
HAL Id: tel-01422348
https://theses.hal.science/tel-01422348

Submitted on 25 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new horizon for the recommendation: Integration of
spatial dimensions to aid decision making

Rajani Chulyadyo

To cite this version:
Rajani Chulyadyo. A new horizon for the recommendation: Integration of spatial dimensions to aid
decision making. Computer science. Université de Nantes, 2016. English. �NNT : �. �tel-01422348�

https://theses.hal.science/tel-01422348
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Rajani CHULYADYO
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université de Nantes
sous le label de l’Université de Nantes Angers Le Mans

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique et applications, section CNU 27
Unité de recherche : Laboratoire d’informatique de Nantes-Atlantique (LINA)

Soutenue le 19 octobre 2016

A new horizon for the recommendation
Integration of spatial dimensions to aid decision making

JURY

Rapporteurs : M. Christophe GONZALES, Professeur des universités, Université Pierre-et-Marie-Curie (Paris VI)

M. Nicolas LACHICHE, Maître de conférences, Université de Strasbourg

Examinateurs : M. Colin DE LA HIGUERA, Professeur, Université de Nantes

Mme Armelle BRUN, Maître de conférences, Université de Lorraine

Invité : M. Cédric HOUSSIN, Directeur, DataForPeople

Directeur de thèse : M. Philippe LERAY, Professeur des universités, Université de Nantes

Acknowledgments

This thesis would not have been possible without the inspiration and continuous sup-
port of a number of people.

I would like to express my deep gratitude to Prof. Philippe Leray for his supervision
of my thesis. His continuous guidance, suggestions, and optimism over the last years
have been invaluable to advance in my research. I feel very fortunate to be advised by
him and to benefit from his expertise on this interesting area of research.

I am very grateful to DataForPeople for supporting this research. My special thanks go
to Mr. Romain Perruchon, former CTO of DataForPeople, and Mr. Cédric Houssin,
CEO of DataForPeople, for their guidance on the professional aspect of this thesis.
Their expertise in the projects of DataForPeople has been a great help during the
thesis. I am thankful to both of them as well as Mr. Pierre-Yves Huan, COO of
DataForPeople, for creating a cordial working environment and helping me to inte-
grate to the world of start-ups.

I would like to express my sincere gratitude to my colleagues, Anthony Coutant, Mouna
Ben Ishak, and Thomas Vincent, for always sharing their expertise and experiences,
and making the development of PILGRIM fun. Their domain expertise has helped me
get good insights of PILGRIM.

Additionally, I am very thankful to my friends, Prajol and Trija for making me feel
home away from home, Amandine and Mickaël for helping me learn French, and Amit,
Niroj and Parbati for their company and emotional support.

I would also like to thank all those who have been helped me directly or indirectly in
all stages of this thesis.

More than anything else, I am deeply grateful to my mom, dad, brother, and husband
for their love and continuous moral support.

Thanks!

i

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation and problem statement . 4
1.3 Contributions . 6
1.4 Organization of the dissertation . 7

I State-of-the-art 9

2 Probabilistic Relational Models for Relational Learning 11
2.1 Introduction . 12
2.2 Background . 13

2.2.1 Relational data representation 13
2.2.2 Bayesian Networks . 16

2.3 Probabilistic Relational Models (PRMs) 20
2.4 Extensions . 24

2.4.1 PRM with structural uncertainty 24
2.4.2 Other extensions . 24

2.5 Inference in PRMs . 24
2.6 Learning PRMs . 25

2.6.1 Learning parameters . 25
2.6.2 Learning structure . 26

2.7 Evaluating PRM learning algorithms 28
2.7.1 Evaluation strategy and metrics 29
2.7.2 Generating PRM benchmarks 30
2.7.3 Limitations . 31
2.7.4 Proposals for improvement . 32

2.8 Conclusion . 40

3 Recommender Systems: A Common Application of Relational Data 41
3.1 Introduction . 42
3.2 Recommendation models and techniques 43

3.2.1 Recommendation data . 44
3.2.2 Recommendation techniques . 45
3.2.3 New developments . 51

3.3 Evaluation of recommender systems . 51
3.3.1 Evaluation approaches . 52
3.3.2 Accuracy metrics . 52
3.3.3 Other evaluation metrics . 54
3.3.4 Benchmark datasets and evaluation tools 55

iii

iv CONTENTS

3.4 Challenges . 57
3.5 Conclusion . 59

4 Using Probabilistic Relational Models for Recommendation 61
4.1 Introduction . 62
4.2 Existing approaches . 62

4.2.1 Collaborative Filtering using PRMs (Getoor and Sahami [1999]) 62
4.2.2 A unified recommendation framework based on PRMs (Huang

et al. [2004]) . 63
4.2.3 Hierarchical Probabilistic Relational Models (hPRM) (Newton

and Greiner [2004]) . 64
4.2.4 Combining User Grade-based Collaborative Filtering and PRMs

(UGCF-PRM) (Gao et al. [2007]) 65
4.2.5 A RBN-based recommender system architecture (Ben Ishak et al.

[2013]) . 65
4.3 Comparison and discussion . 66
4.4 Conclusion . 69

5 Spatial Data 71
5.1 Introduction . 72
5.2 Spatial data representation . 72

5.2.1 Tessellation data representation 73
5.2.2 Vector data representation . 73
5.2.3 Network data type . 74

5.3 Characteristics of spatial data . 75
5.3.1 Spatial heterogeneity . 75
5.3.2 Spatial autocorrelation . 75

5.4 Spatial operators . 76
5.4.1 Metric operators . 76
5.4.2 Topological operators . 76

5.5 Conclusion . 78

6 Recommender Systems with Spatial Data 79
6.1 Introduction . 80
6.2 Review of some spatial recommender systems 80
6.3 Discussion . 82
6.4 Conclusion . 84

II Contributions 85

7 A Personalized Recommender System 87
7.1 Introduction . 88
7.2 The proposed approach . 90

7.2.1 PRM for preference-based recommendation (PRM-PrefReco) . . 90
7.2.2 Personalization . 93
7.2.3 Relational attributes and types of model 96
7.2.4 Examples . 98

7.3 Experiments . 101
7.3.1 Dataset . 101

CONTENTS v

7.3.2 Experiment methodology . 102
7.3.3 Evaluation metrics . 102
7.3.4 Results and discussion . 103

7.4 Conclusion . 104

8 PRM with Spatial Attributes (PRM-SA) 105
8.1 Introduction . 106
8.2 Definitions . 106
8.3 Learning PRM-SA . 112
8.4 Evaluation of PRM-SA learning algorithms 116

8.4.1 Evaluation strategy and metrics 117
8.4.2 Generation of PRM-SA benchmarks 117

8.5 Experimental study . 122
8.5.1 Methodology . 123
8.5.2 Results and discussion . 126

8.6 PRMs-SA in recommender systems . 131
8.7 Conclusion . 132

9 Implementations in PILGRIM 135
9.1 An Introduction to PILGRIM . 136
9.2 Technical aspects . 137
9.3 PILGRIM-Relational . 137

9.3.1 Modules . 139
9.3.2 Implementation of PRM-SA . 144
9.3.3 Implementation of PRM benchmark generation 145

9.4 PILGRIM-Applications . 148
9.5 Conclusion . 150

10 Conclusion 151

III Appendices 155

A Empirical Study of PRM Sampling Algorithms 157
A.1 Empirical study of relational block Gibbs sampling algorithm 157

A.1.1 Methodology . 157
A.1.2 Results and discussion . 160

A.2 Comparison of sampling algorithms . 162
A.2.1 Methodology . 162
A.2.2 Results and discussion . 163

A.3 Conclusion . 165

B Using PILGRIM 167
B.1 Defining a PRM(-SA) . 167

B.1.1 Defining a relational schema . 167
B.1.2 Defining a dependency structure 170
B.1.3 Defining parameters . 174

B.2 Instantiating a PRM for making inference 175
B.3 Utility methods . 176

B.3.1 Exporting/Importing a PRM 176

vi CONTENTS

B.3.2 Exporting a relational schema into a database 176
B.4 Generating datasets from a PRM . 176

B.4.1 Generating a random skeleton 177
B.4.2 Sampling a PRM . 177

B.5 Working with PILGRIM-Recommender 179
B.5.1 Defining a recommendation model 179
B.5.2 Making recommendations . 181

C Detailed Results of PRM-SA Learning Algorithm Evaluation 183

List of Tables

2.1 Notations and their meaning . 14

3.1 Some datasets used for recommendation systems research purposes . . 56

4.1 Comparison of some PRM-based recommendation approaches 68

5.1 Examples of spatial operators . 77

6.1 Comparison of some recommender systems that exploit spatial data . . 83

7.1 The scale of absolute numbers for expressing the relative importance of
a pair of decision factors (Saaty [2008]) 95

7.2 CPD of P (Tx.DF_furnished | Search.furnished,Tx.Property.furnished) . 99
7.3 Evaluation result . 104

8.1 Average ± standard deviation of metrics for four PRM-SA structure
learning algorithms in the experiment. 128

8.2 Average ± standard deviation of metrics to measure spatial influence in
the learned models . 129

9.1 PILGRIM modules, and contributions made by the team members . . . 138
9.2 Summary of major functionalities implemented in PILGRIM-Relational 140
9.3 Summary of major functionalities implemented in PILGRIM-Recommender149

C.1 Average ± standard deviation of Hard Precision for PRM-SA structure
learning algorithms for models of Figure 8.6. 183

C.2 Average ± standard deviation of Hard Recall for PRM-SA structure
learning algorithms for models of Figure 8.6. 184

C.3 Average ± standard deviation of hard F-score for PRM-SA structure
learning algorithms for models of Figure 8.6. 184

C.4 Average ± standard deviation of Soft Precision for PRM-SA structure
learning algorithms for models of Figure 8.6. 184

C.5 Average± standard deviation of Soft Recall for PRM-SA structure learn-
ing algorithms for models of Figure 8.6. 185

C.6 Average ± standard deviation of Soft F-score for PRM-SA structure
learning algorithms for models of Figure 8.6. 185

C.7 Average ± standard deviation of Soft Precisionskeleton of models of Fig-
ure 8.6. 186

C.8 Average ± standard deviation of Soft Recallskeleton of models of Figure 8.6186
C.9 Average ± standard deviation of Soft F-scoreskeleton of models of Figure 8.6186
C.10 Average ± standard deviation of Hard Precisionspatial of models of Fig-

ure 8.6 . 187

vii

viii LIST OF TABLES

C.11 Average ± standard deviation of Hard Recallspatial of models of Figure 8.6187
C.12 Average ± standard deviation of hard F-scorespatial of models of Figure 8.6187
C.13 Average± standard deviation of Soft Precisionspatial of models of Figure 8.6188
C.14 Average ± standard deviation of Soft Recallspatial of models of Figure 8.6 188
C.15 Average ± standard deviation of Soft F-scorespatial of models of Figure 8.6189
C.16 Average ± standard deviation of normalized mutual information(NMI)

between the spatial partition learned during the experiment, and the
original spatial partition for the spatial attribute (User.location) of each
model of Figure 8.6 . 189

C.17 Absolute difference between Bayesian Dirichlet score of the gold models
and that of the learned models. 190

List of Figures

2.1 (a) An example of a relational schema, (b) Crow’s foot notations 15
2.2 Instantiations of the relational schema of Figure 2.1a 17
2.3 An example of a Bayesian network (Pearl [1988]) 18
2.4 An example of a PRM corresponding to the relational schema of Fig-

ure 2.1a . 22
2.5 Ground Bayesian network obtained by unrolling the PRM of Figure 2.4

over the relational skeleton of Figure 2.2 23
2.6 Class dependency graph of the PRM in Figure 2.4 23
2.7 Overview of PRM benchmark generation process proposed by Ben Ishak

[2015]. 31
2.8 (a) Relational schema DAG of Figure 2.1a (considering only three classes),

(b) Relational skeleton of Figure 2.2a as a k-partite graph 33
2.9 A dummy relational schema: (a) Entity-Relationship diagram, (b) as a

directed graph . 37
2.10 Generating objects while performing Depth First Search (DFS) on the

relational schema. This shows one iteration of a DFS performed on the
schema. 38

2.11 Next two iterations of DFS on the relational schema of Figure 2.9 fol-
lowing the first iteration of Figure 2.10 to generate relational skeleton
graph. 38

3.1 Data representations commonly used in recommender systems 45
3.2 Recommendation approaches . 47
3.3 Hybridization techniques (Burke [2007], Jannach and Friedrich [2013]) . 49

4.1 A Bayesian network for two-sided clustering (Getoor and Sahami [1999]) 63
4.2 (a) Hierarchy of Movie class and (b) Hierarchical Probabilistic Relational

Model (hPRM) proposed by Newton and Greiner 64
4.3 Overview of the recommender approach proposed by Gao et al. [2007] . 65
4.4 The overall architecture of the recommender system proposed by Ben Ishak

et al. [2013] . 66
4.5 Sample hierarchies an hPRM cannot address 67

5.1 Examples of spatial data . 74

6.1 Partial pyramid structure proposed by Levandoski et al. [2012] for par-
titioning users based on their location. 81

6.2 An example of a location-based social network graph (Wang et al. [2013]) 82

7.1 Relational schema of our proposed preference-based recommender system 91

ix

x LIST OF FIGURES

7.2 The proposed PRM (a) before introducing decision factors, and (b) after
introducing decision factors. 93

7.3 Three types of proposed recommendation model 97
7.4 (a) A screenshot of Kyzia, (b) Relational schema of Kyzia, (c) PRM-

PrefReco for Kyzia. 99
7.5 Re-formulation of Delcroix and Ben Mrad [2016]’s approach of modeling

decision criteria by V-structures in a Bayesian network into a PRM-
PrefReco . 101

8.1 (a) An example of a relational schema with a spatial attribute Restaurant.
(b) The relational schema adapted for the spatial attribute Restaurant.location.
(c) A PRM-SA as proposed in Definition 23 108

8.2 The class dependency graph for the PRM-SA in Figure 8.1c 111
8.3 An example of a class dependency graph with a cycle 111
8.4 An example of a dependency structure that models the dependency of

an attribute with the aggregated value of the same attribute of spatial
objects in the same cluster. 112

8.5 (a) A PRM-SA with multiple spatial attributes. (b) The corresponding
moralized graph used to identify the set of partition functions to be
optimized. 115

8.6 PRMs-SA used in the experiments as gold standard models. 124
8.7 Comparison of overall performance of PRM-SA learning algorithms with

Nemenyi test . 129
8.8 Comparison of overall hard precisionspatial, soft precisionspatial and soft

recallspatial of PRM-SA learning algorithms with Nemenyi test 130
8.9 Result of Nemenyi test for comparison of overall performance of PRM-

SA learning algorithms in terms of the difference between the score of
learned models and that of gold models. 130

9.1 Technological stack diagram . 139
9.2 Class diagram showing how RelationalSchema, Class, Attribute,

and Domain are related to each other 141
9.3 Class diagram showing how RBN is related to other classes 142
9.4 Types of RBNDistribution . 143
9.5 Class diagram of RGS . 146
9.6 Types of GraphOperation available in PILGRIM-Relational 146
9.7 Class diagram of relational skeleton generation strategies implemented

in PILGRIM . 147
9.8 Class diagram of sampling strategies implemented in PILGRIM 148
9.9 Class diagram of RecoModel . 149
9.10 Class diagram of NaiveBayesianClassifier 150

A.1 (a) The PRM used in the experiments, and (b) the underlying relational
schema as a DAG . 158

A.2 Distribution of objects in the relational skeletons used in the experiments159
A.3 Max in-degree of entity objects in the relational skeletons. 160
A.4 Distribution of in-degree in naïve and k-partite skeletons 160
A.5 Burn-in vs time taken by RBG sampling algorithm on naïve and k-

partite graph-based skeletons of different size. 161

LIST OF FIGURES xi

A.6 Skeleton size vs time taken by RBG sampling algorithm for different
values of burn-in. 162

A.7 Skeleton size vs number of nodes that rejected the null hypothesis of
the Chi-square goodness-of-fit test for different values of burn-in. Lower
values are better here. 163

A.8 Burn-in vs number of nodes that rejected the null hypothesis of the Chi-
square goodness-of-fit test on (a) k-partite graph-based skeletons, and
(b) naïve skeletons of different size. Lower values are better here. . . . 164

A.9 Time taken by relational forward sampling, RBG sampling, and GBN-
based sampling algorithms on naïve and k-partite graph-based skeletons
of different size. 164

A.10 Number of nodes that rejected the null hypothesis of the Chi-square
goodness-of-fit test on naïve and k-partite graph-based skeletons of dif-
ferent size. Lower values are better here. 165

C.1 Comparison of PRM-SA learning algorithms with Nemenyi test for Model
A1 . 191

C.2 Comparison of PRM-SA learning algorithms with Nemenyi test for Model
A2 . 191

C.3 Comparison of PRM-SA learning algorithms with Nemenyi test for Model
C2 . 192

C.4 Comparison of PRM-SA learning algorithms with Nemenyi test for Model
D1 . 193

List of Algorithms

1 Generate_Neighbors (Bayesian Networks) 20
2 Lazy Aggregation Block Gibbs (LABG) 25
3 Relational Greedy Search . 26
4 Generate_Neighbors (PRM) . 27
5 Generate_Random_PRM-DB (Ben Ishak [2015]) 32
6 Generate_Relational_Skeleton . 34
7 Generate_SubSkeleton . 36
8 Relational forward sampling . 39
9 Relational Block Gibbs sampling (based on Kaelin [2011]’s LABG) . . . 40
10 Generate_Neighbors (Naïve Approach) 113
11 Increase_k Operation . 113
12 Decrease_k Operation . 114
13 Find_Structure_With_Best_k . 116
14 Adaptative_Structure_Learning (Version 1) 116
15 Adaptative_Structure_Learning (Version 2) 117
16 Generate_Neighbors (Adaptative Structure Learning Version 3) 118
17 Generate_PRM-SA_Benchmark . 119
18 Generate_Spatial_Schema . 120
19 Generate_Spatial_Relational_Dataset 121
20 Generate_Spatial_Relational_Skeleton 121

xiii

Abbreviations

AHP Analytical Hierarchical Process. 81, 83, 95
AIC Akaike Information Criterion. 19, 136

BD Bayesian Dirichlet. 19
BIC Bayesian Information Criterion. 19, 136
BN Bayesian Network. 3, 12, 13, 16, 18–20, 24, 26, 28, 38, 66–68, 80, 81, 83, 100, 101,

106, 121, 154

CARS Context-aware Recommender System. 44, 45
CDG Class Dependency Graph. 22
CF Collaborative Filtering. 45, 46, 57, 65, 67–69, 80, 83
CI Conditional Independence. 19, 20
CPD Conditional Probability Distribution. 16, 18, 21, 24, 25, 30–32, 39, 92–94, 98,

139, 141, 145, 147, 167, 174
CRP Chinese Restaurant Process. 33, 35

DAG Directed Acyclic Graph. 3, 19, 29–31, 33–36, 118, 124, 125, 147, 157–160, 169
DAPER Directed Acyclic Probabilistic Entity Relationship. 30, 117, 124, 133, 154
DF Decision Factor. 92
DFS Depth-First Search. 34–36
DMMHC Dynamic Max-Min Hill Climbing. 136
DMMPC Dynamic Max-Min Parents and Children. 136
DSS Decision Support System. 42
DTL Database Template Library. 137
DUKe Data, User and KnowledgE. 136

EAP Expectation a Posteriori. 19, 143
ERD Entity-Relationship Diagram. 15

GBN Ground Bayesian Network. 21, 24, 25, 30–32, 35, 37, 39, 40, 94, 109, 110, 118,
121, 122, 128, 137, 139, 140, 143, 148, 153, 154, 157, 162–165, 175

GIS Geographic Information System. 80
GPS Global Positioning System. 72

HCI Human-Computer Interaction. 50
hPRM Hierarchical Probabilistic Relational Model. 24, 64, 67, 69

xv

xvi Abbreviations

IDG Instance Dependency Graph. 22, 32
IR Information Retrieval. 42, 52, 54

KNN K-Nearest Neighbors. 81, 83

LABG Lazy Aggregation Block Gibbs. 25, 32, 39, 40, 118, 122, 153, 154
LINA Laboratoire d’Informatique de Nantes Atlantique. 136
LSI Latent Semantic Indexing. 57

MAE Mean Absolute Error. 53, 67–69
MAP Maximum a Posteriori. 16, 19, 143
MAUT Multi-Attribute Utility Theory. 50
MBR Minimum Bounding Rectangle. 76
MCDM Multi-criteria Decision Making. 50, 94
MDL Minimum Description Length. 19, 136
ML Machine Learning. 42
MLE Maximum Likelihood Estimation. 19, 25, 143
MMHC Max-Min Hill Climbing. 20, 26, 136
MML Minimum Message Length. 19
MMPC Max-Min Parents and Children. 20, 136

NMAE Normalized Mean Absolute Error. 53
NMI Normalized Mutual Information. 126, 130, 183

OGC Open Geospatial Consortium. 76
OOBN Object-Oriented Bayesian Network. 3, 80

PCA Principle Component Analysis. 57
PGM Probabilistic Graphical Model. 2, 3
POI Point-of-interest. 56, 81
PPR Personalized PageRank. 82
PRM Probabilistic Relational Model. 3–8, 12, 13, 20, 24, 28, 62–69, 89, 90, 92–94,

104, 106, 111, 112, 117, 125, 132, 133, 136, 137, 139, 141, 143–145, 148, 151–154,
157, 158, 167, 170, 171, 174–178

PRM-CH Probabilistic Relational Model with Class Hierarchy. 24, 64, 67
PRM-CU Probabilistic Relational Model with Clustering Uncertainty. 24, 136, 138,

141, 144, 172
PRM-EU Probabilistic Relational Model with Existence Uncertainty. 3, 24, 63, 69,

89–91
PRM-PrefReco Probabilistic Relational Model for Preference-based Recommenders.

90, 92–94, 96, 98–102, 151
PRM-RU Probabilistic Relational Model with Reference Uncertainty. 24, 26, 136,

138, 141, 144, 172

Abbreviations xvii

PRM-SA Probabilistic Relational Model with Spatial Attributes. 5–8, 106, 123, 124,
127–130, 132, 133, 136–138, 143–145, 148, 152–154, 167, 170, 172, 174, 175, 177,
178, 183, 191–193

RBG Relational Block Gibbs. 38, 39, 122, 123, 138, 148, 153, 157, 158, 161–165
RBN Relational Bayesian Network. 3, 29, 117
RDN Relational Dependency Network. 3
RGS Relational Greedy Search. 26, 124, 132, 133, 143, 145, 153
RMMHC Relational Max-Min Hill Climbing. 26, 31, 133, 138, 143, 153
RMMPC Relational Max-Min Parents and Children. 133, 153
RMN Relational Markov Network. 3, 112
RMSE Root Mean Squared Error. 53
RS Recommender System. 3, 42–45, 48, 51, 52, 54, 58, 59, 62, 88–91, 106
RSHD Relational Structural Hamming Distance. 30, 117, 124

SRL Statistical Relational Learning. 2–4, 12, 13, 153
ST-DBN State-and-transition Dynamic Bayesian Network. 80
SVD Singular Value Decomposition. 57

UGCF-PRM User Grade-based Collaborative Filtering - PRM. 65, 67

VGI Volunteered Graphical Information. 72

WSM Weighted Sum Method. 94, 102, 103

XML EXtensible Markup Language. 176

Special Terms

k-partite graph A graph whose vertices can be partitioned into k disjoint sets so that
there is no edge between any two vertices within the same set. 33, 118, 123, 153,
157, 177

Markov blanket The Markov blanket of a node in a Bayesian network is the set of
parents, children, and spouses of the node. 63, 69, 125

Moral Graph A moral graph is the equivalent undirected graph of a directed acyclic
graph and is obtained by adding an edge between the nodes that have a common
child and changing directed edges to undirected ones. 114

Skeleton of a DAG The skeleton of a directed acyclic graph is the undirected graph
that results from ignoring the directionality of every edge. 125

V-structure A v-structure in a directed acyclic graph G is an ordered triplet of nodes,
(x, y, z), such that G contains the arcs x→ y and y ← z, and the nodes x and z
are not adjacent in G. 125

xix

1
Introduction

Contents
1.1 Context . 2
1.2 Motivation and problem statement 4
1.3 Contributions . 6
1.4 Organization of the dissertation 7

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

The increase in Internet users has become a global phenomenon. Almost all coun-
tries in the world have witnessed the incredible growth of Internet users in the past
two decades 1. These users not only consume the data available in the Internet but also
produce a huge amount of data through various activities, such as browsing, searching,
providing personal information, blogging, sharing digital items (e.g., photos, videos
etc.), volunteering (e.g., Wikipedia, OpenStreetMap), participating in surveys etc.
Along with Internet users, the number of websites on the world wide web is also grow-
ing drastically 2. Simultaneously, technologies for collecting, disseminating, processing,
and analyzing data have been improving at a fast pace. The combined effect of all
these is that a tremendous volume of data is available day by day. The source of data
is not limited to the Internet only. Various domains, such as environmental, biologi-
cal, economical studies, and many applications contribute to the ever increasing data.
With this abundance of data, extracting knowledge or useful information from data
has become a widely researched topic.

Data analysis and knowledge discovery involve methods at the intersection of ma-
chine learning, statistics and databases. Machine learning is concerned with the ex-
traction of knowledge in the form of functions, mathematical or statistical models that
automatically evolve with experience. It is largely dominated by inductive learning
(also known as learning from examples or learning by induction) techniques, which
aim at inducing patterns (or hypotheses) from the given input data for predicting
new data (predictive modeling) or for describing the input data (descriptive modeling).
Traditional machine learning techniques are designed to work with attribute-value rep-
resentation of data (also known as single-table single-tuple (Raedt [2008]) format or
propositional data), where each row represents a data instance, and each column repre-
sents an attribute. These techniques also assume that the data instances are indepen-
dent and identically distributed (IID), i.e., the data instances are drawn independently
from each other from an identical distribution. Examples of such dataset include well-
known Iris dataset 3, mushrooms dataset 4 etc., which have been used in many studies.
However, in general, real-world data do not come in single-table format. It has been a
common practice to conceptualize a real-world system in terms of objects and relation-
ships between those objects. That means real-world data usually come as multi-table
multiple-tuple (Raedt [2008]) data, also called relational data. This kind of data con-
sists of multiple tables, each corresponding to an entity type or a relationship type.
Each row in an entity table represents an entity/object, and each row in a relationship
table denotes the relationship between objects. As objects are related to each other,
the IID assumption is often violated in relational data. This limits the application of
traditional machine learning algorithms on relational data. Consequently, Statistical
Relational Learning (SRL) has been emerged as a branch of machine learning that is
concerned with statistical analysis on domains with complex relations and uncertainty
(Getoor and Taskar [2007]).

SRL aims at learning statistical models exploiting relational information present in
the data. It is primarily dominated by methods that are based on Probabilistic Graph-
ical Models (PGMs). PGMs use graph theory for expressing complex probabilistic

1. http://data.worldbank.org/indicator/IT.NET.USER.P2
2. http://www.internetlivestats.com/total-number-of-websites/
3. https://archive.ics.uci.edu/ml/datasets/Iris
4. http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html

http://data.worldbank.org/indicator/IT.NET.USER.P2
http://www.internetlivestats.com/total-number-of-websites/
https://archive.ics.uci.edu/ml/datasets/Iris
http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html

1.1. CONTEXT 3

dependencies between random variables (Wainwright and Jordan [2008]). Directed as
well as undirected versions of PGMs have been extended for relational settings. Prob-
abilistic Relational Models (PRMs) (Friedman et al. [1999], Getoor [2001]), Relational
Bayesian Networks (RBNs) (Jaeger [1997]), and Object-Oriented Bayesian Network
(OOBN) (Koller and Pfeffer [1997], Bangsø and Wuillemin [2000]) are relational exten-
sions of Bayesian Networks (BNs), which are PGMs that use Directed Acyclic Graphs
(DAGs). Markov networks, and dependency networks, which are respectively undi-
rected and bi-directed counterparts of BNs, have been extended by Relational Markov
Networks (RMNs) (Taskar et al. [2002]), and Relational Dependency Networks (RDNs)
(Neville and Jensen [2007]) respectively with the concept of objects to deal with re-
lational data. This thesis is concerned with the directed version, particularly PRMs.
A PRM models the uncertainty over the attributes of objects in the domain and the
uncertainty over the relations between objects (Friedman et al. [1999]).

SRL has found its application in special tasks that originate from the relational
nature of data. Most popular among these tasks are link prediction, entity resolution,
collective classification, and link-based clustering. The central idea to all of them is to
exploit links (or relationships) between objects for problem solving. Links can be, for
example, the action of rating/buying an item in an e-commerce website, friendships in
social networks, the action of reading news articles/listening to music, co-author links
between author references in bibliographical data, links between spatial references in
geo-spatial data and so on. The objective of link prediction is to determine whether
a link or relationship exists between objects. Entity resolution aims at identifying
references that denote the same entity. Practical uses of entity resolution include finding
duplicates in data, integrating data from multiple sources, disambiguating user queries
etc. The goal of collective classification is to classify entities given their attributes
and links in presence of autocorrelation. Link-based clustering groups together objects
based on the similarity of their attributes as well as the attributes of linked objects.

In this thesis, we are particularly interested in the task of link prediction. One of the
applications where link prediction is very useful is Recommender Systems (RSs), which
is also a very common source of relational data. Recommender systems are basically
built around the interaction between users and items, and help discover interesting
items for users from a big collection of items. Such systems can be observed in many
different websites that we use everyday (e.g., Amazon, YouTube, IMDb, Facebook
etc.). In general, users are described by some properties such as their demographics
information. Items are domain-specific objects that users are looking for, such as
music, movies, books, news, cities, restaurants, friends, products etc. Depending on
the domain, users might interact with items in different ways. For example, in Amazon,
users purchase items, and provide feedback in the form of ratings, and comments; in
social networking sites, users become friends. The goal of a recommender system is to
predict the items that users might find interesting to interact with. In other words,
recommender systems predict whether a link could exist between a user and an item.
Probabilistic Relational Model with Existence Uncertainty (PRM-EU), an extension of
PRM for modeling the uncertainty over the existence of relationships between objects,
can be suitable in such scenario.

As recommender systems have the potential to increase revenue generation, they are
being applied in many different systems. Consequently, various recommendation tech-
niques have been devised to fit in different scenarios. A growing trend in recommender
systems is to improve recommendations by exploiting locational or spatial information
about users and/or items. For example, YouTube recommends videos that are popular

4 CHAPTER 1. INTRODUCTION

in users’ geographic region, LinkedIn suggests jobs in nearby areas etc. The presence
of a spatial dimension enhances users’ experience. At the same time, it restrains the
application of conventional algorithms because of the geographical representation of
objects and the interactions it adds between objects. Such interactions make multi-
relational settings suitable for analyzing spatial data (Malerba [2008]). Though PRMs
are interesting SRL models that can extract statistical patterns from relational data,
they cannot treat spatial objects in the same way as non-spatial ones due to the pres-
ence of spatial information, which are commonly represented through their geometry.
Malerba [2008] has mentioned the possibility of using PRMs with spatial relational
databases. However, not much progress has been made in this direction.

This thesis deals with the (not much explored) intersection of three related fields –
PRMs, spatial data, and recommender systems. The thesis makes two main contribu-
tions. Our first contribution is concerned with the intersection of PRMs and recom-
mender systems. We propose a novel approach for using PRMs for making personalized
recommendations in preference-based systems. Our second contribution addresses the
problem of integrating spatial information into PRMs. In the following section, we
will describe the motivating scenario for this thesis and state the problems we try to
address.

1.2 Motivation and problem statement

As we have discussed in the previous section, PRMs can be used to realize rec-
ommender systems through the task of link prediction. Using PRMs in recommender
systems has, in fact, been a topic of research from the beginning of PRM formalism.
However, most of the studies (e.g., Getoor and Sahami [1999], Newton and Greiner
[2004]) are focused on implementing collaborative filtering approach, which demands a
good amount of historical data about users’ interactions in the system. In the absence
of such historical data, PRMs are used with users’ demographics information or items’
basic features (Gao et al. [2007], Huang et al. [2004]). At DataForPeople, a young
startup based in Nantes, there was a need for a recommender system for recommend-
ing real estate properties, which are far less frequently purchased than books, movies
or similar inexpensive items. In this system, called Kyzia 5, users provide their prefer-
ences (or criteria for search) about various features of real estate properties. The goal
is to recommend most relevant properties to the users from their search criteria. The
system does not oblige users to provide their personal details because they usually have
short-term preferences. So, users have very less interactions with this young system.
Because of the lack of user profiles, and infrequent interactions of users, commonly
used techniques, such as collaborative filtering or demographics-based filtering, are not
appropriate for this system. Besides being short-term, an interesting but challenging
property of users’ preferences in our system is that users may have different flexibility
towards those preferences. In other words, users generally have preferences not only
about items’ features but also about search criteria. For example, a user who does
not have good income may be strict about his preferred price of properties but flexible
about other features of properties whereas a user with children may not be willing to
compromise the surface area of properties and so on. Such situations can arise not only
in real estate search systems but also in other systems, such as flight/product search
systems, hotel reservation system etc., where items are described by a set of features

5. www.kyzia.fr

www.kyzia.fr

1.2. MOTIVATION AND PROBLEM STATEMENT 5

and users state their preferences about those features to find their preferred items.
For similar domains, Viappiani et al. [2007], and Shearin and Lieberman [2001] have
proposed critiquing-based systems, where users are first presented with a small set of
recommended items and the recommendations are iteratively improved after receiving
feedback (or critiques) from the users. They take into account users’ preferences about
feature values but not about search criteria. Moreover, such iterative solutions demand
users’ patience to receive good recommendations. Therefore, the first contribution of
this thesis deals with the problem of providing personalized recommendations, even
without user profiles, to users from their preferences about items’ features and search
criteria for recommending less frequently purchased (or interacted) items. We propose
a PRM-based solution for this problem. Our solution is generic and is not restricted
to the domain of real estates.

In the context of real estate recommendation, adding a spatial dimension is always
interesting because real estate properties always involve geographical information, and
users tend to have preferences about location. For example, users may prefer to live
not too far from some points of interest such as workplace, children’s schools etc., and
they may have different preferences for the geographical position and various other
features of the property. Thus, adding a spatial dimension in a recommender system
might improve the quality of recommendations. We identify two approaches to make
use of spatial information in our recommendation system – (1) by integrating spatial
information directly into our personalized recommendation model, and (2) by enhanc-
ing PRMs to support spatial objects and then use the enhanced PRMs instead of
standard PRMs in our recommendation model. The second approach is more general,
and can enable PRMs to be applied on spatial data not necessarily from recommender
systems only. Therefore, the second contribution of this thesis addresses the problem
of supporting spatial objects in PRMs. Our decision for taking the second approach is
also driven by the change in business model of DataForPeople. Our concentration was
shifted from real-estate data to collaborative data collected from city-dwellers through
our mobile application FixMaVille 6 to help improve their cities. Therefore, we now
have a different kind of spatial data. To analyze general spatial data, we propose to
extend standard PRMs to support spatial objects. We formalize the new extension
of PRMs as Probabilistic Relational Models with Spatial Attributes (PRMs-SA), and
propose more than one algorithm for learning the structure of such models from spatial
data. To evaluate our proposed algorithms, we follow Ben Ishak [2015]’s methodology,
which involves the comparison of the model learned from a synthetic data with the
model from which the synthetic data is generated. Ben Ishak [2015] has proposed an
algorithm for generating random datasets for benchmarking PRM learning algorithms.
However, it only generates non-spatial datasets. Thus, we propose an algorithm for
generating spatial datasets by sampling PRMs-SA.

To summarize, following are the main research challenges that this thesis attempts
to answer:

1. How to make personalized recommendations from users’ short-term preferences
about items when :
— Items are less frequently purchased, i.e. low user-item interactions,
— Users have preferences not only for items but also for items’ various charac-

teristics,

6. www.fixmaville.fr

www.fixmaville.fr

6 CHAPTER 1. INTRODUCTION

— The system lacks user profiles, i.e. no possibility of making recommendations
based on demographics information, and

— The system is new with very few users?

2. How to integrate spatial information into a PRM? How to learn such probabilistic
models from spatial data?

3. How to generate spatial datasets randomly?

1.3 Contributions

This thesis has made the following contributions:

A PRM-based, personalized recommender system

We have proposed a novel approach to build a personalized PRM-based recommen-
dation model taking into consideration users’ preferences for items as well as for items’
characteristics (Chulyadyo and Leray [2014]). Using our generic approach, content-
based, collaborative filtering as well as hybrid models can be achieved from the same
PRM. Our preliminary experiment on a real-world dataset has shown that our model is
actually capable of personalizing recommendations in cold-start situation. This work
was presented at KES ’2014, and will be explained in detail in Chapter 7.

PRM with spatial attributes (PRM-SA)

The second contribution of this thesis is the formalism of PRMs-SA, an extension
of PRMs to add a support for spatial data. We have also proposed some algorithms to
learn our model from data. The theoretical aspects of our model has been presented at
DSAA ’2016 (Chulyadyo and Leray [2015]). This thesis adds experiments to evaluate
our proposed algorithms for learning the structure of a PRM-SA. Chapter 8 will provide
an in-depth elaboration of our model, and present experimental findings.

Improvement of PRM benchmark generation process

As algorithms for learning PRM-SA structure can be evaluated in the same way as
those for PRMs, we tried to follow Ben Ishak [2015]’s approach. However, we encoun-
tered some limitations in their approach, which prevented us from utilizing their al-
gorithms for simulating spatial datasets to evaluate our PRM-SA learning algorithms.
We have discussed these limitations in Section 2.7.3, and proposed some improve-
ments, notably algorithms for generating relational skeletons and sampling PRMs, in
Section 2.7.4. Our proposed algorithm for relational skeleton generation has been il-
lustrated in the technical report Ben Ishak et al. [2016]. We extended the improved
benchmark generation process to generate random spatial datasets, which are needed
for evaluating our PRM-SA learning algorithms. This will be explained in Section
8.4.2.

Development of PILGRIM software

One of the main objectives of this thesis is also to contribute in the development
of a software tool to work with probabilistic graphical models. Our research lab,
LINA, has been actively developing a tool called PILGRIM (ProbabIListicGRaphIcal

1.4. ORGANIZATION OF THE DISSERTATION 7

Model). Originally developed for modeling, learning and reasoning upon Bayesian
networks, this project was extended to support PRMs. This thesis has made significant
contributions in the implementation and improvement of core functionalities as well
as the development of some modules of PILGRIM. Our proposed model, PRM-SA,
and algorithms for learning such model have also been implemented in PILGRIM.
To demonstrate the usage of PRM in practical applications, Huang et al. [2004]’s
recommendation model has been implemented. Chapter 9 will explain PILGRIM in
detail. Appendix B is provided as a user guide to illustrate the usage of PILGRIM
along with code snippets.

Other contributions

Our state-of-the-art about PRM-based recommender systems has been presented
at Ben Ishak et al. [2014], and published in a technical report Chulyadyo and Leray
[2013].

An empirical study about PRM sampling algorithms was also performed during
this thesis. Details on this study and its findings are presented in Appendix A.

This thesis has also contributed to professional projects of DataForPeople, notably
Kyzia and FixMaVille.

1.4 Organization of the dissertation

Chapter 2 will provide an introduction to relational data, and Bayesian networks.
We will define basic concepts used in the representation of relational data with some
examples. We will present a general overview of Bayesian networks, and standard ap-
proaches for learning such models. Then, we will define Probabilistic Relational Models
(PRMs), and related concepts. We will also present methods for learning a PRM from
data. We will then concentrate on evaluation of PRM learning algorithms, particularly
on the state-of-the-art methodology proposed by Ben Ishak [2015]. We will discuss on
some limitations of their approach, and propose some improvements.

Chapter 3 will introduce recommenders systems, and will provide a review of stan-
dard recommendation techniques. We will then focus our discussion on the evaluation
of recommender systems. We will also discuss on some major challenges imposed on
recommender systems.

In Chapter 4, we will review some recommender systems that use PRMs. Through
this review, we show that PRMs have the potential to be used for recommendations.

Chapter 5 will give a brief introduction to spatial data. We will explain basic con-
cepts related to spatial data, such as commonly used ways for representing spatial data,
special characteristics of spatial data, and various operations that can be performed
on this kind of data.

We will review some spatial recommender systems in Chapter 6 to show the trend
of using spatial information in recommender systems.

Chapter 7 will present our first major contribution of this thesis. We will present
our approach to build a personalized PRM-based recommender system. We will explain

8 CHAPTER 1. INTRODUCTION

our model in detail, and illustrate, through examples, that our approach is applicable in
different domains. We will then present the findings of a preliminary experiment that
we performed on our target application, which is a very new system with very few users.

Our second contribution, PRMs with Spatial Attributes (PRMs-SA), will be pre-
sented in Chapter 8. We will start with the definitions of PRMs-SA, and related
concepts. We will also propose four algorithms for learning the structure of a PRM-
SA. We will discuss on the methodology for evaluating those algorithms. We will then
present the results of the experiments performed to evaluate the four algorithms for
learning a PRM-SA.

Chapter 9 will provide a detailed insight into PILGRIM. It consists of four sub-
projects. But since this thesis has contributed in the sub-projects PILGRIM-Relational,
and PILGRIM-Applications, we will discuss on the implementation of various modules
of these two projects only.

In Chapter 10, we will present our conclusions, and point towards some prospects
of future research in the area addressed by this thesis.

Appendix A will present the experiments we had performed to study three PRM
sampling algorithms. The findings of this study were crucial for setting up the experi-
ments of Section 8.5 for evaluating PRM-SA learning algorithms.

Appendix B has been provided as a user guide to serve as a quick guide for those
who use our PILGRIM-Relational and PILGRIM-Applications libraries.

Appendix C will provide the detailed results of our experiment for evaluating PRM-
SA structure learning algorithms presented in Chapter 8.

I
State-of-the-art

9

2
Probabilistic Relational Models for
Relational Learning

Contents
2.1 Introduction . 12
2.2 Background . 13

2.2.1 Relational data representation 13
2.2.2 Bayesian Networks . 16

2.3 Probabilistic Relational Models (PRMs) 20
2.4 Extensions . 24

2.4.1 PRM with structural uncertainty 24
2.4.2 Other extensions . 24

2.5 Inference in PRMs . 24
2.6 Learning PRMs . 25

2.6.1 Learning parameters . 25
2.6.2 Learning structure . 26

2.7 Evaluating PRM learning algorithms 28
2.7.1 Evaluation strategy and metrics 29
2.7.2 Generating PRM benchmarks 30
2.7.3 Limitations . 31
2.7.4 Proposals for improvement 32

2.8 Conclusion . 40

11

12 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

2.1 Introduction

Nowadays it is very common to represent a system in terms of relationships between
objects that exist in the system. It is, in fact, an intuitive approach to conceptualize
systems because we often experience such relationships in our daily life. For example,
a person is related to another person in a family, a cat is related to a person because
he owns the cat, a webpage is often linked to other webpages, a movie may be related
to a book because it is based on that book, and so on. Such relationships between
different types of objects, referred to as relational data, have been the subject of analysis
in various domains, such as bioinformatics (Salwinski et al. [2004]), recommender
systems (Ricci et al. [2011], Bobadilla et al. [2013], Huang et al. [2005]), communication
analysis (Rossi and Neville [2010]), network analysis (Tang and Liu [2009], Chau and
Chen [2008]), scientific citation (Martin et al. [2013], Shibata et al. [2012], Popescul
and Ungar [2003]), natural language processing (Califf and Mooney [1999]) etc.

With the increased use and availability of relational data, the interest in extracting
useful patterns from such data has been steadily growing in the machine learning com-
munity. In traditional machine learning settings, data is usually assumed to consist
of a single type of object, and the objects in the data are assumed to be indepen-
dent and identically distributed (IID). The IID assumption, however, is often violated
in a relational setting because of the presence of relationships between objects. This
limits the application of traditional machine learning algorithms on relational data.
Consequently, Statistical Relational Learning (SRL) has been emerged as a branch of
machine learning that is concerned with statistical analysis on domains with complex
relations and uncertainty (Getoor and Taskar [2007]). SRL aims at learning statistical
models exploiting relational information present in the data. Application of SRL meth-
ods can be found in the tasks of link prediction (Popescul and Ungar [2003], Huang
et al. [2005]), entity resolution (Nickel et al. [2011], Bhattacharya and Getoor [2007]),
collective classification (Neville and Jensen [2003], Macskassy and Provost [2007]), and
link-based clustering in relational context.

In the past two decades, significant advances have been made in the area of SRL.
A variety of SRL models has been proposed. Most of these models are based on prob-
abilistic graphical models (PGMs), a formalism for multivariate statistical modeling
that uses graph theory for expressing complex probabilistic dependencies among ran-
dom variables (Wainwright and Jordan [2008]). Probabilistic relational models (PRMs)
(Friedman et al. [1999], Getoor et al. [2001]), and relational Bayesian networks (RBNs)
(Jaeger [1997]) are some of the earliest approaches to SRL 1, and extend Bayesian net-
works (BNs), a commonly used directed graphical model. Taskar et al. [2007] proposed
relational Markov networks (RMNs) based on Markov networks, an undirected coun-
terpart of BNs. Other important SRL models based on graphical models are relational
dependency networks (Neville and Jensen [2003]), which are based on dependency net-
works, Directed Acyclic Probabilistic Entity-Relation (DAPER) models (Heckerman
et al. [2004]), Markov logic networks (Richardson and Domingos [2006]), Bayesian
Logic Programs (Kersting and De Raedt [2007]) etc.

In this thesis, we focus on PRMs only. Since this model is an extension of BNs for
relational data, we will begin with a brief overview of relational data representation
and BNs in the following section. We will then introduce PRMs in Section 2.3.

1. PRMs are also referred to as RBNs in recent articles (Neville and Jensen [2003]). However, in
this thesis, we preserve the original context and use PRM to refer to the model proposed by Friedman
et al. [1999] and Getoor et al. [2001].

2.2. BACKGROUND 13

2.2 Background
As mentioned in Section 2.1, several models exist for SRL. These models are often

characterized by the representation of relational data and the tasks they address. As
we are concerned with PRMs only, we will present a review of the relational data
representation used by PRMs in Section 2.2.1, and the formalism of BNs, the basis of
PRMs, in Section 2.2.2.

2.2.1 Relational data representation

In relational learning, relational data are often defined in a variety of ways. These
definitions are mostly based on entries in relational databases (Getoor [2001], Heck-
erman et al. [2007], Rossi et al. [2012], Nickel et al. [2016]) or ground predicates in
first-order logic (De Raedt and Kersting [2004], Richardson and Domingos [2006]). In
this thesis, we adopt the former one, which is based on database theory (Codd [1970]).

The relational data model is an approach to representing (and managing) systems
involving multiple types of entities interacting with each other. An entity corresponds
to a thing or object that can be stored in a database. An interaction between the
entities are referred to as a relationship. We call entities and relationships as classes.
Properties of a class are described by attributes 2. Notations used in this dissertation
to denote these and the following concepts are listed in Table 2.1.

Definition 1 Relational schema
A relational schema describes the entity and relationship classes, X , and the attributes,
A, in a domain, and specifies the constraints over the number of objects involved in a
relationship. z

Each class X ∈ X is described by a set of descriptive attributes A(X) and a set of
reference slots R(X).

Definition 2 Reference slot and inverse slot
A reference slot X.ρ relates an object of class X to an object of class Y and has
Domain[ρ] = X and Range[ρ] = Y . The inverse of a reference slot ρ is called inverse
slot and is denoted by ρ−1. z

In the context of relational databases, a class refers to a single database table,
descriptive attributes refer to the standard attributes of tables, and reference slots are
equivalent to foreign keys. While a reference slot gives a direct reference of an object
with another, objects of one class can be related to objects of another class indirectly
through other objects. Such relations are represented with the help of a slot chain.

Definition 3 Slot chain
A slot chain is a sequence of slots (reference slots and inverse slots) ρ1, ρ2, . . . ρn such
that for all i, Range[ρi] = Domain[ρi+1]. z

A slot chain can be single-valued or multi-valued. When it is multi-valued, we need
a function to summarize them. We call such function an aggregator. Examples include
mode, average, cardinality etc.

2. Throughout this dissertation, we assume that each class has an identifier attribute, which helps
to identify instances (aka objects) of the class.

14 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Table 2.1 – Notations and their meaning

Notation Meaning

X The set of classes in a relational schema

X or X A class in X
A The set of attributes in a relational schema

A(X) The set of attributes of the class X

X.A or X.A Attribute A of the class X

V(X.A) The possible values (domain) of the attribute X.A

R The set of reference slots in a relational schema

ρ A reference slot in R
R(X) The set of reference slots in the class X. This set will be

empty for entity classes.

γ An aggregator

Π A PRM

I An instance of a relational schema

σr A relational skeleton

σr(X) The set of objects in skeleton σr whose class is X

x An object of class X

x.A The attribute A of the object x whose class is X

Pa(X.A) Parents of X.A

Ch(X.A) Children of X.A

Definition 4 Aggregator
An aggregator γ is a function that takes a multi-set of values and produces a single
value as a summary. z

Sometimes, it may be interesting to aggregate the results of more than one slot
chain, in which case we can apply multi-set operators. Union, intersection, difference
etc. are some examples of multi-set operators.

Definition 5 Multi-set operator
A multi-set operator φk on k multi-valued attributes A1, . . . , Ak that share the same
range V(A1) is a function from V(A1)k to V(A1). z

Instantiation of a relational schema

Here, we consider two types of instantiation of a relational schema – 1) a complete
instantiation without any missing or unknown values, and 2) a partial instantiation of
a relational schema where only objects and relations between the objects are specified
but attribute values are not. The former is referred to as a database instance and the
latter as a relational skeleton. Though it is possible to store both kind of instantia-
tion physically into different types of databases, such as relational databases, graph

2.2. BACKGROUND 15

(a) (b)

Figure 2.1 – (a) An example of a relational schema, (b) Crow’s foot notations

databases etc., this thesis is concerned with relational databases only, where schemas
are well-defined.

Definition 6 Instance of a relational schema (Getoor et al. [2007])
An instance I of a schema specifies:

— for each class X, the set of objects in the class, I(X).
— a value for each attribute x.A (in the appropriate domain) for each object x.
— a value y for each reference slot x.ρ, which is an object in the appropriate range

type, i.e., y ∈ Range[ρ]. Conversely, y.ρ−1 = x such that x.ρ = y. z

Definition 7 Relational skeleton (Getoor et al. [2007])
A relational skeleton σr of a relational schema is a partial specification of an instance
of the schema. It specifies the set of objects σr(Xi) for each class and the relations that
hold between the objects. However, it leaves the values of the attributes unspecified. z

A relational schema is usually depicted with an Entity-Relationship Diagram (ERD)
(Chen [1976]). Several variants of ERD notations are available. Throughout this
dissertation, we use “Crow’s foot” notation (see Figure 2.1b) in the logical data model
of relational schemas.

Example 2.1 Restaurant-User-Cuisine schema
To illustrate these concepts, we use a relational schema of a system where users order
foods in restaurants and rate the service of the restaurants. The schema is shown in
Figure 2.1a.

Here, Restaurant, User and Cuisine are entity classes, and User_satisfaction and
Food_order, which represent the relationships Restaurant–User and User–Cuisine re-
spectively, are relationship classes. The attributes User_satisfaction.service_rating,
User.age, User.gender etc. are descriptive attributes whereas User_satisfaction.user_id,
which refers to User.user_id, is a reference slot whose domain and range are the objects
of the classes User_satisfaction and User respectively. Restaurant and User_satisfaction
objects are directly linked through the reference slot User_satisfaction.resto_id. Note
that Restaurant.resto_id−1 is the inverse of User_satisfaction.resto_id and gives all
User_satisfaction objects corresponding to Restaurant objects. Restaurant objects can
also be indirectly related to User objects through slot chains. For example, the slot
chain User_satisfaction.resto_id−1.user_id relates restaurants with all the users whose

16 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

satisfaction level and/or service rating about the restaurants are available. As there is
a many-to-many relationship between the classes Restaurant and User, this slot chain
may result into more than one users for a single restaurant. In such case, we need
an aggregator (such as average) to summarize (or aggregate) the resulting set. For in-
stance, AVERAGE(User_satisfaction.resto_id−1.user_id.age) gives the average age of
the users who have rated the restaurants. Use of multi-set operators on slot chains can
provide interesting results. Let’s take an example of intersection operation between two
slot chains User_satisfaction.resto_id−1.user_id and Food_order.resto_id−1.user_id.
This operation gives those users who have made orders in some restaurants and rated
them too. To achieve the same result without the use of multi-set operators, we would
need a long slot chain. v

Example 2.2 A relational skeleton for Restaurant-User-Cuisine schema
An example of a relational skeleton corresponding to this relational schema is shown in
Figure 2.2. The skeleton has two users, three cuisine, and three restaurants. Here, the
relationships between users, restaurants, and foods are specified but not the descriptive
attributes. Corresponding to this skeleton, Figure 2.2c depicts a complete instantiation
of the relational schema. v

2.2.2 Bayesian Networks

A Bayesian network (BN) (Pearl [1988]) is a directed acyclic graph where nodes
correspond to random variables and arcs between nodes represent conditional depen-
dencies; lack of an arc between nodes indicates that the variables are conditionally
independent. A BN associates with each random variable Xi a conditional probabil-
ity P (Xi | Pai), where Pai ∈ X is the set of variables that are called the parents
of Xi. BNs achieve compact representation of probability distribution by exploiting
conditional independence properties of random variables. Every node in a BN is con-
ditionally independent of its non-descendants given its parent. This conditional inde-
pendence assumption enables BNs to simplify the joint probability distribution given
by the Chain rule as follows:

P (X1, X2, . . . Xn) =
∏
i

P (Xi | Pai) (2.1)

Example 2.3 Burglary and Earthquake network from Pearl [1988]
Figure 2.3 shows an example of a Bayesian Network adapted from Pearl [1988]. All
random variables in this example take binary states. Each node is associated with a
Conditional Probability Distribution (CPD). The edge between the nodes Earthquake
and Alarm indicates that earthquakes can make the alarm go off. Similarly, if there is
an earthquake, it is likely that there will be an announcement on the radio. v

Inference in Bayesian networks

Inference in Bayesian networks generally refers to: finding the probability of a vari-
able being in a certain state, given that some of the other variables are set to certain
values; or finding the values of a given set of variables that best explain (in the sense
of the highest Maximum a Posteriori (MAP) probability) why a set of other variables
are set to certain values (Daly et al. [2011]). A plethora of inference algorithms can

2.2. BACKGROUND 17

(a)

(b)

(c)

Figure 2.2 – Instantiations of the relational schema of Figure 2.1a. (a) depicts a relational
skeleton as objects and relations between the objects. (b) presents the same skeleton in a
relational database. (c) A complete instantiation of the relational schema of Figure 2.1a
stored as a relational database

18 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Figure 2.3 – An example of a Bayesian network (Pearl [1988])

be found in the literature. Pearl [1982]’s message passing algorithm is the first one
for performing inference on BNs, and is a basis for many other algorithms (Shafer and
Shenoy [1990]). It calculates marginal distribution for each unobserved node condi-
tioned to any observed nodes. Originally formulated for trees, this algorithm was later
extended to perform inference on polytrees (Kim and Pearl [1983]). These algorithms
are applicable to singly-connected networks only, i.e. the networks that contain only
a single path between nodes. Several algorithms exist for probabilistic inference on
multiply connected networks (Lauritzen and Spiegelhalter [1988], Jensen et al. [1990],
Shachter [1986], Sang et al. [2005]). These exact inference algorithms, which analyti-
cally compute the CPD over the variables of interest, are computationally expensive on
large, complex BNs. As a solution, several approximate inference algorithms have been
proposed. These algorithms involve heuristic and stochastic techniques which are not
guaranteed to give the correct answer for a given query, but often return values that
are close to the true values (Russell and Norvig [2003]). Henrion [1988]’s probabilistic
logic sampling based on Monte Carlo methods, Jensen et al. [1995]’s block Gibbs sam-
pling, and Weiss [1997]’s loopy belief propagation are some examples of approximate
inference algorithms. In general, BN inference is found to be NP-hard in both the
exact (Cooper [1990]) and approximate (Dagum and Luby [1993]) case.

Learning Bayesian networks

One way to construct a BN is to collect expert knowledge and create the model
based on it. However, this is not feasible all the time as it may be difficult to find experts
in the domain of interest. Also, data in the hand may not always be in accordance with
experts’ opinion. Besides, it is very important to be able to construct a BN from data in
today’s world, where data are constantly evolving and steadily being modified because
such ever-changing data may show different behaviors at different time and hence the
model will need to be updated with the changing data. Many algorithms have been
developed in order to learn BNs from observed data. Learning a BN involves two tasks:
(a) learning parameters (i.e. conditional probabilities), and (b) learning structure (i.e.
the DAG structure).

2.2. BACKGROUND 19

Parameter learning Various statistical and Bayesian methods are available for
learning conditional probabilities in BNs from different kinds of data. Maximum Likeli-
hood Estimation (MLE), Expectation Maximization with MLE, MAP and Expectation
a Posteriori (EAP) are some Bayesian approach to parameter learning.

Structure learning Learning a BN structure is the task of finding a DAG structure
that best represents the probabilistic dependencies existing in the given data. Exhaus-
tive search to find the exact structure of a BN is impossible because the number of
possible DAG grows exponentially with the number of nodes. Even for 10 nodes, there
are 4.2× 1018 possible DAGs. Many techniques have been proposed to learn BN struc-
ture. Those techniques can be broadly classified into three families – constraint-based
approach, score and search approach, and hybrid approach.

Constraint-based approach In constraint-based approach, a BN is seen as an
independence model and its structure is learned by testing Conditional Independence
(CI) between the variables. Verma and Pearl [1991]’s Inductive Causation (IC), Spirtes
et al. [2000]’s SGS, PC and PC* algorithms fall under this family. They use statistical
tests, such as χ2 and G tests for triples (X, Y, S), where X and Y are variables and S
is a subset of variables, to determine whether X and Y are conditionally independent
given S, i.e. X ⊥ Y | S.

Score-and-search approach Also known as score-based methods, this approach
looks for the DAG space in order to maximize a scoring/fitness function that assigns a
score to a state in the search space to see how good a match is made with the sample
data. Score-based algorithms begin with a search space of candidate BN structures,
score each of them, and select the one with the best score. Because the size of the search
space grows exponentially with the number of nodes, heuristics are generally applied
to explore the search space. Greedy search (GS) is a commonly used heuristic search
method, which performs in the following way: starting from a BN structure (which can
be empty or not), GS moves to the best-scoring neighbor graph until convergence. GS
is said to have converged to the solution when no neighbor graph has better score than
the current graph. Intuitively, a graph and its neighbors are almost identical except
for small local modifications. Such small local modifications are commonly obtained
by adding an edge, deleting an edge or reverting an edge in the graph (Algorithm 1).
A score-and-search method requires a scoring criterion that gives a good score when a
structure matches the data well. Several scoring functions (such as Bayesian Dirichlet
(BD) (Cooper and Herskovits [1992]), Bayesian Information Criterion (BIC) (Schwarz
[1978]), Akaike Information Criterion (AIC) (Akaike [1970]), Minimum Description
Length (MDL) (Bouckaert [1993]) and Minimum Message Length (MML) (Wallace
et al. [1996]) etc.) have been devised for this purpose. Most scoring functions reward
a better match of the data to the structure and prefer simpler structures. Another
desirable property of a scoring function is decomposability, whereby the score of a
particular structure can be obtained from the score for each node given its parents.

Hybrid approach The main limitation of score-and-search approach is scala-
bility. For large number of variables, the search space is extremely big, and hence,
a good amount of time is needed for examining candidate structures. On the other
hand, constraint-based methods offer a fast approach even when there are large num-
ber of variables. The outcome of these methods, however, can be adversely affected

20 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Algorithm 1 Generate_Neighbors (Bayesian Networks)
Input: A DAG, G = (V , E)
Output: Neighbors of G, N
1: N ← {}
2: for each n ∈ V do
3: for each n′ ∈ V\n do
4: if (n, n′) /∈ E then . If the edge (n, n′) does not exist in G, add it
5: G ′ ← (V , E ∪ {(n, n′)})
6: if G ′ has no cycle then
7: N ← N ∪ G ′ . Add_edge(G, n, n′)
8: end if
9: else . If the edge (n, n′) exists in G, remove it or revert it
10: G ′ ← (V , E\{(n, n′)} ∪ {(n, n′)}) . Revert_edge(G, n, n′)
11: if G ′ has no cycle then
12: N ← N ∪ G ′
13: end if
14: N ← N ∪ (V , E\{(n, n′)}) . Delete_edge(G, n, n′)
15: end if
16: end for
17: end for

by hidden variables and/or weak CI tests with larger conditioning sets. Hybrid meth-
ods exploit positive aspects of constraint-based and score-based methods by combining
local search with global learning procedure. These methods typically search one lo-
cal neighborhood for each node and learn global structure using this local information.
Tsamardinos et al. [2006]’sMax-Min Hill Climbing (MMHC) algorithm is an example of
hybrid structure learning method that uses Max-Min Parents and Children (MMPC)
(Aliferis and Tsamardinos [2002]) for local information along with greedy search for
global structure search.

2.3 Probabilistic Relational Models (PRMs)

Bayesian networks have been one of the main models for reasoning under uncer-
tainty. The simplicity of their specification is one of the reasons for their success. How-
ever, one of the difficulties in Bayesian networks is to create and maintain the model
of very large domains, which are usually conceived with relational settings. BNs are
not sufficient to model this construct as they lack the concept of objects and their rela-
tions. They are designed for modeling attribute-based domains, where we have a single
table of independent and identically distributed instances (Getoor et al. [2001]). They
require a propositional data set whereas real world data are often stored and managed
using relational representation. Converting relational data into flat data representation
for statistical learning may introduce statistical skew and lose useful information that
might help us understand the data. Thus, in order to learn a statistical model from
relational data, Probabilistic Relational Models (PRMs) were emerged which specify a
probability model for classes of objects rather than simple attributes. A PRM mod-
els the uncertainty over the attributes of objects in the domain and the uncertainty
over the relations between the objects (Friedman et al. [1999]). It basically defines a
template for probabilistic dependencies in typed relational domains which can be later

2.3. PROBABILISTIC RELATIONAL MODELS (PRMS) 21

instantiated with a particular set of objects and relations between them to obtain a
Bayesian network.

A PRM defines a probabilistic model for a relational schema of the domain. The
probabilistic model of a PRM is specified for classes of objects, and represents generic
probabilistic dependencies between the attributes of classes in the relational schema.
The dependencies can be between the attributes of the same class or between the
attributes of difference classes. Like in Bayesian networks, the dependency structure is
associated with the conditional probability distribution of each node (attribute) given
its parents.

Definition 8 Probabilistic Relational Model (PRM)
A PRM Π = (S,Θ) for a relational schema R is composed of a dependency structure
S, and a set of parameters Θ (Getoor [2001]). The dependency structure S consists
of a set of random variables and a set of probabilistic dependencies among the random
variables. Each random variable X.A in S is a descriptive attribute A ∈ A(X) of
a class X ∈ X , and has a set of parents Pa(X.A) = {U1, . . . Ul}, which describes
probabilistic dependencies. Each Ui has the form X.B or γ(X.τ.B), where B is an
attribute of any class, τ is a slot chain and γ is an aggregator of X.τ.B. Finally,
the parameters Θ is a set of conditional probability distributions (CPDs), representing
P (X.A | Pa(X.A)). z

Figure 2.4 depicts a PRM that corresponds to the relational schema in Figure 2.1a.
The dashed lines here indicate that the classes are linked through reference slots.

PRMs define a distribution over instantiations of the database that are consistent
with the relational skeleton. Instantiating a PRM for a relational skeleton results in a
Bayesian network, also known as a Ground Bayesian Network (GBN). The process of
generating a GBN involves copying the associated PRM for every object in skeleton σr.
Thus, a GBN will have a node for every attribute of every object in σr and probabilistic
dependencies and CPDs as defined in the PRM.

Definition 9 Ground Bayesian Network (GBN)
A ground Bayesian network (GBN) defined for a PRM Π and a relational skeleton σr
is as follows Getoor et al. [2007]:

— There is a node x.A for every attribute of every object x ∈ σr(X).
— Each x.A depends probabilistically on parents of the form x.B or x.K.B. If K

is not single-valued, then the parent is the aggregate computed from the set of
random variables {y | y ∈ x.K}, γ(x.K.B).

— The CPD for x.A is P (X.A | Pa(X.A)). z

Figure 2.5 shows an example of a GBN (structure only), which is obtained by in-
stantiating the PRM of Figure 2.4 for the relational skeleton of Figure 2.2.

The joint distribution over the instantiations of a PRM, Π, for a relational skeleton,
σr is very similar to the chain rule for standard Bayesian networks.

P (I | σr,Π) =
∏
X∈X

∏
A∈A(X)

∏
x∈σr(X)

P (x.A | Pa(x.A)) (2.2)

Here, we need to ensure that the probability distributions are coherent, i.e. the
sum of probability of all instances is 1. In Bayesian networks, this requirement is

22 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Figure 2.4 – An example of a PRM corresponding to the relational schema of Figure 2.1a

satisfied if the dependency graph is acyclic (Getoor et al. [2007]). To check whether
the dependency structure S of a PRM is acyclic relative to a given relational skeleton,
we can inspect the graph of dependencies among attributes of objects in the skeleton.
Such graph is termed as an Instance Dependency Graph (IDG).

Definition 10 Instance dependency graph (IDG) Getoor et al. [2007]
The instance dependency graph Gσr for a PRM Π and a relational skeleton σr has a
node for each descriptive attribute of each object x ∈ σr(X) in each class X ∈ X. Each
x.A has the following edges:

1. Type I edges: For each formal parent of x.A, X.B, we introduce an edge from
x.B to x.A.

2. Type II edges: For each formal parent X.K.B, and for each y ∈ x.K, we define
an edge from y.B to x.A. z

The dependency structure for a PRM is guaranteed to be acyclic for the given
relational skeleton if the corresponding instance dependency graph is acyclic. However,
if we want to check whether the dependency structure is acyclic for any relational
skeleton, we can examine Class Dependency Graph (CDG).

Definition 11 Class dependency graph (CDG) Getoor et al. [2007]
The class dependency graph GΠ for a PRM Π has a node for each descriptive attribute
X.A, and the following edges:

2.3. PROBABILISTIC RELATIONAL MODELS (PRMS) 23

Figure 2.5 – Ground Bayesian network obtained by unrolling the PRM of Figure 2.4 over the
relational skeleton of Figure 2.2. Colors are used to distinguish the class of the nodes and do
not carry any significant meaning here. CPDs are not shown here to avoid cluttering.

Figure 2.6 – Class dependency graph of the PRM in Figure 2.4

1. Type I edges: For any attribute X.A and any of its parents X.B, we introduce an
edge from X.B to X.A.

2. Type II edges: For any attribute X.A and any of its parents X.K.B we introduce
an edge from Y.B to X.A, where Y = Range[X.K]. z

The probabilistic model of a PRM is guaranteed to be coherent regardless of any
relational skeleton if the corresponding class dependency graph is acyclic.

24 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

2.4 Extensions
Regular PRMs (cf. Definition 8) provide a model for domains where attribute

values are uncertain. In these models, all relations between attributes are determined
by the relational skeleton; uncertainly exists in the descriptive attributes only. Getoor
[2001] have extended regular PRMs to deal with the cases where both attributes and
link structure are uncertain.

2.4.1 PRM with structural uncertainty

A PRM with structural uncertainty is an extension to a regular PRM and provides
probabilistic models for relational or link structure too. Getoor [2001] have proposed
the following two mechanisms to model link uncertainty.

PRM with Reference Uncertainty (PRM-RU) It models uncertainty over the
value of reference slots. The probability distribution for this uncertainty is defined
over the set of all objects of the domain class of the reference slot. In general, this
distribution would be very large. To achieve a compact representation, a partition
function is used to partition the domain class into subsets, and smaller probability
distribution is defined over these subsets. Coutant [2015] has presented a detailed
study of Probabilistic Relational Model with Reference Uncertainty (PRM-RU).

PRM with Existence Uncertainty (PRM-EU) It provides probabilistic models
for existence of relations between objects too. Under this extension, we assume that
we are given entity classes only, and the existence of the objects of relationship classes
is uncertain. In other words, this model deals with the task of predicting links between
objects. Getoor [2001] proposed to add a relationship class with a binary existence
attribute X.Exists which indicates whether the relationship object actually exists or
not. Then, the existence attribute X.Exists would be a descriptive attribute in a
PRM-EU. Huang et al. [2004] have shown that PRM with existence uncertainty can
be interesting for recommendation applications.

2.4.2 Other extensions

Getoor [2001] have proposed another extension of regular PRMs, called Proba-
bilistic Relational Models with Class Hierarchy (PRMs-CH), which provide refined
probabilistic models using class hierarchies. With the introduction of subclasses, a
PRM-CH allows to specialize probabilistic dependencies and CPDs within particular
subclasses. Newton and Greiner [2004] have proposed Hierarchical Probabilistic Re-
lational Model (hPRM), an adaptation of PRM-CH, for collaborative filtering. More
recent extensions include Probabilistic Relational Model with Clustering Uncertainty
(PRM-CU) (Coutant et al. [2015]), PRM with relational uncertainty (Fersini et al.
[2009]), and Hybrid Probabilistic Relational Models (Närman et al. [2010]).

2.5 Inference in PRMs
The traditional approach to inference in PRMs is to apply BN inference algorithms

on the GBN obtained by unrolling a PRM for the given relational skeleton σr. The-
oretically, standard inference algorithms for Bayesian networks (cf. Section 2.2.2) can

2.6. LEARNING PRMS 25

be used to query the GBN but it may be impractical because GBNs tend to be very big
for real datasets. When GBNs are small, exact inference can be performed. Large and
complex GBNs, however, limit the application of exact inference algorithms. Moreover,
generation of such propositionalized models is itself too costly. This issue has already
been raised in early works (Pfeffer [2000]) in this field. Kaelin [2011] have proposed a
method for performing approximate inference in PRMs. Using the fact that a query
can be answered in a Bayesian network by taking into account only the subgraph that
contains all event nodes and is d-separated from the full GBN given the evidence nodes,
the method constructs a partial GBN for the given query and apply Gibbs sampling
method for approximate inference. Their proposed method, Lazy Aggregation Block
Gibbs (LABG), is listed in Algorithm 2. Recent works (Wuillemin and Torti [2012],
Kisynski and Poole [2009], Milch et al. [2008], Singla and Domingos [2008]) advocate
lifted probabilistic inference, which aims at performing as much inference as possible
without propositionalizing.

Algorithm 2 Lazy Aggregation Block Gibbs (LABG)
Input: Query, Q = (Y,E), where Y ⊆ A(σr) is a set of event variables and E ⊆ A(σr)

is a set of evidence variables; Number of samples, N
Output: P (Y | E)
1: S← Unroll GBN for Q
2: Pφ ← Compute Full Conditional for x.A ∈ S
3: s(0) ← Sample initial state
4: for t = 1 to N do
5: s(t) ← s(t−1)

6: X.A← Select an attribute in A(S)
7: LazyAggregation(X.A), if necessary
8: for all x.A ∈ S(X.A) do
9: Aggregation(x.A), if necessary
10: s(t)〈x.A〉 ← Sample Pφ(x.A)
11: end for
12: end for
13: P (S | E)← Density Estimate of {s(0), ..., s(N)}
14: P (Y | E)← Marginalize S\{Y} from P (S | E)

2.6 Learning PRMs

As with Bayesian networks, learning a PRM also involves two tasks – learning
parameters and learning the dependency structure.

2.6.1 Learning parameters

Given a dependency structure S and an instance I, the task in parameter estimation
is to learn a parameter set θS that defines the CPD for this structure. For a PRM, the
likelihood of a parameter set θS is: L(θS | I, σ,S) = P (I,S, θS). Parameter estimation
is performed using standard statistical or Bayesian method. Sufficient statistics are
computed in MLE over I using queries for relational data (e.g. SQL queries in relational
database).

26 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

2.6.2 Learning structure

PRM structure learning is inspired from classical methods of learning standard BN
structures. Friedman et al. [1999] used search-and-score approach (cf. Section 2.2.2) to
learn the structure of regular PRMs. Like in BN score-based methods, their relational
extension of greedy search algorithm, Relational Greedy Search (RGS), determines the
neighboring structure of the starting network, assigns a score to each of them, selects
the best scoring one, and iterates through the same process of searching for neighbors
and scoring them until a stopping criterion is met. Unlike in BNs, there is, however, a
constraint in assigning edges between nodes in a PRM while determining neighboring
structures: the edges must be between two attributes from either the same class or
the classes reachable through reference slots. Friedman et al. [1999] proposed walking
through the slot chains to discover potential parents for each attribute and applying
the search procedure on this set of parents. In order to avoid infinite space of relational
attributes, the algorithm proceeds in multiple phases keeping the length of slot chain
fixed at each phase. The search for potential parents and the corresponding structure
begins with the slot chains of length 0 which is increased by 1 at each phase until a
predefined slot chain length limit is reached or there is no improvement in the PRM
structure. Algorithm 3 lists their overall approach of learning the structure of PRMs,
and Algorithm 4 lists the procedure for generating neighboring PRM structures using
‘Add_edge’, ‘Delete_edge’ and ‘Revert_edge’ operations.

Friedman et al. [1999]’s RGS algorithm has been the basis for learning other ex-
tensions of PRMs. Getoor [2001] add two new operators ‘abstract’, and ‘refine’ to
extend the search space while learning PRM-RU. As an alternative to RGS algorithm,
Ben Ishak [2015] have proposed Relational Max-Min Hill Climbing (RMMHC), an
adaptation of MMHC algorithm (Tsamardinos et al. [2003]) for learning structure of
regular PRMs.

Algorithm 3 Relational Greedy Search
Input: Initial dependency graph, G; Relational schema, R; Scoring function, Score;

Maximum slot chain length, SLmax
Output: Local optimal dependency graph, G ′
1: G ′ ← G
2: Smax ← Score(G ′)
3: SL← 0 . Current slot chain length
4: repeat
5: repeat
6: N ← Generate_Neighbors(G ′,R, SL)
7: N∗ ← arg maxN ′∈N Score(N

′)
8: S∗ ← Score(N∗)
9: if S∗ > Smax then
10: G ′ ← N∗

11: Smax ← S∗

12: end if
13: until No change in G ′
14: SL← SL+ 1
15: until SL > SLmax

2.6. LEARNING PRMS 27

Algorithm 4 Generate_Neighbors (PRM)
Input: A PRM, Π =< R,S >; Slot chain length, SL; Available aggregators, Agg
Output: Neighbors of S, S ′
1: S ′ ← {}
2: for each X.A ∈ A(X) and X ∈ R do
3: P ← Find_Accessible_Classes(X.A,R, SL) . All classes in R accessible from
X.A with the given slot chain length SL

4: for each < Y, ρ >∈ P and Y.B ∈ A(Y) do
5: if (X.ρ.B,X.A) /∈ S then . If the edge (X.ρ.B,X.A) does not exist in S,

add it
6: . Add_edge(S, X.ρ.B,X.A)
7: if ρ contains at least one reverse slot then
8: for γ ∈ Agg(Y.B) do
9: S ′′ ← S ∪ {(γ(X.ρ.B), X.A)})

10: if S ′′ has no cycle then
11: S ′ ← S ′ ∪ S ′′
12: end if
13: end for
14: else
15: S ′′ ← S ∪ {(X.ρ.B,X.A)})
16: if S ′′ has no cycle then
17: S ′ ← S ′ ∪ S ′′
18: end if
19: end if
20: else . If the edge (X.ρ.B,X.A) exists in S, remove it or revert it
21: . Delete_edge(S, X.ρ.B,X.A)
22: S ′ ← S ′ ∪ S\{(X.ρ.B,X.A)}
23: . Revert_edge(S, X.ρ.B,X.A)
24: Y.ρ′ ← Reverse(X.ρ)
25: if ρ′ contains at least one reverse slot then
26: for γ ∈ Agg(X.A) do
27: S ′′ ← S\{(X.ρ.B,X.A)} ∪ {(γ(Y.ρ′.A), Y.B)}
28: if S ′′ has no cycle then
29: S ′ ← S ′ ∪ S ′′
30: end if
31: end for
32: else
33: S ′′ ← S\{(X.ρ.B,X.A)} ∪ {(Y.ρ′.A, Y.B)}
34: if S ′′ has no cycle then
35: S ′ ← S ′ ∪ S ′′
36: end if
37: end if
38: end if
39: end for
40: end for

28 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Evaluating candidate structures

While learning structure of a PRM, we need to compare different structures to find
the one that fits the data well. In Bayesian model selection approach, the best structure
is the one which maximizes its posterior probability given an instantiation I. As we
need to consider the relational skeleton σr of the given instantiation I for a PRM, we
need to find the structure that maximizes P (S | I, σr) ∝ P (S | σr)P (I | S, σr).

Assuming that the choice of structure is independent of the skeleton, the prior
probability of the structure P (S | σr) will be P (S). This prior is often considered
uniform for BNs, but due to the infinite number of possible slot chains that can be
derived from a relational schema, uniform prior is not relevant for PRMs. Thus, this
prior needs to be selected prioritizing simple structures. Getoor et al. [2007] penalize
long indirect slot chains by having logP (S) proportional to the sum of the lengths of
the slot chains K appearing in S.

P (I | S, σr) is the marginal distribution of the joint probability distribution over
the set of parameters of the structure, i.e.,

P (I | S, σr) =

∫
Θ

P (I | Θ,S, σr)P (Θ | S, σr)dΘ

where, P (I | Θ,S, σr) is defined by Equation 2.2, and P (Θ | S, σr) is the prior over
parameters.

Computation of this integral is simplified if we can decompose this integral into a
product of simpler integrals. This can be achieved by the use of, for example, Dirichlet
prior. In this case, p(I | S, σr) will be

p(I | S, σr) =
∏
X∈X

∏
A∈A(X)

∏
u∈V(Pa(X.A)

DM({CX.A[v,u]}, {αX.A[v,u]}) (2.3)

where αX.A[v,u] are hyper-parameters of Dirichlet prior, CX.A[v,u] are sufficient statis-
tics for v ∈ V(X.A),

DM({C[v]}, {α[v]}) =

Γ

(∑
v

α[v]

)
Γ

(∑
v

(α[v] + C[v])

)∏
v

Γ(α[v] + C[v])

Γ(α[v])

and Γ(x) =
∫∞

0
tx−1e−tdt is a Gamma function.

2.7 Evaluating PRM learning algorithms
PRM learning algorithms can be evaluated by following the process of evaluation

of Bayesian networks. Standard way to evaluate learning algorithms in Bayesian net-
works is to generate a database from a gold-standard network, then learn a network
from the generated database, and compare the learned network with the gold-standard
network. Usually, well-known networks such as MUNIN (Andreassen et al. [1989]),
Barley (Kristensen and Rasmussen [2002]), Insurance (Binder et al. [1997]) etc., are
taken as gold-standard networks. Unfortunately, no such networks are available for
PRMs. Another option is to start with an arbitrary or synthetic network. Ben Ishak
[2015] has proposed an algorithmic approach to generate random PRMs, which they
use to obtain synthetic datasets for evaluating PRM structure learning algorithms. The

2.7. EVALUATING PRM LEARNING ALGORITHMS 29

following sections explain their approach of evaluating PRM learning algorithms using
synthetic datasets. Section 2.7.1 presents their strategy for comparing PRMs to assess
learning algorithms, and the evaluation metrics they have used. Section 2.7.2 explains
their algorithm for generating PRM benchmarks. In Section 2.7.3, we point out the
shortcomings of their approach, and propose some improvements in Section 2.7.4.

2.7.1 Evaluation strategy and metrics

Two approaches of comparing Bayesian networks can be found in the literature –
(1) by comparing DAG structures, and (2) by comparing equivalence classes (de Jongh
and Druzdzel [2009]). Several metrics (Heckerman et al. [1995], Spirtes et al. [2000],
Tsamardinos et al. [2006] etc.) are well established and widely used for comparing
Bayesian networks. Though PRMs are based on Bayesian networks, these metrics are
not directly applicable for comparing PRMs because firstly, the presence of slot chains
and aggregators in PRMs makes it complicated to compare the DAG structures di-
rectly, and secondly, the notion of equivalence classes is not yet developed for PRMs.
Maier et al. [2013] have used precision, recall, and F-score metrics to measure structural
difference between two RBNs by comparing their DAG structures. Ben Ishak [2015]
has refined these metrics by adding penalization for wrong slot chains and wrong ag-
gregators, and have proposed hard and soft versions for precision, and recall.

Let Strue be the dependency structure of the gold standard PRM, Slearned be the
dependency structure of the learned PRM, Nbtrue be the number of dependencies in
Strue, and Nblearned be the number of dependencies in Slearned. Then,

hard_Precision =
Number of relevant dependencies retrieved in Slearned

Nblearned
(2.4a)

hard_Recall =
Number of relevant dependencies retrieved in Slearned

Nbtrue
(2.4b)

soft_Precision =

Nblearned∑
i=0

ωi

Nblearned
(2.4c)

soft_Recall =

Nblearned∑
i=0

ωi

Nbtrue
(2.4d)

where relevant dependencies are the ones that have the same edge, slot chain and
aggregator as in the gold standard model,

ωi =

1, for relevant dependencies
0, for reversed edges and the edges not present in the gold standard model
1− ψ, when the edges match but slot chains and/or aggregators do not

ψ is the arithmetic mean of the penalization for wrong slot chains (α) and that for
wrong aggregators (β) in true and learned dependencies, i.e.,

ψ =
α + β

2
(2.5)

30 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

α = 1−Length of the longest common sub slot chain in true and learned dependencies
Max(Length of the true dependency, Length of the learned dependency)

and β ∈ [0, 1] is the user-defined cost for penalizing wrong aggregators.

F-score is the harmonic mean of precision and recall, and is given by the following
equation.

F-score = 2× Precision× Recall
Precision+ Recall

(2.6)

Ben Ishak [2015] has also proposed a metric, called Relational Structural Ham-
ming Distance (RSHD), for comparing Directed Acyclic Probabilistic Entity Relation-
ship (DAPER) 3 models. This metric can be applied only on PRMs that are DAPERs.

2.7.2 Generating PRM benchmarks

The PRM benchmark generation process proposed by Ben Ishak [2015] is depicted
in Figure 2.7. The process involves 3 steps – 1) generation of a random PRM, 2)
instantiation of the generated PRM with a random relational skeleton, and 3) sampling
the ground Bayesian network obtained as a result of the PRM instantiation. In the first
step, a random relational schema is created, and the dependency structure is specified
by generating random dependencies between attributes present in the schema. Random
CPDs are then assigned to each attribute to define a complete PRM. For the second
step, the author has proposed an algorithm to generate a random relational skeleton
given the approximate number of objects per class. A GBN is then generated by
instantiating the PRM over the generated relational skeleton, and finally, in the third
step, a standard sampling algorithm for sampling Bayesian networks is applied on this
network to generate a sample, which is then stored in a database. These steps are
listed in Algorithm 5.

Generation of a random relational schema

Ben Ishak [2015] treats the task of generating a relational schema as the process of
generating a connected DAG such that a node in the graph corresponds to a class in
the schema and an edge corresponds to a reference from one class to another. Thus, a
relational schema generated in that way will not have any cyclic references, and each
class will be related to any other classes through slot chains.

Generation of a random dependency structure

To complete the process of random PRM generation, a dependency structure S
together with CPDs for each node in S are required. In Ben Ishak [2015]’s approach,

3. Similar to a PRM, a DAPER model describes probabilistic dependencies between attribute
classes of entity and relationship classes through a directed acyclic graph, and each attribute class is
associated to a local distribution. A PRM collapses to a DAPER when reference slots of a (relation-
ship) class refer to two different (entity) classes (i.e., when a relationship table contains two foreign
keys referring to two different tables in the relational schema).

2.7. EVALUATING PRM LEARNING ALGORITHMS 31

Figure 2.7 – Overview of PRM benchmark generation process proposed by Ben Ishak [2015].

they generate a DAG among the descriptive attributes present in the relational schema
to ensure that the instantiation of the generated PRM would yield an acyclic GBN. To
control the complexity of the structure, they limit the maximum length of slot chains,
and give more preference to intra-class dependencies and shorter slot chains. Once a
dependency structure is determined, random CPDs are assigned to all of its nodes to
obtain a complete PRM.

Generation of a random relational skeleton

In the second step in Algorithm 5, the PRM generated in the first step is instantiated
for a relational skeleton to obtain a GBN. Ben Ishak [2015] has proposed an algorithm
to generate a relational skeleton, where they generate nearly the same number of objects
of each class and iteratively add random links (or references) between objects of a pair
of classes such that the direction of the links conform to the underlying schema.

Database population

To obtain a complete dataset without missing values, Ben Ishak [2015] applies
forward sampling algorithm on the GBN obtained by instantiating the PRM for the
relational skeleton generated in the previous steps. The authors have used well-known
forward sampling (Henrion [1988]) algorithm implemented in ProBT API 4 to sample
GBNs in their experiments.

2.7.3 Limitations

Ben Ishak [2015] has successfully generated several benchmarks and applied their
structure learning algorithm RMMHC. However, there are limitations at each phase of
their approach of PRM benchmark generation.

Their schema generation process assumes that foreign keys cannot be empty. Also,
it cannot generate schemas where a foreign key refers to the same class. Such schemas

4. www.probayes.com/~mazer/html/index.html

www.probayes.com/~mazer/html/index.html

32 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Algorithm 5 Generate_Random_PRM-DB (Ben Ishak [2015])
Input: Number of classes, N ; Maximum length of slot chain length, Kmax
Output: Π : 〈R,S, θ〉; A database instance, I
Step 1: Generate a random PRM

i) R ← Generate a random relational schema with N number of classes
ii) S ← Generate a set of dependencies between attributes of classes in R
iii) Determine slot chains on S with maximum length Kmax
iv) θ ← Generate CPDs for S
v) Π← 〈R,S, θ〉

Step 2: Instantiate the PRM

i) σr ← Generate a random relational skeleton conforming to R
ii) G ← Unroll Π for σr into a GBN

Step 3: Database population

i) I ← Apply any Bayesian network sampling algorithm to generate a sample
dataset

with cyclic references and null/empty foreign keys are very common in real-world ap-
plications. For instance, in a social network, users are related to another users, and
this results in a cyclic reference in User class in the relational schema.

Their dependency generation algorithm is limited to the generation of PRMs that
are guaranteed to be acyclic at class level. Their approach does not support the cases
where only IDG is acyclic.

In real world, relational skeletons tend to be scale-free, i.e., degree of the vertices of
the graph follows power-law distribution (Newman [2003]). Their approach does not
create realistic skeletons.

Though their approach of database population is theoretically possible, it may be
impractical when it comes to the generation of very big datasets because in such case,
the GBN would be huge. Moreover, GBN generation is itself an expensive task.

Evaluation of the generated datasets is missing in their approach. They evaluate
their structure learning algorithm on the generated datasets without actually assessing
the quality of the generated datasets. If the dataset is not consistent with the model
from which it is generated, then comparing the model learned from this dataset with
the original model does not make any sense. Thus, it is necessary to assess the quality of
the generated dataset before evaluating structure learning algorithms on those datasets.
For this, we can use Chi-square goodness-of-fit test. Null hypothesis of this test is that
the generated data for the given node are consistent with the original distributions
used for generating the sample. The nodes that reject the test cannot be considered
well-sampled.

2.7.4 Proposals for improvement

Here, we propose some improvements to overcome shortcomings of Ben Ishak [2015]’s
approach to PRM benchmark generation. Our proposals will mainly address the lim-
itations related to skeleton generation and database population. In the following, we
present a novel algorithm to generate scale-free relational skeletons, and an adaptation
of forward sampling and LABG algorithms for sampling PRMs.

2.7. EVALUATING PRM LEARNING ALGORITHMS 33

(a)

(b)

Figure 2.8 – (a) Relational schema DAG of Figure 2.1a (considering only three classes), (b)
Relational skeleton of Figure 2.2a as a k-partite graph

Generating realistic skeletons

In general, relational skeletons in real-world applications tend to be scale-free. In
real datasets, the number of objects for classes with foreign keys tends to be very high
compared to that for classes which do not have foreign keys and are referenced by other
classes. We propose a novel approach to generate a realistic relational skeleton.

A relational skeleton can be imagined as a DAG where nodes are objects of different
classes present in the associated relational schema and edges are directed from one
object to another conforming to the reference slots present in the relational schema. For
example, the relational skeleton of Figure 2.2a can be seen as a graph shown in Figure
2.8b. Here, we have considered objects of only three classes to make the graph small.
Nodes in this graph represent objects, and edges indicate the foreign key constraints.
Clearly, this graph is a 3-partite graph with three independent sets of objects, each set
corresponding to one of the classes in the relational schema (Figure 2.8a) such that no
two objects in an edge belong to the same set. This graph is, in fact, a special case of
k-partite graph of Definition 12. In this regard, relational skeleton generation process
can be considered as a problem of generating objects and assigning links (or foreign
keys) between them such that the resulting graph is a k-partite graph of Definition 12.
Our approach to generating such k-partite graph is presented in Algorithms 6 and 7.
We adapt Bollobás et al. [2003]’s directed scale-free graph generation algorithm for our
special k-partite graph and use Chinese Restaurant Process (CRP) (Pitman [2002]) to
apply preferential attachment.

Definition 12 Relational skeleton as a k-partite graph
A relational skeleton (of a relational schema with k classes) is a special case of k-partite

34 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Algorithm 6 Generate_Relational_Skeleton
Input: Relational Schema as a DAG, G = (Vg, Eg); Total number of objects in the

resulting skeleton, Ntotal; Scalar parameter for CRP, α; Percentage of unreferenced
objects, β

Output: A relational skeleton, I = (V,E)
1: for node ∈ Vg do
2: N(node)← 0 . Total number of objects of each type generated so far
3: end for
4: V ← {} . Set of objects
5: E ← {} . Set of directed edges between objects
6: m← Number of nodes without any parents in G (number of roots)
7: if m > 1 then
8: Divide G into m subgraphs such that each subgraph contains a root and all of

its descendants.
9: end if
10: repeat
11: if m > 1 then
12: g ← one of the m subgraphs picked randomly
13: else . i.e., if G has only one root
14: g ← G
15: end if
16: objroot ← A new object of the root of g
17: nroot ← nroot + 1
18: children← Children of the root in g
19: ((V ′, E ′), N ′)← Generate_SubSkeleton(objroot, g, children,N, α) . Perform

depth-first search over g and add edges recursively
20: V ← V ∪ V ′
21: E ← E ∪ E ′
22: N ← N ′ . Update the set of number of generated objects of each type
23: n← cardinality(V) . Total number of objects generated so far.
24: until n >= Ntotal ∗ (1− β)
25: GenerateNtotal∗β unreferenced objects of the classes which do not have any children
26: I ← (V,E)

graph, Gk = (Vk, Ek), with the following properties:
1. The graph is acyclic,
2. All edges are directed (an edge u→ v indicates that the object u refers to v, i.e.,

u has a foreign key which refers to the primary key of v),
3. Edges between two different types of objects are always oriented in the same di-

rection, i.e. for all edges (u — v) between objects of U and V where u ∈ U , and
v ∈ V , the direction of all edges must be either u→ v or u← v and not both,

4. Both in-degree and outdegree of any object can be greater than 1 but there must
not be more than one edge between any two objects. z

In our approach, we view a relational schema as a DAG and instantiate this graph
into a k-partite graph. The basic idea here is to iteratively generate an object of a class
with no parents in the relational schema DAG and then recursively add an edge from
this object to objects of its children classes. This process is essentially a Depth-First

2.7. EVALUATING PRM LEARNING ALGORITHMS 35

Search (DFS), where we begin by generating an object of the root node of the graph
and then at each encounter of a node in DFS, we add an edge from the object of the
parent node to either a new or an existing object of the encountered node. The object
of the parent node gets connected to a new object with probability p = α/(np−1 +α),
where np is the total of objects of the parent node generated so far, and α is a scalar
parameter for the process. When it gets attached to an existing object, an object of
the correct type is picked randomly from the set of existing objects. For a true CRP,
we need to select an object at this step with probability nk/(np−1+α), where nk is the
in-degree of the object to be selected and n is the total number of objects generated
so far. Thus, as the skeleton graph grows, probability of getting connected to new
objects will decrease and the objects with higher in-degree will be preferred for adding
new edges. However, when there are objects with very high in-degree, GBN for this
skeleton may become very complex. Therefore, in our implementation of this algorithm
(will be explained in Chapter 9), we keep both options – picking an object uniformly
at random or picking it based on its in-degree. At each iteration, a DFS is performed
starting from one of the nodes without parents in the relational schema DAG. Thus, if
there is only one node that does not have any parent, then each iteration will visit all
classes in the relational schema resulting in a complete set of objects and relations for
all classes, otherwise only a subset of classes will be visited in each iteration. So, at the
beginning of each iteration, one of the nodes without parents is picked randomly in the
latter case. The iteration process is continued until the skeleton contains the required
number of objects. If some dangling objects (i.e., objects which are not referenced by
any object at all) are required, we can generate some objects of the leaf classes at the
end.

Note that this algorithm ensures that foreign keys will never be null. For relational
schemas that can have null foreign keys, our algorithm needs to be modified such that
in some iterations, a complete DFS is not performed. That way, we can get objects
without children even though the corresponding classes in the underlying schema DAG
have children. However, in this thesis, we work only with those kind of schemas where
we can never have a null foreign key.

Example 2.4 k-partite graph-based relational skeleton generation
We illustrate our approach by generating a relational skeleton for a simple relational
schema shown in Figure 2.9. Colors used in the relational schema DAG do not bear any
meaning here. They are used only to distinguish different classes. Algorithm 6 creates
a relational skeleton for this schema by performing DFS on the schema DAG. The first
three iterations of the DFS are shown in figures 2.10 and 2.11. As the schema has
only one node without any parent (i.e., a class without any foreign key), one complete
DFS returns a set of objects of each class as shown in Figure 2.10. At each iteration,
we obtain different number of objects. As we can see in Figure 2.11, the first iteration
created five objects whereas the second and third iteration resulted in four and two
objects respectively. We continue the iteration until we obtain the required number of
objects in the skeleton.

Figure 2.10 shows one iteration of a DFS performed on the schema. A DFS will
visit the classes in the following order: Class3 → Class2 → Class1 → Class0 → Class1
→ Class1. In each of the sub-figures in this figure, the upper graph is the concerned
relational schema and the lower graph is the relational skeleton being generated. The
node (and the edge) encountered at each step of the DFS is shown by thick lines. Colors
are used to only as a visual aid to distinguish between objects of different classes and
add no significant meaning to the process. We begin by selecting a node of the schema

36 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Algorithm 7 Generate_SubSkeleton
Input: Parent object objp; Graph g; Parent node, parent; Children nodes, children;

Set of the number of objects of each class generated so far, N ; Scalar parameter α
Output: Relational skeleton, I = (V,E); Set of the number of objects of each class

generated so far, N
1: V ← {objp}
2: E ← {}
3: np ← N(parent) . Total number of parents generated so far
4: for C ∈ children do
5: nc ← N(C) . Total number of the child C generated so far
6: p← α/(np − 1 + α)
7: r ← A random value between 0 and 1 . r ∈ [0, 1]
8: if r <= p then
9: objc ← Create a new object of type C
10: N(C)← nc + 1
11: epc ← (objp, objc) . Add an edge from objp to objc
12: E ← E ∪ {epc}
13: childrenc ← Children of C in the graph g
14: ((V ′, E ′), N ′)← Generate_SubSkeleton(objc, g, C, childrenc, N, α)
15: V ← V ∪ V ′
16: E ← E ∪ E ′
17: N ← N ′

18: else
19: objc ← An existing object of type C picked randomly with probability 1/nc

. For true CRP, pick an existing object of type C with a probability nk/(n−1+α)
where nk = in-degree of objc (instead of picking randomly)

20: epc ← (objp, objc) . Add an edge from objp to objc
21: E ← E ∪ {epc}
22: end if
23: end for
24: I ← (V,E)

DAG that does not have a parent. So, we create a new object of the node ‘Class3’
(Figure 2.10a) as it does not have any parent. Then, we traverse to one of the children
of this node in the schema (‘Class2’ here). As there is no object of this class so far,
a new object will be created (Figure 2.10b) . Now, continuing the DFS, we encounter
the node ‘Class1’ (the child of ‘Class2’), and then ‘Class0’ (a child of ‘Class3’). Like
earlier, new objects of ‘Class1’ and ‘Class0’ will be generated (Figures 2.10c and 2.10d).
As ‘Class0’ has a child, we reach ‘Class1’. At this step, an object of ‘Class1’ is already
present. So, the object ‘Class01’ can either create a new object or get connected to
‘Class11’. In this example, it gets linked to a new object ‘Class12’ (Figure 2.10e). In
the next step of the DFS, ‘Class1’ is encountered again as it is a child of ‘Class3’.
Here, ‘Class31’ gets attached to an existing object of ‘Class1’ (Figure 2.10f).

Next two iterations of DFS are shown in Figure 2.11. At each iteration, a new
object of ‘Class3’ will always be generated as it does not have any parent. The object
will then be linked to an existing object or a new one, and the same thing goes on for
the new objects. Here, the skeleton after the first iteration has five objects. The second
iteration creates four new objects, whereas the third iteration creates only two objects.

2.7. EVALUATING PRM LEARNING ALGORITHMS 37

(a)

(b)

Figure 2.9 – A dummy relational schema: (a) Entity-Relationship diagram, (b) as a directed
graph

If needed, we can add dangling objects after completing the iterations. In this example,
only ‘Class1’ can have dangling objects as it does not have any foreign keys. v

PRM sampling

To obtain a complete dataset without missing values, Ben Ishak [2015] applies
forward sampling algorithm on the GBN obtained by instantiating the PRM for the
relational skeleton generated in the previous steps. Though this approach is theo-
retically possible, it may be impractical when it comes to generate very big datasets
because the GBN would be huge for big datasets. Moreover, GBN generation is itself
an expensive task.

Relational forward sampling (Algorithm 8) aims at sampling a PRM without using
a GBN. It adapts forward sampling algorithm (Henrion [1988]) for relational context
and works directly with databases. This algorithm samples each PRM node in a
topological order, and generates a random value for the corresponding attribute of all
objects in the skeleton. Because this algorithm does not need to deal with GBN, GBN
generation time is saved with this algorithm. The only time consuming operation in
this algorithm is the communication with databases. A limitation of this approach
is that it cannot be applied on partially observed skeletons, where some attributes
are already observed. An option to overcome this could be to adapt this algorithm

38 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

(a) (b) (c)

(d) (e) (f)

Figure 2.10 – Generating objects while performing Depth First Search (DFS) on the relational
schema. This shows one iteration of a DFS performed on the schema.

(a) (b)

Figure 2.11 – Next two iterations of DFS on the relational schema of Figure 2.9 following the
first iteration of Figure 2.10 to generate relational skeleton graph.

to perform rejection sampling. Alternatively, we can devise relational extensions of
other BN sampling algorithms that support evidences. We propose Relational Block
Gibbs (RBG) sampling algorithm, which is capable of dealing with partially observed

2.7. EVALUATING PRM LEARNING ALGORITHMS 39

Algorithm 8 Relational forward sampling
Input: A PRM, Π =< R,S >; A relational skeleton, σr
Output: An instance (or a sample), I
1: G ← Dependency structure of Π in topological order
2: for each node X.A ∈ G do
3: for each object x ∈ σr(X) do
4: if X.A has no parent then
5: Sample x.A from P (X.A) and write to I
6: else
7: e← {}
8: for X.γ.B ← Parents of X.A do
9: Z.B ← X.γ.B
10: if Aggretation needed then
11: e← e∪ Aggregate all z.B that have x.A as their child
12: else
13: e← e ∪ z.B that has x.A as its child
14: end if
15: end for
16: Sample x.A from P (X.A | e) and write to I
17: end if
18: end for
19: end for

skeletons.

RBG sampling algorithm is based on Kaelin [2011]’s LABG algorithm. Good points
about RBG algorithm are that it can be applied on partially observed skeletons, and
it can also support the PRMs that have cycles in class level but are guaranteed to be
acyclic in instance level. LABG starts with a partial GBN induced by the query. In our
case, the query is the set of all unobserved variables. This can lead to the generation
of a complete GBN (when all attributes are not observed). To avoid this, only the
structure of the GBN is generated in our approach; full CPDs are not computed for
a couple of reasons because full CPDs are big tables and may require quite a good
amount of memory for large and complicated GBNs. Besides, only a small number
of values from these CPDs are required during actual sampling of the nodes. So, we
compute those values only when required. After generating the structure and setting
evidences, an initial sample is generated by assigning random values to unobserved
nodes. This structure is imagined to be partitioned into blocks, where each block
contains all nodes corresponding to the same attribute X.A. Then, an attribute X.A
(or a block) is randomly selected with probability proportional to the size of its block.
For each unobserved node in that block, its Markov blanket is identified to compute full
conditional distribution Pφ and the node is then sampled according to this distribution.
The steps of selecting a block and performing Gibbs sampling is performed a finite
number of times or until convergence. Algorithm 9 presents our approach.

In Appendix A, we will present an empirical study of these sampling algorithms,
and show that relational forward sampling is very efficient in terms of time but the
quality of datasets obtained from RBG is better.

40 CHAPTER 2. PRMS FOR RELATIONAL LEARNING

Algorithm 9 Relational Block Gibbs sampling (based on Kaelin [2011]’s LABG)
Input: A PRM, Π; A relational skeleton, σr, with or without observations, e; burn-in,

N
Output: An instance (or a sample), I
1: G ← Generate GBN structure of Π for σr
2: Set evidences if any
3: Sample initial states s(0)

4: for t = 1 to N do
5: s(t) ← s(t−1)

6: X.A← Select an attribute for sampling
7: for each x.A ∈ G(X.A) do
8: if x.A is not observed then
9:

P ′φ(x.A)← P (x.A | Pa(x.A))
∏

y.B∈Ch(x.A)

P (y.B | Pa(y.B))

10: Pφ ← Normalize(P ′φ)

11: s(t)〈x.A〉 ← Sample P ′φ(x.A)
12: end if
13: end for
14: end for

2.8 Conclusion
In this chapter, we introduced Statistical Relational Learning (SRL) and Proba-

bilistic Relational Models (PRMs). As PRMs operate on relational data and are based
on Bayesian Networks (BN), we started with a short introduction to relational data
representation as considered in this thesis, and Bayesian networks. We then defined
PRMs, and provided a brief overview of PRM inference, and PRM learning. We fo-
cused our discussion on Ben Ishak [2015]’s approach to evaluation of PRM structure
learning algorithms. We explained their algorithm for generating datasets from ran-
dom schemas, and pointed out some shortcomings of their approach. We also presented
our contributions to overcome some of those shortcomings. To improve the random
dataset generation process, we propose a novel algorithm for generating realistic re-
lational skeletons, and adapt forward sampling and LABG sampling algorithms for
relational context.

3
Recommender Systems: A Common
Application of Relational Data

Contents
3.1 Introduction . 42
3.2 Recommendation models and techniques 43

3.2.1 Recommendation data . 44
3.2.2 Recommendation techniques 45
3.2.3 New developments . 51

3.3 Evaluation of recommender systems 51
3.3.1 Evaluation approaches . 52
3.3.2 Accuracy metrics . 52
3.3.3 Other evaluation metrics . 54
3.3.4 Benchmark datasets and evaluation tools 55

3.4 Challenges . 57
3.5 Conclusion . 59

41

42 CHAPTER 3. RECOMMENDER SYSTEMS

3.1 Introduction

Recommender system (RS) is one of the most common applications that exploit the
relational information from data. It aims at discovering potentially interesting items
for users from a (usually large) collection of items. RSs are probably popularized by the
growth of e-commerce websites, where the collection of products is usually large, and
finding interesting products from such a big collection is a daunting task. Nowadays,
we can find such systems in many websites that we visit frequently, e.g., YouTube,
Facebook, IMDb, Amazon, Instagram, Spotify etc. Successful implementation of RSs
can be found in many domains such as e-commerce, music/video/movie recommen-
dations, social networking, online newspapers/blogs, hotel/flight reservation, online
dating etc. Most RSs deal with data involving relationships between users and items,
and make item-to-user recommendations. Recently, several studies have concentrated
at user-to-user recommender systems, (e.g. online dating (Pizzato et al. [2010]), job
recommendation (Hong et al. [2013]) etc.), which make use of relationships between
users. It is clear that relational data underlies in both types of recommender systems.
Due to the growth of services targeted at ever-increasing community of internet users,
data involving relationships between users and items or between users and users are
easily available in many domains. Consequently, research and development of RS has
flourished, and has become an active field for over two decades. Recent reviews (Véras
et al. [2015], Park et al. [2012], Jannach et al. [2012]) have shown that the interest in
RSs is still increasing significantly, and will continue in the future too.

RSs are originated from the fields of Information Retrieval (IR), Machine Learning
(ML), and Decision Support System (DSS) (Jannach et al. [2012]). From IR perspec-
tive, RSs help users to discover items relevant to the users’ needs. FromML perspective,
recommendation is the task of learning a model that can predict the user feedback on
a specific item as accurately as possible. RSs can be considered as a DSS that helps
users compare the items and decide which one(s) to choose. Though RSs can be viewed
from different perspectives, the basic principle underlying RSs is to compute a rele-
vance score that gives how relevant an item could be to a user, given a set of users (or
user models) and a set of items. User models can be users’ ratings, preferences, demo-
graphics, situational context, tags defined by users etc. whereas items can be anything
depending on the domain, e.g. music, movies, books, news, cities, restaurants, jobs,
products etc. or even users themselves.

In this thesis, we focus only on classical RSs, which deal with relationships between
users and items. Such systems basically involve three types of objects – items to
suggest, users who made some kind of interactions with the items and who will receive
recommendations, and transactions (or interactions) between the users and the items,
e.g. users’ ratings, buying actions etc. A traditional way to visualize this data is as a
matrix (table), aka User-Item matrix, where each row represents a user, each column
represents an item, and each cell represents the transaction between the user with the
item, empty cells denote no transaction between the user and the item. Such matrix
does not contain additional information (or attributes) about items and users. In the
field of relational learning, the use of such matrix is discouraged, and instead, the data
is treated in its relational form, usually as relational databases or graphs. This thesis
is more concerned with relational databases.

This chapter is organized as follows. Section 3.2 will introduce recommender sys-
tems formally, discuss on the types of data used in recommender systems, and provide a
brief overview of different types of recommendation techniques. Some recent advances

3.2. RECOMMENDATION MODELS AND TECHNIQUES 43

in the field of RS will also be discussed. Section 3.3 will present techniques for evaluat-
ing recommendation algorithms, and present some frequently used metrics, benchmark
datasets and tools for assessing recommender systems. In Section 3.4, we will discuss
about challenges that recommender systems often encounter.

3.2 Recommendation models and techniques
The fundamental task of a RS is to predict which items a specific user would find

interesting, in other words, to filter items for a target user. This is done by predicting
the utility (or relevance score) of the items that have not been discovered yet by the
target user. Then, the task of recommending items to a user would be to extract the
items that have high predicted utility.

Definition 13 Recommender system (RS) (Adomavicius and Tuzhilin [2005])
Let U and I be the sets of users and items respectively, and f be a utility function that
measures the usefulness of an item i to a user u, i.e.

f : U × I → R

where R is a totally ordered set (e.g., 5-star rating, real numbers within a certain range
etc.). Then, a recommender system (RS) is defined as a system that extracts a set of
top-N items i′ ∈ I that maximize the utility of the user u ∈ U , i.e.

topN(u) = {i′ | i′ = N
arg max

i∈I
f(u, i)}

Sometimes, this type of recommender system is also referred to as a 2D recommender
system. z

In many recommender systems, the utility of an item is usually represented by a
rating, which indicates a particular user’s preference over that item. For example, in a
movie recommender system like IMDb, users can rate movies in a scale of 1 to 10, in
YouTube, users can like or dislike videos to show how useful the items were to them.
However, in general, the utility can be any arbitrary function.

In the simplest case, U × I is a matrix, called user-item matrix (see Figure 3.1a),
where each cell indicates how a particular user rated a particular item, and f predicts
the value for the cells where the rating value is missing. This kind of data has been
widely used in many recommender systems, particularly the ones that use collaborative
filtering approach (explained in Section 3.2.2). Even though it is very natural to define
each element of the user space U with a profile that includes various characteristics of
users (e.g., age, gender, occupation etc.), the recommender systems that use only this
matrix ignore such profile. Similarly, such systems do not exploit various attributes of
items as well. A substantial amount of research has been performed to make use of
user profiles and item characteristics for improving recommendations. This has led to
different types of recommendation methods, which will be discussed in Section 3.2.2.

Recent studies attempt to go beyond user profiles and item features, and utilize
contextual information to make recommendations for different situations. Context can
be any circumstances that can affect recommendations, such as the user’s location,
emotional status or intention for making purchase (e.g., buying something as a gift or
for improving skills etc.), time of the day, period of the year (e.g., high/low touristic

44 CHAPTER 3. RECOMMENDER SYSTEMS

seasons), weather conditions and so on. Recommender systems that extend traditional
recommender systems with contextual information are referred to as Context-aware
Recommender System (CARS). A typical case of CARS is location-based RS, which
exploits geographical context of objects in the system. We will discuss on such type of
RS in Chapter 6.

Definition 14 Context-aware recommender system (CARS) (Ricci [2014], Adomavi-
cius and Tuzhilin [2011])
Let U and I be the sets of users and items respectively, C be the set of possible situa-
tions under which the items can be experienced (i.e. contextual information associated
with the application), and f be a utility function that measures the usefulness of an
item i to a user u in the situation c, i.e.

f : U × I × C → R

where R is a totally ordered set (e.g., 5-star rating, real numbers within a certain range
etc.). Then, a context-aware recommender system (RS) is defined as a system that
extracts a set of top-N items i′ ∈ I that maximize the utility of the user u ∈ U in the
situation c ∈ C, i.e.

topN(u, c) = {i′ | i′ = N
arg max

i∈I
f(u, i, c)}

From these definitions, we can identify two fundamental aspects of a recommender
system: (1) the type of data available in the system, and (2) the recommendation
technique used to predict the usefulness of items. In the following, we will discuss on
these topics.

3.2.1 Recommendation data

We recognize two types of data used in RSs: tensor, and relational data.

Tensor A tensor is a multidimensional or multimode array. In 2D recommender
systems, users’ ratings for items are represented in the form of an nu × ni matrix 1

where nu is the number of users and ni is the number of items in the system. This
matrix, commonly referred to as user-item matrix, provides the basis for collaborative
filtering (discussed in Section 3.2.2), the most widely used recommendation technique
so far. An example of a user-item matrix is shown in Figure 3.1a. In CARS, a 3-
dimensional array is often used, where users, items and contextual information are the
three dimensions of the tensor.

Relational data Relational data for recommender systems organize data as sets of
objects of different types (users, items and ratings), where each object is defined by
a set of attributes. Usually, user objects are described by users’ demographic infor-
mation, and item objects by various features/characteristics of the items. However,
several recommendation methods attempt to enhance these objects by adding extra
information (e.g., hierarchical categories of items, keywords describing items, more ob-
jects of different types related to items/users etc.) from different data sources. In

1. A matrix is a 2-mode tensor.

3.2. RECOMMENDATION MODELS AND TECHNIQUES 45

(a)

book_id category

book_1 A

book_2 B

book_3 A

book_4 C

Book

user_id gender age_group

user_1 Male 20-30

user_2 Female 15-20

user_3 Female 30-45

User

book_id user_id rating

book_1 user_1 3

book_1 user_2 2

book_1 user_3 5

...

book_4 user_2 1

Rating

(b)

(c)

Figure 3.1 – 2Data representations commonly used in recommender systems: (a) a user-item
matrix, (b) a relational database, and (c) a graph

CARS, contextual information may appear as additional attributes of users/items/rat-
ings or as objects of different types. Relational databases, and graphs are commonly
used for storing such relational data. Examples are shown in Figure 3.1. As mentioned
in Chapter 2, this thesis is concerned only with relational data stored in relational
databases.

3.2.2 Recommendation techniques

While representation of data is an important aspect for recommender systems,
the heart of a recommender system is the underlying recommendation technique,
which is responsible for predicting the usefulness of items for users. The algorithms
used to perform such predictions are classically divided into five categories (Bobadilla
et al. [2013], Adomavicius and Tuzhilin [2005]): Collaborative Filtering, Content-based,
Demographics-based, Knowledge-based and Hybrid algorithms. The first four recom-
mendation approaches are depicted in Figure 3.2.

Collaborative filtering

Collaborative Filtering (CF) is considered to be the most popular and widely im-
plemented technique in RS (Ricci et al. [2011], Ekstrand et al. [2011]). This approach

2. User icons by Users Insights (https://www.iconfinder.com/UsersInsights) are li-
censed under CC BY 3.0, and book icons by Snip Master (https://www.iconfinder.com/
snipicons) are licensed under CC BY-NC 3.0 / Changed color

https://www.iconfinder.com/iconsets/user-avatars-1
https://www.iconfinder.com/UsersInsights
https://www.iconfinder.com/UsersInsights
https://creativecommons.org/licenses/by/3.0/
https://www.iconfinder.com/icons/173163/book_icon
https://www.iconfinder.com/snipicons
https://www.iconfinder.com/snipicons
https://www.iconfinder.com/snipicons
https://creativecommons.org/licenses/by-nc/3.0/

46 CHAPTER 3. RECOMMENDER SYSTEMS

makes recommendations based on the user-item matrix. CF can be performed in two
ways: user-based CF, and item-based CF (Ekstrand et al. [2011]).

The fundamental assumption behind user-based CF is that similar users show simi-
lar behaviors (or preferences). This concept is illustrated in Figure 3.2a. In this figure,
based on the information that all three users like the same books (at the top), CF
assumes that all of them have similar taste for books, and recommends to the second
user another book (bottom) liked by the first and the third users. User-based CF is
carried out as follows. First of all, the neighbors of the target user (i.e. the users whose
rating history is similar to the current user) are identified. To find the neighborhood
of a user, a function is required to compute similarity between users. Pearson’s cor-
relation coefficient, and cosine similarity are two commonly used similarity measures.
Once the neighbors are identified, items that the neighbors have rated but unknown
to the target user are filtered, and the neighbors’ ratings on those items are used to
predict how the target user will rate them. Then, based on the predicted ratings, a
list of items for recommendation is constructed. This is usually done by selecting the
N items that have the highest rating.

Item-based CF (Sarwar et al. [2001]) is similar to user-based CF except that item-
based CF deals with the neighborhood of items instead of that of users. It uses similar-
ities between the rating patterns of items. Similarity functions used for user-based CF
can be applied for item-based CF. Item-based CF differs from content-based filtering
in that the former approach deduces similarity between items from transaction history
instead of characteristics of items.

Su and Khoshgoftaar [2009] have categorized CF algorithms into three classes –
Memory-based, Model-based and Hybrid CF algorithms. Memory-based CF algorithms
use the complete set of data to make recommendations. These algorithms iterate
through the entire set of up-to-date transaction list to discover neighbors of the target
user and predict items that may interest the user. The advantage of this technique is
that even the last piece of information in the system is taken into consideration while
making a recommendation. However, it suffers the scalability problem. On the other
hand, model-based approach deals with the recommendation problem by first building
a model from the observed data and then using this model to make predictions. The
models incorporate factors that help the system predict users’ future interactions. Be-
cause building the model is done offline, this approach can build scalable recommender
systems. However, recent information may not be taken into account by such models
due to the offline processing. Hybrid CF algorithms combine different CF techniques
to build systems that perform better than the individual techniques.

Content-based filtering

Content-based filtering (Pazzani and Billsus [2007], Lops et al. [2011]) considers
items’ characteristics and the target users’ past behavior to make recommendations. It
assumes that items with similar features will receive similar ratings by the same user.
For example, if a user liked an action movie in the past, the user might like another
action movie. Similarity between items can be calculated using the cosine similarity
measure or using predictive models such as Bayesian classifiers, decision trees etc.
Figure 3.2c shows content-based filtering approach.

3.2. RECOMMENDATION MODELS AND TECHNIQUES 47

(a) (b)

(c) (d)

Figure 3.2 – 3Recommendation approaches: (a) Collaborative filtering, (b) Demographics-
based filtering, (c) Content-based filtering, and (d) Knowledge-based filtering

Demographics-based filtering

Demographics-based filtering makes recommendations based on users’ demographic
information such as age, gender, occupation etc. It assumes that users’ interests can de-
pend on their demographics. For instance, animation movies might be popular among
users of certain age group whereas thriller movies might be interesting for users of
different age group. Figure 3.2b depicts this approach.

Knowledge-based filtering

Knowledge-based filtering algorithms aims at enhancing recommendation quality
by adding domain-specific knowledge about how items might be relevant for the target
user. Knowledge can be in the form of a query (i.e. the set of preferred features of a
product), a case in a case-based reasoning system, an ontology, additional information

3. User icons by Users Insights (https://www.iconfinder.com/UsersInsights) are li-
censed under CC BY 3.0, and book icons by Snip Master (https://www.iconfinder.com/
snipicons) are licensed under CC BY-NC 3.0 / Changed color

https://www.iconfinder.com/iconsets/user-avatars-1
https://www.iconfinder.com/UsersInsights
https://www.iconfinder.com/UsersInsights
https://creativecommons.org/licenses/by/3.0/
https://www.iconfinder.com/icons/173163/book_icon
https://www.iconfinder.com/snipicons
https://www.iconfinder.com/snipicons
https://www.iconfinder.com/snipicons
https://creativecommons.org/licenses/by-nc/3.0/

48 CHAPTER 3. RECOMMENDER SYSTEMS

collected from external sources etc. An example of a knowledge-based RS that uses an
ontology to adapt item similarity metrics is shown in Figure 3.2d.

Hybrid approaches

Hybrid approach combines multiple recommendation techniques to improve recom-
mendation performance. Burke [2007] and Jannach and Friedrich [2013] have presented
different ways for hybridization. A simple way to design hybrid RSs is to combine
the results of multiple recommendation systems (see Figures 3.3a and 3.3b). Linear
weights, for example, are commonly used to combine results numerically (Gao et al.
[2007], Ye et al. [2011]). Alternatively, the recommendation lists obtained from differ-
ent recommender systems can be simply merged while presenting the recommendations
(Smyth and Cotter [2000], Barragáns-Martínez et al. [2010]). Another approach to hy-
bridization is to switch between different recommendation systems depending on some
selection criteria, as shown in Figure 3.3c. This can also be achieved by properly weight-
ing the outcome of the recommender systems such that the hybrid system presents the
outcomes of only one recommender at a time depending on the weights. Figure 3.3d
shows another hybridization technique where recommender systems are cascaded so
that output of one system would be the input of another system. Such design can be
employed when a recommender system, which produces good recommendations, is too
expensive to be applied on the complete dataset. The idea is to then exclude or shortlist
items using weaker recommender systems which will provide a refined set of candidate
items to the stronger recommenders. All of these techniques involve multiple recom-
mender systems. Burke [2007] have also presented some techniques 4 for producing
hybrid recommendations from a single recommender system. These techniques include
feature combination, where external knowledge is used to derive additional information
of features that might be useful for recommendation, and feature augmentation, where
new features of items are generated by using the recommendation logic of the contribut-
ing domain (e.g., Melville et al. [2002]). These techniques are illustrated in Figure 3.3e.

Though this conventional taxonomy of recommendation techniques are still widely
accepted, some researchers have proposed categorizations of recommender systems from
different perspectives or for specific domains. A recent taxonomy by Pu et al. [2012],
for example, broadly classifies recommender systems into two categories based on the
way systems gather and build user preference profiles: preference-based recommenders,
and behavior-based recommenders. In the following, we will provide an overview of
these categories.

Preference-based recommenders

Preference-based recommenders are based on the preferences explicitly stated by the
users. In such systems, users actively state their preferences and provide feedback. Pu
et al. [2012] have further divided such recommenders into three categories: rating-based
systems, feature-based systems, and personality-based systems.

Rating-based recommenders These are classical recommender systems, where
users express their preferences over items by the means of binary or multi-scale scores
(ratings, likes/dislikes etc.). Traditional recommender systems let their users rate only

4. Jannach and Friedrich [2013] refer to them as monolithic techniques.

3.2. RECOMMENDATION MODELS AND TECHNIQUES 49

(a) (b)

(c) (d)

(e)

Figure 3.3 – Hybridization techniques (Burke [2007], Jannach and Friedrich [2013]): (a)
Weighting the outputs, (b) Switching between recommendation modules, (c) Combin-
ing/merging the outputs, (d) Cascading, (e) Feature augmentation/combination (monolithic
approach).

on a single aspect of items only. Ricci et al. [2015] have used the term single-rating
recommenders for such systems. Multi-criteria rating recommenders consider rating on
items’ detailed attributes (Adomavicius et al. [2011], Nilashi et al. [2014]). For example,
booking.com 5 asks users to provide ratings for location, cleanliness, hospitality etc. of
the booked hotels, and TripAdvisor 6 let users to provide reviews on seat comfort, leg
room, value for money, cleanliness etc. of airlines.

Feature-based recommenders Feature-based recommenders are similar to classi-
cal content-based systems but the difference is that feature-based recommenders allow
users to express their preferences on specific item features and suggest items to the
users based on the match between the users’ preferences about items’ attributes and
the available items. These systems aim at capturing ephemeral preferences of the users
and, thus, are suitable for recommending products infrequently purchased by users,
perhaps due to a significant financial commitments, (e.g., real-estate, laptops, digital
cameras, flights, hotel booking etc.). Pu et al. [2012] have further classified this type
of recommenders into four categories: case-based, utility-based, knowledge-based, and
critiquing-based systems.

Case-based recommenders (Smyth [2007]) use case-base / database of past problem
solving experiences. Items are represented as cases, which are structured representa-
tions of item features, and recommendations are generated by retrieving those cases

5. https://www.booking.com
6. https://www.tripadvisor.com

https://www.booking.com
https://www.tripadvisor.com

50 CHAPTER 3. RECOMMENDER SYSTEMS

that are most similar to a user’s query or profile. As they rely on structured represen-
tation of items’ features, they are suitable for the systems where items’ detailed feature
descriptions are readily available. Due to the structured representation, sophisticated
similarity measures can be applied to find similar items/cases for recommendations.

Utility-based recommenders make recommendations based on the utility of items for
users derived from their (explicit or implicit) preferences for a set of attributes. They
use features of items as background data, elicit utility functions over items from users
to describe user preferences, and apply the function to determine the rank of items
for a user (Huang [2011]). The central problem of this type of system is creating the
utility function. Most recommenders of this type apply concepts from Multi-Attribute
Utility Theory (MAUT) or Multi-criteria Decision Making (MCDM) to derive utility
functions.

Knowledge-based recommenders are similar to knowledge-based recommenders from
the classical taxonomy. This type of recommenders is a variant of case-based recom-
menders that includes functional knowledge on how a particular item meets a particular
user need, and can therefore reason about the relationship between a need and a pos-
sible recommendation. The knowledge can be in many forms.

Critiquing-based recommenders simulate an artificial salesperson that recommends
options based on users’ current preferences and continuously adapts the recommen-
dations by observing users’ feedback in the form of critiques such as “I would like
something cheaper” or “I would like something newer”. This is an iterative approach
where at each iteration, users provide feedback about the recommended items and the
system improves the recommendation list. This process of critiquing and improving
recommendations continue as long as the users do not find the best item(s). This
kind of system is useful in the situations where users tend to have hidden preferences
about items or they might not be clear about their preferences at the beginning. For
example, when looking for an apartment to rent, a user might have few preferences,
e.g., her preferred number of bedrooms, or preferred location etc., but as she explores
the first recommendations provided by the system, she may discover more features of
apartments (e.g., construction year of the apartment, or whether there is an elevator
etc.), so she may add a new preference (e.g prefer new apartments to old ones) which
helps the system refine the recommendation list. Chen and Pu [2012] have presented
a detailed study of critiquing-based recommenders.

Personality-based recommenders Inspired from psychological studies which sug-
gest that there is a significant connection between personality and people’s tastes and
interests (Hu and Pu [2010]), personality-based recommenders aim at making person-
alized recommendations from users’ personality. Such systems may acquire users’ per-
sonality explicitly (e.g., through questionnaires) or implicitly (e.g., by observing users’
behaviors). A typical case is affective recommender systems that are associated with
human behavior, human factors, mood, senses, emotions, facial expressions, body ges-
ture and physiological with Human-Computer Interaction (HCI) (Katarya and Verma
[2016]).

Behavior-based recommenders

In behavior-based recommenders, users do not state their preferences for items
explicitly, so recommendations are made based on users’ behavior or actions on the
systems. For example, visiting some pages or buying something can infer that the

3.3. EVALUATION OF RECOMMENDER SYSTEMS 51

users are interested in those items.

3.2.3 New developments

Recommender systems discussed so far deal with the situations which seek one-
sided items-to-people recommendations, i.e. only users receive recommendations about
items and not the other way round. Recently, there is a growing interest in people-to-
people (aka reciprocal) recommenders, where the recommendations must address the
needs of both parties. Examples of such recommenders include online dating (Pizzato
et al. [2010]), and job recommender systems (Hong et al. [2013]). Meanwhile, many
researchers (Brun et al. [2010], Liu et al. [2009]) advocate the use of users’ ordinal
preferences about items (i.e., relative orders between items) instead of their numerical
preferences (such as ratings) for making recommendations. They argue that it is easier
for users to provide ordinal preferences (e.g., through pair-wise comparison of items)
than to provide numerical preferences as the numerical scale is usually insufficient to
express their opinion, and that ordinal preferences often tend to be stable compared
to the numerical ones (Jones et al. [2011]). RS community is also attracted towards
tag-based recommendations (Gupta et al. [2010]) as a result of the increased use of
tags in a variety of systems (e.g., social networks, photo sharing, social bookmarking,
news etc.) for various purposes such as expressing opinions, discovering, organizing, or
understanding entities etc. Two primary tasks for such systems are: exploiting tags to
provide enhanced user/item recommendations (e.g., Sen et al. [2009]), and recommend-
ing tags to users (e.g., Lops et al. [2013]). Another line of research in the field of RS
is oriented towards combining characteristics of ubiquitous systems and recommender
systems to enhance the experience of personalized recommendations (Mettouris and
Papadopoulos [2014]). Group recommender systems (Masthoff [2011]), which recom-
mend items to a group of users instead of a single user, have also been frequently studied
in the RS community. Community-based or social recommender systems have gained
popularity due to the rise of social networks. They make recommendations based on
the preferences of users’ friends (Ricci et al. [2015]). The assumption behind this type
of recommenders is that users tend to rely on recommendations from their friends or
acquaintances rather than anonymous persons with similar taste. Cross-domain recom-
mender systems (Fernández-Tobías et al. [2012]) have emerged as a solution to reduce
users’ involvement in building their profile for recommendations. These systems collect
user profiles from other domains, and thus eliminate the need to ask users to provide
their details explicitly.

3.3 Evaluation of recommender systems

Growing use of recommender systems in various domains has resulted in numerous
recommendation algorithms. As choosing an appropriate recommendation method for
a specific system requires comparison of several algorithms, the RS research community
has been active in the study of effective evaluation techniques (e.g., Said and Bellogín
[2014a], Beel et al. [2013], Meyer et al. [2012], Shani and Gunawardana [2011], Herlocker
et al. [2004]). In this section, we will present commonly used techniques and metrics
for evaluating recommender systems.

52 CHAPTER 3. RECOMMENDER SYSTEMS

3.3.1 Evaluation approaches

Different classifications of RS evaluation methods can be found in the literature.
Many researchers evaluate recommender systems using off-line analysis, live user ex-
perimental methods (aka on-line evaluation) or a combination of these two approaches
(Herlocker et al. [2004]).

Off-line evaluation

Off-line evaluation is a widely used technique for evaluating recommender systems.
This approach measures the accuracy of recommendations made by a RS without the
involvement of actual users. It uses an existing data as ground truth, and expects the
results of a RS to match the ground truth. To evaluate a RS, the dataset is split into
a training set and a test set. Then, using the training set, the RS tries to predict the
ratings in the test set. The predicted ratings are then compared to the actual ratings
in the test set. Several metrics (as explained in Section 3.3.2) can be computed to
analyze the results.

On-line evaluation

On-line evaluation measures the acceptance rate of recommendations of a RS by real
users. In this approach, actual users interacts with a RS, and receive recommendations,
which they may or may not accept. Recommendation quality can be then measured
by asking users for their feedback or by monitoring the users’ behavior during their
interaction with the system (for example, by observing if they click on the recommended
items or not). On-line evaluations are usually expensive and time-consuming.

3.3.2 Accuracy metrics

Among various metrics for evaluating recommender systems, accuracy metrics are
the ones that are widely adopted. These metrics measure how close the predictions
made by the recommender systems are to the ground truth. Herlocker et al. [2004] have
identified three types of accuracy metrics: classification accuracy metrics, prediction
accuracy metrics, and rank accuracy metrics. In the following, we will discuss some
commonly used accuracy metrics.

Classification accuracy metrics

As RSs are originated from the field of IR, classic IR metrics for measuring clas-
sification accuracy, such as Precision, Recall, and their harmonic mean F1-score, are
popular for evaluating recommendation algorithms (Jannach et al. [2012]). These met-
rics measure to what extent a RS is able to correctly classify items as interesting or
not.

Precision is defined as the ratio of the number of relevant recommended items to
the number of selected items for recommendation.

Precision =
Number of relevant recommended items

Number of recommended items
(3.1)

Recall is defined as the ratio of the number of relevant recommended items to the
number of relevant items in the test set.

3.3. EVALUATION OF RECOMMENDER SYSTEMS 53

Recall =
Number of relevant recommended items

Number of relevant items
(3.2)

Precision measures how good the recommendations are whereas recall measures how
well the algorithm could discover interesting items. It is desirable to have higher values
of these metrics. However, these metrics are contradictory to each other. Increasing the
number of recommended items increases recall but decreases precision. Their harmonic
mean, F-measure (or F-score) is a commonly used metrics that provide a compromise
between these two metrics.

Fα = (1 + α)
Precision×Recall

α× Precision+Recall
(3.3)

Prediction accuracy metrics

Prediction accuracy metrics measure how well users’ actual ratings match the rat-
ings predicted by the recommender system. Mean Absolute Error (MAE) is a widely
used prediction accuracy. As the name suggests, MAE is the average of absolute differ-
ence between the actual and the predicted ratings. Let p, and r be the predicted, and
the actual ratings respectively, and N be the number of recommended items. Then,
MAE is defined as follows.

MAE =
1

N

N∑
i=1

|pi − ri| (3.4)

Variations of MAE are also commonly used, such as Normalized Mean Absolute
Error (NMAE), and Root Mean Squared Error (RMSE). NMAE is the normalized
version of MAE, and is defined as follows.

NMAE =
1

rmax − rmin
MAE (3.5)

RMSE emphasizes large errors by squaring each individual error.

RMSE =

√√√√ 1

N

N∑
i=1

(pi − ri)2 (3.6)

Rank accuracy measures

These metrics measure to what extent the ranking proposed by the recommender
system differ from the actual ranking, assuming that the order of the items in the rec-
ommendation list is important. Correlation measures, such as Spearman’s correlation
coefficient, are commonly used to determine the similarity between two lists of items.
Spearman’s correlation coefficient is given by:

ρ =

n∑
i=1

(xi − x̄)(yi − ȳ)

n . stdev(x) . stdev(y)
(3.7)

where xi, and yi are the ranks of the item i in the user’s ranked list x, and those in
the recommendation list y respectively, and n is the number of items.

54 CHAPTER 3. RECOMMENDER SYSTEMS

Half-life utility metric is another rank accuracy metric that is applicable in scenar-
ios where users are unlikely to browse very deeply into the ranked list. This metric
estimates the expected utility of a ranked list to a user u, and is given by

Ru =
∑
i

max(ru,i − d, 0)

2(i−1)/(α−1)
(3.8)

where ru,i is the rating of the user u on the item j of the ranked list, d is the default
rating (which is usually neutral or slightly negative), and α, aka half-life, is the rank
of an item on the list that has a 50% chance of being viewed.

The overall half-life utility score for a dataset across all users (R) is then computed
as:

R = 100

∑
uRu∑

uR
max
u

(3.9)

where Rmax
u is the maximum achievable utility if the system ranked the items in the

exact order that the user did.

Edit distance, widely used in IR to compare strings by counting the number of
operations needed to transform one string to another, can also be used to evaluate how
well recommender systems can reproduce users’ ranked list. The idea is to consider
each ranked list as a sequence of characters (or a string), and compare the lists in the
same way as done for strings.

3.3.3 Other evaluation metrics

Despite being widely used, there is an increasing consensus in the RS commu-
nity about the insufficiency of accuracy metrics to assess practical effectiveness, and
added-value of recommendations (McNee et al. [2006]). This concern has led to the
proposition of several other evaluation metrics for measuring various aspects of rec-
ommendations. In particular, coverage, diversity, novelty, and serendipity are often
regarded as important aspects of recommendations.

Coverage measure the percentage of items for which recommendations can be made
by the system. Low coverage means that many items will remain unexplored, and,
hence, such systems will be less valuable to users.

Always recommending similar products can make the system useless and less inter-
esting to users. Thus, diversifying the recommendations is commonly considered as an
important task for improving the utility of recommender systems. Ziegler et al. [2005]
have proposed to measure the diversity of a recommendation list in terms of intra-list
similarity. Higher intra-list similarity indicates that the recommendations are less di-
verse. A similar notion that has gained the attraction of the RS community is novelty.
While diversity refers to how different the items are with respect to each other in the
recommendation list, novelty indicates how different items recommended to users are
from the one that they have been seen in the past. Higher novelty can indicate higher
diversity.

Serendipity is another important dimension of recommendations, which measures
the degree to which the recommended items are relevant to users and also surprising
at the same time. According to Herlocker et al. [2004], a good serendipity metric is
the one that would look at the way the recommendations are broadening the user’s
interests over time. Ge et al. [2010] have formulated a metric for measuring serendipity
as a function of the usefulness of the unexpected recommendations as follows:

3.3. EVALUATION OF RECOMMENDER SYSTEMS 55

SRDP =

N∑
i=1

u(RSi)

N
(3.10)

where u(RSi) ∈ {0, 1} indicates whether the recommended item i is useful or not (with
1 indicating it is useful), and N is the number of unexpected items.

More recently, revenue maximization (Azaria et al. [2013]) is also considered as a
primary goal of a recommender system. So, recommender systems are also be evalu-
ated based on how well they yield the expected revenue.

Besides the metrics presented here, there are several other evaluation metrics re-
ported in the literature. For more metrics, and further reading, we refer readers to the
articles Herlocker et al. [2004], and Shani and Gunawardana [2011].

3.3.4 Benchmark datasets and evaluation tools

Several datasets used for recommendation research purposes are available online.
Some of them are listed in Table 3.1. MovieLens datasets are probably the most used
datasets in recommendation research. These datasets contain users’ ratings on different
movies, and are available in different sizes. Originally collected from the MovieLens 7
website, these datasets have been enhanced by gathering additional information from
other sources, such as Twitter 8, IMDb 9, and RottenTomatoes 10. Several datasets are
made available to public as a part of some competitions, such as RecSys challenges 11,
KDD cup 12, Kaggle competitions 13 etc.

Such public datasets can be considered as benchmark datasets to evaluate new
recommendation algorithms. Recommendation libraries like LibRec 21, and MyMedi-
aLite 22, have even published benchmarks results for some common recommendation
methods on some public datasets. These results (as well as those reported in many
research articles) can serve as baselines for assessing new recommendation algorithms.
However, it should be noted that sometimes best prediction results may not be impor-
tant but other aspects of recommendations, such as the ones discussed in Section 3.3.3.

Active development of tools for building and evaluating recommender systems can
be observed in the past years. LensKit 23, LibRec, MyMediaLite, RankSys 24, TagRec 25,

7. http://grouplens.org/datasets/movielens/
8. https://twitter.com/
9. http://www.imdb.com/
10. https://www.rottentomatoes.com/
11. https://recsys.acm.org/honors-and-awards/challenges/
12. http://www.kdd.org/kdd-cup
13. https://www.kaggle.com/competitions
14. http://www.last.fm/
15. http://del.icio.us/
16. https://sites.google.com/site/yangdingqi/home/foursquare-dataset
17. http://www.yelp.com/
18. http://www.macle.nl/tud/LT/
19. http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
20. http://www.libimseti.cz/
21. http://www.librec.net/example.html
22. http://www.mymedialite.net/examples/datasets.html
23. http://lenskit.org
24. http://ranksys.org/
25. https://github.com/learning-layers/TagRec

http://grouplens.org/datasets/movielens/
https://twitter.com/
http://www.imdb.com/
https://www.rottentomatoes.com/
https://recsys.acm.org/honors-and-awards/challenges/
http://www.kdd.org/kdd-cup
https://www.kaggle.com/competitions
http://www.last.fm/
http://del.icio.us/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
http://www.yelp.com/
http://www.macle.nl/tud/LT/
http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
 http://www.libimseti.cz/
http://www.librec.net/example.html
http://www.mymedialite.net/examples/datasets.html
http://lenskit.org
http://ranksys.org/
https://github.com/learning-layers/TagRec

56 CHAPTER 3. RECOMMENDER SYSTEMS

Table 3.1 – Some datasets used for recommendation systems research purposes

Dataset
Recommendation
Item

Available
Information

Rating Scale

MovieLens Movie Users; Movies; Ratings
5-star scale
(integers only)

Jester
(Goldberg et al. [2001])

Joke
User-item matrix
(User ID, Item ID, Rating)

[-10, +10]
(continuous ratings)

Movie Tweetings
(Dooms et al. [2013])

Movie Users; Movies; Ratings [0, 10]

Last.fm 14 Music/Artist User profile; Artists; Play
count

Play count

HetRec2011 MovieLens +
IMDb/Rotten Tomatoes
(Cantador et al. [2011])

Movie

Movies; Countries;
Locations; Directors;
Actors; Genres; Tags;
Users; Users’ ratings;
Tag assignments

(0, 5]

HetRec2011 Last.fm
(Cantador et al. [2011])

Songs/
Soundtracks

Users; Artists; Tags; Tag
assignments; Users’ friends;
Users’ listening history

Play count

HetRec2011 Delicious
bookmarks 15

(Cantador et al. [2011])
URLs

Users; Users’ contacts;
Bookmarks; Tags;
Tag assignments

Tag weight
(The number of times
the tags were assigned
to each URL)

FourSquare 16 Point-of-interest
(POI)

Users; POIs; Check-ins;
Tips; Tags

Existence of check-ins

Yelp 17 Businesses
Businesses (w/ geographical
info); Users; Reviews

1 to 5 scale
(integers only)

Book crossing
(Ziegler et al. [2005])

Book Users, Books, Ratings
0 to 10 scale
(integers only)

LibraryThing 18 Books/Users Users; Users’ friends; Tags;
Tag assignments

1 to 10
scale (integers only)

Restaurant and consumer
dataset
(Vargas-Govea et al. [2011])

Restaurants
Consumers; Restaurants
(w/ geographical info);
Ratings

{0, 1, 2}

Scholarly Paper Recom-
mendation Datasets 19

Scholarly papers
Researchers; Research
interests; Papers;
Citations/References

Existence of citations

LibimSeTi 20 (Brozovsky
and Petricek [2007])

Users Users; User-user ratings
1 to 10 scale
(integers only)

3.4. CHALLENGES 57

mrec 26 by Mendeley 27, RiVal 28 (Said and Bellogín [2014b]), Idomaar 29 and LightFM 30

are some tools that provide a framework for evaluating recommender systems as well
as implementations of several recommendation methods.

3.4 Challenges

Recommender systems often face several challenges which affect their performance,
limit their applicability and hinder the expansion of the systems. Here we discuss some
major challenges for developing recommender systems.

Scalability Recommender systems are often employed in large e-commerce websites
where the systems aim at selling as much products as possible, and the more customers
they can attract, the more revenue they will generate. Such systems need to keep up
with the continuously growing users and items. Traditional recommendation algo-
rithms, especially memory-based CF, are generally not scalable because they require
large computational resources for large datasets. Several techniques such as dimension-
ality reduction (Billsus and Pazzani [1998], Sarwar et al. [2000], Koren et al. [2009],
Ma et al. [2008]), model-based CF (Mobasher et al. [2006]) etc., and many hybrid
recommender systems have emerged to address the scalability issue.

Data sparsity In practice, the set of items in recommender systems is usually very
large. Thus, users interact with only a small subset of items in systems, and this
leads to a sparse user-item matrix. This may significantly degrade the performance
of recommendation algorithms that deal with the user-item matrix directly. Dimen-
sionality reduction techniques, such as Singular Value Decomposition (SVD), Latent
Semantic Indexing (LSI), Principle Component Analysis (PCA) etc., have been used
to address data sparsity issue (Billsus and Pazzani [1998]). A number of works that
combine content-based, demographics-based, and CF techniques have also been pro-
posed to alleviate data sparsity issue (e.g., Melville et al. [2002], De Campos et al.
[2010], Lika et al. [2014]). In social networks-based recommender systems, this issue is
often handled by exploiting the trust information that can be extracted from transitive
associations between users (e.g., Papagelis et al. [2005], Jamali and Ester [2009], Guo
et al. [2014]).

Cold start There is usually insufficient information for making recommendations to
new users because of the lack of their interactions with the system. In the same way, it
is difficult to find potential users for new items that are not rated yet. Such situation
is called cold start situation. New systems are often in even worse position because not
only users and/or items are new but also the number of users (and/or items) is usually
very low in these systems to build a good recommendation model out of the available
data. Such new systems are often referred to as cold systems. Cold start problem
may be a show-stopper for pure CF. Several techniques have been proposed to address
this problem. Information about users and items are often exploited to handle this

26. https://github.com/Mendeley/mrec
27. https://www.mendeley.com/
28. http://rival.recommenders.net/
29. http://rf.crowdrec.eu/
30. http://lyst.github.io/lightfm/docs/index.html

https://github.com/Mendeley/mrec
https://www.mendeley.com/
http://rival.recommenders.net/
http://rf.crowdrec.eu/
http://lyst.github.io/lightfm/docs/index.html

58 CHAPTER 3. RECOMMENDER SYSTEMS

issue (Schein et al. [2002]). To build user profiles, some systems ask users to provide
their demographic information explicitly while others may collect their users’ activities
implicitly. For example, Lee et al. [2010] provide a preliminary list of recommended
music to users to gather implicit information about users’ behavior by tracking the
music that are ignored, visited or purchased by the users. Baeza-Yates et al. [2015]
tracks how long mobile apps are used to address the cold-start problem in their mobile
app recommendation system. Domain-specific information can also provide important
clues in tackling the cold-start problem. For example, Ahn [2008] use domain-specific
concepts about proximity, impact, and popularity to enhance similarity computation.
Numerous other techniques have been proposed to address cold-start problem. These
mostly employ hybrid recommendation techniques and may be domain-specific solu-
tions. As cold start is a typical case of data sparsity, solutions proposed to deal with
data sparsity issue are applicable in cold start situation in many cases (e.g., Guo et al.
[2014], Lika et al. [2014] etc.).

Preference Acquisition and Profiling Acquiring users’ preferences and their pro-
file is an important topic for developing RSs but several issues related to it are still
unanswered. Users’ preferences can be gathered explicitly by asking them state their
preferences, or implicitly through their actions (e.g., click-through, purchase informa-
tion etc.). It is easy to collect implicit user feedback, which can be considered as a
form of positive feedback. However, in such data, there will be no negative feedback,
all of them being either positive or missing. From missing data alone, it is difficult to
conclude whether the users did not like the recommended items or missed them because
of other influencing factors (e.g. poor user interface), or if they simply chose to ignore
them. While developing a RS, it is quite challenging to analyze the trade-off between
the cost of preference acquisition and recommendation refinement. Multi-rating RSs
can provide refined recommendations from multiple criteria but require a significant
level of user involvement compared to single-rating RSs.

Gathering user profiles required to address cold-start problem may be a difficult
task because people may not tend to readily trust new systems and may avoid pro-
viding personal information as much as possible, which may be especially due to the
frequently appearing news about security breach in many applications. Cross-domain
RSs attempt at solving this issue by collecting user profiles from other domains and
thus eliminating the need to ask users to provide their details explicitly. Personality-
based recommenders aim at improving recommendations using personality information,
such as mood/emotions, but these systems need to acquire such information in a non-
intrusive way.

Interaction The way RSs interact with users can play a significant role in the suc-
cess of the RSs. Thus, RSs need to properly guide users right from the preference
acquisition process to the visualization of recommendations. Adding explanations to
the recommendations can improve users’ experience in understanding the recommen-
dations. However, whether such explanations can influence users’ decision is still not
clear (Ricci et al. [2015]). Another important aspect about the interaction with RSs
is to achieve a balance between novelty/diversity and accuracy. Whether to keep rec-
ommending items that the system can identify as good recommendations or to include
novel/serendipitous items or diversified lists has been a challenging topic from a long
time. Recently, several researchers (e.g., Vargas and Castells [2011], Zhang et al. [2016])
have shown interest in diversifying recommendations.

3.5. CONCLUSION 59

Miscellaneous As RSs are gaining popularity and being implemented in many differ-
ent domains, new challenges are emerging steadily. For example, due to the increased
use of mobile systems, it is now easier to collect contextual information and also to push
recommendations proactively to users’ mobile devices. Learning to make appropriate
recommendations based on users’ contextual information without overwhelming the
users with irrelevant recommendations has been a major challenge for RSs nowadays.

There are still many domains where implementing RSs can be interesting but which
are not much explored probably due to the underlying big risks. RSs can be observed to
be widely adopted in recommendations of simple and inexpensive products like movies,
music, books etc. More complex, expensive products or less frequently purchased
items such as real estate, travels, financial investments etc. can be challenging for
the application of recommender systems. For example, not recommending good travel
options may make result in bad reputation of the system and/or decrease revenue as
the users will stop using the system.

3.5 Conclusion
In this chapter, we introduced recommender systems. We gave a brief overview of

two types of data used in recommender systems: tensor and relational data. We then
discussed on different categories of recommendation algorithms. Following the classi-
cal taxonomy of recommendation techniques, we presented the following techniques:
collaborative filtering, content-based, knowledge-based, demographics-based, and hy-
brid approaches. Among these approaches, collaborative filtering, which makes use of
past interactions between users and items for making recommendations, is commonly
adopted and widely studied. This technique is often used in conjunction with other
recommendation techniques to provide hybrid solutions that can tackle different issues,
such as scalability, data sparsity, and cold start situation. We also presented a more
recent taxonomy that classifies recommender systems from the users’ perspective into
preference-based and behavior-based recommender systems. We then discussed on how
to evaluate recommender systems, and presented some frequently used metrics, public
datasets, and tools for evaluating recommendation methods. We also discussed on some
important challenges, which are commonly encountered by recommender systems.

4
Using Probabilistic Relational Models
for Recommendation

Contents
4.1 Introduction . 62
4.2 Existing approaches . 62

4.2.1 Collaborative Filtering using PRMs (Getoor and Sahami [1999]) 62
4.2.2 A unified recommendation framework based on PRMs (Huang

et al. [2004]) . 63
4.2.3 Hierarchical Probabilistic Relational Models (hPRM) (New-

ton and Greiner [2004]) . 64
4.2.4 Combining User Grade-based Collaborative Filtering and PRMs

(UGCF-PRM) (Gao et al. [2007]) 65
4.2.5 A RBN-based recommender system architecture (Ben Ishak

et al. [2013]) . 65
4.3 Comparison and discussion 66
4.4 Conclusion . 69

61

62 CHAPTER 4. USING PRMS FOR RECOMMENDATION

4.1 Introduction
We have discussed in Chapter 3 that data involved in recommender systems (RSs)

are rich in relational information. Because of this relational nature of data in RSs, the
relational learning community has shown a great interest in RSs since quite a long time.
A plethora of recommendation methods have been proposed in the past decades. These
methods have been applied in various domains of different sizes. To keep up with the
ever-growing data, researchers are attracted towards scalable techniques for recommen-
dations. As discussed in Section 3.4, model-based recommendation techniques (such as
matrix factorization methods, probabilistic models and various other machine learning
approaches) have become popular in recent years specially due to their capability to
address the scalability issue. PRMs have also found their application as a model-based
recommendation technique in this field. Using PRMs in recommender systems has,
in fact, been a topic of research from the beginning of PRM formalism. Getoor and
Sahami [1999] were the first ones to propose a PRM-based recommender system. They
have been followed by several other researchers who have proposed different manners
of integrating PRMs into the recommendation process. In this chapter, we will review
some of such works, and present a comparative study about them.

This chapter is organized as follows. In Section 4.2, we will provide a brief descrip-
tion of some recommender systems that use PRMs and in Section 4.3, we will compare
and discuss on those approaches.

4.2 Existing approaches
In this section, we will review five existing PRM-based recommendation approaches,

and will explain different ways of integrating PRMs to the recommendation process
present in the literature.

4.2.1 Collaborative Filtering using PRMs (Getoor and Sahami
[1999])

The earliest approach to PRM-based recommender systems was proposed by Getoor
and Sahami [1999]. It is based on Bayesian network-based collaborative filtering pro-
posed by Ungar and Foster [1998] and Hofmann and Puzicha [1999]. The main idea
behind these models is to cluster users and items separately, and make predictions
based on the clusters instead of dealing with a large set of user-item matrix. Clus-
tering is performed based on the history of users (or items) and their neighborhood.
Ungar and Foster [1998] proposed the repeated clustering technique to find clusters
of users and items, where firstly, users are clustered based on the items they like (or
purchase) and items based on the users who like them, and in the subsequent phases,
users are clustered based on the item clusters and items based on user clusters. In
these models, we have latent variables Cxi for each user xi ∈ {x1, x2, . . . , xm} and Cyi
for each item yi ∈ {y1, y2, . . . , yn}, where m and n are the number of users and items
respectively. For each user-item pair (xi, yj), the existence of relation rij between user
xi and item yj depends on their clusters. The model is depicted in Figure 4.1. Here,
strong assumptions are made that each person (also each item) belongs to only one
cluster and that every relation rij must have the same local probability model. These
assumptions make it possible to represent this model compactly by PRMs, where every
user and item are assigned to a class, and these classes determine the relation between

4.2. EXISTING APPROACHES 63

Figure 4.1 – A Bayesian Network for two-sided clustering (Getoor and Sahami [1999]). Here,
Cxi and Cyi represent the cluster of a person xi and that of an item yi respectively, and Rij

denotes the relation between a user xi and an item yj .

the user and the item. With the use of PRMs, dependencies of other attributes of the
entities can also be included in the model. For example, age, gender, profession etc. of
users can determine their classes or vice versa and there could be dependencies between
these attributes themselves or even with the attributes of items. This enables PRMs to
make better predictions because the effect of many variables can be seen from a single
model. This also enables PRMs to handle cold start problem. If a user has not liked /
purchased any items yet, PRMs can still make recommendation for him based on the
attributes of this user. The system, however, would be no more doing collaborative
filtering in that case. It will rather be more like a demographic filtering system or some
sort of hybrid system.

4.2.2 A unified recommendation framework based on PRMs
(Huang et al. [2004])

Huang et al. [2004] have proposed a PRM-based recommendation framework that
combines concepts from PRMs-EU and PRM structure learning. They address the
recommendation task as the problem of predicting links between users and items, and
show that PRMs-EU can be useful in such problems. Like in a PRM-EU, they intro-
duce a boolean attribute ‘Exists’, which indicates whether the link between a user and
an item exists or not. They employ the fundamental concept behind PRM structure
learning (i.e. walking through the slot chains) to capture the information that are
potentially interesting for recommendation. Then, they derive a partial dependency
structure among these information for the ‘Exists’ attribute to build a recommendation
model. Their method is essentially a hybrid approach because it is capable of com-
bining different data patterns employed by content-based, demographic filtering, and
collaborative filtering algorithms (e.g., users’ demographics for demographics-based rec-
ommendation, items’ characteristics for content-based recommendation, ratings made
by users’ neighbors for collaborative filtering etc.).

The basic work-flow for their method is as follows. First, relational attributes are
generated by walking through the slot chains in the relational schema starting from
the target attribute (i.e., the ‘Exists’ attribute). They limit the length of slot chains in
heuristic structure search algorithm (Friedman et al. [1999]) to create a finite attribute
space, from which attributes that can be relevant for recommendation are filtered out as
Markov blanket attributes of the target attribute. A Naïve Bayesian classifier is, then,
built from the Markov blanket such that all Markov blanket attributes are independent

64 CHAPTER 4. USING PRMS FOR RECOMMENDATION

(a)

(b)

Figure 4.2 – (a) Hierarchy of Movie class and (b) Hierarchical Probabilistic Relational Model
(hPRM) proposed by Newton and Greiner

of each other given the target attribute. This classifier is then used to recommend items.
They have illustrated that long slot chains can capture interesting patterns and the use
of such long slot chains along with aggregation and multiset operations can enhance
the performance of recommender systems. Perlich and Huang [2005] have used this
framework in the context of Customer Relationship Management (CRM).

4.2.3 Hierarchical Probabilistic Relational Models (hPRM) (New-
ton and Greiner [2004])

Newton and Greiner [2004] have proposed hPRM, inspired from Getoor [2001]’s
PRM-CH. It aims at addressing the issue of cyclicity that usually appears in recom-
mendation tasks. For instance, in the context of a movie-rating dataset, a user’s rating
on some movies may depend on ratings of the same person on some other movies. Be-
cause a rating depends on itself, this information cannot be expressed in a PRM due to
the violation of the acyclicity constraint. Newton and Greiner [2004] address this issue
by dividing the concerned class into hierarchical sub-classes, and defining the depen-
dency structure using only leaves of the hierarchy. They propose greedy partitioning
approach to learn the hierarchy. hPRM is learned and instantiated in the same way as
a standard PRM. Inference is performed on the unrolled hPRM. Figure 4.2 depicts the
hPRM, which they applied on a movie-rating context, where the rating of one type of
movies can depend on the (average) rating of different type of movies. They divided
the class Movie hierarchically based on the genre of movies as shown in Figure 4.2a,
and then derived a hPRM using the leaves of the hierarchy as shown in Figure 4.2b.

4.2. EXISTING APPROACHES 65

Figure 4.3 – Overview of the recommender approach proposed by Gao et al. [2007]

4.2.4 Combining User Grade-based Collaborative Filtering and
PRMs (UGCF-PRM) (Gao et al. [2007])

Gao et al. [2007] have proposed a hybrid method for recommendation that combines
collaborative filtering and PRMs. Their approach, referred to as User Grade-based
Collaborative Filtering - PRM (UGCF-PRM), is presented in Figure 4.3. The basic
idea is to make predictions from both user-item matrix-based CF and a PRM, and
then combine those predictions using a user grade function to finally recommend top-
N items. A user grade function increases with the number of rating items. Hence, the
user-grade for the users with large number of rating items will be higher than that for
the users with few ratings. The user-grade function, in fact, acts like an adaptive weight
for different grade users when combining the prediction from collaborative filtering with
that from a PRM. The combined prediction Pui is given as the weighted sum of the
two predictions as follows:

Pui = Gu·PNBS
ui + (1−Gu)·P PRM

ui (4.1)

where Gu is the user-grade function for the target user u, and PNBS
ui and P PRM

ui are
the prediction from neighbor-based CF and that from PRM respectively for the target
item i.

It is clear from Equation 4.1 that as the user grade function increases, UGCF-PRM
is dominated by CF. Thus, only when the target user has few ratings, the prediction
from PRM will be dominant.

4.2.5 A RBN-based recommender system architecture (Ben Ishak
et al. [2013])

Through their hybrid approach for recommendation based on Relational Bayesian
Network (RBN) 1, Ben Ishak et al. [2013] have tried to find a solution to the same
problem that Newton and Greiner [2004] had addressed, i.e. the scenario where users’
ratings depend on the previous ratings of the users’ neighbors. As a solution to this,
they propose to make a copy of the Rating class such that the original Rating class,
called Sound-votes, represents the observed votes/ratings, and the duplicate class,
called Forecast-votes, represents the objects that are supposed to be present. Now,
the ratings from Forecast-votes can depend on the ratings from Sound-votes without
creating a cycle in the original class dependency structure. The advantage of this

1. The term PRM used in this thesis is the same as the term RBN used by Ben Ishak et al. [2013].

66 CHAPTER 4. USING PRMS FOR RECOMMENDATION

 Figure 4.4 – The overall architecture of the recommender system proposed by Ben Ishak et al.
[2013]

approach is that it limits structure search procedure and generates a simple model.
However, this obtained model is not a strong model for recommendation. Hence, the
model is enriched by providing an appropriate model instantiation to each active user
based on a set of rules derived from recommendation requirements. This approach
is capable of addressing data sparsity, cold start and scalability problems, and can
also provide different recommendation techniques from the same model. The overall
architecture of their approach is illustrated in Figure 4.4.

4.3 Comparison and discussion

Table 4.1 shows a summary of comparison of the PRM-based recommender ap-
proaches presented in Section 4.2.

Getoor and Sahami [1999]’s work builds a hybrid recommender system rather than
a collaborative one as explained in the paper. The good points are that this model is
easier to interpret than a BN-based collaborative filtering model, is extensible and can
handle cold start and scalability problems. However, the authors do not clearly explain
how to learn such PRMs and how to make actual recommendations from such models.
Besides, the effectiveness of the model mainly depends on the quality of clusters, and it
is difficult to obtain good clusters that can assign items/users to only one cluster. Also,
the authors have not presented experimental results. Hence, we do not have a clear
vision of how effective the model could be. Moreover, the specification of PRM used in
this paper is different from the current specification, which is mature and, hence, more
advanced than the one presented in the paper.

The introduction of multi-set operation has increased the expressiveness of the
recommendation framework proposed by Huang et al. [2004]. It allows to capture data

4.3. COMPARISON AND DISCUSSION 67

(a) (b)

Figure 4.5 – Sample hierarchies an hPRMs cannot address: (a) a hierarchy where a node has
only one (leaf) child, (b) a lattice structure where a node can be a subclass of more than one
class

patterns that cannot be captured by simple (short) slot chains in regular PRMs. The
framework unifies different recommendation techniques simultaneously. The authors
have illustrated the unification of content-based, demographics-based and collaborative
filtering techniques in a book recommendation system. They have evaluated their
model on a book sales data from a major Chinese bookstore. They have used precision,
recall, F-measure and rank score as their evaluation metrics. Their experimental results
show that their unified framework resulted in improved recommendation performance.
However, the difficulty with this approach is that the relational feature space can grow
very large depending on the length of the slot chains used in the model, and this can
lead to computationally intensive feature construction and model estimation process.
In spite of this difficulty, we found this approach of recommendation promising for a
couple of reasons. First, it can address sparsity and cold start problems, and second,
a single model can combine different recommendation techniques using the concepts of
PRMs and BNs only.

Newton and Greiner [2004] have implemented their hPRM in a system, called the
Tadpole system, and have evaluated this model on EachMovie dataset, which was the
basis of MovieLens dataset (more information about this dataset in Table 3.1) and
contained movie-rating data. Though their experimental results show that hPRMs
have competitive performance in terms of average absolute deviation (cf. MAE in
Section 3.3.2) against some algorithms engineered specifically for the recommender task
(such as BN model, vector similarity-based algorithm, Bayesian clustering etc.), there
are some limitations with this approach. First, though the same notations and examples
from Getoor’s PRM-CH have been used, hPRM is different from PRM-CH and it does
not actually use the hierarchical structure of PRM. Only leaves are considered to
define subclasses. This is like dividing a class into different subclasses and learning
PRM as a regular PRM. Thus, the inner classes are always missed out. For example,
hPRM cannot address the hierarchy as shown in Figure 4.5a, where class B2 can be
an interesting class but since it has one child, it is never considered in the hPRM.
Second, it cannot address lattice structure, such as the one in Figure 4.5b, which is
very common in real world. For example, a movie can have more than one genre.
Sub-classes of Movie may not always be disjoint as opposed to what was proposed by
the authors. Third, the greedy partitioning used to create the hierarchy is not a good
approach because the partitions created using this approach depend on datasets.

The UGCF-PRM approach aims to overcome simultaneously the most common
problems of CF: sparsity, scalability and cold start. The authors have validated this
model on MovieLens dataset (more information about this dataset in Table 3.1) and

68 CHAPTER 4. USING PRMS FOR RECOMMENDATION

T
able

4.1
–
C
om

parison
of

som
e
P
R
M
-based

recom
m
endation

approaches

G
eto

or
an

d
S
ah

am
i
[1999]

H
u
an

g
et

al.
[2004]

N
ew

ton
an

d
G
rein

er
[2004]

G
ao

et
al.

[2007]
B
en

Ish
ak

et
al.

[2013]

R
eco

m
m

en
d
atio

n
m

eth
o
d

C
F

C
F
,

C
on

ten
t-b

ased
,

an
d

h
y
b
rid

C
F

C
F
/H

y
b
rid

H
y
b
rid

S
tru

ctu
re

L
earn

in
g

S
tru

ctu
re

is
d
efi

n
ed

b
y
ex
p
erts

S
tru

ctu
re

in
clu

d
es

th
e

target
variab

le
an

d
its

M
arkov

b
lan

ket,
an

d
is

learn
ed

from
d
ata.

P
rior

to
ap

p
ly
in
g
stan

d
ard

P
R
M

learn
in
g,

greed
y
p
ar-

tition
in
g

of
som

e
classes

(su
ch

as
M

ovie)
is
in
volved

.

N
ot

m
en
tion

ed
(p
rob

ab
ly

d
efi

n
ed

b
y
ex
p
erts).

A
p
p
lication

of
stan

d
ard

P
R
M

stru
ctu

re
learn

in
g
is

p
rop

osed
.

P
aram

eter
L
earn

in
g

P
rop

osed
to

ap
p
ly

score-b
ased

ap
-

p
roach

es
for

B
N

learn
in
g

(to
fi
n
d

th
e
b
est

n
u
m
b
er

of
clu

sters
of

u
sers

an
d
item

s)
b
u
t
n
ot

clearly
form

al-
ized

P
rop

osed
to

ap
p
ly

stan
-

d
ard

p
aram

eter
estim

ation
p
ro
ced

u
res

S
tan

d
ard

P
R
M

learn
in
g
al-

gorith
m
s
are

ap
p
lied

.
S
tan

d
ard

P
R
M

learn
in
g
al-

gorith
m

is
ap

p
lied

P
rop

osed
to

ap
p
ly

stan
-

d
ard

P
R
M

learn
in
g

algo-
rith

m
s

A
d
d
ress

co
ld

start
p
ro

b
-

lem
?

Y
es

Y
es

N
o

Y
es

Y
es

Im
p
lem

en
ted

?
N
o

Y
es

Y
es

(T
h
e

T
a
d
po

le
sy
stem

)
N
o

N
o

E
valu

ated
?

N
o

Y
es

Y
es

Y
es

N
o

E
valu

atio
n

m
etrics

–
P
recision

,
R
ecall,

F
-

m
easu

re,
an

d
R
an

k
score

M
ean

ab
solu

te
d
ev
iation

(sam
e
as

M
A
E
)

M
A
E

–

E
valu

atio
n

d
ataset

–
B
o
ok

sales
d
ataset

from
a

m
a
jor

C
h
in
ese

b
o
ok

store
E
ach

M
ov

ie
a

M
ov
ieL

en
s

–

a.
N
o
longer

available
for

dow
nload

(h
t
t
p
:
/
/
g
r
o
u
p
l
e
n
s
.
o
r
g
/
d
a
t
a
s
e
t
s
/
e
a
c
h
m
o
v
i
e
/)

http://grouplens.org/datasets/eachmovie/

4.4. CONCLUSION 69

have shown that UGCF combined with PRM provide better performance in terms of
MAE. However, their model does not actually exploit the capability of PRMs. The use
of a PRM in their model is basically to handle the cold start problem. For a target
user with many ratings, the effect of PRM becomes negligible. Besides, the authors
give an example of a PRM but do not say anything about learning of such structure.
In the sample PRM, the target attribute depends on attributes of all other classes
with some intra-class dependencies. However, to achieve such model, we need either
experts’ knowledge or some probabilistic computation, and this is not mentioned by
the authors. This leads us to expect that the PRM might not have represented the
underlying data well in their experiments, which showed that PRM alone resulted in
the worst MAE. So, we cannot fully rely on the result obtained from the PRM. In
fact, the whole model can be achieved from Huang et al. [2004]’s approach which does
not use traditional CF algorithms, instead makes use of Naïve Bayesian classifier for
simplification of the problem.

The framework proposed by Ben Ishak et al. [2013] is claimed to be scalable and
capable of making predictions even in cold systems. However, it has not been demon-
strated through experiments. Because of the lack of its implementation and experimen-
tal results, it is not easy to determine whether making copies of objects as proposed in
the article would cause problems related to memory for large datasets.

4.4 Conclusion
In this chapter, we reviewed some approaches that use PRMs for recommendation.

The earliest PRM-based recommendation model proposed by Getoor and Sahami [1999]
clusters users, and items separately, and make predictions based on those clusters. In-
spired from PRM-EU formalism, Huang et al. [2004] proposed an interesting framework
for recommendation that predicts the presence of a user-item link from a classifier de-
rived from Markov blanket of the boolean ‘Exists’ attribute that tells whether the
user-item link exists or not. Both of these models are extensible, scalable, and address
the cold start problem. Newton and Greiner [2004] and Ben Ishak et al. [2013] try to
solve the problem of cyclic dependency that usually appear in recommendation tasks.
To avoid such cycles, Newton and Greiner [2004] proposed to extend regular PRMs into
hPRM, whereas Ben Ishak et al. [2013] proposed to adapt underlying relational schema
and the original PRM. Gao et al. [2007] combined user-grade based collaborative filter-
ing with PRMs to tackle the cold start problem. In their approach, recommendations
from PRMs are preferred only when the system is cold. All of these methods have good
as well as bad sides. However, we found that Huang et al. [2004]’s recommendation
framework is the most interesting among them as it is completely based on PRMs, eas-
ily extensible, capable of dealing with cold start situation, and also well documented.
That is why we chose to implement this model (explained in Section 9.4).

5
Spatial Data

Contents
5.1 Introduction . 72
5.2 Spatial data representation 72

5.2.1 Tessellation data representation 73
5.2.2 Vector data representation . 73
5.2.3 Network data type . 74

5.3 Characteristics of spatial data 75
5.3.1 Spatial heterogeneity . 75
5.3.2 Spatial autocorrelation . 75

5.4 Spatial operators . 76
5.4.1 Metric operators . 76
5.4.2 Topological operators . 76

5.5 Conclusion . 78

71

72 CHAPTER 5. SPATIAL DATA

5.1 Introduction

The word spatial is originated from Latin word ‘spatium’, which means space. Thus,
any kind of data that is related to space is referred to as spatial data. It is characterized
by their location in two-(or three-)dimensional space, and includes not only things that
exist at some location in the space such as countries, cities, roads, rivers, buildings,
mountains, different elements in an image (in image recognition systems), a 3d model
of the human brain etc. but also events such as accidents, floods, earthquakes, disease
outbreaks, festivals, tapping on a touchscreen etc., which are related to the space
in some way. A class of spatial data whose space is limited to the surface of the
Earth is referred to as geographic data. The term ‘geo’ comes from Greek word ‘gaia’,
which means the Earth. Thus, geographic data refers to the features or phenomena
distributed on or close to the Earth’s surface. Often the terms geographic, geospatial,
and spatial are used interchangeably even though geographical data is a subset of
spatial data. In this research work, we are mainly focused on geographic data and also
use the term spatial to refer to geographic data.

Availability of Global Positioning System (GPS) to civilian users, advances in mo-
bile communication and wireless technology have opened the door to many spatial
technologies. The development of consumer GPS tools, Volunteered Graphical Infor-
mation (VGI) tools and location-aware mobile devices have revolutionized the way
of collecting and using location information. This has resulted in the use of spatial
information in a wide range of application, thereby increasing the need for analysis
of spatial data. In this chapter, we will provide a general overview of basic concepts
related to spatial data analysis.

Spatial data analysis requires a framework for modeling spatial information. In
spatial statistics, spatial data are considered as a set of observations coming from
spatial process, X = {Xs, s ∈ S}, where s ∈ S are the positions of observational sites.
In relational settings, such data can be perceived as a set of objects which are described
by their location and a set of attributes. In conventional settings, spatial data consist
of only one type of such objects whereas in relational settings, more than one type
of objects (spatial as well as non-spatial) are considered. In both of these settings,
implicit spatial relationships between objects exist. Due to such relationships, the
IID assumption does not hold in spatial data. The implicit definition of relationships
between spatial objects also give rise to specific characteristics, such as heterogeneity
and spatial autocorrelation, in spatial data. These characteristics have been the basic
tenets underlying the analysis of spatial data. Spatial data analysis studies patterns or
influences resulting from such spatial characteristics. It uses various spatial operations
on spatial objects, primarily to study the influence of spatial information in the system.
In the following, we will present a brief overview of these concepts, which we will be
referring later in the following chapters.

This chapter is organized as follows. Section 5.2 will present basic ways of repre-
senting spatial data. Section 5.3 will present two important characteristics of spatial
data sets, and Section 5.4 will briefly discuss on some commonly used spatial operators.

5.2 Spatial data representation

Conceptually, spatial information are modeled as field-based and object-based. In
field-based models, the world is seen as a continuous surface over which features vary
whereas in object-based model, the world is seen as a surface littered with distinct,

5.2. SPATIAL DATA REPRESENTATION 73

identifiable and relevant objects which can be zero-dimensional (point), 1-dimensional
(line) or 2-dimensional (surface) (Malerba [2008]). Tessellation and vector are two
basic data types used to represent spatial information. In some literature (Shekhar
et al. [2011]), network data type has also been reported. We are concerned with only
the vector representation of spatial data in this thesis.

5.2.1 Tessellation data representation

In Tessellation representation of spatial data, space is partitioned into mutually
exclusive cells that together make up the complete coverage. Each cell is associated
with a thematic/attribute value that represents the condition for the area covered by
that cell. A grid of square cells is a special tessellation model called raster. The size of
the cell defines the level of spatial detail. The smaller the cell (pixel) size, the higher
the resolution, therefore, the higher the level of spatial detail. Figure 5.1a shows an
example of a raster data, where each cell of the grid is assigned a color (a thematic
value).

Though tessellation is a simple data structure, and quantitative analyses can be
simple to perform with it, there are some disadvantages of this representation. Since
information about each cell must be recorded, tessellation data can become potentially
very large, thereby making processing of associated data cumbersome. Besides, tessel-
lation data inherently reflect only one attribute or characteristic for an area. However,
in most input data, an area may be described by multiple attributes (ideal for vector
representation, which will be described next). Thus, more processing may be needed
to convert the input data into this type of representation.

5.2.2 Vector data representation

In vector data representation, spatial objects are modeled using geometry and their
attributes. The geometry is made up of one or more interconnected vertices. A vertex
describes a position in space using an x, y and optionally z axis. According to their
dimensionality, spatial objects are classified as points, lines, or polygons.

Point is a zero-dimensional object that specifies geometric location. One coordinate
pair or triplet specifies the location. Points can represent several kinds of real entities,
e.g. restaurants, event locations, touristic places, bus stops etc. Figure 5.1b shows
some spatial objects represented as point data placed on a map.

Definition 15 Point
A point is a zero-dimensional spatial object located within study area at coordinates
(x, y), where x is called longitude and y is called latitude. z

Line is a one-dimensional object that consists of two or more vertices the first
and last vertex not being equal. When four 1 or more vertices are present, and the last
vertex is equal to the first one, an enclosed polygon object (or a ring) is formed. Rivers,
train lines, roads etc. can be represented as line objects, whereas cities, parks etc. can
be represented as polygons. Rivers can also be represented by polygons if we consider
their width too. Figure 5.1c shows an example of line data. Cities in ‘Loire-Atlantique’
department of France are shown as polygons in Figure 5.1d.

1. Note that a triangle is a polygon with 4 (not 3) vertices such that the first vertex coincides with
the last one. Thus, the minimum number of vertices required to form a polygon is 4.

74 CHAPTER 5. SPATIAL DATA

(a) Raster data (b) Point data

(c) Line data (d) Polygon data

(e)

Figure 5.1 – Examples of spatial data

Definition 16 Line
A line is a one-dimensional spatial object defined by a sequence of at least two points
(pn : n ∈ N, n ≥ 2) such that the starting point is not the same as the ending point,
i.e. p1 6= pn, where p is a point. z

Definition 17 Polygon
A polygon is a two-dimensional spatial object defined by a sequence of at least four
points (pn : n ∈ N, n ≥ 4) such that the starting point is the same as the ending point,
i.e. p1 = pn, where p is a point. z

5.2.3 Network data type

In network data type, a spatial domain is represented in a graph where spatial ob-
jects are abstracted as nodes and/or edges such that the graph contains the information
connectivity between the objects. The edges can be directed or undirected. Defining a
network is usually a problem-specific task, and sometimes the same information can be
coded in a network data in different ways. For example, if we represent roads with a
network data, nodes may be road segments and edges are the points where roads/road

5.3. CHARACTERISTICS OF SPATIAL DATA 75

segments meet (such as intersections, roundabouts etc.). The same roads can also be
represented by another network where nodes are intersections/roundabouts and edges
are road segments. A common way of defining a spatial network involves representing
spatial objects by nodes, and denoting connectivity (e.g., whether there is a physical
connection or whether they are within a fixed distance etc.) between those spatial
objects by edges. Alternatively, both nodes and edges can be spatial objects as in
the previous examples. An example of a spatial network is illustrated in Figure 5.1e.
This network is constructed by abstracting intersections as nodes and road segments
as edges. Here, directed nodes indicate one-way streets.

5.3 Characteristics of spatial data

When a spatial context comes into play in data, the observations/objects become
no more independent. Spatial objects are often implicitly related to each other. Such
implicit relationships give rise to special characteristics of spatial data. Two important
characteristics of spatial data are spatial heterogeneity, and autocorrelation.

5.3.1 Spatial heterogeneity

Spatial heterogeneity refers to the uneven distribution of observed process over
space. The influence of spatial context on spatial relationships can be seen in the vari-
ation of observed attributes over space (Shekhar et al. [2011]). For example, cultures
may differ from one country to another, hotels/apartments in city center may be more
expensive than those in suburbs and so on. When the value of an attribute of a site
is different than its surrounding, it is referred to as local spatial heterogeneity. Such
phenomenon gives rise to hotspots/coldspots.

5.3.2 Spatial autocorrelation

Standard statistical analysis are based on the assumption that the observations are
made independently. However, this assumption is often (but not always) violated when
spatial information is involved. Observation in one geographical place might depend on
the observation in nearby places. Such phenomenon is also described by Tobler’s first
law of geography, which states “Everything is related to everything else, but near things
are more related than distant things” (Tobler [1970]). Ignoring geographic influence
during analysis may result in unrealistic findings. Spatial autocorrelation occurs in
many disparate fields. For example, price of a house tends to be similar to other
houses nearby; people with similar income tend to be neighbors; hyperlinked pages
tend to share similar topics; proteins located in the same place in a cell are more
likely to share the same function than randomly selected proteins (Malerba [2008]) etc.
Spatial autocorrelation refers to the dependencies that exist among observations that
are attributable to the relative locations, or underlying two-dimensional ordering, of
variable values in geographic space (Griffith [1992]).

76 CHAPTER 5. SPATIAL DATA

5.4 Spatial operators
Spatial operators are used to define interactions between spatial objects, or to derive

new information. Broadly, these spatial operators can be classified into two categories 2
– (1) metric operators, and (2) topological operators.

5.4.1 Metric operators

Spatial metric operators are applied on a single spatial object to derive new non-
spatial information about the object. For example, length is a metric operator that
can be applied on lines and polygons but not on points.

5.4.2 Topological operators

Spatial topological operators utilize connectivity and contiguity information about
one or more spatial objects to derive new spatial objects or to identify relationships
between those spatial objects. Operators such as aggregate, generalize, buffer, inter-
section, union, difference, symmetric difference, split, cut etc. result in new spatial
objects, whereas relational operators such as contains, touches, overlaps etc. are used
to identify topological relationships between a pair of spatial objects. Table 5.1 lists
some of these operators. This thesis deals mainly with spatial aggregation.

Aggregation operators

Spatial aggregation operators aggregate or summarize multiple spatial objects.
Some of the commonly used spatial aggregators are convex hull, centroid, union, Min-
imum Bounding Rectangle (MBR) etc.

Relational operators

Spatial relational operators are Boolean methods that are used to identify specific
topological relationships between spatial objects. Adjacency, overlapping, and con-
tainment are typical examples of spatial relationships. Such kind of relationships are
derived from the nine-intersection model (Egenhofer and Herring [1990]) as spatial
predicates about relations between a pair of spatial objects. The basic idea behind this
model is to compare two spatial objects by making pair-wise tests of the intersections
between the interiors, boundaries and exteriors of the two objects and classifying their
relationship based on the entries in the resulting 3 by 3 ‘intersection’ matrix. The spa-
tial predicates that are derived from this model and standardized by Open Geospatial
Consortium (OGC) are equals, disjoint, intersects, touches, crosses, within, contain,
overlaps, and relate.

2. This section only provides a brief overview of spatial operators. Readers are referred to the
article Güting [1994] for in-depth understanding of spatial operators.

5.4. SPATIAL OPERATORS 77

Table 5.1 – Examples of spatial operators

Spatial object Operator Output

Aggregate

Generalize

Buffer

Intersection

Union

Difference

Symmetric difference

78 CHAPTER 5. SPATIAL DATA

5.5 Conclusion
In this chapter, we provided a brief introduction to spatial data. We presented

how spatial data are represented for data analysis. We presented three basic repre-
sentations of spatial data: tessellation, vector, and network. This thesis is concerned
with vector representation of spatial data because vector data type is more compact
than tessellation data type, and is well supported in major spatial relational databases,
such as PostGIS and Oracle Spatial. Also, vector data type provides a general way
to model spatial information from real world data whereas network data type is often
domain-specific, and can have multiple representations for the same set of spatial in-
formation. We also briefly discussed on two important features of spatial data, which
arise due to the relationships between spatial objects: spatial heterogeneity and spa-
tial autocorrelation. Some commonly used spatial operators were also presented in this
chapter.

6
Recommender Systems with Spatial
Data

Contents
6.1 Introduction . 80
6.2 Review of some spatial recommender systems 80
6.3 Discussion . 82
6.4 Conclusion . 84

79

80 CHAPTER 6. RECOMMENDER SYSTEMS WITH SPATIAL DATA

6.1 Introduction
Over the past decades, there has been a significant growth in the number of the

Internet users all over the world 1. Consequently, a huge number of applications has
come into existence accumulating unprecedentedly large volume of data. Recent ad-
vances in location-acquisition and wireless communication technologies have made it
easier to extend the data with spatial information. All of these have contributed to the
growing interest of machine learning communities in the study of extraction of useful
knowledge from spatial dimensions. Spatial data analysis has been a popular topic
in the studies of environment, ecosystems, population, communities, image processing
etc. However, due to the proliferation of relational data, recommender system commu-
nities are also attracted in exploiting spatial information to improve recommendation
quality. Spatial statistics was an early approach to spatial data analysis. Among sev-
eral machine learning techniques that were adopted later, BNs are popular particularly
in environmental and ecological modeling (Barton et al. [2012], Landuyt et al. [2013],
Aguilera et al. [2011]). Recently, Chee et al. [2016] have integrated Geographic Infor-
mation System (GIS) data with OOBNs and State-and-transition Dynamic Bayesian
Networks (ST-DBNs). The increased use of social networks has also contributed in the
growing trend of analyzing spatial data collected from location-based social networks,
especially in the area of recommender systems (Bao et al. [2015]). In this chapter, we
will review some recommendation systems that exploit spatial information.

6.2 Review of some spatial recommender systems
Levandoski et al. [2012] have proposed a recommender system, called location-

aware recommender system (LARS), that is capable of providing recommendations
from location-based ratings in three different scenario: (1) where spatial users (users
with location information) rate non-spatial items (items without location information),
(2) non-spatial users rate spatial items and (3) spatial users rate spatial items. In the
first scenario, they propose a method of partitioning users based on their location.
LARS employs a partial pyramid structure, as shown in Figure 6.1, which decomposes
the space into H levels (i.e., pyramid height). For a given level h, the space is parti-
tioned into 4h equal area grid cells. In each cell, an item-based collaborative filtering
model built using only the spatial ratings with user locations contained in the cell’s
spatial region is stored. To make top-K recommendation for a user u with location L,
LARS finds the cell that corresponds to the location L in the pyramid, and uses the
model stored in this cell to make recommendation. If a cell corresponding to L is not
found, it returns the nearest maintained ancestor cells. They have also implemented
an algorithm to maintain the pyramid structure. LARS* (Sarwat et al. [2014]) is an
enhancement of LARS and has an improved, more efficient data structure maintenance
algorithm. In the second case, where non-spatial rating for spatial items, they intro-
duce travel penalty, which penalizes the recommendation rank of items based on their
distance from the querying user. Ranking of each spatial item i is done based on the
score RecScore(u, i) for a querying user u.

RecScore(u, i) = P (u, i)− TravelPenalty(u, i)

where P (u, i) is the standard item-based CF predicted rating of item i for user u.
TravelPenalty(u, i) is the road network travel distance between u and i, normalized

1. http://data.worldbank.org/indicator/IT.NET.USER.P2

http://data.worldbank.org/indicator/IT.NET.USER.P2

6.2. REVIEW OF SOME SPATIAL RECOMMENDER SYSTEMS 81

Figure 6.1 – Partial pyramid structure proposed by Levandoski et al. [2012] for partitioning
users based on their location. Each cell stores an item-based collaborative filtering model
built using only the spatial ratings with users locations contained in the cell’s spatial region.

to the same value range as the rating scale (e.g., [0, 5]). To compute travel penalty,
they employ incremental K-Nearest Neighbors (KNN) technique or penalty grid (an
offline heuristic method). In the third scenario, where spatial users rate spatial items,
the methods used in the first and the second case are combined in order to make pre-
diction. Traditional recommender systems exploits non-spatial ratings for non-spatial
items. Using user ratings from MovieLens and FourSquare, the authors show that
LARS (and LARS*) is efficient, scalable and capable of producing more accurate rec-
ommendations compared to existing recommendation approaches.

Huang and Bian [2009] have proposed a personalized recommender system based
on BN, and Analytical Hierarchical Process (AHP) for recommending tourist attrac-
tions. They integrate travel information available from different sources, and make
recommendations taking into account the travel behavior of the target user as well as
other users. To estimate the preferred activities of a target user, they use a BN that
mainly considers his occupation, age, personality, traveler type, and tour motivation.
The available tourist attractions are ranked using AHP method to determine relative
importance of three criteria: activity, distance, and cost.

Analyzing the behavior of Foursquare users, Ye et al. [2011] advocate the consider-
ation of the geographical influence in recommender systems. They have showed that
Foursquare users prefer Points-of-interest (POIs) that are nearby the POIs they al-
ready visited in the past. They have proposed a system for recommending POIs based
on the effect of users’ preferences, social influence as well as geographical influence.
They employ collaborative filtering approach to model users’ preferences, and social
influence. They model the geographic influence by power law distribution such that
POIs closer to home, office or their favorite POIs are preferred. Their model estimates
the probability Si,j that a users ui visits a location li using the following equation:

Si,j = (1− α− β)Sui,j + αSsi,j + βSgi,j

where α and β (0 ≤ α + β ≤ 1) are the weighting parameters that denote the relative
importance of social influence (Ssi,j) and geographical influence (Sgi,j) compared to user
preference (Sui,j).

Marinho et al. [2012] have proposed a recommender system that suggests relevant

82 CHAPTER 6. RECOMMENDER SYSTEMS WITH SPATIAL DATA

Figure 6.2 – An example of a location-based social network graph (Wang et al. [2013]). Here,
ui and lj represents ith user and jth location respectively. Edges between users represent
friendships, and those between users and locations represent check-ins. The latter type of
edges is weighted by check-in counts.

geotagged items for a given user within a specified geographic region. They construct
a weighted graph where each node is a user object together with its location, each
edge denotes the nodes are similar or related, and the weights of the edges indicate
how similar the nodes are. Recommendation is then performed by aggregating the
weights. They present four strategies for assigning weights to the edges of the rela-
tional graph: weighting the edges uniformly, weighting based on correlation between
user profiles, based on distance between users’ items or based on partonomy infor-
mation. With different combination of the weighting schemes, they are able to derive
different types of recommendation algorithms, and also to address cold-start situations.

Like Ye et al. [2011], Wang et al. [2013] also support the significance of social inter-
actions (or friendships), and the phenomenon of people visiting locations nearby their
usual active area. They propose a system for recommending venues to users from their
check-in history in a location-based social network. From users’ friendships and their
check-in history, the authors construct an undirected graph, as shown in Figure 6.2,
where users and locations are represented by nodes of the graph, friendships by un-
weighted edges, and check-ins at particular locations by edges weighted by check-in
counts. For making recommendations, they improve this graph by replacing friendship
edges with similarity edges weighted by similarity due to friendships and similarity due
to common check-ins. The system computes Personalized PageRank (PPR), which
is based on the fundamental idea of PageRank that important pages are referenced
by many important pages, by performing random walk with restart on the improved
graph. It then recommends to the user N unvisited locations with highest PPR after
filtering out the locations that are far away from the user’s history.

A summary of the discussed recommender systems are provided in Table 6.1.

6.3 Discussion

Numerous works can be found in the field of spatial recommender systems. Al-
though many of them are very specific to the problem domains, their objectives can
be roughly categorized into three types: (1) user recommendation, (2) item recom-

6.3. DISCUSSION 83

T
ab

le
6.
1
–
C
om

pa
ri
so
n
of

so
m
e
re
co
m
m
en
de

r
sy
st
em

s
th
at

ex
pl
oi
t
sp
at
ia
ld

at
a

A
rt
ic
le

O
b
je
ct
iv
e

R
ec
om

m
en

d
at
io
n

ap
p
ro
ac
h

D
om

ai
n

T
ec
h
n
iq
u
es

in
vo
lv
ed

G
eo
gr
ap

h
ic
al

in
fl
u
en

ce
m
ea
-

su
re

E
va
lu
at
io
n

d
at
as
et

Le
va
nd

os
ki

et
al
.

[2
01
2]

/
Sa

rw
at

et
al
.

[2
01
4]

It
em

re
co
m
m
en
-

da
ti
on

H
yb

ri
d

G
en
er
al

K
N
N

H
ie
ra
rc
hi
ca
l
ge
o-

gr
ap

hi
c

in
fo
rm

a-
ti
on

;D
is
ta
nc
e

M
ov
ie
Le

ns
;

Fo
ur
Sq

ua
re

H
ua

ng
an

d
B
ia
n
[2
00
9]

It
em

re
co
m
m
en
-

da
ti
on

H
yb

ri
d

T
ou

ri
sm

B
N
,A

H
P
,O

nt
ol
og
y

D
is
ta
nc
e

–

Y
e
et

al
.[
20
11
]

P
O
Is

(l
oc
at
io
n)

re
co
m
m
en
da

-
ti
on

H
yb

ri
d

T
ou

ri
sm

R
eg
re
ss
io
n,

na
ïv
e

B
ay
es
ia
n

m
et
ho

d,
P
ow

er
la
w

di
st
ri
bu

-
ti
on

,
lo
ca
ti
on

-b
as
ed

so
ci
al

ne
tw

or
ks

D
is
ta
nc
e

Fo
ur
Sq

ua
re

M
ar
in
ho

et
al
.[
20
12
]

(G
eo
ta
gg
ed
)

It
em

re
co
m
m
en
-

da
ti
on

C
F
/
H
yb

ri
d

W
ei
gh

te
d

re
la
ti
on

al
gr
ap

h
H
ie
ra
rc
hi
ca
l
ge
o-

gr
ap

hi
c

in
fo
rm

a-
ti
on

;D
is
ta
nc
e

G
eo
ta
gg
ed

ph
ot
os

fr
om

P
an

or
am

io
;
P
ri
nt

jo
bs

fr
om

H
P

eP
ri
nt

m
ob

ile
se
rv
ic
e

W
an

g
et

al
.[
20
13
]

V
en
ue

(l
oc
at
io
n)

re
co
m
m
en
da

-
ti
on

C
F
/
hy

br
id

T
ou

ri
sm

C
os
in
e
si
m
ila

ri
ty
;
P
er
-

so
na

liz
ed

P
ag
eR

an
k

(P
P
R
)
/
R
an

do
m

w
al
k

w
it
h
re
st
ar
t

D
is
ta
nc
e

G
ow

al
la
;

B
ri
gh

tk
it
e

84 CHAPTER 6. RECOMMENDER SYSTEMS WITH SPATIAL DATA

mendation, (3) location recommendation. Recommender systems proposed by Huang
and Bian [2009], Levandoski et al. [2012], Sarwat et al. [2014], and Marinho et al.
[2012] aim at recommending items, whereas the one proposed by Ye et al. [2011] aim
at recommending location. Location-based social networks are particularly interested
in recommending locations and/or users (e.g. recommending ‘People you may know’)
(Bao et al. [2015]).

Regardless of the recommendation objectives, geographic distance has been a pri-
mary criterion for measuring geographical influence in many spatial recommender sys-
tems. All recommender systems reviewed in Section 6.2 and many other (e.g. Bao et al.
[2012]) use distance measure. Hierarchical geographical information is also commonly
used to measure geographical information (e.g. Levandoski et al. [2012], Marinho et al.
[2012] Ahmed et al. [2013]). Very few works have considered spatial relationships such
as neighborhood, inclusion etc. (e.g. Walker et al. [2005], which is not a true recom-
mender system but applies spatial relationships information with Bayesian networks
to realize spatial Bayesian networks) for the same task.

6.4 Conclusion
In this section, we reviewed some state-of-the-art recommender systems that con-

sider geographical influence while making recommendations. We categorized them
based on the recommendation objectives and the techniques used for measuring geo-
graphical influence. From this review, we point to an interesting direction for research
to explore the applicability of spatial relationships and operators (presented in Section
5.4) for incorporating geographical effect in the recommendation models.

II
Contributions

85

7
A Personalized Recommender System
from PRM and Users’ Preferences

Contents
7.1 Introduction . 88
7.2 The proposed approach . 90

7.2.1 PRM for preference-based recommendation (PRM-PrefReco) 90
7.2.2 Personalization . 93
7.2.3 Relational attributes and types of model 96
7.2.4 Examples . 98

7.3 Experiments . 101
7.3.1 Dataset . 101
7.3.2 Experiment methodology . 102
7.3.3 Evaluation metrics . 102
7.3.4 Results and discussion . 103

7.4 Conclusion . 104

87

88 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

7.1 Introduction

Recommender systems have found their applicability in a variety of domains. How-
ever, the application of RS is still dominated by solutions for recommending relatively
simple and inexpensive products like movies, music, news, restaurants etc. (Ricci et al.
[2015]). Relatively few works on the application of RS for recommending expensive
or less frequently purchased items (e.g. real estate properties, flights, travel packages,
financial investments etc.) can be found. As mentioned in Section 3.4, the applica-
tion of RS on such domains might not have been much explored probably due to the
underlying financial risks. For example, recommending real estate properties demands
a serious responsibility as the RS needs to help users in making a good decision that
involves a serious financial matter. Flight recommendations may be less challenging
than real estate properties recommendations but flights are more expensive and less
frequently purchased than movies or books. An important issue faced by RSs that rec-
ommend less frequently purchased items is the lack of user profiles because users tend
to have only short-term preferences in such systems, and depending on the domain of
the system, building user profiles may not always be interesting for users. As discussed
in Section 3.4, acquiring user profiles is challenging, especially when the system is new.
Users may be reluctant to provide personal information due to security reasons or be-
cause they may not want to readily trust new systems. In this chapter, we present a
recommender model that aims at addressing this scenario.

The motivation of our work is the need of a recommender system for helping users
find real estate properties in a new real estate search system, Kyzia 1, which is in
cold-start situation and lacks user profiles. Though our target application is Kyzia,
the solution we have provided is not limited to the domain of real estates only. Our
solution is applicable on feature-based systems (cf. Section 3.2) where recommen-
dations need to be made based on users’ (usually short-term) preferences for items’
features/characteristics. Some examples of such systems include flight search, hotel
booking, real estate search, job search etc.

Shearin and Lieberman [2001], Viappiani et al. [2007], and Smyth [2007] have pro-
posed feature-based recommender systems for similar domains (but not necessarily in
cold-start situation). The first two works deal with the problem of finding apartments
whereas the last one have presented a case-based RS for more general domains. In their
critiquing-based recommender system (called Apt Decision), Shearin and Lieberman
[2001] try to mimic how human real estate agents work by first providing a set of sample
apartments from few criteria (e.g., “I would like to rent a two-bedroom apartment in
Somerville for about $1500.”), then getting feedback from the client about various other
features of these sample apartments (e.g., whether it has a parking area, or whether
pets are allowed etc.), and converging to a complicated set of constraints and priorities
from these feedback to finally propose a list of apartments. Viappiani et al. [2007] have
developed a critiquing-based recommender, based on the look-ahead principle (Viap-
piani et al. [2006]) to help users express more preferences. The main idea is to get a
small set of preferences from the users at the beginning, and let the users add new
preferences (which might be hidden initially) to discover better items. For this, they
show not only the items that best match to the users’ preferences but also the options
(or items/products) that would become optimal if the users add a new preference.
They build a probability model for predicting users’ new preferences. Smyth [2007]’s
case-based RS is a more general approach for recommending items in feature-based

1. http://www.kyzia.fr

http://www.kyzia.fr

7.1. INTRODUCTION 89

systems. They compute similarity between users’ query (preferences) and the features
of items to find the best items. The interesting part of their approach is the use of
various similarity metrics depending on the type and importance of preferences. They
use different similarity metrics for numeric preferences such as price of items, number
of bedrooms (of apartments), pixel resolution (of cameras) etc. and non-numeric ones
such as vacation types. Pu et al. [2012] and Chen and Pu [2012] have presented a
detailed review of more feature-based and critiquing-based RSs, which are applicable
in similar domains.

Though a critiquing-based RS sounds appealing for addressing the cold-start prob-
lem in a feature-based system, we do not proceed to implement it in our target applica-
tion due to three reasons. First, it demands users’ patience to receive good recommen-
dations because the first recommendations are usually primitive, and the users need
to provide their feedback (probably multiple times) to improve the recommendations.
Thus, we aim at providing single-shot recommendations rather than implementing
a conversational RS. Second, these systems take into account users’ preferences for
attribute values but in many cases, such preferences may not be enough. Instead,
preferences about the attributes themselves may be more important than the attribute
values, and such preferences about attributes tend to vary from one user to another.
Thus, a better way for providing personalized recommendations is needed. For exam-
ple, two users looking for a 2-bedroom apartment with the surface area between 50m2

to 100m2 and the price in the range AC500 – AC1000 might have completely different
preferences about price, surface area etc. One user might have a limited budget, so his
preference for price might be stronger than surface area (i.e., he might be fine with a
smaller apartment given it fits his budget) but the other one might not be willing to
compromise on surface area but might be fine with adjusting his budget. Similarly, in
a flight search system, some users might be flexible about departure/arrival time but
not about the price whereas some others might be ready to adjust their budget to get
the flight that arrives/departs at a very specific time frame or the one without stops.
Third, we want to combine the feature-based approach with the concept of collabora-
tive filtering by utilizing the transaction history that a cold system would collect as it
grows. In other words, we would like to build a recommender system that a system
could use in the cold-start situation and continue to use with as less changes as possible
when the system is no more cold.

We have seen in Chapter 3 that RSs are built around relational information about
objects (i.e., users, items, and relationships between them), and in Chapter 2 that
PRMs are suitable for modeling such relational domains. Thus, we aim at using PRMs
to model the recommendation task. Recommending an item to a user is, in fact, the
task of predicting whether there would be an interaction between them. A PRM-
EU is suitable for solving such problem as it deals with the estimation of probability
of existence of relationship between objects. Besides, using PRMs in RSs has long
been studied, as discussed in Chapter 4. Therefore, we propose a novel approach of
constructing a PRM-based recommender system that is capable of personalizing rec-
ommendations using users’ preferences in feature-based systems. We propose a generic
PRM for preference-based recommendations, which we refer to as PRM-PrefReco and
provide details on how to apply users’ importance about various decision factors to
personalize recommendations from this PRM. Our approach is applicable in cold as
well as hot systems. Only a small change in the length of slot chains is needed in
the PRM to transform the recommendation model from a content-based model to a
collaborative filtering one. We apply this approach on Kyzia and study its effective on

90 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

a small dataset.
This chapter is organized as follows. In Section 7.2, we will explain our proposed

model in detail. In Section 7.3, we will present the findings from our preliminary
experiment performed on a system that is in cold start situation.

7.2 The proposed approach
We propose a recommender system, based on PRM-EU, that can personalize recom-

mendations from users’ preferences. The basic idea behind our RS is as follows. Users
state their preferences about values of items’ attributes as well as about the items’
attributes themselves. The system then makes recommendations from a probabilistic
model that takes into consideration the users’ preferences. If the user clicks on/visits
any of the recommended items, we assume that the user might have found the item
interesting. Collecting such implicit data is often needed in a domain where items are
infrequently purchased (such as real estate, flights). In this thesis, we refer to such
implicit data as ‘transaction’. Our goal is to recommend items that are more likely to
be visited.

Our proposed approach involves the following two components:

1. A generic PRM that models preference-based recommender systems. We call
it a Probabilistic Relational Model for Preference-based Recommenders (PRM-
PrefReco), and

2. A personalized Bayesian network obtained from this PRM by applying the pref-
erences of the target user.

The PRM-PrefReco is built off-line using experts’ knowledge and/or the available
data in the system. So, when a user uses the system, the only thing needed is to build
a Bayesian network from the PRM-PrefReco according to the preferences specified by
the user. In the following, we will explain these concepts in detail. Section 7.2.1 will
provide details on PRM-PrefReco, and Section 7.2.2 will explain how to construct a
Bayesian network from a PRM-PrefReco to make personalized recommendations.

7.2.1 PRM for preference-based recommendation (PRM-PrefReco)

As a PRM is defined for a relational schema, we begin by explaining the relational
schema of our preference-based RS. We will then discuss on the probabilistic structure
and parameters of our proposed PRM-PrefReco.

Relational schema

The relational schema of our proposed RS is slightly different from that of tradi-
tional RSs but is applicable in any preference-based RS. Traditionally, a RS involves
three kinds of objects – users, items and transactions between them. However, in our
proposed RS, users and items are not directly related but are related through users’
preferences for items’ characteristics. We designate such preferences as objects of class
‘Search’. Users’ interaction with any item recommended for the given ‘Search’ object 2
is represented by ‘Transaction’ class. Thus, three main classes in our relational schema
are Item, Search, and Transaction.

2. Here we use the terms ‘Search’ object and search session interchangeably

7.2. THE PROPOSED APPROACH 91

Figure 7.1 – Relational schema of our proposed preference-based recommender system. Search,
Transaction, and Item are the main classes of the system. These classes can be accom-
panied by other classes such as User. Here, users’ preferences for Item.attribute_1, and
Item.attribute_2 is captured by Search.pref_1_attribute_1, and Search.pref_1_attribute_2
respectively. Users can specify two preferred values for Item.attribute_3, which are captured
by Search.pref_1_attribute_3 and Search.pref_2_attribute_3.

The Item class is described by a set of attributes. Users express their preferences
for the value of these attributes. The Search class is described by such preferences (aka
search criteria). Note that usually the Item class can have many attributes, and the
Search class will have attributes corresponding to a subset of the attributes of the Item
class. In other words, for each attribute of the Item class, there can be zero, one or
more attributes in the Search class for which users state their preferred values. For
example, if a user can specify only one preferred value for an attribute of the Item
class, then the Search class will have only one attribute corresponding to this attribute
of the Item class; if a user can specify a range (i.e., minimum and maximum values)
as his preferred value for an attribute of the Item class, then the Search class will have
two attributes corresponding to this attribute of the Item class. Also note that there
can be additional classes of objects (e.g., User class related to the Search class) in the
relational schema, as shown in Figure 7.1. Following PRM-EU (cf. Section 2.4), we add
a binary attribute ‘exists’ to the Transaction class. This attribute indicates whether
there is a transaction between a Search object and an Item object.

Formally, a relational schema of a preference-based RS can be defined as follows.

Definition 18 Relational schema of a preference-based RS
The relational schema of a preference-based RS contains at least the following three
classes X = {Item, Search,Transaction} defined by the following descriptive attributes:

— A(Item) = {ai} for i ∈ {1, . . . , n}, where n is the number of attributes of the
Item class

— A(Search) = {pref j_ai} for some ai ∈ A(Item), and j ∈ {1, . . . , ki}, where ki is
the number of values the system allows a user to specify as his preferred values
for the attribute ai ∈ A(Item)

— A(Transaction) = {exists}
The schema involves at least the following two reference slots: Transaction.Search, and
Transaction.Item. z

Given the relational schema and users’ preferences (for the attributes as well as the
attribute values), the task for our recommendation model is to predict the value of
Transaction.exists, i.e. to predict how likely the user would visit the item for the given
search criteria.

92 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

Probabilistic structure

The target attribute Transaction.exists can actually depend on many attributes
from Item and Search as shown in the PRM of Figure 7.2a. This makes it difficult
to know the distribution of the target attribute given very specific configurations of
its parents because the distribution table can be very big due to the large number of
parents. Thus, to simplify this as well as to capture users’ preferences for every search
criteria, we divorce (Kjærulff and Madsen [2007]) the parents or introduce intermediate
variables so that the target attribute will depend only on small number of attributes.
These intermediate variables, referred to as Decision Factors (DFs), will belong to
the Transaction class in the PRM and are chosen in such a way that each decision
factor represents a search criterion. The PRMs before and after parent divorcing are
shown in Figure 7.2. It should be noted that decision factors can have more than two
parents in complex cases, and that these parents can be further divorced to simplify
the conditional distribution tables.

Defining decision factors Decision factors, in fact, give a measure of how close or
far the item attribute is from the criterion expressed by the users. Thus, our idea is to
add one decision factor for one Item attribute and the corresponding Search attributes
that capture users’ preferences for that particular Item attribute. The parents of a deci-
sion factor DFi would then be Transaction.Ki.ai, and {Transaction.Search.pref j_ai, },
where j ∈ {1, . . . , ki} such that ki is the number of values the system allows a user to
specify as his preferred values for the attribute Item.ai, and Ki is the desired slot chain
which it starts from the Transaction class and ends in the Item class. This slot chain
determines the type of the recommendation model and can have a length of 1, 3, 5 and
so on. More on the types of the model will be presented in Section 7.2.3. The selection
of the attributes for decision factors is, in fact, a domain-specific problem. Thus, we
may need experts’ advice to define parents of decision factors.

Parameters

Once the structure of the probabilistic model is defined, we need to assign param-
eters to the model. In our PRM-PrefReco, we need the following CPDs:

1. P (Search.A) for each attribute A of the Search class
2. P (Item.B) for each attribute B of the Item class
3. P (Transaction.DFi | Pa(Transaction.DFi)) for each decision factor DFi, and
4. P (Transaction.exists | Pa(Transaction.exists))
The first two CPDs are learned from data whereas we need experts’ knowledge

to define the third one. The CPD of the target variable, i.e., P (Transaction.exists |
Pa(Transaction.exists)), should change according to users’ preferences to achieve per-
sonalized recommendations. Thus, this CPD needs to be computed during the instan-
tiation of this PRM to obtain a personalized Bayesian network for a particular user.
That means this CPD is not well-defined at the time of the construction of the PRM-
PrefReco. However, from Definition 8, we need to define CPDs for all random variables
of the PRM. Therefore, to comply with Definition 8, we can assign an arbitrary CPD
to our target variable. This CPD will then be revised during the instantiation of the
PRM-PrefReco for a target user. This will be further explained in the following section.

Formally, we define our proposed PRM for preference-based recommendation in the
following way.

7.2. THE PROPOSED APPROACH 93

ItemSearch

Transaction

pref_1_attribute_1

attribute_1

attribute_2

attribute_n

pref_1_attribute_2

pref_1_attribute_n

exists

(a)

Search Item

Transaction

Decision
Factor1

Decision
Factor2

Decision
Factorn

...

exists

pref_1_attribute_1

attribute_1

attribute_2

attribute_n

pref_1_attribute_2

pref_1_attribute_n

(b)

Figure 7.2 – The proposed PRM (a) before introducing decision factors, and (b) after intro-
ducing decision factors.

Definition 19 PRM for preference-based recommendation (PRM-PrefReco)
A PRM for preference-based recommendation ΠPR = (S,Θ) for a relational schema of
Definition 18 is a PRM (Definition 8) with the following

— Structure, S:
— For each attribute of the classes Item, Search, and Transaction, there is a

random variable in S,
— For each Item.ai ∈ A(Item), if Item.ai has at least one corresponding at-

tribute in the Search class (i.e., Search.pref j_ai), then a random variable
Transaction.DFi, aka a decision factor, is introduced in S. Let DF be the
set of such decision factors,

— S has the following dependencies:
Pa(Transaction.DFi) = {Transaction.Search.pref j_ai,Transaction.Ki.ai} for
all decision factors, where Ki is the desired slot chain starting from the
Transaction class to the Item class
Pa(Transaction.exists) = {Transaction.DFi} ∀DFi ∈ DF

— Parameters, Θ:
— Following CPDs are well-defined:

P (Search.A) ∀A ∈ A(Search) (learned from data),
P (Item.B) ∀B ∈ A(Item) (learned from data), and
P (Transaction.DFi | Pa(Transaction.DFi)) ∀DFi ∈ DF (defined by experts)

— P (Transaction.exists | Pa(Transaction.exists)) is not well-defined at this point
because it is revised during personalization (initialization). However, to get
a complete PRM, each probability distribution in this CPD can be assigned
a uniform distribution. z

7.2.2 Personalization

To make recommendations to a user from a PRM-PrefReco, we need to initialize
the PRM-PrefReco with our database instance and the user’s preferences. We receive
two types of preferences from users:

1. Preferred values for items’ attributes, and
2. Preferences about the items’ attributes (that is equivalent to users’ preferences

about decision factors).

94 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

If we do not want to consider the second type of users’ preferences, the ground Bayesian
network (GBN) obtained by unrolling the PRM-PrefReco over the database instance
and the users’ preferences would be enough for making recommendations provided that
the CPD of the target variable Transaction.exists has already been properly defined 3

during the construction of the PRM-PrefReco. Most of the existing PRM-based rec-
ommenders (see Chapter 4) are observed to follow this approach. We point out two
problems with the GBN obtained in such way. First, it obviously does not consider
users’ preferences about decision factors. Second, it will be largely affected by the
distribution of unobserved attributes of Search and Item when they should not. Not
observing a Search attribute means that this attribute should not have any effect on
the final decision. Therefore, to overcome these problems, we propose another method
to build a personalized Bayesian network from the PRM-PrefReco.

Constructing a personalized Bayesian network for recommendation

We construct a personalized Bayesian network for a Search object and a target Item
object and estimate the probability of Transaction.exists. We first create relational at-
tributes from the PRM-PrefReco by traversing through reference slots in the relational
skeleton. We keep in the model the observed Search attributes, their spouses, the cor-
responding decision factors, and finally the target variable. The attributes from the
Item class may or may not be observed because in real world, not all the attributes of
the items can be expected to be observed. Examples of some recommendation mod-
els constructed in this way are shown in Figure 7.3. Details about these models will
be provided in Section 7.2.3. Inference will then be performed on the personalized
Bayesian network after assigning a conditional distribution table of Transaction.exists
based on users’ preferences about decision factors.

To capture users’ preferences about decision factors in the recommendation model,
we propose using an approximation method to build the CPD of the target variable.
Noisy-OR (Pearl [1988]), and Leaky Noisy-OR (Henrion [1987]) are well-known approx-
imation algorithms, which require separate influence of each decision factor. We view
the problem of constructing this CPD as a multi-criteria decision making (MCDM) (Tri-
antaphyllou and Mann [1989]) problem. From the users’ preferences about decision fac-
tors, we find weights Wi for each decision factor DFi and apply some heuristics, e.g.,
Weighted Sum Method (WSM) (Fishburn [1967]), Noisy-OR (Pearl [1988]), or Leaky
Noisy-OR (Henrion [1987]), to generate the conditional probability table for the target
variable. We propose some ways of ranking decision factors to obtain their weights.

Ranking decision factors We propose here three methods to rank decision factors
according to users’ preferences. Users are asked to provide their preferences over only
a subset of decision factors to reduce the number of questions to be asked to the users.
Low weights are assigned to the decision factors that are not presented to the users.
Here, we use the terms ‘decision factors’ and ‘search criteria’ interchangeably because
each decision factor is associated with a search criterion.

Ranking method I We ask the users to sort the decision factors according to
their importance. We then assign predefined weights to those decision factors such that
the most important decision factor gets the largest weight and the least important one

3. Experts can help identify the importance of each decision factor and specify their influence on
the target variable to construct the CPD of the target variable.

7.2. THE PROPOSED APPROACH 95

Table 7.1 – The scale of absolute numbers for expressing the relative importance of a pair of
decision factors (Saaty [2008])

Intensity of importance Definition

1 Equal importance

2 Weak or slight importance

3 Moderate importance

4 Moderate plus

5 Strong importance

6 Strong plus

7 Very strong or demonstrated importance

8 Very, very strong

9 Extreme importance

Reciprocals of above If DFi has one of the above non-zero numbers
assigned to it when compared with DFj , then
DFj has the reciprocal value when compared
with DFi

gets the lowest weight. For example, assign 1 to the least important decision factor
and increase the weight by 1 for the next decision factor in the sorted list so that the
weight of the most important decision factor will be equal to the number of decision
factors. The decision factors that are not presented to the users get the lowest weight
(1 or less in the previous example).

Ranking method II We apply Analytic Hierarchy Process (AHP) (Saaty [1980])
to rank the decision factors and find their weights. For this, we ask the users for their
relative importance for every pair of the decision factors. We can apply the scale
shown in Table 7.1, proposed in Saaty [2008], to express the relative importance of the
decision factors. These pairwise comparisons can be expressed as a matrix, referred to
as pairwise comparison matrix, where each row and column represents a decision factor
such that each cell represents the relative importance between a pair of decision factors.
A widely used solution to derive the relative weight of each decision factor from this
comparison matrix is the eigenvector method, where the principal right eigenvector of
this matrix gives the weights of the decision factors. Again, the decision factors not
presented to the users are assigned weights lower than or equal to the lowest weight.

Ranking method III The first method does not capture users’ view on relative
importance of the search criteria, which can be a crucial input for better result. The
second method captures this information but is not very practical because we need
to ask for relative importance for every pair of search criteria and the number of
such pairs grows combinatorially. Thus, we propose another approach in which we
ask users to rank them in a scale such that the gap between two criteria can represent
relative importance of the search criteria. From this information, we prepare the matrix
required to perform AHP and follow the method II afterwards.

96 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

7.2.3 Relational attributes and types of model

The slot chainKi determines which objects to consider in the personalized Bayesian
network while making prediction about Transaction.exists. Depending on the length of
the slot chain Ki used in the PRM-PrefReco, three types of recommendation models
can be achieved. In the following, we will be using Tx, S, and I as a short-hand for the
Transaction class, the reference slot from Transaction to Search, and the reference slot
from Transaction to Item respectively. Figure 7.3 illustrates examples of the three types
of recommendation models obtained for the third Seach object (id_search=3) and
the fourth Item object (id=4) by instantiating the PRMs-PrefReco having relational
attributes of different slot chain length. In this figure, grayed-out objects are the ones
that do not contribute in the recommendation model.

Type I Figure 7.3a shows a Type I model. This type of model is the simplest model
where the length of the slot chain is 1. It is a typical scenario of cold start problem
where the current user does not have search history at all and the system does not have
enough data from existing users to predict based on their behavior. The prediction
from this model will be the result from experts’ knowledge and users’ preferences for
the search criteria. Hence, this model is purely a content-based model.

Type II It is an extension of Type I model with some relational attributes of slot
chain of length 3. An aggregation function (e.g., mode, mean, cardinality) is required
when the slot chains are not guaranteed to be single-valued. In Figure 7.3b, applying
mode aggregator would result in a relational attribute MODE(Tx.S.S−1.I.attribute) in
the model. Clearly, Tx.S.S−1.I gives a set of items visited in the current search session.
Thus, this model can capture the history of visiting items in the current search session.
Even a new user can get recommendation from this model based on his few interactions
in the current session.

Type III It is an extension of Type II model with relational attributes obtained
from longer slot chains. Such attributes can capture information from previous search
sessions and, hence, be applied for new users to recommend existing items that have al-
ready appeared in other search results. For example, MODE(Tx.I.I−1.S.S−1.I.attribute)
is a relational attribute of slot chain of length 5 . Tx.I.I−1.S.S−1.I is a multiset of Item
objects that are visited in previous Search sessions when the target Item object is also
visited. In fact, this model is equivalent to traditional collaborative filtering where
users are recommended the existing items which already have some kind of interac-
tions with the existing users. A Type III model is depicted in Figure 7.3c.

From Figure 7.3, we can see that with the increase in the length of slot chains, the
model deals with more and more instances. Thus, model of Type III or the models
with very long slot chains actually may not be very suitable for cold systems.

7.2. THE PROPOSED APPROACH 97

(a
)

(b
)

(c
)

F
ig
ur
e
7.
3
–
T
he

th
re
e
ty
pe

s
of

m
od

el
s:

(a
)
T
yp

e
I
m
od

el
–
D
ec
is
io
n
fa
ct
or
s
de
pe

nd
on

at
tr
ib
ut
es

of
sl
ot

ch
ai
n
of

le
ng

th
1;

(b
)
T
yp

e
II

m
od

el
–
D
ec
is
io
n

fa
ct
or
s
de

pe
nd

on
at

le
as
t
on

e
at
tr
ib
ut
e
of

sl
ot

ch
ai
n
of

le
ng

th
3.

H
er
e,

th
e
at
tr
ib
ut
e

Tx
.d

ec
is

io
n_

fa
ct

or
2
de

pe
nd

s
on

A
gg
re
ga
te
(T

x.
S.

S−
1
.I.

at
tr

ib
ut

e 2
).

T
he

in
st
an

ce
s
of

It
em

in
re
d

bo
rd
er

(a
ll

in
st
an

ce
s
i
of

It
em

su
ch

th
at

i.
id
∈
{1
,3
})

ar
e
th
e
it
em

s
vi
si
te
d

in
th
e
cu

rr
en
t
se
ss
io
n;

(c
)
T
yp

e
II
I

m
od

el
–
It

ha
s
at

le
as
t
on

e
de

ci
si
on

fa
ct
or

th
at

de
pe

nd
s
on

re
la
ti
on

al
at
tr
ib
ut
es

of
sl
ot

ch
ai
n

of
le
ng

th
5.

H
er
e,

Tx
.d

ec
is

io
n_

fa
ct

or
2
de

pe
nd

s
on

A
gg

re
ga

te
(T

x.
I.I
−

1
.S
.S
−

1
.I.

at
tr

ib
ut

e 2
).

T
he

in
st
an

ce
s
of

It
em

in
gr
ee
n
bo

rd
er

(a
ll
in
st
an

ce
s
i
of

It
em

su
ch

th
at

i.
id
∈
{1
,2
,3
})

ar
e
th
e
it
em

s
vi
si
te
d
in

th
e
pr
ev
io
us

se
ar
ch

se
ss
io
ns

w
he

n
th
e
ta
rg
et

it
em

(i
d
=

4)
is

al
so

vi
si
te
d.

98 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

7.2.4 Examples

In this section, we present some examples of domains where our proposed preference-
based recommendation can be applied. We will begin with our target application,
Kyzia. As the second example, we will discuss how our approach is applicable for
recommending flights. In the third example, we will show how we can re-formulate the
work of Delcroix and Ben Mrad [2016] into our PRM-PrefReco.

Example 7.1 Kyzia
Kyzia is an online system for searching real estate properties for buying or renting. A
simplified version of the relational schema of Kyzia is shown in Figure 7.4b. Users state
their preferences for different characteristics of real estate properties they are looking
for, and the system presents them a list of properties matching their preferences. Users’
action of clicking on a property is modeled as the Transaction class. Though Kyzia pro-
poses a variety of real estate properties such as apartments, houses, land, parking etc.,
we consider here only apartments to simplify this example. Users can specify their pre-
ferred minimum number of rooms and bedrooms, their minimum and maximum budget,
their preferred range of surface area, and their preferences for furnished apartments.
Thus, Search.min_nbBedrooms, Search.min_nbRooms, and Search.furnished capture
users’ preferences for Property.nbRooms, Property.nbBedrooms, and Property.furnished
respectively. Similarly, Search.min_surface, and Search.max_surface correspond to
Property.surface_area whereas Search.min_budget, and Search.max_budget correspond
to Property.price.

To build a PRM-PrefReco, we choose decision factors according to the Property at-
tributes for which users can express their preferences. Here, we identify five 4 decision
factors as shown in the PRM-PrefReco of Figure 7.4c. In this simple example, we
assume that all dependencies between decision factors and Property attributes involve
slot chains of length 1. For longer slot chains, we would need aggregators. Now, as
explained in Section 7.2.1, CPDs of Search and Property attributes are learned from
data, and those of decision factors are defined by experts. Table 7.2 shows an exam-
ple of the CPD of the decision factor Transaction.DF_furnished, whose parents are
Property.furnished and Search.furnished.

To make recommendations, we need to get the target user’s preferences in the form
of a Search object, and his preferences about decision factors in the form of ranks of
decision factors, which can be collected by one of the methods presented in Section 7.2.2.
We then instantiate the PRM-PrefReco of Figure 7.4c for the target user’s preferences
and all potential properties. Then, we pick those properties that have high probability
of getting Transaction.exists = true for recommendation. Instantiation of this PRM-
PrefReco for a specific Search object and a Property object will be similar to the model of
Figure 7.3a. If we use longer slot chains in our PRM-PrefReco, we can obtain models
of Figure 7.3b or 7.3c. v

Example 7.2 Flight recommendation
When searching for a flight, users often have not only multiple decision criteria (e.g.,
price, arrival/departure time, transit duration, number of stops etc.) but also prefer-
ences about these criteria. For example, some may be strict about departure time but

4. There are additional Property attributes, e.g., Property.construction_year, for which the system
does not ask users to state their preferences. These attributes are not used in the PRM-PrefReco in
this example. However, it should be noted that experts may suggest to use such attributes in the
PRM-PrefReco. In that case, we will have more decision factors which will be invisible to users.

7.2. THE PROPOSED APPROACH 99

(a)

(b)

(c)

Figure 7.4 – (a) A screenshot of Kyzia, (b) Relational schema of Kyzia, (c) PRM-PrefReco
for Kyzia. Here, colors do not carry any significant meaning and are used only as visual
aid to understand the dependencies between decision factors and various Search and Property
attributes.

Table 7.2 – CPD of P (Tx.DF_furnished | Search.furnished,Tx.Property.furnished)

Tx.Property.furnished Yes No

Search.furnished Yes No Yes No

Positive 0.892 0.402 0.598 0.99

Negative 0.108 0.598 0.402 0.01

100 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

some other may be more flexible about departure time but relatively more strict about
the number of stops. Thus, our proposed approach for preference-base recommendation
is applicable for recommending flights. Relational schema of this domain will be sim-
ilar to our proposed schema (see Figure 7.1) with three main classes: Search, Flight,
and Transaction. The Flight class will have attributes like source, destination, number
of stops, total duration, airfare, airlines, departure time, arrival time etc., and the
Search class will have attributes corresponding to these attributes of the Flight class.
A PRM-PrefReco for this domain may have decision factors for budget, the number
of stops, flight duration, arrival time, departure time etc., for which users can express
their preferences. The decision factor for flight duration, for example, may have as its
parents Flight.duration, and Search.max_duration. Like in the example of Kyzia, users
will provide their preferences in the form of a Search object as well as in the form of
ranks of decision factors. Then we generate personalized Bayesian networks for the
users to make recommendations. v

Example 7.3 Re-formulation of Delcroix and Ben Mrad [2016]’s approach
of modeling decision criteria by V-structures in a Bayesian network
Delcroix and Ben Mrad [2016] have presented a work on multi-criteria decision making
problem where they model decision criteria in a Bayesian network with the help of V-
structures. In their approach, each V-structure is associated with one decision criterion
such that the parents in a V-structure represent the factors that can affect decision and
the evaluation of an alternative for this criterion, and the child is the level of satis-
faction of the criterion. We observe that this is somewhat similar to our approach,
and, hence, their problem domains can be re-formulated into our PRM-PrefReco. They
have presented a problem of choosing cars based on two decision criteria. The BN
proposed by them for this domain is shown in Figure 7.5a. It is clear that this BN
has two distinct entities – cars, and users. Users are described by age, sex, niveauVie
(standard of living) and taille (height), and cars by puissV (power), poidsV (weight),
prixV (price), rapportPP (weight to power ratio) and indAcceleration (index of accel-
eration). The variables montantDispo (Budget), and impAcceleration (importance of
acceleration) are in fact derived from other variables. Finally, adeqPrix (adequacy of
price), and satAcceleration (satisfaction of acceleration) are two decision factors that
are supposed to impact users’ decision about choosing a car. Here, we show that our
PRM-PrefReco is applicable in this domain too.

We can re-formulate their problem as follows. We will have four classes in the
schema: Car and User from the original domain, Transaction and Search for capturing
users’ preferences as usual. All attributes related to users will reside in the User class,
those related to cars will be kept in the Car class, and the decision criteria will be in
the Transaction class. As the variables montantDispo and impAcceleration determine
the preferred price and the preferred index of acceleration respectively, we add two
attributes, preferred_price and preferred_acceleration, in the Search class. Now, the
decision factors in the PRM-PrefReco will depend on these attributes from the Search
class and the corresponding attributes from the Car class. Alternatively, we can also
consider the derived attributes, montantDispo and impAcceleration, to be the attributes
of the Search class. However, we preferred to add new attributes in the Search class
for better understanding. Finally, the Transaction class will also contain the target
variable Transaction.exists, which determines how interesting the Car object would be
according to the Search criteria. All probabilistic dependencies from the original BN
will be still valid in the PRM-PrefReco. After re-formulation, the BN of Figure 7.5a
can be represented by the PRM-PrefReco of Figure 7.5b. Here, the yellow nodes indicate

7.3. EXPERIMENTS 101

(a)

(b)

Figure 7.5 – (a) The Bayesian network proposed by Delcroix and Ben Mrad [2016] to model
decision criteria by V-structures for the problem of choosing cars, (b) Re-formulating this
problem into a PRM-PrefReco

that they are not present in the original BN. Note that if the original system is not an
online system, we can achieve only Type I recommendation model because there would
be no way to track users’ navigation history. Otherwise, we can extend it to Type II
or Type III models thereby enhancing the recommendation capacity by including search
history of existing users. v

7.3 Experiments
We performed our preliminary experiment on a system which is in cold start situ-

ation with very few search sessions and a small number of transactions in each search
session. In the following sections, we describe our dataset and explain how we per-
formed the experiment and evaluated the model. Then we will present the results and
discuss on the findings.

7.3.1 Dataset

The dataset used in this experiment was from Kyzia, a real estate search system
developed by DataForPeople. It is a new system and represents cold-start problem well.
The relational schema of this system is shown in Figure 7.4b. The system presents the
users a list of Property objects matching their search criteria. We assume that the
users visit the details page of a property if they find it interesting. This information
is modeled by the class Transaction and were collected by logging the users’ click-
throughs. The dataset has more than 70,000 real estate properties, around 1400 search

102 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

sessions but less than 100 transactions. Ranking method II was used to collect users’
preferences. Because the experiment was performed on an evolving system rather than
a fixed dataset, we haven’t provided the exact size of the dataset here. Users were
asked to perform a search on Kyzia website but since the feature of providing their
preferences had not been implemented on the website, they were asked to provide their
preferences separately to us. Only those search sessions with more than one transaction
and whose search criteria preferences are known were kept for evaluating the models.
After cleaning, only 7 search sessions were left and the average number of transactions
per search session was 3 (2 being the minimum value).

7.3.2 Experiment methodology

A limited number of attributes from Search and Property classes was used in this ex-
periment. Though there were many more attributes in both classes, only the attributes
shown in Figure 7.4b were taken into consideration in order to prove our concept. With
the help of experts, all decision factors were identified for our PRM-PrefReco. The de-
pendency structure of our PRM-PrefReco is shown in Figure 7.4c. If there is enough
data, parameters for each attribute can be learned from data. However, available data
was not enough to learn parameters of all attributes. Only parameters of Property at-
tributes were learned from data. Parameters were assigned to the decision factors with
the help of experts. Search attributes were assigned a uniform distribution because
they are always observed in the final model. The Transaction objects were not used
during model construction but were kept for evaluation of the models.

For every search session initiated by a user, models were built based on his search
criteria and his preferences over those criteria. Type I and Type II models were built
from the PRM-PrefReco, as explained in Section 7.2.2, by keeping the target attribute
Transaction.exists, the observed Search attributes, and the children (decision factors)
and the spouses (i.e., Tx.Ki.B where Ki is the desired slot chain that starts from
the Transaction class and ends at the Property class, and B is an attribute of the
Property class) of the observed Search attributes. Type III models were not tested
in this experiment because good amount of transaction history is required to create
this type of models. While constructing Type I and Type II models, two heuristics,
Noisy-OR, and WSM, were applied to compute the conditional distribution of the
Transaction.exists. Thus, the experiment involves two parts – comparison of heuristics
used in the model, and comparison of Type I and Type II models.

7.3.3 Evaluation metrics

With the amount of available data, it is not possible to perform extensive off-
line evaluation (cf. Section 3.3.1). The evaluation was performed using the available
Transaction objects in two phases. In each phase, 4 models were created for each search
session in the evaluation dataset as explained in Section 7.3.2. Each model was then
applied over the properties that were actually shown up to the users during the particu-
lar search session, and the properties were ranked based on the probability of existence
of transaction given the decision factors, P (Tx.exists | DF1, DF2, . . . , DFn). In the first
phase, only top-3 recommendations were considered during evaluation whereas in the
second phase, top-5 recommendations were taken. Standard recommendation quality
metrics such as precision, recall and F-score were calculated by comparing the top-N
properties in this ranked list with the Transaction objects for the search session. We

7.3. EXPERIMENTS 103

specialize Expressions 3.1 and 3.2 for Type I and Type II models in the following way.
For a search session s ∈ I(Search), a set of Transaction objects tx′ in the recommen-

dation list and a set of Transaction objects tx = {t : t ∈ I(Transaction); t.Search = s}
in the evaluation dataset, the evaluation metrics for Type I model are calculated in the
following way:

Precision =
Cardinality(tx ∩ tx′)

N
(7.1a)

Recall =
Cardinality(tx ∩ tx′)

Cardinality(tx)
(7.1b)

For Type II model, where the previously visited properties in the current search
session are also considered, temporal information from the clickthrough logs were em-
ployed to compute the evaluation metrics. For a search session s ∈ I(Search), and a
set of Transaction objects tx = {t : t ∈ I(Transaction); t.Search = s} in the evaluation
dataset, evaluation is performed n times where n = Cardinality(tx). In each iteration
i, only a subset of tx that are visited before the current is used in the model. Average
of the metrics in all iterations gives the overall metrics for the particular search session
as follows.

Precision = Average
(
Cardinality(tx ∩ tx′i)

N

)
(7.2a)

Recall = Average
(
Cardinality(tx ∩ tx′i)

Cardinality(tx)

)
(7.2b)

where i = 1 . . . n, and tx′i is a set of Transaction objects in the recommendation list in
ith iteration.

7.3.4 Results and discussion

Metrics obtained from the experiment are presented in Table 7.3. In the first part
of the experiment, two heuristics, Noisy-OR, and WSM, were compared. As we can
see from Table 7.3, both of these methods produced similar results. With limited data,
the choice of approximation algorithms did not seem to have big impact on the result.

The second part of the experiment involved the comparison of types of models.
When N was changed from 3 to 5 in top-N evaluation approach, a slight increase in
precision but significant increase in recall was observed. However, in both the cases,
Type II models performed better than Type I models did. This signifies that the
properties are better ranked in the Type II models. Top-3 recommendation metrics
for Type II model were somewhat closer to top-5 recommendation metrics for Type I
model. Recall of Type II model is quite good when top-5 models are taken into account
for evaluation.

Off-line evaluation in cold systems may not actually give the clear picture of the
performance of the model because of insufficiency of test data. However, standard
datasets for evaluating recommender systems, such as the ones listed in Table 3.1,
are not applicable in our context because they lack users’ preferences about items’
characteristics. Comparing our model with another recommendation algorithms is also
not possible because of the lack of user profiles in our system and the incapability of
integrating users’ preferences in existing algorithms. Therefore, in this scenario, better

104 CHAPTER 7. A PERSONALIZED RECOMMENDER SYSTEM

Table 7.3 – Evaluation result

Method Reco
Type

Precision Recall F-score
Type I Type II Type I Type II Type I Type II

NoisyOR Top-3 0.38 ± 0.39 0.46 ± 0.31 0.38 ± 0.38 0.59 ± 0.25 0.36 ± 0.37 0.47 ± 0.26

WSM Top-3 0.38 ± 0.39 0.46 ± 0.31 0.38 ± 0.38 0.59 ± 0.25 0.36 ± 0.37 0.47 ± 0.26

NoisyOR Top-5 0.42 ± 0.36 0.40 ± 0.30 0.68 ± 0.40 0.76 ± 0.29 0.48 ± 0.34 0.49 ± 0.27

WSM Top-5 0.39 ± 0.37 0.45 ± 0.32 0.60 ± 0.37 0.76 ± 0.21 0.44 ± 0.35 0.52 ± 0.26

approach to assess the model is to perform online evaluation where users interact
with the system and take the next step based on the result they get from the model.
Evaluating the model in such a way could also reveal how novel or serendipitous the
results are. However, it was expensive to evaluate our system that way. Thus, we
had to stay with the off-line evaluation approach. It is also worth noticing that the
quality of a model might have been affected by hidden causes that can affect users’
decision. For instance, users might have made decision for some properties based on
the quality of the pictures posted in the announcements, but such information have
not been included in our model and are not in the scope of this work.

7.4 Conclusion
In this chapter, we have presented a PRM-based personalized recommender system

for feature-based systems. Our approach is suitable for recommending expensive or less
frequently purchased items or for the systems which need to recommend to users the
items that best match users’ short-term preferences about items. We have exploited
the relational information present in such domains to address the recommendation
problem as the task of predicting whether there would an interaction between an item
and a search session. We have proposed a generic PRM for modeling recommendation
problem from users’ preferences in feature-based systems, and have explained how
to initialize this PRM over a relational skeleton for a specific user considering his
preferences about various decision criteria to obtain a Bayesian network specialized for
that particular user. We then recommend the items that have high probability of having
interactions in the search session. Using our approach, content-based, collaborative-
filtering and hybrid models can be achieved from the same PRM structure by varying
the length of slot chains. We have also presented some example domains where we can
apply our approach of recommendation. Our preliminary experiment on a real-world
dataset has shown that we were able to get a good result even with small dataset using
our approach.

8
PRM with Spatial Attributes
(PRM-SA)

Contents
8.1 Introduction . 106
8.2 Definitions . 106
8.3 Learning PRM-SA . 112
8.4 Evaluation of PRM-SA learning algorithms 116

8.4.1 Evaluation strategy and metrics 117
8.4.2 Generation of PRM-SA benchmarks 117

8.5 Experimental study . 122
8.5.1 Methodology . 123
8.5.2 Results and discussion . 126

8.6 PRMs-SA in recommender systems 131
8.7 Conclusion . 132

105

106 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

8.1 Introduction

Spatial data analysis has been a popular topic in the studies of environment, ecosys-
tems, population, communities, image processing etc. There is a growing trend of using
spatial information in a wide range of application domain. Recommender systems (RSs)
have also started adopting spatial dimensions for making better recommendations, as
we have seen in Chapter 6. The increased use of spatial data has augmented the need
for analysis of spatial data. Spatial data analysis is certainly not a new field (Goodchild
[2010]). Several methods have been devised to extract patterns from spatial data and
understand underlying phenomena. Among various machine learning techniques used
for spatial data analysis, Bayesian networks (BNs) have been commonly used in various
domains for studying spatial phenomena. For example, Wilkinson et al. [2013], Li et al.
[2010] and Huang and Yuan [2007] use BNs for modeling spatial information in envi-
ronmental studies, Park et al. [2007] use BNs in spatial recommender systems, Cano
et al. [2004] have applied BNs in meteorology, Walker et al. [2005] have used BNs in
geographical information retrieval, and so on. Recently, object-oriented Bayesian net-
works have also been used for modeling spatial interactions (Wilkinson et al. [2013]).
However, these approaches are mostly dedicated for specific problems, and many of
them do not capture spatial dependencies well.

Most of the techniques of spatial data analysis work with flat representation of data.
However, real-world applications are generally conceptualized in terms of objects and
relations between them, and, hence, data need to be transformed into the required flat
format before applying those methods. Besides, analysis of spatial information usually
involves the study of interaction between spatial objects. In such relational domains,
PRMs can be employed to learn probabilistic models. However, standard PRMs do not
support spatial objects. Therefore, we aim at integrating spatial information into PRMs
to enable them to handle spatial objects too. Our motivation is also driven by Malerba
[2008]’s perspective on spatial data mining in relational domain. Malerba [2008] argue
that multi-relational setting is the most suitable for spatial data mining problems and
also mention the possibility of using PRMs with spatial relational databases. In this
chapter, we propose a new extension of standard PRMs to support spatial objects. Our
proposed model, PRM-SA, provides a general way to incorporate spatial information
into a PRM and model spatial dependencies. We also provide algorithms for learning
such models from data. In this thesis, we are mainly concerned with geographically
referenced objects.

This chapter is organized as follows. In Section 8.2, we will present our proposed
model with illustrations. We will also point to the possibility of modeling spatial
autocorrelation (Griffith [1992]) with our model. In Section 8.3, we will explain how
this model can be learned from data, and propose three algorithms for learning the
structure of the model.In Section 8.4, we will explain how to evaluate this model.
Finally, we will present experimental results in Section 8.5.

8.2 Definitions

We propose to incorporate in PRMs the vector representation of spatial objects,
where a spatial object is described by its location in space in terms of geometry and its
attributes as defined in Chapter 5. The attributes of a spatial object can form descrip-
tive attributes in the relational schema whereas its geometry cannot be incorporated
as descriptive attributes because the geometry of spatial objects is represented by a set

8.2. DEFINITIONS 107

of points (vertices or coordinates). Thus, we coin a term spatial geometry attribute or
simply spatial attribute to describe such attributes to use them in a PRM.

Definition 20 Spatial geometry attribute
An attribute is a spatial geometry attribute if its value s is a sequence of pairs of
coordinates in geographic coordinate reference systems and defines the geometry of its
class. i.e. s = ((x, y)n : n ∈ N) where x is called longitude, y is called latitude and n
is the cardinality of s. Here, s represents

— a point geometry if n = 1,
— a line geometry if n ≥ 2 and s1 6= sn ,
— a polygon geometry if n ≥ 2 and s1 = sn. z

Definition 21 Spatial class
Let SA(X) be the set of spatial geometry attributes in a class X. A class X is a spatial
class if it contains spatial geometry attributes, i.e. if SA(X) is not empty. z

Example 8.1 Restaurant-User-Cuisine schema with a spatial attribute
To illustrate these concepts, we extend the relational schema of Figure 2.1a with a
spatial geometry attribute in the class Restaurant as shown in Figure 8.1a. Here, the
spatial attribute Restaurant.location represents the location of the objects of the spatial
class Restaurant. v

As the set of possible values of a spatial attribute is infinite, conditional probability
distributions associated with spatial attributes would be very big. It demands an ex-
tensive computation for learning as well as inference and this is practically too difficult
to achieve. Therefore, we propose to partition this set into a finite number of disjoint
subsets with the help of a spatial partition function. Each partition is then represented
by a class, which we call a spatial partition class, and a reference slot (we call it a
spatial reference slot or spatial ref. slot) that refers to the objects of the partition
class is added in the corresponding spatial class. Partition functions are responsible for
creating the objects of partition classes and mapping the values of a spatial attribute
to their corresponding partitions.

Definition 22 Spatial partition function, Spatial partition class
Let X.SA be a spatial geometry attribute of a spatial class X. We define a spatial
partition function fsa : X.SA → Range[fsa] where Range[fsa] is a finite set of spatial
partitions represented by a spatial partition class PXSA. Thus, fsa associates each
sa ∈ Domain[X.SA] to an object of PXSA determined by the function itself. z

Partition functions essentially map a spatial object to a region such that spatial
objects meeting some partitioning criteria are grouped together. Such mapping can be
achieved in many ways. One way is to use regular square or hexagonal (honeycomb)
grids or to apply spatial aggregation operators (cf. Section 5.4) to partition the spatial
region. Partitions can also be created by using standard, publicly available knowledge
such as administrative boundaries. In the absence of such knowledge, spatial clustering
algorithms can be used. Han et al. [2001] have presented a survey on several spatial
clustering methods. Some clustering algorithms, such as K-means, require users to pro-
vide the number of clusters/regions and some others, such as DBSCAN, can determine
the number of clusters themselves. It should be noted that granularity of partitioning

108 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

(a) (b)

(c)

Figure 8.1 – (a) An example of a relational schema with a spatial attribute Restaurant.location,
which cannot be handled by standard PRMs. (b) The relational schema adapted for the
spatial attribute Restaurant.location as proposed in Definition 23.1. Here, spatial attributes
are shown in italicized font and the added spatial reference slot and the spatial partition
class are shown in boldface. (c) A PRM-SA as proposed in Definition 23. The gray nodes
are spatial attributes and the one with thick border is the spatial reference slot associated
with the spatial attribute Restaurant.location. The dotted line between Restaurant.location
and Restaurant.C_location indicates that the spatial attribute and the spatial ref. slot are
associated through a spatial partition function.

methods depends on the context of the problem. Also note that when using knowledge
to create partitions, we may have access to some extra information. Such information
can be considered as descriptive attributes of partition classes. The introduction of par-
tition classes enables us to implement hierarchical clustering as well because partition
classes can also contain spatial attributes, which can be further partitioned thereby
creating a hierarchy of spatial partition classes.

Example 8.2 Adapted version of Restaurant-User-Cuisine schema
We refer to Figure 8.1a for examples. As the spatial attribute Restaurant.location
can take infinitely many values, we define a partition function to partition its pos-
sible values into a finite set of spatial partitions. Thus, we add a spatial partition class
P_Restaurant_location that represents the spatial partitions of Restaurant.location. The
objects of this spatial partition class will then be referenced in the spatial class Restaurant

8.2. DEFINITIONS 109

by the spatial reference slot Restaurant.C_location. Figure 8.1b shows the relational
schema adapted for the spatial attribute. Here, we have assumed that the spatial par-
tition class will have an additional attribute called boundary, which is again a spatial
attribute. In this example, we can assume that this attribute represents the convex hull
formed by all the locations mapped to the particular partition object. However, the at-
tributes present in the partition classes depend on the context. If we use the information
about administrative boundaries of cities or regions, P_restaurant_location.boundary
might represent the boundary of the specified location, and we might even have extra in-
formation about the partitions such as population, average income, demographic struc-
ture etc. of the location. If hierarchical administrative division is available, we can in-
corporate hierarchical partitions by further partitioning P_restaurant_location.boundary
and adding another partition class, say P_restaurant_location_boundary (not shown in
the figure). v

We now define our model, which is based on standard PRMs and supports spatial
data.

Definition 23 PRM with spatial attributes (PRM-SA)
Let A(X) and SA(X) denote the set of descriptive attributes and geometry attributes
respectively in class X.

For each spatial class X ∈ X such that SA(X) 6= ∅ and for each geometry attribute
SA ∈ SA(X), we define the following:

— a new partition class PXSA,
— a partition function fsa : SA→ PXSA that creates instances of PXSA associating

each sa ∈ Domain[SA] to one of the instances of PXSA, and
— a new spatial reference slot X.CSA associated with fsa.
Then, we adapt the relational schema for spatial attributes and define the proba-

bilistic model in the following way.

Definition 23.1 Adapted relational schema
The relational schema is adapted for spatial attributes by adding PXSA and X.CSA
associated with fsa for each spatial class X ∈ X and for each geometry attribute SA ∈
SA(X).

Definition 23.2 Probabilistic model of a PRM-SA
Let PSA and CSA be the set of partition classes and the set of added spatial reference
slots respectively. Then, for each class X ∈ {X ∪PSA} and each attribute A ∈ {A(X)∪
CSA(X)}, we have

— a set of parents Pa(X.A) = {U1, ..., Ul}, where each Ui has the form X.B or
γ(X.K.B), where B is an attribute of any class, K is a slot chain and γ is an
aggregate of X.K.B,

— a legal conditional probability distribution CPD, P (X.A | Pa(X.A)). z

A PRM-SA that corresponds to the schema in Figure 8.1a is shown in Figure 8.1c.
Here, the gray nodes are spatial attributes and the nodes/classes with thick border
are the ones that are not present in the original relational schema. The probabilistic
dependencies shown in the examples are hypothetical.

Probabilistic inference is performed on a ground Bayesian network (GBN) obtained
by instantiating a PRM-SA for a given relational skeleton. Here, the skeleton must

110 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

also include the objects of spatial classes. Given such a relational skeleton, a PRM-
SA induces a GBN that specifies probability distributions over the attributes of the
objects. Here, we need to ensure that the probability distributions are coherent, i.e.
the sum of probability of all instances is 1. In Bayesian networks, this requirement is
satisfied if the dependency graph is acyclic (Getoor [2001]). Following Getoor [2001]’s
approach, we consider instance dependency graph to check whether the dependency
structure S of a PRM-SA is acyclic relative to a given relational skeleton. Due to
the presence of spatial attributes, standard instance dependency graphs need to be
redefined with some adaptations for PRM-SA. It follows from Getoor [2001]’s proof
that the dependency structure S for a PRM-SA is guaranteed to be acyclic for the
given relational skeleton if the corresponding instance dependency graph is acyclic.

Definition 24 Instance dependency graph (IDG)
The instance dependency graph Gσr for a PRM-SA Π with partition classes PSA and
a relational skeleton σr is defined as follows. For each object x ∈ σr(X) in each class
X ∈ {X ∪PSA}, we have the following nodes: a node x.A for each descriptive attribute
X.A, and a node x.CSA for each spatial reference slot X.CSA. The graph has the
following edges:

1. Type I edges: For each formal parent of x.A, X.B, we introduce an edge from
x.B to x.A.

2. Type II edges: For each formal parent X.K.B, and for each y ∈ x.K, we define
an edge from y.B to x.A.

3. Type III edges: For any spatial attribute x.SA in each spatial class X ∈ X , we
define an edge x.SA→ x.CSA.

4. Type IV edges: For any attribute p.A in each spatial partition class P ∈ PSA and
p ∈ σr(P), we add an edge p.A← x.A if P.A is derived from X.A. z

Again, it is obvious from Getoor [2001]’s proof that the probabilistic model of a
PRM-SA is coherent for any relational skeleton if the corresponding class dependency
graph is acyclic. Here again, because of the presence of spatial attributes, we redefine
class dependency graph for PRM-SA.

Definition 25 Class dependency graph (CDG)
The class dependency graph GΠ for a PRM-SA Π is defined as follows. The dependency
graph has the following nodes: a node for each descriptive attribute X.A, and a node
for each spatial reference slot X.CSA. The graph has the following edges:

1. Type I edges: For any attribute X.A and its parent X.B, we introduce an edge
from X.B to X.A.

2. Type II edges: For any attribute X.A and its parent X.K.B, we introduce an edge
from Y.B to X.A, where Y = Range[X.K].

3. Type III edges: For any spatial attribute X.SA in each spatial class X ∈ X , we
define an edge X.SA→ X.CSA.

4. Type IV edges: For any attribute P.A in each spatial partition class P ∈ PSA, we
add an edge P.A← X.A if P.A is derived from X.A. z

Figure 8.2 shows the class dependency graph for the PRM-SA in Figure 8.1c. Be-
cause this graph is acyclic, the dependency structure in Figure 8.1c is guaranteed to
be acyclic regardless of relational skeleton.

8.2. DEFINITIONS 111

Figure 8.2 – The class dependency graph for the PRM-SA in Figure 8.1c. Because there is no
cycle in this graph, we can conclude that the dependency structure in Figure 8.1c is acyclic
for any relational skeleton.

Figure 8.3 – An example of a class dependency graph with a cycle. Because of the presence
of a cycle, we can conclude that the dependency structure cannot be guaranteed to be acyclic
for any relational skeleton.

Example 8.3 Invalid PRM-SA (due to a cyclic dependency)
Let us consider another hypothetical example where there is an attribute User.location
and a partition class P_User_location that represents the partitions of users’ location.
Suppose there exists a dependency that says the income of a user depends on the average
income of the users in his community, i.e. users with similar income tend to live in
the same community. In this case, the dependency structure of a PRM-SA will have
an edge from P_User_location.avg_income to User.income. Although there is no cycle
in the structure, it is incoherent because the class dependency graph of this structure
contains a cycle as shown in Figure 8.3. This is due to the type IV edge that is added
because P_User_location.avg_income is derived from User.income. Thus, this PRM is
not a valid one. v

112 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Figure 8.4 – An example of a dependency structure that models the dependency of an attribute
with the aggregated value of the same attribute of spatial objects in the same cluster. This
concept can be used to model spatial autocorrelation.

PRM-SA and spatial autocorrelation Researchers advocate the consideration
of autocorrelation (cf. Section 5.3.2) in spatial data analysis. However, autocorre-
lation cannot be modeled directly in PRMs because of acyclicity constraint (Neville
and Jensen [2003]). An attribute of an instance depending on the same attribute of
neighboring instances would create a cycle because of the fact that neighborhood is a
mutual concept. Due to this reason, we do not model spatial autocorrelation directly.
Nevertheless, it is still possible to extend our model to enforce the modeling of spatial
autocorrelation by adding aggregated descriptive attributes in partition classes with
a special constraint that the aggregated attribute must always be a child to ensure
acyclicity. Example 8.3, in fact, tries to model spatial autocorrelation. Modeling spa-
tial autocorrelation of users’ income (i.e. users’ income depending on the income of
neighboring users) would create a cycle in the dependency structure. To avoid this, we
could add an attribute avg_income in the P_User_location, which is, in fact, the aver-
age (aggregation) of User.income. P User location.avg income would, then, be enforced
to be a child of User.income as shown in Figure 8.4, otherwise we may come across
the situation as in Figure 8.3. This models the dependency of an attribute with the
aggregated value of the same attribute of spatial objects in the same cluster. RMNs
could be another solution to model this spatial autocorrelation because dependencies
are represented by an undirected graph in this type of probabilistic graphical models.
However, learning RMNs is much more complex than learning PRMs.

8.3 Learning PRM-SA

As with standard PRMs, learning a PRM-SA involves the tasks of parameter esti-
mation and structure learning. Parameters of a PRM-SA can be learned in the same
way as for a regular PRM. However, the instances of all partition classes must be
included in the instantiation of the relational schema.

As for structure learning, following Friedman et al. [1999]’s approach, we apply
relational greedy search algorithm to explore the search space of candidate structures
and evaluate legal candidate structures using score-based methods. However, due to
the introduction of partition classes along with partition functions, we need to adapt
the search algorithm to deal with partitions. Here, we come across two situations – 1)
when the number of partitions of the spatial attribute (i.e. Cardinality(Range[fsa]),

8.3. LEARNING PRM-SA 113

Algorithm 10 Generate_Neighbors (Naïve Approach)
Input: A PRM, Π =< R,S >; Slot chain length, SL; Available aggregators, Agg,

Step size, step, Maximum cardinality, kmax
Output: Neighbors of S, N
1: N ← Generate_Neighbors_For_PRM(Π, SL,Agg)
2: for each n ∈ S do
3: if n is a spatial ref. attribute then
4: N ← N ∪ Increase_k(S, n, step, kmax)
5: N ← N ∪Decrease_k(S, n, step, kmax)
6: end if
7: end for

Algorithm 11 Increase_k Operation
Input: A DAG, G; Target node, X.CSA; Step size, step; Maximum cardinality, kmax
Output: New DAG, G ′;
1: k ← Current number of states of X.CSA
2: if k ≤ kmax − step then
3: G ′ ← G
4: k′ ← k + step . New number of states of X.CSA
5: Set the number of states of X.CSA in G ′ to k′
6: end if

let’s denote it by ksa) is known, and 2) when it is unknown. In the former case, standard
relational greedy search algorithm can be applied to explore the search space. However,
the situation is complicated in the latter case where the number of partitions needs to
be determined by the algorithm. We present two approaches to learn a PRM-SA when
ksa is unknown.

Naïve approach

A naïve way (see Algorithm 10) is to add new operators increase_k and decrease_k,
which increases or decreases the number of partitions respectively, and use these op-
erators along with add, delete and revert edge operators of standard greedy search
algorithm (cf. Algorithm 3) to find neighborhood of a structure. The best scoring
structure is then chosen among the candidate structures. To simplify the computation,
we use a decomposable Bayesian scoring function (cf. score-and-search approach in
Section 2.2.2). So, when comparing candidate structures, it is sufficient to compute
the score of only those variables whose score is affected by the particular operation. For
example, as increase_k or decrease_k operations affect the score of the target variable
and its children, we can compute the gain in score as in Equation 8.1.

∆SCSA
(k, k′) =

∑
Y ∈{CSA}∪Adj(CSA)

[Scorek′(Y, Pa(Y))− Scorek(Y, Pa(Y))] (8.1)

where Adj(X) = Pa(X) ∪ Ch(X), is a set of parents and children of the node X.

Adaptative approach

In our second approach, we separate the tasks of greedy search over candidate
structures and finding the optimal number of partitions of spatial attributes. The

114 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Algorithm 12 Decrease_k Operation
Input: A DAG, G; Target node, X.CSA; Step size, step
Output: New DAG, G ′;
1: k ← Current number of states of X.CSA
2: if k > step+ 1 then . New number of states must be greater than 1
3: G ′ ← G
4: k′ ← k − step . New number of states of X.CSA
5: Set the number of states of X.CSA in G ′ to k′
6: end if

basic idea is to pick the best scoring structure among candidate structures, and then
find the optimal number of partitions of the spatial attributes in this structure if this
structure is obtained by changing (i.e. adding, deleting or reverting) an edge that
involves a spatial reference slot.

An important point to note here is that if a spatial reference slot appears with
other spatial reference slots in the local score terms of the scoring function (while
finding the optimal number of partitions), we need to vary the cardinality of the set
of all spatial reference slots that appear together with the target spatial reference slot.
We demonstrate such situation in Example 8.4.

Example 8.4 Multiple spatial ref. attributes
Suppose the PRM-SA in Figure 8.5a is obtained at some point during structure learning
by adding an edge from Class_A.C_location_a to Class_A.a1. Because the added edge
contains a spatial reference slot, we need to find the best number of partitions for this
node. The score S of this structure is

S = S(Class_A.a1 | Class_A.C_location_a)

+ S(Class_A.C_location_a) + S(Class_B.b1 | Class_C.c1)

+ S(Class_B.b2 | Class_A.C_location_a,Class_B.C_location_b)
+ S(Class_C.c2 | Class_B.C_location_b,Class_C.C_location_c)
+ S(Class_C.c1) + S(Class_D.d1 | Class_D.C_location_d)

+ S(Class_D.C_location_d | Class_C.c2) (8.2)

From Equation 8.2, it is clear that changing the number of partitions of the node
Class_A.C_location_a affects the score of the nodes Class_A.a1 and Class_B.b2. How-
ever, to find the best score for the node Class_B.b2, we need to find the optimal
number of partitions for Class_B.C_location_b too because it appears with the spa-
tial reference slot Class_A.C_location_a in local score terms of the scoring function.
Class_B.C_location_b also appears with Class_C.C_location_c in the scoring func-
tion. As a result, partition functions of all of the three spatial ref. slots need to be
optimized together. v

Identifying the set of spatial ref. attributes for optimization To visualize the
situation such as the one in Example 8.4, we propose to moralize the structure and
find 2-vertex cliques of spatial reference slots. Those connected through the cliques
form a set of variables whose cardinality should be varied altogether when optimizing
the number of partitions. This concept is listed in Algorithm 13.

8.3. LEARNING PRM-SA 115

(a)

(b)

Figure 8.5 – (a) A PRM-SA with multiple spatial attributes. (b) The corresponding moralized
graph used to identify the set of partition functions to be optimized. Here, the pairs of spatial
reference slots {Class_A.C_location_a, Class_B.C_location_b} and {Class_B.C_location_b,
Class_C.C_location_c} form 2-vertex cliques. Because these two cliques are connected, we
need to find the optimal number of partitions for these three spatial ref. slots together.

To identify the set of spatial ref. attributes that need to be optimized together
in Example 8.4, we can moralize the dependency structure of the PRM-SA as shown
in Figure 8.5b and find out all 2-vertex cliques of spatial reference slots. Note that
spatial partition classes associated with each spatial attribute exist there but they
are not shown in the figure (to avoid cluttered diagrams). The three spatial refer-
ence slots Class_A.C_location_a, Class_B.C_location_b and Class_C.C_location_c
in Figure 8.5b are connected through cliques. Therefore, we need to find the best num-
ber of partitions for these three spatial ref. slots altogether.

An interesting property of our adaptative approach of learning PRM-SA is that be-
cause of the separation of greedy search and partition size optimization, we can come
up with different heuristics that involve different combinations of these two tasks. For
example, we can perform one operation (add, delete or revert) of greedy search and
then find the cardinality of spatial reference attributes, or we can find the optimal car-
dinality of all spatial reference attributes after a complete greedy search and so on. We
present three variations of our structure learning approach in Algorithms 14, 15, and 16.
In Algorithm 14, we find the optimal cardinality of all spatial reference attributes after
a complete greedy search for the given slot chain length. In Algorithm 15, we find the
optimal cardinality of all spatial reference attributes in each iteration of greedy search
algorithm for the given slot chain. In the third version (Algorithm 16), during neigh-
borhood generation, add, delete and revert operations are followed by optimization of
cardinality of spatial reference attributes (that are involved in the operation) so that
these operations always result in edges with spatial reference attributes with optimal
number of states.

116 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Algorithm 13 Find_Structure_With_Best_k
Input: A DAG, G; Target spatial ref. attribute node, n; Scoring function, Score
Output: A DAG with best number of partitions for n, G ′
1: GM ← Moralize(G)
2: C ← All 2-vertex cliques of GM
3: V ← {n} .
4: for each {a, b} ∈ C do
5: if a ∈ V and b is a spatial ref. attribute then
6: V ← V ∪ {b}
7: end if
8: if b ∈ V and a is a spatial ref. attribute then
9: V ← V ∪ {a}
10: end if
11: end for
12: G ′ ← Optimize the number of states of nodes in V together

Algorithm 14 Adaptative_Structure_Learning (Version 1)
Input: Initial dependency graph, G; Relational Schema, R; Scoring function, Score;

Maximum slot chain length, SLmax
Output: Local optimal dependency graph, G ′
1: G ′ ← G
2: Smax ← Score(G ′)
3: SL← 0 . Current slot chain length
4: repeat
5: repeat
6: N ← Generate_Neighbors(G ′,R, SL)
7: N∗ ← arg maxN ′∈N Score(N

′)
8: S∗ ← Score(N∗)
9: if S∗ > Smax then
10: G ′ ← N∗

11: Smax ← S∗

12: end if
13: until No change in G ′
14: for each CSA ∈ G ′ do
15: G ′ ← Find_Structure_With_Best_k(G ′, CSA, Score)
16: end for
17: SL← SL+ 1
18: until SL > SLmax

8.4 Evaluation of PRM-SA learning algorithms

We follow the same principle of evaluating PRM learning algorithms, explained in
Section 2.7, for evaluating PRM-SA learning algorithms. We start with a gold-standard
PRM-SA, and generate a database from it. We apply our proposed PRM-SA structure
learning algorithms to identify dependency structures. Then, we learn parameters of
the identified dependency structures. Lack of well-known PRMs leads us to start with
synthetic PRMs-SA as our gold-standard model. Because of the presence of spatial
attributes, we cannot generate random PRMs-SA (and eventually spatial datasets)

8.4. EVALUATION OF PRM-SA LEARNING ALGORITHMS 117

Algorithm 15 Adaptative_Structure_Learning (Version 2)
Input: Initial dependency graph, G; Relational Schema, R; Scoring function, Score;

Maximum slot chain length, SLmax
Output: Local optimal dependency graph, G ′
1: G ′ ← G
2: Smax ← Score(G ′)
3: SL← 0 . Current slot chain length
4: repeat
5: repeat
6: N ← Generate_Neighbors(G ′,R, SL)
7: N∗ ← arg maxN ′∈N Score(N

′)
8: S∗ ← Score(N∗)
9: if S∗ > Smax then
10: G ′ ← N∗

11: Smax ← S∗

12: end if
13: for each CSA ∈ G ′ do
14: G ′ ← Find_Structure_With_Best_k(G ′, CSA, Score)
15: end for
16: until No change in G ′
17: SL← SL+ 1
18: until SL > SLmax

from the methods proposed by Ben Ishak [2015] (see Section 2.7.2). Thus, we extend
their algorithms and generate PRM-SA benchmarks. To compare the learned PRM-
SA with the original PRM-SA, we can compute the evaluation metrics explained in
Section 2.7.1. In the following, we present the PRM-SA benchmark generation process
in detail.

8.4.1 Evaluation strategy and metrics

PRMs-SA can be compared in the same way as PRMs. So, we compare two PRMs-
SA by counting the number of relevant dependencies in their dependency structure,
and then computing the hard and soft versions of precision, recall and f-score proposed
by Ben Ishak [2015] given by Equations 2.4 in Section 2.7.1. As PRMs-SA do not
overlap to DAPERs, we cannot measure RSHD to compare PRMs-SA.

8.4.2 Generation of PRM-SA benchmarks

As PRMs-SA are extended from regular PRMs, generating a PRM-SA benchmark
is quite similar to generating a PRM benchmark. So, for this task, we follow Ben Ishak
[2015]’s three steps of generating an RBN benchmark, explained in Section 2.7.2.
Briefly, the first step generates a PRM-SA, the second step generates a relational skele-
ton, and the third step applies a sampling algorithm to generate a random dataset from
PRM-SA for the generated relational skeleton. Significant modifications are needed in
all the three steps for some reasons. First, a PRM-SA needs a spatial relational skele-
ton but their algorithm is not capable of generating a one. Second, relational skeletons
generated by their algorithm are primitive and do not resemble the ones from real-world

118 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Algorithm 16 Generate_Neighbors (Adaptative Structure Learning Version 3)
Input: A DAG, G = (V , E); Scoring Function Score
Output: Neighbors of G, N
1: N ← {}
2: for each n ∈ V do
3: for each n′ ∈ V\n do
4: Gadd ← Add_edge(G, n, n′)
5: Gdel ← Delete_edge(G, n, n′)
6: Grev ← Revert_edge(G, n, n′)
7: if n or n′ is a spatial ref. attribute then
8: if n is a spatial ref. attribute then
9: N ← N ∪ Find_Structure_With_Best_k(Gadd, n, Score)
10: N ← N ∪ Find_Structure_With_Best_k(Gdel, n, Score)
11: N ← N ∪ Find_Structure_With_Best_k(Grev, n, Score)
12: end if
13: if n′ is a spatial ref. attribute then
14: N ← N ∪ Find_Structure_With_Best_k(Gadd, n′, Score)
15: N ← N ∪ Find_Structure_With_Best_k(Gdel, n′, Score)
16: N ← N ∪ Find_Structure_With_Best_k(Grev, n′, Score)
17: end if
18: else
19: N ← N ∪ Gadd ∪ Gdel ∪ Grev
20: end if
21: end for
22: end for

applications because of the fact that they generate almost equal number of objects in
each class, which is very unlikely in real world. To overcome this limitation, we have
proposed an algorithm for generating skeletons as k-partite graphs (Algorithm 6 in
Section 2.7.4). Third, generation of a complete GBN is an expensive task and we want
to avoid this. For this, we have adapted Kaelin [2011]’s LABG algorithm for sampling
a PRM (presented as Algorithm 9 in Section 2.7.4).

The three steps for generating a PRM-SA benchmark are listed in Algorithm 17
and are explained in the following sections.

Generation of random PRMs-SA

In Ben Ishak [2015]’s approach of generating random RBNs, they first generate a
random relational schema, then generate random dependencies between attributes of
classes, and finally assign random conditional probability distributions to all attributes.
We adopt the same steps for generating random PRMs-SA. However, instead of a
relational schema, a spatial relational schema is needed for a PRM-SA.

Generating a spatial schema To generate a spatial schema (see Algorithm 18),
first of all, a relational schema is generated as a DAG, where each node represents
a class and each edge between nodes represents a relational link between classes. A
primary key and some standard attributes are then added to each class. Each attribute
is assigned some states according to a policy. Now to add spatial information in this
relational schema, the required number of spatial classes are selected from the schema

8.4. EVALUATION OF PRM-SA LEARNING ALGORITHMS 119

Algorithm 17 Generate_PRM-SA_Benchmark
Input: Number of non-spatial classes, Nc; Number of spatial classes, Nsc;; Maximum
length of slot chain length, Kmax; Maximum number of parents, Pmax

Output: Π : 〈R,S, θ〉; A database instance, I
Step 1: Generate a random PRM-SA

i) R ← Generate_Spatial_Schema(Nc, Nsc)

ii) S ← Generate a set of dependencies between attributes of classes in R (Pmax)
iii) Determine slot chains on S with maximum length Kmax
iv) θ ← Generate CPDs for S
v) Π← 〈R,S, θ〉

Step 2: Generate a relational skeleton

i) σr ← Generate_Spatial_Relational_Skeleton(R, N , policy)
Step 3: Database population

i) I ← Generate_Spatial_Relational_Dataset(Π, σr)

and spatial attributes are added to each of them. In the context of spatial databases,
these spatial attributes would be columns of type ’geometry’. For each added spatial
attribute, a spatial ref. attribute is added to the class, a spatial partition class are
introduced to the schema, and a relational link between the spatial ref. attribute and
the spatial partition class is added.

Generating probabilistic dependencies The next step in random PRM-SA gen-
eration is to add probabilistic dependencies randomly between two attributes in the
same class or in different classes that are accessible via slot chains. For this, in the orig-
inal approach of Ben Ishak [2015], they first find all potential parents (with different
length of slot chains) for each variable and add links between randomly chosen par-
ents. They do not consider the fact that while finding slot chains, duplicate slot chains
might be encountered. By ‘duplicate’, we mean the slot chains which produce the
same result. For example, in the schema of Figure 8.1a, User_satisfaction.user_id and
User_satisfaction.user_id.user_id−1.user_id are equivalent because traversing through
the slot chains, we obtain the same set of User objects. Similarly, the slot chain
User_satisfaction.resto_id−1.resto_id is the same as an empty slot chain because this
slot chain results in the target Restaurant object. Thus, to improve Ben Ishak [2015]’s
approach, we pick the shorter slot chains to avoid redundant, unnecessary computations
when such duplicates are found.

Simplifying slot chains We apply the following rule to simplify slot chains.
From Definition 3, a slot chain is represented as a sequence of reference slots and
inverse slots as ρ1.ρ2.ρn−1.ρn. If ρn−1 is an inverse slot and ρ−1

n = ρn−1, then
the slot chain can be simplified by eliminating the last two slots. So, the simplified
slot chain would, then, be ρ1.ρ2.ρn−3.ρn−2. This can be done repetitively until no
simplification is possible.

The above rule of simplifying slot chains in PRMs also applies to PRMs-SA. How-
ever, slot chains in PRMs-SA can be further simplified if the slot chain involves a
spatial reference attribute and the dependency has the same spatial reference attribute
as a child. In such case, following rule can be applied to simplify such slot chains:

120 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Algorithm 18 Generate_Spatial_Schema
Input: Number of non-spatial classes, Nc; Number of spatial classes, Nsc

Output: A spatial relational schema R :< X ,PSA, CSA, ρ >
1: repeat
2: G(X , E)← Generate_DAG(Nc +Nsc, policy)
3: until G is a connected DAG.
4:
5: for Xi ∈ X do
6: Pk_Xi ← Generate_Primary_Key(Xi)
7: A(Xi)← Generate_Attributes(policy)
8: for Xi.A ∈ A(Xi) do
9: V(Xi.A)← Generate_States(policy)
10: end for
11: end for
12:
13: ρ← {} . Set of reference slots
14: for e(Xi → Xj) ∈ E do
15: Fk_Xi ← Generate_Foreign_Key(Xi, Xj, Pk_Xj)
16: ρ← ρ ∪ {Fk_Xi}
17: end for
18:
19: CSA ← {} . Set of all spatial ref. attributes
20: PSA ← {} . Set of all spatial partition classes
21: for Xi ∈ X : 1 ≤ i ≤ Nsc do
22: SA(Xi)← Generate_Spatial_Attribute(policy) . Add spatial attributes
23: CSA(Xi)← {} . Set of spatial ref. attributes in class Xi

24:
25: for Xi.SA ∈ SA(Xi) do
26: Xi.CSA ← A new attribute (a spatial ref. attribute for Xi.SA)
27: CSA(Xi)← {CSA(Xi) ∪Xi.CSA}
28: V(Xi.CSA)← Generate_States(policy)
29: PXi_SA ← A new spatial partition class corresponding to Xi.CSA
30: PSA ← PSA ∪ {PXi_SA}
31: Pk_PXi_SA ← Generate_PK(PXi_SA)
32: Fk_Xi ← Generate_Foreign_Key(Xi, PXi_SA,Pk_PXi_SA)
33: ρ← ρ ∪ {Fk_Xi}
34: end for
35: CSA ← CSA ∪ CSA(Xi)
36: end for

A slot chain that involves a spatial ref. attribute can be simplified by eliminating
the last two slots if it meets all of the following criteria:

1. The child in the involved dependency is the same spatial ref. attribute,

2. rhon is an inverse slot of rhon−1 (i.e., rho−1
n = rhon−1),

3. rhon−1 is a spatial reference attribute

4. Either rhon−2 is not an inverse slot or rhon−2 = rhon

8.4. EVALUATION OF PRM-SA LEARNING ALGORITHMS 121

Algorithm 19 Generate_Spatial_Relational_Dataset
Input: A PRM-SA, Π; Total number of objects, N
Output: Random dataset D
1: Dpartial ← Relational Block Gibbs sampling (Π, I)
2: D ← Generate_Spatial_Attribute(Dpartial)

Algorithm 20 Generate_Spatial_Relational_Skeleton
Input: A PRM-SA, Π; Total number of objects in the resulting skeleton, N ; Scalar

parameter for CRP, α
Output: A spatial relational skeleton σr
1: G ← DAG representation of the spatial relational Schema of Π
2: PSA ← The set of partition classes in G
3:
4: for P ∈ PSA do
5: σr(P)← Generate objects for P
6: end for
7:
8: G ′ ← {G\PSA} . Sub-DAG obtained by removing partition classes from G
9: σ′r ← Generate_Relational_Skeleton(G ′, N, α)
10: σr ← σr ∪ σ′r
11: Add_Links(Π, σr(PSA), σr(SA))

Generation of a spatial relational skeleton

A spatial relational skeleton can be generated in the same way as its non-spatial
counterpart with a special constraint that the skeleton cannot have arbitrary number
of partition class objects. For any spatial attribute, the set of objects of associated
partition class is the range of the spatial partition function associated with the spatial
attribute, and the corresponding spatial ref. attributes refer to this set of partition
class objects only. In other words, for any spatial partition class, the number of objects
cannot exceed the cardinality of the domain of the referring spatial ref. attributes. For
this reason, we first generate partition class objects, and then generate the non-spatial
part of the skeleton. These two operations can be interchanged or be done in parallel as
they are independent. Finally, we add links between objects of spatial partition classes
and those of respective spatial classes. This process is presented in Algorithm 20.

Generation of a spatial relational dataset

To generate a spatial dataset from a spatial relational skeleton, we need to sample
two types of attributes: (1) non-spatial attributes, and (2) spatial attributes.

Sampling non-spatial attributes A spatial relational skeleton differs from a non-
spatial relational skeleton in that some of the attributes are already observed in the
former one. Spatial ref. attributes, which act as both foreign keys and descriptive
attributes, are already initialized during the skeleton generation process. One way to
generate a dataset from such partially initialized skeleton is to instantiate the PRM(-
SA) over the skeleton to obtain a GBN, set evidences to this network and then apply
a BN sampling algorithm that supports evidences, such as Rejection sampling, Gibbs
sampling etc. However, GBN generation is an expensive task, especially when the

122 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

skeleton is big and complex. Relational forward sampling (see Algorithm 8) aims at
avoiding GBN generation by sampling nodes of a PRM in a topological order and
working directly with databases. It is, however, not applicable for generating spatial
relational dataset because it does not support evidences. To avoid a complete GBN
generation, and to support evidences in relational skeletons, we propose to adapt Kaelin
[2011]’s LABG algorithm for sampling a PRM (see Algorithm 2 for LABG algorithm,
and Algorithm 9 for our proposed Relational Block Gibbs (RBG) sampling algorithm).
As the adapted algorithm supports partially initialized skeletons, it is applicable for
spatial as well as non-spatial relational dataset generation. Thus, we apply RBG
algorithm to sample non-spatial attributes in a spatial relational skeleton.

Sampling spatial attributes Algorithm 9 samples non-spatial attributes only. To
get a complete spatial dataset, we need to sample spatial attributes too. Sampling a
spatial attribute involves two tasks: (1) assigning the centers of partitions (i.e., sam-
pling the spatial attribute of spatial partition classes), and (2) sampling the remaining
spatial attributes in the skeleton. Here, we propose two methods for sampling spatial
attributes: unconstrained randomization and constrained randomization. In the former
method, we pick random points from the entire world and assign them as the center of
partitions. If the boundary of partitions is also needed, we can generate random poly-
gons around the centers. In constrained randomization, the input can be a collection
of points, a fixed polygon or a collection of polygons.

Case I: A collection of points In this case, we pick random points from the
collection and assign them as centers of partitions. For example, we need to simulate
data for some specific cities, we are given a collection of cities as points, and we pick
random cities to be the center of partitions.

Case II: A fixed polygon When we need to assign partition centers from a
fixed polygon (e.g., a specific country/city), we divide the polygon randomly into the
required number of clusters and pick a random point within the polygons as the center
of the partitions.

Case III: A collection of polygons In this case, we pick random polygons as
the boundary of partitions and then pick a random point within the polygon as the
center of that partition.

Once we have chosen center and/or boundary of the partition classes, we can pro-
ceed with the generation of spatial attributes of spatial classes by generating random
points around the centers and within the boundary (if boundary is available) such that
the points follow a bivariate normal distribution with the center of the partition as
mean and a random positive definite matrix as variance covariance matrix.

8.5 Experimental study

The primary objective of this experimental study is to evaluate PRM-SA learning
algorithms that we have proposed in Section 8.3. In this experiment, we evaluate these
algorithms on synthetic data that are generated by applying RBG sampling algorithm

8.5. EXPERIMENTAL STUDY 123

(see Algorithm 9) on well-defined PRMs-SA over randomly generated relational skele-
tons. The skeletons used in this experiment are generated using our k-partite graph
generation algorithm (see Algorithm 6). Prior to this experiment, we had performed
an empirical study of PRM sampling algorithms to assess the validity and charac-
teristics of RBG sampling algorithm, and k-partite graph-based skeleton generation
algorithm. We refer to the findings of that study, which are presented in Appendix A,
to choose different parameters for this experiment. In the following, we will explain
our experimental methodology, and present the results of this experiment.

8.5.1 Methodology

We begin by defining some PRMs-SA, which we keep as our gold standard models.
We apply RBG sampling algorithm on these models over randomly generated k-partite
graph-based relational skeletons to generate our benchmark datasets for the experi-
ment. We perform Chi-square goodness-of-fit test on these generated datasets to check
how well these datasets are sampled (cf. methodology of the empirical study of PRM
sampling algorithms in Appendix A). Our objective is to use as many well-sampled
datasets as possible in the experiment. Our starting burn-in value for the dataset
generation process is 100. If the null hypothesis of Chi-square goodness-of-fit test is
accepted by all nodes in the model, we accept this dataset. Otherwise, we increase
the burn-in value (by 100) and restart the dataset generation process. As the time
taken by RBG sampling algorithm increases exponentially with the size of skeletons,
as discussed in Section A.1.2, generating a perfect dataset for bigger skeletons is time-
consuming. Thus, if a well-sampled dataset could not be generated even after 3 trials,
we choose the one for which the null hypothesis of Chi-square goodness-of-fit test is
rejected by the least number of nodes. Next, we learn PRMs-SA from those datasets
applying our proposed PRM-SA learning algorithms. Then, we compare the learned
models with the corresponding gold standard ones. The goal is to assess how well the
algorithms could reconstruct the PRMs-SA.

We used 7 manually-defined PRMs-SA, shown in Figure 8.6, as our gold standard
models. These models cover four different situations of spatial ref. attributes, where
spatial ref. attributes in the model have

1. neither parents nor children (Models A1, and A2 of Figures 8.6a, and 8.6b),

2. parent(s) but not children (Model B1 of Figure 8.6c)),

3. no parents but children (Models C1, C2, and C3 of Figure 8.6d, 8.6e, and 8.6f)),
and

4. parents as well as children (Model D1 of Figure 8.6g)).

We generated 7 datasets having 100 – 5000 objects for each of these models except
A2, for which we generated 6 datasets having 100 – 3000 objects. Because A2 con-
tains a slot chain that involves a spatial ref. attribute, the probabilistic structure of
this model for a given skeleton can have nodes with many children. For the dataset
with 5000 objects, the number of children for some nodes was so high that it caused
numerical underflow while computing full conditional distribution of a node (cf. Step
9 of Algorithm 9) because it involves the multiplication of probability values, which
are always less than 1. A solution to handle this problem is to use logarithmic values.
However, since this solution had not been implemented at the time of this experiment,

124 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8.6 – PRMs-SA used in the experiments as gold standard models. We refer to these
models by the following name: (a) A1, (b) A2, (c) B1, (d) C1, (e) C2, (f) C3, (g) D1

we continued our experiment with only 6 datasets for A2. Thus, we had altogether 48
datasets for 7 models.

We first applied the standard RGS algorithm on each of these datasets to learn a
PRM-SA without adjusting the number of partitions during structure learning. For
this, before applying RGS algorithm, we assigned each spatial object to a spatial par-
tition by using KMeans. The number of partitions was chosen in such a way that the
initial structure had the best score. The partitions were not modified during RGS. We
refer to the models obtained in such a way as ‘Baseline’ models, and the corresponding
algorithm as ‘Baseline’ algorithm. The objective was to check if adapting partitions
while learning a PRM-SA is effective than learning a PRM-SA without adapting par-
titions. Then, we applied our proposed PRM-SA structure learning algorithms, which
adapt partitions during learning, on all datasets. During the learning process, KMeans
was used as the partition function to create spatial partition class objects. After learn-
ing PRMs-SA, we compared the learned models with the corresponding gold standard
ones. Reconstruction quality was measured using hard and soft versions of precision, re-
call, and F-score proposed by Ben Ishak [2015], given by Equations 2.4 in Section 2.7.1.
As PRMs-SA do not overlap to DAPERs, we could not measure RSHD to compare
PRMs-SA.

Soft precision and soft recall of Equations 2.4 consider reversed edges as irrelevant
edges. In case of Bayesian networks, even though two DAGs have reversed edges,

8.5. EXPERIMENTAL STUDY 125

they may encode the same probabilistic dependencies. Two DAGs are equivalent iff
they have the same skeleton, and the same v-structure. However, this notion is not
well-defined for PRMs yet. Not considering such reversed edges may result in lower
precision and recall even when the learned PRM is equivalent to the gold PRM. Thus,
in this experiment, we assess the quality of learned PRMs by comparing their skeleton
with the that of corresponding gold PRMs. For this purpose, we define precision and
recall for skeleton comparison in the following way.

Let S ′true, and S ′learned be the skeleton of the gold PRM and the learned PRM
respectively, which are obtained by ignoring the direction of all edges. Let Nbtrue be
the number of edges in S ′true, and Nblearned be the number of edges in S ′learned. Then,
we define precision and recall for skeleton in the following way.

Precisionskeleton =
Number of matching edges in S ′true and S ′learned

Nblearned
(8.3a)

Recallskeleton =
Number of matching edges in S ′true and S ′learned

Nbtrue
(8.3b)

Though these are not perfect metrics for comparing PRMs, they can give hints on
the cause of low hard precision or hard recall values. They can be used to understand
whether the low value is because of reversed edges or because the algorithm learned
completely different edges. When learned models include reversed edges, these metrics
for skeletons will be higher than the corresponding hard metrics. If low hard preci-
sion/recalls are caused by truly irrelevant edges, the metrics for skeletons must have
similar values as hard ones.

The metrics discussed so far can assess the quality of the overall structure of PRMs
but cannot identify if spatial attributes have affected the structure. Thus, we propose
two types of metrics to understand if spatial attributes have contributed in the structure
or not.

The first type of metrics compares the Markov blanket of spatial reference attributes
in the gold PRM with that in the learned PRM. We propose hard and soft versions of
precision and recall for this. Let M i

gold, and M i
learned denote the dependency structure

among ith spatial ref. attribute and its Markov blanket in gold and learned PRMs-
SA respectively. Then, we define hard precision for the Markov blanket of ith spatial
ref. attribute as the ratio of the number of edges present in both M i

gold, and M i
learned

(with correct direction, slot chain and aggregator) to the number of edges present in
M i

learned. The overall hard precision for all spatial attributes in a PRM-SA, denoted
Hard Precisionspatial is the average of the hard precision for the Markov blanket of each
spatial ref. attribute. We define hard recall for all spatial attributes in a PRM-SA in
the same manner as follows.

Hard Precisionspatial =
1

N

N∑
i=1

Number of edges present in both M i
gold and M i

learned

Number of edges in M i
learned

(8.4a)

Hard Recallspatial =
1

N

N∑
i=1

Number of edges present in both M i
gold and M i

learned

Number of edges in M i
gold

(8.4b)

126 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

where N is the number of spatial attributes in the PRM-SA.
For soft version of these metrics, we consider only the skeleton ofM i

gold, andM i
learned.

Let these skeletons be denoted byM ′i
gold, andM

′i
learned respectively. Then, soft precision

and recall for spatial attributes in a PRM-SA is defined like in Equations 8.4.

Soft Precisionspatial =
1

N

N∑
i=1

Number of edges present in both M ′i
gold and M ′i

learned

Number of edges in M ′i
learned

(8.5a)

Soft Recallspatial =
1

N

N∑
i=1

Number of edges present in both M ′i
gold and M ′i

learned

Number of edges in M ′i
gold

(8.5b)

Our second metric for spatial attributes is Normalized Mutual Information (NMI),
which compares the partitions learned by PRM-SA learning algorithms with the orig-
inal partitions. Let Cl, and Cg be the partitions of a spatial attribute in the learned
PRM-SA, and those in the gold PRM-SA respectively. Then, NMI between Cl and Cg
is defined as

NMI(Cl, Cg) =
I(Cl, Cg)√
H(Cl)H(Cg)

(8.6)

where I(Cl, Cg) is the mutual information between Cl, and Cg, and H(C) is the
entropy associated with partitions C. They are defined in the following way.

H(C) = −
k∑
i=1

P (i) log2 P (i) (8.7a)

I(Cl, Cg) =

kl∑
i=1

kg∑
j=1

P (i, j) log2

P (i, j)

P (i)P (j)
(8.7b)

Here, P (i) is the probability that a randomly picked object is in partition Ci ∈ C,
P (i, j) is the probability that a randomly picked object belongs to partition Ci in Cl
and to partition Cj in Cg, and kl and kg are the number of partitions of the spatial ref.
attribute in the learned PRM-SA and the gold PRM-SA respectively. NMI(Cl, Cg) = 1
when Cl = Cg, i.e. when the partitions match perfectly.

In addition to these metrics, we also score each of the learned models to study
how well the models are able to describe the underlying data with respect to the gold
models. As there is no general approach for comparing PRMs in terms of their score,
we propose to check the absolute difference between scores of two models to see how
closely they describe the data. In this experiment, we use Bayesian Dirichlet scoring
function to score the learned models as well as the gold models.

8.5.2 Results and discussion

In the following, we will use the terms ‘Adaptative1’, ‘Adaptative2’, and ‘Adap-
tative3’ (‘Adap1’, ‘Adap2’, and ‘Adap3’ in short) for the versions 1, 2 and 3 of our

8.5. EXPERIMENTAL STUDY 127

proposed adaptative approach for PRM-SA structure learning. Table 8.1 reports over-
all average precision, recall, and F-score along with standard deviations for each of
the five algorithms under study when applied on the gold models of Figure 8.6. These
metrics for each model are provided in Tables C.1 – C.9 in Appendix C. The best values
are shown in bold face whereas the worst values are underlined.

As we are comparing five different algorithms on multiple datasets for each model,
we perform Friedman test (Demšar [2006]) to check if there is any difference in the
performance of these algorithms. The null hypothesis of this statistical test is that
there is no difference in the performance of the algorithms. If the null hypothesis is
rejected, we proceed with Nemenyi test to detect significant differences between algo-
rithms. The results of Nemenyi test for overall precision, and recall are depicted in
critical distance diagrams (CD-diagrams) of Figure 8.8. Detailed results of this test for
the evaluation metrics which rejected Friedman test are presented in Appendix C. In
these CD-diagrams, lower ranks are better, and the horizontal lines that connect dif-
ferent algorithms denote that the connected algorithms are not significantly different,
whereas in the tables, blue values indicate that the performance of those algorithms in
terms of the corresponding metrics are observed to be statistically significant from each
other for the given model, and green values indicate that the algorithm significantly
outperforms all other algorithms.

Tables C.1, C.2, and C.3 show average hard precision, hard recall and hard F-score
respectively. We observed that Adaptative3 algorithm obtained the best precision for
4 out of 7 models. However, it produced the worst average recall for 5 models. At
the same time, this algorithm had the best overall average precision but the worst
overall average recall. On the contrary, Adaptive2 had the best recall (for 4 models)
but the worst precision (for 3 models). Baseline, Naive and Adaptative1 algorithms
had extreme results in fewer models. However, Baseline had the worst F-score, and
Naive had the best F-score.

Friedman tests followed by Nemenyi tests on these metrics showed that Adapta-
tive3 had significantly better precision than Adaptative2 in model A1. However, we
could not come to such conclusion about Baseline, Naive and Adaptative1 algorithms
for this model. The result of Nemenyi test on hard precision for model A1 is shown
in CD diagram of Figure C.1a. In Figure C.1a, Adap3, which is at the rightmost side,
is connected with Naive and Adap1 but not with Adap2, indicating that the perfor-
mance of Adap2 and Adap3 in terms of hard precision is significantly different from
each other. Similarly, it was found that Adaptative3 had significantly better precision
than Adaptative1 for model A2, and Naive performed significantly better on model
C2 than Baseline in terms of hard precision. For other models, Friedman test was not
rejected. Overall, Adaptative2 was observed to have the worst precision but the best
recall, and Adaptative3 had the best precision but the worst precision. This difference
in performance between these two algorithms was statistically significant too, as seen
in Figure 8.7a. However, we could not come to any conclusion regarding Naive and
Adaptative1. Regarding overall hard F-score, the statistical tests could not detect any
significant difference between the algorithms.

Average soft precision, soft recall and soft F-score of all algorithms observed for
each model are presented in Tables C.4, C.5, and C.6 respectively. In all models ex-
cept A2, these values were found to be the same as the hard version of these metrics
because edges in gold and learned PRMs-SA differed by slot chains and/or aggregators

128 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

Table 8.1 – Average ± standard deviation of metrics for four PRM-SA structure learning
algorithms in the experiment.

Metrics Baseline Naive Adaptative1 Adaptative2 Adaptative3

Hard Precision 0.495 ± 0.191 0.550 ± 0.228 0.489 ± 0.252 0.469 ± 0.204 0.575 ± 0.220

Hard Recall 0.396 ± 0.177 0.430 ± 0.188 0.419 ± 0.233 0.469 ± 0.173 0.380 ± 0.181

Hard F-score 0.429 ± 0.167 0.470 ± 0.184 0.441 ± 0.231 0.456 ± 0.160 0.435 ± 0.168

Soft Precision 0.497 ± 0.186 0.552 ± 0.223 0.492 ± 0.248 0.471 ± 0.200 0.580 ± 0.212

Soft Recall 0.398 ± 0.172 0.433 ± 0.183 0.421 ± 0.229 0.471 ± 0.167 0.384 ± 0.175

Soft F-score 0.431 ± 0.162 0.473 ± 0.179 0.444 ± 0.227 0.458 ± 0.155 0.439 ± 0.161

Precisionskeleton 0.827 ± 0.211 0.830 ± 0.214 0.809 ± 0.226 0.706 ± 0.187 0.914 ± 0.186

Recallskeleton 0.672 ± 0.247 0.664 ± 0.242 0.701 ± 0.251 0.732 ± 0.226 0.627 ± 0.261

F-scoreskeleton 0.723 ± 0.205 0.719 ± 0.203 0.734 ± 0.221 0.702 ± 0.171 0.711 ± 0.211

in few cases only. Even though model A2 had different average hard and soft preci-
sions, recalls, and F-scores, there was no difference in the statistical test results. Thus,
conclusions about the hard version of these metrics are valid for the soft version too.

It was observed that many of the learned PRMs-SA had the edge between the
nodes User.age and Users.gender reversed. Because all models except C2 do not have
any v-structure involving these nodes, and reversing this edge does not result in a
v-structure in all models except C2, and C3, the edges User.age →Users.gender and
User.age ←Users.gender would be equivalent in GBNs of all models except C2 and C3.
We cannot state this for all edges though. Such reversed edges that would have been
equivalent to the original edges of gold models are not considered in hard and soft
versions of precision, recall and F-score, and hence have affected the metrics adversely.
Average hard precision and average recall of the best performing algorithms (i.e., 0.575
and 0.469 respectively) are not very high. To understand if it is the effect of reversed
edges, we computed precision, recall and F-score (cf. Equations 8.3) comparing the
skeleton of learned models with that of gold models. Average values of these metrics
for skeletons are presented in Table 8.1 (Details in Tables C.7, C.8, and C.9). It is
clear from this table that soft precision and recall for skeletons are higher than hard
precision and hard recall (as well as soft precision and recall) for all algorithms (and
for all models as seen in Tables C.1, and C.7 and also Tables C.2, and C.8). This
indicates that learned models had reversed edges, which lowered the values of hard
metrics. However, whether such reversed edges are equivalent to the corresponding
edges in gold models is still an open issue. Again, Adaptative2, and Adaptative3 had
respectively the best and the worst recall for skeletons, and also respectively the worst
and the best precision for skeletons. Nemenyi test showed that the difference in the
performance of these two algorithms is statistically significant (see Figures 8.7e and
8.7f). However, we could not conclude about the differences in performance of these
algorithms with Baseline, Naive and Adaptative1.

The metrics discussed so far assess the overall structure of learned models without
any specific regards to spatial nodes. Thus, to understand the effect of spatial attributes
on the structure of learned PRMs-SA, we computed the metrics given by Equations 8.4,
8.5, and 8.6. These metrics are listed in Table 8.2 (Details in Tables C.10–??).

Hard precision, recall and consequently F-score for spatial attributes of learned

8.5. EXPERIMENTAL STUDY 129

(a) Overall hard precision (b) Overall hard recall

(c) Overall soft precision (d) Overall soft recall

(e) Overall precisionskeleton (f) Overall recallskeleton

Figure 8.7 – Comparison of overall performance of PRM-SA learning algorithms with Nemenyi
test

Table 8.2 – Average ± standard deviation of metrics to measure spatial influence in the learned
models

Metrics Baseline Naive Adaptative 1 Adaptative 2 Adaptative 3

Hard Pspatial 0.250 ± 0.438 0.229 ± 0.425 0.167 ± 0.377 0 ± 0 0.688 ± 0.468

Hard Rspatial 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449

Hard Fspatial 0.125 ± 0.334 0.125 ± 0.334 0.125 ± 0.334 0 ± 0 0.188 ± 0.394

Soft Pspatial 0.365 ± 0.470 0.432 ± 0.480 0.397 ± 0.446 0.236 ± 0.312 0.753 ± 0.424

Soft Rspatial 0.349 ± 0.442 0.406 ± 0.442 0.429 ± 0.444 0.528 ± 0.416 0.352 ± 0.454

Soft Fspatial 0.203 ± 0.361 0.265 ± 0.377 0.294 ± 0.405 0.221 ± 0.271 0.261 ± 0.410

NMI 0.800 ± 0.061 0.806 ± 0.062 0.806 ± 0.062 0.806 ± 0.062 0.851 ± 0.128

models were not good for all algorithms but the soft version of these metrics were
slightly better indicating the presence of reversed edges around the spatial reference
attributes. Again, we observed the same pattern regarding the best and the worst hard
as well as soft precision. Adaptative3 significantly outperformed all other algorithms
in terms of hard precisionspatial (see Figure 8.8a). It also significantly outperformed all
algorithms except Naive in terms of soft precisionspatial (see Figure 8.8b). Adaptative2
had the worst hard precisionspatial, and the worst hard F-scorespatial. These results for
hard recallspatial and hard F-scorespatial, however, were not statistically significant. Re-

130 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

(a) Overall hard precisionspatial (b) Overall soft precisionspatial

(c) Overall soft recallspatial

Figure 8.8 – Comparison of overall hard precisionspatial, soft precisionspatial and soft
recallspatial of PRM-SA learning algorithms with Nemenyi test

Figure 8.9 – Result of Nemenyi test for comparison of overall performance of PRM-SA learning
algorithms in terms of the difference between the score of learned models and that of gold
models.

garding soft recallspatial, Adaptative2 performed significantly better than Adaptative3
and Baseline algorithms (see Figure 8.8c). Overall, Adaptative1 had the best soft F-
scorespatial, and Baseline method had the worst soft F-scorespatial. However, statistical
significance could not be established for these results. As we can see from Tables C.11
– C.15, these metrics are highly deviated. The result behind this could be the fact that
our gold models have only one spatial attribute with small Markov blanket.

Next, we computed NMI between the original partitions of the spatial attribute
User.location and the ones learned by these algorithms. Overall average of this metric
is presented in Table 8.2, and average NMI for each model in Table C.16. From these
tables, we can observe that Baseline had the worst NMI in many models, and Adapta-
tive3 had the best NMI. When performed the Friedman test on these results, the null
hypothesis of this test was not rejected.

To further study how well the learned models described the underlying data with
respect to the gold models, we computed the absolute difference between Bayesian
Dirichlet score of each learned model and that of the corresponding gold model. These
differences are reported in Table C.17. As model scores are highly dependent on the

8.6. PRMS-SA IN RECOMMENDER SYSTEMS 131

data size, the table lists this metric for each model and each dataset. As we can see
in the table, the difference between the score of gold models and that of the models
learned by Adap3 algorithm is the smallest in many of the cases (31 out of 48 models)
whereas the largest differences were observed in many cases (24 out of 48 models) for
the models learned by Naive algorithm and those learned by Baseline algorithm. Fried-
man test followed by Nemenyi test on these observations showed that models learned by
Adap3 had significantly better performance compared to Naive, Adap1, and Baseline
methods, as depicted in Figure 8.9. That means Adap3 learned models that describe
the data as closely as the corresponding gold models do. Models learned by Naive and
Baseline algorithm had the worst average rank. However, we could not find significant
difference between Naive, Baseline and Adap1 algorithms. It should be noted that a
big difference between the score of a learned model and that of a gold model does not
necessarily mean that the learned model is worse because we are only measuring the
closeness of the learned models with the gold models in the view of model score, and
the big difference might be because the algorithm might have learned a model simpler
than the corresponding gold model.

To conclude, we observed the following patterns in this experiment:

1. Adaptative3 had the best performance in terms of precision (both spatial as well
as non-spatial) not only in simple models (like A1 where the spatial ref. attribute
does not have probabilistic dependencies with any other attributes) but also in
complex models (like A2, C3, and D1, which include v-structures, a slot chain
involving spatial ref. attributes, and more number of dependencies) whereas
Adaptative2 had the worst precision even in simple models (like A1, B1 and C1).

2. Recall (non-spatial) of Adaptative2 was significantly better than Adaptative3,
which had the worst recall for most of the models.

3. Learned models had reversed edges not only among the spatial reference attribute
and its Markov blanket but also in the overall structure.

4. Adapting partitions during PRM-SA learning as proposed in our algorithms (i.e.,
Naive, and three versions of adaptative algorithms) resulted in more accurate
partitions than learning PRM-SA without adapting partitions (i.e., Baseline al-
gorithm).

5. The performance of Baseline algorithm was similar to that of Naive in many
cases.

6. Baseline algorithm had low soft precisionspatial, and the lowest soft recallspatial,
and soft F-scorespatial. This indicates that it could not properly identify depen-
dencies of spatial reference attributes.

7. Bayesian Dirichlet score of models learned by Adaptative3 algorithm was sig-
nificantly closer to that of respective gold models, indicating that those learned
models describe the input data quite similarly to the gold models.

8.6 PRMs-SA in recommender systems
Like PRMs, PRMs-SA also have the potential to be deployed in recommender sys-

tems for helping users in finding interesting items, and eventually in making decisions.
In this section, we will provide a hypothetical recommender system that makes use of

132 CHAPTER 8. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

a PRM-SA. This example illustrates the use of PRMs-SA as a spatial recommender
system that uses items’ various features together with their location, and users’ de-
mographic information for making recommendations. It also shows that changing the
length of slot chains of dependencies in the PRM-SA can produce different types of
recommender systems, demonstrating the use of PRMs-SA as a flexible solution for
recommending in the presence of spatial attributes.

Example 8.5 Restaurant recommendation
The PRM-SA of Figure 8.1c can be used for recommending restaurants to users. The
idea is to recommend to a target user the restaurants for which the user would give
high rating for the service and/or the user’s satisfaction level would be high. We can
then combine this PRM-SA with a PRM-EU to predict the link between a user and
a restaurant. For this, we add a boolean attribute ‘Exists’ in class Users_satisfaction.
This attribute will be dependent on the attributes User_satisfaction.service_rating, and
User_satisfaction.satisfaction_level such that User_satisfaction.Exists will be true for a
given pair of Restaurant and User objects when both User_satisfaction.service_rating,
and User_satisfaction.satisfaction_level are high. The goal of this recommender system
will be then to predict User_satisfaction.Exists, and recommend restaurants for which
this attribute is true. Partitions for Restaurant.location can be defined in different ways
as explained in Section 8.2. We can even construct a hierarchical partitioning, like
the one proposed by Sarwat et al. [2014] (reviewed in Section 6.2), by further defining
partitions for P_restaurant_location.boundary.

If there are no aggregators in the edges between the attributes of Restaurant, and
User_satisfaction, the resulting recommendation model would be simply a content-based
filtering system that makes recommendations based on restaurants’ features, and their
their location. If those edges include slot chains that involve spatial reference attributes,
we can achieve more interesting recommendations. For example, if we have the edge
Restaurant.parking_type → MODE(U.R.C.C−1.service_rating), (note: only initial let-
ters of classes and foreign keys are used to compress the slot chain), then it would
mean that a user’s rating for the service of a restaurant depends on the type of parking
of most of the restaurants in the area (partition) where the restaurant is also located.
A user might, for example, give better ratings to the restaurants whose most of the
neighboring restaurants have underground parking.

8.7 Conclusion
In this chapter, we presented our novel approach to integrating spatial information

into PRMs. Our model, which we call PRM-SA, extends standard PRMs, and pro-
vides a general solution to model spatial dependencies in PRMs. PRMs-SA consider
the fact that spatial heterogeneity leads to some patterns in data. Thus, our basic
idea is to extract such patterns through aggregation of spatial objects. Our model
also opens a possibility to model spatial autocorrelation with the introduction of ag-
gregated attributes on partition classes and a special constraint on the orientation of
edges to avoid cycles. In this chapter, we also presented our approaches for learning the
structure of PRM-SA from data, and evaluating these learning algorithms. Our pro-
posed algorithms for learning PRMs-SA are based on standard relational greedy search
(RGS) algorithm, which is a score-and-search method (cf. Section 2.2.2). The idea is to
find the structure that best fits the data such that the spatial attributes are also well-
partitioned. In other words, our proposed learning algorithms not only learns edges

8.7. CONCLUSION 133

between attributes but also adjust the partitions of spatial attributes while learning.
In our naïve approach of PRM-SA learning, we apply two new operators increase_k
and decrease_k together with standard add, delete and revert edge operations in RGS
algorithm (cf. Algorithm 3) to find the neighborhood of a structure, whereas in our
adaptative approach, we differentiate between the tasks of greedy search and finding
the best number of partitions for spatial reference attributes. We have proposed three
versions of adaptative algorithms applying different heuristics that involve different
combinations of these two tasks. To evaluate these algorithms, we followed Ben Ishak
[2015]’s approach of evaluating PRM learning approach, which involves the comparison
of the model learned from a synthetic data with the model from which the synthetic
data is generated. As their algorithm for generating synthetic data cannot generate
spatial data, we have also proposed algorithms for generating random PRMs-SA, and
simulated spatial datasets.

Through an experiment, we demonstrated that adjusting the partitions of spatial
attributes during learning could be interesting. We evaluated on several synthetic
datasets our four PRM-SA learning algorithms along with a static approach, where
partitions are not adjusted during the learning process. Our experiments showed that
version 3 of our adaptative approach (cf. Algorithm 16) had better precision but
worse recall than version 2 (cf. Algorithm 15) but our experimental data was not
sufficient to reach any conclusion about the static approach (which we call ‘Baseline’
algorithm), our naïve approach and version 1 of our adaptative approach. Metrics
for skeletons indicated that the hard metrics were affected by reversed edges. We
also examined how well these algorithms could learn spatial dependencies. We did
not obtain good hard metrics for spatial attributes but soft metrics were better for
spatial attributes, indicating that dependencies between spatial reference attributes
and other attributes were detected by the algorithms but the direction of those edges
were opposite compared to those in gold models. Adap3 was found to have significantly
best soft precisionspatial, and soft recallspatial, whereas Baseline algorithm had the worst
performance. Besides, we also compared how similar the learned spatial partitions are
to the original spatial partitions, and how close the learned models are to the gold
models in the view of model scores. The results showed that Adap3 produced the most
accurate partitions and learned the models that are the closest to the corresponding
gold models.

From these observations, we could come to a conclusion that Adap3 could be an
interesting algorithm for learning PRMs-SA. However, there are still open questions
regarding the comparison of PRMs. Perhaps the most important question would be
’how to detect if two PRM are equivalent even though they have different structure?’.
Unlike in Bayesian networks, the equivalence of PRMs is not well-established yet. The
relational causal discovery (RCD) algorithm (Maier et al. [2013]), which is a relational
adaptation of PC algorithm (Spirtes et al. [2000]) and learns partially-directed causal
relational models, could provide a solution towards defining equivalent structures in
relational settings. However, their algorithm is specialized for DAPERs. Another
direction for future research could be to extend PRM-SA learning algorithms to use
more recent PRM learning algorithms, such as RMMHC, Relational Max-Min Parents
and Children (RMMPC) etc. (Ben Ishak [2015]). Further, extending PRMs-SA to add
support for spatial functions that work directly with the spatial attributes could be an
interesting future prospect.

9
Implementations in PILGRIM

Contents
9.1 An Introduction to PILGRIM 136
9.2 Technical aspects . 137
9.3 PILGRIM-Relational . 137

9.3.1 Modules . 139
9.3.2 Implementation of PRM-SA 144
9.3.3 Implementation of PRM benchmark generation 145

9.4 PILGRIM-Applications . 148
9.5 Conclusion . 150

135

136 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

9.1 An Introduction to PILGRIM

With the goal to provide a tool for working with probabilistic graphical models,
Data, User and KnowledgE (DUKe) research team at Laboratoire d’Informatique de
Nantes Atlantique (LINA) is actively developing a software platform called PILGRIM
(ProbabIListic GRaphIcal Models). Started in 2010 for modeling, learning and rea-
soning upon Bayesian networks, this project was extended to support PRMs in 2012.
An application of PRMs on recommender systems was implemented in 2013. Currently,
this project has the following sub-projects:

PILGRIM-General
It is the first project to be developed under the PILGRIM project. It is mainly con-
cerned with modeling of standard Bayesian networks and dynamic Bayesian networks.
PILGRIM-Structure Learning
This project implements several algorithms to learn structure of standard Bayesian
networks and dynamic Bayesian networks. Current version of this project has the im-
plementation of the following structure learning algorithms: Greedy Search, MMPC,
MMHC, MMPC, Dynamic Greedy Search, Dynamic Max-Min Parents and Children
(DMMPC), Dynamic Max-Min Hill Climbing (DMMHC), DMMPC. It also imple-
ments several scoring functions such as AIC, BDeu, BIC, and MDL.

PILGRIM-Relational
This project aims at modeling PRMs and learning probabilistic models from relational
data. It primarily implements PRMs and its extensions – PRM-RU, PRM-CU, and
PRM-SA. This project consists of the following modules:

1. Core module provides basic data structures and functionalities for defining PRMs,

2. PRM learning module deals with the tasks of parameter estimation and structure
learning of standard PRMs,

3. PRM benchmark generation provides algorithms for generating PRM benchmark
datasets,

4. PRM extensions module implements various extensions of PRMs, such as PRMs-
SA, PRMs-RU, and PRMs-CU.

5. Utilities module provides useful functionalities, such as visualization of PRMs,
importing/exporting relational schema etc.

PILGRIM-Applications
This project was started with the goal to apply PRMs in some practical applications.
The first application chosen for this purpose is recommender systems. Huang et al.
[2004]’s recommender model has been implemented in this project.

PILGRIM is a joint effort of researchers at LINA, and PhD and graduate students
at the University of Nantes. This thesis has contributed only in PILGRIM-Relational
and PILGRIM-Applications projects. Therefore, this chapter is dedicated to these two
projects only. The main contributions of this thesis are in the modules PRM extensions,
PRM benchmark generation and utilities of PILGRIM-Relational project, and in the
implementation of recommender systems for PILGRIM-Applications project. Table 9.1
lists the main contributors and their effort on different modules of these projects.

9.2. TECHNICAL ASPECTS 137

This chapter is organized as follows. We will begin with the technical aspects of
PILGRIM in Section 9.2. Sections 9.3 and 9.4 will provide a detailed insight into
PILGRIM-Relational and PILGRIM-Applications projects respectively.

9.2 Technical aspects

PILGRIM is developed in C++ and is compatible with Windows and Linux. It
utilizes several libraries to provide a complete platform for working with probabilistic
models. This section briefly presents such libraries, and relational data source sup-
ported by PILGRIM.

Library dependencies The projects PILGRIM-Relational and PILGRIM-Applications
depend on the following libraries for various functionalities of the projects:

1. ProBT API 1 for various functionalities related to Bayesian networks, e.g., mod-
eling/inference from a GBN,

2. Boost 2 for various useful libraries, such as Boost pointer, Boost UBLAS, Boost
Graph, Boost Geometry etc.,

3. Database Template Library (DTL) 3 for communicating with databases

4. Shark-ML 4 for supervised and unsupervised machine learning algorithms,

5. Google Test 5 for unit testing,

6. PugiXML 6 for handling PRMs in XML format

7. Libboard 7 for visualizing PRMs.

Relational data source Currently, PILGRIM-Relational and PILGRIM-Applications
can work with spatial as well as non-spatial data stored in relational databases. To
deal with spatial data, an additional extension, called PostGIS, is required.

9.3 PILGRIM-Relational

PILGRIM-Relational offers a platform for working with PRMs. It provides sev-
eral functionalities for modeling PRMs and its extensions, learning such models from
relational databases, and making inferences from such models. A summary of major
functionalities implemented in PILGRIM-Relational are presented in Table 9.2. Us-
age of PILGRIM will be illustrated through some examples later in Appendix B. This
section will provide implementation details of PILGRIM-Relational. Section 9.3.1 will
present a general overview of PILGRIM-Relational modules. Section 9.3.2 will explain
the implementation of PRM-SA. Section 9.3.3 will provide implementation details of
PRM benchmark generation.

1. http://www.probayes.com/~mazer/html/index.html
2. http://www.boost.org
3. http://dtemplatelib.sourceforge.net
4. http://image.diku.dk/shark/
5. https://github.com/google/googletest
6. http://pugixml.org
7. https://github.com/c-koi/libboard

http://www.probayes.com/~mazer/html/index.html
http://www.boost.org
http://dtemplatelib.sourceforge.net
http://image.diku.dk/shark/
https://github.com/google/googletest
http://pugixml.org
https://github.com/c-koi/libboard

138 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

T
able

9.1
–
P
ILG

R
IM

m
odules,and

contributions
m
ade

by
the

team
m
em

bers

P
ro
ject

m
an

ager:
P
hilippe

LE
R
A
Y

P
ro
jects

M
em

b
ers

M
od

u
les

Fu
n
ction

alities
L
ead

ers
P
articip

ants

R
elational

P
hilippe

LE
R
A
Y

(P
hL)

A
nthony

C
O
U
TA

N
T

(A
C
)

M
ouna

B
E
N

ISH
A
K

(M
B
I)

R
ajan

i
C
H
U
LY

A
D
Y
O

(R
C
)

N
asiba

H
U
SE

Y
N
O
VA

(N
H
)

C
ore

A
rchitecture

A
C

M
B
I,R

C

P
R
M

Learning
P
aram

eter
estim

ation
M
B
I

A
C

R
elationalG

reedy
Search

M
B
I

A
C
,R

C

R
M
M
H
C
,R

M
M
P
C
,R

M
M
P
C

M
B
I

P
R
M

benchm
ark

generation

R
andom

P
R
M

generation
M
B
I

R
C

R
andom

P
R
M
-SA

generation
R
C

N
aïve

skeleton
generation

M
B
I

R
C

k-partite
skeleton

generation
R
C

R
elationalForw

ard
Sam

pling
P
hL,N

H
R
C

R
B
G

Sam
pling

R
C

E
valuation

m
etrics

M
B
I

R
C

P
R
M

extensions
P
R
M
-R

U
,P

R
M
-C

U
A
C

P
R
M
-SA

R
C

U
tilities

P
R
M

X
M
L
Serialization

A
C

M
B
I

P
R
M

export/im
port

R
C

M
B
I

P
R
M

V
isualization

A
C

A
pplications

R
ajan

i
C
H
U
LY

A
D
Y
O

(R
C
)

R
ecom

m
ender

System
R
C

9.3. PILGRIM-RELATIONAL 139

Figure 9.1 – Technological stack diagram

9.3.1 Modules

PILGRIM-Relational library is composed of five modules: core module, PRM learn-
ing, PRM benchmark generation, PRM extensions, and utilities. Figure 9.1 shows how
these modules are built upon each other.

Core module

The core module provides basic data structures and functionalities for defining
PRMs. All other modules are built on top of this module. The major functionalities
of this module include PRM specification, database connectivity to deal with complete
or partial instantiations of relational schemas, and instantiation of a PRM into a GBN
for inference. Several classes are responsible for accomplishing these functionalities. In
this section, we will present some of the main classes that constitute this module. In
the following, texts in monospace typeface will indicate a C++ class.

PRM specification In PILGRIM, a PRM is defined through the RBN class. This
is the most important class in this module. All other modules rely on this class for
PRM specification. An RBN object is composed of a RelationalSchema object, a
dependency structure described by a set of IRBNVariable objects, and the associated
CPDs described by RBNDistribution objects.

Defining a relational schema A relational schema is specified through the class
RelationalSchema. It stores a relational schema in the form of a graph such that
classes are represented by vertices, and the reference slots (or foreign keys) by edges.
Each vertex of this graph is an object of Class 8.

Class represents a class of a relational schema. It consists of a set of attributes
and an identifier (a primary key). An Attribute class represents an attribute of
a class (i.e., a column of a table in the context of databases.) Each attribute is
identified by a name, and can take a value from a finite set. This set of values is
modeled by Domain class. It is an abstract class, and has the following implemen-
tations: MultinomialDomain, ProBTDomain, ContainingNullDomain, and
CompositeDomain.

8. Here, Class in monospace typeface refers to a C++ class in PILGRIM whereas ‘class’ in plain
font refers to a PRM class in general term.

140 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM
T
ab

le
9.
2
–
Su

m
m
ar
y
of

m
aj
or

fu
nc

ti
on

al
it
ie
s
im

pl
em

en
te
d
in

P
IL
G
R
IM

-R
el
at
io
na

l

T
as
k

M
ai
n
st
ep

s
S
p
ec
ia
li
za
ti
on

Im
p
le
m
en
ta
ti
on

cl
as
s

T
1.

D
efi
ne

a
P
R
M

T
1.
1
D
efi
ne

a
re
la
ti
on

al
sc
he
m
a

P
R
M

R
B
N

T
1.
2
D
efi

ne
a
de
pe

nd
en

cy
st
ru
ct
ur
e

P
R
M
-S
A

R
B
N
S
A

T
1.
3
D
efi
ne

pa
ra
m
et
er
s

P
R
M
-R

U
R
B
N
R
U

P
R
M
-C

U
R
B
N
C
U

T
1.
1
D
efi
ne

a
re
la
ti
on

al
sc
he
m
a

C
as
e
I:
W
el
l-d

efi
ne

d
sc
he
m
a

R
e
l
a
t
i
o
n
a
l
S
c
h
e
m
a

C
as
e
II
:I
m
po

rt
fr
om

da
ta
ba

se
S
c
h
e
m
a
U
t
i
l
i
t
y

C
as
e
II
I:
G
en
er
at
e
a
ra
nd

om
sc
he
m
a

R
e
l
a
t
i
o
n
a
l
S
c
h
e
m
a
G
e
n
e
r
a
t
o
r

S
p
a
t
i
a
l
R
e
l
a
t
i
o
n
a
l
S
c
h
e
m
a
G
e
n
e
r
a
t
o
r

T
1.
2
D
efi
ne

a
de
pe

nd
en
cy

st
ru
ct
ur
e

C
as
e
I:
W
el
l-d

efi
ne

d
st
ru
ct
ur
e

R
B
N

C
as
e
II
:L

ea
rn

st
ru
ct
ur
e
fr
om

da
ta

R
G
S

C
as
e
II
I:
G
en
er
at
e
a
ra
nd

om
st
ru
ct
ur
e

R
B
N
G
e
n
e
r
a
t
e
D
e
p
e
n
d
e
n
c
i
e
s

T
1.
3
D
efi
ne

pa
ra
m
et
er
s

C
as
e
I:
W
el
l-d

efi
ne

d
pa

ra
m
et
er
s

R
B
N

C
as
e
II
:L

ea
rn

pa
ra
m
et
er
s
fr
om

da
ta

R
B
N

C
as
e
II
I:
G
en
er
at
e
ra
nd

om
pa

ra
m
et
er
s

R
B
N
G
e
n
e
r
a
t
e
P
a
r
a
m
e
t
e
r
s

T
2.

M
ak

e
in
fe
re
nc
e

G
en
er
at
e
a
G
B
N

R
B
N

T
3.

G
en
er
at
e
a
ra
nd

om
da

ta
se
t
fr
om

a
P
R
M

T
3.
1
G
en
er
at
e
a
re
la
ti
on

al
sk
el
et
on

T
3.
2
Sa

m
pl
e
a
P
R
M

T
3.
1
G
en
er
at
e
a

re
la
ti
on

al
sk
el
et
on

(u
si
ng

on
e
of

th
e
tw

o
st
ra
te
gi
es
)

N
on

-s
pa

ti
al

re
la
ti
on

al
sk
el
et
on

R
e
l
a
t
i
o
n
a
l
S
k
e
l
e
t
o
n
G
e
n
e
r
a
t
o
r

St
ra
te
gy

1:
N
aï
ve

sk
el
et
on

N
a
i
v
e
S
k
e
l
e
t
o
n
G
e
n
e
r
a
t
o
r

St
ra
te
gy

2:
k
-p
ar
ti
te

gr
ap

h-
ba

se
d
sk
el
et
on

K
P
a
r
t
i
t
e
G
r
a
p
h
G
e
n
e
r
a
t
o
r

T
3.
2
Sa

m
pl
e
a
P
R
M

St
ra
te
gy

1:
G
B
N
-b
as
ed

sa
m
pl
in
g

G
B
N
B
a
s
e
d
S
a
m
p
l
i
n
g

St
ra
te
gy

2:
Fo

rw
ar
d
sa
m
pl
in
g

F
o
r
w
a
r
d
S
a
m
p
l
i
n
g

St
ra
te
gy

3:
R
el
at
io
na

l
B
lo
ck

G
ib
bs

sa
m
-

pl
in
g

G
i
b
b
s
S
a
m
p
l
i
n
g

9.3. PILGRIM-RELATIONAL 141

map<string~Class>

 keys:string

RelationalSchema

Fmm_refSlotAttributes:multimap<string~string>

Fm_classNameToClassRef

Domain

 getValueFromIndex)v
 firstValue)v
 getValueIndex)v
 getType)v
 nextValue)v
 cardinality)v
 getValueFromIndexAsString)v
 clone)v

Fdomain

Class

Fv_primaryKeyAttributes:vector<string>
Fname:string

 elements

map<string~Attribute>

 keys:string

 elements

Fm_attributes

prm::Attribute

 TAttribute)v
 T~Attribute)v
 TgetName)v
 TsetDomain)v
 TgetDomain)v
 TgetAggregatorsList)v
 TsetListAggregators)v

 TRelationalSchema)v
 T~RelationalSchema)v
 TaddClass)v
 TaddClassRef)v
 TremoveClass)v
 TexistsClass)v
 TgetClass)v
 TgetClassRef)v
 TgetClassNames)v
 TgetClassRefForSlotChain)v
 TaddReferenceSlot)v
 TisGuaranteedAcyclicRefSlot)v
 TisGuaranteedAcyclicSlotChain)v
 TisFKAttribute)v
 ThasFKAttribute)v
 TremoveReferenceSlot)v
 TgetRefSlots)v
 TgetRefSlotsPointingToClass)v
 TexistsRefSlot)v
 TgetClassToRefSlot)v
 TgetClassToRefsolt)v
 TgetSlotChainEnds)v
 TgetClassNamesInTopologicalOrder)v
 Tclear)v

 TClass)v
 TClass)v
 T~Class)v
 TgetName)v
 TsetPK)v
 TgetPK)v
 TisPK)v
 TaddAttribute)v
 TaddAttributeRef)v
 TaddAttributes)v
 TremoveAttribute)v
 TexistsAttribute)v
 TgetAttribute)v
 TgetAttributeRef)v
 TgetAttributeNames)v
 Toperator==)v
 Tequals)v

Figure 9.2 – Class diagram showing how RelationalSchema, Class, Attribute, and
Domain are related to each other

Figure 9.2 shows how classes RelationalSchema, Class, Attribute, and
Domain are related to each other.

Defining a dependency structure and CPDs The dependency structure in a
PRM consists of random variables corresponding to class attributes and edges between
these variables. PILGRIM-Relational makes a distinction between random variables
and class attributes by modeling random variables in a PRM as IRBNVariable,
and class attributes as Attribute. Two types of random variables have been re-
alized in the current version of PILGRIM-Relational: RBNSimpleVariable, and
IRBNCompositeVariable. The former type refers to a simple random variable
with a slot chain (of type SlotChain) (which can be empty) and with or without
an aggregator (of type Aggregator) whereas IRBNCompositeVariable refers to
a random variable that is composed of more than one variable, such as a random
variable obtained after performing multi-set operation (see Definition 5). An object
of RBNSimpleVariable class contains an object of IRBNCoreVariable, which
indicates the type of random variables, such as a variable created from a class at-
tribute (modeled as RBNAttributeVariable), or a selector variable (modeled as
RBNSelectorVariable) associated with a partition function in a PRM-RU and
PRM-CU.

An RBN object consists of a set of IRBNCoreVariable objects. Note that an
IRBNVariable object represents a relational attribute whereas an IRBNCoreVariable
object represents a node in a PRM without a slot chain and an aggregator. Each node

142 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

IRBNCompositeVariable

YcloneMP
YgetFlattenedVariablesMP
YupdateNodeMP
YoperatorRBNVariablesSequenceMP
YtoStringMP
YgetVariablesMP
YIRBNCompositeVariableMP
Y~IRBNCompositeVariableMP
YgetSlotChainsMP
YisCompositeMP

>variables

map[string_RBNVariablesSequence^

Ykeyszstring

Yelements >variables

YEMPTY_SLOTCHAIN

RBNSimpleVariable

>baseNamezstring

>slotChain

RelationalSchema

>mm_refSlotAttributeszmultimap[string_string^

YgetRefSlotsMP
YgetClassMP
YgetSlotChainEndsMP
YisGuaranteedAcyclicRefSlotMP
YaddClassRefMP
YisFKAttributeMP
YgetClassToRefsoltMP
OrderMP
YexistsClassMP
YisGuaranteedAcyclicSlotChainMP
YgetClassRefForSlotChainMP
YaddClassMP
YgetClassNamesMP
YgetClassNamesInTopological
YRelationalSchemaMP
YgetClassRefMP
YclearMP
YremoveClassMP
Y~RelationalSchemaMP
YaddReferenceSlotMP
YgetClassToRefSlotMP
YremoveReferenceSlotMP
YhasFKAttributeMP
YgetRefSlotsPointingToClassMP
YexistsRefSlotMP

>v_variables

map[string_IRBNCoreVariable^

Ykeyszstring

Yelements >coreVariable

RBN

>namezstring
>m_cdgNodeToIdzmap[string_int^

YvRBNMP
Yv~RBNMP
YvinitMP
YvgetSchemaMP
YvaddNodeMP
YvremoveNodeMP
YvgetNodeMP
YvgetNodesMP
YvgetChildrenNodesMP
YvgetNodesForClassMP
YvgetVariablesForClassMP
YvgetNodeAndParentsMP
YvgetVariablesMP
YvgetVariableMP
YvexistsNodeMP
YvexistsNodeInCDGMP
YvisCorrectChildTypeMP
YvisCorrectParentTypeMP
YvclearParentsMP
YvremoveParentMP
YvaddParentMP
YvsetParentsMP
YvgetParentsMP
YvhasParentMP
YvhasParentByNameMP
YvhasChildMP
YvexistsDependencyMP
YvexistsMoreThanOneDependencyMP
YvgetDistributionMP
YvsetDistributionMP
YvupdateDistributionMP
YvsetDistributionTableMP
YvsetUniformDistributionMP
YvgenerateGroundBayesianNetworkMP
YvgetCDGDumpMP
YvexistsCDGDependencyMP
YvoutputXMLMP
YvlearnParametersMP
YvlearnNodeParameterMP
YvcreatesCycleMP
YvgetNodeNamesInTopological
OrderMP
>vinitNodeMP
>vassignNodeToCDGMP
>vaddDependencyInCDGMP
>vremoveDependencyInCDGMP
>vgenerateGroundBayesianNetwork
NodesMP
>vgenerateGroundBayesianNetwork
DependenciesMP
>vpropagateGroundBayesianNetwork
DistributionsMP
>vsetGroundBayesianNetwork
EvidenceMP
>vgenerateGroundBayesianNetwork
DependenciesForNodeMP

>m_nodes

>schema

>m_parents

map[string_RBNDistribution^

Ykeyszstring

>m_distributions
RBNCompositeVariable

YvIRBNCompositeVariableMP
Yv~IRBNCompositeVariableMP
YvisCompositeMP
YvgetVariablesMP
YvgetSlotChainsMP
YvgetFlattenedVariablesMP
YvupdateNodeMP
YvtoStringMP
YvoperatorvRBNVariablesSequenceMP
YvcloneMP

IRBNCoreVariable

YvIRBNCoreVariableMP
Yv~IRBNCoreVariableMP
YvgetClassRefMP
YvgetNameMP
YvupdateNodeMP
YvgetAggregatorsListMP
YvgetDomainMP
YvsetDomainMP
YvinstantiateMP
YvcloneMP

SlotChain

YvEMPTY_SLOTCHAIN
>vv_parts

YvSlotChainMP
Yv~SlotChainMP
YvgetPartsMP
YvgetPartMP
YvgetSubChainMP
YvcontainsReversedPartMP
YvsimplifyMP
YvsizeMP
YvtoStringMP
YvreverseMP
>vinitSlotChainPartsFromStringMP

YvRBNSimpleVariableMP
Yv~RBNSimpleVariableMP
YvisCompositeMP
YvgetClassRefMP
YvgetSlotChainMP
YvgetSlotChainsMP
YvgetFlattenedVariablesMP
YvisLegalChildMP
YvgetBaseNameMP
YvtoStringMP
YvgetAggregatorsListMP
YvequalsMP
YvoperatorvRBNVariablesSequenceMP
YvcloneMP
YvgetCoreVariableMP
YvgetBaseDomainMP
YvcloneMP
YvupdateNodeMP

Yelements

RelationalSchema

>mm_refSlotAttributeszmultimap[string_string^

YvRelationalSchemaMP
Yv~RelationalSchemaMP
YvaddClassMP
YvaddClassRefMP
YvremoveClassMP
YvexistsClassMP
YvgetClassMP
YvgetClassRefMP
YvgetClassNamesMP
YvgetClassRefForSlotChainMP
YvaddReferenceSlotMP
YvisGuaranteedAcyclicRefSlotMP
YvisGuaranteedAcyclicSlotChainMP
YvisFKAttributeMP
YvhasFKAttributeMP
YvremoveReferenceSlotMP
YvgetRefSlotsMP
YvgetRefSlotsPointingToClassMP
YvexistsRefSlotMP
YvgetClassToRefSlotMP
YvgetClassToRefsoltMP
YvgetSlotChainEndsMP
YvgetClassNamesInTopologicalOrderMP
YvclearMP

RBNDistribution

YvRBNDistributionMP
Yv~RBNDistributionMP
YvgetVariablesSequenceMP
YvupdateNodeMP
YvgetProbabilityMP
YvgetAllProbabilitiesMP
YvgetInstanceForBNMP
YvcomputeProbabilityMP
YvoutputXmlStringMP
Yvoperator]]MP
YvequalsMP

RBNVariablesSequence

YvRBNVariablesSequenceMP
Yv~RBNVariablesSequenceMP
YvaddMP
YvremoveMP
Yvoperator[]MP
Yvoperator^MP
Yvoperator^]MP
YvcontainsMP
YvupdateNodeMP
YvcardinalityMP
YvdimMP
YvemptyMP
YvgetAggregatorTypeMP
YvgetAggregatorMP
YvgetVariableDomainMP
YvgetIndexMP
YvgetIndicesMP
YvgetStringFormForIndexMP
YvgetSubSequenceFromMP
YvgetSubSequenceByBlackListingMP
YvisPermutationOfMP
YvcontainsAggregatedVariablesMP
Yvoperator]]MP
YvtoStringMP
YvclearMP

IRBNVariable

YvIRBNVariableMP
Yv~IRBNVariableMP
YvupdateNodeMP
YvgetAggregatorTypeMP
YvsetAggregatorTypeMP
YvgetAggregatorMP
YvisAggregatedMP
YvgetSlotChainsMP
YvgetFlattenedVariablesMP
YvisCompositeMP
YvgetDomainMP
YvcardinalityMP
YvgetBaseDomainMP
YvtoStringMP
YvequalsMP
YvoperatorvRBNVariablesSequenceMP
YvcloneMP

Figure 9.3 – Class diagram showing how RBN is related to other classes

is associated to a set of parents, which is an object of RBNVariablesSequence,
and a distribution, represented by RBNDistribution class. The latter class is
specialized into RBNDistributionUniform for uniform probability distributions,
RBNConditionalDistribution for conditional probability distribution tables, and
RBNDistributionProBT for distributions of types supported by ProBT. Figure 9.3
shows how the class RBN is associated with other classes.

Instantiations of a relational schema Instance is an abstract class that defines
an interface for a complete or a partial instantiation of a relational schema. Currently,
PILGRIM-Relational has two implementations of this class: (1) MockInstance,
which is an in-memory storage of a relational schema instantiation in the form of
a graph, and is basically implemented for testing purposes, and (2) DBInstance,

9.3. PILGRIM-RELATIONAL 143

prm::RBNDistribution

PVvariables
PVchildrenCardinality

UVRBNDistribution=_
UV~RBNDistribution=_
UVgetVariablesSequence=_
UVupdateNode=_
UVgetProbability=_
UVgetAllProbabilities=_
UVgetInstanceForBN=_
UVcomputeProbability=_
UVoutputXmlString=_
UVoperator===_
UVequals=_

prm::RBNConditionalDistribution

PVparentsCardinality
PVm_items

UVRBNConditionalDistribution=_
UVRBNConditionalDistribution=_
UVRBNConditionalDistribution=_
UV~RBNConditionalDistribution=_
UVgetProbability=_
UVgetAllProbabilities=_
UVgetInstanceForBN=_
UVcomputeProbability=_
UVsetItems=_
UVoutputXmlString=_

prm::RBNDistributionProBT

PVprototype

UVRBNDistributionProBT=_
UV~RBNDistributionProBT=_
UVgetProbability=_
UVgetAllProbabilities=_
UVgetInstanceForBN=_
UVcomputeProbability=_

prm::RBNDistributionUniform

UVRBNDistributionUniform=_
UV~RBNDistributionUniform=_
UVgetProbability=_
UVgetAllProbabilities=_
UVgetInstanceForBN=_
UVcomputeProbability=_
UVoutputXmlString=_

Figure 9.4 – Types of RBNDistribution

which is used to communicate with a relational schema instantiation stored as a rela-
tional database, and is specialized for PostgreSQL databases only. Connections to a
relational database is established through ConnectionManager class.

Instantiating a PRM into a GBN A GBN is represented by BayesianNetwork
class. It inherits plBayesianNetwork from ProBT library, and adds the concepts of
IRBNCoreVariable for representing random variables. An RBN object provides the
method generateGroundBayesianNetwork() to obtain a BayesianNetwork
object by instantiating the PRM over an Instance object.

PRM learning module

This module deals with the tasks of parameter estimation and structure learning
of (regular) PRMs. It offers statistical (MLE) as well as Bayesian (MAP, EAP, and
Laplace) approaches to parameter learning. Current version of PILGRIM-Relational
comes with the implementation of RGS, RMMHC, RMMPC, and RMMPC algorithms
for learning the structure of regular PRMs, which are implemented in the classes RGS,
AlgoRMMHC, AlgoRMMPC and AlgoRMMPCBar respectively (Ben Ishak [2015]). Scor-
ing function for these score-based methods (explained in Section 2.6) is implemented
in class RBNDecomposableScore.

PRM benchmark generation module

This module provides algorithms for generating random relational schemas, random
PRMs, relational skeletons, and sampling PRMs. Initially implemented by Ben Ishak
[2015], this module has undergone big modifications to overcome shortcomings men-
tioned in Section 2.7.3, to extend it with PRMs-SA and spatial dataset generation, and
also to improve the quality of the original implementation. As this is one of our major

144 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

contributions in PILGRIM-Relational project, we will dedicate Section 9.3.3 for this
module.

PRM extensions module

PRM-RU, PRM-CU, and PRM-SA are implemented in PILGRIM-Relational. All
of them inherit RBN class, and add data structures and functionalities specific to them.
As this thesis contributes to the implementation of PRM-SA, we will explain its imple-
mentation in detail in Section 9.3.2. The implementation of PRM-RU and PRM-CU
is explained in detail in Coutant [2015]’s dissertation.

Utilities module

Besides the functionalities specific to PRMs, PILGRIM-Relational implements some
utility methods to help developers/users in tasks like visualization of PRMs (through
PRMDisplay), importing/exporting a relational schema from/to a database (through
SchemaUtility), and serializing/deserializing PRMs (in RBNSerializeUnserialize).
Some examples will be provided in Appendix B.

9.3.2 Implementation of PRM-SA

The implementation of regular PRM in PILGRIM-Relational does not have support
for spatial attributes. Therefore, a new implementation was needed for PRM-SA. As
PRMs-SA have many things in common with PRMs, the implementation of PRM-SA
has been based on that of PRM.

PRM-SA specification

A PRM-SA is defined in the similar fashion as a PRM. That means, we need to
define a relational schema, a dependency structure, and a set of parameters. However,
the main things that distinguish PRMs-SA from PRMs are: the presence of spatial
classes in the relational schema, the need for adapting a relational schema for spatial
attributes, and the presence of partition functions in the PRM-SA. Because of these
differences, the implementation of PRM has been extended in the core module.

Defining a spatial relational schema A spatial relational schema is defined through
RelationalSchema (of Figure 9.2), which can now contain spatial as well as non-
spatial classes thanks to the extension of Class into SpatialClass. SpatialClass
holds spatial attributes (SpatialAttribute objects) as well as non-spatial at-
tributes (Attribute). Unlike Attribute objects, SpatialAttribute objects
are not associated with a Domain object but a geometry, which can be a point, line or
polygon. For a spatial relational schema to be used with a PRM-SA, the schema needs
to be adapted. This is done during the initialization of an RBNSA object, an extension
of RBN.

Defining a PRM-SA A PRM-SA is implemented in class RBNSA. This class takes
a spatial relational schema. During initialization of an RBNSA object, the associated
spatial relational schema is adapted. That means, for each spatial attribute in the
schema, a spatial partition class is created and is associated with a spatial ref. attribute.
A spatial partition class is again a SpatialClass, and spatial ref. attributes are

9.3. PILGRIM-RELATIONAL 145

modeled as an Attribute object. Then, partition objects are created according
to the specified partition algorithms. Currently, only K-means algorithm has been
implemented in PILGRIM-Relational. Once initialized, its dependency structure and
parameters can be specified in the same way as for a PRM.

Learning a PRM-SA

PRM-SA learning algorithms are based on RGS class. As explained in Chapter 2,
standard RGS algorithm involves three graph operations: ‘Add_edge’, ‘Delete_edge’,
and ‘Revert_edge’. Such operations are implemented as GraphOperation, and these
three operations are specialized in AddEdgeOperation, DeleteEdgeOperation,
and RevertEdgeOperation respectively. RGS takes a combination of these graph
operations. It maintains a list of graph operation types that can be applied dur-
ing the learning process. By default, RGS apply all of these operations to learn
a regular PRM. RGS requires a decomposable scoring function, an instance of class
RBNDecomposableScore, to score candidate PRMs. To avoid computing score of
the same structure multiple times, RGS uses a RBNCache, which caches already com-
puted scores. The class diagram of RGS of Figure 9.5 shows how RGS is associated
with other classes.

Naïve approach For learning a PRM-SA in naïve way, we add two new types of
GraphOperation for increasing or decreasing the number of partitions of spatial ref.
attributes: IncreasePartitionOperation, and DecreasePartitionOperation.
We then use these two operations together with the three standard operations (‘Add_edge’,
‘Delete_edge’, and ‘Revert_edge’) with RGS to learn a PRM-SA.

Adaptative approach The first two versions of our proposed adaptative structure
learning algorithms, Algorithms 14 and 15, are implemented in AdaptativeRGS1
and AdaptativeRGS2 respectively. These are based on RGS, and use the operations
IncreasePartitionOperation, and DecreasePartitionOperation inter-
nally to find the best cardinality of spatial ref. attributes during the search process.

As the neighborhood generation process for the third version of our adaptative
approach (Algorithm 16) involves the application of the three standard graph oper-
ations as well as the optimization of cardinality of spatial ref. attributes, we spe-
cialized ‘Add_edge’, ‘Delete_edge’, and ‘Revert_edge’ operations for spatial context
in classes SpatialAddEdgeOperation, SpatialDeleteEdgeOperation, and
SpatialRevertEdgeOperation. We thus use only these three operations with
RGS for learning a PRM-SA using the third version of our adaptative approach.

Figure 9.6 shows the types of GraphOperation implemented in PILGRIM-Relational.
Examples for naïve as well as adaptative approaches for learning a PRM-SA are pro-
vided in Section B.1.2.

9.3.3 Implementation of PRM benchmark generation

As explained in Sections 2.7.2 and 8.4.2, a PRM(-SA) benchmark is generated in
the following sequence: (1) generation of a random (spatial or non-spatial) schema,
(2) generation of a dependency structure, (3) generation of a CPDs, (4) generation of
a (spatial or non-spatial) relational skeleton, (5) sampling of the PRM(-SA) obtained

146 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

RBNCache

+ORBNCachev<
+O~RBNCachev<
+OisPresentv<
+Oinsertv<
+OprintItv<
+Obeginv<
+Oendv<

+cache

prm::algo::RGS

+ORGSv<
+OlearnStructurev<
+OgetPossibleOperationsv<
+OsetAllowedOperationTypesv<
TOcomputeRBNv<

prm::algo::ISLAlgo

+OISLAlgov<
+OlearnStructurev<
+OlearnStructurev<
+OgetPossibleOperationsv<
+OsetScorev<

Trbn

RBN

Tscore

RBNDecomposableScore

+O~RBNDecomposableScorev<
+ORBNDecomposableScorev<
+OcomputeNodev<
+Ocomputev<

RScore

+ORScorev<
+O~RScorev<
+Ocomputev<
+OsetRBNv<
+OgetRBNv<
+OsetInstancev<
+OgetInstancev<

std::vector<Oprm::algo
::GraphOperationTypeO>

TallowedOperationTypes

GraphOperationType

+elements

Figure 9.5 – Class diagram of RGS

prm::algo::GraphOperation

kbchild
kbparent
kbslotChain
kbaggregated

+bGraphOperationvT
+bGraphOperationvT
+bscorevT
+bscorevT
+bapplyvT
+btoStringvT
kbcomputeDeltaScorevT

prm::algo::AddEdgeOperation

+bAddEdgeOperationvT
+bscorevT
+bapplyvT
+btoStringvT
kbinitNeighbourhoodvT
kbscorevT

prm::algo::DecreasePartition
Operation

kbtarget
kbparamEstimationMethod
kbstep
kbk_min

+bDecreasePartitionOperationvT
+bDecreasePartitionOperationvT
+bscorevT
+bapplyvT
+bsetStepvT

prm::algo::DeleteEdgeOperation

+bDeleteEdgeOperationvT
+bscorevT
+bapplyvT
+btoStringvT

prm::algo::IncreasePartition
Operation

kbtarget
kbparamEstimationMethod
kbstep
kbk_max

+bIncreasePartitionOperationvT
+bIncreasePartitionOperationvT
+bscorevT
+bapplyvT
+bsetStepvT

prm::algo::RevertEdgeOperation

kbreversedSlotChain
kbedgeToRevert

+bRevertEdgeOperationvT
+bscorevT
+bapplyvT
+btoStringvT
kbinitNeighbourhoodvT
kbscorevT

prm::algo::SpatialAddEdge
Operation

kbbestPartitionOperation

+bSpatialAddEdgeOperationvT
+bscorevT
+bapplyvT
kbscorevT

prm::algo::SpatialDelete
EdgeOperation

kbbestPartitionOperation

+bSpatialDeleteEdgeOperationvT
+bscorevT
+bapplyvT

prm::algo::SpatialRevert
EdgeOperation

kbbestPartitionOperation

+bSpatialRevertEdgeOperationvT
+bscorevT
+bapplyvT
kbscorevT

Figure 9.6 – Types of GraphOperation available in PILGRIM-Relational

at step (3) for the skeleton generated at step (4). PILGRIM-Relational provides a
clear separation between these steps in the implementation and offers more than one
implementation for steps (1), (4), and (5).

Generating a random relational schema RelationalSchemaGenerator is
responsible for generating a random non-spatial relational schema. It creates a random

9.3. PILGRIM-RELATIONAL 147

RelationalSkeletonGenerator

+generate()
+RelationalSkeletonGenerator()

SpatialRelationalSkeletonGenerator

+generate()
+SpatialRelationalSkeleton
Generator()

NaiveSkeletonGenerator

+generate()
+NaiveSkeletonGenerator()
+~NaiveSkeletonGenerator()

SkeletonGenerationStrategy

+generate()
+SkeletonGenerationStrategy()
+~SkeletonGenerationStrategy()

#skeletonGenerationStrategy

KPartiteGraphGenerator

+generate()
+~KPartiteGraphGenerator()
+KPartiteGraphGenerator()

Figure 9.7 – Class diagram of relational skeleton generation strategies implemented in PIL-
GRIM

DAG. Then, for each node in the DAG, it adds a class, and for each edge, it adds a
foreign key in the class which corresponds to the start of the edge. Currently, two strate-
gies for adding random edges (or generating reference slots) in a DAG are available:
RefSlotsGenerationFromPolytree, and RefSlotsGenerationWithPMMixed
(Ben Ishak [2015]). SpatialRelationalSchemaGenerator generates a random
spatial relational schema, and is based on RelationalSchemaGenerator. The
strategies for generating references slots are still valid for this class.

Generating a random dependency structure Given a relational schema, the
class RBNGenerateDependencies creates a random DAG among the descriptive
attributes present in the relational schema. It then assigns a slot chain to each of the
edge in the DAG randomly. This results in a dependency structure of a random PRM.

Generating random CPDs Once the dependency structure is defined, we need to
specify CPDs of each node in the dependency structure to get a complete PRM. This
is done by RBNGenerateParameters class.

Generating a relational skeleton To obtain a benchmark dataset, we first need
to define a (non-spatial or spatial) relational skeleton over which a PRM(-SA) can
be instantiated to generate a complete dataset. RelationalSkeletonGenerator
and SpatialRelationalSkeletonGenerator are available for generating a non-
spatial and spatial skeleton respectively. These require an algorithm for generating a
relation skeleton. We have implemented two algorithms for generating non-spatial rela-
tional skeletons: NaiveSkeletonGenerator, and KPartiteSkeletonGenerator.
The former implements Ben Ishak [2015]’s algorithm, and the latter implements Algo-
rithm 6 proposed in this thesis. Both inherit SkeletonGenerationStrategy class
(Figure 9.7), which provides a common interface for these implementations so as to be
able to replace one algorithm by another easily. Both RelationalSkeletonGenerator
and SpatialRelationalSkeletonGenerator take one of these strategies but
the difference between them is that the latter deals with the adapted version of a
spatial relational schema and results in a spatial skeleton.

148 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

AttributeSamplingStrategy

wsampleGk

SamplingFromCollectionOfPointsStrategy

zpoints:vector<vector<double>>
zmaxDF:int
zrandomizePoints:bool

wsampleGk
wSamplingFromCollectionOf
w~SamplingFromCollectionOf
PointsStrategyGk

RBNSASampler

wsampleGk
w~RBNSASamplerGk
wRBNSASamplerGk

zspatialAttributeSampling
Strategy

RBNSampler

w~RBNSamplerGk
wsampleGk
wRBNSamplerGk

GBNBasedSampling

wsampleGk
wgetNameGk
w~GBNBasedSamplingGk
wGBNBasedSamplingGk

GibbsSampling

wgetNameGk
wGibbsSamplingGk
wsampleGk
w~GibbsSamplingGk
zsampleBlockGk
wsetBurnInGk

ForwardSampling

wsampleGk
wgetNameGk

RBNSamplingStrategy

wRBNSamplingStrategyGk
wsampleGk
wgetNameGk
w~RBNSamplingStrategyGk

zsamplingStrategy

Figure 9.8 – Class diagram of sampling strategies implemented in PILGRIM

Sampling a PRM Next, we need to sample a PRM over a skeleton to obtain a
complete dataset. We have provided an abstract class RBNSamplingStrategy,
which defines an interface for a sampling algorithm. We have extended this class
to implement three different algorithms for sampling a PRM, as shown in Figure 9.8.
GBNBasedSampling implements Ben Ishak [2015]’s algorithm, where a GBN is gener-
ated by unrolling a PRM over a relational skeleton and forward sampling from ProBT li-
brary is applied on this GBN. As an improvement to this approach, ForwardSampling
implements relational forward sampling of Algorithm 8, which works directly with
databases avoiding GBN generation. To improve the sampling process further by
supporting evidences (partially initialized databases or incomplete datasets), we have
created GibbsSampling, which implements RBG of Algorithm 9. All three of these
sampling algorithms are applicable for sampling a regular PRM to obtain a non-spatial
dataset. However, only GibbsSampling can sample a PRM-SA because a spatial re-
lational skeleton is partially initialized (cf. hypotheses in Section 8.4.2). To generate a
spatial dataset, we also need to sample spatial attributes. AttributeSamplingStrategy
is an interface for this. Among the three cases for sampling spatial attributes presented
in Section 8.4.2, only the first case is implemented in SamplingFromCollection-
OfPointsStrategy.

9.4 PILGRIM-Applications

This project aims at developing applications using PRMs. The first application
realized in this direction is a recommender system. As our first attempt, we imple-
mented Huang et al. [2004]’s recommendation model. Our personalized recommen-
dation model proposed in Chapter 7 was developed independently and is planned to
be merged into this sub-project. A summary of major functionalities implemented in
PILGRIM-Applications are listed in Table 9.3.

In this project, a recommender system is built around a class called Recommender.
This class consists of a recommendation model (RecoModel) and methods to learn
the model, perform predictions on the model etc. Currently, Huang et al. [2004]’s

9.4. PILGRIM-APPLICATIONS 149

Table 9.3 – Summary of major functionalities implemented in PILGRIM-Recommender

Task Main steps Specialization Implementation class

T1. Define a recommender
system (Huang et al.
[2004]’s model)

Case I: Well-defined
structure

HuangsRecoModel,
NaiveBayesianClassifier

T1.1 Find Markov blanket Case II: Learn from
data

T1.2 Build naïve Bayesian
classifier
T1.3 Learn parameters of
the classifier

T1.1 Find Markov blanket MarkovBlanket

T1.2 Build naïve Bayesian
classifier

HuangsRecoModel

T1.3 Learn parameters of
the classifier

HuangsRecoModel

T2. Make top-N recom-
mendations

HuangsRecoModel

prm::rs::model::HuangsReco
Model

>VHuangsRecoModelK_
>VHuangsRecoModelK_
>V~HuangsRecoModelK_
>VlearnModelK_
>VlearnModelParametersK_
>VgetLabelProbabilityK_
>VpredictK_
>VgetTopNK_
>VgetAttributeValueMapK_
>VsetModelK_
>VsetParameterEstimationMethodK_
>VsetSchemaK_
>VsetMaxSlotChainLengthK_
>VpredictK_
>VgetCompletePredictionsK_
>VgetCompletePredsForAllCombsK_
>VpredictForAllCombinationsK_
>VgetAllModelVariablesK_
>VsaveModelK_
>VloadModelK_

prm::rs::model::RecoModel

>VRecoModelK_
>VRecoModelK_
>V~RecoModelK_
>VinitK_
>VgetTargetClassK_
>VgetTargetClassAttributeK_
>VgetFKToClassToRecommendK_
>VgetFKToRecommendToClassK_
>VlearnModelK_
>VlearnModelParametersK_
>VpredictK_
>VgetLabelProbabilityK_
>VpredictLabelK_
>VgetTopNK_
>VsaveModelK_
>VloadModelK_

shared_ptr<Vprm::Relational
SchemaV>

>schema

Figure 9.9 – Class diagram of RecoModel

recommendation model has been implemented in the class HuangRecoModel, which
extends RecoModel as shown in Figure 9.9. As mentioned in 2.4, this model builds
a naïve Bayesian classifier among the target attribute (Transaction.Exists in Huang
et al. [2004]’s proposal) and its Markov blanket such that the target attribute is
the root (target) node of the classifier. Naïve Bayesian classifier is implemented in
class NaiveBayesianClassifier by extending plBayesianNetwork as shown
in Figure 9.10.

150 CHAPTER 9. IMPLEMENTATIONS IN PILGRIM

prm::NaiveBayesianClassifier

+kNaiveBayesianClassifier()
+kNaiveBayesianClassifier()
+kNaiveBayesianClassifier()
+kNaiveBayesianClassifier()
+kNaiveBayesianClassifier()
+kadd_node()
+kget_root_node()
+kget_root_var()
+kattribute_nodes()
+kget_attribute_var()
+ksave()
+kget_metadata_as_xml()
+kload_from_file()
+klearn_from_datafile()
hkload_from_xml_doc()
hkget_as_xml_doc()

plBayesianNetwork std::map<kstd::string,
boost::shared_ptr<kIRBNVariablek>k>

hm_attributeVars

shared_ptr<kIRBNCoreVariablek>

hrootVar

Figure 9.10 – Class diagram of NaiveBayesianClassifier

9.5 Conclusion
In this chapter, we introduced PILGRIM, a software for working with probabilistic

graphical models. We presented a brief overview of different sub-projects of PIL-
GRIM. We focused our discussion on two projects where this thesis has contributed
the most: PILGRIM-Relational and PILGRIM-Applications. The former is a library
that offers different functionalities to work with PRMs (including PRMs-SA). We have
presented different modules in this library, and also covered the contributions made
by this thesis in the implementation of PRM benchmark generation and PRMs-SA
in detail. PILGRIM-Applications is aimed at using the PILGRIM-Relational library
to develop useful applications. We have also presented our implementation of Huang
et al. [2004]’s model for recommendation in this chapter. Major functionalities pro-
vided in these projects have been summarized in Table 9.2. Appendix B will provide
some examples on how to use PILGRIM.

10
Conclusion

In this thesis, we explored the potential for using probabilistic relational models
(PRMs) in recommendation systems, and with spatial data. PRMs, recommender sys-
tems, and spatial data are in fact quite related fields because PRMs model probabilistic
models from relational data, and recommender systems and spatial data are common
sources of relational data. However, their intersection is not much explored in machine
learning community.

The first contribution of this thesis deals with the overlapping of PRM and recom-
mender systems. We have proposed a PRM-based personalized recommender system
to show that PRMs can be used in recommender systems.

Our proposed approach is capable of making personalized recommendations in a
system

— where users do not have many interactions because items are less frequently
purchased (probably due to high cost of the items),

— where users have preferences not only about items but also for items’ character-
istics,

— which lacks users’ profiles and is in cold-start situation.

The basic idea behind our approach is to determine whether a relation can exist
between a user’s search session (instead of a user) and an item. Our approach involves
two components:

1. A generic PRM (named PRM-PrefReco) that can determine whether a relation
between a user’s search session and an item could exist or not by evaluating how
similar the search criteria and items’ features are, and

2. A personalized Bayesian network obtained by instantiating the PRM-PrefReco
with users’ preferences.

The former is constructed offline using data available in the system and/or experts’
knowledge, and the latter is built online, and generates personalized recommendations.
With this approach, the same PRM-PrefReco can be instantiated into a content-based,
collaborative filtering, or hybrid recommendation models only by changing the length
of slot chains in the PRM. This allows a system, which was once in cold-start situation,

151

152 CHAPTER 10. CONCLUSION

to switch from a basic recommender to a collaborative filtering or hybrid recommender
after the system has collected enough data. We performed a preliminary experiment on
a real-estate search system which was in the cold-start situation. From the experiment,
we could conclude that there is a possibility of using our approach for making personal-
ized recommendations in cold-start situation. However, we could not test our solution
in non cold-start situation due to the lack of bigger datasets in our experimental system.

Our second contribution addressed the missing theoretical work for the overlapping
of PRMs and spatial data. We developed a general way to integrate spatial informa-
tion into a PRM. We proposed probabilistic relational models with spatial attributes
(PRMs-SA), which extends regular PRMs to support spatial objects. This thesis is
particularly concerned with geographical data, where a spatial object is associated
with its geometry described by a sequence of pairs of coordinates (i.e., latitude and
longitude). Because spatial data are easily obtainable in vector format, which can be
easily modeled as an object compatible with PRM specification, we adopt the vector
representation of spatial data. Because of the geometry (such as point, line or polygon)
of spatial objects, PRMs cannot treat spatial objects in the same way as non spatial
objects. PRMs-SA consider the fact that spatial heterogeneity leads to some patterns
in data. Thus, our basic idea is to extract such patterns through aggregation of spa-
tial objects. Our specification of PRMs-SA requires the adaptation of the underlying
schema by adding a spatial partition class for each spatial attribute present in the
schema. These spatial partition classes are, in fact, aggregation of spatial objects, and
are associated with spatial partition functions, which can be standard spatial aggrega-
tors, domain knowledge, or spatial clustering algorithms. PRMs-SA then model spatial
dependencies between attributes using the aggregation information.

We also proposed some algorithms to learn PRMs-SA. The idea is to find the struc-
ture that best fits the data such that the spatial attributes are also well-partitioned.
In other words, our PRM-SA structure learning algorithms not only learn the depen-
dencies between attributes but also adjust partitions during learning so as to extract
dependencies resulted by well-partitioned spatial attributes. Our naïve approach of
learning a PRM-SA involves stepwise increment or decrement of the number of spatial
partitions. Our adaptative approach attempts at finding the best number of partitions
of spatial attributes at once, instead of performing stepwise increment or decrement, in
particular steps during the learning process. We proposed three versions of adaptative
approach by changing the steps at which they compute the best number of spatial
partitions. In the first version, we find the optimal number of spatial partitions after
a complete greedy search for the given slot chain length whereas in the second version,
we find the best spatial partitions within each iteration of greedy search algorithm for
the given slot chain. In the third version, it is done during the neighborhood gen-
eration process after performing add, delete and revert operations if these operations
involve spatial reference attributes. We performed experimental evaluations of these
algorithms along with a static approach (which we refer to as ‘Baseline’), where parti-
tions are not adjusted during learning, on synthetic datasets. This experiment showed
that the third version of our adaptative approach had significantly better precision
but worse recall compared to the second version. However, we could not come to any
conclusion about other algorithms. By comparing the standard hard and soft versions
of evaluation metrics with the metrics for skeletons of the learned PRMs-SA, we could
reach the conclusion that the metrics are affected by reversed edges because the stan-
dard metrics do not identify equivalent PRMs. Besides, we also observed that the third

153

version of our adaptative algorithm also resulted in more accurate partitions compared
to other algorithms, and produced models that are closest to gold models in terms of
the model score.

Besides these two major contributions, we also discussed on the limitations of
Ben Ishak [2015]’s approach of evaluating PRMs learning algorithms. Since their ap-
proach had been the basis of evaluating PRMs-SA learning algorithms, we needed
to overcome those limitations, which mainly include the unrealistic nature of skeletons
generated by their relational skeleton generating algorithm, and sampling of PRMs with
the presence of evidences. We proposed an algorithm for generating relational skele-
tons (referred to as k-partite graph-based skeletons) that resemble real-world skeletons.
For sampling a PRM over a relational skeleton that includes evidences, we proposed
relational block Gibbs (RBG) sampling algorithm, which is based on Kaelin [2011]’s
lazy aggregation block Gibbs (LABG) algorithm for approximate inference. Our ex-
perimental study on this sampling algorithm along with relational forward sampling,
and Ben Ishak [2015]’s GBN-based sampling algorithms showed that RBG produced
better samples than other algorithms though it is very time-consuming when it comes
to generating big datasets for complex relational skeletons.

Future work

During the research presented in this thesis, many potential directions for future
work have opened up. In the following, we list some of them.

Improvement of our proposed recommendation model More SRL methods are
available now. Exploring SRL models other than PRMs for recommender systems can
be interesting. Kouki et al. [2015], and Fakhraei et al. [2015], for example, have used
hinge-loss Markov random fields to build a recommendation system. Adding explana-
tions to the recommendation made (Bilgic and Mooney [2005]) can be an interesting
enhancement too. Causal reasoning on Bayesian networks can aid in justifying the
recommendations.

Applying our proposed recommender system in diverse domains Though we
have evaluated our recommender system in the domain of real estates, it is a generic
solution and can be applied in other domains too. Some of the applicable domains are
flight/hotel/restaurant recommendation, or other product recommendation scenarios.

Evaluation of all types of recommendation models Our recommender model
was evaluated with a small dataset on a very new system, which was in cold-start
situation. Because the number of transactions was very low, we could not evaluate all
types of models proposed in Chapter 7. Thus, a future prospect is to evaluate all types
of proposed models by applying our methodology on bigger datasets.

Improvement of PRM-SA structure learning algorithms with newer algo-
rithms for PRM structure learning Our proposed algorithms for learning PRM-
SA structure are based on the standard relational greedy search (RGS) algorithm for
learning PRMs. Ben Ishak [2015] has shown through experiments that RGS algorithm
is less accurate compared to newer algorithms, such as RMMHC, RMMPC etc. Using

154 CHAPTER 10. CONCLUSION

PRM-SA learning algorithms with these newer algorithms might improve the quality
of the learned PRMs-SA.

Integration of spatial information and recommender systems Though we
have discussed a method to use spatial information with PRMs through PRMs-SA, we
haven’t evaluated our model on real recommender datasets that deal with users and
items. Using a PRM-SA, we can achieve a simple recommender system that is capable
of predicting some attributes of interest (e.g., users’ rating). We can also obtain a
recommender system based on Huang et al. [2004]’s recommendation model. Such
recommendation model, however, may be applicable only on systems where enough
data exist, and may not address the situation for which we proposed a personalized
recommender system (cf. Chapter 7). Thus, one direction for future research could be
to merge PRM-SA with our personalized recommender system.

Equivalent PRMs Multiple equivalent Bayesian networks can be learned from the
same dataset. In the same way, our PRM(-SA) learning algorithms can also result
in equivalent PRMs(-SA). However, determining whether two PRMs are equivalent to
each other is still an open issue. Though we have proposed to compare skeletons of
PRMs in our experiments, skeleton comparison is not enough for detecting equivalence
of PRMs. Consequently, the evaluation metrics of PRM(-SA) learning algorithms were
affected. Maier et al. [2013] have proposed relational causal discovery (RCD) algo-
rithm, which is a relational adaptation of PC algorithm (Spirtes et al. [2000]). Since
PC algorithm can recover a BN structure equivalent to the true structure underlying
the input data, Maier et al. [2013]’s RCD algorithm and also its improved version pro-
posed by Lee and Honavar [2016] could provide a solution towards defining equivalent
structures in the relational settings. However, these algorithms only learn DAPERs.
Therefore, defining the notion of equivalent PRMs is an important direction for further
research.

More experiments An area where we have proposed our theoretical approach but
not yet performed empirical validation is the existence of multiple spatial attributes in
PRMs-SA. Rigorous experiments with more complex (and random) PRMs-SA on bigger
datasets are also needed to better benchmark PRM-SA structure learning algorithms.

Enhancement of PILGRIM Official release of PILGRIM software is already in the
pipeline. One area where PILGRIM certainly needs an enhancement is the inference
process because currently, reasoning using PILGRIM is expensive due to the use of
GBN. Implementing Kaelin [2011]’s LABG algorithm for approximate inference could
be a stepping stone towards efficient inference. As lifted inference is gaining popularity
in recent years, we can also orient towards the implementation of lifted inference in
PILGRIM.

III
Appendices

155

A
Empirical Study of PRM Sampling
Algorithms

We carried out some experiments to study three algorithms for sampling PRMs –
relational block Gibbs (RBG) sampling, relational forward sampling, and GBN-based
sampling. The objectives of these experiments were to study RBG sampling, and
to compare it with the two other sampling algorithms. We work with two types of
relational skeletons in the experiments – one is generated using Ben Ishak [2015]’s al-
gorithm, and another using our k-partite graph generation algorithm (see Algorithm 6).
We refer to relational skeletons generated by the former algorithm as ‘Naïve’ skeletons
because they have nearly equal number of objects of each class, and are less complex
than the skeletons generated by our algorithm.

We divide the following section into two parts. Section A.1 presents the study of
RBG sampling, and Section A.2 presents the comparison of the three algorithms.

A.1 Empirical study of relational block Gibbs sam-
pling algorithm

The aim of this study is to understand how relational block Gibbs sampling performs
on datasets of different type and size, how burn-in value affects the performance of the
algorithm.

A.1.1 Methodology

We start with a PRM shown in Figure A.1a. The corresponding relational schema is
shown as a DAG in Figure A.1b. We have chosen this PRM as our gold standard PRM
because it has probabilistic dependencies with different length of slot chains and also
includes aggregators. It has 6 dependencies – one with slot chain length = 0, four with
slot chain length = 1, and one with slot chain length = 3. Two of them involve a MODE
aggregator. Conforming to the relational schema (see Figure A.1b) of this PRM, we
generate naïve and k-partite graph graph-based skeletons having approximately 100,

157

158 APPENDIX A. EMPIRICAL STUDY OF PRM SAMPLING ALGORITHMS

(a)

(b)

Figure A.1 – (a) The PRM used in the experiments, and (b) the underlying relational schema
as a DAG

200, 500, 1000, 2000, 3000, and 5000 objects. So, we have altogether 14 relational
skeletons. While generating k-partite skeletons, the choice of the scalar parameter α
affects the structure of the skeleton to a great extent. Smaller values of α result in
compact skeletons, i.e. many objects will have high in-degree. In-degree of objects,
in fact, is determined by whether a referring object gets linked to an existing object
or a new object, which in turn depends on the total number of objects generated so
far (cf. Section 2.7.4). Thus, instead of picking a constant α for skeletons of different
size, it should be chosen based on the size of the skeleton. In this study, we choose
α to be the square root of the required number of objects in the skeleton. Also note
that while generating these k-partite skeletons, we choose not to generate true scale-
free graphs to avoid getting very complex skeletons for the experiments. Next, the
PRM is sampled for each of these skeletons applying RBG sampling algorithm with
the following burn-in values – 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500,
2000, 2500, and 3000. For each combination of dataset size, burn-in and skeleton type,
the time taken to complete the algorithm is recorded, and parameters of the PRM
are learned on the generated sample. Chi-square goodness-of-fit test with significance
level of 0.05 is performed to compare the original parameters with the learned ones.
Using this test, we can check how well the PRM nodes are sampled. Null hypothesis of
this test is that the generated data for the given node are consistent with the original
distributions used for generating the sample. The nodes that reject the test cannot be
considered well-sampled. We count such nodes too.

Characteristics of the datasets

As mentioned previously, there are 14 relational skeletons – 7 naïve skeletons, and
7 k-partite skeletons. Note that in terms of the size of the dataset, we consider the

A.1. EMPIRICAL STUDY OF RELATIONAL BLOCK GIBBS SAMPLING ALGORITHM159

Book Movie Rating Reads User

Total number of objects = 100

N
b.

 o
bj

ec
ts

0
5

10
15

20
25

30
35

Book Movie Rating Reads User

Total number of objects = 200

N
b.

 o
bj

ec
ts

0
10

20
30

40
50

60

Book Movie Rating Reads User

Total number of objects = 500

N
b.

 o
bj

ec
ts

0
50

10
0

15
0

Book Movie Rating Reads User

Total number of objects = 1000

N
b.

 o
bj

ec
ts

0
50

15
0

25
0

35
0

Book Movie Rating Reads User

Total number of objects = 2000

N
b.

 o
bj

ec
ts

0
10

0
30

0
50

0
70

0
Book Movie Rating Reads User

Total number of objects = 3000

N
b.

 o
bj

ec
ts

0
20

0
40

0
60

0
80

0

Book Movie Rating Reads User

Total number of objects = 5000

N
b.

 o
bj

ec
ts

0
50

0
10

00
15

00 K−partite
Naive

Figure A.2 – Distribution of objects in the relational skeletons used in the experiments

naïve skeleton with approximately 100 objects is comparable to the k-partite skeleton
with approximately the same number of objects even though we cannot ensure that
they have exactly the same number of objects.

In naïve skeletons, objects are almost uniformly distributed across classes as seen
from Figure A.2. This is not true for k-partite skeletons. There are more User objects
than Book or Movie objects in k-partite skeletons because User objects are referenced
by Rating as well as Reads objects, and, hence, are likely to be generated more often
than Book and Movie objects. The number of objects of relationship classes (i.e.,
Rating, and Reads) is higher than that of entity classes (i.e., Book, Movie, and User).
However, this expected phenomenon is not observed in the datasets with 100 and 200
objects because the chosen scalar parameter might not have been enough to produce
very compact datasets.

Figures A.3 and A.4a reveal that naïve skeletons are less complex than k-partite
graph-based skeletons can be observed. The four charts in Figure A.3 correspond
to the four edges present in the relational schema DAG shown in Figure A.1b. The
charts show that the maximum in-degree of entity objects in naïve skeletons is almost
always less than k-partite skeletons, and does not increase significantly with the size
of data. Figure A.4a 1 shows the frequency of in-degree of Book and Movie objects
for the references from Rating objects in the naïve and k-partite skeletons of different
sizes. In this figure, we can see that there are more objects with high in-degree in
k-partite skeletons compared to the corresponding naïve skeletons. From these figures,
we can conclude that the experimental k-partite skeletons are complex than the naïve
skeletons.

1. Distributions of in-degree for only the edges User ← Rating and Movie ← Rating are shown here
because those for User ← Reads, and User ← Reads are almost similar to the ones presented here.

160 APPENDIX A. EMPIRICAL STUDY OF PRM SAMPLING ALGORITHMS

0 1000 2000 3000 4000 5000

0
4

8
12

User−Reads

Dataset size

M
ax

 in
−

de
gr

ee

0 1000 2000 3000 4000 5000

0
5

10
15

Book−Reads

Dataset size

M
ax

 in
−

de
gr

ee

0 1000 2000 3000 4000 5000

0
2

4
6

8
12

User−Rating

Dataset size

M
ax

 in
−

de
gr

ee

0 1000 2000 3000 4000 5000

0
5

10
15

Movie−Rating

Dataset size

M
ax

 in
−

de
gr

ee K−partite
Naive

Figure A.3 – Max in-degree of entity objects in the relational skeletons. Each chart corre-
sponds to one of the four edges in the relational schema DAG of Figure A.1b

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

Naive Skeleton

In−degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

0 5 10 15

0
50

10
0

15
0

k−Partite Skeleton

In−degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

(a)

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

Naive Skeleton

In−degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

0 5 10 15

0
50

10
0

15
0

k−Partite Skeleton

In−degree

F
re

qu
en

cy

Number of objects

100
200
500
1000
2000
3000
5000

(b)

Figure A.4 – Distribution of in-degree in naïve and k-partite skeletons for the edges (a) to
User from Rating objects, and (b) to Movie from Rating objects

A.1.2 Results and discussion

Figures A.5 and A.6 show the time taken by the sampling algorithm on each skeleton
for different values of burn-in. From the first figure, we can see that it took longer to
sample on k-partite skeletons than on naïve skeletons in most of the cases. Possible
reason behind this is that naïve skeletons are generally simpler than k-partite skeletons

A.1. EMPIRICAL STUDY OF RELATIONAL BLOCK GIBBS SAMPLING ALGORITHM161

0 1000 3000 5000

0
50

15
0

Number of objects = 100

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
10

0
25

0

Number of objects = 200

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

0
10

00

Number of objects = 500

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
20

00

Number of objects = 1000

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
30

00
70

00

Number of objects = 2000

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
10

00
0

Number of objects = 3000

Burn−in

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
20

00
0

Number of objects = 5000

Burn−in

T
im

e
ta

ke
n

(s
)

K−partite
Naive

Figure A.5 – Burn-in vs time taken by RBG sampling algorithm on naïve and k-partite
graph-based skeletons of different size.

because the latter ones tend to have nodes/objects that are referenced by many other
nodes. Therefore, Markov blankets in k-partite skeletons tend to be much bigger
than those in naïve skeletons, thereby increasing computation time for conditional
probability distributions. Another observation we can make from the same figure is
that the time taken by the algorithm increases almost linearly with the burn-in value
on most of the skeletons. We can only expect to observe such linear relationship
but cannot guarantee it because time taken for sampling actually depends on which
attribute is selected, and how big its Markov blanket is. Because selecting an attribute
for sampling and generating attribute values are done randomly, we cannot predict the
exact behavior of the increase of burn-in value.

From Figure A.6, we can say that on k-partite skeletons, the time taken by the
algorithm follows an increasing non-linear function of the number of objects whereas
we cannot get such conclusion for naïve skeletons. This is because the shape of naïve
skeletons is unpredictable whereas that of k-partite skeletons does not tend to change
much with their size. On big k-partite skeletons as well as on small ones, only few
nodes will have many incoming edges and many nodes will have few incoming edges.
So, big k-partite skeletons are always more complex than small ones because of the
presence of nodes with very high in-degree, but we cannot guarantee to observe such
phenomenon on naïve skeletons.

Figures A.7, and A.8 present the number of nodes that rejected the null hypothesis
of Chi-squared goodness-of-fit test for different burn-in values on skeletons of different
size. No nodes must reject the null hypothesis in a well-sampled dataset. So, lower
values are better in these charts. As seen in the figures, out of six nodes in the PRM,
at most two nodes rejected the null hypothesis on both types of skeletons. As we
can see in Figure A.8, k-partite skeleton having 100 objects resulted in good samples
even for low as well as high burn-in values. Only 2 out of 14 samples for this skeleton
had at most 1 node that was not well-sampled. As the size of k-partite skeletons was
increased, more nodes (at most 2) rejected the null hypothesis. Similar pattern can
be observed on naïve skeletons (Figure A.8). Maximum number of nodes that rejected
the null hypothesis is 1 for smaller naïve skeletons and it is 2 for bigger ones. From
these results and also from Figure A.7, we are not decisive about the size of skeletons
and the value of burn-in to get perfect samples. We can only say that increasing
burn-in can improve the quality of samples with the cost of time. We should note
that even small values of burn-in could generate good samples for big datasets (e.g.,

162 APPENDIX A. EMPIRICAL STUDY OF PRM SAMPLING ALGORITHMS

0 1000 3000 5000

0
60

0

Burn−in = 100

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
15

00

Burn−in = 200

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
30

00

Burn−in = 300

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

00

Burn−in = 400

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

00

Burn−in = 500

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

00

Burn−in = 600

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
30

00

Burn−in = 700

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

00

Burn−in = 800

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
40

00

Burn−in = 900

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
60

00

Burn−in = 1000

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
15

00
0

Burn−in = 1500

Number of objects
T

im
e

ta
ke

n
(s

)

0 1000 3000 5000

0
15

00
0

Burn−in = 2000

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
15

00
0

Burn−in = 2500

Number of objects

T
im

e
ta

ke
n

(s
)

0 1000 3000 5000

0
30

00
0

Burn−in = 5000

Number of objects

T
im

e
ta

ke
n

(s
)

K−partite
Naive

Figure A.6 – Skeleton size vs time taken by RBG sampling algorithm for different values of
burn-in.

k-partite skeletons having 5000 objects with burn-in=300, 3000 objects with burn-
in= 200, naïve skeletons having 5000 objects with burn-in=100 etc.). Thus, it would
be better to generate big datasets using a small value of burn-in repeatedly until a
well-sampled dataset is obtained instead of using high value of burn-in and trying to
generate a good sample in one run.

A.2 Comparison of sampling algorithms

In this experiment, we assess the following three algorithms – relational forward
sampling, RBG sampling, and GBN-based sampling. The primary objective is to verify
that RBG sampling can replace GBN-based sampling. We also aim at comparing RBG
sampling with relational forward sampling in terms of performance of the algorithms
and quality of the samples generated by them.

A.2.1 Methodology

We work with the same PRM of Figure A.1a for this experiment. We first generate
naïve and k-partite graph-based skeletons having 100, 200, 500, 1000, 2000, and 3000
objects. The three sampling algorithms are applied over these skeletons to sample the
PRM. From the previous experiments (Section A.1), it was observed that high burn-in
values are not necessary for obtaining good samples from big skeletons. That is why
we use a medium value (600) of burn-in for RBG sampling in this experiment.

A.2. COMPARISON OF SAMPLING ALGORITHMS 163

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 100

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

0.
6

Burn−in = 200

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

0.
6

Burn−in = 300

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 400

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

0.
6

Burn−in = 500

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 600

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 700

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 800

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 900

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 1000

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 1500

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 2000

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

0.
6

Burn−in = 2500

Number of objects

R

ej
ec

te
d

0 1000 3000 5000

0.
0

1.
0

2.
0

Burn−in = 5000

Number of objects

R

ej
ec

te
d

K−partite
Naive

Figure A.7 – Skeleton size vs number of nodes that rejected the null hypothesis of the Chi-
square goodness-of-fit test for different values of burn-in. Lower values are better here.

A.2.2 Results and discussion

Figure A.9 shows that when the time taken to complete the sampling algorithms is
considered, relational forward sampling outperforms the two other sampling algorithms.
Even on big datasets, it took very less time compared to the two others. Time efficiency
of this algorithm lies behind its non-iterative nature and the fact that GBN generation
is not required for it. Unlike RBG sampling, it samples each attribute only once. The
only time-consuming task in relational forward sampling is the communication with
databases. Therefore, we can conclude that relational forward sampling is certainly a
good solution if we need to generate very big datasets. One important thing to note
here that it is difficult to determine the most time-efficient algorithm among RBG
and GBN-based sampling because they are sensitive to the complexity of relational
skeletons,. As seen in Figure A.9, RBG sampling took longer on k-partite skeletons
but not on naïve ones. Moreover, RBG sampling also depends on the value of burn-in
as well as on the time of execution. If we had chosen a smaller burn-in value, we
might have obtained very different results. Because attributes are selected randomly
for sampling at each step, no two executions of RBG sampling for the same burn-in
value would give the same result.

We can observe in Figure A.10 that the number of the nodes rejecting the null
hypothesis of the Chi-squared goodness-of-fit test is always lower for RBG sampling
on both types of skeletons. All six nodes in the PRM were sampled well on k-partite
skeletons by RBG sampling except in one case where only one node rejected the null
hypothesis. Also on naive skeletons, the best result was obtained with RBG sampling.

164 APPENDIX A. EMPIRICAL STUDY OF PRM SAMPLING ALGORITHMS

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Number of objects = 100

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Number of objects = 200

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Number of objects = 500

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 1000

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 2000

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 3000

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 5000

Burn−in

R

ej
ec

te
d

(a)

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Number of objects = 100

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Number of objects = 200

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 500

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 1000

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 2000

Burn−in

R

ej
ec

te
d

0 1000 2000 3000 4000 5000

0.
0

1.
0

2.
0

Number of objects = 3000

Burn−in

R

ej
ec

te
d

500 1000 1500 2000 2500

0.
0

1.
0

2.
0

Number of objects = 5000

Burn−in

R

ej
ec

te
d

(b)

Figure A.8 – Burn-in vs number of nodes that rejected the null hypothesis of the Chi-square
goodness-of-fit test on (a) k-partite graph-based skeletons, and (b) naïve skeletons of different
size. Lower values are better here.

0 500 1000 1500 2000 2500 3000

0
20

00
40

00
60

00

K−partite

Number of objects

T
im

e
ta

ke
n

(s
)

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Naive

Number of objects

T
im

e
ta

ke
n

(s
)

Forward
RBG
GBN−based

Figure A.9 – Time taken by relational forward sampling, RBG sampling, and GBN-based
sampling algorithms on naïve and k-partite graph-based skeletons of different size.

Though relational forward sampling was very efficient in terms of time, at least one
node was not well sampled with this algorithm. From this, we can say that nodes are
generally sampled well with RBG sampling.

A.3. CONCLUSION 165

Number of objects

no

de
s

th
at

 r
ej

ec
t H

0

0.0

0.5

1.0

1.5

2.0

100 200 500 1000 2000 3000

KPARTITE

100 200 500 1000 2000 3000

NAIVE

Relational Forward GBN−based Relational Block Gibbs

Figure A.10 – Number of nodes that rejected the null hypothesis of the Chi-square goodness-
of-fit test on naïve and k-partite graph-based skeletons of different size. Lower values are
better here.

A.3 Conclusion
From these experiments, we can conclude that relational forward sampling is very

effective for generating very big datasets as it consumes way less amount of time com-
pared to GBN-based sampling and RBG sampling algorithms. In terms of execution
time, it is difficult to say whether RBG sampling performs better than GBN-based
sampling because their performance highly depends on the complexity of relational
skeletons. It is, however, possible to alter the performance of RBG sampling by ad-
justing the value of burn-in. Results show that higher burn-in values produce good
samples but may take too long to complete the sampling process depending on the
complexity of the skeleton. Thus, as a strategy to generate big datasets in less time
using RBG sampling, we repeatedly generate big samples using a small value of burn-
in until we obtain samples where no nodes reject the null hypothesis of Chi-squared
goodness-of-fit test. We apply this strategy for obtaining big datasets in our next
experiments.

B
Using PILGRIM

This appendix has been provided as a users’ guide for using PILGRIM (Relational
and Applications). In Section B.1, we will illustrate through code how to define a PRM.
In Section B.2, we will provide an example of instantiating a PRM over a relational
skeleton to make inferences. In Section B.3, we will show the usage of some utility
methods. Generation of random datasets will be illustrated in Section B.4. An example
of a recommender system will be shown in Section B.5.

B.1 Defining a PRM(-SA)
To construct a PRM/PRM-SA using PILGRIM-Relational, we need to define the

following components: (1) the relational schema, (2) the dependency structure, and
(3) the parameters. Thus, the first task is to get a RelationalSchema object. Once
it is available, a PRM (or a PRM-SA) can be defined as a RBN (or RBNSA) object.
We then need to construct the probabilistic dependency among the random variables
present in the PRM, and assign a CPD to each random variable. PILGRIM-Relational
offers more than one way to obtain each of the three components.

B.1.1 Defining a relational schema

PILGRIM-Relational implements three ways of defining a relational schema suitable
for the following three different situations.
Case I When the schema is well-defined but does not exist physically as a database,
Case II When the schema exists as a database, and
Case III When a random schema is needed.
In the following, we will show examples for each of these cases.

Case I: Manual definition

To define a relational schema, we need classes, their attributes (descriptive at-
tributes + one primary key 1), attribute domains, and reference slots. The following

1. Currently, PILGRIM-Relational supports single primary key only

167

168 APPENDIX B. USING PILGRIM

example defines a schema containing three classes, users, movie, and rating. Each of
them has a primary key ‘id’, and some attributes. The users class is a spatial class
and has a spatial attribute ‘location’. The rating is a relationship class, and has two
reference slots: movie_id, and user_id, which refer to movie, and users respectively.

// Define a relational schema

// Classes
boost::shared_ptr<prm::spatial::SpatialClass> user(new prm::spatial::

SpatialClass("users"));
boost::shared_ptr<prm::Class> movie("movie"), rating("rating");

// Primary key
std::vector<std::string> pks;
pks.push_back("id");

// Attribute domains
boost::shared_ptr<prm::Domain> genreDomain(new prm::MultinomialDomain(

"Action, Comedy"));
boost::shared_ptr<prm::Domain> genderDomain(new prm::MultinomialDomain

("Male, Female"));
boost::shared_ptr<prm::Domain> ageDomain (new prm::MultinomialDomain("

1, 2, 3"));
boost::shared_ptr<prm::Domain> likesDomain (new prm::MultinomialDomain

("Y, N"));
boost::shared_ptr<prm::Domain> userDomain (new prm::MultinomialDomain

());
boost::shared_ptr<prm::Domain> movieDomain (new prm::MultinomialDomain

());

// Non-spatial Attributes
prm::Attribute gender("gender", genderDomain);
prm::Attribute age("age", ageDomain);
prm::Attribute genre("genre", genreDomain);
prm::Attribute like("likes", likesDomain);

// Spatial attributes
prm::spatial::SpatialAttribute location("location");

// Reference slots
prm::Attribute userRef("user_id", userDomain);
prm::Attribute movieRef("movie_id", movieDomain);

// Add attributes to the respective classes
movie->addAttribute(genre);
movie->setPK(pks);

user->addAttribute(age);
user->addAttribute(gender);
user->addSpatialAttribute(location);
user->setPK(pks);

rating->addAttribute(like);
rating->addAttribute(userRef);
rating->addAttribute(movieRef);
rating->setPK(pks);

// Add classes to the schema
schema->addClassRef(movie);

B.1. DEFINING A PRM(-SA) 169

schema->addClassRef(user);
schema->addClassRef(rating);

// Add reference slots
schema->addReferenceSlot("rating", "movie_id", "movie");
schema->addReferenceSlot("rating", "user_id", "users");

Case II: Importing a schema from a database

PILGRIM-Relational can automatically construct a RelationalSchema object
by importing the schema from a PostgreSQL database. For this, we need to provide
connection details, which include the name of ODBC data source, database user, pass-
word, and the name of the database that contains the schema to be imported. This is
done as follows:

// Define DataSource object
DataSource dataSource;
dataSource.name = "DSN"; /* Name of the ODBC data source */
dataSource.user = "postgres_user";
dataSource.password = "password_of_postgres_user";
dataSource.database = "Name_of_the_database";

Now, a specific schema from the database mentioned in dataSource can be im-
ported with the following two lines:

// Import schema

boost::shared_ptr<prm::RelationalSchema> schema(new prm::
RelationalSchema());

// Import the complete schema
prm::utils::SchemaUtility<prm::DataSource>::importSchema(schema,

dataSource);

The above method imports the complete schema. If class names to import are
provided as follows, then partial import will be performed.

// Import selected classes only

/*
Assuming that the schema many classes and only the following three are

to be imported

*/
std::vector<std::string> classes;
classes.push_back("users");
classes.push_back("rating");
classes.push_back("movie");

boost::shared_ptr<prm::RelationalSchema> schemaSelectedClasses(new prm
::RelationalSchema());

prm::utils::SchemaUtility<prm::DataSource>::importSchema(
schemaSelectedClasses, dataSource, classes);

Case III: Defining a random schema

In order to get a random relational schema, we need to first choose the strategy
for generating reference slots. Currently, two strategies available for generating ran-
dom reference slots in a schema DAG: RefSlotsGenerationFromPolytree and

170 APPENDIX B. USING PILGRIM

RefSlotsGenerationWithPMMixed (Ben Ishak [2015]). Then, a random non-
spatial relational schema can be generated with the help of RelationalSchemaGenerator
for the selected RefSlotsGenerationStrategy whereas a random spatial rela-
tional schema can be obtained from SpatialRelationalSchemaGenerator. The
following code is an example of generating a random spatial relational schema from the
strategy RefSlotsGenerationFromPolytree.

// Define a random schema

/*
Choose a strategy for generating reference slots. There are two

strategies: RefSlotsGenerationFromPolytree and
RefSlotsGenerationWithPMMixed

*/
boost::shared_ptr<prm::RefSlotsGenerationStrategy> refSlotGenStrategy(

new prm::RefSlotsGenerationFromPolytree(nbOfRefSlots));
/*
RefSlotsGenerationWithPMMixed can be created in the following way.

*/
// boost::shared_ptr<prm::RefSlotsGenerationWithPMMixed>

refSlotGenStrategy(new prm::RefSlotsGenerationWithPMMixed(
maxInducedWidth, maxNodeDegree, maxNbEdges));

/*
Generate a random relational schema using the selected reference slot

generation strategy

*/
boost::shared_ptr<prm::RelationalSchema> schema = prm::

SpatialRelationalSchemaGenerator::generateSchema(nbOfSpatialClasses
, nbNonSpatialClasses, refSlotGenStrategy);

B.1.2 Defining a dependency structure

Before defining the dependency structure, we need to obtain an RBN (or RBNSA)
object which represents a PRM (or a PRM-SA respectively). This object then needs
to be initialized to construct the set of random variables present in the PRM. For a
PRM-SA, we need to specify the partition algorithm for each spatial attribute in the
relational schema Only after that, dependencies among these random variables can be
specified, and initialize spatial ref. attributes using these partition algorithms. In the
following we illustrate how an RBNSA object can be constructed.

// Initialize a PRM

/* PRM-SA */
boost::shared_ptr<prm::spatial::RBNSA> rbnsa(new prm::spatial::RBNSA(

schema));

/* Initialize PRM-SA */
rbnsa->init();

/* Assign a partition algorithm to each spatial attribute (Here we
have only one spatial attribute) */

auto users(boost::dynamic_pointer_cast<prm::spatial::SpatialClass>(
schema->getClassRef("users")));

if (users)
{

B.1. DEFINING A PRM(-SA) 171

boost::shared_ptr<prm::Attribute> spatialRefAttrib(users->
getSpatialRefAttributeOf("location"));

/* Define partition algorithm */
unsigned int nbPartitions = 3;
boost::shared_ptr<prm::spatial::ISpatialPartitionAlgorithm>

spatialPartitionAlgo(new prm::spatial::KMeans(users->
getName(), "location", spatialRefAttrib->getName(),
nbPartitions));

users->setPartitionAlgo(spatialRefAttrib->getName(),
spatialPartitionAlgo);

/* Initialize spatial ref attributes */
rbnsa->initSpatialRefAttributes();

}

Similar to the relational schema definition, PILGRIM-Relational provides three
ways of defining the dependency structure of a PRM for the following three different
situations.

Case I When the dependency is well-defined or known in advance (e.g., through ex-
perts’ knowledge),

Case II When the dependency is not known in advance and needs to be learned from
data, and

Case III When a random dependency structure is needed.

Case I: Manual definition

To define a dependency structure manually, we only need to specify parent-child
relations in the following way.

// Define probabilistic dependencies
rbnsa->setParents("rating.likes", "rating.user_id>users.age");
rbnsa->setParents("movie.genre", "MODE(~rating.movie_id>rating.likes)"

);
rbnsa->setParents("users.age", "users.gender");

Here, the method setParents takes two arguments. The first one is the name of
the child node, and the second one is comma-separated list of parent nodes (relational
attributes). Each node is named in the format [ClassName].[AttributeName], and each
parent relational attribute is specified in the following format.

[Aggregator]([SlotChain]>[ParentNodeName]).

[SlotChain] is expressed as a sequence of reference slots or inverse slots as follows.
[ρ1]>[ρ2]>. . .>[ρn]

Each slot ρ is in the format [ReferringClassName].[ReferenceSlotName]. If it is an
inverse slot, then it is preceded by a tilde (~) symbol.

Case II: Learning structure from data

All PRM structure learning algorithms implemented in PILGRIM-Relational are
based on relational greedy search algorithm, which is implemented in class RGS. Classes
RGS, AlgoRMMHC, AlgoRMMPC, and AlgoRMMPCBar are available for learning regular

172 APPENDIX B. USING PILGRIM

PRM, AlgoRGSRU for PRM-RU, and AlgoRGSCU for PRM-CU. PILGRIM-Relational
implements four different algorithms to learn a PRM-SA (Algorithms 10, 14, 15, and
16). In this section, we will show examples for learning a PRM-SA only.

Before applying a PRM-SA learning algorithm, spatial ref. attributes need to be
initialized in the database instance because initializing a PRM-SA adapts the underly-
ing relational schema only but not the instance of the schema. Thus, we need to apply
partition functions on all associated spatial ref. attributes. This is done as follows.

/*
Initialize the spatial ref. attribute in our database before applying

a PRM-SA learning algorithm

*/
boost::shared_ptr<prm::DBInstance> instance(new prm::DBInstance(schema

, "SchemaName"));
prm::spatial::SpatialPartitionFunction::partition(instance, "users", "

location", "C_location", "P_users_location");

After this initialization, we can proceed with one of the four PRM-SA structure
learning algorithms.

Naïve approach In PILGRIM-Relational, the RGS class can be customized by in-
jecting required operators. By default, it performs ‘Add_edge’, ‘Delete_edge’, and
‘Revert_edge’ operations to learn the structure of a PRM. We can add ‘Increase_k’
and ‘Decrease_k’ (cf. Algorithms 11 and 12 respectively) to learn a PRM-SA in naïve
way (cf. Algorithm 10 in Section 8.3).

// Naive approach to learn a PRM-SA

// Required operations
std::vector<prm::algo::GraphOperationType> allowedOperationTypes

= boost::assign::list_of(prm::algo::ADD_EDGE)
(prm::algo::DELETE_EDGE)
(prm::algo::REVERT_EDGE)
(prm::algo::INCREASE_K)
(prm::algo::DECREASE_K);

// Cache for storing computed scores
boost::shared_ptr<RBNCache> cache(new RBNCache(10000000));

// Scoring function
boost::shared_ptr<RBNDecomposableScore> S(new RScoreBD(instance, rbnsa

, 1UL, cache.get()));

// Structure learning algorithm
prm::algo::RGS rgs;
rgs.setAllowedOperationTypes(allowedOperationTypes);
rgs.setScore(S);

unsigned int maxSlotChainLength = 3;
rgs.learnStructure(rbnsa, maxSlotChainLength);

Adaptative approach Three variations of adaptative approach of learning a PRM-
SA are implemented in PILGRIM-Relational.

Version 1 (Algorithm 14) The first version, which finds the optimal cardinality
of all spatial ref. attributes after a complete greedy search for the given slot chain

B.1. DEFINING A PRM(-SA) 173

length, is implemented in class AdaptativeRGS1. It can be applied in the following
way.

/* Adaptative approach for learning the structure of a PRM-SA (version
1) */

// Cache for storing computed scores
boost::shared_ptr<RBNCache> cache(new RBNCache(10000000));

// Scoring function
boost::shared_ptr<RBNDecomposableScore> S(new RScoreBD(instance, rbnsa

, 1UL, cache.get()));

// Structure learning algorithm
prm::algo::AdaptativeRGS1 rgs;
rgs.setScore(S);

unsigned int maxSlotChainLength = 3;
rgs.learnStructure(rbnsa, maxSlotChainLength);

Version 2 (Algorithm 15) This version finds the optimal cardinality of all
spatial ref. attributes in each iteration of greedy search algorithm for the given slot
chain. It is implemented in class AdaptativeRGS2, and can be applied in similar
fashion as AdaptativeRGS1.

/* Adaptative approach for learning the structure of a PRM-SA (version
2) */

// Cache for storing computed scores
boost::shared_ptr<RBNCache> cache(new RBNCache(10000000));

// Scoring function
boost::shared_ptr<RBNDecomposableScore> S(new RScoreBD(instance, rbnsa

, 1UL, cache.get()));

// Structure learning algorithm
prm::algo::AdaptativeRGS2 rgs;
rgs.setScore(S);

unsigned int maxSlotChainLength = 3;
rgs.learnStructure(rbnsa, maxSlotChainLength);

Version 3 (Algorithm 16) For this version, we have specialized add, delete and
revert operations for spatial context such that these operators perform optimization of
the cardinality of spatial ref. attributes after performing standard add, delete or revert
operations. Thus, to learn a PRM-SA using this version of adaptative approach, it is
as simple as injecting these new specialized operators to RGS.

/* Adaptative approach for learning the structure of a PRM-SA (version
3) */

// Required operations
std::vector<prm::algo::GraphOperationType> allowedOperationTypes

= boost::assign::list_of(prm::algo::SPATIAL_ADD_EDGE)
(prm::algo::SPATIAL_DELETE_EDGE)
(prm::algo::SPATIAL_REVERT_EDGE);

174 APPENDIX B. USING PILGRIM

// Cache for storing computed scores
boost::shared_ptr<RBNCache> cache(new RBNCache(10000000));

// Scoring function
boost::shared_ptr<RBNDecomposableScore> S(new RScoreBD(instance, rbnsa

, 1UL, cache.get()));

// Structure learning algorithm
prm::algo::RGS rgs;
rgs.setAllowedOperationTypes(allowedOperationTypes);
rgs.setScore(S);

unsigned int maxSlotChainLength = 3;
rgs.learnStructure(rbnsa, maxSlotChainLength);

Case III: Random dependency structure

RBNGenerateDependencies is responsible for generating a random dependency
structure.

// Generate random dependencies
RBNGenerateDependencies::generate(rbnsa, maxSlotChainLength,

maxInducedWidth, maxParentsPerNode, maxNumOfDependencies);

B.1.3 Defining parameters

Again, PILGRIM-Relational addresses the following three scenarios for generating
parameters for a PRM (or a PRM-SA).

Case I When the parameters are well-defined or known in advance (e.g., through
experts’ knowledge),

Case II When the parameters are not known in advance and need to be learned from
data, and

Case III When random parameters are needed.

Case I: Manual definition

If the CPDs are known, they can be assigned to the corresponding nodes by calling
the method RBN::setDistributionTable(), which takes three arguments: the
node, its parents, and the conditional probability table as a vector of probability values.
The following code assigns CPDs to the nodes of the structure defined manually in the
previous section (Section B.1.2).

// Define CPDs

/* CPDs can be defined manually in the following way */
/* P(users.age | users.gender)
plProbValue probas_ua[] = {0.2, 0.7, 0.1, 0.2, 0.3, 0.5};
rbnsa->setDistributionTable("users.age", rbnsa->getParents("users.age

"), initVector(probas_ua, 6));

/* P(users.gender) */
plProbValue probas_ug[] = {0.2, 0.8};
rbnsa->setDistributionTable("users.gender", rbnsa->getParents("users.

gender"), initVector(probas_ug, 2));

B.2. INSTANTIATING A PRM FOR MAKING INFERENCE 175

/* P(rating.likes | rating.user_id>users.age) */
plProbValue probas_rl[] = {0.9, 0.1, 0.4, 0.6, 0.3, 0.7};
rbnsa->setDistributionTable("rating.likes", rbnsa->getParents("rating.

likes"), initVector(probas_rl, 6));

/* P(movie.genre | MODE(~rating.movie_id>rating.likes))*/
plProbValue probas_mg[] = {0.2, 0.8, 0.9, 0.1, 0.4, 0.6};
rbnsa->setDistributionTable("movie.genre", rbnsa->getParents("movie.

genre"), initVector(probas_mg, 6));

/* P(users.C_location) */
plProbValue probas_ucl[] = {0.1, 0.6, 0.3};
rbnsa->setDistributionTable("users.C_location", rbnsa->getParents("

users.C_location"), initVector(probas_ucl, 3));

Case II: Learning parameters from data

A parameter estimation method, and a complete instantiation of the relational
schema are needed to learn parameters of a PRM/PRM-SA from data. Following pa-
rameter estimation methods have been implemented in PILGRIM-Relational: Laplace,
MaximumAPosteriori, ExpectedAPosteriori, and MaximumLikelihood.

// Learn parameters from data

// Choose a parameter estimation method.
/* Currently available: Laplace, MaximumAPosteriori,

ExpectedAPosteriori and MaximumLikelihood */
boost::shared_ptr<prm::ParameterEstimationMethod>

paramEstimationMethod(new prm::Laplace());

// The source of data
boost::shared_ptr<prm::Instance> instance(new prm::Instance(schema));

rbnsa->learnParameters(instance, paramEstimationMethod.get());

Case III: Random parameters

Generating random parameters for all nodes in a PRM/PRM-SA is as simple as
the following one-liner.

// Assign random CPDs to the nodes in a PRM
RBNGenerateParameters::computeAllCPTs(rbnsa);

B.2 Instantiating a PRM for making inference
RBN implements the method generateGroundBayesianNetwork for generat-

ing a GBN of type BayesianNetwork. This GBN can then be used for making
inferences in the following way.

// Generate a ground Bayesian network
prm::BayesianNetwork gbn = rbnsa->generateGroundBayesianNetwork(

instance);

// Make inference : P(rating.like | users.age)
plSymbol user_1 = gbn.get_node("1_rating.age");

176 APPENDIX B. USING PILGRIM

plSymbol rating_1 = gbn.get_node("1_rating.like");
plValues evidence(rating_1);
evidence[rating_1] = 1;

plProbValue val = gbn.get_joint_distribution().ask(user_1, rating_1).
instantiate(evidence).compute(1);

B.3 Utility methods

PILGRIM-Relational provides some useful methods, such as the ones for export-
ing/importing PRMs and relational schema.

B.3.1 Exporting/Importing a PRM

RBNSerializeUnserialize provides utility methods for exporting/importing
a PRM into/from an EXtensible Markup Language (XML) file.

// Export a PRM (an RBN instance) into an XML file
RBNSerializeUnserialize::serialize(rbn, "Path/to/the/output/folder", "

outputFilename.xml");

// Import a PRM from an XML file
boost::shared_ptr<prm::RBN> rbn = RBNSerializeUnserialize::serialize("

Path/to/the/folder", "inputFilename.xml");

B.3.2 Exporting a relational schema into a database

SchemaUtility implements the utility method for exporting a RelationalSchema
object into a database specified in a DataSource object. Currently, PILGRIM-
Relational can export a relational schema into a PostgreSQL database only.

// Export a relational schema

/*
The exportSchema() method takes the following arguments:
schema = The RelationalSchema object to exported,
dataSource = The DataSource object specifying connection details and

the database where the schema is to be exported,
replaceExisting = Whether to replace the old one if exists, and
isSpatialSchema = Whether it is a spatial schema or a non-spatial one.

*/
bool replaceExisting = true;
bool isSpatialSchema = true;
prm::utils::SchemaUtility<prm::DataSource>::exportSchema(schema,

dataSource, replaceExisting, isSpatialSchema);

B.4 Generating datasets from a PRM

Using PILGRIM-Relational, we can generate spatial as well as non-spatial datasets.
This is done by sampling a PRM over a relational skeleton as illustrated in Sec-
tion B.4.2. If a relational skeleton is not available, we can generate a random relational
skeleton as shown in Section B.4.1.

B.4. GENERATING DATASETS FROM A PRM 177

B.4.1 Generating a random skeleton

Two types of relational skeletons can be generated using PILGRIM-Relational: (1)
naïve skeleton, and k-partite graph-based skeleton (see Section 2.7.2 in Chapter 2 for
more details on these skeletons). In the following, we will show how to generate these
types of skeletons for spatial as well as non-spatial databases. Current implementation
stores the generated skeleton into a PostgreSQL database.

Generating a random relational skeleton

A random relational skeleton can be generated in the following way.
// Generate a non-spatial relational skeleton
/* Note: The corresponding relational schema must exist in the

database. If it does not, export the schema first. */

/* Create an Instance object with the corresponding RelationalSchema
object and the name of the database */

boost::shared_ptr<prm::Instance> instance(new prm::DBInstance(schema,
databaseName));

/* Generate a K-partite graph-based skeleton */
boost::shared_ptr<prm::SkeletonGenerationStrategy>

skeletonGenerationStrategy(new prm::KPartiteGraphGenerator(alpha));

// For a naive skeleton, use NaiveSkeletonGenerator
/*
boost::shared_ptr<prm::SkeletonGenerationStrategy>

skeletonGenerationStrategy(new NaiveSkeletonGenerator());

*/

/* Generate a non-spatial relational skeleton using
RelationalSkeletonGenerator */

boost::shared_ptr<prm::RelationalSkeletonGenerator> skeletonGenerator(
new prm::RelationalSkeletonGenerator(skeletonGenerationStrategy));

// For a spatial relational skeleton, use
SpatialRelationalSkeletonGenerator

/*
boost::shared_ptr<prm::SpatialRelationalSkeletonGenerator>

skeletonGenerator(new prm::SpatialRelationalSkeletonGenerator(
skeletonGenerationStrategy));

*/

/*
Note:
For k-partite graph-based skeleton, numberOfObjects = total number of

objects in the dataset
For naive skeleton, numberOfObjects = approximate number of objects

per class

*/
skeletonGenerator->generate(instance, numberOfObjects);

B.4.2 Sampling a PRM

To sample a PRM or a PRM-SA, we need to choose a sampling algorithm. Three
sampling algorithms, explained in Section 2.7.2, have been implemented in PILGRIM-

178 APPENDIX B. USING PILGRIM

Relational. We can then sample a PRM or a PRM-SA with the help of RBNSampler
or RBNSASampler respectively.

Sampling a regular PRM

// Sample a (regular) PRM

/* First, choose the strategy for sampling. */
// For GBN-based sampling
boost::shared_ptr<prm::RBNSamplingStrategy> samplingStrategy(new prm::

GBNBasedSampling());

// For forward sampling
/*
boost::shared_ptr<prm::RBNSamplingStrategy> samplingStrategy(new prm::

ForwardSampling());

*/

// For relational Gibbs block sampling
/*
boost::shared_ptr<prm::RBNSamplingStrategy> samplingStrategy(new prm::

GibbsSampling(burnIn));

*/

/* Initialize an RBNSampler with the chosen sampling strategy */
boost::shared_ptr<prm::RBNSampler> sampler(new prm::RBNSampler(

samplingStrategy));

/* Sample the RBN object (rbn) for the given relational skeleton,
which is an Instance object (instance) */

sampler->sample(rbn, instance);

Sampling a PRM-SA

A random spatial dataset can be generated in the similar way as its non-spatial
counterpart. The only difference is that we need to specify how to generate spatial
attributes. Among the three cases of sampling attributes presented in Section 8.4.2,
only case II has been implemented in the current version. This strategy, which is im-
plemented as SamplingFromCollectionOfPointsStrategy, needs a collection
of points (latitude and longitude values), and the degree of freedom.

// Sample a PRM-SA

// A collection of points for sampling spatial attributes
std::vector<std::vector<double>> meanPoints;

// Latitude and longitude of Nantes
std::vector<double> nantes =

boost::assign::list_of(-1.5545)(47.2185);

// Latitude and longitude of Paris
std::vector<double> paris =

boost::assign::list_of(2.3475569)(48.8588589);

// Latitude and longitude of Berlin
std::vector<double> berlin=

boost::assign::list_of(13.4251364)(52.5075419);

B.5. WORKING WITH PILGRIM-RECOMMENDER 179

meanPoints.push_back(nantes);
meanPoints.push_back(paris);
meanPoints.push_back(berlin);

/* Maximum number of points to use from the collection of points */
// Choose a strategy for sampling spatial attributes
// Currently, only SamplingFromCollectionOfPointsStrategy is available
unsigned int maxNumPointsToUse = 2;
boost::shared_ptr<prm::AttributeSamplingStrategy> attSamplingStrategy(

new prm::SamplingFromCollectionOfPointsStrategy(meanPoints,
maxNumPointsToUse));

// Initialize RBNSASampler with the chosen sampling strategies
boost::shared_ptr<prm::RBNSASampler> rbnSASampler(new prm::

RBNSASampler(attSamplingStrategy, rbnSamplingStrategy));

// Sample the RBNSA object
rbnSASampler->sample(rbnsa, instance);

B.5 Working with PILGRIM-Recommender

PILGRIM-Applications project currently implements Huang et al. [2004]’s recom-
mendation method (see Sections 4.2.2 and 9.4 for details). In this section, we will
illustrate how to deal with this recommendation method. We will show how to con-
struct a recommendation model, and make predictions from it.

B.5.1 Defining a recommendation model

Huang et al. [2004]’s recommendation approach has been implemented in class
HuangsRecoModel. In the following example, we build a recommender system for
a non-spatial version of the schema (movie-users-rating schema) manually created in
Section B.1.1. To construct an object of HuangsRecoModel, we first import our re-
lational schema. We then initialize the HuangsRecoModel object with the relational
schema, and specify the name of the item class, the user class, and the target variable.
In Huang et al. [2004]’s model, the target variable is Transaction.exists. However, in
this example, we consider our target variable as rating.rating.

// Construct Huang’s recommendation model

/* Import the input relational schema from the database */
prm::DataSource dataSource(prm::ConnectionManager::

getDefaultDataSourceDetails());
boost::shared_ptr<prm::RelationalSchema> schema(new prm::

RelationalSchema());
dataSource.database = databaseName;
prm::utils::SchemaUtility<prm::DataSource>::importSchema(schema,

dataSource);

/* Initialize an RBN object for the input schema */
boost::shared_ptr<prm::RBN> rbn(new prm::RBN(schema));
rbn->init();

// Construct Huang’s recommendation model
/* Initialize HuangsRecoModel with the relational schema, the name of

the item class, the user class and the target variable. */

180 APPENDIX B. USING PILGRIM

boost::shared_ptr<prm::rs::model::HuangsRecoModel> recoModel(new prm::
rs::model::HuangsRecoModel(schema, "movie", "users", "rating.rating
"));

Huang et al. [2004] propose to use a naïve Bayesian classifier for recommendation. In
PILGRIM-Recommender, this model can be either defined manually when the structure
is known (e.g., when provided by experts) or learned from data. In the following, we
will show examples for both situations.

Manual definition

To manually define a naïve Bayesian classifier for HuangsRecoModel, we need to
create a NaiveBayesianClassifier object in the following way.

// Define Huang’s recommendation model manually

/* Target variable */
plSymbol rating = getSymbol("rating.rating");

/* Naive Bayesian classifier with rating.rating as the root variable

*/
boost::shared_ptr<prm::NaiveBayesianClassifier> classifier(new prm::

NaiveBayesianClassifier("NBN", rating, rbn->getNode(rating.name()))
);

/* Other attribute variables of the Naive BC */
plSymbol genre = getSymbol("movie.genre");
plSymbol age = getSymbol("users.age");

classifier->add_node(age, rbn->getVariable("rating.userid>users.age"))
;

classifier->add_node(genre, rbn->getVariable("rating.movieid>movie.
genre"));

/* Set the model to the recommender */
recoModel->setModel(classifier);

// Learn the parameters of this model from data
boost::shared_ptr<prm::Instance> instance(schema, databaseName);
recoModel->setParameterEstimationMethod(new prm::Laplace());
recoModel->learnModelParameters(instance);

Learning a recommendation model from data

A naïve Bayesian classifier can be learned from data with the help of the method
learnModel() of HuangsRecoModel. This method identifies the Markov blanket
of the target node and builds a naïve Bayesian classifier from the Markov blanket. It
also learns the parameters from data too.

// Learn Huang’s recommendation model

boost::shared_ptr<prm::Instance> instance(schema, databaseName);

recoModel->learnModel(instance);

B.5. WORKING WITH PILGRIM-RECOMMENDER 181

B.5.2 Making recommendations

Top-N recommendations can be obtained from the method topN of HuangsRecoModel
in the following manner.

// Get top-N recommendations for a target user

/* Target user */
prm::Object targetUser("userId", schema, schema->getClassRef("users"))

;
targetUser->set("attribute1Name", "attribute1Value");
targetUser->set("attribute2Name", "attribute2Value");

/* Preferred labels, e.g., 4 and 5 in 5-scale rating, true in boolean
rating */

std::set<std::string> preferredLabels;
preferredLabels.insert("preferredLabel1");
preferredLabels.insert("preferredLabel2");

/* Get top-N recommendations*/
std::vector<model::Relevance> topN = recoModelTest->getTopN(instance,

targetUser, N, preferredLabels);

C
Detailed Results of PRM-SA Learning
Algorithm Evaluation

In this chapter, we provide the detailed results of our experiment for evaluating
PRM-SA structure learning algorithms (see Section 8.5 for details about the exper-
iment). Tables C.1 – C.9 present average precision, recall, and F-score along with
standard deviations for each of the five algorithms being evaluated on 7 models of
Figure 8.6. Figures C.1 – C.4 show the results of Nemenyi test. Average precision,
recall, and F-score for spatial attributes of each model are reported in Tables C.10 –
C.15. Table C.16 shows average normalized mutual information (NMI) between the
spatial partition learned during the experiment, and the original spatial partition for
the spatial attribute (User.location) of each model. Finally, Table C.17 shows the ab-
solute difference between Bayesian Dirichlet score of the learned models and that of
the learned ones.

Table C.1 – Average ± standard deviation of Hard Precision for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.619 ± 0.209 0.619 ± 0.209 0.619 ± 0.209 0.400 ± 0.075 0.643 ± 0.202

A2 0.361 ± 0.195 0.361 ± 0.195 0.125 ± 0.209 0.236 ± 0.123 0.500 ± 0.333

B1 0.633 ± 0.178 0.633 ± 0.178 0.595 ± 0.189 0.469 ± 0.168 0.605 ± 0.110

C1 0.476 ± 0.224 0.452 ± 0.230 0.548 ± 0.263 0.390 ± 0.150 0.452 ± 0.209

C2 0.393 ± 0.157 0.771 ± 0.303 0.521 ± 0.107 0.719 ± 0.200 0.676 ± 0.241

C3 0.462 ± 0.118 0.486 ± 0.103 0.543 ± 0.228 0.490 ± 0.098 0.590 ± 0.211

D1 0.500 ± 0.136 0.500 ± 0.136 0.421 ± 0.263 0.545 ± 0.244 0.548 ± 0.209

Overall 0.495 ± 0.191 0.550 ± 0.228 0.489 ± 0.252 0.469 ± 0.204 0.575 ± 0.220

183

184 APPENDIX C. DETAILED RESULTS

Table C.2 – Average ± standard deviation of Hard Recall for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.619 ± 0.126 0.619 ± 0.126 0.619 ± 0.126 0.571 ± 0.163 0.619 ± 0.126

A2 0.278 ± 0.136 0.278 ± 0.136 0.111 ± 0.172 0.278 ± 0.136 0.333 ± 0.211

B1 0.536 ± 0.094 0.536 ± 0.094 0.500 ± 0.000 0.536 ± 0.094 0.500 ± 0.000

C1 0.286 ± 0.173 0.286 ± 0.173 0.464 ± 0.267 0.357 ± 0.134 0.250 ± 0.144

C2 0.286 ± 0.107 0.486 ± 0.195 0.400 ± 0.163 0.543 ± 0.151 0.286 ± 0.107

C3 0.464 ± 0.094 0.500 ± 0.144 0.536 ± 0.225 0.571 ± 0.189 0.464 ± 0.094

D1 0.286 ± 0.107 0.286 ± 0.107 0.257 ± 0.19 0.400 ± 0.115 0.200 ± 0.000

Overall 0.396 ± 0.177 0.430 ± 0.188 0.419 ± 0.233 0.469 ± 0.173 0.380 ± 0.181

Table C.3 – Average ± standard deviation of hard F-score for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.611 ± 0.144 0.611 ± 0.144 0.611 ± 0.144 0.465 ± 0.100 0.624 ± 0.145

A2 0.311 ± 0.156 0.311 ± 0.156 0.114 ± 0.181 0.254 ± 0.127 0.383 ± 0.221

B1 0.568 ± 0.075 0.568 ± 0.075 0.534 ± 0.064 0.494 ± 0.127 0.543 ± 0.051

C1 0.354 ± 0.192 0.347 ± 0.194 0.497 ± 0.262 0.370 ± 0.133 0.320 ± 0.167

C2 0.323 ± 0.112 0.587 ± 0.224 0.439 ± 0.136 0.612 ± 0.158 0.377 ± 0.092

C3 0.457 ± 0.093 0.486 ± 0.102 0.535 ± 0.223 0.523 ± 0.136 0.505 ± 0.109

D1 0.359 ± 0.117 0.359 ± 0.117 0.313 ± 0.215 0.448 ± 0.127 0.287 ± 0.024

Overall 0.429 ± 0.167 0.470 ± 0.184 0.441 ± 0.231 0.456 ± 0.16 0.435 ± 0.168

Table C.4 – Average ± standard deviation of Soft Precision for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.619 ± 0.209 0.619 ± 0.209 0.619 ± 0.209 0.400 ± 0.075 0.643 ± 0.202

A2 0.380 ± 0.155 0.380 ± 0.155 0.144 ± 0.201 0.250 ± 0.091 0.519 ± 0.302

B1 0.633 ± 0.178 0.633 ± 0.178 0.595 ± 0.189 0.469 ± 0.168 0.605 ± 0.110

C1 0.476 ± 0.224 0.452 ± 0.230 0.548 ± 0.263 0.390 ± 0.15 0.452 ± 0.209

C2 0.393 ± 0.157 0.771 ± 0.303 0.521 ± 0.107 0.719 ± 0.200 0.676 ± 0.241

C3 0.462 ± 0.118 0.486 ± 0.103 0.543 ± 0.228 0.490 ± 0.098 0.590 ± 0.211

D1 0.500 ± 0.136 0.500 ± 0.136 0.421 ± 0.263 0.545 ± 0.244 0.563 ± 0.194

Overall 0.497 ± 0.186 0.552 ± 0.223 0.492 ± 0.248 0.471 ± 0.200 0.580 ± 0.212

185

Table C.5 – Average ± standard deviation of Soft Recall for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.619 ± 0.126 0.619 ± 0.126 0.619 ± 0.126 0.571 ± 0.163 0.619 ± 0.126

A2 0.296 ± 0.091 0.296 ± 0.091 0.130 ± 0.164 0.296 ± 0.091 0.352 ± 0.178

B1 0.536 ± 0.094 0.536 ± 0.094 0.500 ± 0.000 0.536 ± 0.094 0.500 ± 0.000

C1 0.286 ± 0.173 0.286 ± 0.173 0.464 ± 0.267 0.357 ± 0.134 0.250 ± 0.144

C2 0.286 ± 0.107 0.486 ± 0.195 0.400 ± 0.163 0.543 ± 0.151 0.286 ± 0.107

C3 0.464 ± 0.094 0.500 ± 0.144 0.536 ± 0.225 0.571 ± 0.189 0.464 ± 0.094

D1 0.286 ± 0.107 0.286 ± 0.107 0.257 ± 0.190 0.400 ± 0.115 0.210 ± 0.025

Overall 0.398 ± 0.172 0.433 ± 0.183 0.421 ± 0.229 0.471 ± 0.167 0.384 ± 0.175

Table C.6 – Average ± standard deviation of Soft F-score for PRM-SA structure learning
algorithms for models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.611 ± 0.144 0.611 ± 0.144 0.611 ± 0.144 0.465 ± 0.100 0.624 ± 0.145

A2 0.330 ± 0.112 0.330 ± 0.112 0.133 ± 0.172 0.270± 0.089 0.402 ± 0.184

B1 0.568 ± 0.075 0.568 ± 0.075 0.534 ± 0.064 0.494 ± 0.127 0.543 ± 0.051

C1 0.354 ± 0.192 0.347 ± 0.194 0.497 ± 0.262 0.370 ± 0.133 0.320 ± 0.167

C2 0.323 ± 0.112 0.587 ± 0.224 0.439 ± 0.136 0.612 ± 0.158 0.377 ± 0.092

C3 0.457 ± 0.093 0.486 ± 0.102 0.535 ± 0.223 0.523 ± 0.136 0.505 ± 0.109

D1 0.359 ± 0.117 0.359 ± 0.117 0.313 ± 0.215 0.448 ± 0.127 0.299 ± 0.023

Overall 0.431 ± 0.162 0.470 ± 0.179 0.444 ± 0.227 0.458 ± 0.155 0.439 ± 0.161

186 APPENDIX C. DETAILED RESULTS

Table C.7 – Average ± standard deviation of Soft Precisionskeleton of models of Figure 8.6.

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.881 ± 0.151 0.881 ± 0.151 0.881 ± 0.151 0.648 ± 0.089 0.917 ± 0.144

A2 0.750 ± 0.204 0.750 ± 0.204 0.678 ± 0.264 0.500 ± 0.105 0.889 ± 0.172

B1 0.829 ± 0.187 0.829 ± 0.187 0.786 ± 0.173 0.714 ± 0.183 0.888 ± 0.145

C1 0.786 ± 0.393 0.738 ± 0.383 0.750 ± 0.382 0.574 ± 0.140 0.786 ± 0.393

C2 0.907 ± 0.117 0.971 ± 0.076 0.948 ± 0.09 0.943 ± 0.098 0.971 ± 0.076

C3 0.829 ± 0.167 0.829 ± 0.167 0.848 ± 0.153 0.736 ± 0.204 0.943 ± 0.098

D1 0.798 ± 0.203 0.798 ± 0.203 0.752 ± 0.239 0.795 ± 0.102 1.000 ± 0.000

Overall 0.827 ± 0.211 0.830 ± 0.214 0.809 ± 0.226 0.706 ± 0.187 0.914 ± 0.186

Table C.8 – Average ± standard deviation of Soft Recallskeleton of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.905 ± 0.163 0.905 ± 0.163 0.905 ± 0.163 0.905 ± 0.163 0.905 ± 0.163

A2 0.611 ± 0.136 0.611 ± 0.136 0.611 ± 0.136 0.611 ± 0.136 0.667 ± 0.211

B1 0.714 ± 0.173 0.714 ± 0.173 0.679 ± 0.122 0.857 ± 0.244 0.750 ± 0.144

C1 0.464 ± 0.267 0.464 ± 0.267 0.643 ± 0.378 0.536 ± 0.173 0.429 ± 0.238

C2 0.686 ± 0.195 0.629 ± 0.138 0.714 ± 0.227 0.714 ± 0.107 0.457 ± 0.223

C3 0.857 ± 0.244 0.857 ± 0.244 0.857 ± 0.244 0.857 ± 0.283 0.786 ± 0.225

D1 0.457 ± 0.151 0.457 ± 0.151 0.486 ± 0.195 0.629 ± 0.180 0.400 ± 0.115

Overall 0.672 ± 0.247 0.664 ± 0.242 0.701 ± 0.251 0.732 ± 0.226 0.627 ± 0.261

Table C.9 – Average ± standard deviation of Soft F-scoreskeleton of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.883 ± 0.127 0.883 ± 0.127 0.883 ± 0.127 0.745 ± 0.085 0.903 ± 0.133

A2 0.667 ± 0.146 0.667 ± 0.146 0.623 ± 0.163 0.548 ± 0.112 0.739 ± 0.169

B1 0.753 ± 0.136 0.753 ± 0.136 0.718 ± 0.111 0.771 ± 0.195 0.806 ± 0.112

C1 0.578 ± 0.309 0.565 ± 0.307 0.685 ± 0.377 0.549 ± 0.147 0.551 ± 0.288

C2 0.763 ± 0.132 0.751 ± 0.095 0.788 ± 0.152 0.804 ± 0.062 0.587 ± 0.195

C3 0.833 ± 0.194 0.833 ± 0.194 0.846 ± 0.194 0.786 ± 0.234 0.832 ± 0.123

D1 0.575 ± 0.166 0.575 ± 0.166 0.577 ± 0.198 0.686 ± 0.121 0.563 ± 0.121

Overall 0.723 ± 0.205 0.719 ± 0.203 0.734 ± 0.221 0.702 ± 0.171 0.711 ± 0.211

187

Table C.10 – Average ± standard deviation of Hard Precisionspatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.571 ± 0.535 0.571 ± 0.535 0.571 ± 0.535 0 ± 0 0.714 ± 0.488

A2 0.333 ± 0.516 0.333 ± 0.516 0.333 ± 0.516 0 ± 0 0.667 ± 0.516

B1 0.429 ± 0.535 0.429 ± 0.535 0.286 ± 0.488 0 ± 0 0.714 ± 0.488

C1 0.429 ± 0.535 0.286 ± 0.488 0 ± 0 0 ± 0 0.571 ± 0.535

C2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.714 ± 0.488

C3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.571 ± 0.535

D1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.857 ± 0.378

Overall 0.25 ± 0.438 0.229 ± 0.425 0.167 ± 0.377 0 ± 0 0.688 ± 0.468

Table C.11 – Average ± standard deviation of Hard Recallspatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

A2 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

B1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

D1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Overall 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449 0.271 ± 0.449

Table C.12 – Average ± standard deviation of hard F-scorespatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.571 ± 0.535 0.571 ± 0.535 0.571 ± 0.535 0 ± 0 0.714 ± 0.488

A2 0.333 ± 0.516 0.333 ± 0.516 0.333 ± 0.516 0 ± 0 0.667 ± 0.516

B1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

C3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

D1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Overall 0.125 ± 0.334 0.125 ± 0.334 0.125 ± 0.334 0 ± 0 0.188 ± 0.394

188 APPENDIX C. DETAILED RESULTS

Table C.13 – Average ± standard deviation of Soft Precisionspatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.571 ± 0.535 0.571 ± 0.535 0.571 ± 0.535 0 ± 0 0.714 ± 0.488

A2 0.333 ± 0.516 0.333 ± 0.516 0.333 ± 0.516 0 ± 0 0.667 ± 0.516

B1 0.5 ± 0.5 0.5 ± 0.5 0.429 ± 0.450 0.143 ± 0.378 0.881 ± 0.209

C1 0.714 ± 0.488 0.571 ± 0.535 0.643 ± 0.476 0.226 ± 0.229 0.714 ± 0.488

C2 0.071 ± 0.189 0.643 ± 0.476 0.271 ± 0.274 0.619 ± 0.267 0.714 ± 0.488

C3 0 ± 0 0.036 ± 0.094 0.19 ± 0.378 0.179 ± 0.170 0.571 ± 0.535

D1 0.357 ± 0.476 0.357 ± 0.476 0.333 ± 0.471 0.452 ± 0.326 1 ± 0

Overall 0.365 ± 0.470 0.432 ± 0.480 0.397 ± 0.446 0.236 ± 0.312 0.753 ± 0.424

Table C.14 – Average ± standard deviation of Soft Recallspatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

A2 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

B1 0.143 ± 0.378 0.143 ± 0.378 0 ± 0 0.143 ± 0.378 0.286 ± 0.488

C1 0.143 ± 0.244 0.143 ± 0.244 0.500 ± 0.408 0.286 ± 0.267 0.071 ± 0.189

C2 0.107 ± 0.134 0.357 ± 0.244 0.250 ± 0.204 0.429 ± 0.189 0.107 ± 0.134

C3 0 ± 0 0.143 ± 0.378 0.143 ± 0.378 0.571 ± 0.535 0 ± 0

D1 0.143 ± 0.178 0.143 ± 0.178 0.190 ± 0.262 0.333 ± 0.192 0.095 ± 0.163

Overall 0.349 ± 0.442 0.406 ± 0.442 0.429 ± 0.444 0.528 ± 0.416 0.352 ± 0.454

189

Table C.15 – Average ± standard deviation of Soft F-scorespatial of models of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.571 ± 0.535 0.571 ± 0.535 0.571 ± 0.535 0 ± 0 0.714 ± 0.488

A2 0.333 ± 0.516 0.333 ± 0.516 0.333 ± 0.516 0 ± 0 0.667 ± 0.516

B1 0.095 ± 0.252 0.095 ± 0.252 0 ± 0 0.143 ± 0.378 0.210 ± 0.360

C1 0.190 ± 0.325 0.190 ± 0.325 0.548 ± 0.416 0.248 ± 0.239 0.095 ± 0.252

C2 0.048 ± 0.126 0.418 ± 0.335 0.234 ± 0.236 0.489 ± 0.203 0.057 ± 0.151

C3 0 ± 0 0.057 ± 0.151 0.143 ± 0.378 0.271 ± 0.256 0 ± 0

D1 0.200 ± 0.252 0.200 ± 0.252 0.233 ± 0.321 0.363 ± 0.207 0.143 ± 0.244

Overall 0.203 ± 0.361 0.265 ± 0.377 0.294 ± 0.405 0.221 ± 0.271 0.261 ± 0.410

Table C.16 – Average ± standard deviation of normalized mutual information(NMI) between
the spatial partition learned during the experiment, and the original spatial partition for the
spatial attribute (User.location) of each model of Figure 8.6

Model Baseline Naive Adaptative1 Adaptative2 Adaptative3

A1 0.745 ± 0.091 0.759 ± 0.091 0.759 ± 0.091 0.759 ± 0.091 0.770 ± 0.137

A2 0.794 ± 0.030 0.827 ± 0.052 0.827 ± 0.052 0.827 ± 0.052 0.822 ± 0.130

B1 0.816 ± 0.081 0.816 ± 0.081 0.816 ± 0.081 0.816 ± 0.081 0.827 ± 0.147

C1 0.833 ± 0.059 0.836 ± 0.057 0.836 ± 0.057 0.836 ± 0.057 0.882 ± 0.108

C2 0.801 ± 0.044 0.807 ± 0.041 0.807 ± 0.041 0.807 ± 0.041 0.895 ± 0.116

C3 0.779 ± 0.032 0.769 ± 0.034 0.769 ± 0.034 0.769 ± 0.034 0.862 ± 0.086

D1 0.829 ± 0.011 0.829 ± 0.011 0.829 ± 0.011 0.829 ± 0.011 0.898 ± 0.159

Overall 0.800 ± 0.061 0.806 ± 0.062 0.806 ± 0.062 0.806 ± 0.062 0.851 ± 0.128

190 APPENDIX C. DETAILED RESULTS

Table C.17 – Absolute difference between Bayesian Dirichlet score of the gold models and
that of the learned models.

Model | ∆S(Gold,Adap1) | | ∆S(Gold,Adap2) | | ∆S(Gold,Adap3) | | ∆S(Gold,Naive) | | ∆S(Gold,Baseline) |

A1 3.27 4.69 8.21 3.54 3.54

A1 14.71 11.59 8.83 14.71 15.47

A1 33.25 15.60 19.34 33.25 33.25

A1 78.19 76.10 22.17 78.19 61.07

A1 136.28 119.17 5.51 136.28 137.08

A1 222.87 219.70 105.33 222.87 200.24

A1 323.33 304.82 320.56 323.33 323.33

A2 16.52 14.71 16.76 16.52 15.39

A2 11.50 11.99 5.75 11.50 13.48

A2 19.08 17.89 9.67 27.55 36.82

A2 24.94 35.06 1.76 36.84 36.17

A2 78.22 78.65 82.79 82.79 81.76

A2 75.28 81.56 51.96 82.57 82.57

B1 9.35 3.40 3.03 9.35 9.35

B1 32.87 27.88 14.88 32.87 32.87

B1 23.88 20.08 19.51 26.29 26.29

B1 75.15 54.94 43.54 71.29 71.29

B1 161.05 140.33 30.82 161.05 161.05

B1 246.48 242.77 6.30 246.48 246.48

B1 345.57 340.52 8.81 359.74 359.74

C1 20.44 17.17 20.18 20.44 20.44

C1 16.06 13.20 19.97 19.97 19.97

C1 39.91 29.38 21.26 39.91 39.91

C1 76.27 73.60 76.27 76.27 76.27

C1 96.56 79.97 25.51 95.55 95.55

C1 195.07 177.76 113.17 191.27 155.69

C1 272.07 202.80 110.17 206.53 206.53

C2 14.12 13.80 11.33 13.80 12.93

C2 13.32 18.69 16.77 18.69 16.77

C2 30.78 27.06 23.33 40.97 40.97

C2 13.78 9.77 61.19 13.58 13.60

C2 7.69 11.08 167.88 11.08 11.08

C2 17.54 17.54 266.75 5.40 1.56
C2 4.39 11.99 424.52 11.99 11.99

C3 7.40 6.49 1.21 7.40 7.40

C3 19.06 12.28 2.38 19.06 18.29

C3 39.80 31.07 20.34 39.80 39.80

C3 62.70 62.70 17.09 62.70 66.53

C3 112.53 101.39 122.98 112.53 118.26

C3 127.18 127.18 124.31 127.18 152.73

C3 236.80 227.75 539.97 227.75 238.19

D1 23.96 22.89 13.84 23.96 23.96

D1 26.56 29.34 11.88 26.56 26.56

D1 60.76 57.24 13.45 60.76 60.76

D1 73.82 79.04 11.37 85.29 85.29

D1 80.35 104.45 93.15 109.28 109.28

D1 196.43 177.59 42.30 196.43 196.43

D1 337.01 308.73 79.54 329.60 329.60

191

(a) Hard Precision (b) Hard F-score

(c) Soft Precision (d) Soft F-score

(e) Precisionskeleton (f) F-scoreskeleton

Figure C.1 – Comparison of PRM-SA learning algorithms with Nemenyi test for Model A1.

(a) Soft Precision (b) Soft F-score

(c) Precisionskeleton (d) F-scoreskeleton

Figure C.2 – Comparison of PRM-SA learning algorithms with Nemenyi test for Model A2

192 APPENDIX C. DETAILED RESULTS

(a) Hard Precision (b) Soft Precision

(c) Hard Recall (d) Soft Recall

(e) Soft Recallspatial

(f) Hard F-score (g) Soft F-score

(h) F-scoreskeleton (i) Soft F-scorespatial

Figure C.3 – Comparison of PRM-SA learning algorithms with Nemenyi test for Model C2

193

(a) Recallskeleton

Figure C.4 – Comparison of PRM-SA learning algorithms with Nemenyi test for Model D1

Bibliography

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749, June 2005. ISSN 1041-4347.
43, 45

G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In Recom-
mender systems handbook, chapter 7, pages 217–253. Springer, 2011. 44

G. Adomavicius, N. Manouselis, and Y. Kwon. Multi-criteria recommender systems.
In Recommender systems handbook, chapter 24, pages 769–803. Springer, 2011. 49

P. Aguilera, A. Fernández, R. Fernández, R. Rumí, and A. Salmerón. Bayesian networks
in environmental modelling. Environmental Modelling & Software, 26(12):1376–1388,
2011. 80

A. Ahmed, L. Hong, and A. J. Smola. Hierarchical geographical modeling of user loca-
tions from social media posts. In Proceedings of the 22nd international conference on
World Wide Web, pages 25–36. International World Wide Web Conferences Steering
Committee, 2013. 84

H. J. Ahn. A new similarity measure for collaborative filtering to alleviate the new
user cold-starting problem. Information Sciences, 178(1):37–51, 2008. 58

H. Akaike. Statistical predictor identification. Annals of the Institute of Statistical
Mathematics, 22(1):203–217, 1970. 19

C. F. Aliferis and I. Tsamardinos. Algorithms for large-scale local causal discovery
and feature selection in the presence of limited sample or large causal neighbour-
hoods. Technical report, Technical report DSL-02-08, Department of Biomedical
Informatics, Vanderbilt University, 2002. 20

S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjærulff, M. Woldbye, A. R.
Sørensen, A. Rosenfalck, and F. Jensen. Munin–an expert emg assistant. Computer-
aided electromyography and expert systems, 21, 1989. 28

A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and I. Netanely. Movie
recommender system for profit maximization. In Q. Yang, I. King, Q. Li, P. Pu, and
G. Karypis, editors, Seventh ACM Conference on Recommender Systems, RecSys
’13, pages 121–128, Hong Kong, China, 2013. ACM. 55

R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison. Predicting the next app that
you are going to use. In Proceedings of the Eighth ACM International Conference
on Web Search and Data Mining, pages 285–294. ACM, 2015. 58

195

196 BIBLIOGRAPHY

O. Bangsø and P. Wuillemin. Top-down construction and repetitive structures rep-
resentation in bayesian networks. In J. N. Etheredge and B. Z. Manaris, editors,
Proceedings of the Thirteenth International Florida Artificial Intelligence Research
Society Conference, FLAIRS, pages 282–286, Orlando, Florida, USA, 2000. AAAI
Press. 3

J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-aware recom-
mendation using sparse geo-social networking data. Proceedings of the 20th Interna-
tional Conference on Advances in Geographic Information Systems - SIGSPATIAL
’12, page 199, 2012. 84

J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel. Recommendations in location-based
social networks: a survey. GeoInformatica, 19(3):525–565, 2015. 80, 84

A. B. Barragáns-Martínez, E. Costa-Montenegro, J. C. Burguillo, M. Rey-López, F. A.
Mikic-Fonte, and A. Peleteiro. A hybrid content-based and item-based collaborative
filtering approach to recommend tv programs enhanced with singular value decom-
position. Information Sciences, 180(22):4290–4311, 2010. 48

D. N. Barton, S. Kuikka, O. Varis, L. Uusitalo, H. J. Henriksen, M. Borsuk, A. de la
Hera, R. Farmani, S. Johnson, and J. D. Linnell. Bayesian networks in environmental
and resource management. Integrated environmental assessment and management,
8(3):418–429, 2012. 80

J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. A comparative analysis
of offline and online evaluations and discussion of research paper recommender system
evaluation. In A. Bellogín, P. Castells, A. Said, and D. Tikk, editors, Proceedings of
the international workshop on reproducibility and replication in recommender systems
evaluation, RepSys 2013, pages 7–14, Hong Kong, China, 2013. ACM. 51

M. Ben Ishak. Probabilistic relational models: learning and evaluation. PhD thesis,
Université de Nantes; Université de Tunis, Institut Supérieur de Gestion de Tunis,
2015. ix, xiii, 5, 6, 7, 26, 28, 29, 30, 31, 32, 37, 40, 117, 118, 119, 124, 133, 143, 147,
148, 153, 157, 170

M. Ben Ishak, N. Ben Amor, and P. Leray. A relational bayesian network-based rec-
ommender system architecture. In Proceedings of the 5th International Conference
on Modeling, Simulation and Applied Optimization (ICMSAO 2013), 2013. iv, ix,
61, 65, 66, 68, 69

M. Ben Ishak, R. Chulyadyo, A. Abdelwahab, M. Ramirez, P. Leray, and N. Ben Amor.
Relational bayesian networks for recommender systems: review and comparative
study. In ENBIS-SFdS Spring Meeting on graphical causality models: Trees,
Bayesian Networks and Big Data, Paris, France, Apr. 2014. 7

M. Ben Ishak, R. Chulyadyo, and P. Leray. Probabilistic Relational Model Benchmark
Generation. Technical report, LARODEC Laboratory, ISG, Université de Tunis,
Tunisia ; DUKe research group, LINA Laboratory UMR 6241, University of Nantes,
France ; DataForPeople, Nantes, France, Feb. 2016. 6

I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1(1):1–36, 2007. 12

BIBLIOGRAPHY 197

M. Bilgic and R. J. Mooney. Explaining recommendations: Satisfaction vs. promotion.
In Beyond Personalization Workshop, IUI, volume 5, 2005. 153

D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML,
volume 98, pages 46–54, 1998. 57

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29(2-3):213–244, 1997. 28

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-Based Systems, 46:109–132, 2013. 12, 45

B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 132–139. Society for Industrial and Applied Mathematics, 2003. 33

R. R. Bouckaert. Probabilistic network construction using the minimum description
length principle. In Symbolic and quantitative approaches to reasoning and uncer-
tainty, pages 41–48. Springer, 1993. 19

L. Brozovsky and V. Petricek. Recommender system for online dating service. In
CoRR, volume abs/cs/0703042, 2007. 56

A. Brun, A. Hamad, O. Buffet, and A. Boyer. Towards preference relations in rec-
ommender systems. In Workshop on Preference Learning, European Conference on
Machine Learning and Principle and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2010), 2010. 51

R. Burke. Hybrid web recommender systems. In The adaptive web, pages 377–408.
Springer, 2007. ix, 48, 49

M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for infor-
mation extraction. In Proceedings of the sixteenth national conference on Artificial
intelligence and the eleventh Innovative applications of artificial intelligence con-
ference innovative applications of artificial intelligence, pages 328–334. American
Association for Artificial Intelligence, 1999. 12

R. Cano, C. Sordo, and J. M. Gutiérrez. Applications of Bayesian networks in meteo-
rology. Advances in Bayesian networks, pages 309–327, 2004. 106

I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity
and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.
56

M. Chau and H. Chen. A machine learning approach to web page filtering using content
and structure analysis. Decision Support Systems, 44(2):482–494, 2008. 12

Y. E. Chee, L. Wilkinson, A. E. Nicholson, P. F. Quintana-Ascencio, J. E. Fauth,
D. Hall, K. J. Ponzio, and L. Rumpff. Modelling spatial and temporal changes
with gis and spatial and dynamic bayesian networks. Environmental Modelling &
Software, 82:108–120, 2016. 80

198 BIBLIOGRAPHY

L. Chen and P. Pu. Critiquing-based recommenders: survey and emerging trends. User
Modeling and User-Adapted Interaction, 22(1-2):125–150, 2012. 50, 89

P. P.-S. Chen. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems (TODS), 1(1):9–36, 1976. 15

R. Chulyadyo and P. Leray. Probabilistic Relational Models for Customer Preference
Modelling and Recommendation. Technical report, Laboratoire d’Informatique de
Nantes Atlantique - LINA, 2013. URL http://hal.archives-ouvertes.fr/
hal-00967044. 7

R. Chulyadyo and P. Leray. A personalized recommender system from probabilistic
relational model and users’ preferences. In 18th International Conference in Knowl-
edge Based and Intelligent Information and Engineering Systems, KES 2014, pages
1063–1072, Gdynia, Poland, 2014. 6

R. Chulyadyo and P. Leray. Integrating spatial information into probabilistic relational
models. In IEEE International Conference on Data Science and Advanced Analytics,
DSAA’15, pages 1–8, Paris, France, Oct 2015. 6

E. F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377–387, 1970. 13

G. F. Cooper. The computational complexity of probabilistic inference using bayesian
belief networks. Artificial Intelligence, 42(2-3):393–405, 1990. ISSN 0004-3702. 18

G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine learning, 9(4):309–347, 1992. 19

A. Coutant. Probabilistic Relational Models and Reference Uncertainty: Structure
learning with clustering algorithms. PhD thesis, Université de Nantes, Nov 2015.
24, 144

A. Coutant, P. Leray, and H. Le Capitaine. Probabilistic relational models with clus-
tering uncertainty. In International Joint Conference on Neural Networks, IJCNN,
pages 1–8. IEEE, 2015. 24

P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief net-
works is np-hard. Artificial intelligence, 60(1):141–153, 1993. 18

R. Daly, Q. Shen, and S. Aitken. Review: learning bayesian networks: Approaches
and issues. The Knowledge Engineering Review, 26(02):99–157, May 2011. ISSN
0269-8889. 16

L. M. De Campos, J. M. Fernández-Luna, J. F. Huete, and M. A. Rueda-Morales.
Combining content-based and collaborative recommendations: A hybrid approach
based on bayesian networks. International Journal of Approximate Reasoning, 51
(7):785–799, 2010. 57

M. de Jongh and M. J. Druzdzel. A comparison of structural distance measures for
causal bayesian network models. Recent Advances in Intelligent Information Systems,
Challenging Problems of Science, Computer Science series, pages 443–456, 2009. 29

http://hal.archives-ouvertes.fr/hal-00967044
http://hal.archives-ouvertes.fr/hal-00967044

BIBLIOGRAPHY 199

L. De Raedt and K. Kersting. Probabilistic Inductive Logic Programming. In L. De
Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilistic Inductive
Logic Programming – Theory and Applications, chapter 1, pages 1–27. Springer, 2004.
ISBN 978-3-540-78651-1. doi: 10.1007/978-3-540-78652-8. 13

V. Delcroix and A. Ben Mrad. Modéliser un critère par un réseau bayésien : V-structure
et observations probabilistes fixes. In Proceedings of the 8th Journées Francophones
sur les Réseaux Bayésiens et les Modèles Graphiques Probabilistes, JFRB 2016, pages
1–18, Clermont-Ferrand, France, 2016. x, 98, 100, 101

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006. 127

S. Dooms, T. De Pessemier, and L. Martens. Movietweetings: a movie rating dataset
collected from twitter. In Workshop on Crowdsourcing and Human Computation for
Recommender Systems, CrowdRec at RecSys 2013, 2013. 56

M. J. Egenhofer and J. Herring. Categorizing binary topological relations between
regions, lines, and points in geographic databases. The, 9:94–1, 1990. 76

M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative filtering recommender
systems. Foundations and Trends in Human-Computer Interaction, 4(2):81–173,
2011. 45, 46

S. Fakhraei, J. Foulds, M. Shashanka, and L. Getoor. Collective spammer detection in
evolving multi-relational social networks. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1769–
1778. ACM, 2015. 153

I. Fernández-Tobías, I. Cantador, M. Kaminskas, and F. Ricci. Cross-domain recom-
mender systems: A survey of the state of the art. In Proceedings of the Second
Spanish Conference on Information Retrieval (CERI 2012), 2012. 51

E. Fersini, E. Messina, and F. Archetti. Probabilistic relational models with relational
uncertainty: An early study in web page classification. In IEEE/WIC/ACM Inter-
national Joint Conferences on Web Intelligence and Intelligent Agent Technologies,
volume 3 of WI-IAT’09, pages 139–142. IET, 2009. 24

P. C. Fishburn. Additive utilities with incomplete product sets: Application to priori-
ties and assignments. Operations Research, 15(3):537–542, 1967. 94

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In International Joint Conference on Artificial Intelligence, volume 16, pages
1300–1309. Lawrence Erlbaum Associates Ltd, 1999. 3, 12, 20, 26, 63, 112

Y. Gao, H. Qi, J. Liu, and D. Liu. A recommendation algorithm combining user grade-
based collaborative filtering and probabilistic relational models. In Proceedings of
the Fourth International Conference on Fuzzy Systems and Knowledge Discovery -
Volume 01, FSKD ’07, pages 67–71, Washington, DC, USA, 2007. IEEE Computer
Society. iv, ix, 4, 48, 61, 65, 68, 69

200 BIBLIOGRAPHY

M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating recom-
mender systems by coverage and serendipity. In Proceedings of the 2010 ACM Con-
ference on Recommender Systems, RecSys 2010, pages 257–260, Barcelona, Spain,
2010. ACM. 54

L. Getoor. Learning statistical models from relational data. PhD thesis, Stanford
University, 2001. 3, 13, 21, 24, 26, 64, 67, 110

L. Getoor and M. Sahami. Using probabilistic relational models for collaborative filter-
ing. In Workshop on Web Usage Analysis and User Profiling (WEBKDD’99), pages
1–6, 1999. iv, ix, 4, 61, 62, 63, 66, 68, 69

L. Getoor and B. Taskar. Introduction to statistical relational learning. MIT Press,
2007. 2, 12

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of
relational structure. In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 170–177, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. 12, 20

L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic relational
models. In L. Getoor and B. Taskar, editors, Introduction to statistical relational
learning, chapter 5, pages 129–174. The MIT press, 2007. 15, 21, 22, 28

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2):133–151, 2001. 56

M. F. Goodchild. Twenty years of progress: GIScience in 2010. Journal of Spatial
Information Science, 1(1):3–20, 2010. 106

D. A. Griffith. What is spatial autocorrelation? Reflections on the past 25 years of
spatial statistics. Espace géographique, 21(3):265–280, 1992. 75, 106

G. Guo, J. Zhang, and D. Thalmann. Merging trust in collaborative filtering to alleviate
data sparsity and cold start. Knowledge-Based Systems, 57:57–68, 2014. 57, 58

M. Gupta, R. Li, Z. Yin, and J. Han. Survey on social tagging techniques. ACM Sigkdd
Explorations Newsletter, 12(1):58–72, 2010. 51

R. H. Güting. An introduction to spatial database systems. The VLDB Journal – The
International Journal on Very Large Data Bases, 3(4):357–399, 1994. 76

J. Han, M. Kamber, and A. K. H. Tung. Spatial Clustering Methods in Data Mining: A
Survey. In H. J. Miller and J. Han, editors, Geographic Data Mining and Knowledge
Discovery, Research Monographs in GIS, pages 1–29. Taylor and Francis, 2001. 107

D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The
combination of knowledge and statistical data. Machine learning, 20(3):197–243,
1995. 29

D. Heckerman, C. Meek, and D. Koller. Probabilistic models for relational data. Tech-
nical report, MSR-TR-2004-30, Microsoft Research, 2004. 12

BIBLIOGRAPHY 201

D. Heckerman, C. Meek, and D. Koller. Probabilistic entity-relationship models, PRMs,
and plate models. In L. Getoor and B. Taskar, editors, Introduction to statistical
relational learning, chapter 7, pages 201–238. The MIT Press, 2007. 13

M. Henrion. Some practical issues in constructing belief networks. In Proceedings of
the Third Annual Conference on Uncertainty in Artificial Intelligence, UAI’87, pages
161–174, Seattle, WA, USA, 1987. 94

M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sam-
pling. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelli-
gence, volume 5 of Machine Intelligence and Pattern Recognition, pages 149 – 163.
North-Holland, 1988. 18, 31, 37

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS),
22(1):5–53, 2004. 51, 52, 54, 55

T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence - Volume 2,
IJCAI’99, pages 688–693, San Francisco, CA, USA, 1999. Morgan Kaufmann Pub-
lishers Inc. 62

W. Hong, S. Zheng, H. Wang, and J. Shi. A job recommender system based on user
clustering. Journal of Computers, 8(8):1960–1967, 2013. 42, 51

R. Hu and P. Pu. A study on user perception of personality-based recommender
systems. In International Conference on User Modeling, Adaptation, and Personal-
ization, pages 291–302. Springer, 2010. 50

J. Huang and Y. Yuan. Construction and Application of Bayesian Network Model for
Spatial Data Mining. In IEEE International Conference on Control and Automation,
ICCA 2007, pages 2802–2805, 2007. 106

S.-L. Huang. Designing utility-based recommender systems for e-commerce: Evaluation
of preference-elicitation methods. Electronic Commerce Research and Applications,
10(4):398–407, 2011. 50

Y. Huang and L. Bian. A Bayesian network and analytic hierarchy process based
personalized recommendations for tourist attractions over the Internet, 2009. 81, 83,
84

Z. Huang, D. Zeng, and H. Chen. A unified recommendation framework based on
probabilistic relational models. In Fourteenth Annual Workshop on Information
Technologies and Systems (WITS), pages 8–13, 2004. iv, 4, 7, 24, 61, 63, 66, 68, 69,
136, 148, 149, 150, 154, 179, 180

Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative filtering. In
Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries, pages
141–142. ACM, 2005. 12

M. Jaeger. Relational bayesian networks. In Proceedings of the Thirteenth conference on
Uncertainty in artificial intelligence, pages 266–273. Morgan Kaufmann Publishers
Inc., 1997. 3, 12

202 BIBLIOGRAPHY

M. Jamali and M. Ester. Trustwalker: a random walk model for combining trust-
based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 397–406,
Paris, France, 2009. ACM. 57

D. Jannach and G. Friedrich. Tutorial: recommender systems. International Joint
Conference on Artificial Intelligence, 2013. URL http://ijcai13.org/files/
tutorial_slides/td3.pdf. ix, 48, 49

D. Jannach, M. Zanker, M. Ge, and M. Gröning. Recommender systems in computer
science and information systems – a landscape of research. In Proceedings of the 13th
International Conference on Electronic Commerce and Web Technologies, volume 123
of EC-Web 2012, page 76, Vienna, Austria, 2012. Springer. 42, 52

C. S. Jensen, U. Kjærulff, and A. Kong. Blocking Gibbs sampling in very large prob-
abilistic expert systems. International Journal of Human-Computer Studies, 42(6):
647–666, 1995. 18

F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of bayesian belief universes
for knowledge-based systems. Networks, 20(5):637–659, 1990. 18

N. Jones, A. Brun, and A. Boyer. Comparisons instead of ratings: Towards more stable
preferences. In Proceedings of the 2011 IEEE/WIC/ACM International Conference
on Web Intelligence, WI 2011, WI 2011, pages 451–456, Campus Scientifique de la
Doua, Lyon, France, 2011. IEEE Computer Society. 51

F. Kaelin. Approximate Inference in Probabilistic Relational Models. Technical report,
McGill University, Montreal, Canada, 2011. xiii, 25, 39, 40, 118, 122, 153, 154

R. Katarya and O. P. Verma. Recent developments in affective recommender systems.
Physica A: Statistical Mechanics and its Applications, 461:182 – 190, 2016. 50

K. Kersting and L. De Raedt. Bayesian logic programming: Theory and tool. In
L. Getoor and B. Taskar, editors, Introduction to statistical relational learning, chap-
ter 10, pages 291–321. The MIT Press, 2007. 12

J. H. Kim and J. Pearl. A computational model for causal and diagnostic reasoning
in inference systems. In A. Bundy, editor, Proceedings of the 8th International Joint
Conference on Artificial Intelligence. Karlsruhe, FRG, August 1983, IJCAI 83, pages
190–193, Karlsruhe, FRG, 1983. William Kaufmann. 18

J. Kisynski and D. Poole. Lifted aggregation in directed first-order probabilistic models.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI 2009, pages 1922–1929, Pasadena, California, USA, 2009. 25

U. B. Kjærulff and A. L. Madsen. Bayesian Networks and Influence Diagrams: A
Guide to Construction and Analysis. Springer Science & Business Media, 2007. 92

D. Koller and A. Pfeffer. Object-oriented bayesian networks. In D. Geiger and P. P.
Shenoy, editors, Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, UAI ’97, pages 302–313, Brown University, Providence, Rhode Island,
USA, 1997. Morgan Kaufmann. 3

http://ijcai13.org/files/tutorial_slides/td3.pdf
http://ijcai13.org/files/tutorial_slides/td3.pdf

BIBLIOGRAPHY 203

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. IEEE Computer, 42(8):30–37, 2009. 57

P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and L. Getoor. Hyper: A flexible and
extensible probabilistic framework for hybrid recommender systems. In Proceedings
of the 9th ACM Conference on Recommender Systems, pages 99–106. ACM, 2015.
153

K. Kristensen and I. A. Rasmussen. The use of a bayesian network in the design
of a decision support system for growing malting barley without use of pesticides.
Computers and Electronics in Agriculture, 33(3):197–217, 2002. 28

D. Landuyt, S. Broekx, R. D’hondt, G. Engelen, J. Aertsens, and P. L. Goethals. A
review of bayesian belief networks in ecosystem service modelling. Environmental
Modelling & Software, 46:1–11, 2013. 80

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), pages 157–224, 1988. 18

S. Lee and V. Honavar. On learning causal models from relational data. In D. Schuur-
mans and M. P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 3263–3270, Phoenix, Arizona, USA., 2016. AAAI Press.
154

S. K. Lee, Y. H. Cho, and S. H. Kim. Collaborative filtering with ordinal scale-based
implicit ratings for mobile music recommendations. Information Sciences, 180(11):
2142–2155, 2010. 58

J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. LARS: A Location-
Aware Recommender System. 2012 IEEE 28th International Conference on Data
Engineering, 1:450–461, apr 2012. ix, 80, 81, 83, 84

L. Li, J. Wang, H. Leung, and C. Jiang. Assessment of catastrophic risk using bayesian
network constructed from domain knowledge and spatial data. Risk Analysis, 30(7):
1157–1175, 2010. 106

B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. Facing the cold start problem in
recommender systems. Expert Systems with Applications, 41(4):2065–2073, 2014. 57,
58

N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for collab-
orative filtering. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM 2009, pages 759–766, Hong Kong, China, 2009. 51

P. Lops, M. De Gemmis, and G. Semeraro. Content-based recommender systems: State
of the art and trends. In Recommender systems handbook, chapter 3, pages 73–105.
Springer, 2011. 46

P. Lops, M. De Gemmis, G. Semeraro, C. Musto, and F. Narducci. Content-based and
collaborative techniques for tag recommendation: an empirical evaluation. Journal
of Intelligent Information Systems, 40(1):41–61, 2013. 51

204 BIBLIOGRAPHY

H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using prob-
abilistic matrix factorization. In Proceedings of the 17th ACM Conference on In-
formation and Knowledge Management, CIKM 2008, pages 931–940, Napa Valley,
California, USA, 2008. 57

S. A. Macskassy and F. Provost. Classification in networked data: A toolkit and a
univariate case study. Journal of Machine Learning Research, 8:935–983, 2007. 12

M. Maier, K. Marazopoulou, D. Arbour, and D. Jensen. A sound and complete algo-
rithm for learning causal models from relational data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013, pages 371–380,
Bellevue, WA, USA, 2013. 29, 133, 154

D. Malerba. A relational perspective on spatial data mining. International Journal of
Data Mining, Modelling and Management, 1(1):103–118, 2008. 4, 73, 75, 106

L. B. Marinho, T. Sandholm, C. de Souza Baptista, I. Nunes, C. Nóbrega, and
J. Araújo. Extracting geospatial preferences using relational neighbors. Journal
of Information and Data Management, 3(3):364–377, 2012. 81, 83, 84

T. Martin, B. Ball, B. Karrer, and M. E. J. Newman. Coauthorship and citation in
scientific publishing. CoRR, abs/1304.0473, 2013. 12

J. Masthoff. Group recommender systems: Combining individual models. In Recom-
mender systems handbook, chapter 21, pages 677–702. Springer, 2011. 51

S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In Extended Abstracts Proceedings of the
2006 Conference on Human Factors in Computing Systems, CHI 2006, pages 1097–
1101, Montréal, Québec, Canada, 2006. ACM. 54

P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering
for improved recommendations. In Proceedings of the Eighteenth National Confer-
ence on Artificial Intelligence and Fourteenth Conference on Innovative Applications
of Artificial Intelligence, pages 187–192, Edmonton, Alberta, Canada, 2002. AAAI
Press / The MIT Press. 48, 57

C. Mettouris and G. A. Papadopoulos. Ubiquitous recommender systems. Computing,
96(3):223–257, 2014. 51

F. Meyer, F. Fessant, F. Clérot, and É. Gaussier. Toward a new protocol to evaluate
recommender systems. In Proceedings of the Workshop on Recommendation Utility
Evaluation: Beyond RMSE, RUE 2012, pages 9–14, Dublin, Ireland, 2012. 51

B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelbling. Lifted
probabilistic inference with counting formulas. In D. Fox and C. P. Gomes, editors,
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, pages 1062–1068, Chicago, Illinois, USA, 2008. AAAI Press. 25

B. Mobasher, R. Burke, and J. J. Sandvig. Model-based collaborative filtering as a
defense against profile injection attacks. In Proceedings of The Twenty-First National
Conference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, pages 1388–1393, Boston, Massachusetts, USA,
2006. AAAI Press. 57

BIBLIOGRAPHY 205

P. Närman, M. Buschle, J. König, and P. Johnson. Hybrid probabilistic relational mod-
els for system quality analysis. In 14th IEEE International on Enterprise Distributed
Object Computing Conference, EDOC, pages 57–66. IEEE, 2010. 24

J. Neville and D. Jensen. Collective classification with relational dependency networks.
In Proceedings of the Second International Workshop on Multi-Relational Data Min-
ing, pages 77–91. Citeseer, 2003. 12, 112

J. Neville and D. D. Jensen. Relational dependency networks. Journal of Machine
Learning Research, 8:653–692, 2007. 3

M. E. J. Newman. The structure and function of complex networks. SIAM review, 45
(2):167–256, 2003. 32

J. Newton and R. Greiner. Hierarchical probabilistic relational models for collabo-
rative filtering. In Workshop on Statistical Relational Learning, 21st International
Conference on Machine Learning, 2004. iv, ix, 4, 24, 61, 64, 65, 67, 68, 69

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th international conference on machine
learning, ICML-11, pages 809–816, 2011. 12

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016. 13

M. Nilashi, O. bin Ibrahim, and N. Ithnin. Hybrid recommendation approaches for
multi-criteria collaborative filtering. Expert Systems with Applications, 41(8):3879–
3900, 2014. 49

M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem of
collaborative filtering using trust inferences. In Trust management, pages 224–239.
Springer, 2005. 57

D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A literature review and classification
of recommender systems research. Expert Systems with Applications, 39(11):10059–
10072, 2012. 42

M.-h. Park, J.-h. Hong, and S.-b. Cho. Location-Based Recommendation System Using
Bayesian User’s Preference Model in Mobile Devices. Ubiquitous Intelligence and
Computing, pages 1130–1139, 2007. 106

M. J. Pazzani and D. Billsus. Content-based recommendation systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web, volume 4321
of Lecture Notes in Computer Science, pages 325–341. Springer Berlin Heidelberg,
2007. ISBN 978-3-540-72078-2. 46

J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach.
Cognitive Systems Laboratory, School of Engineering and Applied Science, Univer-
sity of California, Los Angeles, 1982. 18

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. ISBN
1558604790. ix, 16, 18, 94

206 BIBLIOGRAPHY

C. Perlich and Z. Huang. Relational learning for customer relationship management. In
Proceedings of international workshop on customer relationship management: data
mining meets marketing, 2005. 64

A. J. Pfeffer. Probabilistic reasoning for complex systems. PhD thesis, Stanford Uni-
versity, 2000. 25

J. Pitman. Combinatorial stochastic processes. Lecture Notes for St. Flour Summer
School, 2002. 33

L. Pizzato, T. Rej, T. Chung, I. Koprinska, and J. Kay. Recon: a reciprocal recom-
mender for online dating. In Proceedings of the fourth ACM conference on Recom-
mender systems, pages 207–214. ACM, 2010. 42, 51

A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In
IJCAI workshop on learning statistical models from relational data, pages 81–90,
New York, 2003. ACM Press. 12

P. Pu, L. Chen, and R. Hu. Evaluating recommender systems from the user’s perspec-
tive: survey of the state of the art. User Modeling and User-Adapted Interaction, 22
(4-5):317–355, 2012. 48, 49, 89

L. D. Raedt. Logical and relational learning. Cognitive Technologies. Springer, 2008.
ISBN 978-3-540-20040-6. 2

F. Ricci. Recommender systems: Models and techniques. In Encyclopedia of Social
Network Analysis and Mining, pages 1511–1522. Springer, 2014. 44

F. Ricci, L. Rokach, B. Shapira, and B. P. Kantor. Recommender Systems Handbook.
Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. 12, 45

F. Ricci, L. Rokach, and B. Shapira. Recommender systems: introduction and chal-
lenges. In Recommender Systems Handbook, chapter 1, pages 1–34. Springer, 2015.
49, 51, 58, 88

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1):
107–136, 2006. ISSN 1573-0565. 12, 13

R. Rossi and J. Neville. Modeling the evolution of discussion topics and communication
to improve relational classification. In Proceedings of the First Workshop on Social
Media Analytics, pages 89–97. ACM, 2010. 12

R. A. Rossi, L. K. McDowell, D. W. Aha, and J. Neville. Transforming graph data
for statistical relational learning. Journal of Artificial Intelligence Research, 45(1):
363–441, 2012. 13

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003. ISBN 0137903952. 18

T. L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1980. 95

T. L. Saaty. Decision making with the analytic hierarchy process. International journal
of services sciences, 1(1):83–98, 2008. vii, 95

BIBLIOGRAPHY 207

A. Said and A. Bellogín. Comparative recommender system evaluation: benchmark-
ing recommendation frameworks. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 129–136. ACM, 2014a. 51

A. Said and A. Bellogín. Rival: a toolkit to foster reproducibility in recommender
system evaluation. In Proceedings of the 8th ACM Conference on Recommender
systems, pages 371–372. ACM, 2014b. 57

L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg.
The database of interacting proteins: 2004 update. Nucleic acids research, 32(suppl
1):D449–D451, 2004. 12

T. Sang, P. Beame, and H. A. Kautz. Performing bayesian inference by weighted model
counting. In AAAI, volume 5, pages 475–481, 2005. 18

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality re-
duction in recommender system – a case study. Technical report, DTIC Document,
2000. 57

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web, pages 285–295. ACM, 2001. 46

M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Lars*: An efficient and
scalable location-aware recommender system. Knowledge and Data Engineering,
IEEE Transactions on, 26(6):1384–1399, 2014. 80, 83, 84, 132

A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for
cold-start recommendations. In Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 253–
260. ACM, 2002. 58

G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):
461–464, 1978. 19

S. Sen, J. Vig, and J. Riedl. Tagommenders: connecting users to items through tags. In
Proceedings of the 18th international conference on World wide web, pages 671–680.
ACM, 2009. 51

R. D. Shachter. Evaluating influence diagrams. Operations research, 34(6):871–882,
1986. 18

G. R. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathematics and
Artificial Intelligence, 2(1-4):327–351, 1990. 18

G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci,
L. Rokach, B. Shapira, and B. P. Kantor, editors, Recommender systems handbook,
chapter 8, pages 257–297. Springer, 2011. 51, 55

S. Shearin and H. Lieberman. Intelligent profiling by example. In Proceedings of the 6th
international conference on Intelligent user interfaces, pages 145–151. ACM, 2001.
5, 88

208 BIBLIOGRAPHY

S. Shekhar, M. R. Evans, J. M. Kang, and P. Mohan. Identifying patterns in spatial
information: A survey of methods. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(3):193–214, May 2011. 73, 75

N. Shibata, Y. Kajikawa, and I. Sakata. Link prediction in citation networks. Journal
of the American society for information science and technology, 63(1):78–85, 2012.
12

P. Singla and P. M. Domingos. Lifted first-order belief propagation. In AAAI, volume 8,
pages 1094–1099, 2008. 25

B. Smyth. Case-based recommendation. In P. Brusilovsky, A. Kobsa, and W. Nejdl,
editors, The Adaptive Web: Methods and Strategies of Web Personalization, pages
342–376. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-
72079-9. 49, 88

B. Smyth and P. Cotter. A personalised tv listings service for the digital tv age.
Knowledge-Based Systems, 13(2):53–59, 2000. 48

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT
press, 2nd edition, 2000. 19, 29, 133, 154

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances
in Artificial Intelligence, 2009:1–20, 2009. 46

L. Tang and H. Liu. Relational learning via latent social dimensions. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 817–826. ACM, 2009. 12

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational
data. In A. Darwiche and N. Friedman, editors, Proceedings of the 18th Conference in
Uncertainty in Artificial Intelligence, UAI ’02, pages 485–492, University of Alberta,
Edmonton, Alberta, Canada, 2002. Morgan Kaufmann. 3

B. Taskar, P. Abbeel, M.-F. Wong, and D. Koller. Relational markov networks. In
L. Getoor and B. Taskar, editors, Introduction to statistical relational learning, chap-
ter 6, pages 175–199. The MIT press, 2007. 12

W. R. Tobler. A Computer Movie Simulating Urban Growth in the Detroit Region.
Economic Geography, 46:234–240, 1970. 75

E. Triantaphyllou and S. H. Mann. An examination of the effectiveness of multi-
dimensional decision-making methods: A decision-making paradox. Decision Support
Systems, 5(3):303–312, Sept. 1989. ISSN 0167-9236. 94

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Algorithms for large scale markov
blanket discovery. In Proceedings of the sixteenth international Florida artificial
intelligence research society conference, pages 376–381, 2003. 26

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian
network structure learning algorithm. Machine learning, 65(1):31–78, 2006. 20, 29

L. Ungar and D. P. Foster. A formal statistical approach to collaborative filtering.
CONALD’98, pages 1–6, 1998. 62

BIBLIOGRAPHY 209

S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the 5th ACM conference on Recommender
systems, pages 109–116. ACM, 2011. 58

B. Vargas-Govea, G. González-Serna, and R. Ponce-Medellın. Effects of relevant con-
textual features in the performance of a restaurant recommender system. ACM
RecSys, 11:592, 2011. 56

D. Véras, T. Prota, A. Bispo, R. Prudêncio, and C. Ferraz. A literature review of
recommender systems in the television domain. Expert Systems with Applications,
42(22):9046–9076, 2015. 42

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Uncertainty
in Artificial Intelligence 6, pages 255–268. North-Holland, 1991. 19

P. Viappiani, B. Faltings, and P. Pu. The lookahead principle for preference elicitation:
Experimental results. In H. L. Larsen, G. Pasi, D. O. Arroyo, T. Andreasen, and
H. Christiansen, editors, Proceedings of the 7th International Conference on Flexible
Query Answering Systems, volume 4027 of FQAS, pages 378–389, Milan, Italy, 2006.
Springer, Springer. 88

P. Viappiani, P. Pu, and B. Faltings. Conversational recommenders with adaptive
suggestions. In Proceedings of the 2007 ACM conference on Recommender systems,
pages 89–96. ACM, 2007. 5, 88

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305,
2008. 3, 12

A. R. Walker, B. Pham, and M. Moody. Spatial bayesian learning algorithms for geo-
graphic information retrieval. In Proceedings of the 13th annual ACM international
workshop on Geographic information systems, pages 105–114. ACM, 2005. 84, 106

C. Wallace, K. B. Korb, and H. Dai. Causal discovery via mml. In ICML, volume 96,
pages 516–524. Citeseer, 1996. 19

H. Wang, M. Terrovitis, and N. Mamoulis. Location Recommendation in Location-
based Social Networks using User Check-in Data. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, pages 374–383. ACM, Springer, 2013. ix, 82, 83

Y. Weiss. Belief propagation and revision in networks with loops. Technical report,
1616, MIT AI lab, 1997. 18

L. Wilkinson, Y. E. Chee, A. E. Nicholson, and P. F. Quintana-Ascencio. An Object-
oriented Spatial and Temporal Bayesian Network for Managing Willows in an Amer-
ican Heritage River Catchment. In UAI Application Workshops, pages 77–86, 2013.
106

P.-H. Wuillemin and L. Torti. Structured probabilistic inference. International Journal
of Approximate Reasoning, 53(7):946–968, 2012. 25

210 BIBLIOGRAPHY

M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for col-
laborative point-of-interest recommendation. Proc. of the 34th international ACM
SIGIR conference on Research and development in Information, page 325, 2011. 48,
81, 82, 83, 84

Z. Zhang, X. Zheng, and D. D. Zeng. A framework for diversifying recommendation
lists by user interest expansion. Knowledge-Based Systems, 105:83–95, 2016. 58

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation
lists through topic diversification. In Proceedings of the 14th international conference
on World Wide Web, pages 22–32. ACM, 2005. 54, 56

Thèse de Doctorat

Rajani CHULYADYO

Un nouvel horizon pour la recommandation
Intégration de la dimension spatiale dans l’aide à la décision

A new horizon for the recommendation
Integration of spatial dimensions to aid decision making

Résumé
De nos jours, il est très fréquent de représenter un
système en termes de relations entre objets. Parmi les
applications les plus courantes de telles données
relationnelles, se situent les systèmes de
recommandation (RS), qui traitent généralement des
relations entre utilisateurs et items à recommander.
Les modèles relationnels probabilistes (PRM) sont un
bon choix pour la modélisation des dépendances
probabilistes entre ces objets. Une tendance
croissante dans les systèmes de recommandation est
de rajouter une dimension spatiale à ces objets, que
ce soient les utilisateurs, ou les items. Cette thèse
porte sur l’intersection peu explorée de trois domaines
connexes - modèles probabilistes relationnels (et
comment apprendre les dépendances probabilistes
entre attributs d’une base de données relationnelles),
les données spatiales et les systèmes de
recommandation. La première contribution de cette
thèse porte sur le chevauchement des PRM et des
systèmes de recommandation. Nous avons proposé
un modèle de recommandation à base de PRM
capable de faire des recommandations à partir des
requêtes des utilisateurs, mais sans profils
d’utilisateurs, traitant ainsi le problème du démarrage
à froid. Notre deuxième contribution aborde le
problème de l’intégration de l’information spatiale dans
un PRM.

Abstract
Nowadays it is very common to represent a system in
terms of relationships between objects. One of the
common applications of such relational data is
Recommender System (RS), which usually deals with
the relationships between users and items.
Probabilistic Relational Models (PRMs) can be a good
choice for modeling probabilistic dependencies
between such objects. A growing trend in
recommender systems is to add spatial dimensions to
these objects, and make recommendations
considering the location of users and/or items. This
thesis deals with the (not much explored) intersection
of three related fields – Probabilistic Relational Models
(a method to learn probabilistic models from relational
data), spatial data (often used in relational settings),
and recommender systems (which deal with relational
data). The first contribution of this thesis deals with
the overlapping of PRM and recommender systems.
We have proposed a PRM-based personalized
recommender system that is capable of making
recommendations from user queries in cold-start
systems without user profiles. Our second contribution
addresses the problem of integrating spatial
information into a PRM.

Mots clés
Apprentissage Relationnel, Modèles Relationnels
Probabilistes, Systèmes de Recommandation,
Donnés Spatiales, Préférences des utilisateurs.

Key Words
Relational Learning, Probabilistic Relational
Models, Recommender Systems, Spatial data,
User Preferences.

L’UNIVERSITÉ NANTES ANGERS LE MANS

BIBLIOGRAPHY 213

	Introduction
	Context
	Motivation and problem statement
	Contributions
	Organization of the dissertation

	I State-of-the-art
	Probabilistic Relational Models for Relational Learning
	Introduction
	Background
	Relational data representation
	Bayesian Networks

	Probabilistic Relational Models (PRMs)
	Extensions
	PRM with structural uncertainty
	Other extensions

	Inference in PRMs
	Learning PRMs
	Learning parameters
	Learning structure

	Evaluating PRM learning algorithms
	Evaluation strategy and metrics
	Generating PRM benchmarks
	Limitations
	Proposals for improvement

	Conclusion

	Recommender Systems: A Common Application of Relational Data
	Introduction
	Recommendation models and techniques
	Recommendation data
	Recommendation techniques
	New developments

	Evaluation of recommender systems
	Evaluation approaches
	Accuracy metrics
	Other evaluation metrics
	Benchmark datasets and evaluation tools

	Challenges
	Conclusion

	Using Probabilistic Relational Models for Recommendation
	Introduction
	Existing approaches
	Collaborative Filtering using PRMs (getoor1999using)
	A unified recommendation framework based on PRMs (huang2004unified)
	Hierarchical Probabilistic Relational Models (hPRM) (newton2004hierarchical)
	Combining User Grade-based Collaborative Filtering and PRMs (UGCF-PRM) (Gao2007)
	A RBN-based recommender system architecture (Mouna2013RBN)

	Comparison and discussion
	Conclusion

	Spatial Data
	Introduction
	Spatial data representation
	Tessellation data representation
	Vector data representation
	Network data type

	Characteristics of spatial data
	Spatial heterogeneity
	Spatial autocorrelation

	Spatial operators
	Metric operators
	Topological operators

	Conclusion

	Recommender Systems with Spatial Data
	Introduction
	Review of some spatial recommender systems
	Discussion
	Conclusion

	II Contributions
	A Personalized Recommender System
	Introduction
	The proposed approach
	PRM for preference-based recommendation (PRM-PrefReco)
	Personalization
	Relational attributes and types of model
	Examples

	Experiments
	Dataset
	Experiment methodology
	Evaluation metrics
	Results and discussion

	Conclusion

	PRM with Spatial Attributes (PRM-SA)
	Introduction
	Definitions
	Learning PRM-SA
	Evaluation of PRM-SA learning algorithms
	Evaluation strategy and metrics
	Generation of PRM-SA benchmarks

	Experimental study
	Methodology
	Results and discussion

	PRMs-SA in recommender systems
	Conclusion

	Implementations in PILGRIM
	An Introduction to PILGRIM
	Technical aspects
	PILGRIM-Relational
	Modules
	Implementation of PRM-SA
	Implementation of PRM benchmark generation

	PILGRIM-Applications
	Conclusion

	Conclusion

	III Appendices
	Empirical Study of PRM Sampling Algorithms
	Empirical study of relational block Gibbs sampling algorithm
	Methodology
	Results and discussion

	Comparison of sampling algorithms
	Methodology
	Results and discussion

	Conclusion

	Using PILGRIM
	Defining a PRM(-SA)
	Defining a relational schema
	Defining a dependency structure
	Defining parameters

	Instantiating a PRM for making inference
	Utility methods
	Exporting/Importing a PRM
	Exporting a relational schema into a database

	Generating datasets from a PRM
	Generating a random skeleton
	Sampling a PRM

	Working with PILGRIM-Recommender
	Defining a recommendation model
	Making recommendations

	Detailed Results of PRM-SA Learning Algorithm Evaluation

