
HAL Id: tel-01422057
https://theses.hal.science/tel-01422057

Submitted on 23 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Resource-Oriented Architecture for Integration and
Exploitation of Linked Data

Pierre de Vettor

To cite this version:
Pierre de Vettor. A Resource-Oriented Architecture for Integration and Exploitation of Linked Data.
Hardware Architecture [cs.AR]. Université de Lyon, 2016. English. �NNT : 2016LYSE1176�. �tel-
01422057�

https://theses.hal.science/tel-01422057
https://hal.archives-ouvertes.fr

Université Claude Bernard Lyon I

UFR Informatique

École doctorale Informatique et

Mathématiques de Lyon

A Resource-Oriented Architecture for

Integration and Exploitation of Linked

Data

THÈSE

présentée et soutenue publiquement le 29 Septembre 2016

pour l’obtention du

Doctorat de l’Université Claude Bernard Lyon I

(spécialité informatique)

par

Pierre De Vettor

Composition du jury

Rapporteurs : Abderrafia Koukam, Professeur, Université de Technologie de Belfort-Montbéliard,

Khalil Drira, Directeur de Recherche, LAAS-CNRS Toulouse,

Examinateurs : Philippe Lalanda, Professeur, Université Joseph Fourier de Grenoble,

Franck Morvan, Professeur, Institut de Recherche en Informatique de Toulouse,

Marinette Savonnet, Mâıtre de conférence, Université de Bourgogne,

Invités : Salim Berbar, Directeur général et administrateur, Audience Labs, Lyon

Directeurs : Michaël Mrissa, Professeur, Université de Pau et des pays de l’Adour,

Djamal Benslimane, Professeur, Université Claude Bernard Lyon 1,

Laboratoire d’InfoRmatique en Images et Systèmes d’information — UMR 5205

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, for their

enthousiasm and great guidance: Michael Mrissa, for his availability, his sympathy,

and for the numerous hours he spent in helping, guiding, and motivating me. Djamal

Benslimane, for his trust and sympathy. His positive and motivating advice were always

a real help throughout this work. I thank them for their continuous encouragement

and caring during this thesis. It has been a pleasure working with them.

I also would like to address my best regards to Koukam Abderrafia and Khalil Drira

who accepted to review this document. I also extend my thanks to the examiners and

jury members Marinette Savonnet, Philippe Lalanda and Franck Morvan.

In a second time, this work would never have been possible without the input of

the Audience Labs company, and I would like to express my particular thanks to:

— Salim Berbar for helping and encouraging me into this work, for his availability

despite the numerous task that he is responsible for

— Nadir Habrih, Hakim Labiod, Farid Amiour and Eric Gharbi for welcoming me

in their company, and for their trust in my work

— my colleagues and friends: Amine Zayed and Soungalo Sidibé for the moments

we shared together

I would also like to say thank you to my former lab partners, Rafiqul Haque and

Samir Amir who welcomed me in their office room at the beginning, and for the

stimulating talks about research.

Thanks to Ruthan Semanou and Marion Normand who took the time to proofread

this document.

Many thanks to my parents, sisters, and in-laws for their caring support. A very

special thanks to my dear friends: Damien, Paul, Romain, Mélanie, Boris, Clara and

Michael.

Finally, I want to thank my wife Anne-Sophie, for her kindness and her uncondi-

tional love, and for encouraging me all this time. Thank you.

i

To my wife Anne-Sophie and my daughter Charlotte,

iii

Résumé

Cette thèse porte sur l’intégration de données provenant de sources hétérogènes

sur le Web. L’objectif est de fournir une architecture générique et modulable capable

de combiner, de façon intelligente, ces données hétérogènes dans le but de les rendre

réutilisables. Ce travail est motivé par le scenario de l’entreprise Audience Labs qui

fournira les sources de données permettant la mise à l’échelle de cette architecture.

Dans ce rapport, nous proposons une approche permettant de s’adapter à la diver-

sité des sources de données, avec des problématiques de gestion dynamique des sources,

de passage à l’échelle et de consistance des données produites (cohérentes, sans erreurs,

ni doublons).

Pour répondre à ces problématiques, nous proposons un méta-modèle pour re-

présenter ces sources selon leurs caractéristiques, liées à l’accès (URI), à l’extraction

(format), mais aussi aux capacités physiques de ces sources (latence, volume). En nous

appuyant sur cette formalisation, nous proposons différentes stratégies pour adapter

les traitements aux spécificités.

Basé sur ces modèles, nous proposons une architecture RESTful où tous les compo-

sants sont accessibles à travers HTTP via leurs URIs. En nous basant sur les caracté-

ristiques des sources, nous pouvons alors générer des workflows d’exécution spécifiques

et adaptés. Ils permettent d’orchestrer les différentes tâches du processus d’intégration

de façon optimale, en donnant différentes priorités à chacune des tâches. Ainsi, les

temps de traitement sont diminués, ainsi que les volumes des données échangées.

Afin d’améliorer la qualité des données produites par notre approche, l’accent est

mis sur l’incertitude qui peut apparâıtre dans les données sur le Web. Nous propo-

sons un modèle de description de l’incertitude à travers le concept de ressource Web

incertaine. Celui ci est basé sur un modèle probabiliste où chaque ressource peut avoir

plusieurs représentations possibles, avec une certaine probabilité. En nous basant sur

ce modèle, nous proposons une approche permettant d’évaluer des requêtes dans un

contexte incertain.

Mots-clés: architecture orientée ressource, adaptation, smart data, incertitude,

intégration de données, sémantique

Abstract

In this thesis, we focus on data integration of raw data coming from heteroge-

neous and multi-origin data sources on the Web. In this context, we focus on a specific

part of data integration, which is the combination of data sources. The objective is to

provide a generic architecture able to analyze and combine this heterogeneous, infor-

mal, and sometimes meaningless data into a coherent smart data set. We define smart

data as significant, semantically explicit data, ready to be used to fulfill the stake-

holders’ objective. This work is motivated by a live scenario from the French Audience

Labs company.

In this report, we propose new models and techniques to adapt the combination

process to the diversity of data sources. We focus on transparency and dynamicity in

data source management, scalability and responsivity according to the number of data

sources, adaptability to data source characteristics, and finally consistency of produced

data (coherent data, without errors and duplicates).

In order to address these challenges, we first propose a meta-model in order to

represent the variety of data source characteristics, as a set of functional (URI, auth,

format), or non-functional properties (volume, latency). By relying on this formal-

ization of data sources, we define different strategies in order to adapt access and

processing to data source capabilities.

With help from these models and strategies, we propose a resource-oriented archi-

tecture, where each component is accessible through REST via its URI. The orches-

tration of the different tasks of the combination process can be done in an optimized

way, regarding data sources and characteristics. We rely on these characteristics to

generate adapted workflow, where tasks will be executed in a specific order that will

help to optimize the quantity of data to process, and will reduce execution time.

In order to improve the quality of our approach, we then focus on the data un-

certainty that could appear in a Web context, and propose a model to represent this

uncertainty. We introduce the concept of uncertain Web resource, based on a prob-

abilistic model where each resource can have different possible representations, each

with a probability. This approach will be the basis of a new architecture optimization

allowing to take uncertainty into account during our combination process.

Keywords: resource-oriented architecture, workflow, adaptation, smart data, data

uncertainty, data integration, data semantics

Contents

List of Figures xi

1 Introduction 1

1.1 Motivating scenario . 3

1.2 Scientific challenges . 7

1.3 Contributions . 8

1.4 Thesis Organization . 9

2 Background Knowledge 11

2.1 Architectures of Web Applications . 11

2.1.1 Architectures and Paradigms 12

2.1.2 Services . 15

2.1.3 Service composition . 17

2.2 Semantic Web and Linked Data . 20

2.2.1 Linked Data and Semantics . 20

2.2.2 Semantic annotation . 22

2.3 Data Integration . 24

2.3.1 Data Integration Processes . 24

2.3.2 Architectures for Data Integration 29

2.4 Conclusion . 30

3 Model-driven Data Source Management 33

3.1 Introduction . 33

vii

Contents

3.1.1 Objective and scientific locks 34

3.1.2 Motivating scenario . 34

3.1.3 Contribution . 35

3.2 Related work: Data source access . 36

3.3 Data source models . 38

3.3.1 A metamodel for describing data sources 38

3.3.2 Data source description models 40

3.3.3 Data description model . 41

3.4 Data access strategies . 42

3.4.1 Preparation . 42

3.4.2 Pre processing . 43

3.4.3 Adapt to physical characteristics 44

3.4.4 Direct and indirect access . 44

3.5 Conclusion . 45

4 Adaptive Workflow Architecture 47

4.1 Introduction . 47

4.1.1 Motivation . 48

4.1.2 Challenges . 48

4.2 Related work : Workflow adaptation 49

4.2.1 Late Modeling Approaches . 49

4.2.2 Ad Hoc Adaptations . 51

4.2.3 Conclusion . 52

4.3 Adaptive Workflows . 52

4.3.1 Workflow representation . 52

4.3.2 Standard procedure . 53

4.3.3 Adaptations . 54

4.4 Architecture of the solution . 56

4.4.1 Comparative study of existing architectural design patterns . . . 56

viii

4.4.2 Overview of our architecture . 60

4.4.3 Architecture components . 61

4.4.4 Architecture Resources . 63

4.4.5 Use case illustration . 67

4.5 Evaluation . 68

4.6 Architecture optimization . 71

4.6.1 The problem with HTTP and data Volume 71

4.6.2 Related Work on HTTP and data volumes 71

4.6.3 Handling Volume Diversity . 73

4.6.4 Evaluation of our architecture optimization 75

4.6.5 Discussing our optimization . 77

4.7 Conclusion . 77

5 Composition of Uncertain Web Resources 79

5.1 Introduction . 79

5.1.1 Motivation . 80

5.1.2 Contribution . 80

5.2 Data Uncertainty: State of the Art . 81

5.2.1 Uncertainty in databases . 81

5.2.2 Uncertainties on the Web . 82

5.3 Uncertain Web Resources . 83

5.3.1 Definition . 84

5.3.2 Particular composition cases . 86

5.3.3 Programmatic representation of uncertain resources 87

5.3.4 HTTP Request over uncertain resources 88

5.3.5 Composing uncertain Web resources 90

5.4 Query evaluation . 92

5.4.1 Interpreting query as resource paths 92

5.4.2 Tree Pattern Path Evaluation 93

ix

Contents

5.4.3 Final aggregation algorithm . 94

5.5 Implementation . 96

5.6 Evaluation . 97

5.7 Conclusion . 98

6 General conclusion 101

6.1 Summary of challenges . 102

6.2 Contribution overview . 103

6.3 Research perspectives . 105

Publications list 107

Bibliography 109

Résumé long 117

x

List of Figures

1.1 Querying the system . 6

3.1 Data source metamodel . 39

3.2 A data source model based on our scenario 40

4.1 Classical integration workflow . 52

4.2 Classical integration workflow . 53

4.3 Pre and post integration sub-workflows 53

4.4 Combination plan execution order . 54

4.5 Combination with input . 55

4.6 Pre-integration workflow with earlier filtering 55

4.7 Workflow presenting early integration 56

4.8 Workflow with a semantic extraction process 56

4.9 Architecture Resources . 60

4.10 Architecture authentication process . 63

4.11 Use Case Data Flow Representation . 68

4.12 Average response time for Query 1 . 70

4.13 Average response time for Query 2 . 70

4.14 Optimized approach to handle data storage and processing 74

4.15 Evaluation of average response time for query 1.1 76

4.16 Evaluation of average response time for query 1.2 76

5.1 A simple uncertain resource example 85

5.2 Particular uncertain resource examples 86

xi

List of Figures

5.3 Scenario based uncertain resources . 87

5.4 Uncertain composition and world generation 91

5.5 Query answering in RESTful compositions 92

5.6 Generating tree pattern while navigating between resources 93

1 Modèle de source de donnée basé sur notre scénario 118

2 Architecture orientée resources . 119

3 Exemple de ressource incertaine simple 120

xii

Chapter 1

Introduction

Nowadays, with the emerging presence of social media and networking systems,

users adapt their online way of life and become both data providers and consumers.

Every day, huge quantities of data are produced and refined by millions of users, for

different purposes. First of all, users can gather data in order to collect and share

knowledge, such as culture and history, as shown by the numerous existing archive

repositories such as https://archive.org and https://data-archive.ac.uk, where

users and organizations have made thousands of ancient documents available. The

data can also be used in order to organize or produce exhaustive knowledge about

subjects, like those on the https://www.wikipedia.org/ platform and other similar

encyclopedia projects. Every day, millions of users voluntarily contribute to thousands

of subjects such as sports, science, and politics. More recently, data has also served an

educational purpose, as proved by the success of numerous massive open online course

(MOOC) platforms. Secondary, data can also be collected online to create profiles,

which are online representations of users’ personalities. These profiles are built up on

several types of platforms, like social networks, like https://myspace.com which had

a huge success in its time, followed closely by https://facebook.com, now joined by

1.65 billions of users (March 2016). On these platforms, users recreate their friends

networks, manually by indicating their type of relationship, and listing their areas of

interest, which are then used by advertising companies to display targeted ads. Users

can also decide to make a list their interests for different purposes, such as making a list

of things they desire (amazon wishlist) or to benefit from recommendation systems.

In this last category, we clearly identify two types of platforms. On the one hand,

platforms that automatically gather statistics like https://last.fm which provides

similar recommended artists according to the user’s playback statistics, and http:

1

Chapter 1. Introduction

//netflix.com that advises users on the most relevant movies to watch according to

the user’s watched history. On the other hand are the platforms where users provide

grades and evaluations of their favorite products and of the products they dislike, in

order to obtain the same kind of recommendations (systems such as http://imdb.com

and http://vodkaster.com/ for movies).

These new ways of producing and using data create a new data paradigm, forcing

organizations and companies to adopt new data-driven strategies. Thanks to initia-

tives such as the open data project [Heath and Bizer, 2011], governments and com-

panies have also opened their data to the world across the Web. Data is published

and accessible as tabular files (CSV) or via Web APIs [Maleshkova et al., 2010] or

SPARQL endpoints. It has lead them to open and improve their information sys-

tems, adding more structure and semantics, and drawing benefits from the aggre-

gation of data from the Web. This freely available data can be combined in ser-

vice mashups [Benslimane et al., 2008], or processed on-the-fly through low-cost and

queryable Linked Data endpoints [Verborgh et al., 2016] to produce highly valuable

services. For example, the sets of APIs provided by Twitter, Facebook, LinkedIn, Ama-

zon, Youtube, Flickr or Dropbox are reused in thousands of mashups (see also http:

//www.programmableweb.com/). All these specific business mashups enrich data with

semantics and combine several data sets to improve data reuse, providing advanced

statistics and useful data for decision support systems.

As exciting as it is, automating the combination of publicly available data from

different sources, still remains a complex task, and there is a lack of a generalized

approach. Current existing mashups are usually created for specific purposes, such

as answering to answer specific queries about specific data sources. For example, we

could imagine a company which has an innovative idea for a mobile application to

manage trips and reserve plane and train tickets, directly connected to hotels in the

desired cities. Typically, they construct a specific workflow using the different available

APIs to compute an itinerary, look at available tickets, and request hotel rooms with

location and prices. In the end, they will connect each of these different APIs by hard

coding interactions in the application.

There is need for a system that could, depending on a specific use case, retrieve

the relevant data sources and data, analyze the provided data (format, concepts, etc.),

and design a suitable workflow for this use case, all this with a minimal user input. It

requires a high level of adaptation in order to automatically access data sources and

extract their data, since information systems do not always respect the same standards,

2

1.1. Motivating scenario

formats or schemas. Many heterogeneities related to differences in structure, syntax or

semantics may exist when trying to handle these data sources. Each data source can

have different characteristics, using different protocols, and handling different formats.

Different types of data sources may also require specific processing which can constrain

their usage, like an authentication protocol or quotas limiting access. Data sources

can also be affected by physical properties, such as network latency, high volume, and

update frequency. Finally, data sources are sometimes subject to uncertainty, meaning

that the data they contain can be contradictory to another data source, or they can be

untrustworthy, due to failure in collection mechanisms. There is a need for a solution,

in order to take all this information into account, and to adapt the process to each

data source. Doing so, we could propose a transparent solution, which would be able

to process any kind of data sources, and since new technologies are proposed every

day, there is a need for a system which can quickly adapt to new types of data source

characteristics.

The objective of this work is to propose a solution to automatically combine multi-

origin and heterogeneous data sources in the form of a resource-oriented architecture,

which would take better advantage of publicly available data. This system should be

able, according to a query and a set of data sources, to select the relevant data sources,

analyze their needs and generate an adapted workflow that would extract data and

combine them. In parallel, our goal is to upgrade an existing enclosed information

system from a company into an open-to-the-world system, in which it will be able to

integrate freely available data, according to the different needs of the market. The

aim is to propose an adaptive solution for combining multi-origin data sets available

from internal information systems and from the Web, in order to produce significant,

semantically explicit data, ready to be used to fulfill the stakeholders’ objectives. We

call this significant and semantically explicit data set Smart Data.

1.1 Motivating scenario

In the context of our work, our approach is motivated by a real world scenario from

the Audience Labs company, and we focus on the enrichment and reusability of data

handled by this company. Data reuse is the process that helps to gain benefits from

data that has been stored in various types of data sources. Audience Labs is a French

company whose main business is digital marketing, which they practise through the

broadcast of advertisement campaigns and newsletters. Audience Labs has a need for

3

Chapter 1. Introduction

a system that is able to extract data from several non-connected internal data sources,

and to confront this data with the external world. The company provides different use

cases from automatic statistic reports about previous broadcasts to decision help and

recommendation systems, in order to improve future broadcast impact.

Campaign broadcasting consists of sending documents such as newsletters or ad-

vertisement campaigns to a set of customers. Typically, these documents are static

email-embedded HTML pages containing texts, images and links. We describe each

of these documents’ contents with a set of concepts which we call interests, related

to content keywords and described in ontologies such as DBPedia 1. Broadcasted doc-

uments include transparent tracking mechanisms that allow us to harvest contextual

data about users’ interactions. Contextual data about the customer wich is saved in

our customer profile database for later use, includes browser information, action date

and time, and IP addresses. This contextual information, associated with the descrip-

tion and the keywords of the documents can help us to create and extend a profile for

each customer.

The scenario objectives, in terms of use cases applied to this global scenario, are :

— studying the impact of a broadcasting campaign on a set of customers (i.e.

extracting interesting information and statistics about campaign broadcasts,

users’ habits and points of interests)

— automatically combining all the available and relevant data sources in order to

build a profile for each customer

— providing a help decision tool that will help to choose and extract a set of

customers for future broadcasts

On top of that, it is important to make the solution as generic as possible, in order to

be able to adapt to future unplanned and/or punctual demands (query interface).

Use case example

A classical use case of the scenario describes the following data sources, each of

them presenting different characteristics.

1. an internal linked service giving access to our company’s business data

2. an SQL database containing a large volume of information (around 100Gb)

3. a database that records user activities (high volume of changing data) with

10.000/20.000 new tuples per day

1. http://dbpedia.org/

4

1.1. Motivating scenario

4. a stream of update requests

5. external APIs (twitter, facebook, dbpedia, etc.)

Each of these data sources presents several characteristics. These characteristics

are specific to the scenario.

Source 1 is a linked service, i.e. it consumes and produces linked data. It provides

access to a small data set that describes the business data of the company. Data pieces

that come from this source are subject to privacy constraints. Source 2 is an SQL

endpoint to a database that contains millions of tuples with no semantic annotations.

This data source has a low update frequency. Source 3 is an SQL endpoint to a

database that contains users’ daily activities. Data from this source are updated

regularly, so it requires freshness. Source 4 is an RSS stream that contains user

update requests. It mostly contains data which has to be saved or removed from

data results (blacklist information). Other sources are represented by a set of APIs

(Twitter, Facebook) that help construct interest profiles, as well as a Dbpedia SPARQL

endpoint for concept manipulation.

The use case is based on the following interactions:

— starting from a new campaign that has to be broadcasted

— extracting information about this campaign (points of interests, attached con-

cepts, etc.)

— looking at similar concepts in an external ontology to enlarge the results

— extracting old campaigns attached to these concepts and points of interest

— retrieving past interactions with these documents

— retrieving the emails of users of these interactions

— cleaning this list of emails, by checking late update requests (blacklist requests,

etc.)

The appearance of one characteristics or another in a data source is unpredictable

and may vary from one scenario to another. This unpredictability of variation in

scenario clearly illustrates the need for a meta-model in order to fix the limits of

data model definition. This meta-model will set the design guideline, and enable the

adaptivity of the approach.

Needs analysis

The unstructured aspect of this scenario, and the multiple clients in the use case,

have naturally led us to think of the solution in a distributed way. In order to fulfill

5

Chapter 1. Introduction

these objectives, we have defined a resource-oriented approach.

Figure 1.1 – Querying the system

Fig. 1.1 illustrates how our solution operates in the context of the Audience Labs

scenario. It shows the interaction patterns between the system user, customers and

the architecture.

The architecture provides a Web interface through which it is possible to submit

queries. The system user creates a query through the GUI and extracts relevant pro-

files from the diverse data sources that are connected to the platform. The system user

has access to several criteria including: age, gender, points of interest and related ac-

tivities, socio-professional category, localization (country, region), browsers used, and

so on. Once he has formulated the query, the architecture goes through the semantic

annotation, and cleaning and integration tasks, as described above, and replies to the

user query.

From campaign broadcast feedback, we transparently collect customers’ interaction

traces while simultaneously saving all contextual information about these interaction

traces such as geolocalization, browser version, device type, and so on. By analyzing

the customers’ interaction traces, each customer will be attributed a specific profile that

describes his areas of interests. The interest profile is updated on each of the customer’s

interactions. External data sources are also used to enhance the classification and

evaluation of the user’s points of interest. The semantic concepts that have been

attached to data are reused to compute similarity between customers. The harvested

data helps to retrieve all users that are more likely to be interested in a document,

when the user performs a new query on the interface, thus closing the usage loop.

6

1.2. Scientific challenges

1.2 Scientific challenges

Usually, in classical integration systems, user input is heavy. Everything has to

be hard coded, from data source interface to schema mediation. One can choose to

rely on service interface to connect each data source, but there is still a huge need in

terms of configurations. Another solution would be to extract data from data sources

and store it in a common format, to construct views over this data to perform queries.

However, each time a data source changes or is updated, stored data becomes obsolete.

In these systems, every new use case needs a new approach.

The objective is to design a system which would be able, starting from a given

number of data sources and a user-defined query, to identify which data sources could

provide the desired concepts, and to interconnect these data sources in order to answer

the query. In this context, there is a need for an approach which could easily adapt to

data sources without having to recode the entire solution for each new scenario. First

of all, it is necessary to identify a pattern in data source combination, and to identify

the necessary steps of this global integration process. Secondly, having identified these

tasks, build an adaptive framework to automate data integration from heterogeneous

sources.

The global objective of this work is to propose a solution which is able to extract

structured and useful information (i.e. smart data) from a set of predefined data

sources. The solution we propose must be able to adapt to the different specificities of

scenarios or data sources. The data samples extracted from the data sources have to

be integrated in response to a set of user-defined conditions (pre-conditions, exclusion

of some values, etc.) forming a data query. The generated homogeneous linked data

set must respect a given quality level: it must not contain duplicates, malformed data,

etc. In addition, our proposed solution needs scalability and responsiveness, i.e. we

must respect a reasonable response time and must adapt to the scenario even when

handling sensitive data sources. Sensitive data sources could be large volumes, data

sources with a high latency, or data sources with a high update frequency.

In order to adapt to data source diversities, we have identified the following chal-

lenges and scientific locks to address :

1. How to guarantee a dynamic and transparent data source management. It must

be possible to transparently add or remove a data source at runtime without any

need of hard coded information. There is a need for a formalism to represent

this diversity of data sources.

7

Chapter 1. Introduction

2. How to provide dynamic data processing. The solution needs to adapt at run-

time to data sources that require different processings (large data volume, fre-

quent update, latency).

Once we will have solved these data-source challenges, by introducing our first

solution to automatically handle data access, we will have to implement the strategies

we proposed in a software architecture, focusing on scalability and responsiveness. To

do that, the solution must be scalable and support a large number of data sources,

and a variety of data source types, while offering low response time. This will lead to

the following new challenges:

3. Given a sequence of tasks to execute, how to adapt the orchestration of these

different tasks in order to optimize the global process in terms of response time

and relevance.

4. How to implement such a mechanism in a software architecture, providing the

flexibility and the adaptability that our solution requires in order to adapt it

to every kind of scenario.

Finally, when data access and combination challenges will have been solved, we

will focus on quality of data, by considering the uncertainty that can appear in Web

context, and try to solve the following questions:

5. What is the most relevant way to represent uncertainty on the Web ?

6. In what way could this affect Web browsing and automatic information retrieval

(hypermedia navigation) ?

In the next section, we summarize the contributions we propose in this thesis to

answer these challenges.

1.3 Contributions

After having analyzed the necessary steps to complete a global data source combi-

nation process, we propose the following contributions in response to these challenges:

1. First of all, we focus on data sources, and how data source characteristics influ-

ence data extraction, future usage and combination capabilities. We propose a

meta-model that allows us to describe data source characteristics in a flexible

way. In order to demonstrate the necessity for this meta-model, and in order

to provide a basis for our further work on data access, we instantiate a set of

8

1.4. Thesis Organization

models based on our scenario, and demonstrate how these models can be used

to adapt data processing according to data characteristics.

2. Then, based on these models, we define some specific data access strategies that

will rely on data source characteristics to optimize data source access and data

extraction. These strategies will provide the required dynamic data processing.

3. Secondly, we focus on these data access strategies based on data source charac-

teristics, and propose a framework in order to create adaptive workflows that

will help to complete the combination process. These adaptive workflow tech-

niques will help to improve the required scalability and responsiveness.

4. The adaptability required by our scenario leads us to propose a distributed

approach. So, after having analyzed the main different existing design patterns

to build a distributed Web software architecture, we will define the outline of

what we call a smart data architecture, where each component handles a specific

part of the process. We envision the different components of the architecture,

and rely on previously introduced data access strategies to propose architecture

optimizations, and to improve the adaptability of our approach.

5. Finally, we focus on the concept of data uncertainty and how it can affect data

combination on the Web. In order to improve the data quality of our approach,

we propose a theoretical definition of the notion of uncertain Web resource

and propose an interpretation model to access their uncertain representations.

Then, we propose an algebra to evaluate this uncertainty in the context of clas-

sical hypertext navigation that allows us to combine data from several uncertain

Web resources.

6. We rely on these models to develop a set of specific operators and algorithms

to evaluate uncertain data queries.

1.4 Thesis Organization

The rest of the dissertation is organized as follows:

In Chapter 2, we provide the background knowledge which underlies our different

proposals. First, we present the key concepts around the architectural style of the Web,

from low level protocols to high level service technologies. We quickly present works

related to semantics, presenting linked data and semantic enhancement approaches.

Finally, we review the basis of data integration.

9

Chapter 1. Introduction

In Chapter 3, we focus on data sources and propose a declarative approach to

represent them. We propose a meta-model to create data models and data source

models. Based on these meta-model and models, we propose different data access

strategies to adapt data source characteristics.

In Chapter 4, we rely on the previously introduced models and strategies to propose

an adaptive resource-oriented architecture. We improve this architecture and show its

adaptability by proposing an optimization according to data volumes.

In Chapter 5, we go further into our data quality objective by proposing an ap-

proach to define uncertain Web resources. We enrich it with an interpretation model

and algorithms to handle uncertain resource composition, especially in the context of

query answering by hypermedia navigation.

In Chapter 6, we provide a general conclusion and discuss some possible directions

for future research.

10

Chapter 2

Background Knowledge

In this chapter, we overview the key concepts in the areas where our contributions

take place. First of all, we present the architectural diversity of Web applications, from

principles of HTTP and URIs to high-level service architectures. In a second time,

we perform a quick review of semantic Web technologies and linked data principles,

which are useful to improve automated (or semi-automated) data integration. Finally,

we overview the basis of data integration, and formally propose a set of tasks which

are required to perform a data source combination process. Each section presents a

background of the aforementioned fields, detailing the required notions to introduce

our approach.

2.1 Architectures of Web Applications

Nowadays, information systems are more and more distributed across the Web,

physically or logically. We are now able to take full advantages of advanced Web

technologies to interconnect our systems, formerly trapped into static core-oriented

applications. Relying on this interconnection, data comes and goes between servers,

hosted on the Web and available for any eventual stakeholders.

In this section, we review the evolution of Web applications, by presenting different

paradigms and architectures. We present their principles, and some of the issues that

may raise.

11

Chapter 2. Background Knowledge

2.1.1 Architectures and Paradigms

The evolution and the opening of our information systems, associated with the

growing diversity of devices, has forced us to change architectures and technologies to

improve their interoperability. In this context, distributed architectures have become

essential, since they propose highly decoupled features. In this chapter, we overview

the key concept of Web architectures, by reviewing the technologies that are used at

the different levels.

Service-oriented paradigms and architectures

Service-oriented computing is a computer software design paradigm, where an in-

formation system relies on separation of concerns to isolate operations. Web services

are software components that are separated according to their logic, and made avail-

able on the Web by their provider. These services can be deployed on several locations,

provided by different organisms, and relying on different logic. These distributed capa-

bilities are combined to accomplish a final goal. This way, clients can fully concentrate

on which results they want to achieve, without having to focus on smaller issues. In

order to help create these distributed applications, Erl et Al. [Erl, 2005] defined sev-

eral principles that form a methodology for engineering software components that are

decoupled, cohesive and reusable, regardless of their location. In the following, we

present these principles:

— Loose Coupling implies that a service does not need to have knowledge about

the context or other services to work

— Abstraction makes components hide their implementation behind a uniform

interface

— Reusabilitymaximizes the effort of separating concerns into components in order

to reuse them

— Autonomy ensures that components have control over their implementation and

are independent from their execution environments

— Composability ensures that components can be combined in order to solve dif-

ferent kind of problems

These principles guarantee the independence of services, providing a simple way to

quickly build applications by simplifying feature design. On top of that it allows parts

of a final architecture to be developed and hosted by third parties. It helps to build

service oriented architectures in a distributed and flexible way.

12

2.1. Architectures of Web Applications

These service oriented architectures are based on three important parts: providers,

consumers and mediators. Provider gives (or rent) an access to a part of its softwares,

which will be used by a consumer (the client) that has a need for this specific feature.

Interactions between clients and services are handled by Mediators.

Resource-oriented paradigm

Resource-oriented architectures have gain benefits respectively from the SOA prin-

ciples and from the REST constraints [Fielding and Taylor, 2000]. This kind of archi-

tecture relies on the concept of resource, and respects the REST architectural style.

According to REST principles, resources are the key abstraction of information. Ev-

erything that can be named can be a resource: a resource can provide a single object:

such as a document or an image, a temporal service (weather in a city at a given time,

etc.), a collection of other resources, or the connected interface of a physical object

(connected objects, sensors, etc.).

According to REST principles, resource-oriented architectures is a software archi-

tecture where services exchange resource representation amongst HTTP transport.

Services and resources are identified with self descriptive URIs. Doing so, resource-

oriented architecture becomes the most generic and adaptable kind of architecture,

with a complete respect of Web principles, making them well thought and relevant.

REST architectural style defines its principles as a set of constraints that architec-

tures should respect in order to remain REST-compliant, i.e. to respect Web architec-

tural style:

— Servers and clients are independent, user interface is client-side, storage is

server-side (e.g. databases), doing so, we improve the scalability and the porta-

bility of clients across multiple platforms

— Communication must be stateless, such that each request from client to server

contains all the necessary information and cannot take advantages of any stored

context. This improves visibility (because request data transports request con-

text, and also the nature of the request), reliability (reproductability of failures),

and scalability (no context storage means that server will quickly free resources).

— Cache constraints defines that request responses should explicitly indicate if

they are cacheable or non-cacheable, and for how many times. This improves

scalability and efficiency, by reducing the amount of data exchanged through

the network (induce by the statelessness of the application)

13

Chapter 2. Background Knowledge

— These principles require a uniform interface in order to guarantee an optimal

access to resources, this uniform interface is defined by the following princi-

ples, which we review later: resource identification, manipulation of resource

through representations, self-descriptive messages and hypermedia as the engine

of application state

— Finally, one last constraint is proposed in order to allow client functionality

to be extended. REST allows download and execution of code on demand,

under the form of scripts or applets, in order to improve system extensibility

and to simplify client code by reducing the number of features required. Since

this constraint can reduce the visibility introduced before (especially about

the reproductability of errors), it is an optional constraint. This final notion

allowed a whole area of programming languages to expand and evolve, through

proposals such as EcmaScript and later JavaScript.

After having presented RESTful architecture constraits, we review the four prin-

ciples which provide a uniform interface, as they are the key concepts we rely on to

describe our data sources and build our architecture.

1. The main concept of uniform interface is the identification of resources on the

Web. Each resource must be identified in a unique way, even if the data it

represents can change over time. It is important to be able to identify every

resource, even after a long time. This will be helped by the definition of URIs,

which identify resources precisely in a network. Thanks to URIs, we access

every resource in a unique way, and there must be only one way to access it.

Different URIs must lead to different resources, even if they have the same

representations. In our context, we will apply the same principles to our data

sources. We must note that data sources on the Web are also identified by

URIs. As an example, a tabular data source (like CSV for comma separated

values) could be identified with a pretty simple URI such as: http://example.

com/path/file.csv. In the same way, a database endpoint can be defined by a

URI of the following type: oracledb://User=user;Password=pass@domain.

com?PollingId=polling, containing more information about the source: such

as the protocol, the authentication (not all authentication protocol), and other

specific information.

2. Resources are managed by manipulating their representations. A resource rep-

resentation is the information (and metadata) which characterizes the state of

a resource at a specific time. In general, even if it is less precise, this resource

14

2.1. Architectures of Web Applications

representation is called file or document. These representations are exchanged

through HTTP, and according to the type of demand (control message), the

retrieved representation could represent the actual (or a desired) state of the

resource, at the time we request it. In the same way, to modify a resource, one

new representation has to be created and sent (posted) to its location.

3. Manipulated representations are self descriptive, they contain the sufficient

metadata allowing their understanding (e.g. format). As an example, the

encoding is clearly indicated inside the document, so that clients can adapt

the process. In our context, we want to take advantages from these resource

capabilities. We assume that the information carried by data source should be

sufficient to successfully process a data sources.

4. Finally, hypermedia as the engine of application state, implies that a resource

should indicate how to be processed, and the available options in order to alter

its state (deletion, edition, etc). Doing so, a client may instantly know which

actions are available with this resource.

These two architectural paradigm, resource-oriented and service-oriented, are de-

rived from the concept of services. In the next section, we present some general

concepts about services.

2.1.2 Services

The W3C 2 defines a Web service as a software system designed to support interop-

erable machine-to-machine interaction over a network. Basically, Web services define

a standardized way of integrating Web-based applications or features using different

types of technologies, languages and formats.

WSDL/SOAP Services

The most known Web service approach, is called WSDL/SOAP services. This

approach is an extension of the object-oriented paradigm in order to enable Web

access to its objects and features, requested on demand. Web services are deployed

software components, hosted on application servers, whose operations are accessible

to the outside.

2. See https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

15

Chapter 2. Background Knowledge

These services rely on the Web Service Description Language (WSDL) for self-

description and on the SOAP protocol for data exchange. WSDL description encapsu-

lates different pieces of data about the service endpoints, such as available operations,

input and output, with their data types. Service description is independent from

service implementation and platform language. In order to exchange with these ser-

vices (callbacks and responses), we rely on the SOAP protocol to wrap XML messages

exchanged between service consumers and providers.

This type of service has received a huge support from the community, since they

open oriented object software to the Web. A lot of approaches have been proposed

to automate their conception from standalone applications, to allow their callback

through electronic mail SMTP protocol, etc.

Despite these advances, this kind of services merely use HTTP as a transport pro-

tocol and do not correctly take advantages from its application-level features (provided

by HTTP operations). Moreover, the WSDL language together with the SOAP proto-

col have proven to be very complex, which motivated the move towards a more simple

conception of services, in order to respect Web principles.

RESTful Services

One of the reasons WSDL description is so important in the SOAP approach, is

because each service has a specific interface, impossible to use without its description.

RESTful services respect REST constraints, so they manipulate resources, and can be

accessed through HTTP methods, making them really simpler to use.

In the Open System Interconnection model (OSI), which defines communication

standards for all information systems, the lower level where data appears is the level

5 (session level). The session level is where communication is managed between hosts,

and where data is transfered. Hypertext transfer (HTTP) is one of the main protocol

used at this level, and it handles communications on the Web. Data is hosted on

servers, deployed as resources and made available to the Web. Clients work with these

resources, using HTTP requests to create, modify, delete and access them. A resource

can be accessed with different operators, which are called HTTP methods, allowing to

read, update, create or delete resources on a domain. In order to manipulate resources,

HTTP methods work with representations which are the physical instances of these

resources. According to RFC 2616 3, HTTP defines several types of request:

3. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

16

2.1. Architectures of Web Applications

— GET is used to retrieve the representation of a resource (at a given URI), it

should not alter the resource, and without any information, it should retrieve

the current state of the resource

— PUT sends a representation to a given URI (creates the resource or updates it

if it exists)

— DELETE deletes a resource at a given URI

— OPTION retrieves the communication options available

— POST has a server-dependent behavior. It can be used to annotate a resource

(by sending a partial representation), to send data to a URI for a specific process

(classical form usage on the Web). In some cases, POST can also create a new

resource, and in this particular case, the response message includes the URI of

the newly created resource.

Relying on the previously introduced REST principles [Fielding and Taylor, 2000],

a more conform approach has been proposed under the form of RESTful services.

These services can easily be maintained and integrated with existing Web infrastruc-

tures since these services are essentially based upon Web standards, such as HTTP

and URIs. The simplicity of this approach has made it widely adopted, especially for

what it brings to Application Programmatic Interfaces (APIs) and how it simplifies

combination with Web applications. Nowadays, a lot of Web 2.0 applications and

almost all social platforms (such as Facebook, Twitter, Instagram, Reddit...) provide a

public API implemented as a set of RESTful services.

2.1.3 Service composition

The powerfulness and the adaptivity of Web architectures, and how they have

grown so fast, came from their ability to organize task management. Several ap-

proaches have been proposed to improve composition and orchestration of tasks into

what we call workflows. A workflow is a tool that is used to modelize and automate

task sequencing inside a software architecture. It is a representation of data flows (in

terms of inputs and outputs) between the different components (in our context, ser-

vices) of a system, in order to complete a business process. A lot of approaches have

been proposed in order to model workflows, especially for SOAP/WSDL services.

17

Chapter 2. Background Knowledge

Classical business process management

In order to combine services in classical architectures, several languages have been

proposed, such as BPMN (Business Process Model and Notation), which is a model

to represent business procedures as diagrams, modeling interactions between services,

and BPEL (Business Process Execution Language) which is an orchestration language

based on XML allowing to build service workflows executable by an orchestrator.

Whereas these standards fully integrate with SOAP/WSDL services, and are par-

ticularly efficient to represent a static workflow, they still presenta lack of adaptability.

One major problem is the necessity to hard code a large part of the useful informa-

tion. Thus, when a change of context occurs, workflow instantly becomes obsolete in

cascade, and there is a need for a new workflow definition. Although many approaches

have been developed in order to solve these issues, with various degrees of success,

there is still a lack of flexibility.

RESTful orchestration

Since RESTful services had been proposed to simplify Web service development, it

is necessary to define a workflow language able to interact with this kind of services,

with respect to REST principles. Here we present some approaches that propose a

solution to handle the composition of RESTful services.

Eckert et Al. propose a REST open workflow solution [Eckert et al., 2014], which

relies on using open workflows [Stankovski et al., 2010] to represent the combination

and orchestration of the necessary resources. Their approach proposes a workflow

model for RESTful services described with Linked Data (RDF). They define three

aspects which represent the basis of a workflow: Specification, Composition and Exe-

cution.

— The specification defines how services and resources are represented with a

name, as well as several inputs and outputs.

— The composition will define how to connect these components, inputs to out-

puts.

— They describe workflow execution as the following: a service is started by send-

ing (through POST) the configuration of an execution, i.e. a representation of

the resource context; when a service or a workflow is invoked, a job instance

is created, and this instance will send asynchronous information about process

status. Once finished, the job URI points to the result of the execution.

18

2.1. Architectures of Web Applications

They propose a workflow ontology based on the Open Workflow.

Rosenberg et Al. propose Bite [Rosenberg et al., 2008] a lightweight composition

language to work with RESTful services and to create mashups. The Bite process

model proposes a simple flat graph (except loops), with activities and links between

them. The execution logic relies on conditional transition between activities. Bite

workflows are process definitions, in which it is possible to describe the data and the

control flow. Activities, such as basic HTTP requests, utilities (wait, execution of code,

etc.), and helpers are sequentially executed, according to workflow definition. This

kind of approach is well adapted for creating fast built mashups or Web compositions,

but has a too static conception. Once created, workflows cannot be adapted, and any

change of context will lead the user to produce another workflow.

Brzeziński et al. [Brzeziński et al., 2011] propose a Restful Oriented Workflow

Language (ROSWELL) and the according execution engine. ROSWELL is a declara-

tive business process language which support the use of RESTful Web services. This

language can be used to described exchanges between REST resources such as resource-

oriented workflows. Their approach relies on a logical syntax, similar to the prolog

language, in order to represent interactions between resources. Authors strongly rely

on RESTful principles to define their language, uniform interface is guaranteed by

keywords to describe both description and invocation of resources, connectedness and

addressability can be maintained with the possibility to split and recreate URL queries

inside workflow description. However, the preservation of statelessness is not quite

clear in the approach. The weakness of the approach stands in the fact that the work-

flow needs to be translated into another language to be functional, which limits the

adaptability of the approach.

As a conclusion, the problem of restful resource composition in classical workflows

is the lack of respect of restful principles in standard approaches. This problem is also

due to functional point of view of classical services, i.e. we invoke a service to execute

a process, which restful resources are not. We need to extract the functional part of

services and there is a need for an representation of this functional behavior inside the

workflow.

What comes out from this analysis, is that we need to configure our resources,

to generate the configuration of execution context in order to prepare our execution.

Workflow languages have to implement data handling inside the workflow, i.e. it is

necessary to process the data, decompose the resources and create the new configura-

tion instances directly in the workflow. Then the workflow will be able to fetch the

19

Chapter 2. Background Knowledge

resources through HTTP requests. Most of the existing languages only propose an

SOA overlay over REST resources. As an example, in these approach, we do not see

the use of HTTP status code to improve the process (1xx codes for standby, 2xx codes

for OK, 4xx codes for wrong configuration, 5xx to perform fault tolerance).

2.2 Semantic Web and Linked Data

In this section, we perform a review of semantic Web and linked data principles.

We review some approaches that enhance semantics around service description and

composition, and finally, present existing approaches for semantic enhancement of

data sources.

2.2.1 Linked Data and Semantics

One of the most significant descriptions for the semantic Web objective is from

[Berners-Lee et al., 2001] and says: “the semantic web will bring structure to the mean-

ingful content of Web pages, creating an environment where software agents roaming

from page to page can readily carry out sophisticated tasks for users.”. This is the

first objective of semantic Web: to bring more meaning to data in order to im-

prove reuse capability of this data. The Web of data [Bizer et al., 2007] (or linked

data) is a concept derived from the semantic Web [Berners-Lee et al., 2001] in order

to generate a machine-readable Web as an extension of the human-readable Web.

The main objective is to generate a Web exposing and interlinking data previously

enclosed within silos. Linked data initiative has led to the publication of billions of

pieces of data, transforming the traditional Web of documents into a Web of linked

data [Heath and Bizer, 2011]. In the Web of linked data ideal, data consumers, i.e.,

users, developers and their applications, make use of links between pieces of data

to discover related data stored in remote servers, augmenting their added-value and

enriching user experience. The principles of the linked data initiative are the follow-

ing [Bizer et al., 2009]:

1. Use URIs as names for things. This will extend the scope of the Web from

online resources to encompass any object or concept in the world (especially

helpful for Web of things)

2. Use HTTP to look up at these URIs. This principle enables the dereferencing

of these URIs over the HTTP protocol into a description of the identified object

20

2.2. Semantic Web and Linked Data

or concept.

3. When someone looks up a URI, provide useful semantics (representation of

data meaning), using standardized formats, traditionally RDF. The purpose of

advocating a standardized format is to ease the interoperability and contribute

to the scalability, as with HTML in the Web of documents.

4. Include links to other URIs, so that users can discover more data. This principle

follows the idea of hyperlinking documents in the traditional Web. The main

difference is that in linked data, links are typed, e.g, two persons can be linked

with a hyperlink of type friend or relative.

All the metadata representing functional and non-fonctional information about the

data, i.e. the meaning of data, is called semantics. In order to represent semantics,

several notions are used, most important being the notions of graph and concept. A

graph is a set of resources (which we call concepts) that share relations. As an example,

we could define the two following concepts: animal and dog, which are connected each

other by the following relations: dog is a type of animal. In the RDF format, which

is used to describe conceptual graphs, this statement is called a triple, and is always

defined between 3 elements: subject, predicate and object. Here, dog is the subject,

animal the object, and is a type of is the predicate. An object from a relation can

become the subject of other relations, as an example: animal is a living thing. In

the same way, subjects can become objects: Sammy is a dog. Finally, predicates can

be any type of property between two resources: Sammy lives with John, John wears a

coat.

Since concepts are resources, they are identified by URIs, manipulable through

HTTP, etc. In order to organize knowledge about a specific domain, ontologies have

been proposed. Ontologies regroup the possible concepts from a domain, and the

different types of relation they can share. As an example, the FOAF (friend of a

friend) ontology [Brickley and Miller, 2007] was originally built in order to describe

people relation on the Web, while the QUDT 4 ontology was developed in order to

build a consistent and standardized vocabulary about Quantities, Units, Dimensions,

an data Types. This ontology can be used to automate the conversion of dimension

from a unit to another.

Since these principles were proposed we have witnessed an outstanding growth in

terms of ontologies and datasets, see for example DBPedia, a machine readable version

4. See http://www.qudt.org/

21

Chapter 2. Background Knowledge

of Wikipedia knowledge (http://dbpedia.org/); Geonames for geographical infor-

mations about countries, etc. (http://www.geonames.org), MusicBrainz for knowl-

edge about music, artists and records (http://musicbrainz.org/) or DBLP for scien-

tific publications (http://www.dblp.org/). In addition, the appearance of new stan-

dardized format, like N3 [Berners-Lee, 2005] or JSON-LD [Lanthaler and Gutl, 2012],

which allows to annotate JSON with linked data concepts. JSON-LD has become a

Web standard as recognized by W3C 5.

2.2.2 Semantic annotation

In our data integration context, semantics could provide useful information about

the manipulated concepts. Relying on these concepts could help to make a matching

between data sources, which is specially useful when trying to combine sources. There-

fore, there is a huge effort from communities to propose approaches that help concept

recognition, and semantic annotation of data sources. In the following, we overview

some of the approaches that have been proposed in order to automate semantic anno-

tation of documents, or semantic concept recognition.

Furth et Al. [Furth and Baumeister, 2013] propose an approach for the seman-

tification (enrichment with semantic description) of technical documents. It relies on

different working steps over the document to be enriched. First, it converts the docu-

ment into a standard format, then it splits the document into segments, and applies

natural language processing techniques to the document parts in order to extract a set

of ranked concepts. This set of concepts represents the main subject of the document.

The strength of this approach is that it does not require a huge set of training data

to provide a classification. They provide a performance evaluation tool by adding a

manual step allowing domain experts to review results.

Venetis et Al. [Venetis et al., 2011] describe a system that recovers semantics

from tables existing on the Web. Their solution relies on the help of a set of millions

of other tables to identify the role (or subject) of each column/attribute. The solution

stands on performing similarity computation with the corpus of tables and extracting

entities with the help of natural language processing over table values. The main

drawback of this approach is that it requires a huge amount of objects in the corpus

to analyze. Moreover they rely on millions of English-speaking documents to build

their relation and entity extractor, which severely decreases the scalability of their

5. See https://www.w3.org/TR/json-ld/

22

2.2. Semantic Web and Linked Data

approach.

In TARTAR [Pivk, 2005], Pivk proposes a solution for extracting knowledge from

tables picked up from the web. The solution, based on Hurst’s table model [Hurst, 2001],

relies on the analysis of table across different points, including physical, structural,

functional and semantical dimensions. The first step is a regular matrix extraction

from physical dimensions. Analyzing the structure allows to determine table reading

orientation, to dismember a table into logical subpart and to resolve types. The func-

tional table model helps to deduce the role of each cell. A last step provides semantic

concepts and labels for each column, using external tools such as WordNet lexical

database. These models and concepts allow to populate a domain ontology from table

rows.

The previously introduced approaches show the effort made towards automatic

semantic annotation of data. For the sake of simplicity and effectiveness of our ap-

proach, we decided to rely on a semi-automated technology in order to add semantics

to our data pieces. We present in the following different solutions that rely on the

design of mapping files in order to directly generate Linked Data from data sources.

There are different approaches in this area, technical approaches as well as theoretical

approaches.

Han et Al. present in RDF123 [Han et al., 2008] an open-source tool for trans-

lating spreadsheet data to RDF. They rely on a column-based mapping, where a set

of expressions represents the structure and orchestration of cells in a tabular row.

They define a whole language to describe these expressions, allowing to define control

branches and data manipulations. The generated mapping file containing the set of

expressions can be serialized as RDF and placed as a link in spreadsheet metadata,

for reusability.

The Triplify [Auer et al., 2009] solution proposed by Auer et Al. allows to attach

to a pre-existing system a module that will publish data as a Linked Data store. The

solution creates a set of configuration files and associates semantic concepts (URIs)

with SQL requests. Once the configuration has been created and the module has been

integrated to the system, the module is accessible as a web page within the application

and will be registered with a central repositories of data sets. This solution does not

allow any flexibility, since each configuration is hard coded in the system. Otherwise,

the system does not provide any computational access, and access is only accessible as

a generated HTML/JS interface. Accessing the generated linked data pieces in order

to manipulate them is not possible without changing the core of the product.

23

Chapter 2. Background Knowledge

Bizer et Al. propose the D2R [Bizer, 2004] platform, which gives access to rela-

tional databases through a SPARQL endpoint. The platform relies on a virtual RDF

graph, which associates concepts and relations to SQL requests. D2R gives access to

databases relying on a N3 mapping files which can be generated by one of the provided

platform tools. This tool relies on inherent database structure (foreign keys and rela-

tions), to deduce relations between table fields. In order to make a database available,

the configuration has to be generated and the platform has to be launched through an

application server.

We rely on these latter approaches to perform our semantic annotation task, by

automatically creating the mapping expression with help from external and third party

services for semantics extraction and concept recognition.

2.3 Data Integration

In this section, we review the basis of data integration focusing on data source com-

bination. In this context, we only consider the integration task that consists in combin-

ing data from different sources to provide a unified view to the user [Lenzerini, 2002].

In our approach, we focus on a graph-based composition of documents, where we

combine data from data source sequentially, and rely on common values to combine

data sets, in the same way that a join would work on pivot fields. In Levy et.

Al [Levy et al., 1996], authors argue that knowing data source description (viewed as

a set of inputs and outputs), should be sufficient to combine the data it contains. We

rely on this notion to propose a step-by-step approach to data source combination.

Finally, we propose a review of state-of-the-art architecture for data integration.

2.3.1 Data Integration Processes

In this subsection, we describe the complete integration process as we see it, starting

from a data source. We separate each steps of this process, in order to isolate each

concerns.

The starting point of our integration process is a set of data sources from which

we want to combine the data. As an example, we want to combine a data source

containing user profiles (email, name, address, etc.) hosted on a public server, with

other data sources containing another list of user profiles which associates different

other information with email addresses (such as phone number, purchase history, etc.).

24

2.3. Data Integration

We propose a formal representation of these tasks, in order to help our proposal

design.

Data Extraction

The first task is the extraction from data source (download, callback, request).

This task objective is to retrieve all or part of the data contained into a data source.

Each data source has several characteristics (URI, format, etc.) which should be

necessary and sufficient to extract the data it contains. In our example, one data source

is a CSV file hosted at a URI. In a data integration approach, the data extraction

process is one of the most important step, during which every data source format

requires a specific process. In the next chapter, we focus on this task, by proposing

models to handle data source diversity. In this chapter, we will call this task Data

Extraction, and we do not focus on all the challenges it raises, since we address this

challenges later.

We consider a data source DSa, defined by a set of characteristics. We define a

download function Download() that extracts a quantity of data D from a data source

DSa.

Download(URIa, Sa[, Ka[, Q]]) = Da

where URIa, Sa represent the data source DSa (URI and Model) and Da the data

extracted.

An access function can accept optional parameters (query for databases, authen-

tication parameters etc.). In this case, the download function handles the specific

authentication or secure protocol to access the data source where Ka represent the

authentication information required (user/password, ssh key, api key, etc).

In case of a sub extraction, when only a part of the data is retrieved (database

query), the extraction process requires additional information about the data to ex-

tract. Q contains the information required to extract only a sub part of the data (offset

and limit for an API, query for databases, etc.)

Data Format

Considering that data has been retrieved, there is a need for a common format, in

order to compare what is comparable. We assume that each data set can be trans-

25

Chapter 2. Background Knowledge

formed, with more or less difficulty into a key-value structure. Given this assumption,

we choose to use a key-value model as pivot format to manipulate data.

In order to be processed, data needs to be transformed from its raw extracted

format to a format we can manipulate. We define a decoding function Decode() which

will transform the data into our standard format.

Decode(Da,r) = Da,f

where Da,r is the data extracted into its raw format and Da,f is the transformed

data.

Semantics

In order to combine data sources, semantics is important, because, it informs about

the meaning of fields, what fields represent. Each data source represent a semantic

graph, where data fields and keys are linked together according to functional properties.

This graph is used to express the meaning of each piece of data represented in a data

set. The semantics underlying databases, as an example, can be observed looking at

the relations between tables.

According to Linked Data principles, each semantical information can fit into a

triplet: (subject, predicates, object). A user which has an email address can repre-

sented as: (user, vcard:hasAddress, ”user@mail.com”). In our approach, we define Ga

being the semantic graph of a data source DSa.

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

PREFIX xsd: <http://www.w3.org/TR/xmlschema−2/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value ;

? clic a al : clic ;

al : clic email ?email ;

}

Listing 2.1 – Example query from the scenario

As an example, Listing 2.1 present a SPARQL query from our scenario. In this

query, several data source subgraphs are covered. The set of triples:{ ?email a al:email,

?clic a al:clic, ?clic al:clic email ?email} indicates a relation between two concepts, the

first being a al : email, the other being a al : clic. This subgraph is covered in the

customer activities database, which attach user activities (here, clics) with customers

(identified by emails).

26

2.3. Data Integration

According to use cases, and depending on data sources, the amount of necessary

semantics to be able to combine source can vary. In some cases, data only need to be

annotated with semantics. In other cases, it requires a full data transformation into

linked data.

In order to transform the data extracted from a data source into Ia, an instance

of its semantic graph/subgraph, we define a mapping function Transforma() which

is defined as:

Transforma(Da, G) = Ia

where Da is the data extracted from data source DSa, G is the linked data graph, and

Ia another linked data graph produced from DSa.

When semantic annotation is sufficient, we define Annota, which annotate a data

set with linked data:

Annotatea(Da, G) = DAa

where Da is the data extracted from data source DSa, G is the linked data graph, and

DAa the data set annotated with semantic concept from the graph.

Combination

Once data has been extracted and semantically enhanced, it can easily be combined

into a new data set. Two (or more) semantically enhanced data set can be integrated.

During this task, concepts are compared and aligned each other, in then the data sets

are combined to form a new one We define an integration function called Combine()

which takes as input the data sets that have been previously annotated and combines

them into a new one.

Combine(G,Da, Db, ...) => Dmix

where G is the semantic graph of manipulated data and (Da, Db, ...) are seman-

tically transformed extracted data from data source (DSa, DSb, ...). Finally, Dmix is

the smart data set result.

The function relies on graph instances to link the concepts of the different data sets

with each other. It analyzes the data pieces which have to be combined and provides

on-the-fly mediation by fulfilling the data piece conversions and transformations with

help from a set of predefined mediation processes. Based on the domain ontology,

the integration function combines the data sets based on their common concepts.

27

Chapter 2. Background Knowledge

The function performs concept matching to link concepts and perform a Cartesian

product over matching data pieces (i.e. similar to a database join with a pivot).

Before performing the combination, the integration function analyzes data and detects

heterogeneities, providing mediation based on our previous work with the DMaaS

approach [Mrissa et al., 2013]. The DMaaS approach proposes an architecture that

solves data inconsistencies in service compositions. The approach focuses on service

descriptions to analyze conceptual compatibility, and resolves conflicting aspects with

help from mediation services.

Data Consistency

One important part of our work, is to provide qualitative data. In this context of

data quality, we identify different types of data problems:

— Duplicates, when a data set contains several copies of the same piece of data

— Contradictions, when a data set contains two pieces of information that can

exists together, we call this data mutually exclusive

— Noise, when a data set contains information which it should not contains

To remove these malformed pieces of data, we define another function Clean() that

removes the malformed part, noise and inconsistencies that may appear in a data set

Da after or before processing.

Clean(Da) => Da,clean

We identify another specific case, when according to a scenario, data should be

processed to remove data pieces responding to specific (user defined) conditions. This

function takes as input a set of conditions, which are called filters.

Filter(Da, f ilters) => Da,clean

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

PREFIX xsd: <http://www.w3.org/TR/xmlschema−2/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value ;

al : blacklist status ?status .

? clic a al : clic ;

al : clic email ?email ;

al : clic date ?date .

FILTER (?email value != 1 &&

?date >= "1411477450"ˆˆxsd:date)

}

28

2.3. Data Integration

Listing 2.2 – Another example query from the scenario

As an example, Listing 2.2 present a SPARQL query from our scenario, in which

two filter are applied. In this query, we filter emails making sure they does not have a

blacklisted status, and we also filter the date associated with our user activity.

The different processing tasks defined here will help to complete the tasks that

participate in the integration process. In the following, we present how these functions

can be combined into different processing workflows depending on the characteristics

described in the data source and data models.

2.3.2 Architectures for Data Integration

The study and design of architectures to automatically integrate data from diverse

resources and produce smart data is currently a hot research topic explored by the

community. Smart data has caught the interest of the community as a natural devel-

opment after the interest around big data. The objective with smart data is focused

on producing high-quality data that is directly useful to the users, instead of big data

approaches that focused on building solutions to process massive data quantities.

Dustdar et al. present a peer data network architecture in [Dustdar et al., 2012],

where data sources are independent databases. They propose an infrastructure relying

on data services where tasks are separated into levels, isolating data management and

service integration. Their solution focuses on quality of data and provides service-based

optimization, such as peer replication, to resolve data issues. However, the paper does

not address data heterogeneity problems, assuming that schema mapping is sufficient.

In QuerioCity, [Lopez and Kotoulas, 2012] presents a smart platform to catalog,

index and query heterogeneous information from complex systems such as city data

portals 6. They focus on data integration and semantic annotation problems, mainly

on issues related to scalability, unpredictability of changing data and impossibility

to fully automate the integration process. The proposed approach clearly distin-

guishes between the data integration and data consumption tasks. In order to har-

monize data usage, data fields are converted to a standard format, annotated with

metadata and aligned with public ontologies (Dublin Core [Weibel and Koch, 2000] or

FOAF [Brickley and Miller, 2007]). The effort is placed in management of extracted

6. Such as Dublinked http://www.dublinked.ie/

29

Chapter 2. Background Knowledge

data, data access challenges and the needs which arise are not part of the scope. The

approach focus essentially on extraction of meaning and semantics from datasets as

well as provenance in order to provide a harmonized dataset. They do not provide any

information about data source classification, and assume that sources have to meet

the request format that the architecture supports.

In the same way, several approaches has been proposed to provide decision support

systems to perform Analytics-as-a-Service [Delen and Demirkan, 2013], such as Sun

et Al. [Sun et al., 2014], which propose to rely on a service oriented architecture to

provide data analytics over business data, relying on cloud and service technologies to

perform the discovery of data analysis services, but their approach does not address

the issues of how to access and characterize the data sets that will be processed.

Many of these big data approaches propose methodology and techniques to improve

data processing, and mapping algorithms [O’Donovan et al., 2015]. So far, none of

these approach address the data source issues, which is an important topic, since the

capability to extract and reuse data will come from these resources.

We rely on these approaches to build our proposal, improving the reusability and

loose coupling through usage of linked data services, automating the linked data efforts

and re-structuring the different layers of the platform according to our needs that

require reasoning about data and proposing a loosely-coupled approach for the different

tasks to perform on data sources.

2.4 Conclusion

In this chapter, we present the main concepts about Web architecture and Web

services, review the basis of data integration, and introduce the necessary concepts

about semantics. Later on, we rely on the strengths and weaknesses of all the presented

approaches to build an original and relevant proposal, following our global objective,

which is to provide an adaptive resource-oriented architecture in order to combine data

from heterogeneous data sources, based on semantics.

We take advantages from resource based approaches to build a generic, adaptive and

flexible approach. We rely on a generic architecture to perform the different tasks that

are required to combine the content of the different data sources. After that, we rely

on different existing techniques that allow to enhance data with semantics, to identify

or describe the meaning of extracted data pieces, by transforming or annotating data.

30

2.4. Conclusion

As an example, the JSON-LD format allows us to make a gateway between data and

linked data. In the following chapter, we introduce our first contribution, which focuses

on the different data sources capabilities.

31

Chapter 3

Model-driven Data Source

Management

3.1 Introduction

In this thesis, we focus on a solution to help combining data sources into homoge-

neous linked data, in response to a specific user-defined query. We propose a solution

based on a Web software architecture, to handle this publicly available data. While

this objective raises interest, automating the integration process remains a complex

task, and there is still a lack of generalized approaches, particularly when focusing on

the diversity of data sources. Indeed, one major difficulty of automating data source

integration is to handle data source access, and differences in data sources require

different approaches. Here are some of the many essential questions we ask about the

data sources, when trying to access them, in order to retrieve the data it contains:

1. Where is the data source located ?

2. What is the procedure/operation to access it ?

3. Does it require an authentication ?

4. What is the language/format used to request the source ?

5. What is the format in use to represent the data itself ?

6. What does the data represent ?

33

Chapter 3. Model-driven Data Source Management

3.1.1 Objective and scientific locks

Answering these questions will help to understand data sources, and how to adapt

clients. We refer to these answers as data source characteristics. Data sources can have

several characteristics (URI, format, authentication, etc.) that define the strategy in

use to interact with them.

On top of that, there are several data source characteristics that will affect or alter

data access: huge data, latent data source, or high frequency of update. This has

to be taken care of to perform relevant data source management. As an example,

extracting a large volume of data has a cost, and affects execution time. In the same

way, accessing a data source with a high latency requires specific techniques, since

every request to the source will increase the global execution time. In this case, it

could be interesting to setup temporary storage mechanisms, such as cache.

In this chapter, we address the following scientific challenges as sub-problems of

our global integration process:

— How to enable a dynamic and transparent data source management. There is a

need for a model that will carry data source capabilities, in order to lower the

quantity of hard coded information.

— How to provide a dynamic data processing: there is a need to provide an adap-

tive strategy at runtime according to data source characteristics. Different

characteristics require different processing (large data volume, frequent update,

latency)

— Finally, how to guarantee the scalability and responsiveness: in the end, our

approach must support a large number of data sources while offering low re-

sponse time. In order to do that, there is a need to identify the characteristics

that could create latency and slow down the process.

3.1.2 Motivating scenario

In order to build our proposal, we rely on a sub-scenario from our our global

company scenario. In this chapter, we only focus on the challenges related to data

sources. We introduce the following data sources, each of them presenting several

specific characteristics.

1. an internal linked service, i.e. consumes and produces linked data, providing

access to a small data set that describes the business data of the company. Data

pieces that come from this source are subject to privacy constraints.

34

3.1. Introduction

2. a SQL endpoint to a database that contains millions of tuples (very large volume

of information) with no semantic annotations, representing the customer base.

This data source has a low update frequency.

3. another SQL endpoint to a database that records user daily activities (high

volume of changing data) with 10.000/20.000 new tuples per day (updated

regularly, so it requires freshness)

4. a RSS stream that contains user update requests, it mostly contains data which

has to be saved or removed from data results (blacklist information)

5. a set of external sources, represented by a set of APIs (Twitter, Facebook) that

help construct interest profiles, as well as a Dbpedia SPARQL endpoint for

concept manipulation.

The scenario objective proposes to integrate the data from these data sources ac-

cording to a user request. This request can involve one or several sources, contain

specific data filters and/or required information. As an example, the following textual

requests, which can represent simple demands or more complex ones:

– “Retrieve the first name, last name and email address of a customer for which we

recorded an activity within the last seven days.”

This query example involves 2 data sources: the customer database and the activity

database.

– “Retrieve the last name and email address of all the customers, for which we have

recorded an activity on any campaign whose subject is ‘flower’ or equivalent, within

the last 4 days.”

This query is far more complex, and involves 4 data sources: business data linked

service (for retrieving campaigns and associated subjects), activities and customer

database, and finally, an ontology to lookup at concepts that are similar to flower

(plants, bloom, ...).

3.1.3 Contribution

In this chapter, we address different issues, by focusing on data sources aspects.

The data sources shown in our scenario present different characteristics, which severely

impact how data processing should be performed. Data samples and sources can

be difficult to process due to these characteristics. As an example, the problem of

manipulating large sources could be solved using cache techniques, but it requires to

35

Chapter 3. Model-driven Data Source Management

take care of data freshness. Moreover, the appearance of one or another characteristic

in a data source is highly unpredictable and may vary from one scenario to another.

This unpredictability of variation in scenarios clearly illustrates the need for a meta-

model that will set the design guidelines in order to provide the necessary adaptivity

to our approach. To build our approach, we design a generic metamodel and rely on

this metamodel to construct several other models focused on data source description,

access and processing. Each data source will be described with a combination of specific

characteristics that allow to perform data access. Our meta-model allows to describe

data sources in a flexible way and to generate models that in turn will provide adapted

data processing depending on the scenario. The provided scenario demonstrates how

the different models (data source model, data model and data access model) enable

specific data processing to handle data source characteristics.

Finally, by focusing on these data source characteristics, we should be able to define

different data access strategies, and de facto be able to adapt our process for each

data source. This chapter is organized as follows: Section 2 presents a quick review of

related work, by presenting approaches that enhance data source management and/or

access. In section 3, we define our meta-model to help data source characteristics

representation, and illustrate this model by instantiating a set of scenario based data

models and data source models. In section 4, we present our data access strategies, and

show how it could improve the general data integration process. Finally, we discuss

our approach.

3.2 Related work: Data source access

There are plenty of approaches that propose data integration based on data sources,

but most of the time, these state of the art approaches will focus on techniques to help

data source manipulation. Classical approaches that solved data source diversity issues

will require to wrap data sources with different types of overlay, to work with the same

type of endpoint. We identify several types of solution, with approaches described as

follows:

— using views to create ready-to-use data access over databases (such as Local-

as-View and Global-as-View approaches) [Halevy et al., 2006],

— performing abstraction of heterogeneous data source, using structured database

or XML to uniformly represent data [Pontieri et al., 2003, Rosaci et al., 2004]

— doing transformation into ontologies or RDF [Alani et al., 2007, Bizer, 2004] in

36

3.2. Related work: Data source access

order to work with reasoners above this generated data

— exposing data sources as services [Cramer et al., 2004] or allowing data access

through APIs [Groth et al., 2014] in order to work with these data sources in

the Cloud, as an example.

These approaches require a huge amount of work upstream in order to adapt the

solution to any kind of data sources. We believe that since data sources are available

on the Web, we should be able to access them directly, using the right client, without

having to transform the source.

The Atos Worldline company proposes a solution for the automatic management

of data coming from any kind of source, called SmartData.io [AtosWorldline, 2013].

The application provides a RESTful API through which it is possible to publish data

sources and data streams presented in several formats, such as CSV, PDF or RSS.

Data is then extracted from files, converted into a pivot language (which is JSON)

and then preprocessed by specific applications, which can be internally developed by

the company or externally developed by third parties. Depending on the application,

the extracted data is filtered by applying patterns or by combining it with additional

data. Doing so, only the necessary and correct data is stored into the infrastructure.

The presented architecture has very interesting aspects especially about automatic

data processing but it requires the solution to host all the data sources, which are

then deployed under APIs.

Apache Metamodel [Apache, 2013] proposes a data access framework, which offers

a transparent rich query interface to different types of data stores, which does or does

not usually provide this kind of request abilities. The framework provides a uniform

connector to many types of data store, including several formats for databases, data

files or objects. They propose a scripting language for processing updates and trans-

actions via APIs. The architecture provides a uniform driver approach for requesting

data sources, but acts as a static process where each source type has a particular

adapter.

While these approaches do not address challenges related to data combination and

data source configuration at runtime, they provide a universal access to different types

of data sources and some technical solutions to request these endpoints.

In our context, we make the hypothesis that the best way to access and process

data sources is to rely on their original capabilities. We decided to focus on data source

characteristics in order to propose adaptive data access strategies. In order to propose

this solution, we focus on the challenges related to data source diversity.

37

Chapter 3. Model-driven Data Source Management

3.3 Data source models

As introduced before, data sources contain or produce data in their own format,

responding or not to standards, e.g. CSV or XML for structured files; tuples for

databases; JSON or XML for streams and services. However, according to scenarios,

characteristics can appear and disappear, and these characteristics can, according to

scenarios, be represented amongst different ranges and domains. There is a need for a

meta-model that will allow us to describe the characteristics of data and data sources

with models according to scenarios.

In this section, we describe the following models.

— our metamodel to describe data source model, setting data source model limits,

and obligations

— a data source description model (instantiated from metamodel) to describe data

source characteristics (physical characteristics and access needs)

— a data description model (which respects the metamodel and follows the data

source description model) which is used to describe the data that will be ex-

tracted from the data source. The information from this model overrides the

information of the data source description model if any. Indeed, specific data

characteristics prevail on generic data source characteristics.

— a non-structured model, as a set of directives, called data access strategies.

These are rules that will apply when accessing the data sources. We define

these strategies as prerequisites to perform data extraction

3.3.1 A metamodel for describing data sources

Since data source processing capabilities depend on their characteristics, we build

our adaptive integration approach on a flexible data source representation. To do so,

and as presented before, we define a meta-model for describing data source models

that could easily adapt to any use case.

Characteristics appear at different level. In this meta-model, we separate them

in two groups: data source characteristics (i.e., physical characteristics), and data

characteristics that will apply to the extracted data, instance or schema. Doing so,

we separate our model in order to clearly identify the information which are required

before data extraction, in order to help the process, and after the extraction in order

to help data manipulation.

38

3.3. Data source models

Figure 3.1 – Data source metamodel

Having performed this separation, we extracted the smallest subset of mandatory

information. We identify the couple < URI, requestformat > as the smallest nec-

essary set of information required to access a data source, some of them will require

additional information, but most of the time it will be sufficient to perform a simple

access to the data source (extraction, management, etc.).

The URI is one of the most important information about a resource. By definition 7,

this character string permanently identifies a resource inside a network. One URI

identifies a unique resource, and it is the main entry point to access it (or the data it

contains). Every data source should have a URI, and this URI can contain relevant

information about the resource.

The request format characteristic is represented by a syntax attribute (e.g. XML,

JSON, SQL) and a schema defined by three attributes: endpoint, syntax (e.g. XML,

n3, JSON) and structure (e.g. RDFS, XSD, JSON Schema).

On top of that, the meta-model includes a set of core characteristics forming the

data source model and the data model. The Data source model is defined as an object

that contains all the necessary properties and attributes, that will be used by the

client to request the data source. These properties are scenario-specific. The Data

model defines the set of properties and meta-data information that apply directly to

the extracted data. These information are specific to the extracted instances.

Figure 3.1 presents this meta-model. While we illustrate the use of this meta-model

in the context of our scenario, the former remains applicable to any new data source

characteristic and other scenarios.

7. RFC 3986: https://tools.ietf.org/html/rfc3986

39

Chapter 3. Model-driven Data Source Management

Figure 3.2 – A data source model based on our scenario

3.3.2 Data source description models

Relying on the meta-model presented above, we create an adapted data source

model that presents the characteristics which are shared or specific to the different

types of data source presented in our scenario (cf Section 3.1.2). We consider our data

sources as defined by a set of the following characteristics: Data Source ID, Endpoint

URI (data access transparency), Request format (SQL, SPARQL, JSON, XML etc.),

Data volume, Latency, Update period, Authentication, Semantic and Privacy agree-

ment [Truong et al., 2011]. Fig. 3.2 presents our scenario-based data source model.

The URI characteristic identifies the data source and contains the necessary infor-

mation to enable the interaction with this data source. An URI is composed by at

least: a protocol, a domain and a resource, e.g file://localhost/home/file1.xml.

The protocol specifies the source communication procedure to apply, such as HTTP,

FTP or SGBD connection. URI can also contain authentication information, port

number and query parameters. URI can transparently identify any resource, a HTTP

URI for a web resource, a file on local system, a database URI, etc.

Request Format defines how to interact with the data source. Most common request

formats are SQL, SPARQL, JSON and XML.

Update frequency indicates the recommended average duration between each re-

quest to a data source. An update frequency of 0 means that each request may retrieve

different data. The update frequency value has an impact on cache or synchronization

possibilities.

Volume represents the global quantity of data that a data source manages. Depend-

ing on the volume of the data source, specific data access strategies can be adopted.

According to the specific strategies to access data, we defined different volume inter-

40

3.3. Data source models

vals. A small volume data source can be accessed directly (less than 20 Mo of data).

A medium volume data source (from 20Mo to 200Mo) requires cache in order to han-

dle eventual delays. A high volume data source (more than 200Mo) may required

synchronization systems or big data mechanisms such as map/reduce.

Latency represents the average network time required to obtain a response message

to a request on a data source. This value is maintained and updated regularly by

statistical measure of delay.

Authentication describes the data source access restriction. This attribute can take

different values, or can be disabled if data is publicly accessible. Common values

are HTTP-auth, where access is granted by server directives over username/password

verifications, OAuth or OpenId, where authentication is handled by a third party

server, or SSH public/private keys. In some cases, auth parameters can be specified

in the URI, e.g. http://user:pass@test.com/.

Semantics aggregates the information required to perform the semantic transfor-

mation from raw data to linked data. The semantic description contains: an URI of

the linked data graph that describes the data model, an URI of the mapping file that

gives information about required data transformation and an attribute identifying the

system used to perform the transformation.

Privacy agreements define whether or not data is limited to a specific usage context,

according to a set of conditions. Agreements can, as an example, avoid to provide a

piece of data to a third party system, or prevent any modification or commercial use

of a data piece.

3.3.3 Data description model

At the data level, there is a need for a model to describe data characteristics.

Based on our scenario, we define here a data model that allows to characterize data

sets and instances with specific attributes. The model we devised contains the following

attributes that describe data instances: Privacy, Validity, Semantics and Filters. These

attributes can be associated with either data tuples or globally with the whole data

set.

A set of privacy attributes describes privacy requirements that has been given to

data values by the data owner. As an example, a user who provides an email address,

solely on the condition that she or he does not receive any email, requires a specific

data agreement to be associated with the data value.

41

Chapter 3. Model-driven Data Source Management

Validity specifies the lifetime of the data we extract from the data source, in other

words it give the date after which the data will be considered as unusable or obsolete.

Validity is different from update frequency, as a data source can specify an update

frequency of an hour, and specify that the provided data is valid until the end of

the year. We introduce a property named Validity that represents data lifetime, this

information is related and stored with extracted data. This parameter indicates the

amount of time after which the data will be considered as unusable or obsolete.

Semantics are conceptual metadata which are associated with a data set. Data

semantics can be provided together with the data, when accessing the data source, or

updated later with a semantic annotation process.

Filters are scenario-based specific attributes, which specify the values in the data

set in terms of quality. Filters can specify a detected malformed piece of data, or a

forbidden value.

The data constraints introduced in the data model always override the data source

characteristics. As an example, a privacy agreement in the data model can specify

the recipient allowed for a piece of data, but a data source level privacy agreement

specifies a wider recipient will be disabled.

3.4 Data access strategies

In the following, we present different data access strategies in order to help our

approach to handle cases where non-functional properties hamper data access (volume,

latency, etc.). Here, we present a data access model that describes what processings are

required according to specific characteristics, affecting the way a client will connect to

and download data from data sources. We identify different behaviors, where according

to characteristic values, different data access policies could be adopted.

3.4.1 Preparation

First of all, and according to a user request, there is a need to identify which data

source will provide the required data. In order to decide it, we rely on several elements:

— the data query issued by the user, which will define:

1. which concepts are required

2. which filter we want to apply to the data

42

3.4. Data access strategies

— the data source characteristics, which defines whatever information are needed

to access data

— the semantic information which associates concepts to physical fields, keys or

properties (depending on data source type)

According to these elements, we identify the required data sources, and create a

graph linking concepts from data source together.

3.4.2 Pre processing

Depending on data sources, there is a need for a preprocessing task, in order to

define data access. When dealing with tabular data files, or RSS feeds, all data is

retrieved once, and then processed. However, when dealing with database or Web

services, we do not access the whole data stored in a data source.

In the database context, data will be accessed through a query, which has to be

defined a priori. Relying on the elements listed in previous step, we create a database

query, in the request format specified by the characteristics, sql, sqlite, mysql, etc.

When dealing with Web services, data is accessed by making service calls, sending

inputs to services in order to retrieve data outputs. In this case, there is a need for

several elements to prepare service calls:

— the data query issued by the user, which will define

— service description (WSDL, WADL, MSM for Linked Services, descriptor for

RESTful services, etc.) which describes service operations

— semantic mapping which associates concepts to inputs and outputs (could be

described in service description)

According to data elements, service callbacks are prepared, and will wait for data

inputs before their execution.

Data access

Data access is the step where the data is actually retrieved, and each types of data

source requires a specific technique.

First, plain data sources (e.g. TXT, CSV, XML) are all considered as a whole, and

all the complete data set from this kind of data source is extracted once. During this

step, data from feeds (RSS) and data from services that does not require output are

also retrieved. Secondly, database sources are requested through generated queries.

43

Chapter 3. Model-driven Data Source Management

Finally, according to the data already retrieved, service callbacks are created.

3.4.3 Adapt to physical characteristics

Several characteristics directly affect data access, technically. Data volume is de-

fined as a discrete scale, as presented before. In case where the data source represen-

tation does not specify it, the default volume value is set to small. Technically, low

volume sources can be accessed at any times, according to needs. Medium volume

sources involve delays and high processing times, so a cache system should be setup.

A high volume source can either not be directly queried in a synchronous way, because

the volume of data it contains implies a too high response time. In this case, it is

recommended to set up a synchronization system, where data is periodically retrieved

from the source and saved in a local cache. In the case of big data sources, when

data cannot be accessed directly because requests takes to much times, we recommend

setting up big data mechanisms such as Map-Reduce to process data in addition to a

local cache.

Latency represents the delay (in seconds and milliseconds) between a data request

and the received answer, set by default to 0. The system statistically update data

source latency value after each request. When latency is high, mechanisms of cache or

pre-loading are set up.

Update period represents the delay between 2 major changes in the data source, set

to daily by default. An update period variation will not influence small data sources,

but from medium to big data sources, the cache and synchronization systems will be

impacted. A short update period will force to increase synchronization delay, and

cache will be cleared more often.

3.4.4 Direct and indirect access

We build our access strategies according to two different models: push and pull

strategies.

In pull based strategies, there is no background workflow, data sources are re-

quested directly and on demand. This solution does not imply any storage or synchro-

nization, we request sources, combine results and return the response. This strategy

is only available, with low or medium data sources (with or without cache).

In some cases where data source volume is high, or if data source is a stream, data

44

3.5. Conclusion

has to be retrieved in background, and stored at a given frequency. We call this a

push strategy, it provide some interesting reduction of time and cost for request that

involves big data transfer or processing, or in case where the request has a high demand

certainty.

3.5 Conclusion

In this chapter, we focus on different challenges to propose a flexible solution that

handle data source diversity. We propose a solution in order to improve data source

management by focusing on data source themselves. We rely on a meta-model to

provide a structured way to describe data source characteristics. With help from this

formalism, we show how to adapt data access to the specificity and diversity of data

sources. The data source meta-model, presenting data source physical characteris-

tics, allows a dynamic and transparent management of data sources. It contains the

necessary and sufficient information in order to provide a complete and independent

data source access. On top of that, our meta-model allows to describe the data itself,

gathering the necessary information about what this extracted data contains, this in-

formation will have to be populated by the system and the data sources themselves

during execution. To summarize, we presented a set of models allowing to fully de-

scribe data and data sources, at different levels. This formalism describes the necessary

information to automate the data source management.

Based on this information, we go further into our data access automation objective,

by providing data access strategies, as a set of characteristic-based optimizations.

These strategies allow to improve the data access, by focusing on metadata to setup

the required mechanisms, to interact with data sources, in order to request and extract

the necessary data. With help from these strategies and models, we build a generic

client that fits with data source specificities. Our approach reduces the amount of

hard coded information, and provides a dynamic data source management approach.

To conclude, our model provides a dynamic and transparent data source manage-

ment, providing specific client adaptation. Whereas this model allows to automate

the data source access, the scalability to a large number of data source cannot be

guaranteed a priori by our model or strategies, and requires further research.

In the next chapter, we go further into our global integration objective. We rely on

the models and strategies proposed to design a generic and adaptive software architec-

45

Chapter 3. Model-driven Data Source Management

ture. The architecture we present in the following chapters will take benefits from our

models and strategies to dynamically orchestrate the different processes that are neces-

sary to perform a complete data source combination. This adapted task orchestration

will provide a scalable solution to our global objective.

46

Chapter 4

Adaptive Workflow Architecture

4.1 Introduction

Over the past few years, big data has generated a lot of interest from researchers

and industrials, especially for the benefits it produces in the field of data processing,

and more precisely for data analysis, capture, storage, transfer and visualizations.

Approaches and techniques answer the big data challenges, known as the four Vs:

Volume, Variety, Velocity and Veracity. Defining our smart data architecture, we

partially address these challenges. We address the Variety challenge, providing models

and strategies to support the many types of data sources, not only the existing types

but also those which are emerging by providing a meta-model to describe data sources.

We provide a solution to the Velocity challenge, by giving to our architecture the ability

to adapt its workflows to the different cases that may appear, optimizing resource

orchestration to improve the response time. We address the Veracity challenges by

providing resources and techniques to analyze, combine, repair malformed pieces and

clean data from inconsistent pieces and duplicates. On top of that, we put more focus

on data quality through the use of semantics, metadata and intelligent processing

techniques.

The main difference between big data and smart data resides in the fact that big

data produces more and more data, finding new correlation and patterns between data

whereas smart data tends to extract the valuable parts from the data sets we own. In

smart data approaches [Dustdar et al., 2012, Lopez and Kotoulas, 2012, Sheth, 2014],

propositions focus on data quality rather than quantity, on building smarter architec-

ture able to take advantage of linked data and open data projects, such as smart cities.

47

Chapter 4. Adaptive Workflow Architecture

In this data-driven context, working with Web-standards and resources comes as a so-

lution. The problem that appears while using HTTP and RESTful resources is that

volume hampers data exchanges. Some approaches have addressed the data trans-

fer issue in HTTP-based solutions relying on technical approaches such as protocol

optimizations to improve the transfer time.

4.1.1 Motivation

Workflows have emerged as a powerful technology when trying to automate and

orchestrate tasks (services, processes, etc.). Due to changes of context, laws and poli-

cies, but also due to advances in technologies, new methods, and practices, workflows

are being continually changed. Having defined our smart data process, we proposed a

static workflow, able to perform the desired combination task of two data sources, in

optimal and predefined conditions.

However, in the previous chapter, we have seen that data source can present very

specific characteristics, which can have a very strong impact on the data access on the

one hand, and on data integration process on the other hand. There is a need to add

dynamicity to this static workflow according to what data source characteristics are

involved, in order to improve the different process, in terms of execution time, and

quality of data, but also in order to avoid issues, such as inconsistencies, incoherence,

and noise production. In our approach, we consider unrelated and irrelevant data as

noise.

On top of that, in order to go further into the definition of our data integration

platform, relying on the previously defined framework. There is a need for a software

architecture able to handle this dynamic workflow adaptation, and in addition, able

to perform task execution.

4.1.2 Challenges

In this chapter, we rely on our previous contribution, and propose to address this

challenges:

— First of all, we propose an approach to adapt the global process workflow ac-

cording to the data source characteristics, defined in the data source model

— Secondly, we propose a software architecture, based on the resource-oriented

paradigm, able to support adaptation and execution of adapted workflow

48

4.2. Related work : Workflow adaptation

In order to perform this, we rely on existing workflow adaptation techniques to

build our proposal. Using data source models (for representation and access), we

adapt tasks orchestration in order to fit with the data source characteristics. Having

defined this workflow adaptation technique, we review classical software architecture

design patterns in order to build a proposition of architecture. Finally, we show how

our architecture can adapt to different context by propose an optimization to handle

high data volumes.

4.2 Related work : Workflow adaptation

Workflow adaptation is a field of research where we rely on different factors to adapt

orchestration and execution of software tasks, i.e, workflows. Adaptation is a core

technology to support long-term business processes in heterogeneous and distributed

environments. According to needs, workflow can be adapted in different ways, before

execution, according to source and service specifications, during execution according

to events or data instances, etc. In this section, we envision existing approaches that

allow the creation of adaptive workflow, especially late modeling and ad hoc adaptation

approaches.

The most common techniques we are interested in to adapt workflows are the

following:

— Late modeling: workflows are not completely specified, some parts (i.e., sub-

workflows) of the workflow are left open to be fulfilled at runtime relying on

environment changes, but it has to be known in advance, to prepare adaptation

— Ad Hoc Adaptation: workflow is adapted during runtime, but it cannot be

decided in advance, and it is difficult to know if the adapted workflow will be

correct or not

Here we present a review of some relevant approaches.

4.2.1 Late Modeling Approaches

Late modeling approaches are most of the time, based on a semi-structure of pre-

defined workflow, which can be adapted at runtime or before runtime to fit with context

execution and/or data samples. These approaches are especially planned to work with

classical web services, and are not really well adapted to work with RESTful resources.

We can choose to adapt either the execution order, or the components to use, by using

49

Chapter 4. Adaptive Workflow Architecture

some kind of placeholders in the initial workflow, that will be replaced by the necessary

component (service, code block, etc.).

In pockets of flexibility [Sadiq et al., 2001], they propose a framework to build flex-

ible workflows, based on the definition of a partially specified model, where the full

specification is made at runtime, and may be unique to each context. The rely on a

separation of workflows into a dynamic, adaptive and flexible process. The workflow

changing process is made part of the global process itself, by introducing a core pro-

cess and a set of pockets of flexibility, which will provide the perfect functionality to

integrate inside the open workflow instance.

In [Adams et al., 2006], authors propose an adaptation technique for the YAWL

language [van der Aalst and ter Hofstede, 2005], with an approach based on the use of

worklets, which are placeholders or gaps to be filled at runtime with an implementation.

This approach rely on more rigidity on workflow definition. This approach relies on

a repertoire of possible applicable actions which is made available and maintained

for each type of activity, which are used to create dynamic and flexible workflows,

under of form of a work plan, which is not a precise definition of tasks, but looks

like a guide which may be modified during execution depending on context. The

approach will rely on context to perform final decisions at runtime. Every execution

will generate a context-specific set of deviations, which can feed a knowledge base, to

learn from each execution to improve future adaptations. This approach requires less

granularity when modeling process, improve reusability of sub-processes and provide

a fault tolerant approach.

In Move [Herrmann et al., 2000], Hermann et Al. proposed a semi-structured work-

flow model, in order to represent what they call vagueness (incompleteness of infor-

mation). Their approach rely on the common concept of roles, activity, entity and

the relation between them. The different users of the systems have roles, which gives

them the ability to perform activities upon entities (which can be documents, tools,

etc.). The dependence of each relation between these elements define the workflows,

interpreted as diagrams Having defined this system architectural style, they defined the

notion of vagueness as a lack of information, defined by either a user intended omission

or a doubt. According to what happens, users can specify incomplete information or

express doubts, which will help annotate the processes. The adaptability in this ap-

proach is made through the use of vague relations, which does not requires a definite

specification, they are not necessary connected between two specific elements. The

final decision will be made according to what happens in the system. This approach

50

4.2. Related work : Workflow adaptation

is particularly efficient, with what they called socio-technical systems.

4.2.2 Ad Hoc Adaptations

In ad hoc adaptation, workflows are adapted during runtime when needed, most

of the time according to context of execution. This cannot be planned or decided in

advance, and it is difficult to know if the adapted workflow will be correct or not. The

main challenges, is to provide approaches that will guarantee correct workflows, since

it cannot be covered by late modeling.

Minor et Al. [Minor et al., 2007] propose an hybrid approach between late plan-

ning and ad-hoc approach to perform structural changes in process workflows. They

proposes a workflow modeling language based on the classical control flow elements

of workflow patterns [van der Aalst et al., 2003], and extended with several elements

such as placeholders for sub-workflows, for sub-diagrams and breakpoints. They model

these workflows as trees, where nodes represent elements (tasks, placeholders, ...). Each

node encapsulate its execution logic. This approach propose a suspension mechanism

which allows to modify workflow parts, while the remainder of the workflow is being

executed. According to context, the ongoing (i.e., running) original workflow (called

workflow definition) is adapted according to case based reasoning. The best matching

case are applied to the workflow.

Dorn et Al.[Dorn et al., 2009] propose context-aware adaptive service mashups,

where services will be classified by capabilities. The adaptation process rely on a

monitoring system, which observes context changes in mashups. When mashups are

affected, system performs a reevaluation of of requirements, then generates a set of ser-

vices with the best fitting capabilities. They proposed an algorithm to help recommend

services refinement (service are replaced by an equivalent with the same capacity) ac-

cording to a set of rules. Services are compared, according to the function they cover,

and a score is computed. Finally, services are selected amongst this ranked set, and

mashups are reconfigured.

These approaches propose wider adaptation possibilities, and more flexibility, but

they also requires mechanisms in order to constantly verify the correctness of the

generated adaptations.

51

Chapter 4. Adaptive Workflow Architecture

4.2.3 Conclusion

Since we planned to have minor changes on our workflows, they can be modeled

in advance. However, this changes required information about execution context to

be finitely decided. We rely on a late modeling approach, where execution order will

be changed, or where sub-workflows will be added to the process (e.g., heterogeneity

resolution before, during or after data combination) according to context execution,

data characteristics, or data sources constraints.

4.3 Adaptive Workflows

In this section, we propose a workflow late modeling approach, based on the defi-

nition of a workflow, whose sub-workflows and tasks could be changed, duplicated, or

switched according to context and data sources, in order to fasten the final core process

execution. Our adaptive workflow technique relies on a late modeling approach, where

we provide a generic complete workflow. This workflow will be modified at runtime

according to the data source we manipulated.

4.3.1 Workflow representation

In order to represent workflows in our approach, we rely on a graph description

representing workflows as directed graphs, where vertices are tasks (services callbacks

or resource requests), and links being the dependency between these tasks. These

dependencies will induce task execution order, and the orchestrator will rely on this

description to perform message transmission between the different architecture com-

ponents.

Figure 4.1 shows an example of workflow in this formalism. We introduce 3 services

A, B, C and D. Processes are executed from left to right, after their dependencies. In

our example, A and B have to be executed before C, and C before D. This basic

workflow model will allow us to generate our task orchestration.

B
C D

A

Figure 4.1 – Classical integration workflow

52

4.3. Adaptive Workflows

4.3.2 Standard procedure

As introduced before, our approach rely on a generic workflow, which represents

the standard procedure to combine two generic data sources. We consider generic data

sources as medium volume sources, with no latency, CSV format, no authentication,

requestable easily. They are provided with a semantic mapping, providing one concept

per column, and share a pivot concept. In this case, the process orchestration in

order to integrate data coming from these two data sources called S1 and S2, is done

as presented in Figure 4.2. Data is going through the following steps: download

(Dl), decode (Dc), request for the mapping description (Sem), then both data set are

integrated (I) and finally filtered (F).

S2 Dl Dc Sem

S1 Dl Dc Sem

I F

Figure 4.2 – Classical integration workflow

During execution data goes through different states, from the raw original format

following data extraction, to our internal format that facilitates manipulation, and

finally to the linked data format once annotated. The move from one state to an-

other may have an impact on processing in terms of response time (especially when

processing a huge data volume) or data consistency (streams VS static DB).

Therefore, the processing workflow can be envisioned as two connected workflows,

where the connection point is the integration function. This way, we define two differ-

ent parts in the integration workflow: pre-integration and post-integration. The

pre-integration part represents the different functions applied to the data set from the

extraction from the data source to the integration task. The post-integration part

begins with data integration and ends with data rendering. This separation helps per-

forming the tasks at different levels, first data preparation aims at preparing data for

integration, then the integration task combines data from different sources, and then

different functions such as filtering apply to the resulting set.

S2 Dl Dc Sem

S1 Dl Dc Sem

I F

Figure 4.3 – Pre and post integration sub-workflows

53

Chapter 4. Adaptive Workflow Architecture

4.3.3 Adaptations

According to characteristics, this standard workflow will be adapted to fit with the

different use case that occur. There are different types of tasks that can be adapted.

We identify different types of task adaptations: switch, duplication, delay, removal.

According to our scenario use case, we define several adaptation rules.

Combination plan

The first type of rules, we propose is made according to the data we manipulate,

and will define the source combination plan. According to our query, we identify a

given number of data sources we have to integrate. According to the pivot field on

which we will combine our data sources, we will identify in which order data sources are

combined. We will then generate one pre-integration sub-workflow for each of these

sources. In case where data sources does not require input, all the pre-integration

workflow could be executed in parallel. It means no dependencies, task will be executed

in sequence, but no matter how. The first one in the list will be executed, since no order

is given, the one with the lowest id will be requested first. After that, the combination

plan will decide which data source is combined with which. Figure 4.4 indicates how

pre-integration workflows are executed in parallel (parralel in the workflow, sequenced

in execution) and how combination plan affect the combination order.

S2 Dl Dc Sem

S1 Dl Dc Sem

S0 Dl Dc Sem

I F

I F

Figure 4.4 – Combination plan execution order

In some cases, data sources needs input in order to be requested. It is particularly

true with databases, that requires a query, and some services that requires input.

In this case, we will delay their pre-integration workflow, on order to wait for the

necessary data inputs. Figure 4.5 shows an example of combination between a tabular

file and a database. The data from the first source will be used to request the data

from the second one.

54

4.3. Adaptive Workflows

S2 Dl Dc Sem

S1 Dl Dc Sem

I F

Figure 4.5 – Combination with input

Volume and latency optimizations

In order to optimize the workflow execution, in is necessary to perform workflow

adaptation according to data sources characteristics.

The first task that will be necessary, according to cases, is the filtering task. It

is helpful to duplicate or move the filtering between the different steps, in order to

remove the malformed or unrelevant pieces of data that could slower the process. The

filtering task can be placed after or/and before the integration process, so that data

cleaning is performed once or twice. In this case, the filtering process can be placed

before the integration task or before the semantic transformation task. Fig. 4.6 shows

a workflow where a filtering task is inserted before the integration process.

S1 Dl Dc Se F I

Figure 4.6 – Pre-integration workflow with earlier filtering

Typically, data is transformed into linked data before the integration task, because

semantic annotations facilitate the integration process. When it comes to big data

volume, combining two huge data sets can be tedious and time-consuming. With

high volume data sources, if the scenario allows it (e.g. same schema), it can be

very interesting to move some tasks forward, in order to reduce the volume we have to

process. In some cases, process may be deleted from the pre-integration part and placed

in the post-integration part. We propose an optimization of our workflow by swaping

components in order to perform the combination of large data sets, on top of that,

it may be interesting to perform a cleaning before integration. In the case where the

data sources are databases with the same model, or CSV data files that have common

fields, performing integration before semantic transformation optimizes the process,

because it reduces the size of the data sets to annotate. Fig. 4.7 present an example

of workflow, presenting an earlier integration, before the semantic transformation. In

this case, we must be sure that the data allows the combination before the semantic

annotation, it is possible when data share the same model, or belong to the same

source.

55

Chapter 4. Adaptive Workflow Architecture

S2 Dl Dc

S1 Dl Dc
I Se F

Figure 4.7 – Workflow presenting early integration

Finally, and as presented in the previous section, in some cases, specific tasks can

be added to the workflow, especially when the semantic model is missing. In this

case, a semantic tool allowing to recognize the semantic graph associated with a data

source could be inserted before the semantic transformation task. In this thesis, we

do not provide contributions about semantic recognition of data sources, but present

several approach in related work, in order to help semantic annotation of sources.

The semantic extraction/recognition tasks, can be any approach to retrieve semantic

over sources, as long as it is exposed as a service or through an API. Fig. 4.8 shows

an example of a classical integration process where one of the data source does not

provide any semantic mapping definition.

S1 Dl Dc Mx Sem

S2 Dl Dc Sem
I F

Figure 4.8 – Workflow with a semantic extraction process

This adaptive workflow technique, is implemented through a number of rules condi-

tioning the organization of processes in the architecture we present in the next section.

4.4 Architecture of the solution

Based on this workflow approach, we design our adaptive resource-oriented archi-

tecture, based on a study of Web architecture design patterns.

4.4.1 Comparative study of existing architectural design pat-

terns

In order to organize and structure the previously introduced tasks into a distributed

architecture, we have studied different architecture design patterns, as summarized in

the following. The first pattern is an Enterprise Integration Pattern, the next three

patterns are related to Service Oriented Architecture, and the last one is related to

56

4.4. Architecture of the solution

Resource-Oriented Architecture. We present these patterns and discuss their advan-

tages and drawbacks.

Shared Databases

A shared database architecture [Hohpe and Woolf, 2003] is a enterprise integra-

tion pattern where different services and components share the same data storage.

This type of architecture presents advantages related to the data storage, when enter-

prises need information to be shared rapidly and consistently. All services and com-

ponents share the same schema, which helps interaction. Moreover, database studies

have shown that this type of architecture is highly adaptable to big volumes, due to

database characteristics. Database caching is also widely supported. Nevertheless,

this architecture is completely centralized, preventing use of third party services, or

components with heterogeneous schemas. Furthermore, the database as a single point

of failure becomes an architectural limitation.

Classical SOA architectures

Classical SOA architectures [Erl, 2009] consist of a set of services and static work-

flows that are compositions of these services. A workflow describes service calls and

explicit transformations of data flows. Each use case in the architecture requires a

manually crafted and specific workflow. Using such an architecture allows gaining

benefits from the principles of SOA, i.e. platform- and location-independent loosely

coupled services. It allows to use different service types (SOAP, REST, ...) provided

by a variety of third-parties. Despite these advantages, SOA architectures lack adap-

tivity due to the required hard-coded information. Each task has to be manually

integrated into workflows, for example data mediation or caching. Moreover, querying

components that are not deployed as services becomes a complex task and requires

adapters.

Layered Architecture

A layered architecture [Erl, 2009] gathers services together in layers according to

their functional similarity. Each service from a layer may only interact with services

of the upper and lower layer. This pattern presents a good cohesion within layers,

since groups of common featured services are gathered together. This cohesion brings

57

Chapter 4. Adaptive Workflow Architecture

a good separation of concerns, making layers reusable and easy to maintain. Struc-

turing services into layers limits coupling, which simplifies development and facilitates

component replacement. Unfortunately, a common schema is needed in the archi-

tecture, otherwise it becomes necessary to insert transformation components between

each layers. Furthermore, there is a lack of modularity due to this layered data ex-

change, it is impossible to swap services in workflows for optimization purpose, making

the architecture inflexible. And finally, it is difficult to structure layers. If grouping

conditions are too strict or too soft, the architecture ends up by having either one layer

per service or a global layer which contains all the services.

Enterprise Service Bus

Enterprise service bus (ESB) [Chappell, 2004] is a type of architecture based on a

message bus where various components connect to a service bus via their service in-

terface. Service composition are managed through the architecture by creating routes.

Routes describes service interactions, and a message broker handles the data flow-

ing from and to components. Enterprise service bus architectures present all the

advantages of SOAs, including service independence and loose coupling. The usage

of a message bus simplifies the integration process. It provides a precise data man-

agement in service composition. However, Enterprise service buses have two main

drawbacks. First of all, message routes are static, which forbids dynamic composition,

and secondly, message bus needs service adapters to connect to different resources and

components.

Resource-Oriented Architecture

In a resource-oriented architecture [Richardson and Ruby, 2007], all the software

components must be resources with RESTful interfaces, which means they are acces-

sible through their URI via HTTP methods (GET, POST, PUT, DELETE,. . .). A

RESTful architecture must respect several principles [Fielding and Taylor, 2000], as

follows:

— Uniform interface ensures that the method information is kept in the HTTP

method (we use GET to retrieve a representation of a resource, POST to create

a new resource, PUT to upload new representations and DELETE to delete

resources), this property also helps to respect statelessness

58

4.4. Architecture of the solution

advantages drawbacks

Shared Database - Same schema

- Big volumes

- Cache

- Centralized

- No third party

- Database SPOF

Generic SOA - Independence

- Third parties

- Service diversity

- Static workflows

- Hard-coded config

- Limited to services

Layered SOA - Cohesive

- Limited coupling

- Good reuse

- Easy maintenance

- Inflexible

- Complexity

Enterprise Service

Bus

- SOA advantages

- Easy coupling

- Good reuse

- Static routes

- Service adapters

Resource-Oriented

Architecture

- Independence

- Uniform interface

- Dynamic

- Adaptive

- Learning curve

- Resource adapters

Table 4.1 – Comparative table of architecture designs

— Addressability ensures that the information about the scope of a resource is kept

in the URI, every object will have its own specific URI

— Statelessness means that each request happens in complete isolation, and the

server does not store any state information, each request contains all the nec-

essary information, thus improving scalability of the solution

— Representation oriented means that interactions with resources are made using

representations of these resources, request header (such as accept) specifies the

desired format

The REST architectural style provides advantages such as a complete independence

of underlying platforms and languages, universal interface and access thanks to HTTP

methods. Resources can be dynamically composed and reused to fulfill a request.

Table 4.1 summarizes the advantages and drawbacks of the different architectures

presented above.

59

Chapter 4. Adaptive Workflow Architecture

Figure 4.9 – Architecture Resources

4.4.2 Overview of our architecture

In order to organize and structure our tasks into a distributed architecture, we rely

on the previous study to propose a resource-oriented architecture enhanced with a data

bus. Our architecture handles components as RESTful resources available through a

uniform interface via HTTP methods. It overcomes the drawbacks of ESBs, and

presents a generic interface to components. In this section, we rely on REST and SOA

principles to build a generic, scalable and modular architecture that will support our

adaptive workflows.

We defined a set of architecture components, as shown in Fig. 4.9, exposed as

generic RESTful resources identified by URIs and accessible through HTTP methods.

These business resources are the core of the architecture, they handle the main data

processing tasks. In our architecture, we rely on separation of concerns, to improve

flexibility and reusability. We separate our framework into different components, each

of them handling a particular type of task. In addition to these core resources, we

present a set of resources that support task configuration and administration, referred

to asmanagement resources. According to scenario use cases, this architecture generate

an adapted workflow, using the available components to fulfill the desired behavior

(extraction, combination, filtering, etc.)

60

4.4. Architecture of the solution

4.4.3 Architecture components

These components are the core resources that allows the architecture to work. We

separate architecture resources and services according to what they handle. We call

core resources the service that are used to perform the concrete task of the integration

process, (data extraction, semantic enhancement, etc.)

In order to make architecture management and administration easier, and to avoid

manual configurations as much as possible, we provide our architecture with manage-

ment resources, accessible via a set of APIs. Through these APIs, users can alter

resource behaviors and settings, add or remove data sources, request the generation

of a mapping for these data sources, plug or unplug core components from the plugin

registry, define specific business-oriented rules.

These resources are managed by our architecture, with help from the data bus,

which we present here.

Data bus and orchestration

In order to handle different data flows between resource (resource requests), we

define an orchestrator, which act as a data bus and receives HTTP requests from the

Web interface. Each data sources, resource and necessary services are stored into a

repository, to which the bus has access.

On request reception, this component extracts the SPARQL query from the request

payload, and forward it to the request parser. Based on this data query, the query

parser generates and returns an adaptive workflow, defined as a set of data sources

and generic tasks with input and output.

According to this workflow, the orchestrator handles requests to the different archi-

tecture components, retrieving data responses and forging HTTP requests, according

to query and data source characteristics. The orchestrator is defined as a RESTful

resource, user queries are sent through HTTP requests.

GET /query?user token=AS65G&query=SELECT+%3Femail value+%3Fcampaign+WHERE+%7B%0D%0A++%3

Femail... HTTP/1.1

Host: restful .alabs. io

Keep−Alive: timeout=15

Connection: Keep−Alive

Listing 4.1 – Sample of HTTP request embedding a SPARQL query

61

Chapter 4. Adaptive Workflow Architecture

Query parser and reasoner

In order to interact with the system, we rely on data queries that are sent to the

orchestrator. Data queries are formatted in SPARQL and involve semantic concepts.

Listing 4.2 gives an example of query that involves a set of concepts belonging to our

scenario.

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value .

?email value a al :email value .

? clic a al : clic ;

al : clic email ?email ;

al :clic campaign ?campaign .

?campaign a al :campaign .

}

Listing 4.2 – A data query example

Data queries are forwarded to the query parser, which extracts the corresponding

algebra, as a set of subgraphs and concepts 8.

Our architecture will then take benefit from an engine acting as a simple rea-

soner, that will help making the process dynamic. With help from the query parser,

we retrieve the data sources providing the data pieces whose semantic concepts fit

with the concepts provided in the query. In this case, we look for concepts that are

equals, or where source concepts are subsumed by request concepts. As an example,

google identification address, being @gmail.com address, will fit with an email address

concept. Doing so, we will be able to provide a set of data sources to combine in

response to a specific query. This will provide the necessary semantics in order to

help the workflow adaptation, involving different architecture resources and the data

sources that are needed. This information will be retrieved thanks to a set of rules,

that associates different behavior to each type of characteristics provided by the data

sources involved. We use classical AI mechanisms and algorithms such as semantic

Web inference engine (Jena, Pellet, Euler EYE, HermiT) 9.

8. See https://github.com/semsol/arc2/wiki for a documentation about the SPARQL parser

we use.

9. See http://www.semantic-web-journal.net/sites/default/files/swj120_2.pdf for a

comparison of reasoners.

62

4.4. Architecture of the solution

Figure 4.10 – Architecture authentication process

Authentication and data security

Our architecture interacts with each of these resources, which represent software

components and data files. In order to enhance security, protect data and limit access

to this resources, we overlay our architecture within an authentication layer, relying

on the oAuth [Leiba, 2012] authentication framework.

OAuth relies on a authorization server which authenticates user access upon a

resource from a server. The framework relies upon authentication tokens generated

by a authentication server. These tokens can be used to access resources owned by a

system. The decentralized pattern of our architecture forces us to authenticate each

resource exchange.

The system user connects to the architecture interface (1), the architecture redirects

him to the authentication server interface (2). The system user logs in through this

interface (3). The authentication server generates a token (4) that authorizes the

Web interface component to access the different resources in behalf of the user (5),

each layer verifies with the authentication server the token freshness and validity (6).

Figure 4.10 illustrates the authentication process. We rely on the Zend PHP oAuth

component to implement our authentication component.

4.4.4 Architecture Resources

In the following, we present the core resources that handle the necessary tasks of

the integration. We also present the management resources forming the configuration

API, that allow to configure each component usage in the background. Please note

that all components do not necessarily have a resource configuration API.

63

Chapter 4. Adaptive Workflow Architecture

Data Source Handler

The data source handler allows to extract data from the different data sources

involved in the query subgraphs. This resource accesses each data source and extracts

data with the help of the data source description (see Section 3.3).

The architecture benefits from a set of management resources for data source han-

dling, allowing to perform the four CRUD (Create, Read, Update and Delete) opera-

tions to manage data sources. This resources provide an API that allows to perform

the four CRUD operations (Create, Read, Update and Delete) over data sources. Data

sources are retrieved and manipulated with their ids and according to the model in-

stance that describes their characteristics. As an example, a GET request over the data

source configuration resource with the id of a data source: GET /datasource/U1 re-

turns a JSON object representing the data source with the id U1.

Listing 4.3 illustrates an example of data source configuration resource.

{
"id": "U1",

"format":{
"syntax":"mongodb",

"schema":{
"endpoint":"http://153.75.28.26/schema_def",

"syntax":"JSON",

"structure":"JSON-S"

}
},
"uri":"mongodb://153.75.28.26:8080/myDBendpoint",

"username":"user1",

"password":"76ls6h",

"databasename":"maindb"

}

Listing 4.3 – A data source configuration file example

Relying on this information, the resource retrieves (or deploys, according to access

strategies defined in Section 3.4) an adaptive client that handles the characteristics of

the data source, authentication, format, volume, etc.

Semantic Annotation Resource

Relying on the semantic information provided in the data source representation,

the semantic annotation resource will either annotate with concepts or transform

data into linked data.

The resource uses different techniques to enhance semantics of raw data, depending

64

4.4. Architecture of the solution

on the kind of data source. As an example, for CSV file sources, we rely on the RDF123

approach [Han et al., 2008] to transform raw data into linked data. This approach

relies on expressions to map the contents of spreadsheet columns to linked data.

Depending of data sources, the semantic mechanisms can vary. Our generic meta-

model and our decentralized architecture allows to rely on any kind of remotely avail-

able semantic enhancement approach. As an example, we rely on the open-source

RDF123 approach [Han et al., 2008] to semantically annotate tabular data files. This

approach is based on a column-based mapping, in which we defined expressions that

helps to translate spreadsheet data to linked data. The architecture stores these ex-

pressions into RDF resources, called map files, and associates these map files with

data sources. In the same way, semantic enhancement of database sources relies on

the D2R approach [Bizer, 2004], in order to transform data from relational databases

into linked data. The D2R platform is based on RDF mappings that attach conceptual

graphs to SQL requests, giving access to relational data through a SPARQL endpoint.

Relying on the semantic information provided in the data source representation,

the semantic annotation resource will either annotate with concepts or transform

data into linked data. In order to manage semantics for each data source, we provide

our architecture with management resources to create, modify, and delete mapping

files and semantic mapping information. Mapping file generation relies on existing

third party approaches for semantic annotation and transformation, depending on the

type of document or data source we want to annotate or transform into a semantically

explicit representation.

As an example, the mapping information for a data source can be retrieved by a

GET request over the semantic resource with the id of this data source: GET /se-

mantics/#id returns the required mapping file in order to add semantics to data

extracted from data source #id. A POST request at the same URI is used to sub-

mit a new mapping file, DELETE and PUT to destroy and update. Depending on

the data sources, the mapping contains different sets of rules, and the URI of the

semantic transformation or annotation service. In order to process the data source

to extract the corresponding mapping, when available, the following POST request:

GET /semantics/extract/\#1 will to generate and return the mapping file.

65

Chapter 4. Adaptive Workflow Architecture

Data Integration

The data integration resources interconnects the data sets that have been ex-

tracted from sources and annotated with linked data concepts. The integration re-

source aligns the different concepts, relying on the user data query to construct the

graph represented by this query. The architecture analyses the concepts in the query

and prepares data for the merging process, detecting the pivot values if they exist,

relying on metadata to connect data from the sources involved. The data combination

mechanism will then perform a scalar product on field sets according to pivot fields,

in the same way that a join would be performed.

To detect possible heterogeneity problems, could they be syntactic or structural,

and to reconcile them, we rely on our previous DMaaS approach [Mrissa et al., 2013].

This approach analyzes semantically described data, using a decentralized (peer to

peer) repository of mediation services, which are Web services dedicated to data con-

version. The DMaaS approach classifies data heterogeneity issues according to the

syntactic, structural and semantic levels, and provides adapted mediation along these

levels.

This approach rely on service descriptions, analyzing concepts of input and outputs,

to detect heterogeneities, proposing workflow adaptation to handle their reconciliation.

We adapted this conflict detection mechanism so that it is able to work with our data

model instances. Data source models and concepts are analyzed together with query

metadata, and workflow is adapted on heterogeneity discovery. We intercept data

requests and responses to perform the data transformation.

Cleaning and Filtering Rules

In our architecture, when data is processed in one resource or another, noise and

inconsistencies may appear, as well as duplicate values or instances. The cleaning

and filtering resource handles different data cleaning tasks, including data duplicate

removal, incomplete data removal, formatting and encoding issue processing and data

removal when an issue cannot be solved (damaged data).

In addition to these resources, the user has the possibility to provide specific filter-

ing rules, to ignore specific data values, or to limit fields to range domains. Therefore,

the cleaning and filtering resource has a management API, where users can manage

their specific rules. Listing 4.4 presents filtering rules samples.

{

66

4.4. Architecture of the solution

"@context":{
"@vocab": "http://example.com/filter/",

"vcard": "http://www.w3.org/TR/vcard-rdf/",},
{ "@id": "http://example.com/filter/r1",

"data": "vcard:email", "operator": "not-contain",

"value": ".org" },
{ "@id": "http://example.com/filter/r2",

"data": "vcard:age", "operator": "more-than",

"value": "20" }
}

Listing 4.4 – Filtering rules example

In addition to cleaning and filtering resources, we provide a management resource

allowing users to publish their own cleaning rules. These specific rules allow to ignore

specific data values, or to limit the range domain of a concept. We define an API to

publish, search and remove these rules as follows: The URI /filter allows to create,

retrieve, delete and update rules according to their id, an example of rule creation is

shown below. In addition, /filters allows to retrieve a set of rules for a specified

data source id, through GET requests. Listing 4.5 shows an example of HTTP POST

request that publishes a filtering rule.

POST /filter HTTP/1.1

Content−type:application/x−www−form−urlencoded;charset=utf−8

Host: restful .alabs. io

Content−length:200

id=r1&data=vcard:email&op=not−contain&val=.org

Listing 4.5 – Sample of HTTP request to publish a filtering rules

4.4.5 Use case illustration

Figure 4.11 illustrates the data that flows during a query execution. The example

showed in this figure presents the following data exchanges

1. firstly, the system user creates a query through the Web interface

2. the query is send through the data bus of the architecture to the query parser

3. the query parser explodes the query and extract relevant concepts and relations

(foaf : user has an foaf : email, foaf : user open domain : campaign, etc...)

4. according to concepts from the query, and data source models, a set of relevant

data source is selected

5. data is extracted from the sources according to query information, and then

transformed into a pivot format for manipulation (JSON or JSON-LD)

67

Chapter 4. Adaptive Workflow Architecture

Figure 4.11 – Use Case Data Flow Representation

6. data is semantically enhanced

7. data is filtered one time (to cleanup eventual and semantic annotation prob-

lems), in the case where the query (or the user) has provided filters, some piece

of data could also be removed

8. data sets are combined according to their pivot values (heterogeneities are re-

solved at runtime)

9. data is filtered a last time (to cleanup unresolved combination issues)

10. data is send to the user through the interface, directly under the form of a

JSON-LD data set, or via an URI giving access to the result resource

4.5 Evaluation

In this section, we evaluate our different models and the resource-oriented architec-

ture introduced previously in chapter 3 and 4. We rely on an implementation of our

Architecture for Integration of Multi-Origin Data Sources (ArchIMODS) to evaluate

the transparent and dynamic data source management and processing.

We answer the scalability challenge by evaluating the evolution of request response

time over a growing number of data sources. We evaluate our architecture in terms of

performance (response time) when answering a set of complex semantic queries over

multiple data sources. We regularly increase the number of data sources and measure

the response time.

68

4.5. Evaluation

Relying on our scenario presented above, we create two requests, involving sub-

graphs containing four concepts. We populate our scenario with a set of data sources

covering the different subgraphs. Query 4.6 involves four subgraphs, implying data

sources with different characteristics such as high volume (big database in our sce-

nario) and privacy sensitive information (linked service in our scenario).

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value .

?email value a al :email value .

? clic a al : clic ;

al : clic email ?email ;

al :clic campaign ?campaign .

?campaign a al :campaign .

}

Listing 4.6 – Query 1 involving four concepts

Query 4.7 involves only three subgraphs, but includes user specific filters. This

query introduces freshness sensitive data sources (streams in our scenario).

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

PREFIX xsd: <http://www.w3.org/TR/xmlschema−2/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value ;

al : blacklist status ?status .

? clic a al : clic ;

al : clic email ?email ;

al : clic date ?date .

FILTER (?status != 1 && ?date >= "1411477450"ˆˆxsd:date)

}

Listing 4.7 – Query 2 introducing user specific filters

Fig. 4.12 and 4.13 shows the evolution of our architecture response time, when the

number of data source grows. The graph also presents different composition techniques,

that clearly shows the importance of adaptive composition. Workflow WF1 composes

the steps of integration in a static way, which is quite well adapted for small data

source sets, but does not scale when data source number grows. The second workflow

WF2 introduces a dynamic composition, where the architecture is provided with the

possibility to permute components, performing the filtering process before combining

data.

This graphs shows that our architecture can handle the growth of data source

number, as long as we use a dynamic composition model. In the case of the first

69

Chapter 4. Adaptive Workflow Architecture

wf1 wf2
0

10

20

30

0.73 0.782.49 1.52

6.53
2.24

33.02

3.13

R
es
p
.
ti
m
e
(s
)

4 sources 8 sources 12 sources 16 sources

Figure 4.12 – Average response time for Query 1

composition model wf1 the combination of data become a time-consuming process,

as response time grows exponentially. For more than 20 data sources, with the first

workflow, architecture takes minutes to answer the query. With a dynamic composition

workflow, avoid composing duplicates and non well formed data severely improves the

process.

wf1 wf2
0

5

10

15

0.36 0.361.16 0.74
3.02

1.14

6.98

1.62

14.82

2.08R
es
p
.
ti
m
e
(s
)

3 sources 6 sources 9 sources

12 sources 15 sources

Figure 4.13 – Average response time for Query 2

The second query involves less concepts, and allows the architecture to give better

responses with the first workflow, but it still takes more than a minute to answer Query

1 with 20 data sources. The second workflow adapts to the request and provides good

results.

In this section, we demonstrate the scalability of our approach over a growing

number of data sources. We provide performance tests, when answering complex

semantic queries over multiple data sources. In the following, we demonstrate the

adaptivity of our approach, by proposing an architecture optimization, to limit the

quantity of data transfered over the network.

70

4.6. Architecture optimization

4.6 Architecture optimization

In the previous section, we rely on our data source models to design different

processing strategies that adapt to the variety of data source characteristics, providing

when needed: access models for volume value scale, cache setup for high latency or

low update frequency, etc. Based on these data processing strategies, we build our

adaptive architecture, which generates different processing workflows in response to

a user request, in order to complete the required processing tasks. Our architecture

optimizes and adapts workflows to handle the variety of data sources involved in the

query.

4.6.1 The problem with HTTP and data Volume

Despite these models and strategies, data quantity still hampers data exchanges

and remains a bottleneck in our architecture, especially when it comes to data transfer

between resources or to render the request result to the user. By taking advantage of

the many benefits provided by the REST architectural style and the use of resources,

we unfortunately suffer from the limitations of Web protocols, and it is sometimes dif-

ficult to transfer large quantities of data through HTTP. This issue makes architecture

decentralization difficult to realize, and our RESTful architecture suffers from a lack

of responsiveness.

There is a need for an approach that minimizes data transfer and performs data

processing tasks closer to the data source to reduce network traffic. Doing so, our

approach could benefits from the advantages of the Web and REST principles.

4.6.2 Related Work on HTTP and data volumes

There is one common question when studying distributed architecture in order to

manipulate big data volumes. The main issue stands in how to handle data transfer

latency in SOA. Some approaches were proposed in order to solve or to dodge this

issue.

Devresse et Al. [Devresse and Furano, 2014] propose an approach for adapting the

HTTP generic protocol to improve its data access performance in data analysis appli-

cations. They created a library called libdavix allowing high performance computing

world benefit from HTTP and the RESTful principles. This approach is focused at

71

Chapter 4. Adaptive Workflow Architecture

the protocol level, and based on a dynamic connection pool coupled with the usage of

the HTTP Keep-Alive feature, in order to maximize the reutilization of TCP connec-

tions. By avoiding useless protocol handshakes, reconnections and redirections, their

approach improves efficiency of large data transport through HTTP.

In Fast Optimised REST (FOREST) [Ko et al., 2012], Ko et Al. propose a non-

invasive technique which enables RESTful services to overcomes the traditional bot-

tleneck experienced during transfer of large set of data. Their approach relies on en-

capsulating the original TCP data in UDP-based data transfer [Grossman et al., 2005]

payloads. The approach allows to transfer data over UDP protocol between REST ser-

vices in an orchestration. Even if evaluations shows good results, the approach does

not seem to provide a real solution, it is a low level fixing to benefit from advantages

of other protocols. According to the data volume challenge, they make the statement,

which is also ours, that both data and data analytics need to be closely located to

reduce the unnecessary network traffic, to improve efficiency. They introduced chal-

lenges and perspectives and present some approaches relying on services to perform

big data tasks, but does not provide a solution to the volume issue.

Zheng et al. [Zheng et al., 2013] provide an overview of service-generated big data

as well as big data-as-a-service, a flexible infrastructure providing common big data

management functionalities. Their approach rely on cloud computing techniques to

handle collection, storing, processing and visualization of data and they address some

significant challenges, particularly about variety or volume and how infrastructure

must support (and adapts) this variety and volume to provide fast data access and

processing.

Van Der Pol et Al. [van der Pol et al., 2012] propose an approach based on mul-

tiple paths TCP [Ford et al., 2011] to transfer huge data sets over networks. Their

approach relies on load balancing transfer through the different available paths relying

on parallel multiple TCP requests. Their approach can handle different paths with

different bandwidths, balanced over the different interface offered by the system. They

propose a prototype

According to these approaches, it becomes clear that the most powerful solution

is to minimize data transfers, process data volumes closer from the source and trans-

ferring data reference instead of data itself. Doing this way, we extract data and

process it at the same time, only transferring data when necessary. In the next sec-

tion, we present our resource-oriented architecture, the models that helps to build it,

and finally, we present our solution to handle data volume diversity in our smart data

72

4.6. Architecture optimization

architecture.

4.6.3 Handling Volume Diversity

In order to handle volume diversity in our RESTful architecture, and to maintain

a good response time performance, we propose a solution which reduces data transfer

to a required minimum. We identify the different kind of data transfer and propose

an approach that allows to handle the different processing tasks without having to

forward the business data between the different resources.

Upon query request from the user, query is parsed and a corresponding algebra is

extracted, containing concepts and subgraphs 10. This algebra helps to detect which

data source is involved in the extraction and combination process. Architecture opti-

mizes the workflow, according to the different resources involved to handle the required

processing tasks and a set of data sources which contains the data to be processed.

This workflow is executed by the architecture, the data bus handles communication

with resources, generating HTTP requests and retrieving responses from resources.

We identified different data transfers during the process

— data extraction from data sources

— data transfer to a task resource for a process (filtering, combination, semantic

annotation, etc)

— data download (rendering to user)

In this context, data extraction and data download cannot be avoided, they are com-

pletely required. In order to process other tasks of the process, we design our RESTful

resources so that they only manipulate the metadata instead of proper data. Each

resource API is given the current metadata about the query and the data sets. Com-

puting this metadata, remote processing codes and configuration are generated in order

to complete the process managed by this resource.

As an example, we follow the complete workflow of a user request. The architecture

receives a user request containing a query, which is forwarded to the query parser, which

extract a grammar and identify the different concepts involved in this query. According

to the concepts retrieved, architecture selects the corresponding data sources. Data

source handler connects to these data sources and extract the business data (these are

unavoidable data transfers). In order to annotate extracted data sets with semantic

10. See https://github.com/semsol/arc2/wiki for a documentation about the SPARQL parser

we use.

73

Chapter 4. Adaptive Workflow Architecture

Figure 4.14 – Optimized approach to handle data storage and processing

concepts, metadata about data sets and query is send to the semantic annotation API

which returns the semantic mapping, in order to attach concepts to the different fields

of the data sets. In order to perform the data sets combination, metadata is sent to

the combination API which analyzes the different schemas and semantic annotations

in order to generate a combining process. For each step that requires a filtering process

(as specified in the generated workflow), filtering API generates a resource containing

the cleaning and filtering configuration. These configurations and metadata will help

data the storage to execute the necessary steps close to the data, minimizing execution

time by lowering latency and network time.

Storing data

In order to temporarily store data, our proposal is based on temporary data storage

units, generated at each user request. Storage units act as file hosting services, they

are generated at runtime, for each new user request, for a limited amount of time and

contains the data and metadata for this request. We provide these storage units, with

generic and configurable processing features, which can execute processing tasks over

data. These units can execute decoding, combination and filtering above the data it

contains.

Storage units are erased after a certain amount time, which has been fixed to a

default value of 24 hours. This delay is customizable for each request. Time counter

is reset each time a user reissues the query or reaccesses the storage. Storage units

are accessible as RESTful resources, for management purpose or to retrieve query

responses when data processing is over. When the processing tasks are over, the

storage URI is given to the user, so that he could download the data sets answering

to his request.

74

4.6. Architecture optimization

In order to handle the different tasks required to complete the different processes,

we provide the storages with a functional engine capable of executing processing tasks

directly above the data instances. The tasks resources of the architecture, will gen-

erate the configuration for each tasks, which will be transfered instead of data. As

introduced before, temporary storages implements decoding, combination and filtering

tasks, configurable via an API.

We provide data store with different processing engines, each representing an en-

vironment or an engine. Each data store is provided with an API, which allows its

management, but also to register engine libraries or plugins, required to process the

different languages or functionalities

4.6.4 Evaluation of our architecture optimization

In order to evaluate the scalability of our architecture, and how this optimization

affect response time, we evaluate request response time when answering to a set of

complex semantic queries over multiple data sources. We vary the number of data

sources and measure response times.

Relying on the scenario presented above, we create two requests, involving four

concepts subgraphs. We populate our scenario with a set of data sources, covering the

different subgraphs. Query 4.8 involves four subgraphs, implying data sources with

different characteristics such as high volume (scenario’s big database) and privacy

sensitive information (scenario linked service). This query also presents user specific

filters.

PREFIX al: <http://purl.org/dc/elements/1.1/>

SELECT ?email value ?campaign WHERE {
?email a al :email ;

al :has email value ?email value ;

al : blacklist status ?status .

? clic a al : clic ;

al : clic email ?email ;

al : clic date ?date .

FILTER (?status != 1 &&

?date >= "1411477450"ˆˆxsd:date)

Listing 4.8 – Query 1.1 involving the different concepts

Query 4.9 involves only a few number of concepts, and present less data manipu-

lations. This query shows that latency is more due to data transfer than data manip-

ulation.

75

Chapter 4. Adaptive Workflow Architecture

PREFIX al: <http://restful.alabs.io/concepts/0.1/>

SELECT ?email value WHERE {
?email a al :email ;

al :has email value ?email value ;

al : blacklist status ?status .

FILTER (?status != 1)

}

Listing 4.9 – Query 1.2 introducing a user specific filters

These results present two facets, with distinct results. In the first solution, which

is the classical one, data is transfered between resources in a classical REST architec-

ture. The second solution introduces our optimized proposal, involving localized data

storage, with data manipulation processed directly upon data. Fig. 4.15 and Fig. 4.16

present our architecture response time evolution, when the number of data source grow

respectively for query 4.8 and 4.9.

Classical Optimized
0

5

10

2.45

0.3

5.24

0.68

7.14

1.25

7.84

1.58

8.43

1.89

9.6

2.25R
es
p
.
ti
m
e
(s
)

4 sources 8 sources 12 sources 16 sources 20 sources 24 sources

Figure 4.15 – Evaluation of average response time for query 1.1

This graphs shows that our architecture can handle the growth in data source

number, as long as we use our optimized data solution.

Classical Optimized
0

2

4

6

8

10

1.79

0.17

3.38

0.43

4.73

0.76

4.89

0.95

5.86

1.19

6.38

1.39R
es
p
.
ti
m
e
(s
)

2 sources 4 sources 6 sources 8 sources 10 sources 12 sources

Figure 4.16 – Evaluation of average response time for query 1.2

76

4.7. Conclusion

The second query involves less concepts, and as a result less data manipulations,

but our architecture still suffer from a very high latency due to data transfer. The

second solution adapts to the request and provides good results, even when data grows.

In both queries, the classical approach suffers from a very high latency, even for a

small number of data sources. Data is forwarded from resource to resource, where

the tasks are processed. In our approach, the architecture exchanges only meta-

information, including queries and metadata, with APIs and resources, and the size of

this data transfer is much smaller than data itself. Data processing tasks are executed

directly on-site, with the information gathered from APIs and tasks resources.

4.6.5 Discussing our optimization

In this section, we proposed an architecture optimization to focus on the latency

problems that appear when dealing with diverse data volumes especially when trans-

ferring data between the different architecture components.

All along the smart data construction process, we rely on a temporary data storage,

deployed as a resource with an URI, where business data is stored. Our architecture

handles the communication between the different resources, by transferring metadata

about the query and the data storage URI. Resources generate adapted remote pro-

cessing codes, which are forwarded to storage units and executed on-site by the data

storage engine. Therefore, data manipulation is performed on-site, and the data does

not flow through the architecture. By reducing latency due to data transfers, we alle-

viate our decentralized and distributed architecture from the burden of data transfer,

and improve the responsiveness of data-driven resource workflows.

4.7 Conclusion

There is an increasing need for building solutions to handle the different processes

required to combine and semantically annotate data coming from heterogeneous data

sources and generate smart data.

In this chapter, we rely on our previously introduced models and adaptive data

processing strategies to propose an adaptive architecture to improve smart data man-

agement when data comes from different sources with heterogeneity issues, malformed

data and duplicates. We propose a flexible solution to handle data according to data

source characteristics, allowing the use of different data access and processing strate-

77

Chapter 4. Adaptive Workflow Architecture

gies. To handle data management, we define a responsive architecture that orchestrates

RESTful resources, accessible through their uniform interface to enhance interoperabil-

ity. Our architecture allows converting and semantically annotating multi-origin data

sources in order to produce a smart data set. It aims at being as generic as possible,

independent from data sources, and adaptable to any use case.

We demonstrate the applicability of our architecture in the context of a scenario

that answers the needs of our partner company. We also show its genericity by propos-

ing an optimization in order to handle large volume.

In the next section, we focus on the quality of data objectives. We assume that

uncertainties are everywhere on the Web, but is most of the time avoided by people,

by making arbitrary decisions about contradictory information. We want to propose a

model to represent this uncertainty, and techniques to handle this uncertainty, in our

data integration concerns.

78

Chapter 5

Composition of Uncertain Web

Resources

5.1 Introduction

Nowadays, modern information systems allow individuals, connected objects and

organizations, to produce and publish a huge amount of data on the Web through

Web APIs and public endpoints [Maleshkova et al., 2010]. Data is then collected from

different sources and combined in mashups [Benslimane et al., 2008] to produce added

value. However, the integration process raises several problems, as data may come

from heterogeneous, contradictory or incomplete sources [Halevy et al., 2006].

Data uncertainty occurs when different data sources provide contradictory infor-

mation about the same entity. In this case, there is a chance that each data source

provides different information which we cannot solve by characterizing that one fact is

right and the other is wrong. Information may be correct under some circumstances,

and incorrect under others. Examining the origin of uncertainty - such as slight differ-

ences in physical event measuring, or differences in information provided by different

data sources describing the same entity - may help understand its nature. However, the

major challenge of today’s Web is to provide a solution to deal with this uncertainty.

Instead of choosing a unique yet arbitrary version of information, we believe users

should be given the whole spectrum of possibilities to describe an entity. The current

state of the Web gives users the ability to select one single representation for an entity.

As an example, when trying to find information about a book, the classical approach is

to search the book name in a search engine, and browse the proposed Web pages until

79

Chapter 5. Composition of Uncertain Web Resources

the answer is found. This approach can be considered as a series of choices between

available links, which will lead to the most appropriate representation of an entity (e.g.

a book). When issuing a query to a Web API, the selected approach is the same, the

mashup process typically discards data identified as incorrect during the integration

process to provide the user with what is assumed to be the correct information only.

5.1.1 Motivation

Today’s Web only gives users the opportunity to select one single representation

from a set of representations of an entity. As an example, let us consider a user trying

to answer the following query: What is the date and city of birth of the author of the

book “Les Miserables” ?. Typically, while browsing through Web pages, a user will type

the book name into a search engine, then he chooses one of the link proposed in the

result page, and continues his navigation from this point to the answer. Such method

only provides one certain representation at a time, the choice of what representation

to select is left to the user who clicks on the links deemed to be the most appropriate.

As well, let us consider the same query issued to a traditional Web API or SPARQL

endpoint. The mashup process typically discards data identified as incorrect during

the integration process to provide the user with what is assumed to be the correct

information only.

While the main objective is to allow the Web to deal with uncertain data, which

requires providing a theoretical framework that allows for describing, manipulating,

and exposing uncertain data to users, we identify several challenges in this context.

First, Web resources should be able to provide access to multiple, simultaneous repre-

sentations that leave the possibility to describe the same entity in different ways: there

is a need to design and develop uncertain Web resources. Second, Web browsing

and data mashups should deal with both uncertain and certain Web resources. There

is a need to provide a solution to combine pieces of information from uncertain Web

resources to answer user queries.

5.1.2 Contribution

In order to address these challenges, we propose a theoretical definition of the

notion of uncertain Web resource and propose an interpretation model to access their

uncertain representations. Then, we propose an algebra to evaluate this uncertainty in

80

5.2. Data Uncertainty: State of the Art

the context of classical hypertext navigation that allows to combine data from several

uncertain Web resources. We rely on these models to develop a set of specific operators

and algorithms to evaluate uncertain data queries.

5.2 Data Uncertainty: State of the Art

Uncertainties have been processed in different contexts. We envision different ap-

proaches, handling uncertainty historically in databases, and more recently in services

oriented application. Unfortunately, none of these approach handles the uncertainty

that can appear when manipulating resources or when dealing with Restful applica-

tions.

5.2.1 Uncertainty in databases

Dong et Al. [Dong et al., 2007] propose a database schema matching approach

based on uncertainty. Approach rely on generating an approximate matching between

two schema. Their approach relies on constructing a probabilistic model to represent

the data uncertainty that will help to decide in making a mediated schema, and later

to reformulate queries for the different data sources. The mapping created rely on a

select, project and join approach, which restricts the queries to single table on both

sides, making each table mappings independent. They called these mappings attribute

correspondences. In order to generate this probabilistic mapping, they propose two

semantics, by-table and by-tuple. In by-table semantic, they generate the different

query reformulations, considering the possible matchings (attribute correspondences).

Probability of each reformulation is the product of each matching probability used

in this reformulation. In by-tuple semantic, we have to generate certain anwser for

every mapping sequence generated, in order to obtain a consequent result set. The

complexity of by-tuple semantic is higher than by-table semantic.

Fagin et Al. [Fagin et al., 2011] envision data exchanges in presence of uncertain

data coming from probabilistic databases. Their approach is a generalization of Dong

et Al. by-table semantics [Dong et al., 2007] in which probabilistic matching are gen-

erated between tables in order to align fields. The generated results are associated with

a probability value. Their probabilistic match approach relies on creating an arbitrary

binary relationship between two countable (finite or countably infinite) probability

spaces. This target must be countable probability spaces in order to create the map-

81

Chapter 5. Composition of Uncertain Web Resources

ping. Once this mappings has been done, they compute a matching degree in order to

characterize the result of the query.

Agrawal et Al. [Agrawal et al., 2010] propose a local-as-view data integration ap-

proach dealing with sources containing uncertain data. Their approach rely on the

concept of containment, making the following assumption: when integrating two un-

certain databases, if a mediated uncertain database exists, this database must contain

both databases.

Cheng et Al. [Cheng et al., 2012] propose an approach to evaluate probabilistic

queries while dealing with uncertain matching of database schemas. Authors propose

an approach based on the fact that concept values from both source and target schemas

are often overlapped. Rely on this overlapping, they choose the correspondences which

has the highest score and ignore the rest. They rely on these information to reduce

the set of generated possible matchings to its minimum.

These works are strong although complex approaches to handle with uncertain/prob-

abilistic data, these approaches has inspired our definition of uncertain Web resource.

However, if it applies very well to database, these approach does not fit well when work-

ing with Web resources. One solution could be to layer data sources with a database

endpoint, but it could not provide a sufficient solution for considering our composition

semantics. These approach has lead our definition of uncertain Web resources.

5.2.2 Uncertainties on the Web

Several approach have been proposed to deal with uncertainty in other contexts

than databases, most of the time in order to propose heterogeneous data integration

approach.

Lamine Ba et Al. [Ba et al., 2014] propose an approach for data integration, com-

bining data from web sources containing uncertainty and dependencies. Their ap-

proach confront and merge diverse information about a same subject from diverse

web sources. They model the following data as probabilistic XML to process deci-

sions [Kimelfeld and Senellart, 2013].

Sarma et. Al. [Das Sarma et al., 2008] envision what they call pay-as-you-go inte-

gration systems, which is related to our smart data architecture. Their system rely

on a single point interface to a set of data sources, integration of data being made by

creating a mediated schema for the domain.

82

5.3. Uncertain Web Resources

Pivert et. Al. [Pivert and Prade, 2014] propose a solution to integrate multiple

heterogeneous and autonomous information sources, resolving factual inconsistencies

by analyzing the existence of suspects answers in both data sets. Their approach

verify the data provided by two data source they want to integrate, if a data piece

in second source invalidates a data piece in the first data source, it is considered as

a suspect answer. Their approach finally return all the candidate answers to a query,

rank-ordered according to their level of reliability.

Finally, Amdouni et Al. [Amdouni et al., 2014] propose an approach to handle the

uncertainty of the data returned by data services, which they call uncertain data

service. They define uncertainty at three levels, in the context of DaaS services,

modelization, invocation and composition. First of all, they extend the Web services

standards to model uncertainty of a service in its own description. This model intro-

duces the notion of uncertain data service, whose can be explained by possible worlds

theory [Sadri, 1991]. These uncertain data services are defined by their inputs and sets

of their probable outputs. It is this set of possible outputs returned by an invocation

which can be considered as possible worlds, each of these world being Dependant and

having a probability value. They defined two different kinds of invocation of uncer-

tain data services, conventional with certain input and probabilistic where inputs are

presented containing uncertain data instances.

These works propose several methods and models to process uncertainty in the

context of Web (XML, services or semantics) but none of them address the uncertainty

that can appear while referencing information through Web. This a very common

problem, which is usually skipped, decided arbitrarily by providers. Our approach

propose a relevant and adaptable approach to enhance Web based applications with

uncertainty awareness.

5.3 Uncertain Web Resources

In this section, we define an uncertain resource as a Web resource whose represen-

tation cannot be decided. Therefore, as we see it, these resources have several possible

representations, each with an associated probability.

83

Chapter 5. Composition of Uncertain Web Resources

5.3.1 Definition

The semantics of uncertain Web resource can be explained based on the possible

worlds theory [Sadri, 1991]. The probabilistic representation of a resources can be

interpreted as a set of possible world (PW1 ,..., PWn). In our approach, we decide

to call this generated possible world possible Webs. Every possible Web has a

probability prob(PWi) of existence, and inside this possible Webs, data is considered

certain.

In order to define the notion of uncertain resource, we rely on several assumptions:

1. Due to the REST principles, several representation of one URI (i.e. one re-

source) cannot coexist, so the possible representations of a resource must be

mutually exclusive.

2. Since we are dealing with resources, the uncertainty should only affect resource

representations, therefore, inside a given possible representation, every piece

of data is considered certain. By extension, if a resource property has several

possible values, it should appear into separate representations.

3. For the sake of simplicity, in this approach we consider that each possible rep-

resentation of a given resource is represented according to the same model.

We define an uncertain resource R̃ as follows:

R̃ =< urir, {< repi, Pi > |i ∈ [1, n],
n∑

i=1

(
Pi

) ≤ 1} >

Where repi is one of the possible representation for resource R̃. Since possible represen-

tations are mutually exclusive, Pi ∈]0; 1]. A sum of probabilities lower than 1 indicates

that some of the representations of the resource exist but their actual content is un-

known (or does not exist). The probabilities are not part of representations, they are

meta-data provided by the server. In some cases, it allows to provide a sub parts of the

possible representation, if the probability is to low or if the resource provider wants

to hide some of the representations. A probability sum lower than 1 also provide the

possibility to consider a quantified (as in predefined) part of unknown.

As an example, the two possible representations of our book resource scenario

shown in Fig. 5.1a represents different possible Webs in which the representation is

certain. In each of these Webs, resources are usable as a classical certain resources.

Note that the interpretation of the probabilistic representation is completely indepen-

dent from one resource to another. The associated model we defined is the following:

84

5.3. Uncertain Web Resources

every resource is independent, but each URI identifies a unique resource, which can

only have one representation.

In order to interpret our uncertain resources, we adapt the popular uncertain

database model Block-Independent Disjoint (BID) [Dalvi et al., 2011]. Our model

specifies, on the one hand, that every possible representations of a resource are dis-

joint, and on the other hand, that resource interpretations are independent from one

to another.

(a) composition

(b) generated worlds

Figure 5.1 – A simple uncertain resource example

Fig. 5.1a shows how we interpret uncertain resources as a set of probable repre-

sentations, each of these representation creating a possible Web in which it is the

only representation of this resource. In this figure, we represent each resource a set

of representations, the number in the upper right representing the probability of this

representation. E.g. in the possible Web W1, resource A has a unique representation

which contains a link to resource B; resource C still exists but is not connected to A.

Resources with non-provided representations

In possible Web W3, the uncertain resource Ã points to nothing, it is considered

as a non-existing resource which does not have any representation, in our formal-

ism, this unknown resource is noted ∅. As said by T. Fielding in his definition of

REST [Fielding and Taylor, 2000] : ”A resource can map to the empty set, which al-

lows references to be made to a concept before any realization of that concept exists”.

85

Chapter 5. Composition of Uncertain Web Resources

One resource can be unknown for several reason. The server that hosts the resource

could had been shut down, the resource could have been removed from its location,

the URI could be malformed.

Technically, a GET request over such an undefined resource leads to an HTTP error,

as an example 404 not found or 503 Service Unavailable error status. However,

when requesting the uncertain resource Ã, we only obtain the known representation.

In such cases, the sum of the provided resource representation probabilities does not

make 100%. The unknown part will not directly affect our future algorithms, since we

will only consider the known part of a resource, in this case, the sum of the probabilities

for each query results will never complete a 100%. But this is something that often

occurs, when manipulating probabilities.

5.3.2 Particular composition cases

Our previous example shows a quite simple example of scenario-based resource

composition. The distributed state of resource-based applications, associated with our

lightweight model, allow more complex compositions. Fig. 5.2 shows some examples of

complex resource orchestration where uncertainty appear, and which our model could

easily adapt to. These examples presents loop, redundancies and differences in models

while navigating through hypertext. In these examples, heterogeneities can appear

but are handled by our algorithm in the next section.

(a) loop

(b) dependencies

Figure 5.2 – Particular uncertain resource examples

Fig. 5.2a shows a situation where it may exists a loop in the request path. Our

algorithm only dereferences resource once, protecting us from looping infinitely through

hypertext path. In Fig. 5.2b, the resource composition present a duplicate resource.

86

5.3. Uncertain Web Resources

The important specificity here is related to this duplicate resource, and is handled by

our model, which specifies that a resource only have one representation in a possible

Web.

5.3.3 Programmatic representation of uncertain resources

In order to provide a way to handle uncertain resources, we proposed a formalism to

physically represent them. We present a representation model, where we provide every

possible representation of an uncertain resource. In this model, we give a probability

to all these representations.

(a) Uncertain Book

(b) Uncertain Author

Figure 5.3 – Scenario based uncertain resources

Listing 5.1 and 5.2 shows the JSON representations of the uncertain resources

presented in Fig. 5.3.

[{p :0.6, r:{ title : "Les miserables",

date: "3 Avr 1862",

author: "http://dbpedia.org/VHugo"}},
{p :0.4, r:{ title : "Les miserables",

date: "30 Mar 1862",

author: "http://dbpedia.org/VictorHugo"}}]

Listing 5.1 – JSON representation of an uncertain book resource

[{p :0.7, r:{ name: "Hugo V.",

birth : 1802,

city : "http://city/besancon"}},

87

Chapter 5. Composition of Uncertain Web Resources

{p :0.2, r:{ name: "Victor HUGO",

birth : 1802,

author: "http://city/paris"}}]

Listing 5.2 – JSON representation of an uncertain author resource

5.3.4 HTTP Request over uncertain resources

In order to handle uncertain Web resources, there is a need for the client, who re-

quests the uncertain resource to be able to understand this resource. We call uncertain-

aware a client that is able to request and understand uncertain resource. In the same

way, a client which does not know (or does not care about) what is an uncertain

resource should be able to work with that resource. In order to respect the Web prin-

ciples, and to provide a possibility to make client uncertain-aware, we rely on content

negotiation to serve our uncertain resources.

Content negotiation is a mechanism provided by HTTP that allows to serve different

versions of the same resource representation (i.e. at the same URI), to fit with the

client (see RFC7231 11). Through content-negotiation, a client is able to tell the server

that it is able to compute uncertain resources. Doing so, we are able to enrich classical

resources, and to manipulate both their certain and uncertain representations. We

make a difference between classical and uncertain-aware GET requests. In order to

differentiate standard GET requests and GET requests asking for uncertain-aware

data, we propose the notation ˜GET , which describes aGET request from an uncertain-

aware client (i.e. using specific headers to request uncertain representations).

Let R̃ an uncertain resource deployed at urir, we defined the following expected

behaviors:

GET (urir) :=< repr >

˜GET (urir) := {< rep1, P1 >, . . . , < repn, Pn >}

Listing 5.3 and 5.4 show examples of GET and ˜GET over uncertain resources.

GET http://book.com/miserables HTTP/1.1

Accept: application/json

{ title : "Les miserables",

author: "http://dbpedia.com/writer/Hugo"}

11. https://tools.ietf.org/html/rfc7231#section-3-4

88

5.3. Uncertain Web Resources

Listing 5.3 – GET the certain (yet arbitrary) representation of our book

GET http://book.com/miserables HTTP/1.1

Accept: application/json

X−Accept−Uncertain: true

[{p :0.4, r:{ title : "Les miserables",

author: "http://dbpedia.com/writer/Hugo"}},
{p :0.6, r:{ title : "Les miserables",

author: "http://amazon.com/author/VictorHugo"}}]

Listing 5.4 – GET the uncertain representation of our book

In our approach ˜GET is not defining a new HTTP method. ˜GET is only a shorter

notation of a standard GET with specific headers. ˜GET acts as a standard GET with

a specific HTTP header which we define asX−Accept−Uncertain : true. We choose to

define a specific header to avoid interference with the standardized usage of the accept

header. Indeed, the Accept header is the classical header for content negotiation, as it

is used to specify an expected mime-type for the resource representation. The good

practice is then to specify an adhoc specific header to respect the HTTP standards

(see RFC7231 12).

NB: How providers define the certain representation of an uncertain resource is not

a problem we address in the scope of this work. We only provide the possibility to do

it.

Working with certain resources

In addition to this, using content negotiation will provide a possibility to work

with certain resources, where the response provide only one representation with a

probability of 1. Let Rc a certain resource at uric, we have the following:

GET (uriC) :=< repc >

˜GET (uric) := {< repc, 1 >}

Listing 5.5 and 5.6 show examples of certain and uncertain-aware manipulation of

certain resources.

12. https://tools.ietf.org/html/rfc7231#section-5.3.2

89

Chapter 5. Composition of Uncertain Web Resources

GET http://book.com/treasureisland HTTP/1.1

Accept: application/json

{ title : "Treasure Island",

author: "http://dbpedia.com/writer/rl-stevenson"}

Listing 5.5 – GET a certain resource

GET http://book.com/miserables HTTP/1.1

Accept: application/json

X−Accept−Uncertain: true

[{p:1, r:{ title : "Treasure Island",

author: "http://dbpedia.com/writer/rl-stevenson"}}]

Listing 5.6 – GET the uncertain representation of a certain resource

5.3.5 Composing uncertain Web resources

It is important to note that uncertain resources can link to other resources, which

can also be uncertain resources. In such cases, we generate an uncertain composition

between resources.

Let q a composition of Web resources Ri, with URIi being Ri URI, and F n
i the nth

possible representation of resource Ri. In this composition, each possible representa-

tion leads to the generation of a new possible Web. The probability of this possible

Web is derived from the probabilities of its involved representations/ In this compu-

tation, we have to take into account, the resource representation involved. Since we

consider that our resources are independent, we compute the resulting probability as

a product. Let a possible Web Wx involving the set of representations {rep1, ..., repn},
the probability of the resulting Web is computed as follows:

P (Wx) =
∏

i∈[1,n]

(
prob(repi)

)

where repi ∈ Card(Wx), the representations involved in Wx. The probability of

the unknown representation of a resource Ra is computed as follows:

prob
(
repxa

)
= 1−

n∑
i=1

prob
(
repia

)

where repia are the different representations of resource Ra. Fig. 5.4a shows a

more complex example, where resource can link to different certain and non-certain

90

5.3. Uncertain Web Resources

(a) composition

A1B1 C

D EF G H I

W1, 0.42

A1B2 C

D EF G H I

W2, 0.12

A1BX C

D EF G H I

W3, 0.06

A2B C1

D EF G H I

W4, 0.1

A2B C2

D EF G H I

W5, 0.08

A2B CX

D EF G H I

W6, 0.02

AXB C

D EF G H I

W7, 0.2

(b) generated Webs

Figure 5.4 – Uncertain composition and world generation

resources. From this scenario, as shown in Fig. 5.4a, we generate all the possible Webs

that are derived from the resources involved. In this figure, AX , BX and CX represents

the unknown part of each resource. WHat it means, technically, is this URIs points to

nothing. Each probability is computed thanks to the formula in previous Subsection.

As an example, the probability of possible WebsW4 andW6 are prob(W4) = prob(A2)×
prob(C1)× prob(H)× prob(E) = 0.2× 0.5× 1× 1 = 0.1 and prob(W6) = prob(A2)×
prob(CX)× prob(E) = 0.2× (1− 0.5− 0.4)× 1 = 0.02.

In this section, we introduced the concept of uncertain Web resources, presented a

model and an algebra to compute the probability of uncertain resource composition.

In the next section, we describe the evaluation of a query in such a context, we define

how to interpret an uncertain query and how to compute and aggregate its results.

91

Chapter 5. Composition of Uncertain Web Resources

5.4 Query evaluation

In this section, we present our approach to aggregate data from uncertain resources

thanks to hypertext navigation. We show how to interpret a data query in the context

of uncertainty.

5.4.1 Interpreting query as resource paths

In the context of Web, searching for an information is commonly performed by

navigating resources, following a natural path through these resources. Formally, we

define a data query as an ordered set of resource requests, following this path. Re-

sources URIs are dereferenced in order to get a representation, from which we extract

new URIs, and so on, until we find query answer. Following our example scenario, to

answer the query: What is the date and city of birth of the writer of the book ”Les

Miserables” ? The execution of this path in a classical RESTful composition is detailed

in Fig. 5.5

Figure 5.5 – Query answering in RESTful compositions

In order to fulfill this path following, we must assume that the representation we

manipulate specify the necessary semantics and information about their content. For

example, when retrieving a book resource and in order to reach its author, it is impor-

tant that the author functional property of the object we retrieve is specified, and that

this author is actually the writer of the book we visit. In our scenario, the representa-

tions we manipulate are represented in the JSON-LD format [Lanthaler and Gutl, 2012].

Answering a query in an uncertain context means following the same path, but

92

5.4. Query evaluation

A

A1

A2

∅

PA1 = 0.6

PA2 = 0.2

PAx = 0.2

A1.author

A2.author

B1

B2

∅

PB1 = 0.7

PB2 = 0.2

PBx = 0.1

C1

C2

∅

PC1 = 0.5

PC2 = 0.4

PCx = 0.1

F, name=”Paris”
P=0.6*0.7*1=0.42

G, name=”Lyon”
P=0.6*0.2*1=0.12

H, name=”Paris”
P=0.2*0.5*1=0.10

I, name=”Tours”
P=0.2*0.4*1=0.08

B1.city

B2.city

C1.city

C2.city

Agg

Results:

P̈aris̈, 0.52

L̈yon̈, 0.12

T̈ours̈, 0.08

Figure 5.6 – Generating tree pattern while navigating between resources

through generated possible Web. Each Web provides a unique result, which is given

with the probability of this possible Web. All results are aggregated to answer the

query.

Generating each of these possible Web, i.e. combining and storing each combination

of representation in memory in order to evaluate query path in each one is a time and

memory consuming task. There is a need for an approach that allows to aggregate

these results directly without having to generate the possible Webs.

5.4.2 Tree Pattern Path Evaluation

When dealing with uncertain resources, we follow our query path through the

possible resource representations. This navigation through possible representation

create a possibility tree pattern, where each branch is associated with a probability,

i.e. the probability of the possible Web represented by this branch. Fig. 5.6 shows the

tree pattern created from our book scenario.

There is a need for an algorithm to aggregate the result of this probability tree.

What we propose here is an iterative algorithm to compute resulting probabilities from

resource meta-data avoiding the possible Web generation. To do so, we create a GETp

operator to follow a stage-by-stage routing inside this tree.

GETp takes as input a list of URIs from an nth stage of the tree, and returns the

possible resource representations from the n + 1th stage associated with probabilities

taking nth representation probability into account. Here is an example of GETp usage:

GETp

([
[A1.author, 0.6], [A2.author, 0.2]

])
= (5.1)[

[B1, 0.42], [B2, 0.12], [C1, 0.10], [C2, 0.08]
]

(5.2)

93

Chapter 5. Composition of Uncertain Web Resources

The GETp operator executes the necessary sequence of HTTP requests over the

given URIs, applies the probability formula and returns the set of representation-

probability couples. Thanks to the mutually exclusive status of resource possible

Algorithm 1 GETp Algorithm

1: procedure GETp(input_uris: list of (URI,proba) couple)

2: results ← List()

3: for all (URI_i,prob_i) ∈ input_uris do

4: GET(URI_i) returns uncertain resource R̃

5: for all (representation,prob_r) ∈ R̃ do

6: //Compute current probability

7: prob_c ← prob_i ∗ prob_r

8: if representation /∈ results then

9: Add < representation, prob_c > to results

10: else

11: Update results[representation] += prob_c
return results

representation, the method guarantees a safe composition, which means that result

probabilities are coherent and the sums of this resulting probability are less or equal

than 1 like verified in the following formula:

n∑
i=1

(
prob(resulti)

) ∈ [
0; 1

]

where < result1, ..., resultn > is the resulting data set.

5.4.3 Final aggregation algorithm

Having introduced the uncertain operator GETp, we are now able to finish our

query resolution. The resolution algorithm process iteratively through the different

stages of the probability tree. The evaluation algorithm will take a query and the URI

of the first resource as input. The query will be converted into a path, i.e. a sequence

of functional properties to extract from each resource. As an example, to get jump

from book to authors, the functional property will be ”:book hasAuthor:author”. This

path will help follow links from resource to resources.

The algorithm will process query path iteratively, using GETp to dereference URIs

of resource, and compute probabilities. In the case where a resource representation

94

5.4. Query evaluation

Algorithm 2 Evaluation Algorithm

1: procedure evaluation(query, URI_0)

2: transform query in lists of properties (our path)

3: // Make the first call (first URI is certain)

4: result ← PROCESS_PATH(properties, < URI_0, 1 >)

5: procedure process path(properties, input_uris)

6: // properties is a list of functional properties (i.e. the path)

7: // input_uris is a list of (URI,proba) couples

8: rep ← GETp(input_uris)

9: // Stopping condition, we reach the end of the path

10: if prop[0] = ∅ then

11: return rep

12: else

13: // Prepare new URI list

14: new uri list ← []

15: for all (representation, prob_r) ∈ rep do

16: if representation has a property prop[0] which is an URI then

17: // Get the property and add it to the new list

18: new_uri_list[]←[representation.getprop(prop[0]),

prob_r]

19: return PROCESS_PATH(properties[:1], new_uri_list)

95

Chapter 5. Composition of Uncertain Web Resources

does not contain the desired content, this representation will be skipped. In the end,

the resulting data set will contains the data that has been found, with the probability.

Due to our probability tree representation of a query evaluation, the probability of not

having a result will be taken into account, in this case, the probability will be lesser

than 1.

In this section, we envision the complete execution process of a query evaluation un-

der the existence of uncertainty. In the next section, we present some implementation

detail.

5.5 Implementation

We propose an implementation for the GETp algorithm and the computation algo-

rithm. As introduced before, our approach relies on REST principles, so we are able to

use any HTTP client to access our uncertain resources. What we propose here, is an

implementation of the GETp algorithm as well as an implementation of our evaluation

algorithm, which will perform the necessary HTTP requests.

Here is an example of an HTTP request, using content negotiation, to an uncertain

resource:

curl --header "X-Accept-Uncertain: true" "http://uri/resource"

Listing 5.7 – GET the uncertain representation of a certain resource

In order to keep our approach reusable, and to allow integration with other REST-

ful approaches, we implemented the GETp and COMPUTE algorithms as RESTful

services. Service calls are made through POST, and GET retrieves a user-friendly

description of the service. We propose a Web interface to execute simple SPARQL

queries. Our prototype, resources and scenarios are publicly available for testing at

the following URL: http://liris.cnrs.fr/~pdevetto/uncert/index.php.

We deployed and hosted our scenarios and proposed a Web interface to execute

simple Sparql queries.

Here is an example of query, corresponding to our scenario:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?city name WHERE {
?book a dc:book ;:hasAuthor ?author .

?author a dc:author ;: hasCity ?city .

?city a: city ;: hasName ?name .

}

96

5.6. Evaluation

Listing 5.8 – Query 1.1 involving the different concepts

Our compute algorithm implementation will transform this query in a list of concepts to

extract from resource to resource,creating our path descending through the possibility

tree. Our implementation uses the ARC2 SPARQL Parser to extract query concepts.

5.6 Evaluation

In order to evaluate our approach, we focus on the processing time of our algo-

rithms. For this purpose, we hosted RESTful services serving uncertain Web resources

in JSON-LD [Lanthaler and Gutl, 2012] over linked data dumps from the SWDF

corpus (http://data.semanticweb.org), representing ESWC2015, ISWC2013, and

WWW2012 conference semantic data (author, proceedings, etc.).

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX al: <http://liris.cnrs.fr/˜pdevetto/uncert/>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?similararticle WHERE {
? article a swrc:InProceedings ;

dc:subject ?subject .

?subject dc: inarticle ? similararticle .

}
Listing 5.9 – Query A: Articles that share the same subject than another article (by

ID)

We created three different scenarios (use case workflows) involving a different

amount of resources and with different graph complexities. Starting from a proceedings

article, the first query shown in Listing 5.9 retrieves all the articles that share the same

keywords. The second workflow (see Listing 5.10) retrieves all the articles written by

at least one same author. Finally, the third workflow retrieves the authors that have

written at least one article with one similar keyword.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX al: <http://liris.cnrs.fr/˜pdevetto/uncert/>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

97

Chapter 5. Composition of Uncertain Web Resources

SELECT ?others WHERE {
? article a swrc:InProceedings ;

dc: authorlist ?authorlist .

?authorlist a dc: authorlist ;

dc:author ?author .

?author a dc:author ;

foaf :made ?others .

}

Listing 5.10 – Query B : articles with same keywords than given article

We executed all the workflows with 30 different proceeding articles as input data.

Comparing uncertain workflow executions with the same workflow in a certain context

has no meaning, because the number of HTTP request will grow exponentially. In our

evaluation, we evaluate the ratio of network latency in the total execution cost of a

workflow. We show that the processing cost of our solution is negligible compared to

the network cost. The obtained results show the following: while workflows become

more complex, the number of HTTP requests grows, and the processing time is more

and more negligible, compared to HTTP latency. Under a global execution time of 2

seconds, processing time is less than 5%. After 3 seconds, it never exceeds 1%. On

top of that, as long as input resources define coherent representations (and correct

probabilities), no matter the query, it always generates a safe result set, with relevant

values and probabilities.

5.7 Conclusion

There is a need to provide a solution for Web users to be able to handle data un-

certainty while they navigate through hypertext. Taking the uncertainty into account

will definitely improve the way, we process and trust the huge amount of information

available on the Web. In this chapter, we address the need for a solution to handle

data uncertainty while referencing and navigating resources on the Web. In this chap-

ter, we propose a model to represent uncertain Web resources, considering uncertain

resources as specific resources which could have several possible representations given

a probability. We define these possible representations as mutually exclusive and rely

on the possible world theory to interpret these representations as being part of a set

of possible Webs.

98

5.7. Conclusion

On top of that, we rely on the uncertain Web resource model to propose an algebra

for interpretation and evaluation of data queries in uncertain resource compositions.

In this context, we define data queries as paths of Web resources, and propose an

algorithm to avoid generating the possible Webs induced by the existence of possible

resource representations. While respecting our probability model, we provide a com-

puting algorithm, allowing to retrieve and compute the uncertainty associated with

data query response.

Perspective of this approach includes opening our approach in order to deal with

more complex scenarios, where possible representations could be actual Web resources

with URIs. This way, we could construct a model based on hypertext navigation to

define a resource according to a set of others, giving a possibility to represent the

probable equivalence of resources. This approach will help adapt our architecture to

handle the uncertainty that could appear on the Web, especially before and after data

source combination.

99

Chapter 6

General conclusion

These last years have seen a growing interest in sharing and opening data to the

World (to the Web). On top of that, numerous data sources are fed every day by users

to spread knowledge and culture, or to organize interests and hobbies on platforms

provided for this purpose. This new way of using the Web, associated with the growing

number of APIs and endpoints making this data available, through machine readable

formats, has led providers to try to add values to a huge amounts of freely available

data. They collect, organize and reuse this data into mashups and services to provide

useful tools and platforms. This upcoming possibilities have forced companies to adopt

new data-driven strategies, adding more structure and semantics to draw benefits from

data on the Web, combining them with their internal data. A lot of approaches and

models have been proposed such as the semantic Web or the linked data initiative to

connect data together, in order to help combine these data and extract highly valuable

information, in response to a specific need.

Despite this advance and the availability of these sources, there is still a need for

an approach which could automate some of the required process to provide techniques

to handle the diversity and to help users to answer their questions. In this thesis, we

focused on the variety of data source characteristics to propose an approach that helps

automate the combination of heterogeneous multi-origin data sources. We proposed

an adaptive resource-oriented approach (based on the usage of HTTP and Resource

or Restful services) to automatically combine these data sources based on their logical

and physical characteristics.

101

Chapter 6. General conclusion

6.1 Summary of challenges

In order to build this approach, we identified the following scientific challenges.

First of all, we focused on the need for adaptation provided by data source diversities

and we identified the following challenges and scientific locks to address.

1. Dynamic and transparent data source management. It must be possible to

transparently add or remove a data source at runtime without any need for

hard coded information. There is a need for a formalism to represent this

diversity of data sources.

2. Dynamic data processing. The solution needs to adapt at runtime to data

sources that require different processings (large data volume, frequent update,

latency).

Once these data-source challenges had been solved by introducing our first solution

to automatically handle data access, we implemented the strategies we proposed in a

software architecture, focusing on scalability and responsiveness. To do that, the

solution had to be scalable and support a large number of data sources, and a variety

of data source types, while offering low response time. This led to the following new

challenges:

3. Given a sequence of tasks to execute, how to adapt the orchestration of the

different tasks in order to optimize the global process in terms of response time

and relevance.

4. How to implement such a mechanism in a software architecture, providing the

flexibility and the adaptability that our solution requires in order to adapt to

every kind of scenario.

5. It was necessary to propose a flexible solution that could easily adapt to future

scenario needs.

Finally, when the data access and combination challenges mentionned above had

been solved, we focused on data quality, by considering the uncertainty that could

appear in Web context, and tried to solve the following questions:

6. What is the most relevant way to represent uncertainty on the Web ?

7. In what way could this affect Web browsing and automatic information retrieval

(hypermedia navigation) ?

In the following, we summarize the contributions we proposed to answer these

questions.

102

6.2. Contribution overview

6.2 Contribution overview

In this dissertation, we addressed different challenges in order to propose an adap-

tive approach to automatically combine multi-origin data sources. Our approach al-

lowed us to focus more on data source capabilities to improve the global integration

process. These capabilities will affect the way we process the data, as implemented

in our adaptive Web architecture. This report covered the different aspects of the

solutions we propose to cover these issues. We summarize our major contributions

below.

1. In order to focus our integration on data sources and to answer the dynamic and

transparent data source management challenges, we first proposed a formalism

to help the representation of the variety of data source characteristics. We

defined a meta-model, to represent these characteristics, whether they be func-

tional (URI, authentication, format, etc.) or non-functional (volume, latency).

This meta-model separates our characteristics into two groups: characteristics

of data sources, and characteristics of data itself, providing a solution to repre-

sent the necessary information to retrieve data, and later to process the data.

2. Focusing on the formalization of these characteristics, we defined several scenario-

based models, to represent data sources and data. In our scenario, we presented

a set of mandatory and optional characteristics as a set of key value attributes.

With help from these models, we addressed the challenges associated with the

need for adaptation, by defining some strategies that will help to adapt data

source access (connection, extraction, ...) and data processing according to the

specificity of each data source. These strategies include characteristic-based

optimizations that implement different ways of extracting data.

3. Relying on a set of tasks that are required to perform a complete integration

process and relying on our models and strategies, we proposed a software archi-

tecture under the form of a resource-oriented architecture, where each compo-

nent is freely accessible through REST via its URI. Doing so, we provided the

possibility of separating each step of the process into small components that

can be distributed over a network. This flexible architecture helped us to adapt

the process according to scenario contexts.

4. Relying on our flexible resource-oriented architecture, we assumed that task

orchestration can be done in an optimized way, by automatically adapting to

data sources and characteristics. We relied on a workflow adaptation technique,

103

Chapter 6. General conclusion

where we processed a generic workflow that was adapted on-the-fly at runtime,

based on the execution context. According to the characteristics of data sources,

or metadata, the different tasks (i.e.: their execution) were prioritized amongst

others (integration before semantic annotation, etc.), and removed or dupli-

cated (duplicated filtering, before and after integration, etc.). This workflow

adaptation allowed us to make the process faster, better, and more precise,

depending on each case.

5. In order to prove the adaptability and flexibility of our approach, we overviewed

our models and architecture, and proposed an example of architecture opti-

mization to improve responsivity when manipulating large data volumes. In

this contribution, we argued that large volumes can alter the complete process,

especially in a Web based approach, where architecture components (i.e.: ser-

vices and resources) are distributed over a network. In order to respond to this

challenge, we proposed an optimization of our architecture based on the usage

of distributed storage, to which the data was transfered only once. Services

generated the process to execute upon the data, and this process was executed

directly on data location. Doing so, only metadata was transfered through the

architecture, which limited the data transfer through the architecture.

6. Having defined our architecture, we focused on a data quality issue. We re-

lied on the fact that data uncertainty can appear when different data sources

provide contradictory information about the same entity. In order to take this

uncertainty into account, in our context, we proposed an approach to repre-

sent this uncertainty on the Web. To do so, we presented a model to create

uncertain Web resources, as being resources which could have different and

separated possible representations, associated with a probability of truth. We

proposed an interpretation model to handle these uncertain resources, based on

the fact that possible resource representations are mutually exclusive, and that

resources must be independent. Based on this probabilistic model, we showed

how uncertainty can affect hypermedia navigation.

7. Relying on the previously presented concept of uncertain resources, we focused

on how it could affect our approach, especially when it comes to data retrieval,

and hypermedia query answering. In order to solve this, we proposed a set of

algorithms to perform hypermedia query evaluation (aggregation during hyper-

media browsing) in the presence of uncertain Web resources. We also proposed

an algorithm allowing the performance of the sequenced dereferencing of same-

104

6.3. Research perspectives

concept probable representations, taking probability into account. This algo-

rithm allowed us to aggregate possible representations of resources about the

same concept, computing the relevant probabilities. Based on this algorithm,

we proposed an iterative algorithm which is capable of browsing uncertain Web

resources while aggregating data along the way and computing relevant proba-

bilities, according to a query. We implemented these algorithms and deployed

them as RESTful services. Our approach take a request as input, and transform

this request into a semantic path amongst several concepts, and one or several

entry points as resource URIs, that could be uncertain or not.

Following these contributions, our future work will include additional evaluation

over larger data sets and exploring issues related to data management such as freshness

issues. Our approach could also be improved with reasoning for a better recognition

of inconsistent or imprecise data.

6.3 Research perspectives

Today, there are many approaches proposed in very specific domains, and we could

gain benefit from crossing these domains to propose hybrid solutions. In this work, we

propose a generic data source based solution which is at the crossroads of many dif-

ferent application fields. This approach relies on advances in semantics and linked

data technologies, to propose a resource-oriented architecture that handles data

source integration, focusing on the uncertainty which could appear while process-

ing data. In the following paragraphs, we identify several directives for future work in

this field.

One of the major interesting perspectives of this work is to improve the semantic

management of data in our approach. This approach relies on existing techniques to

provide semantics through the annotation or transformation of existing data. How-

ever, this requires a human input to provide the semantic bridge through matching or

semantic description. It could be relevant to propose an approach to help the recogni-

tion of semantics and characteristics for new data sources. Coupling our approach with

a reasoner, entity recognition or natural language processing techniques, it could be

possible to propose schema and semantics recognition. In the end, improving this data

source recognition could allow us to perform data source discovery over the Web. This

data source discovery approach could feed an index and provide either a data source

search engine, or an automated data source composition in response to a specific query,

105

Chapter 6. General conclusion

which would be very useful to the everyday user of the Web.

On top of that, we clearly see that hypermedia driven applications are one of

the most exciting topics in the Web community today [Lanthaler and Gütl, 2013].

This subject, which somehow coincides with the perspectives we presented in the last

paragraph, consists of applications that are decoupled in such a way that the client

automatically chooses the next resource to request, according to its description and to

the context of the current execution. In our context of question answering by combining

data sources, our solution could be adapted in such a way so that the client is driven

from resource to resource, gathering the necessary information to answer his query, or

to fulfill his objective. It could be interesting to improve this kind of Web discovery

from resource to resource, aggregating data along the way. In this perspective, our

client could transport a kind of inventory of harvested data. This way, the final

user, would only have to extract an organized, structured and semantically annotated

summary of the research session he just finished. By storing this hypermedia browsing

result set as a resource, it could be shared with users, or saved on the Web for future

purposes.

Finally, whereas data uncertainty has been studied a lot in the context of databases

and services, our contribution in the context of the Web raises a lot of new questions

about data uncertainties on the Web. Our approach proposes a definition of uncertain

web resources which allow a basic interpretation of uncertainty in a Web context. It

also raises a lot of new challenges for further research. First of all, how can it be

possible to automatically retrieve the possible representation of a resource according

to a subject? It could be interesting to propose a discovery approach that could

be able to automatically aggregate an uncertain resource about a given subject, and

compute a probability score for each of the retrieved possibilities. Secondly, since

our approach proposes representing the different resource representations according

to the same model, it could be interesting to extend this concept to a wider area

of the Web. It could even be possible to define a representation as an ordered and

weighted set of existing resources of the Web. Doing so, we could extend the concept of

uncertain resources, by enhancing its definition in a Linked Data way, thus providing

the user with relevant links to follow in order to retrieve additional information about

a resource.

106

Publications list

Publications related to this thesis (chronological)

1. P. De Vettor, M. Mrissa & D. Benslimane : Modeling and Composing Uncertain

Web Resources. In The Semantic Web - ESWC 2016 Satellite Events - Revised

Selected Papers: 327-341.

2. P. De Vettor, M. Mrissa & D. Benslimane : Towards Definition and Composition

of Uncertain RESTful Resources. In Proceedings of the Third Workshop on

Services and Applications over Linked APIs and Data, SALAD @ ESWC 2016.

3. P. De Vettor, M. Mrissa & D. Benslimane: A Resource-Oriented Architecture to

Handle Data Volume Diversity. In Proceedings of the CAiSE 2015 Forum at the

27th International Conference on Advanced Information Systems Engineering.

CAiSE Forum 2015: 161-168

4. P. De Vettor, M. Mrissa & D. Benslimane: Models and Adaptive Architec-

ture for Smart Data Management. In 24th IEEE International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises. WETICE

2015: 164-169

5. P. De Vettor, M. Mrissa & D. Benslimane: Models and Architecture for Smart

Data Management. Rapport de recherche RR-LIRIS-2014-017, http://liris.

cnrs.fr/Documents/Liris-7004.pdf

6. P. De Vettor, M. Mrissa, D. Benslimane & S. Berbar: A Service Oriented Ar-

chitecture for Linked Data Integration. In 8th IEEE International Symposium

on Service-Oriented System Engineering. SOSE 2014: 198-203

107

Bibliography

[Adams et al., 2006] Adams, M., ter Hofstede, A., Edmond, D., and van der Aalst,

W. (2006). Worklets: A service-oriented implementation of dynamic flexibility in

workflows. In Meersman, R. and Tari, Z., editors, On the Move to Meaningful In-

ternet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4275 of Lecture

Notes in Computer Science, pages 291–308. Springer Berlin Heidelberg.

[Agrawal et al., 2010] Agrawal, P., Sarma, A. D., Ullman, J., and Widom, J. (2010).

Foundations of uncertain-data integration. Proc. VLDB Endow., 3(1-2):1080–1090.

[Alani et al., 2007] Alani, H., Dupplaw, D., Sheridan, J., O’Hara, K., Darlington, J.,

Shadbolt, N., and Tullo, C. (2007). Unlocking the potential of public sector infor-

mation with semantic web technology. Event Dates: November.

[Amdouni et al., 2014] Amdouni, S., Barhamgi, M., Benslimane, D., and Faiz, R.

(2014). Handling uncertainty in data services composition. In Services Comput-

ing (SCC), 2014 IEEE International Conference on, pages 653–660.

[Apache, 2013] Apache (2013). Apache metamodel : A data access framework. http:

//metamodel.incubator.apache.org/.

[AtosWorldline, 2013] AtosWorldline (2013). Smartdata.io : A dedicated solution to

the data management. http://api.docs.v2.smartdata.io/.

[Auer et al., 2009] Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and Aumueller,

D. (2009). Triplify: Light-weight linked data publication from relational databases.

In Proceedings of the 18th International Conference on World Wide Web, WWW

’09, pages 621–630, New York, NY, USA. ACM.

[Ba et al., 2014] Ba, M., Montenez, S., Tang, R., and Abdessalem, T. (2014). Integra-

tion of web sources under uncertainty and dependencies using probabilistic xml. In

Han, W.-S., Lee, M. L., Muliantara, A., Sanjaya, N. A., Thalheim, B., and Zhou, S.,

editors, Database Systems for Advanced Applications, Lecture Notes in Computer

Science, pages 360–375. Springer Berlin Heidelberg.

109

Bibliography

[Benslimane et al., 2008] Benslimane, D., Dustdar, S., and Sheth, A. P. (2008). Ser-

vices mashups: The new generation of web applications. IEEE Internet Computing,

12(5):13–15.

[Berners-Lee, 2005] Berners-Lee, T. (2005). Notation3: Logic and rules on rdf. Tech-

nical report, Word Wide Web Consortium.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The

semantic web. Scientific American, 284(5):34–43.

[Bizer, 2004] Bizer, C. (2004). D2rq - treating non-rdf databases as virtual rdf graphs.

In In Proceedings of the 3rd International Semantic Web Conference (ISWC2004.

[Bizer et al., 2007] Bizer, C., Cyganiak, R., and Heath, T. (2007). How to publish

linked data on the web. Web page. Revised 2008. Accessed 22/02/2010.

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data -

the story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22.

[Brickley and Miller, 2007] Brickley, D. and Miller, L. (2007). The friend of a friend

(foaf) vocabulary specification. http://xmlns.com/foaf/spec/.

[Brzeziński et al., 2011] Brzeziński, J., Danilecki, A., Flotyński, J., Kobusińska, A.,

and Stroiński, A. (2011). Workflow engine supporting restful web services. In

Nguyen, N., Kim, C.-G., and Janiak, A., editors, Intelligent Information and

Database Systems, volume 6591 of Lecture Notes in Computer Science, pages 377–

385. Springer Berlin Heidelberg.

[Chappell, 2004] Chappell, D. A. (2004). Enterprise service bus - theory in practice.

O’Reilly.

[Cheng et al., 2012] Cheng, R., Gong, J., Cheung, D., and Cheng, J. (2012). Evalu-

ating probabilistic queries over uncertain matching. In Data Engineering (ICDE),

2012 IEEE 28th International Conference on, pages 1096–1107.

[Cramer et al., 2004] Cramer, C., Schafferhans, A., and Fuhrmann, T. (2004). Peer-

to-peer overlays and data integration in a life science grid. In Proceedings of the

First International Workshop of the EU Network of Excellence DELOS on Digital

Library Architectures, pages 127–138, Cagliari, Italy.

[Dalvi et al., 2011] Dalvi, N., Re, C., and Suciu, D. (2011). Queries and material-

ized views on probabilistic databases. Journal of Computer and System Sciences,

77(3):473 – 490. Database Theory.

[Das Sarma et al., 2008] Das Sarma, A., Dong, X., and Halevy, A. (2008). Boot-

strapping pay-as-you-go data integration systems. In Proceedings of the 2008 ACM

110

SIGMOD International Conference on Management of Data, SIGMOD ’08, pages

861–874, New York, NY, USA. ACM.

[Delen and Demirkan, 2013] Delen, D. and Demirkan, H. (2013). Data, information

and analytics as services. Decision Support Systems, 55(1):359 – 363.

[Devresse and Furano, 2014] Devresse, A. and Furano, F. (2014). Efficient HTTP

based I/O on very large datasets for high performance computing with the libdavix

library. CoRR, abs/1410.4168.

[Dong et al., 2007] Dong, X., Halevy, A. Y., and Yu, C. (2007). Data integration with

uncertainty. In Proceedings of the 33rd international conference on Very large data

bases, pages 687–698. VLDB Endowment.

[Dorn et al., 2009] Dorn, C., Schall, D., and Dustdar, S. (2009). Context-aware adap-

tive service mashups. In Services Computing Conference, 2009. APSCC 2009. IEEE

Asia-Pacific, pages 301–306.

[Dustdar et al., 2012] Dustdar, S., Pichler, R., Savenkov, V., and Truong, H. L. (2012).

Quality-aware service-oriented data integration: requirements, state of the art and

open challenges. SIGMOD Record, 41(1):11–19.

[Eckert et al., 2014] Eckert, K., Ritze, D., Baierer, K., and Bizer, C. (2014). Restful

open workflows for data provenance and reuse. In Proceedings of the 23rd Inter-

national Conference on World Wide Web, WWW ’14 Companion, pages 259–260,

Republic and Canton of Geneva, Switzerland. International World Wide Web Con-

ferences Steering Committee.

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and

Design. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[Erl, 2009] Erl, T. (2009). SOA Design Patterns. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition.

[Fagin et al., 2011] Fagin, R., Kimelfeld, B., and Kolaitis, P. G. (2011). Probabilistic

data exchange. Journal of the ACM (JACM), 58(4):15.

[Fielding and Taylor, 2000] Fielding, R. T. and Taylor, R. N. (2000). Principled design

of the modern web architecture. In Proceedings of the 22Nd International Conference

on Software Engineering, ICSE ’00, pages 407–416, New York, NY, USA. ACM.

[Ford et al., 2011] Ford, A., Raiciu, C., Handley, M., Barre, S., and Iyengar, J. (2011).

Architectural guidelines for multipath tcp development. In IETF, RFC 6182. Cite-

seer.

111

Bibliography

[Furth and Baumeister, 2013] Furth, S. and Baumeister, J. (2013). Towards the se-

mantification of technical documents. In FGIR’13: Proceedings of German Work-

shop of Information Retrieval (at LWA’2013).

[Grossman et al., 2005] Grossman, R. L., Gu, Y., Hong, X., Antony, A., Blom, J.,

Dijkstra, F., and de Laat, C. (2005). Teraflows over gigabit {WANs} with {UDT}.
Future Generation Computer Systems, 21(4):501 – 513. High-Speed Networks and

Services for Data-Intensive Grids: the DataTAG Project.

[Groth et al., 2014] Groth, P., Loizou, A., Gray, A. J., Goble, C., Harland, L., and

Pettifer, S. (2014). Api-centric linked data integration: The open {PHACTS} dis-

covery platform case study. Web Semantics: Science, Services and Agents on the

World Wide Web, 29:12 – 18. Life Science and e-Science.

[Halevy et al., 2006] Halevy, A., Rajaraman, A., and Ordille, J. (2006). Data integra-

tion: The teenage years. In Proceedings of the 32Nd International Conference on

Very Large Data Bases, VLDB ’06, pages 9–16. VLDB Endowment.

[Han et al., 2008] Han, L., Finin, T., Parr, C., Sachs, J., and Joshi, A. (2008). Rdf123:

From spreadsheets to rdf. In The Semantic Web - ISWC 2008, volume 5318 of

Lecture Notes in Computer Science, pages 451–466. Springer Berlin Heidelberg.

[Heath and Bizer, 2011] Heath, T. and Bizer, C. (2011). Linked Data: Evolving the

Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan

& Claypool Publishers.

[Herrmann et al., 2000] Herrmann, T., Hoffmann, M., Loser, K.-U., and Moysich, K.

(2000). Semistructured models are surprisingly useful for user-centered design. In

Designing Cooperative Systems. Proceedings of Coop 2000, pages 159–174.

[Hohpe and Woolf, 2003] Hohpe, G. and Woolf, B. (2003). Enterprise Integration Pat-

terns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

[Hurst, 2001] Hurst, M. (2001). Layout and language: Challenges for table under-

standing on the web. In Proceedings of the International Workshop on Web Docu-

ment Analysis, pages 27–30.

[Kimelfeld and Senellart, 2013] Kimelfeld, B. and Senellart, P. (2013). Probabilistic

xml: Models and complexity. In Ma, Z. and Yan, L., editors, Advances in Proba-

bilistic Databases for Uncertain Information Management, volume 304 of Studies in

Fuzziness and Soft Computing, pages 39–66. Springer Berlin Heidelberg.

112

[Ko et al., 2012] Ko, R., Kirchberg, M., Lee, B.-S., and Chew, E. (2012). Overcoming

large data transfer bottlenecks in restful service orchestrations. In Web Services

(ICWS), 2012 IEEE 19th International Conference on, pages 654–656.

[Lanthaler and Gutl, 2012] Lanthaler, M. and Gutl, C. (2012). On using json-ld to

create evolvable restful services. In Proceedings of the Third International Workshop

on RESTful Design, WS-REST ’12, pages 25–32, New York, NY, USA. ACM.

[Lanthaler and Gütl, 2013] Lanthaler, M. and Gütl, C. (2013). Hydra: A vocabulary

for hypermedia-driven web apis. LDOW, 996.

[Leiba, 2012] Leiba, B. (2012). Oauth web authorization protocol. IEEE Internet

Computing, 16(1):74–77.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integration: A theoretical perspective. In

Popa, L., Abiteboul, S., and Kolaitis, P. G., editors, PODS, pages 233–246. ACM.

[Levy et al., 1996] Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996). Querying

heterogeneous information sources using source descriptions. In Proceedings of the

22th International Conference on Very Large Data Bases, VLDB ’96, pages 251–262,

San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Lopez and Kotoulas, 2012] Lopez, V. and Kotoulas, S. (2012). Queriocity: A linked

data platform for urban information management. In International Semantic Web

Conference (2), volume 7650 of Lecture Notes in Computer Science, pages 148–163.

Springer.

[Maleshkova et al., 2010] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2010).

Investigating web apis on the world wide web. In Web Services (ECOWS), 2010

IEEE 8th European Conference on, pages 107–114.

[Minor et al., 2007] Minor, M., Schmalen, D., Koldehoff, A., and Bergmann, R.

(2007). Structural adaptation of workflows supported by a suspension mechanism

stand by case-based reasoning. In Enabling Technologies: Infrastructure for Collab-

orative Enterprises, 2007. WETICE 2007. 16th IEEE International Workshops on,

pages 370–375. IEEE.

[Mrissa et al., 2013] Mrissa, M., Sellami, M., Vettor, P. D., Benslimane, D., and De-

fude, B. (2013). A decentralized mediation-as-a-service architecture for service com-

position. 2012 IEEE 21st International Workshop on Enabling Technologies: In-

frastructure for Collaborative Enterprises, 0:80–85.

[O’Donovan et al., 2015] O’Donovan, P., Leahy, K., Bruton, K., and O’Sullivan, D.

T. J. (2015). Big data in manufacturing: a systematic mapping study. Journal of

Big Data, 2(1):1–22.

113

Bibliography

[Pivert and Prade, 2014] Pivert, O. and Prade, H. (2014). Querying uncertain multi-

ple sources. In Straccia, U. and Cali, A., editors, Scalable Uncertainty Management,

volume 8720 of Lecture Notes in Computer Science, pages 286–291. Springer Inter-

national Publishing.

[Pivk, 2005] Pivk, A. (2005). Automatic ontology generation from web tabular struc-

tures. AI Communications, 19:2006.

[Pontieri et al., 2003] Pontieri, L., Ursino, D., and Zumpano, E. (2003). An approach

for the extensional integration of data sources with heterogeneous representation

formats. Data & Knowledge Engineering, 45(3):291 – 331.

[Richardson and Ruby, 2007] Richardson, L. and Ruby, S. (2007). Restful Web Ser-

vices. O’Reilly, first edition.

[Rosaci et al., 2004] Rosaci, D., Terracina, G., and Ursino, D. (2004). A framework

for abstracting data sources having heterogeneous representation formats. Data &

Knowledge Engineering, 48(1):1 – 38.

[Rosenberg et al., 2008] Rosenberg, F., Curbera, F., Duftler, M. J., and Khalaf, R.

(2008). Composing restful services and collaborative workflows: A lightweight ap-

proach. IEEE Internet Computing, 12(5):24–31.

[Sadiq et al., 2001] Sadiq, S., Sadiq, W., and Orlowska, M. (2001). Pockets of flexibil-

ity in workflow specification. In S.Kunii, H., Jajodia, S., and SÃ ļvberg, A., editors,

Conceptual Modeling at ER 2001, volume 2224 of Lecture Notes in Computer Sci-

ence, pages 513–526. Springer Berlin Heidelberg.

[Sadri, 1991] Sadri, F. (1991). Modeling uncertainty in databases. In Data Engineer-

ing, 1991. Proceedings. Seventh International Conference on, pages 122–131.

[Sheth, 2014] Sheth, A. (2014). Transforming big data into smart data: Deriving value

via harnessing volume, variety, and velocity using semantic techniques and technolo-

gies. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on,

pages 2–2.

[Stankovski et al., 2010] Stankovski, V., Missier, P., Goble, C., and Taylor, I. (2010).

Open workflow infrastructure: A research agenda. In Proceedings of the 1st Inter-

national Workshop on Workflow Approaches to New Data-centric Science, Wands

’10, pages 6:1–6:6, New York, NY, USA. ACM.

[Sun et al., 2014] Sun, Z., Strang, K. D., and Yearwood, J. (2014). Analytics service

oriented architecture for enterprise information systems. In Proceedings of the 16th

International Conference on Information Integration and Web-based Applications &

Services, iiWAS ’14, pages 508–516, New York, NY, USA. ACM.

114

[Truong et al., 2011] Truong, H.-L., Dustdar, S., Goetze, J., Fleuren, T., Mueller, P.,

Tbahriti, S.-E., Mrissa, M., and Ghedira, C. (2011). Exchanging data agreements

in the daas model. In The 2011 IEEE Asia-Pacific Services Computing Conference,

pages 153–160. IEEE.

[van der Aalst and ter Hofstede, 2005] van der Aalst, W. and ter Hofstede, A. (2005).

Yawl: yet another workflow language. Information Systems, 30(4):245 – 275. YAWL.

[van der Aalst et al., 2003] van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and

Barros, A. (2003). Workflow patterns. Distributed and Parallel Databases, 14(1):5–

51.

[van der Pol et al., 2012] van der Pol, R., Boele, S., Dijkstra, F., Barczyk, A., van

Malenstein, G., Chen, J. H., and Mambretti, J. (2012). Multipathing with mptcp

and openflow. High Performance Computing, Networking Storage and Analysis, SC

Companion:, 0:1617–1624.

[Venetis et al., 2011] Venetis, P., Halevy, A. Y., Madhavan, J., Pasca, M., Shen, W.,

0003, F. W., Miao, G., and Wu, C. (2011). Recovering semantics of tables on the

web. PVLDB, 4(9):528–538.

[Verborgh et al., 2016] Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen,

J., De Vocht, L., De Meester, B., Haesendonck, G., and Colpaert, P. (2016). Triple

Pattern Fragments: a low-cost knowledge graph interface for the Web. Journal of

Web Semantics, 37–38:184–206.

[Weibel and Koch, 2000] Weibel, S. and Koch, T. (2000). The dublin core metadata

initiative : Mission, current activities, and future directions. D-Lib Magazine, 6(12).

[Zheng et al., 2013] Zheng, Z., Zhu, J., and Lyu, M. (2013). Service-generated big

data and big data-as-a-service: An overview. In Big Data (BigData Congress),

2013 IEEE International Congress on, pages 403–410.

115

Résumé long

La réutilisation des données semble aujourd’hui préoccuper la communauté scien-

tifique, particulièrement dans le domaine du Web. De la façon dont nous le voyons,

la réutilisation des données est l’une des solutions qui existe pour tirer parti des don-

nées brutes hétérogènes stoquées sous divers formats un peu partout sur le Web ou à

l’interieur des systèmes d’information des sociétés.

Cette thèse porte sur l’intégration de données brutes provenant de sources hétérogènes

sur le Web. L’objectif global est de fournir une architecture générique et modulable ca-

pable de combiner, de façon sémantique et intelligente, ces données hétérogenes dans le

but de les rendre réutilisables. Ce travail est motivé par un scenario réel de l’entreprise

Audience Labs permettant une mise à l’échelle de cette architecture.

Dans ce rapport, nous proposons de nouveaux modèles et techniques permettant

d’adapter le processus de combinaison et d’intégration à la diversité des sources de

données impliquées. Les problématiques sont :

— une gestion transparente et dynamique des sources de données

— un meilleur passage à l’échelle et de meilleurs temps de réponse par rapport au

nombre de sources

— adaptativité aux caractéristiques des sources

— finalement, consistance des données produites (données cohérentes, sans erreurs

ni doublons).

Pour répondre à ces problématiques, nous proposons différentes contributions:

— un méta-modèle (et des modèles) pour représenter et accéder aux sources de

données

— une architecture orientée resource, mettant en oeuvre des workflow adaptatifs,

en fonction des sources

— une approche permettant de prendre en compte l’incertitude dans un contexte

Web

117

Résumé long

Figure 1 – Modèle de source de donnée basé sur notre scénario

Modèles et stratégies de traitements

Dans le but de rendre le système adaptable à la variété des sources de données,

nous construisons un méta-modèle, permettant de construire des modèles de source de

donnée.

Ce méta-modèle définit les éléments nécessaires à la confection de modèles pour

representer les sources de données au travers d’un ensemble de caractéristiques. Ces

caractéristiques peuvent être liées à l’accès aux données (URI, authentification, ...),

aux caractéristiques structurelles des sources (sémantique, format de requête, schéma,

...), et enfin aux caractéristiques physiques des sources (latence, volume, ...). De plus,

ce méta-modèle nous permet également de définir des modèles pour représenter les

données elles-mêmes et notamment le contexte qu’elles transportent.

En se basant sur ces modèles, nous définissons les comportements spécifiques à

adopter pour accéder aux données. Par exemple, sur des données à faible fréquence de

mise à jour, mais sur à haute latence, il est nécessaire de mettre en place des systèmes

de cache. D’un autre façon, les données à haute fréquence de mise à jour nécéssitent

de conserver une durée de validité pour les données extraites.

Architecture orientée service

En se basant sur ces modèles et stratégies, nous proposons une approche de work-

flow adaptatif. Il s’agit donc de workflows dont l’ordre d’éxecution varie en fonction

du contexte, c’est à dire en fonction des caractéristiques des sources de données. Le

workflow adaptatif sera dćoupé en sous-parties pouvant être dupliquées, supprimées

ou déplacées.

Nous proposons ensuite une architecture orientée resource, où les différents ser-

118

Figure 2 – Architecture orientée resources

vices nécessaires au fonctionnement d’une processus global d’intégration (gestionnaire

de sources de données, service d’annotation sémantique, service de combinaison des

données) sont définis comme des services RESTful, accessibles par HTTP via leurs

URIs.

En se basant sur les caractéristiques des sources, notre architecture adaptera le

workflow d’intégration, orchestrant les différentes tâches du processus d’intégration de

façon optimale en priorisant chacune des tâches. Ainsi, les temps de traitement et le

volume des données échangées sont diminués.

Nous démontrons par la suite le coté adaptif de notre architecture, en proposant

une optimisation permettant de modifier le comportement de l’architecture face aux

gros volumes de données. Cette approche repose sur l’utilisation d’un stockage de

données distribué, et sur le principe que chacun des composants envoye les traitements

à éxécuter directement au niveau du stockage. De cette façon, seules les métadonnées

transfèrent dans l’architecture, et les temps d’éxécution en sont réduits.

Resource Web Incertaines

Afin d’améliorer la qualité des données produites par notre approche, l’accent est

mis sur l’incertitude qui peut apparaitre dans les données sur le Web. Nous proposons

un modèle probabilistique, permettant de représenter cette incertitude, à travers le

concept de resource Web incertaine, basé sur un modèle probabiliste ou chaque resource

peut avoir plusieurs représentation possibles, avec une certaine probabilité.

119

Résumé long

(a) Exemple de composition

(b) Mondes générés

Figure 3 – Exemple de ressource incertaine simple

Chacune des ces représentation possible génère un Web possible dans lequel les

données seront considerées comme certaines. L’éxecution de requêtes (i.e., la naviga-

tion hypermédia) dans ces Web certains devient alors complexe. Afin de résoudre ces

requêtes, nous proposons de représenter ces liens hypermédias sous la forme d’arbres.

De cette façon, il est possible de définir un algorithme itératif afin d’éviter la généra-

tion des Web possibles. Une étape d’aggrégation intermédiaire nous permet également

d’optimiser l’éxécution de nos requêtes.

Cette approche sera à l’origine d’une nouvelle optimisation de l’architecture pour

permettre de prendre en compte l’incertitude pendant la combinaison des données.

Conclusion

Nous proposons différentes implémentations des ces approches, qui nous permettent

d’étudier les temps de réponse, et ainsi d’évaluer nos approches. Nous avons adressé

nos challenges de la façon suivante.

Nous avons tout d’abord proposé un méta-modèle pour représenter la variété des

sources de données, que ce soit au niveau de l’accès/extraction, de la structure des

données ou des contraintes physiques. Cette formalisation nous permet d’adapter les

traitements (stratégies) à la variété des sources.

L’orchestration des différentes tâches du processus d’intégration étant faite de

manière optimisée, nous proposons une solution pouvant être mise à l’échelle, et présen-

120

tant des temps de réponse raisonables malgré le nombre de sources de donnée.

Finalement, notre approche de resource Web incertaine, nous permet de nous in-

téresser aux problématiques de qualité des données en proposant une solution pour

représenter l’incertitude qui peut exister sur le Web. Cette approche sera à la base

d’une nouvelle optimisation de l’architecture, afin de prendre en compte l’incertitude

lors de la combinaison des données.

121

