
THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’École normale supérieure

Algebraic Frameworks for Pseudorandom Functions

École doctorale n◦386
Sciences Mathématiques de Paris Centre

Spécialité Informatique

Soutenue par
Alain PASSELÈGUE
le 9 décembre 2016

Dirigée par
Michel FERREIRA ABDALLA

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

COMPOSITION DU JURY

M. FERREIRA ABDALLA Michel
École normale supérieure
Directeur de thèse

M. CASH David
Rutgers University
Rapporteur

M. HOFHEINZ Dennis
Karlsruher Institut für Technologie
Rapporteur

Mme CHEVALIER Céline
Université Panthéon-Assas
Membre du jury

M. FOUQUE Pierre-Alain
Université de Rennes 1 et Institut Univer-
sitaire de France
Président du jury

M. ISHAI Yuval
Technion et UCLA
Membre du jury

M. PATERSON Kenneth G.
Royal Holloway, University of London
Membre du jury

M. GÉRARD Benoît
DGA et IRISA
Invité

Algebraic Frameworks
for Pseudorandom Functions

Alain Passelègue

Supervisor: Michel Ferreira Abdalla

Abstract
In this thesis, we study the algebraic structure underlying number-theoretic pseudorandom

functions. Specifically, we define an algebraic framework that translates the pseudorandomness
of a particular form of functions into a simple algebraic property. The resulting generic
framework encompasses most of existing constructions and naturally extends to related
primitives, such as related-key secure, aggregate, and multilinear pseudorandom functions.
This framework holds under a family of MDDH assumptions, that contains especially

different classical assumptions, such as DDH, DLin, or k-Lin. Therefore, setting accordingly the
parameters in the constructions, our framework can be used to construct secure pseudorandom
functions (or related primitives) whose security holds under these assumptions.
Finally, we also study more specifically the case of related-key security. On the one

hand, we propose a fix and some extensions to the Bellare-Cash framework and then build
pseudorandom functions secure against larger classes of attacks. On the other hand, we
construct the first pseudorandom function provably secure against XOR attacks. The latter
construction relies on the existence of a weak form of multilinear maps.

— iii —

Contents
Abstract iii

1 Introduction 1
1.1 Pseudorandom Functions . 4

1.1.1 From One-Way Functions to Pseudorandom Functions 4
1.1.2 Number-Theoretic Constructions . 6
1.1.3 Extensions of Pseudorandom Functions 6

1.2 Our Contributions . 9
1.2.1 Extension and Correction of the Bellare-Cash Framework 9
1.2.2 Algebraic Framework for Pseudorandom Functions 9
1.2.3 Assumptions . 10
1.2.4 Related-Key Secure Pseudorandom Function for XOR Relations . . . 10

1.3 Other Contributions . 10
1.3.1 Order-Revealing Encryption . 10
1.3.2 Private Circuits . 11
1.3.3 Functional Encryption and Obfuscation 11

1.4 Organization . 12

2 Preliminaries 13
2.1 Notation and Preliminaries . 14

2.1.1 Mathematical Notions . 14
2.1.2 Algorithmic Concepts . 15
2.1.3 Provable Security . 15

2.2 Classical Computational Assumptions . 17
2.2.1 The Discrete Logarithm Problem . 17
2.2.2 Classical Discrete-Logarithm-Based Assumptions 17
2.2.3 Building DDH-Hard Groups . 19

2.3 Cryptographic Primitives . 19
2.3.1 Collision-Resistant Hash Functions . 19
2.3.2 Pseudorandom Functions . 20
2.3.3 Aggregate Pseudorandom Functions 22
2.3.4 Multilinear Pseudorandom Functions 23

2.4 Multilinear Maps and the Generic Multilinear Map Model 25
2.4.1 Multilinear Maps . 25
2.4.2 Generic Multilinear Map Model . 26

3 Introduction to Related-Key Security 29
3.1 Definition and Security Model . 30
3.2 First Impossibility and Feasibility Results . 31

3.2.1 Impossibility Results . 31
3.2.2 Feasibility Results . 31

— v —

vi Contents

3.3 The Central Role of Pseudorandom Functions 32
3.4 The Bellare-Cash Framework, Revisited . 33

3.4.1 Additional Notions . 33
3.4.2 Dealing with Key-Collisions . 34
3.4.3 The (Extended) Framework . 35

3.5 Application: Related-Key Security for Affine Relations 41
3.5.1 Ingredients . 41
3.5.2 Putting Everything Together . 44

3.6 Further Generalization of the Bellare-Cash Framework 44
3.6.1 Relaxing the Requirements of the Framework 44
3.6.2 From Malleability to Unique-Input-Related-Key Security 49

3.7 Application: Related-Key Security for Affine Relations. 52

4 A New Family of Assumptions 53
4.1 The Matrix-Decisional-Diffie-Hellman Assumptions 54
4.2 A New Family of Matrix-Diffie-Hellman Assumptions 55
4.3 Connexion with Standard Assumptions . 56

4.3.1 Summary of Relations . 56
4.3.2 Relation with the DDHI Assumption 56

4.4 Security in the Generic Multilinear Group Model 58
4.4.1 Definitions: Monomial Order and Leading Commutative Monomials . 58
4.4.2 Main Lemma . 59
4.4.3 Putting Everything Together . 65

5 An Algebraic Framework for Pseudorandomness 67
5.1 Intuition and Subtleties . 68

5.1.1 Intuition . 68
5.1.2 Procedure for Testing Linear Dependence 68
5.1.3 Extension to Weaker Assumptions . 70
5.1.4 On the Representation of Multivariate Polynomials 70

5.2 Formal Security Notion and Main Result . 72
5.2.1 Formal Definition of the Polynomial Linear Pseudorandomness Security 72
5.2.2 The PLP Theorem . 72
5.2.3 Immediate Corollary: the LIP Theorem 73

5.3 Proof of Theorem 5.2.2 . 74
5.3.1 Decomposition Lemmata . 74
5.3.2 The Main Proof . 75

6 Applications 81
6.1 Applications to Standard Pseudorandom Functions 82

6.1.1 Extended Number-Theoretic Pseudorandom Functions 82
6.1.2 Simple Proofs of Security . 83

6.2 Applications to Related-Key Security . 85
6.2.1 Direct Constructions . 86
6.2.2 Constructions From Unique-Input-Related-Key Security, Algebraically 87
6.2.3 Other Applications to Related-Key Security 97
6.2.4 Extension to Weaker Assumptions . 100

Contents vii

6.2.5 A Further Generalization of the Framework 100
6.3 Applications to Aggregate Pseudorandom Functions 106

6.3.1 Read-Once Formula Aggregation . 106
6.3.2 Impossibility Results . 108
6.3.3 Extension to Weaker Assumptions . 109

6.4 Applications to Multilinear Pseudorandom Functions 109
6.4.1 Cohen-Holmgren Construction . 109
6.4.2 Symmetric Multilinear Pseudorandom Functions 110
6.4.3 Skew-Symmetric Multilinear Pseudorandom Function 111
6.4.4 Extension to Weaker Assumptions . 111

7 A Provably-Secure Pseudorandom Function For XOR-Relations 113
7.1 Additional Material . 114

7.1.1 Related-Key Security for XOR Relations 114
7.1.2 Multilinear Maps . 114
7.1.3 Straddling Sets . 115

7.2 Our Construction . 115
7.2.1 Intuition . 115
7.2.2 Actual Construction . 116

7.3 Security in the Generic Multilinear Map Model 118
7.4 Security under Non-Interactive Assumptions 121

7.4.1 Two Non-Interactive Assumptions . 121
7.4.2 Security of our Construction . 122

7.5 Security of the XY-DDH Assumption in the Generic Multilinear Map Model . 128
7.6 Security of the Sel-Prod Assumption in the Generic Multilinear Map Model . 129

7.6.1 Proof Ingredient: Index Sets and Profiles 129
7.6.2 Security of the Sel-Prod Assumption 134

8 Conclusion and Open Questions 137
8.1 Conclusion . 137
8.2 Open Questions . 137

Notation 139

Abbreviations 141

List of Illustrations 143
Figures . 143
Tables . 144

Bibliography 145

Ch
ap

te
r1

Chapter 1
Introduction
Since the early ages of “cryptography”, the most central and basic problem has been

to provide solutions for secret communication over insecure communication channels. The
problem can easily be defined as follows: two parties, for instance a source and a journalist,
want to communicate with each other while keeping a third party, called the adversary, as
ignorant as possible about their discussion. Intuitively, an encryption scheme is a protocol
designed towards solving this problem, and consists in two procedures, termed encryption
and decryption. Assuming the source wants to send a message to the journalist, it first applies
the encryption algorithm to the message in order to compute an encrypted message, called
ciphertext, that it next sends to the journalist over a (possibly public) communication channel.
In particular, it is reasonable to assume that the adversary also knows the ciphertext. Finally,
the journalist applies the decryption algorithm to the ciphertext to recover the original
message.

As the ciphertext could be known by the adversary, it is obvious that the journalist must
know something that the adversary does not. Otherwise, the adversary could just proceed in
the same manner as the journalist and get the message. We call this extra knowledge the
secret key, and assume without loss of generality that the secret key is an argument that is
fed, along with the ciphertext, to the decryption procedure, which can then be considered
to be a public procedure. We further assume that this secret key is shared by the source
and the journalist. This corresponds to the case of private-key encryption (a.k.a. symmetric
encryption).

Now that is it clear that there must exist some secret key, the main question remains:

Which type of secrecy can we hope for?

The best we can hope is that the ciphertext does not reveal any information about the
message. In this sense, the ciphertext must not contain any information about the message.
This security notion is called information-theoretic or perfect security. It might seem surprising
that this perfect security can be achieved, and is actually achieved by an elementary scheme,
called the one-time-pad encryption. Intuitively, the scheme follows this basic idea: assume
the source wants to send secretly to the journalist a time to meet. Then, they share a secret
key that is just a time taken uniformly at random, for instance 17:42. When the source wants
to send the time to meet to the journalist, for instance 08:30, it simply sends the sum of
the two times, which is 02:12. The journalist can then recover 08:30 by subtracting 17:42 to
02:12.

— 1 —

2 Chapter 1 Introduction

The key point here is that for any ciphertext, there exists one and only one pair of
message/secret key that produces this ciphertext. For instance, if the message had been 14:53
and not 08:30, then 02:12 would still have been a valid encryption with the secret key 11:19.
Hence, as the secret key was chosen uniformly at random and could have been any time, the
ciphertext does not reveal any information about the message, which could also have been
any time. In other words, to encrypt a message, one masks it with a message of the same
form, such that the mask hides any information about the message, and such that one can
remove the mask if one knows it.
The main drawback of this encryption scheme is that the size of the secret key (mask)

is the same as the total size of the messages being exchanged. This is actually a necessary
condition:

Perfect security requires a key at least as long as the total length of the messages sent.

The above statement immediately implies drastic limitations on the practicality of such
encryption: one needs a huge key if one wants to send a long message, and reversely, the
number of messages is directly limited by the size of the secret key. Finally, as the key has to
be perfectly random, it might be hard to generate a long key.
Thus, it seems that cryptography falls short to both guarantee security while achieving

practicality. To put the above statements in a nutshell, either you get perfect security at the
cost of impracticality, or you have a practical encryption scheme, but do not achieve perfect
security. As we aim for practicality, the natural question is then the following:

Do we need perfect security?

While by definition one cannot hope for a stronger security model, there is one point
that could be weakened in the model without impacting much the security. Indeed, perfect
security asks that a ciphertext does not contain any information about the message. This
is ideal, but in the real world, adversaries have limited resources (time, memory, power,
. . .). Therefore, the question is not really whether a ciphertext does or does not contain any
information about the message, but rather if information about the message can be efficiently
extracted from the message. In other words, the question is not whether it is possible to
extract information from the message but rather if it is feasible.
For example, let us consider the case in which a source wants to send 10 different times

to meet up with a journalist. As explained above, in order to achieve perfect security, they
have to share 10 masks, so 10 uniformly random times, which are then used to mask the
10 real times. However, assume that the journalist and the source share a small secret and
know a procedure that allows both of them to privately and efficiently generate 10 masks.
Then, if it is infeasible for an adversary to distinguish the 10 times generated using their
small shared secret from 10 uniformly random times, the adversary cannot learn anything
about the real times. Such values that one cannot distinguish from truly random values are
called pseudorandom values and are a central notion of our work, but before giving further
details, we need to address the following question:

What is or is not feasible by an adversary?

Modern cryptography relies on the belief that there are problems that can be solved
efficiently, while others cannot. In particular, one always assumes P 6= NP (and even

Ch
ap

te
r1

3

NP * BPP), which states intuitively that the set of problems whose solutions can be
efficiently verified is not a subset of the set of problems that can be solved efficiently. That is,
one requires that there exist problems such that it is hard to find a solution, but for which,
given a solution, it is easy to verify its correctness. Loosely speaking, in terms of encryption,
we want the decryption of a ciphertext given the secret key to be an efficient procedure, while
decrypting the message without the secret key being a hard problem. Whether P 6= NP
(or NP * BPP) is still an open question, and probably the most important open question
in theoretical computer science, an overwhelming proportion of the community believes it
is the case. Therefore, as cryptographers, we would like to construct encryption schemes
proven secure assuming this assumption. That is, we would like to design cryptosystems and
prove that if an adversary can break the scheme, then it can solve hard problems (which is
unlikely).
Unfortunately, it appears that this is not a sufficient assumption for building encryption.

Indeed, this assumption only states that there exist easy-to-verify but hard-to-solve problems.
However, a problem is hard to solve as soon as there exist some instances that are hard to
solve. Thus, a problem being hard does not provide any guarantee that most instances nor
average instances of the problem are hard. Intuitively, basing the security of an encryption
scheme on the hardness of such problems could lead to an encryption scheme for which some
ciphertexts are hard to decrypt without the knowledge of the secret key, but for which it
could still be easy to decrypt most ciphertexts. Hence, we actually need the existence of
problems that are hard on the average, and not only in the worst case.

The existence of such problems is not known to be implied by P 6= NP (nor by NP * BPP),
and actually, this is still not good enough for having good encryption schemes. Indeed,
assuming only the existence of hard-on-average problems, it might be easy to build an
encryption scheme for which it is hard to decrypt ciphertexts, but even for a legitimate user
(that knows the secret key), which would thus have no advantage in comparison to adversaries.
Specifically, a problem being hard on average does not mean that it is easy to construct hard
instances (ciphertexts that are hard to decrypt) together with some auxiliary information
(the secret key) that allows to efficiently solve this hard instance (decrypt the ciphertexts).
However, the latter is precisely what we would like for building an encryption scheme.
This assumption is actually translated by the existence of one-way functions. A one-way

function is simply a function that is easy to compute, but hard (on the average) to invert. In
regard of the above, intuitively, we are interested in one-way functions as a solution to create
hard instances of a problem (the output of the one-way function) and auxiliary information
(the input of the one-way function), such that given the auxiliary information, the instance
is easy to solve, but given only the instance, one cannot recover the auxiliary information
(and thus not solve the instance either). For now, it is not known whether the existence of
hard-on-average problems (nor whether P 6= NP or NP * BPP) implies the existence of
one-way functions, but once again, the majority of the community believes that one-way
functions exist.
It appears that basing cryptography on the existence of one-way functions offers the

possibility of designing secure symmetric encryption schemes (and much more) even if the
key is much shorter than the total length of the messages sent, and in particular, the size
of the key does not limit the number of messages that can be sent. In particular, going
back to the example of agreeing on different times, if one-way functions exist, there exist
procedures that allow to generate many pseudorandom values from a small shared secret.
These procedures, termed pseudorandom functions, are one of the most central primitives in

4 Chapter 1 Introduction

modern cryptography, and are the main focus of this thesis. In particular, pseudorandom
functions have a fundamental role in both theory and practice. Let us now jump into further
details by defining more properly pseudorandom functions.

1.1 Pseudorandom Functions
A pseudorandom function is a family of deterministic functions indexed by short keys. For
each key is associated a function that is efficiently computable on many inputs and such
that, without the knowledge of the key defining the function, it is computationally hard to
distinguish the outputs of the function from truly random values from the same range, even
if the adversary chooses the inputs on which the function is evaluated.
More formally, let F : K × D → R be a family of functions, indexed by the key space
K, so for each key K ∈ K is associated a function F (K, ·): D → R. We say that F is a
pseudorandom function if for any polynomial-time adversary, its advantage in the following
game is negligible. The game starts by picking a random challenge bit b, a random target key
K ∈ K and a random function G: D → R. The adversary can repeatedly query an oracle
that, given an input x ∈ D, returns either F (K,x), if b = 1, or G(x), if b = 0. Finally, the
adversary outputs a bit b′, and its advantage is defined by 2 Pr [b = b′]− 1.

Pseudorandom functions play a central role in cryptography, both in theory and in practice.
Specifically, on the theoretical side, combining results by Goldreich and Levin [GL89] and by
Goldreich, Goldwasser, and Micali [GGM84], we obtain the following result:

Pseudorandom functions exist if and only if one-way functions exist.

On the practical side, due to their simplicity and security properties, pseudorandom
functions have been used in numerous applications, including symmetric encryption, authen-
tication, and key exchange. In particular, pseudorandom functions yield simple constructions
of symmetric encryption schemes, and this observation is widely used in practice (often
implicitly). Furthermore, since pseudorandom functions can be used to model real-world
block-ciphers, such as AES [01], they are also extremely useful for the security analysis of
protocols that rely on these primitives.

Therefore, the study of pseudorandom functions is at the core of modern cryptography. We
now introduce in more details the scope of our work, by first explaining the above statement,
and then detailing our case of study.

1.1.1 From One-Way Functions to Pseudorandom Functions
Before the notion of pseudorandom functions was introduced by Goldreich, Goldwasser, and
Micali in [GGM84], cryptographers studied the notion of pseudorandom generator. Broadly
speaking, a pseudorandom generator with `-bit stretch is a function G : {0, 1}κ → {0, 1}κ+`,
with ` ≥ 1, that takes as input a bitstring s ∈ {0, 1}κ, called the seed, and outputs a longer
bitstring G(s) ∈ {0, 1}κ+`. Furthermore, we require the following property: assuming s is
taken uniformly at random, it is computationally hard to distinguish G(s) from a uniformly
random string taken from {0, 1}κ+` without the knowledge of s. Thus, a pseudorandom
generator is simply a function that takes as input a small random bitstring and outputs an
`-bit longer pseudorandom bitstring.

Fundamental results in this area were shown by Goldreich and Levin in [GL89]. Specifically,
they prove the following two results:

Ch
ap

te
r1

1.1 Pseudorandom Functions 5

• Pseudorandom generators with 1-bit stretch exist if and only if one-way functions exist.

• For any ` = poly(κ), pseudorandom generators with `-bit stretch exist if and only if
pseudorandom generators with 1-bit stretch exist.

Then, putting these results together, we obtain that pseudorandom generators with
polynomial stretch exist if and only if one-way functions exist. In particular, considering
length-doubling pseudorandom generators, so with domain {0, 1}κ and range {0, 1}2κ, we
immediately have:

Length-doubling pseudorandom generators exist if and only if one-way functions exist.

The above statements are not detailed further in this manuscript, as we focus on con-
structions of pseudorandom functions, but let us explain how length-doubling pseudorandom
generators can then be used to build pseudorandom functions, as shown by Goldreich, Gold-
wasser, and Micali in their seminal work [GGM84]. Specifically, let us briefly sketch a proof
of the following statement:

Pseudorandom functions exist if and only if length-doubling pseudorandom generators exist.

Assume the existence of a length-doubling pseudorandom generator G: {0, 1}κ → {0, 1}2κ,
for κ ≥ 1. Then, one can build a pseudorandom function F : {0, 1}κ × {0, 1}n → {0, 1}κ as
follows, for any n = poly(κ).

For a key K ∈ {0, 1}κ and a bitstring x ∈ {0, 1}`, 0 ≤ ` ≤ n, we recursively define Kx as:

• Kε = K, where ε denotes the empty string;

• Kx ‖ 0 ‖Kx ‖ 1 = G(Kx), with |Kx ‖ 0| = |Kx ‖ 1| = κ.

Then, the GGM pseudorandom function is defined via F (K,x) = Kx.
Intuitively, this corresponds to following a path in a binary tree of depth n whose root is

labeled by K and such that the two siblings of any internal node labeled by a string s are
respectively labeled by the first and second half of G(s). Computing F (K,x) then simply
corresponds in outputting the label of the x-th leaf of this tree. Please refer to Figure 1.1 for
further details about this computation.

The security of this pseudorandom function follows from the security of the pseudorandom
generator. Let us assume that the adversary makes only one query x = 0n. That is, to
compute F (K,x), one first evaluates G(K) and evaluate G again on the first half of G(K),
and so on. Then, assuming the security of G, if K is chosen uniformly at random, one
can change G(K) = K0 ‖K1 to a uniformly random string of length 2κ. This change is
computationally indistinguishable due to the security of G. Then, one can change G(K0) to
a uniformly random string of length 2κ under the security of G, as K0 is now a uniformly
random bitstring. By repeating n times this process, one change the output F (K, 0n) to a
uniformly random bitstring of length κ, and this change is computationally indistinguishable
assuming the security of G. In the case of multiple queries, one just needs to reiterate this
process on each path of the tree that is used to answer the (polynomial number of) queries
made by the adversary.
The other direction is immediate, as, given a pseudorandom function F : {0, 1}κ ×D →

{0, 1}`, one can just construct a length-doubling pseudorandom generator by evaluating F
on fixed inputs with the seed as a key, and concatenate (or truncate) the outputs to obtain a
bitstring of length 2κ.

6 Chapter 1 Introduction

K

K0

K00

K000 K001

x2 = 0

K01

K010 K011

x2 = 1

x1 = 0

K1

K10

K100 K101

K11

K110 K111

x1 = 1

Figure 1.1: The GGM construction for F : {0, 1}κ × {0, 1}3 → {0, 1}κ

1.1.2 Number-Theoretic Constructions

Despite its elegance, the original construction of pseudorandom functions by Goldreich,
Goldwasser, and Micali based on pseudorandom generators is not very efficient. In order to
improve its efficiency while still being able to prove its security under reasonable complexity
assumptions, Naor and Reingold [NR97] proposed a new construction based on the Decisional
Diffie-Hellman assumption (DDH). Let #”a = (a0, . . . , an) ∈ (Z∗p)n+1 be the key and x =
x1 ‖ . . . ‖xn ∈ {0, 1}n be the input of the pseudorandom function. Let g be a fixed public
generator of a group G of prime order p. The Naor-Reingold pseudorandom function is then
defined as

NR(#”a , x) =
[
a0

n∏
i=1

axii

]
,

where for any a ∈ Zp, [a] stands for ga, as defined in [EHK+13].
As mentioned in [BMR10], the algebraic nature of the Naor-Reingold pseudorandom

function has led to many applications, such as verifiable random functions [ACF09; HW10],
distributed pseudorandom functions [NR97], and related-key secure pseudorandom func-
tions [BC10b], which are hard to obtain from generic pseudorandom functions. Hence, due to
its importance, several other extensions of the Naor-Reingold pseudorandom function have
been proposed [LW09; BMR10] based on different assumptions, such as the Decision Linear
assumption (DLin) [BBS04] and the d-DDHI assumption [BMR10; GOR11].

An important part of this work is to study the algebraic structure of such pseudorandom
functions, as well as extensions of these constructions, such as related-key secure, aggregate,
and multilinear pseudorandom functions. Let us then define more formally these primitives.

1.1.3 Extensions of Pseudorandom Functions

Pseudorandom functions have been extended in different directions, either to add functionali-
ties, for instance with the notions of aggregate or verifiable pseudorandom functions, or to
strengthen their security. In particular, due to their central role in constructing block-ciphers,
building pseudorandom functions that resist to real-world attacks has been an important
area of research. An aspect of this area corresponds to related-key security. In this thesis, we

Ch
ap

te
r1

1.1 Pseudorandom Functions 7

focus on aggregate, multilinear, and related-key secure pseudorandom functions and briefly
introduce these notions below.

1.1.3.1 Related-Key Security

As already explained, a common approach to prove the security of a cryptographic scheme,
known as provable security, is to relate its security to one of its underlying primitives or to
an accepted hard computational problem. While this approach is now standard and widely
accepted, there is still a significant gap between the existing models used in security proofs
and the actual environment in which these cryptosystems are deployed. For example, most of
the existing security models assume that the adversary has no information about the user’s
secret key. However, it is well known that this is not always true in practice: the adversary
may be able to learn partial information about the secrets using different types of side-channel
attacks, such as the study of energy consumption, fault injection, or timing analysis. In
the particular case of fault injection, for instance, an adversary can learn not only partial
information about the secret key, but it may also be able to force a cryptosystem to work with
different but related secret keys. Then, if it can observe the outcome of this cryptosystem,
it may be able to break it. This is what is known in the literature as a related-key attack
(RKA).

Most primitives are designed without taking related-key attacks into consideration so their
security proofs do not provide any guarantee against such attacks. Hence, a cryptographic
scheme that is perfectly safe in theory may be completely vulnerable in practice. Indeed, many
such attacks were found during the last decade, especially against practical block-ciphers
[BDK05; BDK08; BDK+10; BK09; BKN09; KHP07]. Inspired by this cryptanalytic work,
some years ago, theoreticians started to develop appropriate security models and search for
cryptographic primitives which can be proven related-key secure.

Though related-key attacks were first introduced by Biham and Knudsen [Bih94; Knu93] in
the early 1990’s, it was only in 2003 that Bellare and Kohno [BK03] began the formalization
of the theoretical foundations for related-key security. We recall their security definition of
related-key security for pseudorandom functions here. Let F : K × D → R be a family of
functions for a security parameter κ, and let Φ = {φ: K → K} be a set of functions on the key
space K, called a related-key deriving (RKD) function set. We say that F is a Φ-related-key
secure pseudorandom function if for any polynomial-time adversary, its advantage in the
following game is negligible. The game starts by picking a random challenge bit b, a random
target key K ∈ K and a random function G: K × D → R. The adversary can repeatedly
query an oracle that, given a pair (φ, x) ∈ Φ × D, returns either F (φ(K), x), if b = 1, or
G(φ(K), x), if b = 0. Finally, the adversary outputs a bit b′, and its advantage is defined
by 2 Pr [b = b′] − 1. Note that if the class Φ of RKD functions contains only the identity
function, then this notion matches standard PRF security.

In this work, Bellare and Kohno also proved that there are inherent limitations to security
against related-key attacks. In particular, there exist simple classes of related-key deriving
functions for which related-key security is impossible. For instance, it is impossible to achieve
related-key security against any class of functions that contains a constant function, as it
implies that the adversary is able to change the key to a fixed constant value. Hence, it is
important to understand which classes of RKD functions can or cannot be handled.

It appears that pseudorandom functions are a central notion in related-key security. Indeed,
it has been shown by Bellare, Cash, and Miller in [BCM11], that having related-key secure

8 Chapter 1 Introduction

pseudorandom functions for a class of RKD functions is sufficient to transform several
standard cryptographic primitives (including signatures, symmetric encryption, public-key
encryption, identity-based encryption, . . .) into related-key secure ones for the same class
of functions. Therefore, studying pseudorandom functions, in the related-key setting, is of
prime interest.

Yet, building related-key secure pseudorandom functions under standard assumptions has
been a wide-open problem for years, until the seminal work by Bellare and Cash [BC10b],
and achieving related-key security under standard assumptions for real-world classes, such as
XOR relations, is still a major open problem.

1.1.3.2 Aggregate Pseudorandom Functions

Aggregate pseudorandom functions were introduced by Cohen, Goldwasser, and Vaikun-
thanathan in [CGV15] The main interest of an aggregate pseudorandom function is to provide
the user with the possibility of aggregating the values of the function over super-polynomially
many outputs with only a polynomial-time computation, without enabling a polynomial-time
adversary to distinguish the function from a truly random function. For instance, one such
example of an aggregate query could be to compute the product of all the output values of
the pseudorandom function corresponding to a given exponentially-sized interval of the input
domain.
In addition to proposing the notion of aggregate pseudorandom functions, Cohen, Gold-

wasser, and Vaikunthanathan [CGV15] also proposed first constructions for several different
classes of aggregate queries, such as decision trees, hypercubes, and read-once boolean formu-
las, achieving different levels of expressiveness. Unfortunately, for most of the constructions
proposed in [CGV15], the proofs of security suffer from an exponential (in the input length)
overhead in their running time and have to rely on the sub-exponential hardness of the
Decisional Diffie-Hellman (DDH) problem.

Indeed, to prove the security of their constructions, the authors use a generic result which
is simply saying the following: given an adversary A against the aggregate pseudorandom
function security of a pseudorandom function F , one can build an adversary B against the
standard pseudorandom function security of F . B just queries all the values required to
compute the aggregate or output values, and computes the aggregate values itself before
sending them to A .
Clearly, this reduction proves that any secure pseudorandom function is actually also a

secure aggregate pseudorandom function. However, this reduction is not efficient, since to
answer to only one aggregate query, the adversary B may have to query an exponential number
of values to its oracle. Hence, as soon as we can aggregate in one query a super-polynomial
number of PRF values, this generic reduction does not run in polynomial time.

1.1.3.3 Multilinear Pseudorandom Functions

In order to overcome the shortcomings of the work of Cohen, Goldwasser, and Vaikun-
tanathan [CGV15], Cohen and Holmgren introduced the concept of multilinear pseudorandom
functions in [CH15]. Informally speaking, a multilinear pseudorandom function is a variant
of the standard notion of pseudorandom function, which works with vector spaces and which
guarantees indistinguishability from random multilinear functions with the same domain
and range. As shown in [CH15], multilinear pseudorandom functions can be used to prove

Ch
ap

te
r1

1.2 Our Contributions 9

the aggregate pseudorandom function security of the Naor-Reingold (NR) pseudorandom
function [NR97] with a polynomial-time reduction for the case of hypercubes and decision
trees aggregations. Unfortunately, their technique does not extend to the more general case of
read-once formulas aggregation, which is the most expressive form of aggregation in [CGV15]

1.2 Our Contributions
Our main focus in this thesis is the study of pseudorandom functions and above extensions,
and our main contributions in these areas are the following.

1.2.1 Extension and Correction of the Bellare-Cash Framework

As already mentioned, Bellare and Cash [BC10b] designed the first related-key secure
pseudorandom functions based on standard assumptions. These foundational results are
obtained by applying a single, elegant, general framework to the Naor-Reingold pseudorandom
function and handle certain multiplicative and additive RKD function classes. Unfortunately,
it was discovered later that the framework of [BC10b] had a minor bug that prevented its
proof to go through. They corrected this bug by strengthening the requirements of their
framework, but their new requirements did no longer allow the framework to be applied to
additive classes.
In this thesis, our first contribution is to correct and extend this framework. Specifically,

we provide a new proof of their framework that goes through assuming only the original
requirements. Therefore, it allows us to apply our framework to the additive case, as originally
done in [BC10b]. Moreover, we provide new tools that let us handle larger classes of relations
and extend the framework. For instance, we are able to construct a related-key secure
pseudorandom function for the class of affine relations.

1.2.2 Algebraic Framework for Pseudorandom Functions

The second contribution of this thesis is an algebraic framework, termed “polynomial linear
pseudorandomness security”, that can be used to construct and prove the security of a
wide variety of pseudorandom functions. Intuitively, we prove the following theorem: let
G = 〈g〉 be a cyclic group of prime order p and let us denote by [a] the group element ga,
for any a ∈ Zp. Let a1, . . . , an be n uniformly random secret scalars from Zp. Then, for
any positive integer q and any multivariate polynomials P1, . . . , Pq defined over Zp and with
indeterminates T1, . . . , Tn, the group elements:

[P1(a1, . . . , an)] , . . . , [Pq(a1, . . . , an)]

are computationally indistinguishable, under some standard assumptions, from the group
elements:

[U(P1)] , . . . , [U(Pq)] ,

where U is a random linear map from the set of multivariate polynomials to Zp.
This theorem is straightforward in the generic group model, but we prove that it is also true

assuming only the hardness of some standard assumptions (discussed below). Furthermore,
this framework is general enough to encompass standard and related-key securities for
pseudorandom functions as well as multilinear and aggregate pseudorandom functions, and

10 Chapter 1 Introduction

allows us to solve various open questions in these areas. In particular, it let us define a
fully algebraic framework for related-key security that only requires some basic algebraic
properties to be applied, or to provide a polynomial-time reduction that proves the aggregate
pseudorandom function security of the Naor-Reingold construction for read-once formulas
aggregation.

1.2.3 Assumptions

Our algebraic framework is proven under different assumptions. In particular, depending on
certain parameters, such as the degree of polynomials P1, . . . , Pq, we are able to prove our
theorem assuming only the DDH assumption or a stronger assumption, such as the d-DDHI
assumption (with d being a bound on the degree of polynomials).
We actually prove our framework under a new family of computational assumptions,

termed Ek,d-MDDH assumptions (where d is a bound on the degree of polynomials and k is
some parameter precised later), that encompasses in particular classical assumptions such as
DDH, d-DDHI, k-Lin, . . . and a side contribution of this thesis is to prove the security of all
our non-classical assumptions in the generic group model.

1.2.4 Related-Key Secure Pseudorandom Function for XOR Relations

The last contribution of this thesis is a construction of related-key secure pseudorandom
functions for XOR relations, based on the existence of a weak form of multilinear maps.
Indeed, even if the results discussed above in related-key security allow to handle different
and large classes of RKD functions, the functions have to be algebraic transformations (such
as multivariate polynomials), and thus do not really correspond to real-world attacks. Here,
our construction is secure even assuming that the adversary has the capacity of flipping any
bit of the key at each query, which is closer to the actual capacities of a real-world adversary.
However, our result should be seen as a proof of concept, as the existence of multilinear

maps is still a very strong assumption, as revealed by the recent devastating attacks. Yet,
despite the numerous attacks against current multilinear maps, our construction circumvents
all the known attacks, and we only rely on the existence of a weak form of multilinear map.
In particular, we hope that such weak form of multilinear maps might be instantiated in the
future under standard assumptions, such as lattice-based assumptions.

1.3 Other Contributions
Independently from the work presented in this manuscript, we also worked on the following
unrelated subjects.

1.3.1 Order-Revealing Encryption

In a collaboration resulting from an internship at Technicolor Research with Marc Joye, we
study order-revealing encryption. An order-revealing encryption scheme is a private-key
encryption scheme that provides anyone with the capacity of comparing plaintexts given only
the ciphertexts, without revealing anything more about the plaintexts. The first construction
of order-revealing encryption was proposed by Boneh et al. in [BLR+15] and relied on the
existence of multilinear maps. In our work, we propose a first construction of order-revealing

Ch
ap

te
r1

1.3 Other Contributions 11

encryption assuming one-way functions exist, but only for polynomial-size domains. We
also propose a construction that reveals the order but also a bit more, for exponential-sized
domains, assuming the hardness of the DLin problem.

1.3.2 Private Circuits

In a joint work with Sonia Belaïd, Fabrice Benhamouda, Emmanuel Prouff, Adrian Thillard,
and Damien Vergnaud, we study the construction of multiplication circuits in the probing
model. This model has been introduced by Ishai, Sahai, and Wagner in [ISW03] to capture
the security of implementations against side-channel attacks, such as attacks using the power
consumption or the electromagnetic radiation of the device running the cryptosystem. When
devices are not protected against such attacks, it is often possible to exploit these physical
measures to retrieve sensitive data.
Specifically, this model assumes that the attacker can obtain a bounded number of inter-

mediate values of the computation (called probes), and we call a private circuit a circuit
that is secure in this model. The seminal work by Ishai, Sahai, and Wagner, shows how to
transform any circuit into a private circuit, at the cost of extra randomness. The main tool
for this transformation is the construction of the first private circuit for bit-multiplication.
In our work, we focus on studying the bit-multiplication and try to optimize the number

of random bits used by the private circuit computing this operation. Letting d denote the
bound on the number of probes that the attacker can make, we obtain the following results:
on the theoretical side, we prove a linear lower bound (in d) on the number of additional
random bits, and a quasi-linear upper bound (O(d · log d)). These bounds result from an
algebraic characterization of the security of a private circuit, which relies on basic linear
algebra. On the practical side, we construct a private circuit for bit-multiplication that halves
the randomness complexity of the previous circuit by Ishai, Sahai, and Wagner, and also
construct private circuits for small (real-world) cases (d ≤ 4) whose randomness complexity
match our linear lower bound. Finally, we also implement a tool, based on our algebraic
characterization of security, that allows to find attacks against multiplication circuits which is
magnitude faster that previous known tools (such as [BBD+15]), but is not perfectly sound.
That is, our tool might not always find attacks against a non-secure scheme so cannot serve
for proving security of a scheme, but allows to discard quickly bad candidates.

1.3.3 Functional Encryption and Obfuscation

In a work with Nir Bitansky, Ryo Nishimaki, and Daniel Wichs, resulting from an internship
at Northeastern University, we study the relation between private-key functional encryption
and indistinguishability obfuscation. By designing different intermediate tools, we are able to
construct a compact public-key functional encryption scheme from any unbounded-collusion
private-key functional encryption scheme and any plain public-key encryption scheme. Putting
this result together with the transform by Bitansky and Vaikunthanathan [BV15] or by Ananth
and Jain [AJ15], we then obtain that private-key functional encryption is sufficient, combined
with any plain public-key encryption scheme, to build indistinguishability obfuscation. In
particular, this proves that private-key functional encryption is (almost) as powerful as
public-key functional encryption.

12 Chapter 1 Introduction

1.4 Organization
The rest of this manuscript is organized as follows: Chapter 2 first introduces basic mathe-
matical, computational, and cryptographic notions. Next, Chapter 3 introduces related-key
security and corrects and extends the Bellare-Cash framework. Chapter 4 defines our new
family of assumptions and either relates them to classical assumptions or proves their security
in a generic-group model. Chapter 5 then uses the new family of assumptions to prove
the security of our main algebraic framework. Next, Chapter 6 applies the new algebraic
framework to pseudorandom functions, related-key secure pseudorandom functions, aggre-
gate pseudorandom functions, and multilinear pseudorandom functions. Finally, Chapter 7
describes our construction of related-key secure pseudorandom function for XOR relations
and Chapter 8 concludes this thesis.

Ch
ap

te
r2

Chapter 2
Preliminaries

In this chapter, we introduce the notation and basic notions used throughout this manuscript.
We start by recalling some standard mathematical and computational concepts, and by briefly
introducing provable security. We also remind some standard number-theoretic assumptions,
and define most of the cryptographic primitives involved in this work, including standard,
aggregate, and multilinear pseudorandom functions. Please note that the definition of related-
key secure pseudorandom functions is postponed to Chapter 3. We conclude this chapter by
introducing multilinear maps and the multilinear map model.

Multilinear maps and the multilinear map model are central in Chapter 7 and Section 4.4,
but these two parts are rather independent from the rest of this thesis, so we recommend
to inspect Section 2.4 only before reading either of these parts. Most of the other notions
introduced in this chapter are rather usual, thus it can be easily skimmed through. However,
we encourage the reader to inspect Section 2.3.2 that is central for the sequel.

A list of notation and abbreviations is provided at the end of this manuscript on pages 139
and 141.

Contents
2.1 Notation and Preliminaries . 14

2.1.1 Mathematical Notions . 14
2.1.2 Algorithmic Concepts . 15
2.1.3 Provable Security . 15

2.2 Classical Computational Assumptions 17
2.2.1 The Discrete Logarithm Problem 17
2.2.2 Classical Discrete-Logarithm-Based Assumptions 17
2.2.3 Building DDH-Hard Groups . 19

2.3 Cryptographic Primitives . 19
2.3.1 Collision-Resistant Hash Functions 19
2.3.2 Pseudorandom Functions . 20
2.3.3 Aggregate Pseudorandom Functions 22
2.3.4 Multilinear Pseudorandom Functions 23

2.4 Multilinear Maps and the Generic Multilinear Map Model 25
2.4.1 Multilinear Maps . 25
2.4.2 Generic Multilinear Map Model . 26

— 13 —

14 Chapter 2 Preliminaries

2.1 Notation and Preliminaries

2.1.1 Mathematical Notions

Integers, Sets, and Modular Arithmetic. We denote by Z the set of integers and by N
the set of non-negative integers. If S is a set, then |S | denotes its size.
For two sets D and R, we denote by Fun(D,R) the set of all functions f : D → R with

domain D and range R.
For a positive integer N , we denote by (ZN ,+) the additive group of integers modulo N

and by (ZN ,+, ·) the ring of integers modulo N . We often abuse this notation by using ZN .
Furthermore, we denote by (Z∗N , ·) or simply Z∗N the multiplicative subgroup of (ZN ,+, ·)
that contains the invertible elements of the ring ZN . For an integer x ∈ Z, we denote by x
mod N the remainder of the Euclidean division of x by N , which can be considered both as
an integer in {0, . . . , N − 1} or as an element of ZN . We then identify elements from ZN with
integers of the set {0, . . . , N − 1}. We recall that performing additions and multiplications
over ZN is efficient (polynomial-time in the size of N).
In this work, N is often a prime integer, thus denoted p. Please note that, for any prime

number p, the ring (Zp,+, ·) is also a finite field, and then Z∗p = Zp \ {0}.
Cyclic Groups. We make extensive use of cyclic groups in this thesis. We recall that
a cyclic group is a finite group generated by a single element. In particular, a cyclic
group is commutative (or Abelian). Throughout this manuscript, we denote by a tuple
(p,G, g) a multiplicative cyclic group of prime order p generated by an element g, so that
G = 〈g〉 = {1, g, . . . , gp−1}, where 1 denote the identity element (corresponding to g0). We
often abuse this notation by using the notation G when the order and the generator are clear
from the context. We denote by [x]g, or simply [x] when the generator is clear from the
context, the element gx, for any x ∈ Zp, so in particular g = [1]g.
We also assume that the multiplication over G is an efficient operation, so given g and

x ∈ Zp, one can efficiently compute [x]g.

Linear Algebra. For two vector spaces D and R, we denote by L(D,R) the vector space
of linear functions from D to R. Similarly, if D1, . . . ,Dn denote n vector spaces, then
L(D1 ⊗ · · · ⊗ Dn,R) is the vector space of n-linear functions from D1 × · · · × Dn to R. In
this thesis, vector spaces are implicitly supposed to be Zp-vector spaces.

Vectors and Matrices. Vectors are denoted with an arrow (e.g., #”v) and matrices by
bold capital letters (e.g., A). For a vector #”v , | #”v | denotes its length and vi denotes its i-th
component, so #”v = (vi)i=1,...,| #”v |. For a vector #”v ∈ Dn and a function f : D → R, we denote
by f(#”v) the vector (f(vi))i=1,...,n ∈ Rn. Reversely, for a vector of functions #”

f = (fi)i=1,...,n,
we denote by #”

f (x) the vector (f1(x), . . . , fn(x)). For two vectors #”u , #”v of same length n over
a ring R, we denote by 〈 #”u , #”v 〉 = ∑n

i=1 ui · vi their inner product. For a matrix A, we denote
by ai,j its entry in the i-th row and j-th column. We sometimes combine both notations, by
defining vectors of matrices (e.g., #”

A = (A1, . . . ,A| #”A|).
For a cyclic group (p,G, g) and a vector #”a ∈ Znp , we denote by [#”a]g the vector of group

elements ([a1]g , . . . , [an]g) ∈ Gn. Similarly, for a matrix A ∈ Zn×mp , we denote by [A]g the
matrix of group elements ([ai,j]g)i=1,...,n

j=1,...,m
∈ Gn×m. As already stated above, we often abuse

these notations by not specifying the generator g when it is clear from the context.

Ch
ap

te
r2

2.1 Notation and Preliminaries 15

Polynomials. We denote by Zp[T1, . . . , Tn] the vector space (and ring) of multivariate
polynomials in indeterminates T1, . . . , Tn over Zp, and by Zp[T1, . . . , Tn]≤d its subspace
containing only polynomials whose degree in each indeterminate is at most d. We sometimes
denote by P (#”

T) the polynomial P (T1, . . . , Tn) ∈ Zp[T1, . . . , Tn], and by P (#”a) its evaluation
by setting #”

T to #”a , meaning that we set T1 = a1, . . . , Tn = an.

Assignation. If S is a set, x $← S indicates that x is taken uniformly at random from the
set S (independently of everything else). We also write x, y $← S to indicate that x and y
are chosen independently and uniformly at random from S . We often write that an element
is “picked at random” to mean “picked independently and uniformly at random”.

2.1.2 Algorithmic Concepts

Bitstrings. Binary strings are denoted with lowercase letters (e.g., x). We denote by {0, 1}∗
the set of all bitstrings and by {0, 1}n the set of all bitstrings of length n. For a binary string
x, we denote its length by |x|, so x ∈ {0, 1}|x|, and xi its i-th bit, so x = x1 ‖ . . . ‖x|x|. The
exclusive or (XOR) of two bitstrings x and y of same length is denoted by x⊕ y.
Algorithms and Efficiency. For simplicity, we consider our algorithms as probabilistic
Turing machines. That is, we implicitly assume that they can use an additional tape
containing random bits (also referred to as random coins). In the rest of this thesis, the
term PPT algorithm stands for Probabilistic Polynomial-Time algorithm and we say that an
algorithm is efficient if it is a PPT algorithm.

For an algorithm A, we denote by y $← A(x) for the fact of running algorithm A on input x
and with fresh random coins and letting y denote its output. If A is deterministic, we simply
note y ← A(x).

2.1.3 Provable Security

Negligibility. Let ε be a function from N to [0, 1]. We say that ε is negligible or 1 − ε is
overwhelming, if for any constant c ∈ N, there exists η ∈ N such that for any κ ≥ η, ε ≤ 1

κc .

Security Parameter. As most of the cryptosystems, our constructions only achieve a
computational notion of security and can actually be broken with a powerful enough computer.
However, it is widely accepted that if 2128 elementary operations are required to break a
cryptosystem with high probability, then this cryptosystem can be considered as secure. We
say that such a cryptosystem provides 128 bits of security.
Of course, with the computers being more and more powerful, it might happen in the

future that making 2128 elementary operations is reasonable. We then use the notion of
security parameter to formalize the security of our constructions. Informally speaking, the
security parameter is an integer κ ∈ N that is (sometimes implicitly) fed (in unary) to all
the algorithms of a cryptosystem and such that algorithms run in polynomial time in this
security parameter and such that a specific instantiation of the cryptosystem with security
parameter κ provides κ bits of security.

Adversaries. Adversaries are probabilistic Turing machines and are denoted by calligraphic
letters (e.g., A ,D). Adversaries implicitly takes as input a unary representation of the
security parameter. We consider two types of adversaries: on the one hand PPT adversaries,

16 Chapter 2 Preliminaries

which run in polynomial time, so in particular in polynomial time in the security parameter,
and on the other hand unbounded adversaries.
Experiments, Games, Oracles. We often define our security notions or assumptions using
experiments, parametrized by the security parameter κ, and during which an adversary is
called one or several times with various inputs. The adversary may also be provided access
to oracles, which are Turing machines, however, the running time of an adversary does not
depend on the running time of the oracle and a query to an oracle only counts for one
operation.
Then, an experiment can be seen as a game between an adversary A and an implicit

challenger which provides its input to the adversary as well as some oracle access. This
game has an Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. In the case where the Finalize procedure is not explicitly defined, it is
implicitly defined as the procedure that simply outputs its input. To execute a game G with
an adversary A , we proceed as follows. First, Initialize is executed and its outputs become
the input of A . When A executes, its oracle queries are answered by the corresponding
procedures of G. When A terminates, its outputs become the input of Finalize. The output
of the latter, denoted GA is called the output of the game, and we let “GA ⇒ 1” denote
the event that this game output takes the value 1. The running time of an adversary by
convention is the worst case time for the execution of the adversary with any of the games
defining its security, so that the time of the called game procedures is included.
Advantage. The advantage of an adversary A in an experiment Exp is the probability that
this adversary outputs 1 in this experiment:

AdvExp(A , κ) := Pr [Exp(A , κ) = 1] .

Similarly, we define the advantage of an adversary D in distinguishing two experiments Exp0

and Exp1 as:

AdvExp(D , κ) := Pr
[

Exp1(D , κ) = 1
]
− Pr

[
Exp0(D , κ) = 1

]
.

The advantage depends on the security parameter κ. For simplicity, κ is often implicit.
Assumptions, Security, and Indistinguishability. To define an assumption or a security
notion, we then define a problem as an experiment or as distinguishing two experiments. We
say that the problem is hard If no PPT algorithm can solve it.
We say that an assumption (or security) computationally holds if the above advantage

is negligible for any PPT adversary. We further say that it statistically holds if the above
advantage is negligible for any (even unbounded) adversary. We finally say that it perfectly
holds if the above advantage is 0 for any (even unbounded) adversary.
Similarly, we say that two games are computationally indistinguishable if the advantage

of any PPT adversary in distinguishing these two games is negligible. We say that two
experiments are statistically indistinguishable (resp. perfectly indistinguishable or equivalent)
if the advantage of any (unbounded) adversary in distinguishing these two games is negligible
(resp. 0).
Hybrid Arguments. Most of our security proofs are proofs by games (also called hybrid
arguments) as defined by Shoup in [Sho01; KR01; BR06]: to bound an advantage in some
game experiment corresponding to some security notion, we construct of sequence of games.

Ch
ap

te
r2

2.2 Classical Computational Assumptions 17

The first game is G0 is the experiment itself, while the last game corresponds to some
security notion or is such that the adversary just cannot win. Furthermore, we prove that
two consecutive games are indistinguishable either perfectly, statistically, or computationally.
In other words, we bound the difference of advantages by a negligible quantity.
Similarly, to bound an advantage of an adversary in distinguishing two experiments, we

construct a sequence of indistinguishable games starting with the first experiment and ending
with the second experiment.

2.2 Classical Computational Assumptions
2.2.1 The Discrete Logarithm Problem
For cryptographic purpose, we require our cyclic groups (p,G, g) to be such that the reverse
operation of exponentiation is hard. This operation, called the discrete logarithm operation,
consists, given an element g ∈ G and an element h = gx ∈ G, in computing scalar x ∈ Zp
such that h = gx. The scalar x is called the discrete logarithm of h in the basis g.

2.2.2 Classical Discrete-Logarithm-Based Assumptions
2.2.2.1 Search Assumptions

We define two assumptions, termed the discrete logarithm and the strong discrete logarithm
assumptions, that respectively correspond to the hardness of the following search problems.
Discrete Logarithm. We define the advantage of an adversary A against the discrete
logarithm (DL) problem in G as:

Advdl
G(A) := Pr

[
DLA

G ⇒ 1
]

where the probability is over the choices of a ∈ Zp, g ∈ G, and the random coins used by the
adversary, and where DLG is described in Figure 2.1.
Strong Discrete Logarithm. For d ≥ 2, we define the advantage of an adversary A
against the d-strong discrete logarithm (d-SDL) problem in G as:

Advd-sdl
G (A) := Pr

[
d-SDLA

G ⇒ 1
]

where the probability is over the choices of a ∈ Zp, g ∈ G, and the random coins used by the
adversary, and where d-SDLG is described in Figure 2.1.

DLG d-SDLG

proc Initialize
a

$← Z∗p
Return ([1] , [a])
proc Finalize(a′)
Return ([a] = [a′])

proc Initialize
a

$← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
)

proc Finalize(a′)
Return ([a] = [a′])

Figure 2.1: Games defining the DL and d-SDL problems in G

18 Chapter 2 Preliminaries

2.2.2.2 Decisional Assumptions

We first define two assumptions, termed the Decisional Diffie-Hellman and the d-Decisional
Diffie-Hellman Inversion assumptions, that respectively correspond to the hardness of the
following decisional problems.

DDH. The advantage of an adversary D against the DDH problem in G is defined to be:

Advddh
G (D) := Pr

[
DDHRealDG ⇒ 1

]
− Pr

[
DDHRandD

G ⇒ 1
]

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random coins used
by the adversary, and where DDHRealG and DDHRandG are described in Figure 2.2.

DDHI. For d ≥ 1, the advantage of an adversary D against the d-DDHI problem in G is
defined as:

Advd-ddhi
G (D) := Pr

[
d-DDHIRealDG ⇒ 1

]
− Pr

[
d-DDHIRandD

G ⇒ 1
]

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random coins used
by the adversary, and where d-DDHIRealG and d-DDHIRandG are described in Figure 2.2.

DDHRealG DDHRandG

proc Initialize
a, b

$← Zp
Return ([1] , [a] , [b] , [ab])
proc Finalize(b)
Return b

proc Initialize
a, b

$← Zp ; z $← Zp
Return ([1] , [a] , [b] , [z])
proc Finalize(b)
Return b

d-DDHIRealG d-DDHIRandG

proc Initialize
a

$← Z∗p
Return
([1] , [a] , . . . ,

[
ad
]
, [1/a])

proc Finalize(b)
Return b

proc Initialize
a

$← Z∗p ; z $← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
, [z])

proc Finalize(b)
Return b

Figure 2.2: Games defining the DDH and d-DDHI problems in G

We also define the k-Linear assumption as the hardness of the following decisional prob-
lem. The particular case with k = 2 is usually referred to as the Decisional Linear (DLin)
assumption.

k-Lin. For k ≥ 2, the advantage of an adversary D against the k-Lin problem in G is defined
as:

Advk-linG (D) := Pr
[
k-LinRealDG ⇒ 1

]
− Pr

[
k-LinRandD

G ⇒ 1
]

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random coins used
by the adversary, and where k-LinRealG and k-LinRandG are described in Figure 2.3.

Ch
ap

te
r2

2.3 Cryptographic Primitives 19

k-LinRealG k-LinRandG

proc Initialize
a1, . . . , ak

$← Zp
w1, . . . , wk

$← Zp
z ← w1 + · · ·+ wk
Return ([1] , [a1] , . . . , [ak] ,

[a1w1] , . . . , [akwk] , [z])
proc Finalize(b)
Return b

proc Initialize
a1, . . . , ak

$← Zp
w1, . . . , wk

$← Zp
z

$← Zp
Return ([1] , [a1] , . . . , [ak] ,

[a1w1] , . . . , [akwk] , [z])
proc Finalize(b)
Return b

Figure 2.3: Games defining the k-Lin problem in G

2.2.3 Building DDH-Hard Groups

It is widely accepted that one can build groups in which the DDH assumption holds (and
thus, also the DL assumption) from elliptic curves [Mil86; Kob87; Ber06].
Specifically, for a security parameter κ, it is believed that in “reasonably well-chosen”

elliptic curves of prime order p, the only way to compute the discrete logarithm is by using
generic algorithm (such as Shank’s baby-step giant-step algorithm [Sha71], which runs in
time O(√p)). Therefore, with p being a 2κ-bit prime number, one can find an elliptic curve
of order p that provides κ bits of security for the discrete logarithm problem. Please note
that, using point compression, elements from such a group can be represented using about
2κ+ 1 bits.

In the sequel, we do not extend further on how groups in which our assumptions hold can
be generated. We only assume that it can be done efficiently (in polynomial time) and that
there exist small (polynomial-size) representations for the group and its elements. This is
sufficient for our purpose.

2.3 Cryptographic Primitives

2.3.1 Collision-Resistant Hash Functions

Definition 2.3.1 (Collision-Resistant Hash Function). A collision-resistant hash function is
defined by a tuple of two polynomial-time algorithms H = (H.Setup,H.Eval) such that:

• H.Setup(1κ) outputs some public parameters pp;

• H.Evalpp(m) is a function that depends on pp, takes as input a bitstring m ∈ {0, 1}∗,
and deterministically outputs a bitstring y ∈ {0, 1}n(κ) called the hash value of m. The
size of the output is determined by some polynomial n(·).

Furthermore, we additionally require that any PPT adversary cannot find two inputs m0 6= m1
that have the same hash value, unless with negligible property. Formally, we define the
advantage of an adversary A in attacking the collision-resistance security of H as:

Advcr
H(A) := Pr [Expcr(A , κ) = 1] ,

20 Chapter 2 Preliminaries

where Expcr is defined in Figure 2.4. We say that H is a collision-resistant hash function if
the advantage of any PPT adversary in attacking the collision-resistance security of H is
negligible.

In order to ease the reading, we often abuse notation by simply writing that H is a collision
resistant hash function and letting H(·) stands for H.Evalpp(·), where public parameters pp is
implicitly sampled in advance as pp $← H.Setup(1κ) for the given security parameter.

2.3.2 Pseudorandom Functions
2.3.2.1 Definition

Definition 2.3.2 (Pseudorandom Function). A pseudorandom function is defined by a tuple
of two polynomial-time algorithms F = (F.Setup,F.Eval) such that:

• F.Setup(1κ) outputs some public parameters pp;

• F.Evalpp(·, ·) is a function that depends on pp and takes as input a secret key K ∈ K
and an input x ∈ D and deterministically outputs a value y = F.Evalpp(K,x) ∈ R.

Furthermore, we define the advantage of an adversary D in attacking the pseudorandom
function security of F as:

Advprf
F (D) := Pr

[
PRFRealDF ⇒ 1

]
− Pr

[
PRFRandD

F ⇒ 1
]
,

where PRFRealF and PRFRandF are described in Figure 2.4. We say that F is a pseudorandom
function if the advantage of any PPT adversary in attacking the pseudorandom function
security of F is negligible.

Expcr PRFRealF PRFRandF
proc Initialize
pp $← H.Setup(1κ)
Return pp
proc Finalize(m0,m1)
Return H.Evalpp(m0) = H.Evalpp(m1)

proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc Fn(x)
Return F.Evalpp(K,x)
proc Finalize(b)
Return b

proc Initialize
pp $← F.Setup(1κ)
f

$← Fun(D,R)
Return pp
proc Fn(x)
Return f(x)
proc Finalize(b)
Return b

Figure 2.4: Security games for collision-resistant hash functions and pseudorandom functions

Remark 2.3.3. Please note that in the Initialize procedure of game PRFRandF , a function
f is picked uniformly at random from Fun(D,R). Defining such a function could be an
exponential time procedure if D has an exponential size. However, as the adversary is allowed
to do only a polynomial number of queries, this game can be simulated polynomially by
generating f lazily. That is, when the adversary asks for the evaluation of f on an input x,
we either pick the output f(x) uniformly at random in R and store (x, f(x)) in a table (if

Ch
ap

te
r2

2.3 Cryptographic Primitives 21

x has never been queried before), or returns the value y such that (x, y) is in this table (if
x has already been queried). This is a polynomial-time procedure (and it also requires a
polynomial-size memory).

In order to ease the reading, we often abuse notation by simply writing that F : K×D → R
is a pseudorandom function and letting F (·, ·) stands for F.Evalpp(·, ·), where public parameters
pp are implicitly sampled in advance as pp $← F.Setup(1κ) for the given security parameter.

2.3.2.2 Naor-Reingold Construction

The construction by Naor and Reingold [NR97] is the first pseudorandom function based
on number-theoretic assumptions. It has the major interest to be very efficient compared
to the Goldreich-Goldwasser-Micali construction. We denote NR = (NR.Setup,NR.Eval) this
construction, defined as follows:

• NR.Setup(1κ) generates public parameters pp = (p,G, g) where (p,G, g) describes a
cyclic group of prime order p generated by g;

• NR.Evalpp(·, ·) takes as input a key #”a = (a0, a1, . . . , an) ∈ Zn+1
p and an input x =

x1 ‖ . . . ‖xn ∈ {0, 1}n and outputs [a0 ·
∏n
i=1 a

xi
i]g.

As mentioned above, we often use the notation NR(·, ·) to denote NR.Evalpp(·, ·).

Theorem 2.3.4. Assuming the DDH assumption holds in G, NR is a pseudorandom function.

2.3.2.3 Boneh-Montgomery-Raghunathan Construction

We recall the construction by Boneh, Montgomery, and Raghunathan [BMR10]. We denote
BMR = (BMR.Setup,BMR.Eval) this construction, defined as follows:

• BMR.Setup(1κ) generates public parameters pp = (p,G, g) where (p,G, g) describes a
cyclic group of prime order p generated by g;

• BMR.Evalpp(·, ·) takes as input a key #”a = (a1, . . . , an) ∈ Znp as well as an input
x = x1 ‖ . . . ‖xn ∈ {1, . . . , d}n and outputs

[∏n
i=1

1
ai+xi

]
g
.

Once again, we often use the notation BMR(·, ·) to denote BMR.Evalpp(·, ·).

Theorem 2.3.5. Assuming the d-DDHI assumption holds in G, BMR is a pseudorandom
function.

We also introduce two extensions of pseudorandom functions below. Namely, we define
aggregate and multilinear pseudorandom functions. These two notions are later studied in
Chapter 6. Please note that the definition of related-key secure pseudorandom functions is
given only in Chapter 3.

22 Chapter 2 Preliminaries

2.3.3 Aggregate Pseudorandom Functions
2.3.3.1 Definition

Aggregate pseudorandom function are an extension of pseudorandom functions that allows
to aggregate multiple(possibly exponentially many) outputs of the pseudorandom functions
efficiently without impacting the security. The notion has been originally defined by Cohen,
Goldwasser, and Vaikunthanathan in [CGV15]. We first define an aggregation function and
then recall the definition of an aggregate pseudorandom function.
Aggregation Function. Let f : K × D → R be a function. We define an aggregation
function by describing two objects:

• a collection S of subsets S of the domain D;

• an aggregation function Γ: R∗ → V that takes as input a tuple of values from the range
R of f and aggregates them to produce a value in an output set V.

In addition, we require the set ensemble S to be efficiently recognizable, meaning that for
any S ∈ S , there exists a polynomial-time procedure to check if x ∈ S, for any x ∈ D. Also,
we require the aggregation function Γ to be polynomial-time and the output of the function
not to depend on the order of the elements provided as inputs. Finally, we require all sets S
to have a representation of polynomial size in the security parameter κ.

Given an aggregation function (S ,Γ), we define the aggregate function AGG = AGGf,S ,Γ
as the function that takes as input a set S ∈ S and outputs the aggregation of all values
f(x) for all x ∈ S. That is, AGG(S) outputs Γ(f(x1), . . . , f(x|S|)), where S = {x1, . . . , x|S|}.
We will require the computation of AGG to be polynomial-time (even if the input set S is
exponentially large) if the function f provided is the evaluation function F.Evalpp(K, ·) of a
pseudorandom function F = (F.Setup,F.Eval) we consider, for some fixed key K.

Definition 2.3.6 (Aggregate Pseudorandom Function). Let F = (F.Setup,F.Eval) denote a
pseudorandom function whose key space, domain, and range are respectively K,D, and R
and let (S ,Γ) be an associated aggregation function. We say that F is an (S ,Γ)-aggregate
pseudorandom function if the advantage of any PPT adversary in attacking the aggregate
pseudorandom function security of F is negligible, where the advantage of an adversary D is
defined via

Advagg-prf
F,S ,Γ (D) := Pr

[
AGGPRFRealDF ⇒ 1

]
− Pr

[
AGGPRFRandD

F ⇒ 1
]
,

where games AGGPRFRealF and AGGPRFRandF are depicted in Figure 2.5.

Remark 2.3.7. Again, game AGGPRFRandF may not be polynomial-time, as AGGf,S ,Γ
may require to compute an exponential number of values f(x). However, for all the aggregate
pseudorandom functions that we consider in this manuscript, this game is statistically
indistinguishable from a polynomial-time game, by doing lazy simulation. Further details are
given in the corresponding sections.

2.3.3.2 Cohen-Goldwasser-Vaikunthanathan Construction

To illustrate this definition, we give one of the constructions proposed in [CGV15], for
hypercube aggregation.

Ch
ap

te
r2

2.3 Cryptographic Primitives 23

AGGPRFRealF AGGPRFRandF
proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc Fn(x)
Return F.Evalpp(K,x)
proc AGG(S)
Return AGGF.Evalpp(K,·),S ,Γ(S)

proc Initialize
pp $← F.Setup(1κ)
f

$← Fun(D,R)
Return pp
proc Fn(x)
Return f(x)
proc AGG(S)
Return AGGf,S ,Γ(S)

Figure 2.5: Security games for aggregate pseudorandom functions

We consider the Naor-Reingold pseudorandom function, whose key space, domain, and
range are respectively Zn+1

p , {0, 1}n, and G = 〈g〉 a cyclic group of prime order p. Then, the
aggregation function for hypercubes is defined as:

• S = {Sz | z ∈ {0, 1, ?}n}, where for any z ∈ {0, 1, ?}n, Sz is the subset of {0, 1}n
containing all bitstrings x such that xi = zi if zi ∈ {0, 1} and xi ∈ {0, 1} if zi = ?, for
i = 1, . . . , n. For instance, S?n = {0, 1}n and S0? = {00, 01};

• Γ: G∗ → G takes as input a tuple of elements (g1, . . . , g`) ∈ G` and outputs their
product ∏`

i=1 gi.

Then, it is clear that AGGNR.Evalpp(#”a ,·),S ,Γ(Sz) =
[
a0 ·

∏
zi=1 ai ·

∏
zi=?(ai + 1)

]
, and security

immediately follows from the security of NR (please refer to the introduction for further
explanation).

Theorem 2.3.8. Assuming the sub-exponential hardness of the DDH problem in G, NR is
an (S ,Γ)-aggregate pseudorandom function.

It was later shown by Cohen and Holmgren in [CH15] that the above construction is
actually secure assuming only the polynomial hardness of the DDH problem in G, introducing
multilinear pseudorandom functions.

2.3.4 Multilinear Pseudorandom Functions

2.3.4.1 Definition

Multilinear pseudorandom functions are a variant of the standard notion of pseudorandom
functions, which works with vector spaces. It has been originally defined in [CH15] as follows.

Definition 2.3.9 (Multilinear Pseudorandom Function). A multilinear pseudorandom func-
tion is defined by a tuple of two polynomial-time algorithms F = (F.Setup,F.Eval), such
that:

• F.Setup(1κ) outputs some public parameters pp;

24 Chapter 2 Preliminaries

• F.Evalpp(·, ·) is a function that depends on pp and takes as input a secret key K ∈ K
and an input x ∈ D and deterministically outputs a value y = F.Evalpp(K,x) ∈ R.

Moreover, its domain D = D1× · · ·×Dn is a cartesian product of n vector spaces D1, . . . ,Dn,
for some integer n, and its range R is a vector space. We say that F is a multilinear
pseudorandom function if the advantage of any PPT adversary in attacking the multilinear
pseudorandom function security of F is negligible, where the advantage of an adversary D is
defined via

Advmprf
F (D) := Pr

[
MPRFRealDF ⇒ 1

]
− Pr

[
MPRFRandD

F ⇒ 1
]
,

where games MPRFRealF and MPRFRandF are depicted in Figure 2.6.

MPRFRealF MPRFRandF
proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc Fn(#”x)
Return F.Evalpp(K, #”x)

proc Initialize
pp $← F.Setup(1κ)
f

$← L(D1 ⊗ · · · ⊗ Dn,R)
Return pp
proc Fn(#”x)
Return f(#”x)

Figure 2.6: Security games for multilinear pseudorandom function

Remark 2.3.10. Once again, game MPRFRandF can be implemented in polynomial time
using lazy simulation, for instance using a deterministic algorithm to check linearity of simple
tensors. Such a procedure is given in [BW04].

2.3.4.2 Cohen-Holmgren Construction

We also recall the first construction given by Cohen and Holmgren in [CH15]. We denote
CH = (CH.Setup,CH.Eval) this construction, defined as follows:

• CH.Setup(1κ) generates public parameters pp = (p,G, g, `1, . . . , `n) where (p,G, g)
describes a cyclic group of prime order p generated by g, and `1, . . . , `n describe the
dimensions of vector spaces such that D := K := Z`1p × · · · × Z`np ;

• CH.Evalpp(·, ·) takes as input a key (#”a1, . . . ,
”an) ∈ Z`1p × · · · × Z`np as well as an input

(# ”x1, . . . ,
”xn) ∈ Z`1p × · · · × Z`np and outputs [∏n

i=1〈 #”ai,
#”xi〉]g.

Once again, we often use the notation CH(·, ·) to denote CH.Evalpp(·, ·).

Theorem 2.3.11. Assuming the DDH assumption holds in G, CH is a multilinear pseudo-
random function.

Ch
ap

te
r2

2.4 Multilinear Maps and the Generic Multilinear Map Model 25

2.4 Multilinear Maps and the Generic Multilinear Map Model
In this section, we introduce multilinear maps and the generic multilinear map model, that
are central in Chapter 7. The generic multilinear map model is also used in Section 4.4 under
the term multilinear group model but in a quite informal manner, and we provide a simple
intuition of this model in the corresponding section. Thus, though we encourage the reader
to get used to this model before reading Section 4.4, this section is crucial only for reading
Chapter 7.

2.4.1 Multilinear Maps
Multilinear maps, also known as graded multilinear maps or graded encodings, are a general-
ization of bilinear maps. We recall that a bilinear map is an application e: G1 ×G2 → GT

that satisfies e(ga1 , gb2) = e(g1, g2)ab, where G1,G2,GT are cyclic groups of same order N ,
respectively generated by g1, g2, e(g1, g2). From a high-level view, a multilinear map allows to
transform scalars x and y into encodings, denoted x̂ and ŷ, at any level, of a given hierarchy.
Moreover, it allows to perform arithmetic operations: specifically, given encodings x̂, ŷ at
a same level S, one can compute an encoding of x + y at level S; given encodings x̂, ŷ at
levels S1,S2 respectively, one can compute an encoding of xy at a level S1 ? S2, where ?
is an operation over the levels to be precised. In the case of a symmetric bilinear map
e: G × G → GT , one can let the levels to be 0 for scalars, 1 for elements in G and 2 for
elements in GT , so that given two encodings at a same level i, one can create an encoding
of their sum (by summing scalars or multiplying group elements), and given two encodings
at levels i and j, one can create an encoding of their product at level i+ j if i+ j ≤ 2 (by
multiplying scalars, raising a group element to some scalar, or applying the pairing to two
group elements), so ? is simply the addition in this case. As in the case of symmetric bilinear
maps, for multilinear maps, these levels in the hierarchy limit the operations that one can
perform: one can always perform additions at a fixed level and one always “increases” the
level when performing a multiplication.
In the case of an asymmetric bilinear map e: G1 ×G2 → GT , we usually identify levels

with the subset lattice ∅ ⊆ {A}, {B} ⊆ {A,B}, with ∅ corresponding to scalars, {A} to G1,
{B} to G2 and {A,B} to GT . With these notations, the operation ? simply becomes the
union of the levels, as set union. This notion naturally extends to the case of asymmetric
multilinear maps: we identify levels to sets of formal symbols. In this thesis, we follow this
notion, and formal definitions are detailed below and follow the notations of [Zim15].

Definition 2.4.1 (Formal Symbol). A formal symbol is a bitstring in {0, 1}∗. Distinct
variables denote distinct bitstrings, and we call a fresh formal symbol any bitstring in {0, 1}∗
that has not already been assigned to a formal symbol.

Definition 2.4.2 (Index Sets). An index set is a set of formal symbols called indices.

Definition 2.4.3 (Multilinear Map). A multilinear map is defined by a tuple of six algo-
rithms (MM.Setup,MM.Encode,MM.Add,MM.Mult,MM.ZeroTest,MM.Extract) with the fol-
lowing properties:

• MM.Setup takes as inputs the security parameter κ in unary and an index set U , termed
the top-level index set, and generates public parameters mm.pp, secret parameters mm.sp,
and a prime number p;

26 Chapter 2 Preliminaries

• MM.Encode takes as inputs secret parameters mm.sp, a scalar x ∈ Zp, and an index
set S ⊆ U and outputs:

MM.Encode(mm.sp, x,S)→ [x]S ;

Please note that for the index set S = ∅, [x]∅ is simply the scalar x ∈ Zp.

• MM.Add takes as inputs public parameters mm.pp and two encodings with same index
set S ⊆ U and outputs:

MM.Add(mm.pp, [x]S , [y]S)→ [x+ y]S ;

• MM.Mult takes as inputs public parameters mm.pp and two encodings with index sets
S1,S2 ⊆ U respectively and outputs:

MM.Mult(mm.pp, [x]S1
, [y]S2

)→
{

[xy]S1∪S2
if S1 ∪ S2 ⊆ U

⊥ otherwise
;

• MM.ZeroTest takes as inputs public parameters mm.pp and a top-level encoding (with
index set U) and outputs:

MM.ZeroTest(mm.pp, [x]S)→
{
“zero” if S = U and x = 0
“non-zero” otherwise

;

• MM.Extract takes public parameters mm.pp and a top-level encoding [x]U as inputs
and outputs a canonical and random representation of [x]U .

Remark 2.4.4. The MM.Extract algorithm is needed for our pseudorandom function, con-
structed in Chapter 7, to be deterministic with all currently known instantiations of multilinear
maps [GGH13; CLT13; GGH15; CLT15]. Indeed, in these instantiations, the same group
element has many different representations, and the extraction procedure enables to extract
a unique representation from any top-level group element (i.e., of index U).

This extraction is necessary for our proof under non-interactive assumptions in Section 7.4.2
to work. For our proofs in the generic multilinear map model, this is not required. For
this reason, our generic multilinear map model does not support extraction for the sake of
simplicity. Actually, this only strengthens the result, as before extraction, the adversary still
has to possibility to add top-level group elements while extracted values are not necessarily
homomorphic.

2.4.2 Generic Multilinear Map Model

The generic multilinear map model is a generalization of the generic group model [Sho97].
Roughly speaking, the adversary has only the capability to apply operations (add, multiply,
and zero-test) of the multilinear map to encodings. A scheme is secure in the generic
multilinear map model if for any adversary breaking the real scheme, there is a generic
adversary that breaks a modified scheme in which encodings are replaced by fresh nonces,
called handles, that it can supply to a stateful oracle M , defined as follows:

Ch
ap

te
r2

2.4 Multilinear Maps and the Generic Multilinear Map Model 27

Definition 2.4.5 (Generic Multilinear Map Oracle). A generic multilinear map oracle is a
stateful oracle M that responds to queries as follows:

• On a query MM.Setup(1κ,U), M generates a prime number p and parameters mm.pp,
mm.sp as fresh nonces chosen uniformly at random from {0, 1}κ. It also initializes
an internal table T ← [] that it uses to store queries and handles. It finally returns
(mm.pp,mm.sp, p) and set internal state so that subsequent MM.Setup queries fail.

• On a query MM.Encode(z, x,S), with z ∈ {0, 1}κ and x ∈ Zp, it checks that z = mm.sp
and S ⊆ U and outputs ⊥ if the check fails, otherwise it generates a fresh handle
h

$← {0, 1}κ, adds h 7→ (x,S) to T , and returns h.

• On a query MM.Add(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks that z = mm.pp, that
h1 and h2 are handles in T which are mapped to values (x1,S1) and (x2,S2) such that
S1 = S2 = S ⊆ U , and returns ⊥ if the check fails. If it passes, it generates a fresh
handle h $← {0, 1}κ, adds h 7→ (x1 + x2,S) to T , and returns h.

• On a query MM.Mult(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks z = mm.pp, that h1
and h2 are handles in T which are mapped to values (x1,S1) and (x2,S2) such that
S1 ∪ S2 ⊆ U , and returns ⊥ if the check fails. If it passes, it generates a fresh handle
h

$← {0, 1}κ, adds h 7→ (x1x2,S1 ∪ S2) to T , and returns h.

• On a query MM.ZeroTest(z, h), with z, h ∈ {0, 1}κ, it checks z = mm.pp, that h is a
handle in T such that it is mapped to a value (x,U), and returns ⊥ if the check fails.
If it passes, it returns “zero” if x = 0 and “non-zero” otherwise.

Ch
ap

te
r3

Chapter 3
Introduction to Related-Key Security
In this chapter, we provide an introduction to related-key security. We start by defining

the security model for pseudorandom functions and by recalling first results by Bellare and
Kohno [BK03]. In particular, we recall some impossibility results. Next, we describe how
related-key secure pseudorandom functions play a central role in related-key security. Indeed,
many related-key secure cryptographic primitives can be built directly from related-key
pseudorandom functions, as shown by Bellare, Cash, and Miller [BCM11]. Finally, we recall,
correct, and extend the Bellare-Cash framework [BC10b] and provide some simple applications
of the resulting frameworks.
This framework was originally introduced in 2010 as a solution to construct the first

related-key secure pseudorandom functions under standard assumptions. Unfortunately, its
proof suffered from a minor bug and the framework had to be slightly changed, weakening
the results of the paper. Here, we provide a different approach for proving its security, which
allows us to recover all the results from the original paper, and more. This justifies our claim
of repairing the Bellare-Cash framework.

Contents
3.1 Definition and Security Model . 30
3.2 First Impossibility and Feasibility Results 31

3.2.1 Impossibility Results . 31
3.2.2 Feasibility Results . 31

3.3 The Central Role of Pseudorandom Functions 32
3.4 The Bellare-Cash Framework, Revisited 33

3.4.1 Additional Notions . 33
3.4.2 Dealing with Key-Collisions . 34
3.4.3 The (Extended) Framework . 35

3.5 Application: Related-Key Security for Affine Relations 41
3.5.1 Ingredients . 41
3.5.2 Putting Everything Together . 44

3.6 Further Generalization of the Bellare-Cash Framework 44
3.6.1 Relaxing the Requirements of the Framework 44
3.6.2 From Malleability to Unique-Input-Related-Key Security 49

3.7 Application: Related-Key Security for Affine Relations. 52

— 29 —

30 Chapter 3 Introduction to Related-Key Security

3.1 Definition and Security Model
As already detailed in the introduction of this thesis, the classical security models usually
assume that an adversary has only black-box access to the cryptosystem. For instance, in the
case of pseudorandom functions, the classical security model (see Definition 2.3.2) only allows
the adversary to query the pseudorandom function on inputs of its choice. In particular,
the key is perfectly hidden and the adversary has no power regarding the choice of the key.
However, in the real world, it has been shown that an adversary might be more powerful,
and might be able to modify the key.

The related-key security model provides the adversary with such capacities. Specifically, in
this model, an adversary is associated to a set Φ of functions, termed related-key deriving
functions, and is given the capacity to force the cryptosystem to work on different but related
keys, obtained by applying functions of Φ to the original key. In particular, if Φ only contains
the identity function, we obtain the classical security notion. This model has been formalized
by Bellare and Kohno in [BK03] as follows.

Definition 3.1.1. [Related-Key Secure Pseudorandom Function] Let F = (F.Setup,F.Eval)
denote a pseudorandom function whose key space, domain, and range are respectively denoted
K,D, and R. We define the advantage of an adversary D in attacking the related-key security
of F as:

Advrka-prf
F,Φ (D) := Pr

[
RKPRFRealDF ⇒ 1

]
− Pr

[
RKPRFRandD

F ⇒ 1
]
,

where RKPRFRealF and RKPRFRandF are described in Figure 3.1. Furthermore, for a set of
functions Φ ⊆ Fun(K,K), termed a class of related-key deriving (RKD) functions, we say
that an adversary D is Φ-restricted, if it is restricted to make only queries (φ, x) with φ ∈ Φ.
Then, we say that F is a Φ-related-key secure pseudorandom function if the advantage of
any Φ-restricted PPT adversary in attacking the related-key security of F is negligible.

RKPRFRealF RKPRFRandF
proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc RKFn(φ, x)
Return F.Evalpp(φ(K), x)
proc Finalize(b)
Return b

proc Initialize
pp $← F.Setup(1κ)
f

$← Fun(K ×D,R)
K

$← K
Return pp
proc RKFn(φ, x)
Return f(φ(K), x)
proc Finalize(b)
Return b

Figure 3.1: Security games for related-key pseudorandom functions

Remark 3.1.2. Similarly to the classical pseudorandom function security model, the
Initialize procedure of game RKPRFRand could not be a polynomial-time procedure, accord-
ing to our definition. This issue can easily be circumvent (see Remark 2.3.3). Please also

Ch
ap

te
r3

3.2 First Impossibility and Feasibility Results 31

note that the adversary cannot modify the public parameters pp. In particular, assuming the
public parameters contain the description of a group (p,G, g), the adversary does not have
any power regarding these values.

As described in the following section, there exist classes Φ of RKD functions such that one
cannot construct Φ-related-key secure pseudorandom functions. Therefore, one of the goals
in related-key security is to understand which classes of RKD functions can be handled and
if one can protect cryptosystems against meaningful (real-world) classes.

3.2 First Impossibility and Feasibility Results

Beyond formalizing the security model for related-key security, Bellare and Kohno also
proposed first impossibility and feasibility results in this setting. Here we describe succinctly
and informally these results. The main point is to emphasize that depending on the classes
of related-key deriving functions, it might be impossible to achieve related-key security. For
further details, please refer to the original paper [BK03].

3.2.1 Impossibility Results

While related-key security is something we need in the real world, Bellare and Kohno proved
that it is not achievable for certain classes of functions. The first example is obvious: assuming
a class Φ of related-key deriving functions contains a constant function f equals to c, then
achieving Φ-related-key security is impossible. This impossibility result is immediate, as
the adversary has the power, applying f to the key, to make the cryptosystem run with the
known key c.
They also proposed more elaborate impossibility results. For instance, assume the key

space is {0, 1}κ and assume that Φ contains the identity function and the permutations φi,
for i = 1, . . . , k, where φi(K) = K if Ki = 0 and φi(K) = K ⊕ 1i−1 ‖ 0 ‖ 1κ−i otherwise.
Then, one can just pick any input x in the domain of the pseudorandom function and query
(id, x), (φ1, x), . . . , (φκ, x). For every i = 1, . . . , κ, if the values obtained with queries (id, x)
and (φi, x) match, then the i-th bit of K is 0 with overwhelming probability (assuming the
range is big, otherwise one can just do this comparison with multiple inputs). Thus, it is
obvious that one cannot achieve related-key security against such a class.

Similarly, assume that Φ contains XOR relations with bitstrings 0i−1 ‖ 1 ‖ 0κ−i and additions
with 2i−1 modulo 2κ (seeing the key as the bit-representation of an integer modulo 2κ), for
i = 1, . . . , κ, then a similar attack can be mounted from the fact that K ⊕ 0i−1 ‖ 1 ‖ 0κ−i and
K + 2κ−i−1 mod 2κ match if and only if Ki = 0.
Ton conclude, it is clear that there is no hope in proving related-key security for certain

classes, and it is of prime interest to understand which types of classes can be handled (and
if natural classes, such as XOR relations, can be handled).

3.2.2 Feasibility Results

Though it is impossible to protect against certain classes of functions, related-key security for
real-world classes remains one of the main goals of modern blockciphers, such as AES. Hence,
Bellare and Kohno also studied the related-key security of blockciphers and proposed first
feasibility results. Specifically, they prove that an ideal blockcipher is Φ-related-key secure

32 Chapter 3 Introduction to Related-Key Security

as soon as the class of functions Φ satisfies two properties, termed collision-resistance and
output-unpredictability. Informally, consider a random key K, a small subset S of Φ, and a
small subset X of the key space K, then collision-resistance asks that the probability that
φ1(K) = φ2(K) for two distinct functions φ1, φ2 ∈ S, is small, while output-unpredictability
asks that the probability that there exists a function φ ∈ S such that φ(K) ∈ X is small.
Intuitively, collision-resistance guarantees that every related-key is distinct, while output-
unpredictability guarantees that every related-key is random, and thus, related-key security
simply follows from standard security, as running the related-key security game is not different
from running multiple instances of the standard security game with different, random, and
independent keys.
In particular, if Φ contains only permutations, collision-resistance is immediate and an

ideal blockcipher is Φ-related-key secure as soon as Φ satisfies output-unpredictability. Thus,
as the class of XOR relations contains only permutations and satisfies output-unpredictability,
this feasibility proves that ideal blockciphers are secure against XOR relations.

3.3 The Central Role of Pseudorandom Functions

Almost ten years after this first theoretical treatment of related-key security, building related-
key secure cryptosystems in the standard model remained a wide-open problem. Bellare
and Cash proposed the first construction of related-key secure pseudorandom function under
standard assumptions only in 2010. This description is described in the next section, but
before giving details about this construction, let us discuss about other primitives and why
pseudorandom functions are actually fundamental in related-key security.
Related-key security solves practical issues, such as certain types of side-channel attacks,

so it might seem natural to focus on primitives that are widely used in practice, such as
symmetric encryption or signatures. However, it appears that building related-key secure
pseudorandom functions is actually sufficient to build most of the primitive we might be
interested in. Indeed, in [BCM11], Bellare, Cash, and Miller proved that, given a Φ-related-key
secure pseudorandom function, one can transform any symmetric encryption (resp. signature,
public-key encryption, identity-based encryption) scheme that is secure in the classical security
model into a Φ-related-key secure one.
Moreover, the transform is rather simple and practical: informally, given a related-key

secure pseudorandom function, one can build a related-key secure pseudorandom generator.
Then, the transform mainly consists in fixing the secret key to be some random K and
in switching the randomness used in the key generation algorithm to the output of the
related-key secure pseudorandom generator evaluated on K. As the pseudorandom generator
is related-key secure, running multiple instances with different related keys simply corresponds
to running multiple instances with independent and uniformly random keys, and security
follows.
Therefore, pseudorandom functions should be the main focus in related-key security, as

the allows to build most of the interesting primitives for real-world applications. We do not
further discuss this result and encourage the reader to read [BCM11] for details.

Ch
ap

te
r3

3.4 The Bellare-Cash Framework, Revisited 33

3.4 The Bellare-Cash Framework, Revisited
In this section, we describe the Bellare-Cash framework [BC10b]. This framework, introduced
in 2010, allowed to build the first related-key secure pseudorandom functions under standard
assumptions. Unfortunately, the proof of this framework presented a minor bug, and the
authors modified the construction, by strengthening the requirements of their framework, in
order to correct this issue. This modification weakens the framework and prevents it from
being applied to certain classes of functions. Here, we provide a new proof that slightly
deviates from the original (and incorrect) proof by Bellare and Cash. Our approach allows
us to correct the bug from the original framework and to recover all the original results. In
particular, our requirements are exactly the same as those of the original framework. Here,
we directly present a simple extension of this framework that let us handle larger classes of
RKD functions. The original Bellare-Cash framework consists in a particular case of our
framework.

Until the end of this chapter, we denote by F = (F.Setup,F.Eval) a pseudorandom function
whose key space, domain, and range are respectively denoted by K, D, and R. For simplicity,
we often denote F.Evalpp(K,x) by F (K,x) throughout this chapter, and when doing so, setup
and public parameters are implicit. In particular, we adopt these notations for the proof of
the framework to ease the reading. We first introduce some additional material that is later
used for the framework and its proof.

3.4.1 Additional Notions
We define the notions of strong key fingerprint, unique-input adversary, key-malleability, and
compatible hash function introduced in [BC10b] and used in the framework.
Strong Key Fingerprint. A strong key fingerprint is a tool used to detect whether a key
arises more than once in a simulation, even if we do not have any information about the
key itself. Let #”ω be a vector over D and let n its length. We say that #”ω is a strong key
fingerprint for the pseudorandom function F = (F.Setup,F.Eval) if

(F.Evalpp(K,ω1), . . . ,F.Evalpp(K,ωn)) 6= (F.Evalpp(K ′, ω1), . . . ,F.Evalpp(K ′, ωn)) ,

for all distinct K,K ′ ∈ K and any public parameters pp.
Unique-Input Adversary. We say that an adversary against the related-key security of
a pseudorandom function is unique-input if its oracle queries (φ1, x1), . . . , (φq, xq) are such
that x1, . . . , xq are always distinct.
Key-Malleability. Let Φ be a class of RKD functions. Suppose KT is a deterministic
algorithm that, given an oracle f : D → R and inputs (φ, x) ∈ Φ × D, returns a point
KTf (φ, x) ∈ R. We say that KT is a key-transformer for (F,Φ) if it satisfies the following
correctness and uniformity conditions. Correctness requires that, for any public parameters
pp, KTF.Evalpp(K,·)(φ, x) = F.Evalpp(φ(K), x) for every (φ,K, x) ∈ Φ × K × D. Uniformity
requires that for any (even inefficient) Φ-restricted unique-input adversary U ,

Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
,

where games KTRealKT and KTRandKT are described in Figure 3.2. Finally, we say that F is
Φ-key-malleable if such a key-transformer for (F,Φ) exists.

34 Chapter 3 Introduction to Related-Key Security

KTRealKT KTRandKT

proc Initialize
f

$← Fun(D,R)
proc KTFn(φ, x)
Return KTf (φ(K), x)
proc Finalize(b)
Return b

proc KTFn(φ, x)
y

$← R
Return y
proc Finalize(b)
Return b

Figure 3.2: Games defining the uniformity of a key-transformer

Compatible Hash Function. Let us assume that F is Φ-key malleable and denote by KT a
key-transformer for (F,Φ). Let #”ω ∈ Dm and let D = D×Rm. We denote by Qrs(KT, F,Φ, #”ω)
the set of all w ∈ D such that there exists (f, φ, i) ∈ Fun(D,R)× Φ× {1, . . . ,m} such that
the computation of KTf (φ, ωi) makes oracle query w. Then, we say that a hash function
H: D → S is compatible with (KT, F,Φ, #”ω), if S ⊆ D \ Qrs(KT, F,Φ, #”ω).

Remark 3.4.1. A first attempt to fix the minor bug of the Bellare-Cash framework was
proposed by the authors in [BC10a]. To circumvent the issue in the proof, they used a
stronger notion of compatible hash function. While providing a correct proof, this change
weakens the framework and prevents it from being applied to certain classes. Here, we stick
to the original (and weaker) notion of compatible hash function, which let us recover all the
original results. We simply fix the proof by using a slightly different strategy.

3.4.2 Dealing with Key-Collisions

Before describing the framework, we introduce two new notions that allow us to slightly
generalize the framework. Indeed, the original framework by Bellare and Cash only allowed
to handle classes Φ of RKD functions that are claw-free, which means that for any K ∈ K
and any distinct φ, φ′ ∈ Φ, φ(K) 6= φ′(K). In this section, we give a method to deal with
classes of RKD functions that are not claw-free, such as affine classes. We introduce two new
security notions: the first one is called Φ-Key-Collision Security and captures the likelihood
that an adversary finds two distinct RKD functions which lead to the same derived key given
oracle access to F , while the second one, called Φ-Statistical-Key-Collision Security, is similar
but replaces the oracle access to the pseudorandom function with an oracle access to a truly
random function.

Φ-Key-Collision (Φ-kc) Security. We define the advantage of an adversary A against
the Φ-key-collision security of F , denoted by Advkc

Φ,F (A), to be the probability of success in
the game on the left side of Figure 3.3, where the functions φ appearing in A ’s queries are
restricted to lie in Φ. In particular, if Φ is claw-free, this advantage is 0.

Φ-Statistical-Key-Collision (Φ-skc) Security. We define the advantage of an adversary
A against the Φ-statistical-key-collision security for Fun(K ×D,R), denoted by Advskc

Φ (A),
to be the probability of success in the game on the right side of Figure 3.3. Here the functions
φ appearing in A ’s queries are again restricted to lie in Φ. In particular, if Φ is claw-free,
this advantage is 0.

Ch
ap

te
r3

3.4 The Bellare-Cash Framework, Revisited 35

Φ-kc security Φ-skc security
proc Initialize
pp $← F.Setup(1κ)
K

$← K
proc RKFn(φ, x)
y ← F.Evalpp(φ(K), x)
Return y
proc Finalize(φ1, φ2)
Return (φ1 6= φ2 and φ1(K) = φ2(K))

proc Initialize
K

$← K ; D ← ∅ ; E ← ∅
f

$← Fun(K ×D,R) ; b′ ← 0
proc RKFn(φ, x)
If φ(K) ∈ E and φ /∈ D then b′ ← 1
D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
y ← f(φ(K), x)
Return y
proc Finalize
Return (b′ = 1)

Figure 3.3: Security games for Φ-key-collision of a pseudorandom function F (left) and for
Φ-statistical-key-collision of Fun(K ×D,R) (right)

3.4.3 The (Extended) Framework

We now describe our framework, which both repairs and extends the main result of [BC10b].
Intuitively, this framework allows to build a Φ-related-key secure pseudorandom function
from any pseudorandom function that is Φ-key-malleable, as soon as there exists a strong key
fingerprint #”ω for F and a collision-resistant hash function that is compatible with (KT, F,Φ, #”ω).
The construction is detailed below. Assuming the class Φ is claw-free, the advantages against
key-collision and statistical-key-collisions securities are 0 and the framework below matches
exactly the original Bellare-Cash framework.

Theorem 3.4.2 (Bellare-Cash Framework, Extended). Let M = (M.Setup,M.Eval) be a
pseudorandom function whose key space, domain, and range are denoted K,D,R, respectively.
Let Φ be a class of related-key deriving functions that contains the identity function id. Let
KT be a key-transformer for (M,Φ), and let #”ω ∈ Dm be a strong key fingerprint for M . Let
D = D ×Rm and let H: D → S be a hash function that is compatible with (KT,M,Φ, #”ω).
Define F = (F.Setup,F.Eval) as F.Setup = M.Setup and:

F.Evalpp(K,x) := M.Evalpp(K,H(x,M.Evalpp(K, #”ω))) ,

for all K ∈ K and x ∈ D.
Then, assuming M is a pseudorandom function and is Φ-key-collision secure, H is a

collision-resistant hash function, and Fun(K×D,R) is Φ-statistical-key-collision secure, F is
a Φ-related key secure pseudorandom function.

Furthermore, the running time of the reduction is polynomial in the running time of the
key-transformer and of the adversary against the Φ-related-key security of F .

Proof Overview. The proof of the above theorem is detailed below and relies on the
sequence of 11 games (games G0 −G10) described in Figure 3.4. Here we provide a brief
overview. Since the RKD functions that we consider in our case may have claws, we start
by dealing with possible collisions on the related-keys in the RKPRFReal case, using the
key-collision notion (games G0 − G2). Then, in games G3 − G4, we deal with possible

36 Chapter 3 Introduction to Related-Key Security

collisions on hash values in order to ensure that the hash values h used to compute the output
y are pairwise distinct so the attacker is unique-input. Then, using the properties of the key-
transformer and the compatibility condition, we show that it is hard to distinguish the output
from a uniformly random output (games G5 −G7) based on the standard pseudorandom
function security of M . Finally, we use the statistical-key-collision security notion to deal
with possible key collisions in the RKPRFRand case (games G8 −G10) so that G10 matches
the description of the RKPRFRand game.

Remark 3.4.3. It is worth noting that we deviate from the original proof of [BC10b] in
games G5−G7, filling the gap in their original proof, but under the same technical conditions
on compatibility. Unlike in their proof, we are able to show that the output of F is already
indistinguishable from a uniformly random output as soon as one replaces the underlying
pseudorandom function M with a random function f due to the uniformity condition of the
transformer. In order to build a unique-input adversary against the uniformity condition, the
main trick is to precompute the values of f(w) for all w ∈ Qrs(KT,M,Φ, #”ω) and use these
values to compute KTf (φ, ωi), for i = 1, . . . , | #”ω | and φ ∈ Φ, whenever needed. This avoids
the need to query the oracle in the uniformity game twice on the same input when computing
the fingerprint.

Proof of Theorem 3.4.2. The proof is based on the sequence of games in Figure 3.4. Much
of the proof is similar to that of the general framework of Bellare and Cash from [BC10b].
However, we have additional games to deal with non-claw-freeness (games G1, G2, G9 and
G10), and some games (games G6 and G7) are modified to deal with the gap in the proof of
the corresponding theorem in [BC10b]. Let Succi denote the event that game Gi output
takes the value 1. Let A be an adversary against the Φ-related-key security of F , and let us
assume (without loss of generality) that it never repeats a query.
G0 matches the description of the RKPRFRealF game, so:

Pr [Succ0] = Pr
[

RKPRFRealAF ⇒ 1
]
.

Game G1 introduces storage of used RKD functions and values of #”
ω in sets D and E

respectively and sets flag1 to true if the same value of #”
ω arises for two different RKD

functions. Since this storage does not affect the values returned by RKFn, we have

Pr [Succ1] = Pr [Succ0] .

Game G2 adds the boxed code which changes how the repetition of an #”
ω value is handled, by

picking instead a random value from Rm \E that will not repeat any previous one. Games
G1 and G2 are identical until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1] ,

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We
design an adversary D attacking the Φ-key-collision security of M such that

Pr [E1] ≤ Advkc
Φ,M (D) .

Adversary D runs A . When the latter makes an RKFn-query (φ, x), adversary D queries
(φ, ωi), for i = 1, . . . , | #”ω |, to its oracle, then computes #”

ω and then h = H(x, #”
ω) and finally

Ch
ap

te
r3

3.4 The Bellare-Cash Framework, Revisited 37

queries (φ, h) to its oracle and sends it to A . When A stops, D searches for two different
RKD functions φ queried by A that lead to the same value #”

ω and returns these two functions
if found. Since #”ω is a strong key fingerprint, two such functions lead to the same key, so D
wins if it finds such two functions. (Of course, if the class of RKD functions is claw-free, the
advantage of the attacker is 0.)
Game G3 introduces storage of hash values in a set G and sets flag2 to true if the same

hash output arises twice. Since this storage does not affect the values returned by RKFn

Pr [Succ3] = Pr [Succ2] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by
picking instead a random value h from S \G that will not repeat any previously used hash
value. Games G3 and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2] ,

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We
design an adversary C attacking the cr security of H such that

Pr [E2] ≤ Advcr
H(C) .

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter
makes an RKFn-query (φ, x), adversary C responds via:

For i = 0, . . . , | #”ω | do: ωi ←M(φ(K), ωi)
j ← j + 1 ; φj ← φ ; xj ← x

If #”
ω ∈ E and φ /∈ D then #”

ω
$← S \ E (∗)

Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
wj ← #”

ω
h← H(x, #”

ω)
hj ← h
y ←M(φ(K), h)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it
finds them, outputs (xa, wa), (xb, wb) and halts. The pairs (xa, wa) and (xb, wb) are distinct.
Indeed, consider two cases: first, if φa = φb then since A never repeats an oracle query,
xa 6= xb hence (xa, wa) 6= (xb, wb). Second, if φa 6= φb, then condition (∗) ensures that
wa 6= wb. Hence once again, (xa, wa) 6= (xb, wb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
H(C) .

In game G5, we use the key-transformer KT to compute M(φ(K), ·) via oracle calls to
M(K, ·). The correctness property of the key-transformer implies

Pr [Succ4] = Pr [Succ5] .

In game G6, we replace the oracle M(K, ·) given to the key-transformer KT by a random
function f . We design an adversary B attacking the pseudorandom function security of M
such that

Pr [Succ5] ≤ Pr [Succ6] + Advprf
M (B) .

38 Chapter 3 Introduction to Related-Key Security

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds
via

For i = 0, . . . , | #”ω | do ωi ← KTFn(φ, ωi)
If #”
ω ∈ E and φ /∈ D then #”

ω
$← S \ E

Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
y ← KTFn(φ, h)
Return y

where Fn is B’s own oracle. When A halts, B halts with the same output. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ5] and Pr
[

PRFRandB
M ⇒ 1

]
= Pr [Succ6] .

In game G7, instead of computing the output y using the key-transformer, we set the value y
to a uniformly random value. To show that games G6 and G7 are perfectly indistinguishable,
we use the uniformity condition of the Key-Transformer KT. Let us recall that, as formally
defined in [BC10b, Section 3.1], the uniformity condition states that for any (even inefficient)
Φ-restricted, unique-input adversary U ,

Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
,

where game KTRealKT picks f $← Fun(D,R) during the initialization and responds to oracle
query KTFn(φ, x) via KTf (φ, x), while game KTRandKT has no initialization and responds
to oracle query KTFn(φ, x) by returning a value y $← R chosen uniformly at random in R.
We show that if an adversary A can distinguish games G6 and G7, then we can construct
a unique-input adversary U that can distinguish games KTRealKT and KTRandKT; since
KT is a key-transformer, these two games are perfectly indistinguishable for a unique-input
adversary by the uniformity condition. Hence, so are G6 and G7.

Adversary U starts by initializing setsD ← ∅, E ← ∅, G← ∅, then makes the queries (id, w)
to its oracle, for every w ∈ Qrs(KT,M,Φ, #”ω) and stores these values. This is possible under
our assumption that id ∈ Φ. We let fw denote the value that D gets from its oracle in response
to the query (id, w). Depending on U ’s oracle, the value of fw for w ∈ Qrs(KT,M,Φ, #”ω) is
either KTf (id, w) = f(w) (KTRealKT), with f the random function defined in the Initialize
procedure of KTRealKT, or a uniformly random value from R (KTRandKT). All these values
will be used by U to compute the value #”

ω in its simulation. Now, U runs A . When A
makes an oracle query (φ, x), U starts by computing the values ωi, for i = 1, . . . , | #”ω |, using
the values fw it has stored, the function φ it gets from A , and the key-transformer KT.
Note that, because U already queried (id, w) to its oracle for every w ∈ Qrs(KT,M,Φ, #”ω),
U is able to compute by itself the values ωi, for i = 1, . . . , | #”ω |. This is because, in making
these queries, U already sets a value fw for every w ∈ Qrs(KT,M,Φ, #”ω), and this is the set
of all values that might be needed in computing KTf (φ, ωi), for i = 1, . . . , | #”ω | and φ ∈ Φ.
Notice that, in making these queries all at once at the beginning, U remains a unique-input
adversary. After computing #”

ω , U checks if #”
ω ∈ E and φ /∈ D. If these conditions hold, U

picks #”
ω

$← Rm \ E at random, otherwise U sets D ← D ∪ {φ}. It then sets E ← E ∪ { #”
ω}.

Next, U computes h← H(x, #”
ω) and checks if h ∈ G. If this holds, U picks h $← S \G at

random. Notice that this step guarantees that all values h are in S and are all distinct as

Ch
ap

te
r3

3.4 The Bellare-Cash Framework, Revisited 39

long as A makes at most |S| queries. Finally, U sets G← G ∪ {h}, makes the query (φ, h)
to its oracle, and returns the value it gets, which is either KTf (φ, h) or a uniformly random
value, to A . When A halts, U halts with the same output. The compatibility condition
ensures that S does not contain any w with w ∈ Qrs(KT,M,Φ, #”ω). It follows from these
observations that U is a unique-input adversary. Finally, it is clear that if U ’s oracle is
KTRealKT, then it simulates exactly game G6 with f being the function f chosen at random
in the Initialize procedure of game KTRealKT. If U ’s oracle is KTRandKT, then it simulates
exactly game G7 since the values given to A are uniformly random values. Then, we have

Pr
[

KTRealUKT ⇒ 1
]

= Pr [Succ6] and Pr
[

KTRandU
KT ⇒ 1

]
= Pr [Succ7] ,

and then, since Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
for any unique-input adversary

U , by the uniformity condition, we finally have

Pr [Succ6] = Pr [Succ7] .

Games G7 and G8 are identical since even if two different queries lead to the same key, the
“If” test ensures that the returned value is still uniformly random over R. Hence,

Pr [Succ7] = Pr [Succ8] .

Games G8 and G9 are identical until flag3 is set to true, hence we have

Pr [Succ8] ≤ Pr [Succ9] + Pr [E3] ,

where E3 denotes the event that the execution of A with game G9 sets flag3 to true. We
design an adversary E breaking Φ-statistical-key-collision security for Fun(K,D,R) such that:

Pr [E3] ≤ Advskc
Φ (E) .

Adversary E runs A . When the latter makes an RKFn-query (φ, x), so does E and E returns
the value it receives to A . When A stops, if A has queried two different functions φ1 and
φ2 such that φ1(K) = φ2(K) then b′ was set to 1 when the second of these two functions was
queried by E , and then E wins. (Of course, if the class of RKD functions is claw-free, this
probability is 0.)

Games G9 and G10 are identical, so

Pr [Succ9] = Pr [Succ10] .

Finally, G10 matches the description of the RKPRFRandF game, so:

Pr [Succ10] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

Theorem 3.4.2 now follows by combining the bounds arising in the different game hops.

40 Chapter 3 Introduction to Related-Key Security

proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

h← H(x, #”
ω)

y ←M(φ(K), h)
Return y
proc Finalize(b) // All Games
Return b

proc Initialize // G1, G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

If #”
ω ∈ E and φ /∈ D then

flag1 ← true ; #”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
y ←M(φ(K), h)
Return y

proc Initialize // G3, G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

If #”
ω ∈ E and φ /∈ D then

#”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
If h ∈ G then flag2 ← true

h
$← S \G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

For i = 1, . . . , | #”ω | do
ωi ← KTM(K,·)(φ, ωi)

If #”
ω ∈ E and φ /∈ D then

#”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
If h ∈ G then h $← S \G
G← G ∪ {r}
y ← KTM(K,·)(φ, h)
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

f
$← Fun(D,R)

proc RKFn(φ, x) // G6

For i = 1, . . . , | #”ω | do
ωi ← KTf (φ, ωi)

If #”
ω ∈ E and φ /∈ D then

#”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
If h ∈ G then h $← S \G
G← G ∪ {r}
y ← KTf (φ, h)
Return y

proc Initialize // G8 , G9

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G8 , G9

y ← G(φ(K), x)
If φ(K) ∈ E and φ /∈ D then

flag3 ← true ; y
$← R

D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G7

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7

y
$← R

Return y

proc Initialize // G10

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G10

y ← G(φ(K), x)
Return y

Figure 3.4: Games for the proof of Theorem 3.4.2

Ch
ap

te
r3

3.5 Application: Related-Key Security for Affine Relations 41

3.5 Application: Related-Key Security for Affine Relations
In this section, we apply the above framework to the variant NR∗ of the Naor-Reingold
pseudorandom function to build a related-key secure pseudorandom function for affine
relations. Recall that NR∗ was defined in [BC10b] as:

• NR∗.Setup(1κ) generates public parameters pp = (p,G, g) where (p,G, g) describes a
cyclic group of prime order p generated by g;

• NR∗.Evalpp(·, ·) takes as input a key #”a = (a1, . . . , an) ∈ Znp and an input x =
x1 ‖ . . . ‖xn ∈ {0, 1}n \ {0n} and outputs [∏n

i=1 a
xi
i]g.

We first recall the following lemma from [BC10b].

Lemma 3.5.1. Assuming the DDH assumption holds in G, NR∗ is a pseudorandom function.

We define the class Φaff of affine relations as the set of all functions φ : Znp → Znp such that
there exist αi ∈ Z∗p, βi ∈ Zp, for i = 1, . . . , n, such that

φ(#”a) = (α1 · a1 + β1, . . . , αn · an + βn) ∈ Znp .

Then, using the above framework, we prove that NR∗ can be used to build a Φaff-related-
key secure pseudorandom function under the DDH assumption and therefore recover and
strengthen the withdrawn result from [BC10b]. In what follows, we prove the properties
needed to apply Theorem 3.4.2 to NR∗.

3.5.1 Ingredients

Strong Key Fingerprint. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Then #”ω is a strong
key fingerprint for NR∗. Indeed, we have (NR∗(#”a , ω1), . . . ,NR∗(#”a , ωn)) = ([a1] , . . . , [an]), so
if #”a 6= #”a ′ are two distinct keys in K = Znp , then there exists i ∈ {1, . . . , n} such that ai 6= a′i,
so [ai] 6= [#”a ′i].
Compatible Hash Function. We have Qrs(KTΦaff ,NR∗,Φaff ,

#”ω) = {ω1, . . . , ωn}, so let
D = {0, 1}n ×Gn and let h: D → {0, 1}n−2 be a collision resistant hash function. Then the
hash function defined by H(x, #”z) = 11 ‖h(x, #”z) is a collision resistant hash function that is
compatible with (KTΦaff ,NR∗,Φaff ,

#”ω) since every element of Qrs(KTΦaff ,NR∗,Φaff ,
#”ω) has at

most one 1 bit and every output of H has at least two 1 bits. Note that in particular the
output of H is never 0n, so it is always in the domain of NR∗.
Key-Collision Security. The Φaff-key-collision security of NR∗ immediately follows from
the hardness of the discrete logarithm problem in G, as stated in the lemma below.

Lemma 3.5.2. Assuming the hardness of the discrete logarithm in G, NR∗ is Φaff-key-collision
secure.

Since the hardness of DDH implies the hardness of DL, the above lemma does not introduce
any additional hardness assumptions beyond DDH.

Proof of Lemma 3.5.2. Let A be an adversary against the Φaff-key-collision security of NR∗
that makes QA oracle queries. Then we construct an adversary B against the DL problem

42 Chapter 3 Introduction to Related-Key Security

in G as follows. Adversary B receives as input a DL tuple ([1] , [a]). Adversary B then picks
j

$← {1, . . . , n} at random; this is a guess of a coordinate where the two vectors of affine
functions #”

φ (1) and #”

φ (2) that A will use as inputs in the Finalize procedure are different.
Then B picks ai $← Zp for i = 1, . . . , n, i 6= j at random. Adversary B implicitly sets aj = a.

When A makes a query (φ, x), B computes y = ([φj(aj)xj])
∏n
i=1
i6=j

φi(ai)xi
= [∏n

i=1 φi(ai)xi] =
NR∗(#”a , x), where #”a = (a1, . . . , an). Here, B uses its input [a] to compute an “affine function
in the exponent” for [φj(aj)]. At the end, A sends (#”

φ (1),
#”

φ (2)) to B and A wins if
#”

φ (1) 6= #”

φ (2) and #”

φ (1)(#”a) = #”

φ (2)(#”a), where #”

φ (i) = (φ(i)
1 , . . . , φ

(i)
n), i ∈ {1, 2}. Since j was

chosen uniformly at random and #”

φ (1) 6= #”

φ (2), with probability at least 1
n , we have φ(1)

j 6= φ
(2)
j

but φ(1)
j (aj) = φ

(2)
j (aj). In this case, aj = a is the root of the non-zero affine function

ψ = φ
(1)
j − φ

(2)
j , that can be easily computed. Hence, we have

Advkc
Φaff ,NR∗(A) ≤ n · Advdl

G(B) ,

and the claim follows.

Key-Transformer. We define a key-transformer for (NR∗,Φaff) as:

KTfΦaff
(φ, x) =

 ∏
i∈S(x)

βi

 · ∏
y�x,y 6=0n

f(y)
∏
j∈S(y) αj

∏
k∈S(x)\S(y) βk ,

where φ(#”a) = (α1 · a1 + β1, . . . , αn · an + βn) ∈ Znp . Then, we have the following lemma:

Lemma 3.5.3. KTΦaff is a key-transformer for (NR∗,Φaff) and its worst-case running time
is the time required to compute O(2n) exponentiations in G.

Proof of Lemma 3.5.3. Let us first check the correctness condition.

KTNR∗(#”a ,·)
Φaff

(#”

φ, x) =

 ∏
i∈S(x)

βi

 · ∏
y�x,y 6=0n

 ∏
l∈S(y)

al

∏
j∈S(y) αj

∏
k∈S(x)\S(y) βk

=
∏

R⊆S(x)

∏
i∈R

(αi · ai)
∏

j∈S(x)\R
βj

 =

 ∑
R⊆S(x)

∏
i∈R

(αi · ai)
∏

j∈S(x)\R
βj

=

 ∏
i∈S(x)

(αi · ai + βi)

 =
[
n∏
i=1

(αi · ai + βi)xi
]

= NR∗(#”

φ (#”a), x) .

Then, we have verified the correctness condition, and it is clear that the worst-case running
time is the time to compute 2n exponentiations in G, when x = 11 ‖ . . . ‖ 1 and none of the
exponents is 0. Hence, only the uniformity condition remains to prove. We use the sequence
of games in Figure 3.5. Let us recall that the adversary is supposed to be unique-input,
meaning that for any sequence of queries (#”

φ 1, x1), . . . , (#”

φ q, xq), the entries xi, for i = 1, . . . , q
are all distinct. We denote by hw(x) the Hamming weight of a bitstring x. Let Succi denote
the event that game Gi output takes the value 1.

In game G0, the “If” statement will always pass since hw(x) ≤ n for any bitstring of length
n. Hence, we have

Pr [Succ0] = Pr
[

KTRealAKT ⇒ 1
]
.

Ch
ap

te
r3

3.5 Application: Related-Key Security for Affine Relations 43

proc Initialize // Gi, i = 0, . . . , n
f

$← Fun({0, 1}n \ {0n},G)
proc Finalize(b)
Return b

proc RKFn(φ, x) // Gi, i = 0, . . . , n
If hw(x) ≤ n− i then

y ← KTfΦaff
(φ, x)

Else y $← G
Return y

Figure 3.5: Games for the proof of Lemma 3.5.3

We claim that for all 0 ≤ i ≤ n− 1,

Pr [Succi] = Pr [Succi+1] .

The only difference between games Gi and Gi+1 is in the way that bitstrings x of Hamming
weight n− i are handled. Indeed, such a string is fed to KTfΦaff

(#”

φ, x) in Gi, which computes

KTfΦaff
(#”

φ, x) =

 ∏
i∈S(x)

βi

 · ∏
y�x,y 6=0n

f(y)
∏
j∈S(y) αj

∏
k∈S(x)\S(y) βk ,

where #”

φ = (φ1, . . . , φn) ∈ Φaff , with φi:
#”

T 7→ αiTi + βi, αi 6= 0, for i = 1, . . . , n. Now, since
we need only deal with unique-input adversaries, this is the only time that Gi will query f
at input x (all other queries to f will be at other points with the same Hamming weight or
at points with strictly smaller Hamming weight). Hence, the entire value computed above
can equivalently be set to a value chosen uniformly at random. (This relies on the exponent
for f(x) used in the computation being non-zero; this is guaranteed by the requirement that
αi 6= 0, for i = 1, . . . , n and the fact that when y = x, the product ∏k∈S(x)\S(y) βk is empty.)
Setting the entire value to a uniformly random value is exactly what is done in Gi+1, and
the claim follows.

Finally, in Gn, the “If” statement will never pass since hw(x) > 0 for any x ∈ {0, 1}n \{0}n,
so we have

Pr [Succn] = Pr
[

KTRandA
KT ⇒ 1

]
.

The uniformity condition follows.

Statistical-Key-Collision Security. The Φaff-statistical-key-collision security for Fun(Znp×
{0, 1}n \ {0n},G) holds statistically, as stated below.

Lemma 3.5.4. Let A be an adversary against the Φaff-statistical-key-collision security for
Fun(Znp , {0, 1}n,G) making QA queries. Then we have:

Advskc
Φaff (A) ≤ Q2

A

2p .

Proof of Lemma 3.5.4. Let A be an adversary against the Φaff-statistical-key-collision se-
curity for Fun(Znp , {0, 1}n,G) that makes QA queries. Since the function F defined in the
Initialize procedure is a random function, A does not learn any information on the key #”a
until b′ ← 1, so Advskc

Φaff (A) is bounded by the probability that A makes use in its queries of
two different RKD functions that lead to the same key. We claim that

Advskc
Φaff (A) ≤ Q2

A

2p .

44 Chapter 3 Introduction to Related-Key Security

This follows easily on noting that, if two different RKD functions lead to the same key, then
those two functions must differ in some coordinate k. This means that the difference in those
components is a non-constant affine function ψk such that ψk(ak) = 0, where ak is the k-th
component of key #”a that was taken uniformly at random in the Initialize procedure. Since
ψk is a non-constant affine function and ak is uniformly random in Zp, the probability that
ψk(ak) = 0 is bounded by 1

p . To obtain the final result, one simply applies a union bound
over the (at most)

(QA
2
)
pairs of choices of different RKD functions accessed by A .

We now have everything we need to apply Theorem 3.4.2 to NR∗.

3.5.2 Putting Everything Together

Combining Theorem 3.4.2, Lemmata 3.5.1–3.5.4 and the above properties, we obtain the
following theorem.

Theorem 3.5.5. Assuming DDH holds in G, the construction obtained with the above
ingredients by applying Theorem 3.4.2 is a Φaff-related-key secure pseudorandom function.

Moreover, the running time of the reduction is polynomial in 2n×T , where T is the running
time of the adversary against the Φaff-related-key pseudorandom function security.

3.6 Further Generalization of the Bellare-Cash Framework

3.6.1 Relaxing the Requirements of the Framework

In this section, we introduce a new type of pseudorandom functions called (S,Φ)-unique-input-
related-key pseudorandom functions. This notion allows us to design a different framework
that can be applied to non-key-malleable pseudorandom functions. We later show that
any key-malleable pseudorandom function is also a unique-input-related-key pseudorandom
function as soon as the key-transformer satisfies an adequate property.

Definition 3.6.1 (Unique-Input-Related-Key Pseudorandom Function). Let F = (F.Setup,
F.Eval) be a function whose key space, domain, and range are denoted by K,D, and R,
respectively. Let S be a subset of D and Φ be a class of RKD functions. We consider the
class of Φ-restricted adversaries D such that all queries (φ, x) with x ∈ S made by D to
its oracle are for distinct values of x. We define of such an adversary D in attacking the
(S,Φ)-unique-input-related-key security of F as:

Advui-rka-prf
F,S,Φ (D) := Pr

[
UIRKPRFRealDF,S ⇒ 1

]
− Pr

[
UIRKPRFRandD

F,S ⇒ 1
]
,

where UIRKPRFRealF,S and UIRKPRFRandF,S are described in Figure 3.6. We say that
F is an (S,Φ)-unique-input-related-key secure pseudorandom function if for any such PPT
adversary D , this advantage is negligible.

The following theorem is an analogue of Theorem 3.4.2 in which the roles of key-malleability
and hash function compatibility are replaced by our new security notion.

Theorem 3.6.2. Let M = (M.Setup,M.Eval) be a pseudorandom function whose key space,
domain, and range are denoted K,D,R, respectively. Let Φ be a class of RKD functions. Let

Ch
ap

te
r3

3.6 Further Generalization of the Bellare-Cash Framework 45

UIRKPRFRealF,S UIRKPRFRandF,S
proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc RKFn(φ, x)
Return F.Evalpp(φ(K), x)
proc Finalize(b)
Return b

proc Initialize
pp $← F.Setup(1κ)
K

$← K
Return pp
proc RKFn(φ, x)
If x ∈ S then

y
$← R

Else
y ← F.Evalpp(φ(K), x)

Return y
proc Finalize(b)
Return b

Figure 3.6: Security games for unique-input-related-key pseudorandom functions

D = D ×Rm and let H: D → S be a hash function, where S ⊆ D \ {ω1, . . . , ωm}. Define
F = (F.Setup,F.Eval) as F.Setup = M.Setup and:

F.Evalpp(K,x) := M.Evalpp(K,H(x,M.Evalpp(K, #”ω))) ,

for all K ∈ K and x ∈ D.
Then, assuming M is an (S,Φ)-unique-input-related-key secure pseudorandom function

and is Φ-key-collision secure, H is a collision-resistant hash function, and Fun(K ×D,R) is
Φ-statistical-key-collision secure, then F is a Φ-related key secure pseudorandom function.
Moreover, the running time of the reduction is polynomial in the running time of the

adversary and of the key-transformer.

Proof Overview. The proof of the above theorem is detailed below and is very similar
to the proof of Theorem 3.4.2. The difference lies essentially in the fact that we use the
unique-input-related-key security and the compatibility condition to show that it is hard to
distinguish the output of F from a uniformly random output, in games G5,G6, instead of
using the key-malleability in the previous proof.

Proof of Theorem 3.6.2. The proof is based on the sequence of games in Figure 3.7. Much
of the proof is similar to the proof of Theorem 3.4.2 (which itself is based on the proof of
the general framework of Bellare and Cash from [BC10b]). The current proof, however, is
somewhat simpler and has fewer games since it relies on a stronger security property, namely
the (S,Φ)-unique-input-related-key pseudorandom function security of M . Let Succi de-
note the event that game Gi output takes the value 1. Let A be an adversary against the
Φ-related-key security of F , and let us assume (without loss of generality) that it never
repeats a query.
G0 matches the description of the RKPRFRealF game, so:

Pr [Succ0] = Pr
[

RKPRFRealAF ⇒ 1
]
.

46 Chapter 3 Introduction to Related-Key Security

proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

h← H(x, #”
ω)

y ←M(φ(K), h)
Return y
proc Finalize(b′) // All Games
Return b′

proc Initialize // G1, G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

If #”
ω ∈ E and φ /∈ D then

flag1 ← true ; #”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
y ←M(φ(K), h)
Return y

proc Initialize // G3, G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

If #”
ω ∈ E and φ /∈ D then

#”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
If h ∈ G then flag2 ← true

h
$← S \G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

For i = 1, . . . , | #”ω | do
ωi ←M(φ(K), ωi)

If #”
ω ∈ E and φ /∈ D then

#”
ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
h← H(x, #”

ω)
If h ∈ G then h $← S \G
G← G ∪ {r}
y

$← R
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G6

y
$← R

Return y

proc Initialize // G7 , G8

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7 , G8

y ← G(φ(K), x)
If φ(K) ∈ E and φ /∈ D then

flag3 ← true ; y
$← R

D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G9

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G9

y ← G(φ(K), x)
Return y

Figure 3.7: Games for the proof of Theorem 3.6.2

Game G1 introduces storage of used RKD functions and values of #”
ω in sets D and E

respectively and sets flag1 to true if the same value of #”
ω arises for two different RKD

functions. Since this storage does not affect the values returned by RKFn

Pr [Succ1] = Pr [Succ0] .

Ch
ap

te
r3

3.6 Further Generalization of the Bellare-Cash Framework 47

Game G2 adds the boxed code which changes how the repetition of an #”
ω value is handled, by

picking instead a random value from Rm \E that will not repeat any previous one. Games
G1 and G2 are identical until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1] ,

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We
design an adversary D attacking the Φ-key-collision security of M such that

Pr [E1] ≤ Advkc
Φ,M (D) .

Adversary D runs A . When the latter makes an RKFn-query (φ, x), adversary D queries
(φ, ωi), for i = 1, . . . , | #”ω |, to its oracle, then computes #”

ω and then h = H(x, #”
ω) and finally

queries (φ, h) to its oracle and sends it to A . When A stops, D searches for two different
RKD functions φ queried by A that lead to the same value #”

ω and returns these two functions
if found. Since #”ω is a strong key fingerprint, two such functions lead to the same key, so D
wins if it finds such two functions. (Of course, if the class of RKD functions is claw-free, the
advantage of the attacker is 0.)

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same
hash output arises twice. Since this storage does not affect the values returned by RKFn,
we have

Pr [Succ3] = Pr [Succ2] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by
picking instead a random value h from S \G that will not repeat any previously used hash
value. Games G3 and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2] ,

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We
design an adversary C attacking the cr-security of H such that

Pr [E2] ≤ Advcr
H(C) .

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter
makes an RKFn-query (φ, x), adversary C responds via

For i = 0, . . . , | #”ω | do: ωi ←M(φ(K), ωi)
j ← j + 1 ; φj ← φ ; xj ← x

If #”
ω ∈ E and φ /∈ D then #”

ω
$← S \ E (∗)

Else D ← D ∪ {φ}
E ← E ∪ { #”

ω}
wj ← #”

ω
h← H(x, #”

ω)
hj ← h
y ←M(φ(K), h)
Return y.

48 Chapter 3 Introduction to Related-Key Security

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it
finds them, outputs (xa, wa), (xb, wb) and halts. The pairs (xa, wa) and (xb, wb) are distinct.
Indeed, consider two cases: first, if φa = φb then since A never repeats an oracle query,
xa 6= xb hence (xa, wa) 6= (xb, wb). Second, if φa 6= φb, then condition (∗) ensures that
wa 6= wb. Hence once again, (xa, wa) 6= (xb, wb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
H(C) .

In game G5, instead of returning the value M(φ(K), h), we always return a random value.
To show that games G4 and G5 are indistinguishable, we design an adversary B against the
(S,Φ)-unique-input-related-key pseudorandom function security of M such that

Pr [Succ4] ≤ Pr [Succ5] + Advui-rka-prf
M,S,Φ (B) .

Adversary B starts by initializing sets D ← ∅, E ← ∅, G← ∅. Then B runs A . When the
latter makes an RKFn-query (φ, x), B responds as follows. For i = 1, . . . , | #”ω |, it asks (φ, ωi)
to its oracle and sets ωi to this value. Since for all i = 1, . . . , | #”ω |, ωi /∈ S by assumption, the
value it gets is M(φ(K), ωi), whatever its oracle is. Then, B checks if #”

ω ∈ E and φ /∈ D.
If they do, B picks #”

ω
$← Rm \ E at random, otherwise B sets D ← D ∪ {φ}. B then

sets E ← E ∪ { #”
ω}. Next, B computes h ← H(x, #”

ω) and checks if h ∈ G. If it does, B

picks h $← S \ G at random. Notice that this step guarantees that all values h are in S
and are all distinct as long as A makes at most |S| queries. Finally, B sets G← G ∪ {h},
makes the query (φ, h) to its oracle, and returns the value it gets, which is either M(φ(K), h)
or a uniformly random value, to A . When A halts, B halts with the same output. The
definition of S ensures that it does not contain any ωi for i = 1, . . . , | #”ω |. It follows from these
observations that B is a unique-input adversary for queries in S. Finally, it is clear that if
B’s oracle gives real outputs of M for queries in S, then it simulates exactly game G4 and if
B’s oracle gives uniformly random values for queries in S, then it simulates exactly game G5.

In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6
are identical since the value returned is a uniformly random value for any query. Then, we
have

Pr [Succ5] = Pr [Succ6] .

In game G7, we check if two different queries can lead to a key collision. Since the “If” test
ensures that the returned value is still uniformly random over R even when two different
queries result in the same key, games G6 and G7 are identical. Hence,

Pr [Succ6] = Pr [Succ7] .

In game G8, we compute the output of RKFn using a random function G in Fun(K,D,R).
Since games G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7] ≤ Pr [Succ8] + Pr [E3] ,

where E3 denotes the event that the execution of A with gameG8 sets flag3 to true. To bound
the probability of event E3, we design an adversary E attacking Φ-statistical-key-collision
security for Fun(K,D,R) such that

Pr [E3] ≤ Advskc
Φ (E) .

Ch
ap

te
r3

3.6 Further Generalization of the Bellare-Cash Framework 49

Adversary E runs A . When the latter makes an RKFn-query (φ, x), so does E and E returns
the value it receives to A . When A stops, if A has queried two different functions φ1 and
φ2 such that φ1(K) = φ2(K) then b′ was set to 1 when the second of these two functions was
queried by E , and then E wins. (Of course, if the class of RKD functions is claw-free, this
probability is 0.)

Since A does not repeat oracle queries and since key collisions are dealt with in a similar
way, it follows that games G8 and G9 are identical. Thus,

Pr [Succ8] = Pr [Succ9] .

Finally, G10 matches the description of the RKPRFRandF game, so:

Pr [Succ10] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

Theorem 3.6.2 now follows by combining the bounds arising in the different game hops.

3.6.2 From Malleability to Unique-Input-Related-Key Security
In this section, we explore the relationship between key-malleability and unique-input-
related-key security. Specifically, we show that a Φ-key malleable pseudorandom function is
also an (S,Φ)-unique-input-related-key secure pseudorandom function under the standard
pseudorandom function security as soon as the key-transformer KT associated withM satisfies
a new notion of uniformity that we call S-uniformity and which is defined below.
S-Uniform Key-Transformer. Let M be a pseudorandom function whose key space,
domain, and range are respectively denoted K,D, and R, and let Φ be a class of RKD
functions such that there exists a key-transformer KT for (M,Φ). We generalize the uniformity
property of a key-transformer by allowing the uniformity condition to be restricted to a subset
S of D. Indeed, let S be a subset of D; then we say that KT is an S-uniform key-transformer if
the games S-KTRealKT and S-KTRandKT defined in Figure 3.8 are perfectly indistinguishable
for any Φ-restricted adversary A , where A belongs to the class of adversaries such that all
queries (φ, x) with x ∈ S made by A to its oracle are for distinct values of x. That is,

Pr
[
S-KTRealAKT ⇒ 1

]
= Pr

[
S-KTRandA

KT ⇒ 1
]
.

Please note that the standard uniformity condition given on page 33 corresponds to the KT
being a D-uniform key-transformer. Whether S-uniformity is implied by (regular) uniformity
is an open question.

Theorem 3.6.3. Let M be a pseudorandom function and Φ be a class of RKD func-
tions. Assuming there exists an S-uniform key-transformer KT for (M,Φ), then M is
an (S,Φ)-unique-input-related-key secure pseudorandom function under the pseudorandom
function security of M .
Moreover, the running time of the reduction is polynomial in the running time of the

adversary and of the key-transformer.

Proof of Theorem 3.6.3. The proof is based on the sequence of games in Figure 3.9. Let
Succi denote the event that game Gi output takes the value 1. Let A be an adversary
against the (S,Φ)-unique-input-related-key security of M , and let us assume (without loss of
generality) that it never repeats a query.

50 Chapter 3 Introduction to Related-Key Security

S-KTRealKT S-KTRandKT

proc Initialize
f

$← Fun(D,R)
proc KTFn(φ, x)
Return KTf (φ(K), x)
proc Finalize(b)
Return b

proc Initialize
f

$← Fun(D,R)
proc KTFn(φ, x)
If x ∈ S then

y
$← R

Else
y ← KTf (φ(K), x)

Return y
proc Finalize(b)
Return b

Figure 3.8: Games defining the S-uniformity of a key-transformer KT

proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0
y ←M(φ(K), x)
Return y
proc Finalize(b) // All Games
Return b

proc Initialize // G1

K
$← K

proc RKFn(φ, x) // G1
y ← KTM (φ, x)
Return y

proc Initialize // G2

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // G2
y ← KTf (φ, x)
Return y

proc Initialize // G3

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // G3

If x ∈ S then y $← R
Else y ← KTf (φ, x)
Return y

proc Initialize // G4

K
$← K

proc RKFn(φ, x) // G4

If x ∈ S then y $← R
Else y ← KTM (φ, x)
Return y

proc Initialize // G5

K
$← K

proc RKFn(φ, x) // G5

If x ∈ S then y $← R
Else y ←M(φ(K), x)
Return y

Figure 3.9: Games for the proof of Theorem 3.6.3

G0 matches the description of the UIRKPRFRealM,S game, so:

Pr [Succ0] = Pr
[

UIRKPRFRealAM,S ⇒ 1
]
.

In game G1, we use the key-transformer KT to compute M(φ(K), ·) via oracle calls to
M(K, ·). The correctness property of the key-transformer implies

Pr [Succ0] = Pr [Succ1] .

In game G2, we replace the oracle M(K, ·) given to the key-transformer KT by a random
function f . We design an adversary B attacking the standard pseudorandom function security
of M such that

Pr [Succ1] ≤ Pr [Succ2] + Advprf
M (B) .

Ch
ap

te
r3

3.6 Further Generalization of the Bellare-Cash Framework 51

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds
via

y ← KTFn(φ, x)
Return y

where Fn is B’s own oracle. When A halts, B halts with the same output. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ1] and Pr
[

PRFRandB
M ⇒ 1

]
= Pr [Succ2] .

Games G2 and G3 differ only in the way that queries (φ, x) with x ∈ S are handled. Indeed,
for such queries, inG3, the output is just taken uniformly at random instead of computed using
the key-transformer. Since the adversary A belongs to the class of Φ-restricted adversaries
such that all queries (φ, x) with x ∈ S made by A to its oracle are for distinct values of x,
games G2 and G3 match exactly games S-KTRealKT and S-KTRandKT, respectively. Since
we assume that KT is an S-uniform key-transformer KT, these two games are perfectly
indistinguishable. So

Pr [Succ2] = Pr [Succ3] .

In game G4, we replace the random function f given to the key-transformer KT by the oracle
M(K, ·). We design an adversary B attacking the pseudorandom function security of M
such that

Pr [Succ3] ≤ Pr [Succ4] + Advprf
M (B) .

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds
via

If x ∈ S then y $← R
Else y ← KTFn(φ, x)
Return y

where Fn is B’s own oracle. When A halts with output b, B halts with output 1− b. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ3] and Pr
[

PRFRandBM ⇒ 1
]

= Pr [Succ4] .

Finally, in game G5, instead of using the key-transformer KT to compute M(φ(K), ·) via
oracle calls to M(K, ·), we use M directly. The correctness property of the key-transformer
implies that

Pr [Succ4] = Pr [Succ5] .

Finally, G5 matches the description of the UIRKPRFRandM,S game, so:

Pr [Succ5] = Pr
[

UIRKPRFRandA
M,S ⇒ 1

]
.

Theorem 3.6.3 now follows by combining the bounds arising in the different game hops.

52 Chapter 3 Introduction to Related-Key Security

3.7 Application: Related-Key Security for Affine Relations.
We can apply Theorem 3.6.2 and Theorem 3.6.3 to NR∗ to prove that the construction given
in Section 3.5 is a Φaff-related-key secure pseudorandom function. Note that this gives an
alternative and simpler proof of Theorem 3.5.5. As the result has already been proven in a
previous section, we do not detail every step of this proof.

Let S = {0, 1}n \ ({ω1, . . . , ωn} ∪ {0n}). The only point that remains to prove is that there
exists an S-uniform key-transformer KTΦaff for (NR∗,Φaff). This result is actually implied
by Lemma 3.5.3. Indeed, the same key-transformer is an S-uniform key-transformer for
(NR∗,Φaff). This statement is implied by the fact that games G0 and Gn−1, defined in the
proof of Lemma 3.5.3, are indistinguishable, even when the adversary is not a unique-input
adversary with respect to the set S (where S denotes the complement of S).
To see why, note that the argument used to prove that Games Gj and Gj+1 are in-

distinguishable in that proof remains valid because all points in S have a strictly smaller
Hamming weight than those in S. Hence, there exists an S-uniform key-transformer KTΦaff
for (NR∗,Φaff), and the (S,Φaff)-unique-input-related-key pseudorandom function security
of NR∗ follows. Finally, by applying Theorem 3.6.2, we can prove a similar statement to the
one in Theorem 3.5.5.

Remark 3.7.1. While this result is immediate from the results of Section 3.5, it is worth
noting that it is not clear, in general, that the usual uniformity condition of a key-transformer
directly implies that the same key-transformer is S-uniform for S ⊂ D without making
additional assumptions about the key-transformer.

Ch
ap

te
r4

Chapter 4
A New Family of Assumptions

In this chapter, we study particular forms Matrix-Decisional-Diffie-Hellman (MDDH)
assumptions. MDDH assumptions were introduced in 2013 by Escala et al. [EHK+13]. The
authors defined an elegant algebraic framework for describing a wide variety of assumptions,
that encompasses in particular most of classical assumptions, such as DDH, DLin, or k-Lin.

Here, we first give a simple introduction to the generic multilinear group model and briefly
describe the framework and main results from [EHK+13]. We later introduce our new family
of assumptions, that fits partially in their framework, and that we use to prove our main
result from Chapter 5. We then argue about the security of these assumptions, by first
directly relating a subset of our assumptions to classical assumptions, and then by providing
a proof that every of our new assumption holds in the generic multilinear group model.

The latter proof of security, provided in Section 4.4, is rather technical but is not necessary
towards understanding the rest of this manuscript and thus can easily be omitted. However,
these assumptions will be used throughout this manuscript and we encourage the reader
to study carefully Sections 4.2 and 4.3.1. In particular, the relations between our new
assumptions and classical assumptions, summarized in Table 4.1 on page 56, should be kept
in mind as our statements are often written using directly the classical assumptions.

Contents
4.1 The Matrix-Decisional-Diffie-Hellman Assumptions 54
4.2 A New Family of Matrix-Diffie-Hellman Assumptions 55
4.3 Connexion with Standard Assumptions 56

4.3.1 Summary of Relations . 56
4.3.2 Relation with the DDHI Assumption 56

4.4 Security in the Generic Multilinear Group Model 58
4.4.1 Definitions: Monomial Order and Leading Commutative Monomials . 58
4.4.2 Main Lemma . 59
4.4.3 Putting Everything Together . 65

— 53 —

54 Chapter 4 A New Family of Assumptions

4.1 The Matrix-Decisional-Diffie-Hellman Assumptions
Escala et al. defined the MDDH assumptions as the hardness of decisional problems. Specifi-
cally, given G = 〈g〉 a cyclic group of order p, an MDDH assumption is parametrized by a
distribution D over Z`×kp , and states that, for any matrix from Γ chosen at random from D,
it is hard to distinguish, given [1] and [Γ], a group element [Γ · #”r], with #”r ∈ Z`p a uniformly
random vector, from [#”u], with #”u ∈ Z`p a uniformly random vector. This notion is formally
defined as follows:

Definition 4.1.1 (MDDH-Assumption). For D`,k an efficiently samplable distribution over
Z`×kp , with ` > k, the advantage of an adversary D against D`,k-MDDH problem G is defined
as:

AdvD`,k-mddh
G (D) := Pr

[
D`,k-MDDHRealDG ⇒ 1

]
− Pr

[
D`,k-MDDHRandD

G ⇒ 1
]
,

where the probabilities are over the choice of Γ $← D`,k, W
$← Zk×1

p , U
$← Z`×1

p , and the
random coins used by the adversary, and where D`,k-MDDHRealG and D`,k-MDDHRandG are
described in Figure 4.1.

D`,k-MDDHRealG D`,k-MDDHRandG

proc Initialize
Γ $← D`,k
W

$← Zk×1
p

Return ([1] , [Γ] , [Γ ·W])
proc Finalize(b)
Return b

proc Initialize
Γ $← D`,k
U

$← Z`×1
p

Return ([1] , [Γ] , [U])
proc Finalize(b)
Return b

Figure 4.1: Games defining the D`,k-MDDH problem in G

Specifying the distribution D`,k, the MDDH assumption can catch most of classical as-
sumptions, such as DDH, DLin, k-Lin, For instance, setting D`,k to be the distribution of

matrices of the form

a1 0
0 a2
1 1

 with a1, a2
$← Zp, we obtain exactly the DLin assumption,

and extending this to matrices of size (k + 1)× k, the k-Lin assumption.
Moreover, the distribution over Z`×kp that results in the weakest MDDH assumption is

simply the uniform distribution, denoted U`,k. In particular, we denote by Uk the uniform
distribution over Zk+1,k

p , so Uk = Uk+1,k, and the Uk-MDDH assumption is then a weaker
assumption than k-Lin.

Another nice feature of the MDDH assumption lies in their random self-reducibility. Namely,
let (D`,k, Q)-MDDH denote the Q-fold D`,k-MDDH assumption, which is similar to the
D`,k-MDDH assumption, except that W

$← Zk×Qp , U
$← Z`×Qp , so the advantage of an

adversary D against the (D`,k, Q)-MDDH problem in G is defined as:

Adv(D`,k,Q)-mddh
G (D) := Pr

[
(D`,k, Q)-MDDHRealDG ⇒ 1

]
−Pr

[
(D`,k, Q)-MDDHRandD

G ⇒ 1
]

Ch
ap

te
r4

4.2 A New Family of Matrix-Diffie-Hellman Assumptions 55

where the probabilities are over the choice of Γ $← D`,k, W
$← Zk×Qp , U

$← Z`×Qp , and
the random coins used by the adversary, and where experiments (D`,k, Q)-MDDHRealG and
(D`,k, Q)-MDDHRandG are described in Figure 4.2. Then, this assumption is actually implied
by the latter D`,k-MDDH, as stated in the above lemma, for any distribution D`,k.

(D`,k, Q)-MDDHRealG (D`,k, Q)-MDDHRandG

proc Initialize
Γ $← D`,k
W ← Zk×Qp

Return ([1] , [Γ] , [Γ ·W])
proc Finalize(b)
Return b

proc Initialize
Γ $← D`,k
U

$← Z`×Qp

Return ([1] , [Γ] , [U])
proc Finalize(b)
Return b

Figure 4.2: Games defining the (D`,k, Q)-MDDH problem in G

Lemma 4.1.2 ([EHK+13, Lemma 1]). Assuming the D`,k-MDDH assumption holds in G,
then so does the (D`,k, Q)-MDDH assumption.

Finally, Escala et al. also proposed some conditions on the distribution D`,k to guarantee
the hardness of the D`,k-MDDH problem in the generic multilinear group model. As our
distribution of matrices does not satisfy these conditions in general, we do not explain these
conditions. Please refer to [EHK+13] for details. This is the reason we provide a proof
of security of our assumptions in the generic multilinear group model, in the general case,
though most of our assumptions are related to classical assumptions. Let us now define
formally the distribution of matrices we are interested in.

4.2 A New Family of Matrix-Diffie-Hellman Assumptions

We now introduce a new family of MDDH assumptions, termed the Ek,d-MDDH assumptions.
Our main result, a generic and algebraic framework for pseudorandom functions and associated
primitives, proves that any function that achieves certain simple algebraic properties is a
secure pseudorandom function under the Ek,d-MDDH assumption. Our family of MDDH
assumptions is simply an MDDH for a particular distribution of matrices over Zp, denoted
Ek,d, defined below.

Definition 4.2.1 (Ek,d-MDDH Assumption). Let k, d ≥ 1. We define the matrix distribution
Ek,d as the set of all matrices Γ of the form:

Γ =

A0 ·B
A1 ·B

...
Ad ·B

 ∈ Zk(d+1)×k
p with A,B

$← Zk×kp .

We then define the Ek,d-MDDH assumption as the hardness of the MDDH problem parametrized
by the distribution Ek,d.

56 Chapter 4 A New Family of Assumptions

4.3 Connexion with Standard Assumptions
4.3.1 Summary of Relations
Our family of assumptions encompasses a wide-variety of assumptions. In particular, for
d = 1, it is immediate that the Ek,d-MDDH assumption is implied by the DDH assumption
when k = 1 and by the Uk-MDDH for k ≥ 2. Also, for k = 1 and d ≥ 2, the Ek,d-MDDH
assumption is implied by the d-DDHI assumption, as detailed below. Finally, we show in
Section 4.4, that for the remaining cases (k ≥ 2, d ≥ 2), the Ek,d-MDDH assumption holds in
the generic k-linear group model. These security results are summarized in Table 4.1.

Table 4.1: Security of Ek,d-MDDH

k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G . 2 ·AdvU2-mddh

G . k ·AdvUk-mddh
G

d ≥ 2 . d · Advd-ddhi
G generic bilinear group generic k-linear group

4.3.2 Relation with the DDHI Assumption
In this section, we show that the E1,d-MDDH assumption is implied by the d-DDHI assumption.
Towards this goal, we first introduce a new intermediate assumption, termed the E1,(d,`)-MDDH
assumption. Here, we abuse notation as this assumption is not exactly an MDDH assumption
in the sense of the above definition. For 1 ≤ ` ≤ d, we define the advantage of an adversary
against the E1,(d,`)-MDDH problem as:

AdvE1,(d,`)-mddh
G (D) := Pr

[
E1,(d,`)-MDDHRealDG ⇒ 1

]
− Pr

[
E1,(d,`)-MDDHRandA

G ⇒ 1
]
,

where the probabilities are over the choice of Γ $← E1,d, w, c
$← Zp, and the random coins

used by the adversary, and where E1,(d,`)-MDDHRealG and E1,(d,`)-MDDHRandG are described
in Figure 4.3.

E1,(d,`)-MDDHRealG E1,(d,`)-MDDHRandG

proc Initialize
a, b, w

$← Zp
Γ← (b, ab, a2b, . . . , adb)
Z ← (bw, abw, a2bw, . . . , a`−1bw, a`bw)
Return ([1] , [Γ] , [Z])
proc Finalize(b)
Return b

proc Initialize
a, b, w, c

$← Zp
Γ← (b, ab, a2b, . . . , adb)
Z ← (bw, abw, a2bw, . . . , a`−1bw, c)
Return ([1] , [Γ] , [Z])
proc Finalize(b)
Return b

Figure 4.3: Games defining the E1,(d,`)-MDDH problem in G

Hence, this assumption simply states that, given [Γ] with Γ $← E1,d-MDDH and the first `
coordinates of [Γ · w], with w $← Zp, it is hard to distinguish the `+ 1 coordinate of [Γ · w]
from a uniformly random group element.
The following lemma follows immediately from a standard hybrid argument.

Ch
ap

te
r4

4.3 Connexion with Standard Assumptions 57

Lemma 4.3.1. Assuming E1,(d,`)-MDDH holds in G, then so does E1,d-MDDH.

Proof of Lemma 4.3.1. The proof follows a standard hybrid argument. We define games H`

for ` = 0, . . . , d as in Figure 4.4.

proc Initialize // H`, ` = 0, . . . , d
a, b, w

$← Zp, uk
$← Zp, for k = `+ 1, . . . , d

Γ← (b, ab, a2b, . . . , adb)
Z ← (bw, abw, a2bw, . . . , a`bw, u`+1, . . . , ud)
Return ([1] , [Γ] , [Z])

proc Finalize(b)
Return b

Figure 4.4: Games for the proof of Lemma 4.3.1

Clearly, we have H0 ≡ E1,d-MDDHRand and Hd ≡ E1,d-MDDHReal. Moreover, let D be
an adversary against the E1,d-MDDH problem in G. It is straightforward to construct an
adversary A` such that Pr [H` ⇒ 1]− Pr [H`−1 ⇒ 1] ≤ AdvE1,(d,`)-mddh

G (Al), for ` = 1, . . . , d.
Adversary A` simply samples d− ` random group elements to complete its matrix and the
simulation is perfect.
Finally, it is clear that AdvE1,(d,`)-mddh

G (Al) ≤ AdvE1,(d,d)-mddh
G (Ad) for ` = 1, . . . , d, since

one can obtain the E1,(d,`)-MDDH matrices from a E1,(d,d)-MDDH by simply taking the last
`+ 1 rows of the second matrix (which is a perfect tuple fixing w = ad−`w). Lemma 4.3.1
easily follows.

We now conclude with the following lemma.

Lemma 4.3.2. Assuming d-DDHI holds in G, then so does E1,(d,d)-MDDH.

Proof of Lemma 4.3.2. Let D be an adversary against the E1,(d,d)-MDDH problem in G so
it has a tuple Z = ([bw] , [abw] , . . . ,

[
adbw

]
, z) where z =

[
ad+1bw

]
or z is a random group

element [c]. Then it chooses α, β $← Zp at random and computes the tuple X ∈ Zd+1×1
p by

letting X` = Xα
`+1 ·X

β
` for ` = 0, . . . , d− 1 and Xd = zα ·Xβ

d . Hence, for ` = 0, . . . , d− 1, it
is clear that X` =

[
(αa+ β)a`b

]
. If z =

[
ad+1

]
, we have Xd =

[
(αa+ β)adb

]
. If z = [c] with

c
$← Zp, then Xd =

[
(αc+ βad)b

]
.

Let us fix a, c ∈ Zp and let b′ = αa+ β and c′ = αc+ βad. Then, [Γ] and [X] form exactly
an E1,(d,d)-MDDH tuple if and only if for any fixed b′, c′ ∈ Zp, there is a unique (α, β) ∈ Zp
such that b′ = αa + β and c′ = αc + βad. Hence, we need the determinant of the matrix(
a 1
c ad

)
to be non-zero. This determinant is D = ad+1 − c so it is non-zero if and only if

c 6= ad+1. Since c is by definition uniformly random in Zp, we have D 6= 0 with probability
p−1
p .
To finish the proof, we simply need to explain how adversary A can get such a tuple X

from its d-DDHI tuple. Let ([1] , [a] , . . . ,
[
ad
]
, x) ∈ Gd+2 be a d-DDHI tuple. Then the tuple

((
[
ad
]
,
[
ad−1

]
, . . . , [a] , [1]), x) is such a tuple since h =

[
ad
]
is a random generator (with

overwhelming probability) of G (since [1] is a random generator) and 1
a is random in Z∗p, so

we have
[
ad−j

]
= h(1

a
)j , for j = 0, . . . , d and either x is random, either x =

[
1
a

]
and then

58 Chapter 4 A New Family of Assumptions

x = h(1
a

)d+1 . Hence, this is exactly a tuple of the wanted form X. The claim now easily
follows.

4.4 Security in the Generic Multilinear Group Model

In this section, and to conclude this chapter, we provide a proof that our assumptions hold
in the generic k-linear group model, for any k ≥ 1 and any d ≥ 1. A formalization of this
model (defined as the generic multilinear map model) is detailed in Section 2.4, but only a
simple intuition, given below, is necessary for understanding the following.

Intuition. Informally, in the (standard) generic group model, an adversary is only able to
perform group operations. That is, given a multiplicative group G of order p and group
elements [a] , [b], an adversary can compute elements of the form [a+ b] or [a · α] with α ∈ Zp,
but not [a · b]. The generic k-linear group model is a generalization of this model. In this
model, the adversary is more powerful as it has access to a k-linear map. That is, it can now
compute, given [a1] , . . . , [ak+1], a group element whose discrete logarithm is a1 · · · ak, so the
product of k of the ai’s, but cannot compute a group element whose discrete logarithm is
a1 · · · ak+1.

Hence, to prove that an assumption is secure in the k-linear group model, it is sufficient to
prove that there is no polynomial relation of degree at most k between the discrete logarithms
of the group elements in the (real or random) distribution of the assumption.

We start by defining supplementary material on commutative algebra in Section 4.4.1, then
state and prove our main lemma in Section 4.4.2, and conclude about the security of our
assumptions in Section 4.4.3.

4.4.1 Definitions: Monomial Order and Leading Commutative Monomials

Definition 4.4.1 (Monomial order). Let n be a positive integer. A monomial order for
Zp[T1, . . . , Tn] is a total order < such that, for any monomials u, v, w:

• if u < v, then uw < vw,

• 1 ≤ u.

We write #”

T
#”
i = T i11 · · ·T inn for #”

i = (i1, . . . , in). The leading monomial of a polynomial
P (#”

T) = ∑
#”
i α #”

i

#”

T
#”
i is the maximum of the set { #”

T
#”
i | α #”

i 6= 0} for the monomial order <,
and is denoted LM(P). The leading term of this polynomial P is α #”

i?
#”

T
#”

i? , when LM(P) = #”

T
#”

i? .
We extend this definition to non-commutative polynomials as follows: let

π: Zp〈T1, . . . , Tn〉 → Zp[T1, . . . , Tn] ,

be the (canonical) linear map from the set of non-commutative polynomials Zp〈T1, . . . , Tn〉
to the set of (commutative) polynomials Zp[T1, . . . , Tn], defined by π(Tj1 · · ·Tjk) = Tj1 · · ·Tjk .
The leading monomials set of a non-commutative polynomial

P (#”

T) =
∑
k≥1

j1,...,jk∈{1,...,n}

αj1,...,jkTj1 · · ·Tjk ,

Ch
ap

te
r4

4.4 Security in the Generic Multilinear Group Model 59

is the set of monomials Tj1 · · ·Tjk such that π(Tj1 · · ·Tjk) is the maximum of

{π(Tj1 · · ·Tjk) | αj1,...,jk 6= 0} .

It is denoted CLM(P). We say a polynomial has unique commutative leading monomial if
CLM(P) is a singleton {Tj1 · · ·Tjk}, in which case, we also often write CLM(P) = Tj1 · · ·Tjk ,
to simplify notations.

We remark that if we identify (commutative) polynomials with non-commutative polyno-
mials (by writing them as P = ∑

#”
i α #”

i

#”

T
#”
i = ∑

#”
i α #”

i T
i1
1 · · ·T inn), then polynomials have

unique commutative leading monomial.

Example 4.4.2. For n = 2 and < the lexicographic order with T1 > T2, we have:

LM(5T 2
1 T2 + T1T

3
2 + T2) = T 2

1 T2 LM(T 3
1 + 3T1T

7
2) = T 3

1

for commutative polynomials, and

CLM(5T 2
1 T2 + T1T

3
2 + T2) = {T 2

1 T2}
CLM(5T 2

1 T2 + T1T2T1 + T2T
2
1 + T2 + T1) = {T 2

1 T2, T1T2T1, T2T
2
1 }

for non-commutative polynomials.

Finally, the partial degree of a polynomial P in a set S ⊆ {T1, . . . , Tn} of indeterminates
is the degree of the polynomial P seen as a polynomial with indeterminates (Ti)i∈S and
coefficients in Zp[(Ti)i/∈S].

4.4.2 Main Lemma
Before stating our main lemma, we need to introduce two technical lemmata.

Lemma 4.4.3. Let k1, n1, n2, q1 be positive integers. Let Q1,1, . . . , Q1,q1 ∈ Zp[X1,1, . . . , X1,n1]
be q1 polynomials. We suppose that, if there exists a polynomial R ∈ Zp[U1,1, . . . , U1,q1] of
total degree at most k1 such that:

R(Q1,1, . . . , Q1,q1) = 0

then R = 0.
Then, the same is true when R is in Zp[X2,1, . . . , X2,n2][U1,1, . . . , U1,q1] instead of being in

Zp[U1,1, . . . , U1,q1], i.e., when coefficients of R are polynomials in Zp[X2,1, . . . , X2,n2] instead
of being scalars.

Proof of Lemma 4.4.3. Let us suppose that R is a polynomial in Zp[X2,1, . . . , X2,n2][U1,1, . . . ,
U1,q1] of partial degree at most k1 in {U1,1, . . . , U1,q1}, such that

R(Q1,1, . . . , Q1,q1) = 0 .

We want to show that R = 0. Seeing R as a polynomial in Zp[U1,1, . . . , U1,q1][X2,1, . . . , X2,n2],
we can write:

R =
∑

i1,...,in2

λi1,...,in2
·Ri1,...,in2

(U1,1, . . . , U1,q1) ·Xi2,1
2,1 · · ·X

i2,n2
2,n2 , (4.1)

60 Chapter 4 A New Family of Assumptions

where λi1,...,in2
∈ Zp and R1,i1,...,in2

∈ Zp[U1,1, . . . , U1,q1]. We can then evaluate R on
(Q1,1, . . . , Q1,q1) and define R′ ∈ Zp[X1,1, . . . , X1,n1][X2,1, . . . , X2,n2] as:

R′ = R(Q1,1, . . . , Q1,q1)

=
∑

i1,...,in2

λi1,...,in2
·Ri1,...,in2

(Q1,1, . . . , Q1,q1) ·Xi2,1
2,1 · · ·X

i2,n2
2,n2 .

We also know that R′ = 0. Since Ri1,...,in2
(Q1,1, . . . , Q1,q1) ∈ Zp[X1,1, . . . , X1,n1], the polyno-

mials
λi1,...,in2

·Ri1,...,in2
(Q1,1, . . . , Q1,q1)

can be seen as the coefficients of R′ (seen as a polynomial over Zp[X2,1, . . . , X2,n2]), we have:

Ri1,...,in2
(Q1,1, . . . , Q1,q1) = 0 .

As Ri1,...,in2
has degree at most k1, from the assumption of the lemma, we have Ri1,...,in2

= 0.
It implies that R = 0 (from Equation (4.1)), which concludes the proof of Lemma 4.4.3.

Lemma 4.4.4. Let k1, k2, n1, n2, q1, q2 be positive integers. Let Q1,1, . . . , Q1,q1 ∈ Zp[X1,1, . . . ,
X1,n1] and Q2,1, . . . , Q2,q2 ∈ Zp[X2,1, . . . , X2,n2] be q1 + q2 polynomials. We suppose that,
if there exist polynomials R1 ∈ Zp[U1,1, . . . , U1,q1] of total degree at most k1 and R2 ∈
Zp[U2,1, . . . , U2,q2] of total degree at most k2 such that:

R1(Q1,1, . . . , Q1,q1) = 0 R2(Q2,1, . . . , Q2,q2) = 0 (4.2)

then R1 = 0 and R2 = 0. This condition is called Condition ?.
Let us suppose there exists a polynomial R ∈ Zp[U1,1, . . . , U1,q1 , U2,1, . . . , U2,q2] such that

any monomial of R is of the form

U
i1,1
1,1 · · ·U

i1,q1
1,q1 · U

i2,1
2,1 · · ·U

i2,q2
2,q2 with

{
i1,1 + · · ·+ i1,q1 ≤ k1

i2,1 + · · ·+ i2,q2 ≤ k2 ,
,

and such that
R(Q1,1, . . . , Q1,q1 , Q2,1, . . . , Q2,q2) = 0 .

Then, R = 0.
Proof of Lemma 4.4.4. Let us write R as follows:

R =
∑

i1+···+iq1≤k1

λi1,...,iq1
·R2,i1,...,iq1

(U2,1, . . . , U2,q2) · U i11,1 · · ·U
iq1
1,q1 (4.3)

where λi1,...,iq1
∈ Zp and R2,i1,...,iq1

∈ Zp[U2,1, . . . , U2,q2] of degree at most k2. Let R′ be the
polynomial in Zp[X2,1, . . . , X2,n2][U1,1, . . . , U1,q1], defined as:

R′ = R(U1,1, . . . , U1,q1 , Q2,1, . . . , Q2,q2)

=
∑

i1+···+iq1≤k1

λi1,...,iq1
·R2,i1,...,iq1

(Q2,1, . . . , Q2,q2) · U i11,1 · · ·U
iq1
1,q1 .

As a polynomial over Zp[X2,1, . . . , X2,n2] in U1,1, . . . , U1,q1 , R′ has degree at most k1 and
we have that R′(Q1,1, . . . , Q1,q1) = 0. Therefore, R′ = 0 thanks to Lemma 4.4.3 and
the assumption that there is no non-zero polynomial R1 of degree at most k1 such that
R1(Q1,1, . . . , Q1,q1) = 0. This means that R2,i1,...,iq1

(Q2,1, . . . , Q2,q2) = 0 (which is a poly-
nomial in Zp[X2,1, . . . , X2,n2]), for all i1, . . . , iq1 . Since R2,i1,...,iq1

has degree at most k2,
R2,i1,...,iq1

= 0. From Equation (4.3), we get that R = 0.

Ch
ap

te
r4

4.4 Security in the Generic Multilinear Group Model 61

We can now prove our main lemma, that we later use to prove the security of the Ek,d-MDDH
assumptions in the generic k-linear group model.

Lemma 4.4.5 (Main Lemma). Let k, n,m, q be positive integers. We suppose fixed a
monomial order < for Zp[T1, . . . , Tn]. Let (Ps)s=1,...,q be a family of polynomials with distinct
and unique commutative leading monomial. Let

R = Zp[(X`,i,j)`=1,...,n
i=1,...,k
j=1,...,k

, (Yi,j) i=1,...,k
j=1,...,m

] .

Let us define #”

A ∈
(
Rk×k

)n
a vector of k × k matrices of (commutative) polynomials with

indeterminates X`,i,j, such that a`,i,j = X`,i,j. Let us also define B ∈ Rk×m, such that
bi,j = Yi,j. In other words:

A` =

X`,1,1 . . . X`,1,k
...

...
X`,k,1 . . . X`,k,k

 B =

Y1,1 . . . Y1,m
...

...
Yk,1 . . . Yk,m

 .
Let Qs,i,j ∈ R be the polynomial corresponding to the coordinate (i, j) ∈ {1, . . . , k}×{1, . . . ,m}
of the matrix Ps(

#”

A) ·B (for any s = 1, . . . , q).
Finally, let us suppose there exists a polynomial R ∈ Zp[(Us,i,j) s=1,...,q

i=1,...,k
j=1,...,m

] of total degree at

most k, such that
R((Qs,i,j)s,i,j) = 0. (4.4)

Then, necessarily, R = 0 (R is the zero polynomial).

Proof of Lemma 4.4.5. Let us assume, without loss of generality that:

CLM(P1) < . . . < CLM(Pq) .

We do the proof by induction over k.
Base case (k = 1). When k = 1, Qs,1,1 = Ps((X`,1,1)`) and Equation (4.4) shows there is
a linear combination between the Ps’s, which is impossible as their leading monomials are
distinct (here everything is commutative, as matrices have size 1× 1).
Inductive step. We suppose the lemma holds for some value all values lower than k, and
prove it for k.
First, let us show that R contains no monomial of the form:

Us1,i1,j1 · · ·Usk1 ,ik1 ,jk1
· Usk1+1,ik1+1,jk1+1 · · ·Usk1+k2 ,ik1+k2 ,jk1+k2

,

with k1 and k2 two positive integers such that k1 + k2 ≤ k and

i1, . . . , ik1 ∈ {1, . . . , k1} ik1+1, . . . , ik1+k2 ∈ {k1 + 1, . . . , k}.

More precisely, let k1, k2 be two positive integers such that k1 + k2 ≤ k. Let us write R as
a sum R = R̃ + R̂, with R̃ containing the monomials of the above form, and R̂ the other
monomials. We want to show that R̃ = 0.

62 Chapter 4 A New Family of Assumptions

Now, in Equation (4.4), we set X`,i,j to 0 for all ` = 1, . . . , n and:

(i, j) /∈ ({1, . . . , k1} × {1, . . . , k1}) ∪ ({k1 + 1, . . . , k} × {k1 + 1, . . . , k}) .

Concretely, this means that:

A` =
(

A′` 0
0 A′′`

)
,

with

A′` =

X`,1,1 . . . X`,1,k1
...

...
X`,k1,1 . . . X`,k1,k1

 A′′` =

X`,k1+1,k1+1 . . . X`,k1+1,k
...

...
X`,k,k1+1 . . . X`,k,k

 .
Let us also write

B =
(

B′

B′′

)
,

with

B′ =

 Y1,1 . . . Y1,m
...

...
Yk1,1 . . . Yk1,m

 B′ =

Yk1+1,1 . . . Yk1+1,m
...

...
Yk,1 . . . Yk,m

 .

Therefore, we have:

Qs,i,j =
{
coefficient (i, j) of the matrix Ps(A′) ·B′ if 1 ≤ i ≤ k1

coefficient (i− k1, j) of the matrix Ps(A′′) ·B′′ if k1 + 1 ≤ i ≤ k
.

Thus, all monomials in R̃((Qs,i,j)s,i,j) have partial degree k1 in {Yi,j}i=1,...,k1
j=1,...,m

(coming from the

polynomials Qs1,i1,j1 , . . . , Qsk1 ,ik1 ,jk1
) and partial degree k2 in {Yi,j}i=k1,...,k

j=1,...,m
(coming from the

polynomials Qsk1+1,ik1+1,jk1+1 , . . . , Qsk1+k2 ,ik1+k2 ,jk1+k2
), while no monomial in R̂((Qs,i,j)s,i,j)

has such partial degrees. Since R((Qs,i,j)s,i,j) = 0, we have R̃((Qs,i,j)s,i,j) = 0.
Now we can apply Lemma 4.4.4, where

(Q1,i)i corresponds to (Qs,i,j) s=1,...,q
i=1,...,k1
j=1,...,m

(X1,i)i corresponds to (Xi,j)i=1,...,k1
j=1,...,k1

∪ (Yi,j)i=1,...,k1
j=1,...,m

(Q2,i)i corresponds to (Qs,i,j) s=1,...,q
i=k1+1,...,k
j=1,...,m

(X2,i)i corresponds to (Xi,j)i=k1+1,...,k
j=k1+1,...,k

∪ (Yi,j)i=k1+1,...,k
j=1,...,m

R corresponds to R̃.

Condition ? is satisfied thanks to the induction hypothesis for k1 < k and k2 < k.
Second, let 1 ≤ j1, . . . , jk ≤ k be positive integers in {1, . . . , k}. These integers are fixed in

all this second step. Let us show that R contains no monomial of the form Us1,1,j1 · · ·Usk,1,jk .

Ch
ap

te
r4

4.4 Security in the Generic Multilinear Group Model 63

Let us write R as a sum R = R̃ + R̂, with R̃ containing the monomials of the above form,
and R̂ the other monomials. We remark that all monomials in R̃((Qs,i,j)s,i,j) are multiple
of Yi1,j1 · · ·Yik,jk (for some i1, . . . , ik), while monomials in R̂((Qs,i,j)s,i,j) are not. Since
R((Qs,i,j)s,i,j) = 0, R̃((Qs,i,j)s,i,j) = 0. We now just need to prove that R̃ = 0.
We order monomials of R using the product order on {Yi,j}i,j × {X`,i,j}`,i,j , with the

lexicographic order on {Yi,j} corresponding to the lexicographic order on (i, j), and with the
order on {X`,i,j} corresponding to the lexicographic order on (i, j, `):

Yi,j < Yi′,j′ ⇐⇒
∣∣∣∣∣ i < i′

or i = i′ and j < j′

X`,i,j < X`′,i′,j′ ⇐⇒

∣∣∣∣∣∣∣
i < i′

or i = i′ and j < j′

or (i, j) = (i′, j′) and ` < `′

Now, we setX`,i,j to 0 for all ` = 1, . . . , n and i 6= j and i 6= 1. We also setX`,1,i = X`,i,i. For
the sake of simplicity, in this step, we write X`,1,i = X`,i,i = X`,i, and

#”

Xi = (X1,i, . . . , Xn,i).
Concretely, this means that:

A` =

X`,1 X`,2 X`,3 . . . X`,k

0 X`,2 0 . . . 0
0 0 X`,3

.
... 0
0 0 X`,k

.

Then, we get (easily by induction):

Ps(
#”

A)

=

Ps(
#”

X1) LT(Ps(
#”

X2)) + . . . LT(Ps(
#”

X3)) + LT(Ps(
#”

Xk)) + . . .

0 Ps(
#”

X2) 0 . . . 0
0 0 Ps(

#”

X3)
... 0
0 0 Ps(

#”

Xk)

,

where LT(Ps(
#”

Xi)) + . . . corresponds to a polynomial with leading term LT(Ps(
#”

Xi)). Thus,
we have:

Qs,1,j = Ps(
#”

X1) · Y1,j + (LT(Ps(
#”

X2)) + . . .) · Y2,j + · · ·+
(LT(Ps(

#”

Xk)) + . . .)Yk,j (4.5)

Let us now suppose by contradiction that R̃ 6= 0. Let Us1,1,j1 · · ·Usk,1,jk be the monomial of
R̃, for which the tuple (sσ(k), . . . , sσ(1)) is the highest for the lexicographic order, where σ is
a permutation of {1, . . . , k} such that sσ(k) ≥ · · · ≥ sσ(1). When R̃ is evaluated on (Qs,i,j)s,i,j
this monomial corresponds to Qs1,1,j1 · · ·Qsk,1,jk . From Equation (4.5), we get that the latter
expression contains the following monomial:

M = Psσ(1)(
#”

X1) · Y1,jσ(1) · LM(Psσ(2)(
#”

X2)) · Y2,jσ(2) · · ·LM(Psσ(k)(
#”

Xk)) · Yk,jσ(k) .

64 Chapter 4 A New Family of Assumptions

We just need to prove that this monomial M does not appear in any other polynomial
Qs′1,1,j1 · · ·Qs′k,1,jk , with (s′σ′(k), . . . , s

′
σ′(1)) lower or equal to (sσ(k), . . . , sσ(1)) for the lexico-

graphic order (we write it (s′σ′(k), . . . , s
′
σ′(1)) � (sσ(k), . . . , sσ(1))) and Us′1,1,j′k · · ·Us′k,1,j′k 6=

Us1,1,j1 · · ·Usk,1,jk , where σ′ is defined similarly to σ. This will implies that R̃((Qs,i,j)s,i,j) 6= 0
(as it contains the above monomial M which does not get canceled out by other terms), which
is impossible.

Let us suppose that Qs′1,1,j1 · · ·Qs′k,1,jk contains the monomialM , with (s′σ′(k), . . . , s
′
σ′(1)) �

(sσ(k), . . . , sσ(1)). We first remark that none of the terms in the “left” part of Qs,i,j :

Ps(
#”

X1) · Y1,j + (LT(Ps(
#”

X2)) + . . .) · Y2,j + · · ·+ (LT(Ps(
#”

Xk−1)) + . . .)Yk−1,j

contain monomials multiple of X`,i,j for i ≤ k − 1 (from the definition of the monomial
order on R). The monomial LM(Psσ(k)(

#”

Xk)) · Yk,jσ(k) divides the monomial M and can
only come from the “right” part of one Qs′r,1,jr , because of Yk−1,j which is only present
one time in the monomial M . As in addition, s′σ′(1) ≤ · · · ≤ s′σ′(k) ≤ sσ(k) (because
(s′σ′(k), . . . , s

′
σ′(1)) � (sσ(k), . . . , sσ(1))), we get that sσ′(k) = sσ(k) and jσ′(k) = jσ(k). We can

continue like that by induction and prove that s′σ′(k−1) = sσ(k−1), jσ′(k−1) = jσ(k−1), . . . ,
s′σ′(1) = sσ(1), and jσ′(1) = jσ(1). We finally get that Us′1,1,j′k · · ·Us′k,1,j′k 6= Us1,1,j1 · · ·Usk,1,jk .
That was we wanted to prove.
Third, let us conclude by showing all the other cases come down to the first two cases

after performing some permutation. More precisely, let σ be a permutation of {1, . . . , k}. Let
Σ ∈ Zk×kp be the corresponding permutation matrix: Σi,j = 1 if and only if σ(j) = i, and
Σi,j = 0 otherwise. We also set:

a′`,i,j = X ′`,i,j = X`,σ(i),σ(j)

b′i,j = Y ′i,j = Y ′σ(i),j

so that:

A′ = Σ−1 ·A · Σ
B′ = Σ−1 ·B

Ps(A) ·B = Σ · Ps(A′) ·B′
Qs,i,j = Qs,σ(i),j((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j)

Let R′ be the polynomial R where Us,i,j is replaced by Us,σ(i),j . We have:

R((Qs,i,j)) = R((Qs,σ(i),j((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j))s,i,j)

= R′((Qs,i,j)s,i,j)((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j).

Therefore, as R((Qs,i,j)s,i,j) = 0, we have R′((Qs,i,j)s,i,j) = 0. And it is clear that R = 0 if
and only if R′ = 0.
Let us now show that R contain no monomial M = Us1,i1,j1 · · ·Usk′ ,ik′ ,jk′ , with k′ ≤ k.

This will prove that R = 0. To do that, let us suppose by contradiction that R contains such
monomial M . We consider two cases:

Ch
ap

te
r4

4.4 Security in the Generic Multilinear Group Model 65

• if k = k′ and i1 = · · · = ik, then choose σ to be an arbitrary permutation such
that σ(i1) = 1. We know that the corresponding polynomial R′ then contains the
monomial M ′ = Us1,1,j1 · · ·Usk,k,jk . But that is impossible according to the second step,
as R′((Qs,i,j)s,i,j) = 0.

• otherwise, let k1 = |{p|ip = i1}| be the number of “i” indices equal to i1. We know
that k1 < k. Let k2 = k′ − k1 and let (I1, I2) be a partition of {1, . . . , k} such that
|I1| = k1, |I2| = k − k1 ≥ k2, i1 ∈ I1, and for all ip 6= i1, ip ∈ I2. Such a partition
exist because there are only k2 values ip 6= i1. Then, let σ be an arbitrary permutation
such that σ(I1) = {1, . . . , k1} and σ(I2) = {k1 + 1, . . . , k}. Finally, we remark that the
corresponding polynomial R′ contains the monomial

Us1,i′1,j1
· · ·Usk1 ,i

′
k1
,jk1
· Usk1+1,i

′
k1+1,jk1+1 · · ·Usk1+k2 ,i

′
k1+k2

,jk1+k2
,

such that:

i′1, . . . , i
′
k1 ∈ {1, . . . , k1} i′k1+1, . . . , i

′
k1+k2 ∈ {k1 + 1, . . . , k},

where i′p = σ(ip). But the first step of our proof show it is impossible.

This concludes the proof.

4.4.3 Putting Everything Together
Similarly to the proof of Theorem 3 of [EHK+13] and the proof for uber assumptions [BBG05;
Boy08], to prove the security of the Ek,d-MDDH assumption in generic symmetric k-linear
groups (in which there would exist a symmetric k-linear map), we just need to show that
there is no (non-trivial) polynomial relation of degree k between entries of Γ and Z, both
when Z = Γ ·W and when Z = U , with

Γ =

B

A ·B
...

Ad ·B

 .

Indeterminates are entries of A and B (ai,j , bi,j , for i = 1, . . . , k, j = 1, . . . , k), entries of
W (wi, for i = 1, . . . , k), and entries of U (ui,j , for i = 1, . . . , k(d + 1), j = 1, . . . , k). The
polynomial independence follows from Lemma 4.4.5, with n = 1, q = d+ 1, and Ps = T s−1

1 ,
for s = 1, . . . , d+ 1.

Ch
ap

te
r5

Chapter 5
An Algebraic Framework for
Pseudorandomness
In this chapter, we introduce one of the main results of this manuscript. We describe a

simple, algebraic framework, that translates the pseudorandomness property of a function
into a simple algebraic characterization.
We start by giving a brief intuition of our notion and by describing a few subtleties in

the formal definition. Then, we formally define our new security notion, termed polynomial
linear pseudorandomness security (PLP) and later state our main result, that relates this
new notion to the Ek,d-MDDH assumption.

The full proof of the latter statement is given in Section 5.3 and is quite technical. However,
our result is only applied in a black-box manner throughout the rest of this manuscript, thus
understanding the proof is not necessary for reading the rest of this work.

Yet, we make extensive use of Theorem 5.2.2 to argue about the security of pseudorandom
functions, related-key secure pseudorandom functions, aggregate pseudorandom functions,
as well as multilinear pseudorandom functions in the next chapter and thus encourage the
reader to inspect carefully Sections 5.1 and 5.2.

Contents
5.1 Intuition and Subtleties . 68

5.1.1 Intuition . 68
5.1.2 Procedure for Testing Linear Dependence 68
5.1.3 Extension to Weaker Assumptions 70
5.1.4 On the Representation of Multivariate Polynomials 70

5.2 Formal Security Notion and Main Result 72
5.2.1 Formal Definition of the Polynomial Linear Pseudorandomness Security 72
5.2.2 The PLP Theorem . 72
5.2.3 Immediate Corollary: the LIP Theorem 73

5.3 Proof of Theorem 5.2.2 . 74
5.3.1 Decomposition Lemmata . 74
5.3.2 The Main Proof . 75

— 67 —

68 Chapter 5 An Algebraic Framework for Pseudorandomness

5.1 Intuition and Subtleties
We start by giving some intuition about our security notion and by arguing about some
subtleties before providing the formal definition in Section 5.2.

5.1.1 Intuition
Let us consider a group G = 〈g〉 of order p. Intuitively, the polynomial linear pseudoran-
domness security notion says that for any polynomials P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group
elements

[P1(#”a) · b] , . . . , [Pq(#”a) · b] ,

with #”a
$← Znp and b $← Zp, are computationally indistinguishable from the group elements:

[U(P1)] , . . . , [U(Pq)] ,

with U
$← L(Zp[T1, . . . , Tn]≤d,Zp) being a random linear function from the vector space

Zp[T1, . . . , Tn]≤d (with d the maximum degree of P1, . . . , Pq in any indeterminate Ti) to the
base field Zp. Our main theorem (Theorem 5.2.2) shows that this security notion holds under
the E1,d-MDDH assumption (and thus also under DDH for d = 1 and d-DDHI for d ≥ 2).

In particular, when P1, . . . , Pq are linearly independent, [U(P1)] , . . . , [U(Pq)] are uniformly
random and independent group elements in G. Therefore, under the polynomial linear
pseudorandomness security, any efficient function that produces on input x ∈ D an output of
the form [Px(#”a) · b], with {Px}x∈D being a family of linearly independent polynomials, is a
pseudorandom function.
We remark that, in the generic group model, the polynomial linear pseudorandomness

security notion holds trivially, by definition. The difficulty of the work is to prove it under
classical assumptions such as the E1,d-MDDH assumption.

5.1.2 Procedure for Testing Linear Dependence
When we want to formally define the polynomial linear pseudorandomness security notion,
we quickly face a problem:

How to compute [U(Pi)] for a random linear map U $← L(Zp[T1, . . . , Tn]≤d,Zp)?

Such a map can be represented by a (random) vector with (d+ 1)n entries. But doing so
would make the game in the security notion exponential time. As already done earlier in
this manuscript, the idea is to define or draw U lazily: each time we need to evaluate it on a
polynomial Pi linearly independent of all the previous polynomials Pj (with j < i), we define
U(Pi) $← Zp; otherwise, we compute U(Pi) as a linear combination of U(Pj). More precisely,
if Pi = ∑i−1

j=1 λj · Pj , U(Pi) = ∑i−1
j=1 λj · U(Pj).

Then, for this simulation to be efficient, we need an efficient procedure for testing such
linear dependencies. We denote by TestLin a procedure which takes as inputs a list L of
polynomials (R1, . . . , RL) (such that R1, . . . , RL are linearly independent as polynomials)
and a polynomial R and which outputs:{

⊥ if R is linearly independent of the set {R1, . . . , RL}
#”

λ = (λ1, . . . , λL) otherwise, so that R = λ1R1 + . . .+ λLRL
.

Ch
ap

te
r5

5.1 Intuition and Subtleties 69

#”

λ is uniquely defined since we assume that polynomials from the input list are linearly
independent. However, we are facing a problem since no such procedure is known for
multivariate polynomials, if we require the procedure to be deterministic and polynomial-
time. Luckily, it is easy to construct such a randomized procedure which is correct with
overwhelming probability, and such a statistical procedure is sufficient for our purpose. We
describe such a procedure in Figure 5.1.

TestLin(L, R)
// L[`] = R` for ` = 1, . . . , L and L = |L|
RL+1 ← R
N ← 2L+ 4
For k = 1, . . . , N

#”γk
$← Znp

M matrix over Zp of L+ 1 rows and N columns
For ` = 1, . . . , L+ 1

For k = 1, . . . , N
m`,k ← R`(#”γk)

Apply Gaussian elimination on M
If M is full-rank then

Return ⊥
Else

Let
#”

λ′ be the row vector such that
#”

λ′ ·M = #”0
#”

λ ← (λ′1/λ′L+1, . . . , λ
′
L/λ

′
L+1)

Return #”

λ

Figure 5.1: TestLin procedure

Lemma 5.1.1. The procedure TestLin given in Figure 5.1 is correct with probability at least
p−1
p as soon as nd ≤ √p, where d is the maximum degree in one indeterminate and n is the

number of indeterminates.

Proof of Lemma 5.1.1. Let us prove that this approximate procedure is incorrect with prob-
ability at most 1

p (over its random coins). The polynomials P #”
φ l,xl,j

with l = 1, . . . , L are
supposed to be linearly independent. Then, there are two cases:

1. If P #”
φ ,x,j = P #”

φL+1,xL+1,j
is linearly independent from P #”

φ 1,x1,j
, . . . , P #”

φL,xL,j
, then the

probability that the procedure does not return ⊥ is (over the value of X):

Pr
[
∃ #”

λ ∈ Z(L+1)
p ,

#”

λ ·M = 0
]
≤

∑
#”
λ∈Z(L+1)

p

Pr
[

#”

λ ·M = 0
]

≤
∑

#”
λ∈Z(L+1)

p

Pr
[
∀k = 1, . . . , N, (

L+1∑
l=1

λlP #”
φ l,xl,j

)(γk) = 0
]

and ∑L+1
l=1 λlP #”

φ l,xl,j
is a non-zero polynomial of degree at most jd. Since γk are chosen

independently and uniformly at random in Znp , according to the Schwartz-Zippel lemma,

70 Chapter 5 An Algebraic Framework for Pseudorandomness

the error probability is at most:

∑
#”
λ∈Z(L+1)

p

(
jd

p

)N
= pL+1 ·

(
jd

p

)N
≤ pL+1 · 1

pL+2 = 1
p
,

since jd ≤ nd ≤ √p and N = 2L+ 4.

2. If P #”
φ ,x,j = P #”

φ l+1,xL+1,j
is not linearly independent from P #”

φ 1,x1,j
, . . . , P #”

φL,xL,j
, then

there exists #”

λ ∈ ZLp such that P #”
φ ,x,j = ∑L

l=1 λlP #”
φ l,xl,j

, and such #”

λ is unique. Let us
prove that the probability that the TestLin procedure does not return #”

λ is at most 1
p .

Let Λ be the set of
#”

λ′ ∈ ZL+1
p such that λ′L+1 ·

#”

λ 6= #”

λ′1,...,L. Then the error probability
of the TestLin procedure is at most:

Pr
[
∃

#”

λ′ ∈ Λ,
#”

λ′ ·M = 0
]
≤
∑
#”

λ′∈Λ

Pr
[
∀k = 1, . . . , N, (

L+1∑
l=1

λ′lP #”
φ l,xl,j

)(γk) = 0
]
.

Moreover, ∑L+1
l=1 λ′lP #”

φ l,xl,j
is a polynomial of degree at most jd, which is non-zero

because otherwise the P #”
φ 1,x1,j

, . . . , P #”
φL,xL,j

would not be independent. We can conclude
the proof as in the first case, since |Λ| ≤ |Z(L+1)

p |.

This concludes the proof of Lemma 5.1.1.

5.1.3 Extension to Weaker Assumptions

Before, arguing the last subtlety and showing the formal definition and theorem, let us briefly
introduce an extension of our polynomial linear pseudorandomness security notion to handle
weaker assumptions, namely Ek,d-MDDH, with k ≥ 2. In that case, we need to evaluate
polynomials on matrices: [Pi(A) ·B], with A

$← Zk×kp and B
$← Zk×mp (with m ≥ 1 being a

positive integer).
As multiplication of matrices is not commutative, it is clear we need to make some

restrictions on the form of polynomials queried. This is actually already the case in the
restricted case where k = 1, for different reasons. A precise analysis of our restrictions is thus
given in the next subsection.

5.1.4 On the Representation of Multivariate Polynomials

A last challenge is to define how the polynomials are represented. Indeed, an important but
subtle point of our work is that we do not need polynomials to be given in expanded form in
the polynomial linear pseudorandomness security notion. Otherwise, the theorem would be
quite easy to prove but would not encompass many interesting cases. Specifically, it would
restrict us to polynomials with a polynomial number of monomials and forbid polynomials
such as ∏n

i=1(ai + 1), for instance.
However, some representations of polynomials will even not enable us to define properly

the PLP game (Figure 5.2). It is indeed at the very least necessary to be able to evaluate the
polynomial at arbitrary points (which may be scalars in Zp when k = 1, or matrices in Zk×kp

when k ≥ 2). For example, it would be inconceivable to define a polynomial P by an RSA

Ch
ap

te
r5

5.1 Intuition and Subtleties 71

modulus N , as the polynomial P = (X − p1)(X − p2), with p1 and p2 the two prime factors
of N .
For this subsection only, let us write P̃ the representation of the polynomial, while P is

the mathematical polynomial object. The same polynomial may have many representations.
We always suppose that P̃ has a polynomial size in n and d. This assumption is reasonable
and simplifies the bounds, but is not required (bounds in theorems would then need to be
changed).

5.1.4.1 The Scalar Case

In the case k = 1, we could actually just require the following condition.

Condition 1. It is possible to get from P̃ (in polynomial time):

full evaluation the value P (a1, . . . , an) ∈ Zp, given a1, . . . , an ∈ Zp;

partial evaluation for any j = 0, . . . , n, a representation Q̃ of the j-variate polynomial
Q = P (T1, . . . , Tj , aj+1, . . . , an), given aj+1, . . . , an ∈ Zp. This representation Q̃ has
again to verify (recursively) Condition 1.

In all cases in our work, actually, P̃ is just an expression or an abstract syntax tree (AST)
where internal nodes are either + or ·, while leaves are either an indeterminate Ti or a scalar
in Zp. A partial evaluation can be performed by replacing Ti by ai (when i > j) in the
AST, while a full evaluation can be performed by evaluating the AST (after the previous
replacement, with j = 0). Both operations are polynomial-time in the size of the AST.

5.1.4.2 The Matrix Case

When k > 1, everything is more contrived because of the absence of commutativity. Intuitively,
we want that all the indeterminates always appear in the same order. Without loss of generality,
Tn appears before Tn−1, Tn−1 before Tn−2, . . . This has to hold not only in the polynomial as
a mathematical object, but somehow also “in the representation” if we want to be able to
prove something. More precisely, we do not want that, at some point, when evaluating the
polynomial, we have to compute AjAi with i > j, even if this expression does not appear in
the resulting polynomial. For example, the representation T2T3−T2(T3 +T1) is not acceptable
(because of the presence of T2T3), while the representation T2T1 (which corresponds to the
same polynomial) is acceptable.
More formally, we assume the representation of the polynomials satisfies the following

condition.

Condition 2. The representation of a polynomial is an expression or AST (where internal
nodes are either + or ·, while leaves are either an indeterminate Ti or a scalar in Zp) with
the following additional (natural) property (to deal with non-commutativity): if P̃1 · P̃2 is a
sub-expression of P̃ , and if Tj is a leaf of P̃1 for some j, then for any i > j, Ti is not a leaf
of P̃2.

We remark that, because of this condition, even if the polynomials we consider would
normally be non-commutative, we can as well view them as commutative polynomials (when
we evaluate a polynomial from a mathematical point of view, we perform multiplications of
the indeterminates in the right order). We also remark that, when k = 1, Condition 2 is
stronger than Condition 1.

72 Chapter 5 An Algebraic Framework for Pseudorandomness

5.2 Formal Security Notion and Main Result
Here, we define formally the polynomial linear pseudorandomness security and state our
main result in Theorem 5.2.2. Once again, we consider a cyclic group G = 〈g〉 of order p.

5.2.1 Formal Definition of the Polynomial Linear Pseudorandomness Security
Definition 5.2.1 (Polynomial Linear Pseudorandomness Security). The advantage of an
adversary D against the (n, d, k,m)-PLP security of G is defined as:

Adv(n,d,k,m)-plp
G (D) := Pr

[
(n, d, k,m)-PLPRealDG ⇒ 1

]
− Pr

[
(n, d, k,m)-PLPRandD

G ⇒ 1
]
,

with D being restricted to make queries P ∈ Zp[T1, . . . , Tn]≤d that satisfy Condition 1 (when
k = 1) or Condition 2 (when k ≥ 2), with the probability being over the choice of #”

A,B,
and the random coins used by the adversary, and where games (n, d, k,m)-PLPRealG and
(n, d, k,m)-PLPRandG are defined in Figure 5.2.

When m is not specified, it is implicitly equal to 1. Note that when k = m = 1, we get
exactly the intuitive security notion defined in Section 5.1.1, as in that case #”

A = #”a ∈ Znp and
B = b ∈ Zp.

(n, d, k,m)-PLPRealG (n, d, k,m)-PLPRandG

proc Initialize
#”

A
$← (Zk×kp)n

B
$← Zk×mp

proc Pl(P)
Return

[
P (#”

A) ·B
]

proc Finalize(b)
Return b

proc Initialize
L1 ← empty list
L2 ← empty list
L← 0
proc Pl(P)
#”

λ ← TestLin(L1, P)
If #”

λ = ⊥ then
Y

$← Zk×mp

L← L+ 1
L1[L]← P
L2[L]← Y

Else
Y ←∑L

i=1 λi · L2[i]
Return [Y]
proc Finalize(b)
Return b

Figure 5.2: Security games for (n, d, k,m)-PLP in a group G

Then, our main result states that the (n, d, k,m)-PLP security holds in G assuming the
hardness of the Ek,d-MDDH problem in G, as detailed below.

5.2.2 The PLP Theorem
Theorem 5.2.2 (PLP). Assuming Ek,d-MDDH holds in G, so does the (n, d, k,m)-PLP
security. Moreover, the running time of this reduction is polynomial (in n, d, k,m, and the

Ch
ap

te
r5

5.2 Formal Security Notion and Main Result 73

running time of the adversary).

Proof Overview. As we directly prove the general result, the notation makes to proof
slightly hard to read. However, the main idea is rather simple. Basically, we define hybrid
games in which we replace partial evaluations in Ai+1, . . . ,An of the polynomials queried by
uniformly random values (still preserving the linear relations) to obtain a polynomial in i
indeterminates T1, . . . , Ti. Then, under the Ek,d-MDDH assumption, we can replace elements
Ak
i ·B ·W to uniformly random values, which let us go to the next hybrid game. At the

end, we have that the two games defining the (n, d, k,m)-PLP security are indistinguishable
under the Ek,d-MDDH. A detailed proof is provided in Section 5.3.

5.2.3 Immediate Corollary: the LIP Theorem
Before proving the PLP theorem, we introduce the following simple corollary that we use
extensively in the next chapter. We term this corollary the LIP theorem, where LIP stands
for Linearly Independent Polynomial. This is just a simplification of the PLP theorem in the
case where we further restrict the adversary to query only linearly independent polynomials.
In particular, under these assumptions, one can simplify the PLP security notion by defining
the following LIP security notion as follows.

Definition 5.2.3 (Linearly Independent Polynomial Security). The advantage of an adver-
sary D against the (n, d, k,m)-LIP security of G security of G is defined as:

Adv(n,d,k,m)-lip
G (D) := Pr

[
(n, d, k,m)-LIPRealDG ⇒ 1

]
− Pr

[
(n, d, k,m)-LIPRandD

G ⇒ 1
]
,

with D being restricted to make queries linearly independent polynomials P ∈ Zp[T1, . . . , Tn]≤d
that satisfy Condition 1 (when k = 1) or Condition 2 (when k ≥ 2), with the probability
being over the choice of #”

A,B, and the random coins used by the adversary, and where games
(n, d, k,m)-LIPRealG and (n, d, k,m)-LIPRandG are defined in Figure 5.3.

When k or m are not specified, they are implicitly equal to 1.

(n, d, k,m)-LIPRealG (n, d, k,m)-LIPRandG

proc Initialize
#”

A
$← (Zk×kp)n

B
$← Zk×mp

proc Pl(P)
Return

[
P (#”

A) ·B
]

proc Finalize(b)
Return b

proc Pl(P)
Y

$← Zk×mp

Return [Y]
proc Finalize(b)
Return b

Figure 5.3: Security games for (n, d, k,m)-LIP in a group G

Theorem 5.2.4 (LIP). Assuming E1,d-MDDH holds in G, so does the (n, d)-LIP security.
Moreover, the running time of this reduction is polynomial (in n, d, and the running time of
the adversary).

74 Chapter 5 An Algebraic Framework for Pseudorandomness

5.3 Proof of Theorem 5.2.2
In order to prove the PLP theorem, we will need to able to run some decomposition algorithms
on the polynomials queried. The following subsection provides a few lemmata that detail the
types of decomposition we require in our proof.

5.3.1 Decomposition Lemmata
Lemma 5.3.1. Let k ≥ 2 be an integer. There exists a polynomial-time algorithm which
takes as input:

• an integer j ∈ {0, . . . , n},

• n− j matrices Aj+1, . . . ,An in Zk×kp ,

• an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tn] satisfying Condition 2,

and which outputs a decomposition of P̃ as N polynomials Q1, . . . , QN ∈ Zp[T1, . . . , Tj] and
N matrices C1, . . . ,CN ∈ Zk×kp such that:

P (T1, . . . , Tj ,Aj+1, . . . ,An) =
N∑
ν=1

Cν ·Qν(T1, . . . , Tj).

In addition, N is less than the number of internal nodes in the expression or AST P̃ ; and
the representations of the polynomials Q1, . . . , QN satisfy Condition 2.

Proof of Lemma 5.3.1. We do the proof by recursion:

• Base case (a leaf): an indeterminate Ti or a scalar in Zp. Straightforward.

• Recursive case 1: additive node P̃1 + P̃2. We decompose recursively P̃1 and P̃2.

• Recursive case 2: multiplicative node P̃1 · P̃2. This is the most important case. We
consider two sub-cases:
– P̃1 only contain leaves with scalars or indeterminates Tj+1, . . . , Tn. In that case,

its decomposition is just a matrix in Zk×kp . The decomposition of P̃1 · P̃2 then
contains as many terms as in the decomposition of P̃2.

– Otherwise, P̃2 does not contain indeterminates Tj+1, . . . , Tn (otherwise that would
break Condition 2), and so the decomposition of P̃2 is just a polynomial (matrices
are identity matrices). The decomposition of P̃1 · P̃2 then contains as many terms
as in the decomposition of P̃1.

Lemma 5.3.1 follows.

Lemma 5.3.2. Let k ≥ 1 and j ≥ 1 be two integers. There exists a polynomial-time algorithm
which takes as input an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tj] of
degree at most d < p in Tj and satisfying Condition 1, and which outputs d+ 1 polynomials
Q0, . . . , Qd ∈ Zp[T1, . . . , Tj−1] such that

P = Q0 +Q1 · Tj + · · ·+Qd · T dj .

In addition, the representations of Q0, . . . , Qd satisfy Condition 1.

Ch
ap

te
r5

5.3 Proof of Theorem 5.2.2 75

Proof of Lemma 5.3.2. We can use the Lagrange interpolation

P =
d∑
i=0

P (T1, . . . , Tj−1, i)
∏

i′=0,...,d
i′ 6=i

(Tj − i′)
i− i′ ,

and regroup terms correctly.

5.3.2 The Main Proof

Preliminaries. We recall that the representations of the polynomials we consider satisfy
Condition 1 (when k = 1) or Condition 2 (when k ≥ 2). Please refer to Section 5.1.4 for the
definition of these conditions.
Let #”

A ∈ (Zk×kp)n. When k ≥ 2, for any polynomial P ∈ Zp[T1, . . . , Tn] whose degree in
one indeterminate is at most d and for j = 1, . . . , n, using Lemma 5.3.1, we can decompose
QP,

#”
A,j = P (T1, . . . , Tj ,Aj+1, . . . ,An) as follows (in polynomial time):

QP,
#”
A,j =

NP, #”
A,j∑

ν=1
CP,

#”
A,j,ν ·QP, #”

A,j,ν(T1, . . . , Tj),

with NP,
#”
A,j a positive integer, CP,

#”
A,j,ν a matrix in Zk×kp , and QP, #”

A,j,ν a polynomial in
Zp[T1, . . . , Tj] (given by a representation still satisfying Condition 2), for ν = 1, . . . , NP,

#”
A,j .

We remark that this decomposition exists and can trivially be obtained when k = 1 (in this
case NP,

#”
A,j = 1 and CP,

#”
A,j,1 = 1. When the index #”

A is clear from context, it is omitted. We
write N the maximum possible value of NP,j (when k = 1, N = 1).

Since QP,j,ν is a polynomial in Zp[T1, . . . , Tj], with degree in any indeterminate bounded
by d, according to Lemma 5.3.2, we can decompose it in polynomial time as:

QP,j,ν = QP,j,ν,0 + Tj ·QP,j,ν,1 + · · ·+ T dj ·QP,j,ν,d,

with QP,k,ν,0, . . . , QP,k,ν,d polynomials in Zp[T1, . . . , Tj] (given by a representation satisfying
Condition 1).

In particular, we have:

QP,j =
NP,j∑
ν=1

d∑
i=0

CP,j,ν · T ij ·QP,j,ν,i (5.1)

QP,j−1 =
NP,j∑
ν=1

d∑
i=0

CP,j,ν ·Aji ·QP,j,ν,i (5.2)

Finally, we write CP,j,z1,...,zj ∈ Zk×kp the (matrix) coefficient of T zjj · · ·T z1
1 in QP,j , and we

write cP,j,ν,z1,...,zj ∈ Zp the coefficient of the previous monomial in QP,j,ν (or equivalently in

76 Chapter 5 An Algebraic Framework for Pseudorandomness

QP,j,ν,zj · T ij). As we have:

QP,j =
∑

z1,...,zj

CP,j,z1,...,zj · T
zj
j · · ·T z1

1

QP,j =
NP,j∑
ν=1

∑
z1,...,zj

CP,j,ν · cP,j,ν,z1,...,zj · T
zj
j · · ·T z1

1

QP,j =
NP,j+1∑
ν=1

∑
z1,...,zj

d∑
i=0

CP,j+1,ν ·Aij+1 · cP,j+1,ν,z1,...,zj ,i · T
zj
j · · ·T z1

1

we have:

CP,j,z1,...,zj =
NP,j∑
ν=1

CP,j,ν · cP,j,ν,z1,...,zj (5.3)

CP,j,z1,...,zj =
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·Aij+1 · cP,j+1,ν,z1,...,zj ,i. (5.4)

Proof of Theorem 5.2.2. We write N the maximum of the NP,j ’s and M = (d+ 1) · q ·N ·m.
Let A be an adversary against the (n, d, k,m)-PLP security of G that makes q oracle queries.
We prove a first statement under the (Ek,d,M)-MDDH assumption, which denotes the M -fold
Ek,d-MDDH assumption. We can then use random self-reducibility to obtain our statement
under the Ek,d-MDDH assumption. Please refer to Chapter 4 for formal definitions of this
intermediate assumption and of random self-reducibility.

More precisely, we first design an adversary B against the (Ek,d, N)-MDDH problem such
that:

Adv(n,d,k,m)-plp
G (A) ≤ n ·Adv(Ek,d,M)-mddh

G (B) + 2n(d+ 1)qN
p

+ n

p
+ n

p2 . (5.5)

The proof of the above equation is based on the sequence of games in Figure 5.4. The
games are used in the following order: G0,1,G1,1,G0,2, . . . ,G1,n. We denote by Succi the
event that game Gi output takes the value 1.
Let us start with the proof. For the sake of simplicity, let us first suppose the procedure

TestLin is perfect. We will deal with its imperfection at the end of the proof.
We first show that game G0,1 instantiates exactly the game defining the (n, d, k,m)-PLP

security of G. For any query P , we have QP, #”
A,1,ν ∈ Zp[T1] (for any ν = 1, . . . , NP,1) and

according to Equation (5.1):

QP,1 =
NP,1∑
ν=1

d∑
i=0

CP,1,ν,i · T i1 ·QP,1,ν,i ,

with QP,1,ν,i ∈ Zp and CP,1,ν,i ∈ Zk×kp . The first time we see a non-zero coefficient α =
QP,1,ν,i ∈ Zp: L[1]← α ∈ Zp, T[1, 0] $← Zk×kp (let us write this element αA′), and T[1, `]←
α ·A`

j ·A′ for ` = 1, . . . , d. Afterwards, TestLin(L, QP,1,ν,i) always outputs
#”

λ (ν,i) = QP,1,ν,i/α,

Ch
ap

te
r5

5.3 Proof of Theorem 5.2.2 77

proc Initialize // G0,j ; j = 1, . . . , n
#”

A
$← Znp

L ← empty list
T← empty 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G0,j ; j = 1, . . . , n
Y ← 0 ∈ Zk×mp

For ν = 1, . . . , NP,j

For i = 0, . . . , d
#”

λ (ν,i) ← TestLin(L, QP,j,ν,i)
If #”

λ (ν,i) =⊥ then
L← L+ 1
L[L]← QP,j,ν,i

T[L, 0] $← Zk×mp

For ` = 1, . . . , d
T[L, `] $← A`

j · T[L, 0]
#”

λ (ν,i) ← (0, . . . , 0, 1) ∈ ZL+1
p

Y ← Y + CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

Return [Y]

proc Initialize // G1,j ; j = 1, . . . , n
#”

A
$← Znp

L ← empty list
T← empty 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G1,j ; j = 1, . . . , n
Y ← 0 ∈ Zk×mp

For ν = 1, . . . , NP,j

For i = 0, . . . , d
#”

λ (ν,i) ← TestLin(L, QP,j,ν,i)
If #”

λ (ν,i) =⊥ then
L← L+ 1
L[L]← QP,j,ν,i

T[L, 0] $← Zk×mp

For ` = 1, . . . , d
T[L, `] $← Zp

#”

λ (ν,i) ← (0, . . . , 0, 1) ∈ ZL+1
p

Y ← Y + CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

Return [Y]

Figure 5.4: Games G0,j and G1,j for the proof of the PLP theorem

for i = 0, . . . , d. Then, the matrix Y is computed as

Y =
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·
1∑
l=1

λ
(ν,i)
l · T[l, i]

=
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·QP,1,ν,i · α−1 · α ·Ai
1 ·A′

=
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·QP,1,ν,i ·Ai
1 ·A′

= QP,0 ·A′ = P (A1, . . . ,An) ·A′,

where the last-but-one equality comes from Equation (5.2). Hence, this is exactly the game
(n, d, k,m)-PLPRealG. Now, let us show Game G0,j and Game G1,j are indistinguishable
under the (Ek,d,M)-MDDH assumption. Afterwards, we will show that Game G1,j and
Game G0,j+1 are perfectly indistinguishable.

Indistinguishability of Game G0,j and Game G1,j under the (E1,d, d · q)-MDDH
assumption. We recall that M = (d+ 1) · q ·N ·m. We design adversaries Bj attacking
the (E1,d,M)-MDDH problem in G such that

Pr [Succ0,j]− Pr [Succ1,j] ≤ Adv(E1,d,M)-mddh
G (Bj) ; ∀j = 1, . . . , n.

78 Chapter 5 An Algebraic Framework for Pseudorandomness

The adversary Bj takes as input a tuple ([Γ] , [Z]) ∈ Gk(d+1)×k × G(d+1)×M , where
either Z = Γ ·W , and W

$← Zk×Mp , or Z = U
$← Zk(d+1)×M

p , with Γ defined as in
Section 4.2, and has to distinguish these two cases. For that purpose, the adversary Bj

simulates everything as in Game G0,j or G1,j for A , except it sets T[l, i] to be the k ×m
matrix with zα+ki,β+lm as the entry of index (α, β) ∈ {1, . . . , k} × {1, . . . ,m}. Assuming
the matrix B ∈ Zk×kp (in the definition of Γ) is invertible (which happens with probability
(1− 1/p) · · · (1− 1/pk) ≥ 1− 1/p− 1/p2, thanks to Euler’s Pentagonal Number Theorem), in
the first case, everything is simulated as in Game G0,j , while in the second case, everything
is simulated as in Game G1,j . In the first case, everything is simulated as in Game G0,j ,
while in the second case, everything is simulated as in Game G1,j .
Perfect Indistinguishability of Game G1,j and Game G0,j+1. We introduce an inter-
mediate Game G2,j , described in Figure 5.5. We will use it to prove that Game G1,j is
perfectly indistinguishable from Game G0,j+1 by showing that both these games are perfectly
indistinguishable from game G2,j . This intermediate game is not polynomial-time, since
U is a linear map from Zp[T1, . . . , Tj]≤d to Zk×mp and so would be represented by a matrix
with km(d+ 1)j entries. But this does not affect our proof since we show that it is perfectly
indistinguishable from Game G1,j and Game G0,j+1 which are both polynomial-time.

First, we prove that game G1,j is perfectly indistinguishable from Game G2,j . For that, we
remark that T in G1,j can be seen as computed as T[l, i] = U(T ij ·Ql), for k = 0, . . . , d, with
U

$← L(Zp[T1, . . . , Tj]≤d,Zk×mp) and L[l] = Ql ∈ Zp[T1, . . . , Tj−1]. Indeed, the polynomials
T ij · Ql are linearly independent, and so U(Tji · Ql) are independent uniform matrices in
Zk×mp . We have:

QP,j,ν,i =
L∑
l=1

λ
(ν,i)
l ·Ql.

Thus, for a query P , we remark that the matrix Y is computed as:

Y =
NP,j∑
ν=1

d∑
i=0

CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i] =

NP,j∑
ν=1

d∑
i=0

CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · U(T ij ·Ql)

=
NP,j∑
ν=1

CP,j,ν · U
(

d∑
i=0

L∑
l=1

λ
(ν,i)
l · T ij ·Ql

)

=
NP,j∑
ν=1

d∑
i=0

CP,j,ν · U
(

d∑
i=0

QP,j,ν,i · T ij
)

=
NP,j∑
ν=1

CP,j,ν · U(
∑

z1,...,zj

cP,j,ν,z1,...,zj · T
zj
j · · ·T z1

1)

=
∑

z1,...,zj

NP,j∑
ν=1

CP,j,ν · cP,j,ν,z1,...,zj

 · U(T zjj · · ·T z1
1)

=
∑

z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T z1
1),

where the last equality comes from Equation (5.3) and most other equalities come from the
linearity of U . The matrix Y is computed exactly as in Game G2,j . Therefore, Games G1,j
and G2,j are perfectly indistinguishable, for j = 1, . . . , n.

Ch
ap

te
r5

5.3 Proof of Theorem 5.2.2 79

proc Initialize // G2,j ; j = 1, . . . , n
U

$← L(Zp[T1, . . . , Tj]≤d,Zk×mp)
proc RKFn(P) // G2,j ; j = 1 . . . , n
Y ←

∑
z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T z1
1)

Return [Y]

Figure 5.5: Games G2,j for the proof of the PLP theorem

Second, we prove that Game G2,j is perfectly indistinguishable from Game G0,j+1. The
proof is similar to the previous one. For that, we remark that T in G1,j can be seen as
computed as T[l, i] = Ai

j+1 · U(Ql), for i = 0, . . . , d, with U
$← L(Zp[T1, . . . , Tj]≤d,Zk×mp)

with L[l] = Ql ∈ Zp[T1, . . . , Tj]. Indeed, the polynomials Ql are linearly independent, and so
U(Ql) are independent uniform matrices in Zk×mp . We also have:

QP,j+1,ν,i =
L∑
l=1

λ
(ν,i)
l Ql.

Thus, for a query P , we remark that the matrix Y is computed as:

Y =
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

=
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·
L∑
l=1

λ
(ν,i)
l ·Aij+1 · U(Ql)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·Aij+1 · U
(

L∑
l=1

λ
(ν,i)
l ·Ql

)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j,ν ·Aij+1 · U(QP,j+1,ν,i)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j,ν · U(
∑

z1,...,zj

cP,j+1,ν,z1,...,zj ,i · T
zj
j · · ·T z1

1)

=
∑

z1,...,zj

NP,j+1∑
ν=1

d∑
i=0

CP,j,ν · cP,j+1,ν,z1,...,zj ,i

 · U(T zjj · · ·T z1
1)

=
∑

z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T z1
1),

where the last equality comes from Equation (5.4) and most other equalities come from the
linearity of U . This is computed exactly as in Game G2,j . Therefore, games G1,j and G2,j
are perfectly indistinguishable, for j = 1, . . . , n.
To conclude, let us prove that Game G1,n is perfectly indistinguishable from the game

(n, d, k,m)-PLPRandG. Since Game G1,n is perfectly indistinguishable from Game G2,n, we
just need to prove theG2,0 is perfectly indistinguishable from the game (n, d, k,m)-PLPRandG.
This is the case, since QP,n = P is a polynomial with scalar coefficients, and in the expression
of the matrix Y = ∑

z1,...,zj CP,n,z1,...,zn · U(T znn · · ·T z1
1) (in Game G2,0), CP,n,z1,...,zn can be

seen as a scalar, and Y = U(QP,n) = U(P) by linearity.

80 Chapter 5 An Algebraic Framework for Pseudorandomness

Dealing with an Imperfect TestLin. To deal with an imperfect TestLin, we just remark
that the only part where we supposed TestLin to be perfect in the proof was to prove the
perfect indistinguishability of Game G1,j and Game G0,j+1, and the perfect indistinguisha-
bility between Game G0,1 (respectively Game G1,n) with the game (n, d, k,m)-PLPRealG
(respectively (n, d, k,m)-PLPRandG). All this properties are statistical, so that it is possible
to replace the real TestLin (with error 1/p) by a perfect (with error 0, as used in the proof).
This just loses an additive factor at most (d+1)qN/p each time, and so at most 2n(d+1)qN/p
in total.
Equation (5.5) easily follows from the bounds arising in the different game hops, and then

Theorem 5.2.2 immediately follows.

Ch
ap

te
r6

Chapter 6
Applications

In this chapter, we show some applications of the PLP theorem (Theorem 5.2.2 on page 72).
Specifically, we first show how the LIP theorem (Theorem 5.2.4 on page 73) can be used
to prove the (standard and related-key) security of pseudorandom functions. In particular,
using this theorem, we are able to design a fully algebraic framework for related-key security
that allows to improve previous known results, by providing positive results for larger classes
of related-key deriving functions, but also by building secure constructions based on weaker
assumptions. We also apply the PLP theorem to solve many open questions in the area of
aggregate pseudorandom functions and multilinear pseudorandom functions.
Our statements are directly given using the classical assumptions (rather than the

Ek,d-MDDH assumption). Please refer to Table 4.1 on page 56 for a summary of the relations.

Contents
6.1 Applications to Standard Pseudorandom Functions 82

6.1.1 Extended Number-Theoretic Pseudorandom Functions 82
6.1.2 Simple Proofs of Security . 83

6.2 Applications to Related-Key Security 85
6.2.1 Direct Constructions . 86
6.2.2 Constructions From Unique-Input-Related-Key Security, Algebraically 87
6.2.3 Other Applications to Related-Key Security 97
6.2.4 Extension to Weaker Assumptions 100
6.2.5 A Further Generalization of the Framework 100

6.3 Applications to Aggregate Pseudorandom Functions 106
6.3.1 Read-Once Formula Aggregation 106
6.3.2 Impossibility Results . 108
6.3.3 Extension to Weaker Assumptions 109

6.4 Applications to Multilinear Pseudorandom Functions 109
6.4.1 Cohen-Holmgren Construction . 109
6.4.2 Symmetric Multilinear Pseudorandom Functions 110
6.4.3 Skew-Symmetric Multilinear Pseudorandom Function 111
6.4.4 Extension to Weaker Assumptions 111

— 81 —

82 Chapter 6 Applications

6.1 Applications to Standard Pseudorandom Functions

In this section, we introduce weighted (extended) versions of the Naor-Reingold and Boneh-
Montgomery-Raghunathan pseudorandom functions, termed weighted NR and weighted BMR,
and respectively denoted WNR and WBMR. We later use these extended constructions in
order to build related-key secure pseudorandom functions for new classes of RKD functions
(Section 6.2).

These weighted versions are obtained by applying particular permutations to the key space.
Then, in the standard setting, it is straightforward that the security of NR and BMR implies
the security of their weighted versions. However, as detailed in Section 6.2, in the related-key
setting, we can prove that some of these weighted constructions are secure against certain
classes of RKD functions while both NR and BMR are not, even if we apply the framework
from Chapter 3.

Finally, the security proofs of WNR and WBMR are straightforward using the LIP theorem,
and so are the security proofs of NR, NR∗, and BMR, as particular cases of WNR and WBMR.
Thus, as a first application of the LIP theorem theorem, we detail proofs of security for both
these extended constructions.

6.1.1 Extended Number-Theoretic Pseudorandom Functions

6.1.1.1 Extended NR

Let #”w = (w0, . . . , wn) ∈ Zn+1
p . We denote WNR #”w = (WNR #”w .Setup,WNR #”w .Eval) the following

construction:

• WNR #”w .Setup(1κ) generates public parameters pp = (p,G, g) where (p,G, g) describes a
cyclic group of prime order p generated by g;

• WNR #”w .Evalpp(·, ·) takes as input a key #”a = (a0, a1, . . . , an) ∈ Zn+1
p and an input

x = x1 ‖ . . . ‖xn ∈ {0, 1}n and outputs [a0 ·
∏n
i=1 a

xi
i]g.

Furthermore, in the case where w0 = 0, we consider the key space to be Znp (by ignoring a0)
and restrict the input x to be in {0, 1}n \ {0n}, similarly to the definition of NR∗. As before,
for simplicity, we often use the notation WNR #”w(#”a , x) to denote WNR #”w .Evalpp(#”a , x).

Lemma 6.1.1. Assuming DDH holds in G, WNR #”w is a pseudorandom function, for any
#”w ∈ Zn+1

p such that wi and p− 1 are coprime, for i = 0, . . . , n.

Remark 6.1.2. We recover the standard NR and NR∗ constructions by letting #”w = (1, . . . , 1)
and #”w = (0, 1, . . . , 1) respectively. For a weight #”w such that there exists i with wi and p− 1
not being coprime, we could still use the LIP theorem to prove the security, but we would
need to rely on a stronger assumption (as the application a ∈ Zp 7→ awi ∈ Zp is no longer a
bijection).

6.1.1.2 Extended BMR

Let #”w = (w1, . . . , wn) ∈ Znp . We denote WBMR #”w = (WBMR #”w .Setup,WBMR #”w .Eval) the
following construction:

Ch
ap

te
r6

6.1 Applications to Standard Pseudorandom Functions 83

• WBMR #”w .Setup(1κ) generates public parameters pp = (p,G, g) where (p,G, g) describes
a cyclic group of prime order p generated by g;

• WBMR #”w .Evalpp(·, ·) takes as input a key #”a = (a1, . . . , an) ∈ Znp and an input x =
x1 ‖ . . . ‖xn ∈ {0, . . . , d}n and outputs

[∏n
i=1

1
ai+wi+xi

]
g
.

Again, we often use the notation WBMR #”w(#”a , x) to denote WBMR #”w .Evalpp(#”a , x).

Lemma 6.1.3. Assuming d-DDHI holds in G, WBMR #”w is a pseudorandom function, for any
#”w ∈ Znp .

Remark 6.1.4. We recover the standard BMR construction by letting #”w = (0, . . . , 0).

6.1.2 Simple Proofs of Security
6.1.2.1 Intuition

Here, we detail how the LIP theorem can be used to provide a very simple proof of security
of the above extended constructions. Let us first provide a brief intuition with the WBMR
construction, the proof of security for WNR being even simpler. Formal proofs are given right
after.

Concretely, for WBMR #”w , we start by revealing as public parameters the group G, its order
p, and the generator h to the adversary where

h =

 n∏
i=1

∏
k∈{0,...,d}

(ai + wi + k)

 · b

g

= [P (#”a) · b]g

which is a generator with overwhelming probability. Then, when the adversary makes a query
x, it is clear that[

n∏
i=1

1
ai + wi + xi

]
h

=

 n∏
i=1

∏
k∈{0,...,d}\{xi}

(ai + wi + k)

 · b

g

= [Px(#”a) · b]g .

As each polynomial Px is null on every input −x′ for x′ ∈ {0, . . . , d}n, seen as a vector of
Znp , except when x′ = x, and as P is null on all −x′, P and (Px)x are linearly independent.
Then, we conclude the security proof of WBMR #”w by applying the LIP theorem.

6.1.2.2 Extended NR

Proof of Lemma 6.1.1. Since the application a ∈ Zp 7→ aw ∈ Zp is a bijection as long as w
and p− 1 are coprime, it is clear that if NR is a secure pseudorandom, then so is WNR #”w , as
long as wi and p− 1 are coprime, for i = 0, . . . , n, since we just apply a permutation to the
key space.
Let A be an adversary against the pseudorandom function security of NR that makes q

oracle queries. We can assume without loss of generality that A never repeats a query. Then
we can construct an adversary B against the (n, 1)-LIP security of G that makes q queries
P0, P1, . . . , Pq, defined as follows.

First, B sends the public parameters (p,G, g) to A . By doing so, it implicitly sets a0 = b.

84 Chapter 6 Applications

Next, B runs adversary A . When the latter makes a query x ∈ {0, 1}n, adversary B
makes the query Px(T1, . . . , Tn) = ∏n

i=1 T
xi
i to its oracle and returns the value it gets to A .

When A halts, B halts with the same output. If B’s oracle responds to a query P by the
value [P (#”a) · b], then B sends [Px(#”a) · b] = [b ·∏n

i=1 a
xi
i b] = NR((b, #”a), x) to A when the

latter makes a query x, while if B’s oracle responds to a query P by a uniformly random
value, then B sends uniformly random values to A . Hence, B simulates exactly the game
defining the pseudorandom function security of NR for the key #”a which is taken at random
over Zn+1

p .
The only thing we need to prove is that all these queries are allowed to B, meaning that

for any distinct queries x1, . . . , xq of A , polynomials Px1 , . . . , Pxq are linearly independent
over Zp, which is straightforward. Hence, we have

Advprf
NR(A) ≤ Adv(n,1)-lip

G (B) .

We now conclude the proof by applying the LIP theorem.
This also proves the security of WNR #”w for any #”w such that wi and p− 1 are coprime, for

i = 0, . . . , n. Please also note that if w0 = 0 (for instance for NR∗), we can do a similar proof
using the (n, 1)-LIP security of G, by querying 1 at first and revealing [b] as the generator
instead of g.

6.1.2.3 Extended BMR

Proof of Lemma 6.1.3. Let A be an adversary against the pseudorandom function security
of WBMR #”w that makes q oracle queries. We can assume without loss of generality that A
never repeats a query. Then we can construct an adversary B against the (n, d)-LIP security
of G that makes q + 1 queries P0, P1, . . . , Pq, defined as follows.
First, B queries polynomial P0(#”

T) = ∏n
i=1

∏
k∈{0,...,d}(Ti + wi + k) and gets

h =

 n∏
i=1

∏
k∈{0,...,d}

(ai + wi + k)

 · b

g

= [P0(#”a) · b]g ,

that it sends to A along with G and p as public parameters (h is a generator with probability
(p−d−1

p)n).
Next, B runs adversary A . When the latter makes a query x ∈ {0, . . . , d}n, adversary B

makes the query Px(T1, . . . , Tn) = ∏n
i=1

∏
k∈{0,...,d}\{x}(Ti + wi + k) to its oracle and returns

the value he gets to A . When A halts, B halts with the same output. If B’s oracle responds
to a query P by the value [P (#”a) · b]g, then B sends

[Px(#”a) · b]g =

 n∏
i=1

∏
k∈{0,...,d}\{x}

(ai + wi + k)

 · b

g

=
[

P0(#”a) · b∏n
i=1(ai + wi + xi)

]
g

=
[
n∏
i=1

1
ai + wi + xi

]
h

,

Ch
ap

te
r6

6.2 Applications to Related-Key Security 85

to A when the latter makes a query x, while if B’s oracle responds to a query P by a
uniformly random value, then B sends uniformly random values to A . Hence, B simulates
exactly the game defining the pseudorandom function security of WNR #”w for the key #”a which
is taken at random over Znp and the generator h.
Then, since Px(T1, . . . , Tn) = ∏n

i=1
∏
k∈{0,...,d}\{x}(Ti + wi + k) is a degree at most d poly-

nomial in each indeterminate, the only thing that remains to prove is that all these queries
are allowed to B, meaning that for any distinct queries x(1), . . . , x(q) of A , polynomials
P0, Px(1) , . . . , Px(q) are linearly independent over Zp. By contradiction, let us assume there is
a sequence of distinct queries x(1), . . . , x(q) such that there is a linear combination:

λ0P0 +
q∑

m=1
λkPx(k)

with λk 6= 0 for all k = 1, . . . , q.
By evaluating this sum in −x(k) − #”w = (−x(k)

1 − w1, . . . ,−x(k)
n − wn) ∈ Znp , we get

P0(−x(k)− #”w) = 0 for all k and Px(i)(−x(k)− #”w) = 0 for all i 6= k and then λkPx(k)(−x(k)− #”w) =
0, which directly implies λk = 0, since Px(k)(−x(k) − #”w) 6= 0 for all k = 1, . . . , q. Then, we
have proven that λk = 0, for all k = 1, . . . , q. Finally, since P0 is not the zero polynomial
and λ0P0 = 0, we have also λ0 = 0.

Then, for any distinct queries x(1), . . . , x(q) of A , polynomials P0, Px(1) , . . . , Px(q) are linearly
independent over Zp. Hence, we have

Advprf
WBMR #”w (A) ≤

(
p

p− d− 1

)n
·Adv(n,d)-lip

G (B) .

We conclude the proof by applying the LIP theorem.

6.2 Applications to Related-Key Security

In this section, we show how the LIP theorem can also be used to prove the related-key
security of a pseudorandom function F = (F.Setup,F.Eval) such that F.Eval takes a key #”a
and an input x and outputs a group element F.Evalpp(#”a , x) = [Px(#”a)] over a group G = 〈g〉
of prime order p, described by the F.Setup procedure, where Px is a certain multivariate
polynomial depending on x. For simplicity, let us once again simply denote by F (#”a , x) the
output F.Evalpp(#”a , x).

For simplicity, we only consider the case k = 1 in the following, but similar constructions
can be obtained with k > 1 (except when permutations are involved). A brief extension is
provided at the end of this section.
Let Φ be a class of RKD functions, where functions #”

φ = (φ1, . . . , φn) ∈ Φ are such that
φi are multivariate polynomials in Zp[T1, . . . , Tn]. Then, for an RKD function #”

φ and an
input x, the pseudorandom function outputs F (#”

φ (#”a), x) =
[
P #”
φ ,x(#”a)

]
, where the polynomial

P #”
φ ,x(#”

T) = Px(#”

φ (#”

T)) = Px(φ1(#”

T), . . . , φn(#”

T)) depends on #”

φ and x. In particular, Pid,x = Px
for all x, where id is the identity function.
When all polynomials P #”

φ ,x and the constant polynomial 1 are linearly independent,
the LIP theorem directly shows that F is Φ-related-key secure under the hardness of the
E1,d-MDDH problem (with d being the maximum degree in one indeterminate occurring in

86 Chapter 6 Applications

the family {P #”
φ ,x} #”

φ ,x). To illustrate this, we use this method to construct a related-key secure
pseudorandom function for the class of permutations in Section 6.2.1.
However, to assume that all polynomials P #”

φ ,x are linearly independent is a very strong
property and, in general, this is not the case for all x and #”

φ . Hence, in Section 6.2.2,
we consider the less restrictive case where the polynomials P #”

φ 1,x1
, . . . , P #”

φ q ,xq
are linearly

independent as long as the inputs x1, . . . , xq are distinct (so the adversary is unique-input).
Specifically, we design a new algebraic framework that extends the one from Section 3.6,
when the pseudorandom function F outputs elements of the form [Px(#”a)] and when the
RKD functions are multivariate polynomials. The proof of this framework follows easily
from the LIP theorem. We then use this algebraic framework to construct related-key secure
pseudorandom functions for new and larger classes of RKD functions as well as weaker
assumptions.

6.2.1 Direct Constructions

In this section, we show how the LIP theorem can be used to prove the Φ-related-key security
of a pseudorandom function F of the above form in the particular case where all polynomials
P #”
φ ,x are linearly independent, for any #”

φ ∈ Φ and any input x.
Here, we consider the class ΦSn of functions defined as {σ | σ ∈ Sn} such that, ap-

plying a function σ ∈ ΦSn to a key #”a = (a1, . . . , an) ∈ Znp leads to the key σ(#”a) =
(aσ−1(1), . . . , aσ−1(n)), so the i-th component of #”a becomes the σ(i)-th component of the key
σ(#”a).
It is clear that BMR is not ΦSn-related-key secure, since we can distinguish BMR from a

random function with only 2 queries. Indeed, let id be the identity function and (12) be the
permutation which switches the first two components of the key. Then, one can just query
(id, 100 . . . 0) and ((12), 010 . . . 0) and check whether the output of these queries are the same,
which is the case in the real case while they are independent in the random case. However,
we show in what follows that a particular case of WBMR, defined below, is a ΦSn-related-key
secure PRF.
Linear WBMR PRF. We define WBMRlin as the particular case of WBMR, where wi =
(i− 1)(d+ 1), for i = 1, . . . , n. Please refer to Section 6.1.1.2 for details.

Lemma 6.2.1. Assuming (n(d+ 1)− 1)-DDHI holds in G, WBMRlin is a ΦSn-related-key
secure pseudorandom function.

Moreover, the time overhead of this reduction is polynomial in n, d and in the running time
of the adversary.

The proof is given below and is very similar to the proof of security of WBMR in Section 6.1.

Proof of Lemma 6.2.1. Let A be a ΦSn-restricted adversary against the related-key security
of WBMRlin that makes q queries. We design an adversary B against the (n, n(d+ 1)−1)-LIP
security of G that makes q + 1 queries as follows.

First, B queries polynomial P0(#”

T) = ∏n
i=1

∏
k∈{0,...,n(d+1)−1}(Ti + k) and gets h with

h =

 n∏
i=1

∏
k∈{0,...,n(d+1)−1}

(ai + k)

 · b

g

= [P0(#”a) · b]g ,

Ch
ap

te
r6

6.2 Applications to Related-Key Security 87

or a random group element, that it sends to A as the generator along with G and p as the
public parameters for WBMRlin (h is a generator with probability at least (p−n(d+1)−1

p)n).
Next, B runs adversary A . When the latter makes a query (σ, x), B computes the

polynomial

Pσ,x(#”

T) =
∏n
i=1

∏n(d+1)−1
k=0 (Ti + k)∏n

i=1(Tσ−1(i) + wi + xi)
= P0(#”

T)∏n
i=1(Ti + wσ(i) + xσ(i))

and queries Pσ,x. This is possible since ∏n
i=1(Ti +wσ(i) + xσ(i)) divides P0 and since Pσ,x is a

degree n(d+ 1)− 1 polynomial in each indeterminate. It then returns the value it gets to A .
It is clear that if B’s oracle returns uniformly random values, B simulates exactly the

game RKPRFRandWBMRlin , whereas if it returns [P (#”a) · b] for a query P , then B simulates
exactly game RKPRFRealWBMRlin with the generator defined above. Indeed, in that case,
let h = [P0(#”a) · b]g be the generator given to A . Then for a query (σ, x), [Pσ,x(#”a) · b]g =[∏n

i=1
1

#”a [σ−1(i)]+wi+xi

]
h

= WBMRlin(σ(#”a), x), where WBMRlin is defined using the generator
h. Then, the only thing that remains to prove is that all the polynomials queried by B to its
oracle are linearly independent over Zp.
Hence, let us now prove that all polynomials Pσ,x(#”

T) corresponding to queries (σ, x) are
linearly independent. By contradiction, let us assume that there exists a sequence of distinct
queries (σ(1), x(1)), . . . , (σ(q), x(q)) such that there exists a linear combination:

λ0P0 +
q∑

k=1
λk · Pσ(k),x(k) = 0

with λk 6= 0 for all k = 1, . . . , q.
Then, by evaluating the above sum of polynomials on points

(−wσ(k)(1) − x
(k)
σ(k)(1), . . . ,−wσ(k)(n) − x

(k)
σ(k)(n)),

since all the above polynomials except Pσ(k),x(k) take the value 0 on these points, we obtain,
for k = 1, . . . , q, λk = 0. Then, we have λ0P0 = 0 and since P0 6= 0, we have λ0 = 0. Hence,
all these polynomials are linearly independent. Then, Lemma 6.2.1 easily follows from the
above and from the LIP theorem.

Remark 6.2.2. By slightly changing the construction, we can also achieve ΦSn,+k -related-key
security, where ΦSn,+k is the class of functions σ #”

b that, when applied to a key #”a ∈ Znp , leads to
the key (aσ−1(1)+b1, . . . , aσ−1(n)+bn), for any σ ∈ Sn and any #”

b ∈ {0, . . . , k}n. In other words,
ΦSn,+k also tolerates small additive factors in addition to permutations. Indeed, considering
the function WBMRlin

k as the particular case of WBMR where wi = (i − 1)(d + 1)(k + 1)
for i = 1, . . . , n one can prove that this construction is ΦSn,+k -related-key secure under the
(d(k + 1) + k + (n− 1)(d+ 1)(k + 1))-DDHI assumption inG and the proof follows closely the
proof of Lemma 6.2.1. In particular, with k = 0, this is exactly the result from Lemma 6.2.1.

6.2.2 Constructions From Unique-Input-Related-Key Security, Algebraically

In this section, we address the less restrictive case in which we only require the polynomials
P #”
φ 1,x1

, . . . , P #”
φ q ,xq

to be linearly independent for any #”

φ 1, . . . ,
#”

φ q when the inputs x1, . . . , xq

88 Chapter 6 Applications

are all distinct. Please notice that this is the case for all the classes considered in previous
sections and chapters. We now denote byM = (M.Setup,M.Eval) the “original” pseudorandom
function (that we want to transform into a related-key secure one) such that for any x,
M(#”a , x) = M.Evalpp(#”a , x) = [Px(#”a)] for a certain multivariate polynomial Px depending on
x.
In order to build related-key secure pseudorandom functions from such pseudorandom

functions, we would like to apply the generic framework from Section 3.6 that allows to
transform a unique-input-related-key secure pseudorandom function M into a related-key
secure one, F . Recall that the framework is simply the following: F keeps the same setup
(F.Setup = M.Setup) and its outputs are defined as:

F.Evalpp(K,x) = M.Evalpp(K,H(x,M(K, #”ω))),

where H is a compatible collision-resistant hash function, and where #”ω is a strong key
fingerprint. Please refer to Chapter 3 and especially Sections 3.4 and 3.6 for further details.
Unfortunately, if we consider WNR #”w with some wi > 1, then it is not clear how to find a

strong key fingerprint, which can be used to apply the above framework. Furthermore, this
framework requires to prove several non-algebraic properties (statistical or computational),
namely key-collision, statistical-key-collision, and unique-input-related-key securities.

For this reason, we design a new algebraic framework, that generalizes this framework in the
particular case of pseudorandom functions of the form M(#”a , x) = [Px(#”a)] and considering
classes of multivariate polynomials. For completeness, a more general framework, which does
not make any assumptions about the outputs of the pseudorandom function, is also given in
Section 6.2.5. Afterwards, we use our algebraic framework to design new related-key secure
pseudorandom functions based on WNR for larger classes for which previous constructions
are not secure.

6.2.2.1 An Algebraic Framework for Related-Key Security

Here, we describe a new framework that transforms any pseudorandom function of the above
form that satisfies that P #”

φ 1,x1
, . . . , P #”

φ q ,xq
are linearly independent, for any #”

φ 1, . . . ,
#”

φ q as
long as x1, . . . , xq are all distinct inputs, into a related-key secure pseudorandom function. To
do so, we first introduce three new notions, termed algebraic fingerprint, helper information,
and expansion function, and defined as follows.
Algebraic Fingerprint. In order to overcome the possible lack of a strong key fingerprint,
we introduce the notion of algebraic fingerprint, which will be used to replace M(K, #”ω)
from the previous framework, where #”ω is a strong fingerprint. An algebraic fingerprint is
simply an injective function #”Ω: Znp → Gm such that the image #”Ω(#”a) is a vector of group
elements ([Ω1(#”a) · b] , . . . , [Ωm(#”a) · b]) with Ω1, . . . ,Ωm being polynomials in Zp[T1, . . . , Tn]
and b ∈ Zp. In our applications, we will simply have #”Ω(#”a) = ([a1] , . . . , [an]), so m = n and
Ωi(

#”

T) = Ti for i = 1, . . . , n.
Helper Information. In order to prove the security of our framework, we need to be
able to compute the image of the algebraic fingerprint, #”Ω(#”

φ(#”a)) = ((Ω1 ◦
#”

φ)(#”a), . . . ,
(Ωm ◦

#”

φ)(#”a)), for any related key #”

φ(#”a) ∈ Znp , with #”

φ ∈ Φ, from some information
which can somehow be made public without hurting security. We call this information
a helper information, write it HelpΦ(#”a), and call HelpΦ the helper function. We suppose
that HelpΦ(#”a) = ([help1(#”a) · b] , . . . , [help`(#”a) · b]), with help1, . . . , help` linearly independent

Ch
ap

te
r6

6.2 Applications to Related-Key Security 89

polynomials which generate a vector subspace of Zp[T1, . . . , Tn] containing the polynomials
Ωi ◦

#”

φ for i = 1, . . . ,m, and #”

φ ∈ Φ.
Hash Function and Expansion Function. Let D = D ×Gm where D is the domain of
M , and let h be a collision-resistant hash function h: D → hSp, where hSp is a large enough
space. The last thing we need to define is an expansion function, which is simply an injective
function E: hSp→ S ⊆ D such that for any sequence (#”

φ 1, x1), . . . , (#”

φ q, xq) where x1, . . . , xq
are distinct inputs in S and #”

φ 1, . . . ,
#”

φ q are RKD functions, polynomials help1, . . . , help` and
polynomials P #”

φ 1,x1
, . . . , P #”

φ q ,xq
and 1 (which needs to be queried to define [b]) are linearly

independent over Zp. In particular, E has to be injective.
Using these new tools, we obtain the following framework.

Theorem 6.2.3. Let M = (M.Setup,M.Eval) be a pseudorandom function whose key space,
domain, and range are respectively Znp ,D, and G, where p and G are publicly revealed
by M.Setup, and such that M(#”a , x) = [Px(#”a)]. Let Φ ⊆ Zp[T1, . . . , Tn] be a class of RKD
functions. Let d be a upper bound for the maximum degree in any indeterminate of polynomials
in {help1, . . . , help`} ∪ {Px, #”

φ | x ∈ S,
#”

φ ∈ Φ}. Define F = (F.Setup,F.Eval) as F.Setup =
M.Setup and:

F.Evalpp(#”a , x) = M.Evalpp(#”a ,E(h(x, #”Ω(#”a))))

for all #”a ∈ Znp and x ∈ D.
Then, assuming d-DDHI holds in G and that h is a collision-resistance hash function, F is

a Φ-related-key secure pseudorandom function.
Moreover, the running time of this reduction is polynomial in n, d, q, and in the running

time of the adversary.

Proof Overview. The proof of the above theorem is detailed below and relies on the
sequence of 10 games (games G0−G9) described in Figure 6.2 and on Lemma 6.2.4. We first
prove an intermediate statement whose proof is very similar to the proof of Theorem 3.4.2,
under a notion termed extended key-collision security (that states the hardness of finding
key collisions given the helper information and oracle access to the pseudorandom function)
which is defined below. Afterwards, we reduce this notion to the hardness of the d-SDL
problem in G (which is trivially implied by the (n, d)-LIP security). Here we provide a brief
overview of the proof of this intermediate statement.

We start by giving the generator along with G and p as public parameters for the pseudo-
random function by querying polynomial 1. Hence, the generator is simply [b]. Since we may
have key collisions (i.e., two RKD functions φ1 6= φ2, such that φ1(#”a) = φ2(#”a)), we start
by dealing with possible collisions on the related keys in the game RKPRFRealF , using the
extended key-collision notion (games G0 −G2). These claws can be detected by looking for
collisions on images of #”Ω for different RKD functions.

Then, in games G3−G4, we deal with possible collisions on hash values in order to ensure
that the inputs t = E(h(x, #”Ω(#”a))) used to compute the output y are distinct (recall that E is
injective). Next, we use the (n, d)-LIP security notion to show that it is hard to distinguish
the output of F and the helper information from uniformly random values (games G5 −G6).

Finally, we use once again the extended-key-collision security notion to deal with possible
key collisions in the game RKPRFRandF (games G7 −G9) so that G9 matches exactly the
description of RKPRFRandF . These key collisions can still be detected in these games by
making crucial use of the helper information.

90 Chapter 6 Applications

Proof of Theorem 6.2.3. Let A denote an adversary against the Φ-related-key security of F .
We assume without loss of generality that it never repeats a query. We first introduce a new
security notion termed extended key-collision security, whose security game is depicted in
Figure 6.1 below, which extends the key-collision security notion defined in Section 3.4.2 but
where Initialize also leaks HelpΦ to the adversary.

proc Initialize
#”a

$← Znp
pp $← M.Setup(1κ)
Return (pp,HelpΦ(#”a))

proc RKFn(#”

φ, x)
y ← M.Evalpp(#”

φ (#”a), x)
Return y

proc Finalize(#”

φ 1,
#”

φ 2)
Return (#”

φ 1 6=
#”

φ 2 and #”

φ 1(#”a) = #”

φ 2(#”a))

Figure 6.1: Security game for extended Φ-key-collision of a pseudorandom function M for a
class Φ

Then, we show that:

Advrka-prf
Φ,F (A) ≤ Adv(n,d)-lip

G (B) + Advcr
H(C) + 2 ·Advext-kc

Φ,M (D) . (6.1)

Afterwards, we the extended key-collision security notion to the d-SDL assumption in G,
which is implied by the d-DDHI assumption. This proves our statement.
Proof of this Intermediate Statement. The proof is based on the sequence of games in
Figure 6.2. We denote by Succi the event that game Gi output takes the value 1.
G0 matches the description of the RKPRFRealF game, so:

Pr [Succ0] = Pr
[

RKPRFRealAF ⇒ 1
]
.

Game G1 introduces storage of used RKD functions and values of images #”

C of #”Ω in sets D
and E respectively and sets flag1 to true if the same value of #”

C arises for two different RKD
functions. Since this storage does not affect the values returned by RKFn

Pr [Succ0] = Pr [Succ1] .

Game G2 adds the boxed code which changes how the repetition of a value #”

C is handled, by
picking instead a random value from Gm \E that will not repeat any previous one. Games
G1 and G2 are identical until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1] ,

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We
design an adversary D attacking the extended Φ-key-collision security of M such that

Pr [E1] ≤ Advext-kc
Φ,M (D) .

Adversary D gets helper information helpΦ = HelpΦ(#”a), then runs A . When the latter makes
an RKFn-query (#”

φ, x), adversary D computes #”

C = #”Ω(#”

φ (#”a)) using its helper information,
z = h(x, #”

C) and t = E(z) and finally queries (#”

φ, t) to its oracle and sends the value it gets to
A . When A halts, D searches for two different RKD functions #”

φ 1,
#”

φ 2 queried by A that
lead to the same value #”

C and returns these two functions if found. Since #”Ω is a Algebraic
Fingerprint, such two functions lead to the same key, so D wins if he finds such two functions.

Ch
ap

te
r6

6.2 Applications to Related-Key Security 91

proc Initialize // G0
#”a

$← Zn
p

proc RKFn(#”

φ, x) // G0
#”

C ← #”Ω(#”

φ (#”a))
z ← h(x, #”

C)
t← E(z)
y ←M(#”

φ (#”a), t)
Return y
proc Finalize(b’) // All Games
Return b′

proc Initialize // G1,G2
#”a

$← Zn
p ; D ← ∅ ; E ← ∅

proc RKFn(#”

φ, x) // G1, G2
#”

C ← #”Ω(#”

φ (#”a))
If #”

C ∈ E and #”

φ /∈ D then
flag1 ← true ; #”

C
$← Gm \ E

D ← D ∪ { #”

φ} ; E ← E ∪ { #”

C}
z ← h(x, #”

C)
t← E(z)
y ←M(#”

φ (#”a), t)
Return y

proc Initialize // G3,G4
#”a

$← Zn
p ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(#”

φ, x) // G3, G4
#”

C ← #”Ω(#”

φ (#”a))
If #”

C ∈ E and #”

φ /∈ D then #”

C
$← Gm \ E

D ← D ∪ { #”

φ} ; E ← E ∪ { #”

C}
z ← h(x, #”

C)
If z ∈ G then flag2 ← true

z
$← hSp \G

G← G ∪ {z}
t← E(z)
y ←M(#”

φ (#”a), t)
Return y

proc Initialize // G5
#”a

$← Zn
p ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(#”

φ, x) // G5
#”

C ← #”Ω(#”

φ (#”a))
If #”

C ∈ E and #”

φ /∈ D
then #”

C
$← Gm \ E

D ← D ∪ { #”

φ} ; E ← E ∪ { #”

C}
z ← h(x, #”

C)
If z ∈ G then z $← hSp \G
G← G ∪ {z}
t← E(z)
y

$← G
Return y

proc Initialize // G6
#”a

$← Zn
p ; D ← ∅ ; E ← ∅

G
$← Fun(Zn

p ,D,G)
proc RKFn(#”

φ, x) // G6

y
$← G

Return y

proc Initialize // G7, G8
#”a

$← Zn
p ; D ← ∅ ; E ← ∅

G
$← Fun(Zn

p ,D,G)

proc RKFn(#”

φ, x) // G7 , G8

If #”

φ (#”a) ∈ E and #”

φ /∈ D then
y

$← G ; flag3 ← true
else y ← G(#”

φ (#”a), x)
D ← D ∪ { #”

φ} ; E ← E ∪ { #”

φ (#”a)}
Return y

proc Initialize // G9
#”a

$← Zn
p ; G $← Fun(Zn

p ,D,G)
proc RKFn(#”

φ, x) // G9

y ← G(#”

φ (#”a), x)
Return y

Figure 6.2: Games for the proof of Theorem 6.2.3

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same
hash output arises twice. Since this storage does not affect the values returned by RKFn,
we have

Pr [Succ2] = Pr [Succ3] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by
picking instead a random value z from hSp \G that will not repeat any previously used hash

92 Chapter 6 Applications

value. Games G3 and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2] ,

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We
design an adversary C attacking the collision-resistance security of h such that

Pr [E2] ≤ Advcr
h (C) .

Adversary C starts by picking #”a
$← Znp and initializes j ← 0. It runs A . When the latter

makes an RKFn-query (#”

φ, x), adversary C responds via
#”

C ← #”Ω(#”

φ (#”a))
j ← j + 1 ; #”

φ j ←
#”

φ ; xj ← x

If #”

C ∈ E and #”

φ /∈ D then #”

C
$← Gm \ E (∗)

D ← D ∪ { #”

φ} ; E ← E ∪ { #”

C}
#”

C j ←
#”

C

z ← h(x, #”

C)
zj ← z

t← E(z) y ←M(#”

φ (#”a), t)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that za = zb and, if it
finds them, outputs (xa,

#”

Ca), (xb,
#”

Cb) and halts. The pairs (xa,
#”

Ca) and (xb,
#”

Cb) are distinct.
Indeed, consider two cases: first, if #”

φa = #”

φ b then since A never repeats an oracle query,
xa 6= xb hence (xa,

#”

Ca) 6= (xb,
#”

Cb). Second, if #”

φa 6=
#”

φ b, then condition (∗) ensures that
#”

Ca 6=
#”

Cb. Hence once again, (xa,
#”

Ca) 6= (xb,
#”

Cb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
h (C) .

In game G5, instead of returning the value M(#”

φ (#”a), t), we always return a random value.
To show that games G4 and G5 are indistinguishable, we design an adversary B against the
(n, d)-LIP security of G such that

Pr [Succ4] ≤ Pr [Succ5] + Adv(n,d)-lip
G (B) .

Adversary B starts by querying polynomial 1 to [b] and returns it as the generator used
for the PRF to A . Next, it initializes sets D ← ∅, E ← ∅, G ← ∅. Then B queries
help1, . . . , help` such that HelpΦ(#”a) = ([help1(#”a) · b] , . . . , [help`(#”a) · b]). Afterwards, it runs
A . When the latter makes an RKFn-query (#”

φ, x), B responds as follows. First, it computes
#”

C = #”Ω(#”

φ(#”a)) using its helper information. Then, B checks if #”

C ∈ E and #”

φ ∈ D. If they
do, B picks #”

C
$← Gm \ E at random. B then sets D ← D ∪ { #”

φ} and E ← E ∪ { #”

C}. Next,
B computes z ← h(x, #”

C) and checks if z ∈ G. If it does, B picks z $← hSp \G at random.
Notice that this step guarantees that all values z are distinct as long as A makes at most
|hSp| queries. Finally, B sets G ← G ∪ {z}, computes t = E(z) and makes the query P #”

φ ,t

to its oracle, where P #”
φ ,t is the polynomial such that M(#”

φ (#”a), t) =
[
P #”
φ ,t(

#”a)
]
, and returns

the value it gets, which is either
[
P #”
φ ,t(

#”a) · b
]
or a uniformly random value, to A . When A

halts, B halts with the same output. It is clear that all the polynomials queried by B are

Ch
ap

te
r6

6.2 Applications to Related-Key Security 93

linearly independent via the definition of E. Finally, it is clear that if B’s oracle answers to
a query P by the value [P (#”a) · b], then it simulates exactly game G4 (where the generator
used for the PRF construction is [b], and if B’s oracle gives uniformly random values, then
the outputs are correctly simulated, since they are uniformly random. This concludes the
proof of the above statement.

In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6
are identical since the value returned is a uniformly random value for any query. Then, we
have

Pr [Succ5] = Pr [Succ6] .
In game G7, we check if two different queries can lead to a key collision. Since the “If” test
ensures that the returned value is still uniformly random over G even when two different
queries result in the same key, games G6 and G7 are identical. Hence,

Pr [Succ6] = Pr [Succ7] .

In game G8, we compute the output of RKFn using a random function G in Fun(Znp ,D,G).
Since games G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7] ≤ Pr [Succ8] + Pr [E3] ,

where E3 denotes the event that the execution of A with gameG8 sets flag3 to true. To bound
the probability of event E3, we design an adversary D attacking the extended Φ-key-collision
security of M such that

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Adversary D starts by initializing a list L ← empty list and by choosing an element #”

ψ in Φ and
by setting #”

ψ1 ←
#”

ψ and #”

ψ2 ←
#”

ψ . Then, it runs A . When the latter makes an RKFn-query
(#”

φ, x), if #”

ψ1 = #”

ψ2, adversary D does the following: it first computes #”

C ← #”Ω(#”

φ(#”a)) using
its helper information and searches for all tuples (#”

φ i,
#”

C i) ∈ L such that #”

C i = #”

C . If it does
find such tuples, it checks for all of them if #”

φ 6= #”

φ i. If it does for a certain i, it sets #”

ψ1 ←
#”

φ i
and #”

ψ2 ←
#”

φ . Then, it adds (#”

φ,
#”

C) to L. Finally, D picks y $← G at random, returns y to A .
When A halts, D halts and outputs (#”

ψ1,
#”

ψ2). If the execution of A sets flag3 to true, then
A has queried #”

φ 1 6=
#”

φ 2 such that #”

φ 1(#”a) = #”

φ 2(#”a) and assuming it has first queried #”

φ 1,
when D computes #”Ω(#”

φ 2(#”a)) and checks if this value is already in L, it finds that this value
matches #”Ω(#”

φ 1(#”a)) and since #”

φ 1 6=
#”

φ 2, it sets
#”

ψ1 = #”

φ 1 and #”

ψ2 = #”

φ 2, so D wins. Then, we
have

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Since A does not repeat oracle queries and since key collisions are dealt with in a similar
way, it follows that games G8 and G9 are identical. Thus,

Pr [Succ8] = Pr [Succ9] .

Finally, G9 matches the description of the RKPRFRandF game, so:

Pr [Succ9] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

Equation (6.1) now follows by combining the bounds arising in the different game hops.
From Extended-Key-Collision Security to SDL. In the following lemma, we reduce
the extended-key-collision security to the hardness of the d-SDL problem in G.

94 Chapter 6 Applications

Lemma 6.2.4. Let d be an integer such that, for any polynomial in {help1, . . . , help`}∪{Px, #”
φ |

x ∈ S, #”

φ ∈ Φ}, its maximum degree in any indeterminate is at most d. Then, assuming
d-SDL holds in G, so does the extended Φ-key-collision security of M .
Moreover, the running time of this reduction is polynomial in n, d, q, and in the running

time of the adversary.

Proof of Lemma 6.2.4. Adversary B receives a d-SDL tuple ([1] , [a] , . . . ,
[
ad
]
) where a $← Zp

and where [1]. Adversary B then picks j $← {1, . . . , n} at random.
B start by picking b at random in Zp and by sending [b] to A as the generator being part

of public parameters of the PRF construction. Then B picks ai $← Zp for i = 1, . . . , n, i 6= j
at random. Implicitly, B sets aj = a.
Then, B computes the helper information HelpΦ(#”a) = ([help1(#”a) · b] , . . . ,

[help`(#”a) · b]) using its d-SDL tuple and the known values b, ai for i 6= j and sends this
helper information to A . When A makes a query (#”

φ, x), B wants to return to A the value
M(#”

φ (#”a), x) =
[
Px(#”

φ (#”a)) · b
]

=
[
P #”
φ ,x(#”a) · b

]
.

To do so, B starts by computing P #”
φ ,x(a1, . . . , aj−1, Tj , aj+1, . . . , an) using chosen values

ai, i 6= j. It then gets a degree at most d polynomial Pj in Tj . Hence, using its d-SDL tuple
and the known value b, it can now easily compute [Pj(aj) · b] =

[
P #”
φ ,x(#”a) · b

]
and returns

this value to A .
At the end, A sends (#”

φ 1,
#”

φ 2) to B and wins if #”

φ 1 6=
#”

φ 2 and #”

φ 1(#”a) = #”

φ 2(#”a). Hence,
B computes #”

ψ = #”

φ 1 −
#”

φ 2. Since
#”

φ 1 6=
#”

φ 2, there is at least a component of #”

ψ which is a
non-zero multivariate polynomial. Let us call this component R ∈ Zp[T1, . . . , Tn]. Since we
chose j at random in {1, . . . , n}, the indeterminate Tj appears in R with probability at least
1
n . B now evaluates R in (a1, . . . , aj−1, Tj , aj+1, . . . , an) to obtain a univariate polynomial
S ∈ Zp[Tj]. This polynomial is a non-zero polynomial with probability at least p−(n−1)d

p , via
the Schwartz-Zippel lemma.
Finally, B simply factorizes S (for instance using the Kedlaya-Umans algorithm), and

outputs the unique root r of S such that [r] = [a]. Hence, we have:

Advext-kc
Φ,M (A) ≤ p

p− (n− 1)d · n · Advd-sdl
G (B) , (6.2)

and Lemma 6.2.4 follows.

Theorem 6.2.3 now follows from combining Equation (6.1), Equation (6.2), and from the
LIP theorem (and from the fact that the hardness of d-SDL problem is implied by the
E1,d-MDDH assumption).

6.2.2.2 Related-Key Security for Permutations of Univariate Polynomials

We now apply our framework to a particular case of WNR and build the first related-key
secure pseudorandom function for the class of permutations of univariate polynomials. We
choose to set w0 to 0 in our construction in order to ease the readability so that the key
space of the pseudorandom function stays Znp , but similar results can be proven with w0 = 1
or set to a prime number p0 > d (and distinct to p1, . . . , pn defined below).
For d ≥ 1, let Φd be the class of degree at most d non-constant univariate polynomials

defined as Φd = { #”

φ : Znp → Znp | φi : #”

T 7→ ∑d
j=0 αi,jT

j
i , (αi,1, . . . , αi,d) 6= 0d, ∀i = 1, . . . , n}.

Ch
ap

te
r6

6.2 Applications to Related-Key Security 95

Then we consider the class ΦSn,d of permutations of degree at most d non-constant univariate
polynomials, defined as follows:

ΦSn,d = {σ ◦ #”

φ | (σ, #”

φ) ∈ Sn × Φd} .

For a key #”a = (a1, . . . , an) ∈ Znp , applying an RKD function σ ◦ #”

φ ∈ ΦSn,d, where
#”

φ =
(φ1, . . . , φn) leads to the key (φσ−1(1)(#”a), . . . , φσ−1(n)(#”a)) ∈ Znp , so the i-th component ai of
the key is changed into φi(#”a) and becomes the σ(i)-th component of the related key.

Before explaining our construction, we would like to point out that, even if we just consider
the simple class of permutations ΦSn ⊂ ΦSn,1 introduced in Section 6.2.1, we can already
show that NR and NR∗ are not ΦSn-related-key secure, even with respect to unique-input
adversaries. Indeed, let us consider NR∗: let id be the identity function and (12) be the
permutation which switches the first two components of the key. Then, the output of the
queries (id, 100 . . . 0) and ((12), 010 . . . 0) will be the same in the real case and independent in
the random case.
In fact, we can generalize the attack above to show that there even exists a compatible

collision-resistant hash function h such that the pseudorandom function that one obtains
when applying the Bellare-Cash transform (or one of the transforms from Chapter 3) to NR∗
would not be related-key secure with respect to the class of permutations. Indeed, let h′ be a
collision-resistant hash function. The counter-example for h could be as follows (where x1
and x2 are two arbitrary distinct inputs):

h(x, [a1] , . . . , [an]) =

1110 ‖h′(x1, [a1] , . . . , [an]) if x = x1
1101 ‖h′(x1, [a2] , [a1] , [a3] , . . . , [an]) if x = x2
1111 ‖h′(x, [a1] , . . . , [an]) otherwise.

Note that h is a compatible collision-resistant hash function. It is easy to see that the
output of the queries (id, x1) and ((12), x2) will be the same in the real case and independent
in the random case. The same kind of attack can be mounted against NR.
However, while NR and NR∗ are not related-key secure against permutations attacks, we

show in what follows that a particular case of WNR, defined below, yields a ΦSn,d-related-key
secure pseudorandom function.
Linear WNR. Let d ≥ 1. Let p1 < p2 < · · · < pn be distinct prime numbers such that
p1 > d. We define WNRd-lin as the particular case of WNR, where w0 = 0 and wi = pi. Please
refer to Section 6.1.1.2 for details. Using standard inequalities over prime numbers, it is easy
to see that we can find p1, . . . , pn such that pn = Õ(d+ n).

In order to apply the framework from Theorem 6.2.3 to WNRd-lin and ΦSn,d, we define:

• [b] ∈ G denote the generator output by the setup procedure along with G and p

• #”Ω: #”a ∈ Znp 7→ ([a1] , . . . , [an]) ∈ Gn

• HelpΦSn,d
: #”a ∈ Znp 7→ ([1] , [a1] , . . . ,

[
ad1
]
, . . . , [an] , . . . ,

[
adn

]
) ∈ Gnd+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

96 Chapter 6 Applications

We just need to prove that E satisfies the linear independence property required to apply
the framework, which is done below, and sketched here. We order monomials of multivariate
polynomials, with any order respecting the total degree of polynomials (e.g., the graded
lexicographic order). The leading monomial (i.e., the first monomial for that order) of the
polynomial P #”

φ ,x is T xσ(1)pσ(1)d1
1 · · ·T xσ(n)pσ(n)dn

n , with di > 0 the degree of φi. The polynomials
for the helper information (helpk) are T

j
i . Therefore, the leading monomials of help1, . . . , help`,

P # ”
φ1,x1

, . . . , P # ”
φq ,xq

, 1 are all distinct, when x1, . . . , xq are distinct inputs. This means that
the matrix whose columns correspond to monomials (ordered as specified above) and whose
rows correspond to the polynomials help1, . . . , help`, P # ”

φ1,x1
, . . . , P # ”

φq ,xq
, 1 (ordered according

to their leading monomial) is in echelon form. Hence, the latter polynomials are linearly
independent. Finally, using Theorem 6.2.3, we obtain the following result.

Lemma 6.2.5. Assuming pnd-DDHI holds in G and h is a collision-resistant hash function,
the construction obtained with the above ingredients and Theorem 6.2.3 is a ΦSn,d-related-key
secure pseudorandom function.

Moreover, the running time of the reduction is polynomial in n, d, pn, and in the running
time of the adversary.

Proof of Lemma 6.2.5. Let Pσ◦ #”
φ ,x(#”

T) = ∏n
i=1 φi(

#”

T)pσ(i)·xσ(i) for σ ◦ #”

φ ∈ ΦSn,d and x ∈
{0, 1}n. Let S = {11 ‖ z | z ∈ {0, 1}n−2}. The only thing we need to prove is that, for any
sequence (x1, σ1 ◦

#”

φ 1), . . . , (xq, σq ◦
#”

φ q), polynomials 1, T ji for i = 1, . . . , n and j = 1, . . . , d
(revealed in the helper information) and polynomials Pσ1◦

#”
φ 1,x1

, . . . , Pσq◦
#”
φ q ,xq

are linearly
independent, as long as x1, . . . , xq are all distinct in S.
By contradiction, let us assume that there exists a sequence of distinct polynomials

P1, . . . , Pq, where for k = 1, . . . , q, Pk = Pσ◦ #”
φ ,x for distinct x ∈ S or Pk = T ji for some

(i, j) ∈ {1, . . . , n} × {1, . . . , d} or Pk = 1, such that:

q∑
k=1

λk · Pk = 0

with λk 6= 0 for all k. Since polynomials T ji , for i = 1, . . . , n and j = 1, . . . , d and polynomial
1 are clearly linearly independent over Zp, then there is at least one polynomial Pk in the
above sum such that Pk corresponds to Pσ◦ #”

φ ,x for a query (σ ◦ #”

φ, x) with x ∈ S.
Let Pσ◦ #”

φ ,x(#”

T) denote a polynomial in the above sum such that x ∈ S has the maximum
Hamming weight amongst all the bitstrings z ∈ S such that there exists k ∈ {1, . . . , q}
and (σ ◦ #”

φ) ∈ ΦSn,d such that Pk = Pσ◦ #”
φ ,z. Since x ∈ S, hw(x) ≥ 2. Since φi is a non-

constant polynomial for all i = 1, . . . , n, letting di denote the degree of φi, the monomial∏n
i=1 T

dipσ(i)·xσ(i)
i appears in Pσ◦ #”

φ ,x(#”

T). Hence, since ∑q
k=1 λk ·Pk is the zero polynomial and

λk 6= 0 for all k, there exists another query Pσ′◦ #”
φ ′,x′ such that the monomial ∏n

i=1 T
dipσ(i)·xσ(i)
i

also appears in Pσ′◦ #”
φ ′,x′ . Hence hw(x′) ≥ hw(x).

But x has maximum Hamming weight by assumption, so hw(x′) ≤ hw(x) and then
hw(x′) = hw(x). We note that the degree in Ti in this monomial is either 0, if xσ(i) = 0, or
dipσ(i) otherwise, where 1 ≤ di ≤ d. But by definition of Pσ′◦ #”

φ ′,x, the possible degrees in Ti
in a monomial that appears in Pσ′◦ #”

φ ′,x is either 0 if x′σ′(i) = 0 or a non-zero multiple l · pσ′(i)
of pσ′(i) with 1 ≤ l ≤ d otherwise.

Ch
ap

te
r6

6.2 Applications to Related-Key Security 97

However, p1, . . . , pn are clearly coprime and d < p1 < . . . < pn by assumption. Hence, for
all i = 1, . . . , n such that xσ(i) = 1, we have, by Gauss’s Lemma, pσ′(i) = pσ(i) and xσ(i) = 1
implies x′σ′(i) = 1. Finally, since pσ′(i) = pσ(i) implies σ′(i) = σ′(i) for all i such that xσ(i) = 1,
and since they have both same Hamming weight, it implies that x = x′ and then to have
such a linear combination, we need to use twice the same entry x ∈ S, which is not possible.

The linear independence property follows, and so does Lemma 6.2.5.

6.2.3 Other Applications to Related-Key Security

Here, we describe how our new framework can be used to build related-key secure pseudo-
random functions for two other classes. The first class we address, in Section 6.2.3.1, is the
class Φd of degree at most d univariate polynomials. We use our framework to show that
for any choice of weights, WNR is Φd-related-key secure. The second class we address, in
Section 6.2.3.2, is the class Φn+1,multi-aff of non-constant affine multivariate functions. How-
ever, this construction is of limited interest and should only be seen as a first step towards
building related-key secure pseudorandom functions for large classes of RKD functions. All
the proofs of statements are detailed in Section 6.2.3.3.

6.2.3.1 Related-Key Security for Univariate Polynomials

Here, we apply our framework to WNR, for the class of RKD functions Φd = { #”

φ : K → K |
#”

φ i : #”

T 7→ ∑d
j=0 αi,j · T ji , (αi,1, . . . , αi,d) 6= 0d, ∀i = 0, . . . , n}, for any choice of weights. In

what follows, we assume that w0 6= 0, but similar results can easily be proven if w0 = 0.
In order to apply our framework to WNR and Φd, we need to define associated algebraic

fingerprint, helper function, collision-resistant hash function and expansion function. We
define these as follows:

• [b] ∈ G denote the generator output by the setup procedure along with G and p

• #”Ω: #”a ∈ Znp 7→ ([a1] , . . . , [an]) ∈ Gn

• HelpΦd :
#”a ∈ Znp 7→ ([1] , [a1] , . . . ,

[
ad1
]
, . . . , [an] , . . . ,

[
adn

]
) ∈ Gnd+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

We just need to prove that E satisfies the linear independence property required to apply
the framework, which is done in Section 6.2.3.3, and then, using Theorem 6.2.3, we obtain
the following lemma.

Lemma 6.2.6. Let m = max(w0, . . . , wn) be the maximum component of #”w. Assuming
md-DDHI holds in G and h is a collision-resistant hash function, the construction obtained
with the above ingredients and Theorem 6.2.3 is a Φd-related-key secure pseudorandom
function.
Moreover, the running time of the reduction is polynomial in n, d,m, and in the running

time of the adversary.

98 Chapter 6 Applications

6.2.3.2 Related-Key Security for Affine Multivariate Functions

In order to deal with larger classes of related-key attacks, it would be important to consider
multivariate RKD functions in which the attacker is allowed to mix different components of
the secret key. In fact, the construction WNRd-lin given in the previous section seems like
a plausible candidate if we assume that the RKD functions that are being applied to each
sub-key are linearly independent. However we have not been able to prove or disprove this
statement. We construct an alternative pseudorandom function that can be shown to be
related-key secure against an adversary that can modify the key by applying functions from
Φn+1,multi-aff, defined as:

{(M ,
#”

b) | (M ,
#”

b) ∈ Z(n+1)×(n+1)
p × Zn+1

p s.t. # ”

M i 6= 0n+1,∀i = 0, . . . , n}

where # ”

M i denote the i-th row of M , for i = 0, . . . , n. Hence, for a key #”a = (a0, . . . ,
an) ∈ Zn+1

p , applying an RKD function (M ,
#”

b) ∈ Φn+1,multi-aff, leads to the key M · #”a + #”

b =
(# ”

M0 · #”a + b0, . . . ,
”

Mn · #”a + bn) ∈ Zn+1
p .

Since the new construction is based on WNR with exponential weights wi = 2i, it is of
limited interest given that its security relies on an assumption whose input is of exponential
size. Moreover, in settings in which it is acceptable to have security assumptions with
exponential-size inputs, much simpler constructions are possible. Nevertheless, we still
believe that the new construction provides a first small step towards building related-key
secure pseudorandom functions for large classes of RKD functions such as multivariate affine
functions or even multivariate polynomial functions.
To construct a Φn+1,multi-aff-related-key secure pseudorandom function, we apply our

framework to a particular case of WNR, defined as follows:
Exponential WNR. We define WNRexp as the particular case of WNR, where wi = 2i, for
i = 0, . . . , n. Please refer to Section 6.1.1.2 for details.

In order to apply our framework to WNRexp and Φn+1,multi-aff, we need to define associated
algebraic fingerprint, helper function, collision-resistant hash function and expansion function.
We define these as follows:

• [b] ∈ G denote the generator output by the setup procedure along with G and p

• #”Ω: #”a ∈ Znp 7→ ([a1] , . . . , [an]) ∈ Gn

• HelpΦn+1,multi-aff : #”a ∈ Znp 7→ ([1] , [a1] , . . . , [an]) ∈ Gn+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

We just need to prove that E satisfies the linear independence property required to apply
the framework, which is done in Section 6.2.3.3, and then, combining the above ingredients
with Theorem 6.2.3, we obtain the following theorem.

Theorem 6.2.7. Assuming 2n+1-DDHI holds in G and h is a collision-resistant hash function,
the construction obtained with the above ingredients and Theorem 6.2.3 is a Φn+1,multi-aff-
related-key secure pseudorandom function.

Moreover, the running time of the reduction is polynomial in n, d, 2n, and in the running
time of the adversary.

Ch
ap

te
r6

6.2 Applications to Related-Key Security 99

Remark 6.2.8. The above construction could be easily generalized to multivariate polynomial
RKD functions of degree at most d, by properly changing the exponential sequence used in
the construction to wi = (d + 1)i in order to guarantee that, for any two different values
of x and x′ and any di, d′i ∈ {1, . . . , d} for i = 0, . . . , d, the sums w0d0 + ∑n

i=1widixi and
w0d′0 +∑n

i=1wid
′
ix
′
i are distinct. We can then use exactly the same helper function than in

Section 6.2.2.2.

6.2.3.3 Proof of Linearly Independence Properties for Section 6.2.3.1 and
Section 6.2.3.2

For Univariate Polynomials. Let P #”
φ ,x(#”

T) = φ0(#”

T)w0 ·∏n
i=1 φi(

#”

T)wixi for #”

φ ∈ Φd and
x ∈ {0, 1}n. Let S = {11 ‖h | z ∈ {0, 1}n−2}. The only thing we need to prove is that, for
any sequence (x1,

#”

φ 1), . . . , (xq,
#”

φ q), polynomials 1, T ji for i = 0, . . . , n and j = 1, . . . , d and
polynomials P #”

φ 1,x1
, . . . , P #”

φ q ,xq
are linearly independent, as long as x1, . . . , xq are distinct in

S.
By contradiction, let us assume that there exists a sequence of distinct polynomials

P1, . . . , Pq, where for k = 1, . . . , q, Pk = P #”
φ ,x for distinct x ∈ S or Pk = T ji for some

(i, j) ∈ {0, . . . , n} × {1, . . . , d} or Pk = 1, such that:

q∑
k=1

λk · Pk = 0

with λk 6= 0 for all k.
Since polynomials T ji , for i = 0, . . . , n and j = 1, . . . , d and polynomial 1 are clearly linearly

independent over Zp, there is at least one polynomial Pk in the above sum such that Pk
corresponds to P #”

φ ,x for a query (#”

φ, x) with x ∈ S.
We now consider an arbitrary monomial T z0

0 · · ·T znn appearing in at least one of the
polynomials in this combination and such that z has highest Hamming weight. It is clear
that hw(z1 ‖ . . . ‖ zn) ≥ 2, since the Hamming weight of x ∈ S is at least 2. But, since the
sum is the zero polynomial, there must exist at least two distinct polynomials P #”

φ 1,x1
and

P #”
φ 2,x2

containing this monomial T z0
0 · · ·T znn in the above sum.

Let ẑ denote the n-bit string such that ẑi = 0 if zi = 0, while ẑi = 1 otherwise, for
i = 1, . . . , n. It is clear that hw(ẑ) ≥ 2 and then ẑ ∈ S. Also, since ẑ has the highest possible
Hamming weight, x1 = x2 = ẑ (from the definitions of P #”

φ 1,x1
and P #”

φ 2,x2
and since the first

components of #”

φ 1 and #”

φ 2, which are the polynomials that apply to A0, have degree at least
1). This means ẑ ∈ S has been used twice, which is forbidden. Hence, all the polynomials
are linearly independent. The linear independence property follows.
For Multivariate Affine Functions. Let P(M ,

#”
b),x(#”

T) = (# ”

M0 ·
#”

T +b0)∏n
i=1(# ”

M i ·
#”

T +bi)2i·xi

for (M ,
#”

b) ∈ Φn+1,multi-aff and x ∈ {0, 1}n, where # ”

M i denote the i-th row of matrix M . Let
S = {11 ‖h | z ∈ {0, 1}n−2}. The only thing we need to prove is that, for any sequence
(x1, (M1,

#”

b 1)), . . . , (xq, (M q,
#”

b q)) with, for k = 1, . . . , q, xk all distinct in S and (Mk,
#”

b k) ∈
Φn+1,multi-aff, polynomials 1, Ti for i = 0, . . . , n and polynomials P(M1,

#”
b 1),x1

, . . . , P(Mq ,
#”
b q),xq

are linearly independent.
Polynomial 1 is a degree 0 polynomial and polynomials Ti, for i = 0, . . . , n are degree

1 polynomials, and they are all linearly independent. Then, we just prove that for any

100 Chapter 6 Applications

((M ,
#”

b), x) and ((M ′,
#”

b ′), x′) with x, x′ ∈ S and x 6= x′, the degrees of polynomials P(M ,
#”
b),x

and P(M ′,
#”
b ′),x′ are always distinct and greater than 2.

Let ((M ,
#”

b), x) with x ∈ S, then P(M ,
#”
b),x(#”

T) = (# ”

M0 ·
#”

T + b0)∏n
i=1(# ”

M i ·
#”

T + bi)2i·xi . Since
for any i = 0, . . . , n, # ”

M i 6= 0n+1, # ”

M i ·
#”

T + bi is always a multivariate polynomial of degree
1, (# ”

M i ·
#”

T + bi)2i is always a polynomial of degree 2i. Hence, P(M ,
#”
b),x(#”

T) is a multivariate
polynomial of degree ∑n

i=0 2ixi, which is clearly greater than 2 since hw(x) ≥ 2 for any x ∈ S.
Finally, since the entries x used in distinct queries has to be always distinct, and since

for any x 6= x′, ∑n
i=0 2ixi 6=

∑n
i=0 2ix′i by the uniqueness of the binary decomposition, the

degrees of polynomials P(M ,
#”
b),x and P(M ′,

#”
b ′),x′ are always distinct and at least 2 for any

queries ((M ,
#”

b), x) and ((M ′,
#”

b ′), x′) with x, x′ ∈ S and x 6= x′. The linear independence
property follows.

6.2.4 Extension to Weaker Assumptions

One can easily extend part of the above results to k-Lin-based pseudorandom functions
designing a more general framework and still using the LIP theorem. One just needs to
be careful that the RKD functions do not mix the matrices that are components of the
key, such that Condition 2 on page 71 is always satisfied. In particular, one cannot prove
related-key security for multivariate affine functions or permutations, but the result for
univariate polynomials can easily be extended to k-Lin. We do not detail more this possibility
as it is rather immediate.

6.2.5 A Further Generalization of the Framework

While the above framework (Section 6.2.2.1) is already quite powerful, it makes a strong
assumption about the form of the outputs of the pseudorandom functions, which prevents it
to being applied for other forms of pseudorandom functions, contrarily to the frameworks
proposed in Chapter 3. Nevertheless, the latter frameworks require the use of a strong key
fingerprint. The existence of such a tool is not always clear. For instance, given #”w ∈ Zp×(Z∗p)n,
if w0 6= 0 or if there exists i ∈ {1, . . . , n} such that wi > 1, there is no practical strong key
fingerprint for WNR #”w . Also, for any weight, it is not very clear that there exists a strong
key-fingerprint for WBMR. Thus, it seems one cannot apply any of the frameworks given in
Chapter 3 to WNR or WBMR, in general.

Therefore, in this section, we design a new and generalized framework, that generalizes in
particular the frameworks given in Chapter 3 and does not make any specific assumption about
the form of the output of the pseudorandom function. This generic framework encompasses
in particular the framework we propose in Section 3.6 as well as the framework given above
in Section 6.2.2.1 (using the the LIP theorem). However, the latter algebraic framework
(Section 6.2.2.1) is significantly easier to use, which explains why we chose to give it first and
propose this generic framework only as an extension, for completeness.
We introduce new notions, defined as follows, that extends the notions introduced in

Section 6.2.2.
Perfectly Binding Key-Commitment. In order to overcome the lack of a strong key finger-
print, we introduce perfectly binding key-commitment. A perfectly binding key-commitment
is a (deterministic) algorithm Com: K → ComSp that takes a key K ∈ K as input and
outputs a value Com(K) such that for any K,K ′ in K, we have Com(K) = Com(K ′) if and

Ch
ap

te
r6

6.2 Applications to Related-Key Security 101

only if K = K ′ (perfectly binding). As we will see later, we also want that for K ∈ K,
Com(K) hides the value of K. However, we do not need special requirement for this in the
present definition, since this requirement will be implied by the extended definitions of the
key-collision and unique-input-related-key pseudorandom function security notions, defined
below.
Helper Information. In order to prove the security of our framework, we need to be able
to compute commitments of any related key from some (public) information. Then, we
enable the adversary to have access to some helper information helpΦ = HelpΦ(K) ∈ HelpSp
about the secret K, where HelpΦ is a function from K to HelpSp. The helper function HelpΦ
depends on the class Φ of RKD functions we are interested in. We suppose that it is possible
to compute Com(φ(K)) just by knowing φ and HelpΦ(K) but not K.
Then, we use the extended version of the key-collision and unique-input-rka-prf security

games depicted in Figure 6.3 and Figure 6.4, where Initialize also leaks helpΦ to the adversary.
We remark that unique-input-related-key pseudorandom function security implies that helpΦ
hides K, otherwise it would be trivial to win the game defining this security notion. This
directly implies that the commitment of K is hiding, since it can be computed from helpΦ.

Remark 6.2.9. We do not need a statistical-key-collision security notion, because it is
implied by the extended key-collision security. The compatibility of the hash function is also
simplified. We just require that it is a collision-resistant hash function and that its range S
is such that the extended (S,Φ)-unique-input-related-key pseudorandom function security
holds.

proc Initialize
pp $← M.Setup(1κ)
K

$← K
helpΦ ← HelpΦ(K)
Return (pp, helpΦ)

proc RKFn(φ, x)
y ← M.Evalpp(φ(K), x)
Return y
proc Finalize(φ1, φ2)
Return (φ1 6= φ2 and φ1(K) = φ2(K))

Figure 6.3: Game defining the extended Φ-key-collision security off M with helper function
Help.

proc Initialize
K

$← K ; b $← {0, 1}
helpΦ ← HelpΦ(K)
Return helpΦ

proc Finalize(b′)
Return b′ = b

proc RKFn(φ, x)
If x ∈ S then

If b = 0 then y ←M(φ(K), x)
Else y $← R

Else y ←⊥
Return y

Figure 6.4: Security game for extended (S,Φ)-unique-input-related-key pseudorandom func-
tion security of a pseudorandom function M with helper function Help

Using these new tools, we obtain the following framework, which generalizes our previous
frameworks.

102 Chapter 6 Applications

Theorem 6.2.10. Let M = (M.Setup,M.Eval) be a pseudorandom function whose key space,
domain, and range are denoted K,D,R, respectively. Let Com: K → ComSp be a perfectly
binding key-commitment. Let HelpΦ: K → HelpSp be the helper function associated to Com
and Φ. Let D = D × ComSp and let H: D → S be a compatible collision-resistant hash
function, with S ⊆ D. Define F = (F.Setup,F.Eval) as F.Setup = M.Setup and:

F.Evalpp(K,x) := M.Evalpp(K,H(x,M.Evalpp(K,Com(K))))

for all K ∈ K and x ∈ D.
Then, assuming M is an (S,Φ)-unique-input-related-key secure pseudorandom function

and is extended Φ-key-collision secure, and H is a collision-resistant hash function, then F
is a Φ-related-key secure pseudorandom function.

Proof Overview. The proof of the above theorem is detailed below and relies on the
sequence of 10 games (games G0 −G9) described in Figure 6.5. It is very similar to the
proof other frameworks. Here we provide a brief overview. Since the RKD functions that we
consider in our case may have claws, we start by dealing with possible collisions on the related
keys in the RKPRFRealF case, using the extended key-collision notion (games G0 −G2).
These claws can be detected by looking for collisions of perfectly binding key-commitments
for different RKD functions. Then, in games G3 −G4, we deal with possible collisions on
hash values in order to ensure that the hash values h = H(x,Com(K)) used to compute
the output y are distinct. Then, we use the new extended (S,Φ)-unique-input-related-key
pseudorandom function security notion to show that it is hard to distinguish the output of F
from a uniformly random output (games G5 −G6). Finally, we use once again the extended
key-collision security notion to deal with possible key collisions in the RKPRFRandF case
(games G7 −G9) so that G9 matches the description of the RKPRFRandF Game. These key
collisions can still be detected in these games by making crucial use of the helper function.

Proof of Theorem 6.2.10. The proof is based on the sequence of games in Figure 6.5. Much
of the proof is similar to the proof of previously introduced frameworks. We denote by Succi
the event that game Gi output takes the value 1. Boolean flags are assumed initialized to
false. Games Gi, Gj are said to be identical until flag if their code differs only in statements
that follow the setting of flag to true. Let A be an adversary against the Φ-related-key
security of F . We assume without loss of generality that adversary A never repeats an oracle
query.
G0 matches the description of the RKPRFRealF game, so:

Pr [Succ0] = Pr
[

RKPRFRealAF ⇒ 1
]
.

Game G1 introduces storage of used RKD functions and values of key-commitment com
in sets D and E respectively and sets flag1 to true if the same value of com arises for two
different RKD functions. Since this storage does not affect the values returned by RKFn

Pr [Succ1] = Pr [Succ0] .

Game G2 adds the boxed code which changes how the repetition of a commitment value
com is handled, by picking instead a random value from ComSp\E that will not repeat any
previous one. Games G1 and G2 are identical until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1] ,

Ch
ap

te
r6

6.2 Applications to Related-Key Security 103

proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

com← Com(φ(K))
h← H(x, com)
y ←M(φ(K), h)
Return y
proc Finalize(b’) // All Games
Return b′

proc Initialize // G1,G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

com← Com(φ(K))
If com ∈ E and φ /∈ D then
flag1 ← true ; com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
y ←M(φ(K), h)
Return y

proc Initialize // G3,G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

com← Com(φ(K))
If com ∈ E and φ /∈ D

then com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
If h ∈ G then flag2 ← true

h
$← S\G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

com← Com(φ(K))
If com ∈ E and φ /∈ D

then com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
If h ∈ G then h $← S\G
G← G ∪ {r}
y

$← R
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G6

y
$← R

Return y

proc Initialize // G7, G8

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7 , G8

If φ(K) ∈ E and φ /∈ D then
y

$← R ; flag3 ← true
else y ← G(φ(K), x)
D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G9

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G9

y ← G(φ(K), x)
Return y

Figure 6.5: Games for the proof of Theorem 6.2.10

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We
design an adversary D attacking the extended Φ-key-collision security of M such that

Pr [E1] ≤ Advext-kc
Φ,M (D) .

Adversary D gets helper information helpΦ = HelpΦ(K), then runs A . When the latter
makes an RKFn-query (φ, x), adversary D computes com = Com(φ(K)) using its helper
information and then h = H(x, com) and finally queries (φ, h) to its oracle and sends the
value it gets to A . When A halts, D searches for two different RKD functions φ queried by
A that lead to the same commitment value com and returns these two functions if found.

104 Chapter 6 Applications

Since Com is a perfectly binding key-commitment, two such functions lead to the same key,
so D wins if he finds such two functions.

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same
hash output arises twice. Since this storage does not affect the values returned by RKFn,
we have

Pr [Succ3] = Pr [Succ2] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by
picking instead a random value h from S\G that will not repeat any previously used hash
value. Games G3 and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2] ,

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We
design an adversary C attacking the cr-security of H such that

Pr [E2] ≤ Advcr
H(C) .

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter
makes an RKFn-query (φ, x), adversary C responds via

com← Com(φ(K))
j ← j + 1 ; φj ← φ ; xj ← x

If com ∈ E and φ /∈ D then com $← ComSp\E (∗)
D ← D ∪ {φ} ; E ← E ∪ {com}
comj ← com
h← H(x, com)
hj ← h
y ←M(φ(K), h)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it
finds them, outputs (xa, coma), (xb, comb) and halts. The pairs (xa, coma) and (xb, comb) are
distinct. Indeed, consider two cases: first, if φa = φb then since A never repeats an oracle
query, xa 6= xb hence (xa, coma) 6= (xb, comb). Second, if φa 6= φb, then condition (∗) ensures
that coma 6= comb. Hence once again, (xa, coma) 6= (xb, comb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
H(C) .

In game G5, instead of returning the value M(φ(K), h), we always return a random value.
To show that games G4 and G5 are indistinguishable, we design an adversary B against the
extended (S,Φ)-unique-input-related-key pseudorandom function security of M such that

Pr [Succ4] ≤ Pr [Succ5] + Advext-ui-prf-rka
Φ,S,M (B) .

Adversary B starts by initializing sets D ← ∅, E ← ∅, G ← ∅. Then B gets helper
information helpΦ = HelpΦ(K), then runs A . When the latter makes an RKFn-query (φ, x),
B responds as follows. First, it computes com = Com(φ(K)) using its helper information.
Then, B checks if com ∈ E and φ ∈ D. If they do, B picks com $← ComSp\E at random. B

Ch
ap

te
r6

6.2 Applications to Related-Key Security 105

then sets D ← D ∪ {φ} and E ← E ∪ {com}. Next, B computes h← H(x, com) and checks
if h ∈ G. If it does, B picks h $← S\G at random. Notice that this step guarantees that
all values h are in S and are all distinct as long as A makes at most |S| queries. Finally,
B sets G ← G ∪ {h}, makes the query (φ, h) to its oracle, and returns the value it gets,
which is either M(φ(K), h) or a uniformly random value, to A . When A halts, B halts
with the same output. It follows from these observations that B is a unique-input adversary
for queries in S. Finally, it is clear that if B’s oracle gives real outputs of M for queries in
S, then it simulates exactly game G4 and if B’s oracle gives uniformly random values for
queries in S, then it simulates exactly game G5.

In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6
are identical since the value returned is a uniformly random value for any query. Then, we
have

Pr [Succ5] = Pr [Succ6] .
In game G7, we check if two different queries can lead to a key collision. Since the “If” test
ensures that the returned value is still uniformly random over R even when two different
queries result in the same key, games G6 and G7 are identical. Hence,

Pr [Succ6] = Pr [Succ7] .

In game G8, we compute the output of RKFn using a random function G in Fun(K,D,R).
Since games G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7] ≤ Pr [Succ8] + Pr [E3] ,

where E3 denotes the event that the execution of A with gameG8 sets flag3 to true. To bound
the probability of event E3, we design an adversary D attacking extended Φ-key-collision
security of M such that

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Adversary D starts by initializing a list L ← empty list and by choosing an element ψ
in Φ and by setting ψ1 ← ψ and ψ2 ← ψ. Then, it runs A . When the latter makes an
RKFn-query (φ, x), adversary D does the following: it first computes com ← Com(φ(K))
using its helper information and searches for all tuples (φi, comi) ∈ L such that comi = com.
If it does find such tuples, it checks for all of them if φ 6= φ` and in that case sets ψ1 ← φ`
and ψ2 ← φ. Finally, D picks y $← R at random, returns y to A and adds (φ, com) to L.
When A halts, B halts and outputs (ψ1, ψ2). If the execution of A sets flag3 to true, then
A has queried φ1 6= φ2 such that φ1(K) = φ2(K) and assuming it has first queried φ1, when
D computes Com(φ2(K)) and checks if this value is already in L, it finds that this value
matches Com(φ1(K)) and since φ1 6= φ2, it sets ψ1 = φ1 and ψ2 = φ2, so D wins. Then, we
have

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Since A does not repeat oracle queries and since key collisions are dealt with in a similar
way, it follows that games G8 and G9 are identical. Thus,

Pr [Succ8] = Pr [Succ9] .

Finally, G9 matches the description of the RKPRFRandF game, so:

Pr [Succ9] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

Theorem 6.2.10 now follows by combining the bounds arising in the different game hops.

106 Chapter 6 Applications

6.3 Applications to Aggregate Pseudorandom Functions

In this section, we show that for all constructions proposed in [CGV15], one can prove the
aggregate pseudorandom function security with a polynomial-time reduction, while proofs
proposed in this seminal paper suffered from an exponential (in the input size) overhead in
the running time of the reduction. Moreover, our reductions are almost straightforward via
the PLP theorem.
A first attempt to solve the issue of the exponential time of the original reductions was

done in [CH15]. By introducing multilinear pseudorandom functions and giving a particular
instantiation, Cohen and Holmgren showed that one can prove the aggregate pseudorandom
function security of NR with a polynomial-time reduction for hypercubes and decision trees
aggregation. However, their technique does not extend to the more general case of read-once
formulas aggregation. Also, as we show in what follows, their construction can be seen as a
particular case of our main theorem, and then can be proven secure very easily using our
result.
Here, we provide a polynomial-time reduction for the general case of read-once formulas.

This implies in particular the previous results on hypercubes and decision trees which are
particular cases of read-once formulas.
Intuitively, if we consider the PLP security for k = 1 and aggregation with the Naor-

Reingold pseudorandom function, our PLP theorem (Theorem 5.2.2) implicitly says that as
long as the aggregate values can be computed as a group element whose discrete logarithm is
the evaluation of a multivariate polynomial on the key, then, if the corresponding polynomials
have a small representation, the PLP theorem guarantees the security (with a polynomial-time
reduction), even if the number of points aggregated is super-polynomial. Please notice that if
these polynomials do not have any small representation (e.g. the smallest representation is
exponential in the input size), then there is no point of considering such aggregation, since
the whole point of aggregate pseudorandom function lies in the possibility of aggregating
super-polynomially many outputs with a very efficient computation.

6.3.1 Read-Once Formula Aggregation

Read-Once Formulas. A read-once formula is a circuit on x = (x1, . . . , xn) ∈ {0, 1}n
composed of only AND, OR and NOT gates with fan-out 1, so that each input literal is fed
into at most one gate and each gate output is fed into at most one other gate. We denote by
ROFn the family of all read-once boolean formulas over x1, . . . , xn variables. In order to ease
the reading, we restrict these circuits to be in a standard form, so that they are composed
of fan-in 2 and fan-out 1 AND and OR gates, and NOT gates occurring only at the inputs.
This common restriction can be done without loss of generality. Hence, one can see such
a circuit as a binary tree where each leaf is labeled by a variable xi or its negation x̄i and
where each internal node has a label C and has two children with labels CL and CR and
represents either an AND or an OR gate (with fan-in 2). We identify a formula (and the set
it represents) with the label of its root Cφ.
Aggregation for Read-Once Formulas. We recall the definition of read-once formula
aggregation used in [CGV15]. For the sake of simplicity, we only consider the case of the
Naor-Reingold pseudorandom function. We define the aggregation function for read-once
formulas of length n as follows.

Ch
ap

te
r6

6.3 Applications to Aggregate Pseudorandom Functions 107

The collection Srof ⊆ {0, 1}n corresponds to all the subsets of S ⊆ {0, 1}n such that there
exists a read-once formula Cφ ∈ ROFn such that S = {x ∈ {0, 1}n | Cφ(x) = 1}.
The aggregation function Γrof is defined as the product (assuming the group is a multi-

plicative group) of the values on such a subset. Hence, we have:

AGGNR,Srof ,Γrof (Cφ) =
∏

x|Cφ(x)=1

[
a0

n∏
i=1

axii

]
=

a0
∑

x|Cφ(x)=1

n∏
i=1

axii

=
[
a0 ·ACφ,1(#”a)

]
,

where AC,b is the polynomial ∑x∈{0,1}n|C(x)=b
∏n
i=1 T

xi
i for any C ∈ ROFn and b ∈ {0, 1}.

Efficient Evaluation of AC,b. One can efficiently compute AC,b recursively as follows:

• If C is a literal for variable xi, then AC,1 = Ti and AC,0 = 1 if C = xi; and AC,1 = 1
and AC,0 = Ti if C = x̄i;

• If C is an AND gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1
AC,0 = ACL,0 ·ACR,0 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1;

• If C is an OR gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1
AC,0 = ACL,0 ·ACR,0.

Now we have introduced everything, we can prove that NR (or more general constructions)
is an (Srof ,Γrof)-aggregate pseudorandom function under the standard DDH assumption, as
stated in the lemma below.

Lemma 6.3.1. Assuming DDH holds in G, NR is an (Srof ,Γrof)-aggregate pseudorandom
function.
Moreover, the running time of the reduction is polynomial in n and in the running time of

the adversary.

The proof is straightforward using the PLP theorem: all queries in the security game for
the aggregate PRF can be seen as a queries of the form Pl(P) for some polynomial P with a
small representation: Fn(x) returns Pl(T0

∏n
i=1 T

xi
i) and AGG(Cφ) returns Pl(T0 ·ACφ,1(#”

T)).
Details are given below.

Proof of Lemma 6.3.1. Let A be an adversary against the (Srof ,Γrof)-aggregate pseudoran-
dom function security of NR that makes q oracle queries. We design an adversary B against
the (n, 1, 1)-PLP security in G as follows, where we denote by a1, . . . , an and a0 = b the secret
values chosen at random in the Initialize procedure of the game defining the (n, 1, 1)-PLP
security (it corresponds to A1, . . . ,An and B but since k = 1, these values are simply scalars
in Zp).

B runs A . The latter can make two types of queries, so let us first describe how B
responds to both these types of queries. The first type consists in standard PRF queries.
When adversary A makes a query x, then B makes the query Px = ∏n

i=1 T
xi
i and returns

the value it gets to A . The second type of queries consists in aggregate PRF values. When
A makes an aggregate query Cφ ∈ ROFl, for some l ≤ n, the adversary B computes

108 Chapter 6 Applications

ACφ,1(#”

T) using the efficient recursive evaluation, as described in Section 6.3, then queries
this polynomial PCφ = ACφ,1(#”

T), and returns the value it gets to A . As ACφ,1(#”

T) is a
multivariate polynomial in T1, . . . , Tl with degree at most 1 in any indeterminate (since it
is a sum of such multivariate polynomials), clearly, PCφ is a multivariate polynomial with
degree at most 1 in any indeterminate.
The only thing we need to prove is that B simulates correctly either AGGPRFRealNR or

AGGPRFRandNR, which is almost straightforward by definition of the PLP security. On the
one hand, it is clear that if B’s oracle responds to a query P by [P (#”a) · b], then A gets exactly
the (standard or aggregate) values of the Naor-Reingold PRF defined with the generator
g = [1] and with the key (b, a1, . . . , an) ∈ Zn+1

p . On the other hand, if B’s oracle responds to
a query P by random values computed taking into account related between P and previously
queried polynomials, then the values A gets are statistically indistinguishable from the values
it would get from the AGGPRFRandNR oracles. Indeed, the only difference lies in the fact
that any value sent to A is random if the corresponding polynomial is linearly independent
from previous queries, or is computed from previous values if the corresponding polynomial
is linearly dependent, but these dependence are tested using a statistical procedure (which is
correct with probability at least p−1

p) while in AGGPRFRandNR, no error can occur.
Hence, in the first case, B simulates perfectly AGGPRFRealNR, while in the second game,

the simulation is statistically indistinguishable from AGGPRFRandNR. Thus, we have shown
that

Advagg-prf
NR,Srof ,Γrof

(A) ≤ p

p− 1 ·Adv(n,1,1)-plp
G (B)

and Lemma 6.3.1 now follows from the PLP theorem.

6.3.2 Impossibility Results

Impossibility Result for CNF (Conjunctive Normal Form) and DNF (Disjunctive
Normal Form) Formulas. In [CGV15], the authors show that, unless NP=BPP, there
does not exist an (S,Γ)-aggregate pseudorandom function1, with D = {0, 1}n, S containing
the following sets:

Sφ = {x ∈ {0, 1}n | φ(x) = 1}
with φ a CNF formula with n-bit input, and Γ a “reasonable” aggregate function, e.g., Γrof
(assuming R is a cyclic group G of prime order p). The proof consists in showing that if such
aggregate pseudorandom function exists, then we can solve SAT in polynomial time. More
precisely, given a SAT instance, i.e., a CNF formula φ, we can compute AGG(φ). If φ is
not satisfiable, AGG(φ) = 1 ∈ G, while otherwise AGG(φ) = ∏

x∈{0,1}n, φ(x)=1 F (K,x). This
latter value is not 1 with high probability, otherwise we would get a non-uniform distinguisher
against aggregate pseudorandomness.

The case of DNF formulas (or more generally of any class for which satisfiability is tractable)
was left as an important open problem in [CGV15]. Here, we show that unless NP=BPP, there
also does not exist an (S,Γ)-aggregate pseudorandom function as above, when S contains Sφ
for any DNF (instead of CNF) formula φ with n-bit input. For that, we first remark that the
formula >, always true, is a DNF formula (it is the disjunction of all the possible literals),

1We suppose that the aggregate pseudorandomness security property holds non-uniformly. When S is
expressive enough, we can also do the proof when this security property holds uniformly, see [CGV15,
Section 2.2] for details.

Ch
ap

te
r6

6.4 Applications to Multilinear Pseudorandom Functions 109

and that the negation φ̄ of a CNF formula φ is a DNF formula. Then, given a SAT instance,
a CNF formula φ, we compute AGG(φ̄) and AGG(>). If φ is not satisfiable, φ̄ is always true
and AGG(φ̄) = AGG(>), while otherwise, AGG(φ̄) = AGG(>)/∏x∈{0,1}n, φ(x)=1 F (K,x).
This latter value is not AGG(>) with high probability, otherwise we would get a non-uniform
distinguisher against aggregate pseudorandomness.

6.3.3 Extension to Weaker Assumptions

One can easily extend this result for k-Lin-based pseudorandom functions using our main
theorem. Also, one can easily use our PLP theorem (Theorem 5.2.2) to prove the security for
any aggregate as soon as the aggregate values can be represented as group elements whose
discrete logarithms are the evaluation of a (multivariate) polynomial on the key (and that
this polynomial is efficiently computable). We do not detail further this as it is immediate.

6.4 Applications to Multilinear Pseudorandom Functions
To conclude this chapter, we explain how the PLP theorem can be used to prove directly the
security of multilinear pseudorandom functions.

6.4.1 Cohen-Holmgren Construction

We first explain how to proof the security of CH. Please refer to Section 2.3.4.2 for the
definition of this construction. Using the PLP theorem, one can easily obtain the following
lemma.

Lemma 6.4.1. Assuming DDH holds in G, CH is a multilinear pseudorandom function.
Moreover, the running time of the reduction is polynomial in n, in the dimension of the

vector spaces, and in the running time of the adversary.

The proof is rather immediate. We give an informal proof below.

Proof of Lemma 6.4.1. Let #”

T = (T1,1, . . . , T1,`1 , . . . , Tn,1, . . . , Tn,`n) be a vector of indetermi-
nates, and let #”

Ti = (Ti,1, . . . , Ti,`i). The PLP theorem shows that CH(#”a1, . . . ,
”an,

”x1, . . . ,
”xn)

(using a random key #”a) is computationally indistinguishable from[
U

(
n∏
i=1
〈 #”

Ti,
#”xi〉
)]

= [f(# ”x1, . . . ,
”xn)]

with U $← L(Zp[
#”

T]≤1,Zp) and

f :
(

Z`1p × · · · × Z`np → Zp
(# ”x1, . . . ,

”xn) 7→ U(∏n
i=1〈

#”

Ti,
#”xi〉)

)
.

To conclude, we just need to prove that f is a random n-linear function in L(Z`1p ⊗· · ·⊗Z`np ,Zp).
For that purpose, let us introduce the following n-linear application:

ψ :
(

Z`1p × · · · × Z`np → Zp[
#”

T]≤1
(# ”x1, . . . ,

”xn) 7→ ∏n
i=1〈

#”

Ti,
#”xi〉

)
.

110 Chapter 6 Applications

We remark that f is the composition of U and ψ: f = U ◦ ψ. Furthermore, if we write
”ei,` = (0, . . . , 0, 1, 0, . . . , 0) the i-th vector of the canonical base of Z`p, then:

ψ(# ”ei1,`1 , . . . ,
”ein,`n) = T1,i1 · · ·Tn,in ;

and as the monomials T1,i1 · · ·Tn,in are linearly independent, ψ is injective. Since f =
U ◦ ψ and U

$← L(Zp[
#”

T]≤1,Zp), the function f is a uniform random linear function from
L(Z`1p ⊗ · · · ⊗ Z`np ,Zp). This is exactly what we wanted to show.

6.4.2 Symmetric Multilinear Pseudorandom Functions
In [CGV15], constructing symmetric multilinear pseudorandom functions was left as an open
problem. The definition of this notion is the same as the notion of multilinear pseudorandom
function, except that we only require the function to be indistinguishable from a random
symmetric multilinear function. In that case, we suppose that `1 = · · · = `n = `, i.e., all
the vectors # ”x1, . . . ,

”xn have the same size `. The authors wrote in [CGV15] that the natural
modification of the CH construction to obtain a symmetric construction consisting in setting
#”a1 = #”a2 = · · · = # ”an (simply denoted #”a in what follows) leads to a symmetric multilinear
pseudorandom function whose security is less clear, but claimed that it holds under the
E1,n-MDDH assumption (which is exactly the n-DDHI assumption), when ` = | #”a | = 2. We
show that this construction is actually secure under the same assumption for any ` = | #”a | ≥ 2
as stated in the following lemma, whose proof is almost the same as the proof of Lemma 6.4.1.
Let us denote by CHsym this symmetric construction, whose key space and domain are
respectively Z`p and (Z`p)

n.

Lemma 6.4.2. Assuming n-DDHI holds in G, CHsym is a symmetric multilinear pseudoran-
dom function.

Moreover, the running time of the reduction is polynomial in n, `, and in the running time
of the adversary.

Proof of Lemma 6.4.2. Let A be an adversary against the symmetric multilinear pseudo-
random function security of CHsym that makes q oracle queries. We design an adversary
B against the (`, 1, n)-PLP security in G as follows, where we denote by a1, . . . , a` and b
the secret values chosen at random in the Initialize procedure of the game defining the
(`, 1, n)-PLP security (it corresponds to A1, . . . ,A` and B but since k = 1, these values are
simply scalars in Zp).

B runs A . When the latter makes a query #”x = (# ”x1, . . . ,
”xn) where #”xi ∈ Zlip , B does the

following. First, it starts by computing P #”x = ∏n
i=1〈

#”

T , #”xi〉, where
#”

T = (T1, . . . , T`) is a vector
of indeterminates. Hence, it computes a multivariate polynomial in Zp[T1, . . . , T`] with degree
at most n in any indeterminate.
Afterwards, B queries P #”x to its oracle and sends the value it gets to A . Hence, on the

one hand, if B’s oracle outputs [P #”x (a1, . . . , a`) · b], then the value A gets is exactly the
evaluation of CHsym in #”x with the key #”a ∈ Z`p and with the generator [b] (which is a generator
as soon as b 6= 0). On the other hand, if B’s oracle responds to a query P by random values
computed taking into account the linear relations between P and the previously queried
polynomials, then the values A gets are statistically indistinguishable from the values it
would get from the symmetric MPRFRand oracle, as this is exactly how the values output
by the symmetric MPRFRand oracle are computed in order to obtain a polynomial-time
simulation.

Ch
ap

te
r6

6.4 Applications to Multilinear Pseudorandom Functions 111

Hence, we have shown that

Advmprf
CHsym(A) ≤ p

p− 1 ·Adv(`,1,n)-plp
G (B)

and Lemma 6.4.1 now follows from the PLP theorem (Theorem 5.2.2) and from the fact that
the E1,n-MDDH is implied by the n-DDHI assumption.

6.4.3 Skew-Symmetric Multilinear Pseudorandom Function
In [CGV15], the author left as an open problem the construction of a skew-symmetric
multilinear pseudorandom function. The definition of this notion is the same as the notion
of multilinear pseudorandom function, except that we only require the function to be
indistinguishable from a random skew-symmetric multilinear function. We assume that
`1 = · · · = `n = ` = n, i.e., all the vectors # ”x1, . . . ,

”xn have the same size ` = n. We need
` = n because there is no skew-symmetric n-multilinear map from

(
Z`p
)n

to Zp, when ` < n.
We know that any skew-symmetric n-multilinear map f is of the form:

f(# ”x1, . . . ,
”xn) = c · det(# ”x1, . . . ,

”xn),

with c being a scalar in Zp and det being the determinant function. Therefore, the function

F (a, (# ”x1, . . . ,
”xn)) = [a · det(# ”x1, . . . ,

”xn)]

is a skew-symmetric multilinear pseudorandom function with key a ∈ Zp.
The proof is trivial since, (# ”x1, . . . ,

”xn) 7→ F (a, (# ”x1, . . . ,
”xn)) is actually a random skew-

symmetric n-multilinear map when a is a random scalar in Zp. No assumption is required.
Our analysis shows that skew-symmetric multilinear pseudorandom functions are of limited
interest, but our construction still solves an interesting open problem in [CGV15].

6.4.4 Extension to Weaker Assumptions
As for related-key secure pseudorandom functions and aggregate pseudorandom functions,
it is very easy to build multilinear pseudorandom functions under k-Lin and to prove their
security applying our PLP theorem (Theorem 5.2.2), for instance using the same construction
but changing the key components from elements in Zp to elements in Zk×kp while keeping the
same inputs space, and by defining 〈 #”

A, #”x 〉 = ∑`
i=1 xi ·Ai, with

#”

A = (A1, . . . ,A`) ∈ (Zk×kp)`

and x = (x1, . . . , x`) ∈ Z`p. This leads to the following construction, where F.Setup outputs
(p,G, g) and dimensions `1, . . . , `n, and where the outputs are computed via:

F.Evalpp :
(

Z`1p × · · · × Z`np → Gk×m

(# ”x1, . . . ,
”xn) 7→

[
(∏n

i=1〈
”

Ai,
#”xi〉) ·B

])

with (# ”

A1, . . . ,
”

An) ∈ (Zk×kp)`1 × · · · × (Zk×kp)`n and B ∈ Zk×mp .
Once again, such a result is immediate and we do not provide further details.

Ch
ap

te
r7

Chapter 7
A Provably-Secure Pseudorandom
Function For XOR-Relations
In this chapter, we construct the first XOR-related-key secure pseudorandom function

that is provably-secure, assuming the existence of a weak form of multilinear maps. As the
existence of multilinear maps is still an important controversial matter, this result should
mainly be seen as a proof of concept.

However, despite recent devastating attacks against current multilinear maps, we prove that
none of these attacks affect the security of our construction. Then, an important contribution
of this work is also to explore a different way to prove security of multilinear-map-based
constructions by taking attacks into account. In particular, as our construction is secure even
with current instantiations, we only require a weak form of multilinear maps, and hope that
such a weak form might exist under on standard assumptions.

Contents
7.1 Additional Material . 114

7.1.1 Related-Key Security for XOR Relations 114
7.1.2 Multilinear Maps . 114
7.1.3 Straddling Sets . 115

7.2 Our Construction . 115
7.2.1 Intuition . 115
7.2.2 Actual Construction . 116

7.3 Security in the Generic Multilinear Map Model 118
7.4 Security under Non-Interactive Assumptions 121

7.4.1 Two Non-Interactive Assumptions 121
7.4.2 Security of our Construction . 122

7.5 Security of the XY-DDH Assumption in the Generic Multilinear
Map Model . 128

7.6 Security of the Sel-Prod Assumption in the Generic Multilinear
Map Model . 129

7.6.1 Proof Ingredient: Index Sets and Profiles 129
7.6.2 Security of the Sel-Prod Assumption 134

— 113 —

114 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

7.1 Additional Material
Most of the definitions required for this chapter have already been provided in Chapters 2 and 3,
especially definitions of multilinear maps and of the multilinear map model. Please refer to
this chapter if necessary. Here, we only recall the definition of the class of XOR relations and
provide some conventions and additional material.

7.1.1 Related-Key Security for XOR Relations

XOR Relations. Consider a key space K = {0, 1}k for some integer k ≥ κ. We define the
class of XOR relations Φ⊕ as the following set of functions:

Φ⊕ = {φs: K ∈ {0, 1}k 7→ K ⊕ s ∈ {0, 1}k | s ∈ {0, 1}k} ,

and say that a pseudorandom function F is XOR-related-key secure if it is a Φ⊕-related-key
secure pseudorandom function (see Definition 3.1.1 for details).

7.1.2 Multilinear Maps

Conventions. In order to ease the reading, we adopt the following conventions in the rest
of this chapter:

• Scalars are noted with lowercase letter, e.g., a, b, . . .

• Encodings are noted either as their encoding at index set S, [a]S or simply with a
hat, when the index set is clear from the context, e.g., â, b̂, . . . In particular, â is an
encoding of the scalar a.

• Index sets and formal variables are noted with uppercase letters, e.g., X,S,S ,

• We denote by S1 · S2 the union of sets S1 and S2. This notation implicitly assumes
that the two sets are disjoint. If S1 is an element, then S1 · S2 stands for {S1} · S2.

• The top-level index set is refered as U .

We also naturally extend these notations when clear from the context, so for instance
â+ b̂ = MM.Add(mm.pp, â, b̂) and â · b̂ = MM.Mult(mm.pp, â, b̂).

Variant of the Multilinear Map Model. In order to ease the reading, we actually
use a slightly different and more intuitive characterization of the generic multilinear map
oracle (defined in Section 2.4.2) in our proofs. Informally, instead of considering queries to
MM.ZeroTest as nonces, we consider these as formal polynomials (that can be computed
easily), whose formal variables are substituted with their join value distribution from the
real game. In our construction, formal variables are âi,b, ĉj,b, ẑi1,i2,b1,b2 —please refer to the
construction in Section 7.2.2 for details. This variant characterization follows the formalization
from [Zim15, Appendix B].

Actual Instantiations of Multilinear Maps. While Definition 2.4.3 is a very natural
definition and is what we actually would like as a multilinear map, up to now, we still do
not know any such construction. Known constructions [GGH13; CLT13; GGH15; CLT15]

Ch
ap

te
r7

7.2 Our Construction 115

of multilinear maps are actually “noisy” variants of our formal definition. That is, each
encoding includes a random error term, and similarly to what happens for lattice-based
constructions, this error term grows when performing operations (addition or multiplication).
Eventually, this error term becomes too big and the MM.ZeroTest can no longer recover
the correct answer. This noise implicitly restricts the number of operations that can be
performed. Intuitively, in current constructions, the errors are added when performing an
addition and multiplied when performing a multiplication. However, the fact that current
instantiations are noisy does not pose any problem regarding our construction, as the number
of operations for evaluating our pseudorandom function is fixed and well defined.

7.1.3 Straddling Sets
Our construction and its proofs use straddling sets, as described by Barak et al. in [BGK+14],
in order to prevent the adversary from mixing too many encodings and creating encodings
of zero. We recall their definition below. We first recall that, for a set S , we say that
{S1, . . . , Sk}, for some integer k, is a partition of S , if and only if ∪ki=1Si = S , Si 6= ∅ and
Si ∩ Sj = ∅, for any 1 ≤ i, j ≤ k, i 6= j.

Definition 7.1.1 (Straddling Set System). For k ∈ N, a k-straddling set system over
a set S consists of two partitions S0 = {S0,1, . . . , S0,k} and S1 = {S1,1, . . . , S1,k} of S
such that the following holds: for any T ⊆ S , if T0, T1 are distinct subsequences of
S0,1, . . . , S0,k, S1,1, . . . , S1,k such that T0 and T1 are partitions of T , then T = S and
T0 = Sb and T1 = S1−b for some b ∈ {0, 1}.

Intuitively, this implies that the only two solutions to build a partition of S from combining
sets in S0 or S1 are to use either every element in S0 or every element in S1.

Construction 7.1.2 (Construction of Straddling Set Systems). . Let k be a fixed integer
and let S = {1, . . . , 2k − 1}. Then, the following partitions form a k-straddling set system
over S :

S0 = (S0,1, . . . , S0,k) = ({1}, {2, 3}, {4, 5}, . . . , {2k − 4, 2k − 3}, {2k − 2, 2k − 1})
S1 = (S1,1, . . . , S1,k) = ({1, 2}, {3, 4}, . . . , {2k − 3, 2k − 2}, {2k − 1}) .

This construction naturally extends to any set with 2k − 1 elements.

The proof is immediate and thus not detailed here. Please refer to [BGK+14] or [Zim15]
for details.

7.2 Our Construction
Let us now describe our construction of an XOR-related-key secure pseudorandom function,
for security parameter κ, key space K = {0, 1}k, with k = 2κ, and domain D = {0, 1}n for
some integer n.

7.2.1 Intuition
The main idea behind our construction is very natural. The starting point is the Naor-
Reingold pseudorandom function, whose evaluation function is defined as NR.Evalpp : (#”a , x) ∈

116 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

Z2n
p ×{0, 1}n 7→ [∏n

i=1 ai,xi], where #”a is the secret key. As we are interested in XOR relations,
we want the key to be a bitstring. A simple solution is to tweak this construction by
considering the evaluation f #”a , #”c : (K,x) ∈ {0, 1}k × {0, 1}n 7→

[∏k
i=1 ai,Ki ·

∏n
j=1 ci,xi

]
, with

#”a ∈ Zkp and #”c ∈ Znp . It is easy to see that without knowing #”a nor #”c , the outputs of
this function are computationally indistinguishable from random (they correspond to NR
evaluations with key (#”a , #”c) and on input (K,x)). However, given a key K ∈ {0, 1}k, one
needs the values #”a , #”c in order to be able to evaluate this function, so these values need to
be made public. Then, it becomes very easy, even without knowing K, to distinguish this
function from a random one.
Therefore, our idea is to use a multilinear map: this allows us to publicly reveal low-

level encodings of elements in #”a and #”c . These encodings let anyone evaluate the function
on any key K and any input x, while keeping the outputs of the function computationally
indistinguishable from random to an adversary that does not know the secret key K. Formally,
we let U = {1, . . . , k + n} be the set of indices for a multilinear map, {ai,b}i∈[k],b∈{0,1} and
{cj,b}j∈[n],b∈{0,1} be random scalars in Zp and âi,b = [ai,b]{i} be the encoding of ai,b at index
index i and ĉj,b = [cj,b]{j+k} be the encoding of cj,b at index level j + k. We then consider
the function whose evaluation is:

F.Evalpp(K,x) =

 k∏
i=1

ai,Ki

n∏
j=1

cj,xi

U

,

with public parameters pp including {âi,b}i∈[k],b∈{0,1} and {ĉj,b}j∈[n],b∈{0,1} as well as the
public parameters of the multilinear map.
This construction can be easily proven to be an XOR-related-key secure pseudorandom

function in the generic multilinear map model, and it is also easy to show that it does not
let an adversary create encodings of zero. However, it seems very hard to prove that this
construction is secure under a non-interactive assumption. Hence, we slightly modify this
construction by using a more complex set of indices and straddling sets. While this makes the
proof in the generic multilinear map model a bit harder, this allows us to prove the security
of our construction under non-interactive assumptions, whose hardness seems plausible even
with current instantiations of multilinear maps. In particular, we prove in Sections 7.5 and 7.6
that these assumptions are secure in the generic multilinear map model and do not let an
adversary generate (non-trivial) encodings of zero.

7.2.2 Actual Construction

We define our pseudorandom function F = (F.Setup,F.Eval) as follows.

Index set. First, similarly to [Zim15], for each i ∈ {0, . . . , k}, we construct a k-straddling
set system over a set Si of 2k− 1 fresh formal symbols. We denote by Si,b the two partitions
forming each of this straddling set, for b ∈ {0, 1}, and by Si,b,j their elements, for 1 ≤ j ≤ k.
We also define:

BitCommiti,b = Si,b,i BitFilli1,i2,b1,b2 = Si1,b1,i2 · Si2,b2,i1

for any i, i1, i2 ∈ {1, . . . , k} and b, b1, b2 ∈ {0, 1}. Intuitively, the straddling set systems Si for
i ≥ 1 play the same role as in [Zim15] (preventing the adversary from mixing an exponential

Ch
ap

te
r7

7.2 Our Construction 117

number of inputs), while S0 is used in the proof to prevent the adversary from mixing the
private representation of the key from the parameters.
Let Xj be fresh formal symbols for j ∈ {1, . . . , n}. We then define the top-level index set

as follows:

U =
k∏
i=0

Si

n∏
j=1

Xj .

Setup. The algorithm F.Setup first generates the parameters (mm.pp,mm.sp, p) for the
multilinear map by running MM.Setup(1κ,U). Then it generates the following elements:

ai,b
$← Zp for i ∈ {1, . . . , k} and b ∈ {0, 1}

âi,b ← [ai,b]S0,0,iBitCommiti,b for i ∈ {1, . . . , k} and b ∈ {0, 1}

cj,b
$← Zp for j ∈ {1, . . . , n} and b ∈ {0, 1}

ĉj,b ← [ci,b]Xi for j ∈ {1, . . . , n} and b ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

for i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
with i1 < i2 ,

and outputs the following parameters:

pp =
(

mm.pp, (âi,b)i,b, (ĉj,b)j,b, (ẑi1,i2,b1,b2)i1,i2,b1,b2

)
.

Intuitively, BitCommiti,b = Si,b,i is associated to the (public) encoding used to evaluate the
function if the i-th bit of the key is b. By definition of a straddling set, the only way to reach
the top-level U , which contains Si, once we have used an encoding with index Si,b,i is to use
every index Si,b,j with j 6= i. These is done by multiplying the terms ẑi,j,Ki,Kj . Therefore,
using Ki = b is like “committing” to the partition Si,b of Si, and terms ẑi,j,Ki,Kj are then
used to “fill” this partition.

Remark 7.2.1. For the sake of simplicity, we set ẑi1,i2,b1,b2 to be encodings of 1, but one
could also simply set it to encodings of a random value, as soon as they are all encodings of
the same value.

Evaluation. The output of the pseudorandom function on a key K ∈ {0, 1}k and an input
x ∈ {0, 1}n is

F.Evalpp(K,x) = MM.Extract(
k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2) .

We can re-write it as:

F.Evalpp(K,x) = MM.Extract(

 k∏
i=1

ai,Ki

n∏
j=1

cj,xi

U

) .

Extraction. As explained in Remark 2.4.4, the role of extraction (MM.Extract) is dual. First,
it ensures the correctness of the pseudorandom function, as in currently known instantiations
of multilinear maps [GGH13; CLT13; GGH15; CLT15], a scalar has many different encodings.

118 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

Second, it is used in our proof of security under non-interactive assumptions in Section 7.4.2,
as in the security proof we change the way the group element

k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

is computed. We indeed recall that due to the fact that a scalar has many different encodings,
any group element (as the above one) leaks information on the exact computation used to
obtain it, instead of just depending on its discrete logarithm. The usual way to solve this
issue is to randomize the resulting group element using encodings of zero. However, we do
not want to use any encoding of zero, hence the requirement for this extraction. For the
proof in the generic multilinear map model in Section 7.3, this is not an issue, and we just
ignore the extraction (see Remark 2.4.4).
As discussed in Remark 2.4.4, with current instantiations of multilinear maps [GGH13;

CLT13; GGH15; CLT15], the output of the pseudorandom function has to be the extracted
value of the group elements previously indicated, for the evaluation to be deterministic.

7.3 Security in the Generic Multilinear Map Model

In this section, we prove the security of our construction in the generic multilinear map
model. As already explained in Remark 2.4.4, we suppose in this section that no extraction
is performed. We actually even prove that no polynomial-time adversary can construct a
(non-trivial) encoding of zero, in any of the two experiments RKPRFRealF and RKPRFRandF ,
with non-negligible probability. This implies, in particular, that these two experiments cannot
be distinguished by a polynomial-time adversary, in the generic multilinear map model, as
an adversary only sees handles which only leak information when two of them correspond to
the same (top-level) element.

This section is mainly a warm-up to familiarize with the model, since the fact that we prove
our construction under some assumptions that are proven secure in the generic multilinear
map model and proven to not let an adversary generate encodings of zero also implies the
results below. However, it is very simple to modify the proof below in order to prove the
security of the simplified construction proposed in Section 7.2.1, which is of independent
interest.

We first need to formally define the notion of (non-trivial) encoding of zero. We follow the
definition of Badrinarayanan et al. [BMSZ16].

Definition 7.3.1 ((Non-trivial) encoding of zero). An adversary A in the generic multilinear
map model with multilinear map oracle M returns a (non-trivial) encoding of zero if it returns
a handle h (output by M) such that h corresponds to the element 0 in M ’s table and the
polynomial corresponding to the handle is not identically null.

Theorem 7.3.2 (Impossibility of constructing encodings of zero). In the
generic multilinear map model with oracle M , for any adversary A making at most qM

Ch
ap

te
r7

7.3 Security in the Generic Multilinear Map Model 119

queries to the oracle M and qRKFn queries to the oracle RKFn, we have:

Pr
[

PRFRealAF ⇒ an encoding of 0
]
≤ qM

(
qRKFn

2k + k + n

p

)
and

Pr
[

PRFRandA
F ⇒ an encoding of 0

]
≤ qM

k + n

p
.

Proof of Theorem 7.3.2. We first introduce a technical lemma.

Lemma 7.3.3. Let k and n be two positive integers. Let U be the index defined in Sec-
tion 7.2.2. Let ẑi1,i2,b1,b2 = [1]BitFilli1,i2,b1,b2

for 1 ≤ i1 < i2 ≤ k and b1, b2 ∈ {0, 1}. Let Z1

and Z2 be two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k}×{0, 1}2. If t1 = ∏
(i1,i2,b1,b2)∈Z1 ẑi1,i2,b1,b2

and t2 = ∏
(i1,i2,b1,b2)∈Z2 ẑi1,i2,b1,b2 have the same index set, then Z1 = Z2.

Proof of Lemma 7.3.3. Let T denote the index set of t1 and t2. For i = 1, . . . , k, one can
interstect T with Si. As T cannot contain Si (since it cannot contain Si,b,i for any b ∈ {0, 1}
as it is not contained in any index set of any ẑi1,i2,b1,b2), we have T ∩Si 6= Si. Therefore, for
any (i1, i2, b1, b2) ∈ Z1 with i1 < i2, as Si1,b1,i2 is in the index set of t1 and T ∩Si1 6= Si1 ,
there exists b′ such that Si1,b1,i2,b′ is in Z2 (so that Si1,b1,i2 is in the index set of t2), by
definition of a straddling set system. Then, there are two possibilities: either b′ = b2 and
(i1, i2, b1, b2) ∈ Z2, or b′ = 1 − b2. In the latter case, this means that Si2,b2,i1 is contained
in the index set of t1 and Si2,1−b2,i1 is contained in the index set of t2. As T ∩Si2 6= Si2 ,
this contradicts the fact that t1 and t2 have the same index set. Lemma 7.3.3 immediately
follows.

We need to show that the adversary cannot generate a non-trivial encoding of zero.

RKPRFRandF . We start by proving it in the game RKPRFRandF . In this game, except for
ẑi1,i2,b1,b2 , all the handles the adversary sees correspond to fresh new formal variables, as the
oracle RKFn only returns fresh new formal variables (of index U). The only polynomials
the adversary can generate are therefore of the form:

P =
L∑
`=1

Q`
∏

(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

where Q` are polynomials over all the elements except ẑi1,i2,b1,b2 , and Z` are distinct subsets
of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2 (L might be exponential in qM , but that does not
matter for what follows).

Let us now show that if P is not the zero polynomial, then when replacing ẑi1,i2,b1,b2 by 1,
the resulting polynomial is still a non-zero polynomial. From Lemma 7.3.3, one can assume
that elements ∏(i1,i2,b1,b2)∈Z` ẑi1,i2,b1,b2 all have distinct indices. Therefore, the polynomials
Q` all have distinct indices too. No monomial in two different Q` of the sum ∑

`Q` (when
forgetting the indices) can therefore cancel out, otherwise this would mean that the adversary
can construct two equal monomials (without ẑi,b) with two different indices. This is impossible
as, except for ẑi,b, two distinct handles correspond to two fresh variables (or in other words,
all the handles except ẑi,b are encodings of scalars chosen uniformly and independently at
random).

120 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

We therefore simulate the oracle M as follows: we do everything as normal, but we make
the zero-testing oracle always output “non-zero” except when its input corresponds to the
zero polynomial. The Schwarz-Zippel lemma ensures that any non-zero polynomial of degree
at most k + n and whose variables are fixed to uniformly random values in Zp does not
evaluate to zero, except with probability at most (k + n)/p. In other words, the zero-testing
oracle outputs “zero” on a non-zero polynomial with probability at most (k + n)/p, as this
polynomial remains non-zero and has degree at most (k+ n), when we replace ẑi1,i2,b1,b2 by 1.
As we can suppose that the zero-testing oracle is queried with the output of the adversary
without loss of generality, using at most qM hybrid games (replacing one-by-one every output
of the zero-testing oracle with “non-zero”) we get that:

Pr
[

PRFRandA
F ⇒ an encoding of 0

]
≤ qM

k + n

p
.

RKPRFRealF . Let us now look at the game RKPRFRealF . The analysis is more complicated
as the adversary has access to new formal variables

ŷs,x = Fpp(K ⊕ s, x)

returned by queries RKFn(φs, x).
We use the same simulator as in the previous case. We need to show that if a polynomial

P produced by the adversary is not zero, it remains non-zero when ẑi1,i2,b1,b2 is replaced by 1
and ŷs,x is replaced by its value.
We first consider the case where P is not a top-level polynomial. In this case, P cannot

contain these new variables ŷs,x as these variables are top-level. Then, as in RKPRFRandF ,
the zero-testing oracle outputs “non-zero” except with probability at most (k + n)/p.

Let us now suppose that P is a top-level polynomial. This polynomial has the form:

P =
L∑
`=1

Q`

k∏
i=1

âi,K′
`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

+
q′∑
j=1

λj ŷsj ,xj ,

with L being a non-negative integer (possibly exponential in qM), Q` being non-zero poly-
nomials in the formal variables ĉj,b, K ′` being distinct bitstrings in {0, 1}k (chosen by the
adversary), q′ an integer less or equal to qRKFn, (s1, x1), . . . , (sq′ , xq′) queries to RKFn, and
λj some scalar in Zp. Indeed, the adversary can ask for an encoding of any polynomial
of the form Q`

∏k
i=1 âi,K′`,i , and by definition of straddling set systems, the unique way to

obtain a top-level encoding from such a polynomial is by multiplying it with an encoding of∏k
i1=1

∏k
i2=i1+1 ẑi1,i2,K′`,i1 ,K

′
`,i2

.
Let us suppose that P is not zero but becomes zero when ẑi1,i2,b1,b2 is replaced by 1 and

ŷs,x is replaced by its value. In this case, in particular, the first monomial (for any order) of
the term

Q1

k∏
i=1

âi,K′1,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′1,i1 ,K
′
1,i2

necessarily needs to be canceled out by some ŷsj ,xj . The probability over K $← {0, 1}k that
this happens is at most:

Pr
[∃j′ ∈ {1, . . . , q′}, K ′1 = K ⊕ sj′

] ≤ q′

2k ≤
qRKFn

2k .

Ch
ap

te
r7

7.4 Security under Non-Interactive Assumptions 121

As before, thanks to the Schwarz-Zippel lemma, we get that the zero-testing oracle outputs
“zero”, on input a non-zero polynomial, with probability at most:

qRKFn
2k + k + n

p
.

This concludes the proof of Theorem 7.3.2.

Remark 7.3.4. We never use the properties of the straddling set system S0 in this proof.
These properties are only used in our proof under non-interactive assumptions in Section 7.4.2.

We obtain the following immediate corollary.
Corollary 7.3.5 (Security in the generic multilinear map model). F is an XOR-related-key
secure pseudorandom function in the generic multilinear map model.

Proof of Corollary 7.3.5. We just consider an intermediate game where we simulate every-
thing as before except the zero-testing oracle which always outputs “non-zero” unless its
input is zero, as a polynomial. This game is indistinguishable from both RKPRFRealF and
RKPRFRandF according to Theorem 7.3.2 (up to the bounds in this lemma). Thus, we have:

Advrka-prf
Φ⊕,F (A) ≤ qM qRKFn

2k + 2qM (k + n)
p

,

and Corollary 7.3.5 follows.

7.4 Security under Non-Interactive Assumptions
7.4.1 Two Non-Interactive Assumptions
We use two assumptions that we call the (k, n,X, Y)-XY-DDH assumption, which is roughly
a generalization of the standard DDH assumption, and the (k, n)-Sel-Prod assumption. We
show in Sections 7.5 and 7.6 that both these assumptions are secure in the generic multilinear
map model, and even that an adversary against these assumptions cannot generate encodings
of zero. Hence, contrary to most assumptions considered on multilinear maps (e.g., classical
DDH-like assumptions and the multilinear subgroup assumption [GLW14; GLSW15]), these
assumptions are therefore plausible at least with two current instantiations of multilinear
maps [CLT13; GGH15].
To ensure the impossibility of generating encodings of zero, in these two assumptions,

we restrict the adversary’s capabilities as follows: it is only provided parameters mm.pp,
so it can only run MM.Add,MM.Mult, and MM.ZeroTest (and of course use the elements
generated by the assumption), but we do not allow the adversary to generate new encodings
of a chosen scalar. In particular, this forces us to let the assumption contains the group
elements ẑi1,i2,b1,b2 . It is straightforward to get rid of these additional elements by allowing
the adversary to generate any element of the multilinear map, at the cost of getting an
implausible assumption under current instantiations of multilinear maps.

Finally, our assumption implicitly contains a list L of a polynomial number of encodings of
random values at non-zero indices, indices being implicit parameters of the assumption. We
could avoid this artifact with the previous proposition as well, or by giving a sufficient number
of encodings of 0 and 1, but once again, in that case, the assumption would most likely not
hold with currently known multilinear maps instantiations. We believe this is a small prize
to pay to get plausible assumptions, as the resulting assumptions are still non-interactive.

122 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

Definition 7.4.1 ((k, n,X, Y)-XY-DDH). Let k and n be two positive integers. Let X and Y
be two non-empty and disjoint indices in the index set U of our construction in Section 7.2.2.
The advantage of an adversary D against the (k, n,X, Y)-XY-DDH problem is:

Adv(k,n,X,Y)-XY-DDH(D) := Pr
[

(k, n,X, Y)-XY-DDHRealD ⇒ 1
]
−

Pr
[

(k, n,X, Y)-XY-DDHRandD ⇒ 1
]
,

where the games (k, n,X, Y)-XY-DDHRealD and (k, n,X, Y)-XY-DDHRandD are defined in
Figure 7.1.

This assumption is very close to the classical DDH assumption with indices, with two main
differences: the presence of elements ẑi1,i2,b1,b2 which are necessary to prove our construction
and the implicit presence of encodings of random values at non-zero indices (list L described
previously) instead of a polynomial number of encodings of 0 and 1. Without the elements
ẑi1,i2,b1,b2 , the proof of this assumption in the generic multilinear map model would be
completely straightforward. The difficulty of the proof is to deal with these elements.
In the security proof of our construction, this assumption is used in a similar way as the

DDH assumption in the proof of the Naor-Reingold pseudorandom function.

Definition 7.4.2 ((k, n)-Sel-Prod). Let k and n be two positive integers. The advantage of
an adversary D against the (k, n,X, Y)-Sel-Prod problem is:

Adv(k,n)-Sel-Prod(D) := Pr
[

(k, n)-Sel-ProdRealD ⇒ 1
]
−Pr

[
(k, n)-Sel-ProdRandD ⇒ 1

]
,

where the games (k, n)-Sel-ProdRealD and (k, n)-Sel-ProdRandD are defined in Figure 7.1.

Intuitively, under this assumption, we can replace the encodings âi,Ki⊕si at index from the
first partition of the straddling set, used in the computation of the output with relation s,
to encodings of uniformly random scalars at index from the second partition. In particular,
doing this change, we no longer need to know the key K to simulate correctly the output,
but only the relations s for each query.

Remark 7.4.3. For the sake of simplicity, we do not explicitly specify the noise level in our
assumptions. It can easily be made to work with our proof.

7.4.2 Security of our Construction
In this whole section, we set S = ∏k

i=0 Si and S ′ = ∏k
i=1 Si, so S = S0 ·S ′. Please refer

to Section 7.2.2 for notation.

Theorem 7.4.4 (Security Under Non-Interactive Assumptions). Assuming the (k, n)-Sel-Prod
and the (k, n,S ′∏i′−1

i=1 S0,1,i, S0,1,i′)-XY-DDH assumptions hold, then F is an XOR-related-key
secure pseudorandom function.

Moreover, the running time of this reduction is polynomial in n and in the running time
of the adversary.

We provide a sketch of the proof before describing the full proof below.
Proof Overview. The proof follows a sequence of hybrid games. The first hybrid corresponds
exactly to RKPRFRealF , while the last game corresponds to RKPRFRandF . Here is how we

Ch
ap

te
r7

7.4 Security under Non-Interactive Assumptions 123

(k, n,X, Y)-XY-DDHRealD (k, n,X, Y)-XY-DDHRandD

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U)
d0, d1, e $← Zp
d̂0 ← [d0]X ; d̂1 ← [d1]X
ê0 ← [ed0]XY ; ê1 ← [ed1]XY
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
Return (L,mm.pp, d̂0, d̂1, ê0, ê1,

(ẑi1,i2,b1,b2))
proc Finalize(b)
Return b

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U)
d0, d1, e0, e1

$← Zp
d̂0 ← [d0]X ; d̂1 ← [d1]X
ê0 ← [e0]XY ; ê1 ← [e1]XY
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
Return (L,mm.pp, d̂0, d̂1, ê0, ê1,

(ẑi1,i2,b1,b2))
proc Finalize(b)
Return b

(k, n)-Sel-ProdRealD (k, n)-Sel-ProdRandD

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U)
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp; γi,Ki⊕b ← ai,b

âi,b ← [ai,b]S0,0,iBitCommiti,b
γ̂i,Ki⊕b ← [γi,Ki⊕b]S0,1,iBitCommiti,Ki⊕b

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

Return (L,mm.pp, (âi,b), (γ̂i,b),
(ẑi1,i2,b1,b2))

proc Finalize(b)
Return b

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U)

For i ∈ {1, . . . , k} and b ∈ {0, 1}
ai,b

$← Zp; γi,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
γ̂i,b ← [γi,b]S0,1,iBitCommiti,b

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

Return (L,mm.pp, (âi,b), (γ̂i,b),
(ẑi1,i2,b1,b2))

proc Finalize(b)
Return b

Figure 7.1: Games defining the XY-DDH and Sel-Prod problems

proceed. First, instead of computing the output using encodings âi,b of ai,b with index
S0,0,iBitCommiti,b, we use encodings γ̂i,b of ai,Ki⊕b with index S0,1,iBitCommiti,Ki⊕b. That is,
we use the second partition S0,1 of the straddling set S0 instead of the first one (S0,0) to
reach top-level index (which contains S0). Also, we now compute the output using only the
relation s instead of the key K. More precisely, the output on a query (s, x) is computed as:

MM.Extract(
k∏
i=1

γ̂i,si

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2) ,

which can be computed without knowing K. This does not change anything regarding the
output (thanks to the extraction), so these two games are indistinguishable.
However, using the (k, n)-Sel-Prod assumption, we can now switch the encodings γ̂i,b to

encodings of fresh random scalars γi,b ∈ Zp. The rest of the proof is very similar to the

124 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

proof of the Naor-Reingold pseudorandom function. We do k + n hybrid games, where in the
j-th hybrid, we just switch products of encodings ∏j

i=1 γ̂i,si to encodings of uniformly fresh
random values using the XY-DDH assumption with the proper indices. These modifications
are done in a lazy fashion to obtain a polynomial-time reduction.

Proof of Theorem 7.4.4. The proof is based on the games in Figure 7.2 and Figure 7.3. We
consider the games in this order:

G0,G1,G2,G3,G4,2, . . . ,G4,k,G5,1, . . . ,G5,n .

For the sake of simplicity, and as already mentioned in Remark 7.4.3, we assume that the
multilinear map is clean and the representation is unique. In particular, these assumptions
allow us to avoid using an extractor and to assume that two equivalent games are perfectly
indistinguishable (and not only statistically indistinguishable). Our proof could be easily
adapted to avoid this assumption.
Game G0. This game exactly corresponds to RKPRFRealF :

Pr
[

RKPRFRealAF ⇒ 1
]

= Pr [G0 ⇒ 1] .

Game G1. In this game, outputs of RKFn(φs, x) are generated using γ̂i,si instead of âi,Ki⊕si ,
where:

âi,b = [ai,b]S0,0,iBitCommiti,b

γ̂i,b = [ai,Ki⊕b]S0,1,iBitCommiti,b .

This game is perfectly indistinguishable from the previous one, so:

Pr [G0 ⇒ 1] = Pr [G1 ⇒ 1] .

Game G2. In this game, γ̂i,b are now chosen uniformly at random and independently of the
public parameters âi,b. It is immediate to see that games G1 and G2 are indistinguishable
under the (k, n)-Sel-Prod assumption. More precisely, we can construct an adversary D
running in time similar to A such that:

Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] ≤ Adv(k,n)-Sel-Prod(D) .

Game G3. In this game, we just slightly change the indices of γ̂1,0 and γ̂1,1, so that
combining elements γ̂i,b and ĉj,xj directly leads to a top-level encoding (without any need of
the ẑi1,i2,b1,b2 ’s). As elements γ̂1,0 and γ̂1,1 are never directly revealed to the adversary, this
game is perfectly indistinguishable from the previous one, so:

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1] .

We also call this game: Game G4,0.

Game G4,i′. In this game,∏i′
i=1 γ̂i,si are replaced by independent random elements for each tu-

ple (s1, . . . , si′) ∈ {0, 1}i
′ queried by the adversary (so only for polynomially many such tuples).

Game G4,i′ is indistinguishable from Game G4,i′−1, under the (k, n,S ′∏i′−1
i=1 S0,1,i, S0,1,i′)-

Ch
ap

te
r7

7.4 Security under Non-Interactive Assumptions 125

XY-DDH assumption. More precisely, we can construct an adversary Bi′ running in time
similar to A such that:

Pr
[
G4,i′−1 ⇒ 1

]− Pr [G2 ⇒ 1]

≤ qRKFn · Adv(k,n,S ′
∏i′−1
i=1 S0,1,i,S0,1,i′)-XY-DDH(Bi′) . (7.1)

The reduction is immediate from the definition of the (k, n,S ′∏i′−1
i=1 S0,1,i, S0,1,i′)-XY-DDH

assumption. We also call Game G4,k, Game G5,0.

Game G5,j′. In this game, ∏k
i=1 γ̂i,si

∏j′

j=1 b̂i,xi are also replaced by independent random
elements for each tuple (s1, . . . , sk, x1, . . . , xj′) ∈ {0, 1}k+j′ queried by the adversary (so only
for polynomially many such tuples). Game G5,j′ is indistinguishable from Game G5,j′−1,
under the (k, n,S ∏j′−1

j=1 Xj , Xj′)-XY-DDH assumption. More precisely, we can construct an
adversary Cj′ running in time similar to A such that:

Pr
[
G4,i′−1 ⇒ 1

]− Pr [G2 ⇒ 1] ≤ qRKFn · Adv(k,n,S
∏j′−1
j=1 Xj ,Xj′)-XY-DDH(Cj′) .

Once again, the proof is immediate from the definition of the (k, n,S ∏j′−1
j=1 Xj , Xj′)-XY-DDH

assumption.
Finally, we remark that Game G5,n is exactly RKPRFRandA

F and therefore:

Pr [G5,n ⇒ 1] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

By summing all the previous bounds, we obtain the following bound:

Advrka-prf
Φ⊕,F (A) ≤ Adv(k,n)-Sel-Prod(D)+

k∑
i′=2

qRKFn · Adv(k,n,S ′
∏i′−1
i=1 S0,1,i,S0,1,i′)-XY-DDH(Bi′)+

n∑
j′=1

qRKFn · Adv(k,n,S
∏j′−1
j=1 Xj ,Xj′)-XY-DDH(Cj′) ,

where the running time of every adversary is approximately the same as the running time of
A . Theorem 7.4.4 immediately follows.

126 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

proc Initialize // G0

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
For j ∈ {1, . . . , n} and b ∈ {0, 1}

cj,b
$← Zp

ĉj,b ← [ci,b]Xi
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G0

ŷ′ ← ∏k
i=1 âi,Ki⊕si

∏n
j=1 ĉj,xj

ŷ ← ŷ′
∏k
i1=1

∏k
i2=i1+1 ẑi1,i2,Ki1⊕si1 ,Ki2⊕si2

Return MM.Extract(ŷ)
proc Finalize(b) // All games
Return b

proc Initialize // G1

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
γi,Ki⊕b ← ai,b
γ̂i,Ki⊕b ← [γi,Ki⊕b]S0,1,iBitCommiti,Ki⊕b

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G1

ŷ′ ← ∏k
i=1 γ̂i,si

∏n
j=1 ĉj,xj

ŷ ← ŷ′
∏k
i1=1

∏k
i2=i1+1 ẑi1,i2,si1 ,si2

Return MM.Extract(ŷ)
proc Initialize // G2

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,b
$← Zp

γ̂i,b ← [γi,b]S0,1,iBitCommiti,b
For j ∈ {1, . . . , n} and b ∈ {0, 1}

cj,b
$← Zp

ĉj,b ← [ci,b]Xi
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G2

ŷ′ ← ∏k
i=1 γ̂i,si

∏n
j=1 ĉj,xj

ŷ ← ŷ′
∏k
i1=1

∏k
i2=i1+1 ẑi1,i2,si1 ,si2

Return MM.Extract(ŷ)

proc Initialize // G3

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
γi,b

$← Zp
If i = 1

γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G3

ŷ ← ∏k
i=1 γ̂i,si

∏n
j=1 ĉj,xj

Return MM.Extract(ŷ)

Figure 7.2: Games G0,G1,G2,G3 for the proof of Theorem 7.4.4

Ch
ap

te
r7

7.4 Security under Non-Interactive Assumptions 127

proc Initialize // G4,i′

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
T ← empty table
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
γi,b

$← Zp
If i = 1

γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G4,i′

If T [(s1, . . . , si′−1)] 6=⊥
r

$← Zp
T [(s1, . . . , si′−1)]← [r]

S ′
∏i′−1
i=1 S0,1,i

ŷ ← T [(s1, . . . , si′−1)] ·∏k
i=i′ γ̂i,si

∏n
j=1 ĉj,xj

Return MM.Extract(ŷ)

proc Initialize // G5,j′

(mm.sp,mm.pp) $← MM.Setup(1κ,U)
T ← empty table
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b
γi,b

$← Zp
If i = 1

γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2))
Return pp
proc RKFn(φs, x) // G5,j′

If T [(s, x1, . . . , xj′−1)] 6=⊥
r

$← Zp
T [(s, x1, . . . , xj′−1)]← [r]

S
∏j′−1
j=1 Xj

ŷ ← T [(s, x1, . . . , xj′−1)] ·∏n
j=j′ ĉj,xj

Return MM.Extract(ŷ)

Figure 7.3: Games G4,i′ ,G5,j′ for the proof of Theorem 7.4.4

128 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

7.5 Security of the XY-DDH Assumption in the Generic
Multilinear Map Model

Theorem 7.5.1 (Impossibility of constructing encodings of zero). Let k and n be two positive
integers. Let X and Y be two non-empty and disjoint indices from the index set U of our
construction in Section 7.2.2. In the generic multilinear map model with oracle M , for any
adversary D making at most qM queries to the oracle M , we have:

Pr
[

(k, n,X, Y)-XY-DDHRealD ⇒ an encoding of 0
]
≤ qM

|U |
p

and

Pr
[

(k, n,X, Y)-XY-DDHRandD ⇒ an encoding of 0
]
≤ qM

|U |
p

.

Proof of Theorem 7.5.1. We consider the two cases separately.
(k, n,X, Y)-XY-DDHRand. Except for ẑi1,i2,b1,b2 , all the handles the adversary sees corre-
sponds to fresh variables: d̂0, d̂1, ê0, ê1, in addition to the ones it can generate using the list L.
We can therefore conclude exactly as in the case RKPRFRandF of the proof of Theorem 7.3.2.
The only difference is that the maximum degree of the polynomials the adversary can create
is at most |U | (instead of k + n), as the adversary does not have access to elements of index
∅ (i.e., scalars).
(k, n,X, Y)-XY-DDHReal. Similarly to the case RKPRFRealF of the proof of Theorem 7.3.2,
we just need to prove that any non-zero polynomial P remains non-zero when it remains
non-zero when ẑi1,i2,b1,b2 is replaced by 1 and ê0 and ê1 are replaced respectively by ed0 and
ed1 (where e is a fresh formal variable).
Such a non-zero polynomial P can be written Q0d̂0 + Q1d̂1 + Q2ê0 + Q3ê1, where

Q0, Q1, Q2, Q3 are four polynomials over all the formal variables except d̂0, d̂1, ê0, ê1, be-
cause indices prevent the multiplication of two of the variables d̂0, d̂1, ê0, ê1. Furthemore
at least one of the polynomials Q0, Q1, Q2, Q3 is non-zero, and it remains non-zero when
ẑi1,i2,b1,b2 is replaced by 1 (with a proof similar to the one of the case RKPRFRandF of the
proof of Theorem 7.3.2, using Lemma 7.3.3). Thus, even when replacing ẑi1,i2,b1,b2 by 1 and
(ê0, ê1) by (ed0, ed1), P remains non-zero.

This concludes the proof.

Similarly to Corollary 7.3.5, we have the following corollary.

Corollary 7.5.2 (Security in the generic multilinear map model). Let k and n be two
positive integers. Let X and Y be two non-empty and disjoint indices in the index set U of
our construction in Section 7.2.2. Then, the (k, n,X, Y)-XY-DDH assumptions holds in the
generic multilinear map model.

Proof of Corollary 7.5.2. We just consider an intermediate game where we simulate every-
thing as before except the zero-testing oracle which always outputs “non-zero” unless its
input is zero, as a polynomial. Then, we have:

Adv(k,n,X,Y)-XY-DDH(D) ≤ 2qM
|U |
p

,

and Corollary 7.5.2 easily follows.

Ch
ap

te
r7

7.6 Security of the Sel-Prod Assumption in the Generic Multilinear Map Model 129

7.6 Security of the Sel-Prod Assumption in the Generic
Multilinear Map Model

The proof of the Sel-Prod assumption is subtle and first requires the introduction of the
notion of profiles and some lemmata.

7.6.1 Proof Ingredient: Index Sets and Profiles
We adapt the proof in [Zim15, Section 3.4] to our case. In the whole section, monomials
and polynomials are over the formal variables âi,b, γ̂i,b, ĉj,b, ẑi1,i2,b1,b2 , for i, i1, i2 ∈ {1, . . . , k},
j ∈ {1, . . . , n}, b, b1, b2 ∈ {0, 1}. Furthermore, we use the index set U defined in Section 7.2.2.
We also write â0

i,b = âi,b and â1
i,b = γ̂i,b, for i ∈ {1, . . . , k} and b ∈ {0, 1}.

Definition 7.6.1 (Profile of a monomial). Let t be a monomial. For any i ∈ {1, . . . , k} and
any bit b ∈ {0, 1}, t incorporates b as its i-th bit if and only if t contains one of the following
formal variables: âb′i,b, ẑi,i′,b,b′ , ẑi′,i,b′,b for i′ ∈ {1, . . . , k} and b′ ∈ {0, 1}. The profile of t is:

• ⊥ if t incorporates both 0 and 1 as its i-th bit;

• otherwise, the tuple prof(t) = ((prof(t))1, . . . , (prof(t))k) ∈ {0, 1, ∗}k such that prof(t)i =
bi = b if t incorporates b as its i-th bit, and prof(t)i = bi = ∗ if t does not incorporate 0
nor 1 as its i-th bit.

Definition 7.6.2 (Partial profile, conflict, and merge). Let t1 and t2 be two monomials, such
that prof(t1) 6=⊥ and prof(t2) 6=⊥. We say that:

• the profile prof(t1) is partial if prof(t1)i = ∗ for some i ∈ {1, . . . , k};

• the profiles prof(t1) and prof(t2) conflict if there exists i ∈ {1, . . . , k} such that prof(t1)i,
prof(t2)i ∈ {0, 1} and prof(t1)i 6= prof(t2)i.

We also define the merge of two non-conflicting profiles prof(t1) and prof(t2) as the tuple
(b1, . . . , bn) such that:

bi =

prof(t1)i if prof(t1)i ∈ {0, 1}
prof(t2)i if prof(t2)i ∈ {0, 1}
∗ otherwise.

Definition 7.6.3 (Profile of a polynomial). Let P be a polynomial. The profile of a polynomial
P is:

• ⊥ if some monomial in the formal expansion (without cancellation) of P has a profile
⊥;

• the set {prof(t) | t is in the formal expansion of P} otherwise.

Let us now characterize the polynomials that appears in Sel-Prod.

Lemma 7.6.4 (Characterization of polynomials in Sel-Prod). Let A be an adversary in the
generic multinear map model, making at most q queries to the multilinear map oracle M ,
and returning a handle h corresponding to some polynomial P . Then, P satisfies one of these
two conditions:

130 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

1. prof(P) =⊥ or prof(P) is a singleton:
• if the index of P does not contain S0, there exists a polynomial Q in the formal
variables ĉi,b for i ∈ {1, . . . , k} and b ∈ {0, 1}, together with some string β ∈ {0, 1},
some tuple K ′ ∈ {0, 1, ∗}k and some set Z ⊆ {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2
such that:

P = Q ·
k∏
i=1
K′i 6=∗

âβii,K′i
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 ;

• if the index of P does contain S0, there exist two polynomials Q0 and Q1 in the
formal variables ĉi,b for i ∈ {1, . . . , k} and b ∈ {0, 1}, together with some string
β ∈ {0, 1}, some tuple K ′ ∈ {0, 1, ∗}k and some set Z ⊆ {(i1, i2) | 1 ≤ i1 < i2 ≤
k} × {0, 1}2 such that:

P =

Q0 ·
k∏
i=1
K′i 6=∗

â0
i,K′i

+Q1 ·
k∏
i=1
K′i 6=∗

â1
i,K′i

 · ∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 ;

in both case, in addition the index set of P is not U ;

2. prof(P) is a set containing at least 2 and at most q non-partial profiles: prof(P) =
{K ′1, . . . ,K ′q′}, with q′ ≤ q; in which case, there exists polynomials Q1,0, Q1,1, . . . , Qq′,0,
Qq′,1 in the formal variables ĉi,b for i ∈ {1, . . . , k} and b ∈ {0, 1}, such that:

P =
q′∑
`=1

Q`,0 ·
k∏
i=1

â0
i,K′

`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

+

Q`,1 ·
k∏
i=1

â1
i,K′

`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

.

In addition, when the index set of P does not contain S ′ = ∏k
i=1 Si, then necessarily

q′ = 1.

Furthermore prof(P) and the above decompositions of P can be efficiently computed (i.e., in
a time polynomial in κ and q).

The proof is by induction over the expression of the polynomials formed by the adversary.
We first need to introduce some intermediate lemmata.

Lemma 7.6.5 (Impossibility to add partial terms). Let t1 and t2 be two monomials, such
that prof(t1) 6=⊥ and prof(t2) 6=⊥. If prof(t1) or prof(t2) is partial and prof(t1) 6= prof(t2),
then t1 and t2 do not have the same index set.

Proof of Lemma 7.6.5. We can assume without loss of generality that, for a fixed bit b ∈ {0, 1}
and some i ∈ {1, . . . , k}, prof(t1)i = b and prof(t2)i 6= b. Hence, as prof(t2)i 6= b and as
prof(t2) 6=⊥, t2 cannot contain a factor of âi,b, ẑi,i′,b,b′ or ẑi′,i,b′,b for any i′ ∈ {1, . . . , k} and
b ∈ {0, 1}. We now prove Lemma 7.6.5 by contradiction. The possible cases are the following:

Ch
ap

te
r7

7.6 Security of the Sel-Prod Assumption in the Generic Multilinear Map Model 131

• Suppose t1 contains a factor of âi,b. Then its index set was formed using BitCommiti,b =
Si,b,i. Since t2 does not contain a factor of âi,b, its index set was not formed using
BitCommiti,b = Si,b,i. Therefore, if t1 and t2 have the same index set, by definition of
a straddling set, this index set has to contain the whole set Si. However, for every
i′ ∈ {1, . . . , k} with i 6= i′, the only encodings that contain Si,b,i′ , for any b ∈ {0, 1}, are
ẑi,i′,b,b′ and ẑi′,i,b′,b for some b′ ∈ {0, 1}. This implies that t1 contains a factor of ẑi,i′,b,b′
or ẑi′,i,b′,b for some b′ ∈ {0, 1}, for every i′ ∈ {1, . . . , k} and similarly, that t2 contains a
factor of ẑi,i′,1−b,b′ or ẑi′,i,b′,1−b for some b′ ∈ {0, 1} and for every i′ ∈ {1, . . . , k}. This
contradicts the fact that at least one of the two profiles is partial.

• Suppose t1 does not contain any factor of âi,b but does contain a factor of ẑi,i′,b,b′ or
ẑi′,i,b′,b for some i′ ∈ {1, . . . , k} and some b ∈ {0, 1}. Then, its index set was formed
using BitFilli,i′,b,b′ = Si,b,i′Si′,b′,i or BitFilli′,i,b′,b = Si′,b′,iSi,b,i′ , so in particular using
Si,b,i′ . Then, one can apply the same argument than in the previous case to exclude
this case.

Lemma 7.6.5 immediately follows.

Similarly to the above lemma, we can prove the following three lemmata. As their proofs
are very similar, we only give brief intuitions.

Lemma 7.6.6 (Impossibility to add ⊥-profile and non-⊥-profile). Let t1 and t2 be two
monomials. If prof(t1) =⊥ and prof(t2) 6=⊥, then t1 and t2 do not have the same index set.

Proof of Lemma 7.6.6. The technique is similar to the proof of Lemma 7.6.5, thus we just
provide the main ideas. As prof(t1) =⊥, there exists i ∈ {1, . . . , k} such that t1 incorporates
both 0 and 1 as its i-th bit, and prof(t2)i ∈ {0, 1, ∗}. Assume prof(t2)i = ∗. Then t2 does not
contain any âi,b nor ẑi,i′,b,b′ nor ẑi′,i,b′,b, for any b, b′, i′, so its index set cannot be form with
any of the Si,b,i′ , for any b, i′, while t1 is formed using at least one such index. Then t1 and t2
do not have the same index set. Assuming now that prof(t2)i = b, one can reiterate the same
technique with some index Si′,1−b,i that cannot be used to form its index set. Lemma 7.6.6
follows.

Lemma 7.6.7. Let Q1, Q2 be two polynomials in the formal variables ĉi,b, for i ∈ {1, . . . , k}
and b ∈ {0, 1}, β1, β2 two bit strings in {0, 1}k, K ′1,K ′2 two tuples in {0, 1, ∗}k, and Z1, Z2
two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. Let P1 and P2 be the two polynomials
defined by

P` = Q`

k∏
i=1

K′`,i 6=∗

âβ`i,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}. If the index of P1 and P2 is the same but does not contains S ′ = ∏k
i=1 Si nor

S0, then K1 = K2 and Z1 = Z2. The latter condition (on the index not containing S ′) is in
particular satisfied when the profile of P1 (and so of P2 too) is ⊥ or contains a partial profile.

Proof of Lemma 7.6.7. Once again, the proof is similar to that of Lemma 7.6.5. The fact
that the index of P1 (and P2) does not contain S ′ nor S0 guarantees that there exists
i ∈ {1, . . . , k} such that Si is not contained in this index, and S0 is not contained either.
For any such i, as the indices of P1 and P2 are the same, they have to contain exactly the
same Si,b,i′ ’s from Si (since they do not contain Si).

132 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

Lemma 7.6.8. Let Q1,0, Q1,1, Q2,0, Q2,1 be four polynomials in the formal variables ĉi,b, for
i ∈ {1, . . . , k} and b ∈ {0, 1}, K ′1,K ′2 two tuples in {0, 1, ∗}k, and Z1, Z2 two subsets of
{(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. Let P1 and P2 be the two polynomials defined by

P` =

Q`,0
k∏
i=1

K′`,i 6=∗

â0
i,K′

`,i
+Q`,1

k∏
i=1

K′`,i 6=∗

â1
i,K′

`,i

 · ∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}. If the index of P1 and P2 is the same but does not contains S ′ = ∏k
i=1 Si nor

S0, then K1 = K2 and Z1 = Z2. The latter condition (on the index not containing S ′) is in
particular satisfied when the profile of P1 (and so of P2 too) is ⊥ or contains a partial profile.

Proof of Lemma 7.6.8. The proof is similar to that of Lemma 7.6.7.

We now have every tool to prove Lemma 7.6.4.

Proof of Lemma 7.6.4. In this proof, the integers i, i1, i2 are in {1, . . . , k} and b is a bit. We
set S ′ = ∏k

i=1 Si. Furthermore:

• Q and Q` always denote polynomials in the formal variables ĉi,b,

• β and β` always denot bit strings in {0, 1}k,

• K ′ and K ′` always denote tuples in {0, 1, ∗}k, and

• Z and Z` always denote subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2.

We prove the above lemma by induction on the sequence of formal polynomials P formed
by the adversary A via oracle queries. Let P denote a newly formed polynomial. We consider
the following cases:

• Suppose P = t with t being a monomial: clearly, either prof(P) =⊥, or it is a singleton
containing either a partial profile or a non-partial profile. Moreover, as a monomial, it is
straightforward that it has the expected form detailed in the statement of Lemma 7.6.4
(with q′ = 1 in the third case).

• Suppose P = P1 + P2 with P1, P2 some polynomials already formed. We have three
possible cases:
1. prof(P1) =⊥ or prof(P2) =⊥: immediately, we have also prof(P) =⊥, by definition

of the profile of a polynomial. Furthermore, we necessarily have prof(P1) =
prof(P2) =⊥, otherwise, the formal expansion of P1 + P2 would contain one
monomial of profile ⊥ and another one of profile different than ⊥, which is
impossible according to Lemma 7.6.6. We consider two sub-cases:
– the index of P1 (and also of P2) does not contains S0. By induction hypothesis,

there exists two polynomials Q1 and Q2, two strings β1 and β2, two tuples
K ′1 and K ′2, and two sets Z1 and Z2, such that:

P` = Q`

k∏
i=1

K′`,i 6=∗

â
β`,i
i,K′

`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

Ch
ap

te
r7

7.6 Security of the Sel-Prod Assumption in the Generic Multilinear Map Model 133

for ` ∈ {1, 2}. According to Lemma 7.6.7, this implies that K ′1 = K ′2 and
Z1 = Z2 and that P = P1 + P2 has the expected form.

– the index of P1 (and also of P2) contains S0. We conclude again using
Lemma 7.6.8 and the induction hypothesis.

2. prof(P1) or prof(P2) is a singleton containing one partial profile. We have neces-
sarily prof(P2) = prof(P1), otherwise P1 and P2 cannot be added via Lemma 7.6.5,
since there must exist two monomials t1 and t2 in the formal expansion of P1 and
P2 respectively such that prof(t1) 6= prof(t2) and with prof(t1) or prof(t2) being
partial. We can conclude this case similarly to the previous case.

3. both prof(P1) and prof(P2) are sets containing at least 2 non-partial profiles.
Then prof(P) = prof(P1) ∪ prof(P2) and does not contain any partial profile.
Furthermore, if the index of P (which is the same as the one of P1 and P2)
contains S ′, it is straightforward that P has the expected form, with q′ =
|prof(P)| ≤ |prof(P1)|+ |prof(P2)|.
It remains to show that if the index of P does not contain S ′, P has the expected
form with q′ = 1. By hypothesis induction, as the indexes of P1 and P2 do not
contain S ′: there exists two polynomials Q1 and Q2, two tuples K ′1 and K ′2, and
two sets Z1 and Z2, such that prof(P1) = {K ′1} and prof(P2) = {K ′2}, such that:

P` = Q`

k∏
i=1

K′`,i 6=∗

âi,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}. According to Lemma 7.6.7, this implies that K ′1 = K ′2 and Z1 = Z2
and this clearly implies that P = P1 + P2 has the expected form.

• Suppose P = P1P2 with P1, P2 some formal polynomials already formed. Once again,
we have three possible cases:
1. prof(P1) =⊥ or prof(P2) =⊥: immediately, we have also prof(P) =⊥. We assume

without losss of generality that prof(P1) =⊥.
Let us show that necessarily prof(P2) is either ⊥ or a singleton containing a partial
profile. Otherwise the index of P2 would contain S ′, which implies that the index
of P1 cannot contain any element in S ′ and that P1 = Q for some polynomial Q.
But in that case, the profile of P1 would be {(∗, . . . , ∗)} 6=⊥ which is impossible.
We now consider two sub-cases:
– the index of P does not contain S0, in this case, P1 nor P2 can contain S0

either. By induction hypothesis, there exist two strings β1, β2, two polynomials
Q1 and Q2, two tuples K ′1 and K ′2, and two sets Z1 and Z2, such that:

P` = Q`

k∏
i=1

K′`,i 6=∗

â
β`,i
i,K′

`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}; thus P1P2 has clearly the expected form.

134 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

– the index of P does contain S0. Clearly, at most one polynomial among P1
and P2 has an index containing S0. Using the induction hypothesis, it is
easy to see that there exist two strings β1, β2, two polynomial Q0 and Q1, one
tuple K ′, and one set Z, such that:

P =

Q0 ·
k∏
i=1
K′i 6=∗

â
β1,i
i,K′i

+Q1 ·
k∏
i=1
K′i 6=∗

â
β1,i
i,K′i

 · ∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .

To conclude, we just need to prove that β1, β2 ∈ {(0, . . . , 0), (1, . . . , 1)}. This
directly comes from the property of straddling sets, the existence of the above
polynomial P implies that (S0,β0,1,1, . . . , S0,β0,k,k) and (S0,β1,1,1, . . . , S0,β1,k,k)
are two partitions of S0.

2. none of the index of P1 and P2 contains S ′. The profiles prof(P1) and prof(P2) are
singletons, and the profile prof(P) is either ⊥ or a singleton containing the merge
of the two profiles contained in prof(P1) and prof(P2). We conclude similarly to
the previous case.

3. P1 or P2 contains S ′. We assume without loss of generality that the index of P1
contains S ′. This implies that the index of P2 cannot contain any element of
S ′ and so that there exists a polynomial Q such that P2 = Q. We therefore get
that prof(P) = prof(P1) is a set of non-partial profiles. Furthermore, using the
induction hypothesis on P1, it is straightforward to see that P has the expected
form (with the same number of terms q′ as P1).

7.6.2 Security of the Sel-Prod Assumption
Theorem 7.6.9 (Impossibility of constructing encodings of zero). Let k and n be two positive
integers. In the generic multilinear map model with oracle M , for any adversary D making
at most qM queries to the oracle M , we have:

Pr
[

(k, n)-Sel-ProdRealD ⇒ an encoding of 0
]
≤ qM

(
qM
2k + k + n

p

)
and

Pr
[

(k, n)-Sel-ProdRandD ⇒ an encoding of 0
]
≤ q2

M

2k + 2qM (k + n)
p

.

Proof of Theorem 7.6.9. Once again, we consider the two cases separately.
(k, n)-Sel-Prod. The proof is similar to the case RKPRFRandF of the proof of Theorem 7.3.2
and to the case (k, n,X, Y)-XY-DDHRand of the proof of Theorem 7.5.1.
(k, n)-Sel-Prod. Similarly to the case RKPRFRealF of the proof of Theorem 7.3.2, we just
need to prove that any non-zero polynomial P remains non-zero when it remains non-zero
when ẑi1,i2,b1,b2 is replaced by 1 and γ̂i,b = â1

i,b is replaced by ai,Ki⊕b where K is a random
bit string in {0, 1}. We call this replacement: the partial evaluation.
According to Lemma 7.6.4, we have three possible cases (we use the notation of this

lemma):

Ch
ap

te
r7

7.6 Security of the Sel-Prod Assumption in the Generic Multilinear Map Model 135

• P has the following form:

P = Q ·
k∏
i=1
K′i 6=∗

âβii,K′i
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .

In this case, the polynomial clearly remains non-zero after the partial evaluation.

• P has the following form:

P =

Q0 ·
k∏
i=1
K′i 6=∗

â0
i,K′i

+Q1 ·
k∏
i=1
K′i 6=∗

â1
i,K′i

 · ∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .

In this case, since P contains S0, we have that K ′ ∈ {0, 1}k and thus if this polynomial
P is zero adter the partial evaluation, then for any i{1, . . . , k}, ai,K′i = ai,Ki⊕K′i , i.e.,
K ′ = K ⊕K ′, or in other words K = 0. This happens with probability 1/2k.

• P has the following form:

P =
q′∑
`=1

Q`,0 ·
k∏
i=1

â0
i,K′

`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

+

Q`,1 ·
k∏
i=1

â1
i,K′

`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

.

If Q`,0 is zero for all `, then P is clearly still non-zero after the partial evaluation. Let
us now suppose without loss of generality that Q`,0 6= 0. Let us suppose that P becomes
the zero polynomial after the partial evaluation. The first (for any order) monomial of
the term

Q1,0 ·
k∏
i=1

â0
i,K′1,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′1,i1 ,K
′
1,i2

needs to be canceled by one of the monomials of the terms for some `:

Q`,1 ·
k∏
i=1

â1
i,K′

`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1 ,K
′
`,i2

.

This implies that for some ` ∈ {1, . . . , q′}, K ′1 = K⊕K ′`. This happens with probability
at most qM .

Therefore probability that a non-zero polynomial P generated by the adversary D remains
non-zero when ẑi1,i2,b1,b2 is replaced by 1 and γ̂i,b is replaced by ai,Ki⊕b where K is a random
bit string in {0, 1}, is at most q2

M /2K (as the adversary D generates at most M polynomials).
We conclude as usual using the Schwarz-Zippel lemma and an hybrid argument.

Similarly to Corollary 7.3.5 and Corollary 7.6.10, we have the following corollary.

Corollary 7.6.10 (Security in the generic multilinear map model). Let k and n be two
positive integers. In the generic multilinear map model with oracle M , for any adversary D
making at most qM queries to the oracle M , we have:

136 Chapter 7 A Provably-Secure Pseudorandom Function For XOR-Relations

Proof of Corollary 7.6.10. We just consider an intermediate game where we simulate every-
thing as before except the zero-testing oracle which always outputs “non-zero” unless its
input is zero, as a polynomial. Thus, we have

Adv(k,n)-Sel-Prod(D) ≤ 2qM
|U |
p

,

and Corollary 7.6.10 easily follows.

Ch
ap

te
r8

Chapter 8
Conclusion and Open Questions

8.1 Conclusion

One of the main contribution of this thesis is to introduce an algebraic framework to analyze
the security of certain forms of pseudorandom functions or extensions. Specifically, the
PLP theorem and its weaker variant the LIP theorem allow us to translate in a very simple
fashion the security of pseudorandom functions (or associated primitives) into simple algebraic
properties. This leads to different applications for pseudorandom functions in the standard
as well as in the related-key setting, but also for aggregate or multilinear pseudorandom
functions. In particular, thanks to the generality of the PLP theorem, we are able to provide
constructions with weaker assumptions or, in the case of related-key security, that handles
larger classes of related-key deriving functions.
Concerning the related-key setting, we also define new frameworks to tranform a pseudo-

random function into a related-key secure version. In particular, we repair and extend the
Bellare-Cash framework, which allows us to both recover and strengthen previously known
results in this area.

However, despite these new results, we have not been able to construct a related-key secure
pseudorandom function for real-world classes, such as XOR relations, using any of these
frameworks. Hence, we target this problem in the last part of this thesis, and provide the
first provably-secure pseudorandom function for XOR relations, assuming the existence of a
weak form of multilinear maps. Unfortunately, this is a strong assumption, and this result
should be only seen as a proof of concept.

8.2 Open Questions

There are still several open problems that should be tackled in this area. Despite significant
progress over the last three years, we are still far from solving any of them. Here is a
non-exhaustive list of open questions that we would love to solve at some point.
A first series of questions is related to our main result, the PLP theorem. We would be

interested in showing that it can be extended to more advanced primitives or to different
assumptions. Here are a few examples of open questions.

Question 8.1. Can we extend the PLP theorem to handle primitives that offer more func-
tionalities, for instance verifiable random functions?

— 137 —

138 Chapter 8 Conclusion and Open Questions

Question 8.2. In particular, can we propose an algebraic framework to transform the form
of pseudorandom functions we study into verifiable random functions, generically?

Question 8.3. Can we develop a lattice-based variant of the PLP theorem, that would
translate the pseudorandomness of a construction into simple properties?

Also, targeting more specifically the related-key setting, building an XOR-related-key
secure pseudorandom function based on standard assumptions remains an open problem,
and probably the most important open problem in this area. Therefore, here are two natural
open questions that we would be interested in solving.

Question 8.4. Can we build an XOR-related-key secure pseudorandom function without
multilinear maps (or any other powerful tool such as indistinguishability obfuscation)? In
particular, can we construct one under standard assumptions?

Question 8.5. Alternatively, can we construct the weak form of multilinear maps we need
for our XOR-related-key secure pseudorandom function under standard assumptions, such as
lattice-based assumptions?

Notation
Mathematical Notation
N set of non-negative integers
Z set of integers
p, p1, p2, . . . prime numbers
(ZN ,+, ·) or ZN ring of integers modulo N , with N ≥ 1 being an integer
(ZN ,+) ZN seen as an additive group
(Z∗N , ·) or Z∗N multiplicative subgroup of ZN
G,G1, . . . cyclic groups
(N,G, g) cyclic group of order N and generated by g
[a]g group element ga
|S | cardinal of the set S
D ×R cartesian product of D and R
D ⊗R tensor product of D and R
Fun(D,R) the set of functions with domain D and range R
L(D,R) the vector space of linear functions from D to R
#”u , #”x , . . . column vectors: #”u = (ui)i=1,...,n
| #”v | length of #”v
〈 #”u , #”v 〉 inner product of #”u and #”v
A,B, . . . matrices: A = (ai,j)i=1,...,n

j=1,...,m

R[T] ring of univariate polynomials over ring R
R[T1, . . . , Tn] ring of multivariate polynomials in T1, . . . , Tn over ring R
R[T1, . . . , Tn]≤d its subspace of degree at most d (in one indeterminate) multivariate

polynomials

Algorithmic Concepts
{0, 1}∗ the set of all bitstrings
{0, 1}n the set of all bitstrings of length n
|x| length of x
x⊕ y exclusive or between x, y ∈ {0, 1}n
y

$← S y is assigned to a uniform element from the set S

y
$← A(x) x is the output of A on input x with fresh random coins

y ← A(x) same when A is deterministic

Provable Security
κ, 1κ security parameter and its unary representation
A ,B, . . . adversaries
G,G1, . . . games
AdvExp(A , κ) advantage of A in an experiment Exp or in distinguishing the experi-

ments Exp0 and Exp1, with security parameter κ

— 139 —

Abbreviations

Assumptions
DDH Decisional Diffie-Hellman
d-DDHI d-Decisional Diffie-Hellman Inversion
DL Discrete Logarithm
DLin Decisional Linear
k-Lin k-Linear
MDDH Matrix Decisional Diffie-Hellman
d-SDL d-Strong Discrete Logarithm

Cryptographic Notions
AGG-PRF Aggregate Pseudorandom Function
CR Collision Resistance
KC Key-Collision
LIP Linearly Iindependent Polynomial
MMAP Multilinear Map
MPRF Multilinear Pseudorandom Function
PLP Polynomial Linear Pseudorandomness
PPT Probabilistic Polynomial-Time
PRF Pseudorandom Function
RKA Related-Key Attack
RKA-PRF Related-Key Pseudorandom Function
RKD Related-Key Deriving
SKC Statistical-Key-Collision

— 141 —

List of Illustrations

Figures

1.1 The GGM construction for F : {0, 1}κ × {0, 1}3 → {0, 1}κ 6

2.1 Games defining the DL and d-SDL problems in G 17
2.2 Games defining the DDH and d-DDHI problems in G 18
2.3 Games defining the k-Lin problem in G . 19
2.4 Security games for collision-resistant hash functions and pseudorandom functions 20
2.5 Security games for aggregate pseudorandom functions 23
2.6 Security games for multilinear pseudorandom function 24

3.1 Security games for related-key pseudorandom functions 30
3.2 Games defining the uniformity of a key-transformer 34
3.3 Security games for Φ-key-collision of a pseudorandom function F (left) and

for Φ-statistical-key-collision of Fun(K ×D,R) (right) 35
3.4 Games for the proof of Theorem 3.4.2 . 40
3.5 Games for the proof of Lemma 3.5.3 . 43
3.6 Security games for unique-input-related-key pseudorandom functions 45
3.7 Games for the proof of Theorem 3.6.2 . 46
3.8 Games defining the S-uniformity of a key-transformer KT 50
3.9 Games for the proof of Theorem 3.6.3 . 50

4.1 Games defining the D`,k-MDDH problem in G 54
4.2 Games defining the (D`,k, Q)-MDDH problem in G 55
4.3 Games defining the E1,(d,`)-MDDH problem in G 56
4.4 Games for the proof of Lemma 4.3.1 . 57

5.1 TestLin procedure . 69
5.2 Security games for (n, d, k,m)-PLP in a group G 72
5.3 Security games for (n, d, k,m)-LIP in a group G 73
5.4 Games G0,j and G1,j for the proof of the PLP theorem 77
5.5 Games G2,j for the proof of the PLP theorem 79

6.1 Security game for extended Φ-key-collision of a pseudorandom function M for
a class Φ . 90

6.2 Games for the proof of Theorem 6.2.3 . 91
6.3 Game defining the extended Φ-key-collision security offM with helper function

Help. 101
6.4 Security game for extended (S,Φ)-unique-input-related-key pseudorandom

function security of a pseudorandom function M with helper function Help . 101
6.5 Games for the proof of Theorem 6.2.10 . 103

— 143 —

144 List of Illustrations

7.1 Games defining the XY-DDH and Sel-Prod problems 123
7.2 Games G0,G1,G2,G3 for the proof of Theorem 7.4.4 126
7.3 Games G4,i′ ,G5,j′ for the proof of Theorem 7.4.4 127

Tables
4.1 Security of Ek,d-MDDH . 56

Bibliography
[01] Advanced Encryption Standard (AES). National Institute of Standards and

Technology (NIST), FIPS PUB 197, U.S. Department of Commerce. Nov. 2001
(cit. on p. 4).

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. “Verifiable Random Func-
tions from Identity-Based Key Encapsulation”. In: EUROCRYPT 2009. Ed. by
Antoine Joux. Vol. 5479. LNCS. Springer, Heidelberg, Apr. 2009, pp. 554–571
(cit. on p. 6).

[AJ15] Prabhanjan Ananth and Abhishek Jain. “Indistinguishability Obfuscation from
Compact Functional Encryption”. In: CRYPTO 2015, Part I. Ed. by Rosario
Gennaro and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg,
Aug. 2015, pp. 308–326. doi: 10.1007/978-3-662-47989-6_15 (cit. on p. 11).

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. “Verified Proofs of Higher-Order Masking”.
In: EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015, pp. 457–485. doi: 10.1007/
978-3-662-46800-5_18 (cit. on p. 11).

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. “Hierarchical Identity Based En-
cryption with Constant Size Ciphertext”. In: EUROCRYPT 2005. Ed. by Ronald
Cramer. Vol. 3494. LNCS. Springer, Heidelberg, May 2005, pp. 440–456 (cit. on
p. 65).

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In:
CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer, Heidelberg,
Aug. 2004, pp. 41–55 (cit. on p. 6).

[BC10a] Mihir Bellare and David Cash. Pseudorandom Functions and Permutations
Provably Secure Against Related-Key Attacks. Cryptology ePrint Archive, Report
2010/397. http://eprint.iacr.org/2010/397. 2010 (cit. on p. 34).

[BC10b] Mihir Bellare and David Cash. “Pseudorandom Functions and Permutations
Provably Secure against Related-Key Attacks”. In: CRYPTO 2010. Ed. by Tal
Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010, pp. 666–684 (cit. on
pp. 6, 8, 9, 29, 33, 35, 36, 38, 41, 45).

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. “Cryptography Secure against
Related-Key Attacks and Tampering”. In: ASIACRYPT 2011. Ed. by Dong
Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011,
pp. 486–503 (cit. on pp. 7, 29, 32).

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. “Key Recovery Attacks of Practical Complexity on AES-256 Variants
with up to 10 Rounds”. In: EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110.
LNCS. Springer, Heidelberg, May 2010, pp. 299–319 (cit. on p. 7).

— 145 —

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
http://eprint.iacr.org/2010/397

146 Bibliography

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. “Related-Key Boomerang and
Rectangle Attacks”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494.
LNCS. Springer, Heidelberg, May 2005, pp. 507–525 (cit. on p. 7).

[BDK08] Eli Biham, Orr Dunkelman, and Nathan Keller. “A Unified Approach to Related-
Key Attacks”. In: FSE 2008. Ed. by Kaisa Nyberg. Vol. 5086. LNCS. Springer,
Heidelberg, Feb. 2008, pp. 73–96 (cit. on p. 7).

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In:
PKC 2006. Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin.
Vol. 3958. LNCS. Springer, Heidelberg, Apr. 2006, pp. 207–228 (cit. on p. 19).

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
“Protecting Obfuscation against Algebraic Attacks”. In: EUROCRYPT 2014.
Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer,
Heidelberg, May 2014, pp. 221–238. doi: 10.1007/978-3-642-55220-5_13
(cit. on p. 115).

[Bih94] Eli Biham. “New Types of Cryptoanalytic Attacks Using related Keys (Extended
Abstract)”. In: EUROCRYPT’93. Ed. by Tor Helleseth. Vol. 765. LNCS. Springer,
Heidelberg, May 1994, pp. 398–409 (cit. on p. 7).

[BK03] Mihir Bellare and Tadayoshi Kohno. “A Theoretical Treatment of Related-Key
Attacks: RKA-PRPs, RKA-PRFs, and Applications”. In: EUROCRYPT 2003.
Ed. by Eli Biham. Vol. 2656. LNCS. Springer, Heidelberg, May 2003, pp. 491–506
(cit. on pp. 7, 29–31).

[BK09] Alex Biryukov and Dmitry Khovratovich. “Related-Key Cryptanalysis of the
Full AES-192 and AES-256”. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui.
Vol. 5912. LNCS. Springer, Heidelberg, Dec. 2009, pp. 1–18 (cit. on p. 7).

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. “Distinguisher and
Related-Key Attack on the Full AES-256”. In: CRYPTO 2009. Ed. by Shai
Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009, pp. 231–249 (cit. on
p. 7).

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and
Joe Zimmerman. “Semantically Secure Order-Revealing Encryption: Multi-input
Functional Encryption Without Obfuscation”. In: EUROCRYPT 2015, Part
II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer,
Heidelberg, Apr. 2015, pp. 563–594. doi: 10.1007/978-3-662-46803-6_19
(cit. on p. 10).

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. “Algebraic
pseudorandom functions with improved efficiency from the augmented cascade”.
In: ACM CCS 10. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov. ACM Press, Oct. 2010, pp. 131–140 (cit. on pp. 6, 21).

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. “Post-
zeroizing Obfuscation: New Mathematical Tools, and the Case of Evasive Cir-
cuits”. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 764–791. doi:
10.1007/978-3-662-49896-5_27 (cit. on p. 118).

https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-49896-5_27

147

[Boy08] Xavier Boyen. “The Uber-Assumption Family (Invited Talk)”. In: PAIRING
2008. Ed. by Steven D. Galbraith and Kenneth G. Paterson. Vol. 5209. LNCS.
Springer, Heidelberg, Sept. 2008, pp. 39–56 (cit. on p. 65).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006.
Ed. by Serge Vaudenay. Vol. 4004. LNCS. Springer, Heidelberg, May 2006,
pp. 409–426 (cit. on p. 16).

[BV15] Nir Bitansky and Vinod Vaikuntanathan. “Indistinguishability Obfuscation from
Functional Encryption”. In: 56th FOCS. Ed. by Venkatesan Guruswami. IEEE
Computer Society Press, Oct. 2015, pp. 171–190. doi: 10.1109/FOCS.2015.20
(cit. on p. 11).

[BW04] Andrej Bogdanov and Hoeteck Wee. “A Stateful Implementation of a Ran-
dom Function Supporting Parity Queries over Hypercubes”. In: Approximation,
Randomization, and Combinatorial Optimization, Algorithms and Techniques,
7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop on
Randomization and Computation, RANDOM 2004, Cambridge, MA, USA, Au-
gust 22-24, 2004, Proceedings. Ed. by Klaus Jansen, Sanjeev Khanna, José D. P.
Rolim, and Dana Ron. Vol. 3122. Lecture Notes in Computer Science. Springer,
2004, pp. 298–309. isbn: 3-540-22894-2. doi: 10.1007/978-3-540-27821-4_27.
url: http://dx.doi.org/10.1007/978-3-540-27821-4_27 (cit. on p. 24).

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. “Aggregate Pseudo-
random Functions and Connections to Learning”. In: TCC 2015, Part II. Ed. by
Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015. LNCS. Springer, Heidelberg,
Mar. 2015, pp. 61–89. doi: 10.1007/978-3-662-46497-7_3 (cit. on pp. 8, 9,
22, 106, 108, 110, 111).

[CH15] Aloni Cohen and Justin Holmgren. “Multilinear Pseudorandom Functions”. In:
ICALP 2015, Part I. Ed. by Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann. Vol. 9134. LNCS. Springer, Heidelberg,
July 2015, pp. 331–342. doi: 10.1007/978-3-662-47672-7_27 (cit. on pp. 8,
23, 24, 106).

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “Practical Multi-
linear Maps over the Integers”. In: CRYPTO 2013, Part I. Ed. by Ran Canetti
and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 476–
493. doi: 10.1007/978-3-642-40041-4_26 (cit. on pp. 26, 114, 117, 118, 121).

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “New Multilinear
Maps Over the Integers”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro
and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015,
pp. 267–286. doi: 10.1007/978-3-662-47989-6_13 (cit. on pp. 26, 114, 117,
118).

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. “An
Algebraic Framework for Diffie-Hellman Assumptions”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer,

https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/978-3-540-27821-4_27
http://dx.doi.org/10.1007/978-3-540-27821-4_27
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/978-3-662-47672-7_27
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13

148 Bibliography

Heidelberg, Aug. 2013, pp. 129–147. doi: 10.1007/978-3-642-40084-1_8
(cit. on pp. 6, 53, 55, 65).

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate Multilinear Maps
from Ideal Lattices”. In: EUROCRYPT 2013. Ed. by Thomas Johansson and
Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013, pp. 1–17.
doi: 10.1007/978-3-642-38348-9_1 (cit. on pp. 26, 114, 117, 118).

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. “Graph-Induced Multilinear
Maps from Lattices”. In: TCC 2015, Part II. Ed. by Yevgeniy Dodis and Jesper
Buus Nielsen. Vol. 9015. LNCS. Springer, Heidelberg, Mar. 2015, pp. 498–527.
doi: 10.1007/978-3-662-46497-7_20 (cit. on pp. 26, 114, 117, 118, 121).

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions (Extended Abstract)”. In: 25th FOCS. IEEE Computer Society Press,
Oct. 1984, pp. 464–479 (cit. on pp. 4, 5).

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-Core Predicate for all One-Way
Functions”. In: 21st ACM STOC. ACM Press, May 1989, pp. 25–32 (cit. on
p. 4).

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. “Indistingui-
shability Obfuscation from the Multilinear Subgroup Elimination Assumption”.
In: 56th FOCS. Ed. by Venkatesan Guruswami. IEEE Computer Society Press,
Oct. 2015, pp. 151–170. doi: 10.1109/FOCS.2015.19 (cit. on p. 121).

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. “Witness Encryption from
Instance Independent Assumptions”. In: CRYPTO 2014, Part I. Ed. by Juan A.
Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 426–443. doi: 10.1007/978-3-662-44371-2_24 (cit. on p. 121).

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. “Correlated-Input Secure Hash
Functions”. In: TCC 2011. Ed. by Yuval Ishai. Vol. 6597. LNCS. Springer,
Heidelberg, Mar. 2011, pp. 182–200 (cit. on p. 6).

[HW10] Susan Hohenberger and Brent Waters. “Constructing Verifiable Random Func-
tions with Large Input Spaces”. In: EUROCRYPT 2010. Ed. by Henri Gilbert.
Vol. 6110. LNCS. Springer, Heidelberg, May 2010, pp. 656–672 (cit. on p. 6).

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Securing Hard-
ware against Probing Attacks”. In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729.
LNCS. Springer, Heidelberg, Aug. 2003, pp. 463–481 (cit. on p. 11).

[KHP07] Jongsung Kim, Seokhie Hong, and Bart Preneel. “Related-Key Rectangle Attacks
on Reduced AES-192 and AES-256”. In: FSE 2007. Ed. by Alex Biryukov.
Vol. 4593. LNCS. Springer, Heidelberg, Mar. 2007, pp. 225–241 (cit. on p. 7).

[Knu93] Lars R. Knudsen. “Cryptanalysis of LOKI91”. In: AUSCRYPT’92. Ed. by
Jennifer Seberry and Yuliang Zheng. Vol. 718. LNCS. Springer, Heidelberg, Dec.
1993, pp. 196–208 (cit. on p. 7).

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209 (cit. on p. 19).

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1109/FOCS.2015.19
https://doi.org/10.1007/978-3-662-44371-2_24

149

[KR01] Joe Kilian and Phillip Rogaway. “How to Protect DES Against Exhaustive Key
Search (an Analysis of DESX)”. In: Journal of Cryptology 14.1 (2001), pp. 17–35
(cit. on p. 16).

[LW09] Allison B. Lewko and Brent Waters. “Efficient pseudorandom functions from
the decisional linear assumption and weaker variants”. In: ACM CCS 09. Ed. by
Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis. ACM Press, Nov. 2009,
pp. 112–120 (cit. on p. 6).

[Mil86] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: CRYPTO’85.
Ed. by Hugh C. Williams. Vol. 218. LNCS. Springer, Heidelberg, Aug. 1986,
pp. 417–426 (cit. on p. 19).

[NR97] Moni Naor and Omer Reingold. “Number-theoretic Constructions of Efficient
Pseudo-random Functions”. In: 38th FOCS. IEEE Computer Society Press, Oct.
1997, pp. 458–467 (cit. on pp. 6, 9, 21).

[Sha71] Daniel Shanks. “Class number, a theory of factorization, and genera”. In: Proc.
Symp. Pure Math. Vol. 20. 1971, pp. 415–440 (cit. on p. 19).

[Sho01] Victor Shoup. “OAEP Reconsidered”. In: CRYPTO 2001. Ed. by Joe Kilian.
Vol. 2139. LNCS. Springer, Heidelberg, Aug. 2001, pp. 239–259 (cit. on p. 16).

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In:
EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS. Springer, Heidelberg,
May 1997, pp. 256–266 (cit. on p. 26).

[Zim15] Joe Zimmerman. “How to Obfuscate Programs Directly”. In: EURO-
CRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 439–467. doi: 10.1007/978-3-662-
46803-6_15 (cit. on pp. 25, 114–116, 129).

https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

Résumé
Dans cette thèse, nous étudions la structure algé-
brique sous-jacente aux fonctions pseudo-aléatoires
basées sur la théorie des nombres. Précisément, nous
montrons que le caractère pseudo-aléatoire de fonc-
tions d’une forme particulière est équivalent au
fait que ces fonctions vérifient une propriété algé-
brique simple. Cette caractérisation algébrique s’ap-
plique à la plupart des constructions connues et
s’étend naturellement aux généralisations des fonc-
tions pseudo-aléatoires, par exemple aux fonctions
pseudo-aléatoires sûres contre les attaques par clés
liées, multilinéaires ou supportant l’agrégation.

Cette caractérisation repose sur une famille d’hypo-
thèses MDDH, qui contient en particulier différentes
hypothèses classiques, comme DDH, DLin, ou k-Lin.
Ainsi, en choisissant les paramètres des constructions
selon, ce résultat permet de construire des fonctions
pseudo-aléatoires (ou leurs généralisations) prouvées
sûres sous ces différentes hypothèses.

Enfin, nous étudions également plus précisément le
cas de la sécurité contre les attaques par clés liées.
D’une part, nous corrigeons et étendons la transfor-
mation proposée par Bellare et Cash pour ensuite
construire de nouvelles fonctions pseudo-aléatoires
sûres contre des attaques par clés liées plus puissantes.
D’autre part, nous construisons la première fonction
pseudo-aléatoire prouvée sûre contre des attaques par
XOR. Cette construction repose sur l’existence d’une
forme faible d’applications multilinéaires.

Mots Clés
cryptographie, fonctions pseudo-aléatoires, sécurité
prouvée, sécurité par clés liées, constructions al-
gébriques, hypothèses calculatoires.

Abstract
In this thesis, we study the algebraic structure un-
derlying number-theoretic pseudorandom functions.
Specifically, we define an algebraic framework that
translates the pseudorandomness of a particular form
of functions into a simple algebraic property. The
resulting generic framework encompasses most of ex-
isting constructions and naturally extends to related
primitives, such as related-key secure, aggregate, and
multilinear pseudorandom functions.

This framework holds under a family of MDDH as-
sumptions, that contains especially different classical
assumptions, such as DDH, DLin, or k-Lin. Therefore,
setting accordingly the parameters in the construc-
tions, our framework can be used to construct secure
pseudorandom functions (or related primitives) whose
security holds under these assumptions.

Finally, we also study more specifically the case of
related-key security. On the one hand, we propose a
fix and some extensions to the Bellare-Cash frame-
work and then build pseudorandom functions secure
against larger classes of attacks. On the other hand,
we construct the first pseudorandom function prov-
ably secure against XOR attacks. The latter construc-
tion relies on the existence of a weak form of multilin-
ear maps.

Keywords
cryptography, pseudorandom functions, provable se-
curity, related-key security, algebraic constructions,
computational assumptions.

	Abstract
	Introduction
	Pseudorandom Functions
	From One-Way Functions to Pseudorandom Functions
	Number-Theoretic Constructions
	Extensions of Pseudorandom Functions
	Related-Key Security
	Aggregate Pseudorandom Functions
	Multilinear Pseudorandom Functions

	Our Contributions
	Extension and Correction of the Bellare-Cash Framework
	Algebraic Framework for Pseudorandom Functions
	Assumptions
	Related-Key Secure Pseudorandom Function for XOR Relations

	Other Contributions
	Order-Revealing Encryption
	Private Circuits
	Functional Encryption and Obfuscation

	Organization

	Preliminaries
	Notation and Preliminaries
	Mathematical Notions
	Algorithmic Concepts
	Provable Security

	Classical Computational Assumptions
	The Discrete Logarithm Problem
	Classical Discrete-Logarithm-Based Assumptions
	Search Assumptions
	Decisional Assumptions

	Building DDH-Hard Groups

	Cryptographic Primitives
	Collision-Resistant Hash Functions
	Pseudorandom Functions
	Definition
	Naor-Reingold Construction
	Boneh-Montgomery-Raghunathan Construction

	Aggregate Pseudorandom Functions
	Definition
	Cohen-Goldwasser-Vaikunthanathan Construction

	Multilinear Pseudorandom Functions
	Definition
	Cohen-Holmgren Construction

	Multilinear Maps and the Generic Multilinear Map Model
	Multilinear Maps
	Generic Multilinear Map Model

	Introduction to Related-Key Security
	Definition and Security Model
	First Impossibility and Feasibility Results
	Impossibility Results
	Feasibility Results

	The Central Role of Pseudorandom Functions
	The Bellare-Cash Framework, Revisited
	Additional Notions
	Dealing with Key-Collisions
	The (Extended) Framework

	Application: Related-Key Security for Affine Relations
	Ingredients
	Putting Everything Together

	Further Generalization of the Bellare-Cash Framework
	Relaxing the Requirements of the Framework
	From Malleability to Unique-Input-Related-Key Security

	Application: Related-Key Security for Affine Relations.

	A New Family of Assumptions
	The Matrix-Decisional-Diffie-Hellman Assumptions
	A New Family of Matrix-Diffie-Hellman Assumptions
	Connexion with Standard Assumptions
	Summary of Relations
	Relation with the DDHI Assumption

	Security in the Generic Multilinear Group Model
	Definitions: Monomial Order and Leading Commutative Monomials
	Main Lemma
	Putting Everything Together

	An Algebraic Framework for Pseudorandomness
	Intuition and Subtleties
	Intuition
	Procedure for Testing Linear Dependence
	Extension to Weaker Assumptions
	On the Representation of Multivariate Polynomials
	The Scalar Case
	The Matrix Case

	Formal Security Notion and Main Result
	Formal Definition of the Polynomial Linear Pseudorandomness Security
	The PLP Theorem
	Immediate Corollary: the LIP Theorem

	Proof of Theorem 5.2.2
	Decomposition Lemmata
	The Main Proof

	Applications
	Applications to Standard Pseudorandom Functions
	Extended Number-Theoretic Pseudorandom Functions
	Extended NR
	Extended BMR

	Simple Proofs of Security
	Intuition
	Extended NR
	Extended BMR

	Applications to Related-Key Security
	Direct Constructions
	Constructions From Unique-Input-Related-Key Security, Algebraically
	An Algebraic Framework for Related-Key Security
	Related-Key Security for Permutations of Univariate Polynomials

	Other Applications to Related-Key Security
	Related-Key Security for Univariate Polynomials
	Related-Key Security for Affine Multivariate Functions
	Proof of Linearly Independence Properties for Section 6.2.3.1 and Section 6.2.3.2

	Extension to Weaker Assumptions
	A Further Generalization of the Framework

	Applications to Aggregate Pseudorandom Functions
	Read-Once Formula Aggregation
	Impossibility Results
	Extension to Weaker Assumptions

	Applications to Multilinear Pseudorandom Functions
	Cohen-Holmgren Construction
	Symmetric Multilinear Pseudorandom Functions
	Skew-Symmetric Multilinear Pseudorandom Function
	Extension to Weaker Assumptions

	A Provably-Secure Pseudorandom Function For XOR-Relations
	Additional Material
	Related-Key Security for XOR Relations
	Multilinear Maps
	Straddling Sets

	Our Construction
	Intuition
	Actual Construction

	Security in the Generic Multilinear Map Model
	Security under Non-Interactive Assumptions
	Two Non-Interactive Assumptions
	Security of our Construction

	Security of the XY-DDH Assumption in the Generic Multilinear Map Model
	Security of the Sel-Prod Assumption in the Generic Multilinear Map Model
	Proof Ingredient: Index Sets and Profiles
	Security of the Sel-Prod Assumption

	Conclusion and Open Questions
	Conclusion
	Open Questions

	Notation
	Abbreviations
	List of Illustrations
	Figures
	Tables

	Bibliography

