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Alex HANSEN, Professeur, NTNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examinateur
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Abstract

We propose a novel approach inspired from non-local damage continuum mechanics to des-

cribe damage evolution and quasi-brittle failure of disordered solids. Heterogeneities are introduced

at a mesoscopic continuous scale through spatial variations of the material resistance to damage. The

central role played by the load redistribution during damage growth is analyzed by varying the inter-

action function used in the non-local model formulation. The spatio-temporal evolution of the damage

field is obtained from energy conservation arguments, so that the formulation is thermodynamically

consistent. We analytically determine the onsets of localization and failure that appear controlled by

the redistribution function. Damage spreading is characterized through a complete statistical analysis

of the spatio-temporal organization of the precursors to failure. The power law increase of the rate of

energy dissipated by damage and an extracted correlation length close to failure supports the interpre-

tation of quasi-brittle failure as a critical phenomena. Indeed, we establish a connection between our

damage model and the evolution law of an elastic interface driven in a disordered medium. It allows to

identify the order and control parameters of the critical transition, and capture the scale-free statisti-

cal properties of the precursors within the mean field limit. Finally, we experimentally investigate the

coaction of localized dissipative events and elastic redistributions in disordered media via compres-

sion experiments of two-dimensional arrays of hollow soft cylinders. Our experimental observations

show a quantitative agreement with the predictions derived following our approach.

Keywords : damage mechanics, quasi-brittle failure, heterogeneous materials, intermittency,
criticality
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Résumé

Nous proposons une nouvelle approche inspirée des modèles d’endommagement non-locaux

pour décrire la ruine des matériaux quasi-fragiles désordonnés. Les hétérogénéités matériaux sont

introduites à une échelle continue mésoscopique via des variations spatiales de la résistance à l’en-

dommagement alors que le mécanisme de redistribution des contraintes est décrit à travers une fonc-

tion d’interaction que l’on peut faire varier. L’évolution spatio-temporelle de l’endommagement est

déterminée à partir du principe de conservation d’énergie et caractérisée via une étude statistique

des précurseurs à la rupture. Cette approche nous permet de prédire la valeur des seuils de locali-

sation et de rupture en fonction de la nature des redistributions. A l’approche de la rupture, nous

mettons également en évidence une augmentation en loi de puissance du taux d’énergie dissipée

ainsi qu’une longueur de corrélation, supportant l’interprétation de la rupture quasi-fragile comme

un phénomène critique. En effet, nous démontrons que notre model d’endommagement s’apparente à

la loi d’évolution d’une interface élastique évoluant dans un milieu désordonné. Cette analogie nous

permet d’identifier les paramètres d’ordre et de contrôle de cette transition critique et d’expliquer

les invariances d’échelle des fluctuations dans la limite champ moyen. Enfin, nous appliquons ces

concepts théoriques à travers l’étude expérimentale de la compression d’un empilement bidimen-

sionnel de cylindres élastiques. Notre approche permet de décrire de façon quantitative la réponse

mécanique non-linéaire du matériau, et en particulier la statistique des précurseurs ainsi que la loca-

lisation des déformations.

Mots-clés : mécanique de l’endommagement, localisation, rupture quasi-fragile, matériaux hétérogènes,
intermittence, criticalité
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David, Geoffroy, Mehdi, Adi, Thiago, Jan, Gounseti, Luca et Silvia, Valentina, Julieng, Jeff qui est
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Résumé détaillé de la thèse

Ce travail de thèse porte sur la rupture quasi-fragile des matériaux hétérogènes. La prédiction

du comportement à rupture de tels matériaux, comme que le béton, le bois ou certaines roches, est

un problème central pour l’amélioration et la conception de structures. Cette prédiction passe par une

compréhension fine des mécanismes de dégradation mis en jeux au cours de la rupture quasi-fragile.

Ceux-ci ont donné lieu à de nombreuses études théoriques et expérimentales qui ont permis de mettre

en évidence que la rupture quasi-fragile découle de la nucléation et de la croissance stable d’un grand

nombre de microfissures. Celles-ci évoluent de façon collective jusqu’à leur localisation selon une

fissure macroscopique donnant lieu à la rupture catastrophique de la structure.

Dans le premier chapitre de ce manuscrit, consacré à l’état de l’art, nous proposons une

description des principales caractéristiques de la rupture quasi-fragile. Les conséquences de l’endom-

magement sur les propriétés macroscopiques (dégradation des propriétés élastiques, adoucissement,

effet de taille finie) sont discutées ainsi que l’organisation spatio-temporelle complexe de l’endomma-

gement reportée dans différentes études expérimentales. On s’attache en particulier à la caractérisation

des fluctuations mesurées lors de la croissance intermittente de l’endommagement. Leur statistique

présente des propriétés remarquables caractérisées par des lois de puissance, et l’émergence d’une

longueur de corrélation du champ spatial d’endommagement qui augmente à mesure que le matériau

est proche de la rupture. Pour décrire l’endommagement de ces matériaux, de nombreux modèles

ont été proposés. Nous décrivons ici succinctement deux classes principales, à partir desquelles nous

construirons notre approche : les modèles d’endommagement continus, rigoureux mais dont la des-

cription, bornée à des matériaux homogènes, ne permet pas l’observation de l’organisation spatio-

temporelle caractéristique des précurseurs, et les modèles statistiques, qui permettent de capturer

cette complexité mais dont la simplicité fait obstacle à une description quantitative de l’évolution de

l’endommagement.

Dans le second chapitre, nous présentons notre modèle d’endommagement mésoscopique

de matériaux durcissants isotropes. Nous utilisons une formulation non-locale où la raideur microsco-

pique dépend du paramètre d’endommagement non-local. Ce premier ingrédient nous permet de tenir

compte des interactions entre évènements d’endommagement via une fonction d’interaction, choisie

modulable, qui intervient dans la formulation non-locale. Nous ajoutons un second ingrédient : la

présence d’hétérogénéités qui permettent de tenir compte de l’influence de la microstructure de ces

matériaux sur leur comportement. Nous introduisons pour cela des variations spatiales de la résistance

à l’endommagement à une échelle mésoscopique. Enfin, l’évolution de l’endommagement est obtenue

en invoquant le principe de conservation de l’énergie, son évolution étant décrite comme un transfert

d’énergie mécanique en énergie dissipée par rupture. L’analyse analytique des deux cas limites de

systèmes hétérogènes sans interaction et homogènes avec interactions montre que la combinaison de

ces deux propriétés est requise pour une description adéquate de la rupture quasi-fragile.



viii

Dans le troisième chapitre, nous étudions l’influence de la fonction d’interaction sur la loca-

lisation de l’endommagement et la rupture du système. Cette fonction modulable est le produit d’un

terme exponentiel, dont la vitesse de décroissance est fixée par l’introduction d’une longueur interne,

et d’un terme sinusoı̈dal dont le contrôle est assuré via un paramètre κ. Lorsque celui-ci est nul,

tous les points avoisinant un élément endommagé voient leur force motrice augmenter. Au contraire,

lorsque ce paramètre est positif, certains points seront déchargés après un événement d’endomma-

gement. L’étude des comportements prédits par la résolution numérique de notre modèle montre

l’émergence de deux comportements distincts : pour de faibles valeurs de ce paramètre, la rupture

catastrophique a lieu au point d’instabilité du système homogène. En revanche, au-delà d’une valeur

seuil κc, une déviation à la réponse homogène est observée, rapidement suivie de la rupture catas-

trophique, à de plus faibles chargements. Nous rationalisons ces observations à l’aide d’une étude de

stabilité linéaire. La valeur critique κc calculée consiste en un point de transition entre deux régimes :

pour κ≤ κc, la rupture instable a lieu alors que le champ d’endommagement est homogène, sans loca-

lisation préalable. La réponse macroscopique correspond donc à celle d’un système homogène. Pour

κ > κc, la rupture instable est précédée d’une transition d’un champ d’endommagement homogène

à un champ hétérogène. Cette localisation de l’endommagement est caractérisée par une longueur

d’onde finie qui dépend du paramètre κ et de la longueur interne. Dans ce second cas de figure, la

prédiction de la rupture est seulement approximative. Les prédictions sont améliorées en considérant

une seconde approche : la minimisation de l’énergie globale du système.

Dans le chapitre suivant, nous étudions l’organisation spatio-temporelle des précurseurs

à la rupture. Comme observé expérimentalement, les avalanches d’évènements d’endommagement

présentent une forte intermittence. En étudiant successivement les cas κ= 0 et κ> κc, nous montrons

l’influence de la fonction d’interaction sur la réponse du système. Dans le premier cas, nous obtenons

un comportement en loi de puissance de la taille caractéristique des avalanches, indépendamment de

la longueur d’interaction. Celle-ci contrôle cependant l’organisation spatiale de l’endommagement.

Une taille typique des zones endommagées au cours d’une avalanche émerge et augmente en loi de

puissance. La signature de cette structuration des plus grandes avalanches est identifiable à partir de

l’étude des corrélations spatiales du champ d’endommagement. Leur amplitude et extension spatiale

croient à mesure que la rupture du système approche. Dans le second cas, la taille moyenne des ava-

lanches ainsi que la longueur de corrélation sont bornées. La valeur limite, atteinte lorsque la localisa-

tion de l’endommagement débute, est fixée par la longueur d’onde critique identifié à partir de l’ana-

lyse de stabilité. Les divergences obtenues dans le premier cas de figure supporte l’interprétation de la

rupture quasi-fragile comme un phénomène critique. Pour caractériser cette transition critique, nous

montrons que notre modèle d’endommagement peut être exprimé comme un modèle de dépiégeage

d’une interface élastique évoluant dans un milieu désordonné. La loi d’évolution de l’interface est

gouvernée par un terme d’interaction élastique proportionnel à la fonction d’interaction introduite

dans notre modèle. Nous montrons, à partir de cette analogie, que les exposants des lois de puissance

suivies par les fluctuations du champ d’endommagement s’apparentent à un comportement champ
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moyen de l’interface.

Dans le dernier chapitre, nous testons nos approches sur un système expérimental simple :

la compression d’un empilement ordonné de cylindres creux élastiques (des pailles alimentaires)

placés dans une boite rigide transparente. Ce système nous permet d’observer la localisation de la

déformation mais aussi l’organisation temporelle caractéristique des évènements de dissipation. La

transition vers la rupture est caractérisée par des évènements de dissipation locaux qui génèrent une

dégradation progressive de la raideur du système. La dissipation provient de la friction entre pailles

qui se déforment élastiquement au sein de l’empilement. A partir de la réponse macroscopique,

nous définissons la dissipation d’énergie qui a lieu lors des avalanches. Nous montrons que, dans

ce système aussi, la redistribution des contraintes élastiques générée par les évènements dissipatifs

localisés permet d’expliquer le comportement spatio-temporel des précurseurs. L’étude des champs

de déformation permet de déterminer l’initiation de la localisation. Ce comportement est expliqué à

l’aide de notre approche, étendue au cas de solides 2D elasto-endommageables. Nous prédisons ainsi

de manière adéquate les valeurs de la force au pic de la réponse macroscopique et les chargements

critiques auxquels ont lieu la localisation.





Notations

D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dimension of the system

ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of elements of the D-dimensional system

LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size of the D-dimensional system

ξh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Heterogeneity size

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macroscopic force

∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macroscopic displacement

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microscopic stiffness

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local damage parameter

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Non-local variable

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interaction function

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total damage driving force

Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local rate of energy restitution

Yc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fracture energy threshold

Yc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fracture energy threshold of the intact material

η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardening parameter

g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random noise

σg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random noise intensity

k0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stiffness of the intact material

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stiffness stability parameter

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stiffness polynomial degree

α0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normalization constant of the interaction function

` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interaction length

`0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of elements in the interaction length
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κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shape parameter of the interaction function
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dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average damage at localization

dp . . . . . . . . . . . . . . . . . . . Average damage at the peak of the homogeneous system response
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INTRODUCTION

Concrete or wood structures, rocks or sandstone are surrounding us everyday. The predic-

tion of the collapse of these materials and structures is a central practical issue and a deep knowledge

on materials degradation is needed to design better structures and respond to attended features. For

that reasons, the understanding of materials failure appears as a long-standing challenge that has at-

tracted many researchers. Initially, the brittle failure of ideal homogeneous solids was studied by

Griffith [40], whose work lead to the so-called linear elastic fracture mechanics theory that describes

and predicts failure. However, material failure is due in many instances to the growth of multiple

cracks, also called damage. Thus, for the above-mentioned materials, and under specific loading con-

ditions, the failure process appears more complicated: it takes place through a progressive nucleation

and stable growth of microcracks before catastrophic failure takes place. The description of such

behavior requires not only to understand the effect of material heterogeneities, but also the complex

interactions that arise as microcracks apprehend each others[8, 55, 88].

The existing continuum damage models [20, 60, 66] are currently not able to fully capture

the failure of quasi-brittle materials. Firstly, their numerical implementation exhibits strong spurious

mesh dependency with the localization taking place over a scale defined from the discretized element

size [54, 87]. This leads to a non-physical description of failure, associated with zero dissipated en-

ergy. Such an issue prevents a realistic description of damage evolution from its localization to the

catastrophic failure. Moreover, these models are limited to homogeneous media. It has now been

well established that the complex development of precursory events results from the presence of het-

erogeneous distributions of material properties at the scale of the microstructure of the solids [1, 14].

Therefore, a description of the experimentally observed intermittency [42, 35] and spatial organization

of damage [33, 71, 118] taking place before catastrophic failure is out of reach within that framework.

To overcome such deficiencies, two main solutions have been proposed. The former limita-

tion has been resolved by introducing localization limiters in the constitutive equations. In particular,

the insertion of non-local variables [87] has proved to be an efficient way to avoid mesh sensitivity.
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2 Introduction

However, this method relies on an arbitrary choice of the weighted averaging function. This key

assumption controls the driving force redistribution after local damage events and should hence be

physically motivated, which is not the case in the current models. Secondly, to capture the damage

temporal and spatial organization resulting from the inherent material disorder and elastic interactions

in the solids, statistical discrete failure models [1, 37, 48] were developed. Introducing distributions

of failure strength and redistributions, this approach appears as an adequate way to capture the pre-

cursors behavior and failure. However, these models are restricted to qualitative predictions as they

are not thermodynamically consistent and often based on non-realistic redistribution laws.

Throughout this study, we show that both problems can be overcome by taking into ac-

count the central role of heterogeneities, introduced at the continuous scale in a mesoscopic model.

Indeed, disorder induces non-local effects, which allow describing the interactions arising as microc-

racking progresses. It also naturally regularizes the localization mesh dependency and thereby allows

the description of damage from its initiation to its localization, and during its final stage leading to

catastrophic failure. Combining both approaches we capture and describe properly the characteristic

intermittency observed experimentally during quasi-brittle failure. In particular, the statistical study

of the precursors features the characteristic power law behaviors of the bursts of dissipated energy, but

also the complex spatial organization of damage with increased correlations as failure is approached.

The study of the precursors and observed behaviors have led to a long-standing debate on

the critical nature of quasi-brittle failure. Our approach permits to clarify this controversial interpreta-

tion and answer to the following unresolved questions: what is the nature of such critical phenomena,

i.e. to which class of universality is it related to? What is the critical point? What are the control

and order parameters of this critical phenomenon? Finally, what are the time and length scale that

diverge at the critical point? Using a simplified model, we address these issues and provide a better

understanding on this critical transition interpretation.

This manuscript is divided in five chapters. In the first one, we give an overview of the main

experimentally determined features of quasi-brittle failure and discuss the strengths and weaknesses

of the actual models available for their description. We describe two main classes of models, namely

continuum damage models and statistical models and highlight how they can be combined to build a

consistent approach, has done in the following chapter.

The second chapter is devoted to the presentation of our model. We show how continuum damage

and statistical models can be used to build a thermodynamically consistent non-local formulation of

mesoscopically heterogeneous media. The determinant role of the coaction of both material disorder

and interactions is emphasized through the analysis of two limit cases consisting in the study of alter-

natively a homogeneous material and disordered media without interactions.

In the third chapter, we perform an analytical prediction of both the localization of damage and failure

of the material. In particular, we demonstrate the key role played by the shape of the redistributions

of the damage driving force after local damage events, which fully controls the material response.
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The precursory damage events are statistically studied in the fourth chapter. We show that our model

captures their collective behavior and organization. In particular, our model predicts the power law

behaviors of the damage burst sizes distribution and a diverging correlation length emerging form

the spatial structure of the damage field. These predictions are qualitatively in good agreement with

both experimental observations and recent studies numerical results. They also raise the question of

the critical nature of the damage evolution towards failure. To go a step further in this interpretation,

we connect our damage model to interface depinning models through the derivation of the damage

evolution equation. In the mean field limit, this evolution equation permits an analytical prediction

of the temporal behavior of the precursors, but also the determination of both the order and control

parameters of the critical transition.

In the last chapter, we test our approaches on experiments performed on a model heterogeneous

system consisting in a two-dimensional regular array of hollow soft cylinders. The local dissipa-

tion processes and elastic interactions allow observing the macroscopic stiffness degradation but also

quantitatively determine and study the bursts of dissipated energy and strain localization. We show

that this model experiment is well suited to a description as a two-dimensional elasto-damageable

material via a realistic damage model formulation.





CHAPTER 1

CONTEXT AND MOTIVATION

In this first chapter, we give an overview of the failure behavior of quasi-brittle materials

as observed in experiments and the theoretical models proposed to describe it. We also present the

main questions that motivated this study. The first section, devoted to experimental observations,

reviews the common features observed during quasi-brittle failure and highlights phenomena that are

still poorly understood. We will focus both on observations of the material response at the local scale

where damage actually takes place and at the macroscopic scale, through the mechanical response

of the damaging solid. Numerous approaches have been proposed to describe quasi-brittle failure.

In the second section, we briefly review the two main classes of models, namely continuum damage

mechanics based models and discrete models of quasi-brittle failure, which very often come with

a statistical description of damage growth. We emphasize their advantages and weaknesses, which

motivated the elaboration of our own approach, based on a combination of ingredients issued from

these two classes.

1.1 Experimental characterization of damage spreading and quasi-brittle

failure

Quasi-brittle failure concerns a large variety of materials such as concrete, rocks, woods,

fiberglass... It consists in a gradual deterioration of the material, which eventually leads to its abrupt

failure. This degradation of the material properties is attributed to the progressive development of

irreversible defects such as microcracks or voids, also called damage, while failure corresponds to the

formation of a macroscopic crack that goes from one side of the sample to the other. The precursory

microdefects can be defined as small flaws generally of similar dimensions as the characteristic mi-

crostructural feature of the material [61]. As they interact through the elastic field, their growth gives

rise to complex collective behaviors that render the prediction of the material response a challenging

task [8, 55, 88]. A collection of microscopic damage mechanisms such as crack face friction [64, 91],
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6 Context and motivation

crack kinking [52, 98], pore collapse [32, 7] and others can be involved in the deterioration process.

Yet, a remarkable feature of quasi-brittle failure is that even though multiple scales and dissipative

mechanisms are involved during the failure process, common behaviors emerge. In this section, we

attempt to give an overview of the common features observed experimentally and discuss the associ-

ated challenges to understand them.

1.1.1 At the specimen scale: Average mechanical response of quasi-brittle materi-
als

The irreversible defects formed during the loading result in a noticeable stiffness reduction

of the altered material. The elastic moduli evolve as damage develops, which leads to a progressive

decrease in load bearing capabilities of the structure. This has been observed for example upon the

cycling loading of graphite/epoxy laminate [21], or triaxial testing of granite [58]. The decrease of the

Young’s modulus and increase of Poisson’s ratio obtained by Heap et al. [46] on Etna basalt is shown

in Fig.1.1a as a function of the number of applied cycles of an increasing-amplitude stress-cycling

experiment. However, direct relationship between the moduli and damage itself is difficult to obtain.

Indeed, experimental measures of damage remain a complicated task, as direct determination of the

micro-defects is often associated with destructive techniques to study the material microstructure. As

reported in [20, 67], different authors obtained indirect measures by considering the remaining life

of a cycling loading, the stiffness reduction, density or resistivity variations. Thus, damage is usually

quantified indirectly through its effect on the material properties.

Since elastic moduli set the relationship between stress and strain, progressive stiffness

degradation leads to strongly non-linear macroscopic response of quasi-brittle materials. This has

been largely explored experimentally. A characteristic force-displacement behavior obtained by

Fortin et al. [33] for a triaxial test performed on a Bleurswiller sandstone is shown in Fig. 1.1b. It can

be separated in three phases: The response is first linear, the loading being too small to nucleate new

microcracks or activate the preexisting defaults. After some critical loading, a non-linear response

is observed, associated with the nucleation and stable growth of micro-defects before the ultimate

strength is reached (peak load). If the system is controlled in strain, this phase is often followed by

a progressive strain softening prior to an abrupt failure. Finally, one might observe a plateau regime

taking place after the formation of a macroscopic crack or fault that corresponds to the sliding of one

part of the sample on the other.

However, noticeable variations in the behavior are worth mentioning. At the macroscopic

scale, failure is associated with the separation of the sample in two pieces by a macrocrack and is

very often preceded by the formation of a localized band where most of the damage activity accumu-

lates. The orientation of this band depends on the type of loading considered. For example, for the

triaxial test of Fortin et al., an angle of about 45◦ was measured, whereas the macrocrack formed in
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(a) (b)

Figure 1.1: (a) Evolution of the Young’s modulus and Poisson’s ratio obtained during an increasing-

amplitude cyclic stressing experiment on a sample of Etna basalt obtained by [46] showing the

gradual deterioration of the stiffness of the damaging material; (b) Differential stress (solid curve)

and cumulative AE (doted line) versus axial strain for the triaxial test performed by [33]. Note that

even if not exhibited here, rupture (taking place at a strain ∼ 1%) is associated with a surge in AE

rate. The letters a-f indicate the loading frames over which the cartographies of damage event of

Fig. 1.3 were obtained.

a prismatic spruce wood sample compressed in parallel to the fibers was perpendicular to the loading

direction, as shown on Fig. 1.2 (image reproduced from [12]).

Failure and strength predictions are fundamental and long-standing [112] issue in material

science and structural engineering. A general problem when performing laboratory experiments is

the change of size of the tested specimens. For testing in the laboratory rock or concrete structures,

size rescaling is very often unavoidable, but the sample size appears to greatly control its strength.

Hence, a quantitative understanding of the effect of the specimen size on quasi-brittle strength is

an important matter. Many systematic characterizations of this phenomenon were performed, as for

example [10, 18, 39, 95, 110], but an extended range of length scales is generally difficult to achieve

since large scale experiments are arduous to realize.

1.1.2 At the scale of damage and microstructure: Temporal and spatial organization
of precursors to failure

If the macroscopic response and elastic moduli allow observing the effect of defects for-

mation on the elastic properties of the material, they do not provide any hint on the local damage

processes. A useful tool is the use of acoustic emission (AE) measurements during experiments. As

early as 1942, Obert et al. [78] realized that during the loading of rocks, noises were emitted, which

they assumed related to cracking events. Indeed, during microcracking, acoustic waves, associated

with dissipation processes, radiate in the material. This non-destructive technique consists in using
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Figure 1.2: Fracture due to deformation localization on a prismatic spruce wood sample compressed

in parallel to the fibers. Image reproduced from [12].

piezoelectric sensors to record the acoustic waves emitted. Converted into an electric signal, the mea-

surements are considered directly related to the local released elastic energy that takes place during

microcracking [70, 29]. This technique allows characterizing both the temporal and spatial evolution

of damage events, but also obtaining information on the microscopic mechanisms that take place.

Considering some relation between the energy of the acoustic signal emitted and the energy dissi-

pated into damage, one can study the evolution of the cumulated dissipated energy to characterize

damage evolution, the distribution of the events intensity, their rate, duration and time separation or

waiting time [22, 35, 42, 82]. Measurements performed with several receptors also allow to locate

damage events and study damage spatial organization, in particular the phenomenon of localization,

as discussed in the next paragraph. Finally, note that this approach can be made more quantitative

since the different waveforms recorded can be used as indicators to characterize specific damage

mechanisms, e.g. tensile, shear or implosive fracturing [65].

Spatial organization of the precursors during the transition from diffuse to localized damage

Fortin et al. obtained projections of the AE hypocenters at different stages of the response of

the triaxial test. Each cartography of Fig.1.3 corresponds to damage events taking place during given

loading windows, indicated by the letters a-f on Fig. 1.1b. For low loadings in the non-linear part of

the force-displacement response, and neglecting the peculiar behavior in the load application regions,

damage events are randomly distributed in the core of the material (frame a). As the loading proceeds,

damage starts to concentrate in the upper region (frames b-c). In the post-peak regime, damage events

are localized: Hypocenters form a localization band that develops progressively (frame d). Finally,

the abrupt failure is associated with the growth or sliding of the macroscopic band, as exemplified on

frames e and f where all damage events take place in the new formed fault. Therefore, it seems that

damage is first diffuse with a spatial distribution that is mainly dependent on the disorder distribution:

Microcracks nucleate or grow at the weakest points of the sample. As the density of defects increases,

progressive clustering is observed, leading to a complex organization of damage and the presence of a

localized zone where macroscopic failure initiates. This transition has been characterized for example
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by the study of the change in entropy [35, 42] and diminution of fractal dimension of the damage

clusters [71, 118], but a robust characterization of this localization process through the identification

of a growing correlation length in the damage spatial distribution is still lacking.

Figure 1.3: AE hypocenter distributions represented as a projection on the(z,y) plane and obtained

during a triaxial test at 10MP on Bleurswiller stone by [33], the loading intervals considered are

indicated on Fig. 1.1b. Overlooking the regions where the load is applied, damage spreads uniformly

in the material at small loading (a). As loading is increased, damage starts to organize and one

can foresee the localization band forming (b)-(c). In the post-peak regime, enhanced localization

is obtained (d), followed by material failure through sliding of the new created fault where damage

concentrates exclusively in the band formed during localization (e)-(f).

Temporal organization: Intermittency and scale-free fluctuations

As seen before, damage during quasi-brittle failure exhibits a complex spatial organization.

Knowing the spatial distribution of the dissipative events, one can extract some information on how

far the system is from failure by considering the diffuse to localized damage transition. Once damage

starts to localize, one can also predict the location of the macrocrack that leads to failure. In addition

to that, information relevant for failure prediction can be obtained from the temporal evolution of

these precursors. The cumulated signal recorded on the Bleurswiller sandstone is shown on Fig. 1.1b.

Very few or no events take place in the initial linear part of the stress-strain curve. If the cumulated

AE signal gradually increases for low loadings, a sharp raise is observed close to failure. In partic-

ular, even through not exhibited here, rupture (taking place at a strain ∼ 1%) is associated with a

surge in AE rate. The cumulated energy can be represented as a function of the distance to failure

(Pc−P )/Pc, where Pc is the failure stress. This quantity ranges form one at the beginning of the

experiment to zero at failure, and we could look at it as a control parameter within a critical phenom-

ena description of quasi-brittle failure [1, 48]. Averaging over different experiments, the behavior

obtained by Guarino et al. [42] when testing a planar sample of chipboard wood to which an effective

tensile load is applied is shown in Fig. 1.4a. The power law behavior indicates a strong amplification

of the average dissipated energy close to failure. In particular, the large increase close to failure that

resembles a power law divergence argues for a critical transition interpretation. However, if there is a
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common agreement on the increase of the damage activity as failure is approached, its nature remains

unclear as exponential laws have also been reported [101].

The evolution of the cumulated energy suggests that either the size of the bursts or the event

rate increases as damage progresses. To explore these two possibilities, the corresponding evolution

of the bursts of dissipated energy obtained by Guarino et al. is represented as a function of the nor-

malized applied pressure in Fig. 1.4b, where the cumulated measured energy is also indicated (dashed

curve). Noticeably, damage events present a strong intermittency: the material exhibits phases were

it deforms elastically, corresponding to silent periods were no AE is recorded, while short bursts of a

broad range of amplitudes are observed in between. This behavior is often described as a crackling

noise [105] and is observed for many physical systems, ranging from earthquakes faults dynam-

ics [38] to the fracture of paper [101]. A strong amplification is observed close to failure with bursts

of increasing amplitude. An acceleration of the damage process takes place with an increase of the

event rate [26].

(a) (b)

Figure 1.4: Temporal behavior of AE events recorded by Guarino et al. [42] during the progressive

damage of a chipboard wood up to failure at the pressure Pc: (a) Evolution of cumulated acoustic

energy as a function of the distance to failure showing the diverging power law behavior obtained

close to failure; (b) The corresponding rate of energy dissipated and cumulated energy (dashed curve)

showing the intermittent crackling noise and acceleration of an amplified damage process as the

sample is driven towards failure.

To characterize the amplitude of the energy bursts, we have to look at the statistics of

avalanches in terms of probability density functions. The functions are usually obtained by con-

sidering all bursts taking place during the experiments. They exhibit power law behaviors, of the

form P (E) ∼ E−β , arguing that fluctuations at all scales take place. However, the universality

of the power law exponent remains to be discussed as values ranging from 1.2 to 2 have been re-
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ported [27, 26, 35, 41, 42, 74, 82, 100]. Moreover, since the damage process amplifies as failure is

approached, the acoustic signals might not have stationary statistical properties during the whole pro-

cess of damage. As a result, computing the distributions at different distances to failure appears more

appropriate. However, if some studies considered the lack of time invariance, the behavior obtained

when considering different distances to failure remains under disagreement. Some studies report de-

creasing exponent of the power law behavior values as failure is approached [2, 72], while the recent

work of Baró et al. [7] reports a constant exponent close to 1.4, independently of the distance to fail-

ure, as shown on Fig. 1.5 for a compression test on Vycor. A change of exponent is also reported as

the loading condition is varied [2, 41]. Therefore, it seems that the general power law behavior, up to

a cutoff, the origin of which is also unexplained, is common to all experiments whereas discrepancies

remain on the actual value of exponents and their evolution as the material is driven towards failure.

The lack of statistics may be responsible for the observed variations, as also the multitude of loading

conditions and materials considered in the various studies. Finally, it should be mentioned that the

linear relationship between the AE recorded signal and dissipated energy remains to be clarified as

non-linear relations might actually relate them together.

Figure 1.5: Time invariant power law distributions of exponent 1.4 of energy bursts obtained by

Baró et al. [7] using AE during a compression test on Vycor. The lack of time dependency is in

contradiction with the behaviors of the cumulated and rate of dissipated energy, which exhibit a

strong acceleration as failure is approached.

1.1.3 Conclusions

It has been well shown that quasi-brittle failure is preceded by a complex evolution of pre-

cursory damage events. The use of AE allowed clarifying the heterogeneous materials response.

Generally, it can be divided in four identified stages: The material first deforms elastically before

microcracks nucleate and grow, leading to a nonlinear macroscopic response as the material stiff-

ness deteriorates. During this phase, damage events are randomly distributed in space, microcracks

forming in the weakest points of the material or extending the existing micro-defects. Their varying
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amplitudes remain rather low in magnitude and the crackling noise is characterized by large time

separation between events. As the system evolves towards failure, damage progressively organizes,

forming clusters of non-trivial fractal dimension. This results from the increased density of microc-

racks in the system: As damage takes place somewhere in the system, the resulting stress variations

in the neighborhood of the microcrack overlap with other microcracks, leading to complex interac-

tions and cascade processes. This complex collective behavior of microcracks is well revealed by an

increased AE activity, with a strong amplification of the damage burst size as the system gets close

to failure. Finally, in the region where damage has localized, a macrocrack is formed. The system

enters in another regime where the mechanics of the material is entirely governs by the behavior of

the newly formed macrocrack or fault, similarly to crack propagation problems in brittle materials.

Moreover, the study of the temporal behavior of the precursors revealed interesting features

such as a possible diverging dissipated energy at failure, and the presence of scale-free fluctuations,

both indicated by power law behaviors. However, the lack of statistics does not allow for a clear

assessment of the behaviors and power law exponent values. In particular, the change in behavior as

failure is approached is not well established and calls for further experimental investigations. Finally,

if the importance of the coaction of both the inherent disorder of the material and microcracks inter-

actions is now well established, a better determination on the role of each component is still needed

to understand the observed behavior. The common behaviors reported in quasi-brittle fracture ex-

periments raise the following questions: Can we rationalize the temporal and spatial behavior of the

precursors? How can we use their statistical properties to understand damage spreading and localiza-

tion? What is the influence of the stress redistributions on damage evolution? More importantly, can

we predict damage localization and failure? These questions led to numerous model descriptions that

we classify in two main classes in the next section.

1.2 Damage models

The theoretical description of quasi-brittle failure is a long standing problem that has moti-

vated a great number of researches, leading to the elaboration of various theoretical approaches. Yet,

two main classes can be identified: Continuum damage mechanics and statistical models. The former

consists in a continuous description of damage at a coarse scale through internal variables. Damage

reflects the level of microcracking and affects the local mechanical behavior of the material through

the degradation of the elastic moduli. At all time damage can be tracked and thermodynamical con-

cepts allow for a rigorous description of the failure process. However, damage evolution remains

described phenomenologically, the response is that of a statistically homogeneous material. A major

problem in these approaches is the strong mesh dependency observed numerically, leading to a zero

total dissipated energy at failure. The introduction of localization limiters, in particular through the

use of non-local damage theory, has allowed overcoming this issue. However, non-locality is intro-

duced heuristically, and physically motivated arguments to justify these models are still lacking.
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On the other hand, the framework of statistical models relies on the central role played by

microstructural heterogeneities. The solids are described by an array of discrete bonds with disor-

dered properties interacting through an explicit law of force redistribution or implicitly through, e.g.

elasticity laws. If these models allow capturing the main features of quasi-brittle failure in disordered

materials, they still lack thermodynamics consistency and are hence limited to qualitative predictions

of material failure behaviors. In this section, we briefly describe each approach, from which concepts

are borrowed to build our model.

1.2.1 At the continuum scale: Damage mechanics

The concept of damage mechanics was first introduced in the context of creep rupture by

Kachanov [56] who described the effect of gradual degradation of the material on its elastic proper-

ties through a continuous local damage variable. This concept was later generalized, as for example

in [20, 60, 66] in particular through the theory of irreversible thermodynamics. Continuum damage

mechanics (CDM) based models, consist in introducing one or more continuous internal damage vari-

ables in the equations predicting the mechanical fields. This local damage parameter is representative,

at a coarse scale, of the damage density constituted by micro-defects on a representative volume el-

ement (RVE). The constitutive equations of damage evolution are formulated using the theory of

irreversible thermodynamics combined with phenomenological or micromechanics considerations. It

allows the description of the inelastic response of the damaged material as well as damage growth

and localization.

In this section, to illustrate the main concepts of such models, we consider a simplified

isotropic damage case. The analysis is restricted to a single internal variable, expressed as a scalar

parameter d. Assuming that the observable variable is the elastic strain ε and that linear elasticity

applies at a given damage level, the free energy density writes as

w(ε,d) = 1
2ε : D(d) : ε (1.1)

where D(d) denotes the damage dependent isotropic stiffness tensor. The Clausius-Duhem inequality

gives the state law allowing to define the associated stress variable

σ = ∂w

∂ε
(ε,d). (1.2)

To describe damage evolution a damage criterion must be defined. To do so, a limit function,

or loading surface, is introduced:

f(ε,d) = εeq(ε)−κ (1.3)

where the equivalent strain εeq is a norm of the strain tensor ε and the function κ is representative of

the damage resistance. This variable takes into account the material history through a function of the
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damage variable

κ= g(d). (1.4)

In Eq. (1.3), the expression of the norm fixes the shape of the elastic domain and should hence be

formulated with care. A simple Euclidean norm, εeq(ε) =
√
ε : ε leads to an elliptical domain in

the planes of principal stresses, symmetric with respect to the origin, leading to a non-representative

material behavior as it implies similar responses in tension an compression. Hence, more elaborated

expressions were introduced and motivated from experimental data. For example, different defini-

tions (namely Rankine, Mazars [76] and modified von Mises based [24] definitions) are compared to

experimental concrete data [63] in terms of strength envelopes in Fig. 1.6 (taken form [54]). Yet, ex-

perimental data provide thresholds for the strength of the material whereas damage initiation should

correspond to the end of elastic response of the material. We see that the choice of the norm for the

equivalent strain εeq(ε) leads to very different elasticity domain shapes, which should be physically

motivated.

Figure 1.6: Biaxial strength envelopes for different damage models and experimental data for con-

crete [54] showing the importance of the norm definition for the determination of the equivalent

strain.

Finally, the above equations are combined with the Kuhn-Trucker condition

f ≤ 0; κ̇≥ 0; κ̇f = 0 (1.5)

that translates in particular the irreversibility of the damage processes. The first condition imposes

that κ≤ εeq(ε), the second that κ cannot decrease and the last that damage increases only if εeq = κ.

Hence, damage increases only if the condition f(ε,d) = 0 is satisfied, and so the damage resistance

κ increases too. If the function f is negative, in that case damage is stable and κ should not evolve. 1

1. As an application, consider a damage resistance κ= κ0(1+ηd) that increases with damage (κ0,η > 0). Then
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Due to the key role played by the equivalent strain definition, we prefer a thermodynamics-

based description where the equivalent strain in Eq. (1.3) is rather expressed as a thermodynamical

damage driving force:

εeq = Y (ε,d) =−∂w
∂d

(ε,d) =−1
2ε : D′(d) : ε (1.6)

where D′(d) = ∂D/∂d. In analogy with the elastic energy release rate G defined as the crack driving

force in fracture mechanics [40], it corresponds to a rate of energy restitution. In that case, the damage

resistance function κ can be seen here as an energetical threshold, i.e. the rate of dissipated energy

for an infinitesimal increase of the damage level.

In summary, in the context of isotropic damage assumption, continuum damage mechan-

ics relies on the definition of a scalar internal damage variable d, representative of the microcracks

density at the scale of a RVE. Damage affects directly the elastic properties of the material through a

progressive degradation of the isotropic stiffness tensor D(d). The dependency of the stiffness with

damage is either arbitrarily fixed or derived from micromechanics concepts [19]. Considering the

strain as the observable variable, one can calculate the elastic energy w of Eq. (5.13) and obtain the

resulting stress field through the differentiation of w, Eq. (1.2). Damage evolution is obtained by

fixing a damage threshold through a limit function f of Eq. (1.3), which consists in the difference

between the damage driving force, the equivalent strain εeq or the energy release rate Y calculated us-

ing Eq. (5.14), and the damage resistance κ, increasing function of the damage level. For monotonic

loading paths, damage evolution is fixed by solving, at a given strain level, the equation f(ε,d) = 0.

Practically, following the thermodynamical approach, the following procedure can be used:

At a given damage level d and having fixed the relations D(d) and κ= g(d), (i) impose a strain ε, (ii)

calculate the stiffness D(d); (iii) calculate the free energy w; (iv) from this expression derive the rate

of energy restitution Y ; (iv) determine the sign of the function f(ε,d). If it is negative then damage

is stable and does not evolve, if it is equal to zero then damage is solution of the equation f = 0;

(v) calculate the corresponding stress at the considered damage level. An example of the obtained

behavior will be shown in Sec. 2.2.1.

A main issue in such local models is the presence of spurious mesh sensitivity in their finite

element implementation [54, 87]. During strain localization, damage processes and the associated

energy dissipation concentrates over regions of finite size, fixed by the element size. Hence a strong

mesh sensitivity arises: As the discretization is refined, the localization takes place over smaller and

smaller volumes. As the damaged zone vanishes, the total energy dissipated through damage also

tends to zeros, since the energy dissipation per unit volume is finite. Therefore, CDM models are un-

this set of conditions can be reformulated as f ≤ 0; ḋ ≥ 0; ḋf = 0 which highlights that damage can solely remain stable

when f < 0 or increase if f = 0, in which case κ also increases, as expected from the hardening law on κ(d).
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able to capture properly the transition from localized damage to failure. To address this problem and

allow a continuum description of localization in quasi-brittle failure, approaches based on the intro-

duction of localization limiters have been proposed. Such regularization techniques aim at avoiding

localization over a zero volume. Several methods can be used, for example considering second or

higher order gradients of some variables, e.g. deformation [81] or damage [83] or, as used in this

study, non-local formulations in which a characteristic length is introduced [87].

Non-local integral formulations consist in replacing a certain variable by its non-local coun-

terpart in the constitutive equations. This non-local variable corresponds to some weighted average

over a spatial neighborhood. We denote by f the local variable and f its non-local counterpart that

can be expressed as

f(~x) =
∫
V
α(~x, ~ξ)f(~ξ)d~ξ (1.7)

where α(~x, ~ξ) is a weighting function, which can be normalized such that the non-locality does not

affect a uniform field. It is a decreasing function of the distance, and an internal length is introduced

in its formulation to control the range, or spatial extent, of the effect of a damage events on the neigh-

boring RVEs. This parameter is generally related to a characteristic microstructure length, e.g. the

size of heterogeneities, even though there is actually no micromechanical justification for such a finite

range non-local behavior. The determination of this length scale through experimental measurements

is difficult. Some authors argue that it should be increasing as damage evolves so that the increase of

the size of the fracture process zone, regions over which microcracking takes place, can be captured

by the theory [89].

If the choice of the non-local variable remains arbitrary, it is shown to strongly affect the

mechanical behavior of quasi-brittle materials [53], and should thus be chosen with care. Initially,

Pijaudier-Cabot and Bažant used an energetical formulation of the CDM local model [87], where the

limit function depends on the rate of energy restitution, and considered a function κ corresponding

to the maximum non-local rate of energy restitution ever reached. In other approaches, the damage

variable itself is considered non-local in the expression of the stiffness tensor, using a formulation of

the type D= (1−d)D0, where D0 is the stiffness tensor of the intact material [9], non-local equivalent

fracturing strain has also been considered [87].

Integrating non-local variables in the constitutive equations of CDM has proved to be an

efficient way to avoid non-physical localization. However, if these improved theory capture various

aspects of quasi-brittle failure, it describes solids as homogeneous media. The effects of material

microstructural features are neglected despite the central role that they play in failure problems (see

e.g. [1, 14] for recent reviews). Therefore, a detailed understanding of the complex spatio-temporal

structure of damage fields in quasi-brittle materials is out of reach from these models. In addition,

the effect of material microstructure, however invoked to justify non-locality in the first step of the
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derivation of the model, is then neglected in a second step by assuming that materials are homoge-

neous. It would seem more natural to consider material heterogeneities in the first place, and obtain

non-local effects as a consequence of the model, but not as a postulate. To capture the effect of ma-

terial heterogeneities on quasi-brittle failure behaviors, other approaches, that we categorize here as

statistical models, were developed and are presented in the next section.

1.2.2 At the microstructure scale: Statistical models of quasi-brittle fracture

To capture the characteristic intermittency and spatial organization of damage, other ap-

proaches borrowing concepts issued from out-of-equilibrium statistical physics have been proposed.

In these discrete models, the material is described by an array of discrete bonds or elements. Het-

erogeneities are introduced in the system via a statistical distribution of some properties, like failure

threshold, or sometimes initial defects such as vacancies. During mechanical loading, the damage

evolution is inferred from force balance in the network. The introduction of loads or energy redis-

tributions, either explicitly or implicitly, allows to reproduce the complex interplay between disorder

and microcracks interactions as the system is loaded up to failure.

The most widely known model is probably the fiber bundle model (FBM). In its simpler

formulation, see [93] for a review, it consists in a 1D bundle of brittle fibers having randomly dis-

tributed failure strengths. As the external force is quasistatically increased, the weakest elements fail

and the force carried by the broken fibers is redistributed among all intact fibers (global load sharing

redistribution rule). The redistribution allows to trigger further breaking of fibers and the number

of failures taking place between two equilibrium states allows defining an avalanche size. This sim-

plified approach to quasi-brittle fracture allows to capture the temporal intermittency and power law

distributions of avalanche sizes observed experimentally, as well as study of the evolution of the sys-

tem up to its failure.

Moreover, the simplified framework allows for extensive analytical calculations. The criti-

cal force at failure has been determined [92] as also the temporal behavior of the precursors to failure.

Indeed, a power law decrease of exponent 5/2 [59] is established for the distribution of avalanches

sizes when considering all damage events. If one considers a restricted loading frame, for example the

last 10 percent of avalanches prior to failure, two power law behaviors emerge: For small avalanches,

an exponent 3/2 is determined while for larger ones, the exponent 5/2 dominates [94]. The transi-

tion avalanche size can be considered as a cutoff parameter, which is shown to follow a power law

increase with the distance to failure, clarifying the nature of the transition to failure. These results

are essential as more complicated models usually do not allow for analytical determinations. Hence

these behaviors serve as references for comparisons with that obtained numerically or from other the-

oretical descriptions.

The lack of realism of such description was however pointed out, in particular the lack of
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spatial organization of damage due to the mean field nature of the redistributions. Many attemps to

enrich these models have emerged (see [62] for a review), for example with the introduction of a

gradual degradation of the fibers [49, 97] or more complex redistribution functions with the introduc-

tion of long-range interactions [50]. Finally, other models have emerged due to the rich behaviors

that they predict. They are based on the description of solids as lattices or network of heterogeneous

elastic beams, springs or electrical fuses. The main difference that arises with standard fiber bundle

models is that the redistributions after damage events are implicitly taken into account.

Along this line, a widely used approach is the random fuse model [23, 120], which consists

in a scalar electrical analogy of elasticity. The material is seen as an electric conductor consisting

in a network of fuses. A voltage difference is applied to the network and each bond carries a cur-

rent proportional to its conductance and the applied voltage. As the current density exceeds a certain

threshold in a bond, the fuse burns and becomes an irreversible insulator. This leads to a redistribu-

tion of the current carried by each bond, the distribution of which is obtained by solving Kirchhoff

equations (see [45] for a more detailed description). The analogy with elastic materials, even though

it remains qualitative, is quite straightforward: The force applied to the material corresponds to the

current, the displacement to the voltage, the stiffness to the conductance and the rupture strength is

the threshold current. Hence, this model takes into account both the disorder, and the local stress

(current) enhancements that result after failure events.

This and other discrete approaches like e.g. spring networks [77], in which as in the fiber

bundle model the elements have brittle behaviors, have been extensively studied. The most interest-

ing version of such models in the context of this thesis is its adaptation to continuously damaging

bonds [121] and its elastic material counterpart [3, 37]. In both cases, when an element reaches its

threshold, its conductivity, or stiffness, is decreased either by a factor (1−D) where D is the bond

damage parameter or a constant lower than one. Such an approach can be viewed as intermediary

between continuous and discrete models, since damage is defined at the mesoscopic scale, that of the

damaging elements, and represents a density of microcracks comprised within these elements.

These models predict power law distributed avalanches. The large statistics allowed by

numerical experiments allowed in particular to characterize the temporal evolution of the distribu-

tions. It was identify that they display power law behavior up to an exponential cutoff [37, 120] or

a crossover scale where a power law of larger exponent dominates [85]. The typical avalanche size

extracted in both cases follows a power law increase with the distance to failure. This means that at

failure, fluctuations at all scales take place and that at a given distance to failure, one can identify

a typical avalanche size, which increases as failure is approached. The exponents have values close

to 5/2 (when taking into account all damage events) and 3/2 (on a temporal frame). But significant

deviations from the mean field analytical have been reported. This may arise from the non-trivial

spatial structure of the redistributions. Note also that non-trivial finite-size scaling have been reported

for the avalanche distributions [37]. Moreover, the use of two-dimensional lattices and the complex
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shape of the redistributions allowed to evidence an interesting spatial organization of the damage or

broken elements. In particular, a change in fractal dimension of the formed clusters [3, 4, 37] and a

typical length over which damage is correlated have been evidenced, and the latter was shown to also

follow a power law behavior with the distance to failure [37].

These observations, in qualitative agreement with the experimental results, support the inter-

pretation of quasi-brittle failure as a critical phenomenon [106]. Critical phenomena are characterized

by a sharp variation of some thermodynamic properties at a critical point. It is accompanied by the

power law divergence of a length scale and time scale when the system is driven close to this point.

It exists many different types of critical phenomena, which can be classified in universality classes.

Inside a universality class, various physical systems that can look a priori very different share the

same power law behaviors with the very same value of exponents and the same scaling functions.

In a universality class, the details of the material properties and the local mechanisms generally no

longer count. However, systems with different dimensionality or displaying interactions of different

nature might not be in the same universality class. The interest in considering such interpretation is

that if one knows the class of universality of the considered system, all exponents and scaling can

be obtained and hence, the system response predicted. The interpretation of quasi-brittle failure as a

critical phenomena is a long standing debate that we would like to clarify in this study. In that context,

it was suggested in [113] that damage spreading and failure could be seen as a depinning transition of

an elastic interface progressing in random media. However, only qualitative arguments were formu-

lated and no direct calculations were performed to establish this link. We aim here at following this

idea by bridging quantitatively depinning models and damage models.

1.2.3 Our approach: A mesoscopic description of damage spreading in heteroge-
neous media

We chose to benefit from both approaches by using some aspects of non-local continuum

damage model together with other aspects used in statistical approaches. We consider a continuous

non-local damage model formulated in a thermodynamical framework. The damage growth derives

from the comparison of the damage driving force and the damage resistance. The former, the non-

local rate of energy restitution is calculated from the free elastic energy. The latter can be viewed as its

thermodynamic counterpart, the rate of dissipated energy. This last parameter is chosen as an increas-

ing function of damage, representative of the material hardening. The non-locality is introduced via

a non-local damage parameter in the stiffness expression. The expression of the interaction function

is motivated by the recent study of Démery et al. [Démery et al.] who calculated the exact expression

of the non-local redistribution function in the context of weakly disordered elasto-damageable solids.

Moreover, to capture the characteristic fluctuations during damage spreading, we introduce material

heterogeneities at a mesoscopic scale through a random distribution of damage resistance.
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1.3 Conclusions

Experimental testing of a large variety of materials under diverse loading conditions al-

lowed to extract the main features of quasi-brittle failure. The obtained macroscopic response, com-

bined with acoustic emission measurements, revealed the general failure mechanism. It consists in

the nucleation and stable growth of microdefects that affect the local stress and strain fields. They

progressively deteriorate the material elastic properties, which leads to a non-linear macroscopic re-

sponse. At some critical loading, a consequent density of microcracks is formed, and newly formed

defects start to spatially organize. The localization of damage in some region of the material even-

tually leads to the formation of a macrocrack, at which point catastrophic failure takes place. If the

damage progressive clustering has been well established, a unified description of the statistics of fail-

ure precursors is still lacking, in particular in terms of damage spatial structure. The same holds

for the temporal behavior of the precursors. The intermittency and amplification of the fluctuations

amplitude as failure is approached are well identified. However, there is no consensus on the actual

evolution statistics of the bursts and the value of the exponents involved in that scale-free behavior.

We believe that a better understanding of the processes taking place during damage spread-

ing in disordered materials would permit to clarify the observed behaviors and possibly predict the

onset of failure. For that purpose, many models have been developed to describe quasi-brittle fail-

ure. The non-local extension of continuum damage mechanics based models capture well the macro-

scopic behavior of such materials. However, these models neglect the effect of microstructural hetero-

geneities and describe the solids as homogeneous media, which forbid the observation of the charac-

teristic intermittency of the precursors to failure. To tackle this problem, statistical models of fracture

appear very attractive. They allow the introduction of disordered material properties and redistribu-

tions after damage events. However, their lack of realism or thermodynamical consistency restricts

them to qualitative predictions. In this study, we take advantage of both approaches by considering a

non-local continuum damage model in which heterogeneities are introduced at the mesoscopic scale.

We provide an extensive study of the role of the redistributions on both the macroscopic response, via

the analytical determination of the localization and failure thresholds, and the precursors statistical

behavior.

The strong increase of the dissipated energy as failure is approached, as well as the increase

of the damage field correlation length obtained in some numerical studies, support the interpreta-

tion of quasi-brittle failure as a critical phenomena. The recent postulate that damage growth can be

seen as a depinning transition of an elastic interface evolving in a random medium calls for further

investigation. To clarify this long-standing debate, we perform a comprehensive statistical study of

the precursors behavior obtained from our numerical approach and explicitly show how our damage

evolution can be described through an elastic interface evolution law.

Finally, to characterize the statistical behaviors obtained in many complex experiments and
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to test our approach, we also perform a compression experiment of a 2D array of hollow soft cylinders.

We show that the bursts of dissipated energy can be fully characterized from the force-displacement

response of the material. This suggests that many systems in which crackling noise is observed can

be characterized rather simply from the measurement of this force-displacement response.





CHAPTER 2

MODEL FORMULATION AND LIMIT CASES ANALYSIS

As presented in the previous chapter, existing models for the description of the quasi-brittle

failure of heterogeneous materials are not able to describe adequately all the features of such rupture

phenomenon. We use advantages issued from the two main classes of models, non-local continuum

damage and statistical models, to build our approach. We present our mesoscopic model in the first

section. We detail the introduction of a non-local damage parameter dependency of the stiffness, the

introduction of heterogeneities at the continuum scale and the thermodynamically consistent derived

damage evolution law. The model is presented as a general formulation so that we also focus on the

choice of the different material parameters (fracture energy heterogeneities, stiffness dependency with

damage) used in this study, and discuss the formulation of the interaction function. Finally, numerical

considerations (spatial discretization, extremal dynamics algorithm) are presented.

To understand the role played by each main ingredient, namely the interactions and hetero-

geneities in the system, we study in a second section two simple limit cases. We first discuss the

behavior of a homogeneous system, which serves as a reference in the following, and highlight how

the different material parameters affect its response, in particular how they control the existence of

a snap-back instability. We then study a heterogeneous non-interacting system, and show how its

response can be obtained as a statistical average. These two particular cases emphasize that these

features taken separately do not allow to capture properly the main features of the quasi-brittle fail-

ure. Indeed, the coaction of both is required to obtain the complex damage organization and system

response described previously.

2.1 Non-local damage model description of a heterogeneous material

Before detailing our model, we provide a brief general description of our approach. We

build our model on classical concepts of continuum damage mechanics. Yet, instead of considering

homogeneous material properties, we introduce spatial variations in the material resistance over a

23
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typical scale ξh. To do so we consider media with heterogeneous fields of damage energy. Within this

approach, material heterogeneities are introduced at a mesoscopic scale, intermediary between the

microscale at which microfracturing processes take place and the macroscale at which the material

can be seen as homogeneous. Moreover, the material is characterized by its damage field which rep-

resents in each material point the density of formed microcracks within an elementary volume δx3.

In principle, addressing numerically damage evolution within such a heterogeneous material would

require to mesh the material at a fine scale δx� ξh with respect to the heterogeneity size. However,

we will see that using a coarser discretization δx= ξh does not affect damage evolution, so that in the

following, material heterogeneity and material representative element will be confounded.

Since our main focus is the effect of material heterogeneities on damage spreading within

the material, we will consider simple loading conditions. In this first part of the thesis, materials will

be loaded uniformly in tension, by the application of a displacement on the upper side of the specimen.

During loading, damage will increase and affect the strength of an element via its stiffness, which

decreases with damage. A central feature of our model is a non-local interaction function that allows

to describe how stresses are redistributed after each damage event. In this study, a main objective

is to understand how the nature of these interactions affects damage spreading and localization in

heterogeneous solids.

2.1.1 Energy based damage criterion

We consider a system of ND elements, where D is the dimension of the system Σ and is

equal to 1 or 2, with periodic boundary conditions. Elements are distributed equidistantly in space and

indexed by the position ~x of their center in the system of size LD. As discussed the in introduction,

these elements coincide with the typical heterogeneities of the material of size ξh. As a result, the total

material size is effectivelyNDξDh . The material is clamped between two rigid plates, as schematically

represented in 1D in Fig. 2.1a where each element is represented by a spring: The bottom plate is

maintained fixed whereas a uniform macroscopic displacement ∆, perpendicular to the x-axis in 1D

and to the (x,y)-plane in 2D, is applied to the upper plate. Due to these clamping conditions, the

microscopic displacement is homogeneous, equal to the macroscopic one, such that the macroscopic

force writes as

F =
∫

Σ
σ(~x)d~x= ∆

∫
Σ
k[d(~x)]d~x (2.1)

where σ is the stress field and k[d(~x)] = σ(~x)/∆ the local stiffness of an element which depends on

its damage level d(~x). This scalar damage parameter ranges from zero when the element is intact to

one when it is fully broken. For quasi-brittle fracture, it relates to the density of microcracks formed

within the elementary volume represented by this element. On a broader perspective, it quantifies

the degree of damage and the associated loss of stiffness of the elementary element. The variation of

the elastic constant with damage is a central feature of continuum damage models [66]. However, as

done in non-local damage models [9], we introduce here a dependency on the non-local parameter, d,
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defined as

d(~x) = (α∗d)(~x) =
∫

Σ
α(~x−~x′)d(~x′)d~x′ (2.2)

where α is a weight function that will be specified below satisfying to the normalization condition∫
Σ
α(~x)d~x = 1 that ensures (i) energy conservation during damage growth (see Appendix A) and

(ii) that a homogeneous field remains unaffected by the introduction of non-locality. This non-local

damage parameter controls the stiffness through

k[d(~x)] = k
(
d(~x)

)
. (2.3)

The introduction of a non-local variable allows to introduce interactions in the medium,

as originally proposed by [87]. Though, contrary to this work and the several studies inspired from

it [8, 73, 99], the interactions are introduced in our model at the level of the damage field, and not on

the driving force. In other words, the stiffness in ~x depends on the damage level in an extended region

defined by the range of the weight function α. This description was chosen to ensure a proper energy

balance during the transfer of mechanical energy into fracture energy, as shown in Appendix A. The

introduction of such a non-local failure behavior and heterogeneities results in a complex temporal

and spatial organization of damage illustrated on the damage spatio-temporal evolution of Fig. 2.1b

that resembles qualitatively the experimental observations and provides a rich macroscopic failure

response.

To describe damage evolution, we start from the total energy of the system Etot comprising

the elasto-damageable material and the loading system. Hence, under some imposed loading ∆, the

total energy is the sum of the elastic energy Eel, the fracture energy Ed and the work of the external

force W :

Etot = Eel +Ed−W

=
∫

Σ

1
2∆2k

(
d(~x)

)
d~x+

∫
Σ

∫ d(~x)

0
Yc(~x, d̃)dd̃d~x−

∫ ∆

0
F (∆̃)d∆̃

(2.4)

where Yc(~x,d) refers to the damage energy of the element located in ~x and characterized by a dam-

age level d. It is defined so that an increase δd of damage in a region δ~x of the material results in an

energy dissipation δEd = Yc(~x,d)δdδ~x.

We introduce the thermodynamic driving force for damage as the change in total energy for

a small increase δd(~x) of damage localized in ~x

F(~x) =−δE
tot

δd
= Y (~x)−Yc(~x) (2.5)

where Y corresponds to the elastic energy release rate, i.e. the thermodynamic driving force for

damage, and Yc corresponds to the rate of dissipation through damage, describing the resistance to
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Figure 2.1: (a) Schematic representation of the loading system in 1D and the interaction function.

The damage driving force that applies on the central fiber results from a spatial average of the driving

force that applies on the other elements weighted by the interaction function α represented here. This

interaction function also interprets as the spatial structure of the load redistribution that takes place in

the material after the central element is damaged. (b) Spatio-temporal evolution of the damage field

for a 1D system of N = 2000 elements. Initially, damage is zero everywhere (d = 0 for a driving

∆<∆el, upper blue line), until catastrophic failure of the system for ∆ = ∆c (d= 1, lower red line).

damage.

We consider in this study quasi-static loading conditions where damage mechanisms take

place at a much faster rate than the external driving. Thus, we assume that damage increases in the

material under fixed applied displacement ∆. This implies that the work of the external force does not

contribute to the energy release rate Y that hence writes as (see Appendix A for detailed calculations)

Y (~x) =−δE
el

δd
= (α∗Y )(~x) (2.6)

Interestingly, with the introduction of the non-local damage parameter in the expression (2.4)

of the elastic energy, the energy release rate Y takes a non-local form too and writes as the convolution

of the weight function α with the local energy release rate defined as

Y (~x) =−∆2

2
dk

dd
=−∆2

2 k′
(
d(~x)

)
(2.7)

Therefore, the damage driving force at one point of the system depends on the damage level

of the other elements in a neighboring region. A typical example of redistribution function is shown

schematically in Fig. 2.1(a). For elements close to the heterogeneity located at the center that has just

damaged, the driving force will increase (red areas) while elements located further away might be

unloaded (blue areas), depending on the actual shape and sign of the weight function.
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The mechanical equilibrium that derives from the condition
δEtot

δd
= 0 during damage

growth is thus reached when

Y (~x) =−δE
el

δd
= δEd

δd
= Yc(~x) if δd(~x)> 0 (2.8)

Hence, damage increase require a balance between the elastic energy release rate and the damage

dissipation rate, the same way crack propagation requires a balance between the energy release rate

and the fracture energy [40]. In summary, we hence have the damage growth criterion

 Y (~x) = Yc(~x) ⇒ Damage growth
Y (~x)< Yc(~x) ⇒ Stable damage.

In Appendix A, we show that this damage evolution law can be derived equivalently from

the variation of the total energy of the system with respect to the external driving ∆ or with respect to

damage.

2.1.2 Material parameters

Damage energy and material heterogeneity

To account for the heterogeneities of the material, we introduce a damage energy field

dependent on the position ~x in the system through a random quenched noise g that accounts for

the randomness of the fracture resistance to damage. The values of g are drawn from a uniform

distribution of zero average value and variance σg. This distribution is classically used in statistical

models of fracture [1], but other ones could be used without changing the general behavior of the

disordered system. In addition, the material resistance is chosen to depend on the damage level in the

elements as

Yc(~x,d) = Yc0[1 +g(~x,d) +ηd(~x)] (2.9)

where η > 0 is a hardening parameter. Thus, at a given damage level d, the fracture energy field has

a probability density function that writes as

p(Yc) =


1

Y max
c −Y min

c
forY min

c ≤ Yc ≤ Y max
c

0 forYc < Y min
c orY max

c < Yc

(2.10)

where Y min
c = Yc0(1 + ηd)−

√
3σg and Y max

c = Yc0(1 + ηd) +
√

3σg. The function p(Yc) is repre-

sented in Fig. 2.2a.

The increase of the average fracture energy 〈Yc(~x)〉~x = Yc0 + η〈d(~x)〉~x with damage is

assumed in several models, like e.g. [84]. It reflects qualitatively several microscopic toughening

mechanisms taking place during material failure, as for example crack faces friction [64, 91], wing
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cracks [5, 98] or crack bridging [16]. As justified later, it also allows to explore material behaviors

with extended post-peak response and softening unlike when η = 0. Indeed, without hardening, the

load redistribution described in Fig. 2.1(a) induces systematically an increase of the driving force of

the damaging elements. In the limit of weak disorder intensity, it results in an unstable failure of the

whole material as soon as the first element starts to damage. This is a strong indication that hardening

is a relevant physical mechanism involved in quasi-brittle materials displaying an extended softening

regime, as shown in the experimental part of this thesis.

Yc

p
(Y

c
)

Yc0(1 + ηd)Y min
c Y max

c

1
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c 2
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Figure 2.2: (a) Probability density function of damage energy Yc(~x,d) at some fixed damage level d;

(b) Effect of the stiffness parameter a introduced in Eq. (2.11) on the variations of the stiffness with

the level of damage.

Material stiffness

To account for the degradation of the elastic properties of the material during damage, we describe

the stiffness decay of a single element with the damage level through a polynomial law

k(d) = k0[adγ− (a+1)d+1] (2.11)

where k0 is the stiffness of the intact material, chosen homogeneous, and a is a constant verifying

−1 < a < 1/(γ−1). The upper bound is obtained by considering that the derivative of the stiffness

must be negative while d ranges from 0 to 1 and the lower one is defined such that the stiffness ranges

from k0 to 0. This law allows for the exploration of a large range of damage behaviors, as illustrated

in Fig. 2.2b where the stiffness variations with d is shown for three values of a. The sign of a fixes the

curvature of k(d), and so the stability of the individual elements. Indeed, from Eq. (2.7) we obtain

∂Y

∂d

∣∣∣∣
∆

=−∆2

2
d2k

dd2 =−∆2

2 k0γ(γ−1)adγ−2 (2.12)

Thus, for negative values of a and no hardening, an element that starts to damage experi-

ences a growing damage driving force Y at fixed displacement. Hence, damage evolves freely from
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0 to 1, resulting in an abrupt failure at constant displacement. On the contrary, positive values of a

lead to a stable damage process: As the heterogeneity gets damaged, Y decreases so that the external

displacement has to be increased to further damage the heterogeneity.

The exponent γ drives the dynamics of the damage process. From the above equation of

the damage driving force, one can see that for γ = 0, γ = 1, or equivalently the case a = 0 that cor-

responds to the largely used damage law k(d) = k0(1− d) [66], we obtain a damage-independent

driving force. Since interactions are mediated through the non-local damage variable d̄ introduced

in the model, this would amount to consider a local damage model: elements evolve independently

from one another, and the material behavior would follow that of a single element, as discussed in

Sec. 2.2. Since the effect of elastic interactions on the material failure behavior is the main purpose of

this study, γ = 3 is chosen. Contrary to γ = 2, this value has the advantage to produce an acceleration

of the damage growth close to final failure as largely reported in experiments [7, 32, 42]. However,

any value of the exponent satisfying γ > 2 results in similar collective failure behaviors characterized

by damage localization and catastrophic failure.

In any event, the choice of a polynomial variation of the stiffness with d does not limit the

generality of our model. In the following, for all analytical calculations, we will keep its general

form k(d) as long as possible so that it can be specified to other behaviors. As evidenced here for a

single element, the failure behavior of the material will be shown to depend on the sign of the second

derivative k′′(d), i.e. the stability of individual elements, but not on the actual function k(d) used to

describe the stiffness degradation.

2.1.3 Interaction function

The shape of the interaction function will be shown to have a key role in controlling the

material failure behavior. In general non-local models formulations, a Gauss distribution function

form or a polynomial bell-shaped function is considered [53]. In both cases, an internal length is

introduced that control the range of the interactions. In our case, to investigate the effect of com-

plex damage driving force redistributions, in particular the reloading and unloading of elements with

damage, we use the general form

α(~x) = α0 exp
(
− 1

2`‖~x‖
)

cos
(
κ

2`‖~x‖
)

(2.13)

where ‖~x‖ represents the distance between elements and α0 is a the normalization constant defined

such that
∫

Σ
α(~x)d~x = 1. The parameters ` and κ can be tuned and control the spatial structure of

the interactions. The internal length ` corresponds to a number `0 = `

ξh
of elements. It controls the

range of the interactions, i.e. the characteristic length over which an heterogeneity is affected by the

occurrence of a damage event elsewhere. The parameter κ, defined as a positive constant, controls the

shape of the redistribution function as illustrated in Fig. 2.3 where we have introduced the parameter

value κc = 0.58. Note the change of sign of the interaction function if κ is non-zero. The sign of the
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interaction function governs the sign of the redistribution during damage spreading: after a damage

event takes place, elements located at a distance ‖~x‖ from it for which α(‖~x‖)> 0 experience a driv-

ing force increase whereas elements located so that α(‖~x‖)< 0 are unloaded. In the two-dimensional

version of our model, the interaction function solely depends on the distance between points, irre-

spective of the orientation within the plane perpendicular to the loading axis.

The choice of such an interaction function, and more broadly of non-local damage models

for the study of damage spreading in heterogeneous materials, calls for a few comments. Nonlo-

cal approaches in damage mechanics have be shown to address efficiently the problem of sensitivity

to the element size observed in the softening regime during the progressive damage of quasi-brittle

solids [54, 87, 88], as detailed more in the introduction. However, physical motivations for the in-

troduction of non-local effects and justifications for the actual shape of the non-local function are

still missing. Very recently, this approach was justified by the exact calculation of the redistribution

function in elasto-damageable media [Démery et al.]. This interaction function was shown to be qual-

itatively similar to the Eshelby solution for the mechanical fields around a soft inclusion embedded in

an infinite elastic medium [28] that displays a quadrupole symmetry α(‖~x‖,θ)∼ cos(4θ‖~x‖)/‖~x‖2.

Here in our damage model, we aim at keeping the main physical ingredients of these approaches,

while simplifying the system studied so that the focus can be put on (i) the effect of material hetero-

geneities (ii) the actual shape of the redistribution function.

For that reason, we choose the redistribution function of Eq. (2.13) that shares the following

similarities with the exact one: (i) The strength of the load redistribution is highly heterogeneous in

space, since the closer the elements to the damage event, the larger the driving force redistribution;

(ii) the sign of the load redistribution varies with the position in the damaged solid. As shown in the

following, this property is a key feature of damage driving force redistribution after failure events

that allow to describe the unloading of some regions while the rest of the material is actually further

reloaded. Note however that there are significant differences between the interaction function used

in our model and the one calculated for elasto-damageable solids: in our model, the interaction func-

tion changes of sign with the distance to the damage event, while the quadrupolar symmetry of the

Eshelby redistribution function results in sign variations with the direction with respect to the load-

ing axis. This difference results from our choice of loading configuration. Indeed, the macroscopic

displacement is imposed uniformly to all the elements of the material that are arranged parallel to the

loading plate so that the loading conditions do not define preferential direction in the material plane,

while for 2D solids under uniaxial loading, the loading axis does define two orthogonal main direc-

tions. Another important difference is that our model considers interactions with finite-range given by

the internal length `. In the theory of elasto-damageable material, the function decays as a power-law

of the distance. Despite this difference, we will see that our approach allows to explore the main

features of damage spreading and localization in quasi-brittle solids, and understand the combined

role of disorder and interaction functions on its evolution. The case of 2D elasto-damageable media

using the interaction shape computed in [Démery et al.] is finally explored to interpret the experimen-
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tal results of Chapter 5.
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Figure 2.3: Interaction function α for three different values of the shape parameter κ (see Eq. (2.13)).

For practical purposes, we have introduced κc = 0.58.

2.1.4 Numerical integration

Similarly to crack propagation problems, damage growth requires the equality Y = Yc be-

tween the rate of energy released and the rate of energy dissipated. There are several ways to deal

with this type of criterion in order to predict the system evolution. One of them is to regularize this

criterion by assuming an over-damped dynamics
∂d

∂t
(~x,t) ∼ F(~x) [15, 34]. Another possibility is

to introduce a weakly rate-dependent critical energy release rate so that the damage evolution law

takes the form of a kinetic relation Y (~x) = Yc

(
~x,
∂d

∂t

)
that can be solved assuming the irreversibility

condition
∂d

∂t
> 0 [116, 117].

Here, we take advantage of the quasi-static loading conditions, and adopt a discrete dynam-

ics inspired by [103] based on the following rules: The imposed displacement is increased until the

failure criterion (2.8) is reached by one heterogeneity. The damage level of this heterogeneity is then

increased by an increment δd� 1, and the spatial distribution of driving forces in the material is

recalculated using Eqs. (2.6) and (2.7). The redistribution of driving force results in additional dam-

age and subsequently additional driving force redistribution until this cascade process stops when

the driving force is below its critical value everywhere in the system. Those three approaches result

in the same avalanche-like dynamics of the damage growth illustrated in Fig. 2.1b. It corresponds

to a damage process where damage increases by bursts that are localized both in space and time,

characterized by power law statistics as observed for fracture processes in disordered media (see for

example [1, 13, 48]). Despite the presence of strong fluctuations during the growth of damage, we

will see in the next chapter that the main features of the macroscopic failure response of the system
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can be captured without taking into account this intermittency.

In practice, we use the following numerical algorithm. Starting from an initially intact ma-

terial (i) ∆ is increased until one element satisfies to the condition Y (~x) = Yc(~x); (ii) the damage

level of this element is increased by δd; (iii) the distributions of non-local damage driving force and

fracture energy are recalculated using Eqs. (2.6) and (2.7) the discretized version of which is given in

the following paragraph; (iv) step (ii) is repeated for all elements verifyingF(~x,∆)≥ 0; (v) steps (iii)

and (iv) are repeated until no more points verify the damage criterion, i.e. equilibrium is reached; (v)

we go back to step (i) and increase the external driving ∆ again until new damage events take place.

The simulation stops when all the elements are broken.

This discrete dynamics allows to explore large systems, typically N = 104 in 1D and

N ×N = 2.102× 2.102 in 2D for a rather low computational time. An important gain of time was

achieved by confounding the discrete elements with the individual heterogeneities, as justified below.

As a result, we choose L=N so that heterogeneities have a unit size ξh = L/N = 1 and the system

size is [0,L]D. As long as the spatial distribution Yc(x) of fracture energy is conserved, the number

of elements (resp. the discretization step) can be increased (resp. decreased) without affecting the

macroscopic failure response of the material, as will be shown in the following. Therefore, in the fol-

lowing the location ~x= (x,y) is actually a set of discrete values, ranging from 1 to N and separated

by increments of ξh = 1. Finally, in order to limit finite size and spurious edge effects, we impose

periodic boundary conditions.

To calculate the damage driving force defined with Eqs. (2.6) and (2.7), we use Fourier

transforms since convolution products become simple products in Fourier’s space. We calculate the

non-local damage parameter through

d(~x) = FT−1 (FT(α(~x))×FT(d(~x))) (2.14)

where FT denotes the Fourier transform and FT−1 the inverse Fourier transform, and We obtain the

non-local rate of energy restitution using the same approach:

Y (~x) =−1
2∆2FT−1

(
FT(α(~x))×FT(k′(d(~x))

)
(2.15)

where d was calculated using (2.14). The variation of the fracture energy with the damage level is

discretized by introducing a small but finite damage increment δd that characterizes the amount of

damage produced in an element when the condition Y = Yc is reached. After each damage event, the

fracture energy of the element is redrawn using

Yc(~x,n0) = Yc0[1 +g(~x,n0) +n0η] (2.16)

where n0 = d/δd is the total number of damage events experienced by the element since the begin-

ning of the test, η = ηδd is the modified hardening parameter and g(~x,n0) is a random number drawn
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in the interval−
√

3σg < g <
√

3σg. In the following, we use the value δd= 0.005 for the damage in-

crement. Its value has a minor effect on the numerical results as long as taken much smaller than unity.

2.2 On the relevance of the combination of interactions and disorder

To emphasize the central role of the coaction of both heterogeneities and interactions be-

tween damaged elements, we investigate here two limit cases. We first study the behavior a homo-

geneous system of interacting elements for which we can track analytically the response. We then

investigate the response of a non-interacting heterogeneous system. The two situations appear to be

related and allow us to conclude that these ingredients used separately exclude the observation of the

characteristic behavior of quasi-brittle failure.

2.2.1 Interacting homogeneous system response

A homogeneous system is obtained by imposing constant material properties through the

medium. This amounts to eliminate the stochastic term g(~x,d) introduced in the expression of the

fracture energy field in Eq. (2.9), so that

Yc(~x,d) = Yc0[1 +ηd(~x)]. (2.17)

As we start from an initially intact material with d(~x) = 0 everywhere, the damage resis-

tance is homogeneous, so all points simultaneously verify the damage condition Eq. (2.8) for the same

imposed displacement. This first failure event produces the same damage increment δd everywhere

and hence the damage field remains uniform. Due to the normalization condition imposed to the

interaction function α, it results that the total driving force F also remains homogeneous. Therefore,

all points will again experience the same damage increment at the same loading, leading to a damage

evolution that remains identical in each element all along the failure process.

This damage evolution has several important consequences: (i) Considering a homogeneous

material amounts to consider a local and interaction free model of damage where the evolution of an

element is independent of the response of the other ones. (ii) Each material point evolves identically.

Therefore, the problem of damage evolution in the medium is reduced to a single element problem

easily tractable analytically. (iii) Damage evolution is independent of the dimensionD of the medium,

so that the predicted force-displacement response is valid for any dimension. Note that this simple

evolution of the damage field remains valid as long as the homogeneous state of damage remains

stable. These stability conditions will be investigated in the following chapter.

Using the previous remarks, the damage evolution law (2.8) reduces to its local form which, for a
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damage level d0 in the system, writes as

Y (d0) = Yc(d0). (2.18)

Combining the above equation with the expressions (2.7) and (2.17) of the energy release rate and the

fracture energy, the macroscopic displacement and force as a function of the level of damage follow


∆ =

√
−2Yc0(1 +ηd0)

k′(d0)
F = ∆LDk(d0)

(2.19)

where the force evolution has been derived from its general expression given in Eq. (2.1).

The force-displacement response of the homogeneously damaged material is here a para-

metric curve where the damage variable plays the role of the parameter increasing from d = 0 when

the first element starts to damage up to d= 1 at full failure when the material cannot sustain any load-

ing. The normalized macroscopic mechanical response is represented in Fig. 2.4a for non-hardening

(η = 0) materials for the three values of a also used in Fig. 2.2b. Normalization is here achieved

by dividing the displacement by ∆br
0 and force by F br

0 . These quantities correspond, respectively,

to the force and displacement at the end of the elastic regime for a brittle system (a = 0). Hence,

∆br
0 =

√
2Yc0/k0 and F br

0 = LD
√

2k0Yc0. As previously discussed, the parameter a controls the

stability of individual elements. A positive value of a results in an extended softening regime charac-

terized by a slowdown of the damage dynamics as complete fracture is approached. The case a = 0
corresponds to a driving force independent of the damage level. Hence, as soon as the threshold value

Y = Yc0 is reached, damage increases from 0 to 1 at constant displacement, which fits the behavior

a brittle homogeneous system. Finally, negative values of a produce a snap-back instability in the

force-displacement curve that would lead to an abrupt failure of the specimen as soon as the medium

starts to damage. We focus in this study on this latter situation, which will reveal interesting features

and appear to be the relevant case for the description of the quasi-brittle failure.

In the presence of hardening, the final failure can be delayed, as shown in Fig. 2.4b where we

consider the negative value a=−0.3 and where the curves are normalized by the load and displace-

ments at the end of the elastic regime, ∆0 =
√

2Yc0
k0(a+ 1) and F0 = LD

√
2k0Yc0
(a+ 1) . The snap-back,

which position is indicated by a dot, is observable for all the values of η explored here, even though

less discernible as the hardening parameter is large. By tuning the value of η, its position can be

shifted towards higher critical displacements and pushed away from the peak position.

For a homogeneous material, the snap-back position can be determined from the variations

of the driving force with damage. If, at constant displacement, the difference F = Y −Yc between

the damage driving force and the damage resistance increases with d, the failure process is unstable

since a constant loading would lead to abrupt failure. For the criterion (2.18) to be satisfied, the
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Figure 2.4: (a) Effect of the stiffness parameter a introduced in Eq. (2.11) on the normalized Force-

Displacement responses of the homogeneous non-hardening (η = 0) material. The normalization

constants ∆br
0 and F br

0 correspond, respectively, to the displacement and force at the end of the elastic

regime when a = 0; (b) Effect of the hardening parameter η on the normalized mechanical response

of the homogeneous material with a = −0.3. The normalization constants ∆0 and F0 correspond,

respectively, to the displacement and force at the end of the elastic regime. The snap-back instability

along the force-displacement curve is indicated by a dot.

macroscopic displacement must be decreased, leading to the characteristic snap-back behavior shown

in Fig. 2.4b. Hence, the snap-back condition writes as

∂F
∂d

∣∣∣∣
∆

= 0 (2.20)

Assuming a driving force of the form

F(d) = f(d)Xζ −h(d) (2.21)

where f(d) and h(d) are functions of damage and X the control parameter, i.e. the displacement in

our case, the criterion of Eq. (2.20) writes as

f ′(d)
f(d) = h′(d)

h(d) (2.22)

where we have used the equilibrium condition F = 0 that gives X =
(
h(d)
f(d)

)1/ζ
.

Applying Eq. (2.22) to our specific case for which f(d) = −1/2k′(d), h(d) = Yc0(1 + ηd), X = ∆
and ζ = 2, we obtain

k′′(dsb)
k′(dsb) = η

1 +ηdsb
. (2.23)
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This equality provides the critical level of damage at which snap-back occurs. Considering an expo-

nent γ = 3 in the stiffness expression, one obtains

dsb = 1
η

(√
1−η2 1 +a

3a −1
)

for a < 0 (2.24)

from which one can obtain the snap-back displacement using Eq. (2.19). As expected, when a > 0,

the condition (2.20) required for snap-back instability is never reached. From the condition dsb ≤ 1,

one can also discuss the existence of the snap-back instability for a ≤ 0. For −1 < a ≤ −1
4 , the

force-displacement response of the homogeneous medium always displays a snap-back, irrespective

of the value of the hardening parameter η. On the contrary, when −1
4 < a ≤ 0, this instability takes

place only for sufficiently low hardening parameter η ≤ −6a
1 + 4a . Table 2.1 summarizes the damage

level at snap-back for different values of γ . For γ = 0 or 1, no snap-back instability is obtained. For

γ = 2, snap-back exists only for certain combinations of values of material parameters a and η and it

takes place as soon as the material gets damaged. Expressions for higher γ values are complex and

therefore not shown here. Note however that a positive value of a ensures the absence of instability,

irrespective of the value of γ.

γ a η dsb

0 ∀a ∀η -

1 ∀a ∀η -

2 −1< a <−η/(2 +η) ∀η 0

3 −1< a≤−1/4 ∀η Eq. (2.24)

−1/4< a≤ 0 η ≤−6a/(1 + 4a) Eq. (2.24)

Table 2.1: Conditions on the material parameters values a and η and corresponding damage level at

the snap-back instability for different exponents γ of the stiffness polynomial expression. In the case

of γ = 0 or 1, no snap-back instability is obtained.

Interestingly, even though the mechanical response of the medium depends on the value

of a and in particular on its sign as illustrated in Fig. 2.4a, the total mechanical energy required for

breaking the system, which can be inferred from the area under the force-displacement curve, is con-

stant. Indeed, the total energy stored in the system before the application of the loading, and available

for dissipation during damage growth is independent of a and follows Ed
tot = (1+η/2)Yc0 as derived

from the expression (2.17) of the fracture energy. This is a remarkable property of the non-local dam-

age model proposed here. As derived from thermodynamic principles, it allows to compare peak load

and more generally macroscopic failure response of material systems with different microscopic fail-

ure behavior for a constant total fracture energy. For example, we see in Fig. 2.4a that under imposed

displacement conditions, materials made of stable elements (a> 0) will sustain a larger loading, while

under imposed force conditions, unstable elements (a < 0) will achieve a higher resistance.
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2.2.2 Non-interacting heterogeneous system response

We now consider a heterogeneous system, i.e. the fracture energy field is given by Eq. (2.9),

where elements are not interacting. The absence of interactions is obtained by considering a function

α that takes the form of a Dirac function. This leads to a stiffness which depends only on the local

value of damage so that k(d(~x)) = k(d(~x)) and a local damage driving force Y (~x) = Y (~x). Hence

the equilibrium condition takes a local form

Y (~x) = Yc(~x,d) (2.25)

As in the general case, the first damaged heterogeneity is the weakest one, corresponding to

the element with the lowest damage energy. As damage increases in that element, the other regions of

the material remain unaffected by the damage event. Thus, the next damage event will take place in

the new weakest point of the system. If the disorder intensity σg is small with respect to the hardening

η then it will, a priori, take place in another element and at an increased loading. This random dam-

age process goes on until damage in an element reaches the snap-back instability value. In that case,

the damage increases up to 1 at constant displacement in this element. We now discuss the effect of

the noise g. After each failure event, the damage energy is redrawn. This results in a slightly varying

snap back threshold with respect to the predicted value for an homogeneous system response. For

that reason, the different elements abruptly break one by one, at different imposed displacements.

Due to these mechanisms, we can conclude that (i) since the elements behave independently,

the response of the system is the same whatever its dimension D; (ii) the macroscopic response of

the system is a statistical average of the response of each heterogeneity. Furthermore, apart from

the abrupt failure of each element at different critical loadings, at each applied displacement only

one damage event takes place. Hence, the fluctuations in terms of dissipated energy are of the same

magnitude as the disorder intensity and the typical dissipated energy at a given loading is proportional

to the average fracture energy of the system η〈d〉. Since the disorder is spatially independent, the

damage field in the system is completely random and uncorrelated. These two observations indicate

that the response of such a system is far from the behaviors observed experimentally and described in

the first chapter.

2.3 Conclusions

The proposed model takes into account the heterogeneities of the materials microstructure

at the mesoscopic scale, at which a continuous damage parameter is defined. Following previous

approaches, we adopt a non-local formulation via the introduction of a non-local damage parameter.

The chosen redistribution function, in which an internal length is introduced, has a tunable shape

through the introduction of shape parameter κ. Its expression was based on that calculated in a more

realistic framework and allows for both reloading and unloading of neighboring elements after dam-

age events. Finally, the damage evolution law is derived from energy conservation considerations and
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permits a thermodynamically consistent description of damage evolution through bursts of dissipated

energy taking place at fixed applied displacement.

If it may appear that many parameters are introduced in the formulation, the presented

model and most calculations are expressed as general expressions, to which the specified properties,

e.g. material stiffness, fracture energy field and interaction function, are considered and discussed. In

this study, we focus principally on the role of the redistributions of the damage driving force, so that

the main varied parameters are the internal length `0 and shape parameter κ, while the other properties

remain invariant.

The application of this model in the case of either a homogeneous interacting or an interaction-

free disordered system showed that the quasi-brittle failure features cannot be properly captured if het-

erogeneities and interactions are taken separately. If the system behavior becomes trivial, it allowed

to investigate the role of the stiffness expression and the introduction of hardening in the damage re-

sistance field. The homogeneous media response will serve as a reference in the course of this study,

in particular to compare with the complex behavior of systems with both disorder and interactions, as

considered in the next chapter.



CHAPTER 3

DAMAGE LOCALIZATION AND FAILURE PREDICTIONS OF THE

QUASI-BRITTLE MATERIAL

In this chapter, we apply our model and explore the resulting behavior when both hetero-

geneities and interactions between damaged elements are taken into account. As discussed in the

previous chapter, these ingredients taken separately render the system behavior trivial and unable to

describe quasi-brittle failure. We show here that taking into account both ingredients lead to a com-

plex response where damage evolves from a diffuse spatial distribution to a localized state. The failure

of the system takes place at or shortly after this localization. Through an analytical determination of

the critical loadings at localization and failure via both a linear stability analysis and a global energy

minimization, we determine that it is the shape of the interaction function α, fixed by the parameter

κ that controls the system response.

In the first section we investigate the one-dimensional system response. Varying the shape

parameter value, the system force-displacement response is shown to either follow that of the homo-

geneous system up to the snap-back point at which catastrophic failure takes place, or up to a critical

loading at which a deviation is observed, shortly followed by an abrupt failure of the system that oc-

curs at lower loadings than the instability of the homogeneous system. The determination of the criti-

cal loadings and damage level at which these transitions take place show that (i) there is a continuous

evolution of these thresholds with the parameter κ and (ii) the internal length value does not affect the

critical loadings. The damage field organization is shown to organize with a particular critical mode

that also scales with κ. In the second section, we rationalize these observations by predicting both

the localization, at which deviation from the homogeneous behavior is observed, and failure loadings

through a linear stability analysis. The study is performed on both one and two-dimensional systems,

the dimensionality affecting only the values but not the behaviors. This approach showing limitations

if the damage field localizes before failure takes place, we complement this study by performing a

global energy minimization in a third section. This allows recovering the localization threshold and

39
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improve the failure prediction.

3.1 Failure behavior of the heterogeneous system: numerical observa-

tions

In this section we focus first on 1D systems while 2D systems, that display similar behav-

iors, are left for Sec. 3.2.3. We study the response of a material made of heterogeneities with unstable

failure properties using a negative stiffness parameter a = −0.3. The results are here shown for a

hardening parameter value η = 8 but the system behavior is the same as long as a and η are verifying

the conditions described in Table 2.1. We consider several realization of the disorder, the intensity of

which (σg) ranges from 0.001 to 0.2. The influence of the internal length parameter, with `0 = 5 or

10, and shape parameter κ is investigated.

3.1.1 Macroscopic response

The normalized macroscopic response of weakly heterogeneous materials (σg = 0.001) is

presented in Fig. 3.1a for different values of the shape parameter κ and compared with the response

of the homogeneous material. The force and displacement are normalized by their values at the end

of the elastic regime. In order to smooth out the fluctuations observed from one material to another,

the response of the heterogeneous material is shown after averaging over twenty different realizations

of the disorder.

For small imposed displacements ∆�∆c, where ∆c is the applied displacement at failure,

the response of the heterogeneous system is identical to that of the homogeneous system. As ∆ gets

close to ∆c, for the non zero κ values shown here, its behavior deviates slightly from the homoge-

neous response, as illustrated in the inset of Fig. 3.1a for κ= 2κc. Finally, we observe at ∆c a sudden

drop of the force that reveals the catastrophic failure of all the surviving material elements. The force

and displacement at failure are indicated by dots in Fig. 3.1a. For κ = 0, no deviation is observed

until the catastrophic failure takes place at the snap-back instability of the homogeneous system.

Thus, varying the value of κ shifts the failure instability that lies (i) at the snap-back point

for κ = 0, (ii) between the peak force and the snap-back point for κ = 2κc, and (iii) in the pre-peak

region for κ = 4κc. Lastly, at low disorder level, it appears that the shape of the interaction function

controls the occurrence of the failure instability while maintaining a global behavior close to the one

of a homogeneous material.

Before determining the critical damage and loading levels at which deviation and catas-

trophic failure take place, we show the negligible influence of the spatial discretization on the system

response. To do so, we compare the critical loading at failure when varying (i) the number N of

heterogeneities in the system, and (ii) the number of discretization points Nξ of the heterogeneities.
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In the latter case, the fracture energy thresholds are correlated so that they vary continuously from one

heterogeneity to another. In both cases, convergence is obtained. For κ = 0, `0 = 2 and σg = 0.001,

on Fig. 3.1b, top, we show the deviation of the obtained displacements at failure from that for which

the results are independent of the discretization, as a function of N . The deviation can be considered

negligible for the system size N = 10000 used in this study which is much larger than the transition

point at which increased deviations are observed. Secondly, the discretization of the heterogeneities

is performed for a system of N = 1000 elements so that the actual value of N does not affect the

results while the system size is not too large and allows for a fine discretization. The behavior pre-

sented in Fig. 3.1b, bottom, shows that if a stronger deviation is obtained when heterogeneities are

not discretized (Nξ = 1), the amplitude can be considered negligible.
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Figure 3.1: (a) Normalized Force-Displacement response of a weakly heterogeneous material (σg =
0.001) for `0 = 5 and η = 8 and three different values of κ after averaging over twenty realizations

of the disorder, and comparison with the response of the homogeneous material with local failure

behavior. Catastrophic failure is indicated by dots. The inset is a zoom of the response with κ =
2κc that shows the deviation from the local behavior close to failure; (b) Effect of the numerical

discretization of the system on the critical loading at failure. The influence of (top) the number of

heterogeneitiesN in the system and (bottom) number of points in an heterogeneity,Nξ, forN = 1000
are studied. In both cases an internal length `= 2ξh is used. The finer mesh loading at failure ∆conv

serve as a reference and is compared to ∆c for the different discretizations.

3.1.2 Deviation from the homogeneous system response and failure damage thresh-
olds

We now aim to determine the critical damage levels dh and dc, respectively loadings ∆h

and ∆c, at which deviation and catastrophic failure take place. To do so, we introduce the intensity
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of the damage spatial fluctuations

σd =
√

(〈d(x)2〉−〈d(x)〉2) (3.1)

that we represent as a function of the average damage level 〈d〉= 1
L

∫
Σ
d(x)dx in Fig. 3.2 for κ= 3κc.

After a short transient regime, the level of the fluctuations in the damage field remains rather constant

and then shows a rapid increase from which the onset dh is defined: we fit this increase by a linear

behavior (green dashed line) and define dh from the intersection with the average damage fluctuations

(red thick line) far away from failure d� dc. The onset dc of failure is more obvious and is defined

as the average damage level in the material prior to the final catastrophic failure event. Note that

the failure of one single element is systematically accompanied by the failure of the whole material.

Hence, full failure is achieved when at least one of its elements is fully broken. Moreover, the same

procedure can be used to determine the corresponding critical loadings ∆h and ∆c from the numeri-

cal data and produce similar figures in terms of ∆.

〈d〉
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σ
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Figure 3.2: Methodology used to determine the onset dh of the deviation to the homogeneous re-

sponse: The typical fluctuations of the damage field, characterized by its standard deviation σd shows

a sudden increase indicated by the black dot at the damage level dh. The catastrophic failure is

indicated here by the blue dot and correspond to dc.

In Fig. 3.3 are shown the thresholds in terms of damage as a function of the normalized κ

values, for two internal lengths `0 = 5 and 10 and various disorder intensities σg. A first observation

is that the values of the thresholds depend weakly on the material disorder: low variations of dh

and dc are observed while the fluctuation amplitude σg of fracture energy is varied from 0.1 % to

20 % of its average value. Another interesting observation is that the critical damage levels are rather

independent of the internal length scale `0. The material response is essentially governed by the value

of κ and two distinct regimes emerge:

– (i) for κ ≤ κc, catastrophic failure takes place at the snack-back instability (dc ' dsb),
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and is not preceded by a phase where the response of the material deviates from the

homogeneous material behavior.

– (ii) for κ > κc, the thresholds strongly depend on the shape of the redistribution function.

A careful comparison between Fig. 3.3(a) and (b) reveals that the deviation to the homo-

geneous response takes place close, but prior to complete failure (dh . dc < dsb). In this

regime, failure occurs earlier when the value of κ is increased, taking place even before

peak load for κ& 3κc.

As will be shown, the same behaviors are obtained in terms of critical displacement.
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Figure 3.3: Effect of the interaction function on localization and failure: (a) Variations of the lo-

calization threshold dh as a deviation from the homogeneous material response with the interaction

parameter κ; (b) Variations of the failure threshold dc with κ. Dots and squares correspond to internal

lengths `0 = 5 and `0 = 10, respectively, for different disorder levels σg. The position of the snap-

back dsb and peak force dp for the interaction-free system are indicated by horizontal dashed lines.

The solid and dotted lines correspond to the analytical predictions made from the stability analysis of

Sec. 3.2.1 and the energy minimization of Sec. 3.3, respectively.

3.1.3 Damage field spatial organization

To further characterize the behavior of the heterogeneous system, we now explore the spatial

structure of the damage field as the loading brings the material towards complete failure. We define

the distance to failure as:

δ = ∆c−∆
∆c−∆el

(3.2)

where ∆el is the loading at the end of the elastic regime, where the first damage event takes place.

This parameter δ ranges from unity at the end of the elastic regime to zero at catastrophic failure.
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The power spectrum

Pδ(q) = |d̃δ(q)|
2

N
(3.3)

is computed at different distance δ from failure. Here, d̃δ(q) is the Fourier transform of the damage

field and q is the Fourier mode corresponding to the wavenumber λ = 2π/q. The power spectrum is

used to characterize the spatial structure of the damage field and its evolution. If the damage fluc-

tuations are random, all wavenumbers contribute equally and the power spectrum is flat. Instead, if

damage develops favoring a certain mode, the spectrum exhibits a peak. A typical power spectrum

evolution is shown in Fig. 3.4a for κ = 2κc and `0 = 5. As highlighted in the inset, far from failure

(δ & 0.3), the power spectrum is fairly flat which indicates random fluctuations of the damage field.

On the contrary, as the system gets closer to failure ( δ . 0.05), a peak emerges in the Fourier spec-

trum, indicating that damage spatially organizes and develops over the corresponding mode. This

peak reveals the characteristic mode qc that is defined from the peak of the power spectrum at d= dc.

Its amplification as δ → 0 suggests that a characteristic length scale
2π
qc

emerges from the damage

spatial structure. This observation is consistent with the deviation from the homogeneous system re-

sponse brought out in Fig. 3.1a close to failure.

Figure 3.4b shows the effect of κ on qc for two values of the internal length, `0 = 5 and `0 =
10, and for a large range of disorder intensities, 0.001≤ σg ≤ 0.2. The two regimes identified from the

variations of the thresholds dh and dc with κ are also revealed by the value of the characteristic mode:

for κ ≤ κc, the power spectrum does not reveal any characteristic length scale whereas for κ > κc,

the peak emerges and its position qc increases with κ. Furthermore, the characteristic wavelength
2π
qc

increases linearly with the internal length `0.

3.1.4 Conclusions

In summary, the numerical investigation of the damage evolution in heterogeneous materials

with interacting elements shows that their response can be captured by the homogeneous interaction-

free material behavior up to some critical loading where the two responses deviate from each other,

quickly followed by an abrupt failure. Both onsets can take a broad range of values, from the snap-

back position to the pre-peak regime, depending on the value of the shape parameter κ of the interac-

tion function. Two distinct regimes can be evidenced:

– For κ≤ κc, the damage field does not display a characteristic mode until unstable failure

takes place close to the snap-back instability and without any deviation from the homo-

geneous system response.

– For κ > κc, we evidence a deviation to the homogeneous response, quickly followed by

an abrupt failure. Evolution towards failure is characterized in this regime by the rapid

growth of a characteristic mode in the damage field.

These observations call for the following questions: Can we explain the deviation and in-

stability points and predict their onset? Where does the characteristic length scale of the damage field



3.2 Critical loadings prediction: linear stability analysis 45

2π/q
0 50 100 150

P

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
δ = 0.900
δ = 0.500
δ = 0.300
δ = 0.200
δ = 0.050
δ = 0.040
δ = 0.020
δ = 0.010
δ = 0.005 0 50 100 150

×10
-4

0

1

2

3

4

5

δ = 0.9
δ = 0.5
δ = 0.3

(a)

κ/κc

0 2 4 6 8

q
c

0

0.1

0.2

0.3

0.4

0.5
σ = 0.001

σ = 0.01

σ = 0.2

Theory, ℓ0 = 5

Theory, ℓ0 = 10

qα, ℓ0 = 5

qα, ℓ0 = 10

(b)

Figure 3.4: (a) Evolution of the power spectrum of the damage field with the distance δ to failure

showing the emergence of a peak of mode qc as the system evolves towards fracture. The inset shows

a zoom highlighting the far from failure regime δ & 0.3, for which all modes contribute equally; (b)

Variations of the peak mode qc with κ for different disorder levels σ and comparison with the analyt-

ical predictions (see Sec. 3.2.1). The corresponding mode qα = κ/2`0 introduced in the interaction

function expression is also shown in dashed lines, in blue for `0 = 5 and red for `0 = 10.

close to failure emerge from? What is the origin of the two regimes with distinct failure behaviors as

the interaction function is varied?

3.2 Critical loadings prediction: linear stability analysis

3.2.1 Stability analysis of the homogeneous damage states

To address the questions raised by the numerical study, we carry out a stability analysis of

the states reached by the homogeneous medium during its evolution. Here, we do not restrict our

analysis to 1D media, and explore the stability of the homogeneous behaviors obtained in Sec. 2.2.1

for any dimension. At a given displacement ∆, we assume small variations of the damage field around

a homogeneous value. We decompose it into two contributions: a uniform contribution d0 close to

the average damage level in the material and a heterogeneous contribution δd(~x)

d(~x) = d0 + δd(~x) (3.4)

where δd is assumed very small with respect to d0. To determine the evolution of the perturbation δd,

the total damage driving force F = Ȳ −Yc is also decomposed into two contributions

F [d(~x)] = F (0)(d0) +F (1)[δd(~x)] (3.5)

where the constant term F (0) is the contribution of the homogeneous part of the damage field while
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the heterogeneous part of the driving force F (1) results from the perturbation δd. The expression

of each of these terms is determined by linearizing the expressions (2.6) and (2.17) of the non-local

energy release rate and the fracture energy, respectively. The first step is to decompose the non-local

damage parameter into two terms

d(~x) = d0 + (α∗ δd)(~x) (3.6)

which leads to the following expansion of the stiffness derivative

k′(d(~x)) = k′(d0) +k′′(d0)δd(~x). (3.7)

In this expression where only first order terms in δd have been kept, we have introduced the non-local

perturbation parameter δd(~x) = (α∗δd)(~x). Using Eq. (3.7) into Eq. (2.6), one obtains the first order

expansion of the non-local energy release rate

Y (~x) = Y (d0)−∆2

2 k′′(d0)(α∗ δd)(~x). (3.8)

Since the fracture energy also decomposes into two contributions

Yc(~x,d) = Yc(d0) +Yc0ηδd(~x), (3.9)

one gets the zero and first order contributions of the total driving force
F (0)(d0) = Y (d0)−Yc(d0)

F (1)[δd(~x)] = −∆2

2 k′′(d0)(α∗ δd)(~x)−Yc0ηδd(~x).
(3.10)

The zero order provides the equilibrium condition

F (0) = 0 ⇒ Y (d0) = Yc(d0). (3.11)

It corresponds to the evolution equation of the homogeneous medium obtained in Sec. 2.2.1.

It gives the typical damage level d0(∆) in the material as a function of the external loading as given

in Eq. (2.19).

We now focus on the perturbative term F (1) of the driving force. Its expression provides

physical insights on the weight function α introduced in the model definition. Assume that we have a

perturbation of the damage field δd(~x)∼ δ(~x−~x0), where δ(~x) is the Dirac function, resulting from

a damage event localized in ~x0. The perturbation on the driving force produced by this damage event

can be deduced from Eq. (5.31) and follows F (1)(r) ∼ (α ∗α)(r) where r = ‖~x− ~x0‖ > 0 is the

distance from the damaged element. For κ= 0, this term is positive. This means that a damage event

in the medium is followed by an increase of the driving force everywhere else. On the contrary, for

κ > 0, α and so F (1) change of sign with r, indicating that some elements will be unloaded while

some others will be loaded further. The detailed spatial structure of the load redistribution is actually

set by the convolution of α with itself, which behaves qualitatively as the function α represented in
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Fig. 2.3.

Therefore, the weight function α involved in the definition of the non-local quantities like

the damage parameter d plays a central role in our model by describing how the driving force is re-

distributed in the medium after any failure event. If the non-local formulation of our damage model

results in a load redistribution the sign of which may vary with the distance to the damaged element,

the damaging element itself is always unloaded. Indeed, the sign of the load redistribution in ~x0 is

provided by ∆2|k′′(〈∆〉)|/2−Yc0η which is negative before the snap-back instability as shown by

the instability criterion (2.21). This illustrates the key role played by the hardening behavior of the

material that prevents unstable failure of individual elements before the snap-back point.

Localization prediction

We now use the expression of the driving force perturbation F (1)[δd(~x)] to determine the

material stability. We consider perturbations with some periodicity of mode ~q0 and of positive ampli-

tude δd0. It takes the form

δd(~x) = δd0 cos(~q0 ·~x) (3.12)

Inserting this expression in Eq. (5.31) provides the driving force redistribution

F (1)[δd(~x)] = δd0 cos(~q0 ·~x)∗
(
−∆2

2 k′′(d0)α(~x)∗α(~x)−Yc0ηδ(~x)
)

(3.13)

as the homogeneous damage is increased by δd(~x). Since this expression comprises convolution

products, it is more convenient to express it in Fourier space

F̃ (1)[δ̃d(~q)] =δd0δ(~q−~q0)×
(
−∆2

2 k′′(d0)α̃2(~q)−Yc0η

)
(3.14)

Introducing the function

G̃(~q,d0) =−1
2∆2k′′(d0)α̃2(~q)−Yc0η, (3.15)

where ∆ is related to d0 via Eq. (2.19), the driving force perturbation takes the simple form

F̃ (1)[δ̃d(~q)] = G̃(~q,d0)δd0δ(~q−~q0) (3.16)

Taking the inverse Fourier transform of this equation provides the driving force perturbation

F (1)[δd(~x)] = G̃(~q0,d0)δd0 cos(~q0 ·~x) (3.17)
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It provides the condition for a homogeneous damage growth: if F (1)(~x) is higher at the most dam-

aged zones, i.e. for ~x ·~q0 = 0,±2π,±4π..., the perturbation will grow and hence deviation from the

homogeneous response will occur. At the opposite, if the driving force is higher on the elements with

smaller damage levels, i.e. for ~x ·~q0 =±π,±3π..., these elements will damage first and perturbations

to the homogeneous damage field will be smoothed out. Using the above considerations, we conclude

that

G̃(~q0,d0)> 0 ⇒ Damage localization. (3.18)

In the following, we refer to this process as damage localization, since it results into a con-

centration of the failure processes in some regions of the material. This condition is satisfied above

a critical value of the imposed displacement, or equivalently above some critical level of damage, for

the most unstable mode ~qc that maximizes α̃. Indeed, according to Eq. (3.15), the position ~qc of the

maximum of G̃(~q0,d0) is also the one of α̃, irrespective of the typical damage level d0. At some criti-

cal damage level dh (resp. some critical loading ∆h), the function G̃, which increases with d0 (resp.

∆), hits zero at ~q0 = ~qc. The perturbation then grows and leads to an heterogeneous damage field with

a characteristic mode ~qc. On the force-displacement response, one expects this damage localization

to produce a departure from the homogeneous material behavior of Eq. (2.19).

Failure prediction

If the condition (3.18) predicts the emergence of growing heterogeneous modes in the dam-

age field, it does not predict the abrupt failure observed in the simulations. To determine the critical

loading at which it takes place, one must consider a slightly modified expression of δd(~x)

δd(~x) = δd0 (1 + cos(q0 ·~x)) (3.19)

While the expression of Eq. (3.12) allowed for damage decrease, describing healing pro-

cesses of the material, this expression ensures the irreversibility condition δd ≥ 0 imposed to the

damage evolution. This expression leads to the heterogeneous damage driving force contribution

written as

F (1)[δd(~x)] = δd0
(
G̃(~q0,d0)cos(~q0 ·~x) + G̃(~0,d0)

)
. (3.20)

where the normalization condition on the interaction function which leads to α̃(~0) = 1 was used.

As we now consider that the perturbation of mode ~qc grows, so that in the following ~q0 is

replaced by ~qc, we determine its stability in the following way: unstable failure requires an increase

of the damage somewhere in the medium to be accompanied by an increase of the driving force at

the same location. In other words, for a damage increment δd(~x) = δd0(1 + cos(~qc ·~x)) positive in

~x ·~qc = 0,±2π..., catastrophic failure takes place if F (1)(~x) is also positive at these points. It leads to
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the instability condition written as

G̃(~qc,d0) + G̃(~0,d0)> 0 ⇒ Unstable failure. (3.21)

Similarly to the localization criterion, the condition for unstable failure is satisfied at some

critical damage level dc (resp. some critical loading ∆c) for the most unstable mode ~qc at which the

perturbation started to develop at d= dh.

Note that if the unstable mode is not the homogeneous mode (~qc = ~0) then it means that

when the localization criterion is reached (G̃(~qc,dh) = 0) the function G̃(~0,dh) is still negative. This

ensures that localization takes place prior to abrupt failure. Moreover, as for all loadings and damage

levels the function is higher at ~qc than at mode ~q = ~0, it means that the failure criterion of Eq. (3.21)

will necessarily be verified at a damage level dc lower than the critical level at which the homo-

geneous system snap-back instability takes place. Hence, if ~qc 6= ~0, the system behaviors verifies

dh < dc < dsb, or respectively ∆h <∆c <∆sb.

An important point is that, contrary to the localization prediction, the onset of failure de-

termined from Eq. (3.21) predicts only approximately the actual failure threshold, even in the limit

of weakly heterogeneous media. Indeed, this criterion is derived from a perturbation of the homo-

geneous material response, hence assuming a homogeneous distribution of damage in the medium.

Since localization might take place prior to final failure, damage might be distributed heterogeneously

when unstable failure takes place. We will see that the predictions derived from Eq. (3.21) are rather

good as long as κ is not too large with respect to κc, i.e. that localization does not occur much earlier

than failure, so that the assumption of a relatively homogeneous damage field is not strongly violated.

Therefore, the investigation of the material behavior close to the homogeneous systems

response allows for predictions of the onset of localization and failure that will be compared with the

simulation results in the following section. As a summary, from criteria (3.18) and (3.21), two cases

were identified for the system behavior:

– The most unstable mode corresponds to a homogeneous perturbation ~qc =~0. Both criteria

are then equivalent, and damage localization is simultaneously accompanied by unstable

failure. In that case, catastrophic failure takes place without any prior deviation from the

homogeneous material response. In addition, the onset of failure is similar to the one of

the homogeneous system given in Eq. (2.24) and corresponds to the snap-back instability

evidenced on Fig. 2.4. This behavior is thus characterized by dh = dc = dsb.

– The most unstable mode ~qc that maximizes the function α̃ is different from the homoge-

neous mode ~q =~0. This translates into α̃(qc)> α̃(0) from which one deduces, using the

expression (3.15) of G̃(~q0,∆), that localization is strictly anterior to abrupt failure and

that both occur before the snap-back instability of the homogeneous system. Therefore,

this regime is characterized by the growth of heterogeneous modes of damage followed

by an abrupt failure, leading to dh < dc < dsb.
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3.2.2 Application to 1D media

We now test the relevancy of the analysis performed in the previous section by comparing

its predictions with the numerical results of Sec. 3.1. We focus first on 1D media for which all

calculations can be performed analytically. The first step is the determination of the critical mode

that maximizes G̃(q,d0). According to Eq. (3.15), this amounts to determine the maximum of α̃(q).

Taking the Fourier transform

α̃(q) =
∫ +∞

−∞
exp(−iqr)α(x)dx (3.22)

of the weight function α given in Eq. (2.13), one obtains

α̃(q) = (1 +κ2)(1 +κ2 + (2`0q)2)
(κ2 + 1)2 + 2(2`0q)2(1−κ2) + (2`0q)4 . (3.23)

The function G̃(q,d0) is shown on Fig. 3.5 as a function of q/qc at different damage levels

for the parameter values κ= 2κc, `0 = 5 and η = 8 for which qc '
0.55
`0

. As expected, one sees that

the location qc of the maximum does not change as the average damage increases. On the contrary,

the maximum value G̃(qc,d0) of the function increases and eventually hits zero at the critical damage

level dh ' 0.466.
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Figure 3.5: Prediction of the localization for a 1D medium with κ = 2κc, `0 = 5 and η = 8. This

graph shows the amplitude of the driving force perturbation for a sinusoidal perturbation of mode q

of the damage field (Eq. (3.15)). Growing modes correspond to positive amplitude, so localization

takes place at the damage level d0 ' 0.466 for the mode qc given in Eq. (3.24).

From the analysis of the function α̃, one extracts the critical value κc = 1/
√

3 that distin-

guishes two different behaviors:

– For κ ≤ κc, the Fourier transform of the weight function is maximum for qc = 0 and

hence α̃(qc) = 1.
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– For κ > κc, the maximum is reached for qc > 0 which follows

qc = 1
2`0

√
2κ
√

1 +κ2− (1 +κ2). (3.24)

The criterion G̃(qc,dh) = 0 of Eq. (3.18) provides the critical damage level at localization

(or equivalently the loading ∆h at localization using Eq. (2.19)). Inserting the expression of the

stiffness Eq. (2.11) with exponent γ = 3 into the expression of G̃(q,d) given in Eq. (3.15) we obtain

dh = 1
η

α̃2(qc)
2α̃2(qc)−1

(√
1−η2 2α̃2(qc)−1

α̃4(qc)
1 +a

3a −1
)

(3.25)

with

 α̃(qc) = (1 +κ2)3/2

4κ(1 +κ2−κ
√

1 +κ2)
for κ > κc

α̃(qc) = α̃(0) = 1 for κ≤ κc.

(3.26)

For κ ≤ κc, the onset dh becomes independent of the shape of the redistribution function

and the parameters `0 and κ. This is in agreement with the conclusions drawn in Sec. 3.2.1 where

the condition qc = 0 ensures that localization takes place at the snap-back position dh = dsb that is

independent of α (Eq. (2.24)). On the contrary, for κ > κc the most unstable mode qc > 0 is not ho-

mogeneous, and the shape of the redistribution function affects the onset dh of heterogeneous damage

growth through the parameter κ. The internal length ` introduced in the interaction function sets the

wavelength of the unstable mode
1
qc
∼ `0, but does not affect the localization threshold. The intro-

duction of an internal length in the redistribution function reflects on the characteristic wavevector

of the instability and hence sets the width of the ’localization bands’ emerging close to failure. This

result is rather natural since all the other length scales introduced in the model, the heterogeneity size

ξh and the sample size L, do not play any role on the stability of the homogeneous material response.

Note that from the expression of G̃ given in Eq. (3.15), if the stiffness parameter γ equals

to 0 or 1 the second derivative is null. Hence, G̃(~q0,d0) =−Yc0η is negative. The same is true for all

γ exponents values if the stiffness parameter a is positive: in that case, the second derivative of the

stiffness is always positive and therefore the function G̃ is also negative for all loadings and damage

level. Therefore, no localization can be obtained in these cases and the response of the system follows

that of the homogeneous material system up to its failure threshold, which is in that case d0 = 1 as no

snap-back instability take place in that case (see Sec. 2.2.1).

The analytical predictions can be compared to the numerical results. Figure 3.3(a) shows

the variations of the localization threshold dh with κ (solid line). The theory captures nicely its decay

in the regime κ > κc, irrespective of the disorder amplitude. 1.

In Fig. 3.4(b), the comparison made between the wavenumber qc of the growing mode for

two values of the internal length `0 and several disorder levels is also successful, confirming especially

1. For κ ≤ κc, we could not identify the localization threshold in the simulations using the definition given in

Fig. 3.2 since catastrophic failure occurs without prior deviation to the homogeneous material response



52 Damage localization and failure predictions of the quasi-brittle material

the scaling qc ∼
1
`0

. The predictions are also compared to the periodicity introduced in the interaction

function expression (dashed lines). Indeed, we have

α(x) = exp
(
− |x|2`0

)
cos(qα|x|) (3.27)

where qα = κ/2`0. Interestingly, the characteristic mode qc of the unstable mode is not equal to the

mode of the redistribution kernel: qc is much larger than qα for shape parameter κ � κc, while it

tends asymptotically towards qα as κ >> κc. This behavior is a signature of a transition from a load

redistribution dominated by the exponential term of the interaction function α at low κ values, to a

redistribution dominated by its sinusoidal variations at large κ values. The value of κc can therefore

be interpreted as the transition point between both behaviors.

We now focus on the prediction of the catastrophic failure. To determine dc, the failure

criterion G̃(qc,dc) + G̃(0,dc) = 0 of Eq. (3.21) is applied using the critical mode qc determined in

Eq. (3.24). This gives

dc = 1 + α̃2(qc)
2ηα̃2(qc)

√1− 1 +a

3a

( 2ηα̃(qc)
1 + α̃2(qc)

)2
−1

 (3.28)

where the expression of α̃(qc) is given in Eq. (3.26). If κ ≤ κc, we verify that dc = dh = dsb

(∆c = ∆h = ∆sb) as expected from Sec. 3.2.1. In that case, perturbation growth and unstable fail-

ure occur simultaneously at the instability point of the interaction-free material. In the other regime,

when κ > κc, we obtain dh < dc < dsb (∆h <∆c <∆sb), in agreement with the analysis performed

for any dimension in Sec. 3.2.1. Here, the damage field becomes heterogeneous with a characteristic

mode qc when the damage level reaches dh and grows in a stable manner up to dc.

The predicted failure threshold is shown in solid line in Fig. 3.3(b) and compared with the

simulations results. The equation (3.28) slightly overestimates the onset of failure, in particular for

κ� κc. This was expected since the theory relies on a perturbation analysis close to a homogeneous

damage state, while localization already took place when the failure threshold is reached. Neverthe-

less, we note that this approach captures qualitatively well the behavior observed in the simulations,

and in particular the decrease of dc with the interaction parameter κ. An improved criterion for failure

relying on a global energy minimization will be provided in Sec. 3.3.

3.2.3 Application to 2D media

We now apply the theoretical developments of Sec. 3.2.1 to the prediction of the failure

behavior of 2D systems. We shall use the criteria derived in Eqs. (3.18) and (3.21) for localization

and failure, which involve the Fourier transform of the interaction function. Since α(~x) = α(r) is a

function of the distance r = ‖~x‖, α̃(~q) = α̃(q) is a function of the norm q = ‖~q‖ of the wavenumber.

Hence, the stability analysis of a 2D medium reduces to a 1D problem where all the perturbation
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modes with the same norm q0 have the same effect on the system stability. The localization and

failure thresholds are determined following a two steps procedure:

(i) The norm qc of the most unstable modes is determined from the maximum of G̃(q0,d0).

According to Eq. (3.15), this amounts to determine the maximum of the Fourier transform

of the interaction function α̃(~q) =
∫∫ +∞

−∞
α(~x)e−i~q.~xd~x. Using the isotropy α(~x) = α(r)

of the interaction function, the Ankel transform gives α̃(q) = 2π
∫ +∞

0
α(r)J0(qr)rdr

where J0 is the Bessel function of the first kind of order zero. This integral is computed

numerically to determine its maximum α̃(qc) and the norm qc of the unstable modes.

(ii) From the values of qc and α̃(qc) calculated numerically, the critical damage levels for

localization and failure are determined from the criteria G̃(qc,dh) = 0 and G̃(qc,dc) +
G̃(0,dc) = 0, respectively. Since the function G̃ introduced in Eq. (3.15) depends on the

dimension of the system only through α̃(q), the expressions (3.25) and (3.28) of both

thresholds remain unchanged.

This procedure is applied for different values of κ and a=−0.3. Note that in 2D media, the

normalization constant α0 of Eq. (2.6) is non-negative only for κ < 1. Above this upper bound the

redistributions become non-physical and hence we limit our analysis to the range [0,1[. The obtained

variations of the critical wavenumber qc with the shape parameter κ of the redistribution function are

represented in Fig. 3.6a. 2 As for 1D media, one obtains two regimes: For κ≤ κ2D
c where κ2D

c ' 0.42,

the critical mode is the homogeneous perturbation qc = 0 while for κ > κ2D
c , the norm qc of the criti-

cal wavevectors increases continuously with the parameter κ.

The critical damage values for localization (solid line) and failure (dashed line) derived

from these critical perturbation modes are represented as a function of κ in Fig. 3.6b for a toughen-

ing parameter η = 8. Similarly to 1D systems, we observe a transition from a response similar to

the one of a homogeneous interaction free material for low values of κ, to another regime where the

deviation to the homogeneous material response is observed prior to catastrophic failure. The later

intervenes prior to the snap-back instability observed in the homogeneous system response, resulting

in dh < dc < dsb ' 0.78.

These theoretical predictions are now compared with direct numerical simulations of the

damage spreading in 2D systems with η = 8 following the procedure described in Sec. 3.1. Irrespec-

tive of the value of the disorder level σg, the theory captures well the decrease of the localization

threshold dh with κ shown by dot symbols on Fig. 3.6b. The decrease of the failure threshold dc

(cross symbols) is also described, but only qualitatively for the same reasons invoked in the former

section in the context of 1D media.

2. Since the interaction function writes as α( r
`0

), its Fourier transform writes as α̃(`0 q), so the normalized

quantity `0 qc is naturally used on Fig. 3.6(a).
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Figure 3.6: Failure behavior of 2D media: (a) Evolution of the norm qc of the critical wavevector

as a function of the shape parameter κ of the interaction function; (b) Variations of the thresholds

for heterogeneous damage growth dh (circle) and failure dc (cross) as a function of κ for η = 8 and

different disorder levels σg.

If failure behaviors are qualitatively similar in 1D and 2D systems, we would like however

to emphasize some quantitative differences. First, the threshold value κ2D
c ' 0.43 in 2D is signifi-

cantly smaller than its value in 1D for which κ1D
c = 1√

3
' 0.58. Second, the critical damage values

for both localization and failure go to zero for κ = 1, whereas in 1D these quantities would tend to

zero only as κ goes to infinity. This corresponds to a rapid failure dh = dc ' 0 after the elastic regime

that is also obtained for other material parameter, namely non-hardening η = 0 materials, regardless

of the shape of the interaction function.

The decrease of the failure threshold with κ is a general feature of the elasto-damageable

medium considered here, irrespective of its dimension D (see Figs. 3.3 and 3.6b). This behavior might

be counter-intuitive since large κ values result in unloading over an extended region of the material

after failure events, while κ = 0 produces only reloading (see Fig. 2.3). However, this unloading is

also accompanied by a larger load redistribution over some localized regions, which favors the build

up of an unstable failure mode. Indeed, it is the redistribution function of periodicity qα that structures

the damage field over some material zones where damage can rapidly accumulate.

The variations of the failure threshold with the interaction parameter κ also reflect this tran-

sition: at low κ values, the load redistribution is essentially exponential. As a result, the most unstable

mode corresponds to q = 0 that maximizes α̃(q) and failure takes place at the snap-back instability.

The snap back point corresponds to an upper limit of the failure onset and reflects the failure resistance

of an individual element or the one of an interaction free material. However, failure can be acceler-

ated because of collective effects allowed by interactions within the material. Indeed, large κ values,
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for which the load redistribution is essentially sinusoidal, favors a damage accumulation over some

elements only. This might control the integrity of the whole material instead of sharing the applied

load over all the elements. In the case of a localized damage, the failure of elements over which the

load redistribution is more intense results in an earlier catastrophic failure of the material. Hence, in

our model the interactions have a clear detrimental incidence on the resistance of the material, since

it allows failure to take place much earlier than the snap-back point. We believe that this observation

reflects a general feature of the failure behavior of materials as the actual failure threshold of solids is

systematically lower than the one of the individual elements like atomic bonds due to emergence of

cracks, localization bands, etc.

3.3 Critical damage at failure: global energy minimization

We now explore an alternative approach to predict the localization and failure thresholds of

the elasto-damageable materials studied here. In the previous section, we performed a stability anal-

ysis of the damaged medium based on the distribution of local damage driving force. This allowed us

to determine the unstable mode qc over which damage field heterogeneities develop and the critical

damage level at which this mode starts to grow. Assuming that the damage distribution remains close

to the homogeneous state, solution of the equation Y (d0) = Yc(d0), even after damage localization,

we have also determined the critical damage level at which the full system fails. Despite this rather

rough approximation, our predictions provided a correct estimate of the failure threshold.

However, in an attempt to provide a better assessment of the failure threshold, we propose

here a complementary approach based on the minimization of the total energy of the damaged media.

Here, we take advantage of our damage model formulation based on energy consideration. The

approach consists in assuming that, at a given applied displacement ∆, the damage field takes a

certain shape, either given by Eq. (3.12) or Eq. (3.19), and determine the set of solutions (d0, δd0) for

which the energy is minimum. Only the admissible solutions are considered: both d0 and δd0 must

be positive, increasing functions of ∆, otherwise the solution is not taken into account. Unlike for

the linear stability analysis where the homogeneous solution (2.19) is used, no relationship is here

assumed between the applied loading and the homogeneous contribution of the damage field. As will

be shown in this section, the same localization criterion is obtained, whereas the failure prediction

shows a better agreement with the numerical results. For the sake of simplicity, to perform this

minimization we limit our study to the case of 1D systems.

3.3.1 Before localization: Prediction of the homogeneous material evolution and its
loss of stability

The energy of the system corresponds to the total energy of Eq. (2.4) where we neglect the

term of external work. This amounts to seek for the damage distribution d(x) that minimizes the
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energy stored in the material in elastic and damage energy at some fixed loading condition. Using

d(x) = d0 + δd0α̃(q0)cos(q0x), (3.29)

and again assuming a weakly heterogeneous damage field, expressed as d(x) = d0 + δd0 cos(q0x)
corresponding to the homogeneous damage perturbation given by Eq. (3.12), the energy of the system

can be expressed as

E∆(d0, δd0)
L

= 1
2∆2k(d0) +Yc0

(
d0 + 1

2ηd
2
0

)
+ δd2

0

(1
8∆2k′′(d0)α̃2(q0) + 1

4Yc0η
)

(3.30)

If the values (d0, δd0) are minimizing the total energy, they must satisfy the system of

equations

∂E∆
∂d0

∣∣∣∣
δd0

= 0 (3.31a)

∂E∆
∂δd0

∣∣∣∣
d0

= 0 (3.31b)

which leads to the system of equations

1
2∆2k′(d0) +Yc0(1 +ηd0) + δd0

1
8∆2k′′′(d0)α̃2(q0) = 0 (3.32a)

δd0

(1
4∆2k′′(d0)α̃2(q0) + 1

2Yc0η
)

= 0 (3.32b)

from which one identifies the only admissible solution as long as ∆<∆h: the homogeneous behav-

ior where δd0 = 0 and d0 = dh. dh denotes the homogeneous solution and is set by
1
2∆2k′(d0) +

Yc0(1 +ηd0) = 0, corresponding to the relationship Eq. (2.19). An example of energy field is shown

on Fig. 3.7a for an applied displacement above ∆el and lower than ∆h. The energy is normalized by

its minimum value and shown as a function of both d0 and δd0. We see that in that case, the location

of the energy minimum indicated by a red dot indeed correspond to the homogeneous solution with

δd0 = 0.

The signs of the second partial derivatives of the energy with respect to d0 and δd0 give the

localization criterion. Indeed, they must both be positive for the homogeneous solution to minimize

the energy of the system

∂2E∆
∂d2

0

∣∣∣∣∣
δd0=0

(dh,0) = 1
2∆2k′′(dh) +Yc0η =−G̃(0,∆)> 0 (3.33a)

∂2E∆
∂δd2

0

∣∣∣∣∣
d0

(dh,0) = 1
4∆2k′′(dh)α̃2(q0) + 1

2Yc0η =−1
2 G̃(q0,∆)> 0 (3.33b)

where G̃ is given by Eq. (3.15). Therefore, from the homogeneous solution arises a local minimum of

the energy as long as these two conditions are verified. As from the linear stability analysis, we see

that
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– if κ≤ κc, the function G̃(q0,∆) is maximized for the homogeneous mode qc = 0. Hence,

both inequalities will stop being verified for G̃(0,∆) = 0. As described in the previous

section, it corresponds to the snap-back instability condition of the homogeneous system.

Hence, we predict damage localization at a critical damage level dh = dsb, corresponding

to a loading ∆h = ∆sb.

– if κ > κc, the critical mode qc 6= 0 that minimizes the total energy is given by Eq. (3.24).

As a result, the inequalities are verified up to the critical damage level dh < dsb, given by

Eq. (3.25) that corresponds to the loading ∆h <∆sb.

Figure 3.7b shows the change of curvature sign of the total energy as the loading ∆ increases

for κ≤ κc. The energy is represented for d0 = dh as a function of δd0 and is normalized by its value in

(dh,0). For loadings smaller than ∆h, the energy field displays a sink for δd0 = 0: The homogeneous

solution minimizes the energy and hence the damage field remains homogeneous as any perturbation

will be smoothed out since not energically favorable. As ∆ ≥ ∆h, the curvature is inverted: The

homogeneous solution becomes unstable, and hence damage will grow dramatically. Hence, for

κ≤ κc, failure can actually be interpreted as an instability resulting from the loss of any equilibrium

stable position.

Therefore, both the stability analysis and global energy minimization lead to the same localization

criterion given by Eq. (3.18) or (3.33b). Note that from the expression of the energy given by

Eq. (3.30) one could easily foresee the localization criterion: The prefactor of δd0 becomes negative

when G̃(q0,∆) is positive where it hence becomes energetically favorable to increase δd0.

3.3.2 After localization: Failure prediction

To determine the critical loading at failure, we now consider an applied loading ∆>∆h and

the growth of the perturbation of mode qc > 0. Thus we replace q0 by qc in the following expressions.

We consider here only the case κ > κc that display a stable post-localization regime, the case κ≤ κc
leading to catastrophic failure at ∆ = ∆h as illustrated in Fig. 3.7. We must again consider a damage

expression that satisfies the condition δ̇d ≥ 0, so that in the following we consider a damage field of

the form d(x) = d0 +δd0(1+cos(qcx)) as given by Eq. (3.19). In that case, the energy of the system

is of the form

E∆(d0, δd0) =A(d0)−B(d0)δd0 +C(d0)δd2
0−D(d0)δd3

0 (3.34)

where, using the stiffness expression (2.11) with γ = 3:



58 Damage localization and failure predictions of the quasi-brittle material

(E� � Emin
� )/Emin

�

(a)

δd0

-1 -0.5 0 0.5 1

E
∆
(d

h
,
δ
d
0
)/
E

∆
(d

h
,
0)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

∆ = ∆El

∆ = 2.3

∆ = 3

∆ = ∆h

∆ = ∆h + ε

(b)

Figure 3.7: (a) Energy landscape E∆(d0, δd0) of the damaged material as given by Eq. (3.30) before

localization. The minimum, indicated by a red dot, is obtained for (d0, δd0) = (dh,0). The corre-

sponding energy value Emin
∆ has been used to normalize E∆; (b) Variations of the total energy of the

material as a function of δd0 at different applied loadings for κ≤ κc.The average damage level is set

to d0 = dh that is solution of Y (d0) = Yc(d0). The total energy is normalized by its minimum value.

Before localization, for ∆ < ∆h, the energy displays a minimum at the point (dh,0), corresponding

to the homogeneous solution. For ∆ > ∆h, the curvature changes of sign, indicating that the homo-

geneous solution is no longer a minimum and becomes unstable. This leads to unstable growth of the

damage and catastrophic failure of the sample at ∆ = ∆h = ∆sb.

A(d0) = 1
2∆2k(d0) +Yc0(d0 + 1

2ηd
2
0) (3.35a)

B(d0) =−1
2∆2k′(d0)−Yc0(1 +ηd0) (3.35b)

C(d0) = 1
4∆2k′′(d0)

(
1 + α̃2(qc)

2

)
+ 3

4Yc0η (3.35c)

D(d0) =−1
4∆2k′′′(d0)

(
1
3 + α̃2(qc)

2

)
(3.35d)

The equilibrium positions are again determined at fixed displacement by solving the system

of equation (3.31). The homogeneous solution satisfies this set of equations, however, as shown in

the previous section for ∆≥∆h the energy does not have a minimum at that point. Hence, we shall

now study the heterogeneous solution of the system. Note that the difficulty in this post-localization

regime is that the damage level dmin
0 that minimizes the total energy is different from the solution dh0 of

the homogeneous problem. As a result, it must be deduced from the energy minimization procedure,

together with the value of δdmin
0 . This last quantity is determined first as a function of ∆ and dmin0 by

solving Eq. (3.31b)

δdmin
0 = C(dmin

0 )
3D(dmin

0 )

(
1−

√
1− 3D(dmin

0 )B(dmin
0 )

C2(dmin
0 )

)
. (3.36)
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As no simple expression can be obtained for dmin
0 , we use the following method. We ap-

proximate δdmin
0 by

δdmin
0 ' B(dmin

0 )
2C(dmin

0 )
(3.37)

where we have used 3DB/C2 << 1 when ∆ is close to ∆h. Indeed, we consider now loadings ∆
close to ∆h. Hence, dmin

0 is also close to dh

∆ = ∆h+ δ∆ (3.38a)

dmin
0 = dh+ δd. (3.38b)

One can then derived the linearized expressions of Eqs. (3.35a)-(3.35d) and their first and second

derivatives up to the first order in δdmin
0 and δ∆. Using these expressions and the approximation of

δdmin
0 given by Eq. (3.37), the resolution of Eq. (3.31a) gives the relationship between the loading

increment δ∆ from the critical loading ∆h and the resulting damage increment:

δd= T × δ∆

T =−
∆2
hk
′(dh)k′′′(dh)

(
1 + α̃2(qc)

2

)
+ 2Yc0ηk′′(dh)(α̃2(qc)−1)

Yc0η∆hk′′′(dh)
(

1− 1
α̃2(qc)

)(
1 + 3α̃2(qc)

2

) .
(3.39)

From this expression, one determines the critical loading δ∆c at which a stable solution

{dmin
0 , δdmin

0 } that minimizes the total energy stops to exist. From Eq. (3.36), we obtain that this

critical loading δ∆c satisfies to the equation C(dmin
0 )2 > 3D(dmin

0 )B(dmin
0 ), leading to

δ∆c =−Y 2
c0η

2
(

1− 1
α̃2(qc)

)2
/[

2Yc0η∆h

(
1− 1

α̃2(qc)

)(
1 + α̃2(qc)

2

)(1
2T∆hk

′′′(dh) +k′′(dh)
)

−3∆2
hk
′′′(dh)

(
1
3 + α̃2(qc)

2

)(
TYc0η

(
1− 1

α̃2(qc)

)
+ ∆hk

′(dh)
)]

.

(3.40)

From δ∆c we obtain the critical loading at failure ∆c and the critical average damage in the

system dc:

∆c = ∆h+ δ∆c (3.41)

dc = dh+Tδ∆c+ δd0(∆c). (3.42)

Before comparing the analytical predictions to numerical results, it should be emphasized

that as for the linear stability analysis these critical values also remain approximations. Indeed, they
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are obtained by linearizing the energy coefficients with the assumptions of small deviations from the

homogeneous state at ∆h (see Eqs. (3.38a) and (3.38b)). Similarly, assuming a system close to the

localization threshold state we have used an approximate expression of δdmin
0 given by Eq. (3.37).

Therefore, we expect some small deviations in the critical value predictions between the exact nu-

merical value and our theoretical prediction.

Fig. 3.8a shows the evolution of the energy for d0 = dmin
0 as a function of δd0 at different

loading increment δ∆ ranging from zero at localization threshold to δ∆c = 0.088 with the set of pa-

rameters considered here (η = 8, a = −0.3, κ = 2κc). The analytical minima are indicated by dots.

From this representation, one can observe that the critical loading increment is slightly overestimated

from our analysis as the energy has actually no local minima for δ∆ > 0.08. However, we note that

overall the agreement with the numerical determination of the heterogeneous equilibrium position is

excellent. Figure 3.8b compares the analytical predictions of the failure threshold with the numerical

results for other κ values. For comparison, we also show the results of the linear stability analysis

already shown on Fig. 3.3b. Failure prediction is significantly improved. This can be explained by

the difference between both methods: The energy minimization procedure allows the determination

of both dmin
0 and δdmin

0 in the post-localization regime while the homogeneous solution dh0 = dmin
0 is

assumed in the stability analysis.

The energy minimization procedure sheds light on the nature of the localization for κ > κc

when a stable post-localization regime does exist. At the localization onset, the equilibrium position

of the system shifts from a homogeneous to a heterogeneous damage configuration. When the loading

is further increases, the equilibrium heterogeneous solution evolves with an increasing localized mode

amplitude δmin
0 . Finally, at the failure threshold ∆c, the system becomes unstable as no local minima

exists anymore along the energy landscape.

3.4 Conclusions

We have defined a simple mesoscopic model able to describe rigorously the transfer of me-

chanical into fracture energy during progressive damage of materials and based on a few, well iden-

tified and tunable sets of physical ingredients (disorder, interaction...). The coaction of both material

disorder and damage driving force redistributions after damage events seem the adequate ingredients

for the description of the complex macroscopic response and damage localization of quasi-brittle fail-

ure of heterogeneous materials.

The linear stability analysis employed has shed light on the nature of the transitions ob-

served during damage spreading:

– for the interaction parameter κ > κc, we evidenced a continuous transition from a homo-

geneous to a heterogeneous damage distribution. This damage localization is character-

ized by a characteristic finite wavelength proportional to the internal length introduced
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Figure 3.8: Energetical interpretation of localization and failure for the case κ > κc in presence of a

post-localization regime: (a) Total energy of the system for d0 = dmin
0 as a function of the perturbation

amplitude δd0 for different loading increments δ∆. The position of the minima determined theoret-

ically are indicated by dots; (b) Evolution of the critical displacements ∆h at localization and ∆c at

failure for η = 8, `0 = 5, κ = 2κc and σg = 0.001. The theoretical values at localization are shown

by the solid blue line, at failure in black dashed for the predictions from the linear stability analysis

(referred to as Meth. #1) and red dashed for the predictions from the global energy minimization

(referred to as Meth. #2). The horizontal dotted lines indicate the loading at peak force and at the

snap-back instability.

in the redistribution function and depends on its actual shape through the parameter κ.

Before localization takes place, the system response is that of a homogeneous material.

Once localization takes place, a deviation is obtained and it is shortly after followed by

the catastrophic failure, triggered by the breakage of one heterogeneity.

– for κ < κc, unstable failure takes place directly from a homogeneous damage configura-

tion, without prior localized damage state. Therefore, the macroscopic response can be

fully predicted form that of a homogeneous material.

The conditions for the existence of these transitions during the progressive damage of the

material can be inferred from the shape of the kernel G that describes the damage driving force re-

distribution δF(x) = (G ∗ δd)(x) resulting from a damage increment δd(x): If its Fourier transform

G̃(~q0,∆) =−∆2

2 k′′[d0(∆)]α̃2(~q0)−Yc0η changes of sign to become positive, damage localizes while

catastrophic failure is controlled by the sign of G̃(~q0,∆) + G̃(0,∆) =−∆2

2 k′′[d0(∆)](α̃2(~q0) + 1)−
2Yc0η. These expressions reveal that k′′(d) < 0 is required to observe localization and then abrupt

failure. In other words, the constitutive elements of the solids the stability of which is controlled by

the sign of k′′ must themselves display an unstable failure behavior to generate instabilities at the

large scale.
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An alternative approach was also proposed to complement the linear stability analysis and

in particular determine more accurately the failure threshold. The determination of the global energy

minimum allowed recovering the same analytical behaviors for the damage localization. Therefore,

localization is associated to the heterogeneous growth of the damage field, which permits to minimize

the energy of the system. It is associated to the progressive growth of a perturbation from an initially

homogeneous field. Our system naturally regularizes localization that consists in regions with en-

hanced damage either over a finite wavelength or spread throughout the system. The critical loading

and damage level at which it takes place were also refined using this approach as no assumption on a

relationship between the homogeneous damage level and applied displacement was considered.

These techniques were here applied to our simplified model to predict localization and fail-

ure of an isotropic continuously damaging material. It revealed the drastic effect of the choice of the

redistribution function that was here set as tunable. It should be emphasized that these approaches

are not restricted to this particular model and can be used in a general framework, in particular when

more complex and realistic anisotropic redistribution functions are used. Finally, the study of damage

temporal and spatial organizations as the material is progressively damaged is necessary to complete

this study . The characterization of damage spreading during quasi-brittle failure is the focus of the

next chapter.



CHAPTER 4

DAMAGE SPREADING TOWARD FAILURE: STATISTICS OF

FLUCTUATIONS

We have so far studied the system behavior in terms of damage localization and failure

predictions. However, temporal and spatial organization of damage as it spreads in the system was

left aside. In this chapter, we focus on the precursors to catastrophic failure and investigate how

the redistribution function, namely the internal length `0 and the shape parameter κ, influences their

evolution. The quasi-brittle failure of heterogeneous materials is characterized by a complex damage

organization both in space and time. Experimentally, it was observed using acoustic emission dur-

ing the compression of wood [42, 35] that the intermittent fluctuations follow power law behaviors

and spatially localize as failure is approached. Similar behaviors were obtained when studying many

other quasi-brittle disordered materials, for example paper [101], cellular glass [42, 35] rocks [33] or

synthetic plaster [82]. Hence, it seems that these features are characteristic of such failure phenomena.

These puzzling aspects of damage spreading in quasi-brittle materials have motivated a large

number of numerical studies focusing on the characterization of the fluctuations and the elaboration

of more realistic models to capture them (see [1] for a review). These statistical models generally

combine disorder and elastic interactions – or very often their scalar counterpart, using the analogy

between elasticity and electricity problem, see for example [121]. They evidence the critical nature of

fractured media as they are driven towards failure, through the observation of scaling behaviors in the

fluctuation statistics characterized by universal exponents. However, the origin of this universality

and the nature of the critical point involved in driven damaged media are very often missing. The

quantitative link with the experimental observations of damage spreading in heterogeneous media

is also generally not established. Here, we seek to determine if our approach proposed in Chapter

2 captures the critical behavior of micro-fractured systems. If so, we must address the question of

the nature of the critical point involved in this type of failure phenomena. Hence, we provide in the

following an extensive characterization of the temporal and spatial structure of damage and its fluc-

tuations.

63
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This chapter is divided in three parts. In the first section, after defining quantitatively

avalanches or bursts of damage activity, we focus on the characterization of the avalanche statis-

tics, their spatial structure, and the resulting damage field correlations when the interaction function

is solely positive with κ= 0. This corresponds to systems where damage events result in a reloading

of the other parts of the material. We will show that the temporal structure of the damage evolution

is mostly independent of the internal length `0 while its spatial organization, on the contrary, varies

with `0 and shows non-trivial scaling behaviors when the internal length is much smaller than the

system size. The second section is devoted to sign changing redistribution functions with κ > κc.

We will see that the introduction of an unstable mode of finite wavelength λc drastically modifies

the spatial structure of the avalanches and the resulting damage field, as well as the critical behavior

of the system. In the last section, we reformulate our model as an equivalent, simpler formulation,

which helps us interpreting our observations in terms of classical models of elastic interfaces driven

in random media [6]. In particular, when considering the mean field limit for the elastic interactions,

we quantitatively explain the scaling behaviors observed in our simulations and provide the physical

origin of the critical nature of the behaviors emerging from our damage model.

4.1 Statistics of fluctuations in damage models with positive load redis-

tributions (κ= 0)

We first focus on the case of an exponential interaction function where the parameter κ of

Eq. (2.13) is set to zero. We consider the behavior of a system with unstable elements, i.e. for which

the stiffness parameter a of Eq. (2.11) is negative, and a hardening behavior. A one-dimensional sys-

tem of size N = 10000 elements is used with a disorder strength σg = 0.2 and the internal length is

varied from 1 to∞. The infinite interaction length actually corresponds to the mean field limit where

all elements are subjected to the same damage driving force, proportional to the average damage in

the system. This limit is also similar to the case of a global load sharing fiber bundle model where

force is equally redistributed among all surviving elements after a fiber is broken [93], even though

we consider here progressively damaging elements.

4.1.1 Avalanche definition

A zoom on the force-displacement response of the material as predicted from our model

reveals the intermittent behavior of the failure process (see the top inset of Fig. 4.1a). Rather than a

smooth response, as for homogeneous materials, the curve exhibits sudden drops of force at constant

displacement (red plain curves). They result from damage events that induce a decrease of the elastic

stiffness of the material. During these damage phases, since the externally applied displacement does

not vary, elastic energy stored in the material is transferred into dissipated damage energy. These
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micro-instabilities are separated by phases where the system deforms elastically (see the blue dashed

curves in the inset) and hence where no damage takes place. This complex dynamics results in a

crackling behavior [105] that reflects these localized bursts of damage events.

The evolution of the amplitude of the damage bursts, also called avalanches, is shown in

the lower inset of Fig. 4.1a as a function of the applied displacement. It displays the characteristic

intermittency and acceleration close to failure observed in several experimental studies, as depicted in

the first chapter. There are different ways to define avalanche size. One possibility is to compute the

total increase of damage between two successive equilibrium positions. Figure 4.1b shows damage

profiles before and after an avalanche for an internal length scale `0 = 5. The area between both

curves defines the avalanche size S, which can be computed from

S(∆) =
N∑
x=1

δd(x,∆) (4.1)

where δd(x,∆) is the increase of the damage field in x at some imposed loading ∆.
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Figure 4.1: (a) Normalized macroscopic response of one disorder realization for `0 = 5. The top inset

shows a zoom of the crackling behavior resulting from bursts of damage events while the bottom

inset shows the evolution of the burst size S with the prescribed displacement, highlighing the strong

intermittence of the damage process; (b) Definition of the avalanche size S and its spatial extent `x
from the damage field: The damage field is shown before and after an avalanche for `0 = 5. The

avalanche size is defined by the area S between both curves while the spatial extent `x corresponds to

the distance between the two most distant points damaged during the avalanche. The inset shows the

spatial structure δd(x) of a single avalanche for `0 very large. In this limit, damage spreads randomly

within the material.

Taking advantage of the energetical formulation of our model, we can also describe the

avalanches in terms of energy variation. As mentioned, avalanches correspond to a transfer of elastic
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energy ∆Eel into dissipated energy ∆Ed so that

|∆Eel|= ∆Ed = 1
2∆2|δK|. (4.2)

where δK < 0 is the variation of the macroscopic stiffness due to the damage burst. The dissipated

energy can actually be divided into two contributions: the damage energy ∆Er, expressed in its

discretized form as

∆Er =
N∑
x=1

Yc(x,d)δd(x,∆), (4.3)

and the kinetic energy ∆Ek obtained using energy conservation through the relation

|∆Eel|= ∆Ed = ∆Er + ∆Ek (4.4)

where we use the expression of ∆Er (4.3) and ∆Eel (4.2). In our model, it corresponds to the mis-

match between the elastic energy actually released during the avalanche and the energy dissipated by

damage as calculated from the fracture energy field of the material defined in Eq. 2.9. Since these

micro-instabilities are dynamic processes, we interpret this mismatch in terms of kinetic energy of

the material elements that can be ultimately dissipated through acoustic emissions or other dissipative

mechanisms.

Interestingly, if these definitions are a priori different, they can be used equivalently to study

the statistics of damage fluctuations. Indeed, all the quantities introduced previously scale linearly

with each other, as shown on Fig. 4.2a and 4.2b where the energy dissipated by damage Sr = ∆Er

is represented as a function of S and of the kinetic energy Sk = ∆Ek, respectively. Note that the

kinetic energy contribution remains at least one order of magnitude lower than that of the other ones

and can therefore be considered negligible. Nevertheless, its scaling with Sr indicates that this quan-

tity follows the same behavior as S or Sr and hence provides an interesting insight on the relation

between acoustic emission and avalanche size in the frame of our model. Since all these quantities

are linearly related, we use in the following only the avalanche size S defined from the number of

damage increments to characterize the fluctuation statistics and its evolution as the system is driven

closer to failure, the behavior of Sd ' Sr and Sk being deduced from their linear relationship with S.

4.1.2 Temporal behavior: avalanche size evolution

A classical way to characterize the temporal evolution of avalanche sizes is to study their

probability density functions at different distances δ to catastrophic failure. It provides information

on how likely it is to obtain an avalanche of size S at some distance δ. The type of probability density

function, e.g. Gaussian, power law... and its evolution as the material is driven towards full failure

provide relevant insights on the damage spreading mechanisms. To determine the probability densi-

ties as the damage grows, we divide the lifetime of the system, characterized by the distance to failure
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Figure 4.2: Relationship between the fracture energy Sr of an avalanche with (a) its size S as defined

in Fig. 4.1 and (b) its kinetic energy Sk. The linear behaviors show that we can use indifferently any

of these quantities to characterize the avalanche statistics.

δ (defined by Eq. (3.2)), into bins. Considering several realizations of the disorder, we then compute

the distribution in each bin. The final avalanche during which catastrophic failure takes place is how-

ever left aside since it is not representative of the spreading of damage in the material, but instead,

of the critical level of damage at catastrophic failure. Actually, it was shown to follow a Gaussian

distribution [120] while avalanches taking place before this final event follow generally power law

distributions, as also observed here.

The distributions Pδ(S) of avalanche sizes are shown in Fig. 4.3a and 4.3b for `0 = 5 and

`0 =∞, respectively. For both internal lengths power law behaviors with an exponent β are observed,

up to an exponential cutoff of characteristic size S∗ that increases with the distance to failure, so that

Pδ(S) =A0S
−β exp

(
− S

S∗(δ)

)
(4.5)

where A0 is a normalization constant and β = 1.5±0.1.

The evolution of the cutoff with the distance to failure can be obtained by fitting the distri-

butions using Eq. (4.5) with β = 3/2. The growth of S∗ as a function of δ is shown for both internal

length `0 = 5 and `0 =∞ in the inset in Fig.4.4a. For both values a power-law behavior

S∗ ∼ δ−µ (4.6)

is obtained where µ= 1.0±0.1 with a weak deviation close to failure for the lowest internal length.

The variations of S∗ with δ can also be inferred from the evolution of the average avalanche size 〈S〉.
Indeed, as we shall now determine, both quantities are related. We first calculate the constant A0 of
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Figure 4.3: Probability density functions of avalanche sizes S for different distances to failure δ for

(a) `0 = 5 and (b) `0 =∞. In both cases the distributions exhibit a power law behavior of exponent

β = 1.5±0.1 up to an exponential cutoff S∗ that evolves with δ.

the avalanche size distributions using the normalization condition

∫ +∞

Sm
Pδ(S̃)dS̃ = 1 (4.7)

where Sm is the minimum value of S. Replacing Pδ(S) by its expression in Eq. (4.5) and using the

change of variable u= S/S∗, ones obtains

1 =A0(S∗)1−β
∫ +∞

Sm/S∗
ũ−β exp(−ũ)dũ. (4.8)

Neglecting the exponential tail, i.e. the area for S/S∗ > 1, ones gets

1 =A0(S∗)1−β
∫ 1

Sm/S∗
ũ−βdũ=−A0(S∗)1−β

[
1−

(
Sm
S∗

)1−β
]
'A0S

1−β
m (4.9)

where we have used that close to failure the cut-off value S∗ is much larger than the minimum

avalanche size Sm and that the exponent β is larger than 1. We obtain finally the normalization

constant A0 ' Sβ−1
m . Therefore, at a given δ, the average avalanche size follows

〈S〉=
∫ +∞

0
SPδ(S)dS = Sβ−1

m

∫ +∞

Sm
S̃1−β exp

(
− S̃

S∗(δ)

)
dS̃ (4.10)

Using the same change of variable as for the normalization constant determination and again neglect-

ing the exponential contribution, we obtain

〈S〉 ∼ Sβ−1
m (S∗)2−β

[
1−

(
Sm
S∗

)2−β
]

(4.11)
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which leads, close to failure where S∗ >> Sm, to the relationship

〈S〉 ∼ (S∗)2−β (4.12)

where both quantities are functions of the distance to failure δ.

The evolution of the average avalanche size is shown as a function of the distance to failure

for different internal lengths in Fig. 4.4b. It follows a power law behavior

〈S〉 ∼ δ−τ (4.13)

where τ = 0.50±0.05, which is consistent with the exponent µ = 1.0±0.1 of Eq. (4.6) when using

the relationship

τ = µ(2−β) (4.14)

derived from Eqs. (4.6), (4.12) and (4.13) and the value β = 1.5. Note however that for small inter-

nal lengths, we observe a deviation to the scaling law 〈S〉 ∼ δ−τ over the last decade of δ, typically

for δ ∈ [10−4,10−3], as also observed for S∗. This may indicate some saturation effect that bounds

avalanche sizes very close to failure when redistribution takes place over small distances `0 close to

the heterogeneity size. Nonetheless, this effect is limited to damage events taking place very close to

failure where the statistics is rather scarce, and so it might reflect more some numerical limitations

than physically relevant observations.

To summarize, it turns out that at a given distance to failure, we can identify a characteristic

size S∗ (or equivalently 〈S〉) of damage burst that increases as a power law with δ. It reflects the in-

tensification of damage processes as catastrophic failure is approached, and indicates that avalanches

take place at all scales very close to failure, as shown further in the following.

We now investigate the avalanche size distribution when recorded over the entire failure

process, from the first avalanche to the last one before catastrophic failure. Interestingly, we can

actually determine it from the distributions obtained at different distances to failure: Let us note

P (S) the distribution of avalanche sizes over δ ∈ [0,1]. It follows

P (S) = 1
Nt

∫ 1

0
Ṅa(δ)Pδ(S)dδ (4.15)

where Ṅa(δ)dδ is the number of avalanches during the interval [δ,δ+dδ] and Nt their total number.

The evolution of Ṅa with δ is shown in the inset of Fig. 4.4b for `0 =∞ and `0 = 5. In both cases, it

does not vary much. In fact, after a transient regime, it reaches a constant value so that we can write

Ṅa ∼ δε (4.16)
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with ε' 0. Introducing this expression into Eq. (4.15) together with the distribution Pδ(S) of Eq. (4.5)

and the relationship between the cutoff with the distance to failure (Eq. (4.6)), one obtains

P (S) = A0
Nt

∫ 1

0
δ̃εS−βe−Sδ̃

µ
dδ̃ (4.17)

where A0 is the normalization constant of Eq. (4.9). Using the substitution u= Sδµ, one gets

P (S) = A0
µNt

S−β−(ε+1)/µ
∫ S

0
ũ(1+ε)/µ−1e−ũdũ (4.18)

The integral term being negligible with respect to the prefactor, the distribution follows

P (S)∼ S−β−(ε+1)/µ (4.19)

so that finally one gets the following scaling relation

P (S)∼ S−βtot with βtot = β+ ε+ 1
µ

. (4.20)

Using the numerical values obtained previously, i.e. β ' 3/2, µ' 1.0 and ε' 0, one finds βtot ' 5/2.

This prediction is tested on Fig. 4.4b that shows the distribution of avalanche sizes recorded over the

full failure process for `0 = 5 and `0 =∞. The probability density functions follow power laws with

exponent βtot = 2.5±0.2 that agrees well with the predicted value.

To summarize, we have seen that irrespective of the internal length scale `0, the probability

density of avalanche sizes, or equivalently, of bursts of dissipated energy, follows a power law with

an exponential cutoff. The cutoff size, related to the average avalanche size, increases as a power law

with the distance to failure. Table 4.1 summarizes the different scaling and the exponents measured

in the simulations. These are compared in the third column with the calculated values obtained from

the scaling relations derived in this section.

These findings call for a few comments. First, power law behaviors of the avalanche sizes

distribution with exponents β = 3/2 and βtot = 5/2 were observed numerically and predicted ana-

lytically in simplified damage models referred to as fiber bundle model with global load sharing (see

[93] for a review). In these models, when an element breaks, the load that it carried is redistributed

equally on the other elements of the system, similarly to our own damage model in the limit `0→∞.

Note however that in the global load sharing fiber bundle model, elements are either intact (d = 0)

or broken (d = 1), contrary to our approach where element can progressively damage through the

introduction of the continuous damage parameter 0≤ d≤ 1.

Interestingly, the transition from a global redistribution of damage driving force (`0→∞)

to a localized redistribution (`0� N ) does not affect the statistics of avalanches that remain power

law distributed. This is quite different from the behavior of traditional fiber bundles where elements

break abruptly. Indeed, for local load sharing fiber bundles, damage fluctuations follow exponential
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Figure 4.4: (a) Evolution of the average avalanche size as a function of the distance to failure for

different internal length scales. The curves show a power law behavior of exponent τ = 0.50±0.05,

independently of `0. The inset shows the evolution of the cutoff S∗ of the avalanche size distribution

that also exhibits a power law behavior with δ, but with exponent µ = 1.0± 0.1, in agreement with

the scaling relation of Eq. (4.14); (b) Probability density functions of avalanche sizes when taking

into account all damage events (closed symbols) or only those taking place for δ ∈ [0,0.01] (open

symbols) for the two internal lengths `0 = 5 and `0 =∞. They both follow power laws with exponents

βtot ' 5/2 and β ' 3/2, respectively, in agreement with the scaling relation of Eq. (4.20). The inset

shows the rate of avalanche Ṅa as a function of the distance δ to catastrophic failure.

statistics [59] so that the largest avalanches do not span over the whole system, even when driven

close to catastrophic failure. Actually, Hidalgo et al. considered redistribution functions of the form

1/rγ where r denotes the distance to the broken element [50] in a 2D system. They showed that in

traditional fiber bundles, there is a change of behavior for local redistributions, i.e. large γ values, and

models with longer range redistribution functions with γ below a critical value γc that fall into the

global loading sharing universality class with power law statistics. The existence of two distinct sta-

tistical signatures for local and global load redistribution mechanism contrasts with the results of our

simulations. We believe that this difference arises from the abrupt failure of elements in the traditional

fiber bundle models. In our model, the introduction of a positive hardening parameter η > 0 results in

a progressive damage of the elements, while for η = 0 elements recover a brittle behavior as in tradi-

tional fiber bundles. In that second case, it is interesting to note that we also recover an exponential

statistical behavior, similar to traditional fiber bundle models with local load sharing mechanisms, as

shown in Appendix B. Therefore, we believe that material hardening is a key ingredient for a proper

description of progressive damage spreading in quasi-brittle media.

Interestingly, our findings indicate that both the onsets of localization and failure (Chapter

3) and the statistics of fluctuations (this chapter) are independent of the internal length `0 introduced in
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the redistribution function. We will now see that `0 actually does play a role on the damage spreading,

by controlling the spatial organization of damage events during avalanches. Indeed, as exemplified on

Fig. 4.1b, a small internal length results in spatially localized damage events, whereas large internal

length values produce avalanches rather uniformly distributed through the material. The following

section is devoted to the spatial structure of avalanches.

Definitions Measured values Predicted values Scaling relations

S ∼ Sγr γ = 1.00±0.05
Sk ∼ Sγk

r γk = 1.00±0.05
P (S)∼ S−β exp(−S/S∗) β = 1.5±0.1

P (S)∼ S−βtot βtot = 2.5±0.2 βtot = 2.45±0.17 βtot = β+ (ε+ 1)/µ
S∗ ∼ δ−µ µ= 1.0±0.1
〈S〉 ∼ δ−τ τ = 0.50±0.05 τ = 0.52±0.10 τ = µ(2−β)
Ṅa ∼ δε ε= 0.0±0.1
S ∼ `df

x df = 1.8±0.1
`∗x ∼ δ−ρ

∗
ρ∗ = 0.6±0.1 ρ∗ = 0.58±0.07 ρ∗ = µ/df

ξ ∼ δ−ρ ρ= 0.6±0.1 ρ= 0.58±0.07 ρ= µ/df

Table 4.1: Definition of the scaling exponents measured from the statistics of fluctuations during

damage spreading and their values measured from the simulations. When possible, these values are

compared to each others in the third column using the scaling relations of Eqs. (4.14), (4.20) and

(4.22) derived in this chapter.

4.1.3 Spatial structure of the avalanches

The study of the clusters formed during avalanches can provide several indications on the

damage process of the system. The way damage at one point affects its neighbors can be more or less

localized depending on the formulation of the redistribution function. It directly affects the shape of

the avalanches that can either be structured with a particular scaling between their deepness (along d)

and width (along x), or randomly spread in space. To characterize this property, a relevant quantity to

extract from the clusters formed during avalanches is the spatial extent `x of bursts of damage events.

As defined on Fig. 4.1b, it corresponds to the distance between the two most distant damaged points

during an avalanche. Its scaling with the avalanche size S is a useful tool to characterize the structure

of the avalanches.

On Fig. 4.5 we show for each `x value the corresponding avalanche size, for different inter-

nal length scales. For each `0 value shown here, a plateau, the height of which is controlled by the

hardening parameter η, is obtained before a power law behavior dominates. The extent of the plateau

is controlled by `0, as indicated by the rescaled curves S vs `x/`0 shown in the inset. The constant

part of the curves extend to a length of about 2`0, at which scale a transition towards a power law
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behavior dominating for `x values larger than about 10`0 is obtained. Hence, at large `x values, we

describe this behavior as

S ∼ `df
x for `0 << `x (4.21)

where df = 1.8±0.1. Note that the average avalanche size 〈S〉 computed at some distance to failure

δ follows the very same scaling with the average cluster width 〈`x〉 computed at the same value of δ.
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Figure 4.5: Avalanche size S as a function of the spatial extent of the avalanche `x for different

internal length scales, showing a plateau regime at small scale and a power law behavior at large scale

with exponent df = 1.8±0.1. The inset shows the collapse of the data when `x is normalized by `0.

The transition between the plateau and the power lower behavior indicates that for each

length `0, a range of avalanche sizes exist over which they do not have a particular shape: for small

sizes, typically of the order of the plateau level, avalanches can have a spatial extent ranging from a

few element sizes to `0. This effect emerges from the rather flat redistribution function in a region

of length scale fixed by `0 since α(|~x|) ' 1 for |~x| � `0. Since fracture energy thresholds are ran-

dom, damage events comprised in small avalanches are randomly distributed within a region of size

`x < `0. For large internal lengths, comparable to the system size, the same mechanism takes place:

the redistribution is uniform within the whole system so that damage events take place at random

location. While the spatial structure of damage bursts is random for avalanches of extension smaller

than `0, they are spatially organized with a fractal dimension df ' 1.8 for the largest ones. Hence, for

internal lengths close to the system size, this second regime disappears and a mean field approach is

expected to describe accurately the damage evolution.

We now bridge these observations on the spatial structure of avalanches with the size dis-

tribution investigated in the previous section. It was shown that avalanche size distributions follow

a power law behavior up to a cutoff size S∗. For the values of `0 � N studied here, the cutoff S∗

is much larger than the plateau evidenced on Fig. 4.5, especially close to failure when δ is close to
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zero. As a result, the scaling relation of Eq. (4.21) valid for large avalanches also holds for the cutoff

size S∗ ∼ (`∗x)df where `∗x denote the characteristic spatial extent of the largest avalanches. Since

otherwise, S∗ diverges as δ−µ as failure is approached (see Eq. (4.6)), one predicts that the spatial

extent `∗x of the largest avalanches also diverges as

`∗x ∼ δ−ρ
∗ with ρ∗ = µ/df . (4.22)

Using the measured values of µ and df (see Table 4.1), we expect a divergence of the spatial extent

of the largest avalanches with an exponent ρ∗ = 0.58±0.07. Hence, the clusters of damaged events

formed close to failure might span over the full system. To verify this scaling, we investigate the

probability density P (`x) of cluster sizes at different distances to failure for small internal lengths

with respect to the system size. An example is shown on Fig. 4.6a for `0 = 5. We observe exponen-

tial tails in the range of values `x >> `0. Figure 4.6b shows the variation of the exponential decay

constant, denoted by `∗x and normalized by the internal length `0 as a function of the distance to fail-

ure. The expected power law behavior is well verified as `∗x increases as a power law with exponent

ρ∗ = 0.6± 0.1 as the system approaches failure. Moreover, we verify that the lowest values of the

cutoffs measured far from failure are of the order of 2−3`0, i.e. comparable with the cluster size at

the transition between the plateau regime and power law evolution on Fig. 4.5. Finally, to go a step

further in the analysis one can wish to relate the power law behaviors of the distribution of avalanche

sizes and exponential one of that of the spatial extent. However, this is no simple task as close to

failure the avalanches are mostly constituted of clusters of size of a few `0 distributed over a scale `∗x.

Hence a deep study of each cluster is required and this is beyond the scope of this study.

To conclude this section, we see that as long as scale separation is ensured between the

internal length and the system size, the largest avalanches, of size S∗ do not only localize in time

but also in space, with a characteristic size noted `∗x. Both quantities grow as failure is approached,

following power laws. They are related via the fractal dimension of the damage clusters df ' 1.8 that

indicates a non-trivial structure of the clusters formed during each avalanche. We now investigate

how the spatial organization of damage clusters affects the resulting cumulated damage field.

4.1.4 Spatial organization of the cumulated damage field

To investigate the effect of the spatial organization of the avalanches on the cumulated

damage field in the material, we study its correlations through the following function C. To define it,

we first consider the field d(x) at some given distance to failure δ. Dividing the system into boxes of

size δx, we compute the average damage 〈d(x)〉δx at the scale δx and determine its standard deviation

over the N/δx boxes that constitute the system. This defines the correlation function

C(δx) =
√
〈〈d(x)〉2δx〉x−〈〈d(x)〉δx〉2x. (4.23)

This function is then averaged over different disorder realizations, for different distances

to failure δ, as performed previously for the determination the probability density P (S). If the spa-



4.1 Statistics of fluctuations in damage models with positive load redistributions (κ= 0) 75

ℓx

0 100 200 300 400

P
δ
(
ℓ x
)

10
-4

10
-3

10
-2

10
-1

10
0

ℓ0 = 5

δ = 0.27

δ = 0.12

δ = 0.06

δ = 0.03

δ = 0.01

(a)

δ

10
-2

10
-1

10
0

ℓ∗ x
/
ℓ 0

10
0

10
1

10
2

∼ δ
−0.6

ℓ0 = 1

ℓ0 = 5

ℓ0 = 10

(b)

Figure 4.6: (a) Probability density functions of the damage cluster spatial extent `x for `0 = 5 at

different distances to failure. The distributions exhibit an exponential tail for `x >> `0 with charac-

teristic size `∗x that grows as δ goes to zero; (b) evolution of `∗x with the distance to failure for different

internal length scales. We observe a power law with exponent ρ∗ = 0.6±0.1 in good agreement with

the increase of the avalanche size S∗ with δ and the relation between the spatial extent `∗x and the size

S∗ of the largest avalanches (Eqs. (4.6) and (4.5)).

tial distribution of the damage field is purely random, i.e. resulting from randomly located damage

events, the correlation function should decay as 1/
√
δx. This results from the central limit theorem:

Assuming that we have m randomly distributed points in a box of size δx, then the standard deviation

of their sum is proportional to
√
m. Therefore, since m = δx due to our spatial discretization, the

standard deviation of the average values is proportional to
√
m/m = 1/

√
δx. On the other hand, if

the damage field is correlated over a given length scale, then a deviation from this behavior should be

observed over the corresponding range.

Figure 4.7a shows, for `0 = 5 and varying distances to failure, the evolution as a function

of the box size δx of the correlation function C normalized by
√
δx. As can be observed far from

failure, for example for δ = 0.98, the curve is constant. This means that C ∼ 1/
√
δx that indicates

an uncorrelated damage field. As failure is approached, a deviation from this plateau behavior can be

identified. The transition point, denoted by ξ, defines the correlation length of the damage field, or

the characteristic length scale over which the damage field is spatially correlated. This spatial extent

of the damage field organization increases as failure is approached together with the amplitude of the

deviation to the behavior of the random field. Hence, the damage field seems to become increasingly

correlated over length scales that increase with δ. As for the spatial organization of the avalanches

(see Section 4.1.3), no correlations of the damage field could be evidenced for large internal length

scales, typically `0 > 20. On the contrary, as shown on Fig. 4.7b, short internal length results in

an increase of the correlation length ξ as failure is approached. Once again, we obtain a power law
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behavior

ξ ∼ δ−ρ (4.24)

where ρ= 0.6±0.1. This value is compatible with the scaling of the spatial extent of the avalanches

`∗x with δ, suggesting that both quantities are directly related. Moreover, the lowest values of ξ that

could be observed are of the order of 10`0, compatible with the smallest size of the spatially organized

avalanches evidenced on Fig. 4.5. Hence, we conclude that the spatial structure of the large bursts of

damage events dictates the shape of the damage field and controls its correlation length. For small

internal lengths, the correlation length that builds up in the system as δ→ 0 could be extracted both

from the spatial extent of damage clusters and from the correlation length of the damage field. On

the contrary, for interaction lengths of the order of the system size, damage clusters have no spatial

organization and the resulting damage field is random at all scales.
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Figure 4.7: (a) Correlation function C(δx) of the cumulated damage field normalized by the inverse

of the square-root of the box size 1/
√
δx that corresponds to a random spatial distribution of damage.

The correlation function is computed here for `0 = 5 at different distances δ to failure. The deviation

from the constant behavior observed for δx < ξ indicates the range of length scales over which the

damage field is spatially correlated; (b) evolution of the correlation length ξ normalized by the internal

length as a function of the distance to failure δ showing power law behaviors with an exponent ρ =
0.6±0.1.

To conclude the section 4.1 devoted to positive redistribution functions, we have seen that

the avalanche size statistics studied at the global scale remains independent of the internal length

involved in the damage driving force redistribution. The probability density of avalanche sizes S

exhibits a power law behavior up to a the cutoff that increases as a power law of the distance to the

onset of failure and localization. 1 On the contrary, the study of the avalanche statistics at the local

1. We recall that for positive redistribution functions, localization and failure takes place at the same loading that
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scale reveals two different behaviors:

– For `0�N , two distinct types of avalanches could be identified: The smallest ones with a

lateral extension ` < `0 have no particular spatial structure. They correspond to a burst of

randomly located damage events that spread over a length scale smaller than the internal

length. On the contrary, the largest damage bursts do not distribute randomly in the

material. Instead, their spatial structure is characterized by a non-trivial fractal exponent

df ' 1.8. This complex structure reflects on the damage field, which becomes correlated

close to failure up to a length ξ given by the lateral size `∗ of the largest clusters. As `∗

diverges as a power law as fracture approaches, the correlation length of the damage field

also diverges next to failure.

– Without a clear scale separation between the internal length and the system size, for

example for `0 'N , the large non-trivial avalanches disappear. This regime corresponds

to a percolation process where damage events take place randomly within the material.

Note however that by considering sufficiently large system sizes, large avalanches with

complex spatial structure will take place again. As a result, in the limit of infinitely large

systems, the damage field will always exhibit a correlated structure above the internal

length scale `0 and below a correlation length ξ that will increase and finally diverge at

the failure threshold.

Remarkably, varying the internal length does affect the spatial organization of the avalanches

at the local scale, but does not change their size distribution at the global scale that follows P (S) ∼
S−3/2, irrespective of the presence of one or two distinct types of avalanches for `0 ∼N and `0�N ,

respectively. This puzzling observation can be explained by noticing that the largest avalanches

that display a non-trivial spatial structure actually contributes to the exponential tail of the global

avalanches distribution.

In the next section we shall evidence that the emergence of a diverging correlation length

as the system is driven towards failure holds for some specific types of redistribution functions only.

So far, we have considered a function α with a shape parameter κ = 0. This implies that the load

redistribution is always positive, and that the wavelength λc of the localization mode at δ → 0 is

infinite. In the next section, we consider sign-changing redistribution functions using larger shape

parameter values κ > κc that result in a finite critical wavelength at the localization threshold. We

will see that it drastically alters the spatio-temporal evolution of damage.

4.2 Statistics of fluctuations in damage models with finite wavelength

at localization (κ > κc)

We now investigate the statistics of damage growth for a redistribution function with a shape

parameter κ > κc. This introduces an additional length scale, the wavelength λc = 2π/qc, on top of

corresponds to the snap-back observed on the response of the homogeneous system.
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the internal length `0. It characterizes the damage growth mode at the onset of failure (see Chapter

3) that will be shown to play also a central role in the spreading of damage prior failure. We remind

that this characteristic wavelength follows λc = 4π`0√
2κ
√

1 +κ2− (1 +κ2)
(see Eq. (3.24)). The power

spectrum of the damage field studied in Chapter 3 and shown in Fig. 3.4a has allowed to evidence the

central role played by this mode as the system approaches failure. Here, we aim at determining its

effect on the avalanche statistics during the whole process of damage spreading.

We first investigate on Fig. 4.8a the avalanche sizes distributions when considering either

the entire phase of damage spreading before localization (δ ∈ [δh,1]), damage events taking place just

before localization (δ ∈ [δh, δh + 0.01]) or between localization and failure (δ ∈ [0, δh]). Two shape

parameter values are considered: κ= 2κc and κ= 4κc, for which the distance to failure at localization

are respectively δh ' 0.04 and δh ' 0.2. For δ ∈ [δh,1], we obtain a power law behavior of exponent

2.5± 0.3 up to a cutoff. The exponential dominates at lower avalanche sizes as κ is increased. For

δ ∈ [δh, δh + 0.01], we recover the exponent β = 1.5± 0.2 measured for the positive redistribution

function case (κ= 0). Here also, the value of κ does not affect the value of the exponent, but instead

controls the position of the cutoff. The effect is emphasized as the value of the distance to failure at

localization is considerably higher in the case of κ = 4κc: the exponential dominates at much lower

value. Finally, close to failure, the power law behavior of exponent β is extended to higher values but

an exponential tail remains: the avalanche sizes are bounded, even close to failure, and their ampli-

tude varies with the parameter κ.

Since the size of the largest avalanches that relates to the average avalanche size through the

relation 〈S〉 ∼ (S∗)2−β (see Eq (4.12)) changes with the value of κ, we study it in more details in the

inset of Fig. 4.8b where the variations of 〈S〉 are represented as a function of the distance δ− δh to

localization. We first observe an increase of the average avalanche size as the system evolves towards

localization, followed by a saturation. The normalization of the ordinates 〈S〉 by λ(2−β).df
c allows

to collapse the saturation regime corresponding to different κ, indicating that the plateau level, i.e.

the average avalanche size close to localization, saturates at 〈S〉 ∼ λ(2−β).df
c . This indicates that the

cuttoff S∗ ∼ 〈S〉1/(2−β) of the distribution also saturates when the largest avalanches reach the lateral

extension `∗x ∼ (S∗)1/df ∼ λc following the scaling relations of Eqs. (4.12) and (4.21) observed in

section 4.1 for the case κ= 0. 2

2. In addition to the avalanche size exponent β ' 1.5 measured in Fig. 4.8a, we have also verified that the fractal

dimension of the largest avalanches is equal to df ' 1.8 both for κ = 0 and for κ = 2κc. In other words, the largest

avalanches during the spreading of damage are controlled by the value of the critical wavelength λc for localization. In

particular, it sets the lateral extension of the largest avalanches, evidenced by the cutoff of the distribution. Interestingly,

for the largest value of λc considered, i.e. λc ' 12`0 corresponding to the case κ= 2κc, the growth regime of the average

avalanche size before saturation can be described by a power law with exponent ' 0.4± 0.1, rather compatible with the

scaling 〈S〉 ∼ δ−τ with τ ' 0.52 measured in the previous section for the case κ= 0 (see Eq. 4.13). The discrepancy may

arise from the rather limited range of length scales between the lateral extension of a few `0 of the smallest avalanches with

a non-trivial spatial structure taking place at the beginning of the damage growth process, and λc ' 12`0, the lateral size of

the largest avalanches taking place close to localization.
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Figure 4.8: (a) For shape parameters κ = 2κc and κ = 4κc, normalized distribution densities when

considering all damage events, δ ∈ [0,1], or those taking place close to failure δ ∈ [0,0.01]. We retrieve

the exponent values 3/2 and 5/2, however the cutoff of the distributions evolve with the parameter

κ; (b) Average avalanche size normalized by the critical wavelength λc of each κ value considered as

a function of the distance to failure. A power law behavior of exponent ' 1/4 is obtained, up to an

upper cutoff that scales with λc and hence κ.

We can now extend the scenario proposed in Section 4.1 for κ < κc that corresponds to

an infinite critical wavelength at localization to the case κ > κc with a finite value. In both cases,

the damage spreads in the material through power law distributed avalanches up to a cutoff size that

increases as the material is closer to localization. In addition, the exponents β ' 1.5 and τ ' 0.5 that

characterize the size distribution of avalanches and the growth of their average size with the distance

to localization does not change significantly from one case to another. However, for a finite value of

λc, this growth saturates and the largest avalanches measured at the localization onset are set by λc.

We now investigate the material behavior after localization. We characterize first the spatial

organization of cumulated damage field using the same tool than in the previous section: Its correla-

tion function defined in Eq. 4.23 is plotted on Fig. 4.9a as a function of δx/λc for different distance to

failure δ for κ= 4κc. The deviation to the uncorrelated behavior C ∼ 1/
√
δx shows that correlations

build up in the damage field up to a scale δx < λc as soon as localization starts, at δ = δh ' 0.2.

Note that after localization, and prior to catastrophic failure, the correlation length does not evolve

anymore, but only the strength of the correlations increases. This behavior is evidenced for other

values of κ in the inset of Fig. 4.9a where the damage field structure functions next to the failure

threshold all collapses on the same master curve. This observation confirms that the critical mode

determined in Chapter 3 at the onset of localization is dominating the process of damage growth in

the post-localization regime. Note also the secondary peak in the correlation function for δx ' 2λc
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indicating the presence of other growing modes in this regime prior to catastrophic failure. The actual

damage field and its evolution with δ is shown on Fig.4.9b for κ = 4κc. Far from localization, for

δ� δh ' 0.2, the damage field remains rather similar to the one observed in the case κ = 0, with-

out particular periodicity. As δ ' δh, some periodicity of wavelength ' λc builds up in the damage

field. As the system is driven even closer to failure, the localization mode becomes obvious and its

amplitude increases drastically, reflecting the stable heterogeneous damage growth evidenced by the

stability analysis of Chapter 3.
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Figure 4.9: (a) Evolution of the structure function C of the cumulated damage field as defined in

Eq. (4.23) represented as a function of the box size δx normalized by λc for κ = 4κc. It shows the

emergence of correlations over the length scales δx < λc in the post-localization regime (δ > δh '
0.2). The inset shows the correlation function close to failure (δ ' 0.01) for different values of κ. (b)

Evolution of the actual damage field for κ= 4κc: For δ < δh ' 0.2, we see the obvious emergence of

the localization mode of wavelength λc the amplitude of which increases until abrupt failure (δ = 0).

To conclude, we note that the introduction of a localization mode of finite wavelength

bounds the fluctuations taking place during the spreading of damage: both the largest avalanches

and the largest correlation length of the damage field observed when the material is close to local-

ization are set by λc. This signifies that no divergence of a characteristic length scale, signature of a

critical point, can be observed for these systems. To make sense to these observations, we now move

to the analytical investigation of the statistical features of damage growth through the derivation of

a simple damage evolution equation from our model formulation. In particular, this will allow us to

provide exact predictions for the damage evolution statistical features in the mean field limit of the

model.
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4.3 Theoretical analysis of the damage growth fluctuations: A disor-

dered elastic interface analogy

The fluctuations in damage growth, despite their apparent complexity, have been shown to

follow some simple evolution laws, described by power laws with universal exponents. Interestingly,

such a picture seems also to emerge from the different experimental and numerical studies devoted to

damage spreading in quasi-brittle materials with in particular the clear demonstration of power law

behaviors for the statistics of avalanches [37], even though a consensus on the value of the measured

exponents and their universality is far from being reached. As a result, we believe that our model, al-

though very simplified, contains the key ingredients necessary to describe the statistics of avalanches

in disordered quasi-brittle solids. In the following, we seek to determine why power law and univer-

sality emerge from the statistics of damage growth in our model. And whether or not these behaviors

can be interpreted in terms of critical phenomena. At the end, we hope that our understanding of the

emergence of such behaviors in our simplified model will provide relevant information regarding the

apparition of such laws in experiments and simulations of quasi-brittle failure.

In our approach described in Chapter 2, the power law behaviors result from the coaction

of randomness in the material fracture properties and the mechanism of driving force redistribution

that takes place after damage events. Indeed, the process of force redistribution in presence of dis-

order is known to give rise to unstable cascades of individual events that are generally power law

distributed [1, 6, 14]. To go a step further in the analysis of our model and determine the actual nature

of the critical behavior evidenced in the simulation results, we now explore analytically the growth of

damage as predicted by our model.

The resolution of damage models in disordered materials has been already proposed in [59,

94] for simpler redistribution laws, like e.g. in the global load sharing fiber bundle. In that case, the

successive redistributions can be tracked and the resulting power laws predicted analytically. How-

ever, these types of models remain rather far from a realistic description of the failure process in

actual quasi-brittle materials characterized by inhomogeneous redistribution functions. In addition,

the abrupt failure of individual elements assumed in these approaches does not seem appropriate to

describe the progressive damage evolution and the transition to failure as observed in quasi-brittle

solids (see Appendix B for a more extended discussion). As a result, we seek for an alternative

theoretical framework. A natural class of model for describing quasi-brittle failure is the one describ-

ing the evolution of elastic manifolds driven in random media [6, 36, 68]. Indeed, the corner stone

of these approaches is also the interplay between the disorder and the redistribution of driving force

along the interface when a part of it moves forward after depinning from the surrounding disorder. For

that reason, depinning models of elastic interfaces have already been proposed for explaining some

specific failure properties of quasi-brittle materials, in the context of the study of failure strength size

effects [113]. Here, we show that there is indeed an intimate connection between damage spreading

in disordered materials and disordered elastic interface problems.
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This section is organized as follows. First, the damage evolution law proposed in Chap-

ter 2 is linearized around the homogeneous problem solution. This allows to show that the damage

evolution law is actually similar to the problem of driven elastic interface where the properties are

evolving with the distance to localization. Then, we consider the mean field limit of our model and

obtain the value of the exponents involved in the damage growth statistics for an infinite internal

length `0→+∞. In particular, the exponents β and µ obtained analytically are compared with those

obtained numerically in the previous sections of this chapter. We also show that the stability analysis

performed in Chapter 3 for predicting the onset of localization can be performed easily in this new

formulation of the model.

4.3.1 Analogy between damage growth and driven disordered elastic interface

We provide first a basic description of the problem of elastic interfaces driven in disordered

media, first proposed in Ref. [30], and schematically represented on Fig. 4.10. Consider hetero-

geneities randomly distributed in a medium of dimension D that exert pinning forces on an elastic

interface of dimension D−1. The interface is initially in a flat configuration and we study the evolu-

tion of its position and geometry as we apply an external driving f on it. In fact, we consider that the

external driving is applied through the slow motion of a rigid bar connected to the interface through

springs of fixed stiffness, as represented schematically on Fig. 4.10. We denote d(~x) the position of

the interface with respect to this reference initial position. If f is too small (or equivalently, if the

rigid bar is too close to the interface), the local driving force applied to the interface is not sufficient

to overcome the pinning forces applied by the external medium. As a result, it remains pinned to its

initial configuration. However, if the external force is gradually increased (or equivalently, if the rigid

bar is gradually moved forward), the local driving forces along the interface will increase, allowing

ultimately one point to move a little. Since the interface is elastic, this local displacement results in a

force redistributions along the interface. This redistribution can trigger the movement of other parts of

the interface, until the system eventually reaches a metastable equilibrium position at which it stays at

rest. Moving the rigid driving bar very slowly will result in an intermittent evolution of the interface

as it moves from one pinned position to another. In fact, the detailed study of such a model shows that

interface motion displays micro-instabilities (or avalanches) that are both localized in time and space.

In addition, this intermittent dynamics can be characterized by scaling laws and scaling exponents,

the value of which depends only on the dimension D of the medium and the type of elasticity (in

other words, on the type of redistribution). If the function redistribution is maintained constant and

the rigid bar is moved at constant velocity, the interface reaches a stationary state characterized by

power law distribution fluctuations that can go on indefinitely.

With that description, the analogy with our damage model is rather straightforward. The

heterogeneities reflects the fracture energy thresholds Yc(~x) and the interface position represents the
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Figure 4.10: Schematic representation of an elastic interface evolving in a disordered medium. The

interface is initially flat (d(x) = d0) at t = 0, corresponding to a loading ∆0. As an external loading

f is applied, the interplay between elasticity and heterogeneities in the medium leads to a distorted

interface.

damage field: It is initially a homogeneous field with d(~x) = 0 since the material is initially intact. As

the driving ∆ increases above a critical value ∆el, the interface moves forward by jumping from one

metastable state to another, each configuration being characterized by the position of the interface, or

equivalently, by the damage field d(~x). The elasticity of the interface that describes how forces are

redistributed when a zone of the interface moves forward (or when the material damages locally) are

defined through the interaction function α introduced in our model. Interestingly, traditional mod-

els of pinning/depinning of elastic interfaces under displacement imposed conditions do not predict

neither localization of the interface motion, nor unstable growth of the whole interface, as observed

in our damage model. The origin of localization and failure within the frame of disordered elastic

interface models for damage growth will be the central point of the following section.

4.3.2 Linearized evolution equation for the damage growth

To derive an analytical expression of evolution equation of the damage field, we limit our

analysis to weakly heterogeneous damage field d that amounts to consider weakly heterogeneous

materials prior their localization threshold. As a result, we note δd the perturbation of the damage

field with respect to its average value 〈d〉, so that

d(~x) = 〈d〉+ δd(~x). (4.25)

Following the same calculation performed for investigating the stability of the damaged material (see

Eqs. (3.6)-(3.8) where d0 is replaced here by 〈d〉), one obtains

ḋ(~x,∆)∝−1
2∆2k′[〈d〉]−Yc0(1 +ηd(~x))+ 1

2∆2k′′[〈d〉]〈d〉− 1
2∆2k′′[〈d〉](α2 ∗d)(~x)−g(~x,d)

(4.26)
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where α2(~x) denotes the convolution of the interaction function α with itself. To close the governing

equation of the damage field, we have assumed that the rate of damage is proportional to the damage

driving force, ḋ(~x,∆)∝ F . This assumption is largely used for deriving kinetic law from thermody-

namic driving force, like e.g. in brittle fracture or plasticity problems to relate the crack speed [15, 34]

or the plastic flow [96] to their driving force. Note that this particular kinetic law actually does not

modify the model predictions regarding the onset of localization and failure, but also regarding the

statistics of fluctuations.

We now introduce the time t0 = 0 that corresponds to a loading ∆0 at which the damage

field is at equilibrium and constant in space, d(x) = 〈d〉 = d0. This allows for the determination of

the homogeneous system equation that links the homogeneous damage d0 and the loading ∆0 at t= 0

t= 0⇒−1
2∆2

0k
′[d0]−Yc0(1 +ηd0) = 0. (4.27)

As time evolves (t > 0), we consider a loading that evolves continuously with time via an external

loading velocity vext. Consequently, the damage field deviates from its initial position d0

t > 0⇒∆ = ∆0 +vextt, d(~x) = d0 + δd(~x). (4.28)

Using 〈d〉= d0 + 〈δd(~x)〉 and ḋ= δ̇d, we obtain

δ̇d(~x,t)∝ δ [Ωvextt− δd(~x)] + (s− δ)
∫

Σ
α2(~x−~x′)

[
δd(~x′)− δd(~x)

]
d~x′−g(~x,d) (4.29)

where we assume quasistatic loading conditions (vext → 0). Note that the damage evolution law is

valid up to the first order in the damage field perturbation δd since it has been linearized around a

constant value d0. Note also that since our damage model does not allow healing of the material

(δ̇d ≥ 0), a more accurate formulation of the damage evolution law is δ̇d(~x,t) ∝max(0,F), where

the total driving force F is the right term of the above equation. The different parameters of this

equation correspond to



s = Yc0η

Ω = ∆0k
′(d0)

Yc0η(Yc0η+ 1
2∆2

0k
′′(d0))

δ = Yc0η+ 1
2∆2k′′(d0)

(4.30)

The interpretation of such equation can be done by considering again the scheme of Fig. 4.10

where the interface is represented in 1D by the damage field d(x,t). The reference configuration is

the flat interface located in d0. It corresponds, at equilibrium, to a loading ∆0. The interface is driven

though the displacement of the rigid bar represented by the thick green line that moves at the velocity

Ωvext. It pulls on the interface via springs of stiffness δ. The interface evolves in the disordered

medium where heterogeneities are described by the function g(x,d) and represented by the grey cir-

cles on the scheme. The interface gets distorted from its initial flat shape due to the interplay between
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the heterogeneities and its elastic properties, expressed via the integral expression in Eq. (4.29). This

term describes the driving force distribution along the interface as a function of its geometry δd(~x).

Note that for a flat interface, this contribution is zero, so the driving force is constant along the in-

terface. On the contrary, if a point located in ~x is in advance with respect to the rest of the interface

(δd(~x) > δd(~x′) for all ~x′), the driving force in ~x is then smaller than in other points (this is true

as along as the interaction function is positive, i.e. for κ = 0). In other words, the interaction term

contributes to maintain the interface as flat as possible, that is why it is referred to as the interface

elasticity.

To emphasize the main difference between the evolution equation involved in traditional

pinning/depinning models of interfaces driven in random media and that of our damage model, the

evolution equation Eq. (4.29) is rewritten under the following form

δ̇d(~x,t)∝ s [vmt− δd] +f(d0)(α2 ∗ δd)(~x)−g(~x,d) (4.31)

where the velocity vm =−∆0k
′(d0)vext/(Yc0η) corresponds to the speed of the driving rigid bar and

where the notation f(d0) = −1
2∆2

0k
′′(d0) has been introduced. In standard depinning models, the

prefactor of the elastic interaction term, f(d0), is generally a constant that do not vary during the

interface evolution. However, in that case, f(d0) does vary with the interface position. Indeed, the

reference position must be regularly updated so that the development d(x) = d0 + δd(x) performed

around the reference position d0 remains valid. The evolution of the prefactor in front of the inter-

action term in the evolution equation has important consequences. In particular, it leads to sharper

redistributions of the damage driving force, even though the actual shape of the interaction func-

tion remains fixed by the expression of the function α. The evolution equation in this simple form

will allow to perform some theoretical calculations in the mean field limit to predict the statistics of

avalanches, as shown in the following.

The linearized expression of the total damage driving force given by the right hand term of

Eq. (4.31) gives the opportunity to determine again the stability of the interface. Indeed, assuming

a homogeneous material by setting the term g(x,d) to zero and a perturbation of the form δd(~x) =
δd0(1 + cos(~q0 ·~x)), F , the total driving forces, writes as

F(~x,∆0) = svmt+ (f(∆0)α̃2(~q0)−s)δd0 cos(~q0 ·~x)− δδd0 (4.32)

where we have used α2(~x) ∗ cos(~q0 ·~x) = α̃2(~q0)cos(~q0 ·~x). From the expressions of k and f(d0)
given in Eq. (4.30), and using the definition of the function G̃(~q,∆) of Eq. (3.15), we can express the

variations of the total damage driving force as a function of the damage perturbation

δF
δδd0

(~x,∆0) = G̃(~q0,∆0)cos(~q0 ·~x) + G̃(0,∆0). (4.33)

Using the same arguments as in Chapter 3, we obtain again the critical initial interface position dh
and dc and their corresponding loading ∆h and ∆c at localization and failure, respectively. The
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positiveness of the prefactor of the cosine, G̃(~q0,∆0), provides the former, while the sign of the

entire expression, at the critical mode, sets the stability and hence gives the failure criterion. We find

the very same criteria for localization and failure, confirming the consistency between the stability

analysis performed in Chapter 3 and the evolution equation of the damage field derived here.

4.3.3 Exponents prediction

To predict the scaling properties characterizing the statistics of damage fluctuations, we use

the work of Zapperi et al. [119] who analyzed an equation similar to the damage evolution law of

Eq. 4.31. They analyzed the dynamics of an interacting ferromagnetic domain wall evolving in a

random uncorrelated medium when an external fieldH(t) is applied. The position of the domain wall

is noted h(~x,t) and the interactions between points of the wall are described through a function J(~x).

They obtained an evolution equation by differentiating the total energy of the system:

∂h(~x,t)
∂t

=H(t)−kh+J(~x)∗ (h−h(~x,t))−η(~x,h) (4.34)

where η(~x,h) is a random field, h the average of the field h(~x) and the term −kh is a demagnetizing

field of intensity k. By considering the mean-field limit, where the function J becomes a constant in

space, they determined that the avalanche exponent β of Eq. (4.5) scales as β = 3/2− c/2 where c

is a constant proportional to the driving rate. Moreover, they also demonstrated that the cutoff of the

distribution scales as k−2.

To use these results in the case of our damage model, we write Eq.(4.31) in the mean field

limit:

δ̇d(x,t)∝ svmt− δ〈δd〉+s(〈δd〉− δd(x,t))−g(x,d) (4.35)

where we have used that in the mean field limit (α2∗δd)(x) = 〈δd〉. The identification with Eq. (4.34)

is rather clear: The demagnetizing field H(t)∼ svmt corresponds to the driving, the location h(~x,t)
of the domain wall corresponds to the deviation of damage from the initial configuration, δd(~x,t),

while the intensity of the demagnetizing field k is the parameter δ introduced in the damage evolution

equation (4.29) and expressed in Eq. (4.30). Finally, the constant kernel in the mean field limit gives

J = s.

Considering quasistatic loading conditions, the parameter c in their exponent prediction is

set to zero. Hence, in the mean field limit, the avalanche size distribution exponent is β = 3/2. More-

over, to determine the dependency of the cutoff of the distributions with the control parameter, we

shall relate the previously defined parameter given by Eq. (3.2), denoted here by δ∆, to the parameter

δ (analogous to k in their case) of Eq. (4.35). Using that initially the loading and damage d0 are
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related through Eq. (4.27) and using a series expansion when δ∆ tends to 0 leads to

δ = Yc0η+ 1
2∆2

0k
′′(d0)∼

√
δ∆ =

√
∆c−∆0
∆c−∆el

(4.36)

Consequently, from the result of Zapperi et al., the cutoff of the avalanche S∗ is expected

to scale as

S∗ ∼ δ−1
∆ (4.37)

and since β = 3/2 in the mean-field limit, using the relation between the average avalanche size and

the cutoff given by Eq. (4.12), we also expect

〈S〉 ∼ δ−1/2
∆ . (4.38)

Considering the case where the interaction function parameter κ is set below its critical

threshold, the exponents measured in Sec. 4.1.2 are in good agreement with these predicted values

(see Tab. 4.1 for a review of the values). Surprisingly, whatever the internal length value, damage

temporal organization is hence equivalent to that of a system in a mean field limit. If a small devia-

tion close to failure was observed for internal lengths tending to the heterogeneities size, the general

statistical behavior remains very similar to that obtained for an infinite internal length scale.

4.4 Conclusions

Damage evolution takes place through sudden bursts of dissipated energy. Due to the very

small loading rate, it here takes place at constant applied displacement and hence corresponds to

macroscopically observable drops of force. These avalanches of damage events present a strong

intermittency and the signal can be seen as a crackling noise, as observed in experiments. The ther-

modynamic consistency of our model allows to equivalently consider avalanches in terms of number

of damage event, dissipated energy but also kinetic energy, as measured in experiments. The linear

scalings obtained between these quantities allow to restrict the analysis to only one observable.

As for the localization, critical mode and failure predictions, the interaction function ap-

pears to greatly control the system response via its influence on the precursors to failure organization.

For an interaction function where elements are only reloaded after a damage event (κ = 0) we have

shown the existence of a power law behavior of the typical avalanche size independently of the range

of the interactions. We remind that the latter is controlled via the internal length `0 introduced in

the interaction function. A remarkable feature of our model is that the intermittency in the damage

growth observed at a global scale is independent of `0, the avalanche statistics being similar for local

(`0→ ξ) and mean field (`0→∞) limits. Instead, the characteristic extent of the load redistribution

is shown to control the spatial organization of the damage clusters formed during avalanches and the

resulting cumulated damage field. If a large scale separation between `0 and the system size is chosen,
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the largest avalanches are shown to have an increasing spatial extent. Indeed, the smallest avalanches

are localized over a length fixed by the internal length, while the largest can extend in space via the

formation of a cascade of small clusters. It directly affects the damage field, as it becomes more and

more correlated over an increasing correlation length that display the same power law behavior with

the distance to failure than the spatial extent of the clusters. Therefore, for small internal lengths,

non-trivial scalings are obtained between the typical avalanche size, its spatial extent, and the correla-

tion length of the damage field that we can characterize through the fractal dimension of the clusters.

All these quantities follow power law behaviors and diverge close to failure which corresponds also

to the onset of localization for κ≤ κc.

At the opposite, when strong unloading is made possible through a sign changing interac-

tion function (κ > κc) the precursors behavior drastically changes. In that case, the localization of

damage takes place prior to complete failure. We have shown that the average avalanche size and

their spatial correlation length increases first as the system is driven close to localization, this quan-

tity reaches a plateau value in the post-localization regime. This upper bound is shown to be related

to the finite wavelength λc of the critical mode identified previously from the stability analysis in the

previous chapter. Once localization takes place, the damage field builds up over this characteristic

length, increasing the strength of the correlations within the damage field but not its spatial extent.

Therefore, even though κ > κc is excluded from this interpretation, the divergence of the

correlation length of the damage field and the average avalanche size at failure for κ= 0 argues for a

critical interpretation of failure. To characterize this transition, we show that our damage model can

be viewed as a depinning model of an elastic interface driven in a random medium. The damage evo-

lution law is governed by the elastic term that describes the interactions between the different regions

of the interface. In our case, it corresponds to the convolution with itself of the introduced interaction

function. Hence, the damage level in the material can be seen as the position of an elastic interface

driven in a disordered media and where elastic redistributions are given by the interaction function

of our non-local damage model. Within this framework, using the work of Zapperi et al. [119] who

addressed the mean field limit of elastic interface problems, we acheive a relevant prediction of the

statistics of avalanches as obtained in the simulations. In particular, we capture quantitatively the

power law increase of the average avalanche size close to failure. It also allows to identify the control

parameter that can be defined either as the distance to failure in terms of displacement or in terms of

average damage level.

As a consequence, we believe our model contains the relevant ingredients required to cap-

ture properly the precursor behavior, namely temporal intermittency and spatial clustering. In particu-

lar, it can be used to predict the scaling behavior of precursors beyond the mean field limit. It amounts

to investigate the pinning/depinning dynamics of an interface with a non-local elasticity provided by

the interaction function involved in the non-local formulation of the damage model. We now move

to the practical application of these concepts trough the experimental study of the compression up to
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localization of arrays of soft hollow cylinders.





CHAPTER 5

COMPARISON WITH EXPERIMENTS: COMPRESSION OF A 2D

ARRAY OF HOLLOW SOFT CYLINDERS

Acoustic emissions have been a preferred mean to study damage spreading during quasi-

brittle failure [26, 33, 35, 42]. It allows analyzing the dynamics of damage growth and extracting the

location of damage events. However, a major difficulty to overcome with this approach is the relation

between the acoustic energy of the damage events and the actual energy dissipated into failure at the

microstructure level in the material. Even though this relation can be explored theoretically [114], or

experimentally [107], acoustic emission provides indirect information on the energy of the damage

events that might be complex to interpret. Another obstacle in the experimental study of damage

spreading is the limited statistics of damage events, especially because the transition to failure in

quasi-brittle materials is unstationary, which imposes to perform statistical analyses of the experi-

mental data at some fixed distance to failure. Many studies actually do not address this problem and

compute statistical distributions over the full fracture experiments. This gives rise to major problems

to interpret the measured behaviors. To obtain a proper dialogue between models and experiments,

we aim at performing a fracture experiment from which damage events can be investigated both at

the local scale, trough the damage field, and the macroscopic scale, through the mechanical response

of the specimen.

The complex features observed both experimentally and numerically result from local dissi-

pative events. At the local scale, they lead to complex strain and stress redistributions and interactions

as defects are progressively formed, allowing for both a spatial organization of the damage events and

crackling noise. At the sample scale, they induce a gradual degradation of the elastic properties of the

specimen and result in a non-linear characteristic behavior. As argued in this chapter, such a system

can be actually obtained using a two-dimensional granular material under compressive loading condi-

tions. It will be shown to mimic many aspects of the failure behavior of disordered elasto-damageable

solids, with which a clear analogy can be established. We will also show how to take advantage of the

91
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lower dimension of this system to characterize its mechanical behavior both at the local and global

scales as it is driven towards localization and failure.

Two-dimensional packings of rigid cylinders placed in a transparent box and under com-

pressive loadings have been largely used to explore force chains in granular systems [43]. This setup,

inspired by the Schneebeli model [104], offers the advantage to be observed from the lateral side

through a camera. It also allows controlling to some extent the level of disorder in the material: A

weak disorder resulting from variations in the contact conditions between cylinders is inherent to such

a system, even for ordered packings[108]. Yet, it can be enhanced by the introduction of hard and

soft elements [109] or even large variations in the elements diameters [11]. Photoelasticity techniques

reveal that even for weak disorder, such a 2D array lead to inhomogeneous distributions of stress and

chain forces, as it is generally observed in granular media. Inspired by these previous studies, Poirier

et al. [90] replaced the rigid cylinders by hollow soft elements consisting in drinking straws. In this

configuration, the experiment resembles to the ones performed by Papka and Kyriakides who study

the crushing of honeycomb materials with circular cells [79, 80]. Both setups give rise to localization

of the deformation at some critical compression level. Poirier’s experiment is shown on Fig. 5.1. The

loading is applied through a piston and photographs are taken during the experiment. Under strain-

controlled compression, the weakly disordered regular array shows a strong non-linear behavior and

softening, as shown on the macroscopic response of Fig. 5.2. Moreover, the pictures allow observing

and characterizing the gradual local deformation of the straws, eventually localizing in the system as

illustrated in Fig. 5.1.

Such an experimental setup is appealing to investigate the transition to localization and

precursors in disordered media. Indeed, two-dimensional arrays of soft cylinders naturally display

disordered properties. Moreover, under compression they give rise to localized dissipative events

that result from the friction between cylinders in contact. These events induce a degradation of the

macroscopic stiffness that reflects on the non-linear behavior of the force-displacement response of

the array. Finally, this setup is interesting as it gives access not only to the macroscopic properties

with the measured force-displacement response, but also to the local deformation field by tracing the

motion of the individual elements and their deformation. Controlling the system in strain allows to

observe the drops of force associated with dissipative events and define quantitatively avalanches,

which result from long-range elastic redistributions in the medium. This will allow us to fully char-

acterize the temporal clustering of local dissipative events.

In the following, we first present the experimental setup, which is similar to Poirier et

al.’s experiment. Then, the study of the macroscopic response combined with the local observa-

tions made with the camera allow us to characterize the macroscopic mechanical response and the

onset of localization. We use an analogy between our experimental device and 2D elasto-damageable

solids to predict theoretically the onset of localization and failure, following the work of Démery et

al. [Démery et al.]. In the last part, we investigate the statistics of fluctuations and the avalanches
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dynamics of damage growth process.

Figure 5.1: Experiment performed by Poirier et al. [90] (image taken from [12]) on a 2D regular array

of hollow soft cylinders confined in a rectangular box. The compressive loading is applied via the

piston. Note the localization of the deformations on the last image.

�0

!! !!

Figure 5.2: Macroscopic response of the array of hollow soft cylinders as measured by Poirier et

al. [90] using the setup described in Fig. 5.1. The system displays a nonlinear behavior before soft-

ening that is followed by a plateau. We indicate the method used to remove the initial non-linear

behavior: The red dashed curve corresponds to the extrapolated linear elastic response. Its intersec-

tion with the displacement axis fixes the corrected initial displacement ∆0. The first part of the curve

which is located above the red line is finally removed.

5.1 Experimental setup

We follow the experimental setup designed by Poirier et al. [90]: Our system consists in

a regular assembly of 41 rows and alternatively 36 or 35 columns of straws, as schematically repre-
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sented in Fig. 5.3. The straws are of 3 cm length and 5 mm diameter. The straws are placed in a

transparent box of dimension 20.5×18×3 cm. As a results, pictures of the array can be taken during

the test from the lateral side of the box using a D800 Nikon camera with a resolution of 6000×6000
pixels. A constant displacement rate is applied via an AG-X Schimadzu test machine through a beam

placed on the upper layer of the straw packing. During the test, the force imposed to the material is

measured using a 10 kN load cell with an acquisition rate of 1000 Hz. The load cell provides force

values with a precision better than 0.5 % from forces as low as 20 N.

Four experiments were realized. Note that all the straws were replaced after each experi-

ment. Tests labeled #1, #2 and #3 were performed at a strain rate of 2 mm/min. Before the test,

we realized three cycles of 6 mm amplitude that is comprised in the linear elastic range of the system.

These preliminary cycles are used to organize the packing and avoid subsequent strong reorganiza-

tions during the test with monotonic increasing displacement. For these three experiments, pictures

were taken with an acquisition rate of one image every two seconds. For the test #4, no cycle was

performed and a higher displacement rate of 5 mm/min was investigated. Pictures were taken here

every five seconds.

In addition to the small variations in contacts between straws, for some experiments some

other sources of heterogeneities played an important role. For experiment #1, a few straws were

missing, creating vacancies in the array. For experiment #2, we realized that a layer of black straws

that was mixed with the other colored straws were actually softer. They resulted in an anticipated

localization of deformation, hence this experiment will not be considered in the following analyses.

For the third and fourth experiments, only local misarrangements were noticed.

5.2 Mechanical behavior

5.2.1 Macroscopic Force-Displacement response

The macroscopic force-displacement response of the packing is shown on Fig. 5.4 for each

of the four experiments. On this representation, the first part of the curve was corrected to remove the

initial non-linearity observed at small loading, as explained in Fig. 5.2. We think that this behavior

results from strong local rearrangements of the straws that are not perfectly ordered before the test

starts and from some misalignment of the top straws, which come in contact progressively with the

beam as the loading initially increases. The initial part of the curve for ∆<∆0 with ∆0 ' 2−3mm
is replaced by a linear elastic response. Hence, the packing is considered to first deform elastically

before non-linear events that softens the material take place.

We observe variations in the mechanical response from one experiment to another. How-

ever, the general behavior remains the same: Above some critical loading, the response deviates from
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Figure 5.3: Schematic representation of the experimental setup. 41 rows and alternatively 36 or 35

columns of soft hollow cylinders (drinking straws) are placed in a transparent box of sizeH×L×b=
20.5× 18× 3 cm. The edges are fixed, and a macroscopic displacement is applied with a constant

rate on a beam placed on the top of the array.

the linear elastic response. Until peak force, the straws, as observed with naked eyes, deform rather

homogeneously, even thought some straws in direct contact with the walls are more compressed due

to frictional effects taking place at the edges (Fig. 5.5a). At the peak, the deformation field is still

rather homogeneous, as shown on Fig. 5.5b. However, soon after, we observe a progressive crushing

of the straws in some localized region of the array, as shown in Figs.5.5c and 5.5d. This localiza-

tion is accompanied by a slight decay of the applied force. Generally, the region where deformation

concentrates initiates from the top corners of the system, which we believe results from the enhanced

friction at the walls of the box. This effect is also observed in Poirier’s experiments (see Fig. 5.1).

The region of localized deformations progressively develops until spanning from one side of the box

to the other. For the experiments #2 and #4, the force finally increases again. For experiments #1
and #3, this increase is also observed, but later, next to ∆ = 30 mm. At this point, the straws located

just above the region of localized deformations also crush and contribute to further increase the width

of the localization band. At the opposite, straws below the band remain unaffected by the subsequent

increase of the loading.

A zoom on the macroscopic response observed for experiment #3 is shown in the inset

of Fig. 5.4. The force drops reveal sudden events that take place during the test and soften the ma-

terial. Similarly to our numerical investigation of damage growth in disordered media, the force-

displacement curve displays short softening phases characterized by force drop that alternate with

longer periods during which the force increases rather linearly with the displacement. These force

drops are interpreted as the signature of dissipative processes associated with local rearrangements

within the array of cylinders. If the actual nature of the dissipative processes into play remains diffi-
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Figure 5.4: Macroscopic force - displacement response obtained for each experiment. A zoom for the

experiment #3 is shown in inset. It highlights the intermittent behavior of the systems resulting from

local sliding events in the system. The dots and letters indicate the loadings to which the pictures

shown on Fig. 5.5 corresponds to.

cult to verify experimentally, we think that frictions between straws as they rearrange to fill the space

between them as they deform is the central mechanism. In the following section, we will see how

these fluctuations in the macroscopic response can be used to define avalanches of dissipated energy.

5.2.2 Intermittent dynamics of the compaction process: Avalanches definitions

We now focus on the fluctuations in the mechanical response of the array of hollow cylin-

ders. The signature on the macroscopic force-displacement curve of the dissipative events taking

place at the local scale in the system is schematized on Fig. 5.6. At some critical loading ∆i, the be-

havior deviates from the linear response, and the force progressively decreases. The force evolution

can then be rather complex until it increases again significantly to recover a linear behavior. This be-

havior is different from the signature of the damage events obtained from our unidimensional model

of elasto-damageable disordered material. Indeed, this model predicts a sudden drop of the force at

constant applied loading followed immediately by another linear regime, as shown on Fig. 4.1a. This

difference may arise from the mechanical response of individual elements that differ from one system

to another: While the elements considered in our model are unstable under fixed imposed displace-

ment (see Fig. 2.4), they are actually stable in the experiments, as shown in [57]. As a result, the

displacement must be increased further, up to ∆e to fully complete the damage event and recover a

linear elastic behavior.

Hence, to define avalanches, we use another method than that proposed in the context of

our model. We consider the response of the system that one would obtain if the compression test was

realized under imposed force, and not under imposed displacement as actually done according to our

experimental procedure. In that case, the elastic response between avalanches, i. e. for ∆ ≤∆i and
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Figure 5.5: Pictures of the array of cylinders for the experiment #3 taken respectively (a) before, (b)

at, (c) after and (d) far away from the peak. The corresponding loadings are indicated on Fig. 5.4. In

(a) and (b), the cylinders first deform rather homogeneously, before a region of higher deformation

nucleates shortly after the peak (c) and extends to eventually span the whole system (d).

∆e ≤∆ would be the same. But the behavior for ∆i ≤∆ ≤∆e during the avalanche would change

since it would give rise to a micro-instability characterized by a plateau behavior at constant force Fi,

as illustrated in Fig. 5.6. On this schematic representation, the upper curve is the response that would

be obtained if controlling the system in force and the curve bellow, between the yellow and red areas,

is the actual material response when driven in displacement.

Using this definition, we can determine the transfer of mechanical energy into dissipated

energy during the avalanche at constant force. The variation of mechanical energy ∆Em corresponds

to the work of the external force during the avalanche minus the variation of elastic energy. Consid-

ering the k−th avalanche taking place at the displacement ∆i ≤∆≤∆e at the constant force Fi, the
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variation of mechanical energy follows

∆Em = ∆W −∆Eel = Fi(∆e−∆i)−
1
2Fi(∆e−∆i) = ∆W

2 = ∆Eel. (5.1)

From the scheme of Fig. 5.6, we see that half of the area under the curve at constant force

corresponds to the mechanical energy, while the other half is the dissipated energy ∆Ed. This last

term is actually the sum of two contributions: (i) The largest part in red is called rupture energy

∆Er by analogy with our theoretical approach, even though it corresponds to energy dissipated by

friction during to local rearrangements in the network; (ii) the smallest part in yellow corresponds

to the excess of mechanical energy released that is not consumed into fracture, and that we assume

to be transferred into kinetic energy, and eventually dissipated in the material by heat and acoustic

emission. Its contribution remains, as will be shown, of meager amplitude. Hence, we can write the

transfer of energy during avalanches as

∆Em = ∆Ed = ∆Er + ∆Ek '∆Er (5.2)

�W = �Eel
�W

2
= �Eel

�W
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Figure 5.6: Avalanches definition: Schematic representation of the response of the system at imposed

strain and imposed stress. During elastic deformation phases the responses are identical, while during

avalanches the former exhibits drops of force and in the latter case the force remains constant. The

corresponding variations of work of external force ∆W , elastic energy ∆Eel,dissipated energy ∆Ed,

kinetic energy ∆Ek and fracture energy ∆Er during the avalanche are indicated as well as their

relationships. During the avalanche for ∆i ≤∆≤∆e, the mechanical energy ∆Em = ∆W −∆Eel =
∆W/2 is dissipated into fracture and kinetic energy ∆Ed = ∆Er + ∆Ek.

Using the experimental force-displacement curve F (∆), the evolution of the work of the

external force W , the elastic energy Eel and the dissipated energy Ed can be computed as a function

of the loading. To do so, we first use the force drop to define the displacements ∆i at the onset of

individual avalanches, and deduce the displacement ∆e at the end assuming a constant force. Then,

variations of energy are calculated using ∆Eel = ∆W between two avalanches, and ∆Eel = ∆Ed =
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∆W/2 during the dissipative events. To study their evolution, we can plot them as a function of our

control parameter, defined here as the distance to the peak δ

δ = ∆p−∆
∆p−∆el

(5.3)

where ∆p is the displacement at the peak load and ∆el is that at which the first dissipation event takes

place. Hence, δ ranges from 1 (first avalanche) to 0 at the peak, and becomes increasingly negative af-

ter the peak. Figure 5.7a shows the cumulated energy variations as a function of δ for the experiment

#3. As expected, the three contributions W , Eel and Eel increase as one gets closer to the peak at

δ = 0. We also verify that the energy W injected in the system through the work of the external force

equals to the sumEel +Ed of the elastic energy stored in the material and the dissipated energy at any

time δ. A zoom on the dissipated energy, as shown in the inset, emphasizes the intermittent nature of

the dissipation: The plateau regions correspond to elastic phases and are separated by avalanches of

duration ∆δ during which an energy ∆Ed is dissipated. Note that the same pattern is observed when

looking at the evolution of the cumulated kinetic or rupture energy.

We now test the consistency of our description: We have assumed that between dissipative

events, the material is elastic and characterized by the macroscopic stiffness Km. This macroscopic

stiffness decays during compaction as more dissipative events take place in the material. For our

approach to be consistent, Km should represents the instantaneous material stiffness

Km = F

∆ . (5.4)

But it should also be consistent with the total elastic energy stored in the material through the rela-

tion Eel(δ) = 1
2∆2KE(δ). To test this correspondence, we compute the stiffness KE from energy

conservation arguments using

KE = Eel
1
2∆2

(5.5)

where the cumulated elastic energyEel is obtained from the work of the external force computed from

the experimental F (δ) curve: During the elastic phases, the elastic energy increases of ∆Eel = ∆W ,

while during avalanches it increases of ∆Eel = ∆W/2. To account for the noise in the force mea-

surement that results in non-physical force drops, we remove the smallest avalanches. An avalanche

is removed if the difference between the plateau level Fi (see Fig. 5.6) and the minimum force during

the avalanche is less than 0.2 N, which is of the order of the actual load cell accuracy. The instan-

taneous stiffness Km defined in Eq. (5.4) is calculated before and after each avalanche. The two

stiffnesses thereby obtained are compared on Fig. 5.7b where their evolution is shown as a function

of δ for each experiments. For sake of clarity, we normalize them by the stiffness value K0 measured

at the end of the elastic regime for δ = 1. For all experiments, the two procedures give similar values

of macroscopic stiffness within 3 %. In the following, we preferentially use Km so that it can also be
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defined in the post-peak region.
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Figure 5.7: (a) Evolution of the different energetical contributions during the experiment #3 as a

function of the distance δ to peak load: W , Eel and Ed are the work of the external force, the

elastic energy and the dissipated energy, respectively. The inset shows a zoom of the latter one

and highlights the intermittent nature of the dissipation process. It also allows for the definition of

the avalanche duration ∆δ and dissipated energy ∆Ed; (b) Evolution of the stiffness Km = F/∆
as derived from the macroscopic force-displacement curve (solid lines) and from the elastic energy

KE = Eel/(1/2∆2) (dashed lines), for each experiment. Deviation of KE with respect to Km is less

than 3%, supporting the consistency of our approach.

In summary, from the study of both the macroscopic response and a qualitative observa-

tion of the pictures taken during the experiments, the compaction experiments can be divided in four

stages. First, we observe a linear elastic domain, before dissipative events localized in time gener-

ate a non-linear macroscopic response. At the peak load, the system appears still homogeneously

deformed when observed with naked eyes. After the peak, during the softening stage, the deforma-

tion progressively localizes into a narrow band that grows until spanning the whole system. At this

point, the force might increase again, associated with the further crushing of the upper straws and the

broadening of the compaction band. These four steps are very similar to the four phases observed

during failure of elasto-damageable solids. The non-linearities observed at the sample scale result

from dissipative events taking place at the cylinder scale in the materials. In particular, these events

deteriorate the overall material stiffness that decreases from its initial value. In the following, we

show how the concepts derived previously to predict localization and failure in elasto-damageable

materials apply to the array of soft cylinders. The investigation of the statistics of avalanches is left

for the last part of this chapter.
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5.3 Characterization and prediction of localization

The localization of deformation is a central feature of the mechanics of elasto-damageable

solids. Our two-dimensional packing of hollow cylinders allows for its direct observation. To in-

fer the localization onset, we look at the scale of the cylinders and investigate the deformation field

during compaction. Describing our material as an elasto-damageable solid, localization is investi-

gated theoretically following the approach developed in Chapter 3. Approximating our material as an

isotropic elastic solid, we use the work of Démery et al. [Démery et al.] that provides the actual stress

and strain redistributions after damage events take place. This allows predicting the critical loading

at localization and the geometry of the compaction bands that are compared with the experimental

observations.

5.3.1 Determination of the localization threshold from the deformation field

To analyze further the localization observed on the pictures of Fig. 5.5, we explore the

deformation and displacement fields at the scale of the cylinders. In particular, we derive an indicator

of the localization from the temporal and spatial variations of the deformation field d(~x). From the

pictures taking during the test, we track each individual straw and define their deformation as

d(~x) = 1− R(~x,δ)
R0(~x,1) (5.6)

where R0 is their initial radius and R is the radius of the largest circle that can fit into the compressed

elliptical straw at a given peak distance δ. To study its evolution, we divide the loading into small

intervals of δ and compute the variations δd(~x) of the deformation field over each interval. Maps

thereby obtained are shown on Fig. 5.8. Before peak load, for δ ' 0.2, the field δd exhibit fluctu-

ations that are rather homogeneously distributed in the material. Indeed, the small clusters with a

large deformation rate visible on Fig. 5.8a appear randomly located. As we reach peak load for δ ' 0
(Fig. 5.8b), the deformation starts to localize into a V−shape like region while some other regions

show intense activity elsewhere in the material. After the peak δ ' −0.2, the activity progressively

decays in the other part of the system (Fig. 5.8c), to finally concentrate essentially on the straws in

and above the localization band. At this loading level, straws below the compaction band do not feel

anymore the monotonic increase of the displacement (see the lower region of the material on Fig. 5.8d

for δ '−0.4 that do not show any activity).

From the qualitative investigation of the pictures and the deformation rates computed at

the scale of the straws, one can conclude that localization takes place at or shortly after peak load.

However, we would like to derive a more quantitative estimate of the localization onset. To do so, we

notice that once localization takes place the straws that are located below the localization band do not

feel anymore the external driving. This suggests that the average value of the displacement field in

the lowest part of the material and its evolution with time could be used to determine it [90]. Indeed,

before localization, this quantity follows the deformation imposed to the sample, while at localization
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(a) (b)

(c) (d)

Figure 5.8: Maps of the deformation rate δd(~x) = d(~x,δ+ ε)− d(~x,δ) for the experiment #3: (a)

Before peak load for δ = 0.2, the system displays a rather uniform distribution of deformation rates;

(b) At peak load δ = 0, one can identify a V-shape like localization band; (c) after peak load for

δ = −0.2, the deformation increases progessively in the compation band and vanishes in the other

region of the material (d) while for δ =−0.4, we can observe that straws below the band do no longer

deform.

it saturates and remains then roughly constant. To use this method, we determine on each picture the

centroids of the straws from which we calculate their vertical displacement uy(~x). Considering only

the straws located in the very bottom of the box, within 10 %, we compute their average displacement

〈uy(~x)〉 that is represented in Fig. 5.9 for each experiment as a function of δ. The curves are normal-

ized by the maximum average displacement 〈uy(~x)〉max obtained at peak load.

Whatever the experiment considered, we observe the same characteristic behavior: Before

the peak (δ ≥ 0), the response is close to linear, while for δ < 0 the displacement of the straws re-
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mains fairly constant, i.e. the straws below the localization band no longer see the deformation that

is imposed at the top of the sample. On the contrary, straws above the localization band follow the

displacement that is imposed to the packing during the whole experiment, as shown in the inset.

Therefore, we conclude that localization takes place at peak load. Can we predict such a

behavior, and the value of the critical loading at which it takes place? Can we understand the shape

of the localization band and the loading at which it spans the whole system? We now address these

questions by investigating theoretically the stability of the compressed array of hollow cylinders.

δ
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Figure 5.9: Average vertical displacement of the 10 % lowest straws as a function of the distance to

peak δ, allowing for the determination of the localization threshold that corresponds to the crossover

between the linear and the plateau behavior. The same procedure is applied in inset for the 10 % high-

est straws which deform linearly with the applied displacement, since located above the localization

band.

5.3.2 Analytical investigation of localization

From our experimental study, we have shown that the compression of an array of soft cylin-

ders is characterized by the progressive deterioration of its macroscopic stiffness. This softening

relates to dissipative events taking place at the scale of the material microstructure and that are local-

ized both in time and space. We have also showed that ultimately, this progressive decrease of the

elastic modulus gives rise to localization of the deformation into a narrow band that appears close to

the peak load.

From these observations, damage mechanics seems like a natural framework for describing

the mechanical behavior of this material. However, several questions remain to be addressed. First,

we need to introduce a damage parameter that describes the state of the material at the local scale.

We choose the cylinder deformation d defined in Eq. (5.6) that describes the compression state of

individual elements. Then, we need to derive the redistribution function that was shown in chapter



104 Comparison with experiments: Compression of a 2D array of hollow soft cylinders

3 to play a central role in the stability of elasto-damageable materials. Here, we make the choice

to describe the system through linear isotropic elasticity, despite the complex chain force network

observed in granular media [43] and the symmetry of the ordered array used in our experiments. This

choice is motivated by the following observations. First, we have observed that the material behaves

rather linearly and reversibly at small imposed loading. Second, for larger loading, we have shown

that the material could be characterized by a macroscopic stiffness from which one could infer the

total linear elastic energy Eel = 1
2KE∆2 stored in the material under the compressive displacement

∆, even though this stiffness could decay with the maximum applied loading as a result of dissipative

local mechanisms. This effective stiffness was also shown to be consistent with the instantaneous

stiffness F/∆ measured from the value of the force F sustained by the material under some pre-

scribed displacement ∆. Finally, our observations of the different fields at the cylinder scale did not

evidence any effect of the symmetry of the array on its deformation mechanisms. We believe that

the disorder resulting from imperfections in the arrangement between cylinders dominates over the

anisotropy induced by the cylinder spatial order.

We admit that the use of linear elasticity for describing this material might primary look

abusive, in particular due to the presence of long range chain forces that dominate the mechanics of

hard sphere packings. However, we think that cylinders are here soft enough to allow elasticity to

dominate over other types of interactions. In addition, we seek here to capture the main features of

the observations made in the experiments and so we let further investigations based on more complex,

but more precise, constitutive laws for future studies.

We now move to the derivation of the interaction function involved in the redistribution

mechanisms following damage events. Recently, Démery et al. [Démery et al.] have calculated this

function for a general 2D elasto-damageable material under general loading conditions. We apply

here this calculation for the specific loading used in the experiments and material properties adapted

to the description of an array of soft hollow cylinders.

Damage model of a 2D elasto-damageable solid

We consider a homogeneous 2D elasto-damageable solid following Hooke’s law under

plane strain conditions

ε= aσ−νatr(σ).1 (5.7)

where a is an elastic modulus related to the Young modulus E through

a(d) = 1 +ν

E(d) . (5.8)

The Poisson’s ratio ν is assumed to be constant, independent of the damage level d. Taking into
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account the lateral confinement of the material, the stress and strain tensors write as

σ = σext

 ν

1−ν 0

0 1

 , (5.9)

ε= εext

0 0
0 1

 , (5.10)

where σext < 0 and εext < 0 are the external stress and strain along the y-axis, respectively. We have

here taken advantage of the plane strain conditions to write mechanical fields as 2× 2 components

tensors. The z components can be recovered from the relations σzz = σxx and εzz = 0 while the

non-diagonal terms are all equal to zero. Note that this simplification explains the modified Hooke’s

law used in Eq. (5.7). In addition to Hooke’s law, the external stress and strain along the vertical y

axis are related by

σext = cK(d)εext (5.11)

where K(d) is the macroscopic stiffness and c = H/A a constant, where H is the height of the box,

as defined on Fig. 5.3 and A is area corresponding to L×b where L and b are, respectively, the length

and width of the box. We deduce from it the relationship between the Young modulus E(d) and the

measured stiffness K(d):

E(d) = cK(d)(1 +ν)(1−2ν)
1−ν . (5.12)

To derive our damage model we should express both the damage driving force and damage

resistance. In the general case, the free elastic density per unit volume is expressed as

w = 1
2ε : σ (5.13)

from which one obtains the damage driving force expressed as

Y =− ∂w

∂d

∣∣∣∣
ε

= ∂w

∂d

∣∣∣∣
σ
. (5.14)

The term in the middle corresponds to the damage driving force at imposed strain whereas the last one

to the driving force at imposed stress. Even though we control our system in strain, we will use the

latter formulation. Indeed, both types of loading result in the same localization threshold. However,

the calculations appear more complex under strain imposed conditions, so for the sake of simplicity,

we consider stress imposed conditions. Nevertheless, one can easily translate the results obtained on

the critical stress at localization into a critical strain at localization by using Hooke’s law, as it will be

used later in this analysis. Coming back to the calculation of the damage driving force under imposed

stress, Eqs. (5.7), (5.13) and (5.14) lead to

Y = a′(d)
2

(
tr
(
σ2
)
−νtr(σ)2

)
. (5.15)
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The damage resistance is written as Yc(d) that we assume a known function of damage. The

damage criterion thus writes as

Y (d) = Yc(d)⇒Damage increases (5.16)

To study the stability of the homogeneous solution and derive conditions for localization,

we consider some small spatial variations of the damage field around a value d= d0. We decompose

it into two contribution: d(~x) = d0 + δd(~x). Note also that the consideration of a spatially varying

damage field can be justified by the presence of material heterogeneities, and the model derived will be

also able to assist us for understanding the effect of material disorder on damage spreading. Assuming

here weak spatial variations make sense for describing our experiments where a rather weak disorder

was introduced in the regular array of cylinder. This heterogeneous contribution results in a weakly

heterogeneous elastic modulus a with linearized expression

a(~x) = a(d0) + δa(~x) = a(d0) +a′(d0)δd(~x), (5.17)

and in heterogeneities in the stress and strain fields, leading to:

σ = σ0 +δσ (5.18a)

ε= ε0 +δε (5.18b)

where σ0 and ε0 are the homogeneous applied stress and strain tensors given, respectively, by

Eq. (5.9) and (5.10). Using linearized expressions, and considering the loading conditions used

in the experiments, the damage driving force can be expressed up to the first order in the mechanical

field perturbations as

Y (~x) = 1
2σ

2
exta

′(d0)1−2ν
1−ν + 1

2σ
2
exta

′′(d0)δd(~x)1−2ν
1−ν + δσyyσexta

′(d0)1−2ν
1−ν . (5.19)

It now remains to calculate the stress redistribution component δσyy that arises from the

heterogeneous damage contribution. To do so we use the compatibility equations under plane strain

conditions

∂xσxx+∂yσxy = 0, (5.20a)

∂xσxy +∂yσxy = 0, (5.20b)

2∂x∂yεxy−∂2
yεxx−∂2

xεyy = 0. (5.20c)

In Fourier’s space, the first two equations give

δ̃σxx(~q) =−qy
qx
δ̃σxy(~q), (5.21a)

δ̃σyy(~q) =−qx
qy
δ̃σxy(~q). (5.21b)
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To solve the compatibility equation (5.20c), we use the linearized strain fluctuations, which are

related to the stress fluctuations tensor via

δε= δa(d0)(σ0−νtr(σ0).1) +a(d0)(δσ−νtr(δσ).1), (5.22)

that we express in Fourier’s space. Also using the expression (5.9) of the stress tensor for the homo-

geneous solution and Eqs. (5.21a) and (5.21b), one obtains

δ̃σxy(~q) = σext
a′(d0)δ̃d(~q)(1−2ν)
a(d0)(1−ν)2

q3
xqy

(q2
x+ q2

y)2 . (5.23)

Hence, the damage driving force of Eq. (5.19) can be expressed as

Y (~x) = Y0(d0) + δY (δd) = Y0 +ψ(~x)∗ δd(~x) (5.24)

where the homogeneous contribution writes as

Y0(d0) = σ2
ext
a′(d0)

2
(1−2ν)
(1−ν) (5.25)

whereas the kernel ψ is expressed, respectively in real and Fourier space as

ψ(~x) = ∂Y0
∂d0

∣∣∣∣
σ
δ(~x)−σ2

ext
a′2(d0)
a(d0)

(1−2ν)2

(1−ν)3
π(3y4−x4−6x2y2)

(x2 +y2)3 (5.26)

ψ̃(~q) = ∂Y0
∂d0

∣∣∣∣
σ
−σ2

ext
a′2(d0)
a(d0)

(1−2ν)2

(1−ν)3 cos4(w) (5.27)

where cos4(ω) = q4
x/q

4 is the polar angle of the mode q = ~q. Since both expressions have indeter-

minate forms in ~0, the kernel is regularized at this point by setting ψ(~0) = ψ̃(~0) = ∂Y0/∂d0 . The

shape of the kernel is shown in real space in Fig.5.10. In polar coordinate it is of the form g(θ)/r2,

where g is a function of the polar angle θ and r is the distance. Thus, contrary to the isotropic 2D

redistribution function presented in Chapter 2, the kernel here varies with directionality and allows

for long-range interactions. The explicit calculation of the redistribution kernel ψ calls for a few

comments. First, it resembles, but is different, from the variation in stress field induced by the in-

troduction of a soft inclusion in a more rigid matrix also referred to as the Eshelby’s solution [28].

Indeed, we have calculated here the effect of a local drop of the elastic properties on the mechanical

fields in the rest of the material. However, we focused here on the variations on the driving force

for damage induced by a local damage event, that we also called driving force redistribution. As a

result, and contrary to the study of Eshelby, our solution involves the relative variations a′(d0)/a(d0)
of the elastic properties of the material with damage that is not involved in Eshelby’s work. Sec-

ondly, we have calculated the redistribution kernel for the specific loading conditions considered in

our experiments that consists of a compressive loading with lateral confinement that is analogous to

bi-axial loading conditions. Démery et al. [Démery et al.] have calculated the redistribution kernel in

the general case, for any uniform loading conditions. It is worth noting that the kernel does depend
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on the type of loading. Indeed, following our analogy with Eshelby’s problem, the stress field varia-

tions resulting from the local drop in the elastic properties of the medium does depend on the loading

conditions applied far away from the perturbation. For example, under shearing loading conditions,

stress field perturbations follow the characteristic quadrupolar symmetry analogous to the one con-

sidered in amorphous plasticity problems [69, 86, 102, 111] where regions of the material located in

the diagonal are reloaded. For the loading conditions studied here, the reloading takes also place on

the horizontal axis, as shown on Fig. 5.10. Finally, the explicit calculation of the long-range redis-

tribution kernel for an elasto-damageable medium provides a physical ground to the non-locality in

damage models proposed 30 years ago [9, 87]. As shown in the following, the actual shape of the

redistribution kernel does control the onset of localization, the localization band orientation and more

generally, the damage evolution up to failure. Its explicit calculation hence provides new perspectives

for the quantitative prediction of damage processes in quasi-brittle media.

Figure 5.10: Elastic kernel shape in real space showing the change of sign with directionality and the

long-range decay of the amplitude of the redistribution.

Finally, we must also express the damage resistance that results from the introduction of

heterogeneities in the damage field. It simply writes as

Yc(~x) = Yc(d0) +Y ′c (d0)δd(~x). (5.28)

The total damage driving force follows

F(d) = F (0)(d0) +F (1)(δd) (5.29)

where the zero order provides the equilibrium equation which allows to relate the loading to the

homogeneous damage contribution

F (0)(d0) = 0⇒ Y0(d0) = Yc(d0) (5.30)
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and the first order represents the driving force redistributions

F (1)(δd) =
(
ψ(d0,~x)−Y ′c (d0)δ(~x)

)
∗ δd(~x) (5.31)

after the damage increase of δd(~x).

From this damage model formulation, following the same approach as in Chapter 3, one

derives the stability of the material that provides both localization and failure thresholds. Since both

criteria will involve the expression of the force peak derived from the homogeneous solution, we first

perform its determination so that its expression can be identified and interpreted when dealing with

questions related to system stability.

Peak load of the homogeneous material

In the case of a homogeneous material, only the homogeneous part of the total damage

driving force F (0) has to been taken into account. Following the approach described in Chapter 2,

the system reaches peak load when the criterion of Eq. (2.22) is verified. The control parameter

X is here the external stress while the exponent ζ = 2. From Eq. (5.25) we define the function

f(d0) = a′(d0)(1−2ν)/(2(1−ν)) and the function h is given by h(d0) = Yc(d0). After calculations,

using Eqs. (5.8) and (5.12) for the expression of the elastic modulus as a function of the measured

macroscopic stiffness, we obtain that peak load takes place at an homogeneous damage level d0

verifying

∂Y0
∂d0

∣∣∣∣
σ

= Y ′c (d0)⇔ K ′′(d0)K(d0)−2K ′2(d0)
K(d0)K ′(d0) = Y ′c (d0)

Yc(d0) (5.32)

It should be mentioned that the same criterion would have been obtained if the lateral con-

finement had not be taken into account. Indeed, the elastic energy of the homogeneous system takes

the simple form w = 1/2εextσext irrespective of the presence of confinement.

Localization threshold

To determine the localization threshold, we consider periodic damage perturbations of mode

~q0 and positive perturbation δd(~x) = δd0(1 + cos(q0 ·~x)) as in Eq. (3.19). The heterogeneous part of

the damage driving force thus writes as

F (1)(~x) =
(
∂Y0
∂d0

∣∣∣∣
σ
−Y ′c (d0)

)
δd0 +

(
ψ̃(d0,~q0)−Y ′c (d0)

)
δd0 cos(~q0 ·~x) (5.33)

where we have used that ψ(~x) ∗ cos(~q0 ·~x) = ψ̃(~q0)cos(~q0 ·~x) and the regularization condition on ψ

at ~0. Following the same argumentation as for the stability analysis performed in Chapter 3, damage

localization will take place if the prefactor of the cosine function becomes positive. From Eq. (5.27),

we see that ψ̃ is maximum for modes of polar angle wc = π/2 +nπ, regardless of the norm of the
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mode ~qc. This leads to an angle θloc = π/2−wc = 0 in real space, and hence localization is expected

to take place perpendicularly to the applied loading. The critical homogeneous damage level at which

it takes place is obtained by solving

ψ̃(d0,~qc) = Y ′c (d0)⇔ ∂Y0
∂d0

∣∣∣∣
σ

= Y ′c (d0) (5.34)

that corresponds to Eq. (5.32) derived for determining the position of the peak. It means that local-

ization takes place at the peak load of the homogeneous system provided by the expression (5.32).

Failure prediction

To determine the failure threshold, we must look at the sign of F (1) for the growing modes

~qc. Using ψ̃(d0,~qc) = ∂Y0/∂d0, the stability criterion once again writes as the right term of Eq. (5.34)

that provides the peak load position. As a consequence, for stress imposed conditions, both local-

ization and failure takes place at peak load. The redistributions of the damage driving force are

independent of the loading parameter, yet, if ones to investigate the post-peak behavior of the sys-

tem, strain control must be considered. To do so, we replace σext by its strain counterpart using

Hooke’s law given by Eq. (5.7) and differentiating the damage driving rate Y0 with respect to d0 at

fixed applied strain. Then considering the growing perturbation of mode ~qc, F (1) becomes positive

for
∂Y0
∂d0

∣∣∣∣
ε

= Y ′c (d0). This leads to

2K ′2(d0)−K ′′(d0)K3(d0) + 2K ′2(d0)K2(d0)
K ′(d0)K3(d0) = Y ′c (d0)

Yc(d0) (5.35)

which corresponds to the failure instability of the homogeneous system controlled in strain as the

spatial dependency of the kernel was set to zero since cos(wc) = 0. Note however that the relevancy

of this prediction can be questioned. As previously explained, the assumption of weak variations of

the damage field might be violated, since localization takes place prior to failure. Moreover, one can

question the meaning of a failure instability in a confined system. For a set up with free edge bound-

ary conditions, failure can be observed from the separation of the system in two pieces through the

propagation of a crack spanning over the whole material. In the case of a confined body, the concept

of unstable failure remains to be clarified and characterized.

As a summary, we have first determined the position of the peak load. The criterion (5.32)

provides the damage level at which it occurs. From the linear stability analysis, we have established

that localization, whatever the control parameter, takes place at a damage level that corresponds to

peak load. It was shown that localization should consist in a concentration of the deformation per-

pendicularly to the external loading axis. Considering a control in strain, we have characterized the

stability of the growing heterogeneous damage field, and obtained an approximation of the failure

threshold, given by the criterion (5.35). In that case, failure occurs in the post-peak response, after

localization. For the peak, localization and failure prediction, the stresses and strains corresponding to

the critical damage values are obtained using the equilibrium equation Y0(d0) = Yc(d0) and Hooke’s
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law.

Comparison between theoretical predictions and experimental observations

To compare the analytical predictions to our experimental results, we define the homoge-

neous damage level d0 or homogeneous deformation as the spatial average of the local deformation

d0 = 1
Ns

∑
i

di (5.36)

where Ns is the number of straws identified on the pictures and di is the deformation defined in

Eq. (5.6) of the i− th cylinder which is located at a position ~x. For each d0 value obtained (one

per frame), we calculate the corresponding macroscopic stiffness Km, from Eq. (5.4). We obtain the

evolution of K with d0 by fitting the curve with a polynomial expression of order four. The same

procedure is performed for the rupture energy Er ' Ed which is fitted as a function of d0 by a poly-

nomial form of degree five and then differentiated to obtain Yc as a function of the homogeneous

deformation. Note that lower degree polynomials would give an acceptable behavior of both quanti-

ties. However, since the criteria for localization and failure involve first and second derivatives, we

favor more accurate expressions.

The thresholds values calculated using the theoretical expressions are summarized in Tab. 5.1

where the damage, force and displacement at localization and failure are shown. For the former criti-

cal values, the deviation from the experimentally measured position of the peak is indicated in percent.

From the study of the relative height evolution of the straws with the distance to failure, shown on

Fig. 5.9, and from the qualitative study of the local deformation rate, we have determined that lo-

calization of deformation takes place at the peak of the macroscopic response. This corresponds to

the analytical prediction performed above. The predictions are in good agreement with experimental

values calculated, as indicated by the low deviations. However, we predicted that localization should

take place perpendicularly to the applied loading. This is not very well verified, as shown in Fig. 5.11

where the post-localization pattern is shown for δ'−0.4. We think that the presence of some friction

on the side on the specimen does influence the inclination of the localization band.

The failure predictions seem to coincide with the point at which the macroscopic force starts

increasing again after its decay in the post-peak region. Qualitatively, from the study of the pictures

taken during the experiments, it may coincide with the loading at which a fully developed localiza-

tion band goes through the whole system. This corresponds to the situation where a complete layer

of straws going from one side of the sample to the other are fully compacted, with a parameter value

d= 1. As a consequence, the system can be seen as separated in two pieces, and further loading incre-

ments will lead to the crushing of straws located above the discontinuity in the active fault, whereas

the other regions of the material remain essentially inactive.
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Experiment Peak load and localization Failure

d= 0.11(3.8%) d= 0.16
#1 F = 279 N(0.4%) F = 266.1 N

∆ = 18.8 mm(6.8%) ∆ = 29.5 mm
d= 0.09(5.4%) d= 0.13

#3 F = 308.4 N(1.4%) F = 273.8 N
∆ = 13.4 mm(2.8%) ∆ = 22.6 mm
d= 0.10(2.5%) d= 0.13

#4 F = 243.2 N(0.4%) F = 227.7 N
∆ = 13.6 mm(3.7%) ∆ = 21.4 mm

Table 5.1: For each experiment, analytical prediction of damage, force and displacement at the peak,

which corresponds to the onset of localization of deformation, deviation from the experimental results

are indicated in percent. The quantities are also determined at failure of the system.

To conclude this section, it seems that the modeling of 2D arrays of soft hollow cylinders

under compression as 2D elasto-damageable solids provides a meaningful description of the localiza-

tion process. However, taking a closer look at the macroscopic response, we have evidenced strong

fluctuations that are not captured by the current model. We shall now characterize them as the system

evolves towards localization.

5.4 Temporal fluctuations study

To compare the behavior of the packings with that of our numerical study, we study in this

section the evolution of the intermittent bursts of dissipated energy. We extract the avalanche size

in terms of dissipated and kinetic energies, as well as avalanche duration, from the macroscopic re-

sponse of the system. If the study of their distributions close and far from failure, average evolution

with distance to peak and scaling with each other show a qualitative agreement with the power law

behaviors obtained numerically, the exponent values differ. To complete the study, we also define

the avalanche size from the local field that is studied by considering the average local deformation

variation, and determine its scaling with energetical bursts definition.

The progression of bursts of dissipated energy Sd = ∆Ed and kinetic energy Sk = ∆Ek per

avalanche is shown as a function of the distance to peak load δ on Fig. 5.12a. The plots are realized

here for experiment #3 but the behavior would be the same for the other tests. Both quantities exhibit

strong fluctuations and an amplification close to δ = 0. The increased width of the avalanches when δ

is close to zero indicates that the duration of the dissipation processes grows as the system approaches

localization. Moreover, we once again observe that the kinetic energy contribution to the dissipated

energy is very small, roughly three orders of magnitude lower than Sd.
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(a) (b)

(c) (d)

Figure 5.11: For each experiment, (a) test 1, (b) test 2, (c) test 3, (d) test4, photo of the packing at

the predicted failure threashold which seems to correspond to the onset of the crushing of the straws

above the already formed localization band. The angle formed by the macroscopic band is more or

less perpendicular to the loading axis; the strongest deviation is oberserved for experiment 1 (a) where

it took place following the strong defects that were introduced in the system.

The increase of both the average dissipated energy and kinetic energy as a function of the

distance to peak, shown on Fig. 5.12b, testify for the global increase of the avalanches amplitude. Sd
and Sk both follow power law behavior with δ, of respective exponent τd and τk. With i standing for
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d or k we have

〈Si〉 ∼ δ−τi , (5.37)

where τd = 1.2±0.2 and τk = 1.6±0.2.
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Figure 5.12: Evolution as a function of the distance to the peak load δ of (a) the avalanches in term of

dissipated energy Sd and kinetic energy Sk, both exhibiting strong fluctuations with an amplification

of amplitude and duration close to the peak; (b) the average dissipated energy 〈Sd〉 and average kinetic

energy 〈Sk〉 per avalanche, both show power law scalings of respective exponent τd = 1.2±0.2 and

τk = 1.6±0.2.

To further characterize the dissipation process as the system evolves towards failure, we

study on Fig. 5.13 the probability density functions of each quantity. We consider either all the

avalanches taking place before the peak (blue curves), or we restrict the study to avalanches taking

place close localization, for δ ∈ [0,0.1] (orange curves). Whatever the avalanche definition, i.e. the

dissipated energy Sd, the kinetic energy Sk or the avalanche duration ST (expressed here in sec-

onds) , two behaviors emerge. When considering all the dissipation events, we observe a power law

dependency of exponent (βtot)i, with i standing for d, k or T :

P (Si)∼ S−(βtot)i
i (5.38)

where (βtot)d = 2.15± 0.1, (βtot)k = 2± 0.1 and (βtot)T = 2.35± 0.1. When limiting the study

to avalanches close to localization, power law scalings with a smaller exponent βi (βd = 1.55±0.2,

βk = 1.4±0.2 and βT = 1.6±0.2) are obtained up to a critical value Sic:

Pδ→0(Si)∼ S−βii , Si << Sic (5.39)

Moreover, using the same approach as in the numerical model fluctuation study, we can

verify the agreement between the exponents βi and (βtot)i. To do so, we use the power law behavior
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Figure 5.13: Probability densities obtained by considering all damage events, δ ∈ [0,1] (blue curve),

or damage events close to the peak load, δ ∈ [0,0.1] (orange curve), of (a) the dissipated energy per

avalanche Sd; (b) the bursts of kinetic energy Sk; and (c) the avalanche duration ST .

of exponent ε (ε= 0.6±0.2) with δ of the number of avalanches, which is shown on Fig. 5.14a. We

rewrite Eq. (4.19) as

(βtot)i = βi+
(ε+ 1)(2−βi)

τi
(5.40)

The predicted (βtot)i values obtained using this scaling are compared to the fits of the

distributions in Tab. 5.2 where are also summarized the different power law behaviors and show

fair agreement with the measured values. Another way to verify the consistency of the exponents

measured is to consider the power law scalings of exponents γi (γT = 0.9±0.05 and γk = 1.35±0.1)

of ST and Sk with the avalanche dissipated energy Sd, shown on Fig. 5.14b. Using that close to

failure



P (Si)∼ S−βii

P (Sd)∼ S−βdd

Si ∼ Sγid
P (Si)dSi = P (Sd)dSd

(5.41)

we obtain the relationship

βi = 1− 1−βd
γi

(5.42)

Note that the same is true when considering all the damage events and therefore replacing βi and βd
by (βtot)i and (βtot)d, respectively. The values obtained using the scaling are shown in Tab. 5.2.

The temporal statistical behavior was so far determined from the macroscopic fluctuations

extracted from the force-displacement response of the system. These avalanches directly result from
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Figure 5.14: (a) Evolution of the number of avalanches as a function of the distance to peak showing

a power law behavior of exponent ε = 0.8± 0.2; (b) power law behaviors of the dissipated energy

Sd (top) and kinetic energy Sk (bottom) with the avalanche duration ST , of respective exponents

γT = 0.9±0.05 and γk = 1.35±0.1.

the local behavior of the system as the energy variations are directly related to the local deformation

variations. Indeed, we can define an avalanche size S from the study of the local deformation field:

S =
∑
k

dk(∆e)− dk(∆i). This quantity corresponds to the total local deformation variation of the

system taking place during in avalanche that starts at ∆i and ends at ∆e. It is related to the dissipated

energy per avalanche through a power law behavior for sufficiently large avalanches (Sd > 0.1):

S ∼ Sγd with γ = 0.9± 0.1, as shown on the top frame of Fig.5.15a. As the energetically defined

avalanche sizes, it is also growing as peak load is approached. This is well shown by the power law

behavior of the average value 〈S〉with δ of exponent τ = 1.2±0.3. Moreover, as for the bursts defined

in terms of energy, we obtained two different power law behaviors when considering the avalanche

sizes distributions close to localization or considering all damage events. This is shown on Fig. 5.15b

where exponents β = 1.65±0.3 and (βtot) = 2.4±0.1 are respectively identified. Using the scaling

between S and Sd, the exponents obtained from the distribution densities of S are compatible with

that measured, as reported in Tab. 5.2.

In summary, from both the energetical definition of the bursts obtained from the macro-

scopic response and the evolution of the local deformation field, the avalanches statistics is qualita-

tively similar to that observed during quasi-brittle materials fracture tests or from our one-dimensional

model. The different quantities are related through power law scalings that are summarized in

Tab. 5.2. As observed in our numerical study, the progression of the average quantities with δ, in

particular the rate of dissipated energy and avalanche duration, follow power law behaviors. The

distributions of avalanche sizes reveal that the bursts sizes follow power law behaviors, either when

taking into account all damage events or, taking into account the non-stationnarity of the avalanches,
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Figure 5.15: Statistics of avalanches S defined from the deformation field of the material. (a) Top

figure : scaling between S and the dissipated energy per avalanche Sd showing a power law behavior

at large Sd values of exponent γ = 0.9± 0.1, Lower figure: power law behavior of exponent τ =
1.2± 0.3 of the average avalanche size with distance to peak δ; (b) Distribution densities obtained

when considering all damage events (δ ∈ [0,1]) or that taking place close to failure (δ ∈ [0,0.1]).
Power law behaviors of exponents (βtot) = 2.4±0.1 and β = 1.65±0.3 are respectively determined.

when considering events taking place close to the peak load. The amplification of the intermittency

close to δ = 0 is revealed by a smaller exponent, indicating that bursts of larger amplitude take place,

but also longer if one considers the duration of the dissipation events.

5.5 Conclusions

The compression of a two-dimensional array of hollow soft cylinders appears as an inter-

esting setup to test our numerical approach and obtain the characteristic features associated with the

quasi-brittle failure. In this system, where disorder is inherent due to variations in contacts, the local

dissipative events can be well defined from both the macroscopic response and the study of the local

field. They result in a gradual degradation in the system stiffness, leading to a non-linear macroscopic

response and a softening behavior. In coaction with elastic interactions, they give rise to a rich bursts

statistics and permit the observation of the transition to localization. Hence, this setup is particularly

interesting as it captures both the intermittent behavior and localization observed experimentally and

numerically in our model.

From the study of the macroscopic response of the system and the observation of the pro-

gressive local deformation of the cylinders, we have identified the general macroscopic mechanical

response. At some critical loading, the system deviates from its initial linear elastic response, as
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Definitions Measured values Predicted values Scaling relations

Sk ∼ Sγkd γk = 1.35±0.1
ST ∼ SγTd γT = 0.9±0.05
S ∼ Sγd γ = 0.9±0.1

Pδ→0(Sd)∼ S−βdd βd = 1.55±0.2
Pδ→0(Sk)∼ S−βkk βk = 1.4±0.2 βk = 1.41±0.15 βk = 1− (1−βd)/γk
Pδ→0(ST )∼ S−βTT βT = 1.6±0.2 βT = 1.61±0.22 βT = 1− (1−βd)/γT
Pδ→0(S)∼ S−β β = 1.65±0.3 β = 1.61±0.23 β = 1− (1−βd)/γ
P (Sd)∼ S

−(βtot)d
d (βtot)d = 2.15±0.1 (βtot)d = 2.22±0.14 (βtot)d = βd+ (ε+ 1)(2−βd)/τd

P (Sk)∼ S
−(βtot)k
k (βtot)k = 2±0.1 (βtot)k = 1.85±0.1 (βtot)k = 1− (1− (βtot)d)/γk

(βtot)k = 2.08±0.11 (βtot)k = βk + (ε+ 1)(2−βk)/τk
P (ST )∼ S−(βtot)T

T (βtot)T = 2.35±0.1 (βtot)T = 2.28±0.13 (βtot)T = 1− (1− (βtot)d)/γT
(βtot)T = 2.4±0.24 (βtot)T = βT + (ε+ 1)(2−βT )/τT

P (S)∼ S−(βtot) (βtot) = 2.4±0.1 (βtot) = 2.28±0.18 (βtot) = 1− (1− (βtot)d)/γ
(βtot) = 2.18±0.15 (βtot) = β+ (ε+ 1)(2−β)/τ

〈Sd〉 ∼ δ−τd τd = 1.2±0.2
〈Sk〉 ∼ δ−τk τk = 1.6±0.2
〈ST 〉 ∼ δ−τT τT = 0.9±0.2
〈S〉 ∼ δ−τ τ = 1.2±0.3
Ṅa ∼ δε ε= 0.8±0.2

Table 5.2: Definition of the scaling exponents measured form the statistics of fluctuations during load-

ing and their values measured from the experiments. These values are compared to each other in the

third column using the equations indicated in the fourth. Sd, Sk and ST correspond to, respectively,

the dissipated energy, kinetic energy and duration of the avalanches, while S corresponds to the total

variation of local deformation.

local dissipative events take place. Before the peak of the force-displacement response, they appear

randomly distributed in space. At peak load, localization of the deformation of the cylinders takes

place. As it progresses, cylinders below the forming band no longer see the applied loading. Using

this observation, we quantitatively determined that the onset of localization takes place at the peak

of the macroscopic response through the study of the evolution of the relative height of the lowest

cylinders. As loading proceeds, the localized region eventually spans the system, going from one

side to the other. At this point, further loading increments lead to the crushing of cylinders above the

discontinuity.

Taking the advantage of the similarities observed in the system behavior and failure of

quasi-brittle solids, we used the damage mechanics framework applied to two-dimensional elasto-

damageable solids to describe the mechanical evolution of the system. Using this approach, we

analytically determined the onset of localization as the peak load, and obtained the critical loading
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at failure, identified as the separation of the system with a band of fully crushed cylinders. The

predictions are in good agreement with the experimental observations, even though this description

predicts a localization of the deformation perpendicularly to the applied loading, which is not well

observed, probably due to strong friction at the edges. To go a step further, it would be interesting

to characterize the spatial organization of the deformation as the system evolves towards localization.

In particular, extract a correlation length and study its evolution, and compare the spatial distribution

with the redistribution function obtained from the model derived in this chapter.

The coaction of local dissipative events and elastic interactions taking place in the system

results in a strong intermittency of bursts. From the macroscopic response, we quantitatively defined

the energy associated with these bursts, but also their duration. All these quantities appear to increase

as localization is approached. In particular, the average values follow power law behaviors with the

distance to peak. The study of the distributions of bursts sizes and duration also revealed power

law statistics. As expected from the non-stationnarity of the system response, a smaller exponent is

obtained when considering events taking place close to localization rather than throughout the whole

loading process. Similar behaviors were obtained when considering bursts defined from the local

deformation field. Indeed, the dissipated and kinetic energy, the duration of the dissipative events

and deformation variations exhibit power law scaling. To understand these scaling behaviors more

quantitatively, one may derive the evolution equation of the heterogeneous contribution of the damage

field, assuming weakly perturbed field with respect to the homogeneous damage state, as detailed in

chapter 4. This equation of evolution can be shown to be similar to the one of an elastic interface

driven in a random medium. The interface behavior is characterized by the elastic redistribution

kernel given in Eq. (5.26) calculated for predicting the onset of localization. A key feature of this

kernel is that it changes of sign with the considered direction. This relates to the fact that some regions

of the material get reloaded while others get unloaded after a damage event takes place in the solid. In

that case, Lin et al. [69] showed the scaling exponents do vary from traditional depinning models that

considers positive redistribution kernel. Indeed, instead of two independent exponents for traditional

models, the interface behavior is now characterized by three independent exponents. The value of this

additional exponent, noted θ by Lin et al. that is equal to zero for traditional depinning models, does

depend on the actual shape of the kernel. As a result, the prediction of the exponents would require the

determination of the depinning exponents for the specific kernel of Eq. (5.26), following for example

the numerical methodology proposed by Lin et al.. This determination and the comparison with the

value of the exponents measured in our experiments is let for future works. Interestingly, beyond the

loading condition used in this study, different loading conditions like shearing or uniaxial loading that

result in different redistribution kernels, may result in variations in the value of the scaling exponents

characterizing the statistics of damage bursts. The study of the precursors statistics for different

loading conditions might also be an interesting research direction for future works.
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In this study, we investigated the quasi-brittle failure of heterogeneous materials, from the

initiation of damage to the catastrophic failure associated with the precursors localization. To do so,

we build a continuous model describing damage, viewed as a microcracks density, at the mesoscopic

scale. It is at this microstructure scale that heterogeneities of the materials are taken into account

through a disordered fracture energy field. The introduction of a non-local damage variable into the

stiffness expression permits to take into account the damage driving force redistributions after dam-

age events. The derivation of energy conservation allowed to obtain a thermodynamically consistent

damage evolution law. A strength of this model is the possibility of tuning all the material properties,

namely the fracture energy field, the stiffness expression and the interaction function α that controls

the interactions between damaged heterogeneities. In this study we focused on the role of the lat-

ter one, the expression of which was chosen to both be able to perform analytical calculations and

be physically relevant by being inspired from that calculated from the stresses redistributions taking

place during the progressive damaging of 2D elasto-damageable solids.

This model was detailed in the second chapter were we have also shown that it is the coac-

tion of interactions and heterogeneities that render the materials behavior interesting, whereas these

ingredients taken separately makes the response of the system trivial. Nonetheless, the homogeneous

material response is particularly interesting as a large part of the macroscopic response of interacting

heterogeneous system can be predicted from it. This was shown in the third chapter were we per-

formed analytical predictions of both the localization and failure thresholds. Both critical loadings

(or equivalently damage levels in the system) appear to be fully controlled by the way the damage

driving force is redistributed after a damage event, i.e. the expression of the interaction function used

in the non-local formulation. If the critical thresholds appear independent of the internal length intro-

duced in the interaction function, they continuously evolve with the shape parameter κ that controls

the periodicity and amplitude with which the redistributions change of sign with the distance to the

local damage event.

For κ below a critical value κc, the amplitude of the unloading regions is low or null. In that

121
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case, we have shown that damage localizes over a homogeneous critical mode qc = 0, associated with

an infinite wavelength λc, so that both localization and failure take place at the same critical loading,

corresponding to that of the homogeneous system snap-back instability. On the other hand, when

strong unloading is allowed by fixing κ > κc it allows damage to develop over a finite critical wave-

length as localization proceeds and takes place prior to complete failure. Thus, the onset of damage

localization and failure can take a broad range of value: in between the peak load and snap-back, at

peak load, or even before peak load. Hence, from this analysis we conclude that the interaction func-

tion is the key ingredient controlling the material failure behavior. From a complementary energetical

approach, we obtained physical insights on the localization process which was shown to correspond

to a bifurcation of the solution of minimum energy from a homogeneous to a heterogeneous dam-

age distribution. Both the linear stability analysis and this approach lead to the same localization

criterion. Note also that our model naturally regularizes problems related to mesh sensitivity close

to localization. Indeed, the zone of localized damage is either over a finite wavelength (κ > κc) or

spread throughout the system (κ≤ κc).

In chapter four we have seen that the redistributions also control the damage evolution

before localization. The complex spatio-temporal organization of damage observed experimentally

in quasi-brittle materials is captured qualitatively well by our model. We show that a condition to

observe the characteristic power law divergence of the rate of dissipated energy and damage field

correlation length is an infinite critical wavelength over which damage develops (κ ≤ κc). If it is

finite (κ > κc), our statistical study of the precursors showed that both the avalanche size and spatial

organization are bounded by the scale λc that characterizes the localization pattern. On the contrary,

for κ= 0, the typical power law behavior of the dissipated energy with distance to failure is obtained,

independently of the internal length `0. Yet, a net scale separation between the interaction length and

the system size is required to observe the emergence of correlations in the damage field and the diver-

gence of the extracted length scale. In that case, we were able to evidence robust scaling behaviors

that relate the average avalanche size, its spatial extent and the correlation length of the cumulated

damage field.

These observations argue for a critical interpretation of quasi-brittle failure. To explore this

idea and determine the nature of the critical point, we show that the damage field follows an evolution

law analogous to the one of an elastic interface driven in a random medium. The depinning dynamics

of such an elastic manifold has been extensively used as a paradigm to understand the intermittency

in disordered systems. In our case, the elasticity of the interface is set by the interaction function

introduced in the non-local formulation of the damage model. In particular, when we consider the

mean field limit, the power law statistics of the fluctuations observed in the numerical resolution of

the model can be fully captured by this approach. The homogeneous damage represents the order

parameter of the transition while the control parameter is shown to be the distance to catastrophic

failure (for κ≤ κc), which can be related to a critical displacement or damage level at failure through

the homogeneous equilibrium equations.



123

In the final chapter, we illustrate the versatility of our approach by applying it to the com-

pression of a two dimensional array of soft hollow cylinders. We show that the transition to failure

is characterized by local dissipative events that results in a progressive stiffness degradation. Disor-

der is naturally present in the system through variations in the contacts of the cylinders. The local

dissipation events take place through friction between the elastically deforming elements forming

the lattice. From the macroscopic response, we defined the resulting bursts of dissipative events in

terms of dissipated and kinetic energy. We showed that in this system too, the interplay between

elastic redistributions and heterogeneities results in the characteristic avalanche dynamic observed in

quasi-brittle materials. The study of the deformation field permitted to define precisely the onset of

localization. We also demonstrate how this behavior can be studied through our approach extended

to 2D elasto-damageable solids. We predict the peak force and localization thresholds that are found

in good agreement with the experimental measurements. Hence, for these types of system, if one

manages to measure the elastic degradation and fracture energy evolution, the response, in particular

localization and failure loadings, can be predicted.

If we have identified the relevant ingredients required to describe quasi-brittle failure of dis-

ordered materials, several material dependent properties remain to be evaluated and better understood.

First, can the elastic moduli degradation with damage, which was experimentally measured in our ex-

periment, be theoretically determined? Different expressions have been proposed so far [19, 37], but

their relevance in the context of experimental fracture test remains to be shown. Moreover, we have

introduced hardening in the material fracture energy field. We believe that it is an important feature

for properly describing damage evolution. However, its origin remains unclear: does is associate with

specific microscopic mechanism (friction, crack pinning and bridging) and how can it be measured in

materials?

The understanding of the emergence of this hardening behavior, and in particular the asso-

ciated micro mechanisms could allow a better design of materials. If one can increase the hardening

by tuning, for example, the microstructure of the material, then the dissipated energy at failure could

be increased so that more robust materials can be designed. Following the recent strong booming of

metamaterials [31], from the observed control of localization and failure by the redistribution func-

tion, one could envisage the design of structures by taking advantage of its critical influence. Indeed,

as the redistributions of the driving force depend on the elasticity of the material but also its loading

conditions [Démery et al.], novel structures could be elaborated so that to postpone localization and

failure through a taylored interaction function.

Finally, the statistical description of precursors to failure proposed here opens various per-

spectives for the monitoring hazarding structures and failure prediction. The recent development of

powerful techniques of full field characterization such as in-situ tomography [17, 75], laminogra-

phy [47], infrared radiations [115], combined with digital volume correlation [51] allows for accurate
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monitoring of damage events. From the statistical study, we have seen that during the course of

progressive damage, microdefects progressively cluster and spatially organize, while the dissipated

energy, measured by AE, increases as failure is approached. Coupled with the type of models devel-

oped here, these features could be used as warnings to assess the lifetime of structures.
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[39] Grégoire, D., Rojas-Solano, L., and Pijaudier-Cabot, G. (2013). Failure and size effect for

notched and unnotched concrete beams. International Journal for Numerical and Analytical Meth-

ods in Geomechanics, 37(10):1434–1452

[40] Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical transactions

of the royal society of london. Series A, containing papers of a mathematical or physical character,

pages 163–198



128 BIBLIOGRAPHY

[41] Guarino, A., Ciliberto, S., Garcimartı́n, A., Zei, M., and Scorretti, R. (2002). Failure time

and critical behaviour of fracture precursors in heterogeneous materials. The European Physical

Journal B-Condensed Matter and Complex Systems, 26(2):141–151

[42] Guarino, A., Garcimartı́n, A., and Ciliberto, S. (1998). An experimental test of the critical be-

haviour of fracture precursors. The European Physical Journal B-Condensed Matter and Complex

Systems, 6(1):13–24

[43] Guyon, E., Roux, S., Hansen, A., Bideau, D., Troadec, J.-P., and Crapo, H. (1990). Non-local

and non-linear problems in the mechanics of disordered systems: application to granular media

and rigidity problems. Reports on Progress in Physics, 53(4):373

[44] Hansen, A. and Hemmer, P. (1994). Burst avalanches in bundles of fibers: Local versus global

load-sharing. Physics Letters A, 184(6):394–396

[45] Hansen, A. and Roux, S. (2000). Statistics toolbox for damage and fracture. Springer.

[46] Heap, M. J., Vinciguerra, S., and Meredith, P. (2009). The evolution of elastic moduli with

increasing crack damage during cyclic stressing of a basalt from mt. etna volcano. Tectonophysics,

471(1):153–160

[47] Helfen, L., Myagotin, A., Mikulı́k, P., Pernot, P., Voropaev, A., Elyyan, M., Di Michiel, M.,

Baruchel, J., and Baumbach, T. (2011). On the implementation of computed laminography using

synchrotron radiation. Review of Scientific Instruments, 82(6):063702

[48] Herrmann, H. J. and Roux, S. (2014). Statistical models for the fracture of disordered media.

Elsevier.

[49] Hidalgo, R. C., Kun, F., and Herrmann, H. J. (2001). Bursts in a fiber bundle model with

continuous damage. Physical Review E, 64(6):066122.

[50] Hidalgo, R. C., Moreno, Y., Kun, F., and Herrmann, H. J. (2002). Fracture model with variable

range of interaction. Physical review E, 65(4):046148.

[51] Hild, F., Bouterf, A., and Roux, S. (2015). Damage measurements via dic. International Journal

of Fracture, 191(1-2):77–105 0376–9429.

[52] Horii, H. and Nemat-Nasser, S. (1985). Compressioninduced microcrack growth in brittle

solids: Axial splitting and shear failure. Journal of Geophysical Research: Solid Earth (1978–

2012), 90(B4):3105–3125
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APPENDIX A

DERIVATION OF THE EVOLUTION LAW OF THE DAMAGE FIELD

In this Appendix we detail the calculations used for the determination of the damage equi-

librium of Eq. (2.8). We first show the calculations when we write energy conservation with respect

to loading variation:
∂E

∂∆ = 0 (A.1)

Then, we show that the same result is obtained when considering the conservation with respect to

damage variation at constant applied displacement

δE

δd
= 0 (A.2)

where a fonctional derivative is used for the computations. We start with the derivation with respect

to displacement. In Eq. (A.1) we replace E by the expression of the total energy of the system, given

by Eq. (2.4):

∂

∂∆

[∫
Σ

1
2∆2k[d(~x,∆)]d~x+
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0

∫
Σ
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∣∣∣∣
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= 0 (A.3)

⇒
∫
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⇒−
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∣∣∣∣
~x,∆̃

Yc(~x,d)d~x= 0 (A.9)

⇒
∫

Σ

∂d

∂∆

∣∣∣∣
~x,∆̃

(
Y (~x,∆)−Yc(~x,d)

)
d~x= 0 (A.10)

Therefore, the equilibrium condition writes as

Y (~x,∆) = Yc(~x,d) (A.11)

We now perform the same calculations using a functional derivative of the total energy with

respect to damage. Let d0(~x) be the damage field at a given ∆. We consider a small fluctuation

δd0δ(~x− ~x0) applied at some point ~x0 in the system and such that δd0 is very small. The damage

field hence writes as

d(~x) = d0(~x) + δd0δ(~x− ~x0) (A.12)

Which results in a non-local damage field of the form

d(~x) = d0(~x) +α(~x− ~x0)δd0 (A.13)

Using that δd0 tends to zero, we express both the stiffness and fracture energy fields as a first order

expansion:

k[d(~x] = k[d0(~x)] +k′[d0(~x)]δd0α(~x− ~x0) (A.14)

⇒ Yc[~x,d] = Yc[~x,d0] +Y ′c [~x,d0]δd0δ(~x− ~x0) (A.15)

We define the functional derivative of the elastic energy as

lim
δd0→0

Eel[∆,d0(~x) + δd0δ(~x− ~x0)]−Eel[∆,d0(~x)]
δd0

=
∫

Σ

1
2∆2k′[d0(~x)]α(~x− ~x0)d~x=−

∫
Σ
Y (~x,∆)α(~x− ~x0)d~x

=−`nY ( ~x0,∆)

(A.16)

Similarly, we obtain the rate of dissipated energy by damage as

lim
δd0→0

Ed[∆,d0(~x) + δd0δ(~x− ~x0)]−Ed[∆,d0(~x)]
δd0

= lim
δd0→0

1
δd0

[∫
Σ

∫ ∆

0

∂d

∂∆

∣∣∣∣
~x,∆̃

(
Yc[~x,d0] +Y ′c [~x,d0]δd0δ(~x− ~x0)

)
d~x−

∫
Σ

∫ ∆

0

∂d

∂∆

∣∣∣∣
~x,∆̃

Yc[~x,d0]d~x
]

= lim
δd0→0

1
δd0

(
`nδd0

(
Yc[ ~x0,d0] + δd0Y

′
c [ ~x0,d0]

))
= `nYc( ~x0,d0)

(A.17)
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We finally obtain the equilibrium equation that writes as

δEt

δd
= 0⇒ Y (~x0,∆) = Yc(~x0,d0) (A.18)





APPENDIX B

NON-HARDENING BRITTLE DISORDERED MATERIAL

We have seen that with the introduction of hardening and a continuous damage evolution, a

behavior close to that of a mean field system is obtained whatever the internal length `0. If we remove

the hardening property of the material, as the heterogeneities have a brittle behavior (the parameter a

of the stiffness expression Eq. (2.11) is negative) their damage parameter is either 0 (intact element) or

1 (broken). We show in this section that in that case we have a continuous transition from two classes

of models. For large internal lengths, the response does not differ from that obtained when material

has a hardening behavior and corresponds to a mean field system response. On the other hand, for low

internal lengths, the behavior strongly differs as a different damage mechanism dominates, resulting

in the apparition of bounded fluctuations that scale with `0.

We first study the macroscopic response of the system as a function of the `0 values and

characterize the dependency of the critical loading at failure with this parameter. It appears that a

continuous scaling with `0 is obtained for small internal lengths while for large ones the failure load-

ing is that of global load sharing model, as emphasized by an analytical prediction of ∆c in that

case. The study of the fluctuations highlights this transition. The system has bounded fluctuations

that scale with `0 for small redistribution ranges, while they diverge as the internal length `0 becomes

much larger than the heterogeneities.

For the numerical simulations, a large system size of N = 100000 elements is used, the

internal length is varied from 1 to infinity and the disorder intensity σg is set to 0.2.

B.1 Macroscopic behavior

The normalized macroscopic response of the non-hardening system is shown for various

internal lengths on Fig. B.1a. Two behaviors are obtained: (i) for low internal lengths, `0 ≤ 5, the

response is continuous until failure, which occurs at a critical displacement that is lowered as `0 is

increased; (ii) for large `0 values, the response becomes independent of the value of the parameter
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and a catastrophic failure is observed.

To characterize the critical loading dependency with the internal length, we show on Fig. B.1b

the evolution of the normalized critical loading at failure as a function of the internal length value. As

expected from the observation of the force-displacement response, failure occurs earlier as the range

of interaction is increased, up to a threshold value: for `0 ≥ 100 the critical displacement becomes in-

dependent of the value of the internal length. On the other hand, for `0 < 100, a continuous evolution

is observed.
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Figure B.1: (a) Normalized macroscopic reponse obtained for different internal lengths. Two behav-

iors emerge: for small internal length (`0 ≤ 5) a continuous response is obtained up to failure, the

critical loading of which varies with `0, the response becomes independent of the `0 value for large

internal length and exhibits a catastrophic failure; (b) Evolution of the normalized critical loading at

failure as a function of the internal length, the analytical prediction for a global load sharing (`0 =∞)

and percolation model (`0 = 0) are indicated and emphasizes the two regimes: continuous decrease

for low `0 values while for `0 ≥ 100 the critical loading is that of a mean field system.

To understand both the upper and lower limits, we first determine the critical loading at

failure in the two extreme limits of independent heterogeneities (`0 = 0) and mean field redistributions

(`0 = ∞). The lower limit value renders the system response particularly simple to predict and

analyze: setting `0 to zero corresponds to a Dirac redistribution function, which leads to each element

behaving independently from the others. It is equivalent to treating the system as interaction-free: the

system is solely characterized by its fracture energies and the model becomes local. Due to the brittle

behavior of the heterogeneities, the evolution equation concerns only intact elements and is given by

Eq. (2.25) where the fracture energy is damage independent:

Y (~x,∆) = Yc(~x) (B.1)
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As intact heterogeneities are not affected by a failure event taking place elsewhere, the system fails by

breaking each element one by one, from the weakest to the strongest, respecting the ascending order

of fracture energies values that we denote by Yc1 < Yc2 < ... < YcN . To break the k−th element of

fracture energy Yck, we shall apply a loading ∆ calculated as

∆ =
√
−2Yck
k′[0] (B.2)

At this loading, the corresponding statistical number of intact elements is N(1−P (Yck)), where

P (Yck) is the cumulative distribution function of the uniform probability density expressed in equa-

tion (2.10):

P (Yc) =


0 forYc < Y min

c

Yc−Y min
c

Y max
c −Y min

c

forY min
c ≤ Yc ≤ Y max

c

1 forYc ≥ Y max
c

(B.3)

Using that the local stiffness is either 0 (d= 1) or k0 (d= 0), we obtain the corresponding macroscopic

force to break the element the element of fracture energy Yck:

F (Yck) = Lk0(1−P (Yck))∆ = Lk0
Y max
c −Yck

Y max
c −Y min

c

√
−2Yck
k′[0] (B.4)

where we have replaced ∆ using Eq. (B.2). Hence, knowing the fracture energy distribution, e.g.

uniform, we can predict the full statistical macroscopic response of the system. To obtain the critical

displacement at failure, we must consider the strength Y max
c of the strongest element. Using that

Y max
c = Yc0 +

√
3σg (see Sec. 2.1.2), we obtain the dependency of ∆c with the disorder intensity:

∆c =

√
−2(Yc0 +

√
3σg)

k′[0] (B.5)

We now treat the case of an infinite internal length `0 =∞, which corresponds to an equal

redistribution of the driving force among the heterogeneities, independently of their state (broken or

intact) and distance to the damage point. It corresponds to a non-local damage parameter expressed

as

d(x,∆) =< d(∆)>= 1− Ns(∆)
N

= 1−U(∆) (B.6)

where Ns and U are respectively the number and density of surviving elements. As the non-local

field is spatially independent, it leads to a local damage driving force:

Y (x,∆) = Y (∆) =−1
2∆2k′[U(∆)] (B.7)

To predict the system response, we follow the approach of Pradhan et al.[92]: assume that we start

with an intact material (U0 = 1) and apply a load ∆ to break a first element, i.e. the weakest one.
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The corresponding damage driving force writes as

Y1(∆) =−1
2∆2k0(3a(1−U0)2− (a+ 1)) (B.8)

From the evolution equation Y (∆) = Yc(~x), where Yc is drawn from a given distribution, we have a

density of surviving elements which can be expressed as

U1(∆) = (1−P (Y1)) (B.9)

As the first element is broken, we have a redistribution of the driving force. At the same fixed applied

loading, it leads to a resulting Y field that writes as

Y2(∆) =−1
2∆2k0(3a(1−U1)2− (a+ 1)) (B.10)

We assume that it is high enough to trigger the failure of the second weakest element, of fracture

energy Yc2. After this damage event, the surviving density is

U2(∆) = (1−P (Y2)) (B.11)

The failure event again leads to a damage driving force redistribution, which can itself lead to the

failure of one more element. The system goes on until equilibrium is reached. From this process, we

can establish the recurrence relation:

Ut+1(∆) = (1−P (Yt)) = 1− −1/2∆2k0(3a(1−Ut)2− (a+ 1))−Y min
c

Y max
c −Y min

c

(B.12)

At a given applied loading ∆, this recurrence relation is of the form Ut+1 =H(Ut) from which a fixed

point U∗ can be obtained using its definition U∗ =H(U∗). Considering the Equation (B.12) one gets

U∗(∆) = 1 + Y max
c −Y min

c

3ak0∆2 −
√

6a∆2k0(∆2 ∗k0−Y min
c ) + (Y max

c −Y min
c )2

3a∆2k0
(B.13)

At a given loading, the system will eventually reach an equilibrium state, corresponding to a density

U∗ of intact elements, or N −Ns broken heterogeneities. To break the next k−th fiber, the loading

is increased, the fiber is broken which in turns trigger more failure until a new equilibrium position

is reached. For each applied loading, the system is damaged until a density U∗(∆) is obtained. This

quantity U∗ represents the density of surviving elements and should hence be real. Its existence is

thus controlled by the sign of the term under the square-root. This leads to the critical loading ∆c

upon which no fixed point is obtained. If we apply this critical displacement, the iterative failure

process of the elements will not stop until all intact elements are broken: the system evolves unstably

up to complete failure. The loading threshold writes as

∆c =

√√√√√√3Y0 + (a+ 1)k0

√
3(2a−1)Y 2

0 + 6(a+ 1)Y0Yr−3(a+ 1)Y 2
r

a(a+ 1)2k2
0

3(a+ 1)k0
(B.14)
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Also note that the full macroscopic response can be obtained, writing the macroscopic force

F (∆) = k[(1−U∗(∆))]∆ (B.15)

where U∗ is given as a function of the applied displacement ∆ by Eq. (B.13). Therefore, for both

limit cases the response of the system is purely statistical. The macroscopic response and critical

loading are solely dependent on the distribution of fracture energy threshold. It should be emphasized

that unlike when hardening is introduced, here in the limit of zero disorder the system fails as soon

as the first damage event takes place. The failure is delayed by the introduction of randomness that

save the system from instantaneous early failure at the first damage event. This is well shown by

the expressions of critical loadings of Eqs. (B.14) and (B.5) which both scale with the distribution

parameters Y max
c = Yc0 +

√
3σg where σg is the disorder intensity.

Now that the limit cases critical loadings are determined, we compare them to that obtained

for finite, positive internal lengths. From Fig. B.1b, we see that the constant critical displacement

obtained for large `0 values corresponds indeed to the mean field limit. On the other hand, the con-

tinuous evolution towards the upper limit (case of independent heterogeneities) as `0 tends to zero

is well shown in the inset of the figure. Therefore, it seems that we have a continuous transition

between two classes of behavior: (i) for large internal lengths a mean field macroscopic response is

obtained with a characteristic catastrophic avalanche responsible for the failure of the system, (ii) for

low internal lengths the system is continuously damaged until full failure of the system, which occurs

at a critical loading that scales with `0 and is upper bounded by that of an interaction-free system.

Moreover, from the macroscopic response obtained for `0 ≤ 5 it seems that there is a slow-down of

the damage process close to failure, as indicated by the small inflection of the curve before failure. To

study this effect, we characterize the temporal behavior of the precursors to failure in the next section.

B.2 Temporal evolution of the damage events

The avalanche sizes are shown as a function of δ on Fig. B.2a for `0 = 5 (top) and `0 =∞
(bottom). The latter one exhibits the characteristic behavior observed from our numerical model with

hardening and from experiments. The former has a peculiar response: the intermittency and ampli-

tude go through a maximum. It increases from δ = 1 to δ ' 0.2, and then a slow down of the damage

process occurs until failure. To emphasize this effect, we study the evolution of average avalanche

size with the distance to failure, as shown on Fig. B.2b where 〈S〉 is normalized by the internal length

value considered. For small internal length, `0 ∈ [1,5], the average size of the bursts sharply increases

before reaching a maximum value of about 10`0. The plateau regime occurs earlier as the interaction

length is decreased. Moreover, the response is obtained for δ ∈ [10−2,1] only: two few avalanches

take place closer to failure, and hence the lack of statistics does not allow to obtain the characteristic

avalanche size. Therefore, the fluctuations appear bounded to a size that scales with `0 and a satura-

tion occurs, leading to a decrease in the damage density variation close to failure. On the contrary, if
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`0 is large, the average avalanche size follows a power law behavior of exponent ' 0.5±0.1, corre-

sponding to the analytically determined exponent 1/2 in the mean-field limit, as shown in the inset.
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Figure B.2: (a) Avalanche size S vs the distance to failure δ for (top) `0 = 5 and (bottom) `0 =∞:

for low internal length the intermittency and amplitude of avalanches decrease close to failure while

they are amplified close to failure for the latter (note that in that case the last, much larger, avalanche

was removed); (b) Evolution of the average avalanche sizes normalized by the internal length as a

function of δ for low internal lengths showing a saturation that scales with `0 and occurs earlier as the

parameter is lowered, in the inset is shown 〈S〉 vs δ for large internal lengths, showing the expected

mean field behavior with a power law of exponent close to 1/2.

The normalized probability densities are shown for `0 = 5 and `0 =∞ on Figs. B.3a and

B.3b, respectively. For the lower value, the functions are dominated by an exponential tail from which

is extracted an avalanche size S∗. This characteristic burst size follows the behavior of 〈S〉 with δ.

For `0 =∞, the distributions follow the characteristic gamma law, with an exponent of the power law

' 1.5± 0.1. Since we also have 〈S〉 ∼ δ−1/2 we deduce that in that case S∗ ∼ δ−1, see Sec.4.1.2.

The change of behavior of the probability densities when considering a local or global redistributions

has been well observed in the context of fiber bundle [44, 59].

To emphasize the transition from one type of model to the other, the evolution of the max-

imum value of the cutoff S∗ is shown on Fig. B.4a as a function of `0. If the system shows a catas-

trophic behavior we instead indicate the average size of the last avalanche. We once again observe a

clear change of behavior: for `0 ≤ 5 the maximum cutoff value is linear with `0, it then sharply in-

creases for `0 ≤ 10, value above which the average catastrophic avalanche has a rather constant value.

This is in agreement with the analysis of the macroscopic response analysis as we obtain roughly the

same critical internal length (`0 ' 100) above which a mean field behavior takes place.
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Figure B.3: Avalanche size distribution densities for (a) `0 = 5 showing that an exponential behavior

dominates even close to failure; (b) `0 =∞ for which we retrieve the gamma law of exponent 3/2
predicted for a global load sharing model.
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Figure B.4: (a) Evolution of the maximum cutoff value S∗ as a function of `0, for large `0 values

the S∗ corresponds to the average size of the last catastrophic avalanche. This figure highlights the

transition from a loca to global load sharing behavior; (b) Damage field close to failure for δ ' 0.01,

after a first avalanche (δ+dδ) and a second one (δ+ 2dδ) showing the locking mechanism that takes

place when only the strongest heterogeneities remain intact and local redistributions take place.

We think that the change of response for local and mean-field behaviors results from differ-

ent damage mechanisms. For large internal lengths, smooth, almost constant, interactions take place

over large scales. As depicted from the analytical prediction of the system macroscopic response in

the mean field limit, in that case avalanches are only dependent on the fracture energies distribution

and spatial repartition of these thresholds. For small redistribution lengths, we think that there exists
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three different stages in the system response, each of which having a different damage mechanism.

For low loadings, the failure is mainly controlled by the disorder spatial distribution: the weakest

points, which are randomly located, break due to the applied loading. Since few points are dam-

aged, the influence of the interactions remain of low amplitude. Once damage is spread all over the

system, the interactions begin to dominate the failure process: as small clusters of broken elements

are formed, the redistributions induce further localized breaking events. Close to failure, we use the

damage field shown on Fig. B.4b to describe the damage mechanism. The damage field consists in

large cracks (regions were all elements are broken) separated by small ligaments of intact elements

(see the green field at δ ' 0.01). The weakest heterogeneities are already broken due to the applied

loading (disorder dominancy) as also the moderately strong heterogeneities (coaction of loading and

interactions) and only the strongest points remain intact, blocking the diffusion of damage through

interactions. Since the interactions are short ranged, only a few elements see the effect of already

damaged points. Hence, it is most likely that upon the application of a higher loading it is the point

at the extremity of a crack that will break. This can trigger other events but since the fracture energy

of the neighboring elements is high, the diffusion of damage is most likely to be blocked. Therefore,

only small avalanches take place. This mechanism is well observable on Fig. B.4b: two main micro-

cracks are formed at δ ' 0.01 and small localized broken elements are located between them. As the

loading is increased, corresponding to an increase dδ, the elements close to the left crack break but

damage does not diffuse to link the two cracks. The same occurs from the right crack as the loading

is further increased (δ+ 2dδ), see the blue profile.

B.3 Conclusions

Therefore, it arises that without hardening a continuous transition is observed with the in-

ternal length `0. For small internal length, the macroscopic response is continuous until failure, which

occurs at a critical loading that scale with `0. The distributions of avalanche sizes are dominated by

an exponential behavior, from which a characteristic burst size is extracted and its maximum value is

shown to be set by `0. On the other hand, for sufficiently large internal length values, the system falls

into the mean field limit. In that case, we recover the behavior obtained for hardening, continuously

damaging system. Indeed, the system exhibit a catastrophic failure event, at a critical loading inde-

pendent of `0 and predicted in the mean field limit. In addition to that, the distributions are shown to

follow power law behavior up to a cutoff that also follows a power law behavior with the distance to

failure, the exponent of which corresponds to the mean field prediction.

Therefore, since for local redistributions of the damage driving force the precursors fluc-

tuations are bounded whereas the adequate intermittency is obtained only for large internal lengths,

corresponding to a mean field limit where no spatial organization of damage is obtained, it appears

that the introduction of hardening in the material response seem relevant for an adequate description

of the failure of quasi-brittle materials.
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