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Modélisation du signal de l’IRM de diffusion par des
techniques analytiques et d’homogénéisation

Résumé : L’imagerie par résonance magnétique de diffusion (IRMD) est une technique d’imagerie
qui teste les propriétés diffusives d’un échantillon en le soumettant aux impulsions d’un gradient de
champ magnétique. Plus précisément, elle détecte le mouvement de l’eau dû à la diffusion et s’avère
donc être un outil puissant pour obtenir des informations sur la microstructure des tissus. Le signal
acquis par le scanner IRM est une mesure moyennée sur un volume physique appelé voxel, dont la
taille, pour des raisons techniques, est bien plus grande que l’échelle de variations microscopiques
de la structure cellulaire. Ceci implique que les composants microscopiques des tissus ne sont pas
visibles à la résolution spatiale de l’IRM et que les caractéristiques géométriques se trouvent agréger
dans le signal macroscopique provenant du voxel. Une importante quantité mesurée par l’IRMD
dans chaque voxel est le Coefficient de Diffusion Apparent (CDA) dont la dépendance au temps
de diffusion est actée par de nombreuses expériences d’imagerie effectuées in vivo. Il existe dans la
littérature un nombre important de modèles macroscopiques décrivant le CDA allant du plus simple
au plus complexe (modèles phénoménologiques, stochastiques, géométriques, fondés sur des EDP,
etc.), chacun étant valide sous certaines hypothèses techniques bien précises. Le but de cette thèse
est de construire des modèles simples, disposant d’une bonne validité applicative, en se fondant
sur une modélisation de la diffusion à l’échelle microscopique à l’aide d’EDP et de techniques
d’homogénéisation.

Dans un article antérieur, le modèle homogénéisé FPK a été déduit de l’EDP de Bloch-Torrey
sous l’hypothèse que la perméabilité de la membrane soit petite et le temps de diffusion long. Nous
effectuons tout d’abord une analyse de ce modèle et établissons sa convergence vers le modèle
classique de Kärger lorsque la durée des impulsions magnétiques tend vers 0. Notre analyse montre
que le modèle FPK peut être vu comme une généralisation de celui de Kärger, permettant la
prise en compte de durées d’impulsions magnétiques arbitraires. Nous donnons aussi une nouvelle
définition, motivée par des raisons mathématiques, du temps de diffusion pour le modèle de Kärger
(celle impliquant la plus grande vitesse de convergence).

Le CDA du modèle FPK est indépendant du temps ce qui entre en contradiction avec nom-
breuses observations expérimentales. Par conséquent, notre objectif suivant est de corriger ce modèle
pour de petites valeurs de ce que l’on appelle des b-valeurs afin que le CDA homogénéisé qui en
résulte soit sensible à la fois à la durée des impulsions et à la fois au temps de diffusion. Pour
atteindre cet objectif, nous utilisons une technique d’homogénéisation similaire à celle utilisée pour
le FPK, tout en proposant un redimensionnement adapté de l’échelle de temps et de l’intensité
du gradient pour la gamme de b-valeurs considérées. Nous montrons, à l’aide de simulations numé-
riques, l’excellente qualité de l’approximation du signal IRMD par ce nouveau modèle asymptotique
pour de faibles b-valeurs. Nous établissons aussi (grâce à des développements en temps court des
potentiels de surface associés à l’équation de la chaleur ou grâce à une décomposition de sa solution
selon les fonctions propres) des résultats analytiques d’approximation du modèle asymptotique qui
fournissent des formules explicites de la dépendance temporelle du CDA. Nos résultats sont en
accord avec les résultats classiques présents dans la littérature et nous améliorons certains d’entre
eux grâce à la prise en compte de la durée des impulsions.

Enfin nous étudions le problème inverse consistant en la détermination d’information qualitative
se rapportant à la fraction volumique des cellules à partir de signaux IRMD mesurés. Si trouver la
distribution de sphères semble possible à partir de la mesure du signal IRMD complet, il nous est
apparu que la mesure du seul CDA ne serait pas suffisante.

Mots-clés : IRMD, CDA dependant du temps, modèle de Kärger, impulsions finies, modèles
homogénéisés, problèmes inverses.





Homogenized and analytical models
for the diffusion MRI signal

Abstract: Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the
diffusion characteristics of a sample via the application of magnetic field gradient pulses. More
specifically, it encodes water displacement due to diffusion and is then a powerful tool to obtain
information on the tissue microstructure. The signal measured by the MRI scanner is a mean-
value measurement in a physical volume, called a voxel, whose size, due to technical reasons, is
much larger than the scale of the microscopic variations of the cellular structure. It follows that the
microscopic components of the tissues are not visible at the spatial resolution of dMRI. Rather, their
geometric features are aggregated into the macroscopic signal coming from the voxels. An important
quantity measured in dMRI in each voxel is the Apparent Diffusion Coefficient (ADC) and it is
well-established from imaging experiments that, in the brain, in-vivo, the ADC is dependent on the
diffusion time. There is a large variety (phenomenological, probabilistic, geometrical, PDE based
model, etc.) of macroscopic models for ADC in the literature, ranging from simple to complicated.
Indeed, each of these models is valid under a certain set of assumptions. The goal of this thesis is
to derive simple (but sufficiently sound for applications) models starting from fine PDE modelling
of diffusion at microscopic scale using homogenization techniques.

In a previous work, the homogenized FPK model was derived starting from the Bloch-Torrey
PDE equation under the assumption that membrane’s permeability is small and diffusion time is
large. We first analyse this model and establish a convergence result to the well known Kärger
model as the magnetic pulse duration goes to 0. In that sense, our analysis shows that the FPK
model is a generalisation of the Kärger one for the case of arbitrary duration of the magnetic pulses.
We also give a mathematically justified new definition of the diffusion time for the Kärger model
(the one that provides the highest rate of convergence).

The ADC for the FPK model is time-independent which is not compatible with some exper-
imental observations. Our goal next is to correct this model for small so called b-values so that
the resulting homogenised ADC is sensitive to both the pulses duration and the diffusion time.
To achieve this goal, we employed a similar homogenization technique as for FPK, but we include
a suitable time and gradient intensity scalings for the range of considered b-values. Numerical
simulations show that the derived asymptotic new model provides a very accurate approximation
of the dMRI signal at low b-values. We also obtain some analytical approximations (using short
time expansion of surface potentials for the heat equation and eigenvalue decompositions) of the
asymptotic model that yield explicit formulas of the time dependency of ADC. Our results are in
concordance with classical ones in the literature and we improved some of them by accounting for
the pulses duration.

Finally we explored the inverse problem of determining qualitative information on the cells
volume fractions from measured dMRI signals. While finding sphere distributions seems feasible
from measurement of the whole dMRI signal, we show that ADC alone would not be sufficient to
obtain this information.

Keywords: DMRI, time dependent ADC, Kärger model, finite-pulses, homogenized models, in-
verse problems.
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Introduction (en français)

L’imagerie par résonance magnétique de diffusion (IRMD) est un outil puissant et non invasif
qui donne une mesure du déplacement des molécules d’eau. Cette technique a été considérable-
ment utilisée en science des matériaux pour étudier la structure et les propriétés de transport
des milieux poreux tels que les roches sédimentaires, le béton et le ciment. En médecine et
en biologie, elle a été employée pour l’analyse de la structure et des propriétés fonctionnelles
des tissus biologiques de presque tous les organes du corps humain et, plus particulièrement,
de ceux du cerveau (sur ces sujets on pourra consulter les articles de revue et de synthèse
[30, 33, 40, 47, 80, 81, 90, 91, 169]).

Pour rendre l’IRM sensible à la diffusion, on applique un gradient encodant la diffusion afin
de mesurer les effets d’atténuation sur le signal IRM provoqués par le mouvement incohérent des
molécules d’eau, de par le déphasage de leur spin. Dans le cerveau, l’IRMDmesure le déplacement
des spins (les protons présents dans l’eau) durant un temps de diffusion de l’ordre de quelques
dizaines de microsecondes. Le signal IRMD représente la magnétisation transversale dans un
volume tissulaire (appelé voxel) dont la taille est de l’ordre de 1 mm. Cependant, les dimensions
caractéristiques des cellules du cerveau sont de l’ordre du micromètre, ce qui implique qu’elles
ne peuvent être distinguées individuellement à la résolution de l’IRM.

Comme le déplacement de l’eau est condittionné (limité ou empêché) par la présence des
membranes cellulaires, le signal IRMD mesuré pour des temps de diffusion différents, et pour
des directions et des intensités du gradient différentes, dépend fortement de la microstructure des
tissus. Le but de l’IRMD est de déterminer, à l’aide du signal IRM, la structure morphologique
d’un échantillon et de caractériser la dynamique du système. Malgré les nombreuses applications
concrètes de l’IRMD et malgré de nombreuses années d’étude théorique intensive, ce problème
inverse n’a pas encore été complètement résolu et nécessite une analyse mathématique appro-
fondie.

D’un point de vue mathématique, la description microscopique de la magnétisation complexe
transversale est donnée par l’équation de Bloch-Torrey [180] :

B

Bt
Mpx, tq ´ div pD0∇Mpx, tqq ` ıγBpx, tqMpx, tq “ 0, x P Ω´ Γ (1)

où Bpx, tq représente le gradient magnétique appliqué, D0 est le coefficient de diffusion intrin-
sèque, γ le rapport gyromagnétique d’un proton de l’eau et ı l’unité imaginaire. On note Ω le
volume considéré et Γ l’union de toutes les interfaces à l’intérieur de Ω qui sont susceptibles
de gêner la diffusion. Cette équation aux dérivées partielles (EDP) doit être complétée par des
conditions d’interface sur Γ. Dans cette thèse, nous considérons les conditions suivantes :

J∇Mpz, tq ¨ νpzqK “ 0, z P Γ (2)

∇Mpz, tq ¨ νpzq “ κJMpz, tqK, z P Γ (3)

où νpzq est le vecteur normal unitaire extérieure à l’interface au point z et J K est le saut au
travers de l’interface. La première équation impose la continuité du flux traversant l’interface.
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La seconde relie proportionnellement le flux au saut de la magnétisation sur l’interface, où la
constante de proportionnalité κ est la perméabilité, qui modélise la facilité qu’a l’eau à traverser
Γ. Si κ est nulle, l’interface est imperméable. Lorsque κ Ñ `8 (une interface complètement
perméable), un flux fini n’est possible que si l’on impose la continuité de la magnétisation au
travers de la frontière, c’est-à-dire JMpz, tqK “ 0.

L’équation de Bloch-Torrey est une équation de réaction-diffusion. Le fait que le rapport
imaginaire ιγBpx, tq apparaisse dans le terme réactif modifie de nombreuses propriétés de cette
EDP. En conséquence, on ne peut obtenir des solutions analytiques que pour quelques cas très
particuliers.

Le signal IRMD est la magnétisation transversale totale dans un voxel, c’est-à-dire

SpTEq :“

ż

voxel
Mpx, TEqdx (4)

avec TE un temps fixé appelé le temps d’écho. L’atténuation du signal est définie par SpTEq{S0,
où S0 est le signal associé à une expérience dans laquelle on n’applique pas de gradient de
diffusion. Au vue de cette description, il est clair que le signal ne donne pas directement accès
aux variations microscopiques de la magnétisation et que la moyenne faite sur le voxel masque les
données structurelles du milieu. Ainsi le défi mathématique consiste-t-il à trouver une description
macroscopique du signal, témoignant clairement de la dépendance à la microstructure.

Une quantité importante mesurée grâce à l’IRMD est le coefficient de diffusion apparent
(CDA) aussi appelé coefficient de diffusion effectif (Deff). Le premier terme est souvent utilisé
par les chercheurs en médecine et certains physiciens travaillant sur la résonance magnétique.
Le second terme est celui privilégié par les mathématiciens et quelques physiciens. Dans cette
thèse, nous utiliserons les deux termes mais associons à chacun une signification différente. (Le
choix que nous avons fait et que nous décrivons ci-dessous, est quelque peu arbitraire et nous
espérons qu’il ne compromettra pas la clarté de cette thèse).

Dans cette thèse, le terme CDA désignera la quantité qui prend en compte les contributions
de tous les compartiments géométriques présents dans le volume d’intérêt, alors que Deff

n dési-
gnera la même quantité mais pour un unique compartiment n. (Par exemple, le compartiment
1 comprendrait toutes les cellules sphériques, le compartiment 2 toutes celles cylindriques et le
compartiment 3 comprendrait tout l’espace extra-cellulaire. L’union de ces trois compartiments
donne le volume total). Par conséquent, dans le cas où nous considérons un seul compartiment,
on a CDA “ Deff, alors que si nous considérons N ą 1 compartiments, et que les échanges entre
ces compartiments sont négligeables, le CDA est alors :

CDA “
N
ÿ

n“1

vnD
eff
n , (5)

où vn est la fraction volumique occupée par les éléments du compartiment n, et Deff
n est le

coefficient effectif de diffusion associé au compartiment n. Les termes “apparent” et “effectif”
indiquent que, dans les tissus, le processus de diffusion n’est pas indépendant de son milieu
mais qu’il est, en fait, gêné et modulé par de nombreux mécanismes (la restriction à des espaces
fermés, tortuosités autour d’obstacles, etc.) et que d’autres sources de déplacement incohérent
de spin, comme dans le fluide cérébro-spinal présent dans les ventricules ou dans le sang de petits
vaisseaux, peuvent contribuer au signal IRMD.
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Nous donnons maintenant une définition mathématique précise du CDA dans la direction
du gradient ug. Etant donné l’atténuation du signal SpTEqS0

et la direction du gradient encodant
la diffusion ug, on définit le coefficient de diffusion apparent dans cette direction comme :

CDAug :“ lim
gÑ0

´
1

γ2

ż TE

0

ˆ
ż t

0
fpsqds

˙2

dt

B

Bg2
log

ˆ

SpTEq

S0

˙

, (6)

avec g l’intensité du gradient encodant la diffusion et f son profil temporel. A partir de main-
tenant nous utiliserons le terme coefficient de diffusion apparent lorsque nous parlerons d’un
volume contenant des géométries différentes et du coefficient de diffusion effectif dans le cas
d’une seule géométrie (ou compartiment). De plus, dans toute la suite, afin de simplifier les
notations, si ug ne joue pas de rôle dans la discussion, nous écrirons CDA au lieu de CDAug et
Deff au lieu de Deff

ug
.

On obtient le CDAug à partir du signal expérimental, en faisant un fitting du signal avec
une exponentielle décroissante :

SpTEq

S0
“ e´CDAug b, (7)

où b est une constante, appelée b-valeur, qui contient les caractéristiques du gradient de codage
de diffusion appliqué,

b :“ γ2g2

ż TE

0

ˆ
ż t

0
fpsqds

˙2

dt. (8)

Il est bien établi que le CDAug est très sensible aux changements ayant lieu dans la micro-
structure des tissus. De plus, les expériences montrent que le CDAug , tiré de données d’imagerie
du cerveau in-vivo, est souvent dépendant du temps. De nombreux travaux ont été réalisés afin de
trouver une description appropriée du CDAug dans certains cas particuliers, par exemple pour
des temps de diffusion courts, pour des temps de diffusion longs, sous l’hypothèse de configura-
tions géométriques simples, en supposant que les impulsions du gradient encodant la diffusion
sont courtes comparées aux délais exitant entre elles, etc. Cependant, malgré les recherches in-
tensives des physiciens pour trouver une caractérisation générale du CDAug , il existe encore un
très grand nombre de régimes mettant en jeu des combinaisons variées de temps de diffusion, de
perméabilité de la membrane, de configurations géométriques, qui ne dispose pas d’une descrip-
tion adéquate en terme de formules mathématiques (plus ou moins simples). Du point de vue
mathématique, c’est cette question que cette thèse se propose d’aborder.

Dans cette thèse, l’équation de Bloch-Torrey dans un domaine hétérogène (Equations (1-
3)) est approchée grâce à des techniques mathématiques d’homogénéisation. Nous cherchons
notamment des développements asymptotiques de la solution de l’EDP, valides pour des b-
valeurs petites. Le principe est de fixer un paramère sans dimension ε et d’écrire la solution des
équations (1-3) sous la forme :

Mpx, tq “
8
ÿ

i“0

εiMi

ˆ

x,
x

ε
,
t

εα

˙

(9)
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où Mi px,y, τq dépend de la variable macroscopique x, de la variable microscopique y “ x{ε et
de la variable temporelle redimensionnée τ “ t{εα. En remplaçant le développement (9) dans
l’équation de Bloch-Torrey (1), en se servant des conditions d’interface (2, 3) et en égalant terme
à terme en fonction de la puissance de ε, on obtient un ensemble d’équations qui détermine les
Mi, i ě 0 de façon récursive.

Un des principaux résultats de cette thèse est que pour le redimensionnement suivant portant
sur le temps (t), la perméabilité biologique de la membrane cellulaire (κ), l’intensité du champ
magnétique du gradient encodant la diffusion (g) et la période spatiale suivant la longueur de la
géométrie cellulaire (L),

L “ Opεq, κ “ Opεq, g “ Opε´2q, t “ Opε2q, (10)

nous avons obtenu un modèle mathématique particulièrement intéressant du signal d’IRMD
après avoir égaler les termes du développement jusqu’à l’ordre deux en ε, i.e. Opε3q (c’est-à-dire
en effectuant la résolution jusqu’à M2). Le modèle asymptotique qui en découle, contient des
termes du signal IRMD allant jusquà l’ordre deux en g, i.e. Opg3q. Autrement dit, ce modèle
donne une description du CDA dépendant du temps. De manière plus précise, le signal IRMD
associé à cette asymptotique s’écrit :

SpTEq

S0
“ 1´

˜

N
ÿ

n“1

vn

´

Deff
ug

¯

n

¸

b, (11)

où le coefficient de diffusion effectif Deff
ug

(l’indice n a été supprimé) dans un compartiment fermé
Ω soumis à un gradient de diffusion dirigé selon ug a pour expression :

Deff
ug
“ D0 ´

D0
ż TE

0
F ptq2dt

ż TE

0
F ptq hptq dt, (12)

où
hptq “

1

|Ω|

ż

Ω
ug ¨∇ωpx, tq “

1

|Ω|

ż

BΩ
ωpy, tqug ¨ νpyqdsy (13)

est une quantité dépendant de ω, la solution d’une équation de diffusion homogène aux conditions
aux limites de Neumann dépendant du temps et dont la condition initiale est nulle :

$

’

’

&

’

’

%

B
Btωpx, tq ´∇ pD0∇ωpx, tqq “ 0, x P Ω,

D0∇ωpx, tq ¨ νpxq “ D0F ptqug ¨ νpxq, x P BΩ,

ωpx, tq “ 0, x P Ω.

(14)

Dans les équations précédentes, νpxq est le vecteur normal unitaire extérieur à l’interface au point
x et t P r0, TEs. On peut remarquer que l’on est capable d’écrire hptq en fonction uniquement
de quantités définies sur la frontière BΩ en appliquant le théorême de Green à l’EDP (14).
Désormais, nous ferons référence au modèle ci-dessus en tant que “le nouveau modèle homogénéisé
pour le CDA dépendant du temps” ou en tant que le “modèle H-CDA”. On constate que le CDA
du modèle H-CDA est la somme du coefficient de diffusion effectif de chaque compartiment
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géométrique, pondéré par sa fraction volumique. Autrement dit, il n’y a aucun effet dû aux
échanges entre les compartiments géométriques (i.e. M0, M1 et M2 ne dépendent pas de la
perméabilité κ).

Afin d’obtenir une relation plus concrète enre le CDAug et les configurations géométriques,
nous analysons le modèle H-CDA dans le cas de sous-domaines finis. En particulier, en utilisant
la séquence PGSE (gradient pulsé écho de spin) [172] comme profil temporel, nous obtenons
trois représentations du coefficient de diffusion effectif, correctes pour trois régimes temporels
différents. En temps court (c’est-à-dire tD ! L2

2D0
avec L la longueur caractéristique de la cel-

lule, D0 le coefficient de diffusion intrinsèque et tD le temps de diffusion), nous proposons une
représentation fondée sur le potentiel de simple couche pour l’équation de diffusion, que nous
dénommons “formule en pulsation courte et en temps court” (PCTC, ou SPST en anglais).
En temps long (c’est-à-dire NDD “

?
2TED0

L{2 " 1, où TE est le temps d’écho et NDD signi-
fie le déplacement diffusif normalisé) et lorsque les durées des pulsations ne sont pas petites,
nous proposons une représentation fondée sur le développement selon les fonctions propres de
l’opérateur de Neumann Laplace, que nous appelons “formule en pulsation finie et temps long”
(PFTL ou FPLT en anglais). En temps long et quand la durée des pulsations est petite, nous
proposons une représentation qui combine l’approche par simple couche durant les pulsations et
l’approche par développement sur les fonctions propres entre les pulsations, que nous nommons
“formule en pulsation courte et en temps long” (PCTL ou SPLT en anglais). Ce travail donne
une explication quant à les façon dont les paramètres de la microstructure tissulaire tels que le
rapport surface sur volume ou tels que les valeurs propres dominantes influencent le coefficient
de diffusion effectif Deff

ug
. Nous soulignons, notamment, que la formule PCTC corrige la formule

classique de Mitra valable en temps court ([130]), en tenant compte des durées de pulsations.
Pour un domaine fini Ω, notre formule corrigée s’écrit :

Deff
ug
“ D0

˜

1´
16

35
?
π

D1{2
0

δ2p3∆´ δq

´

p∆` δq7{2 ` p∆´ δq7{2 ´ 2pδ7{2 `∆7{2q

¯

ş

BΩpug ¨ νq
2dsx

|Ω|

¸

où ν est le vecteur normal unitaire extérieur à BΩ et sx est la mesure superficielle sur BΩ. En
plus du redimensionnement qui permet l’obtention du modèle H-CDA, nous avons aussi testé
d’autres choix de redimensionnement. Nous en décrivons les étapes de calcul et examinons la
pertinence des modèles qui en découlent.

Le second des résultats principaux de cette thèse est en rapport avec le modèle de Kärger [94]
et le modèle de Kärger à pulsation fini (FPK) [42]. Le modèle de Kärger provient de la physique
et est fondé sur des données empiriques concernant la diffusion dans un milieu comportant
plusieurs compartiments, en faisant l’hypothèse des pulsations très courtes (c’est-à-dire la durée
des pulsations est bien plus faible que le délai entre les deux pulsations). Le modèle FPK est
un modèle mathématique récent qui étend le modèle de Kärger au cas des pulsations finies.
A l’aide d’une analyse de ces deux modèles, nous montrons qu’en utilisant la séquence PGSE,
lorsque l’hypothèse des pulsations très courtes n’est pas satisfaite, le choix le plus judicieux, du
point de vue des mathématiques, quant au “temps d’évaluation” à utiliser dans le modèle de
Kärger est ∆ ´ δ{3. Nous montrons que ce choix donne une différence de l’ordre de b3, Opb3q,
entre le modèle de Kärger et le modèle FPK, tandis que d’autres choix, comme par exemple ∆

ou ∆ ` δ, donneraient une différence plus grande de l’ordre de b2, Opb2q. Nous montrons aussi
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numériquement que, si l’on utilise le modèle de Kärger et qu’on choisit pour profil temporels fptq
la séquence PGSE trapézoïdale, il est nécessaire de changer non seulement le temps d’évaluation,
mais aussi le coefficient devant δ2 présent dans les équations du modèle de Kärger. Puis nous
indiquons comment le modèle de Kärger peut être adapté à des profils temporels plus généraux.

Dans le dernier chapitre de la thèse, nous présentons les tous premiers résultats que nous
avons obtenus sur le problème inverse de l’IRMD pour des géométries élémentaires. Bien que
ce travail est loin d’apporter une réponse complète au problème, il nous est déjà possible de
présenter quelques résultats intéressants. Nous nous limitons au cas de géométries finies (ce qui
est pertinent dans le cadre de la diffusion à l’intérieur des cellules) et au cas de la séquence
PGSE. Nous montrons qu’en utilisant la formule (PCTC) nous sommes capables d’estimer cor-
rectement le rapport surface sur volume et, dans le cas de pulsations finies, nos résultats sont
meilleurs que ceux obtenus grâce à la formule de Mitra ([130]). Puis, grâce à la formule PCTL,
nous montrons que nous sommes en mesure d’estimer convenablement les valeurs propres domi-
nantes et le moment d’ordre un des fonctions propres associées, mais que le rapport surface sur
volume ne peut être estimé avec précision. Pour générer les données nous n’avons fait varier que
le paramètre ∆ dans le PGSE mais faire aussi varier le paramètre δ pourrait peut-être permettre
d’aboutir à des résultats différents ; des études supplémentaires sont donc nécessaires. Nous trai-
tons, en suite, le problème de retrouver la distribution des rayons pour une géométrie constituée
seulement de cercles. Les données simulées utilisées sont soit 1) le signal IRMD obtenu pour
différentes valeurs de ∆ et de g ; soit 2) seulement le CDA pour différentes valeurs de ∆. Nous
montrons qu’en appliquant la régularisation de Tikhonov à un algorithme d’Uzawa et qu’en
utilisant comme données le signal IRMD pour différentes valeurs de ∆ et g, nous parvenons
à estimer, avec une précision suffisante, une distribution quelconque de rayons, même lorsque
l’on ajoute aux données simulées un bruit (multiplicatif) de l’ordre de 5%. Par contre, si l’on
utilise comme données le seul CDA pour différentes valeurs de ∆, notre algorithme ne converge
pas ; une analyse complémentaire de ce cas est donc nécessaire. Finalement nous faisons une
preuve mathématique démontrant que l’on ne peut étendre la méthode précédente pour trouver
une distribution générale des orientations des fibres, même en utilisant le signal IRMD pour
différentes valeurs ∆ et g.

La thèse se clôt avec une discussion sur la pertinence de nos résultats dans le cadre des
applications pratiques de l’IRMD et sur quelques perspectives de travail futur.

Aperçu de la thèse

La thèse est organisée comme suit.

Chapitre 1 : L’imagerie par résonance magnétique de diffusion Ce Chapitre présente
brièvement la physique de l’IRMD et l’acquisition d’image ainsi que les applications médicales
les plus connues.

Chapitre 2 : Des modèles mathématiques On donne la description mathématiques du si-
gnal modélisant le problème et une vue d’ensemble des techniques existantes utilisées pour traiter
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ce problème. Nous passons en revue de nombreux modèles approximés fondés sur diverses hy-
pothèses simplificatrices telles que des géométries élémentaires, l’hypothèse de pulsation étroite
et l’approximation gaussienne de la phase.

Chapitre 3 : Le modèle FPK et le modèle de Kärger Un modèle mathématique récent,
qui est une extension aux pulsations finies du model classique de Kärger ([94]), a été obtenu en
utilisant des techniques mathématiques d’homogénéisation ([42]). La principale différence entre
ces deux modèles est que le modèle FPK a été déduit mathématiquement en appliquant des
techniques standards d’homogénéisation à l’équation de Bloch-Torrey, tandis que le second a
été obtenu empiriquement. Nous prouvons que le modèle de Kärger est, en fait, d’un point de
vue mathématique, un cas particulier du modèle FPK si l’on fait l’hypothèse des pulsations très
courtes. Nous présentons toutes les preuves pour le cas de la séquence de gradient pulsé (PGSE)
[172], et nous proposons une correction du temps d’évaluation du modèle de Kärger qui permet
la prise en compte de pulsations finies. Nous montrons, notamment, que si on utilise le temps
d’évaluation correct égal à ∆´ δ{3, l’ordre de convergence entre ces deux modèles est de δ6 (ou
de b3). Enfin, nous présentons des simulations numériques, en traitant aussi le cas de la séquence
PGSE trapézoïdale afin de donner une idée de la façon dont on pourrait adapter les preuves
dans le cas d’un profil temporels général.

Chapitre 4 : Un nouveau modèle pour le CDA dépendant du temps (le modèle H-
CDA) Ce chapitre est le cœur de la thèse. L’idée principale est de relier le redimensionnement
temporel et l’intensité du gradient au redimensionnnement spatial et à la perméabilité de la
membrane en utilisant un petit paramètre sans dimension ε. Une fois les termes réunis et égalés en
fonction de l’ordre de ε jusqu’à l’ordre deux en ε, Opε2q, nous obtenons un modèle asymptotique
du signal IRMD. Ce modèle comprend des contributions au signal IRMD allant jusqu’à l’ordre
g2, et, de ce fait, nous le qualifions de modèle dépendant du temps pour le CDA (le modèle
H-CDA). Ce modèle nous permet d’écrire le CDA en fonction de la solution d’une équation
de diffusion homogène couplée à des conditions aux limites de Neumann dépendantes du temps
et dont la condition initiale est nulle. Nous montrons plusieurs simulations numériques dans
lesquelles nous comparons les résultats donnés par notre nouveau modèle au CDA calculé à
partir de simulations numériques de l’équation de Bloch-Torrey et aux CDA donnés par deux
formules préexistantes classiques, une en temps court ([130]) et l’autre en temps long ([179]). De
plus, nous montrons que nous pouvons retrouver ce modèle en linéarisant l’équation de Bloch-
Torrey par rapport à g et nous utilisons le théorême classique de l’énergie pour les équations de
diffusions afin de prouver la convergence du signal à l’ordre trois en ε, Opε3q.

Chapitre 5 : A propos d’autres redimensionnements Dans ce Chapitre nous considérons
la famille de modèle introduite au Chapitre 4 et nous analysons quelques choix particuliers de
paramètres de redimensionnement temporel et d’intensité du gradient. Nous imposons notam-
ment des restrictions mathématiques nécessaires à l’obtention d’un modèle pour des b-valeurs
petites et expliquons quel type de modèle résulte d’un changement dans les paramètres de re-
dimensionnement. Nous observons que, si nous posons α “ 1 (c’est-à-dire t “ Opεq), pour les
différents choix possibles de redimensionnement de g respectant la contrainte d’induire de petites
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b-valeurs, nous obtenons un modèle dont le CDA est indépendant du temps et coincide avec
l’expression donnée par le modèle FPK. De la même façon, si nous posons α “ 2 (c’est-à-dire
t “ Opε2q), quelque soit le redimensionnement choisi sur g (respectant les mêmes restrictions
mathématiques que précédemment), nous obtenons un modèle dont le CDA est dépendant du
temps et coincide avec l’expression donnée par le modèle H-CDA présenté au chapitre 4. Cela
nous permet d’expliquer d’une autre façon pourquoi le nouveau modèle introduit au chapitre 4
donne une bonne approximation pour une large gamme de déplacements de diffusion.

Chapitre 6 : CDA dépendant du temps à l’intérieur de domaines finis Dans ce Cha-
pitre nous nous limitons au cas de domaines finis et au cas de la séquence PGSE, et nous
analysons le nouveau modèle homogénéisé du CDA dépendant du temps. Nous considérons la
solution de l’équation de diffusion homogène couplée à des conditions aux limites de Neumann
dépendantes du temps et dont la condition initiale est nulle. En temps court, nous utilisons
le potentiel de simple couche pour l’équation de diffusion afin d’écrire la solution sur la fron-
tière. De cette façon, nous trouvons une nouvelle formule explicite pour le CDA qui dépend
du rapport entre la portion de surface vue dans la direction du gradient et le volume. Cette
formule généralise une formule en temps court existante pour le CDA ([130]) en prenant en
compte la durée des pulsations. Nous l’appelons “approximation en pulsation courte et en temps
court” (PCTC ou SPST en anglais). En temps long et pour des pulsations finies, nous utilisons
le développement selon les fonctions propres de l’opérateur de Neumann Laplace pour écrire la
solution de l’équation de diffusion. Nous appelons l’approximation qui en résulte “approximation
en pulsation finie et en temps long (PFTL ou FPLT en anglais). En temps long et si la durée
des pulsations est courte et que le décalage entre elles est long, nous utilisons le potentiel de
simple couche durant les pulsations et le développement selon les fonctions propres entre elles.
Nous appelons cette dernière approximation “approximation en pulsation courte et en temps
long (PCTL ou SPLT en anglais).

Chapitre 7 : A propos du problème inverse Dans ce Chapitre nous proposons une étude
preliminaire du problème inverse qui consiste à retrouver des informations liées à la microstruc-
ture en utilisant le CDA dépendant du temps ou le signal IRMD pour différentes valeurs de
g et de temps diffusion, simulés grâce à l’équation de Bloch-Torrey. Ce travail est loin d’être
complet et ouvre des voies d’exploration future. Le premier résultat que nous présentons est une
application fructueuse de la formula PCTC pour retrouver le rapport surface sur volume. Nous
montrons qu’avec cette nouvelle formule nous pouvons, même, ne pas nous limiter au cadre des
pulsations très courtes et estimer de façon particulièrement stable le rapport surface sur volume
de géométries fermées. Nous nous intéressons ensuite à l’utilisation de la formule PCTL dans le
cadre de l’évalutation du rapport surface sur volume, des valeurs propres dominantes et du mo-
ment d’ordre un des fonctions propres associées pour des géométries élémentaires. Bien que nous
ne puissions pas estimer correctement le rapport surface sur volume, nous sommes en mesure
d’évaluer, avec une précision convenable, les premières valeurs propres et leurs contributions,
qui peuvent être révélatrices de certaines caractéristiques géométriques. Puis nous étudions le
problème consistant à déterminer la distribution des rayons d’une géométrie composée exclusive-
ment de cercles. Négligeant le signal provenant du compartiment extracellulaire, nous exposons
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une façon de résoudre le problème en appliquant l’algorithme d’Uzawa [183] et la régularisation
de Tikhonov [178] aux différents signaux acquis lorsque l’on fait varier l’intensité du gradient et
le décalage entre les pulsations. Nous montrons aussi la difficulté rencontrée dans le cas d’une
application de cette méthode directement au CDA, sans utiliser la totalité du signal mesuré,
mais un examen plus approfondi de ce cas particulier doit encore être mené. Enfin nous ten-
tons d’aborder le problème qui consiste à trouver les orientations des fibres. Plus précisément,
supposons que la géométrie est composée seulement par des ellipses de mêmes tailles, nous aime-
rions déterminer s’il est possible de trouver la distribution des ellipses en effectuant des mesures
lorsque la direction du gradient varie. Nous donnons une preuve mathématique qui assure que
la matrice reliée au problème 2D n’admet que trois valeurs singulières non nulles ce qui ne serait
pas suffisant pour déterminer une distribution quelconques.

Conclusions et Perspectives Ce chapitre contient un bref résumé des résultats obtenus et
donne quelques perspectives de recherche futures dans ce domaine.

Annexe A Dans ce Chapitre, nous décrivons de façon plus approfondie les phénomènes phy-
sique de base qui permettent de décrire l’IRMD. Cette annexe s’appuie sur les références sui-
vantes [28, 79, 90, 118] et s’applique à mieux faire comprendre au lecteur les restrictions physiques
auxquelles nous devons faire face ansi qu’à préciser le sens physique des quantités introduites.
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Introduction

Diffusion magnetic resonance imaging (dMRI) is a powerful non-invasive imaging modality
that gives a measure of the displacement of water molecules. This technique has been extensively
applied in materials science to investigate structural and transport properties of porous media
such as sedimentary rocks, concrete, and cement. In medical and biological applications it has
been used to study structural and functional properties of biological tissues in almost all organs,
with the most common being the brain (for some review and survey papers, see [30, 33, 40, 47,
80, 81, 90, 91, 169]).

To make a MRI experiment sensitive to diffusion, a diffusion-encoding gradient is applied to
capture the effects that the incoherent motion of water molecules has on the MRI signal through
spin dephasing and signal attenuation. In the brain, dMRI measures the spin (water proton)
displacement during a diffusion time on the order of tens of microseconds. The dMRI signal is
the transverse magnetization in a tissue volume (called a voxel) whose size is on the order of
1 mm. However, the dimensions of cell features in the brain are of the order of micro-meters,
meaning that they cannot be individually distinguished at the MRI resolution.

Because water displacement is affected (restricted or hindered) by the presence of cell mem-
branes, the dMRI signal measured at different diffusion times, and gradient intensities and
directions, is strongly dependent on the tissue microstructure. The aim of dMRI is inferring
the morphological structure of a sample and characterizing the dynamics of the system from
the MRI signal. In spite of numerous practical applications of dMRI and many years of inten-
sive theoretical work, this inverse problem has not been fully solved. This constitute a strong
motivation for mathematical investigations.

From a mathematical point of view, the microscopic description of the complex transverse
magnetization is provided by the Bloch-Torrey equation [180]:

B

Bt
Mpx, tq ´ div pD0∇Mpx, tqq ` ıγBpx, tqMpx, tq “ 0, x P Ω´ Γ (15)

where Bpx, tq represent the applied magnetic gradient, D0 is the intrinsic diffusion coefficient,
γ is the gyro-magnetic ratio of the water proton and ı is the imaginary unit. The volume
under consideration is Ω and we will denote by Γ the union of all interfaces inside Ω that may
hinder diffusion. This partial differential equation (PDE) needs to be completed with interface
conditions on Γ. In particular for this work we consider the following interface conditions:

J∇Mpz, tq ¨ νpzqK “ 0, z P Γ (16)

∇Mpz, tq ¨ νpzq “ κJMpz, tqK, z P Γ (17)

where νpzq is the unit outward-pointing normal vector to the interface at the point z and J K
denotes the jump across the interface. The first equation enforces the continuity of the flux
across any interface. The second equation describes the flux as proportional to the jump in the
magnetization across the interface, where the constant of proportionality κ is the permeability
coefficient, which models the ease with which the water can cross Γ. If κ is zero the interface



12 Introduction

is impermeable. As κ Ñ `8 (a fully permeable interface) a finite flux is only possible if one
imposes the continuity of the magnetization across the boundary, i.e. JMpz, tqK “ 0.

The Bloch-Torrey equation is a diffusion-reaction equation. The fact that the reactive term
contains the imaginary rate ιγBpx, tq changes many properties of this PDE. As a consequence,
analytical solutions have been obtained only for very few special cases.

The dMRI signal is the total transverse magnetization in a voxel, i.e.

SpTEq :“

ż

voxel
Mpx, TEqdx (18)

where TE is a fixed time called the echo time. The signal attenuation is defined as SpTEq{S0,
where S0 is the signal coming from an experiment where no diffusion gradient is applied. From
this description it is clear that the signal does not give direct access to the microscopic variations
of the magnetization and the averaging over the voxel obscures structural information about the
medium. The mathematical challenge, thus, consists in finding a way to describe the macroscopic
signal in a way that makes clearer the dependence on the microstructure.

An important quantity measured in dMRI is the apparent diffusion coefficient (ADC) or
effective diffusion coefficient (Deff), with the former term often used by medical researchers
and some MR physicists. The latter is the preferred term among mathematicians and some
physicists. In this thesis, we will use both ADC and Deff, but we distinguish them in the
following way. (The choice we made, described below, is somewhat arbitrary and we hope that
it does not detract from the clarity of the thesis.)

In this thesis, the ADC will be used to designate the quantity that includes the contributions
from all the geometrical compartments in a volume of interest, whereas Deff

n will be used to
designate the quantity that accounts for the contribution from a particular compartment n,
within the volume of interest. (For example, all the spherical cells could comprise compartment
1, all the cylinder cells could comprise compartment 2, and the extra-cellular space compartment
3. The union of these three compartments make up the total volume.) As a consequence, if we
are considering just one compartment, then ADC “ Deff, whereas if we are considering N ą 1

compartments, and exchange between the compartments is negligible, the ADC is

ADC “
N
ÿ

n“1

vnD
eff
n , (19)

where vn is its volume fraction and Deff
n is the effective diffusion coefficient of the nth compart-

ment. The terms “apparent” or “effective” indicate that the diffusion process is not free in tissues
but rather hindered and modulated by many mechanisms (restriction in closed spaces, tortuosity
around obstacles, etc.) and that other sources of incoherent spin displacement, such as within
the cerebrospinal fluid in ventricles or due to blood flow in small vessels, may contribute to the
dMRI signal.

Now we give a mathematically precise definition of the ADC in the gradient direction ug.
Given the signal attenuation SpTEq

S0
, and diffusion-encoding gradient direction ug, the apparent

diffusion coefficient in this direction is defined as

ADCug :“ lim
gÑ0

´
1

γ2

ż TE

0

ˆ
ż t

0
fpsqds

˙2

dt

B

Bg2
log

ˆ

SpTEq

S0

˙

, (20)
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where g is the intensity of the diffusion-encoding gradient and f its time-profile. From now on we
will use apparent diffusion coefficient when we talk about the diffusion coefficient coming from
a volume containing different geometries and effective diffusion coefficient when we talk about a
single geometry (or compartment). Additionally, in what follows, to simplify the notation, if ug

does not play a role in the discussion, we will write ADC instead of ADCug and Deff instead of
Deff

ug
.
From the experimental signal, the ADCug is obtained by fitting the signal as a decaying

exponential:
SpTEq

S0
“ e´ADCug b, (21)

where b is a constant, called b-value, which contains the quantities from the applied diffusion-
encoding gradient,

b :“ γ2g2

ż TE

0

ˆ
ż t

0
fpsqds

˙2

dt. (22)

It has been well-established that the ADCug is very sensitive to changes in tissue microstruc-
ture. Moreover, from experiments, it has been shown that the ADCug from in-vivo brain imaging
data is often time-dependent. Many works were done to find a proper description of the ADCug

under different assumptions, such as in the short diffusion time regime, in the long diffusion time
regime, under the assumption of simple geometrical configurations, under the assumption that
the pulses of the diffusion-encoding gradient are short comparing to the delay between them,
etc. However, although physicists have worked intensively to find a general characterization of
the ADCug , there are still many regimes involving various combinations of the diffusion time,
membrane permeability, geometrical configuration, that still lack a valid description in terms of
a (more or less simple) mathematical formula. This is the challenge this thesis takes up from a
mathematical point of view.

In this thesis the Bloch-Torrey equation in a heterogeneous domain (Equations (15-17)) is
approached using mathematical homogenization techniques. In particular, we search for asymp-
totic models of the solution of the PDE that hold for small b-values. The idea is to fix a
non-dimensional parameter ε and write the solution of Equations (15-17) as

Mpx, tq “
8
ÿ

i“0

εiMi

ˆ

x,
x

ε
,
t

εα

˙

(23)

where Mi px,y, τq depends on the macroscopic variable x, the microscopic variable y “ x{ε

and the scaled time variable τ “ t{εα. Substituting the expansion (23) into the Bloch-Torrey
equation (15), completed by the interface conditions (16,17), and equating the powers of ε lead
to a set of equations that recursively determine Mi, i ě 0.

A major result of this thesis is that for the following scaling relationship between the time
(t), the biological cell membrane permeability (κ), the diffusion-encoding magnetic field gradient
strength (g), and a periodicity length of the cellular geometry (L),

L “ Opεq, κ “ Opεq, g “ Opε´2q, t “ Opε2q, (24)

we found a particularly interesting mathematical model of the dMRI signal after matching terms
up to ε2 (i.e. solving until M2). The resulting asymptotic model contains terms of the dMRI
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signal up to the g2 term. In other words, this model gives a description of the time-dependent
ADC. More precisely, the dMRI signal associated to this asymptotic model is:

SpTEq

S0
“ 1´

˜

N
ÿ

n“1

vn

´

Deff
ug

¯

n

¸

b, (25)

where the effective diffusion coefficient Deff
ug

(we removed the compartment index n) in a closed
compartment Ω subjected to a diffusion-encoding gradient in a direction ug is obtained in the
following way:

Deff
ug
“ D0 ´

D0
ż TE

0
F ptq2dt

ż TE

0
F ptq hptq dt, (26)

where
hptq “

1

|Ω|

ż

Ω
ug ¨∇ωpx, tq “

1

|Ω|

ż

BΩ
ωpy, tqug ¨ νpyqdsy (27)

is a quantity related to a function ω that is the solution of the homogeneous diffusion equation
with time-dependent Neumann boundary condition and zero initial condition:

$

’

’

&

’

’

%

B
Btωpx, tq ´∇ pD0∇ωpx, tqq “ 0, x P Ω,

D0∇ωpx, tq ¨ νpxq “ D0F ptqug ¨ νpxq, x P BΩ,

ωpx, tq “ 0, x P Ω.

(28)

In the above, νpxq is the unit outward-pointing normal vector to the interface at the point x

and t P r0, TEs. We observe that we are able to write hptq using just quantities on the boundary
BΩ by applying the Green’s theorem to the PDE (28). From now on we refer to the above
model as “the new homogenized model for the time-dependent ADC” or the “H-ADC model”.
We note that the ADC of the H-ADC model is the sum of the effective diffusion coefficient in
each geometrical compartment, weighed by its volume fraction. In other words, at least in the
ADC term, there is no exchange effects between geometrical compartments (M0, M1, M2 do
not depend on the permeability κ).

To get a clearer connection between the ADCug and the geometrical configurations, we
analyse the H-ADC model in the case of finite sub-domains. In particular, using the PGSE
(pulsed gradient spin echo ) sequence [172] as the time profile, we obtain three representations
of the effective diffusion coefficient that are appropriate in different time regimes. In the short-
time regime (i.e. tD ! L2

2D0
with L the characteristic length of the cell, D0 the intrinsic diffusion

coefficient and tD the diffusion time), we propose a representation based on the single layer
potential for diffusion equation and we call it the short pulse short-time formula (SPST). In
the long-time regime (i.e. NDD “

?
2TED0

L{2 " 1, where TE is the echo-time and NDD means
normalized diffusion displacement) and when the pulses duration is not short, we propose a
representation based on the eigenfunction expansion of the Neumann Laplace operator and we
call it the finite pulse long-time formula (FPLT). In the long-time regime and when the pulses
duration is short, we propose a representation that combines the single layer during the pulses
with the eigenfunction expansion between the pulses and we call it the short pulse long-time
formula (SPLT). This work helps to clarify how parameters of the tissue microstructure such as
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the surface to volume ratio or the dominant eigenvalues affect the effective diffusion coefficient
Deff

ug
. We mention that, in particular, the SPST formula corrects the well known Mitra’s short-

time formula ([130]) by accounting for the pulses durations. For a finite domain Ω our correct
formula is the following

Deff
ug
“ D0

˜

1´
16

35
?
π

D1{2
0

δ2p3∆´ δq

´

p∆` δq7{2 ` p∆´ δq7{2 ´ 2pδ7{2 `∆7{2q

¯

ş

BΩpug ¨ νq
2dsx

|Ω|

¸

where ν is the unit outward-pointing normal vector to the boundary BΩ and sx is the surface
variable of BΩ. In addition to the scaling that gave the H-ADC model, we also tried other
choices of scalings, we describe our calculations in these cases and we discuss the relevance of
the obtained models.

A second main result of the thesis is related to the Kärger model [94] and the Finite-Pulse
Kärger (FPK) model [42]. The Kärger model was proposed by physicists and is based on
empirical evidence of diffusion in a multiple compartments medium, under the narrow pulse
assumption (i.e. the duration of the pulses is much smaller than the delay between them). The
FPK model is a recent mathematical model, which extended the Kärger model to the finite pulse
case. By analysing these two models, we show that, using PGSE sequence, when the narrow
pulse assumption is not satisfied, the most mathematically sensible choice of the “evaluation
time” to insert into the Kärger model is ∆´ δ{3. We show that this choice gives a difference of
Opb3q between the Kärger model and the FPK model, whereas other choices, such as ∆ or ∆`δ,
would give a larger difference, of Opb2q. We also numerically show that, if one uses the Kärger
model with trapezoidal PGSE sequence, not only the evaluation time needs to be changed, but
also a coefficient in the Kärger equations needs to change too. We then indicate how one can
adapt the Kärger model to more general time profiles.

In the last chapter of the thesis we present some very preliminary results concerning the
dMRI inverse problem in some simple geometries. Although this work is far from complete,
some interesting results can be already presented. We restrict ourselves to the case of finite
geometries (which is relevant to diffusion inside cells) and the PGSE sequence. We show that
using the SPST formula we are able to estimate well the surface to volume ratio and, in the
non-narrow pulse case, our results are better than the ones obtained using Mitra’s Formula
([130]). Next, using the SPLT formula we show that we are able to estimate well the dominant
eigenvalues and the first moment of the associated eigenfunctions, but not accurately the surface
to volume ratio. More investigations need to be done because to generate the data we just varied
the parameter ∆ of PGSE but maybe varying also δ we can obtain different results. We then
investigated the problem of finding the radii distributions for a geometry composed by only 2D
circles, using as synthetic data either 1) the dMRI signal obtained at multiple values of ∆ and g
; or 2) only the ADC at multiple values of ∆. We show that, applying Tikhonov regularization
to the Uzawa algorithm and using as data the dMRI signal at multiple values of ∆ and g,
we are able to estimate sufficiently well a general radii distribution, even when the synthetic
data contain up to 5% of (multiplicative) noise. On the contrary, if we use as data only the
ADC at multiple values of ∆, our algorithm does not converge and thus this case requires more
investigations. Finally, we show mathematically that we cannot extend the previous method
to find general orientation distributions of fibers even when using the dMRI signal at multiple
values of ∆ and g.
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The thesis ends with a discussion of the relevance of our results to practical dMRI applications
and possible directions of future work.

Outline of the thesis

The thesis is organized as follows.

Chapter 1 Diffusion magnetic resonance imaging This Chapter contains a short descrip-
tion of the dMRI physics and image acquisition as well as some of the most popular medical
applications.

Chapter 2: Mathematical models The mathematical description of the signal modeling
problem and an overview of the existing techniques used to treat this problem are given. In par-
ticular, we review numerous approximate models based on various simplifying assumptions such
as simplistic geometries, the narrow pulse assumption and the Gaussian phase approximation.

Chapter 3: FPK and Kärger models A recent mathematical model that extends the well
known Kärger model ([94]) to finite pulses was obtained using mathematical homogenization
techniques ([42]). The principal difference between these two is that the FPK was derived
mathematically applying the standard homogenization techniques to the Bloch-Torrey equation,
while the second was obtained empirically. We prove that, mathematically, the Kärger model is
indeed a particular case of the FPK when we assume narrow pulses. We present all the proofs for
the case of pulsed gradient sequence (PGSE) [172], and we suggest a correction for the evaluation
time of the Kärger model to account for finite pulses. In particular, we show that if we use the
correct evaluation time ∆ ´ δ{3, the order of convergence between these two models is δ6 (or
b3). Finally, we show numerical simulations also for trapezoidal PGSE to give an idea of what
should be done to adapt the proofs to a general time profile.

Chapter 4: New homogenized model of the time-dependent ADC (H-ADC) This
Chapter is the heart of the thesis. The main idea is to link the scaling of the time variable and
the gradient intensity to the scaling of the space variable and the membrane permeability using
a small non-dimensional parameter ε. After matching terms of ε up to Opε2q, we obtain an
asymptotic model of the dMRI signal. This model contains contributions to the dMRI signal up
to g2, hence we call it a model for the time-dependent ADC (H-ADC). This model allows us to
write the ADC in terms of the solution of a homogeneous diffusion equation with time-dependent
Neumann boundary condition and zero initial condition. We show several numerical simulations
in which we test the new model against the reference ADC coming from the numerical solution
of the Bloch-Torrey equation and two already existing and well known ADC formulas, one in
the short-time ([130]) and the other in the long-time regime ([179]). Moreover, we show that we
can obtain this model also making a linearisation in g of the Bloch-Torrey equation and we use
the classical energy theorem for diffusion equation to prove the convergence of order Opε3q in
the signal.
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Chapter 5: On the other choices of scaling In this Chapter we consider the family of
models introduced in Chapter 4 and we analyse some different possible choices of parameters
for the scaling in time and gradient intensity. In particular we impose some mathematical
limitations we need to get a model for small b-values and we explain which type of model we
can achieve changing the scaling parameters. We observe that if we set α “ 1 (i.e. t “ Opεq)
for possible choices of scaling on g which respects the constraint of giving small b-values, we
obtain a model whose ADC results time-independent and coincides with the FPK expression.
In the same way, if we set α “ 2 (i.e. t “ Opε2q) no matter which scaling we choose for g (that
respects the mathematical limitation imposed before), we obtain a model whose ADC results
time-dependent and coincides with the H-ADC obtained in Chapter 4. This allows us to furnish
another explanation on why the new model introduced in Chapter 4 gives a good approximation
for a wide range of diffusion displacements.

Chapter 6: Time-dependent ADC inside finite domains In this Chapter we restrict
ourselves to the case of finite domains and the PGSE sequence and analyse the new homogenized
model of the time-dependent ADC. We consider the solution of the homogeneous diffusion
equation with time-dependent Neumann boundary condition and zero initial condition. In the
short-time regime, we use the single layer potential for the diffusion equation to write the solution
on the boundary. In this way, we find a new explicit formula for ADC that depends on the
portion of surface over volume ratio seen in the gradient direction. This formula generalises an
existing short-time ADC formula ([130]) to account for the duration of the pulses and we call it
short pulse short-time approximation (SPST). In the long-time regime and for finite pulses, we
use the eigenfunctions expansion of the Neumann Laplace operator to write the solution of the
diffusion equation and we call it finite pulse long-time approximation (FPLT). In the long-time
regime and if the duration of the pulses is short while the time delay between them is long, we
use the single layer potential during the pulses and the eigenfuctions expansion between them
and we call it short pulse long-time approximation (SPLT).

Chapter 7: On the inverse problem In this Chapter we make a very preliminary study of
the inverse problem of finding some information on the microstructure starting from the time-
dependent ADC or the dMRI signal for multiple values of g and diffusion times simulated using
the Bloch-Torrey equation. This work is far from being complete and opens many different
future directions. The first result we present is the successful use of the SPST formula to
recover the surface over volume ratio. We show that with this new formula we can go beyond
the narrow pulse assumption and find, in a very stable way, the surface over volume ratio for
closed geometries. We then investigate the use of the SPLT formula to find the surface over
volume ratio and the most contributive eigenvalues and first moment of the related eigenfunctions
for simple closed geometries. While we are not able to well estimate the surface over volume
ratio, the first eigenvalues and their contributions are sufficiently well estimated and can be
indicative on some features of the geometry. We then investigate the problem of finding the
radii distribution of a geometry composed by 2D circles. Neglecting the signal coming from the
extracellular compartment, we present a way to solve this problem using the Uzawa algorithm
[183] and Tikhonov regularization [178] applied to signals acquired by varying the intensity of
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the gradient and the delay between the pulses. We also show the difficulties encountered using
the same method directly to ADC and not the whole signal but further investigations still need
to be conducted for this case. Finally we try to approach the problem of finding the fiber
orientations. In particular, supposing the geometry to be composed by 2D ellipses of the same
sizes, our idea is to try to see if it is possible to find the ellipses distribution by taking measures
for different gradient directions. We furnish a mathematical proof according which it should not
be possible to answer to this question because the 2D matrix related to the problem has just
three non zero singular values which are not sufficient.

Conclusions and Perspectives This Chapter contains a short summary of the obtained
results and opens discussions about the future possible directions for this type of research.

Appendix A In this Chapter we describe the basic physical phenomena behind the dMRI
image in more details. It is based on the references [28, 79, 90, 118] and is meant to give the
reader a better understanding of the physical restrictions with which we have to deal, and clarify
the physical meaning of all the quantities we have introduced.
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Chapter 1

Diffusion magnetic resonance imaging
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Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique which is exten-
sively applied in material science to investigate structural and transport properties of porous
media (such as sedimentary rocks or concrete), as well as in medical and neuroscience to study
anatomical, physiological and functional properties of biological tissues (for some review and
survey papers, see [30, 33, 40, 47, 80, 81, 90, 91, 169]). The original idea to make the classical
MRI sensitive to diffusion, is to apply a diffusion-weighting (or diffusion-sensitizing) gradient to
encode random trajectories of the water molecules (Brownian motion) in the direction specified
by the applied diffusion gradient.

DMRI gives a measure of spins displacement during a diffusion time which can vary on the
order of tens of microseconds. In particular, the dMRI signal is an average of the magnetization
over a voxel, which, in clinical scanners, is a volume of the order of 1 mm3. Since the dimensions
of cells are of the order of micro-meters, they cannot be individually distinguished with the
dMRI resolution. Measuring the signal at different diffusion times, and gradient intensities and
directions, one aims at inferring the morphological structure of a sample and characterizing the
dynamics of a system.

In this Chapter we present the self-diffusion phenomena and how spins incoherent motion is
measured using diffusion MRI. In particular, after having described the meaning of self-diffusion
we quickly introduce the principal physical phenomena involved to create the MRI signal and we
explain how we can make this experiment sensitive to diffusion. To a more detailed description
we refer to the Appendix A, which contains a summary of the references [28, 79, 90, 118, 158].
In the last Section we present few biological applications of dMRI.

1.1 Diffusion

On a molecular level self-diffusion results from collisions between atoms or molecules in liquid
or gas state and it occurs even in thermodynamic equilibrium. This translational and random
motion is called Brownian motion and it occurs when temperatures are above the zero degree
Kelvin. It was observed for the first time by Robert Brown, who saw the random motions of
pollen grains while studying them under his microscope [27]. A few years later [52, 53], Einstein
used a probabilistic framework to describe the motion of an ensemble of particles undergoing
diffusion. In particular, for his description he used the displacement probability and he defined
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the probability as P px0,x, tq where x´ x0 is the relative dynamic displacement at time t. This
probability is solution of the diffusion equation

B

Bt
P “ D0∇2P, (1.1)

where D0 is the diffusion coefficient that depends on molecular weight of the diffusing particles,
intermolecular interactions (viscosity) and temperature. At t “ 0 the probability density is a
delta function on x´ x0.

In absence of obstacles, geometrical constraints or restrictions (free diffusion), the solution
of (1.1) is a Gaussian function whose width is determined by the diffusion coefficient. Using the
displacement distribution concept, Einstein was able to derive an explicit relationship between
the mean-squared displacement of the ensemble in any direction, characterizing its Brownian
motion, and the diffusion coefficient, D0

xx2y “ 2D0t (1.2)

where xx2y is the mean-squared displacement of particles during a diffusion time t. The diffusion
coefficient D0 depends on the temperature, on the nature of the diffusing particles and on the
environment in which the particles are diffusing. In particular, it satisfies the Stokes-Einstein
equation

D0 “
kT

f
(1.3)

where k is the Boltzmann constant, T is the temperature, and f is the friction coefficient which
is related to the shape of the particles and the viscosity of the fluid (for more details see, for
example, [158]). For free water at T “ 20˝C, the diffusion coefficient is about 2.13 ¨ 10´3mm2/s.

In a more complex media, the self-diffusion is hindered by geometrical obstacles such as
cell membranes and diffusion results hindered. In particular, P is still solution of the diffusion
equation (1.1) but boundary conditions should be added to account for the cell membranes. In
this case, a priori the solution will not be a Gaussian distribution and can be different along
every direction.

For these reasons, we can define a macroscopic diffusion tensor D and we can distinguish
between two cases.

— Isotropic diffusion: the tensor D is isotropic, this means that the molecules are equally
likely to move in any direction (see Figure 1.1a and 1.1b). From the mathematical point of
view, D is represented by a matrix which is a product between the identity and a constant.

— Anisotropic diffusion: the tensor D is anisotropic, this means particles diffuse more
easily in some directions than others, possibly due to obstacles and hindrances (see Figure
1.1c and 1.1d). From the mathematical point of view, D is represented by a general
positive definite symmetric matrix.

The goal of the diffusion MRI is to measure a signal due to the self-diffusion of particles
and recover some information on the microstructure which has generated these values. We now
briefly see how the experiment works and which are some of the physical phenomena involved
(for more details we refer to the Appendix and the references cited there).



1.2. Physics of diffusion magnetic resonance imaging (dMRI) 21

(a) Isotropic diffusion (b) Diffusion tensor for isotropic diffusion

(c) Anisotropic diffusion (d) Diffusion tensor for anisotropic dif-
fusion

Figure 1.1 – Difference between free and restricted diffusion and their associated tensors.

1.2 Physics of diffusion magnetic resonance imaging (dMRI)

Magnetic resonance imaging (MRI) is a non-invasive technique based on the principle that,
in presence of a constant external magnetic field B0, a set of particles that have non-zero spin,
will see their magnetization align along the direction parallel to B0. For example, if we consider
water protons, they have spin 1{2. Under a constant magnetic field B0, these nuclei have two
state of energies, µB0 and ´µB0, with µ being the nuclear magnetic moment. The energy
difference corresponds to a resonant or Larmor frequency

w “ γB0, (1.4)

where γ is called gyro-magnetic ratio, and for water protons is equal to 2.675¨108rad T´1s´1 (see
[63]). At thermal equilibrium, the difference of state populations creates a net magnetization
which is oriented along the direction of the magnetic field and is “precessing” around this direction
at frequency w. Nevertheless, this net magnetization has very low intensity compared to the
intensity of B0. In order to be able to measure it, the idea is to “flip” this magnetization on a
transverse plane (or simply on a plane which forms an angle α with the direction of the applied
magnetic field, where the amplitude depends on the application). To do so, a periodic magnetic
field B1, rotating in the transverse plane at the Larmor frequency w, is applied for short time.
This magnetic field B1 is called “RF pulse” because it consists in an electromagnetic radiation
with a precise radiofrequency applied for a short time. Once B1 is turned off, the spins tend to
come back to their initial condition via a phenomena called “relaxation” and we are then able to
measure a signal which represents the loss in net magnetization. Since the magnetization can be
represented as a vector, we decompose it into two components, parallel and perpendicular to the
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direction parallel to B0, and we distinguish between two relaxation phenomena characterized by
two times: T1 which gives information on how fast the longitudinal magnetization comes back to
the initial value and T2 which gives information on how fast the transversal magnetization goes
to 0. In general, signals would suffer additional suppression due to dephasing from external field
inhomogeneities. A rephasing can be achieved by an additional RF pulse application, where the
basic idea is to flip the phase of the spins by 180˝ in the transverse plane (for more details see
for example [28, 90]). Following the 180˝ flip the dephasing is reversed, and the phases refocus
at what is called echo time TE . The signal is then acquired at time TE .

To be able to localize the signal and create an image, also gradient fields are applied. A
gradient field is a magnetic field which varies in space. In particular, three linear gradients are
used: the “slice-selection” gradient (Gsl) to select a region in which we want to excitate the spins,
the “frequency” and “phase-encoding” gradients (Gx andGy) to generate the signal in the Fourier
domain. These three gradients are also called “imaging gradients”. The slice-selection gradient
Gsl is applied at the same time as the RF pulse and thanks to it we select a volume of spins that
precess at the Larmor frequency determined by B0, while the surrounding spins are precessing
with different frequency. Lets suppose for simplicity that B0 is directed along the z-direction
and that B1 flips the spins in the transversal plane xy. After spins are excited (i.e. after the
application of Gsl), new linear gradients are applied along the two in-plane directions (x and y)
defining the excited slice. The resulting linear changes in magnetic field create corresponding
linear changes in precessional frequency (i.e. the frequency w is determined by the sum of B0 and
the linear gradients). As these frequencies vary over time with gradient duration, the excited
spins accumulate also phases φ based on their location px, yq and the integral in time of the
applied gradients (Gx and Gy)

φ “ 2πpkxx` kyyq (1.5)

where
kx “ γ

ż

Gxptqdt and ky “ γ

ż

Gyptqdt. (1.6)

The net magnetization across an excited slice can be represented as a function SpTE , x, yq. The
signal ŜpTE , kx, kyq measured is the integrated signal from all spins expressed as

ŜpTE , kx, kyq “

ż

SpTE , x, yqe
ι2πpkxx`kyyqdxdy. (1.7)

Thus, the signal is the Fourier transform of the net magnetization across the slice SpTE , x, yq.
If one can measure ŜpTE , kx, kyq for several values of kx and ky, it is possible to mathematically
recover the function SpTE , x, yq by taking the inverse Fourier transform of Ŝ and then SpTE , x, yq
is displayed as the MR image. Values of Ŝ at low values of k represent the low spatial frequencies
which reflect values of the image S, while values of Ŝ at higher values of k reflect higher spatial
frequencies which reflect the edges and details in S.

To make MRI sensitive to diffusion and generate dMRI signal we use additional magnetic
gradients. The basics for diffusion weighting were introduced by Stejskal and Tanner in [172].
After excitation, and before signal sampling, a bipolar diffusion-weighting gradient is applied, as
shown in Figure 1.2. This gradient adds to each spin’s precession a positive phase proportional
to its average position (along the direction of the gradient) during the first gradient pulse, and
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a negative phase proportional to its average position during the second pulse. The sum of
these phases is related to the difference between these two positions (i.e. the displacement). In
particular, the bipolar gradient has no net effect on spins which do not move (because the initial
and final positions are the same) and the signal becomes sensitive to movement in the direction
of the magnetic gradient. The change of signal intensity that occurs as a result of diffusion is
dependent on the diffusion coefficient, the diffusion time (how long we let this occurs) and on
the strength of the applied diffusion-encoding magnetic gradient. We thus obtain that the signal
from moving particles will be attenuated based on their displacements.

(a) MRI (b) Diffusion MRI

Figure 1.2 – Imaging and diffusion gradients.

1.3 Some biological applications and advanced acquisition

We have seen that the dMRI signal is the transverse magnetization in a volume of tissue
called a voxel. The application of diffusion-encoding gradients causes an attenuation of the
magnetization due to the dephasing of spins (water protons) from the incoherent motion of
water. Since in biological tissues water diffusion is not free, and is instead strongly affected by
the local environment that can contain hinderance to water displacement such as cell membranes
and macromolecules, dMRI can reveal information about the tissue microstructure even though
the signal is collected on a macroscopic level (voxel).

In biological tissues, the image contrast in water proton diffusion magnetic resonance imaging
is given by the difference in the average water displacement due to the difference in diffusion
between imaged tissues at different spatial positions [106]. Since the first diffusion MRI images
of normal and diseased brain in [107], an early major application has been the study of acute
cerebral ischemia in stroke [131, 187]. In the brain, dMRI has been also used to detect a
wide range of physiological and pathological conditions, including tumors [125, 166, 174, 181],
myelination abnormalities [80, 108], connectivity [105], as well as in functional imaging [110, 111].

There are multiple ways to display contrast using dMRI. Although this is not the focus of the
thesis, for completeness, and in order to give the reader some basic references on the applications
of this technique, here I report a short list of some of the most popular and used ways to display
contrast using dMRI.

An early contrast is the simplest one, where the intensity of each pixel of the image represents
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the magnitude of the transverse magnetization for a certain choice of diffusion-encoding gradient
strength and direction. This contrast is the basis of diffusion-weighted imaging (DWI), which
was shown to be more sensitive to early cellular changes after a stroke than more traditional MRI
measurements (see for example [81, 82, 96, 131, 188] and Figure 1.3). DWI is most applicable
when the tissue of interest results in isotropic water diffusion displacement, for example in the
brain grey matter.

(a) MRI (b) Diffusion MRI

Figure 1.3 – Difference between MRI and dMRI in a brains affected by stoke. The zone affected by the stroke is clearly
shown by dMRI. This image was taken at http://www.eastportlandneurology.com/images/.

In tissues where water diffusion is not isotropic, a contrast that takes into account the
anisotropy is more appropriate. Diffusion tensor imaging (DTI) uses multiple diffusion-encoding
gradient directions and fit a diffusion tensor at each voxel. Typical images assign contrast or
colors to pixels based on the diffusion tensor eigenvalues (see for example [10, 16, 18, 109, 92,
154]).

Figure 1.4 – Example of tractography of the white matter using DTI data. Image source: Alessandro Daducci, LTS5
diffusion group, Ecole Polytechnique federale de Lausanne.



1.3. Some biological applications and advanced acquisition 25

DTI is then very useful to image tissues that have an internal fibrous structure such as the
axons of brain white matter or muscle fibers in the heart. The fitted diffusion tensor in DTI
has been used to produce tract or fiber images in the brain white matter (for a review see cite
for example [10]), in the heart [35, 36, 97, 163], as well as other tissues, such as the prostate
[71, 74, 157]. In the brain, the principal direction of the diffusion tensor have been used to infer
the white-matter connectivity of the brain.

Recently, more advanced models of the diffusion process, that go beyond the description
by a diffusion tensor, have been proposed. These include, among others, diffusion spectrum
imaging (DSI) [189], q-space imaging [7, 30], high angular resolution diffusion imaging (HARDI)
([58, 59]), persistent angular structure MRI (PAS-MRI) [85], generalized diffusion tensor imaging
(GDTI) [119, 145, 148], q-ball MRI [182], composite hindered and restricted model of diffusion
MRI (CHARMED) [9], diffusion orientation transform (DOT) [147], diffusion kurtosis imaging
(DKI) [88, 121] and multi-tensor MRI [39, 60, 84].

DTI and the derived advanced models are often used in tractography (Figure 1.4), an imag-
ining techniques with which one tries to see which parts of the brain are connected (see for
example [17, 48, 61, 105, 108, 151, 165] and references therein).
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After having made a brief overview of the physical principles behind dMRI we now introduce
in detail the mathematical background which has the key role in this thesis. We start by
introducing the Bloch-Torrey equation that describes the evolution of the complex transverse
magnetization. We then describe various theoretical and phenomenological approaches to relate
the microstructure to the macroscopic signal in order to specify the context for our work. To
write these sections I found particularly useful the following surveys [63, 67, 99, 192].

This Chapter is organized as follows. In Section 2.1 we introduce the Bloch-Torrey equation
and we explain how we can simplify it to add the dependence on the magnetic field B0 and
the relaxation time T2 after having found the solution. We also introduce all the interface
conditions that we need to add to the Bloch-Torrey equation to consider the hindrance due
to the membranes. Finally we describe few different time profiles for the diffusion-weighted
gradient that we will consider in the following chapters. In Section 2.1.1 we describe how we can
interpret the same phenomena using a probabilistic interpretation. In Section 2.1.2 we underline
how many spatial scales are involved in the problem and that we should always take into account.
We also define the short and long time regimes. In Section 2.1.3 we show the example of free
space for which the analytical solution of the Bloch-Torrey equation is known. We also briefly
describe how researchers are able to solve this equation using numerical techniques. We then
introduce the most popular assumptions, the narrow pulse approximation (Section 2.1.4) and
the Gaussian phase approximation (Section 2.1.6) that help in finding simplified models. Using
the narrow pulse approximation, we give a mathematical definition for the apparent diffusion
coefficient, and using the Gaussian phase approximation and the probabilistic interpretation we
give an equivalent definition. In Section 2.2 we make a description of all the known models to
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approximate the solution of the Bloch-Torrey equation under particular assumptions. We start
introducing the most discussed in this thesis, which are the short and long time models and then
we describe other models specifying under which assumptions they were derived. In Section 2.2.3
we explain how we can describe the problem in complex geometries using multi-compartments
models. Finally in Section 2.2.4 we introduce the most principal models defined for very specific
geometries that are particularly used in neuroscience applications.

2.1 The microscopic Bloch-Torrey model

During the dMRI experiment a magnetic field B0 “ p0, 0, Bzq is applied along a direction,
conventionally denoted the z axis, and the resulting magnetization is oriented along the same
direction. Then a 90˝ radio-frequency (RF) magnetic field pulse flips the magnetization into the
transverse plane pxyq (where it starts to precess with the Larmor frequency w0 “ γBz). The
magnetization M “ pMx,My,Mzq obeys the Bloch-Torrey equation [180]
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Mz “ div pD0∇Mzq ` γpMˆBqz ´

Mz ´M0

T1
, in Ω´ Γˆ r0, TEs

(2.1)

where div indicates the divergence operator, ∇ is the gradient operator, ˆ indicates the vector
product, Ω is the domain under consideration and Γ denotes the union of all the interfaces inside
Ω that may hinder the diffusion. On the right hand side of this partial differential equation (PDE)
there are three different mechanisms which affect the magnetization [67]:

(i) the diffusion of the nuclei with the diffusion tensor D0 (in units mm2{s);

(ii) the precession around the magnetic field B;

(iii) the relaxation to the equilibrium magnetization Meq “ p0, 0,M0q through the relaxation
times T1 and T2.

CombiningMx andMy into the complex-valued transverse magnetizationM “Mx`ıMy (where
ı denotes the imaginary unit) and writing explicitly the components of the vector productMˆB,
yield the compact form of the Bloch-Torrey PDE:

B

Bt
Mpx, tq “ div pD0∇Mq ´ ıγBzpx, tqMpx, tq ´

1

T2
Mpx, tq (2.2)

From the mathematical point of view, this is a standard diffusion-reaction equation, where the
reactive term contains the imaginary rate ıγBzpx, tq which changes many properties of this
partial differential equation.

Inside a voxel there are multiple hindrances to diffusion. Thus, it is usual to complement the
Bloch-Torrey PDE (2.2) by conditions that slow down or stop diffusion at geometrical interfaces
such as cell membranes. This partial differential equation needs, thus, to be completed with
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boundary conditions on Γ. In particular, for this work we consider the following boundary
conditions:

J∇Mpy, tq ¨ νpyqK “ 0, y P Γ (2.3)

∇Mpy, tq ¨ νpyq “ κJMpy, tqK, y P Γ (2.4)

where νpyq is the unit outward-pointing normal vector to the interface at the point y and J K
denotes the jump across the interface. The first equation enforces the continuity of the flux
across any interface. The second equation describes the flux as proportional to the jump in
the magnetization across the interface, where the constant of proportionality κ represents the
permeability coefficient which models the ease with which the water can cross the interface. If
κ is zero the interface is impermeable. As κ Ñ `8 (a fully permeable interface) a finite flux
is only possible if one imposes the continuity of the magnetization across the boundary, i.e.
JMpy, tqK “ 0.

Finally we also set constant initial condition

Mpx, 0q “M0 (2.5)

where the values M0 is often given by the density of the spin in the selected volume.
In this thesis, for simplicity, the transverse relaxation time T2 is assumed space independent

within a voxel. This means that all the nuclei inside the voxel are affected by the transverse
relaxation in the same way, and thus the resulting magnetization attenuation can be factored
out as e´t{T2 independently of diffusion and precession. Making this assumption, the related T2

term in (2.2) can be omitted because one can add its contribution directly in the final formula
for the signal.

For simplicity, in this thesis, we also assume the diffusion tensor D0 to be space-independent
within a voxel. Moreover, in order to simplify the calculations, we frequently treat only the case
where D0 is isotropic (i.e. the diffusion tensor becomes a diffusion coefficient D0), but all the
presented results can be extended to the anisotropic case. We emphasize that this assumption
does not prevent to observe anisotropic diffusion at the macroscopic scale because the anisotropy
can come from the geometrical hindrances to diffusion.

We note that the magnetic field Bzpx, tq we are considering in the Bloch-Torrey equation
(2.2) consists only in the diffusion-weighting gradient and does not include the imaging gradients
described in 1. In particular Bzpx, tq includes two terms [67]:

— a constant magnetic field B0 to induce sufficient magnetization (which is always on during
the experiment);

— a small spatially inhomogeneous field to encode the diffusive motion (which does not
contain the imaging gradients).

Since the first field affects all the nuclei in the same way its contribution to the magnetization
can be factored out as eıγB0t, using the same arguments we used before for the contribution
coming from the term containing the T2 relaxation. The second field, the diffusion-encoding
field, is usually a linear gradient field:

Bzpx, tq “ B0 ` x ¨Gptq. (2.6)
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There are also other configurations, like parabolic gradients, which will not be discussed in this
thesis (see for example [63] and references therein). The gradient Gptq has a fixed direction ug

and a gradient strength g and, for convenience, we factor out the dimensionless time profile fptq,
where max |fptq| “ 1:

Bzpx, tq “ B0 ` gfptqx ¨ ug. (2.7)

The choice of the amplitude g (in units T{m), the direction ug and the time profile fptq of the
linear diffusion gradient depends on the experiment. There are several common choices for the
function fptq and we list the following that we have considered in this thesis (for other types we
refer for example to [63, 100, 142] and references therein).

(i) The Pulsed Gradient Sequence (PGSE) introduced by Stejskal and Tanner in [172, 176]
consists in two ideal rectangular gradient pulses of duration δ with a time delay ∆ between
the start of the two pulses. There is also a 180 degree spin reversal between the two pulses
which mathematically can be translated into the negation of the phase. One then ends up
with (see Figure 2.1a)

fptq “

$

’

’

&

’

’

%
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(2.8)

(ii) A more realistic profile is the trapezoidal pulsed-gradient sequence (tPGSE)
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t´t0
χ if t0 ď t ă t0 ` χ,

1 if t0 ` χ ď t ă t0 ` δ ´ χ,

´ t´t0´δ
χ if t0 ` δ ´ χ ď t ă t0 ` δ,

´ t´t0´∆
χ if t0 `∆ ď t ă t0 `∆` χ,

´1 if t0 `∆` χ ď t ă t0 `∆` δ ´ χ,
t´t0´p∆`δq

χ if t0 `∆` δ ´ χ ď t ă t0 `∆` δ,

0 otherwise,

(2.9)

where χ “ cδ is the rise time with c being a constant in s0, 0.5s (see Figure 2.1b). It
is important to consider this time profile because, since it is physically impossible to
instantaneously turn on a gradient with strength g, is more realistic than (2.8).

(iii) The oscillating gradient profiles (OGSE) are meant to access short-time scales of diffusive
motion (see for example [50, 141, 191]). It can take the form of either cosine or sine
function during the pulses, i.e. it consists in two oscillating pulses of duration T , each
containing n periods (hence the frequency is w “ 2πn

T ) and with a time τ between the
intervals (see Figure 2.1c and 2.1d):

fptq :“
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%

cospwpt´ t0qq if t0 ă t ă t0 ` T,

´ cospwpt´ t0 ´ τqq if t0 ` τ ă t ă t0 ` τ ` T,

0 otherwise,

(2.10)
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or

fptq :“

$
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%

sinpwpt´ t0qq if t0 ă t ă t0 ` T,

´ sinpwpt´ t0 ´ τqq if t0 ` τ ă t ă t0 ` τ ` T,

0 otherwise.

(2.11)

We also remark that OGSE is often described using a frequency variable instead of the
time one (i.e. considering as variable 1{t [141]).
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Figure 2.1 – Sequences time profiles

We emphasize that all these time profiles respect the so called “rephasing condition”
ż TE

0
fptq “ 0, (2.12)

where TE is the echo-time. In particular, the above temporal profiles are also anti-symmetric,
i.e. for every t P r0, TEs they satisfy

fptq “ ´fpTE ´ tq. (2.13)

In practice, the macroscopic signal is the total magnetization over a volume of tissue called
a voxel whose size depends on the spatial resolution of the image acquisition

SpTEq “

ż

voxel
Mpx, TEq dx, (2.14)
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where TE is the echo-time. Obviously this averaging eliminates a lot of structural information
about the medium. The biggest challenge of the dMRI is then to recover some lost geometric
features from studying the macroscopic signal. We also remark that, in the experiments, the
macroscopic signal can only be measured at the echo time TE and not at each instant.

This thesis will approach the Bloch-Torrey PDE (after the mentioned simplifications) subject
to the constant initial condition M0 (2.5) and the interface conditions (2.3) and (2.4) for which
one will specify the values of κ, i.e. we are interested in studying
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Bt
Mpx, tq “ div pD0∇Mq ´ ıγgfptqx ¨ ugMpx, tq, in Ωˆ r0, TEs

J∇Mpx, tq ¨ νpxqK “ 0, on Γˆ r0, TEs

∇Mpx, tq ¨ νpxq “ κJMpx, tqK, on Γˆ r0, TEs

Mpx, 0q “M0. in Ω

(2.15)

If we do not specify the time profile, then this means that the results are valid for all profiles
that respect the rephasing condition (2.12) and not only the above presented four.

2.1.1 Probabilistic interpretation

As it is often done the case with diffusion (see for example [63, 67]), it would be useful
to evoke the probabilistic interpretation of the macroscopic signal. Since the applied magnetic
field Bzpx, tq is not homogeneous, from the physics we know that some spins process faster then
others, depending on their position in space. Consequently spins acquire a phase ϕt which is
obtained by integrating the position-dependent Larmor frequency γBzpx, tq along the random
trajectory xptq of the nucleus:

ϕt “

ż t

0
γBzpxpt

1q, t1q dt1. (2.16)

Looking at (2.16) we see that this random variable is a functional of the random trajectory xptq.
Since in Section 2.1 we assumed that we can neglect the term containing the relaxation time,
the amplitude of the local magnetization does not change, and thus the macroscopic signal can
be obtained averaging the phase factor eıϕt over all spins [63, 67]. Moreover, since the number of
nuclei in a voxel is gigantic, the average can be replaced by the expectation over all the random
trajectories xptq:

S “ S0E teıϕtu , (2.17)

where the trajectories starting points are uniformly distributed over the voxel and S0 is the
reference signal obtained without employing the diffusion-weighting gradient. In other words
the macroscopic signal can be interpreted as the characteristic function of the phase ϕt (2.17)
as well as the integral of the magnetization Mpx, tq which obeys to the Bloch-Torrey equation
(2.14).

The probabilistic interpretation of the signal is equivalent to the deterministic one obtained
with the Bloch-Torrey equation but, according to the application, it can be more useful to use
one or the other.
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2.1.2 Important length scales

As we have already mentioned the signal measured by the dMRI scanner is a mean-value
measurement in a physical volume, called voxel, whose size is much larger than the scale of the
microscopic variation of the cellular structures. The resolution of dMRI is of the order of 1mm3

for clinical scanners, meaning the dMRI signal combines the diffusion characteristics of a tissue
volume of about 1mm3. This is very large compared to cell features, which, for example in
the brain, vary from sub-µm (diameter of neurites) to tens of µm (diameter of neuronal bodies,
axons and glial cells). In other words, dMRI is used to show the averaged characteristics of the
microscopic structure on a macroscopic scale.

There are four important different lengths that needs to be considered in the dMRI problem
[63]:

— the size of geometrical compartment L;

— the diffusion length Ld “
?
D0t, showing the average distance explored by spins during

time t;

— the gradient length Lg “ pγgtq´1, which characterize the overall phase shift during a time
t;

— the permeation length Lκ “ D0{κ which characterize the effective distance travelled by
the spins between the first arrival onto the surface and the full permeation.

As a result we have that different regimes of restricted diffusion depend on how short some
of these lengths are with respect to the others. For example we say that we are in short-time
regime if

tD !
L2

2D0
, (2.18)

where tD is the diffusion time, L is the characteristic length of the cell, D0 its intrinsic diffusion
coefficient. In a similar way we say that we are in in long-time regime if

NDD :“

?
2TED0

L{2
" 1, (2.19)

where NDD means normal diffusion displacement.

2.1.3 Solutions of Bloch-Torrey equation

In the case of unrestricted diffusion, the exact solution the Bloch-Torrey equation (2.15) is
known [30, 95], and the macroscopic signal takes the exponential form

SpTEq “ S0e
´D0b (2.20)

where S0 is the reference signal without diffusion-weighting gradient, and the b-value is defined
as [107, 172]

b “ γ2g2

ż TE

0

ˆ
ż t

0
fpsqds

˙2

dt, (2.21)
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where the rephasing condition (2.12) is assumed. We observe that for the previously introduced
time profiles the b-value takes the form

b “ γ2g2

ˆ

∆´
δ

3

˙

for PGSE (2.22)

b “ γ2g2δ2

«

p1´ cq2∆`

ˆ

8

15
c3 ´

7

6
c2 ` c´

1

3

˙

δ

ff

for tPGSE (2.23)

b “ γ2g2 T

w2
for OGSE cosine. (2.24)

b “ γ2g2 3T

w2
for OGSE sine. (2.25)

To obtain (2.20) one considers the Bloch-Torrey equation in Rd with a constant diffusion
coefficient D0 and initial condition M0 given by
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B

Bt
Mpx, tq ` ıγgug ¨ xfptqMpx, tq ´ divx pD0∇xMpx, tqq “ 0, in Rdˆs0, TEr,

Mpx, 0q “M0pxq, in Rd.
(2.26)

The Fourier transform M̂pξ, tq of the solutionMpx, tq, with respect to the spatial variable, solves
$
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B

Bt
M̂pξ, tq ´ γgfptqug ¨∇ξM̂pξ, tq ´ ξ

TD0ξM̂pξ, tq “ 0, in Rdˆs0, TEr,

M̂pξ, 0q “ M̂0pξq, in Rd.
(2.27)

This problem can be solved using the method of characteristic, and we obtain

M̂pξ, tq “ M̂0

ˆ

ξ ` γgug

ż t

0
fpsqds

˙

e´
şT
0 D0pξ`γgug

şt
s fpµqdµq¨pξ`γgug

şt
s fpµqdµq. (2.28)

Then, since SpTEq “
ş

RdMpx, TEqdx “ M̂p0, TEq we can get an expression of the signal as

SpTE , g,ugq :“

ż

Rd
Mpx, TEqdx “ M̂p0, TEq (2.29)

that, using the rephase condition (2.12) and that D0 is a coefficient and ‖ug‖ “ 1, simplifies to

SpTE , g,ugq “ M̂0p0qe
´γ2g2D0ug¨ug

şTE
0 p

şt
0 fpsqdsq

2
dt
“ S0e

´D0b. (2.30)

Even for very simple geometry configurations, it is difficult to obtain explicit solutions for
general profile fptq. Some known solutions for one-dimensional configurations can be found in
[14, 95, 163]. The lack of known analytical solutions underlines the mathematical difficulties in
interpreting the relation between the macroscopical signal and the microstructure.

For this reason, as we will see in the following sections, the majority of researchers tries to
develop techniques to find a good approximation of the solution of the Bloch-Torrey equation
or directly of the signal under some specific assumptions. Nevertheless, in order to test their
approximations, they need to have a reference model and for this purpose several numerical
models are used to numerically solve the Bloch-Torrey equation. Here we report three classes:
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1. Finite differences method (FDM), finite elements method (FEM), boundary
elements method, etc. A domain and/or its boundary are discretized with a regular
or adaptive mesh. The original continuous problem is then replaced by a set of linear
equations to be solved numerically. The solution is obtained at all mesh nodes at successive
time steps. Since the accuracy and efficiency of these deterministic numerical schemes
significantly rely in the discretization, mesh construction turns out to be the key issue and
often a limiting factor, especially in three dimensions. These methods have been frequently
applied for computing dMRI signals (for more details see [25, 38, 57, 68, 83, 134, 190]). In
particular, to test the validity of our work in the simulations of the following chapters we
will employ the FEM to solve the Bloch-Torrey equation.

2. Monte Carlo simulations. A probabilistic interpretation of diffusion equations is em-
ployed to represent the original continuous problem as the expectation of a functional of
an appropriate stochastic process (like we have seen in Section 2.1.1). Many random tra-
jectories of this process are then generated and used to approximate the expectation and
thus the solution. Monte Carlo techniques are flexible and relatively easy to implement
and thus have been often used in dMRI (see for example [12, 43, 62, 117, 126]).

3. Matrix formalism. If one considers the magnetic field Bzpx, tq as a perturbation of
the Laplace operator, the magnetization Mpx, tq can be decomposed on the complete
basis of Laplacian eigenfunctions to deal with restricted diffusion in bounded domains
([15, 63, 64, 65]). The projection onto eigenfunctions reduces the Bloch-Torrey PDE to
an infinite system of linear differential equations which can be truncated and then solved
numerically. The solution is then obtained by matrix operations [63]. This technique is
used especially when one is considering long time, whereas for strong gradients could be
too slow.

On the imaginary part of the signal

By definition, Mpx, tq solution of the Bloch-Torrey equation (2.15) is a complex-valued func-
tion and so is the signal SpTEq “

ş

ΩMpx, TEqdx (this because the magnetization has a magni-
tude and a phase). The imaginary part of M represents the solution without diffusion, i.e. the
difference in phase, while the real part represent the attenuation due to diffusion [128]. Often
the phase of the measurement is discarded since inhomogeneities in B0 and movement of the
sample make it unstable. In practice, it is also common to take the modulus of SpTEq as the
real-valued dMRI signal [1]. However there are few cases in which mathematically we can be
sure that the signal is just real. One of them is if we assume that the gradient time profile
satisfies the rephase condition (2.12) and it is also anti-symmetric (2.13). A standard proof of
this result uses the probabilistic interpretation of the signal (2.17) and can be found in [63].
Since the most used time profile introduced previously satisfies both these conditions, in this
thesis we will concentrate our attention on the real part of the acquired signal. It is important
to observe that for some years researchers believed that just the rephase condition (2.12) was
sufficient to get that the imaginary part of the signal is zero for small values of the product γgδ,
but the prove is still an open question. Recent works show that this is not true for high values
of γgδ or special tortuous and asymmetric domain, and some of them claim that acquiring sep-
arately the imaginary part could improve the signal to noise ratio in the image (see for example
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[23, 100, 104, 120, 144, 156] and references therein).

2.1.4 Narrow pulse approximation [30, 43, 172, 176]

Since the Bloch-Torrey equation (2.15) does not admit simple solutions for generic temporal
time profile fptq, the idea of Stejskal and Tanner was that it could be possible to adapt the
function fptq in order to simplify the mathematics using a change on the physical setup. They
ended up suggesting the use of narrow pulse gradients [172, 176]. Thus, when the pulse duration
is short, δ ! ∆, we now say that we are under the narrow pulse assumption (NPA). Under NPA,
after the first pulse, the complex phase due to spins that were at position x0 before the pulse is
eiδγg¨x0 . Because the gradient magnetic field is turned off after the first pulse, the phase of the
spins does not change until the application of the radio-frequency (RF) pulse, used to apply the
180 degree spin reversal. After the 180 degree RF pulse, the complex phase becomes e´iδγg¨x0 .
The phase of the spins stays the same until the application of the second pulse, after which the
complex phase due to spins ending up at position xf becomes eiδγg¨pxf´x0q. The dMRI signal
S (total water proton magnetization in a physical voxel V) averaged over all the possible initial
spins positions x0 is:

S “

ĳ

V

P px,x0,∆qρpx0qe
iδγg¨px´x0q dx0dx, (2.31)

where P px,x0,∆q is the diffusion propagator describing the probability for a molecule to move
from point x0 to point x in a time ∆ and ρpx0q is an initial spin density at x0. The diffusion
propagator P px,x0,∆q is a solution of the diffusion equation,

B

Bt
P “ divpD0∇P q (2.32)

with specific boundary conditions like (2.3) and (2.4), and with the initial condition P px,x0, 0q “

δpx´ x0q, where δpx´ x0q is the Dirac delta function.
Through the equation (2.31) we can see the signal as a Fourier transform where the wavevec-

tor is given by γδg. In particular, if the water is freely diffusing with the isotropic diffusion
coefficient D0, then

P px,x0,∆q “
e
´
||x´x0||

2

4D0∆

p4πD0∆qd{2
, (2.33)

where d is the dimension of the problem. In this case P is thus the diffusion (heat) Green’s
function in free space. Moreover, if we assume that the diffusion displacement is small compared
to the side lengths of the voxel (which is true for dMRI), the signal is given by

S “ S0e
´D0||γδg||2 . (2.34)

Thus, by measuring the macroscopic signal for various values of the wavevector and then in-
verting the Fourier transform, one can access to the averaged propagator that incorporates the
geometric features of the microstructure.

For simple isolated domains (e.g. sphere, cylinder, slab) some analytical formulas for the
signal were derived especially in the long time limit (∆ very large) [30, 43]. These formulae were
extensively experimentally validated (see for example [31]).
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In spite of the simplicity of the theoretical analysis of the NPA, there are limitations to its
validity and implementation [67]:
(i) the assumption of immobile nuclei during the gradient pulses may not be valid;
(ii) an experimental implementation of very short and at the same time strong gradient pulses

has instrumental limitations.
Thus, even if this assumption is widely used to derive theoretical models to better understand the
relationship between the microstructure and the macroscopic signal, it is not usually realizable
in the experiments. For these reasons, finding a model which goes beyond this assumption would
be desirable.

2.1.5 The apparent diffusion coefficient (ADC)

An important quantity measured in dMRI is the apparent diffusion coefficient (ADC) or
effective diffusion coefficient (Deff), with the former term often used by medical researchers
and some MR physicists. The latter is the preferred term among mathematicians and some
physicists. In this thesis, we will use both ADC and Deff, but we distinguish them in the
following way. (The choice we made, described below, is somewhat arbitrary and we hope that
it does not detract from the clarity of the thesis.)

In this thesis, the ADC will be used to designate the quantity that includes the contributions
from all the geometrical compartments in a volume of interest, whereas Deff

n will be used to
designate the quantity that accounts for the contribution from a particular compartment n,
within the volume of interest. (For example, all the spherical cells could comprise compartment
1, all the cylinder cells could comprise compartment 2, and the extra-cellular space compartment
3. The union of these three compartments make up the total volume.) As a consequence, if we
are considering just one compartment, then ADC “ Deff, whereas if we are considering N ą 1

compartments, and exchange between the compartments is negligible, the ADC is

ADC “
N
ÿ

n“1

vnD
eff
n , (2.35)

where vn is its volume fraction and Deff
n is the effective diffusion coefficient of the nth geometry.

This quantity is based on a measure of the mean diffusion displacement inside an imaging
voxel. The mean squared displacement of spins during a diffusion time tD is defined as:

MSDptDq ”
1

ş

x0
ρpx0qdx0

ż

x0

ż

x
ρpx0q ppx´ x0q ¨ ugq

2 P px0,x, tDqdx dx0. (2.36)

where P px0,x, tDq is the proportion of spins starting at x0 when t “ 0, ending up at position
x after a time tD, ρpx0q is the density of spins at x0. Using the formulas for free diffusion
introduced in Section 1.1, we can define an apparent diffusion coefficient in the direction ug by
the following expression:

1

2 tD
MSDptDq. (2.37)

Since the mean squared displacement in a heterogeneous medium is not necessarily linear in tD
(as we have pointed out in Section 1.1), the apparent diffusion coefficient typically depends on
tD in a different way and we need to adapt this definition for the general case.
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The MSD can be measured by dMRI using the previously introduced PGSE sequence. In
the ideal case, where the pulse duration is very short compared to the delay between them,
δ ! ∆, called the narrow pulse case (Section 2.1.4 above), it is easy to relate the magnetization
of spins to the diffusion propagator P px,x0, tDq. In particular, the magnetization at position x

and the echo time TE , results

Mpx, TEq «

ż

x0

ρpx0q P px,x0,∆q e
iδγgug¨px´x0qdx0, (2.38)

where we used the assumption that δ ! ∆. We have seen that the dMRI signal S is the total
water proton magnetization in an imaging voxel V , i.e.

S “

ż

xPV
Mpx, TEq dx. (2.39)

Because the diffusion displacement is usually much shorter than the size of the imaging voxel,
we can ignore spins that enter and leave the voxel during the signal acquisition and thus take
domain of integration in Equation (2.39) to be R3. Using properties of the Fourier transform,
we obtain

B SS0

B pδγgq2

ˇ

ˇ

ˇ

ˇ

ˇ

δγg“0

«MSDp∆q, (2.40)

in the case of the narrow pulse PGSE sequence, where S0 is the signal at g “ 0 (a derivation of
this statement can be found in [115] and uses the same techniques employed in Section 2.1.4).

Without the narrow pulse assumption, Equation (2.38) does not hold exactly. Rather,
Mpx, tq is governed by the Bloch-Torrey PDE, (2.15).

We have seen that, in case of unrestricted diffusion in a homogeneous medium with a diffusion
coefficient D0, the MRI signal takes the exponential form [30, 95]

S “ S0e
´D0b, (2.41)

where the b-value is defined in (2.21).
To adapt the definition of the apparent diffusion coefficient to the non-narrow pulse case, we

make the following mathematical definition of the apparent diffusion coefficient in the gradient
direction ug:

ADCug :“ ´
1

γ2

ż TE

0
F ptq2dt

B

Bg2
ln

ˆ

SpTEq

S0

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g“0

. (2.42)

We emphasize that ADCug defined in the above formula depends on the gradient direction
ug and the temporal profile fptq, but not on the gradient amplitude. We also emphasize that
the apparent diffusion coefficient results in general to be “time-dependent” (i.e. depends on the
diffusion time). Thus, one often accesses to its behaviour as a function of characteristic time for
the chosen gradient profile (∆ for PGSE and tPGSE and τ for OGSE). We highlight that with
the phrase “diffusion time-dependent” we actually mean dependent on the intra-pulse time and
the pulses duration. Additionally, in what follows, to simplify the notation, if ug does not play
a role in the discussion, we will write ADC instead of ADCug and Deff instead of Deff

ug
.
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For the relation between the intensity of the gradient g and the b-value, in practice, the
value of ADC can be also extrapolated from the measured signal by fitting ln

´

SpTEq
S0

¯

as an
appropriate polynomial of b over the experimentally available range of b-values and taking the
coefficient in front of the linear term in b. Measuring the macroscopic signal at several b-values
allows one to estimate ADC which is related to the microstructure. Indeed, small ADC means
that there are a lot of membranes which confine the movement. The ADC is widely used in the
applications especially in medical imaging. For instance ADC maps of brain are used to identify
tumours (see [108, 182]).

2.1.6 Gaussian phase approximation [63, 67, 99, 107, 133, 162]

Another standard approximation for dMRI signal modelling goes under the name of Gaus-
sian phase approximation (GPA). The intuition behind the employment of this approximation
consists in assuming that diffusion in the medium would remain Gaussian but is slowed down
due to bumping and rebounding of the nuclei on obstacles or walls. The first use of this assump-
tion goes back to the sixties when Robertson used it to recover the signal for diffusion between
two parallel planes along with the Laplacian eigenfunctions [162]. Neumann a bit later extended
this result to cylinders and spheres [133]. Later on the GPA has been extensively used for the
analysis of dMRI signals in a variety of structures (see [63, 67]).

Under this hypothesis one can still apply the exponential form (2.20) in which the intrinsic
diffusion coefficient D0 is replaced by the effective or apparent diffusion coefficient defined in
Section 2.1.5 [107]:

SpTEq « e´ADCb (2.43)

with the b-value defined in equation (2.21).
We can define the ADC also using the probabilistic interpretation of the signal (2.17). In

particular a Taylor expansion of the exponential function at t “ TE is done in order to make an
accurate analysis in the case of weak gradients

S

S0
“ 1` ıE tϕTE u ´

1

2
E tϕ2

TE
u ´

ı

6
E tϕ3

TE
u `

1

24
E tϕ4

TE
u `Opϕ5

TE
q (2.44)

which, using the properties of the exponential function, can also be written as the cumulant
expansion [99]

ln pS{S0q “ ıxϕTEyc ´
1

2
xϕ2

TE
yc ´

ı

6
xϕ3

TE
yc `

1

24
xϕ4

TE
yc `Opxϕ

5
TE
ycq (2.45)

where the cumulant moments xϕnTEyc can be expressed in terms of ordinary moments E tϕnTE u.
Under the rephasing condition (2.12), and if the temporal profiles are anti-symmetric (2.13), all
odd-order moments vanish and the leading (lowest-order) term is the second moment xϕ2

TE
yc “

E tϕ2
TE
u [63, 67]. The Gaussian phase approximation consists in neglecting higher order terms

which are expected to be small for weak gradients, from which

S « S0e
´Etϕ2

TE
{2 u
. (2.46)
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According to the definition of the random phase ϕTE in (2.16) the second moment can be written
in terms of the position autocorrelation function

E tϕ2
TE
{2 u “ γ2g2

ż TE

0
dt1fpt1q

ż TE

t1

dt2fpt2qE t pxpt1q ¨ ugq pxpt2q ¨ ugq u , (2.47)

where we have used the symmetry of this function to order the variables t1 and t2 [63, 67].
Since the ADC contains all the available information on the microstructure it is really

important to find a correct interpretation of this quantity in terms of the geometry. Moreover
the final goal is to be able to invert its expression in order to find significant parameters which
characterize the features of the geometry.

When the gradient increases the lowest order E tϕ2
TE
{2 u grows slower than the higher-order

terms and it is necessary to consider more contributions. This happens when the function
ln pSpTEq{S0q, as a function of b, starts to deviate from a straight line. At this point one can
include the next term of the expansion

SpTEq « S0e
´ 1

2
xϕ2
TE
yc`

1
24
xϕ4
TE
yc , (2.48)

where xϕ2
TE
yc “ E tϕ2

TE
u and xϕ4

TE
yc “ E tϕ4

TE
u ´ 3

`

E tϕ2
TE
u
˘2
, under the rephase condition

(2.12). The above relation is known as Kurtosis model and it’s equivalent to

S « S0e
´ADCb` 1

6
KURpADCbq2 , (2.49)

where

KUR :“
xϕ4

TE
yc

´

xϕ2
TE
yc

¯2 “
E tϕ4

TE
u

´

E tϕ2
TE
u

¯2 ´ 3 (2.50)

is the apparent diffusion kurtosis [88]. This quantity characterize how far the phase distribution
is from the Gaussian one for which one can prove that all the higher order terms xϕnTEyc with
n ą 2 vanish [63, 67, 99]. Since diffusion is influenced by obstacles and walls, the Kurtosis term
was suggested as an indicator of tissue heterogeneity (see [86, 88]). As for the ADC in the
experiment the KUR can be obtained by fitting the ln pSpTEq{S0q with a polynomial in b and
then taking the coefficient in front of the quadratic term in b.

The inclusion of more terms would not improve the accuracy of the cumulant expansion for
many different reasons among which the fact that at higher b-values the signal could be already
too much attenuated and then strongly affected by noise (for more details see [99]).

2.2 Approximate models

The aim of this Section is to introduce some theoretical models used in literature to ap-
proximate and analyse the solution of the Bloch-Torrey equation or directly the expression of
the signal. We will present them specifying under which approximations (narrow pulse and/or
Gaussian) where derived. Some of the models we are going to introduce will be used in the
following Chapters to validate our work.
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2.2.1 Short-time approximation [103, 129, 130, 138]

Considering a very short time of observation t (short-time defined in Section 2.1.2), one
can estimate the time dependence of the diffusion coefficient in a medium with impermeable
restrictions. Indeed the presence of the impermeable wall affects only the molecules in the
adjacent layer [99]. The thickness of this layer is of the order of the diffusion length

?
D0t,

where D0 is the bulk intrinsic diffusion coefficient. The diffusion coefficient of molecules in this
layer is thus significantly reduced, that is it can be estimated by dimensional arguments as
const ¨ D0, where const ă 1. Denoting by S{V the ratio of the total restriction surface area to
the total water volume, molecules with this effectively restricted diffusion coefficient occupy the
volume fraction

?
D0tS{V , which is much smaller than unity for short times. Bulk water has the

diffusion coefficient D0 with a volume fraction 1´
?
D0tS{V . Averaging this two contributions

we get the apparent diffusion coefficient

ADCshortptq “ D0

ˆ

1´ const1
S

V

a

D0t

˙

, (2.51)

where const1 is another constant. The exact calculation in [129, 130], using Laplace transforma-
tion of the solution of the diffusion equation and asymptotic series, gives const1 “ 4

3d
?
π
, where

d is the spatial dimension. This result was lately extended to the case of permeable membranes
of permeability coefficient κ ([103, 138]) as

ADCshortptq :“ D0

„

1´
S

dV

ˆ

4
?
D0t

3
?
π
´ κt

˙

. (2.52)

It was also shown that, in the case of anisotropic media subjected to a linear gradient with
direction ug, one should consider the coefficient

ş

BΩpug¨νq2dx

|Ω| instead of S
dV [11, 63].

The use of short-time asymptotics is limited to relatively large obstacles. For instance, water
molecules diffuse on average few microns during one millisecond, and then the obstacles should
be much larger to estimate the surface-to-volume ratio. One possibility would be to consider
smaller time but for now this is impossible due to hardware limitations. Another possibility is
to use another time profile, i.e. instead of using PGSE one can use oscillating techniques to
obtain an Oscillating Pulse Gradient Sequence (OGSE). In this case a formula for the apparent
diffusion coefficient was found by Novikov and Kiselev in [138]

ADCshortpwq « D0

˜

1´
S

dV

c

D0

2w

¸

. (2.53)

2.2.2 Long-time approximation [44, 46, 63, 67, 78, 103, 133, 162, 167]

In the long time limit (see definition in Section 2.1.2) the behaviour is very different for
isolate pore and connected pore but, in both cases, it was observed that the diffusion becomes
effectively Gaussian.

Using PGSE, the first case was investigated in details by Robertson and Neumann in [162] and
[133] respectively. From their results one gets that the nuclei explore the whole available space
then their mean square displacement saturates while the ADC decrease as the time between the
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pulses (∆) increases. For an isolate cell of a typical size R, in the case of PGSE and assuming
narrow pulse hypothesis, using eigenfunction expansion one gets

ADClongp∆q « C
R2

∆
(2.54)

where C is a geometrical constant (for example C “ 1{4 for reflecting cylinder and C “ 1{12 for
a 1D configuration [30, 63, 67]. Using this approximation one can estimate the size of the pore.

In the case of interconnected pore or tissue formed by cell with permeable membranes the
asymptotic is different. In fact, although the motion is hindered by the membranes, the nuclei
can slowly explore new region without limitation. In particular for open geometries one gets
[46, 78, 103]

ADClongptq « ADC8 `
k1D0

t
`
k3{2D0

t3{2
`O

ˆ

1

t5{2

˙

ptÑ `8q (2.55)

where the coefficient k1, k3{2 depend on the confining geometry and ADC8 is the limit reached by
ADC if the observation time t tends to infinity. Moreover, if one considers permeable membranes
a new leading term t´1{2 should be added [167]. In this regime, the free diffusion coefficient D0

is reduced to ADC8 by a geometrical factor T called tortuosity (i.e. ADC8
D0

“ 1
T [63, 67]). This

is an important macroscopic characteristic of porous materials and biological tissues. Indeed,
the tortuosity reflects how the microstructure and the surface exchange affect diffusion at long
times. In the same light, some years before Crick proposed a simple relation between ADC8
and the permeability κ of equidistant barriers separate by a distance a [44]

1

ADC8
“

1

D0
`

1

aκ
. (2.56)

This approximation can be useful to estimate intracellular diffusion coefficient and membrane
permeability but has the limitation of being retrieved only for one-dimensional medium (or
d-dimensional geometry which can be reduced to 1-dimensional).

Recently, Novikov et al. proposed an effective medium theory in which spatial variation of
the diffusion coefficient where related to correlation functions of heterogeneities of a medium
[140]. They also studied the effect of spatial configurations of permeable membranes onto the
time-dependent diffusion coefficient [138] and they ended up with a more general formula

ADClongptq “ ADC8 `
c

tθ
ptÑ `8q (2.57)

where θ is related to a structural exponent p of the disorder as θ “ pp ` dq{2 (see [29, 55, 139]
for further details).

In the following sections we will see that the long-time limit ADC8 can be obtained using
mathematical homogenization techniques [42] or a long-time periodic approximation [179].

2.2.3 Multi-compartments models [34, 39, 88, 123, 124, 132, 136, 192]

The dMRI is often realized on biological tissues (such as brain, lungs and heart) and from
the practical experiment one can observe a significant deviation from the mono-exponential
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behaviour in (2.43). It was realized that when one varies the diffusion gradient direction ug or
magnitude g the ADC may vary significantly. As we have already observed, ones get different
values of ADC by varying the time delay between the pulses. In practice, by fixing the latter
parameter along with the direction ug and varying the amplitude g, one can see clearly that
the diffusion-induced MRI signal attenuation has not an exponential decay in b [34, 39, 88, 123,
124, 132, 136]. The reason for this is that in biological tissue the diffusion environment seen by
water molecules during the diffusion time (tens of milliseconds) is not homogeneous due to the
presence of cells, membranes and other heterogeneities. Indeed, a biological tissue consists in
cells which are separated from each other and from the extracellular space by semi-permeable
membranes. If the exchange between different compartments can be neglected, the total signal
is a linear combination of signals from compartments (weighted by their volume fraction) which,
under the GPA (i.e. at weak gradient), results

SpTEq

S0
“

ÿ

j

vje
´Djb (2.58)

where vj are the volume fractions of compartments (representing the relative amount of the
nuclei), and Dj are their ADCs. In particular we observe that

ÿ

j

vj “ 1.

An application of multi-compartments hypothesis can be found in [192], where the signal
model is an integral of a continuum of Gaussian diffusion groups, each with a different effective
diffusion coefficient.

Bi-exponential model [39, 66, 132, 136, 170]

In general, if all cells or pores composing the microstructure have similar shapes and sizes,
their signals can be combined into an effective intracellular signal, yielding the “popular” bi-
exponential form ([67])

SpTEq

S0
“ ve´Dcb ` p1´ vqe´Deb, (2.59)

where v is the volume fraction of the (joint) intracellular compartment, and Dc and De are
the apparent diffusion coefficients for both intra- and extra-cellular compartments. The bi-
exponential form (2.59) has been employed in many biomedical applications, in particular, for
brain dMRI [39, 132, 136, 170]. Conventionally, the larger diffusion coefficient De is associated
with faster hindered diffusion in the extracellular space, while the smaller diffusion coefficient Dc

represents slower restricted diffusion in the intracellular compartments [66]. It is mandatory to
observe that, even if the the bi-exponential form (2.59) accurately fits the macroscopic signal in
brain tissue, it could fail in capturing the microstructure. Indeed it is sufficient to observe that
De and Dc are apparent diffusion coefficients and are strongly affected by the microstructure
and the chosen gradient time profile [66]. For instance both vary in with time (according to the
definition of “time-dependent diffusivity” given in Section 2.1.5) in different a way. For example
for closed geometry in the long time limit Dc vanish while De reaches a positive limit. Then
measuring Dc and De on the same microstructure at different diffusion time can yield different
values of the fraction v from the bi-exponential fit. This dependence on time is mainly caused by
the exchange between the compartments and it happens mainly at large b-values [66]. However,
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taking in account this dependence on time for small exchange between the compartments, one
can employ this formulation.

We now introduce two models which take in accounts the exchange between the compart-
ments of the tissue. This exchange is characterized by the permeability κ of the cellular mem-
brane which varies significantly among the different tissues, from sub 10´6m{s to more than
10´3m{s (see for example [49] for more details). To give an indication we can claim that the val-
ues of κ below 10´6m{s mean that the membrane can be considered as impermeable while values
between 10´6m{s and 10´4m{s correspond to semi-permeable membranes and bigger values to
very permeable membrane [49].

Kärger model [93, 94]

Kärger et al. proposed a simple model to account for the exchange between colloids that
they recovered through the experiments [93, 94]. The essence of the Kärger model as it was
presented is the following: there exists two molecular spin-carrying pools, labelled 1 and 2, both
occupying the same volume of a voxel [56]. The exchange between the pools was assumed to be
uncorrelated from diffusion and to follow standard linear kinetics. The concentrations c1px, tq

and c2px, tq of molecules in the two pools obey the standard diffusion-reaction equations
$

’

&

’

%

B

Bt
c1px, tq “ D1∇2c1px, tq ´ η21c1px, tq ` η12c2px, tq,

B

Bt
c2px, tq “ D2∇2c2px, tq ´ η12c2px, tq ` η21c1px, tq,

(2.60)

where x P Rd (with d the dimension of the problem) and the second and third terms in the
right-hand side describe the exchange between the two pools, η12 and η21 being the exchange
rates of moving from the first pool to the second pool and vice-versa. These exchange rates can
be related to the permeability κ and the surface to volume ration S{V of the medium:

η21 “
κ

v1

S

V
and η12 “

κ

v2

S

V
(2.61)

with v1 and v2 being the volume fractions of the two pools (v1 ` v2 “ 1). Since the pools were
introduced to substitute the microstructure, these equations have no boundary conditions but
they are subjected to the initial condition cjpx, 0q “ vj δ̃pxq, j “ 1, 2, with δ̃pxq being the Dirac
delta distribution at x “ 0. Under the narrow pulse approximation for PGSE sequence, δ ăă ∆

the compartment magnetization takes the form

Mjptq “

ż

Rd
eıγgδug¨xcjpx, tqdx, (2.62)

i.e. is a Fourier transformation of the concentrations cj , j “ 1, 2 with respect to the wave vector
γgugδ ([30]). Taking the time derivative ofMj and using the Green’s identity, the Karger model
can be obtained as system of two ordinary differential equations (ODE)

$

’

&

’

%

B

Bt
M1ptq “ ´

´

D1‖γgug‖2δ2 ` η21

¯

M1ptq ` η12M2ptq,

B

Bt
M2ptq “ ´

´

D2‖γgug‖2δ2 ` η12

¯

M2ptq ` η21M1ptq,

(2.63)
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supplemented by the initial conditions

Mjp0q “ vj , j “ 1, 2. (2.64)

These equations can then be solved analytically to get the explicit formula for the macroscopic
signal S “ M1ptevalq `M2ptevalq, where teval is the evaluation time and sometimes is chosen as
the diffusion time ([56]). We remark that originally Karger proposed ∆ as teval, but in [115]
was observed that (if the pulses are not narrow) is better to consider teval “ ∆ ´ δ{3 in the
simulations. In Chapter 3 we clarify this aspect showing why teval “ ∆ ´ δ{3 is the correct
choice of evaluation.

Fitting the macroscopic signal one can then estimate the coefficients D1 and D2, the volume
fractions v1 and v2, and the exchange rates η12 and η21 from which the product κS{V can be
deducted ([67]). We observe that the diffusion coefficients D1 and D2 must be different otherwise
there is no difference between the pools and one ends up with the same signal as unrestricted
diffusion. Furthermore they correspond to the apparent diffusion coefficients of the two pools.
Then, for a closed geometry and in a long-time regime, one can simplify one of the two equations
using the fact that its diffusion coefficient will be 0. An extension to multiple compartments
(and nor only two) is straightforward and is reported in the Chapter 3. It is also easy to recover
the model for anisotropic diffusion, i.e. containing an apparent diffusion tensor rather then a
coefficient. In Chapter 3 is also reported the resulting analytical formula for the Kärger signal.

Finite pulse Kärger model [42, 115, 135]

An extension of the Kärger model beyond the NPA was proposed by Coatléven et all [42, 115].
Using periodic homogenization techniques, in which the voxel is assumed to be formed by numer-
ous periodic copies of a smaller but representative volume of a tissue [22]. The approximation
of the solution of multi-compartments Bloch-Torrey equation was reduced to a system of cou-
pled differential equations for the relative signals Sj from the compartment Ωj constituting the
medium. For instance, when there are only two compartments one obtains

$

’

&

’

%

B

Bt
M1ptq “ ´

´

D1‖γgug‖2F 2ptq ` η21

¯

M1ptq ` η12M2ptq,

B

Bt
M2ptq “ ´

´

D2‖γgug‖2F 2ptq ` η12

¯

M2ptq ` η21M1ptq,

(2.65)

where F ptq “
ż t

0
fpsqds. Roughly speaking, under the narrow pulse approximation one can say

that F ptq « δ2 and retrieves the equations (2.63). For a more precise analysis of convergence
between the two models, we refer to Chapter 3. The presence of F ptq, which is time dependent,
prevents one to find an analytical solution of (2.65). On the contrary, a numerical solution of
these simple ODEs is simpler and much faster then that of Bloch-Torrey PDE which is space
and time dependent. In [135], it was also shown that when the gradient pulses are not narrow,
this model is more convenient for estimating the parameters than the original Kärger one.
Furthermore in [42, 115] also an analytic formula to compute the effective diffusion coefficient
D1 and D2 was given. Indeed starting from the Bloch-Torrey multi-compartments equation
with the boundary conditions (2.3) and (2.4), and assuming that one can relate the length of
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the periodicity box and the permeability to be linearly dependent to the same non-dimensional
small parameter ε, one can use a multiscale expansion for the magnetization (see [22]) and the
effective diffusion tensors Dj

il, for each compartment Ωj of the voxel, can be written as

D
j
il “

1

vj

ż

Ωj

Dj
0

´

∇ωjl pxq ¨ ei ` el ¨ ei

¯

dx (2.66)

where vj is the volume fraction of Ωj , ei is the i-th vector of the standard basis of Rd (d space
dimension) and the auxiliary functions ωji pxq, for l “ 1, . . . , d, are computed by solving the
following Laplace equation with Neumann boundary condition

$

&

%

´div
´

Dj
0∇ωji `Dj

0ei

¯

“ 0 in Ωj

Dj
0∇ωji ¨ ν `Dj

0ei ¨ ν “ 0 on BΩj .
(2.67)

In addition, the periodic boundary conditions are imposed at the outer boundary of the rep-
resentative volume. We emphasize that the tensor D

j is defined for any microstructure and is
independent of the gradient encoding. Once one has computed this tensor solving numerically
the equations (2.67) for a prescribed configuration, the diffusion coefficient in (2.65) can be
obtained as

Dj “ ug
TD

j
ug.

If the compartment Ωj is bounded (e.g. the intracellular space enclosed by a weakly permeable
membrane), each solution ωji of equation (2.67) is constant, and equation (2.66) implies Dj

“ 0.
In turn, when the compartment Ωm is connected to its periodic copies (e.g. extracellular space),
the effective diffusion tensor Dj characterizes diffusion in the long time limit (i.e. D8). Diago-
nalizing this tensor one can probe the macroscopic anisotropy of the voxel. This homogenization
approach yields the first order approximation of the long-time ADC under the assumption of
low permeability κ and moderate gradients.

In the next Chapter we will better investigate the relationship between the Kärger and the
Finite Pulse Kärger models and we will furnish the precise convergence result.

We remark that the derivation of the FPK model was deliberately not detailed in this Section
because our work is based on the derivation of new models using the same homogenization
techniques but with different scalings. Since in Chapter 4 we will go into the details of more
general calculations using homogenization, we preferred to not make the reading repetitive and
just give an idea for now.

An alternative derivation of this long-time limit tensor for the case of highly permeable
boundaries was shown in [37] in the case of periodic media. Considering Y “

ś

i“1¨¨¨dr0, Lis as
periodicity box of the medium, then

´

D
j
8

¯

il
:“

1

vj

ż

Yj

Dj
0∇uji pxq ¨ el dx, (2.68)

where the functions uji pxq, i “ 1, . . . , d, are defined piecewise on Yj and satisfy the time inde-
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pendent PDE:

div
`

Dj
0∇uji pxq

˘

“ 0 in Yj ,

Dj
0∇uji pxq ¨ ν ´Dk

0∇uki pxq ¨ ν “ 0 on Γjk,

Dj
0∇uji pxq ¨ ν “ κpuji pxq ´ u

k
i pxqq on Γjk,

uji px` Lieiq “ uji pxq ` Li on BY,

uji px` Llelq “ uji pxq, l ‰ i, on BY.

(2.69)

In this case then one has
ADC8 “

ÿ

j

vjD
j
8. (2.70)

If Y only contains simple geometries such as cubes and spheres, analytic formulae for Dj
8 have

been formulated [77, 102, 175, 179].

Anomalous diffusion [21, 20, 24, 26, 75, 122, 123, 127, 149, 152, 196]

In order to extend the concept of apparent diffusion coefficient for a multi-compartments
tissue Bennet and co-workers [21, 20] presented a new method for describing the dMRI signal
using the so called “stretched exponential” function, i.e.

S “ S0e
´pbDqα , (2.71)

where α is the stretching parameter which characterizes the deviation of the signal from the
Gaussian (mono-exponential) behaviour. In particular, α is an arbitrary real number between 0
and 1 and an higher heterogeneity of a confining medium typically corresponds to smaller values
[66, 123].

Following this idea the Bloch-Torrey equation where extended to the case of continuous
time random walks (CTRW) using fractional time and space derivatives which incorporate non-
local variations of the transverse magnetization in space and time [26, 127]. As a consequence,
the macroscopic signal may inherit some anomalous features, e.g. the stretched exponential
dependence on the inter-pulse time ∆ and/or the wavevector δγg:

S « S0e
´Dα,β |δγg|2β∆α

, (2.72)

where α and β are two scaling exponents, and Dα,β is the generalized diffusion coefficient (in
units m2β{sα) [24, 75, 122, 123, 149, 152]. The Gaussian behaviour is obtained for α “ β “ 1.
The stretched exponential form (2.72) offers more degree of freedom to fit the signal and the
fitted parameters (α and β) are suggested as potential biomarkers for the biological tissue [196].
Nevertheless this phenomenological approach needs to be more investigated because the relation
between the parameters and the microscopic geometries remains still not very clear.

There exist also models for which the anomalous diffusion is modelled by just fractional
time dependence. For example, in [143], the authors introduced a method to characterize the
diffusion-time dependence of the dMRI signal in biological tissues using the theory of diffusion in
disordered media and systems exhibiting fractal behaviour. For this type of domains, diffusion
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results to be anomalous in the sense that the mean-square displacement has a diffusion time
dependence characterized by the power law

xx2y 9 t2{dw , (2.73)

where dw is the fractional dimension of the diffusion process. Moreover, the return to the
origin probability (RTOP), which represents the likelihood of molecules to undergo zero net
displacement during the diffusion time considered, satisfies this relation

RTOP 9 t´ds{2 (2.74)

where ds is the spectral dimension. Using the above two relations, the authors were able to
express the evolution of the average propagator coming from the MR experiments as function
of the fractal dimension dw and the spectral dimension ds. Fitting these two parameters they
were able to show that water diffusion in human tissues is anomalous and in particular the mean
square displacements vary slower than linearly with diffusion time.

Using this approach, in [146] Özarslan and co-authors where able to introduce a new type
of contrast based on the temporal scaling (TS) characteristics of diffusion. To do that they
extended the model in [143] to the even m´th order moments of the diffusion displacement
(xxmy) allowing the possibility that their temporal scalings can be described by a different
exponents (not necessarily equal to dw which is the one of the mean square displacement).
By studying the relationship between the TS characteristics and diffusion anisotropy using the
anisotropy of TS, they showed the robustness and reproducibility of this method to marker
tissues microstructure properties.

Effective medium theory [140, 138, 139]

Recently Novikov et Kiselev [140] developed a new model using the effective medium the-
ory (ETM). This theory is usually employed in physics to model the effective (macroscopic)
properties of composite materials starting from local (microscopic) properties of the compo-
nents which are not detectable with the experiments. In general ETM consists in averaging
the multiple characteristics of the microscopic components that directly make up the composite
material. It is thus a way to represent a microscopically heterogeneous medium as an apparently
homogeneous medium whose observable macroscopic properties are modified by the microstruc-
ture. This idea is then similar to the one behind the mathematical homogenization but using a
stochastic interpretation.

In this light Novikov et Kiselev employed the ETM concept in dMRI. In particular, they
treated the microstructural details of a biologic tissue as random “disorder” and, making the
natural statistical average, they found that the geometric complexity of a biological tissue can
be captured through an effective space-dependent parameter such as a diffusion coefficient Dpxq
[140]. In this way they somehow removed the boundary conditions of the Bloch-Torrey equa-
tion which implicitly determined the microstructure and presented the main challenge in its
analysis. In the narrow pulse regime they ended up with three diffusion characteristic metrics:
dispersive diffusivity Dpwq, the retarded velocity correlation function Dptq and the standard
time-dependent diffusion coefficient Dptq. These three contain the same amount of information
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about the structure and can thus be expressed one as a function of the others and so one can
decide which one is better according to the application. Using them and the cumulant expansion
they where able to approximate the signal coming from any diffusion gradient wave-form gfptq.

As we have already discussed in Section 2.1.4 using this techniques they were able to inves-
tigate the asymptotic behaviour of the time-dependent diffusion coefficient [138, 139].

2.2.4 Geometric models

Since the relation between the microstructure and the macroscopic signal is not yet fully
clear geometric models, based on specific applications, were developed to fit the signal. Without
any pretence to be exhaustive, here we describe some of them which are suitable for brain
applications (for a more complete review we refer, for example, to [150, 54]).

In [19] Behrens et al. proposed a voxel-level model, called “ball and stick”, which assumes
that diffusion within axons is along a single direction and that outside axons is isotropic.

In [2] Alexander investigated the feasibility of using diffusion MRI to measure axon dimen-
sions in white matter in-vivo. To relate axon radius to the diffusion MRI signal he used a
two-compartments model that incorporates a pore radius. To model of the extra-axonal space,
he used a cylindrically symmetric tensor with the principal eigenvector indicating the fibre di-
rection. The model for the intra-axonal space was a cylinder with non-zero pore size, unlike
Behrens’ stick model, which is a cylinder with radius zero. Moreover, for the signal model used
the Gaussian phase approximation ([51]) for cylinders of radius R described in [173, 184].

The model in [2] is a simplification of Assaf’s CHARMED (Composite Hindered and Re-
stricted Model of Diffusion) model in [7], which also assumes cylindrical restriction in the intra-
axonal space. There, the authors used Neuman’s expression in [133] for diffusion in cylindri-
cal confinement for a pulse-gradient spin-echo (PGSE) experiment, which satisfies the narrow
pulse approximation ([158]). Unlike Alexander’s model, which assumes a single cylinder radius,
CHARMED model assumes cylinders with gamma-distributed radii. This introduces one extra
parameter to estimate, although in [7] both gamma parameters were fixed rather than estimated.

In [8] Assaf et al. used an extension of CHARMED model to estimate distributions of axon
diameters of bovine optic and sciatic nerve samples. They extended the CHARMED framework
by considering the diameter distribution of cylindrical axons as an unknown to be estimated from
their data. They named this method AxCaliber. To gain sensitivity for estimating the axons
diameters they use a fixed gradient direction perpendicular to the axons with a combination of
different diffusion times and gradient strengths.

There exists also other methods which describe diffusion with three or more compartments
and allow exchange between them. For example, in [13] the authors studied the diameters
distribution of axons in the rat corpus callosum in-vivo using a three-compartments model. The
model resulted an extension of the AxCaliber model in [8] with the addition of an isotropic-
diffusion compartment to account for partial volume contributions from areas of cerebrospinal
fluid (CSF).

Stanisz et al. in [171] constructed a three-pools model with prolate ellipsoidal axons and
spherical glial cells each with partially permeable membranes. Fitting such a complex model
requires very high quality measurements, but experiments suggest that the full complexity of
the model is required to explain the data.
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Recently, Alexander et al. in [3] demonstrate orientationally invariant estimation of axon di-
ameters and density in both fixed monkey brains and in-vivo human brains with their ActiveAx
technique. They use a four-compartments tissue model: a combination of the two-compartments
model used in [2] with a CSF compartment similar to [13], and a fourth compartment which
accounts for water coming from stationary water molecules trapped in glial cells and other sub-
cellular structures similar to [171]. Besides the restricted and hindered compartments previously
considered by [7], this model accounts also for stationary water trapped within small structures
such as glial cells, in a similar way to [171], as well as free water characterized by isotropic
diffusion. Later, it was extended to improve the estimation in brain regions with orientation
dispersion ([194]) and crossing fibers ([193]). To enable the estimation of useful microstructural
information also within clinical scan times it was further improved in [195]. In the resulting tech-
nique, named Neurite Orientation Dispersion and Density Imaging (NODDI), the axon diameter
parameter was dropped from the model and the formulation was rather optimized to describe
the observed dMRI signal as a function of the volume fraction and orientation dispersion of the
axons, as well as the partial volume with cerebrospinal fluid.
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As it was previously introduced a standard way to encode diffusion using MRI is by applying
the PGSE ([172]) sequence which ideally means that the gradient magnetic field G is applied
during two very short pulses of duration δ with a time delay ∆ between the start of the two
pulses and an 180 degree spin reversal between the two pulses. Under the so called narrow
pulse assumption pδ ! ∆q, and if additionally, the imaging voxel can be spatially divided into
different Gaussian diffusion compartments with inter-compartment exchange governed by linear
kinetics, we have seen that the dMRI signal can be described by the Kärger model [94], which
is a well-known model in NMR that has been also used for biological tissue dMRI [6, 113, 126,
137, 153, 161, 164, 171, 186]. We recall that the Kärger model describes the evolution of the
transverse magnetization using coupled, constant coefficient, ordinary differential equations (see
Section 2.2.3). The analytical solution of the ODEs system can be obtained by a matrix eigen-
decomposition. Under the assumption that δ ! ∆ (narrow pulse), the suggested time at which
to evaluate the Kärger model to obtain the dMRI signal is unambiguously the delay between
the pulses [94].

Since in physically realistic MRI experiments, the condition δ ! ∆ is rarely satisfied, in
Section 2.2.3 we have seen that recently, a new model of the dMRI signal, the Finite-Pulse
Kärger (FPK) model [42], was derived for arbitrary gradient profiles. The FPK model takes
the form of a coupled ODE system with time-dependent coefficients and the term “finite-pulse”
was used to mean not requiring δ ! ∆. In this Chapter, relying on the FPK model, we show
that for finite pulses, the time at which to evaluate the Kärger model should be shortened by
one third of the pulse duration. For this choice, we prove that the convergence of the Kärger
model to the FPK model is of order six in the pulse duration, while for all the other reasonable
choices the order is three. This clarifies an important issue that is often overlooked by those
using the Kärger model to analyse MRI diffusion data, i.e. at which time one should evaluate
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this model when the narrow pulse assumption is not satisfied. We can state that the FPK model
is a more general model (which was derived with rigorous mathematical procedures) and it helps
us to better explain the meaning of the Kärger model (which was derived empirically from the
experiments). We present all the results for the standard rectangular PGSE as it was done in
our published paper [72], but we also add two sections to complement the results. We first
derive the Kurtosis term of the FPK model and show that the convergence to the Kärger one is
also of order three in the b-value. We then give a numerical proof of what one should consider
as evaluation time for the case of trapezoidal PGSE, which is a more realistic time profile. In
particular, for this case we show that it is not sufficient to just change the evaluation time, but
we also need to modify the coefficient in front of δ2 in the two ODEs describing the Kärger
model.

The Chapter is organized as follows. In Section 3.1 we describe the Kärger and the FPK
models. In Section 3.2 we prove that the signal of the Kärger model, when evaluated at t “ ∆´ δ

3 ,
converges to the FPK signal with order six in the pulse duration. We also show that two other
possible choices of the evaluation point, t “ ∆ and t “ ∆ ` δ, result only in third order
convergence. In Section 3.3 we derive the Kurtosis formula for the FPK model and show its
convergence to the Kärger Kurtosis formula. In Section 3.4 we validate our convergence results
by numerical simulations. We also give an intuition of what happens if we consider a trapezoidal
PGSE and we show some numerical results of convergence. Section 3.5 contains our conclusions
regarding the physical interpretation of the FPK model.

3.1 Description of the models

In order to provide a clear presentation of the Kärger and the FPK models, we begin here
by describing them for the simple case where there are two Gaussian diffusion compartments in
the tissue. For us, the two compartments will be

1. the intra-cellular compartment, comprising the ensemble of all the biological cells in a
voxel;

2. the extra-cellular compartment, comprising the space in the exterior of all the cells in a
voxel.

In the more general case, different types of cells and cell components can be separated into
several different diffusion compartments. Our later results will be valid for the general case of
multiple diffusion compartments.

3.1.1 Finite Pulse Kärger model

The FPK model for two Gaussian diffusion compartments of total volume |Y | has been
proposed in [42] and takes the form of two coupled ODEs with time-dependent coefficients:
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d
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FPK
e ptq “ 0

mFPK
e p0q “ ve ; mFPK

c p0q “ vc

(3.1)
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where

— mFPK
e and mFPK

c are the transverse water proton magnetization of the extra-cellular com-
partment and of the intra-cellular compartment respectively;

— q is the intensity of the diffusion-encoding magnetic gradient multiplied by the gyro-
magnetic ratio of the water proton (i.e. q “ γg) 1;

— Deff
e and Deff

c are, with an abuse of notation, the effective diffusion coefficients for the
two compartments in the direction of the diffusion-encoding gradient. The definition and
meaning of these coefficients are quite subtle. For a periodic medium these coefficients
can be unambiguously defined as infinite time limits and can be obtained after solving
Laplace equations in the compartments. In particular, when the compartment is closed
(restricted), then the effective diffusion coefficient would be 0. For details, see [116];

— ηe “
κ|Γm|
|Ye| and ηc “

κ|Γm|
|Yc| , with |Ye| and |Yc| being the volume of the extra-cellular and

intra-cellular compartment, respectively, |Γm| the total surface area of the biological cell
membranes, and κ the permeability of the membrane;

— ve “
|Ye|
|Y | and vc “

|Yc|
|Y | are the volume fractions of the two compartments;

— δ is the pulse duration and ∆ is the time delay between the start of the two pulses of the
classical Pulsed Gradient Spin Echo (PSGE) sequence, for which the time profile is given
by

fptq “

$

’

&

’

%

1 if 0 ă t ď δ

´1 if ∆ ă t ď ∆` δ

0 elsewhere

; (3.2)

and we define

Fδptq :“

ż t

0
fpsqds “
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’
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%

t if 0 ă t ď δ

δ if δ ă t ď ∆

∆` δ ´ t if ∆ ă t ď ∆` δ

0 elsewhere

; (3.3)

The dMRI signal is the sum of all the compartment magnetizations at the end of the second
pulse:

SFPK :“ mFPK
e p∆` δq `mFPK

c p∆` δq. (3.4)

When there is only one compartment, with the effective diffusion coefficient Deff, it is easy to
show that the analytical signal is:

SFPK “ e´b D
eff
, (3.5)

where the b is a commonly used quantity in dMRI called the b-value that in the case of PGSE
is defined as:

bpq, δ,∆q :“ q2δ2

ˆ

∆´
δ

3

˙

. (3.6)

When δ ! ∆ it is easy to interpret ∆ as the measured diffusion time.

1. It is important to note that in this case, and for the rest of the thesis, q does not denote a wave vector, as
it often does in physics
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3.1.2 Kärger model

The Kärger model [94] was formulated heuristically, originally for microporous crystallites
and later applied to biological tissue dMRI, on the basis of phenomenological modeling of the
experimentally obtained signal curves. Using the same notation as for the FPK model above,
the Kärger model for two diffusion compartments of total volume |Y | takes the form of two
coupled ODEs with constant coefficients:

$

’

’

’

’

&

’

’

’

’

%

d

dt
mKAR
e ptq ` q2δ2Deff
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(3.7)

Being a system of constant coefficient ODEs, the Kärger model (3.7) can be solved by matrix
eigen-decomposition and we give the explicit solution for two compartments:

mKARptq “ mKAR
e ptq `mKAR

c ptq “ vf pqq e´D
f pqqq2δ2t ` vspqq e´D

spqqq2δ2t, (3.8)

where

Df,spqq “
1

2

¨

˝Deff
e `Deff

c `
1

q2δ2

`

ηe ` ηc
˘

˘

d

ˆ

Deff
e ´Deff

c `
1

q2δ2
pηe ´ ηcq

˙2

`
4ηeηc
q4δ4

˛

‚,

vf pqq “
1

Df pqq ´Dspqq

`

veD
eff
e ` vcD

eff
c ´Dspqq

˘

,

vspqq “ 1´ vf pqq .

The Kärger model appears as a special case of FPK model when the time profile of the
diffusion-encoding magnetic field gradient sequence is the PGSE (3.2) and the pulse duration δ
is very small compared to the time delay between the start of the two pulses, in other words,
δ ! ∆. One of the purposes of this chapter is to specify in which sense the Kärger model can
be seen as an approximation of the FPK model.

We first observe that

lim
δÑ0

1

δ
Fδptq “ F ptq “

#

1 if 0 ď t ď ∆

0 if t ą ∆
.

The Kärger model can then be interpreted as a pointwise limit of the FPK model as δ ÝÑ 0.
However, the convergence is not uniform since,

sup
tPr0,∆`δs

ˇ

ˇ

ˇ

1

δ
Fδptq ´ F ptq

ˇ

ˇ

ˇ
ÝÝÝÑ
δÑ0

1.

This is why it is not guaranteed that the Kärger model provides an accurate approximation of
FPK as δ Ñ 0.

The main purpose of this chapter is to clarify what has been already observed by the nu-
merical simulations [116]: if we compute the total magnetization using the Kärger model

mKARptq :“ mKAR
e ptq `mKAR

c ptq,



3.2. Convergence of the Kärger model to the FPK model 55

it is better to evaluate mKAR at time t “ ∆ ´ δ
3 instead of t “ ∆ (the time delay between the

pulses, as suggested in the original Kärger paper [94]) or at t “ ∆` δ (at the end of the second
pulse). In other words, mKARp∆´ δ{3q is closer to SFPK than either mKARp∆q or mKARp∆` δq.
Certainly in the homogeneous case where there is only one compartment, it is easy to see that
mKARp∆ ´ δ

3q is exactly SFPK (3.5). In the following we shall prove rigorously that evaluating
mKAR at t “ ∆ ´ δ

3 gives a much better approximation to SFPK than evaluating it at the two
natural alternatives: t “ ∆ or t “ ∆` δ.

3.2 Convergence of the Kärger model to the FPK model

In this section we analyze the convergence of mKARp∆ ´ δ{3q, mKARp∆q and mKARp∆ ` δq,
respectively, to SFPK. For this purpose we introduce a dimensionless parameter

ζ “
δ

∆

that goes to zero under the narrow pulse assumption (δ ! ∆). Moreover, we shall consider
the general case of N different compartments, with N ě 2. In order to do the analysis for
time-dimensioneless coefficients we also make the change of variables

tÑ
t

∆
, q Ñ q∆, Deff

` Ñ Deff
` ∆ and η` Ñ η`∆, ` “ 1, ¨ ¨ ¨N. (3.9)

We rewrite the models for N compartments in matrix notation as
$

’

&

’

%

d

dt
MKARptq ` q2ζ2DMKARptq ` ηMKARptq “ 0 t ě 0,

MKARp0q “M0 P RN
(3.10)

for the Kärger model and
$

’

&

’

%

d

dt
MFPKptq ` q2F 2

ζ ptqDMFPKptq ` ηMFPKptq “ 0 t ě 0,

MFPKp0q “M0 P RN ,
(3.11)

for FPK model, where

Fζptq :“

$

’

’

’

’

&

’

’

’

’

%

t if 0 ă t ď ζ

ζ if ζ ă t ď 1

1` ζ ´ t if 1 ă t ď 1` ζ

0 elsewhere

ˆ

“
1

∆
Fδp∆tq

˙

,

MKARptq :“

¨

˚

˝

mKAR
1 ptq
...

mKAR
N ptq

˛

‹

‚

, MFPKptq :“

¨

˚

˝

mFPK
1 ptq
...

mFPK
N ptq

˛

‹

‚

, M0 :“

¨

˚

˝

m1
0
...

mN
0

˛

‹

‚

,
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and D and η are matrices with dimension N ˆN . We define the total magnetization at time t
by

mKARptq :“
N
ÿ

n“1

mKAR
n ptq and mFPKptq :“

N
ÿ

n“1

mFPK
n ptq. (3.12)

To enforce mass conservation, we impose the condition that the sum of the entries of η is zero
for each column, i.e.,

N
ÿ

n“1

ηnj “ 0 @j “ 1, . . . , N. (3.13)

For the two compartments models (3.1) and (3.7), N “ 2, and

D “
1

∆

ˆ

Deff
e 0

0 Deff
c

˙

and η “
1

∆

ˆ

ηe ´ηc
´ηe ηc

˙

.

We observe in particular that assumption (3.13) is satisfied in this case.

3.2.1 Asymptotic expansion in ζ

In order to compare the total magnetizations coming from the solutions of (3.10) and (3.11)
we expandMKARptq andMFPKptq using asymptotic expansions with respect to ζ. More precisely
we shall prove that

MKARptq “
8
ÿ

i“1

ζiMKAR
i ptq t ě 0 (3.14)

and
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

MFPKptq “
8
ÿ

i“1

ζiMF´
i

`

t{ζ
˘

0 ď t ď ζ

MFPKptq “
8
ÿ

i“1

ζiMF
i

`

t
˘

ζ ď t ď 1

MFPKptq “
8
ÿ

i“1

ζiMF`
i

`

pt´ 1q{ζ
˘

1 ď t ď 1` ζ

(3.15)

where MKAR
i , MF´

i , MF
i and MF`

i are functions independent of ζ and the series converge with
respect to the C0 norm on any bounded interval.

The aim of such expansions is to facilitate the comparison between the magnetizations in
terms of ζ. To simplify the analysis we make the change of variables

M̃KARptq “ eηtMKARptq and M̃FPKptq “ eηtMFPKptq

in problems (3.10) and (3.11) to obtain
$

’

&

’

%

d

dt
M̃KARptq ` q2ζ2eηtDe´ηtM̃KARptq “ 0 t ě 0,

M̃KARp0q “M0,

(3.16)
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and
$

’

&

’

%

d

dt
M̃FPKptq ` q2F 2

ζ ptqe
ηtDe´ηtM̃FPKptq “ 0 t ě 0,

M̃FPKp0q “M0.

(3.17)

For the Kärger model (3.16) we observe that we can write the solution as

M̃KARptq “ etη exp
`

´t
`

q2ζ2D ` η
˘˘

M0.

One can expand the exponential term using the Taylor series as

exp
`

´t
`

q2ζ2D ` η
˘˘

“ 1`
8
ÿ

h“1

`

´t
`

q2ζ2D ` η
˘˘h

h!

It is then clear that M̃KAR, and therefore MKAR, can be expanded as in (3.14). For the FPK
model, we define

$

’

’

&

’

’

%

M̃F´pτq :“ M̃FPKptq τ “ t
ζ for t P r0, ζs,

M̃Fptq :“ M̃FPKptq for t P rζ, 1s,

M̃F´pτ̃q :“ M̃FPKptq and τ̃ “ t´1
ζ for t P r1, 1` ζs.

We then can rewrite (3.17) as
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

d

dτ
ζ´1M̃F´pτq ` q2ζ2τ2eηζτDe´ηζτM̃F´pτq “ 0 τ P r0, 1s

M̃F´p0q “M0

d

dt
M̃Fptq ` q2ζ2eηtDe´ηtM̃Fptq “ 0 t P rζ, 1s

M̃Fpζq “ M̃F´p1q
d

dτ̃
ζ´1M̃F`pτq ` q2ζ2p1´ τ̃q2eηζp1´τ̃qDe´ηζp1´τ̃qM̃F`pτ̃q “ 0 τ̃ P r0, 1s

M̃F`p0q “ M̃Fp1q

.

For τ P r0, 1s, we observe that

M̃F´pτq “M0 ` ζ
3

ż τ

0
q2z2eηζzDe´ηζzM̃F´pzqdz

which first proves that, for ζ sufficiently small, M̃F´pτq “ M0 ` Opζ3q uniformly for τ P r0, 1s.
This allows us to prove by induction the first asymptotic expansion in (3.15) by adding and
substracting (at step k of the induction) the truncated asymptotic expansion (at step k ´ 1 of
the induction) inside the integral and expanding the exponential function in power series with
respect to ηζz.

For t P rζ, 1s it is convenient to extend M̃F to a function defined on r0, 1s such that it verifies

d

dt
M̃Fptq ` q2ζ2eηtDe´ηtM̃Fptq “ 0 t P r0, 1s
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and using the Taylor expansion, replace the initial condition M̃Fpζq “ M̃F´p1q with

M̃Fp0q “ M̃F´p1q ´
8
ÿ

i“1

ζi

i!

di

dti
M̃Fp0q.

Similarly as for the Kärger model, we have that the analytic solution is given by

M̃Fptq “ etη exp
`

´t
`

q2ζ2D ` η
˘˘

M̃Fp0q.

The second part of (3.15) then follows from the fact that M̃F´p1q (and therefore M̃Fp0q) can
be expanded as a convergent power series in terms of ζ. Finally for τ̃ P r0, 1s we make similar
arguments as for M̃F´pτq, by writing

M̃F`pτ̃q “ M̃Fp1q ` ζ3

ż τ

0
q2p1´ zq2eηζp1´zqDe´ηζp1´zqM̃F`pzqdz

and using the expansion in terms of ζ of M̃Fp1q to initiate an induction argument (following the
same lines as for M̃F´).

3.2.2 Error estimates

The goal of this section is to prove that

mKAR

´

1´ ζ
3

¯

´mFPKp1` ζq “ Opζ6q.

We remark that this convergence holds only for the sum of the magnetizationsm and not for each
of the compartment magnetizations. In fact one only has MKAR

´

1´ ζ
3

¯

´MFPKp1` ζq “ Opζq.
For arbitrary D, the convergence result does not hold for a general choice of the initial data M0

but only for those such that
ηM0 “ 0. (3.18)

This condition is indeed verified for dMRI applications where the components of M0 are the
volume fractions of the compartments. We observe that as a direct consequence of (3.13) and
(3.18) we have the following identities.

Lemma 3.2.1. Let η satisfy (3.13) and M0 P RN such that ηM0 “ 0. Then for all α P RNˆN ,
the following properties are satisfied

N
ÿ

n“1

pηhαM0qn “

N
ÿ

n“1

pαηhM0qn “ 0 for all h P N, h ě 1; (3.19)

N
ÿ

n“1

pαe´ηM0qn “

N
ÿ

n“1

pαM0qn and
N
ÿ

n“1

pαηe´ηM0qn “ 0. (3.20)

The proof is staightforward.
We now state and prove the main theorem of this section.
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Theorem 3.2.2. Under the hypothesis of Lemma 3.2.1 there exists two constant CD,η,M0 ą 0

and ζ0 that only depends on D, η and M0 such that, for all 0 ď ζ ď ζ0,
ˇ

ˇ

ˇ
mKAR

´

1´ ζ
3

¯

´mFPKp1` ζq
ˇ

ˇ

ˇ
ď CD,η,M0 q

4ζ6,

where

CD,η,M0 :“
N
ÿ

n“1

2

9

`

D2M0

˘

n
´

5

36

ż 1

0

´

Dηeηps´1qDM0

¯

n
ds`

ˆ

2

9
De´ηDM0

˙

n

`

ˆ

1

4
DηDM0

˙

n

.

Proof. The proof relies on the expansions (3.14) and(3.15) and the explicit expressions of the
terms of these expansions. In order to compute these terms, we found it easier to follow another
route than the one used for proving the existence of these expansions. More precisely we shall
first identify the set of differential equations satisfied by these terms by inserting the asymptotic
expansions into the differential equations then match the terms in front of the same power of
ζ. We then solve (inductively) these equations to obtain the desired explicit expressions of the
expansions in terms of the data. In the case of the Kärger model, inserting expansion (3.14) in
(3.10) we obtain the following problems for i ě 0

$

’

&

’

%

d

dt
MKAR
i ptq ` q2DMKAR

i´2 ptq ` ηM
KAR
i ptq “ 0

MKAR
0 p0q “M0 and MKAR

i p0q “ 0 for i ě 1

(3.21)

where we used the convention that the terms with a negative index are 0. Then one easily
verifies that MKAR

2i`1ptq “ 0 for all i ě 0 and

MKAR
0 ptq “ e´ηtM0, MKAR

2 ptq “ ´q2

ż t

0

´

eηps´tqDMKAR
0 psq

¯

ds ,

MKAR
4 ptq “ ´q2

ż t

0

´

eηps´tqDMKAR
2 psq

¯

ds and MKAR
6 ptq “ ´q2

ż t

0

´

eηps´tqDMKAR
4 psq

¯

ds.

For a vector V P RN we denote V :“
N
ÿ

n“1

Vn. Using Taylor’s expansion we obtain

mKAR

´

1´
ζ

3

¯

“

8
ÿ

i“0

ζiMKAR
i

´

1´
ζ

3

¯

“

8
ÿ

i“1

ζi

˜

MKAR
i p1q `

i
ÿ

h“1

1

p´3qhph!q

dh

dth
MKAR
i´h ptq|t“1

¸

.

Therefore,

mKAR

´

1´
ζ

3

¯

“MKAR
0 p1q ` ζ2MKAR

2 p1q ´
ζ3

3

´ d

dt
MKAR

2 p1q
¯

` ζ4MKAR
4 p1q

´
ζ5

3

´ d

dt
MKAR

4 p1q
¯

` ζ5

ˆ

MKAR
6 p1q `

1

18

d2

dt2
MKAR

4 p1q

˙

`Opζ7q.
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Using the analytic expression of the solutions and properties (3.13), (3.18) and (3.20) we finally
obtain

mKAR

´

1´
ζ

3

¯

“M0 ´ ζ
2q2DM0 ` ζ

3 q
2

3
DM0

´ ζ4q4

ż 1

0

ż s

0

´

eηps´1qDeηpt´sqDM0

¯

dt ds´ ζ5 q
4

3

ż 1

0

´

Deηps´1qDM0

¯

ds

` ζ6

«

q6

ż 1

0

˜

eηps´1qD
ż s

0

ˆ

eηpz´sqD
ż t

0

`

eηpz´tqDM0

˘

dt

˙

dz

¸

ds

`
q4

18

ˆ

D2M0 ´

ż 1

0

´

Dηe´ηps´1qDM0

¯

ds

˙

`Opζ7q.

To get the analytic expansion of the signal given by the FPK model in terms of ζ we have already
observed that it is convenient to split the time interval in three different parts in which the Fζ
has different expressions and to extend the one in the middle as a function in the time interval
r0, 1s. We then rewrite the problem (3.11) as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

d

dτ
ζ´1MF´pτq ` q2ζ2τ2DMF´pτq ` ηMF´pτq “ 0 τ P r0, 1s,

MF´p0q “M0,

d

dt
MFptq ` q2ζ2DMFptq ` ηMFptq “ 0 t P r0, 1s,

MFp0q “MF´p1q ´
8
ÿ

i“1

ζi

i!

di

dti
MFp0q,

d

dτ̃
ζ´1MF`pτ̃q ` q2ζ2p1´ τ̃q2DMF`pτ̃q ` ηMF`pτ̃q “ 0 τ̃ P r0, 1s,

MF`p0q “MFp1q.

(3.22)

Inserting the expansion (3.15) in (3.22) and equating the same powers of ζ yields for i ě 0

$

’

&

’

%

d

dτ
MF´
i pτq ` q2τ2DMF´

i´3pτq ` ηM
F´
i´1pτq “ 0,

MF´
0 p0q “M0 and MF´

i p0q “ 0 for i ě 1,

(3.23)

$

’

’

’

&

’

’

’

%

d

dt
MF
i ptq ` q

2DMF
i´2ptq ` ηM

F
i ptq “ 0,

MF
i p0q “MF´

i p1q ´
i
ÿ

h“1

1

h!

dh

dth
MF
i´hptq|t“0,

(3.24)

$

’

&

’

%

d

dτ̃
MF`
i pτ̃q ` q2p1´ τ̃q2DMF`

i´3pτ̃q ` ηM
F`
i´1pτ̃q “ 0,

MF´
i p0q “MF

i p1q,

(3.25)

where we again use the convention that the terms with a negative index are 0. We hereafter
shall not detail all the calculations (which are lengthy but not difficult) and restrict ourselves to
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the main steps and results. Since we are interested in the signal

mFPKp1` ζq “MF`p1q “
8
ÿ

i“0

ζiMF`
i (3.26)

we focus on evaluating MF`
i . For i “ 0, one straightforwardly gets

MF´
0 pτq “M0, MF

0 ptq “ e´ηtM0 and MF`
0 pτ̃q “ e´ηM0,

which implies, using (3.20)
MF`

0 p1q “M0.

The solutions of (3.23)-(3.25) for i “ 1 are

MF´
1 pτq “ ´τηM0, MF

1 ptq “ 0 and MF`
1 pτ̃q “ ´τ̃η e´ηM0.

Using (3.20) one then gets
MF`

1 p1q “ 0.

For i “ 2 the solutions are

MF´
2 pτq “

τ2

2
η2M0, MF

2 ptq “ ´q
2

ż t

0

´

eηps´tqDe´ηsM0

¯

ds,

MF`
2 pτ̃q “

τ̃2

2
pη2e´ηM0q `M

F
2 p1q.

Then, using (3.19) and (3.20), one gets

MF`
2 p1q “ ´q2DM0.

For i “ 3 one obtains

MF´
3 pτq “ ´

q2

3
τ3DM0 ´

τ3

6
η3M0, MF

3 ptq “
2

3
q2e´ηtDM0,

MF`
3 pτ̃q “

q2

3
pp1´ τ̃q3 ´ 1qDe´ηM0 ´

τ̃3

6
η3e´ηM0 ` τ̃ηM

F
2 p1q `

2

3
q2e´ηDM0

Then, using (3.19) and (3.20) one gets

MF`
3 p1q “

q2

3
DM0.

For i “ 4 one has

MF´
4 pτq “

q2

4
τ4DηM0 `

q2

12
τ4ηDM0 `

τ4

24
η4M0,

MF
4 ptq “ ´q

2

ż t

0

´

eηps´tqDMF
2 psq

¯

ds´
q2

4
pDηM0 ´ ηDM0q,

MF`
4 pτ̃q “ q2 τ̃

2

12

`

3τ̃2 ´ 8τ̃ ` 6
˘

Dηe´ηM0 ´

ż τ̃

0
ηMF`

3 psqds`MF
4 p1q
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and using again (3.19) and (3.20),

MF`
4 p1q “ ´q4

ż 1

0

ż s

0

´

eηps´1qDeηpt´sqDM0

¯

dt ds.

For i “ 5 to find the solutions in the last two time intervals it is better to first take the sum of
the equations in order to directly cancel the terms that are right-multiplied by η. One then gets

MF´
5 pτq “ ´

q2

10
τ5Dη2M0 ´

q2

20
τ5ηDηM0 ´

q2

60
τ5η2DM0 ´

τ5

120
η5M0,

MF
5 ptq “ ´

2

3
q4

ż t

0
pDe´ηsDM0q ds,

MF`
5 pτ̃q “

q4

3
pp1´ τ̃q3 ´ 1q

ż 1

0
Deηps´1qDe´ηsM0 ds`MF

5 p1q.

Consequently, using a change of variable and the property (3.20) in order to simplify the first
integral, one ends up with

MF`
5 p1q “

q4

3

ż 1

0
Deηps´1qDe´ηsM0 ds´

2

3
q4

ż 1

0
De´ηsDM0ds “ ´

1

3
q4

ż 1

0
De´ηsDM0ds.

Finally for i “ 6 it is again better to first take the sum of the equations in order to directly
cancel the terms that are right-multiplied by η in the last two intervals. One then gets

MF´
6 pτq “

q4

18
τ6D2M0 `

q2

36
τ6Dη3M0 `

q2

60
τ6ηDη2M0 `

q2

120
τ6η2DηM0

`
q2

360
τ6η3DM0 `

τ6

720
η6M0

MF
6 ptq “ ´q

2

ż t̃

0
eηps´t̃qDMF

5 psqds`
2

9
D2M0

MF`
6 pτ̃q “

q4

18
τ̃2pτ̃2 ´ 3τ̃ ` 3q2D2M0 `

q4

12
τ̃2p3τ̃2 ´ 8τ̃ ` 6q

ż 1

0
Deηps´1qDM0

´
2

9
q4τ̃pτ̃2 ´ 3τ̃ ` 3qDe´ηDM0 `MF

6 p1q

and using again (3.19) and (3.20):

MF`
6 p1q “

5q4

18
D2M0 `

q4

12

ż 1

0
Deηps´1qDM0ds´

2

9
q4De´ηDM0 ´ q

2

ż 1

0
eηps´1qDMF

4 psqds.

We thus have proved that mFPK p1` ζq has the same asymptotic expansion as mKARp1´ ζ
3q up

to, but not including Opζ6q terms, which yields the claim of our theorem.

Remark 3.2.3. We remark that, for i “ 1, . . . , 5, the magnetizations MFPK
i are different from

MKAR
i .

Theorem 3.2.4. Under the hypothesis of Theorem 3.2.2 we have that

mKARp1q ´mFPKp1` ζq “ Opζ3q

and
mKARp1` ζq ´mFPKp1` ζq “ Opζ3q.
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Proof. With the previous Theorem we have proved that

mKARp1´ ζ{3q ´mFPKp1` ζq “ Opζ6q.

Following a similar approach it can be also easily shown that if we evaluate the Kärger model
at t “ 1 or t “ 1 ` ζ the order of convergence drops to Opζ3q because the constants of the
expansions in front of ζ3 become different.

3.3 Kurtosis formula for FPK model

The dMRI signal can be measured for several values of q, δ, ∆ and directions uq. We have
already remarked that it is common in the dMRI community not to display the signal as a
function of q, but as a function of the so called b-value that for PGSE is defined in (3.6). In [87]
and [88] Jensen, Helpern and their collaborators have shown how to quantify the Non-Gaussian
water diffusion by using Kurtosis analysis. The term of Kurtosis (KUR) for a dMRI signal is
defined as the normalized second order term of the Taylor expansion in b-value of the logarithm
of the signal attenuation, i.e.

Spbq “ exp
´

´ADC b`
1

6
ADC2KUR2b2 `Opb3q

¯

. (3.27)

In [116] was shown that for Kärger and FPK models the ADC term is equal, but the analysis
of the Kurtosis term was not done. The goal of this section is to derive an analytic formula
for the FPK’s Kurtosis term in the case of N “ 2 compartments and show that it converges
to the Kärger one which is well known in literature. To recover this formula we proceed in a
similar way to the previous section by making an asymptotic expansion of the magnetization of
the FPK model but this time in term of q2 as was done in [42]. We have already proved that
there exists a constant CD,η,M0 ą 0 for which |SKARpq,uqq ´ S

FPKpq,uqq| ď CD,η,M0ζ
6, (where

ζ “ δ
∆). Showing that the FPK kurtosis formula converges the well known Kärger one means

that there exists another constant C ą 0 for which |SKARpbq ´ SFPKpbq| ď Cb2.

Theorem 3.3.1. We can write the signal attenuation in terms of the b-value as

Spbq

Sp0q
“ exp

´

´ADC b`
1

6
ADC2KURb2 `Opb3q

¯

(3.28)

where for the two compartments FPK model in uq direction we have that

ADC “ veD
eff
e ` vcD

eff
c (3.29)

and

KUR “
2pDeff

e ´D
eff
c q

2ηeηc

5δ4
`

∆´ δ
3

˘2
pveDeff

e ` vcD
eff
c q

2pηe ` ηcq8

˜

´ 120` 60e´pηe`ηcqTe

` 120
`

δpηe ` ηcq ` 1
˘

e´pηe`ηcqδ ` 120
`

δpηe ` ηcq ´ 1
˘

e´pηe`ηcq∆

` 60
`

δpηe ` ηcq ´ 1
˘2
e´pηe`ηcqp∆´δq ` 60δ2pηe ` ηcq

2

´ 40δ3pηe ` ηcq
3 ` 15δ4∆pηe ` ηcq

5 ´ 9δ5pηe ` ηcq
5

¸

. (3.30)
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Proof. As it was done in [42] we extend the definition of the FPK model for any complex number
z as

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

d

dt
mepz, ¨qptq ` zD

eff
e

ˆ
ż t

0
fpsqds

˙2

mepz, tq ` ηemepz, tq ´ ηcmcpz, tq “ 0

d

dt
mcpz, ¨qptq ` zD

eff
c

ˆ
ż t

0
fpsqds

˙2

mcpz, tq ` ηcmcpz, tq ´ ηemepz, tq “ 0

mepz, 0q “ m0
e and mcpz, 0q “ m0

c

(3.31)

where we remind that ηe “
κ|Γm|
|Ye| , ηc “

κ|Γm|
|Yc| with |Ye| and |Yc| being the volume of the extra-

cellular and intra-cellular compartment, respectively, |Γm| the total surface area of the biological
cell membranes, κ the permeability of the membrane and, Deff

e and Deff
c are, with an abuse of

notation, the effective diffusion coefficient in the uq direction. The solutions pmepzq,mcpzqq

belong to C1p0, TEq and thus to L8p0, TEq. It is quite easy to see that pmep¨, tq,mcp¨, tqq can be
differentiated with respect to z for any z P C. Then mep¨, tq and mcp¨, tq are holomorphic on all
C and admit an expansion of the form

mepz, tq “
`8
ÿ

n“0

znme,nptq and mcpz, tq “
`8
ÿ

n“0

znmc,nptq.

Inserting these expansions in (3.31) we find
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me,0ptq “
ηcpm

0
e `m

0
cq

ηe ` ηc
`
ηem

0
e ´ ηcm

0
c

ηe ` ηc
e´pηe`ηcqt

mc,0ptq “
ηepm

0
e `m

0
cq

ηe ` ηc
´
ηem

0
e ´ ηcm

0
c

ηe ` ηc
e´pηe`ηcqt

me,nptq “

ż t

0

˜

´ηc ´ ηee
pηe`ηcqps´tq

ηe ` ηc
Deff
e me,n´1psq

´
ηc ´ ηce

pηe`ηcqps´tq

ηe ` ηc
Deff
c mc,n´1psq

¸

ˆ
ż s

0
fpξqdξ

˙2

ds

mc,nptq “

ż t

0

˜

´ηe ` ηee
pηe`ηcqps´tq

ηe ` ηc
Deff
e me,n´1psq

´
ηe ` ηce

pηe`ηcqps´tq

ηe ` ηc
Deff
c mc,n´1psq

¸

ˆ
ż s

0
fpξqdξ

˙2

ds

This allows us to obtain an expansion of the measured signal with respect to z as

S
`?
z,uq

˘

“ m0 ´

`8
ÿ

n“1

zn
ż TE

0

`

Deff
e me,n´1psq `D

eff
c mc,n´1psq

˘

ˆ
ż s

0
fpξqdξ

˙2

ds

« m0 ´ z

ż TE

0

`

Deff
e me,0psq `D

eff
c mc,0psq

˘

ˆ
ż s

0
fpξqdξ

˙2

ds

´ z2

ż TE

0

`

Deff
e me,1psq `D

eff
c mc,1psq

˘

ˆ
ż s

0
fpξqdξ

˙2

ds`Opz3q
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where TE “ δ `∆ is the echo time.
Then, considering the logarithm of the normalized signal given by log

´

Spq,uqq

Sp0,uqq

¯

, where

Sp0,uqq “ m0, and using the Taylor’s expansion logp1` xq « x´ x2

2 `Opx
3q we obtain

log

˜

Spq,uqq

Sp0,uqq

¸

« ´bpveD
eff
e ` vcD

eff
c q

`
b2

2

«

pηeD
eff
e ` ηcD

eff
c q

2

pηe ` ηcq2
´

´

veD
eff
e ` vcD

eff
c

¯2
ff

`
q4pDeff

e ´D
eff
c q

2ηeηc

15 pηe ` ηcq
8

˜

´ 120` 60e´pηe`ηcqTE ` 60δ2pηe ` ηcq
2

` 120
`

δpηe ` ηcq ` 1
˘

e´pηe`ηcqδ ` 120
`

δpηe ` ηcq ´ 1
˘

e´pηe`ηcq∆

` 60
`

δ2pηe ` ηcq
2 ´ 2δpηe ` ηcq ` 1

˘

e´pηe`ηcqp∆´δq

´ 40δ3pηe ` ηcq
3 ` 15δ4∆pηe ` ηcq

5 ´ 9δ5pηe ` ηcq
5

¸

`Opq6q.

We observe, that from our domain’s assumptions,

pηeD
eff
e ` ηcD

eff
c q

2

pηe ` ηcq2
´

´

veD
eff
e ` vcD

eff
c

¯2
“ 0

and, remembering that b “ q2δ2p∆´ δ
3q, we can rewrite the logarithm of the normalized signal

as

log

ˆ

Spq,uqq

Sp0,uqq

˙

« ´bpveD
eff
e ` vcD

eff
c q

`
b2pDeff

e ´D
eff
c q

2ηeηc

15δ4
`

∆´ δ
3

˘2
pηe ` ηcq

8

˜

´ 120` 60e´pηe`ηcqTE ` 60δ2pηe ` ηcq
2

` 120
`

δpηe ` ηcq ` 1
˘

e´pηe`ηcqδ ` 120
`

δpηe ` ηcq ´ 1
˘

e´pηe`ηcq∆

` 60
`

δ2pηe ` ηcq
2 ´ 2δpηe ` ηcq ` 1

˘

e´pηe`ηcqp∆´δq

´ 40δ3pηe ` ηcq
3 ` 15δ4∆pηe ` ηcq

5 ´ 9δ5pηe ` ηcq
5

¸

`Opb3q.

Then using the equations (3.28) and (3.29) we recover that the Kurtosis term is exactly the one
in (3.30).

Remark 3.3.2. If we make the substitution

ηe “
kvc
Te

and ηc “
kve
Te

,

where k “ Te
τex

, and τex “ τcve is the intra-cellular resident time multiplied by the external volume
fraction (see [116]), and we take the limit for δ Ñ 0 (narrow pulse hypothesis) we obtain the
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well known kurtosis term for the Kärger model which is

6vevc

´

Deff
e ´Deff

c

¯2

pveD
eff
e ` vcD

eff
c q

2

`

k ´ 1` e´k
˘

k2
.

We have thus shown that under the narrow pulse hypothesis the Kurtosis term that we
computed analytically for FPK method reduces to the well known Kärger one. Hence we have
proved that there exist a constant C such that

|SFPKpbq ´ SKARpbq| ď Cb2 .

3.4 Numerical results
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Figure 3.1 – DMRI signals given by FPK model and by the Kärger model at three different evaluation times, δ “ 5ms,
left: ∆ “ 5ms, right: ∆ “ 20ms, for various b-values.

We provide numerical validation of our results of the previous section using a two compart-
ments example. The parameters of the FPK and Kärger models come from a simple tissue
geometry consisting of cylindrical biological cells, with the diffusion-encoding direction being
transverse to the cylinder axes. The first compartment is the cylindrical cells compartment and
the second compartment is the extra-cellular space. For details on how to obtain FPK and
Kärger model parameters using homogenization, we refer to reader to [42]. Here, we only give
the values of these parameters:

Deff
e “ 1.7ˆ 10´3mm2{s, Deff

c “ 0mm2{s, κ “ 5ˆ 10´5m{s, q “ 5ˆ 10´5µm´1ms´1

ve “ 0.72, |Γ| “ 1.8842µm2, ηe “ 1.3ˆ 10´1ms´1, ηc “ 3.34ˆ 10´1ms´1.
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We compute the dMRI signal given by the FPK model and the total magnetization of the
Kärger model evaluated at three different times: t “ ∆, t “ ∆` δ, and t “ ∆´ δ{3, for several
b-values (defined in (3.6)). In Figure 3.1 we see that for both ∆ “ 5ms and ∆ “ 20ms the
Kärger signal evaluated at t “ ∆´ δ

3 is much closer to SFPK over the entire range of the b-values
considered than the other two choices.
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Figure 3.2 – The convergence of mKARp∆ ´ δ{3q, mKARp∆ ` δq and mKARp∆q to SFPK as ζ “ δ{∆ goes to 0. q “
1ˆ 10´5µm´1ms´1, ∆ “ 20ms, for various δ P r1.5, 5sms.

Next we verify numerically the order of convergence with respect to the dimensionless pa-
rameter ζ “ δ{∆. We fix ∆ “ 20ms and vary δ in the interval r2, 5sms. In Figure 3.2 we see that
mKARp∆ ´ δ{3q converges to SFPK with order 6, whereas mKARp∆ ` δq and mKARp∆q converge
to SFPK with order 3.

3.4.1 Trapezoidal PGSE

In this section we want to give an intuition of what happens if we consider as time profile a
trapezoidal PGSE instead of the standard rectangular PGSE, i.e. if we have that the rise time of
the pulse is not instantaneous (which is the case in the experimental situations). To support this
argument we will provide some numerical results. We remind that the profile of the trapezoidal
PGSE is

fptq :“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

t´ t0
T

if t0 ď t ă t0 ` T

1 if t0 ` T ď t ă t0 ` δ ´ T

´
t´ t0 ´ δ

T
if t0 ` δ ´ T ď t ă t0 ` δ

´
t´ t0 ´∆

T
if t0 `∆ ď t ă t0 `∆` T

´1 if t0 `∆` T ď t ă t0 `∆` δ ´ T

t´ t0 ´ p∆` δq

T
if t0 `∆` δ ´ T ď t ă t0 `∆` δ

0 otherwise

,

where T “ c δ (with c Ps0, 0.5s) is the rise time. See Figure 3.3.
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Figure 3.3 – Trapezoidal time profile

First of all we observe that, using this time profile, the b-value becomes

bpq, c, δ,∆q “ q2δ2

«

p1´ cq2∆`

ˆ

8

15
c3 ´

7

6
c2 ` c´

1

3

˙

δ

ff

. (3.32)

Furthermore as the rectangular PGSE is a particular case of trapezoidal profile when cÑ 0, we
observe that if we take this limit we obtain the b-value defined in (3.6).

As for the previous case, the first idea was to evaluate the solution of the Kärger model in

tKAR
1 “ p1´ cq2∆`

ˆ

8

15
c3 ´

7

6
c2 ` c´

1

3

˙

δ (3.33)

which is the term that we need to get the b-value in the exponent of (3.8). As we can see in
Figure 3.4 if we use this time for the evaluation we obtain an order of convergence equal to 4

in the dimensionless parameter ζ “ δ
∆ instead of the expected order 6 that we have obtained

before.
Furthermore, analysing the new time-profile we notice that

lim
δÑ0

1

δ

ż t

0
fpsq ds “ Fcptq “

#

1´ c 0 ď t ď ∆

0 t ą ∆

which is different than the limit that we have found for the rectangular PGSE. Indeed for
t P r0,∆s, instead of 1 the limit is equal to 1´ c. Besides, if we look carefully at the expression
(3.32), we find that the square of this term is a constant in front of ∆ which was not the case
in (3.6). Indeed, in (3.6) ∆ has 1 as factor. The idea is then to incorporate this quantity with
δ and consider δ2p1´ cq2 as an unique term and thus change also the expression of the Kärger
model using δ2p1 ´ cq2 instead of δ2 in the equations. With this choice the Kärger model for
two compartments becomes
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%

d

dt
mKAR
e ptq ` q2δ2p1´ cq2Deff

e m
KAR
e ptq ` ηem

KAR
e ptq ´ ηcm

KAR
c ptq “ 0

d

dt
mKAR
c ptq ` q2δ2p1´ cq2Deff

c m
KAR
c ptq ` ηcm

KAR
c ptq ´ ηem

KAR
e ptq “ 0

mKAR
e p0q “ ve ; mKAR

c p0q “ vc

. (3.34)



3.4. Numerical results 69

As an obvious consequence we also have that the analytic expression of the solution is different.
In particular in the exponent of (3.8) we already have δ2p1´ cq2 no matter which point of eval-
uation we consider. So, following the same idea of the previous sections, the time of evaluation
to obtain the maximum order of convergence between the two models, should be

tKAR “ ∆`

´ 8

15
c3 ´

7

6
c2 ` c´

1

3

¯ δ

p1´ cq2
. (3.35)
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Figure 3.4 – Different orders of convergence of FPK signal to Kärger signal depending on the choice of echo-time for
Kärger model in the case of trapezoidal time profile
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In Figure 3.4 are shown the results of our simulations for the same geometry and physical
parameters as before but with the new time profile. As we can see in Figure 3.4a, if we consider
the standard Kärger model and FPK, we obtain an order of convergence 2 in ζ, if we evaluate
the Kärger model in ∆, ∆ ` δ or ∆ ´ δ{3, and an order 4 if we evaluate in tKAR

1 . In contrast,
Figure 3.4b shows that if we modify the Kärger model using the form (3.34), we obtain an order
3 if we evaluate in ∆, ∆` δ or ∆´ δ{3, and the expected order 6 if we evaluate at the suggested
time tKAR. These results are the analogous, in the case of trapezoidal time profile, of the ones in
Theorem 3.3.1. The analytical proof of these results should be done in the same way as Theorem
3.2.2 with the only difference that one should expand the magnetizations in six time intervals
and not three as before, because the trapezoidal time profile changes its expression six time in
the interval r0,∆` δs.

3.5 Conclusions

By expanding the solutions of the Kärger and the FPK models we showed that in the case
of finite pulses (when the duration of the gradient pulses is not short compared to the delay
between the start of the pulses) the time at which to evaluate the Kärger model should be the
time delay between the start of the pulses, shortened by one third of the pulse duration. We
showed that with this choice, the convergence of the Kärger model to the FPK model is of order
six in the pulse duration. This result helps to clarify the long standing question of how to adapt
the Kärger model to account for finite diffusion-encoding pulse sequences.

To strengthen this result we also derived an analytic Kurtoris formula for the FPK model and
we showed its convergence to the Kärger one which was already known in literature. Moreover
we gave an idea of what should be done in the case of trapezoidal PGSE which is a more realistic
time profile for the experiments and we provided a numerical proof for this result.
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In Section 2.1.5 we have seen that an important quantity in dMRI is the apparent diffusion
coefficient (ADC) or effective diffusion coefficient (Deff) and it is usually obtained by measuring
S for a given gradient direction ug at several b-values and fitting the following formula:

logSpTEq “ logS0 ´ pADCqb, (4.1)

where S0 is the dMRI signal when b “ 0. We remark again that, ADC “ D0 in the case of free
diffusion (i.e. the effective diffusion coefficient is equal to the intrinsic diffusion coefficient).

In the context of dMRI brain tissue diffusion is not free, and this is evidenced by the fact
that the fitted ADC depends on the applied gradient strength g, its direction ug, the diffusion
time and the duration of the pulses. Thus, it is hoped that a signal model more accurate and
complicated than (4.1) would provide additional information on the tissue microstructure. As
a consequence, there have been many proposed extensions to (4.1), formulated heuristically, by
dMRI researchers. For example, the dMRI signal as a sum of multiple exponentials was proposed
in [39, 124, 132, 136], a term that is Opγ4g4δ4p∆ ´ δ{3q2q was added to (4.1) in [34, 88], and
fractional order diffusion was used in [24, 122, 123]. In [192], the signal model is an integral of
a continuum of Gaussian diffusion groups, each with a different effective diffusion coefficient. In
[140] the signal model is an expansion in a perturbation of the mean diffusivity. The models of
[8, 89, 168] separate the cylindrical-shaped axons and dendrites from the space outside them to
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make two diffusion compartments and assume there is no water exchange between them. The
Kärger model [94] supposes multiple Gaussian diffusion compartments, where the water exchange
between the compartments is described by simple constant rate terms that can be added to the
diffusion terms, and these assumptions enable the formulation of a system of coupled ordinary
differential equations (ODEs) that describes the time evolution of the total magnetization in the
different compartments.

The previously mentioned models can be characterized as phenomenological models that
incorporate certain physical assumptions and insights about the spatial and time scales of water
diffusion in a complex geometrical environment. On the other hand, one can also proceed math-
ematically starting from a detailed and accurate description using partial differential equations
(PDEs). The Bloch-Torrey PDE [180], introduced in Chapter 2, can be used to describe the
water proton magnetization at all spatial positions in a voxel once the positions and shapes of
the biological cells and the permeability of the cell membranes are prescribed. Obviously, this
very accurate microscopic description cannot be used as a practical model of the dMRI signal
because its inputs - the complete geometrical description of the biological cells in a voxel and its
immediate neighbours - are too complicated compared to the physically obtainable data. This
is the motivation for formulating asymptotic models from the Bloch-Torrey PDE.

In Chapter 2 we have seen that two simple asymptotic models for PGSE and narrow pulse
approximation are the following. In the short-time limit (defined in Section 2.1.2), where only
a small fraction of random walkers have encountered the membrane, the signal model given in
[138], which is a general case of the formula in [130], is

logSshortpTEq :“ logS0 `ADCshortp∆qq
2δ2p∆q, (4.2)

where q “ ||γg|| 1 and the diffusion time dependent effective diffusion coefficient ADCshortp∆q
in the presence of multiple geometrical sub-domains Yj , each with boundary Γjk and intrinsic
diffusion coefficient Dj

0, is
ADCshortp∆q :“

ÿ

j

vjD
j
shortp∆q, (4.3)

where vj is the volume fraction of sub-domain Yj and

Dj
shortp∆q :“ Dj

0

»

–1´
|Γj |
d|Yj |

¨

˝

4

b

Dj
0∆

3
?
π

´ κ∆

˛

‚

fi

fl , (4.4)

d being the space dimension, and κ is the membrane permeability.
In the long time limit (defined in Section 2.1.2), when the diffusion becomes effectively

Gaussian, the signal model is exponential:

logSlong :“ logS0 ´ pug
TADC8ugqq

2δ2p∆´ δ{3q, (4.5)

where ADC8 P Rd ˆRd is the long time apparent diffusion tensor. It was shown in [37] that in
the case of periodic media, where Y “

ś

i“1¨¨¨dr0, Lis is a periodicity box of the medium, then

`

ADC8
˘

il
:“

1

|Y |
ÿ

j

ż

Yj

Dj
0pxq∇uji pxq ¨ el dx, (4.6)

1. It is important to note again that for us q does not denote a wave vector, as it often does in physics.
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where the functions uji pxq, i “ 1, . . . , d, are defined piecewise on Yj and satisfy the time inde-
pendent PDE:

div
`

Dj
0pxq∇uji pxq

˘

“ 0 in Yj ,

Dj
0pxq∇uji pxq ¨ ν ´Dk

0pxq∇uki pxq ¨ ν “ 0 on Γjk,

Dj
0pxq∇uji pxq ¨ ν “ κpuji pxq ´ u

k
i pxqq on Γjk,

uji px` Lieiq “ uji pxq ` Li on BY,

uji px` Llelq “ uji pxq, l ‰ i, on BY,

(4.7)

If Y only contains simple geometries such as cubes and spheres, analytic formulae for ADC8
have been formulated in [77, 102, 175, 179].

As we have already mentioned in the previous chapters in [42] Coatléven et al. derived an
asymptotic model from the Bloch-Torrey equation using periodic homogenization techniques by
choosing a particular scaling of time, the membrane permeability, the diffusion-encoding gradient
amplitude, and a periodicity length of the medium. The resulting model is valid for long diffusion
times when the signal may nevertheless exhibit a non-Gaussian behavior due to water exchange
between the sub-domains. The assumption of low membrane permeability means the exchange is
governed by linear kinetics and gives the signal model a particularly simple form as the solution
of a system of coupled ordinary differential equations. Indeed, in Chapter 3 we showed that this
model generalizes the Kärger model, which was a dMRI signal model formulated heuristically
by physicists for long diffusion times, but which is subject to the restriction that the duration of
the pulses of a diffusion-encoding sequence is much shorter than the delay between the pulses.
In contrast to the Kärger model, the model in [42] is not restricted to the case where the pulse
duration is small. For this reason it was named Finite-Pulse Kärger (FPK) model.

A deficiency of the Kärger and the FPK signal models is that they do not reproduce the
experimentally observed (see for example [160] and the references contained therein) dependence
of the ADC on ∆ (and δ in the non-narrow pulse case).

For this reason, in this Chapter, we chose a different scaling than that used to derive the
FPK model and we derived a new asymptotic dMRI signal model whose ADC depends on the
duration of the pulses and the time delay between them, again using periodic homogenization.
We numerically validate, in some two-dimensional geometries and using PGSE sequence, that
the ADC of the new asymptotic model is a good approximation of the ADC of the Bloch-Torrey
PDE description over a wide range of ∆ and δ. We note that even though our new asymptotic
model is derived using periodic homogenization, the use of the model is not limited to periodic
domains. We cite the non-periodic homogenization approach in porous media [4, 5], where the
difference between the periodic and the non-periodic cases is in the definition and interpretation
of the macroscopic model coefficients.

Our new asymptotic model requires the solution of several homogeneous diffusion equations
with source terms defined on the biological cell membranes. Unlike in [42], we could not put
this model in the form of a system of coupled ODEs. However, as we will see in Chapter
6 this model can be further simplified since homogeneous diffusion equations with boundary
sources terms has some different expansions. We believe that a mathematical homogenization
approach is a useful complement to the phenomenological approach used by physicists, as seen
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by the FPK model of [42], formulated by homogenization, that elucidates and generalizes the
phenomenological Kärger model. The novel result of this work is a time-dependent ADC model
that can lend itself to systematic mathematical analysis. In Chapter 6 we will see that it is
possible to obtain a characterization of the time-dependent ADC in terms of tissue-related
quantities such as the average surface to volume ratio and the dominant Neumann Laplace
eigenfunctions of the biological cells that are contained in an imaging voxel. The ultimate goal
is of course the estimation of these tissue-related quantities from the measured dMRI signal.

This Chapter contains the results showed in our published paper [73] but we also add a
derivation of the same model through linearization and a mathematical proof of convergence
between the signal of new model and the signal obtained solving the Bloch-Torrey equation.
The Chapter is organized as follows. In Section 4.1 we introduce the Bloch-Torrey PDE that
describes the complex transverse water proton magnetization due to diffusion-encoding magnetic
field gradient pulses and pose the problem on the microscopic scale in a heterogeneous domain.
For simplicity, we make the hypothesis that the domain to be modelled is periodic, which allows
us to apply periodic homogenization theory. In Section 4.2 we make the formal homogenization
of our model problem in the periodic context, using a particular choice of scaling in the non-
dimensional parameter ε for the time, the biological cell membrane permeability, the diffusion-
encoding magnetic field gradient strength, and the periodicity length of the cellular geometry.
We give the description of our asymptotic dMRI signal model and its ADC. In Section 4.3 we
numerically validate the asymptotic model for some two dimensional geometrical configurations.
We show the convergence for both the signal and the ADC. We then show that the ADC of
our new model is a good approximation of the ADC of the reference model (the microscopic
description using the Bloch-Torrey PDE) over a wide range of times. In Section 4.4 we show how
to derive the new model using a different technique (linearization using the product between the
gradient strength and the integral of the time profile small, along with a small permeability)
and we prove that the convergence between the solution of the Bloch-Torrey PDE and this new
approximation is of order Opε3q. Section 4.5 contains our conclusions.

4.1 Problem setting

For a volume Ω Ă Rd of biological tissue, we denote by ΓI Ă Rd´1 the union of the boundaries
of biological cells, in other words, the cell membranes, in Ω. In this paper, we assume the cell
membranes are represented as pd´1q-dimensional objects. The cell membranes ΓI thus delimits
two subdomains: the extra-cellular domain Ωe (e for extra-cellular) and the intra-cellular domain
Ωc (c for cellular). The domain Ωext then represents the union of the extra-cellular and intra-
cellular open domains:

Ωext ” ΩzΓI ” Ωe Y Ωc .
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4.1.1 Bloch-Torrey equation

The complex transverse water proton magnetization M can be described by the following
Bloch-Torrey PDE[180] with jump on ΓI :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

B

Bt
Mpx, tq ` ıqug ¨ xfptqMpx, tq ´ divpD0pxq∇Mpx, tqq “ 0 in Ωextˆs0, T r,

D0∇M ¨ ν|ΓI “ κJMKΓI on ΓIˆs0, T r,

JD0∇M ¨ νKΓI “ 0 on ΓIˆs0, T r,

Mp¨, 0q “Mini in Ωext,

and appropriate boundary conditions on BΩext,

(4.8)

where ν is the exterior normal to Ωc, J¨KΓI is the jump (extra-cellular minus intra-cellular)
on ΓI , κ is the membrane permeability coefficient, ı is the imaginary unit, Minit is the initial
magnetization. The physical meaning of the parameter q is q “ }γg}, where γ is the gyro-
magnetic ratio of the water proton, g gives the amplitude and direction of the diffusion-encoding
gradient, and ug “ g{}g} P Rd is the unit vector in the direction of g.

For simplicity of notation, the microscopic scale diffusion is assumed to be isotropic, and
hence it is described by an intrinsic diffusion coefficient D0pxq P R, rather than a tensor. The
case of the tensor can be treated in a similar way but with more cumbersome notation. The
function fptq gives the time profile of the diffusion-encoding magnetic field gradient pulses. For
the classic Pulsed Gradient Spin Echo (PGSE) sequence [172], simplified to include only the
parameters relevant to diffusion (the imaging gradients are ignored),

fptq “

$

&

%

1 ts ă t ď ts ` δ,

´1 ts `∆ ă t ď ts `∆` δ,

0 elsewhere,

where ts is the start of the first pulse and we made fptq negative in the second pulse to include
the effect of the 180 degree spin reversal between the pulses. The time at which the signal is
measured is called the echo time TE ě δ`∆. For simplicity, since ts does not play a role in the
results of this paper, we set ts “ 0. For the same reason, we set TE “ δ `∆ in this Chapter.
The dMRI signal is then the total magnetization at t “ δ `∆:

SpTEq “

ż

V
Mpx, δ `∆qdx, (4.9)

where M is the solution of Eq. (4.8), and V is the voxel. We observe that, because the
diffusion displacement in dMRI (Op10µmq) is usually very small compared to the size of the
voxel (Op1mmq), the boundary conditions on BΩext in 4.8 can be any appropriate artificial
boundary conditions because the support of the solution will be away from BΩext during the
simulation time. The logarithm of the signal is usually plotted against a quantity called the
b-value

b :“ q2

ż ∆`δ

0

ˆ
ż t

0
fpsq ds

˙2

dt “ q2δ2

ˆ

∆´
δ

3

˙

, (4.10)

because in a homogeneous medium:

logSpTEq “ logS0 ´D0 b. (4.11)
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The b-value is a very important quantity in dMRI because the b-values are usually kept constant
across different experiments. For different choices of the duration of the pulses and the time
delay between them, the values of q are adjusted according to 4.10 so that the same set of b-
values is used to compute the dMRI signal. The range of b-values are usually chosen so that the
signal attenuation, SpTEq{S0, varies in a physically detectable range. This range will depend on
the application and tissue type (brain, heart, etc.).

In the case of PGSE to obtain the ADC from a dMRI experiment, one fixes the choice of ∆

and δ, computes the necessary q’s to obtain several b-values that give an attenuation SpTEq{S0

that is not too small (closer to 1 than to 0), and computes the slope of logS versus the b-values.
To make the concept of the ADC mathematically rigorous, in Chapter 1 we choose the following
definition:

ADC :“ ´
1

δ2p∆´ δ{3q

BplogSpTEqq

Bpq2q

ˇ

ˇ

ˇ

ˇ

q2“0

, (4.12)

where the analytical derivative of logS is taken at q2 “ 0 (while ∆ and δ are fixed). We can
write the derivative with respect to q2 because, due to the symmetry of diffusion, only even
powers of q appear in S. With this definition, we note that ADC may depend on ug and time
(∆ and δ). In the narrow pulse limit, in a heterogeneous medium, the physical meaning of ADC
is that it is the mean squared distance travelled by water molecules (averaged over all starting
positions) divided by 2∆.

4.1.2 Periodicity length

We will use the techniques of periodic homogenization. This means we will assume that the
volume to be modelled, Ω, can be described as a periodic domain: there exists a period εL0,
which represents the average size of a representative volume of Ω, and which is small compared
to the size of Ω. For simplicity, we will assume the periodicity box is a cube. We define the
normalized periodicity box to be Y “ r0, L0s

d and let Y “ Ye Y Yc, where Ye is the extra-
cellular domain, Yc is the intra-cellular domain. Yc is an open set that may be made of several
disconnected parts. We denote the boundary of Yc by BYc ” Γm. We thus have

Ωε
e “

ď

zPZd
εpYe ` zL0q, Ωε

c “
ď

zPZd
εpYc ` zL0q, Ωε

ext “ Ωε
e Y Ωε

c

and Γεm “ BΩ
ε
ezBΩ “

ď

zPZd
εpΓm ` zL0q.

Of course, the diffusion coefficient will be assumed to be periodic as well, i.e., there exists
D̂0 P L

8pY q such that D0pxq “ D̂0p
x
ε q, with

D̂0 “

#

De
0 in Ye

Dc
0 in Yc

.

The most common and practical choice for De
0 and Dc

0 is to consider them both as constant so
that D̂0 is piecewise constant. With this more precise description of the domain, our reference
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model can be rewritten as
$

’

’

’

’

&

’

’

’

’

%

B
BtMεpx, tq ` ıq ug ¨ xfptqMεpx, tq ´ divpD̂0ε∇Mεpx, tqq “ 0 in Ωε

extˆs0, T r,

D̂0ε∇Mε ¨ ν|Γεm “ κεJMεKΓεm , on Γmˆs0, T r,

JD̂0ε∇Mε ¨ νKΓεm “ 0, on Γmˆs0, T r

Mεp¨, 0q “Mini in Ωε
ext,

(4.13)

where D̂0ε “ D̂0p
x
ε q. Finally, we will assume that the time profile f belongs to L8ps0, T rq

and that the initial data Mini is defined on Ω independently of ε and it is constant in each
compartment.

Figure 4.1 – Illustration of a periodic domain and the periodicity box Y .

4.2 An asymptotic model

In this section, we derive the new asymptotic model.

4.2.1 Transformed Bloch-Torrey equation

As was already observed in [42], Mε does not satisfy the Bloch-Torrey equation in all Ωε
ext,

but only in Ωε
e and Ωε

c separately with jump conditions on the interfaces. We transform the
Bloch-Torrey equation by defining a new unknown ĂMε almost everywhere on Rdˆs0, T r by

ĂMεpx, tq “Mεpx, tqe
ıq ug¨xF ptq,

where

F ptq :“

ż t

0
fpsqds.

Multiplying the equations of the system (4.13) by eıqug¨xF ptq and using the definition of ĂMε, we
obtain the following transformed PDE:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

B

Bt
ĂMεpx, tq ´ div

`

D̂0ε∇ĂMεpx, tq ´ ıqugF ptqD̂0ε
ĂMεpx, tq

˘

` ıqugF ptqD̂0ε∇ĂMεpx, tq ` q
2F ptq2D̂0ε

ĂMεpx, tq “ 0 in Ωε
extˆs0, T r,

D̂0ε∇ĂMε ¨ ν ´ ıqugF ptqD̂0ε
ĂMε ¨ ν “ κεJĂMεKΓεm on Γεmˆs0, T r,

JD̂0ε∇ĂMε ¨ ν ´ ıqugF ptqD̂0ε
ĂMε ¨ νKΓεm “ 0 on Γεmˆs0, T r,

ĂMεp¨, 0q “Mini in Ωε
ext.

(4.14)
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4.2.2 Choice of scaling

As explained previously, we have chosen the scaling of the periodicity length to be:

L “ εL0, (4.15)

where L0 has the unit of length. We note that ε is without dimension.
We keep the same scaling of the membrane permeability as was used in [42]:

κ “ εκ0, (4.16)

where κ0 has the unit of length{time. Other scalings of permeability may be chosen (and lead
to other asymptotic models), but because biological cell membranes impede the movement of
water, the permeability should be “small”. For a mathematical description of other possible
choices for the permeability’s scaling we refer to [41].

Now we come to the choice of the scaling of b, which depends on both q and time (through
the values of the duration of the pulses and the delay between them). We set the scaling of time
to be:

t “ εατ, (4.17)

which in the case of PGSE implies

δ “ εαδ0 and ∆ “ εα∆0,

and F becomes

Fεptq “ εαF0

ˆ

t

εα

˙

“ εαF0pτq .

We note that τ has the unit of time. We set the scaling of the gradient strength to be

q “
q0

εγ
, (4.18)

and q0 has the unit of 1
lengthˆtime

2. In consequence, the scaling on b is

b “ q2

ż ∆`δ

0
F 2ptqdt “

q2
0

ε2γ
ε2αδ2

0

ˆ

εα∆0 ´
εαδ0

3

˙

“ ε3α´2γb0 . (4.19)

Before we choose the values of α and γ definitively, we use the periodic homogenization
techniques [22], to develop ĂMε using two-scale asymptotic expansions for Ωε

e and Ωε
c, along with

the new time scaling, for general α and γ. We write

ĂMεpx, tq “

$

’

’

’

&

’

’

’

%

ĂM e
ε px, tq “

8
ÿ

i“0

εiĂMiepx,y, τq in Ye

ĂM c
ε px, tq “

8
ÿ

i“0

εiĂMicpx,y, τq in Yc
(4.20)

2. Here γ is a positive exponent used to introduce a scaling on q and it should not be confused with the
gyro-magnetic ratio introduced before.
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where
y “

x

ε
and τ “

t

εα

and the functions ĂMiepx,y, τq and ĂMicpx,y, τq are defined on ΩˆYeˆs0, T {ε
αr and ΩˆYcˆs0, T {ε

αr

respectively, and the ĂMij are assumed Y -periodic in y. The aim of this ansatz is to obtain a
new problem in which the different scales are linked.

To get the PDEs for each of the ĂMie and the ĂMic, we start by noticing that for j P t c, e u,

B

Bt
ĂMijpx,y, τq “ ε´α

B

Bτ
ĂMijpx,y, τq ,

∇ĂMijpx,y, τq “ ∇x
ĂMijpx,y, τq ` ε

´1∇y
ĂMijpx,y, τq,

and therefore

div
`

Dj
0pyq∇ĂMijpx,y, τq ´ ıqugF ptqDj

0pyq
ĂMijpx,y, τq

˘

“

` divx

`

Dj
0pyq∇x

ĂMijpx,y, τq
˘

` ε´2divy

`

Dj
0pyq∇y

ĂMijpx,y, τq
˘

` ε´1
´

divy

`

Dj
0pyq∇x

ĂMijpx,y, τq
˘

` divx

`

Dj
0pyq∇y

ĂMijpx,y, τq
˘

¯

´ εα´γdivx

`

ıq0ugF0pτqDj
0pyq

ĂMijpx,y, τq
˘

´ εα´γ´1divy

`

ıq0ugF0pτqDj
0pyq

ĂMijpx,y, τq
˘

.

Substituting these relations into the transformed Bloch-Torrey PDE 4.14 and using the ansatz
in 4.20 we obtain the following PDE for j P t c, e u:

8
ÿ

i“0

εi´α
B

Bτ
ĂMij ` ε

i`2α´2γq2
0ug ¨ ugF0pτq

2Dj
0
ĂMij

` εi`α´γıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq ´ ε
idivxpDj

0∇x
ĂMijq

´ εi´1divxpDj
0∇y

ĂMijq ´ ε
i´1divypDj

0∇x
ĂMijq ´ ε

i´2divypDj
0∇y

ĂMijq

` εi`α´γdivxpıq0ugF0pτqDj
0
ĂMijq ` ε

i`α´γ´1divypıq0ugF0pτqDj
0
ĂMijq “ 0. (4.21)

To obtain the analogous conditions for the traces, for x P Γεm, we write the ansatz for the
jumps of ĂMε and its fluxes,

JĂMεpx, tqKΓεm “

8
ÿ

i“0

εi
´

ĂMiepx,y, τq ´ ĂMicpx,y, τq
¯

, (4.22)

and

JD̂0ε∇ĂMε ¨ ν ´ ıqugF D̂0ε
ĂMε ¨ νKΓεm “

8
ÿ

i“0

´

De
0∇ĂMiepx,y, τq ¨ ν ´ ıq0ugF0pτqDe

0
ĂMiepx,y, τq ¨ ν

´Dc
0∇ĂMicpx,y, τq ¨ ν ´ ıq0ugF0pτqDc

0
ĂMicpx,y, τq ¨ ν

¯

. (4.23)
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The conditions for the traces, j P t e, c u, are then

8
ÿ

i“0

εi`1κ0

´

ĂMie ´ ĂMic

¯

“ε´1Dj
0∇y

ĂM0j ¨ ν ` ε
0
´

Dj
0∇y

ĂM1j `Dj
0∇x

ĂM0j ´ ıq0ugF0Dj
0
ĂM0j

¯

¨ ν

`

8
ÿ

i“1

εi
´

Dj
0∇y

ĂMi`1j `Dj
0∇x

ĂMij ´ ıq0ugF0Dj
0
ĂMij

¯

¨ ν . (4.24)

The initial conditions, for j P t e, c u, are

ĂM0jp¨, ¨, 0q “Mini

ĂMijp¨, ¨, 0q “ 0 @i ě 1.

As our purpose was to find an accurate approximation of the (time-dependent) ADC for low
b-values, whose scaling is

b “ εθb0 , (4.25)

where θ “ 3α´2γ, we require θ ą 0. We also need the time to be small since, if not, the effective
diffusion would become Gaussian and therefore the ADC would not be time dependent. Hence
we require that α ą 0.

Analyzing (4.21) we are led to choose α and γ so that the term εi`2α´2γq2
0ug ¨ ugF

2
0 D0

ĂMij

appears in the early values of i, since this is the term that contains quantities related to the
b-value. The choice α “ γ “ 0, which implies b “ Op1q, was made in our previous work [42]
which resulted in an ADC that is time independent. We then tried α “ γ “ 1, which implies
b “ Opεq, but this choice also led to an ADC that is time independent. This means that the
scaling in b is not sufficiently small. We thus proceeded to the scaling b “ Opε2q, which resulted
from the choice:

α “ γ “ 2 . (4.26)

For this choice, the interesting term appears in the PDE for ĂM2j , j P t e, c u. In what follows, we
thus fix the choice of α and γ to be that in Eq. (4.26) and derive the corresponding asymptotic
model. Other scalings will be discussed in the next Chapter.

4.2.3 Asymptotic model corresponding to α “ γ “ 2

We recall that the functions ĂMiepx,y, τq and ĂMicpx,y, τq are defined on Ω ˆ Yeˆs0, T {ε
αr

and Ω ˆ Ycˆs0, T {ε
αr respectively, and the ĂMij are assumed Y -periodic in y. To produce our

new asymptotic model up to Opε2q, we substitute α “ γ “ 2 and match the terms in front of
the same power of ε of 4.21. We then get the following periodicity box problems for the first
three orders: i “ 0, 1, 2.

The problem for ĂM0j is then given by
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´divy

`

Dj
0∇y

ĂM0j

˘

`
B

Bτ
ĂM0j “ 0 in Yjˆs0, T {εαr,

Dj
0∇y

ĂM0j ¨ ν “ 0 on Γmˆs0, T {ε
αr,

ĂM0jp¨, 0q “Mini in Yj ,
ĂM0j is Y -periodic.

(4.27)



4.2. An asymptotic model 81

Since the initial conditions is constant, we deduce that

ĂM0j ”Mini, j P t e, c u . (4.28)

The periodic box problem for ĂM1j is
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´divy

`

Dj
0∇y

ĂM1j `Dj
0∇x

ĂM0j ´ ıq0ugF0Dj
0
ĂM0j

˘

“ ´
B

Bτ
ĂM1j

´ ıq0ugF0Dj
0∇y

ĂM0j ` divx

`

Dj
0∇y

ĂM0j

˘

in Yjˆs0, T {εαr,

Dj
0∇y

ĂM1j ¨ ν `Dj
0∇x

ĂM0j ¨ ν ´ ıq0ugF0Dj
0
ĂM0j ¨ ν “ 0 on Γmˆs0, T {ε

αr,

ĂM1jp¨, 0q “ 0 in Yj ,
ĂM1j is Y -periodic,

which, recalling that ĂM0j is a constant 4.28, simplifies to:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´divy

`

Dj
0∇y

ĂM1j ´ ıq0ugF0Dj
0Mini

˘

“ ´
B

Bτ
ĂM1j in Yjˆs0, T {εαr

Dj
0∇y

ĂM1j ¨ ν ´ ıq0ugF0Dj
0Mini ¨ ν “ 0 on Γmˆs0, T {ε

αr

ĂM1jp¨, 0q “ 0 in Yj
ĂM1j is Y -periodic.

(4.29)

It can be easily verified that ĂM1j is purely imaginary and the imaginary part of ĂM1j , for each
j P tc, eu, can be decomposed into the sum of d functions, ωjl , l “ 1, ¨ ¨ ¨ , d, where d is the spatial
dimension,

=
´

ĂM1jpx,y, τq
¯

“

d
ÿ

l“1

pq0Miniqω
j
l py, τq pug ¨ elq in Yj , (4.30)

where the ωjl ’s do not depend on the gradient direction ug or q0 and are solutions of
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’

%

´divy

`

Dj
0∇yω

j
l ´ F0Dj

0el
˘

“ ´
B

Bτ
ωjl in Yjˆs0, T {εαr,

Dj
0∇yω

j
l ¨ ν ´ F0Dj

0el ¨ ν “ 0 on Γmˆs0, T {ε
αr,

ωjl p¨, 0q “ 0 in Yj ,

ωjl is Y -periodic.

Now we consider the periodicity box problem satisfied by ĂM2j
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

´divy

`

Dj
0∇y

ĂM2j `Dj
0∇x

ĂM1j ´ ıq0ugF0Dj
0
ĂM1j

˘

“ ´
B

Bτ
ĂM2j in Yjˆs0, T {εαr,

´q2
0F

2
0 Dj

0
ĂM0j ´ ıq0ugF0Dj

0∇y
ĂM1j ´ ıq0ugF0Dj

0∇x
ĂM0j

`divx

`

Dj
0∇y

ĂM1j `Dj
0∇x

ĂM0j ´ ıq0ugF0Dj
0
ĂM0j

˘

Dj
0∇y

ĂM2j ¨ ν `Dj
0∇x

ĂM1j ¨ ν ´ ıq0ugF0Dj
0
ĂM1j ¨ ν “ κ0

`

ĂM0e ´ ĂM0c

˘

on Γmˆs0, T {ε
αr,

ĂM2jp¨, 0q “ 0 in Yj ,
ĂM2j is Y -periodic.

(4.31)
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Recalling again that ĂM0j ”Mini is constant in the whole domain, Dj
0 is piecewise constant and

ĂM1j is purely imaginary, we have that =
´

ĂM2j

¯

“ 0 and using the the divergence theorem on

the real part of Eq. (4.31) we obtain the compatibility condition for <
´

ĂM2j

¯

(j P t e, c u):

´

ż

Yj

B

Bτ
<
´

ĂM2j

¯

´

ż

Yj

q2
0F

2
0 Dj

0
ĂM0j `

ż

Yj

q0ugF0Dj
0∇y=

´

ĂM1j

¯

“ 0 .

Integrating in time we obtain
ż

Yj

<
´

ĂM2j

¯

“ ´q2
0

ż τ

0
F 2

0

ż

Yj

Dj
0Mini ` q0ug

d
ÿ

l“1

ż τ

0
F0

ż

Yj

Dj
0 pq0Miniq∇yω

j
l ug ¨ el . (4.32)

We immediately remark that with the identical constant initial conditions for both compartments
we lose the boundary term κ0pĂM0e ´ ĂM0cq, which is the only information that we have on the
membrane’s permeability. This means that our model would not be applicable for situations
where water exchange between the geometrical compartments is significant enough to affect the
ADC, which is the first order moment with respect to q2.

4.2.4 Asymptotic dMRI signal model and its ADC

In practice, in the case of PGSE, the dMRI signal is measured at t “ TE “ ∆ ` δ, so our
reference signal is

Sref pq,ugq “

ż

Mεpx, TEq dx ,

where Mε is the solution of the Bloch-Torrey PDE (4.13). The volume of integration above is
assumed large enough to contain the support of the solution (again, we remind that the voxel is
large compared to diffusion displacement in dMRI). Then, remembering our ansatz (4.20) and
the fact that we found the first three terms, the signal of our new asymptotic model inside the
periodic box |Y | is

Snewpq,ugq :“
2
ÿ

i“0

εi
´

ż

Ye

ĂMiep¨, TE{ε
2q `

ż

Yc

ĂMicp¨, TE{ε
2q

¯

“

ż

Ye

´

Mini ` ε
2<ĂM2ep¨, TE{ε

2q

¯

`

ż

Yc

´

Mini ` ε
2<ĂM2cp¨, TE{ε

2q

¯

“Mini p|Ye| ` |Ye|q `

ż

Ye

ε2<ĂM2ep¨, TE{ε
2q `

ż

Yc

ε2<ĂM2cp¨, TE{ε
2q.

(4.33)

We recall that ĂM0jpx, τq “Mini in Yj for all τ and the real part of ĂM1j is equal to zero, j P t e, c u.
Thus, our new model approximates the reference model up to fourth order in ε (because the odd
powers of ε are zero):

Sref pq,ugq “ Snewpq,ugq `Opε
4q.

Recalling Eq. (4.32), we define effective diffusion tensors in the geometrical compartments,
j P tc, eu, in the following way:

´

D
eff
j

¯

il
pτq :“

1

|Yj |

ż

Yj

Dj
0

˜

ei ¨ el ´
q2

0

şτ
0 F0

B
Byl
ωji

b0

¸

, i, l “ 1, . . . , d,
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so that in more compact form,
ż

Yj

<
´

ĂM2j

¯

“ ´q2
0

ż τ

0
F 2

0

ż

Yj

Dj
0 Mini ` q0ug

d
ÿ

l“1

ż τ

0
F0

ż

Yj

Dj
0q0Mini ∇yω

j
l pug ¨ elq

“ ´Minib0

˜

ż

Yj

Dj
0 ´ ug

d
ÿ

l“1

q2
0

b0

ż τ

0
F0

ż

Yj

Dj
0∇yω

j
l pug ¨ elq

¸

“ ´Mini |Yj | b0 Deff
j pτqug ¨ ug .

Now we simplify the signal after the normalization

Mini :“
1

p|Yc|` |Ye|q
,

Snewpq,ugq “ 1´
ε2b0

´

|Yc| Deff
c p∆0 ` δ0q ` |Ye| Deff

e p∆0 ` δ0q

¯

ug ¨ ug

p|Yc|` |Ye|q
,

and put back the original variables,

Snewpq,ugq “ 1´ b

´

|Yc| Deff
c p∆` δq ` |Ye| Deff

e p∆` δq
¯

ug ¨ ug

p|Yc|` |Ye|q
, (4.34)

where the effective diffusion tensors in compartment j P tc, eu are

´

D
eff
j

¯

il
ptq :“

1

|Yj |

ż

Yj

Dj
0 ei ¨ el ´

1
ş∆`δ
0 F 2

ż t

0

˜

F
1

|Yj |

ż

Yj

Dj
0

B

Byl
ωji

¸

, i, l “ 1, . . . , d, (4.35)

and the periodicity box problems to be solved are
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B

Bt
ωjl ´ divy

`

Dj
0∇yω

j
l ´ FD

j
0el

˘

“ 0 in Yjˆs0, T r

Dj
0∇yω

j
l ¨ ν ´ FD

j
0el ¨ ν “ 0 on Γmˆs0, T r,

ωjl p¨, 0q “ 0 in Yj ,

ωjl is Y -periodic.

(4.36)

From this simplified expression we can identify the ADCnew for this new model as

ADCnew :“ veD
eff
e p∆` δqug ¨ ug ` vcD

eff
c p∆` δqug ¨ ug, vc :“

|Yc|
|Y | ve :“ 1´ vc, (4.37)

where ve and vc are the extra-cellular and intra-cellular volume fractions respectively.
From (4.35) we immediately see that the definition of the effective diffusion tensor Deff

j ,

j P t e, c u, is dependent on ∆ and δ. In particular, Deff
j is defined as the sum of two terms: the

first is the intrinsic diffusion coefficient, and the second depends on the magnetic field gradient
time profile fptq (in addition to depending on the geometry) and is bounded between 0 and Dj

0.
Our new asymptotic model matched terms up to and including Opε2q, and since by the choice

of the scaling our b-value is also Opε2q, this means that our model explains first order effects of
the b-value; it does not account for higher order effects of b.
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4.3 Numerical results

In this section, we first validate the fourth order convergence of our model (see Equations
(4.34), (4.35), (4.36)) in the signal and the second order convergence in the ADC (see Equation
(4.37)) to the reference Bloch-Torrey model of Equation (4.13). Then we compare the ADC of
our new model with the reference ADC as well as with two existing asymptotic models of the
effective diffusion coefficient: the short time and long time models of (4.4) and (4.6).

In summary, the following quantities will be compared:

1. Sref and ADCref from the reference Bloch-Torrey model.

2. Snew and ADCnew from our new asymptotic model.

3. ADCshort: the short time model of the effective diffusivity (4.4).

4. D8ug ¨ ug: the long time limit of the effective diffusivity (4.6).

The reference signal is the integral of the solution of (4.13) in a periodic geometry, where the
domain is made up of copies of the periodicity box Y “ r0, Ls2. As was already observed in
[134], equivalently, one can obtain the reference signal by solving (4.14) subject to periodic
boundary conditions on BY . This was also our approach here. The initial condition Mini is set
to Mini “ 1{L2 to normalize the signal to S “ 1 at b “ 0. The ADC of the reference signal was
then obtained using a polynomial fit of the logarithm of the simulated signal at several b-values
according to (4.12).

To obtain the signal due to our new asymptotic model (4.34) we solved the periodicity box
problems (4.36) on Y . Then the ADC of our new model is computed according to (4.37).

To compute the long time model for the effective diffusivity according to (4.6), we solved the
periodicity box problems (4.7).

The simulation of the reference model and the solution of the periodicity box problems were
performed using FreeFem++ [155].

Figure 4.2 – Illustration of a periodic domain where there is a disk of radius R in the center of each periodicity box Y .
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4.3.1 Convergence

We validate the convergence of the new model in a simple two-dimensional geometry. The
periodicity box is Y “ r0, Ls2, and we place in the center of Y a single disk of radius R (see
4.2). We fix L0, κ0, ∆0, δ0, and b0 and vary ε while respecting the scalings:

L “ εL0, κ “ εκ0, ∆ “ ε2∆0, δ “ ε2δ0 q “ ε´2q0.

We recall that the above choice implies the scaling of b “ Opε2q and ∆ “ OpL2q. We have
chosen the gradient direction to be ug “ ex. Furthermore, our choices of L0, κ0, ∆0, δ0, and b0
are made in order to obtain physically reasonable parameters L, κ, ∆, δ, and b at ε “ 0.25.

We obtained Sref and Snew using a very fine finite element mesh for two disk radii: R “ 0.49L

and R “ 0.4L. The values of the intrinsic diffusivities, De
0 “ 3 ˆ 10´3mm2{s, Dc

0 “ 1.6 ˆ

10´3mm2{s, were chosen close to the values often used in the literature for dMRI numerical
simulations [76, 190].
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Figure 4.3 – Signal convergence for a single disk in a periodicity box with De0 “ 3ˆ10´3mm2{s, Dc0 “ 1.6ˆ10´3mm2{s,
for two disk radii: R “ 0.49L and R “ 0.4L. L0 “ 20µm, δ0 “ 8ms, ∆0 “ 8ms, b0 “ 800s/mm2 and κ0 “ 4ˆ 10´5m{s.

In Fig. (4.3) we show the convergence of the signals |Sref pbq ´ Snewpbq| with the non-
dimensional parameter ε for two different choices of R. We see that the convergence rate is
about 4 (fitted to 3.6).

In Fig. (4.4) we show the convergence of the ADC with the non-dimensional parameter ε,
where to compute the reference ADC, we use the linear fit:

ADCref «
1´ Sref pbq

b
.

We see that the convergence rate is fitted to 1.6.

4.3.2 Time-dependent ADC

In this section we show some preliminary results on the ADC approximation of our new
model (4.37) and compare with some other existing models.
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Figure 4.4 – ADC convergence for a single disk in a periodicity box with De0 “ 3ˆ 10´3mm2{s, Dc0 “ 1.6ˆ 10´3mm2{s,
for two disk radii: R “ 0.49L and R “ 0.4L. L0 “ 20µm, δ0 “ 8ms, ∆0 “ 8ms, κ0 “ 4 ˆ 10´5m{s and fitted until
b0 “ 800s/mm2.

To compare the ADCs, we fixed L “ 5µm,De
0 “ 3 ˆ 10´3mm2{s,Dc

0 “ 1.6 ˆ 10´3mm2{s and
κ “ 1ˆ10´5m{s and we varied δ and ∆ over a wide range. The simulated pδ,∆q, expressed in ms,
are p1e´3, 5e´3q, p1e´3, 10e´3q, p1e´3, 15e´3q, p0.3, 0.3q, p0.5, 0.5q, p1.0, 1.0q, p1.5, 1.5q, p2.5, 2.5q,
p2.5, 5.0q, p2.5, 7.5q, p2.5, 10.0q, p2.5, 15.0q, p2.5, 20.0q, p2.5, 40.0q, and p2.5, 80.0q. The geometry
is again a single disk of different radii placed at the center of the periodicity box Y “ r0, Ls2, and
the gradient direction is ex. Two radii, R “ 0.49L and R “ 0.4L, were simulated, in order to
vary the volume fraction of the intra-cellular and extra-cellular compartment. The ADCref of the
signal was obtained by a cubic fit using the logarithm of the signal at b “ 0, 10, 20, 40, 50s/mm2.

In Fig 4.5 is displayed a comparison of the ADCs of the four different models as a function
of the normalized diffusion displacement defined as

NDD :“

a

2p∆` δqADCref

L{2
. (4.38)

We immediately observe that the ADCnew of the new asymptotic model follows very well the
the reference model (4.13) in the whole range of NDD. On the other hand, as we expected, the
long time model works well only when NDD " 1 and the short-time model only for NDD ! 1.

To validate our new asymptotic model in a more realistic geometry we simulated a large
periodic box, with L “ 50µm, that contains many cells of different shapes and sizes. There
are 32 spheres of various radii in the range of r2.5, 5sµm and 5 cylinders of various radii in the
range of r0.7, 2sµm (4.6a). The resulting external volume fraction is then ve “ 0.4. We fixed
De

0 “ 3ˆ10´3mm2{s, Dc
0 “ 2ˆ10´3mm2{s, and κ “ 1ˆ10´5 m{s, and we varied δ and ∆ over

a wide range of times. The simulated pδ,∆q, expressed in ms, are p0.1, 0.1q, p0.2, 0.2q, p0.3, 0.3q,
p0.5, 0.5q, p1.0, 1.0q, p1.5, 1.5q, p2.5, 2.5q, p2.5, 5.0q, p2.5, 7.5q, p2.5, 10.0q, p2.5, 15.0q, p2.5, 20.0q,
p2.5, 40.0q, p2.5, 80.0q, p2.5, 120.0q and p2.5, 160.0q. The gradient direction is ug “ r1{

?
2, 1{

?
2s.
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Figure 4.5 – ADC approximation for a single disk in a periodicity box with κ “ 1 ˆ 10´5 m{s, De0 “ 3 ˆ 10´3mm2{s,
Dc0 “ 1.6ˆ 10´3mm2{s, for two disk radii: R “ 0.49L and R “ 0.4L.

In Fig 4.6b is displayed a comparison of the ADCs of the four different models as a function
of the diffusion displacement. In this example, we did not normalize the diffusion displacement
by L{2 because the characteristic length of this domain is not obvious, given the presence of
several cell shapes and sizes. The ADCref of the signal was obtained by a cubic fit using the
logarithm of the signal at b “ 0, 20, 40, 60, 80, 100s/mm2. We observe that the ADCnew of our
new asymptotic model follows very well the reference model (4.13) in the whole range of diffusion
displacement. On the contrary, as we expected, the short-time model works well only for small
diffusion displacement and the long-time model only for large diffusion displacement. We see
also that ADCref attains the long time limit at the diffusion displacement of around 10µm,
much smaller than L{2. This means the characteristic length of this medium is smaller than
L{2, which is another reason we claim that the generality of our model is not limited by the
original periodicity assumption on the domain when we performed the homogenization.
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(a) Periodicity box Y “ r0, 50µms2
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(b) Simulated ADC

Figure 4.6 – ADC approximation for a periodic domain where the periodicity box Y “ r0, 50µms2 is shown above.
The extra-cellular volume fraction is ve “ 0.4, with the membrane permeability κ “ 1 ˆ 10´5 m{s, and intrinsic diffusion
coefficients: De0 “ 3ˆ 10´3mm2{s and Dc0 “ 2ˆ 10´3mm2{s.

4.4 Comparison between the new asymptotic model and the lin-
earized model

In Section 4.2 we derived a new asymptotic model using homogenization techniques along
with a new time, gradient’s intensity and permeability scalings. Now we want to show that,
under some assumption on the initial magnetization and up to the first order in b, we could have
achieved the same model using a linearization of the solution of the problem (4.14) considering
the product of the gradient intensity and the integral of the time profile small along with the
assumption that the permeability κ is also small.

More precisely, considering a periodic domain Ω “ Ωe
Ť

Ωc (i.e. the union between an
extracellular domain Ωe and an intracellular domain Ωc as in Figure ) we suppose that there
exists a non-dimensional parameter ε ą 0 such that

qF ptq “ εq̃F̃ ptq and κ “ εκ̃ . (4.39)
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We can thus rewrite the problem (4.14) as
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B

Bt
ĂMεpx, tq ´ div

`

D0∇ĂMεpx, tq ´ ıεq̃ugF̃ ptqD0
ĂMεpx, tq

˘

` ıεq̃ugF̃ ptqD0∇ĂMεpx, tq ` ε
2q̃2F̃ ptq2D0

ĂMεpx, tq “ 0, in Ωˆs0, T r,

D0∇ĂMε ¨ ν ´ ıεq̃ugF̃ ptqD0
ĂMε ¨ ν “ εκ̃JĂMεKΓεm , on Γmˆs0, T r,

JD0∇ĂMε ¨ ν ´ ıεq̃ugF̃ ptqD0
ĂMε ¨ νKΓm “ 0, on Γmˆs0, T r,

ĂMεp¨, 0q “Mini, in Ω,

ĂMε periodic on BΩ,

(4.40)

where D0 is the intrinsic diffusion coefficient (which is assumed to be piecewise constant and can
assume different values in Ωe and Ωc like discussed in Section 4.1.2) and Γm “ BΩc. We remark
that with ĂMε periodic on BΩ we mean that

ĂMε|BΩ1 “
ĂMε|BΩ3 and ĂMε|BΩ2 “

ĂMε|BΩ4 , (4.41)

where
4
ď

i“1

BΩi “ BΩ as defined in Figure 4.7.

Figure 4.7 – Considered periodic domain.

As we did in Section 4.2.2, we also suppose that the solution ĂMεpx, tq of (4.40) admits a
series expansion in terms of the power of ε like

ĂMεpx, tq “
8
ÿ

i“0

εiMi “

$

’

’

’

&

’

’

’

%

8
ÿ

i“0

εiMie in Ωeˆs0, T r,

8
ÿ

i“0

εiMic in Ωcˆs0, T r.

(4.42)

Substituting the expansion (4.42) in (4.40) and matching the terms in front the same power of
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ε we obtain the following problems for the first three orders
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B

Bt
M0 ´ div

`

D0∇M0

˘

“ 0, in Ωˆs0, T r,

D0∇M0 ¨ ν “ 0, on Γmˆs0, T r,

M0px, 0q “Mini, in Ω,

M0 periodic on BΩ

(4.43)
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Bt
M1 ´ div

`

D0∇M1 ´ ıq̃ugF̃D0M0

˘

` ıq̃ugF̃D0∇M0 “ 0, in Ωˆs0, T r,

D0∇M1 ¨ ν ´ ıq̃ugF̃D0M0 ¨ ν “ κ̃JM0KΓm , on Γmˆs0, T r,

M1px, 0q “ 0, in Ω,

M1 periodic on BΩ

(4.44)

and
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Bt
M2 ´ div

`

D0∇M2 ´ ıq̃ugF̃D0M1

˘

` ıq̃ugF̃D0∇M1 ` q̃
2F̃ ptq2D0M0 “ 0, in Ωˆs0, T r,

D0∇M2 ¨ ν ´ ıq̃ugF̃D0M1 ¨ ν “ κ̃JM1KΓm , on Γmˆs0, T r,

M2px, 0q “ 0, in Ω,

M2 periodic on BΩ.
(4.45)

We immediately observe that the problem (4.43) is the same as the problem (4.27) and then,
since Ωc is a closed domain and Ωe is assumed to be periodic, M0px, tq “ Mini in Ωˆs0, T r.
Regarding the problem (4.44) we observe that it has the same PDE and initial condition as the
problem (4.29), but a different Neumann boundary condition on the interface. However, in the
case of Mini piecewise constant (standard assumption as we have discussed in Chapter 1) we
have that JM0KΓm “ 0. So we obtain the same problem as (4.29) and then the solution is the
same. For (4.45) we have again that the PDE and initial conditions coincide with the ones in
(4.31) but not the Neumann boundary conditions. Nevertheless, as we are only interested in the
real part of M2, we use the fact that the real part of M1 is equal to zero and then the Neumann
boundary conditions for the real part of M2 is JM1KΓm “ 0, i.e. we have the same problem as
(4.31). Finally defining the dMRI signal as

Spx, qq “

ż

Ω

8
ÿ

i“0

εiMipx, TEq dx

and truncating it at i “ 2, we obtain the same expression as the one in (4.33).
We derived the new model also in this way for two reasons: the physical meaning of the

chosen scalings can be better understood and it is easier to furnish the analytical convergence
analysis between the solution of the derived model and the Bloch-Torrey one. Regarding the
choice of scalings, indeed, say that the product qF ptq and the permeability κ must be small,
immediately tells us in which physical regime our model holds. Indeed, it is more clear than
before where we related space, time, gradient strength and permeability to the same parameter.
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4.4.1 Convergence

The convergence analysis is based on classical energy identities for the heat equation. Let
us first specify the natural solution space for (4.40). Using standard theory for the parabolic
problems one can easily show that, for Mini P L2pΩq, the problem (4.40) has a unique solution

ĂMε P C
0
`

r0, T s,L2pΩq
˘

č

L2
´

r0, ts, H̃
1
pΩq

¯

, (4.46)

where
H̃

1
pΩq “ tu P H1pΩe

ď

Ωcq : u is periodic in BΩ u .

We observe that also the solutions of (4.43), (4.44) and (4.45) lies in the same space of ĂMε. To
prove the convergence, we define a new function

eεpx, tq “ |ĂMεpx, tq ´M εpx, tq|, x P Ω, t P r0, T s (4.47)

where M εpx, tq :“
ř2
i“1 ε

iMi. eεpx, tq represents the error between the solution ĂMε of the
linearized Bloch-Torrey system (4.40) and the solution M εpx, tq obtained with the two-scales
expansion (4.42) truncated at i “ 2 (i.e. expressed by the sum of the solutions of (4.43), (4.44)
and (4.45) weighted by the correct power of ε). This function solves
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B

Bt
eεpx, tq ´ div

´

D0∇eεpx, tq ´ ıεq̃ugF̃ ptqD0eεpx, tq
¯

`ıεq̃F̃ ptqD0ug ¨∇eεpx, tq ` ε
2q̃2F̃ 2ptqD0eεpx, tq

“ ´ε3ıq̃F̃ ptqD0ug ¨∇M2px, tq ´ ε
3ıq̃F̃ ptqD0div pugM2px, tqq

´ε3q̃2F̃ 2ptqD0M1px, tq ´ ε
4q̃2F̃ 2ptqD0M0px, tq, in Ωˆs0, T r,

D0∇eεpx, tq ¨ ν ´ ıεq̃F̃ ptqD0eεpx, tqug ¨ ν ´ εκ̃JeεKΓm

“ ´ε3ıq̃F̃ ptqD0M2px, tqug ¨ ν ´ ε
4κ̃JM2KΓm , on Γmˆs0, T r,

JD0∇eεpx, tq ¨ ν ´ ıεq̃F̃ ptqD0eεpx, tqug ¨ νKΓm “ 0, on Γmˆs0, T r,

eεpx, 0q “ 0, in Ω,

eε periodic on BΩ.
(4.48)

The idea is to use the energy estimate to prove that the solution eε depends continuously on the
source terms and the boundary condition and that the rate of convergence is of Opε3q.

To lighter the notation, we write JK instead of JKΓm . Multiplying (4.48) by eε and using the
Green theorem, we have that for all t P r0, T s

1

2

ż

Ω

B

Bt
|eε|2 `

ż

Ω
D0|∇eε|2 ` ε2

ż

Ω
q̃2F̃ 2D0|eε|2 ` εk̃

ż

Γm

|JeεK|2 “

` ε3
ż

Ω

´

´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1 ´ εq̃

2F̃ 2D0M0

¯

eε

` ε3
ż

Γm

´

´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K
¯

eε (4.49)
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which integrating in time from 0 to t becomes

1

2

ż

Ω
|eε|2 `

ż t

0

ż

Ω
D0|∇eε|2 ` ε2

ż t

0

ż

Ω
q̃2F̃ 2D0|eε|2 ` ε

ż t

0

ż

Γm

k̃|JeεK|2 “

` ε3
ż t

0

ż

Ω

´

´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1 ´ εq̃

2F̃ 2D0M0

¯

eε

` ε3
ż t

0

ż

Γm

´

´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K
¯

eε. (4.50)

Using the fact that eεptq P L2pΩq and the Cauchy-Schwarz inequality we obtain that for all
t P r0, T s

1

2
‖eε‖2

L2pΩq `

ż t

0
D0‖∇eε‖2

L2pΩq ` ε
2

ż t

0
q̃2F̃ 2D0‖eε‖2

L2pΩq ` ε

ż t

0
k̃‖JeεK‖2

L2pΓmq
ď

ε3
ż T

0
‖´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃

2F̃ 2D0M1 ´ εq̃
2F̃ 2D0M0‖L2pΩq‖eε‖L2pΩq

` ε3
ż t

0
‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

‖eε‖L2pΓmq
. (4.51)

We observe that
‖eε‖L2pΓmq

ď

´

‖eε‖L2pΩq ` ‖∇eε‖L2pΩq

¯

. (4.52)

Using this property and completing the squares we obtain that for all t P r0, T s

1

2
‖eε‖2

L2pΩq `

ż t

0
D0

ˆ

‖∇eε‖L2pΩq ´
ε3

2
‖´ıq̃F̃M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

˙2

` ε2
ż t

0
q̃2F̃ 2D0‖eε‖2

L2pΩq ` ε

ż t

0
k̃‖JeεK‖2

L2pΓmq
ď `

ε6

4

ż t

0
‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖2

L2pΓmq

ε3
ż t

0

”

‖´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1 ´ εq̃

2F̃ 2D0M0‖L2pΩq

`‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

ı

‖eε‖L2pΩq. (4.53)

If we call

a :“
ε6

4

ż t

0
‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖2

L2pΓmq
, (4.54)

bpsq :“
”

ε3‖´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1‖L2pΩq

`ε4‖´q̃2F̃ 2D0M0‖L2pΩq ` ε
3‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

ı

(4.55)

and

z2ptq :“
1

2
‖eε‖2

L2pΩq `

ż t

0
D0

ˆ

‖∇eε‖L2pΩq ´
ε3

2
‖´ıq̃F̃M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

˙2

` ε2
ż t

0
q̃2F̃ 2D0‖eε‖2

L2pΩq ` ε

ż t

0
k̃‖JeεK‖2

L2pΓmq
, (4.56)

since all the quantities are positive, we have that ‖eε‖L2pΩq ď zptq for all t P r0, T s.
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Remark 4.4.1. We observe that if

z2ptq ď a`

ż t

0
bpsqzpsqds. (4.57)

and, if we call

z̃ptq :“ a`

ż t

0
bpsqzpsqds (4.58)

we have that
d

dt
z̃ptq “ bptqzptq ď bptq

a

z̃ptq (4.59)

and thus integrating in time
a

z̃ptq ď
1

2

ż t

0
bpsqds`

?
a, (4.60)

because a “ z̃p0q. As a consequence we obtain that

zptq ď
a

z̃ptq ď
1

2

ż t

0
bpsqds`

?
a. (4.61)

Now, remembering the definition of z, a and b and applying (4.61) of the above Remark, we
obtain

1

2
‖eε‖2

L2pΩq `

ż t

0
D0

ˆ

‖∇eε‖L2pΩq ´
ε3

2
‖´ıq̃F̃M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

˙2

` ε2
ż t

0
q̃2F̃ 2D0‖eε‖2

L2pΩq ` ε

ż t

0
k̃‖JeεK‖2

L2pΓmq
ď

ε3

2

ż t

0

”

‖´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1 ´ εq̃

2F̃ 2D0M0‖L2pΩq

`‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

ı

`
ε3

2

d

ż t

0
‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖2

L2pΓmq
. (4.62)

From this inequality we then have that

‖eε‖2
L2pΩq ď ε3

ż t

0

”

‖´ıq̃F̃D0ug ¨∇M2 ´ ıq̃F̃D0div pugM2q ´ q̃
2F̃ 2D0M1 ´ εq̃

2F̃ 2D0M0‖L2pΩq

`‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖L2pΓmq

ı

` ε3

d

ż t

0
‖´ıq̃F̃D0M2ug ¨ ν ´ εk̃JM2K‖2

L2pΓmq
. (4.63)

i.e.
‖eε‖2

L2pΩq ď ε3Cptq, (4.64)

where Cptq is a quantity that does not depend on ε. This proves that the error between the
Bloch-Torrey solution and our model is of Opε3q, which confirms what we claimed before (since
we stopped the asymptotic expansion at M2) and what we got in the simulation in Section 4.3.
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4.5 Conclusions

We have formulated a new asymptotic model of the dMRI signal from the Bloch-Torrey PDE
using homogenization with a particular choice of scaling for the time, the biological cell mem-
brane permeability, the diffusion-encoding magnetic field gradient strength, and a periodicity
length of the cellular geometry. The apparent diffusion coefficient (ADC) of the resulting model
is diffusion time-dependent, a property observed in in-vivo imaging experiments of the brain.
We numerically validated the new asymptotic model in two dimensional geometrical configura-
tions and showed that its ADC is close to the ADC of the reference Bloch-Torrey PDE model
over a wide range of diffusion times. The derived model is valid for all dimensions. Numerical
implementation in three dimensions, though most likely time-consuming, should be straight-
forward. We also derived the model using linearization instead of homogenization techniques
and we proved the convergence between the Bloch-Torrey solution and the new approximation.
Deeper analysis of this new model and adapting it to estimate model parameters from the dMRI
signal data will be the subject of the Chapter 6.
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In the previous Chapter, using homogenization techniques along with particular scalings for
the membrane permeability, the time of the experiment and the gradient intensity, we derived
a family of models from the Bloch-Torrey PDE problem [180]. A priori all these models can
be used to approximate the solution of the Bloch-Torrey PDE under the regime specified by
the choice of parameters. Our purpose is to approximate the apparent diffusion coefficient for
relatively small values of the membrane permeability so, according to the definition (2.42) in
Chapter 1, we mostly investigate the choice of parameters which gives us a small b-value, (i.e.
Opg2q). If one is interested in other quantities, like the Kurtosis terms or terms of higher order
in g, or different regime of permeability, other choices of scalings may be more appropriate but
this goes beyond the scope of this Thesis and could be part of future investigations. We just
remark that an analysis of other possible choices for κ and standard homogenization can be
found in [41].

In this Chapter we recall how we derive a general family of models imposing particular
scalings on L, κ, t and g. We then explain why we decided that the choice L “ εL0, κ “ εκ0,
t “ ε2τ and g “ ε´2g0 was appropriate to give a good estimates for ADC. To do so, we describe
other choices of parameters and we identify in which physical regime they hold. In particular,
we use the definition of b-value in terms of t and g and we find mathematical limitations for
the time and the gradient intensity parameters which yield to small b-values. We show that, if
t “ pε1q for possible choices of scaling on g which respects the constraint of giving small b-values,
we obtain an expression of ADC that coincides with the FPK model. In the same vein, we show
that if t “ Opε2q, for every possible choice of scaling on g (which respects the constraint of giving
small b-values), we obtain an expression of ADC that coincides with the H-ADC model derived
in Chapter 4. This help us in better understanding the regime of physical parameters for which
the homogenised models hold. Finally we investigate what changes mathematically if the initial
value of the magnetization is not constant but is piecewise constant in the two compartments
(intra and extra-cellular). We show that, while the PDEs to be solved to get the asymptotic
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functions Mi are different, the expression of the signal remains the same. We remark that all
the presented models hold also if D0 depends on the space variable y.

The Chapter is organized as follows. In Section 5.1, we recall how we derived the family
of models in Chapter 4 after having imposed some specific scalings for the periodic cell, the
permeability coefficient, the time and the gradient’s intensity. In Section 5.2 we impose some
mathematical constraints on the scaling’s parameters in order to obtain models for small b-
values. In Section 5.3 we show the results obtained for t “ Opε1q. In Section 5.4 we show the
results obtained for t “ Opε2q and various intensity gradient scalings. In Section 5.5 we show
the results for the space dependent initial condition.

5.1 General equations

We recall that in Section 4.2, after having applied the change of variable

ĂMεpx, tq “Mεpx, tqe
ıqug¨xF ptq (5.1)

to the standard Bloch-Torrey equation for Mεpx, tq (where q “ γg), we obtained the new PDE
system
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Bt
ĂMεpx, tq ´ div

`

D̂0ε∇ĂMεpx, tq ´ ıqugF ptqD̂0ε
ĂMεpx, tq

˘

` ıqugF ptqD̂0ε∇ĂMεpx, tq ` q
2F ptq2D̂0ε

ĂMεpx, tq “ 0 in Ωε
extˆs0, T r,

D̂0ε∇ĂMε ¨ ν ´ ıqugF ptqD̂0ε
ĂMε ¨ ν “ κεJĂMεKΓεm on Γεmˆs0, T r,

JD̂0ε∇ĂMε ¨ ν ´ ıqugF ptqD̂0ε
ĂMε ¨ νKΓεm “ 0 on Γεmˆs0, T r,

ĂMεp¨, 0q “Mini in Ωε
ext,

(5.2)

for which we want to apply the homogenization theory.

Figure 5.1 – Illustration of a periodic domain and the periodicity box Y .

As explained in Section 4.2.2, we have chosen the scaling of the periodicity length to be:

L “ εL0,

where L0 has the unit of length and ε is without dimension.
We keep the same scaling of the membrane permeability as was used in [42]:

κ “ εκ0,
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where κ0 has the unit of length{time. We observe that other scalings of permeability may be
chosen (and lead to other asymptotic models), but because biological cell membranes impede the
movement of water, the permeability should be “small”. In [41] detailed mathematical derivations
with the other possible choices of scaling for κ can be found. Here we were not interested in this
particular aspect and then we fixed one reasonable value.

We set the scaling of time to be:
t “ εατ,

which implies that F becomes

Fεptq “

ż t

0
fpsqds “ εα

ż τ

0
fpξqdξ “ εαF0pτq ,

where we made the change of variable ξ “ s{εα and τ “ t{εα. We note that τ and ξ have the
unit of time. In particular, for PGSE, this choice implies

δ “ εαδ0, and ∆ “ εα∆0. (5.3)

We set the scaling of the gradient strength to be

q “
q0

εγ
,

and q0 has the unit of 1
lengthˆtime

1. In consequence, the scaling on b is

b “ q2

ż TE

0
F 2ptqdt “

q2
0

ε2γ
ε3α

ż

ĂTE

0
F 2

0 pτq dτ “ ε3α´2γb0 . (5.4)

We use the periodic homogenization techniques [22], to develop ĂMε using two-scale asymp-
totic expansions for Ωε

e and Ωε
c, along with the new time scaling, for general α and γ:

ĂMεpx, tq “

$

’

’

’

&

’

’

’

%

ĂM e
ε px, tq “

8
ÿ

i“0

εiĂMiepx,y, τq in Ye ˆ r0, TEs

ĂM c
ε px, tq “

8
ÿ

i“0

εiĂMicpx,y, τq in Yc ˆ r0, TEs
(5.5)

where
y “

x

ε
and τ “

t

εα

and the functions ĂMiepx,y, τq and ĂMicpx,y, τq are defined on ΩˆYeˆ`8r and ΩˆYcˆs0,`8r

respectively, and the ĂMij are assumed Y -periodic in y. The aim of this ansatz is to obtain a
new problem in which the different scales are linked.

1. Again, here γ is a positive exponent used to introduce a scaling on q and it should not be confuse with the
gyro-magnetic ratio introduced before.
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Finally, for j P t c, e u, we obtained the following PDE:

0 “
8
ÿ

i“0

εi´α
B

Bτ
ĂMij ` ε

i`2α´2γq2
0ug ¨ ugF0pτq

2Dj
0
ĂMij

` εi`α´γıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq ´ ε
idivxpDj

0∇x
ĂMijq

´ εi´1divxpDj
0∇y

ĂMijq ´ ε
i´1divypDj

0∇x
ĂMijq ´ ε

i´2divypDj
0∇y

ĂMijq

` εi`α´γdivxpıq0ugF0pτqDj
0
ĂMijq ` ε

i`α´γ´1divypıq0ugF0pτqDj
0
ĂMijq in Yjˆs0,`8r,

(5.6)

with boundary conditions given by

8
ÿ

i“0

εi`1κ0

´

ĂMie ´ ĂMic

¯

“ ε´1Dj
0∇y

ĂM0j ¨ ν

` ε0
´

Dj
0∇y

ĂM1j `Dj
0∇x

ĂM0j ´ ε
α´γıq0ugF0Dj

0
ĂM0j

¯

¨ ν

`

8
ÿ

i“1

εi
´

Dj
0∇y

ĂMi`1j `Dj
0∇x

ĂMij ´ ε
α´γıq0ugF0Dj

0
ĂMij

¯

¨ ν on Γjˆs0,`8r, (5.7)

and
8
ÿ

i“0

r
Dj

0

´

εi∇x
ĂMij ` ε

i´1∇y
ĂMij ´ ε

i`α´γıq0F0pτqĂMijug

¯

¨ ν
z
“ 0 on Γmˆs0,`8r, (5.8)

and initial conditions

ĂM0jp¨, ¨, 0q “Mini, and ĂMijp¨, ¨, 0q “ 0 @i ą 0 (5.9)

where we recall that Mini is a real constant (see Chapter 1).
Using the asymptotic expansion of ĂMε in (5.5), the signal attenuation for the periodicity box

can be written as

SpTE , q,ugq :“
SpTE , q,ugq

Sp0, q,ugq
“

8
ÿ

i“0

εi
ˆ
ż

Ye

ĂMiepx,ĂTEqdx`

ż

Yc

ĂMicpx,ĂTEqdx

˙

S0
, (5.10)

where S0 “

ż

Ye

Mini `

ż

Yc

Mini.

5.2 Parameters limitations

As our purpose is to find an accurate approximation of the (time-dependent) ADC for low
b-values, whose scaling is

b “ ε3α´2γb0 , (5.11)

where b0 is independent from ε, we require

3α´ 2γ ą 0. (5.12)
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We also want the time to be small since for long-time a sufficiently good model was already
retrieved using the same techniques (the FPK model [42]). Hence we require that

α ą 0. (5.13)

We recall that the choice that corresponds to the FPK model in [42], is α “ γ “ 0 and it gives
a constant ADC.

Since if b is too small it is possible to end up again with the microscopic model given by
the Bloch-Torrey PDE (5.2) (see Section 5.4.3), we impose the intensity of the gradient to be
strong, i.e.

γ ě 0. (5.14)

Looking at (5.6) and (5.7) we observe that, in order to have a well defined system of PDE
we also need

α ď 2. (5.15)

Indeed, if α ě 2, the term D0∇yM0j ¨ν in the boundary condition (5.7) will appear in a different
problem with respect to the corresponding term divy pD0∇yM0jq in the PDE (5.6). Thus, for
the problem containing the term divy pD0∇yM0jq we would not have the appropriate boundary
conditions and the system would not make sense mathematically.

Using (5.12), (5.14) and (5.15) we obtain that
#

0 ď γ ă 3
2 if α “ 1,

0 ď γ ă 3 if α “ 2.
(5.16)

We observe that a priori α, γ P Q
Ş

r0,`8r plus the constraints (5.13-5.16). Thus, also
i P Q

Ş

r0,`8r. In particular, the numerator of i varies always in N and the denominator is
chosen according to the values of α and γ to be able to match all the combinations of these two
parameters present in (5.6-5.7).

5.3 Diffusion time scale comparable with the cell size α “ 1

The first idea is to consider α “ 1 and find γ that respects (5.16) and lead to a time
dependent ADC. A reasonable choice appears to be γ “ 1. In this way b “ εb0. Repeating the
same computations in Section 4.2.3, one finds that M0j solves

$

’

’

&

’

’

%

´divy pD0∇yM0jq “ 0 in Yj
D0∇yM0j ¨ ν “ 0 on Γm

M0e is Y ´ periodic.

(5.17)

This implies that M0j , j P t e, c u does not depend on y. Going on, M1j solves
$

’

’

’

’

&

’

’

’

’

%

´divy pD0∇yM1j `D0∇xM0j ´ ıq0F0D0ugM0jq “

´divx pD0∇yM0jq `
B
BτM0j ` ıq0F0D0ug ¨∇yM0j “ 0 in Yj

D0∇yM1j ¨ ν `D0∇xM0j ¨ ν ´ ıq0F0D0M0jug ¨ ν “ 0 on Γm

M1e is Y ´ periodic.

(5.18)
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Since M0j , j P t e, c u does not depend on y, the above problem simplifies to
$

’

’

&

’

’

%

´divy pD0∇yM1j `D0∇xM0j ´ ıq0F0D0ugM0jq “ ´
B
BτM0j in Yj

D0∇yM1j ¨ ν `D0∇xM0j ¨ ν ´ ıq0F0D0ugM0j “ 0 on Γm

M1e is Y ´ periodic.

(5.19)

Applying the Green’s theorem we get that there exists a unique solution only if

´

ż

Yj

B

Bτ
M0j “ 0, (5.20)

which, since M0j , j P t e, c u, does not depend on y, implies that M0j does not depend on time.
Thus, using (5.9),

M0jpx,y, τq “Mini. (5.21)

Using the cell problem introduced in [42], we can also write, for j P t e, c u,

M1jpx,y, τq “ p∇xM0jpx,y, τq ´ ιq0F0M0jpx,y, τqugq ¨ ρ
jpyq, (5.22)

where for k “ 1, . . . , d (with d the dimension of the problem)
$

&

%

´div
´

Dj
0∇ρjk `D0ek

¯

“ 0 in Yj

Dj
0∇ρjk ¨ ν `D0ek ¨ ν “ 0 on Γm,

(5.23)

and is such that
ż

Yj

ρjkpyqdy “ 0. (5.24)

Moreover, if we assume that Mini is constant as we discussed in Chapter 1, we also have that
M0j is independent from x. Going on, M2j is solution of
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´divy pD0∇yM2j `D0∇xM1j ´ ıq0F0D0ugM1jq “

´divx pD0∇yM1j `D0∇xM0j ´ ıq0F0D0ugM0jq

` B
BτM1j ` ıq0F0D0ug ¨ p∇yM1j `∇xM0jq ` q

2
0F

2
0 D0ug ¨ ugM0j “ 0 in Yj

D0∇yM2j ¨ ν `D0∇xM1j ¨ ν ´ ıq0F0D0M1jug ¨ ν “ κ0JM0jK on Γm

M2e is Y ´ periodic.

(5.25)

Applying again the Green’s theorem and remembering thatM0jpx,y, τq “Mini, thus JM0jK “ 0,
we obtain

ż

Yj

ˆ

B

Bτ
M1j ` ıq0F0D0ug ¨∇yM1j ` q

2
0F

2
0 D0ug ¨ ugM0j

˙

“ 0. (5.26)

Using the above expression and (5.22) we get

1

|Yj |

ż

Yj

M1jpx,y, τq “ ´q
2
0D

j
ug ¨ ugMini

ż τ

0
F 2

0 pξqdξ (5.27)
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where

D
j
kl :“

1

|Yj |

ż

Yj

´

∇ρjkpyq ¨ el ` ek ¨ el

¯

dy (5.28)

with ei the i-th vector of the canonical basis of Rd. The resulting signal attenuation is then

SpTE , q,ugq “
1

S0

ÿ

j“e,c

˜

ż

Yj

M0jpx,y, τq ` ε

ż

Yj

M1jpx,y, τq

¸

`Opε2q

“
ÿ

j“e,c

vj

˜

1´ εq2
0

ż

ĂTE

0
F 2

0 pξqdξD
j
ug ¨ ug

¸

`Opε2q

“
ÿ

j“e,c

vj

´

1´ bD
j
ug ¨ ug

¯

`Opε2q.

where ve and vc are the volume fractions of the compartments Ye and Yc respectively. We observe
that the resulting apparent diffusion coefficient,

ADC “ veD
e
ug ¨ ug ` vcD

c
ug ¨ ug, (5.29)

is the same as the one in the FPK model ([42]) described in Section 2.2.3. In particular, it is
time-independent.

Keeping α “ 1, we also tried other values of γ which respected the conditions in Section
5.2. We do not report the result here because we always obtained a time-independent effective
diffusion coefficient. Inspired by the classical definition of short-time regime (see Section 2.1.2),
my conjecture was then that, if we consider a scaling in time which is comparable with the length
scaling, all the obtained models describe the phenomenon when diffusion is already Gaussian
and the apparent diffusion coefficient is constant. The obvious consequence was then to increase
the value of α.

5.4 Diffusion time scale shorter than the cell size α “ 2

Among the values of α ą 1 that satisfy the conditions (5.15) and (5.16), the most convenient
choice to render the equation for M0j time dependent is α “ 2 as we had for the model in
Chapter 4. Mathematically, this choice of α guarantees the coupling between the derivation in
time and the divergence operator in y in equation (5.6). Indeed, we can rewrite (5.6) as

0 “
8
ÿ

i“0

εi´2 B

Bτ
ĂMij ` ε

i`4´2γq2
0ug ¨ ugF0pτq

2Dj
0
ĂMij

` εi`2´γıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq ´ ε
idivxpDj

0∇x
ĂMijq

´ εi´1divxpDj
0∇y

ĂMijq ´ ε
i´1divypDj

0∇x
ĂMijq ´ ε

i´2divypDj
0∇y

ĂMijq

` εi`2´γdivxpıq0ugF0pτqDj
0
ĂMijq ` ε

i`1´γdivypıq0ugF0pτqDj
0
ĂMijq in Yjˆs0, TE{ε2r,

(5.30)
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and (5.7) as
8
ÿ

i“0

εi`1κ0

´

ĂMie ´ ĂMic

¯

“ ε´1Dj
0∇y

ĂM0j ¨ ν

` ε0
´

Dj
0∇y

ĂM1j `Dj
0∇x

ĂM0j ´ ε
2´γıq0ugF0Dj

0
ĂM0j

¯

¨ ν

`

8
ÿ

i“1

εi
´

Dj
0∇y

ĂMi`1j `Dj
0∇x

ĂMij ´ ε
2´γıq0ugF0Dj

0
ĂMij

¯

¨ ν on Γjˆs0, TE{ε
2r, (5.31)

Now for γ “ 2 we obtain the same model as Chapter 4 but, for our assumptions in Section
5.2, γ P r0, 3r, so it is interesting to see what happens in the limit cases γ “ 0, γ “ 1 and γ “ 3

which identifies three regimes of strength for the applied magnetic field: moderate intensity,
relatively strong intensity and very strong intensity.

5.4.1 Moderate intensity: γ “ 0

With this choice of parameters the scaling on b-value is

b “ ε6b0 (5.32)

and the asymptotic PDE problem takes the form
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

8
ÿ

i“0

εi
B

Bτ
ĂMij ` ε

i`6q2
0ug ¨ ugF0pτq

2Dj
0
ĂMij ´ ε

i`2divxpDj
0∇x

ĂMijq

´εi`1divxpDj
0∇y

ĂMijq ´ ε
i`1divypDj

0∇x
ĂMijq ´ ε

idivypDj
0∇y

ĂMijq

`εi`4divxpıq0ugF0pτqDj
0
ĂMijq ` ε

i`3divypıq0ugF0pτqDj
0
ĂMijq

`εi`4ıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq “ 0 in Yjˆs0, TE{ε2r,
8
ÿ

i“0

εi
´

Dj
0∇y

ĂMij ` ε
i`1Dj

0∇x
ĂMij ´ ε

i`3ıq0ugF0Dj
0
ĂMij

¯

¨ ν “

8
ÿ

i“0

εi`2κ0

´

ĂMie ´ ĂMic

¯

on Γjˆs0, TE{ε
2r,

8
ÿ

i“0

r
Dj

0

´

εi`1∇x
ĂMij ` ε

i∇y
ĂMij ´ ε

i`3ıq0F0pτqĂMijug

¯

¨ ν
z
“ 0 on Γmˆs0, TE{ε

2r,

ĂM0jp¨, ¨, 0q “Mini, and ĂMijp¨, ¨, 0q “ 0 @i ą 0 in Yj
Mie is Y ´ periodic @i.

(5.33)
Matching the powers of ε, for j “ e, c, we obtain

M0jpx,y, τq “Mini,

M1jpx,y, τq “M2jpx,y, τq “ 0

M3jpx,y, τq “ ı
d
ÿ

l“1

q0Mini ω
j
l pyqpel ¨ ugq

M4jpx,y, τq “ 0,
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and M5jpx,y, τq solves

$

&

%

B

Bτ
M5j ´ divy pD0∇yM5jq “ 0 in Yj ˆ r0, TE{ε2s

D0∇yM5j ¨ ν “ κ0JM3jK om Γm ˆ r0, TE{ε
2s

with
ş

Yj
M5j “ 0. For M6jpx,y, τq we obtain the following compatibility condition

ż

Yj

ˆ

B

Bτ
M6jpx,y, τq ` ıq0F0D0∇yM3jpx,y, τq ` q

2
0ug ¨ ugF0pτq

2Dj
0Mini ¨ ug

˙

dy “ 0,

where el is the l-th element of the Rd canonical basis and ωjl py, τq, for l “ 1, . . . , d is solution of

$

&

%

B

Bτ
ωjl ´ divy

´

D0∇yω
j
l ´ F0D0el

¯

“ 0 in Yj ˆ r0, TE{ε2s

D0∇yω
j
l ¨ ν ´ F0D0el ¨ ν “ 0 on Γm ˆ r0, TE{ε

2s.
(5.34)

We can thus write the signal attenuation as

SpTE , q,ugq “
1

S0

ÿ

j“e,c

6
ÿ

i“1

εi
ż

Yj

Mijpx,y, τq `Opε
7q

“
ÿ

j“e,c

vj

˜

1´ εq2
0

ż

ĂTE

0
F 2

0 pξqdξD
j
pĂTEqug ¨ ug

¸

`Opε7q

“
ÿ

j“e,c

vj

´

1´ bD
j
pĂTEqug ¨ ug

¯

`Opε7q,

where ve and vc are the volume fractions of the compartments Ye and Yc respectively and

D
j
pĂTEqkl “

1

|Yj |

ż

Yj

Dj
0 ek ¨ el ´

1
ş

ĂTE
0 F 2

0

ż

ĂTE

0

˜

F0
1

|Yj |

ż

Yj

Dj
0

B

Byl
ωjk

¸

, k, l “ 1, . . . , d (5.35)

is the apparent diffusion tensor. We observe that this model corresponds to the one with
α “ γ “ 2 derived in Chapter 4 but its regime of validity is for smaller b-values because
the scaling in the gradient intensity is smaller.

5.4.2 Relatively strong intensity: γ “ 1

With this choice of parameters the scaling on b-value is

b “ ε4b0 (5.36)
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and the asymptotic PDE problem takes the form
$
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’

%

8
ÿ

i“0

εi
B

Bτ
ĂMij ` ε

i`4q2
0ug ¨ ugF0pτq

2Dj
0
ĂMij ´ ε

i`2divxpDj
0∇x

ĂMijq

´εi`1divxpDj
0∇y

ĂMijq ´ ε
i`1divypDj

0∇x
ĂMijq ´ ε

idivypDj
0∇y

ĂMijq

`εi`3divxpıq0ugF0pτqDj
0
ĂMijq ` ε

i`2divypıq0ugF0pτqDj
0
ĂMijq

`εi`3ıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq “ 0 in Yjˆs0, TE{ε2r,
8
ÿ

i“0

εi
´

Dj
0∇y

ĂMij ` ε
i`1Dj

0∇x
ĂMij ´ ε

i`2ıq0ugF0Dj
0
ĂMij

¯

¨ ν “

8
ÿ

i“0

εi`2κ0

´

ĂMie ´ ĂMic

¯

on Γjˆs0, TE{ε
2r,

8
ÿ

i“0

r
Dj

0

´

εi`1∇x
ĂMij ` ε

i∇y
ĂMij ´ ε

i`2ıq0F0pτqĂMijug

¯

¨ ν
z
“ 0 on Γmˆs0, TE{ε

2r,

ĂM0jp¨, ¨, 0q “Mini, and ĂMijp¨, ¨, 0q “ 0 @i ą 0 in Yj
Mie is Y ´ periodic @i.

(5.37)
Matching the powers of ε, for j “ e, c, we obtain

M0jpx,y, τq “Mini,

M1jpx,y, τq “ 0

M2jpx,y, τq “ ı
d
ÿ

l“1

q0Mini ω
j
l pyqpel ¨ ugq

M3jpx,y, τq “ 0

and the compatibility condition
ż

Yj

ˆ

B

Bτ
M4jpx,y, τq ` ıq0F0D0∇yM2jpx,y, τq ` q

2
0ug ¨ ugF0pτq

2Dj
0Mini ¨ ug

˙

dy “ 0,

where el is the l-th element of the Rd canonical basis and ωjl py, τq, for l “ 1, . . . , d and j “ e, c,
is solution of the cell problem in (5.34). For the signal attenuation we thus obtain

SpTE , q,ugq “
1

S0

ÿ

j“e,c

4
ÿ

i“1

εi
ż

Yj

Mijpx,y, τq `Opε
5q

“
ÿ

j“e,c

vj

˜

1´ εq2
0

ż

ĂTE

0
F 2

0 pξqdξD
j
pĂTEqug ¨ ug

¸

`Opε5q

“
ÿ

j“e,c

vj

´

1´ bD
j
pTEqug ¨ ug

¯

`Opε5q,

where ve and vc are the volume fractions of the compartments Ye and Yc respectively and D
j
pĂTEq

is defined in (5.35). This model corresponds again to the one derived for α “ γ “ 2 in Chapter
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4 but is valid for smaller b-values because the scaling in the gradient intensity is smaller. It is
then interesting to see what happens in the limit case of very strong gradient γ “ 3.

5.4.3 Very strong intensity: γ “ 3

With this choice of parameters the scaling on b-value is

b “ ε0b0 (5.38)

and the asymptotic PDE problem takes the form
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%

8
ÿ

i“0

εi
B

Bτ
ĂMij ` ε

iq2
0ug ¨ ugF0pτq

2Dj
0
ĂMij ´ ε

i`2divxpDj
0∇x

ĂMijq

´εi`1divxpDj
0∇y

ĂMijq ´ ε
i`1divypDj

0∇x
ĂMijq ´ ε

idivypDj
0∇y

ĂMijq

`εi`1divxpıq0ugF0pτqDj
0
ĂMijq ` ε

idivypıq0ugF0pτqDj
0
ĂMijq

`εi`1ıq0ugF0pτqDj
0p∇x

ĂMij ` ε
´1∇y

ĂMijq “ 0 in Yjˆs0, TE{ε2r,
8
ÿ

i“0

εi
´

Dj
0∇y

ĂMij ` ε
i`1Dj

0∇x
ĂMij ´ ε

iıq0ugF0Dj
0
ĂMij

¯

¨ ν “

8
ÿ

i“0

εi`2κ0

´

ĂMie ´ ĂMic

¯

on Γjˆs0, TE{ε
2r,

8
ÿ

i“0

r
Dj

0

´

εi`1∇x
ĂMij ` ε

i∇y
ĂMij ´ ε

iıq0F0pτqĂMijug

¯

¨ ν
z
“ 0 on Γmˆs0, TE{ε

2r,

ĂM0jp¨, ¨, 0q “Mini, and ĂMijp¨, ¨, 0q “ 0 @i ą 0 in Yj
Mie is Y ´ periodic @i.

Now if we write the problem for ĂM0j we find exactly the one in (5.2) with κ “ 0. This means that
this scaling corresponds exactly to the microscopic model, i.e. with this choice of parameters
the homogenization does not help in simplifying the problem.

Our conjecture is then that, after having fixed the scaling of time α “ 2, for all choice of γ
which gives us a small scaling in b-value (i.e. γ ă 3) we retrieve the same model as in Chapter
4. Physically, this means that, for a scaling on time which is twice smaller than the scaling on
space, we find the same models for every choice of the strength of the gradient which maintain
us in a small regime of b-value (that is the regime under which we defined the ADC in Section
2.1.5).

Furthermore, we observe that this new model is also valid for relatively long time. Indeed, if
ĂTE is sufficiently long, the problem in (5.34) can be approximated with the steady state problem
(5.23) and thus we find the same diffusion tensor as in the FPK model (5.28) which is time-
independent ([42]). This consists in a mathematical reason of why the H-ADC is valid also for
relatively long time. Moreover, we observe that, all the model described in Section 5.4 that give
and expression of ADC which coincides with the H-ADC, verify also the property gF ptq “ Opεq

that was used in Section 4.4 to recover the H-ADC trough linearization. Thus, all these models
are equivalent to describe the ADC but they better identify in which regime the H-ADC is
valid.
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As discussed in Chapter 4, the models obtained with α “ 2 are independent from the
membrane permeability. This happens because, considering Mini a constant independent from
space, in the asymptotic model, we loose the information on the surface, since JMiniKΓm “ 0.
Hereafter, we report the results in which Mini is piecewise constant and assumes two different
values in the intra-cellurar and extra-cellular space. We shall see that even if the asymptotic
model depend on κ0, the signal model remains independent from κ0.

5.5 Mini space dependent for α “ 2

We consider α “ 2 because it is the choice for which we have a coupling between the derivative
in time and the divergence with respect to the y variable in (5.6). This is a case for which we
are sure that we can obtain a time dependent ADC. Nevertheless, if one is interested, a similar
analysis could be done also for the other choices of α.

We define Mini piecewise constant, i.e.

Minipxq “ ĂMinipx,yq “

#

ce if y P Ye
cc if y P Yc,

(5.39)

where ce and cc are two different positive constants. We then consider the asymptotic equation
given in (5.30) along with the boundary conditions in (5.31) and the new initial conditions

ĂM0jpx,y, 0q “ cj and ĂMijpx,y, 0q “ 0 @i ą 0. (5.40)

If we impose γ “ 2 , then we have

ĂM0jpx,y, τq “ cj

ĂM1jpx,y, τq “ ı
d
ÿ

l“1

q0cj ω
j
l py, τqpel ¨ ugq

and ĂM2jpx,y, τq solves,
$
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´divy

`

Dj
0∇y

ĂM2j ´ ıq0ugF0Dj
0
ĂM1j

˘

“ ´
B

Bτ
ĂM2j

´q2
0F

2
0 Dj

0
ĂM0j ´ ıq0ugF0Dj

0∇y
ĂM1j in Yjˆs0, T {ε2r,

Dj
0∇y

ĂM2e ¨ ν ´ ıq0ugF0De
0
ĂM1e ¨ ν “ κ0 pce ´ ccq on Γmˆs0, T {ε

2r,

Dc
0∇y

ĂM2c ¨ ν ´ ıq0ugF0Dc
0
ĂM1c ¨ ν “ κ0 pcc ´ ceq on Γmˆs0, T {ε

2r,

ĂM2jp¨, 0q “ 0 in Yj ,
ĂM2j is Y -periodic.

(5.41)

Thus, the imaginary part of ĂM2j remains equal to 0, but for the real part, applying the Green’s
theorem we obtain

ż

Ye

ˆ

B

Bτ
ĂM2e ` q

2
0F

2
0 De

0
ĂM0e ` ıq0ugF0De

0∇y
ĂM1e

˙

“

ż

Γm

κ0 pce ´ ccq ,

ż

Yc

ˆ

B

Bτ
ĂM2c ` q

2
0F

2
0 Dc

0
ĂM0c ` ıq0ugF0Dc

0∇y
ĂM1c

˙

“

ż

Γm

κ0 pcc ´ ceq .
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Integrating in time, and remembering the expression of ĂM1jpx,y, τq, the above equations become
ż

Ye

ĂM2e “

ż t

0

ż

Ye

`

´q2
0F

2
0 De

0ce ´ q
2
0ugF0De

0∇yω
epy, τq ¨ ugce

˘

` t

ż

Γm

κ0 pce ´ ccq ,

ż

Yc

ĂM2c “

ż t

0

ż

Yc

`

´q2
0F

2
0 Dc

0cc ´ q
2
0ugF0Dc

0∇yω
cpy, τq ¨ ugcc

˘

´ t

ż

Γm

κ0 pce ´ ccq .

Since the two boundary conditions have opposite signs, writing the signal attenuation we obtain
again

SpTE , q,ugq “
ÿ

j“e,c

θj

´

1´ bD
j
pTEqug ¨ ug

¯

`Opε3q, θj “
cj |Yj |

ce|Ye| ` cc|Yc|

where D
j
pTEq is defined in (5.35). We therefore obtain the same expression as in the case

Mini “M0.

If we impose γ “ 1 , then we obtain

M0jpx,y, τq “ cj ,

M1jpx,y, τq “ 0

M2jpx,y, τq “ ı
d
ÿ

l“1

q0cj ω
j
l py, τqpel ¨ ugq ` ψ

jpx,y, τq

M3jpx,y, τq “ 0

where ψjpx,yq solves
$

’

’

’

’

’

&

’

’

’

’

’

%

B

Bτ
ψj ´ divy

`

D0∇yψ
j
˘

“ 0 in Yjˆs0, T {ε2r

D0∇yψ
e ¨ ν “ κ0 pM0e ´M0cq on Γmˆs0, T {ε

2r

D0∇yψ
c ¨ ν “ κ0 pM0c ´M0eq on Γmˆs0, T {ε

2r

ψjpy, 0q “ 0 in Yj

(5.42)

and for M4jpx,y, τq we obtain
ż

Ye

ĂM4e “

ż t

0

ż

Ye

`

´q2
0F

2
0 De

0ce ´ ıq0ugF0De
0∇yM2e ¨ ug

˘

`

ż t

0

ż

Γm

κ0 pM2e ´M2cq ,

ż

Yc

ĂM4c “

ż t

0

ż

Yc

`

´q2
0F

2
0 Dc

0cc ´ ıq0ugF0Dc
0∇yM2c ¨ ug

˘

´

ż t

0

ż

Γm

κ0 pM2e ´M2cq .

However, since the boundary conditions containing the jumps have opposite signs, ωj has zero
Yj-mean,

ş

Ye
ψe “ t

ş

Γm
κ0 pM0e ´M0cq and

ş

Yc
ψc “ ´t

ş

Γm
κ0 pM0e ´M0cq we end up with the

same signal attenuation

SpTE , q,ugq “
ÿ

j“e,c

θj

´

1´ bD
j
pTEqug ¨ ug

¯

`Opε5q, θj “
cj |Yj |

ce|Ye| ` cc|Yc|
,

where D
j
pTEq is defined in (5.35).
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If we impose γ “ 0 , then we obtain

M0jpx,y, τq “ cj ,

M1jpx,y, τq “ 0

M2jpx,y, τq “ ı
d
ÿ

l“1

q0cj ω
j
l py, τqpel ¨ ugq ` ψ

jpx,y, τq

M3jpx,y, τq “ 0

M4jpx,y, τq “ φjpx,y, τq

where ψj is defined in (5.42), φjpx,y, τq solves
$

’

’

’

’

’

&

’

’

’

’

’

%

B

Bτ
φj ´ divy

`

D0∇yφ
j
˘

“ 0 in Yjˆs0, T {ε2r

D0∇yφ
e ¨ ν “ κ0 pM2e ´M2cq on Γmˆs0, T {ε

2r

D0∇yφ
c ¨ ν “ κ0 pM2c ´M2eq on Γmˆs0, T {ε

2r

ψjpy, 0q “ 0 in Yj

(5.43)

M5jpx,y, τq solves
$

&

%

B

Bτ
M5j ´ divy pD0∇yM5j ´ ıq0F0D0M2jugq “ 0 in Yj ˆ r0, TE{ε2s

D0∇yM5j ¨ ν ´ ıq0F0D0M2jug ¨ ν “ κ0JM3jK on Γm ˆ r0, TE{ε
2s

(5.44)

and for M6jpx,y, τq we obtain the following conditions
ż

Ye

ĂM6e “

ż t

0

ż

Ye

`

´q2
0F

2
0 De

0ce ´ ıq0ugF0De
0∇yM3e ¨ ug

˘

`

ż t

0

ż

Γm

κ0 pM4e ´M4cq ,

ż

Yc

ĂM6c “

ż t

0

ż

Yc

`

´q2
0F

2
0 Dc

0cc ´ ıq0ugF0Dc
0∇yM3c ¨ ug

˘

´

ż t

0

ż

Γm

κ0 pM4e ´M4cq .

However applying the Green’s theorem to their systems of definition we obtain
ż

Ye

ψe “ t

ż

Γm

κ0 pM0e ´M0cq

ż

Yc

ψc “ ´t

ż

Γm

κ0 pM0e ´M0cq

ż

Ye

φe “

ż t

0

ż

Γm

κ0 pM2e ´M2cq

ż

Yc

φc “ ´

ż t

0

ż

Γm

κ0 pM2e ´M2cq

ż

Ye

M5e “

ż t

0

ż

Γm

κ0 pM3e ´M3cq

ż

Yc

M5c “ ´

ż t

0

ż

Γm

κ0 pM3e ´M3cq
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and thus we get again

SpTE , q,ugq “
ÿ

j“e,c

θj

´

1´ bD
j
pTEqug ¨ ug

¯

`Opε7q, θj “
cj |Yj |

ce|Ye| ` cc|Yc|

where D
j
pTEq is defined in (5.35).

This tells us that even if we take a piecewise constant initial condition with two different
values in the intracellular and extracellular space, and even if the single functions which compose
the signal have a different expression we end up with the same model for the signal attenuation.
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In Chapter 2, we have seen that we can define the apparent diffusion coefficient (ADC), or
effective diffusion coefficientDeff, in terms of the mean square displacement (MSD). In particular,
to adapt the definition of the apparent diffusion coefficient to the non-narrow pulse case, in
Section 2.1.5, we made the following mathematical definition:

ADCug :“ ´
1

γ2
şTE
0 F ptq2dt

B

Bg2
ln

ˆ

SpTEq

S0

˙

ˇ

ˇ

ˇ

ˇ

ˇ

g“0

. (6.1)

We have also seen that, in the dMRI community, the above quantity is fitted using the experi-
mental MRI signal at several b (see Section 2.1.5). We remark again that the ADCug defined in
the above formula depends on the gradient direction ug and the temporal profile fptq but not
on the gradient amplitude. In this Chapter we restrict ourselves to PGSE time profile defined
in Section 2.1 and, with the phrase “diffusion time-dependent”, we actually mean dependent on
both the PGSE parameters ∆ and δ.

The motivation of our work is the experimentally observed phenomenon (see [160] and the
references contained there) that the ADC depends on ∆ (and δ in the non-narrow pulse case),
leading to the need to characterize the time-dependent ADC in terms of tissue-related quantities
over a wide range of diffusion time regimes. The ultimate goal is of course the estimation of
these tissue-related quantities from the measured dMRI signal.

In this Chapter, we focus on the case of finite domains, where the membrane permeability
is small enough to have negligible effect on the effective diffusion coefficient, which is related to
the first order moment of the dMRI signal in the b-value. We note that this does not exclude
the permeability from having an effect on the higher order moments of the signal. For the case
where the permeability does affect the ADC, the analysis is more difficult and we refer the
reader to [37, 77, 102, 175, 179] for results on periodic media and to [29, 55, 138, 139, 140] on
more general heterogeneous media, not necessarily periodic.
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As we have seen in Chapter 1, there exist several results concerning the apparent diffusion
coefficient for finite domains where the membrane permeability is negligible. In the short time
regime, the effective diffusion coefficient for a single domain is reduced from the free diffusion
coefficient D0 by the presence of the cell membranes that affects only the molecules in the
adjacent layer. The thickness of this layer is of the order of the diffusion length

?
D0t [99],

where D0 is the bulk diffusion coefficient. Calculations in [129, 130] show

Deff
shortptq “ D0

ˆ

1´
4

3
?
π

S

dV

a

D0t

˙

, (6.2)

where d is the spatial dimension and S{V is the surface to volume ratio. This result was extended
to include higher order terms accounting for permeable membranes, surface relaxation and mean
curvature [103, 138]. It was also shown that, in the case of anisotropic media subjected to a
linear gradient with direction ug, one should replace S

dV above by
ş

BΩpug¨νq2dx

|Ω| [11, 63]. In the long
time limit, the spins explore the whole available space of the finite domain and then their mean
square displacement saturates while the effective diffusion coefficient decreases as ∆ increases.
For an isolated cell of a typical size R the diffusion becomes Gaussian as was shown in [133, 162].
In the case of the PGSE sequence in the narrow pulse limit one gets

Deff
longp∆q « C

R2

∆
, (6.3)

where C is a geometrical constant (for example, C “ 1{4 for the reflecting cylinder and C “ 1{12

for a 1D configuration [30, 63]).
Finally, an approach that is closely related to the work of this Chapter is the “matrix formal-

ism” approach used to describe restricted diffusion in bounded domains [15, 63, 64, 65]. There
one considers the applied diffusion-encoding magnetic field as a perturbation of the Laplace
operator and the magnetization is decomposed on the basis of Laplacian eigenfunctions. In con-
trast, our model in Chapter 4 was derived using a certain scaling of the membrane permeability
with respect to other physical parameters and thus is not limited to impermeable domains . Our
derivation justifies neglecting the membrane permeability for the choice of scaling that we have
made. In addition, since we have formulated the time-dependent effective diffusion coefficient as
the solution of a diffusion equation rather than directly in the eigenfunction basis, we have the
freedom to analyze the solution of the resulting diffusion equation using both the eigenfunction
representation as well as the layer potential representation according the relevant time regime
under consideration.

The major result of this Chapter is the derivation of the new short time short pulse formula
(SPST) that account for the duration of the pulses. This formula is derived using the single
layer potential to rewrite the solution of the homogeneous diffusion equation in the H-ADC
model. In particular, using an approximation of the single layer potential that is valid at short
time, we find a formula which depends on both the duration of the pulses and the delay between
them. This formula extend then the well known short-time formula in [130] to the case of not
narrow pulses. Using the eigenfunctions expansion to represent the solution of the homogeneous
diffusion equation in the H-ADC model, we recover instead the same expression of the “matrix
formalism”. We call it finite pulse long time (FPLT) formula because form the simulations we
see that it approximates very well the solution with a limited number of eigenvalues when the
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pulses and the delay between them are both long. Finally, supposing the pulses sufficiently short
and the time delay between them long, we mix the two approximations using the single layer
potential during the pulses and the eigenfunctions approximations between them and we call
it short pulse long-time formula (SPLT). This last formula is particularly interesting because
it contains a term that depends on the surface over volume ratio and terms that depend on
the eigenvalues and first moment of the eigenfunctions. It gives then more information on the
geometry than the SPST which contains only the surface over volume ration or the FPLT which
contains only the eigenvalues and the first moment of the eigenfunctions.

This Chapter is organized as follows. In Section 6.1 we summarize the model of the effective
diffusion coefficient derived in Chapter 4. In Section 6.2 we represent the solution of the resulting
diffusion equation using the eigenfunction basis (FPLT), the single layer potential (SPST), or
a mix of single layer potential and eigenfunctions (SPLT), and discuss the regime where each
representation is advantageous. In Section 6.3 we provide the formulas for the average of the
effective diffusion coefficient when the dMRI signal is measured along multiple diffusion-encoding
gradient directions. In Section 6.4 we validate our analytical results with numerical simulations
on two-dimensional geometries. Section 6.5 contains our conclusions.

6.1 Effective diffusion coefficient in finite domains

In Chapter 4, we obtained an homogenized model by starting from the Bloch-Torrey equation
using the following scaling relationship between the time (∆ and δ), the biological cell membrane
permeability (κ), the diffusion-encoding magnetic field gradient strength (g), and a periodicity
length of the cellular geometry (L):

L “ Opεq, κ “ Opεq, g “ Opε´2q, t∆, δu “ Opε2q,

where ε is a non-dimensional parameter. It was shown that with this choice, there is no coupling
between the different geometrical compartments in the g2 term which gives rise to the effective
diffusion coefficient. The total effective diffusion coefficient is the sum of the effective diffusion
coeffcient in each geometrical compartment weighted by its volume fraction. Thus, in this
Chapter we are justified in considering each compartment separately.

According to our model, the effective diffusion coefficient in the compartment Ω can be
obtained in the following way:

Deff
ug
“ D0 ´

D0
şTE
0 F ptq2dt

ż TE

0
F ptq hptq dt, (6.4)

where
hptq “

1

|Ω|

ż

Ω
ug ¨∇ωpx, tq (6.5)

is a quantity related to the directional gradient of a function ω that is the solution of the
homogeneous diffusion equation with Neumann boundary condition and zero initial condition:

B

Bt
ωpx, tq ´∇ pD0∇ωpx, tqq “ 0, x P Ω, (6.6)

D0∇ωpx, tq ¨ νpxq “ D0F ptqug ¨ νpxq, x P BΩ, (6.7)

ωpx, tq “ 0, x P Ω, (6.8)
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ν is the outward normal and t P r0, TEs. We can see that if hptq is close to F ptq, then Deff
ug

is
close to 0.

In Chapter 4, we imposed periodic boundary conditions on the boundary of the voxel. In this
Chapter, we are interested in analyzing (6.6) for spatially finite compartments, which is relevant
to diffusion inside biological cells. It is not necessary to impose periodic boundary conditions on
the sides of the imaging voxel if we consider only cells that do not touch the sides. In addition,
in this Chapter, we will focus on the PGSE time profile.

6.2 Solution of the model

Defining the right hand side of the Neumann boundary condition as

βpy, tq :“ D0F ptq ug ¨ νpyq, (6.9)

we will use the following two equivalent expressions for hptq:

hptq “
1

|Ω|

ż

Ω
ug ¨∇ωpx, tqdx “

1

|Ω|

ż

Γ
ωpy, tq pug ¨ νpyqq dsy, (6.10)

where the second expression can be obtained by applying the divergence theorem to (6.5). We
observe that the first expression uses values of the gradient of ω inside the domain while the
second uses the values of ω on the boundary. Each expression will have advantages depending
on whether we use the eigenfunctions of the Laplace operator or layer potentials to represent ω.

6.2.1 Eigenfunctions representation (finite pulse long-time formula, FPLT)

Writing ω as the sum
ωpx, tq “ rωpx, tq ` F ptq x ¨ ug, (6.11)

where rωpx, tq satisfied the diffusion equation with a forcing term and homogeneous boundary
condition:

B

Bt
rωpx, tq ´∇ pD0∇rωpx, tqq “ ´fptqx ¨ ug, x P Ω, (6.12)

D0∇rωpx, tq ¨ νpxq “ 0, x P Γ, (6.13)

rωpx, tq “ 0, x P Ω, (6.14)

it is well-known that rωpx, tq can be expanded in the basis of Laplace eigenfunctions. Let φnpxq
and λn be the eigenfunctions and eigenvalues associated to the Laplace operator with homoge-
neous Neumann boundary conditions:

´∇D0 p∇φnpxqq “ λnφnpxq, x PΩ,

D0∇φnpxq ¨ νpxq “ 0, x PΓ.

We can write rωpx, tq in the basis of the eigenfunctions as

rωpx, tq “ ´a0F ptq `
8
ÿ

n“1

p´anqφnpxq

ż t

0
e´D0λnpt´sqfpsqds, (6.15)
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where the coefficients are

a0 “

ż

Ω
x ¨ ugdx, an “

ż

Ω
x ¨ ugφnpxqdx,

which coincide with the first moments of the eigenfunctions in the ug direction.
Finally, the solution to the diffusion equation is

ωpx, tq “ px ¨ ug ´ a0qF ptq `
8
ÿ

n“1

p´anqφnpxq

ż t

0
e´D0λnpt´sqfpsqds (6.16)

and using properties of the eigenfunctions:
ż

Ω
φnpxqdx “

#

|Ω|, n “ 0

0, n ě 1,
(6.17)

and the divergence theorem:
ż

Ω
λnφn pug ¨ xq dx “

ż

Ω
∇φnpxq ¨ug dx´

ż

Γ
D0∇φnpxq ¨νug ¨νdsx “

ż

Ω
∇φnpxq ¨ug dx, (6.18)

we obtain

hptq “ F ptq `
8
ÿ

n“1

´
panq

2λn
|Ω|

ż t

0
e´D0λnpt´sqfpsqds. (6.19)

This leads to the final formula:

Deff
ug
“

8
ÿ

n“1

panq
2D0λn

|Ω|
şTE
0 F 2ptqdt

ż TE

0
F ptq

ˆ
ż t

0
e´D0λnpt´sqfpsqds

˙

dt. (6.20)

We remark that this formula is the same as the one obtained with the matrix formalism in [63].
In particular, if we consider PGSE sequence, we can rewrite (6.4) using the contribution of each
of the three intervals as

Deff
ug
“ D0 ´

¨

˚

˚

˚

˚

˝

D0

A

ż δ

0
t hptq dt

l jh n

I

`
D0

A

ż ∆

δ
δ hptq dt

l jh n

II

`
D0

A

ż ∆`δ

∆
p∆` δ ´ tq hptq dt

l jh n

III

˛

‹

‹

‹

‹

‚

, (6.21)

where

A “

ż TE

0
F 2ptqdt “ δ2

ˆ

∆´
δ

3

˙

, (6.22)

and in the first pulse

I “
D0δ

3

3A
`

1

|Ω|A

8
ÿ

n“1

panq
2

ˆ

´
δ2

2
´
δe´D0λnδ

D0λn
´
e´D0λnδ ´ 1

pD0λnq2

˙

, (6.23)

between the pulses

II “
D0δ

2p∆´ δq

A
`

1

|Ω|A

8
ÿ

n“1

´δpanq
2

D0λn

´

e´D0λn∆ ´ e´D0λnp∆´δq ´ e´D0λnδ ` 1
¯

, (6.24)
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and in the second pulse

III “
D0δ

3

3A
`

8
ÿ

n“1

´panq
2

D0λnA|Ω|

ˆ

δ ´
δ2D0λn

2
´ δe´D0λn∆ ` δe´D0λnp∆´δq

`
2e´D0λn∆ ´ 1` e´D0λnδ ´ e´D0λnp∆`δq ´ e´D0λnp∆´δq

D0λn

¸

. (6.25)

In the end, we obtain

Deff
ug
“

8
ÿ

n“1

´panq
2

D2
0λ

2
nδ

2
`

∆´ δ
3

˘

|Ω|

”

e´D0λnp∆`δq ` e´D0λnp∆´δq

´2
´

D0λnδ ` e
´D0λnδ ` e´D0λn∆ ´ 1

¯ı

(6.26)

and from now on we refer to it as finite pulse long-time formula (FPLT). We observe that in the
narrow pulse case (δ ! ∆), we obtain

Deff
ug
«

8
ÿ

n“1

panq
2

∆

´

1´ e´D0λn∆
¯

, (6.27)

which confirms that Deff
ug

approach its long time limit as 1{∆ inside finite domains. In particular,
for a 1D configuration of length L, a1 “

L2

12 and for a reflecting cylinder of radius R, a1 “
R2

4 ,
which confirm the results in [30, 63].

6.2.2 Layer potential representation (short pulse short-time formula, SPST)

The solution of the diffusion equation can be also represented using layer potentials [70].
This representation is more efficient than the eigenfunction representation at short diffusion
times. Since the PDE has a Neumann boundary condition, we choose to represent the solution
ωpx, tq “ Srµspx, tq as a single layer potential with a density µ defined on Γ,

Srµspx, tq “

ż t

0

1
a

4πpt´ τq
BSrµspx, t, τqdτ (6.28)

where we separated out the part of the integrand,

BSrµspx, t, τq ”

ż

Γ
D0 Gpx´ y, t´ τqµpy, τqdsy, (6.29)

that is analytic in pt´ τq. The Gpx, tq in the above equation is the fundamental solution of the
heat equation in free space given by

Gpx, tq “ p4πD0tq
´d{2 exp

˜

´‖x‖2

4D0t

¸

, x P Ω, t P r0, TEs, (6.30)

where d is the dimension of the problem. Automatically, the single layer potential satisfies

B

Bt
Srµspx, tq ´∇

`

D0∇Srµspx, tq
˘

“ 0, x P Ω, t P r0, TEs, (6.31)

Srµ, 0spxq “ 0, x P Ω. (6.32)



6.2. Solution of the model 117

The density µ will be chosen to satisfy the Neumann boundary condition:

lim
xÑx0PΓ

D0∇Srµspx, tq ¨ νpxq “ βpx0, tq, x0 P Γ, t P r0, TEs,

where βpx0, tq is defined in (6.9).
Given the jump discontinuity of the normal derivative of the single layer potential, the

integral equation to be solved for µ is the following:

D0

2
µpx0, tq `D0K

˚rµspx0, tq “ βpx0, tq, x0 P Γ, t P r0, TEs, (6.33)

where

K˚rµspx0, tq “

ż t

0

1
a

4πpt´ τq
BKrµspx

0, t, τqdτ. (6.34)

with

BKrµspx
0, t, τq ”

ż

Γ

´2px0 ´ yq ¨ νpyq

4D0pt´ τq
D0Gpx

0 ´ y, t´ τqµpy, τqdsy (6.35)

being analytic in pt´ τq.
To compute hptq from (6.10) we only need to evaluate ωpx0, tq “ Srµspx0, tq on the boundary

Γ. We write the density µ as the solution of (6.33):

µpx0, tq “
2

D0
p1` 2K˚q

´1 βpx0, tq, x0 P Γ, t P r0, TEs, (6.36)

and expand the operator p1` 2K˚q
´1:

µpx0, tq “
2

D0

`

1´ 2K˚ ` 4pK˚q2 ` . . .
˘

βpx0, tq, (6.37)

to obtain
µpx0, tq “

2

D0
βpx0, tq ´

4

D0
K˚rβspx0, tq ` higher order terms, (6.38)

which means

Srµspx0, tq “ S

„

2

D0
β



px0, tq ` S

„

´
4

D0
K˚rβs



px0, tq ` higher order terms. (6.39)

We will now compute the first term on the right hand side of the above equation to get an
approximate expression for ωpx0, tq “ Srµspx0, tq and we will compute the second term to get
an expression for the error. To do this we will use the following results concerning Srµs and
K˚rµs for small values of pt´ τq obtained (in 2 dimensions) in [69, 114] for the operator S :

BSrµspx
0, t, τq “ µpx0, tq `

ˆ

kpx0q2

4
µpx0, tq ` µtpx

0, tq ´ µsspx
0, tq

˙

pt´ τq `O
`

pt´ τq2
˘

(6.40)
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and for the operator K˚ :

BKrµspx
0, t, τq “

kpx0q

2
µpx0, tq `

1

8

„

16γssspx
0qµspx

0, tq ` 12γsspx
0qµsspx

0, tq

`4kpx0qµtpx
0, tq `

`

6γsssspx
0q ´ 15kpx0q3

˘

µpx0, tq



pt´ τq

`O
`

pt´ τq2
˘

,

(6.41)

where Γ is parametrised around x0 in the arc length parameter s,

ypsq “
1

2
γ20s

2 `
1

6
γ30s

3 `
1

24
γ40s

4 ` . . . . (6.42)

In the above, we have translated and rotated the x and y-axes so that the origin is at x0 and
the tangent of Γ at x0 is parallel to the x-axis. Specifically kpx0q “ γss is the curvature of Γ at
the point x0.

For the PGSE sequence, βpx0, tq assumes the following three expressions in the three time
intervals:

βpx0, tq “ D0ug ¨ νpx
0q

$

’

’

&

’

’

%

t 0 ă t ď δ,

δ δ ă t ď ∆,

∆` δ ´ t ∆ ă t ď ∆` δ.

(6.43)

First, using the definition (6.40) and the result (6.28) we obtain

S

„

2

D0
β



px0, tq “
4pD0q

1{2

3
?
π

ug ¨ νpx
0q

$

’

’

&

’

’

%

t3{2

t3{2 ´ pt´ δq3{2

t3{2 ´ pt´ δq3{2 ´ pt´∆q3{2

`O

$

’

’

&

’

’

%

t5{2 if 0 ă t ď δ

t5{2 ´ pt´ δq5{2 if δ ă t ď ∆

t5{2 ´ pt´ δq5{2 ´ pt´∆q5{2 if ∆ ă t ď ∆` δ

. (6.44)

Similarly, using the definition (6.34) and the result (6.41) we obtain

´
4

D0
K˚rβspx0, tq “ ´

4

D0

pD0q
3{2kpx0q

3
?
π

`

ug ¨ νpx
0q
˘

$

’

’

&

’

’

%

t3{2

t3{2 ´ pt´ δq3{2

t3{2 ´ pt´ δq3{2 ´ pt´∆q3{2

`O

$

’

’

&

’

’

%

t5{2 if 0 ă t ď δ

t5{2 ´ pt´ δq5{2 if δ ă t ď ∆

t5{2 ´ pt´ δq5{2 ´ pt´∆q5{2 if ∆ ă t ď ∆` δ

. (6.45)

To compute SrK˚rβsspx0, tq we cannot use the result (6.28) because K˚rβspx0, tq does not admit
a Taylor expansion in t. Instead, we use the definition of the single layer (6.29) applied to the
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density (6.45) and directly integrate to obtain

S

„

´
4

D0
K˚rβs



px0, tq “ ´
4

D0

D2
0

16
kpx0qpug ¨ νpx

0qq

$

’

’

&

’

’

%

t2

t2 ´ pt´ δq2

t2 ´ pt´ δq2 ´ pt´∆q2.

`O

$

’

’

&

’

’

%

t3 if 0 ă t ď δ,

t3 ´ pt´ δq3 if δ ă t ď ∆,

t3 ´ pt´ δq3 ´ pt´∆q3 if ∆ ă t ď ∆` δ.

(6.46)

Replacing the various expressions in (6.39) with the calculations we did above, we obtain the
approximation with the error bound:

Srµspx0, tq “
4pD0q

1{2

3
?
π

ug ¨ νpx
0q

$

’

’

&

’

’

%

t3{2

t3{2 ´ pt´ δq3{2

t3{2 ´ pt´ δq3{2 ´ pt´∆q3{2

´
D0

16
kpx0qpug ¨ νpx

0qq

$

’

’

&

’

’

%

t2 if 0 ă t ď δ

t2 ´ pt´ δq2 if δ ă t ď ∆

t2 ´ pt´ δq2 ´ pt´∆q2 if ∆ ă t ď ∆` δ

` higher order terms.

(6.47)

Now using (6.47) we compute the approximate expressions of hptq in each time-interval with
the corresponding errors in time. In the first interval we obtain

hptq “
1

|Ω|

ż

Γ
ωpx, tq pug ¨ νpxqq dsx “ P t3{2 `O

`

Perrt
2
˘

, (6.48)

where

P “
1

|Ω|

ż

Γ

ˆ

4

3
?
π

a

D0pug ¨ νpxqq
2

˙

dsx (6.49)

Perr “ ´
D0

4|Ω|

ż

Γ
kpxqpug ¨ νpxqq

2dsx (6.50)

and

I “
D0

δ2
`

∆´ δ
3

˘

ż δ

0
t hptq dt “

2D0P

7
`

∆´ δ
3

˘δ7{2 `O

˜

D0Perr
δ2

4
`

∆´ δ
3

˘

¸

. (6.51)

Between the pulses, we obtain

hptq “
1

|Ω|

ż

Γ
ωpx, tq pug ¨ νpxqq dsx “ P

´

t3{2 ´ pt´ δq3{2
¯

`O
`

Perrpt
2 ´ pt´ δq2q

˘

(6.52)

and

II “
D0

δ2
`

∆´ δ
3

˘

ż ∆

δ
δ hptq dt

“ ´
2

5

D0P
´

δ7{2 ´∆5{2δ ` p∆´ δq5{2 δ
¯

δ2
`

∆´ δ
3

˘ `O

˜

D0Perr
´δp∆´ δq `∆2 ´ δ2

∆´ δ
3

¸

(6.53)
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with P and Perr defined in (6.49) and (6.50) respectively. During the second pulse, we find

hptq “
1

|Ω|

ż

Γ
ωpx, tq pug ¨ νpxqq dsx

“ P
´

t3{2 ´ pt´ δq3{2 ´ pt´∆q3{2
¯

`O
`

Perrpt
2 ´ pt´ δq2 ´ pt´∆q2q

˘

(6.54)

and

III “
D0

δ2
`

∆´ δ
3

˘

ż ∆`δ

∆
p∆` δ ´ tq hptq dt

“
2

35

D0P

δ2
`

∆´ δ
3

˘

´

`

2∆3 `∆2δ ´ 8∆δ2 ` 5δ3
˘
?

∆´ δ ` 2 p∆` δq7{2

´4∆7{2 ´ 7∆5{2δ ´ 2δ7{2
¯

`O

˜

D0Perr
∆δ ´ 1

4δ
2

`

∆´ δ
3

˘

¸

. (6.55)

with P and Perr defined in (6.49) and (6.50) respectively. Finally, adding up the above expres-
sions, we obtain that using the layer potentials representation,

Deff
ug
“ D0

«

1´
4

35
P

1

δ2
`

∆´ δ
3

˘

´

´2
´

δ7{2 `∆7{2
¯

`p∆´ δq7{2 ` p∆` δq7{2
¯ı

`O

˜

D0Perr
∆2

∆´ δ
3

¸

, (6.56)

where Perr is defined in (6.50). From now on we will refer to this formula as short pulse short-time
formula (SPST).

We observe that, in the narrow pulse limit, δ ! ∆, the expression (6.56) reduces to the
formula given in [11, 63]:

Deff
ug
“ D0

´

1´ P
?

∆
¯

`OpD0Perr∆q

“ D0

ˆ

1´
4

3
?
π

a

D0∆

ş

Γpug ¨ νq
2dsx

|Ω|

˙

`OpD0Perr∆q,

and if Ω is an isotropic domain, we have

ş

Γpug
i ¨ νq2dsx

|Ω|
“
|Γ|

d|Ω|
, (6.57)

which is the surface over volume divided by the space dimension d, exactly the quantity obtained
in [130]. Hence our new formula in (6.56) is a correction of the results in [11, 63, 130] because it
takes into account the contribution of δ. This makes the new formula applicable for cases where
the narrow pulse assumption δ ! ∆ does not hold. Of course, this description still hold only for
short times due to the nature of the asympotic expansions for layer potentials.
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6.2.3 Mixed approximation (short pulse long-time formula, SPLT)

When the pulses are short but the delay between the pulses is not short (with respect to
diffusion in the finite domain), we use potential representation in the first and third intervals
and eigenfunction representation between the pulses.

In the first pulse, t P r0, δs, we have the same results as in the previous section, i.e. ωpx, tq “
S
”

2
D0
β
ı

px, tq `Opt2q “ S r2tug ¨ νs px, tq `Opt
2q, and thus

I “
8

21A|Ω|
?
π
D3{2

0 δ7{2

ż

Γ
pug ¨ νq

2dsx `O

˜

δ2

`

∆´ δ
3

˘

¸

. (6.58)

Between the pulses, t P rδ,∆s, the Neumann boundary condition in (6.9) is

D0∇ωpx, tq ¨ ν “ D0δug ¨ ν, on Γˆ rδ,∆s (6.59)

and the initial condition is

ωpx, δq “ S r2δug ¨ νs px, tq `Opδ
2q, x in Ω. (6.60)

The function rωpx, tq “ ωpx, tq´δx ¨ug satisfies homogeneous Neumann boundary condition and
the initial condition

rωpx, δq “ S rp2δug ¨ νqs px, δq ´ δx ¨ ug. (6.61)

This means

rωpx, tq “ c0 `

8
ÿ

n“1

cne
´λnD0pt´δqφnpxq (6.62)

where

c0 “ ´δa0 ` b0 “ ´δ

ż

Ω
x ¨ ugdx`

ż

Ω
ωpx, δqdx, (6.63)

cn “ ´δan ` bn “ ´δ

ż

Ω
x ¨ ugφnpxqdx`

ż

Ω
ωpx, δqφnpxqdx (6.64)

with again φn and λn the Neumann eigenfunctions and eigenvalues associated to the Laplace
operator (n “ 1, 2, . . . ). Thus, for t P rδ,∆s,

ωpx, tq “ c0 `

8
ÿ

n“1

cne
´λnD0pt´δqφnpxq ` δx ¨ ug `Opδ

2q, (6.65)

and

hptq “
8
ÿ

n“1

cnλnan
|Ω|

e´λnD0pt´δq ` δ `O

ˆ

δ2

A

˙

, (6.66)

and

II “
1

A

8
ÿ

n“1

cnan
|Ω|

´

1´ e´λnD0p∆´δq
¯

`
D0δ

2p∆´ δq

A
`O

˜

δp∆´ δq
`

∆´ δ
3

˘

¸

. (6.67)
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During the second pulse, t P r∆,∆`δs, we keep the solution from the previous interval in Eq.
(6.65) which satisfies homogeneous boundary conditions and just add a single layer potential to
match the Neumann boundary condition. We obtain

ωpx, tq “ c0 `

8
ÿ

n“1

cne
´λnD0pt´δqφnpxq ` δx ¨ ug

` S rp´2τug ¨ νqs px, t´∆q `Oppt´∆q2q, (6.68)

where t P r∆,∆` δs, while τ P r0, δs because we operate a shift in time tÑ t´∆ to be able to
keep the definition of the single layer potential in (6.29) (for which the interval of integration is
t´∆). Using the definition of the single layer potential (6.29) we obtain

S rp´2τug ¨ νqs px, t´∆q “ ´
4

3
?
π|Ω|

a

D0 pt´∆q3{2
ż

Γ
pug ¨ νq `Oppt´∆q5{2q,

which leads to

hptq “
8
ÿ

n“1

cn
|Ω|

e´λnD0pt´δqλnan ´
4

3
?
π|Ω|

a

D0 pt´∆q3{2
ż

Γ
pug ¨ νq

2dsx

` δ `O

ˆ

pt´∆q2

A

˙

, (6.69)

and

III “
D0

2A
δ3 `

8
ÿ

n“1

cnan
D0λnA|Ω|

´

e´λnD0p∆´δqpD0λnδ ´ 1q ` e´λnD0∆
¯

´
16

105
?
πA|Ω|

D3{2
0

ˆ
ż

Γ
pug ¨ νq

2dsx

˙

δ7{2 `O

˜

δ2

`

∆´ δ
3

˘

¸

. (6.70)

The effective diffusion coefficient for the compartment Ω assumes thus the form

Deff
ug
“

D0δ

6p∆´ δ
3q
´

8D3{2
0 δ3{2

35
?
π|Ω|p∆´ δ

3q

ż

Γ
pug ¨ νq

2dsx`

´

8
ÿ

n“1

´δpanq
2 ` anbn

|Ω|δ2p∆´ δ
3q

ˆ

δ ´
e´λnD0∆p1´ eλnD0δq

λnD0

˙

`O

˜

max

#

δ2

`

∆´ δ
3

˘ ,
δp∆´ δq
`

∆´ δ
3

˘

+¸

(6.71)

and from now on we will refer to it as short pulse long-time formula (SPLT).
In the narrow pulse limit, we get

Deff
ug
“ ´

8
ÿ

n“1

p´δan ` bnqan

|Ω|δp∆´ δ
3q

´

1´ e´λnD0∆
¯

`Opδ1{2q, (6.72)

which again tells us that Deff
ug

approaches its long time limit as 1{∆, because bn “ Opδ3{2q for
all n ě 1 due to the maximum principle for heat equation applied to ωpx, tq in the first pulse:

‖ωpx, tq‖ ď ‖ωpx0, tq‖ « Opt3{2q @x P Ω,x0 P Γ, t P r0, δs. (6.73)



6.3. Averaging Deff over multiple diffusion directions 123

6.3 Averaging Deff over multiple diffusion directions

If we average the effective diffusion coefficient Deff
ug

over all the possible gradient directions
ug, we can obtain a new formula that is independent of the orientation of the biological cells.
We define the orientionally averaged effective diffusion coefficient as

rDeff

D0
:“

ş

Sd´1 D
eff
ug
du

D0

ş

Sd´1 du
. (6.74)

We recall that

Deff
ug
“ D0 ´

D0

A|Ω|

ż TE

0
F ptq

ż

Ω
ug ¨∇ωugpx, tqdx dt (6.75)

where ωugpx, tq solves the problem (6.6). Because of the linearity of the Neumann problem, for
every direction ug “ ru1, . . . , uds we have that

ωugpx, tq “
d
ÿ

i“1

uiωeipx, tq, (6.76)

where ei is the i-th vector of the canonical basis of Rd. As a consequence

Deff
ug
“ D0 ´

D0

A|Ω|

ż TE

0
F

ż

Ω
pu1e1 ` ¨ ¨ ¨ ` udedq ¨ pu1∇ωe1 ` ¨ ¨ ¨ ` ud∇ωeiq dx dt

“ D0 ´
D0

A|Ω|

ż TE

0
F

¨

˚

˚

˝

d
ÿ

i“1

u2
i

ż

Ω
ei ¨∇ωeidx`

d
ÿ

i‰j
i,j“1

uiuj

ż

Ω
ei ¨∇ωejdx

˛

‹

‹

‚

dt

and thus, if we want to average over all the possible directions, we are interested in the integrals
ş

Sd´1 u
2
i du

ş

Sd´1 du
, i “ 1, . . . , d and

ş

Sd´1 uiujdu
ş

Sd´1 du
, i, j “ 1, . . . , d, i ‰ j. (6.77)

We observe that, for all i, j “ 1, . . . , d and i ‰ j,
ż

Sd´1

uiujdu “ 0. (6.78)

Indeed to prove this results it is sufficient to pass into spherical coordinates and every time we
have the product uiuj with i ‰ j we have also an integral of the type

şπ
0 sinpθq cospθqdθ “ 0 or

ş2π
0 sinpθq cospθqdθ “ 0 or

ş2π
0 cospθqdθ “ 0 or

ş2π
0 sinpθqdθ “ 0. Therefore, what remains in the

average are just the terms
d
ÿ

i“1

ş

Sd´1 u
2
i du

ş

Sd´1 du

ż

Ω
ei ¨∇ωeidx (6.79)

i.e. simply the average over d perpendicular directions and then

rDeff

D0
“ 1´

d
ÿ

i“1

1

dA|Ω|

ż TE

0
F ptq

ż

Ω
ug

i ¨∇ωug
ipx, tqdx dt (6.80)
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where ug
i, i “ 1, . . . , d are d orthogonal directions. Then averaging over all the possible direc-

tions is equivalent to average only over d orthogonal normalized directions.
We use the fact that

d
ÿ

i“i

ş

Γpug
i ¨ νq2dsx

d
“
|Γ|

d
(6.81)

and we define

kn :“
d
ÿ

i“1

´painq
2

d|Ω|
“

d
ÿ

i“1

´
`ş

Ω x ¨ ug
iφnpxqdx

˘2
dug

d|Ω|
, (6.82)

i.e. the mean over d orthogonal directions of the square of the first moment along these directions,
and

jn :“
d
ÿ

i“1

bina
i
n

d|Ω|
“

d
ÿ

i“1

´

ş

Ω ωug
ipx, δqφnpxqdx

¯

`ş

Ω x ¨ ug
iφnpxqdx

˘

d|Ω|
. (6.83)

The finite pulse long-time formula in (6.26) gives

rDeff

D0
“

8
ÿ

n“1

kn

D3
0λn

2δ2
`

∆´ δ
3

˘

”

e´D0λnp∆`δq ` e´D0λnp∆´δq

´2
´

D0λnδ ` e
´D0λnδ ` e´D0λn∆ ´ 1

¯ı

(6.84)

The short pulse short-time formula in (6.56) gives

rDeff

D0
“ 1´

16

35

D1{2
0

δ2 p3 ∆´ δq
?
π

”

´2
´

δ7{2 `∆7{2
¯

`p∆´ δq7{2 ` p∆` δq7{2
ı

|Γ|

d|Ω|
`Op∆q. (6.85)

The short pulse long-time formula in (6.71) gives

rDeff

D0
“

δ

6p∆´ δ
3q
´

8D1{2
0 δ3{2

35
?
πp∆´ δ

3q

|Γ|

d|Ω|
´

8
ÿ

n“1

δkn ` jn

D0δ2p∆´ δ
3q

ˆ

δ ´
e´λnD0∆p1´ eλnD0δq

λnD0

˙

`O

˜

max

#

δ2

`

∆´ δ
3

˘ ,
δp∆´ δq
`

∆´ δ
3

˘

+¸

(6.86)

6.4 Numerical results

In this Section we numerically validate the accuracy of the approximate formulas we derived
in the diffusion regimes claimed. To compute the reference ADC we solved the homogenized
model using the Matlab PDEToolbox. The eigenvalues and eigenfunctions of the Laplace equa-
tion with Neumann boundary conditions were also computed with the same software.

First we show the goodness of the three approximations of hptq for a simple impermeable
domain. We consider a 2D geometry of one vertically orientated ellipse with semi-axes of 19µm
and 9µm. The intrinsic diffusion coefficient is set to D0 “ 1e´3mm2{s and we vary the values of
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δ, ∆ and ug. To compute the reference solution hptq we solved the problem (6.6) on the finite
element mesh shown in Fig. 6.1. The eigenvalues and eigenfunctions are also computed on the
same finite element mesh. The projections an and bn are computed according the the formulas
(6.64). For this particular geometry the first four non-zero eigenvalues are

-20 -10 0 10 20

µm

-15

-10

-5

0

5

10

15
µ
m

FE mesh

Figure 6.1 – Finite elements mesh of an ellipse with semiaxes of 19µm and 9µm, orientated vertically along the y-axis.

λ1 “ 0.0097, λ2 “ 0.0325, λ3 “ 0.0383, λ4 “ 0.0644,

and their projections ai are reported in the table below.

ug a1 a2 a3 a4

r1, 0s 38.9 ´25.7 ´4.62e`5 ´0.97

r0, 1s 1.07e`6 1.75 ´4.49 ´5.58

Table 6.1 – Eigenfunction first moments obtained for the first four non-zero eigenvalues in the two directions ug “ r1, 0s
and ug “ r0, 1s.

It is important to observe that in the direction ug “ r1, 0s the first two non-zero eigenvalues
have a contribution an which is negligible compared to a3. Thus, in the eigen-expansion formula,
in the direction ug “ r1, 0s, the dominant eigenvalue we consider is λ3. On the other hand, in
the direction ug “ r0, 1s, the most significant contribution comes from the first eigenvalue and
thus we only consider dominant eigenvalue λ1 in the eigen-expansion.

To characterize the short-time regime, we use the well-known formula defined in Section 2.1.2

t ! tlimshort “
L2

2D0
,

where L is the characteristic length of the geometry along the direction perpendicular to ug (see
for example [138]). To characterize the long-time limit we use the normal diffusion displacement
defined in Section 2.1.2 as

a

2p∆` δqD0

pL{2q
“ NDD " 1.
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For the chosen geometry and effective diffusion coefficient D0, the short-time limit is

tlimshort “
p9ˆ 2q2

2e´3
“ 162ms,

in the direction r0, 1s. In the direction r1, 0s, we have

tlimshort “
p19ˆ 2q2

2e´3
“ 722ms.

In the following plots we always indicate the reference solution with a line, the potential approxi-
mation with squares, the eigenfunction approximation with circles and the mixed approximation
with asterisks.
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time (ms)

0

0.5
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h
(t
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s)

h(t)
potential approx
eigenfunc approx with 1 eigenvalues
mixed approx with 1 eigenvalues

Figure 6.2 – hptq and its approximation (using the three different formulas found) with respect to the gradient directions
ug “ r1, 0s for an ellipse of semi-axes 19µm and 9µm. Intrinsic diffusion coefficients D0 “ 1ˆ 10´3mm2{s, pulses duration
δ “ 5ms and time-delay between pulses ∆ “ 10ms.
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Figure 6.3 – hptq and its approximation (using the three different formulas found) with respect to the gradient directions
ug “ r1, 0s for an ellipse of semiaxes 19µm and 9µm. Intrinsic diffusion coefficients D0 “ 1ˆ 10´3mm2{s, pulses duration
δ “ 5ms and time-delay between pulses ∆ “ 50ms.

In Figure 6.2 we considered δ “ 5ms, ∆ “ 10ms and ug “ r1, 0s. This means that we are
considering short pulses and short delay between them but we are not in narrow pulse hypothesis.
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As we can see the potential approximation (square) fits very well the reference (continuous line)
in all the three time interval. We also notice that the mixed approximation (asterisks) works
sufficiently well during the two pulses but not between them. Since the time is too short for
considering just one eigenvalue contribution for the eigenfunctions approximation, the fit using
this formula is far from the true solution.

In Figure 6.3 we considered δ “ 5ms, ∆ “ 50ms and ug “ r1, 0s. This means that we
are considering short pulses and long delay between them. As we can see the layer potential
approximation fits well the reference only during the first pulse and until t « 25ms but then
it goes far away. The eigenfunction approximation appears not good during the pulses but it
becomes very good at the end of the interval between them. The mixed approximation instead
fits well during the pulses and it is a bit off just at the beginning of the second interval.
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Figure 6.4 – Deff and its approximation (using the three different formulas found) with respect to two different gradient
directions for an ellipse of semiaxes 19µm and 9µm. Intrinsic diffusion coefficients D0 “ 1 ˆ 10´3mm2{s, pulses duration
δ “ 5ms and thirty different values of the time-delay between pulses in the interval r8, 80sms.

In Figures 6.4a and 6.4b we show the behaviour of Deff computed for two different directions
of the gradient (ug “ r1, 0s and ug “ r0, 1s) but the same parameters (δ “ 5ms and thirty
different values of ∆ equally distributed in the interval r8, 80sms). The potential formula works
well for short ∆ ` δ, the eigenfunctions formula for long ∆ ` δ. Looking at these plots we
can also say that the short time limits in which one should use the potential approximation is
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∆` δ ă 25ms for the ug “ r1, 0s direction and ∆` δ ă 10ms for the ug “ r0, 1s direction. On
the contrary the long time limits in which one should use the eigenfunctions approximation is
∆` δ ą 55ms for the ug “ r1, 0s direction and ∆` δ ą 70ms for the ug “ r0, 1s direction.

In Figure 6.5 we show the approximations we found for the average of Deff{D0 along two
perpendicular directions. Here we considered δ “ 5ms and again thirty values of ∆ in the
interval r8, 80sms. We observe that the potential approximation works well for small ∆` δ, the
eigenfunction approximations for long ∆` δ.
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Figure 6.5 – D̃eff{D0 and its approximation (using the three different formulas found) for an ellipse of semiaxes 19µm
and 9µm. Intrinsic diffusion coefficients D0 “ 1 ˆ 10´3mm2{s, pulses duration δ “ 5ms and thirty different values of the
time-delay between pulses in the interval r8, 80sms.

To conclude in Figure 6.6 we report the absolute error

|Deff ´Dapprox|

for the same parameters as before and the two orthogonal directions. As we can see from the
plots, as ∆ ` δ grows, the error for the eigenfunctions and mixed approximations goes to zero
while the error of the potential approximation grows.

6.5 Conclusions

Diffusion magnetic resonance imaging (dMRI) can be used to measure a time and direction
dependent effective diffusion coefficient which can in turn reveal information about the tissue
structure. In Chapter 4, a new mathematical model for the effective diffusion coefficient was
obtained using homogenization techniques after imposing a certain scaling relationship between
the physical parameters. An analytical formula for this coefficient was found that depends on
the solution of a diffusion equation subject to time-dependent Neumann boundary conditions.

In this Chapter, we analysed the formula in the case of finite sub-domains. In particular,
we obtained three representations of the effective diffusion coefficient that are appropriate in
different time regimes. In the short time regime, we proposed using a representation based on
the single layer potential and we call it SPST formula. In the long time regime when the pulse
duration is not short, we proposed using a representation based on the eigenfunctions expansion
of the Neumann Laplace operator and we call it FPLT formula. In the long time regime when
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the pulse duration is short, we proposed a representation that combines the single layer during
the pulses with the eigenfunctions expansion between the pulses and we call it SPLT formula.

In particular, the SPST formula corrects the existing Mitra formula [130] by correctly ac-
counting for the pulse duration. This work helped to clarify how parameters of the tissue mi-
crostructure such as the surface to volume ratio or the dominant eigenvalues affect the effective
diffusion coefficient.
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In this final Chapter we want to give some indications about the final goal of the signal
modelling, i.e. the inverse problem. Indeed, as we have observed many times in Chapter 2, the
ambition of this field of research is to use the dMRI signal to recover as much information as
possible on the microstructure. Possible questions are for example:

— find the surface over volume ratio,

— find distribution of cell sizes,

— find fiber orientations.

Many works in these directions are present in the literature (see for example [8, 13, 45, 101, 177,
185, 193, 195] and references therein) and here we do very preliminary work to investigate these
tasks using the short pulse short-time (SPST), and the short pulse long-time (SPLT) formulas
found from the H-ADC model as well as from the dMRI signal obtained solving the Bloch-
Torrey equation at multiple g-values. Unfortunately we did not have sufficient time to properly
investigate all the tasks so here we report our first investigations and we leave a deeper analysis
(especially including the extra-cellular space) as a future direction of research. In particular, we
give some mathematical hints regarding the use of the ADC or the dMRI signal to answer to
these questions. We set up three simple problems:

— after having defined simple geometries we compute the reference ADC coming from the
interior domain using the signal obtained from the solution of the Bloch-Torrey PDE at
b “ 0, 20s/mm2, and we try to fit geometrical parameters like the surface over volume
ratio, the eigenvalues and the mean first moments of the eigenfunctions, using the SPST
or the SPLT formulas derived in Chapter 6;

— supposing the domain composed by only circles, we develop an algorithm to estimate the
radii distribution from the signal obtained solving the Bloch-Torrey PDE at multiple ∆

and g;

— supposing the domain composed by only ellipses of the same size, we try to estimate the
distribution of the ellipses orientations from the ADC obtained from the solution of the
Bloch-Torrey PDE at b “ 0, 20s/mm2 for several gradient directions.
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To solve these tasks we always set up the least square problem between the reference data and
our formulas and we try to determine a solution using different algorithms according to the
application.

The Chapter is organized as follows. In Section 7.1.1 we show how we can estimate the
surface over volume ratio, using the short pulse short-time formula obtained in Chapter 6. In
particular, we show that with this formula we are not limited to the narrow pulse approximation
and we compare the results with the well known Mitra model [130]. In Section 7.1.2 we report
the results obtained using the short pulse long-time formula found in Chapter 6 and we show
that the estimates on the eigenvalues and their contributions are sufficiently good while the
surface over volume ratio cannot be well estimated. In Section 7.2 we investigate the use of the
“Uzawa” algorithm ([183]) to solve the detection of radii distribution using the dMRI signal at
multiple b-values or just the ADC. With this approach one does not need to define, a priori,
a type of distribution (Gaussian, Gamma, Watson, etc.), but just be able to overestimate the
total number of circles that are contributing to the measure inside the fix volume. Employing
this algorithm we find that the problem is severely ill posed if we use only the values of ADC
as data as it is extremely sensitive to noise. On the contrary, if we use the dMRI signal at
multiple values of g and ∆, we obtain good results for a noise up to 5% (multiplicative random
Gaussian noise). Finally, in Section 7.3, we investigate the detection of the fiber orientations
using data coming from ADC or the entire dMRI signal. We suppose that we can decompose
the measurements as sum of measurements coming from many 2D ellipses of the same size but
different orientations. We prove that, contrary to the case of size distributions, it is not possible
to determine a general distribution of orientations from given data. We in fact prove that the
data can determine at most three significant parameters.

7.1 Analysis based on the SPST and SPLT formulas for ADC

In Chapter 6 we used the new model for time-dependent ADC derived in Chapter 4 and we
approximated its expression using the eigenfunctions expansion and the single layer potential for
the diffusion equation. We found three different formulas according to the duration of the pulses
and the delay between them. In the case of both the duration of the pulses, and the time-delay
between them long, we have already observed that the obtained formula coincides with the well
known matrix formalism (see for example [15, 63, 64, 65]). For this reason we do not investigate
this case but we concentrate ourselves in recovering the surface over volume ratio and/or the
first non-zero and most contributive eigenvalues and their contributions using the potential or
mixed approximations.

7.1.1 Finding the surface over volume ratio in the short-time limit using
SPST

As we have already seen, for a closed domain Ω with a small permeability coefficient that
negligible influence on the ADC, the short-time limit is achieved if the diffusion time is much
shorter than L2

2D0
where L2 is the characteristic length of the domain. Considering the PGSE
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sequence and narrow pulse approximation a well known formula ([11, 130]) is

Deff
shortp∆q “ D0

¨

˚

˚

˝

1´
4
?
D0∆

3
?
π

ż

Γ
pug ¨ νq

2dsx

|Ω|

˛

‹

‹

‚

. (7.1)

In Chapter 6, using the single layer potential ([70]) we have generalized this formula for the case
of non narrow pulses but still short-time and we have found that we can write

rDeff
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In particular, if we take the mean over d perpendicular dimensions (with d the dimension of the
problem), the above formulas reduce to

rDeff
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|Γ|
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(7.3)

and
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¯
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Thanks to these formulas, by acquiring measurements in just d orthogonal directions and over
several values of ∆, we can try to access the surface to volume fraction |Γ|

|Ω| . Indeed, for simplicity,

we consider the intrinsic diffusion coefficient D0 as known, and, in order to find |Γ|
|Ω| , we can vary

the delay between the pulses ∆ for the Mitra’s formula and varying both ∆ and δ for the SPST
formula. These formulas are especially convenient for sufficiently big geometries configurations
for which the short-time limit can be achieved on the current dMRI scanners, for example for
the neurons of the Alypsia (see [32, 112]).

We consider as examples a 2D geometry composed by two ellipses of semi-axes 75µm and
50µm, and 80µm and 55µm rotated respectively by 90˝ and 40˝ with respect to the x-axis, as
illustrated in Figure 7.1. For this geometry, we have that the correct surface to volume ratio,
computed using the finite element mesh in Figure 7.1, is equal to 0.0322µm´1. We suppose that
the intrinsic diffusion coefficient is D0 “ 1.5e´3mm2{s for both ellipses. Thus, the short-time
limit is achieved for ∆` δ ăă 833ms (where to compute this limit we used the shortest axis of
the ellipses, i.e. 100µm, as a characteristic length).

To compute the reference solution, we use the matlab pdetool to solve the Bloch-Torrey
equation, and we obtain the ADC using a linear fit of the logarithm of the dMRI signal at two
small b-values (b “ 0, 10 s/mm2). We run the simulations for two different cases:

— under NPA, i.e. we consider δ “ 2ms and ten values of ∆ in r8, 60sms,

— non-NPA, i.e. we consider δ “ 8ms and ten values of ∆ in r8, 60sms.



134 Chapter 7. On the inverse problem

-100 0 100

µm

-50

0

50

µ
m

FE mesh

Figure 7.1 – Considered finite element mesh: two ellipses rotated by 90˝ and 40˝ with respect to the x-axis, and of
semi-axis 75µm and 55µm, and 80µm and 55µm respectively.

In both cases, we consider the two orthogonal directions ug
1 “ r1, 0s and ug

2 “ r0, 1s and
we average the resulting ADCs. We test the SPST formula (7.4) and the well known Mitra’s
one (7.3). Moreover, since in Chapter 3 we found that the evaluation time to consider for the
Kärger model is ∆ ´ δ{3 and not ∆, we also test (7.3) in which we replace ∆ with ∆ ´ δ{3,
i.e. rDeff

shortp∆ ´ δ{3q . In Figure 7.2a and 7.2c we show how these three formulas approach the
reference. We can see that in 7.2a all the formulas are superposed: this is because, since the
pulses are narrow and ∆ is sufficiently large, the value of δ does not influence the ADC too
much. On the contrary, in 7.2c only the SPST formula (red crosses) approaches the reference in
the whole time interval considered. Indeed, we see that the SPST formula fits better the data
than the usual Mitra’s formula (7.3) (purple stars). We also notice that the rDeff

shortp∆ ´ δ{3q

formula (black squares) give bad results so it should never been used.

|Γ|
|Ω| Estimated value Relative Error

(µm´1) (µm´1) %

NPA 0.0322
Old Formula 1 0.0341 5.9%

Old Formula 2 0.0345 7.1%

New Formula 0.0336 4.3%

not NPA 0.0322
Old Formula 1 0.0356 10.6%

Old Formula 2 0.0371 15.2%

New Formula 0.0336 4%

Table 7.1 – Estimated surface over volume ratio using the short time formula two ellipses of semi-axes 75µm and 50µm, and
80µm and 55µm rotated respectively by 90˝ and 40˝ with respect to the x-axis. Physical parameters D0 “ 1.5e´ 3mm2{s
and several values of ∆ below 60ms.

To fit the surface over volume ratio, |Γ|
|Ω| , we use the Matlab routine “lsqnonlin”. This routine
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employs the Levenberg-Marquardt algorithm to solve the minimization problem

min
|Γ|
|Ω|

‖ rDBT pδ,∆q ´ rDeffpδ,∆q‖2

where rDBT pδ,∆q is the reference ADC obtained after solving the Bloch-Torrey PDE and
rDeffpδ,∆q is either the SPST formula (7.3), either the Mitra formula (7.4). We run 1000 simu-
lations each time choosing a random initial value in the interval

”

0, 2 |Γ|
|Ω|

ı

. For each simulation
we obtained the same minimum which means that this problem is well posed and has a unique
solution. The resulting fits are reported in Figure 7.2b and 7.2d. As we can see, the fitting in
Figure 7.2b is very good for all the three formulas, while in Figure 7.2d only the new formula
is able to correctly fit the data. In Table 7.1 we report the values of the estimated surface over
volume ratio along with their relative errors. These values confirms that the new formula allows
us to estimate sufficiently well (less than 4% of relative error) the surface over volume ratio
under the only hypothesis of short times. We clearly see that also in NPA gives a very accurate
response.

0 10 20 30 40 50 60

∆ (ms)

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

m
ea
n
A
D
C

×10−3

Reference
Old Formula 1
Old Formula 2
New Formula

(a) Mean ADC under NPA

0 10 20 30 40 50 60

∆ (ms)

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

m
ea
n
A
D
C

×10−3 Fitting of S/V using the three formulas

Reference
Old Formula 1 S/V=0.034154
Old Formula 2 S/V=0.034491
New Formula S/V=0.033593

(b) Fitting with the three formulas under NPA
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Figure 7.2 – Mean ADC over two orthogonal directions obtained with three different formulas and fitting of the surface
over volume ratio under the narrow pulse hypothesis and not. With purple stars we indicate the results using Formula
(7.3), with black square results using Formula (7.3) but replacing ∆ with ∆´ δ

3
and with red crosses results using Formula

(7.4).

In conclusion, the short pulse short-time formula (SPST) is preferred over the Mitra formula
for the non-NPA case. In particular, the SPST formula results very accurate and could be used
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in practice to determine the surface over volume ratio in configurations for which the short-time
limit can be achieved by the dMRI scanner (i.e. big cells like for example the Aplysia neurons).
Indeed we showed that the SPST formula corrects the well known Mitra formula accounting for
the finite pulses that are easier to achieve in practice.

7.1.2 Finding the surface over volume ratio and the eigenvalues

If the pulses are short enough, and the time delay between them is sufficiently long, we
can use the SPLT formula founded in Chapter 6 and see if we can invert it considering only a
small number of eigenvalues. We suppose that each domain in the defined geometry has the
same intrinsic diffusion coefficient D0 and for each domain Ωl, we consider the formula obtained
averaging over d-orthogonal directions

rDl
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i.e. the mean over d orthogonal directions of the first moment square of the n-th eigenfunction
along these directions (ain “

ş

Ωl
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iqφnpxqdx), and
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with bin “
ş

Ωl
ωipx, δqφnpxqdx, i.e. the integral of the solution of the cellular problem (6.6)

evaluated at time δ multiplied by the n-th Laplace eigenfunction φnpxq (See Section 6.2 for
more details). We then average the two effective diffusion coefficients obtaining:

rDeff
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where Ω “
Ť

l Ωl. Thus the formula we want to invert is
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where |Γ| “

ÿ

l

|Γl|. In order to investigate the invertibility we a-dimensionalize the above

formula and the unknown parameters as follows
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, Pn “

δk2
n ` jn
D0δ2

, Pn`1 “ λnD0δ

are the non dimensional parameters to be estimated. In the previous Chapter, we have already
observed that, since δ is small, bin « Opδ3{2q and thus jn is smaller then δk2

n thus we can neglect
its contribution and estimate kn. Thus, from the estimate on P1 we can recover the surface over
volume ratio, from the estimate on Pn we can recover kn (i.e. the square root of the mean over d
orthogonal directions of the first moment square along these directions of the n-th eigenfunction)
and from Pn`1 the n-th Laplace eigenvalue.

Here we report the results obtained fitting the first five parameters (P1, . . . ,P5) for a 2D
geometry consisted of two impermeable ellipses of semi-axes 4µm and 1µm, and 3µm and 1µm,
rotated respectively by 60˝ and 120˝ with respect to the x-axis as illustrated in Figure 7.3. We
consider just 5 parameters because, as we have seen in the numerical section of Chapter 6, we
can well approximate the data using just one non-zero eigenvalue and its contribution for each
domain in the geometry.
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Figure 7.3 – Considered finite element mesh: two ellipses rotated by 60˝ and 120˝ with respect to the x-axis, and of
semi-axis 4µm and 1µm, and 3µm and 1µm respectively.

To create the data we solved the Bloch-Torrey equation with zero Neumann boundary condi-
tions in the two orthogonal directions ug

1 “ r1, 0s and ug
2 “ r0, 1s, using the Matlab “pdetool”

and the mesh in Figure 7.3. For each ellipse, we calculate the average effective diffusion coeffi-
cient ( rDBT ) for fixed δ and fifteen values of ∆ equally distributed in the interval r5, 18sms. We
then averaged the effective diffusion coefficients over the two domains to get a total of 15 data
points as inputs in our fitting procedure. We keep just two terms in the infinite sum in (7.10)
in order to estimate the total surface over volume ratio, the first eigenvalue of each ellipse (i.e.
the smallest one for each ellipse) and their contributions. To fit the data we used the Matlab
routine “lsqnonlin” which employees the algorithm “trust-region-reflective” to find the minimum
of the least square problem

min
P1...P5
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(7.11)



138 Chapter 7. On the inverse problem

with tolerance of 1e´8. In particular, we made a statistical analysis using 1000 random normal
initial guesses in the interval r12 ,

3
2 sˆ ptrue parameterq and as limits for the estimate parameters

we considered the interval r0, 2ˆ ptrue parameterqs.
In Figure 7.4 we report the plots of the data and the fitting obtained for three different values

of δ. The black circles are the simulated data and the dotted line is the obtained fitting using
as parameters the mean values of the obtained results in the 1000 simulations. In blue we plot
the results we would obtain employing the formula in (7.10) and using the exact parameters.
As we can see, the formula with the exact parameters fits very well the data at the end of the
considered time interval, while is a bit off at the beginning. This is because, as we have seen
in Chapter 6 the SPLT formula with a small number of eigenvalues works better when ∆ is
sufficiently long. Thus we expect to lose something in the approximation of the parameters
because the fitting eliminates this gap between the data and the formula.
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(b) δ “ 1.0ms
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(c) δ “ 1.5ms

Figure 7.4 – Fitting of the average ADC in two orthogonal directions coming from a geometry composed by two ellipses
of semi-axes 4µm and 1µm, and 3µm and 1µm, rotated respectively by 60˝ and 120˝ with respect to the x-axis and of
intrinsic diffusion coefficient D0 “ 1e´3mm2{s.

In Table 7.2 we report the numerical results of the inversion. As we can see the eigenvalues
(λ1 and λ2) and their contributions (k1 and k2) are sufficiently well estimated, indeed we have a
relative error less then 16%. We also observe that we obtain the best estimates for the eigenvalues
for the biggest δ “ 1.5ms and for their contribution for δ considered, i.e. 1.0ms. On the contrary,
the surface over volume ratio is not well estimated, indeed the relative error is always between
30% and 42%. Taking a closer look at the data in Table 7.2 the best estimates for this parameter
is obtained for the shortest δ. This means that for the other choices the approximation during
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the pulses fails because we are considering too long pulses (see Chapter 6). Another explanation
for this failure is that if we take the derivative of the expression in (7.10) with respect to P1 we
obtain C1. This is a constant for the estimate but it depends on ∆ and in particular it tends
to 0 as ∆ grows. This means that to well estimate P1 we should consider just points for small
∆ but (from Chapter 6) we know that for these points the mixed formula is not appropriate
unless we consider an higher numbers of eigenvalues to better approximate the solution between
the pulses. But this would imply more parameters to be estimated. We also observe that, on
contrast of what we found in the previous Section for the SPST formula, here the problem is
not well posed and for every different initial guess we end up in a different minimum. This is
the reason for which in Table 7.2 we report also the values of the relative standard deviations
for each estimated parameter.

|Γ|
d|Ω| λ1 k1 λ2 k2

(mm´1) (mm´2q (mmq (mm´2) (mmq

True Parameters 1.37 0.22 7.03 0.39 4.57
δ “ 0.5ms

Estimations 0.96 ˘ 0.46 0.216 ˘ 0.02 6.85˘0.71 0.45˘0.06 4.53˘0.69
Relative error 30.3% 2.7% 2.5% 15.6% 0.8%

Relative std 33.5% 8.2% 10.1% 15.3% 15%

δ “ 1.0ms
Estimations 0.80˘0.41 0.21˘0.01 6.56˘ 0.72 0.42˘0.06 4.25˘0.68
Relative error 41.6% 2% 6.8% 6% 7%

Relative std 30% 6.8% 10.3% 16.7% 15%

δ “ 1.5ms
Estimations 0.85˘0.22 0.22˘0.01 6.32˘ 0.75 0.39˘0.07 4.01˘0.70
Relative error 38.2% 0% 10.1% 0% 12.2%

Relative std 15.9% 6.4% 10.6% 18.4% 15.4%

Table 7.2 – Estimated parameters using the mixed formula for two ellipses of semi-axes 4µm and 1µm, and 3µm and
1µm, rotated respectively by 60˝ and 120˝ with respect to the x-axis. Physical parameters: D0 “ 1e´ 3mm2{s and fifteen
values of ∆ in r5, 18sms.
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Figure 7.5 – Sensitivity of the method using SPLT formula with five parameters.

Finally in Figure 7.5 we show a contour plot which underlines the sensitivity of our approach
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for
|Γ|

|Ω|
and λ1 assuming that we know the exact values of the other three parameters. As

we can see the method is more accurate to estimate λ1 than
|Γ|

|Ω|
which confirms the results

obtained in Table 7.2. Moreover, here we can see that the SPLT formula with the correct values
of parameters has already an error of about 4% (red star) while the fitting with different δ gives
us results with errors around 1%. This means that part of the error that we commit in the
estimation is due to the error of the formula.

In conclusion, this formula helps us to better understand the behaviour of ADC but its use for
the inverse problem is complicated and more investigations are need. From the obtained results,
we cannot hope to well approximate the surface over volume ratio with the current approach.
On the contrary, the estimates of the eigenvalues and their contributions are already satisfactory
even if we cannot keep the number of parameters small if the geometry is not sufficiently simple.
Anyhow, for simple geometries already the values of the eigenvalues and their first moments can
tell us something about the configuration.

7.2 On the determination of radii distributions

To investigate this question we suppose the domain to be composed of only N impermeable
circles. We do not consider the contribution of the extra-cellular compartment (which is left
for future investigations) and we use the PGSE sequence. We also suppose that δ is fixed and
we vary ∆ and q “ γg to obtain the signals or just ∆ to obtain the effective diffusion tensors.
Furthermore, since we investigate the signal coming from only circles which are symmetric, we
fix ug “ r1, 0s, because, without the contribution of the extra-cellular space, the signal is the
same in all the directions.

With these assumptions we can write the signal coming from a voxel as

Spq,∆q «
ÿ

Ri

nRiSpRi, q,∆q, (7.12)

where nRi is the number of circles of radius Ri that contribute to the signal and SpRi, q,∆q

represents the signal obtained by one circle of radius Ri subjected to a gradient of intensity q
and ∆ parameter for PGSE. The idea is to discretize ∆ and q in two intervals to obtain a vector
of data

ST “ rSpq1,∆1q, . . . , Spq1,∆M q, . . . , SpqL,∆1q, . . . , SpqL,∆M qs (7.13)

and discretize also R to obtain the 2D reference matrix

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

SpR1, q1,∆1q . . . SpRN , q1,∆1q
...

...
...

SpR1, q1,∆M q . . . SpRN , q1,∆M q
...

...
...

SpR1, qL,∆1q . . . SpRN , qL,∆1q
...

...
...

SpR1, qL,∆M q . . . SpRN , qL,∆M q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (7.14)
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We can thus rewrite the inverse problem as finding solutions to the linear system

S “ Ax (7.15)

where the components of x “ pnR1 , . . . , nRN q represent the number of circles of the corresponding
radius present in the geometry and is the parameter we want to recover. Since A is in general
not a square matrix (but a priori rankpAq “ N), we can define the solution as

x˚ “ argmin
x

‖Ax´ S‖2. (7.16)

Usually A is ill-conditioned, and there may be noise in the data S, thus one should rely on some
regularization techniques to solve the least square problem (7.16). We choose to use Tikhonov
regularization technique ([98]) since a reasonable statistical form of noise is Gaussian. Let Sε

be the noisy measurements, i.e.
‖Sε ´ S‖ ď ε (7.17)

where ε is an upper bound for the noise level. We solve for xε solution of

xε “ min
x
J εpxq “ min

x

1

2
‖Ax´ Sε‖2

`
1

2
αpεq‖x‖2, (7.18)

where the parameter αpεq is determined using the Morozov’s Discrepancy Principle (see for
example [98]), i.e. αpεq is such that

‖Axε ´ Sε‖ “ ε. (7.19)

For our problem, the components of xε cannot have any values in R. Indeed, we have the
constraints

N
ÿ

i“1

xεi ď Nmax and xεi ě 0 @i “ 1, . . . , N. (7.20)

What we need to solve is then a minimization of J εpxq in the subspace F identified by the
constraints (7.20). We can rewrite these constraints as F pxεq “ Cxε ´ f ď 0 where

C “

¨

˚

˚

˚

˚

˚

˚

˝

1 . . . . . . 1

´1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 ´1

˛

‹

‹

‹

‹

‹

‹

‚

and f “

¨

˚

˚

˚

˚

˚

˚

˝

Nmax

0
...
...
0

˛

‹

‹

‹

‹

‹

‹

‚

. (7.21)

The idea is then to use an algorithm that solves
$

&

%

min
x
J εpxq “ min

x

1

2
‖Ax´ Sε‖2

`
1

2
αpεq‖x‖2,

F pxq ď 0.
(7.22)

We know that if xε is a minimum for J εpxq on the convex set F pxq then there exists λ P pR`qN`1

such that

Lpxε, λq “ ∇J εpxεq ` λ∇F pxεq “ 0 (7.23)

Cxε ď f, xλ,Cxε ´ fy “ 0, (7.24)
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where x., .y indicates the RN`1 scalar product. Assuming that the number of data that we can
acquire is bigger than N (i.e. M ` L ě N), a way to solve this problem is to use the Uzawa
algorithm ([183]) summarized in the pseudo-code below.

Algorithm 1 Uzawa algorithm
1: procedure
2: λÐ parameter for the Uzawa iteration
3: ρÐ step of Uzawa
4: η Ð precision
5: Jpxq “ 1

2p‖Ax´ S‖
2
` α‖x‖2

q

6: F pxq “ Cx´ f

7: Lpx, λq Ð Jpxq ` λF pxq

8: while ||λn`1 ´ λn|| ą η do
9: αpεq Ð Tikhonov parameter for regularization

10: xεn`1 Ð Lpxεn, λnq ` Tikhonov
11: λn`1 Ð maxp0, λn ` ρpCx

ε
n ´ fqq

12: end while
13: end procedure

In particular, one needs to choose a step ρ, a precision η and, at each iteration, solve the
problem (7.23) and update the values of λn`1 using

λn`1 “ maxpλn ` ρF px
εq, 0q. (7.25)

We apply Tikhonov regularization to (7.23). We factorize the matrix A using the singular values
decomposition (SVD [98])

A “ UΣV T (7.26)

and at each iteration we update xεn as follows

pαnpεq ` σ
2
i qpx

ε
nqi “ σipS

ε ¨ uiq ´ λn ¨ pCviq, (7.27)

xn “
ÿ

i

pxεnqivi, (7.28)

where σi are the singular values of A (i.e. the components of the diagonal matrix Σ), and ui
and vi are the column vectors of U and V respectively. The parameter αnpεq is determined by
(7.19) and is therefore the zero of the function

φpαq :“
ÿ

i

ˆ

α2

pα` σ2
i q

2
´ ε2

˙

xSε, uiy
2 , (7.29)

inside the interval
„

εminσi
1´ ε

,
εmaxσi

1´ ε



.

For our numerical simulations, we implemented the Uzawa algorithm in Matlab and we used
the function “svd” to factorize the matrix A. To create the data we simulated the signal using
the formula (7.12). This means in particular that we do not take into account modelling error.
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Figure 7.6 – Radii distribution used for the simulations.

We consider a set of 100 circles distributed as a Normal of µR “ 1.9µm and σ “ 0.4 as shown
in Figure 7.6. We assume that the radii of the circles are discretized uniformly in r0.3, 7.1sµm
with a discretization step of 0.2µm (see radii distribution in Figure 7.6). We also impose the
intrinsic diffusion coefficient to be D0 “ 1e´ 3mm2{s and we generated the vector of the signals
with δ “ 0.5ms, ug “ r1, 0s, six values of q “ γg in r2.5e ´ 3, 5e ´ 3s and nineteen values of ∆

in r0.5, 5sms. To create the matrix A we discretize the radii in the interval r0.25, 7sµm with a
step of discretization of 0.25µm and we generate the components of the matrix using the signals
obtained with δ “ 0.5ms, ug “ r1, 0s, six values of γg in r2.5e ´ 3, 5e ´ 3s and nineteen values
of ∆ in r0.5, 5sms. For the inverse problem we also imposed Nmax “ 100 and λ0 “ 0.

The results obtained using the Uzawa algorithm are shown in Figure 7.7. In Figure 7.7a
we show how we were able to recover the number of circles of a precise radius without noise
affecting the data. For this case we choose the parameters

ρ “ 1e´4, η “ 1e´4 and α “ 1e´5, (7.30)

and the Uzawa algorithm converges to the shown solution in just one iteration and the total radii
found are 100, while the estimate mean an standard deviation are µR “ 1.8998 and σR “ 0.4129.
To make an analysis for the case of noisy data we set ρ to be equal to the added noise, and
to choose α we use the Morozov’s Discrepancy Principle introduced before. In Figure 7.7b we
show the results obtained adding a 1% Gaussian noise to our data before applying the inversion
algorithm. In this case, the Uzawa algorithm converges in 155193 iterations and the total radii
found are 99, while the estimate mean an standard deviation are µR “ 1.8725 and σR “ 0.4358.
In Figure 7.7c we show the results obtained adding 5% Gaussian noise and using the same
routine. The algorithm converged after 178744 iterations and the total radii found are 96, the
estimate mean an standard deviation are µR “ 1.8067 and σR “ 0.4934. Finally, in Figure 7.7d
we show the sensitivity of our approach. We show a contour plot of the relative residual

||Spµ̂R, σ̂R, δ,∆, gq ´ SpµR, σR, δ,∆, gq||2
||Spµ̂R, σ̂R, δ,∆, gq||2

where µ̂R “ 1.9, and σ̂R “ 0.4 are the parameters of the simulated Normal distribution to create
the data and we have discretized µR and σR around these values to obtain the level curves. As
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we can see, this approach results to be very accurate for the mean µR and less for the variance
σR. In particular, the behaviour of the levels lines explain why we have a slow convergence and
highlights the fact that if the noise is not Gaussian we could have much more sensitivity to noise
for the parameter σR.
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Figure 7.7 – Radii distribution estimation using the dMRI signal coming from 25 radii distributed as a Normal of
µR “ 1.9µm and σ “ 0.4 with intrinsic diffusion coefficient D0 “ 1e´ 3mm2{s. The signal was generated with δ “ 0.5ms,
ug “ r1, 0s, six values of γg in r2.5e´ 3, 5e´ 3s and nineteen values of ∆ in r0.5, 5sms.

We now try to apply the same procedure to ADC data and not to the entire signal. We
always assume that δ and ug are fixed and we acquire measurements varying only ∆. With
these assumptions we can write the effective diffusion tensor as

Deffp∆q “
ÿ

Ri

nRiDp∆, Riq, (7.31)

where nRi is the number of circles of radii Ri and Dp∆, Riq is the effective diffusion coefficient
computed multiplied by the volume of the circle πR2

i for an impermeable circle of radius Ri
subjected to two pulses of a linear diffusion gradient with a time delay between them equal to
∆. Again this problem can be rewritten using the formulation in (7.22) where A “ Dp∆j , Riq,
S “ Deffp∆jq and F is the same as before, i.e. the constraints can be written using (7.20). For
the simulations we fixδ “ 0.5ms and ug “ r1, 0s. We use again the radii distribution in Figure
7.6, but to generate enough data without the employ of g, we used thirty-eight values of ∆ in
the in r0.75, 10sms. For the inverse problem we also impose Nmax “ 100 and λ0 “ 0.
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In Figure 7.8 we show the results obtained using the Uzawa algorithm with parameters
ρ “ η “ 1e´4 and α “ 1e´20. Here the data were simulated without noise and we see that
the inversion works sufficiently well and the method converges in 1 iteration. In particular, the
recovered mean is µR “ 1.9µm and the standard deviation is σR “ 0.4131.
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Figure 7.8 – Radii distribution estimation using the dMRI signal coming from 25 radii distributed as a Normal of
µR “ 1.9µm and σ “ 0.4 with intrinsic diffusion coefficient D0 “ 1e´ 3mm2{s. The signal was generated with δ “ 0.5ms,
ug “ r1, 0s, six values of γg in r2.5e´ 3, 5e´ 3s and nineteen values of ∆ in r0.75, 10sms.

We tried to use the same routine also for noisy data and we started adding 1% Gaussian
noise. Unfortunately, for this type of data, setting ρ “ 0.01 and choosing α according to the
Morozov’s Discrepancy Principle the method did not converge. In our investigations to try to
understand the reasons of this failure, we thought about two possibilities

— the founded α was not correct,

— the choice of ρ was not appropriate.

We tried to investigate these two possible reasons but what we get was that, incrementing the
value of ρ, the Uzawa method did not converge either. On the contrary taking a smaller ρ we
obtained that the stopping criteria was verified after only one iteration but the result was not
respecting the constraints (in particular we had some negative values for the entries). The reason
for that could be that α was not well chosen because we notice that taking a smaller value of α
the amount of negative contributions was less and the reconstructed distribution was better. On
the other hand, only one iteration seems to be not enough to converge to a good solution in case
of noisy data, so maybe the stopping criterion and/or the value of ρ were not well chosen. An
idea to overcome this problem could be to adapt the value of ρ at each iteration. A way to do
that could be to add a loop on ρ and say that while Jpxnq ă Jpxn`1q, we need to replace ρ by
a˚ρn´1 (with a P r0.5, 1r), and recompute xn`1. In this case, we guarantee that the values of the
functional we want to minimize, are decreasing at each iteration. Nevertheless, looking at the
singular values of the matrix A for this case we found that only one value was bigger than 0.01

and all the others were going to zero very quickly. This means that the problem is extremely bad
conditioned and we do not believe that the adapting method for ρ would significantly improve
the results. This means, in particular, that the chosen parameters for collecting the data (varying
∆) do not provide sufficient sensitivity of ADC to radial distributions. Exploiting other type of
parameters with different other signals, may be helpful, but this is yet to be investigate.
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In conclusion, with our simulations we get that inverting the signal using linear convex
minimization with constraints appear feasible and very stable with respect to noise. This is
in accordance with the results obtained by Daducci et. al [45] with “AMICO” (Accelerated
Microstructure Imaging via Convex Optimization), in which they used Tikhonov regularization
along with the employment of the ordinary least-squares procedure implemented in Matlab. Here
we propose a new algorithm to solve this inverse problem which seems to be stable to noise but
of course validation on real data adding a modelling for the extra-compartment should be done.
We also highlighted the difficulties encountered when using just ADC but further investigations
should be also done for this case.

7.3 On the detection of the fibers orientations

A classical question in the dMRI of the white matter in the brain, is to find the orientations
distributions of the fibers. To investigate this task we consider the contribution to the ADC
coming just from the intra-cellular compartment. For simplicity we also suppose the geometry
to be compose by only 2D ellipses of the same shape but with different orientations and they
represent our model of fibers. For simplicity we also assume the ellipses to be impermeable and
we use PGSE sequence. With the model found in Chapter 4, the resulting diffusion tensor can
be the written as

Deffpα, δ,∆q “
ÿ

βi

npβiqDeff
βi pα, δ,∆q “

ÿ

βi

npβiqugpαq
TDβipδ,∆qugpαq, (7.32)

where α is the angle identified by the gradient direction ug and the x-axis, β is the angle
identified by the major axis of an ellipse and the x-axis (as illustrated in Figure 7.9) and npβiq
is the number of the ellipses orientated along the direction βi.

Figure 7.9 – Definition of the angles which determine the orientation of an ellipse and of the gradient direction.

From simple simulations, one can notice how, using the same values of ∆, δ and gradient
direction ug, the values of ADC changes if we consider all the ellipses oriented in the same
direction or many different directions. An example is shown in Figure 7.10a. To generate this
data we considered 2D impermeable ellipses of semi-axes 5µm and 2µm with intrinsic diffusion
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coefficient D0 “ 1e´ 3mm2{s and we fixed δ “ 0.5ms and fifteen values of ∆ evenly distributed
in the interval r1, 25sms. In Figure 7.10a we report the results when all the 200 ellipses are
orientated at β “ 100˝, in Figure 7.10b when 100 ellipses are orientated at β “ 80˝ and 100 at
β “ 120˝, and in Figure 7.10c when 100 ellipses are orientated at β “ 70˝ and 100 at β “ 130˝.
In all the cases, the “mean” direction is 100˝ but, as we can see, the values of Deff are different.
In particular, as the crossing angle between the ellipses becomes bigger, Deff becomes smaller.
Seeing this difference gives one hope that it may be possible to find the dominant orientation,
detect if there is a crossing or not and if there is of how many degrees.
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(a) 200 ellipses at β “ 100˝.
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(b) 100 ellipses at β “ 80˝ and 100
ellipses at β “ 120˝.
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(c) 100 ellipses at β “ 70˝ and 100
ellipses at β “ 130˝.

Figure 7.10 – Deff of 200 ellipses of semi-axes 5µm and 2µm, intrinsic diffusion coefficient D0 “ 1e´ 3mm2{s, δ “ 0.5ms
and fifteen values of ∆ evenly distributed in the interval r1, 25sms.

For our preliminary analysis, we consider the formula (7.32) in 2D and we try to simplify it.
We observe that, since ug is the gradient direction vector and ‖ug‖ “ 1, we can always write it
as

ugpαq “ rcospαq, sinpαqs. (7.33)

Moreover, for fixed δ and ∆, Dβi is a squared matrix and, using the eigendecomposition, can be
decomposed as

Dβi “ VβiΛV
T
βi (7.34)

where V is a square matrix whose j-th column is the eigenvector vβ
i

j of Dβi and Λ is the diagonal
matrix whose diagonal elements are the corresponding eigenvalues λ1 and λ2. We notice that
the eigenvalues does not depends on the orientation βi because the just depends on the shape
of the considered ellipses (thus since we are considering copies of the same ellipse they assume
only one value). Furthermore, since we supposed that Dβi is the effective diffusion tensor of an
ellipse orientated in direction βi, and the vectors rcospβq,´ sinpβqs and rsinpβq, cospβqs form a
basis for this space, we have that

Vβi “

ˆ

cospβiq sinpβiq

´ sinpβiq cospβiq

˙

and Λ “

ˆ

λ1pδ,∆q 0

0 λ2pδ,∆qq

˙

. (7.35)
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Using this decomposition and making few computations, we can rewrite (7.32) as

Deffpα, δ,∆q “
ÿ

βi

npβiqrcospαq, sinpαqsVβiΛV
T
βi rcospαq, sinpαqs (7.36)

“
ÿ

βi

npβiq
`

λ1pδ,∆q cos2pα´ βiq ` λ2pδ,∆q sin2pα´ βiq
˘

. (7.37)

A natural way to find how many ellipses are orientated in a specific direction is to discretize
the gradient direction α and collect the data for N different directions αj . In this way we can
rewrite the above equation as

Deffpαj , δ,∆q “
M
ÿ

i“1

Aj,inpβiq, (7.38)

where the entries of the matrix A are

Aj,i “ λ1pδ,∆q cos2pαj ´ β
iq ` λ2pδ,∆q sin2pαj ´ β

iq. (7.39)

The matrix Aj,i is constructed with reference values of the Deff obtained by measuring ADC
for ellipses orientated along the direction βi subjected to a gradient in the direction αj . What
is important is that N ď M . Once the matrix A is constructed, one can proceed to recover
the npβiq by solving the linear system. Unfortunately the matrix A has just three non trivial
singular eigenvalues, i.e. (neglecting the constants) it can be decomposed in a basis formed by
the following vectors

v1 “ cos2pαjq, v2 “ cospαjq sinpαjq, v3 “ sin2pαjq

u1 “ cos2pβiq, u2 “ cospβiq sinpβiq, u3 “ sin2pβiq

as
Aj,i “ a1u1v

T
1 ` a2u2v

T
2 ` a3u3v

T
3 . (7.40)

where ai are constants. This proves that we cannot hope to recover npβiq in this way. A natural
idea would be then to consider not only the effective diffusion tensor but the whole dMRI signal
varying also the values of g. Repeating the same argument as before, for a fixed direction of the
gradient ug we can write the signal as

Spg,ugq “
ÿ

βi

npβiqSpg,ug, β
iq (7.41)

where βi are the direction along which the ellipses are oriented. However, for elongated shapes
like the ellipses, one can easily see that

Spg,ug, β
iq “ Spg,Rug,Rβiq, (7.42)

for every rotation matrix R. This means that making the hypothesis that the signal is obtained
as sum of different separated ellipses is not a good assumption to solve the problem of fibres
orientation. It would be better to investigate the problem using a different approach and maybe
try to retrieve just the mean direction and a measure of dispersion and not the exact number of
ellipses pointing in each direction.
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The problems studied in this thesis provide a rich spectrum of further research directions,
which will be mentioned here after a brief recall of the mains results.

In Chapter 3 we analysed deeply two existing macroscopic models: the Finite Pulse Kärger
(FPK) [42] and the Kärger model [94]. The principal difference between these two is that
the FPK model was derived mathematically by applying homogenization techniques to the
microscopic Bloch-Torrey equation, while the second was obtained heuristically by physicists.
We rigorously proved that the Kärger model is a particular case of the FPK model when we
assume narrow pulses. We show that if we use the PGSE sequence and we evaluate the Kärger
model at t “ ∆ ´ δ

3 , the order of convergence of the Kärger model to the FPK model is Opδ6q

(or Opb3q), whereas for other choices of the evaluation time, t “ ∆ or ∆ ` δ, for example, the
order of convergence is at most Opδ3q. All the proofs were done for the PGSE sequence, but we
suggested a way to extend all the results to the trapezoidal PGSE sequence and supported our
assertion with numerical examples. These results are particularly interesting for the investigation
of certain porous media to which the Kärger model is applicable. One future direction on this
topic would be deriving the best evaluation time for the Kärger model for other time-profiles.

In Chapter 4, we used homogenization techniques that were employed to derive the FPK
model to derive a new model for the time-dependent ADC. First, we introduced a new set
of scalings that, in contrast to the scaling used to derive the FPK model, coupled the time
variable and the gradient intensity to the the space variable and the permeability through the
non-dimensional homogenization parameter ε. We obtained thus a new family of models. To
recover a model valid for the time-dependent ADC (i.e. Opg2q term), we determined that we
must impose a scaling such that the b-value is sufficiently small. Using the following particular
choice of the scaling that results in b “ Opε2q,

L “ Opεq, κ “ Opεq, g “ Opε´2q, t “ Opε2q,

we obtained a new homogenized model for the time-dependent ADC that we called the H-ADC
model. The H-ADC model relates the ADC to the value of the solution of a homogeneous
diffusion equation on the set of interfaces within the volume. This diffusion equation is subject
to zero initial condition and time-dependent Neumann interface conditions that are related to
the time profile and direction of the diffusion gradient. We also furnish a result of convergence of
Opε3q in the signal for the H-ADC model, using the energy theorem. In Chapter 5 we analysed
some other homogenized models obtained using other choices of scalings in time and gradient
intensity, while respecting the constraint that b goes to zero as ε goes to zero. We found that if
we set t “ Op1q or t “ Opε1q, no matter which scaling we chose for g, we obtained a model whose
ADC is time-independent and coincides with the one found with the FPK model. Similarly, if
we set t “ Opε2q, no matter which scaling we chose for g, we obtained a model whose ADC is
time-dependent and coincides with the H-ADC model. On the topic of homogenized models,
an interesting future direction would be to obtain asymptotic models in higher orders of ε. For
example, models that contain the Opε4q term may be used to produce a closed term expression
for the Kurtosis of the signal.
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In Chapter 6 we restricted ourselves to the case of closed geometries (which is relevant
to diffusion inside biological cells) and the PGSE sequence. We analysed the H-ADC model
obtained in Chapter 4 using different techniques according to the duration of the gradient pulses
and the delay between them. In particular, we concentrated our attention on the solution of the
homogeneous diffusion equation with time-dependent Neumann boundary condition and zero
initial condition. If we consider short-time regime, we used potential theory and wrote the
solution using a single layer potential. In this way, we found a new explicit formula for the ADC
which generalises the well known Mitra’s formula ([130]) for short-time by accounting for the
duration of the pulses. We call it short pulse short-time (SPST) formula. If the duration of
the pulses and the time delay between them are both long, we used the eigenfunction expansion
to write the solution of the diffusion equation. We obtained an approximation of ADC which
coincide with the one from the well known matrix formalism approach [63]. We call it finite
pulse long-time (FPLT) formula. If the duration of the pulses is small while the time delay
between them is long, we used the single layer potential during the pulses and the eigenfunction
expansion between them. We call it short pulse long-time (SPLT) formula. An interesting
future direction would be to use potential theory to analyse the short-time regime for the OGSE
sequence and see if it gives a correction of existing formulas. A next step should be to analyse
the H-ADC model in the extra-cellular compartment by considering the solution of the relevant
diffusion equation in unbounded domains. It would be a challenge to extend our procedure to
non-periodic domains.

In Chapter 7 we just made a preliminary study of the inverse problem of finding information
about the microstructure starting from 1) the above obtained formulas of the ADC or 2) the
dMRI signal at multiple values of g. This work is far from complete and opens many different
future directions.

The most important result of this Chapter is the successful use of the SPST formula. We
showed that with this new formula we can go beyond the narrow pulse assumption and find the
surface to volume ratio for sufficiently big domains for which the short-time limit can be achieved
at standard dMRI diffusion times. To be used in practice, a behaviour for the extracellular
compartment should be added. On the contrary, fitting using the SPLT formula, we were not
able to estimate well the surface to volume ratio but we were able to estimate well the dominant
eigenvalues and the first moment of the related eigenfunctions. The dominant eigenvalues and
first moment of eigenfunctions can give useful information about the geometry.

We also investigated the problem of finding the radii distribution of a geometry composed
of 2D circles. Neglecting the signal contribution coming from the extracellular compartment,
we solved the least squares problem by applying Tikhonov regularization [178] and the Uzawa
algorithm [183] to find the radii distribution, with the data being the dMRI signal at multiple
values of the diffusion gradient intensity g and multiple values of ∆, the delay between the pulses.
We also showed the difficulties encountered using the same method with the data being the ADC
at multiple values of ∆ rather than the dMRI signal at multiple values of g and ∆. Further
investigations still need to be conducted for this case. For example, a better stopping criteria
should be considered and maybe an optimization of the parameters of the Uzawa algorithm
should be done.

Finally, analysing the problem of finding the fiber orientations using both the ADC and the
dMRI signal, we furnished a mathematical proof according which is not possible to recover an
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arbitrary distribution of the fiber orientations.
In conclusion, with this thesis we first answered an often-asked question about how to choose

the best evaluation time to be used for the Kärger model in the case of the non-narrow pulse
PGSE sequence. Then we showed that homogenization techniques applied to the microscopic
Bloch-Torrey equation resulted in a simplified model of the apparent diffusion coefficient from
which the dependence on the geometry is more clear. Using classical mathematical analysis for
the diffusion equation, we were able to find mathematical formulas for the ADC in long and
short-time regimes in the case of finite domains. We deeply investigated the case of the PGSE
sequence but repeating the derivations for other type of sequences would be really interesting and
useful for the practical applications. Moreover, what is missing in this thesis is the validation of
these results for more complex geometries and/or real experimental data. We note that all the
numerical validations we made were on 2D geometries but the results we presented are expected
to generalize to 3D.
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Diffusion magnetic resonance imaging (dMRI) or diffusion weighted imaging (DWI) is a
non-invasive technique which is extensively applied in material science to investigate structural
and transport properties of porous media (such as sedimentary rocks or concrete), as well as
in medicine and neuroscience to study anatomical, physiological and functional properties gives
uctuual of biological tissues and organs such as brain, skin, lungs, heart and bone [30, 63, 91, 108,
159, 182]. In biological tissues, the image contrast in water proton diffusion magnetic resonance
imaging is given by the difference in the average water displacement due to the difference in
diffusion between imaged tissues at different spatial positions [106]. A major clinical application
of dMRI has been in detecting acute cerebral ischemia minutes after stroke [131, 187]. DMRI
has been also used to detect and differentiate a wide range of physiological and pathological
conditions in the brain, including tumors [125, 174, 181] and myelination abnormalities (for a
review, see [108]). Recently, it also has been used to study brain connectivity (for a review, see
[105]) and in functional imaging [111], as well as in cardiac applications [35, 36, 163].

DMRI is limited by the range of diffusion times that can be measured, due to biological
and technical reasons. In the brain, diffusion times in the range of 1ms-100ms can be measured,
associated to average diffusion distances of 2.5µm-25µm. This distance is averaged over all water
molecules, and the actual diffusion distance varies depending on whether the water molecules
started in the neuronal bodies, the neurites (dendrites and axons) or the extra-cellular space.
The resolution of dMRI is of the order of 1mm3 in the clinical scanner (about 200µm3 in research
scanner), meaning each pixel in the image displays the averaged diffusion characteristics of a
tissue volume (voxel) of 1mm3 (or 200µm3). This is very large compared to cell features, which
in the brain, vary from sub-micron (diameter of neurites) to tens of microns (neuronal bodies and
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glial cells). To simulate the dMRI signal attenuation in a voxel Ω, one would have to simulate
the magnetization inside Ω and compute its integral at a fixed time. At physically realistic dMRI
diffusion times of tens of milliseconds, the average diffusion distance is no more than 25µm. It
follows that the microscopic components of the tissues are not visible at the spatial resolution of
dMRI, rather their geometric features are aggregated into the macroscopic signal coming from
the voxels. Measuring the signal at different diffusion times and gradients, one aims to infer the
morphological structure of a sample and to characterize the dynamics of the system. Despite
of the numerous applications of dMRI for both clinical and research purposes, and more than
sixty years of theoretical works, this inverse problem has not been fully solved yet.

This Appendix will deal with describing the basic physical phenomena behind the dMRI im-
age. The aim is to give the reader a better understanding of the physical restrictions with which
we have to deal, and clarify the physical meaning of all the quantities we shall introduce. Our ex-
position is indeed not exhaustive and, for more details about MRI and dMRI, we refer for example
to the following books [28, 79, 90, 118] around which these sections are structured. I have also
personally enjoyed the online course “Introducing MRI” of Dr. Michael Lipton provided by the
Albert Einstein College of Medicine (https://www.youtube.com/playlist?list=PLPcImQzEnTpz-
5TzxyyoYSbiAa9xdd89l). The course helps in understanding may aspects of MRI.

A.1 Spatial and Contrast resolution

The aim of MRI is to differentiate two adjacent tissues based on their different MR signals.
To accomplish this the image must have sufficient resolution both spatially and in contrast.

The system must be physically capable to distinguish between two different types of tissues
in the same region of interest assigning them different positions within the image; that is, the
image must have sufficient spatial resolution. In particular, an MR image represents a slice of
tissue with a defined thickness. This slice is then divided into a two-dimensional array that we
call voxels (for “volume elements”). Each voxel is sampled as a single MRI signal that is an
average of the signal arising from all of the tissue within the voxel.

The MRI acquisition must also bring out a different signal from each of the tissues we wish to
separate. That is, the image must have sufficient contrast resolution. To maximize the difference
in signal between tissues, one modulates the measured signal by adjusting the parameters of the
MR acquisition.

A.1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which atomic nuclei in
a magnetic field absorb and re-emit electromagnetic radiation. In particular, it results in a
method to “label” or “encode” the Brownian trajectories of particles by using magnetic fields.
NMR is then the process by which the signal detected in MRI is generated. With this technique
we cannot image all the elements in nature, indeed an element shows NMR if it has non-zero
spin, which is a quantum mechanics feature of the nucleus. Without entering into details, it is
sufficient to know that this happens when the number of protons or neutrons in an atom is odd.
Although many nuclei can undergo NMR (Hydrogen, Carbon, Sodium, Potassium, Calcium,
etc.), we will confine our discussion to the hydrogen nucleus (1H) for two reasons: in the human
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tissue it is the most prevalent (because the tissues are mostly composed of water, H2O); and the
strength of NMR response of hydrogen isotope is much higher than that of any other elements
[118].

If we look at the nucleus of hydrogen, it has a simple structure, indeed it is just a single
positively charged particle (a proton). It turns out that the presence of charge in this nucleus
leads to a phenomenon called nuclear magnetism (NM). NM tells us that this nucleus, with its
charge, behaves as a small magnet which has magnetic field lines (see Figure A.1). Even though it
is tempting to think of such nuclear magnetism in terms of classic electromagnetic phenomena,
with spinning charges generating a magnetic field based on Faraday’s law of induction, we
cannot because nuclear magnetism is indeed a quantum mechanical phenomenon, and not an
electromagnetic one, as such nuclear particles do not, as currently understood, actually spin in
the physical sense [118]. Nevertheless, it turns out that we can describe its magnetic field as a
vector, where the length is the magnitude of the magnetic field generated by the proton, and
the orientation is the orientation of the magnetic field (see Figure A.1).

Figure A.1 – Proton with its magnetic field lines and the magnetic field represented by a vector.

In the absence of any magnetic field external to the nucleus, the orientation of the nuclear
magnetic field is random. It is also important to observe that we cannot look at a single proton,
but we will always look at a population of atoms, and thus we will always talk about the
resultant vector sum M. Since we have said that, in the absence of any magnetic field external
to the nucleus, the orientation of each nucleus is random, the vector sum of a large sample
will be always equal to zero. On the other hand, if we apply a strong enough magnetic field
with a well defined orientation, we will generate a net magnetization with the same direction
as the applied magnetic field, but opposite orientation. Nevertheless, the magnitude of the
resulting magnetization vector M will not be equal to the sum of the magnitudes of all the
spins. This is due to the fact that there are two possible orientations along which the spins can
align themselves: parallel or anti-parallel to the applied field. This is in contrast with classical
electromagnetism, and is a result of the quantistic nature of the spins, which we will briefly
discuss later. Overall the distribution of the spins will be only slightly in favour of the anti-
parallel orientation, resulting in a small net magnetization. At standard field strengths of 1.5
Tesla, only about 6 in every 10000 spins will align parallel to the external field. Such a small
difference is not sufficient to be detectable, as it is covered by the strong field used to induce it.
It is nonetheless this signal that we wish to measure.
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A.1.2 Spin angular momentum

Nuclear magnetism is not the only property of the nucleus which is relevant to MRI experi-
ments, the so called “spin angular momentum” also play a role. Spin angular momentum can be
considered as analogous of angular momentum in standard physics. When an external magnetic
field B0 is applied to a particle with spin angular momentum, the particle will tend to align
with the field, but, because of its spin it will settle out of alignment with the external magnetic
field. Its magnetic vector will then rotate in a cone shape trajectory around the axis identified
by B0 (Figure A.2). This particular rotation movement is called “precession” (see [28, 79, 118]
for more details). There exists a parameter that we call the gyromagnetic ratio (γ), which is
unique for each element that can be studied by NMR (Hydrogen or Carbon or Nitrogen etc.),
and that determines the frequency at which the proton precesses around the applied magnetic
field. This parameter has units of frequency divided by the field strength (MHz/T). In partic-
ular, it depends on the applied magnetic field, and, more precisely, the frequency at which the
spins precess is given by

w0 “ γB0 (A.1)

which is called Larmor equation. The frequency w0 is thus known as “Larmor frequency”.
Equation (A.1) gives the key relation between frequency and applied magnetic field which allows
us to create the images.

Figure A.2 – Proton subjected to a magnetic field starts to precess around it

As the particle precesses around the external applied magnetic filed, its magnetic vector can
be decomposed in a longitudinal, Ml, and a transversal, Mt, component. When dealing with
a population of identical particles, the characteristic frequency of precession around an applied
B0 will be the same for all of them. However, they will not be all at the same point in their
precession, i.e. they will all have a different phase. That is, the transverse components are
not all pointing in the same direction at any point in time. Indeed, the arrangement of the
spins along the path of precession is completely random. We call this “random phase”. As a
consequence, given a large sample of spins (remember that we are always dealing in average
with several trillions of spins), we find that the transverse component of the vector sum is zero.
Random phase thus means that all transverse components cancel each other.

The net magnetization can then be correctly represented as a static vector parallel to B0 with
opposite direction and a magnitude equal to the sum of the longitudinal component vectors. As
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we have already noted, though, the net magnetization of the sample is of the order of 6/10000
protons, much smaller than the external applied magnetic field, making it impossible to be
measured. In order to find a solution to this problem we are then forced to introduce energy
levels and a quantistic approach to the system.

A.1.3 Energy Levels

Until now we have used a classical approach to explain how the particles in our system
react to an external magnetic field, and have somewhat ignored the quantistic aspects involved.
Particles which obey quantum mechanics can only access a discrete number of states, their
energy is thus quantized, hence the name quantum mechanics. The particles can, however, exist
in a combination of two or more different states. Moreover the uncertainty principle states that
it is impossible to determine the exact state of a single particle at an exact moment in time. As
a result, measurements on a system provide the probability of finding particles in the available
states [118]. So we will always talk about the state of the entire system and not of a single
proton.

Quantum mechanics identifies a discrete number of states for a given nucleus. These states
are known as energy levels, and the number of energy levels varies with the type of nucleus.
In the case of 1H, there are only two energy levels (`1

2 and ´1
2), making it a relatively simple

system to discuss. So it is possible for a hydrogen proton to exist in any linear combination of
the two different energy states.

It turns out that the state of the system is not frozen, and protons can fluctuate between
energy levels. This jump from one state to the other requires some energy ∆E to be provided
to the particle (in order for the particle to move to a higher energy level), or to leave it (when
a particle falls to a lower energy state).

If we are considering a random population of protons at the equilibrium there will be a
relative greater occupancy of the lower energy state, but we observe that the upper level will
never be completely empty, due to thermal energy always being present in the sample. If we
take the sample and we place it into an external magnetic field, which acts as a source of energy
for the system, we increase the relative occupancy of our spins in the higher energy state. This is
equivalent to what we have described in the above sections, i.e. giving energy to the system we
align the spins, forcing the protons in a higher energy state, and creating a net magnitude which
has the same orientation as the magnetic field and opposite direction. The greater amount of
the energy we give to the system, the greater the occupancy of the upper state will be and thus
and the greater the net magnitude of the system will be. When we turn off the magnetic field
the protons return to their initial states keeping their angular momentum and releasing energy.

Another reason for which it is convenient to talk about the total energy is that, if one puts
enough of it into the system, the phase of the spins starts to become relatively coherent, i.e. not
only the spins are precessing at the same frequency (given by the Larmor equation (A.1)), but
they are also pointing in the same direction, and, as a consequence, the transverse component
of the net magnetization will not be 0.
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A.2 Generating the signal

As energy is provided to the system, and the phase of the spins aligns, Mt will progressively
grow, at the expense of Ml. As a result, the magnetization vector M will form an angle with
B0, as it rotates towards its transverse plane. This operation is called “flipping" the nuclear
magnetic vector, and, as we will see, is the solution to the problem of measuring the signal.

Once we have flipped the nuclear magnetic vector into the plane transverse to B0 we are
actually able to measure the transverse magnetization. This is because it is not static, as the
spins are continuously precessing around the B0 direction. Indeed, if the magnetization were
static we would not be able to measure its contribution because it would still be much too small
compared to the magnitude of B0. However, since it is not static we can use the Faraday law of
induction and, simply adding a voltmeter, we are able to measure the amplitude of the difference
in voltage which is proportional to the magnitude of the transverse magnetization. The intensity
measured by the voltmeter will be our signal.

A.2.1 Resonance

To efficiently transfer energy onto the spins in the sample, we discuss the concept of reso-
nance. For our purpose resonance can be simplified as a process by which energy is transferred
from one system to another. The basis of resonance is that everything has a unique “natural
frequency" at which it will oscillate under a given set of ambient conditions. In the case of the
precessing protons, the resonating frequency is in fact the Larmor frequency ω0 in (A.1).

To give energy to the system (in order to flip the nuclear magnetic vector), the idea is to
turn on another magnetic field B1 in the direction perpendicular to B0. We can then apply an
oscillating magnetic field, in the plane perpendicular to B0 with frequency ω0 to give energy to
the system, and to flip the nuclear magnetic vector. Because the resonating frequency is in the
same frequency range as those used in FM radio, it is also referred to as radiofrequency (RF).
If we were, on the other hand, to use a static field, without making use of resonance, we would
only obtain a slight change in the orientation of the sum vector, but would not cause any phase
coherence in the nuclear magnetic vectors associated with the spin. In contrast, by applying
an oscillating field we managed to have a large amount of energy very efficiently transferred
into the system of spins which drives it towards a higher energy configuration. In addition we
introduced coherence of the transversal components of almost all spins. As B1 is applied the
system will progressivelly align perpendicular to B0, becoming detectable by the antenna. The
angle of rotation is called “flip angle” and depends on how long B1 is kept turned on and on
the magnitude of B1. Indeed, taking a greater B1 will imply that we need to wait less time to
achieve the same flip angle for the same system. Usually one takes a flip angle of 90˝ (indicated
by RF 90˝) because in this direction the longitudinal magnetization is 0 and the detectable
magnetization is maximized.

A.2.2 Relaxation

When B1 is turner off, the spins, now in a high energy state, will tend to return to their
initial lower energy state. As we have mentioned before this will necessarily result in some
energy being transferred outside of the system. Since the energy of a system must always be



A.2. Generating the signal 159

conserved, we need to understand where this energy is transferred to. Moreover, the spins do
not go back to their initial position in the same way as they where flipped, because the change
in the longitudinal NMR has a different rate with respect to the change in the transversal NMR.
This phenomena is called “relaxation” and is the origin of the contrast in MRI.

The relaxation of the transversal component Mt is described by a time constant called T2.
This constant represents the amount of time it takes for the system to lose 37% of the starting
signal. During this relaxation the energy is transferred from the spins in the higher energy states
to the other spins and thus it happens through interaction between spins. For this reason it is
also called “spin-spin” relaxation. A small T2 means that the interactions of the spins occur with
an high probability.

The relaxation of the longitudinal component Ml is governed by a time constant called T1.
This constant represents the amount of time it takes for the system to lose 63% of the starting
signal. This process represents the loss of energy of the spins in favour of the lattice, i.e. all the
other component into the system other than the spins. In contrast to the spin-spin relaxation,
it is called “spin-lattice” relaxation. In particular, this is a much slower process than the one
determined by T2.

Figure A.3 – A simulation of an ensemble of spins in the rotating reference frame during a spin echo experiment. A
90˝-pulse rotates the spins, around the x-axis, into the transverse plane where they begin to precess. The spins accumulate
extra phase, until this accumulation is inverted by the 180˝-pulse. The spins continue to collect extra phase at the same
rate and, at a later time, all spins return to the positive y-axis together, forming an echo. The echo amplitude is still
reduced, however, by the intrinsic T2 decay (This figure was inspired by [28]).
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In general, signals would suffer additional suppression due to dephasing from external field
inhomogeneities (T2 would be replaced by a smaller relaxation time T ˚2 ă T2). But a rephasing
or echoing of this source of dispersion can be achieved by an additional RF pulse application,
where the basic idea is to flip all the spins 180˝ in the transverse plane (Figure A.3). Following
the 180˝ flip the dephasing is reversed, and the phases refocus at what is called echo time TE .
The value of TE can be set by varying the time interval between the initial 90˝ pulse and the
180˝ pluse. A longer wait time will result in a larger TE , while a short interval between the two
pulses will give a small TE .

Different tissues will have different values of T1 and T2 and what we actually measure during
MRI is the decrease in the signal amplitude, called the free induction decay (FID), of the signal
at the echo time TE . In particular we find that the FID is governed by T2.

A.2.3 Contrast

MRI’s ability to differentiate between material is given, among other things, by its sensitivity
to proton densities, relaxation times, temperature, proton motion, the chemical shift in the
Larmor frequencies, and tissue heterogeneity. This large set of variables allows images to be
generated with different levels of contrast based upon the desired usage. Here we briefly mention
what T2 contrast means as it is the one used to obtain the reference signal for dMRI, for the
other cases we refer to [28, 79, 118].
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Figure A.4 – T2 decay for different tissues

Looking at Figure A.4, we see that the three tissues whose transverse relaxation curves are
shown lose net Mt, at different rates. The tissue with the shorter T2 will lose Mt, faster. If we
set TE to occur immediately after the RF is turned off (making TE as close to 0 as possible),
we will detect very little difference in the Mt, (read signal intensity) from the two tissues. As
a result, we will be unable to distinguish the tissue in our image. A longer TE , however, will
reveal a large difference in signal from these tissues. That signal difference (read image contrast)
is entirely dependent on differences in T2. Thus, T2 contrast is modulated by TE and one has
maximal T2 contrast for long TE and minimal for short.
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A.3 Gradient magnetic field

It is not sufficient to apply the two magnetic vectors B0 and B1 , and correctly chose the
contrast of the image to obtain an MRI. It is also necessary to be able to image selective regions
within the sample. This can be done by introducing gradient magnetic field. It is the magnetic
gradient which allows us to obtain slices of the system we wish to analyse.

The “gradient” is a linear change in magnetic field strength along one linear direction within
the scanner. Gradient magnetic fields are generated using resistive electromagnets that are
turned on and off rapidly during MRI. A powerful property of MRI is that by carefully varying
the configuration of the gradient coils it is possible to adjust the direction of the gradient at
will. This removes the necessity of physically rotating the subject in order to acquire images in
different directions, as a simple change in the gradient direction results in the desired effect.

Figure A.5 – Application of a gradient Gz along the z-direction and resulting magnetic field Bnet

Spatial localization of the MR signal requires gradient magnetic fields in three orthogonal
directions. Let’s consider for example the standard x,y and z directions where B0 is applied
along the z direction. We start applying a gradient in the z direction (parallel to B0). As
shown in Figure A.5, two circular coils are used to do that, one at each end of the scanner,
equidistant from a point called “isocenter”. Without going into the details of how the coils work,
let just simply say that when current is run through both coils simultaneously, but in opposite
directions, two magnetic fields are generated of equal magnitude, but of opposite direction [118].
Because magnetic field strength declines with distance from the source of the magnetic field,
the field strength is higher near the coils and lower near isocenter. At the isocenter, the vectors
describing the field generated by the two coils are equal in magnitude but point in opposite
directions. Thus, the vector sum Gz of the gradient magnetic fields is 0 at isocenter. As we
move from isocenter along the same direction as B0 (to the right in Fig. A.5), Gz increases
in magnitude with the same direction as B0. We have two magnetic fields, Gz and B0, with
identical direction. Their vector sum Bnet is B0 ` Gz which is greater than B0. If we now
measure the field strength an equal distance from isocenter, but in the opposite direction along
B0 (to the left in Fig. A.5), Gz has now the same magnitude but opposite direction. Thus,
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Bnet is less than B0. The graph in Figure A.5 shows that when we measure Bnet at any location
along the z dimension, we find a linear change in Bnet due to a linear change in Gz, such that
Bnet is equal to B0, at isocenter.

In a similar fashion it is possible to create magnetic fields which induce a gradient along the
other two directions, Gx and Gy in order to obtain three independent magnetic field gradients
in the three orthogonal directions. While the basic principle is the same, a few more physical
principles of magnetic fields are need in order to do so without varying the direction of Bnet.
As this goes beyond the scope of the manuscript we encourage you to look at [28, 79, 118] for a
more in depth explanation.

A.3.1 Slice selection

We have shown how resistive magnets can be used to create a gradient in any direction
inside the MRI machine, we will now explain how this enables us to image a single slice along
the sample. With the gradient magnetic field Gz on, protons will experience a different Bnet and
therefore, a different frequency w depending on their location alongGz. IfB1 is transmitted with
a frequency of w0 while Gz is on, only protons with w “ w0 (i.e. those located at isocenter and
experiencing only B0) will have resonance with B1. Because Gz varies along the z dimension,
but not along the x or y dimensions, all spins on the plane of the isocenter of Gz achieve
resonance with the applied B1.

Figure A.6 – Slice selection using a magnetic field gradient and the 2D resultant image after the entire acquisition with
T2-contrast. This image was inspired by the one present at http://neurosurgerysurvivalguide.com/roundy/



A.3. Gradient magnetic field 163

We observe that a slice has real thickness. Measurement of signal only arising from spins
lying on a plane (i.e., infinitely thin) is an impossibility. Similarly, it is physically impossible
to transmit B1 at a single frequency. The RF transmitter hardware is not that precise. B1

is always transmitted as a limited range of frequencies or RF bandwidth. When a range of
frequencies centred on w0 is transmitted as the RF pulse, all spins resonant with any of those
frequencies will become excited. This group of excited spins represents a range of frequencies
residing on either side of isocenter. Each image contains then the resultant magnetization of a
slice of sample which has a certain thickness (see Figure A.6).

A.3.2 Frequency and Phase encoding

What we have described up to now allows us to obtain a single value of intensity from a slice
of the sample, but we have no way to localise information within this slice. What we need is a
way to differentiate the signal coming from within the slice, and correctly place it within a 2D
image. This is where frequency and phase encoding come into play.

Once the spins within the slice have been excited, the slice select gradient is turned off. The
spins are now precessing, at least in part, in the transverse plane with a precessional frequency
of w0. Their precessional frequency is w0 because, with no gradient magnetic field on, the only
magnetic field they experience at this time is B0. While the spins in the slice still have net
transverse magnetization (and before we record any signal), a magnetic gradient is create along
a direction perpendicular to the original one, either x or y. Suppose the gradient is applied along
the x direction. At this point the difference in magnitude of Bnet will cause a variation in the
precession speed of the particles based on their position along the x axis. The resulting signal
can than be decomposed through Fourier analysis, and amplitudes can be assigned to positions
in the x direction based on the resonant frequency. We are now left with a 1D image, and we
say that the signal is now “frequency encoded".

A process called “phase encoding” is used to expand the frequency encoded signal, and obtain
a 2D image of the slice we are analysing. A gradient along the y axis is used to impart a specific
phase angle to a transverse magnetization vector. While the phase encoding gradient is on the
spins at different locations along the y axis begin to precess at different Larmor frequencies.
When the phase encoding gradient is turned off the net magnetization vectors return to precess
at the same rate, but possess different phases. The phase being determined by the duration
and magnitude of the phase encoding gradient pulse. Once the phase encoding gradient pulse
is turned off a frequency encoding gradient pulse is turned on. In this example the frequency
encoding gradient is in the x direction. The frequency encoding gradient causes spin packets
to precess at rates dependent on their x location. At this point one simply apply the Fourier
transformation to correctly localize in space. We observe that there needs to be one phase
encoding gradient step for each location in the phase encoding gradient direction. So to create
the final image these steps must be repeated several times where every time one changes the
magnitude of the applied phase encoding gradient. These processes are usually sketched in a
diagram called “pulse sequence” diagram which describes the timeline of what we do in order to
generate the measurable MR signal (see Figure A.7a).
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A.4 Diffusion MRI

Now that we have introduced how the MRI works we see what it means to make the exper-
iment sensitive to diffusion. The goal of diffusion MRI is to detect how rapidly the molecules
can move, i.e. measure the diffusion tensor described before.

We have seen that any time we apply a gradient magnetic field, after having flipped our
spins in the transverse plane, they will experience different strengths of Bnet based on their
position along the gradient, and therefore they will precess at different frequencies. During the
time this gradient is on there is some amount of phase change which leads to less net transverse
magnetization. This is true for stationary spins, but even more so for spins moving along the
gradient, leading to a greater loss of signal for those particles which are moving compared to
those which are stationary. This is the exact principle on which dMRI is based on. We turn on
gradient magnetic fields and look at the amount of signal loss that occurs while those gradient
magnetic fields are on. That amount of signal is going to be proportional to the rate of diffusion
(diffusion tensor).

If we look at any MR pulse sequence (Figure A.7a), we start with the 90˝ RF pulse and
the application of the slice selective gradient Gsl, then we have phase encode gradient Gy, then
frequency encode Gx and in the middle of the frequency encode period we have TE (the echo
time at which the phases of the spins refocus). When Gsl or Gy or Gx are on, we know that
some spins are stationary and other are moving through the tissue in all different directions
(diffusion is a random process); but, whenever there is a movement along a gradient magnetic
field, there is going to be an accumulation of phase proportional to the amount of the movement
along that direction and it will result in a loss of signal. The signal in the MRI is thus influenced
by diffusion. With dMRI (or DWI diffusion weighted imaging) we are interested in detecting
that diffusion specifically. It is important to remark that the reference image for diffusion MRI
(those without the addition of diffusion sensibility) are acquired using T2 contrast.

(a) MRI (b) Diffusion MRI

Figure A.7 – Schema of the sequence applied in MRI and dMRI.

The change of signal intensity that occurs as a result of diffusion is dependent on the rate
of diffusion (diffusion tensor), the time observation (how long we let this occurs) and on the
strength of the applied gradient magnetic field. If the magnetic gradient is stronger, then, over
the same period of time, particles with the same speed will experience a greater change in phase
In our experiment we want to determine the diffusion tensor by adjusting the duration and
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the strength of the magnetic gradient. If we want to make the pulse sequence (Figure A.7a)
sensitive to diffusion what we do is turn on a strong bipolar magnetic gradient (the direction of
the gradient is inverted after the 180˝ RF pulse). In such a way all stationary particle will not
feel the effect of the gradient, and the signal becomes sensitive to movement in the direction
of the magnetic gradient (in Figure A.7b the bipolar magnetic gradient is applied to all three
directions, making the signal sensitive to diffusion along any axis). We thus obtain that the
signal from moving particles will be attenuated based on their diffusion speed: a faster moving
particle will have a more attenuated signal compared to a slower moving one (See Figure A.8).

With this section we wanted to introduce how we realize the dMRI experiment and specifi-
cally we wanted to distinguish between the imaging gradients (Gsl, Gy and Gx) and the diffusion
gradient that we add to make the image sensitive to diffusion. In the rest of the thesis, the imag-
ing gradients are ignored since, for the mathematical modelling of dMRI signal, one considers
just the contribution of the diffusion gradient.

Figure A.8 – Example of MRI obtained with T2-contrast and Diffusion weighted MRI image. We can see the loss of
signal in dMRI. Image taken from a 2014 CENIR’s course Diffusion: Applications au cerveau.
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Titre : Modélisation du signal de l’IRM de diffusion par des techniques analytiques
et d’homogénéisation
Mots clefs : IRMD, CDA dependant du temps, modèle de Kärger, impulsions finies, modèles homogé-
néisés, problèmes inverses.

Résumé : L’imagerie par résonance magnétique de
diffusion (IRMD) est une technique d’imagerie qui teste
les propriétés diffusives d’un échantillon en le soumet-
tant aux impulsions d’un gradient de champ magné-
tique. Une importante quantité mesurée par l’IRMD
dans chaque voxel est le Coefficient de Diffusion Appa-
rent (CDA). Il existe dans la littérature un nombre im-
portant de modèles macroscopiques décrivant le CDA
allant du plus simple au plus complexe. Le but de cette
thèse est de construire des modèles simples, disposant
d’une bonne validité applicative, en se fondant sur une
modélisation de la diffusion à l’échelle microscopique à
l’aide d’EDP et de techniques d’homogénéisation.
Dans un article antérieur, le modèle homogénéisé FPK
a été déduit de l’EDP de Bloch-Torrey sous l’hypothèse
que la perméabilité de la membrane soit petite et le
temps de diffusion long. Nous effectuons tout d’abord
une analyse de ce modèle et établissons sa convergence
vers le modèle classique de Kärger lorsque la durée
des impulsions magnétiques tend vers 0. Notre analyse
montre que le modèle FPK peut être vu comme une gé-

néralisation de celui de Kärger, permettant la prise en
compte de durées d’impulsions magnétiques arbitraires.
Le CDA du modèle FPK est indépendant du temps
ce qui entre en contradiction avec nombreuses obser-
vations expérimentales. Par conséquent, notre objectif
suivant est de corriger ce modèle pour de petites va-
leurs de ce que l’on appelle des b-valeurs afin que le
CDA homogénéisé qui en résulte soit sensible à la fois
à la durée des impulsions et à la fois au temps de dif-
fusion. Pour atteindre cet objectif, nous utilisons une
technique d’homogénéisation similaire à celle utilisée
pour le FPK, tout en proposant un redimensionnement
adapté de l’échelle de temps et de l’intensité du gradient
pour la gamme de b-valeurs considérées. Nous établis-
sons aussi des résultats analytiques d’approximation du
modèle asymptotique qui fournissent des formules ex-
plicites de la dépendance temporelle du CDA.
Enfin nous étudions le problème inverse consistant en la
détermination d’information qualitative se rapportant
à la fraction volumique des cellules à partir de signaux
IRMD mesurés.

Title : Homogenized and analytical models for the diffusion MRI signal
Keywords : DMRI, time dependent ADC, Kärger model, finite-pulses, homogenized models, inverse
problems.

Abstract : Diffusion magnetic resonance imaging
(dMRI) is an imaging modality that probes the diffu-
sion characteristics of a sample via the application of
magnetic field gradient pulses. An important quantity
measured in dMRI in each voxel is the Apparent Dif-
fusion Coefficient (ADC). There is a large variety of
macroscopic models for ADC in the literature, ranging
from simple to complicated. The goal of this thesis is
to derive simple (but sufficiently sound for applications)
models starting from fine PDE modelling of diffusion at
microscopic scale using homogenization techniques.
In a previous work, the homogenized FPK model was
derived starting from the Bloch-Torrey PDE equation
under the assumption that membrane’s permeability is
small and diffusion time is large. We first analyse this
model and establish a convergence result to the well
known Kärger model as the magnetic pulse duration
goes to 0. In that sense, our analysis shows that the
FPK model is a generalisation of the Kärger one for the
case of arbitrary duration of the magnetic pulses.

The ADC for the FPK model is time-independent which
is not compatible with some experimental observations.
Our goal next is to correct this model for small so cal-
led b-values so that the resulting homogenised ADC is
sensitive to both the pulses duration and the diffusion
time. To achieve this goal, we employed a similar homo-
genization technique as for FPK, but we include a sui-
table time and gradient intensity scalings for the range
of considered b-values. We also obtain some analytical
approximations (using short time expansion of surface
potentials for the heat equation and eigenvalue decom-
positions) of the asymptotic model that yield explicit
formulas of the time dependency of ADC.
Finally we explored the inverse problem of determining
qualitative information on the cells volume fractions
from measured dMRI signals. While finding sphere dis-
tributions seems feasible from measurement of the dMRI
signal, we show that ADC alone would not be sufficient
to obtain this information.
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