monitoring of Reverse k Nearest Neighbors on Moving Objects in Road Networks, Computer and Information Science 2015, pp.109-124
DOI : 10.1007/978-3-319-23467-0_8

A. Barabási, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, pp.173-187, 1999.

M. Batko, C. Gennaro, P. Savino, and P. Zezula, Scalable similarity search in metric spaces, DELOS Workshop: Digital Library Architectures, pp.213-224, 2004.

M. Batko, C. Gennaro, and P. Zezula, A Scalable Nearest Neighbor Search in P2P Systems, Databases, Information Systems, and Peer-to-Peer Computing: Second International Workshop (DBISP2P), pp.79-92, 2004.
DOI : 10.1007/978-3-540-31838-5_6

M. Bertier, D. Frey, R. Guerraoui, A. Kermarrec, and V. Leroy, The Gossple Anonymous Social Network, Proceedings of the ACM/IFIP/USENIX 11th International Conference on Middleware
DOI : 10.1007/978-3-642-16955-7_10

URL : https://hal.archives-ouvertes.fr/hal-01055283

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is " nearest neighbor, Proceedings of the 7th International Conference on Database Theory (ICDT), pp.217-235, 1999.
DOI : 10.1007/3-540-49257-7_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. B. Ohm and F. Krebs, The K-nearest neighbour join: Turbo charging the KDD process, Knowledge and Information Systems, vol.6, issue.6, pp.728-749, 2004.

O. Boiman, E. Shechtman, and M. Irani, In defense of Nearest-Neighbor based image classification, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587598

A. Boutet, D. Frey, R. Guerraoui, A. Jegou, and A. M. Kermarrec, WHAT- SUP: A decentralized instant news recommender, IEEE 27th International Symposium on Parallel Distributed Processing (IPDPS), pp.741-752, 2013.
DOI : 10.1109/ipdps.2013.47

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A. Kermarrec, Privacy-preserving distributed collaborative filtering, Networked Systems: Second International Conference, pp.169-184, 2014.
DOI : 10.1007/s00607-015-0451-z

URL : https://hal.archives-ouvertes.fr/hal-00975137

A. Boutet, D. Frey, R. Guerraoui, A. Kermarrec, and R. Patra, HyRec, Proceedings of the 15th International Middleware Conference on, Middleware '14, pp.85-96, 2014.
DOI : 10.1145/2663165.2663315

URL : https://hal.archives-ouvertes.fr/hal-01080016

A. Boutet, A. Kermarrec, N. Mittal, and F. Ta¨?anita¨?ani, Being prepared in a sparse world: The case of KNN graph construction, 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 2016.
DOI : 10.1109/ICDE.2016.7498244

URL : https://hal.archives-ouvertes.fr/hal-01251010

M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, Measuring user influence in Twitter: The million follower fallacy, Proceedings of the International Conference on Weblogs and Social Media (ICWSM), pp.10-17, 2010.

B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, StreamRec, Proceedings of the 2011 international conference on Management of data, SIGMOD '11, pp.1243-1246, 2011.
DOI : 10.1145/1989323.1989465

M. S. Charikar, Similarity estimation techniques from rounding algorithms, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing , STOC '02, pp.380-388, 2002.
DOI : 10.1145/509907.509965

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Chen, H. Yin, J. Yao, and B. Cui, TeRec, Proceedings of the VLDB Endowment, pp.1254-1257, 2013.
DOI : 10.14778/2536274.2536289

J. Chen and H. Y. Lau, A reinforcement motion planning strategy for redundant robot arms based on hierarchical clustering and Knearest-neighbors, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.727-732, 2015.

J. Chen, H. Fang, and Y. Saad, Fast approximate KNN graph construction for high dimensional data via recursive Lanczos bisection, Journal of Machine Learning Research, vol.10, pp.1989-2012, 2009.

Q. Chen, D. Li, C. K. Tang, and . Knn, KNN Matting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.9, pp.2175-2188, 2013.
DOI : 10.1109/TPAMI.2013.18

R. Chen, X. Weng, B. He, and M. Yang, Large graph processing in the cloud, Proceedings of the 2010 international conference on Management of data, SIGMOD '10, pp.1123-1126, 2010.
DOI : 10.1145/1807167.1807297

N. Chiluka, A. Kermarrec, and J. Olivares, Scaling KNN computation over large graphs on a PC, Proceedings of the Posters & Demos Session on, Middleware Posters and Demos '14, pp.9-10, 2014.
DOI : 10.1145/2678508.2678513

URL : https://hal.archives-ouvertes.fr/hal-01095557

N. Chiluka, A. Kermarrec, and J. Olivares, The Out-of-core KNN Awakens:, Networked Systems: 4th International Conference, pp.295-310, 2016.
DOI : 10.1007/978-3-319-46140-3_24

URL : https://hal.archives-ouvertes.fr/hal-01336673

M. Connor and P. Kumar, Parallel construction of K-nearest neighbor graphs for point clouds Eurographics Association, Proceedings of the Fifth Eurographics / IEEE VGTC Conference on Point-Based Graphics (SPBG), pp.25-31, 2008.

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

R. Dash and P. K. Dash, A hybrid stock trading framework integrating technical analysis with machine learning techniques, The Journal of Finance and Data Science, vol.2, issue.1, pp.42-57, 2016.
DOI : 10.1016/j.jfds.2016.03.002

M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, R. S. Yokoyama et al., Locality-sensitive hashing scheme based on p-stable distributions Real-time path planning to prevent traffic jam through an intelligent transportation system, Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG) 2016 IEEE Symposium on Computers and Communication (ISCC), pp.253-262, 2004.

T. Debatty, P. Michiardi, O. Thonnard, and W. Mees, Building KNN graphs from large text data, 2014 IEEE International Conference on Big Data (Big Data), pp.573-578, 2014.
DOI : 10.1109/bigdata.2014.7004276

URL : https://hal.archives-ouvertes.fr/hal-01133324

P. J. Denning, Virtual Memory, ACM Computing Surveys, vol.2, issue.3, pp.153-189, 1970.
DOI : 10.1145/356571.356573

W. Dong, C. Moses, and K. Li, Efficient k-nearest neighbor graph construction for generic similarity measures, Proceedings of the 20th international conference on World wide web, WWW '11, pp.577-586, 2011.
DOI : 10.1145/1963405.1963487

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. D. Ekstrand, J. T. Riedl, and J. A. , Collaborative Filtering Recommender Systems, Foundations and Trends?? in Human???Computer Interaction, vol.4, issue.2, pp.81-173, 2011.
DOI : 10.1561/1100000009

K. El-maleh, M. Klein, G. Petrucci, and P. Kabal, Speech/music discrimination for multimedia applications, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp.2445-2448, 2000.
DOI : 10.1109/ICASSP.2000.859336

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Franti, O. Virmajoki, and V. Hautamaki, Fast Agglomerative Clustering Using a k-Nearest Neighbor Graph, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.11, pp.1875-1881, 2006.
DOI : 10.1109/TPAMI.2006.227

I. Fujinaga and K. Macmillan, Realtime recognition of orchestral instruments, Proceedings of the international computer music conference, p.143, 2000.

V. Garcia, E. Debreuve, and M. Barlaud, Fast k nearest neighbor search using GPU, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.1-6
DOI : 10.1109/CVPRW.2008.4563100

URL : https://hal.archives-ouvertes.fr/hal-00374684

V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, K-nearest neighbor search: Fast GPU-based implementations and application to high-dimensional feature matching, 2010 IEEE International Conference on Image Processing, pp.3757-3760, 2010.
DOI : 10.1109/ICIP.2010.5654017

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions via hashing, International Conference on Very Large Databases (VLDB), pp.518-529, 1999.

G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, KNN Model-Based Approach in Classification, Proceedings On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, pp.986-996, 2003.
DOI : 10.1007/978-3-540-39964-3_62

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Haghani, S. Michel, P. Cudré-mauroux, and K. Aberer, LSH at largedistributed KNN search in high dimensions, Proceedings of the 11th International Workshop on Web and Databases (WebDB), 2008.

K. Hajebi, Y. Abbasi-yadkori, H. Shahbazi, and H. Zhang, Fast approximate nearest-neighbor search with K-nearest neighbor graph, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), p.1312, 2011.

W. Han, S. Lee, K. Park, J. Lee, M. Kim et al., TurboGraph, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pp.77-85, 2013.
DOI : 10.1145/2487575.2487581

F. M. Harper and J. A. Konstan, The MovieLens Datasets, ACM Transactions on Interactive Intelligent Systems, vol.5, issue.4, pp.1-1919, 2015.
DOI : 10.1145/2827872

V. Hautamäki, I. Kärkkäinen, and P. Fränti, Outlier detection using Knearest neighbour graph, Proceedings of the 17th International Conference on Pattern Recognition (ICPR) 2004, pp.430-433, 2004.

B. Hendrickson and R. Leland, A multi-level algorithm for partitioning graphs, Proceedings of the IEEE/ACM Conference Supercomputing (SC95), pp.28-28, 1995.

K. Huang, S. Li, X. Kang, and L. Fang, Spectral?spatial hyperspectral image classification based on KNN. Sensing and Imaging, pp.1-13
DOI : 10.1007/s11220-015-0126-z

H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, Searching in one billion vectors: Re-rank with source coding, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.861-864, 2011.
DOI : 10.1109/ICASSP.2011.5946540

M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec, and M. Van-steen, Gossip-based peer sampling, ACM Transactions on Computer Systems, vol.25, issue.3, 2007.
DOI : 10.1145/1275517.1275520

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Kapoor, V. Kumar, L. Terveen, J. A. Konstan, and P. Schrater, "I like to explore sometimes", Proceedings of the 9th ACM Conference on Recommender Systems, RecSys '15, pp.19-26, 2015.
DOI : 10.1145/2792838.2800172

N. Katayama and S. Satoh, The SR-tree: An index structure for highdimensional nearest neighbor queries, Proceedings of the 1997 ACM International Conference on Management of Data (SIGMOD), pp.369-380, 1997.

E. Keogh and A. Mueen, Curse of dimensionality, Encyclopedia of Machine Learning, pp.257-258

A. Kermarrec, N. Mittal, and J. Olivares, Multithreading approach to process real-time updates in KNN algorithms, UNDER REVISION) 2017 25th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01415495

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams et al., Mizan, Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys '13, pp.169-182, 2013.
DOI : 10.1145/2465351.2465369

J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.

P. Knees and M. Schedl, Semantic labeling of music. In Music Similarity and Retrieval: An Introduction to Audio-and Web-based Strategies, pp.85-104

Y. Koren, Collaborative filtering with temporal dynamics, Communications of the ACM, vol.53, issue.4, pp.89-97, 2010.
DOI : 10.1145/1721654.1721677

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas, Fast and effective retrieval of medical tumor shapes, IEEE Transactions on Knowledge and Data Engineering, vol.10, issue.6, pp.889-904, 1998.
DOI : 10.1109/69.738356

S. Koziel, L. Leifsson, M. Lees, V. V. Krzhizhanovskaya, J. Dongarra et al., Modeling temporal dynamics of user interests in online social networks, Procedia Computer Science, vol.51, pp.503-512

Q. Kuang and L. Zhao, A practical GPU based KNN algorithm, International symposium on computer science and computational technology (ISCSCT), pp.151-155, 2009.

L. I. Kuncheva, Editing for the k-nearest neighbors rule by a genetic algorithm, Pattern Recognition Letters, vol.16, issue.8, pp.809-814, 1995.
DOI : 10.1016/0167-8655(95)00047-K

A. Kyrola, DrunkardMob, Proceedings of the 7th ACM conference on Recommender systems, RecSys '13, pp.257-264, 2013.
DOI : 10.1145/2507157.2507173

A. Kyrola, G. Blelloch, and C. Guestrin, GraphChi: Large-scale graph computation on just a PC, 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pp.31-46, 2012.

A. Kyrola, C. Guestrin, and . Graphchi-db, Simple design for a scalable graph database system on just a PC. arXiv preprint, p.2014

S. Larrain, C. Trattner, D. Parra, E. Graells-garrido, and K. Nørvåg, Good Times Bad Times, Proceedings of the 9th ACM Conference on Recommender Systems, RecSys '15, pp.269-272, 2008.
DOI : 10.1145/2792838.2799682

L. Lee, Measures of distributional similarity, Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics -, pp.25-32, 1999.
DOI : 10.3115/1034678.1034693

J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection, 2014.

S. Liang, Y. Liu, C. Wang, and L. Jian, A CUDA-based parallel implementation of K-nearest neighbor algorithm, 2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp.291-296, 2009.
DOI : 10.1109/CYBERC.2009.5399145

S. Liang, C. Wang, Y. Liu, and L. Jian, CUKNN: A parallel implementation of K-nearest neighbor on CUDA-enabled GPU, IEEE Youth Conference on Information, Computing and Telecommunication (YC-ICT), pp.415-418, 2009.

Z. Lin, M. Kahng, K. M. Sabrin, D. H. Chau, H. Lee et al., MMap: Fast billion-scale graph computation on a PC via memory mapping, 2014 IEEE International Conference on Big Data (Big Data), pp.159-164, 2014.
DOI : 10.1109/BigData.2014.7004226

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389765

A. T. Lora, J. M. Santos, A. G. Exposito, J. L. Ramos, and J. C. Santos, Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques, IEEE Transactions on Power Systems, vol.22, issue.3, pp.1294-1301, 2007.
DOI : 10.1109/TPWRS.2007.901670

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola et al., Distributed GraphLab, Proceedings of the VLDB Endowment, pp.716-727, 2012.
DOI : 10.14778/2212351.2212354

E. H. Lu, H. S. Chen, and V. S. Tseng, Efficient approaches for multirequests route planning in urban areas, 2013 IEEE 14th International Conference on Mobile Data Management, pp.36-45, 2013.

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, Challenges in parallel graph processing. Parallel Processing Letters, pp.5-20, 2007.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn et al., Pregel: A system for large-scale graph processing, Proceedings of the 2010 ACM International Conference on Management of Data (SIGMOD), pp.135-146, 2010.

R. E. Mcroberts, M. D. Nelson, and D. G. Wendt, Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique, Remote Sensing of Environment, vol.82, issue.2-3, pp.457-468
DOI : 10.1016/S0034-4257(02)00064-0

O. Nasraoui, J. Cerwinske, C. Rojas, and F. Gonzalez, Performance of Recommendation Systems in Dynamic Streaming Environments, Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), chapter 63, pp.569-574, 2007.
DOI : 10.1137/1.9781611972771.63

L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation ranking: Bringing order to the web, 1999.

J. Pan and D. Manocha, Bi-level Locality Sensitive Hashing for k-Nearest Neighbor Computation, 2012 IEEE 28th International Conference on Data Engineering, pp.378-389, 2012.
DOI : 10.1109/ICDE.2012.40

R. Paredes and E. Chávez, Using the k-Nearest Neighbor Graph for Proximity Searching in Metric Spaces, Proceedings of the 12th International Conference on String Processing and Information Retrieval (SPIRE), Buenos Aires, pp.127-138, 2004.
DOI : 10.1007/11575832_14

R. Paredes, E. Chávez, K. Figueroa, and G. Navarro, Practical Construction of k-Nearest Neighbor Graphs in Metric Spaces, Proceedings of the 5th International Workshop Experimental Algorithms, pp.85-97, 2006.
DOI : 10.1007/11764298_8

Y. Park, S. Park, W. Jung, and S. Goo-lee, Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbor graph, Expert Systems with Applications, vol.42, issue.8, pp.424022-4028
DOI : 10.1016/j.eswa.2015.01.001

R. Pearce, M. Gokhale, and N. M. Amato, Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-11, 2010.
DOI : 10.1109/SC.2010.34

E. Plaku and L. Kavraki, Distributed computation of the knn graph for large high-dimensional point sets, Journal of Parallel and Distributed Computing, vol.67, issue.3, pp.346-359, 2007.
DOI : 10.1016/j.jpdc.2006.10.004

F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi et al., JA-BE-JA: A Distributed Algorithm for Balanced Graph Partitioning, 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, pp.51-60, 2013.
DOI : 10.1109/SASO.2013.13

C. Rana and S. Jain, A study of dynamic features of recommender systems . artificial intelligent review, p.2012

J. L. Rodas, J. Olivares, J. A. Galindo, and D. Benavides, Hacia el uso de sistemas de recomendací on en sistemas de alta variabilidad, Congreso Espã nol de Informática (CEDI), p.2016

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, Chaos, Proceedings of the 25th Symposium on Operating Systems Principles, SOSP '15, pp.410-424, 2015.
DOI : 10.1145/2815400.2815408

A. Roy, I. Mihailovic, and W. Zwaenepoel, X-Stream, Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP '13, pp.472-488, 2013.
DOI : 10.1145/2517349.2522740

B. Sarwar, G. Karypis, J. Konstan, and J. , Item-based collaborative filtering recommendation algorithms, Proceedings of the tenth international conference on World Wide Web , WWW '01, pp.285-295, 2001.
DOI : 10.1145/371920.372071

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Schank and D. Wagner, Finding, Counting and Listing All Triangles in Large Graphs, an Experimental Study, Proceedings of the 4th International Workshop on Experimental and Efficient Algorithms (WEA), pp.606-609, 2005.
DOI : 10.1007/11427186_54

M. A. Schuh, T. Wylie, and R. A. Angryk, Mitigating the curse of dimensionality for exact KNN retrieval, FLAIRS Conference, 2014.

Z. F. Siddiqui and M. Spiliopoulou, Combining Multiple Interrelated Streams for Incremental Clustering, Proceedings of the 21st International Conference on Scientific and Statistical Database Management (SSDBM), pp.535-552, 2009.
DOI : 10.1145/380995.381033

Z. F. Siddiqui, E. Tiakas, P. Symeonidis, M. Spiliopoulou, and Y. Manolopoulos, xStreams, Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), WIMS '14, pp.1-22, 2014.
DOI : 10.1145/2611040.2611051

N. Sismanis, N. Pitsianis, and X. Sun, Parallel search of k-nearest neighbors with synchronous operations, 2012 IEEE Conference on High Performance Extreme Computing, pp.1-6, 2012.
DOI : 10.1109/HPEC.2012.6408667

G. Song, J. Rochas, F. Huet, and F. Magoules, Solutions for Processing K Nearest Neighbor Joins for Massive Data on MapReduce, 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp.279-287, 2015.
DOI : 10.1109/PDP.2015.79

URL : https://hal.archives-ouvertes.fr/hal-01097337

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: A scalable peer-to-peer lookup service for internet applications, Proceedings of the 2001 Conference on Applications, Technologies , Architectures, and Protocols for Computer Communications (SIGCOMM), pp.149-160, 2001.

A. Stupar, S. Michel, and R. Schenkel, Rankreduceprocessing K-nearest neighbor queries on top of MapReduce, Proceedings of the 8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR), pp.13-18, 2010.

N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk et al., Streaming similarity search over one billion tweets using parallel locality-sensitive hashing, Proceedings of the VLDB Endowment, pp.1930-1941, 2013.
DOI : 10.14778/2556549.2556574

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Tan, Neighbor-weighted K-nearest neighbor for unbalanced text corpus, Expert Systems with Applications, vol.28, issue.4, pp.667-671, 2005.
DOI : 10.1016/j.eswa.2004.12.023

S. Tan, An effective refinement strategy for KNN text classifier, Expert Systems with Applications, vol.30, issue.2, pp.290-298, 2006.
DOI : 10.1016/j.eswa.2005.07.019

M. Tkalcic, A. Odic, A. Kosir, and J. Tasic, Affective Labeling in a Content-Based Recommender System for Images, IEEE Transactions on Multimedia, vol.15, issue.2, pp.391-400, 2013.
DOI : 10.1109/TMM.2012.2229970

K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, Multi-label classification of music by emotion, Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), pp.325-330, 2008.
DOI : 10.1007/s10994-008-5077-3

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, FENNEL, Proceedings of the 7th ACM international conference on Web search and data mining, WSDM '14, pp.333-342, 2014.
DOI : 10.1145/2556195.2556213

J. Ugander and L. Backstrom, Balanced label propagation for partitioning massive graphs, Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, pp.507-516, 2013.
DOI : 10.1145/2433396.2433461

E. Valari and A. N. Papadopoulos, Continuous Similarity Computation over Streaming Graphs, Machine Learning and Knowledge Discovery in Databases, pp.638-653, 2013.
DOI : 10.1007/978-3-642-40988-2_41

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Verstrepen and B. Goethals, Unifying nearest neighbors collaborative filtering, Proceedings of the 8th ACM Conference on Recommender systems, RecSys '14, pp.177-184, 2014.
DOI : 10.1145/2645710.2645731

J. S. Vitter, External memory algorithms and data structures: dealing with massive data, ACM Computing Surveys, vol.33, issue.2, pp.209-271, 2001.
DOI : 10.1145/384192.384193

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. S. Vitter, External memory algorithms, Handbook of Massive Data Sets, pp.359-416, 2002.
DOI : 10.1007/3-540-68530-8_1

J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan et al., Scalable KNN graph construction for visual descriptors, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1106-1113, 2012.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang et al., Localityconstrained linear coding for image classification, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3360-3367, 2010.
DOI : 10.1109/cvpr.2010.5540018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Wang, Y. Xiao, B. Shao, and H. Wang, How to partition a billion-node graph, 2014 IEEE 30th International Conference on Data Engineering, pp.568-579, 2014.
DOI : 10.1109/ICDE.2014.6816682

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Wang, R. Gopal, R. Shankar, and J. Pancras, On the brink: Predicting business failure with mobile location-based checkins, Decision Support Systems, vol.76, pp.3-13, 2015.
DOI : 10.1016/j.dss.2015.04.010

W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, Secure kNN computation on encrypted databases, Proceedings of the 35th SIGMOD international conference on Management of data, SIGMOD '09, pp.139-152, 2009.
DOI : 10.1145/1559845.1559862

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Wu, V. Kumar, J. Ross-quinlan, J. Ghosh, Q. Yang et al., Top 10 algorithms in data mining, Knowledge and Information Systems, vol.9, issue.2, pp.1-37, 2008.
DOI : 10.1007/s10115-007-0114-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Xia, H. Lu, B. C. Ooi, and J. Hu, GORDER, Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp.756-767, 2004.
DOI : 10.1016/B978-012088469-8.50067-X

Z. Xiaowei, H. Wentao, and C. Wenguang, GridGraph: Large-scale graph processing on a single machine using 2-level hierarchical partitioning, 2015 USENIX Annual Technical Conference (USENIX ATC 15), pp.375-386, 2015.

N. Xu, L. Chen, and B. Cui, LogGP, Proceedings of the VLDB Endowment, pp.1917-1928, 2014.
DOI : 10.14778/2733085.2733097

Y. Xu, X. Ning, X. Gao, and F. Yu, Quality and safety news topic tracking algorithm based on improved K-nearest neighbor, Proceedings of The fourth International Conference on Information Science and Cloud Computing, 2015.

J. Yang, W. Li, S. Wang, J. Lu, and L. Zou, Classification of Children with Attention Deficit Hyperactivity Disorder Using PCA and K-Nearest Neighbors During Interference Control Task, Proceedings of the Fifth International Conference on Cognitive Neurodynamics: Advances in Cognitive Neurodynamics (V), pp.447-453
DOI : 10.1007/978-981-10-0207-6_61

Y. Yang and X. Liu, A re-examination of text categorization methods, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '99, pp.42-49, 1999.
DOI : 10.1145/312624.312647

Y. Yang and J. O. Pedersen, A comparative study on feature selection in text categorization, International Conference on Machine Learning (ICML), pp.412-420, 1997.

C. Yu, B. Cui, S. Wang, and J. Su, Efficient index-based KNN join processing for high-dimensional data, Information and Software Technology, vol.49, issue.4, pp.332-344, 2007.
DOI : 10.1016/j.infsof.2006.05.006

C. Yu, B. C. Ooi, K. Tan, and H. V. Jagadish, Indexing the distance: An efficient method to KNN processing, Proceedings of the 27th International Conference on Very Large Data Bases, VLDB '01, pp.421-430, 2001.

C. Yu, R. Zhang, Y. Huang, and H. Xiong, High-dimensional kNN joins with incremental updates, GeoInformatica, vol.49, issue.4, pp.55-82, 2009.
DOI : 10.1007/s10707-009-0076-5

C. Zhang, F. Li, and J. Jestes, Efficient parallel kNN joins for large data in MapReduce, Proceedings of the 15th International Conference on Extending Database Technology, EDBT '12, pp.38-49, 2012.
DOI : 10.1145/2247596.2247602

W. E. Zhang, Q. Z. Sheng, Y. Qin, L. Yao, A. Shemshadi et al., SECF, Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC '16, pp.362-367, 2016.
DOI : 10.1145/2851613.2851846

Y. F. Zhao, F. Y. Wang, H. Gao, F. H. Zhu, Y. S. Lv et al., Contentbased recommendation for traffic signal control, 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp.1183-1188, 2015.
DOI : 10.1109/itsc.2015.195

A. Zheng, A. Labrinidis, and P. K. Chrysanthis, Architecture-aware graph repartitioning for data-intensive scientific computing, 2014 IEEE International Conference on Big Data (Big Data), pp.78-85, 2014.
DOI : 10.1109/BigData.2014.7004375

D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. Priebe et al., FlashGraph: Processing billion-node graphs on an array of commodity SSDs, 13th USENIX Conference on File and Storage Technologies (FAST 15), pp.45-58, 2015.