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Titre : Diffraction  électromagnétique par des réseaux et des surfaces rugueuses aléatoires: Mise en 
œuvre de méthodes hautement efficaces pour la résolution de systèmes aux valeurs propres et de 
problèmes aux conditions initiales 

Mots clés : Physique des ondes, Méthodes numériques, Calcul matriciel, Calcul parallèl et distribué à 
grande échelle 

Résumé : Nous étudions la diffraction 
électromagnétique par des réseaux et des 
surfaces rugueuses aléatoire. Le méthode C est 
une méthode exacte développée pour ce but. 
Elle est basé sur des équations de Maxwell sous 
forme covariante écrites dans un système de 
coordonnées non orthogonales. Le méthode C 
conduisent à une matrice de diffusion dont il 
faut déterminer les valeurs propres. 
Nous nous concentrons sur l’aspect numérique 
de la méthode C, en développant une mise en 
œuvre efficace de cette méthode exacte.  En 
définissant un nouveau système de coordonnées 
non orthogonales, nous établissons une 
formation qui évite la résolutions d’un système 
aux valeur propres. Pour les réseaux de  
. 

diffraction à une interface, nous montrons que 
cette nouvelle version de la méthode C conduit 
à un système différentiel avec les conditions 
initiales. Nous montrons que cette nouvelle 
version de la méthode C peut être utilisée pour 
l’étude des réseaux comme un empilement 
d’interfaces délimitant des couches homogènes. 
Nous proposons un algorithme QR parallèle 
conçu spécifiquement pour la méthode C pour 
résoudre le problème de valeur propre. En 
perspective, nous proposons une méthode de 
projection spectrale pour résoudre le problème 
de valeurs propres efficacement. Cetee méthode 
proposeé afin de palier au problème de 
scalability de la méthode QR. 
 

 

 

Title : Electromagnetic scattering  by gratings and random rough surfaces: Implementation of high 
performance algorithms for solving eigenvalue problem and problems with initial conditions.  

Keywords : Physics of waves, Numerical methods, Matrix computation, Large-scale parallel and 
distributed computing 

Abstract : We study the electromagnetic 
diffraction by gratings and random rough 
surfaces. The C-method is an exact method for 
this aim. It is based on Maxwell’s equations 
under covariant form written in a non-
orthogonal coordinate system. The C-method 
leads to an eigenvalue problem, the solution of 
which gives the diffracted field. 
We focus on the numerical aspect of the C-
method, trying to develop an efficient 
application of the exact method. For gratings, 
we have developed a new version of  the C-  
 

method which leads to a differential system 
with inital conditions. This new version of the 
C-method can be used to study multilayer 
gratings with a homogeneous médium. 
We implmented high performance algorithms 
for the original version of the C-method. 
Especially, we have developed a specifically 
designed parallel QR algorithm for the C-
method and spectral projection method to solve 
the eigenvalue problem more efficiently.  
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Chapter 1

Introduction

Electromagnetic wave scattering is an active and interdisciplinary area of research with

myriad practical applications in fields ranging from atomic physics to optics, medical

imaging, geoscience and remote sensing [1–6]. In particular, the subject of wave scatter-

ing by gratings [5–12] and rough surfaces [13–25] presents great theoretical challenges

due to the large number of degrees of freedom in these systems and a need to include

multiple scattering e↵ects accurately. In the past several decades, considerable theoret-

ical progress has been made in elucidating and understanding the scattering processes

involved in such problems. Diagrammatic techniques and e↵ective medium theories re-

main essential for analytical studies; however, rapid advances in computer technology

have opened new doors for researchers with the full power of Monte Carlo simulations in

the numerical analysis of random media scattering [18–25]. Numerical simulations allow

us to solve Maxwell’s equations without the limitations of analytical approximations,

whose regimes of validity are often di�cult to assess [13–17, 26].

In this thesis, we study the electromagnetic di↵raction by gratings and random rough

surfaces. The C-method is an exact method developed for this aim. It is based on

Maxwells equations under covariant form written in a nonorthogonal coordinate sys-

tem [27–29]. Discretizing the Maxwells equations under the non-orthogonal coordinate

system and separating variables lead to solving the eigenvalue problem of the high dimen-

sion, dense and non-symmetric scattering matrix. All the eigenvalues and eigenvectors of

the scattering matrix are needed. The scattered field is expanded as a linear combination

of eigensolutions satisfying the outgoing wave condition. The boundary conditions allow

1



Chapter 1. Introduction 2

the di↵raction amplitudes to be determined. This method has been used for analyzing

gratings used in optics [30–50] ,waveguides [51–54] and rough surfaces [55–65]

We focus on the numerical aspect of the C-method, trying to develop an e�cient imple-

mentation of this exact method. Iterative eigensolvers, such as Krylov subspace methods

or Jacobi-Davidson methods [66] have been developed to deal with large-scale eigenvalue

problems. However, they have the possibility of missing some eigenvalues. So the stan-

dard iterative methods are ine↵ective for the C-method because all the eigenvalues and

eigenvectors are needed. In contrast, the QR algorithm, which is based on similarity

transformations, calculates all the eigenvalues and eigenvectors with very little danger

and only with a warning of missing some eigensolutions. We propose a specifically

designed parallel QR algorithm for the C-method to solve the eigenvalue problem.

This parallel QR algorithm is a variant of QR algorithm based on three techniques:

early shift, parallel bulge chasing [67, 68] and parallel aggressive early deflation (AED)

[68, 69]. We propose the “early shift” for the scattering matrix according to the property

we have observed. That is the C-method and the physical interpretation behind the C-

method provides very good approximations of some eigenvalues before any calculations.

The “early shift” provides the possibility of quick deflation. We mixed the “early shift”,

Wilkinson’s shift and exceptional shift together to accelerate the convergence. Especially,

we use the “early shift” to have quick deflation of the approximated eigenvalues of

the scattering matrix. They provide the possibility of quick deflation. For the bulge

chasing, instead of only a single bulge, containing two shifts, a chain of several tightly

coupled bulges, each containing two shifts, is chased in the course of one multishift QR

iteration. This idea and the delay-and-accumulate technique [67, 68] allow performing

most of the computational work in terms of matrix-matrix multiplications to benefit

from level 3 Basic Linear Algebra Subprograms (BLAS, the level 3 contains matrix-

matrix operations) [70]. Aggressive early deflation is a QR algorithm deflation strategy

that takes advantage of matrix perturbations outside of the subdiagonal entries of the

Hessenberg QR iterate. It identifies and deflates converged eigenvalues long before the

classic small-subdiagonal strategy would. Aggressive early deflation can significantly

enhance the convergence of the QR algorithm.

We also propose a spectral projection method to solve the eigenvalue problem e�ciently.

We propose a global eigensolver by a combination of the SS method (Sakuria and Sugiura
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method, proposed by Sakuria and Sugiura in [71]) and MIRAMns (Multiple Implicitly

Restarted Arnolid Method with nested subspaces, proposed by S. A. Shahzadeh Fazeli

et al. in [72]). This proposed global eigensolver allows us to calculate a large number

(or all) of the eigenvalues of a general matrix. According to our experiments presented

in chapter 7, this method has the advantage of having very good scalability compared

to the QR algorithm. This promising method can be continued in future work.

The original C-method is not very e�cient when we are dealing with multilayer gratings.

We want to find other solutions. Especially, we want to explore the potential paralleliza-

tion of multilayer gratings. So, we propose a new version of C-method which leads to a

di↵erential system with initial conditions for gratings. We show that this new version

of C-method can be used to study multilayer gratings with homogeneous medium. We

show that this formulation is an interesting tool for analyzing perfectly conducting or di-

electric gratings with deep grooves. The proposed method allows analyzing the complex

phenomenon of incident energy absorption. We apply this method to multilayer gratings

with an arbitrary number of interfaces. We show how to combine the local scattering

matrix to obtain the global one. We validate our method by comparing experiments

results with that from published paper. We show that this new version of C-method has

very good accuracy as well as a nature of two level parallel property [73, 74]. This new

version of C-method is an attractive alternative to analyze multilayered grating having

parallel or non-parallel interfaces.

During my Ph.D study, I worked in three laboratories: Laboratoire Atmosphères, Mi-

lieux, Observations Spatiales (LATMOS), Maison de la Simulation (MDLS) and Labora-

toire Parallélisme, Réseaux, Systèmes, Modélisation (PRiSM). LATMOS is a laboratory

specializing on the fundamental physical and chemical processes of atmospheres, en-

vironments, and spatial observations. MDLS is a laboratory specializing on scientific

computing and simulations using HPC. PRiSM is a laboratory specializing on computer

science.

This thesis is structured as follows. In chapter 2, we present the electromagnetic field

theory fundamentals. In chapter 3, we present the scattering problem by gratings and

by random rough surfaces. In chapter 4, we present the curvilinear coordinate method.

In chapter 5, we propose the parallel QR algorithm for the C-method. In chapter 6, we

present an implementation of our parallel QR algorithm and present the results of the
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numerical experiments. In chapter 7, we propose an alternative to QR algorithm for

solving the eigenvalue problem. In chapter 8, we propose a new version of C-method,

which is the C-method as an initial value problem.



Chapter 2

Electromagnetic field theory

fundamentals

2.1 Maxwell’s equations

The general theory of electromagnetic phenomena is based on Maxwell’s equations,

which constitute a set of four coupled first order vector partial di↵erential equations

relating the space and time changes of electric and magnetic fields to their scalar source

densities (divergence) and vector source densities (curl) [1]. Maxwell’s equations are

usually formulated in di↵erential form (i.e., as relationships between quantities at the

same point in space and at the same instant in time) or in integral form where, at

a given instant, the relations of the fields with their source are considered over an

extensive region of space [1]. The two formulations are related by the divergence and

Stokes’ theorems.

For stationary media, Maxwell’s equations in di↵erential and integral forms are:

Di↵erential form of Maxwell’s equation

r · ~D(~r, t) = ⇢(~r, t) (Gauss0 law) (2.1)

r · ~B(~r, t) = 0 (Gauss0 law for magnetic fields) (2.2)

r⇥ ~E(~r, t) = �@
~B(~r, t)

@t
(Faraday0s law) (2.3)

r⇥ ~H(~r, t) = ~J(~r, t) +
@ ~D(~r, t)

@t
(Generalized Ampere0s law) (2.4)

5
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where r is the Nabla operator, r · ~D designates the divergence of ~D and r ⇥ ~E, the

curl of ~E.

Integral form of Maxwell’s equations

I

S

~D(~r, t) · d~s = QT (t) (Gauss0 law) (2.5)
I

S

~B(~r, t) · d~s = 0 (Gauss0 law for magnetic fields) (2.6)

I

�

~E(~r, t) · d~l = �
Z

S

@ ~B(~r, t)

@t
· d~s (Faraday0s law) (2.7)

I

�

~H(~r, t) · d~l =
Z

S
( ~J(~r, t) +

@ ~D(~r, t)

@t
) · d~s (Generalized Ampere0s law) (2.8)

where S is any fixed open surface and � is the associated boundary curve.

Maxwell’s equations, involve only macroscopic electromagnetic fields and, explicitly, only

macroscopic densities of free-charge, ⇢(~r, t), which are free to move within the medium,

giving rise to the free-current densities, ~J(~r, t). The e↵ect of the macroscopic charges

and current densities bound to the medium’s molecules is implicitly included in the

auxiliary magnitudes ~D and ~H which are related to the electric and magnetic fields, ~E

and ~B by the so-called constitutive equations that describe the behavior of the medium.

In general, the quantities in these equations are arbitrary functions of the position ~r and

the time t. The definition and units of these quantities are:

~E = electric field intensity (volt/meter, V ·m�1)

~B = magnetic flux density (weber/square meter,Wb ·m�2)

~D = electric flux density (coulomb/square meter, C ·m�2)

~H = magnetic field density (ampere/meter, A ·m�1)

⇢ = free electric charge density (coulomb/cubic meter, C ·m�3)

QT = net free charge inside any closed surface S (coulomb,C)

~J = free electric current density (ampere/square meter, A ·m�2)

The equations (2.1)-(2.4) or (2.5)-(2.8) as a whole are associated with the name of

Maxwell’s equations because he was responsible for completing them, adding to Am-

pere’s original equation, r ⇥ ~H(~r, t) = ~J(~r, t), the displacement current density term

or, in short, the displacement current, @ ~D
@t , as an additional vector source for the field
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~H. This term has the same dimensions as the free current density but its nature is dif-

ferent because no free charge movement is involved. Its inclusion in Maxwell’s equation

is fundamental to predict the existence of electromagnetic wave which can propagate

through empty space at the constant velocity of light c. The concept of displacement is

also fundamental to deduce from equation (2.4) the principle of charge conservation by

means of the continuity equation:

r · ~J = �@⇢
@t

(2.9)

or, in integral form: I
~J · d~s = �dQt

dt
(2.10)

With these equations, Maxwell showed not only that the electric and magnetic fields are

interrelated but also that they are in fact two aspects of a single concept, the electro-

magnetic field.

Maxwell’s equations together with the Lorenz’s force constitute the basic mathematical

formulation of the physical laws that at a macroscopic level explain and predict all the

electromagnetic phenomena which basically comprise the remote interaction of charges

and currents taking place via the electric and/or magnetic fields that they produce.

In applications, Maxwell’s equations have to be complemented by appropriate initial and

boundary conditions. The initial conditions involve values or derivatives of the fields at

t = 0, while the boundary conditions involve the values or derivatives of the fields on

the boundary of the spatial region of interest. Usually, we consider the initial conditions

as a form of boundary conditions and refer to the solution of Maxwell’s equation, with

all these conditions, as a boundary-value problem.

Next, we briefly describe the physical meaning of Maxwell’s equations.

Gauss’ law is a direct mathematical consequence of Coulomb’s law, which states that

the interaction force between electric charges depends on the distance r, between them,

as r�2. According to Gauss’s law, the divergence of the vector field ~D is the volume

density of free electric charges which are the sources or sinks of the field ~D, i.e. the lines

of ~D begin on positive charges (⇢ > 0) and end on negative (⇢ < 0). In its integral form,
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Gauss’ law relates the flux of the vector ~D through a closed surface S to the total free

charge within that surface.

Gauss’ law for magnetic fields states that the ~B field does not have scalar sources, i.e.,

it is divergenceless or solenoidal. This is because no free magnetic charges or monopoles

have been found in nature which would be the magnetic analogues of electric charges

for ~E. Hence, there are no sources or sinks where the field lines of ~B start or finish, i.e.,

the field lines of ~B are closed. In its integral form, this fact indicates that the flux of

the ~B field through any closed surface S is null.

Faraday’s law establishes that a time-varying ~B field produces a non conservative electric

field whose field lines are closed. In its integral form, Faraday’s law states that the time

variation of the magnetic flux (
R
~B · d~s) through any surface S bounded by an arbitrary

closed loop �, induces an electromotive force given by the integral of the tangential

component of the induced electric field around �. The line integration over the contour

� must be consistent with the direction of the surface vector d~s according to the right-

hand rule. The minus sign in the equations of the law represents the feature by which

the induced electric field, when it acts on charges, would produce an induced current

that opposes the change in the magnetic flux (Lenz’s law).

Ampere’s generalized law, constitutes another connection, di↵erent from Faraday’s law,

between ~E and ~B. It states that the vector sources of the magnetic field may be free

currents, ~J , and/or displacement currents, @ ~D
@t . Thus, the displacement current performs,

as a vector source of ~H, a similar role to that played by @ ~B
@t as a source of ~E. In its

integral form, the left-hand side of the generalized Ampere’s law equation represents

the integral of the magnetic field tangential components along an arbitrary closed loop

� and the right-hand side is the sum of the flux, through any surface S bounded by a

closed loop �, of both currents: the free current ~J and the displacement current @ ~D
@t .
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2.2 Constitutive equations

In the vacuum, Maxwell’s equations can be written without using the artificial fields ~D

and ~H, as

r · ~E(~r, t) =
⇢all
"0

(~r, t) (2.11)

r · ~B(~r, t) = 0 (2.12)

r⇥ ~E(~r, t) = �@
~B(~r, t)

@t
(2.13)

r⇥ ~B(~r, t) = µ0
~Jall(~r, t) + µ0"0

@ ~E(~r, t)

@t
(2.14)

where "0 = 10�9

36⇡ (farad/meter, F · m�1) and µ0 = 4⇡10�7 (henry/meter, H · m�1)

are two constants called electric permittivity and magnetic permeability of free space,

respectively. The subscript all indicates that all kinds of charges (free and bound) must

be individually included in ⇢ and ~J . These equations are, within the limits of classical

electromagnetic theory, absolutely general. Nevertheless, in order to make it possible to

study the interaction between an electromagnetic field and a medium and to take into

account the discrete nature of matter, it is necessary to develop macroscopic models

to obtain Maxwell’s macroscopic equations, in which only macroscopic quantities are

used and in which only the densities of free charges and currents explicitly appear as

sources of the fields. To this end, the atomic and molecular physical properties, which

fluctuate greatly over atomic distances, are averaged over microscopically large volume

elements, �v, so that these contain a large number of molecules but at the same time are

macroscopically small enough to represent accurate spatial dependence at a macroscopic

scale. As a result of this average, the properties of matter related to atomic and molecular

charges and currents are described by the macroscopic parameters, electric permittivity

", magnetic permeability µ, and electrical conductivity �. These parameters, called

constitutive parameters, are in general smoothed point functions. The derivation of

the constitutive parameters of a medium from its microscopic properties is, in general,

an involved process that may require complex models of molecules as well as quantum

and statistical theory to describe their collective behavior. Fortunately, in most of the

practical situations, it is possible to achieve good results using simplified microscopic

models.
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To define the electric permittivity and describe the behavior of the electric field in the

presence of matter, we must introduce a new macroscopic field quantity, ~P (C ·m�2),

called electric polarization vector, such that

~D = "0 ~E + ~P (2.15)

and defined as the average dipole moment per unit volume

~P = lim
�v!0

PN�v
n=1 ~pn
�v

(2.16)

where N is the number of molecules per unit volume and the numerator is the vector

sum of the individual dipolar moments, ~pn, if atoms and molecules contained in a macro-

scopically infinitesimal volume �v. For many materials, called linear isotropic media, ~P

can be considered collinear and proportional to the electric field applied. Thus we have

~P = "0�e
~E (2.17)

where the dimensionless parameter �e, called the electric susceptibility of the medium,

describes the capability of a dielectric to be polarized. Equation (2.15) can be written

in a more compact form as

~D = (1 + �e)"0 ~E (2.18)

so that

~D = "0"r ~E = " ~E (2.19)

where

"r = 1 + �e (2.20)

and

" = "0"r (2.21)

are the relative permittivity and the permittivity of the medium, respectively.

To define the magnetic permeability and describe the behavior of the magnetic field

in the presence of magnetic materials, we must introduce another macroscopic field
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quantity, called magnetization vector ~M (A ·m�1), such that

~H =
~B

µ0
� ~M (2.22)

where ~M is defined, in a similar way to that of the electric polarization vector, as the

average magnetic dipole moment per unit volume

~M = lim
�v!0

PN�v
n=1 ~mn

�v
(2.23)

where N is the number of atomic current elements per unit volume and the numerator is

the vector sum of the individual magnetic moments, ~mn contained in a macroscopically

infinitesimal volume �v.

In general, ~M is a function of the history of ~B or ~H, which is expressed by the hysteresis

curve. Nevertheless, many magnetic media can be considered isotropic and linear, such

that

~M = �m
~H (2.24)

where �m is the dimensionless magnetic susceptibility magnitude, being negative and

small for diamagnetic, positive and small for paramagnet, and positive and large for

ferromagnet. Thus

~H =
1

(1 + �m)µ0

~B =
1

µ
~B (2.25)

where

µr = (1 + �m) (2.26)

and

µ = µrµ0 (2.27)

are the relative magnetic permeability and the permeability of the medium, respectively.

In a vacuum, or free space, "r = 1, µr = 1, and therefore the fields vectors ~D and ~E, as

well as ~B and ~H, are related by

~D = "0 ~E (2.28)

~B = µ0
~H (2.29)

Very often the relation between an electric field and the conduction current density ~Jc
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that it generates is given, at any point of the conducting material, by the phenomeno-

logical relation, called Ohm’s law

~Jc = � ~E (2.30)

so that ~J is linearly related to ~E through the proportionality factor � called the con-

ductivity of the medium. Conductivity is measured in Siemens per meter (S · m�1 =

⌦�1 ·m�1) or mhos per meter (mho ·m�1). Media in which equation (2.30) is valid are

called ohmic media. A typical example of ohmic media are metals where (2.30) holds in

a wide range of circumstances. However, in other materials, such as semiconductors, the

Ohm’s law may not be applicable. For most metals � is a scalar with a magnitude that

depends on the temperature and that, at room temperature, has a very high value of

the order of 107mho ·m�1. Then very often metals are considered as perfect conductors

with an infinite conductivity.

The relations between macroscopic quantities, (2.15), (2.25) and (2.30), are called con-

stitutive relations. Depending on the characteristics of the constitutive macroscopic

parameters ", µ and �, which are associated with the macroscopic response of atoms

and molecules in medium, this medium can be classified as:

• Inhomogeneous or homogeneous: according to whether or not the constitutive

parameter of interest is a function of the position, " = "(~r), µ = µ(~r), � = �(~r).

• Anisotropic or isotropic: according to whether or not the response of the medium

depends on the orientation of the field. In isotropic media all magnitudes of interest

are parallel, i.e., ~E and ~D, ~E and ~Jc, ~B and ~H. In anisotropic materials the

constitutive parameter of interest is a tensor.

• Non linear or linear: according to whether or not the constitutive parameters

depend on the magnitude of the applied fields. For instance "(E), �(E) and µ(H).

� 6= �(t).

• Dispersive: according to whether or not, for time-harmonic fields, the constitutive

parameters depend on the frequency, FT (") = FT (")(!), FT (µ) = FT (µ)(!), FT (�) =

FT (�)(!), here, FT () represents the Fourier transformation. The materials in

which these parameters are functions of the frequency are called dispersive.

• Magnetic medium: if µ 6= µ0. Otherwise the medium is called nonmagnetic because

its only significant reaction to the electromagnetic field is polarization.
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Fortunately, in many cases the medium in which the electromagnetic field exists can be

considered homogeneous, linear, isotropic, non dispersive and non magnetic. Indeed,

this assumption is not very restrictive since many electromagnetic phenomena can be

studied using this simplification.

Equations (2.15) and (2.22) are simplified. In practice, we must write [2]:

~D = ~D( ~E, ~B) (2.31)

~H = ~H( ~E, ~B) (2.32)

In this thesis, we only consider:

• Non magnetic medium for which,

~H(~r, t) =
1

µ0

~B(~r, t) (2.33)

• Linear, isotropic, homogeneous and time invariant medium with respect to elec-

trical properties,

~D(~r, t) = "0"r(t) ⇤ ~E(~r, t) = "0

Z

t0<t
"r(t� t0) ~E(~r, t0)dt0 (2.34)

where "(t) is the impulse dielectric permittivity.

2.3 Boundary conditions

As is evident from the Maxwell’s equation, in general the fields ~E, ~B, ~D and ~H are discon-

tinuous at points where ", µ and � also are. Hence the field vectors will be discontinuous

at a boundary between two media with di↵erent constitutive parameters.

The integral form of Maxwell’s equations can be used to determine the relations, called

boundary conditions, of the normal and tangential components of the fields at the inter-

face between two regions with di↵erent constitutive parameters ", µ and � where surface

density of sources may exist along the boundary.

The boundary condition for ~D can be calculated using a very thin, small pill-box that

crosses the interface of the two media. Applying the divergence theorem [1] to (2.1) and
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we have:

I
~D · d~s =

Z

Base1

~D1 · d~s+
Z

Curved surface

~D · d~s+
Z

Base2

~D2 · d~s =
Z
⇢dv (2.35)

where ~D1 denotes the value of ~D in medium 1, and ~D2 the value in medium 2. Since

both bases of the pillbox can be made as small as we like, the total outward flux of ~D

over them is (Dn1 �Dn2)ds = ( ~D1 � ~D2) · n̂ds, where these Dn are the normal drawn

from medium 2 to medium 1 and n̂ is the unit normal vector. At the limit, by taking

a shallow enough pillbox, we can disregard the flux over the curved surface, whereupon

the sources of ~D reduce to the density of surface free charge ⇢s on the interface,

n̂ · ( ~D1 � ~D2) = ⇢s (2.36)

Hence the normal component of ~D changes discontinuously across the interface by an

amount equal to the free charge surface density ⇢s on surface boundary.

Similarly the boundary condition for ~B can be established using the Gauss’ law for mag-

netic fields. Since the magnetic field is solenoidal, it follows that the normal components

of ~B are continuous across the interface between two media,

n̂ · ( ~B1 � ~B2) = 0 (2.37)

The behavior of the tangential components of ~E can be determined using an infinitesimal

rectangular loop at the interface which has sides of length dh, normal to the interface,

and sides of length dl parallel to it. From the integral form of the Faraday’s law and

defining t̂ as the unit tangent vector parallel to the direction of integration on the upper

side of the loop, we have:

( ~E1 · t̂� ~E2 · t̂)dl + contributions of sides dh = �@
~B

@t
· d~s (2.38)

In the limit, as dh ! 0, the area ds = dhdl bounded by the loop approaches zero and,

since ~B is finite, the flux of ~B vanishes. Hence ( ~E1 � ~E2) · t̂ = 0 and we conclude that

the tangential components of ~E are continuous across the interface between two media.
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In term of the normal n̂ to the boundary, this can be written as:

n̂⇥ ( ~E1 � ~E2) = ~0 (2.39)

where the symbol ⇥ designate the cross product.

Analogously, using the same infinitesimal rectangular loop, it can be deduced from the

generalized Ampere’s law that

( ~H1 · t̂� ~H2 · t̂)dl + contributions of sides dh = �(
@ ~D

@t
+ ~J) · d~s (2.40)

where, since ~D is finite, its flux vanishes. Nevertheless, the flux of the surface current can

have a non-zero value when the integration loop is reduced to zero, if the conductivity �

of the medium 2, and consequently ~Js, is finite. This requires the surface to be a perfect

conductor. Thus,

n̂⇥ ( ~H1 � ~H2) = ~Js (2.41)

the tangential component of ~H is discontinuous by the amount of surface current den-

sity ~Js. For finite conductivity, the tangential magnetial field is continuous across the

boundary.

A summary of the boundary conditions are given for the general case and for the case

when the medium 2 is a perfect conductor:

General boundary conditions

n̂⇥ ( ~E1 � ~E2) = ~0 (2.42)

n̂⇥ ( ~H1 � ~H2) = ~Js (2.43)

n̂ · ( ~D1 � ~D2) = ⇢s (2.44)

n̂ · ( ~B1 � ~B2) = 0 (2.45)
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where ~Js and ⇢s are potential surface density of charge or current.

Boundary conditions when the medium 2 is a perfect conductor (�2 ! 1)

n̂⇥ ~E1 = ~0 (2.46)

n̂⇥ ~H1 = ~Js (2.47)

n̂ · ~D1 = ⇢s (2.48)

n̂ · ~B1 = 0 (2.49)

2.4 The conservation of energy

Poynting’s theorem represents the electromagnetic energy-conservation law. To derive

the theorem, let us calculate the divergence of the vector field ~E⇥ ~H in a homogeneous,

linear and isotropic finite region V bounded by a closed surface S. If we assume that V

contains power sources generating currents ~J , then, from Maxwell’s equations, we get:

r · ( ~E ⇥ ~H) = ~H ·r⇥ ~E � ~E ·r⇥ ~H = � ~H · @
~E

@t
� ~E · @

~D

@t
� ~E · (� ~E + ~J) (2.50)

where ~J represents the source current density distribution which is the primary origin

of the electromagenetic fields, while the induced conduction current density is written

as ~Jc = � ~E.

As the medium is assumed to be linear and no dispersive, the derivatives with respect

to time can be written as

~E · @
~D

@t
= " ~E · @

~E

@t
=

@

@t
(
"E2

2
) =

@

@t
(
~E · ~D
2

) (2.51)

~H · @
~B

@t
= µ ~H · @

~H

@t
=

@

@t
(
µH2

2
) =

@

@t
(
~B · ~H
2

) (2.52)

By introducing the equations (2.51) and (2.52) into (2.50), integrating over the volume

V , applying the divergence theorem, and then rearranging terms, we have

Z

V

~J · ~Edv = � @

@t

Z

V

1

2
( ~E · ~D + ~B · ~H)dv �

Z

V
�E2dv �

I

S
( ~E ⇥ ~H) · d~s (2.53)
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To interpret this result we accept that

Uev =
~E · ~D
2

(2.54)

and

Umv =
~B · ~H
2

(2.55)

represent, as a generalization of their expression for static fields, the instantaneous elec-

tric energy density, Uev, and magnetic energy density, Umv, stored in the respective

fields. Let us recall the empirical Lorenz force equation, which gives the electromagnetic

force density, ~f (in N ·m�3), acting on a volume charge density ⇢ moving at a velocity

u (in m · s�1) in a region where an electromagnetic filed exists,

~f = ⇢( ~E + ~u⇥ ~B) = ⇢ ~E + ~J ⇥ ~B (2.56)

where ~J = ⇢~u is the current density in terms of the mean drift velocity of the particles,

which is independent of any random velocity due to collisions. The total force ~F exerted

on a volume of charge is calculated by integrating ~f in this volume. For a single particle

with charge q the Lorentz force is:

~F = q( ~E + ~u⇥ ~B) (2.57)

The work done by the electromagnetic field that acting on a volume density ⇢ inside a

volume dv during a time interval dt is

dW = ~f · ~udtdv = ⇢( ~E + ~u⇥ ~B) · ~udtdv = ⇢ ~E · ~udtdv = ~E · ~Jdtdv (2.58)

This work is transformed into heat. The corresponding power density Pv (in W ·m�3)

that the electromagnetic field supplies to the charge distribution is:

Pv =
dP

dv
=

dW

dtdv
= ~E ⇥ ~J (2.59)

This equation is known as the point form of Joule’s law. So the left side of equation

(2.53) represents the total electromagnetic power supplied by all the sources within the

volume V . Regarding the right side of equation (2.53), the first term represents the

change rate of the stored electromagnetic energy within the volume, the second term
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represents the dissipation rate of the electromagnetic energy within the volume, and the

third term represents the flow of electromagnetic energy per second (power) through the

surface S that bounds volume V . Defining Poynting’s vector ~P as

~P = ~E ⇥ ~H (W ·m�2) (2.60)

we can write I

S
( ~E ⇥ ~H) · d~s =

I

S

~P · d~s (2.61)

This equation represents the total flow of power passing through the closed surface S

and, consequently, we conclude that ~P = ~E ⇥ ~H represents the power passing through

a unit area perpendicular to the direction of ~P.

Note that equation (2.53) was deduced by assuming a linear medium and that the loss

occurs only through conduction currents. Otherwise the equation should be modified to

include other kinds of losses such as those due to hysteresis or possible transformations

of the electromagnetic energy into mechanical energy, etc. When there are no sources

within V , equation (2.53) represents an energy balance of that flowing through S versus

that stored and dissipated in V .

2.5 Time-harmonic electromagnetic fields

A particular case of great interest is on in which the sources vary sinusoidally in time.

In linear media, the time-harmonic dependence of the source gives rise to fields which,

once having reached the steady state, also vary sinusoidally in time. However, time-

harmonic analysis is important not only because many electromagnetic systems operate

with signals that are practically harmonic, but also because arbitrary periodic time

functions can be expanded into Fourier series of harmonic sinusoidal components while

transient nonperiodic functions can be expressed as Fourier integrals. Thus, since the

Maxwell’s equations are linear di↵erential equations, the total fields can be synthesized

from its Fourier components.

Analytically, the time-harmonic variation is expressed using the complex exponential

notation based on Euler’s formula, where it is understood that the physical fields are

obtained by taking the real part, whereas their imaginary part is discarded. For example,
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an electric field with time-harmonic dependence given by cos(!t + '), where ! is the

angular frequency, is expressed as

~E = Re(~Eej!t) =
1

2
(~Eej!t + (~Eej!t)⇤) = ~E0cos(!t+ ') (2.62)

where ~E is the complex phasor,

~E = ~E0e
j' (2.63)

of amplitude E0 and phase ', which will in general be a function of angular frequency

and coordinates. The asterisk ⇤ indicates the complex conjugate, and Re() represents

the real part of what is in the brackets.

Assuming ej!t time dependence, we can get the phasor form or time-harmonic form of

Maxwell’s equations simply by changing the operator @
@t to the factor j! and eliminating

the factor ej!t. Maxwell’s equations in di↵erential and integral forms for time-harmonic

fields are given below.

Di↵erential form of Maxwell’s equation for time-harmonic fields

r · ~D = ⇢ (Gauss0 law) (2.64)

r · ~B = 0 (Gauss0 law for magnetic fields) (2.65)

r⇥ ~E = �j!~B (Faraday0s law) (2.66)

r⇥ ~H = ~J+ j!~D (Generalized Ampere0s law) (2.67)

Integral form of Maxwell’s equation for time-harmonic fields

I

S

~D · d~s = QT (Gauss0 law) (2.68)
I

S

~B · d~s = 0 (Gauss0 law for magnetic fields) (2.69)
I

�

~E · d~l = �j!

Z

S

~B · d~s (Faraday0s law) (2.70)
I

�

~H · d~l =
Z

S
(~J+ j!~D) · d~s (Generalized Ampere0s law) (2.71)
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For the linear, homogeneous and invariant electrical medium, the constitutive relations

become:

~H(~r, f) =
1

µ0

~B(~r, f) (2.72)

~D(~r, f) = "c ~E(~r, f) (2.73)

with

"c = "0"̂r(f), "̂r(f) = FT ("r) (2.74)

where "̂(f) depends on the frequency for a dispersive medium. We can write "̂r = "0r+j"00r

where "00r < 0 for f > 0. "̂r is the relative complex permittivity.

Similar process occurs in magnetic and conducting media, and, within a given frequency

range, there may be a phase shift between ~E and ~Jc or between ~B and ~H which, at

the macroscopic level, is reflected in the corresponding complex constitutive parameters

�c = �0 + j�00 and µc = µ0 + jµ00.

For a medium with complex permittivity, the complex phasor form of the displacement

current is:

j!~D = j!"c~E = !"00~E+ j!"0~E (2.75)

with "0 = "0"0c and "00 = "0"00c . While the sum, of the displacement and conduction

current, called total induced current, ~Ji, is

~Ji = �~E+ j!"c~E = (� + !"00)~E+ j!"0~E = ~Jd + ~Jr (2.76)

where ~Jd, called the dissipative current,

~Jd = (� + !"00)~E (2.77)

in phase with the electric field, is the real part of the induced current ~Ji while ~Jr, called

the reactive current,

~Jr = j!"0~E (2.78)

is the imaginary part of the induced current which is in phase quadrature with the

electric field. The dissipative current can be expressed in a more compact form as

~Jd = �e~E (2.79)
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where �e is the e↵ective or equivalent conductivity

�e = � + !"00 (2.80)

which includes the ohmic losses due to � and the damping losses due to !"00. Thus the

induced current, can be written as

~Ji = �e~E+ j!"0~E = �ec~E (2.81)

where �ec is the complex e↵ective conductivity, defined as

�ec = �e + j!"0 (2.82)

Thus a medium with conductivity �ec and null permittivity is formally equivalent to one

with conductivity and permittivity, � and "c, respectively.

For harmonic signals the boundary conditions of the normal and tangential components

of the fields at the interface between two regions with di↵erent constitutive parameters

", µ and �, become:

General boundary conditions

n̂⇥ (~E1 � ~E2) = ~0 (2.83)

n̂⇥ (~H1 � ~H2) = ~Js (2.84)

n̂ · (~D1 � ~D2) = ⇢s (2.85)

n̂ · (~B1 � ~B2) = 0 (2.86)

Boundary conditions when the medium 2 is a perfect conductor (�2 ! 1)

n̂⇥ ~E1 = ~0 (2.87)

n̂⇥ ~H1 = ~Js (2.88)

n̂ · ~D1 = ⇢s (2.89)

n̂ · ~B1 = 0 (2.90)

In formulating the conservation energy equation for time-harmonic fields, it is convenient
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to find, first, the time-average Poynting vector over a period, i.e. the time-average power

passing through a unit area perpendicular to the directon of ~P. We have:

~E = Re(~Eej!t) =
1

2
(~Eej!t + (~Eej!t)⇤) (2.91)

~H = Re(~Hej!t) =
1

2
(~Hej!t + (~Hej!t)⇤) (2.92)

Thus, the instantaneous Poynting vector can be written as:

~P = ~E ⇥ ~H = Re(~Eej!t)⇥Re(~Hj!t) =
1

2
Re(~E⇥ ~H⇤ + ~E⇥ ~He2j!t) (2.93)

The time-average value of the instantaneous Poynting vector can be calculated integrat-

ing the above equation over period, i.e.,

~Pav =
1

T

Z T

0

~Pdt =
1

2T

Z T

0
Re(~E⇥~H⇤+~E⇥~He2j!t)dt =

1

2
Re(~E⇥~H⇤) = Re(~Pc) (2.94)

since the time average of ~E⇥ ~He2j!t vanishes. The magnitude,

~Pc =
1

2
~E⇥ ~H⇤ (2.95)

is termed as the complex Poynting vector. Thus the time-average of the Poynting vector

is equal to half of the real part of the complex Poynting vector.

2.6 Plane wave and propagation equations

In this thesis, we work with the time-harmonic electromagnetic fields. The time de-

pendence of the plane wave is ej!t, it will be omitted in the calculus. To exhibit the

propagation equations, we apply the following mathematical formula to Maxwell’s equa-

tions [1]:

r⇥ (r⇥ ~V ) = r(r · ~V )�r2~V (2.96)

Then the propagation equations of ~E and ~H can be written as:

r2 ~E + "cµ0!
2 ~E =

1

"c
r⇢+ j!µ0

~J (2.97)

r2 ~H + "cµ0!
2 ~H = �r⇥ ~J (2.98)
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If the medium contains neither free-charge nor free-current (⇢ = 0, ~J = 0), then the

propagation equations become:

r2 ~E + "cµ0!
2 ~E = ~0 (2.99)

r2 ~H + "cµ0!
2 ~H = ~0 (2.100)

These are the Helmholtz equations[2–4]. They have a particular solution in the following

form:

~E(~r, t) = ~E0e
�j~k·~r (2.101)

~H(~r, t) = ~H0e
�j~k·~r (2.102)

where ~E0 and ~H0 are independent of ~r.

The vector ~k is the wave vector of propagation medium. We have the following equation:

~k2 = "0"̂rµ0!
2 (2.103)

If the medium is transparent, then "̂r and ~k are real. We have that:

k =
2⇡

�
(2.104)

where � is the wavelength. From the two equations above, we have:

"0"̂rµ0v
2 = 1 (2.105)

where v is a constant velocity characterizing the propagation medium. In particular, if

the medium is the vacuum, then we have:

"0"̂rc
2 = 1 (2.106)

where c is the velocity of light. For a lossless medium with optical index ⌫ =
p
"̂r, the

constant v is:

v =
c

⌫
(2.107)

Equation (2.101) and (2.102) express a monochromatic plane wave with the propagation

direction given by the wave vector ~k. For the plane wave described by ~k ·~r = Constant,
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the amplitudes of the components of the wave are independent of the position and remain

constant.

From Maxwell’s equations, we know that:

~E =
~H ⇥ ~k

"0"̂r!
(2.108)

With the definition of impedance of medium: Z =
q

µ0
"0"̂r

, we have:

~E = Z ~H ⇥
~k

k
(2.109)

For the wave propagation, if we consider the Cartesian coordinate (Oxyz), with orthog-

onal basis (~ux, ~uy, ~uz). An incident monochromatic plane wave propagates in the space

constituted of two media that are separated by an interface. The incident wave vector

~k0 is located in the plane (xOz). The direction of propagation of the incident wave is

represented by the angle ✓0 with respect to the Oz axis. The polarization of a plane

wave is then determined based on the curve that is going to describe the electric field ~E

in a wave plane. This polarization is in general elliptical and can be decomposed into a

combination of two linear polarizations: horizontal and vertical.

Horizontal polarization corresponds to the case where the electric field ~E is perpendicular

to the plane of incidence formed by the couple of vectors (~k0, ~uz) where ~uz is the unit

vector of Oz axis. It is also called the transverse electric polarization (denoted TE, h or

S). We shall call polarization E parallel and will be denoted by E// because the ~E field

is parallel to the plane (xOy). The situation is similar with vertical polarization where

~H replaces ~E.

The following table gives convention of notation, the notations in the same column

represent the same polarization.

Horizontal Polarization Vertical Polarization

h v

E// H//

TE TM

S P
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The wave vector ~k0 can be represented by the incidence zenith angle ✓0 and the azimuth

angle '0:

~k0 = ↵0~ux + �0~uy � �0~uz (2.110)

with 8
>>>>>>>>><

>>>>>>>>>:

↵0 = k0 sin ✓0 cos'0

�0 = k0 cos ✓0

�0 = k0 sin ✓0 sin'0

k0 =
2⇡
�

(2.111)

In fact, all the solutions of the wave propagation problem can be expressed as a combi-

nation of elementary plane waves with di↵erent amplitudes and wave vectors. We will

discuss this in details in the next chapter.

2.7 Conclusion

In this chapter, we present the electromagnetic field theory fundamentals. Especially,

we present the Maxwell’s equations and the interaction of an electromagnetic field with

an object.

Despite their apparent simplicity, Maxwell’s equations are in general not easy to solve.

In fact, even in the most favorable situation of homogeneous, linear and isotropic media,

there are not many problems of interest that can be analytically solved except for those

presenting a high degree of geometrical symmetry. Moreover, the frequency range of

scientific and technological interest can vary by many orders of magnitude, expanding

from frequency value of zero (or very low) to roughly 1014Hertz. The behavior and

values of the constitutive parameters can change very significantly in this frequency

range. Conductivity, for example, can vary from 0 to 107S ·m�1. It is even possible to

build artificial materials, called metamaterials, which present electromagnetic properties

that are not found in nature. Examples of such metamaterials are those characterized

with both negative permittivity (" < 0)) and negative permeability (µ < 0). These media

are called double-negative metamaterials and, owing to their unusual electromagnetic

properties, they present many potential technological applications.
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Another important factor to study the interaction of an electromagnetic field with an ob-

ject is the electric size of the body, i.e., the relationship between the wavelength and the

body size, which can also vary by several orders of magnitude. All these circumstances

make it in general necessary to use analytical, semi-analytical or numerical methods

appropriate to each situation. In particular, numerical methods are fundamental for

simulating and solving complex problems that do not admit analytical solutions.

In the next chapter, we will present the scattering by gratings and by random rough

surfaces.



Chapter 3

Scattering by gratings and by

random rough surfaces

In this thesis, the main aim is to study the di↵raction by gratings and the scattering by

random rough surfaces illuminated by a electromagnetic plane wave. In this chapter, I

will introduce the fundamental theory about these two aspects.

3.1 The theory of di↵raction gratings

3.1.1 Introduction

Di↵raction gratings are optical components used to separate light into its component

wavelengths. Di↵raction gratings are used in spectroscopy, or for integration into spec-

trophotometers or monochromators. Di↵raction gratings consist of a series of closely

packed grooves that have been engraved or etched into the grating surface. Di↵raction

gratings can be either transmissive or reflective. As light transmits through or reflects o↵

a grating, the grooves cause the light to di↵ract, dispersing the light into its component

wavelengths [5].

For practical applications, gratings generally have ridges or rulings on their surface rather

than dark lines. Such gratings can be either transmissive or reflective. Gratings which

modulate the phase rather than the amplitude of the incident light are also produced,

frequently using holography [5].

27
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3.1.2 The grating equation

When monochromatic light is incident on a grating surface (i.e. a periodic surface), it

is di↵racted into discrete directions. We can picture each grating groove as being a very

small, slit-shaped source of di↵racted light. The light di↵racted by each groove combines

to form set of di↵racted wavefronts. The usefulness of grating depends on the fact that

there exists a unique set of discrete angles along which, for a given spacing D between

grooves, the di↵racted light from each facet is in phase with the light di↵racted from

any other facet, leading to constructive interface [1].

Di↵raction by a grating can be visualized from the geometry in the figure 3.1, which

shows a light ray of wavelength � incident at an angle ✓0 and di↵racted by a grating

(of groove spacing D, also called the pitch) along a set of angles ✓n. These angles are

measured from the grating normal. The sign convention for these angles depends on

whether the light is di↵racted on the same side or the opposite side of the grating as the

incident light.

Figure 3.1: Di↵raction by a grating where incident angle ✓0 and period D
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The geometry path di↵erence between light from adjacent grooves is seen to be�D sin ✓0+

D sin ✓n. The principle of constructive interface dictates that only when this di↵erence

equals the wavelength � of the light, or some integral multiple thereof, will the light from

adjacent grooves be in the phase (leading to constructive interface). All other angles the

wavelets originating from the groove facets will interface destructively.

These relationships are expressed by the equation:

� 1 < sin ✓n = sin ✓0 + n
�

D
< 1 (3.1)

which governs the angular locations of the principal intensity maxima when light of

wavelength � is di↵racted from a gratings of groove spacing D. Here n is the di↵raction

order (or spectral order), which is an integer. For a wavelength �, all values of n for

which | sin ✓0+n�/D| < 1 correspond to propagating (rather than evanescent) di↵raction

orders. The special case n = 0 leads to the law of reflection ✓n = ✓0.

It is sometimes convenient to write the grating equation as

Gn� = � sin ✓0 + sin ✓n (3.2)

where G = 1/D is the groove frequency or groove density, more commonly called “groove

per millimeter”.

Equation 3.1 and 3.2 are the common forms of the grating equation, but their validity

is restricted to cases in which the incident and di↵racted rays lie in a plane which is

perpendicular to the grooves (at the center of grating). The majority of grating systems

fall within this category, which is called classical di↵raction. If the incident light beam

is not perpendicular to the grooves, the grating equation must be modified:

Gn� = cos "(� sin ✓0 + sin✓n) (3.3)

Here, " is the angle between the incident light path and the plane perpendicular to the

groove at the grating center. In geometries, for which " 6= 0, the di↵racted spectra lie

on a cone rather than in a plane, so such cases are termed conical di↵raction.

For a grating of groove spacing D, there is a purely mathematical relationship between

the wavelength and the angles of incidence and di↵raction. In a given spectral order n,
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the di↵erent wavelength of polychromatic wavefronts incident at angle ✓0 are separated

in angle

✓n(�) = sin�1(
n�

D
+ sin ✓0) (3.4)

When n = 0, the grating acts as a mirror, and the wavelength are not separated (✓n = ✓0

for all �), this is called specular reflection or simply the zeroth order.

A special but common case is that in which the light is di↵racted back towards the

direction from which it came (i.e. �✓0 = ✓n), this is called the Littrow configuration,

for which the grating equation becomes:

n� = �2d sin ✓0 (3.5)

3.1.3 Di↵raction orders

Generally several integers n will satisfy the grating equation. We call each of these

values a di↵raction order [5].

For a particular groove spacing D, wavelength � and incidence angle ✓0, the grating

equation 3.1 is generally satisfied by more than one di↵raction angle ✓n. In fact, subject

to restrictions discussed below, there will be several discrete angles at which the condition

for constructive interference is satisfied. The physical significance of this is that the

constructive reinforcement of wavelets di↵racted by successive grooves merely requires

that each ray be retarded (or advanced) in phase with every other, this phase di↵erence

must therefore correspond to a real distance (path di↵erence) which equals an integral

multiple of the wavelength. This happens, for example, when the path di↵erence is one

wavelength, in which case, we speak of the positive first di↵raction order (n = 1) or the

negative first di↵raction order (n = �1), depending on whether the rays are advanced

or retarded as we move from groove to groove.

The grating equation reveals that only those spectral orders for which | sin ✓0+n�/D| < 1

can exist. This restriction prevents light of wavelength from being di↵racted in more

than finite number of orders. Specular reflection (n = 0) is always possible. In most

cases, the grating equation allows light of wavelength � to be di↵racted into both negative
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and positive orders as well. Explicitly, spectra of all orders n exist for which,

(�1� sin ✓0)D < n� < (1� sin ✓0)D, n is an integer (3.6)

For �/D ⌧ 1, a large number of di↵racted orders will exist.

The most troublesome aspect of multiple order behavior is that successive spectral over-

lap. It is evident from the grating equation that light of wavelength � di↵racted by a

grating along direction ✓n will be accompanied by integral fraction �/2, �/3, etc. That

is for any grating instrument configuration, the light of wavelength � di↵racted in the

n = 1 order will coincide with the light of wavelength �/2 in the n = 2 order, etc. This

superposition of wavelengths, which would lead to ambiguous spectroscopic data, is in-

herent in the grating equation itself and must be prevented by suitable filtering (called

order sorting), since the detector cannot generally distinguish between light of di↵erent

wavelengths incident on it.

3.1.4 Rayleigh expansion

Suppose the interface of the two media is described by the function z = a(x, y), out-

side the deformation, the di↵racted field ( ~E, ~H) could be represented by the so-called

Rayleigh expansion. For example, in the medium 1, when z > max a(x, y), the elec-

tric field ~E and the magnetic field ~H in E// could be represented with the help of the

particular solutions as in equation (2.101) and (2.102). These are called the Rayleigh

expansions [6]. In the discrete case, they can be represented as a linear combination of

elementary plane waves. In the continuous case, they can be represented as a integral of

the elementary plane waves. The Rayleigh expansion is only valid outside the modulated

zone (i.e. z > max a(x, y) or z < min a(x, y) ) [7–12].

For example, if we consider only the one-dimensional interface for simplicity. In the

Cartesian referential Oxyz, the grating is represented by a periodic cylindrical surface

y = a(x). This surface separates the air (medium 1) from the medium with a real

or complex refractive index (medium 2). The grating of period D is illuminated by a

monochromatic plane wave under the incidence ✓0. The incident wave vector lies in

the xOy plane. The letter m denotes indi↵erently the upper medium (m = 1) or the

lower medium (m = 2). Henceforth, n(m), Z(m) and k(m) indicate the optical index, the
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impedence and the wave number of medium m. In this case, when y > max(a(x)) and

y < min(a(x)), the di↵racted field can be represented by a combination of elementary

plane waves, the Rayleigh expansion:

8
><

>:

F (m)
c (x, y) =

P
n(c

(m+)
n exp(�j↵nx)exp(�j�(m)

n y) + c(m�)
n exp(�j↵nx)exp(j�

(m)
n y))

G(m)
c (x, y) =

P
n

�
(m)
n

k(m) (c
(m+)
n exp(�j↵nx)exp(�j�(m)

n y) + c(m�)
n exp(�j↵nx)exp(j�

(m)
n y))

(3.7)

The subscript (c) denotes the Cartesian components of electromagnetic field. In E//

polarization, F (m)
c (x, y) = E(m)

z (x, y), G(m)
c = Z(m)H(m)

z (x, y) and in H// polarization,

F (m)
c (x, y) = Z(m)H(m)

z (x, y), G(m)
c (x, y) = �E(m)

x (x, y). Superscripts (+) and (�)

denotes a plane wave moving in direction along the y-axis and inverse the y-axis, re-

spectively. The propagation coe�cients of the n-th order di↵raction are presented by

↵n and �(m)
n with the relation

↵2
n + (�(m)

n )2 = k(m)2 (3.8)

where Im(�(m)
n ) < 0 and ↵n = k(1)sin✓0 + n2⇡

D . (↵n,�
(m)
n ) are the propagation coef-

ficients of the wave vector ~k(m)
n of the elementary plane wave associated with the nth

di↵raction order. c(m±)
n are the di↵raction amplitudes of elementary plane waves. The

propagation coe�cient �(m)
n defines the nature of the plane wave: a propagation wave if

�(m)
n is real, and an evanescent wave if �(m)

n is imaginary or complex.

3.1.5 The scattering matrix S

With the discrete version of Rayleigh expansion, we can define the scattering matrix(S-

matrix) to relate the amplitudes of outgoing plane waves to those of incoming waves.

Take the one-dimensional case for simplicity, we have:

0

@c(1+)

c(2�)

1

A = S

0

@c(1�)

c(2+)

1

A (3.9)
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here we use c(m±) to represent a vector containing the scattering amplitudes c(m±)
n . For

a perfectly conduction surface, the scattering matrix is given by:

c(1+) = Sc(1�) (3.10)

Figure (3.2) illustrates the link between incoming and outcoming plane waves.
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(+)
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(�)
2 c

(+)
2

D

S-matrix related to diffraction amplitudes

Figure 3.2: Scattering matrix S. Matrix associates the amplitudes of outgoing plane
waves and those of incoming waves

3.1.6 The e�ciency

For a lossless medium (m) with a real optical index ⌫(m), the di↵racted far field is

expressed as a finite sum of plane waves propagating without attenuation, the directions

of which form angles ✓(m)
n with the Oy axis. The aim is to determine the e�ciencies that

represent the incident power distribution in the di↵erent di↵raction orders characterized

by angles ✓(m)
n with cos ✓(m)

n = �(m)
n /k(m). According to the definition of the complex

Poynting vector (2.95), for an incidence angle ✓0, the e�ciency ✏(m)
n is given by [6]:

✏(m)
n =

⌫(m) cos ✓(m)
n

cos ✓0
|c(m)
n |2 (3.11)
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For a lossless grating, the sum of e�ciencies is equal to 1 according with the conservation

of power [6]. For the two media case, considering the propagation plane waves, we have:

X

n

✏(1)n +
X

n

✏(2)n = 1 (3.12)

3.2 Scattering from random rough surfaces

3.2.1 Introduction

The problem of electromagnetic scattering from random rough surfaces has aroused the

interest of physicists and engineers for many years because of its wide range of appli-

cations in optics, material science, communications, oceanography and remote sensing.

The three classical analytical methods commonly used in random rough surfaces scat-

tering are the small-perturbation method [13], the Kirchho↵ method [14–16] and the

small slope approximation [17].

The electromagnetic analysis of rough surfaces with parameters close to the incident

wavelength requires a rigorous formalism. Numerical methods based on Monte Carlo

simulations are available for the study of electromagnetic wave scattering from one-

dimensional and two-dimensional random rough surfaces. In the frequency domain,

the boundary integral method can be used to analyze the scattering problem by rough

surfaces. In this case, the electric or magnetic field integral equation is converted into

matrix equations using the method of moments (MoM) [18, 19]. The average mesh

length determines the accuracy of the MoM solution. The number of unknowns N

is proportional to surface area in square wavelength. Several fast methods have been

proposed to reduce the CPU time [20–25] and lead to a computational e�ciency of

O(N logN) . These methods are fully capable of describing the field scattered from

surfaces of large size. Other numerical approaches are also suggested and for topical

reviews, see [18] and [19]. Exact methods require solutions for many realizations of two-

dimensional rough surfaces. The Monte-Carlo is used and the average scattered power

is estimated over results of several surface realizations.
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3.2.2 Random rough surface generation

In order to study the di↵raction phenomenon of random rough surfaces, we use a numer-

ical solution method based on exact electromagnetic model. This method requires the

inputs describing surfaces to be analyzed. These inputs are numerical representation of

the actual surfaces.

If we take the method of small perturbations (SPM) for example [14], which is an ap-

proximate analytical method, we only need the geometric parameters (statistics) which

characterize the surface to be analyzed (standard deviation of heights, length correla-

tion ...) to study its average response to electromagnetic excitation. In our case, these

parameters will not intervene directly in the electromagnetic treatment. They will be

used during a preliminary step in the numeric generation of surfaces that we want to

analyze. These numeric profiles will be the inputs of the electromagnetic model that we

have developed.

In a space based on the Cartesian orthonormal (Oxyz), a surface whose generating line

is based on a function y = a(x) is called as cylindrical surface or one-dimensional surface.

This surface is invariant along the z direction. For the two-dimensional surface, we use

the equation z = a(x, y) to represent the surface function.

In this thesis, we consider the one-dimensional or two-dimensional bounded supported

random surfaces. They are expected from random process, verifying some assump-

tions that we explain later in this chapter. The randomness of these surfaces requires

a statistical study to characterize it. To better understand the interaction between

electromagnetic waves and the rough surface will require a good description of them.

In signal theory, a random process represents the evolution of a random variable with

time or space. It is symbolized by a random function depending on time and/or on

space and on a parameter W reflecting the randomness. A random process depending

only on the space (time-independent) is noted as ⇠(r,W). For a given value W0 of W,

we obtain a realization of the random process ⇠(r,W0). This realisation is deterministic.

If we vary the random parameter W, we get a set of realisations from the same random

process.

The statistical description of a random spatial process, whether in the one-dimensional

or two-dimensional case, can be done by studying its spatial fluctuations depending on
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the position. For a given position random functions ⇠(x0,W) for the one-dimensional

case, and ⇠(x0, y0,W) for the two-dimensional case, are random variables.

The distribution function of the random variable ⇠(~r0,W) is defined as:

F⇠(h) = Prob(⇠  h) (3.13)

For a real random variable, the derivative of its distribution function (if it exists) gives

the density of probability P⇠(h). The density of probability verifies the following prop-

erties:

Prob(⇠ 2 [a, b]) =

Z b

a
P⇠(h)dh (3.14)

8h, P⇠(h) > 0,

Z +1

�1
P⇠(h)dh = 1 (3.15)

In practice, this function can be estimated by the normalized histogram of the values

taken by the random variable ⇠(x,W) or (x, y,W) for a given position. In the Gaussian

case, the probability density is determined entirely by two parameters which are the sta-

tistical mean of the random variable which we denote as m⇠ and the standard deviation

�⇠. �⇠ measures the dispersion of the values of the random variable around the mean

value m⇠.

m⇠ = E[⇠] =
Z +1

�1
hP⇠(h)dh (3.16)

�2⇠ = E[⇠2]� E[⇠]2 (3.17)

E[⇠2] =
Z +1

�1
h2P⇠(h)dh (3.18)

where E denotes the expectation which provides the statistical mean of the considered

random variable. The analytical expression of a Gaussian probability density is given

by:

P⇠(h) =
1

�⇠
p
2⇡

e
� 1

2 (
h�m

⇠

�

⇠

)2
(3.19)

Now we consider a two-dimensional Gaussian random variable (⇠1, ⇠2), with statistical

average (m⇠1 ,m⇠2) and standard deviation (�⇠1 ,�⇠2). The associated joint probability
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density is:

P⇠1,⇠2(h1, h2) =
1

2⇡�⇠1�⇠2
p

1� ⇢2c
exp(�

(h1�m
⇠1

)2

�2
⇠1

� 2⇢
c

(h1�m
⇠1

)(h2�m
⇠2

)
�
⇠1

�
⇠2

+
(h2�m

⇠2
)2

�2
⇠2

2(1� ⇢2c)
)

(3.20)

with ⇢c the correlation coe�cient:

⇢c =
E[⇠1⇠2]�m⇠1m⇠2

�⇠1�⇠2
(3.21)

To analyze a random process ⇠(~r,W), we can consider a study of a single realisation (W
fixed). This allows us to know its spatial moments. In the general case, these moments

may depend on the realisation, that is to say the random W. The other way to do

is to look at the values of the random variable associated with the process for a given

position ~r0 and several realizations of the process ⇠(~r,W) (family of realisations). In this

case, the process is described by using these statistical moments (statistical average and

higher order moments).

Knowing the probability density of the random variable ⇠(~r,W) for a given ~r0, the

statistical moment of order n, associated to this random variable is the expectation of

order n. It is defined for a continuous random variable by:

m⇠n = E[⇠n(~r0,W)] =

Z +1

�1
hnP⇠(h)dh (3.22)

To evaluate the correlation that may exist between two values taken by the random

variable ⇠(~r,W ) , at two di↵erent points ~r0 and ~r0 + ~r, we compute its statistical auto-

correlation function defined by:

R(~r0, ~r0 + ~r) =

Z +1

�1

Z +1

�1
hh0P(⇠

~

r

0 ,⇠~
r

0+~r

)(h, h
0)dhdh0 (3.23)

P⇠
~

r

0 ,⇠~
r

0+~r

(h, h0) is the joint probability. This function depends on the position of two

points, that is to say, (~r0,~r + ~r0).
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If we work now on a single realisation, we have access to spatial moments. If we denote

� the extent of ⇠(~r,W0), then the spatial average of ⇠(~r,W0) can be estimated by:

⇠(~r,W) = lim
�!+1

1

�

Z �
2

��
2

⇠(~r,W0)d~r (3.24)

The spatial autocorrelation is defined as:

C⇠,⇠(~r,W0) = ⇠(~r0,W0)⇠(~r0 + ~r,W0) = lim
�!+1

1

�

Z �
2

��
2

⇠(~r0,W0)⇠(~r0 + ~r,W0)d~r0 (3.25)

Without prior assumptions about the random processes, the spatial moments depend on

the realization. We will see what are the assumptions that allow the equality between

spatial moments and statistical moments up to a certain order n. In general , the

mean and spatial autocorrelation depend on the realisation. This means that these are

random variables. If the spatial moments are independent of the random hazard until

the order 2, then the spatial process is ergodic to order 2. Concerning the statistical

moments, the calculated statistical average depends, in general, on the position ~r and

the autocorrelation function of the two positions ~r0 and ~r+~r0 . If now the autocorrelation

function depends only on the distance between the two points and that the statistical

average is constant when we change position, then the process is said to be stationary

to order 2. If these last two properties (ergodicity and stationarity to order 2) are

made simultaneously satisfied, then Birko↵’s theorem allows to say that the statistical

moments are equal to the spatial moments up to order 2. We can write:

m = E[⇠(~r0,W)] = ⇠(~r,W0) = Constant (3.26)

R⇠⇠(~r) = C⇠⇠(~r) (3.27)

For the surface, the random variable a(~r,W) defines the height of the surface at all

the points ~r. The simulated surfaces are assumed to satisfy the two properties above.

Moreover, we assume that the surface satisfies the following conditions:
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• The probability density of the surface height P (h) is Gaussian with mean E[a(~r,W)] =

0 and standard deviation �a. The density is given by:

P (h) =
1

�a
p
2⇡

exp(� h2

2�2
) (3.28)

• The autocorrelation function is given by:

R(x, y) =

8
><

>:

�2aexp(�x2

l2
x

), one� dimensional case

�2aexp(�x2

l2
x

� y2

l2
y

), two� dimensional case
(3.29)

If the surface is isotropic, we have lx = ly = l.

We generate the random surface based on the principle of linear filtration of Gaussian

white noise. In fact, the formula is as follows:

a(~r) = (hf ⇤B)(~r) =

Z +1

�1
hf (~r � ~r0)B(~r0)d~r0 (3.30)

where B is the entry signal of the filter, it is related to a Gaussian white noise charac-

terized by the Gaussian probability density and the autocorrelation function:

RBB(~r) = �2a�(~r) (3.31)

with �(~r) the Dirac distribution. From the equation (3.30), we have the formula for

Raa(~r):

Raa(~r) = (Ch
f

⇤RBB)(~r) (3.32)

where Ch
f

(~r) is the spatial autocorrelation of the impulse response of filter:

Ch
f

(~r) =

Z +1

�1
hf (~r)hf (~r � ~r0)d~r0 (3.33)

So we obtain that

Raa(~r) = �2aCh
f

(~r) (3.34)

Now suppose that Ĥf (↵,�) is the Fourier transformation (FT) of the impulse response:

Ĥf (↵,�) = FT [hf (x, y)] (3.35)
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Then we have

|Ĥf (↵,�)|2 = FT [Ch
f

(x, y)] (3.36)

The formula of filtration gives:

FT [Raa(~r)] = �2a|Ĥf (↵,�)|2 (3.37)

Given the function Raa(~r) and suppose that Ĥf (↵,�) = |Ĥf (↵,�)|, we can calculate the

impulse response:

hf (x, y) = FT�1[Ĥf (↵,�)] = FT�1[
p
FT [Raa(x, y)]] (3.38)

In particular, for the two-dimensional isotropic Gaussian surface, the impulse response

is

hf (x, y) =
2

l
p
⇡
exp(�2(

x2 + y2

l
)2) (3.39)

To implement this method, we need to discrete version of the formula. Suppose �x and

�y are the length of the step along the direction ~ux and ~uy. We have:

�x =
Lx

Nx
, �y =

Ly

Ny
(3.40)

and

a(xi, yj) = �x�y
X

p

X

q

hf (Up, Vq)B(Up � xi, Vq � yj) (3.41)

with

xi = i�x, yj = j�y, Up = p�x, Vq = q�y (3.42)

A = LxLy is the area of the generated surface. Thereafter, L = Lx = Ly and Nx =

Ny = Ne and N2
e is the number of samples.

3.2.3 Beam of elementary plane waves

For the two dimensional interface, suppose the interface separating the air from a di-

electric medium and described by the function z = a(x, y). For the E// polarization,

the component Ez will be zero and for the H// polarization, the component Hz will be

zero.
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Nonzero components of ~E Nonzero components of ~H

E// Ex, Ey Hx, Hy, Hz

H// Ex, Ey, Ez Hx, Hy

Outside the deformation, the di↵racted field ( ~E, ~H) could be represented by the Rayleigh

integral when z > max a(x, y) or z < min a(x, y). The electric field ~E and the magnetic

field ~H in E// could be represented as follows:

~E(1)(x, y, z) =
1

4⇡2

Z +1

�1

Z +1

�1
C(1,E

//

)(↵,�)~h(↵,�)e�j~k(1)(↵,�)·~rd↵d� (3.43)

Z(1) ~H(1)(x, y, z) =
1

4⇡2

Z +1

�1

Z +1

�1
C(1,E

//

)(↵,�)(
~k(1)(↵,�)

k(1)
⇥ ~h(↵,�))e�j~k(1)(↵,�)·~rd↵d�

(3.44)

where ~h is the unit polarization vector:

~h(↵,�) = � �p
↵2 + �2

~ux +
↵p

↵2 + �2
~uy (3.45)

and

~k(1) = ↵~ux + �~uy + �(1)~uz (3.46)

with ↵2 + �2 + (�(1))2 = (k(1))2, Im(�(1))  0, Re(�(1)) � 0.

If ↵2+�2 > (k(1))2, the constant of propagation � is pure imaginary and corresponds to

the evanescent wave. If ↵2+�2  (k(1))2, �(1) is real and corresponds to the propagation

wave. C(1,E
//

)(↵,�) is the amplitude of the elementary wave e�j~k(1)(↵,�)·~r.

For the H//, we have

Z(1) ~H(1)(x, y, z) =
1

4⇡2

Z +1

�1

Z +1

�1
C(1,H

//

)(↵,�)~h(↵,�)e�j~k(↵,�)·~rd↵d� (3.47)

~E(1)(x, y, z) = � 1

4⇡2

Z +1

�1

Z +1

�1
C(1,H

//

)(↵,�)(
~k(1)(↵,�)

k(1)
⇥ ~h(↵,�))e�j~k(1)(↵,�)·~rd↵d�

(3.48)

Equations (3.47) and (3.48) can be obtained from (3.43) and (3.44) by replace ~E(1) with

Z(1) ~H(1) and Z(1) ~H(1) with � ~E(1).

For the one-dimensional case, suppose the interface is described by y = a(x) which is

invariant in the direction Oz. If the surface is illuminated by a plane wave with wave
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vector ~k0 which is in the plane Oxy. As in the two-dimensional case, we have the

following table:

Nonzero components of ~E Nonzero components of ~H

E// Ez Hx, Hy

H// Ex, Ey Hz

For E//, the electromagnetic fields are:

~E(1)(x, y) =
1

2⇡

Z +1

�1
C(1,E

//

)(↵)e�j~k(1)(↵)·~rd↵~uz (3.49)

Z(1) ~H(1)(x, y) =
1

2⇡

Z 1

�1
C(1,E

//

)(↵)(
~k(1)(↵)

k(1)
⇥ ~uz)e

�j~k(1)(↵)·~rd↵ (3.50)

with

~k(1)(↵) = ↵~ux + �(1)~uy (3.51)

and

↵2 + (�(1))2 = (k(1))2, Im(�(1))  0, Re(�(1)) � 0 (3.52)

For the H//, the fields are:

Z(1) ~H(1)(x, y) =
1

2⇡

Z +1

�1
C(1,H

//

)(↵)e�j~k(1)(↵)·~rd↵~uz (3.53)

~E(1)(x, y) = � 1

2⇡

Z 1

�1
C(1,H

//

)(↵)(
~k(1)(↵)

k(1)
⇥ ~uz)e

�j~k(1)(↵)·~rd↵ (3.54)

3.2.4 Scattering patterns

In the far-field zone, the Rayleigh expansion (3.43) and (3.44) is reduced to the only

contribution of the propagation waves. For E//, the method of stationary phase [26]

leads to the asymptotic fields at the point M(r, ✓,'):

~E(1)
far(r, ✓,') = C(1,E

//

)(k(1) sin ✓ cos', k(1) sin ✓ sin') cos ✓
e�jk(1)r

�r
e�j ⇡

2 ~u' (3.55)

Z(1) ~H(1)
far(r, ✓,') = C(1,E

//

)(k(1) sin ✓ cos', k(1) sin ✓ sin') cos ✓
e�jk(1)r

�r
e�j ⇡

2 ~u✓ (3.56)
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Substituting ~E(1) by Z(1) ~H(1) and Z(1) ~H(1) by � ~E(1) in equation (3.55) and (3.56),

we obtain the H// polarization components of magnetic and electric field vectors. For

an incident wave in (a) polarization and a scattered wave in (b) polarization ((a, b) 2
{E//, H//}), the normalized bistatic scattering coe�cient �(ba) is defined as follows:

�(ba)(✓,') =
1

P (a)
0

dP (ba)

d⌦
=

|C(1,ba)(k(1) sin ✓ cos', k(1) sin ✓ sin') cos ✓|2
�2L2 cos ✓0

(3.57)

where dP (ba)

d⌦ is the power scattered per unit solid angle d⌦ = sin ✓d✓d' with

dP (ba) =
1

2
Re( ~E(ba)

far ⇥ ~H(ba)⇤
far dS~ur) (3.58)

The symbol ⇤ designates the complex conjugate. dS is the element surface with dS =

r2d⌦. The unit vectors ~ur, ~u✓, ~u' are drawn in the direction of increasing r, ✓ and ' such

as to constitute a right-hand base system. P (a)
0 is the flux of incident power through the

modulated region with L the modulated length (see equations 2.61 and 2.94 ):

P (a)
0 =

1

2

Z +L/2

�L/2

Z L/2

�L/2
Re( ~E(a)

i ⇥ ~H(a)⇤
i dxdy~uz) (3.59)

For random rough surface, the average bistatic scattering coe�cient is defined:

E[�(ba)(✓,')] = 1

�2L2

cos2 ✓

cos ✓0
E[|C(1,ba)(k(1) sin ✓ cos', k(1) sin ✓ sin') cos ✓|2] (3.60)

For infinite extension surfaces, the three classical analytical methods (First-order per-

turbation method, first-order small slope approximation and the Kirchho↵ method) lead

to closed-form formula for the average bistatic scattering coe�cient [13, 14, 17]. Exact

methods require solutions for many realizations of two-dimensional rough surfaces. The

Monte Carlo technique is applied to estimate the average bi-static coe�cient from results

over NR di↵erent realizations [18].

E[�(ba)(✓,')] = 1

NR

N
RX

j=1

�(ba)j (✓,') (3.61)

Some authors prefer to use the radar cross section which is 4⇡ cos ✓0L2E[�(ba)(✓,')].
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3.3 Conclusion

In this chapter, we present the theory of di↵raction gratings and the theory of scattering

from random rough surfaces. We recall that the Rayleigh expansion is only valid outside

the modulated zone. This is why we can not simply use Rayleigh expansion in the

modulated zone and the C-method is needed here. For analyzing gratings, we present

the concept of matrix S, see equation (3.9), this concept gives rise to chapter 8, the

new version of C-method: C-method as an initial value problem. We also define the

average bistatic coe�cient that is a quantity measured in remote sensing and in optics.

In chapter 6, we compare the average bistatic coe�cient estimated with the C-method

and experimental data.

In the next chapter, we present the C-method and we show how this method leads to

eigenvalue problem.



Chapter 4

The curvilinear coordinate

method

4.1 Introduction

The resolution of Maxwell’s equations requires to consider the continuity of certain

components of the field on the interface. The continuity relation is simplified if the in-

terface is one coordinate surface. If the interface is geometrically simple (plane, cylinder,

sphere), we can use the corresponding coordinates. If it is not, in order to see clearly

the continuity relations, we need to use nonorthogonal coordinates.

Several authors have adapted the Maxwell-Minkowsky equations to the three-dimensional

space. By combining the electromagnetic field tensor, Minkowsky has generalized the

Maxwell’s equations to the space-time. E.J.Post has written the equations in the ratio-

nalized MKS system [27]. J.Chandezon et al have proposed to adapt this formulation

to the three-dimensional space and valid for all the curvilinear coordinates [28]. Under

this form, the Maxwell’s equations are not a↵ected by the coordinate system which is

di↵erent from classical ways.

In order to use this formalism, J.Chandezon et al introduced two systems of nonorthog-

onal coordinates, the translation system to study the di↵raction of a plane wave by a

grating [28] and the revolution system to study the propagation of wave in the periodical

cylindrical guides [29]. The principle of the proposed method is called the C-method.

45
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This formalism has been extensively used in the theory of grating: grating with finite

conductivity in conical incidence, multilayer gratings with parallel or non parallel in-

terface, bi-crossed gratings [30–39]. The Maxwell’s equations in covariant form leads

to new pertubation methods [40] and to models of two roughness levels [41]. For these

works, the medium is linear, homogeneous and isotropic. E. Popov and M. Nevière have

extended the C-method to the grating containing materials with nonzero susceptibility

�(3) [42]. Harris et al [43, 44], Inchaussandague and Depine [45, 46] have generalized

the principle of resolution with anisotropic materials. G. Granet et al investigated the

di↵raction gratings with inhomogeneous materials [47]. L. Li et al have proposed a new

formalism of C-method to study the interface with edges [48]. This formulation is based

on the factorization rules of Fourier series and has a faster numerical convergence.

In most studies, the grating surface is described as a function and the study is done in

the translation coordinate system. Plumey et al [49] have extended the C-method to

study gratings that are not described by functions. Granet et al studied gratings given

by parametric equations [50]. This formalism has given rise to some works in waveguide

for the study of waveguide bends and power divider [51–54]. The C-method is also an

e�cient theoretical tool for analyzing rough surfaces illuminated by a plane wave [55–

61] or a electromagnetic beam [62, 63]. Recently, D. Prémel et al have implemented an

original formulation based on the field-potential vectors and applied to the domain of

low frequencies [65, 75].

4.2 The Maxwell’s equations in covariant form and the

translation system

We will derive the Maxwell’s equation in covariant form in this subsection. For the one-

dimensional case, we have the surface function y = a(x). We consider the translation

system: 8
>>>>><

>>>>>:

x0 = x

y0 = u = y � a(x)

z0 = z

(4.1)
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Then the transformation matrix is:

Ai
i0 =

@xi

@x0i
=

0

BBB@

Ax
x0 Ax

y0 Ax
z0

Ay
x0 Ay

y0 Ay
z0

Az
x0 Az

y0 Az
z0

1

CCCA
=

0

BBB@

1 0 0

da
dx 1 0

0 0 1

1

CCCA
(4.2)

Ai0
i =

@xi
0

@xi
=

0

BBB@

1 0 0

� da
dx 1 0

0 0 1

1

CCCA
(4.3)

The covariant basis vectors can be expressed from the basis vectors of the Cartesian

coordinate system (~ux, ~uy, ~uz):

8
>>>>><

>>>>>:

~ux0 = ~ux +
da
dx~uy

~uy0 = ~uy

~uz0 = ~uz

(4.4)

and the contravariant basis vectors can be written as:

8
>>>>><

>>>>>:

~ux
0
= ~ux

~uy
0
= � da

dx~u
x + ~uy

~uz
0
= ~uz

(4.5)

The covariant and contravariant metric tensors are [3]:

gi0j0 =
X

i,j

Ai
i0A

j
j0gij =

0

BBB@

1 + ( dadx)
2 da

dx 0

da
dx 1 0

0 0 1

1

CCCA
(4.6)

gi
0j0 =

X

i,j

Ai0
i A

j0

j g
ij =

0

BBB@

1 � da
dx 0

� da
dx 1 + ( dadx)

2 0

0 0 1

1

CCCA
(4.7)
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So in the new coordinate system, the covariant components of a vector ~v can be written

as, 8
>>>>><

>>>>>:

vx0 = vx +
da
dxvy

vy0 = vy

vz0 = vz

(4.8)

and the contravariant components as,

8
>>>>><

>>>>>:

vx
0
= vx

vy
0
= � da

dxv
x + vy

vz
0
= vz

(4.9)

The covariant components vy0 and vz0 become identified with Cartesian ones vy and vz.

Moreover, the covariant component vx0 and vy0 are parallel to the interface given by

u = 0 (i.e. y = a(x)).

By a similar procedure, for the two-dimensional surface z = a(x, y), we have by using

the translation system (x0, y0, z0) = (x, y, z � a(x, y)):

Ai
i0 =

0

BBB@

1 0 0

0 1 0

@a
@x

@a
@y 1

1

CCCA
(4.10)

Ai0
i =

0

BBB@

1 0 0

0 1 0

� @a
@x �@a

@y 1

1

CCCA
(4.11)

gi0j0 =

0

BBB@

1 + ( @a@x)
2 @a

@x
@a
@y

@a
@x

@a
@x

@a
@y 1 + (@a@y )

2 @a
@y

@a
@x

@a
@y 1

1

CCCA
(4.12)

gi
0j0 =

0

BBB@

1 0 � @a
@x

0 1 �@a
@y

� @a
@x �@a

@y 1 + ( @a@x)
2 + (@a@y )

2

1

CCCA
(4.13)
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So, in the translation coordinate system, the covariant components of a vector ~v can be

written as, 8
>>>>><

>>>>>:

vx0 = vx +
@a
@xvz

vy0 = vy +
@a
@yvz

vz0 = vz

(4.14)

and the contravariant component as,

8
>>>>><

>>>>>:

vx
0
= vx

vy
0
= vy

vz
0
= vz � @a

@xv
x � @a

@yv
y

(4.15)

The covariant component vz0 is simply the vertical component vz. Moreover, the covari-

ant components vx0 and vy0 are parallel to the surface coordinate z0 = 0 (i.e. z = a(x, y)).

From the Ostrogradsky theorem and the Stokes’ theorem expressed in a non orthogonal

coordinate system (xi
0
, xj

0
, xk

0
), the Maxwell’s equations for time-harmonic fields can be

written as [3]:
1p
g0

X

i0

@

@xi0
(
p
g0Bxi

0
) = 0 (4.16)

1p
g0
(
@Exk

0

@xj0
� @Exj

0

@xk0
) = �j!Bxi

0
(4.17)

1p
g0

X

i0

@

@xi0
(
p
g0Dxi

0
) = 0 (4.18)

1p
g0
(
@Hxk

0

@xj0
� @Hxj

0

@xk0
) = j!Dxi

0
(4.19)

where g0 = det(gi
0j0). Here, we assume that there is no current density and no charge

density. For a linear, homogeneous, isotropic and non magnetic medium, the constitutive

relations for time-harmonic fields can be written as:

Dxi

0
= "cE

xi

0
= "c

3X

j0=1

gi
0j0Exj

0 (4.20)

Bxi

0
= µ0H

xi

0
= µ0

3X

j0=0

gi
0j0Exj

0 (4.21)
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So the equations (4.17) and (4.19) associated with the constitutive relations (4.20) and

(4.21) can be written as:

@Exk

0

@xj0
� @Exj

0

@xk0
= �j!µ0

X

j0

gi
0j0Hxj

0 (4.22)

and
@Hxk

0

@xj0
� @Hxj

0

@xk0
= j!"c

X

j0

gi
0j0Exj

0 (4.23)

more specifically, equations (4.22) and (4.23) are equivalent to the following six equations

[28]:
@Ez0

@y0
� @Ey0

@z0
= �j!µ0(g

x0x0
Hx0 + gx

0y0Hy0 + gx
0z0Hz0) (4.24)

@Ez0

@x0
� @Ex0

@z0
= �j!µ0(g

y0x0
Hx0 + gy

0y0Hy0 + gy
0z0Hz0) (4.25)

@Ey0

@x0
� @Ex0

@y0
= �j!µ0(g

z0x0
Hx0 + gz

0y0Hy0 + gz
0z0Hz0) (4.26)

@Hz0

@y0
� @Hy0

@z0
= j!"c(g

x0x0
Ex0 + gx

0y0Ey0 + gx
0z0Ez0) (4.27)

@Hz0

@x0
� @Hx0

@z0
= j!"c(g

y0x0
Ex0 + gy

0y0Ey0 + gy
0z0Ez0) (4.28)

@Hy0

@x0
� @Hx0

@y0
= j!"c(g

z0x0
Ex0 + gz

0y0Ey0 + gz
0z0Ez0) (4.29)

4.3 Formulation for one-dimensional case

We first consider the one-dimensional case. As we have described before, a surface by

equation y = a(x) separates two di↵erent media. It is illuminated by a monochromatic

plane wave with wavelength � under incident angle ✓0. The incident wave vector ~k0 is

defined by the incident angle ✓0.

~k0 = ↵0~ux + �0~uy (4.30)

with ↵0 = k sin ✓0,�0 = k cos ✓0. The surface could be periodic or non periodic. Here

we consider periodic surfaces or periodic random surfaces.

We represent the vector function by its complex vector function and omit its time-

dependence factor exp(j!t). So for the horizontal (E//) polarization and vertical (H//)
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polarization,

F0(x, y) = exp(�j↵0x+ j�0y) =

8
><

>:

E0,z(x, y) E//

Z1H0,z(x, y) H//

(4.31)

and

Z1
~H =

~k0
k

^ ~E (4.32)

where Z1 = 120⇡ ·Ohms.

The reflected and transmitted plane waves can be written in a similar form. But, for

rough surface, we have, in addition to the incident, reflected and transmitted plane

waves, a scattered field F (x, y) because of the deformation. The problem consists in

working out the scattered field within the two media. The rough surface here is generated

by simulation.

Equations (4.24) to (4.29) enable us to write Maxwell’s equations associated with the

constitutive relations:

8
>>>>><

>>>>>:

j
k1

@F (x,u)
@u = j

k1
b(x)@F (x,u)

@x + c(x)G(x, u)

j
k1

@G(x,u)
@u = 1

k21

@
@x(c(x)

@F (x,u)
@x ) + ⌫2F (x, u)

+ j
k1

@
@x(b(x)G(x, u))

(4.33)

with

b(x) =
da
dx

1 + ( dadx)
2
, c(x) =

1

1 + ( dadx)
2

and in medium (m), F (x, u) = Fm(x, u), G(x, u) = Gm(x, u), ⌫ = ⌫m,m = 1, 2. In E//

polarization, F (x, u) = Ez0(x, u), G(x, u) = Z1Hx0(x, u). In H// polarization, F (x, u) =

Z1
⌫ Hz0(x, u), G(x, u) = �⌫Ex0(x, u).

System (4.33) can be written in the form as follows:

j

k1

@ (x, u)

@u
= L (x, u) (4.34)

with

L =

0

@
j
k1
b(x) @·

@x c(x)·
1
k21

@
@x(c(x)

@·
@x) + ⌫2· j

k1

@b(x)·
@x

1

A (4.35)
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and

 (x, u) =

0

@F (x, u)

G(x, u)

1

A (4.36)

We separate the variables by writing  (x, u) = '(x)(u), then we get:

j

k1(u)

d(u)

du
=

L'(x)
'(x)

= r = constant (4.37)

So we conclude that (u) = Cexp(�jk1ru), L'(x) = r'(x) and  (x, u) = Aexp(�jk1ru)'(x).

If the function a(x) is a period function with D its period, then one has,

8
>>>>>><

>>>>>>:

a(x) =
P
m

amexp(�j2⇡mx/D)

f(x) =
P
m

fmexp(�j↵mx)

g(x) =
P
m

gmexp(�j↵mx)

(4.38)

with '(x) =

0

@f(x)

g(x)

1

A and ↵m = k1sin✓0+m2⇡
D . Under this function decomposition, the

eigenproblem L'(x) = r'(x) has a matrix form as follows:

[L]~' = r~' (4.39)

with

[L] =
0

@[Lff ] [Lfg]

[Lgf ] [Lgg]

1

A and ~' =

0

@
~f

~g

1

A (4.40)

where [Lff ] = [C][Ȧ][↵̃], [Lfg] = [C], [Lgf ] = ⌫2[I] � [↵̃][C][↵̃], [Lgg] = [↵̃][C][Ȧ], [Ȧ]pq =

ȧp�q = (p�q)2⇡d ap�q, [I]pq = �p�q, [C] = ([I]+[Ȧ][Ȧ])�1, ↵̃p =
↵
p

k1
, [↵̃]pq = �p�q↵̃p, (~f)p =

fp, (~g)p = gp, 8(p, q) 2 Z2. Equations (4.39) and (4.40) give an eigenvalue system of

infinite dimension. In a numerical computation, one can truncate it to a finite order

problem with a truncation order M . Theoretically, increasing the truncation order M

will increase the precision of results as well as increase the computational time. We want

to ensure a certain precision and also keep M relatively small. For the lossless medium,

i.e. the medium with optical index ⌫ real, the power balance criterion (3.12) is checked

to see if the truncation order M is large enough for a certain precision. The new system

is similar to the original one except that now, we have �M  p, q  M .
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By solving the truncated eigenvalue problem, with the eigenvalues rn and eigenvectors

~'n, 1 6= n 6= 2M + 1 one gets:

8
>>>>>>>>>><

>>>>>>>>>>:

Fn(x, u) = fn(x)exp(�jk1rnu)

=
P

�MmM

fmnexp(�j↵mx)exp(�jk1rnu)

Gn(x, u) = gn(x)exp(�jk1rnu)

=
P

�MmM

gmnexp(�j↵mx)exp(�jk1rnu)

(4.41)

So we are left with the eigenproblem of order 4M + 2. The signs of the real and

imaginary parts of the eigenvalues rn define the nature of the wave corresponding to the

elementary wavefunction. In particular, the associated expression represent an outgoing

wave propagating with no attenuation if Re(rn) > 0 and Im(rn) = 0. For an evanescent

wave, Im(rn) < 0. Finally, the field scattered in the air can be represented as a linear

combination of all the solutions that verifies the outgoing conditions.

 (i)(x, u) =
2M+1X

n=1

C(i)
n  (i)

n (x, u), i = 1, 2 (4.42)

and the amplitudes C(i)
n are determined by solving the boundary conditions at u = 0

(i.e., at y = a(x)). The boundary conditions stipulate the continuity of the electric and

magnetic components parallel to the surface. These components are (Hx0 , Ez0) in E//

polarization and (Ex0 , Hz0) in H// polarization.

4.4 Formulation for the two-dimensional case

Now we consider the two-dimensional case. We assume the surface z = a(x, y) is illu-

minated by a monochromatic plane wave with wavelength �. a(x, y) is a local function

with L denotes the deformation length with respect to the Ox and Oy axis. For the

formulation applied to crossed gratings, we refer the readers to [38, 39]. The incident

wave vector ~k0 is defined by the zenith angle ✓0 and the azimuth angle '0.

~k0 = ↵0~ux + �0~uy � �0~uz (4.43)
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with

↵0 = k sin ✓0 cos'0,�0 = k sin ✓0 sin'0, �0 = k cos ✓0 (4.44)

and

k =
2⇡

�
(4.45)

For the E// polarization, the incident field can be expressed as:

~E0(x, y, z) = ~he�j~k0~r and Z ~H0 =
~k0
k

⇥ ~E0 (4.46)

For the H// polarization, the incident field can be expressed as:

Z ~H0(x, y, z) = ~he�j~k0~r and Z ~H0 =
~k0
k

⇥ ~E0 (4.47)

Here

~h = � sin'0~ux + cos'0~uy (4.48)

and

~r = x~ux + y~uy + z~uz (4.49)

We want to know the scattered field, but it cannot be expressed by the Rayleigh integral

(3.43) in the modulated zone if the perturbation amplitude is too large. We can obtain

an expression of field that is valid over the surface by solving Maxwell’s equation in the

translation coordinate system:

8
>>>>><

>>>>>:

x0 = x

y0 = y

z0 = z � a(x, y)

(4.50)

In a source-free medium, from equations (4.24)-(4.29), we can obtain that the longitu-

dinal components Ez0 and ZHz0 obey to the propagation equation [39]:

� @

@z0
(gx

0z0 @ 

@x0
+
@gx

0z0 

@x0
)� @

@z0
(gy

0z0 @ 

@y0
+
@gy

0z0 

@y0
) + jkgz

0z0 @ 
0

@z0

=
@2 

@x02
+
@2 

@y02
+ k2 

(4.51)
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with

 0 =
j

k

@ 

@z0
(4.52)

and  (x0, y0, z0) = Ez0(x0, y0, z0) or ZHz0(x0, y0, z0). And gx
0z0 , gy

0z0 and gz
0z0 are elements

of metric tensor which depend on the derivatives of function a(x0, y0) with respect to x0

and y0. From equation (4.13), we have:

8
>>>>><

>>>>>:

gx
0z0 = � @a

@x0

gy
0z0 = � @a

@y0

gz
0z0 = 1 + ( @a

@x0 )2 + ( @a
@y0 )

2

(4.53)

Again from (4.24)-(4.29), we obtain expression of components Ex0 , Ey0 , Hx0 and Hy0 in

terms of longitudinal components Ez0 and ZHz0 only.

@2Ex0

@z02
+ k2Ex0 =

@2Ez0

@x0@z0
� k2gx

0z0Ez0 � jkgy
0z0 @ZHz0

@z0
� jk

@ZHz0

@y0
(4.54)

@2Ey0

@z02
+ k2Ey0 =

@2Ez0

@y0@z0
� k2gy

0z0Ez0 � jkgx
0z0 @ZHz0

@z0
+ jk

@ZHz0

@x0
(4.55)

@2ZHx0

@z02
+ k2ZHx0 =

@2ZHz0

@x0@z0
� k2gx

0z0ZHz0 � jkgy
0z0 @Ez0

@z0
� jk

@Ez0

@y0
(4.56)

@2ZHy0

@z02
+ k2ZHy0 =

@2ZHz0

@y0@z0
� k2gy

0z0ZHz0 � jkgx
0z0 @Ez0

@z0
+ jk

@Ez0

@x0
(4.57)

The covariant components Ex0 and Ey0 are parallel to the interface. Consequently, for

instance, for a perfectly conducting surface, we have Ex0 = Ey0 = 0 at z0 = 0. We need

to solve the propagation equation (4.51).

To solve equation (4.51), we use a Fourier transform with respect to x0 and y0, then the

equations take the following form

@

@z0
[j↵(ĝx

0z0 ⇤  ̂) + jĝx
0z0 ⇤ (↵ ̂) + j�(ĝy

0z0 ⇤  ̂) + jĝy
0z0 ⇤ (� ̂)]

+ jkĝz
0z0 ⇤ @ ̂

0

@z0
= �2 ̂

(4.58)

with
j

k

@ ̂

@z0
=  ̂0 (4.59)
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and

 ̂ =

Z
 (x, y)ej↵xej�yd↵d� (4.60)

Here, K̂⇤L̂ is the convolution product of two Fourier transforms K̂(↵,�, z0) and L̂(↵,�, z0).

Now, convolution products are approximated as follows:

(K̂ ⇤ L̂)(↵,�, z0) = 1

4⇡2

Z 1

�1

Z 1

�1
K̂(↵0,�0, z0)L̂(↵� ↵0,� � �0)d↵0d�0

⇡ �↵2

4⇡2

X

p

X

q

K̂(↵p,�q, z
0)L̂(↵� ↵p,� � �q)

(4.61)

where

↵p = k sin ✓0 cos'0 + p�↵,�q = k sin ✓0 sin'0 + q�↵ (4.62)

and �↵ = �� = 2⇡
L is the spectral resolution. Using this approximation and applying

the point matching method at discrete values (↵s,�t) to equation (4.58), we obtain

j

k

@

@z0
(
X

p,q

(
↵s

k
ĝx

0z0
s�p,t�q + ĝx

0z0
s�p,t�q

↵a

k
+
�t
k
ĝy

0z0

s�p,t�q + ĝy
0z0

s�p,t�q

�q
k
) ̂(↵p,�q, z

0))

+
j

k

@

@z0
(
X

p,q

ĝz
0z0

s�p,t�q ̂
0(↵p,�q, z

0)) =
�2st
k2
 ̂(↵s,�t, z

0)

(4.63)

j

k

@ ̂(↵s,�t, z0)

@z0
=  ̂0(↵s,�t, z

0) (4.64)

with

ĝx
0z0

p,q =
�↵2

4⇡2
ĝx

0z0(↵p,�q) (4.65)

ĝy
0z0

p,q =
�↵2

4⇡2
ĝy

0z0(↵p,�q) (4.66)

ĝz
0z0

p,q = �pq +
X

u,v

ĝx
0z0

p�u,q�v ĝ
x0z0
u,v +

X

u,v

ĝy
0z0

p�u,q�v ĝ
y0z0
u,v (4.67)

Equation (4.63) can be written in matrix form

j

k
[Ll]

@

@z0

0

@
~ 

~ 0

1

A = [Lr]

0

@
~ 

~ 0

1

A (4.68)

With a M -th order truncated approximation, the matrices [Ll] and [Lr] are 2Ms-

dimensional ones with Ms = (2M + 1)2.
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The elementary solution of equation (4.68) is defined as follows

0

@
~ mn

~ 0
mn

1

A =

0

@
~�mn

~�0nm

1

A exp(�jkrmnz
0) (4.69)

with

rmn[Ll]

0

@
~�mn

~�0mn

1

A = [Lr]

0

@
~�mn

~�0mn

1

A (4.70)

System (4.70) represents an eigenvalue problem, the size of which is N = 2Ms. Then,

according to the sample theorem [76], the elementary wave functions  ̂mn(↵,�, z0) and

 ̂0
mn(↵,�, z

0) can be constructed from �mn and �0mn

 ̂mn(↵,�, z
0) =exp(�jkrmnz

0)

⇥
s=MX

s=�M

t=MX

t=�M

�mn(↵s,�t)sinc(
⇡

�↵
(↵� ↵s))sinc(

⇡

�↵
(� � �t))

(4.71)

 ̂0
mn(↵,�, z

0) =exp(�jkrmnz
0)

⇥
s=MX

s=�M

t=MX

t=�M

�0mn(↵s,�t)sinc(
⇡

�↵
(↵� ↵s))sinc(

⇡

�↵
(� � �t))

(4.72)

Finally, the Fourier transform of Oz-component is defined as a linear combination of Ms

eigensolutions satisfying the outgoing wave condition:

 ̂d(↵,�, z
0) =

X

(m,n)2D
s

Amn ̂mn(↵,�, z
0) (4.73)

 ̂0
d(↵,�, z

0) =
X

(m,n)2D
s

Amn ̂
0
mn(↵,�, z

0) (4.74)

Substituting Ez0 = 0 and applying the same procedure in the spectral domain, we obtain

the Fourier transforms of horizontal polarized transverse components:

 ̂(ha)
dT (↵,�, z0) =

X

(m,n)2D
s

A(ha)
mn  ̂

(ha)
T,mn(↵,�)exp(�jkrmnz

0) (4.75)
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with

 ̂(ha)
dT (↵,�, z0) =

0

BBBBBB@

Ê(ha)
dx0 (↵,�)

Ê(ha)
dy0 (↵,�)

ZĤ(ha)
dx0 (↵,�)

ZĤ(ha)
dy0 (↵,�)

1

CCCCCCA
and  ̂(ha)

T,mn(↵,�) =

0

BBBBBB@

Ê(ha)
x0,mn(↵,�)

Ê(ha)
y0,mn(↵,�)

ZĤ(ha)
x0,mn(↵,�)

ZĤ(ha)
y0,mn(↵,�)

1

CCCCCCA
(4.76)

According to the sampling theorem [76], we write

 ̂(ha)
T,mn(↵,�) =

MX

s=�M

MX

t=�M

 ̂(ha)
T,mn(↵s,�t)sinc(

⇡

�↵
(↵� ↵s))sinc(

⇡

�↵
(� � �t)) (4.77)

where

Ê(ha)
x0,mn(↵s,�t) = �k2

MX

p=�M

MX

q=�M

ĝy
0z0

s�p,t�q�
0
mn(↵p,�q)� k�t�mn(↵s,�t) (4.78)

Ê(ha)
y0,mn(↵s,�t) = k2

MX

p=�M

MX

q=�M

ĝx
0z0

s�p,t�q�
0
mn(↵p,�q) + k↵s�mn(↵s,�t) (4.79)

ZĤ(ha)
x0,mn(↵s,�t) = �k2

MX

p=�M

MX

q=�M

ĝx
0z0

s�p,t�q�mn(↵p,�q)� k↵s�
0
mn(↵s,�t) (4.80)

ZĤ(ha)
y0,mn(↵s,�t) = �k2

MX

p=�M

MX

q=�M

ĝy
0z0

s�p,t�q�mn(↵p,�q)� k�t�
0
mn(↵s,�t) (4.81)

Taking Hz0 = 0 and substituting Ê(ha) by ZĤ(va) and ZĤ(ha) by �Ê(va), we obtain the

vertical components of magnetic and electric fields.

The scattering amplitudes A(ha)
mn and A(va)

mn are found by solving the boundary conditions.

So, for an incident wave in (a) polarization, we can write

E(1,ha)
dx0 (x0, y0, z0) + E(1,va)

dx0 (x0, y0, z0)� E(2,ha)
dx0 (x0, y0, z0)� E(2,va)

dx0 (x0, y0, z0)

= �(E(a)
0x0(x

0, y0, z0) + ⇢(a)r E(a)
rx0(x

0, y0, z0))� ⇢(a)t E(a)
tx0 (x

0, y0, z0)
(4.82)

E(1,ha)
dy0 (x0, y0, z0) + E(1,va)

dy0 (x0, y0, z0)� E(2,ha)
dy0 (x0, y0, z0)� E(2,va)

dy0 (x0, y0, z0)

= �(E(a)
0y0 (x

0, y0, z0) + ⇢(a)r E(a)
ry0 (x

0, y0, z0))� ⇢(a)t E(a)
ty0 (x

0, y0, z0)
(4.83)

H(1,ha)
dx0 (x0, y0, z0) +H(1,va)

dx0 (x0, y0, z0)�H(2,ha)
dx0 (x0, y0, z0)�H(2,va)

dx0 (x0, y0, z0)

= �(H(a)
0x0 (x

0, y0, z0) + ⇢(a)r H(a)
rx0 (x

0, y0, z0))� ⇢(a)t H(a)
tx0 (x

0, y0, z0)
(4.84)
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H(1,ha)
dy0 (x0, y0, z0) +H(1,va)

dy0 (x0, y0, z0)�H(2,ha)
dy0 (x0, y0, z0)�H(2,va)

dy0 (x0, y0, z0)

= �(H(a)
0y0 (x

0, y0, z0) + ⇢(a)r H(a)
ry0 (x

0, y0, z0))� ⇢(a)t H(a)
ty0 (x

0, y0, z0)
(4.85)

where ⇢(a)r and ⇢(a)t are the Fresnel reflection and transmission coe�cients. After a

Fourier transform, the point matching method is applied, then a 4Ms-dimensional matrix

system is obtained, the inversion of which leads to scattering amplitude A(ha)
mn and A(va)

mn .

These scattering amplitudes lead to the bistatic coe�cients as defined in equation (3.60).

4.5 Conclusion

In this chapter, we show the C-method and how this C-method leads to eigenvalue prob-

lem. We present the formulations for both one-dimensional case and two-dimensional

case. The computational time of the C-method is a key topic of our research.

The computational time of the C-method is mainly spent on the computation of eigen-

values and eigenvectors. We give a figure here to show the computation time of the

C-method. The figure 4.1 shows the computational time of numerical experiment of one

realisation. The perfectly conducting surface we consider is of 64 square wavelengths

and �a = � and lx = ly = 1.41�. The incident angle is chosen as ✓0 = 30� and '0 = 0�.

The computational time varies as N3 where N = 2(2M + 1)2 is the order of the con-

sidered matrix. In fact, from figure 4.1, we can see that we have approximately the

computational time t = a(2(2M + 1)2)↵, with ↵ ⇡ 3.1 a good fit. In terms of com-

putational time, the C-method is not competitive with respect to fast integral method

whose complexity is O(N logN) [20–25]. The computational time is a weak point of

the C-method, in particular, for analyzing rough random surfaces insofar as the average

scattered intensity is estimated over results of several surface realizations (Monte-Carlo

method). However, the strength of the C-method is that it leads to the eigensolutions

of the scattering problem. It is an accurate method and it can be used as a reference

for the analytical methods [77].

In the next chapter, we propose a parallel QR algorithm adapted to the C-method for

reducing the computational time. The proposed method keeps the strength of C-method

and improves the weak point of C-method.
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Figure 4.1: Computational time relative to truncation order



Chapter 5

Parallel QR algorithm for the

C-method

5.1 Introduction

The most time-consuming part of C-method is to compute the eigenvalues and eigenvec-

tor of the scattering matrix A [58, 59]. Here, for the one-dimensional case, from equation

(4.39), A equals the truncated version of [L], for the two-dimensional case, from equation

(4.68), A equals the truncated version of [Lr]�1[Ll]. Moreover, A is a large size, com-

plex, dense and non-Hermitian matrix. Iterative eigensolvers, such as Krylov subspace

methods or Jacobi-Davidson methods [66] have been developed to deal with large-scale

eigenvalue problems. However, they have the possibility of missing some eigenvalues. So

these iterative methods are ine↵ective for the C-method because all the eigenvalues and

eigenvectors are needed. In contrast, the QR algorithm, which is based on similarity

transformations, calculates all the eigenvalues and eigenvectors with very little danger,

and only with a warning of missing some eigensolutions. We propose a specifically de-

signed parallel QR algorithm for the C-method to save the computation time. Three

techniques are used in the implementation of parallel QR algorithm: early shift, parallel

bulge chasing and parallel aggressive early deflation (AED). The early shifts are intro-

duced in parallel algorithm to give approximation of a part of the eigenvalues of the

matrix. The early shifts are based on physical interpretation and observation based on

the C-method and they are specifically designed and first introduced in our work. They

61
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provide the possibility of quick deflation. For the bulge chasing, instead of only a single

bulge, containing two shifts, a chain of several tightly coupled bulges, each containing

two shifts, is chased in the course of one multishift QR iteration. As described in [78],

this idea allows performing most of the computational work in terms of matrix-matrix

multiplications to benefit from highly e�cient level 3 BLAS. The idea of AED allows

to detect converged eigenvalues much earlier than conventional deflation strategies. We

will first present QR sequential algorithm and the shift strategy to accelerate the con-

vergence, then we present all the parallel techniques for this specifically designed QR

algorithm.

5.2 The basic QR algorithm

The QR algorithm computes a Schur decomposition of a matrix. It is certainly one of

the most important algorithms in eigenvalue computations. As QR seems to be the only

method that can provide us all the eigenvalues and eigenvectors, we choose to use the

QR algorithm.

The QR algorithm consists of two separate stages. First, by means of a similarity trans-

formation, the original matrix is transformed in a finite number of steps to Hessenberg

form. This first stage of algorithm prepares its second stage, the actual QR iterations

that are applied to the Hessenberg matrix. The overall complexity (number of floating

points) of the algorithm is O(N3) where the matrix A is assumed to be of the order

N ⇥N .

We start with a basic iteration, given by algorithm 1. We notice that:

Algorithm 1 Basic QR algorithm

Input: A 2 CN⇥N Output: An upper triangular matrix T and a unitary matrix U such
that A = UTU⇤ is the Schur decomposition of A.

1: Set A0 = A and U0 = I.
2: for k = 1, 2, 3, ... do
3: Ak�1 = QkRk

4: Ak = RkQk

5: Uk = Uk�1Qk

6: end for
7: Set T = A1 and U = U1
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Ak = RkQk = Q⇤
kAk�1Qk (5.1)

and hence Ak and Ak�1 are unitary similar. The matrix sequence {Ak} converges

(under certain assumptions) towards an upper triangular matrix [79]. Let us assume

that the eigenvalues are pairwise di↵erent in magnitude and we can therefore number

the eigenvalues such that |�1| > |�2| > ... > |�N |. Then the elements of Ak below the

diagonal converge to zero like [79]:

|a(k)ij | = O(|�i
�j

|k), i > j (5.2)

From equation (5.1), we have:

Ak = Q⇤
kAk�1Qk = Q⇤

kQ
⇤
k�1Ak�2Qk�1Qk = Q⇤

k...Q
⇤
1A0Q1...Qk (5.3)

With the same assumption on the eigenvalues, Ak tends to an upper triangular matrix

and Uk = Q1...Qk converges to the matrix of Schur vectors.

The convergence of the basic QR algorithm is slow and expensive. We want to:

• find a matrix structure that is preserved by the QR algorithm and that lowers the

cost of a single iteration step.

• improve the convergence properties of the algorithm.

The desired matrix structure is a Hessenberg matrix: a matrix H is a Hessenberg matrix

if its elements below the lower o↵-diagonal are zero, hij = 0 for i > j+1. The Hessenberg

form is preserved by the QR algorithm and this form can lower the cost of a single

iteration step [79].

There are several means of Hessenberg reduction such as Gram-Schmidt transforma-

tion, Householder reduction and Givens rotations [79]. An E�cient parallel algorithm

for this Hessenberg reduction is implemented in the ScaLAPACK [80] (Scalable Lin-

ear Algebra PACKage) routine PZGEHRD. So, we will focus on the iterative part that

comes after this Hessenberg reduction and try to improve the convergence properties of

the algorithm.
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5.3 QR algorithm with shift

We will show how the convergence of the Hessenberg QR algorithm can be improved

dramatically by introducing spectral shifts into the algorithm.

Lemma 1. LetH be an irreducible Hessenberg matrix, i.e., hi+1,i 6= 0 for all i = 1, ..., N�
1. Let H = QR be the factorization of H. Then for the diagonal elements of R, we have

|rkk| > 0, for all k < N . Thus, if H is singular then rNN = 0.

This lemma gives the motivation of shift strategy to speed up the convergence of the

QR algorithm. To see this, assume that � is an eigenvalue of the irreducible Hessenberg

matrix H. We perform:

Algorithm 2 The single shift QR algorithm (one iteration)

1: H � �I = QR
2: H = RQ+ �I

We can see that H is similar to H:

H = Q⇤(H � �I)Q+ �I = Q⇤HQ (5.4)

By the lemma, we have:

H � �I = QR, with RNN = 0 (5.5)

So,

H = RQ+ �I =

0

@H1 h1

0 �

1

A (5.6)

So if we apply a QR step with a perfect shift to a Hessenberg matrix, the eigenvalue

drops out. We then have a deflation, i.e. we can proceed the algorithm with a smaller

matrix H1 of size (N � 1)⇥ (N � 1).

For the single shift, when the item hN�1,N�1 is O(hN,N�1), the convergence could be

slow even the Rayleigh quotient shift gives a very good approximation (e.g. hN,N�1 is

very small). In practice, the double shift QR algorithm is very commonly used for real

matrices and can be extended to complex matrices [81]. The algorithm is characterized

by a ”bulge chasing” procedure.
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Suppose �1 and �2 are two shifts of the Hessenberg matrix H. The algorithm proceeds

as follows:

1. Calculate the first column of the shift polynomial

v = (H � �1I)(H � �2I)e1 =

0

BBBBBBBBBBBBB@

⇤
⇤
⇤
0
...

0

1

CCCCCCCCCCCCCA

(5.7)

2. Construct a 3⇥ 3 Householder transformation Q1 such that the second and third

entries of v are transformed to zero. The similarity transformation gives the up-

dated matrix H1:

H1 = Q⇤
1HQ1 =

0

BBBBBBBBBBBBBBBB@

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
X X X ⇤ ⇤ ⇤ · · ·
X X X ⇤ ⇤ ⇤ · · ·
X X X ⇤ ⇤ ⇤ · · ·
0 0 0 ⇤ ⇤ ⇤ · · ·
0 0 0 0 ⇤ ⇤ · · ·
...

...
...

...
...

...

1

CCCCCCCCCCCCCCCCA

(5.8)

The Hessenberg structure is damaged by the bulge that we denote with symbol

”X”.

3. Construct a 3⇥ 3 Householder transformation Q2 such that the third and fourth

entries of the first column of H1 reduce to zero. The similarity transformation
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gives the updated matrix H2:

H2 = Q⇤
2H1Q2 =

0

BBBBBBBBBBBBBBBB@

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
0 X X X ⇤ ⇤ · · ·
0 X X X ⇤ ⇤ · · ·
0 X X X ⇤ ⇤ · · ·
0 0 0 0 ⇤ ⇤ · · ·
...

...
...

...
...

...

1

CCCCCCCCCCCCCCCCA

(5.9)

4. Continue similar operations to chase the bulge. In general, construct a 3 ⇥ 3

Householder transformation Qk such that the (k+1)th and (k+2)th entries of the

(k�1)th column of Hk are mapped to zero. Applying the corresponding similarity

transformation to Hk results the updated matrix Hk+1, where k = 2, 3, ..., N � 1.

The bulge will be chased to vanish at the bottom right corner and lead to zeros,

thus deflations. For example, H3 will be look like as follows:

H3 = Q⇤
3H2Q3 =

0

BBBBBBBBBBBBBBBB@

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
0 ⇤ ⇤ ⇤ ⇤ ⇤ · · ·
0 0 X X X ⇤ · · ·
0 0 X X X ⇤ · · ·
0 0 X X X ⇤ · · ·
...

...
...

...
...

...

1

CCCCCCCCCCCCCCCCA

(5.10)

5.4 Early shift

Some of the eigenvalues of the scattering matrix can be approximated as follows: for the

one-dimensional case,

r(m)
n = ±

q
(⌫(m))2 � ↵̃2

n (5.11)

with ↵̃n = ↵n/k(1), and for the two-dimensional case,

r(m)
pq = ±

q
(⌫(m))2 � ↵̃2

p � �̃2q (5.12)
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with ↵̃p = ↵p/k(1), �̃q = �q/k(1). The values r(m)
n or r(m)

pq constitute very good approxi-

mations when the index n or p, q are small relative to the matrix size. In general if ⌫(m)

is real or has a very small imaginary part, for the n that satisfies ↵̃2
n < Re(⌫(m))2, or

for the pair (p, q) that satisfies ↵̃2
p + �̃2q < Re(⌫(m))2, the approximation can be quite

accurate. For a lossless medium (m), a real value r(m)
n can be associated with the an-

gle defining a propagation direction with ↵̃n = sin ✓(m)
n , and r(m)

n = ± cos ✓(m)
n . The

real eigenvalue r(m)
n defines the propagation direction of the associated eigenfunction. A

similar interpretation exists for the two-dimensional case.

We take the one-dimensional case as an example to show why r(m)
n can be a good

approximation. In fact, we can check that the functions

F̃±(x, u) = exp(�jk(m)↵nx± jk(m)r(m)
n u) (5.13)

satisfy the di↵erential system (4.33). If we follow the equations from (4.33) to (4.37), we

easily see that the set of r(m)
n is just the set of eigenvalues of (4.37). And the problem

under consideration (4.39) is just a truncated form of the infinite dimensional eigenvalue

problem (4.37). It is therefore attempting to take advantage of this analytical solution

to represent the solution as a linear combination of F̃±, however, if we operate in such a

way, we can show that this method is equivalent to the well known Rayleigh expansion

method, which leads to a numerical failure [28].

We therefore propose to use (5.11) and (5.4) as shifts. Moreover, according to our

observation, we use only these approximations when ⌫(m) is real or has a very small

imaginary part, and n satisfies ↵̃2
n < Re(⌫(m))2, or for the pair (p, q) that satisfies

↵̃2
p + �̃2q < Re(⌫(m))2. The approximations come in pair and each used pair will be used

only once to create a 3⇥ 3 bulge.

We include an example for the one-dimensional case, where M = 15, ⌫ = 1,� = 1, d =

10.5, ✓ = 2⇡
9 . The surface used is a generated Gaussian rough surface with correlation

length l = � and standard deviation of height is � = 0.2�. The eigenvalues of the scat-

tering matrix are listed in the first column and the second column of the table 5.1. The

eigenvalues in the first column correspond to the outgoing wave and the eigenvalues in

the second column correspond to the incoming wave. The values of the rn = ±p
⌫2 � ↵̃2

n,

where �M < n < M are listed in the third column of the table 5.1:
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Table 5.1: Comparison of eigenvalues and early shift

outgoing waves incoming waves rn,�M < n < M
-0.1792 - 1.4278i -0.1792 + 1.4278i ±1.8140i
0.1933 - 1.4471i 0.1933 + 1.4471i ±1.7044i
0.1126 - 1.4278i 0.1126 + 1.4278i ±1.5930i
-0.1296 - 1.3333i -0.1296 + 1.3333i ±1.4794i
0.0582 - 1.2890i 0.0582 + 1.2890i ±1.3629i
-0.0944 - 1.2226i -0.0944 + 1.2226i ±1.2428i
0.0360 - 1.1072i 0.0360 + 1.1072i ±1.1179i
0.0113 - 0.9843i 0.0113 + 0.9843i ±0.9865i
0.0006 - 0.8504i 0.0006 + 0.8504i ±0.8454i
-0.0002 - 0.6893i -0.0002 + 0.6893i ±0.6887i
-0.0000 - 0.5021i -0.0000 + 0.5021i ±0.5021i
0.0000 - 0.2192i 0.0000 + 0.2192i ±0.2192i
0.3713 - 0.0000i -0.3713 + 0.0000i ±0.3713
0.5529 + 0.0000i -0.5529 - 0.0000i ±0.5529
0.6748 - 0.0000i -0.6748 - 0.0000i ±0.6748
0.7660 + 0.0000i -0.7660 - 0.0000i ±0.7660
0.8368 - 0.0000i -0.8368 - 0.0000i ±0.8368
0.8919 - 0.0000i -0.8591 - 0.0000i ±0.8919
0.9341 - 0.0000i -0.9342 - 0.0000i ±0.9341
0.9652 - 0.0000i -0.9652 + 0.0000i ±0.9651
0.9861 + 0.0000i -0.9862 - 0.0000i ±0.9860
0.9975 + 0.0000i -0.9976 - 0.0000i ±0.9975
0.9996 - 0.0000i -0.9996 + 0.0000i ±0.9997
0.9924 + 0.0000i -0.9922 - 0.0000i ±0.9929
0.9758 - 0.0000i -0.9749 + 0.0000i ±0.9768
0.9478 + 0.0000i -0.9474 + 0.0000i ±0.9509
0.9044 - 0.0000i -0.9094 - 0.0000i ±0.9144
0.8532 + 0.0000i -0.8919 - 0.0000i ±0.8660
0.7613 + 0.0000i -0.7572 - 0.0000i ±0.8035
0.6781 - 0.0000i -0.6757 + 0.0000i ±0.7233
0.5713 + 0.0000i -0.5711 + 0.0000i ±0.6185

Based on this observation, the expression of r(m)
n or rpq(m) can be used as shifts to

approximate eigenvalues of the scattering matrix. In fact, if we increase the truncation

order M , we can see that the approximations are better for relatively small n and large

M [28]. The convergence is very quick due to the good approximation. We call this the

“early shift”. The “early shift” is used in pairs corresponding to the double shift QR

algorithm. One pair of the “early shift” will create a bulge to be chased. Wilkinson’s

shift can be used after the “early shift”.
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5.5 Parallel QR with tightly coupled bulge chasing

The parallel bulge chasing algorithm was proposed by Bai, Demmel [78] and Braman et

al. [67]. In order to benefit from the level 3 BLAS, they parallelize the bulge chasing

procedure by performing the chasing of multiple chains of tightly coupled bulges. With

the delay and accumulate technique, the main computation work become the matrix-

matrix multiplications. The procedure of intrablock chasing and interblock chasing are

described below.

To describe the parallel algorithm, we first introduce the data layout mapping in a

distributed memory environment as follows:

• The p = prpc processors are arranged into a pr ⇥ pc grid. Usually the values of pr

and pc are set to be as close as possible.

• The N ⇥N matrix A is partitioned in 2D block cyclic scheme [82] and is mapped

on pr ⇥ pc grid as shown in table 5.2. The table shows a 4 grid with pr = pc = 2.

The four processors are denoted as (0, 0), (0, 1), (1, 0), (1, 1). The block size is

Mb ⇥Nb and we require the block to be square Mb = Nb. Generally, a processor

will store a collection of non-contiguous blocks. In table 5.2, if the size of matrix

N = 16, then the block size is 4 ⇥ 4 and processor (0, 0) will store the elements

A(1 : 4, 1 : 4), A(1 : 4, 9 : 12), A(9 : 12, 1 : 4), A(9 : 12, 9 : 12). An array descriptor

stores the details of data layout. The mapping between entries of the global matrix

and their corresponding locations in the memory can be established from the array

descriptor.

Table 5.2: 2D block cyclic
scheme

(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)
(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)

Locally, each processor in the mesh may also utilize multithreading. This can be seen as

adding another level of explicit parallelization by organizing all the p = pr⇥pc processors

into a three-dimension mesh.
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We use the shifts that are mentioned earlier to introduce the chain of bulges into diagonal

blocks. Each of the chains reside on a di↵erent diagonal block. We choose the number of

shifts such that each chain covers at most half of the data layout block. The “early shift”

is distributed from left-upper diagonal blocks to right-lower diagonal blocks. Each “early

shift” is used once. When there are no “early shift” to distribute, we use Wilkinson’s

shift.

For the intrablock chasing where the chain is chased from the top left corner to the

lower right corner within a contiguous diagonal block. We may use a sequence of 3⇥ 3

Householder transformations to chase the chain of bulges down some rows to the down

right-hand corner of the contiguous diagonal block. We start from the lowest bulge

of the block and chase one bulge at a time. The intrablock chasing can be performed

locally on the process that own this chain and simultaneously between di↵erent diagonal

contiguous blocks which saves computation time. Figure 5.1 shows how the intrablock

chasing are performed, the grey bulges are chased to the black bulges. After the bulge

chasing within the diagonal block, the accumulated unitary matrices are sent to the

corresponding processors in order to update the o↵-diagonal blocks. The o↵-diagonal

blocks are then updated by matrix-matrix multiplications which uses level 3 BLAS. The

broadcasts are sent in parallel. In order to avoid conflicts in the intersecting parts, they

are performed first in the row direction and then in the column direction. See figure 5.1

for the intrablock chasing, here (pr, pc) = (2, 2) and Mb = Nb = 20.

For the interblock chasing where a chain of bulges from one contiguous diagonal block

is chased to a di↵erent one on another processor, for each contiguous diagonal blocks in

which the bulge chains reside, we create copies of its neighbors and it becomes similar to

the case of intrablock chasing. Figure 5.2 illustrates the procedure with (pr, pc) = (2, 2)

and Mb = Nb = 20, the grey bulges are chased to the black bulges. More precisely,

the processor that stores the grey bulges create a copy of the block on each side of

the border. Then we can perform the chasing locally, just as in the intrablock chasing

and broadcast the corresponding orthogonal factors to the blocks on both sides of the

cross border. The updated neighboring block are sent to its owner. To update the

corresponding o↵-diagonal blocks, we broadcast orthogonal matrix accumulated in the

diagonal chasing stage to the corresponding rows/columns of processors which are in-

volved in o↵-diagonal updating. Then each involved processor exchanges data blocks



Chapter 5. Parallel QR algorithm for the C-method 71

Figure 5.1: Intrablock parallel bulge chasing. The grey bulges are chased to the black
bulges.

with its neighbor as illustrated in figure 5.2 in the two large gray blocks. The o↵-

diagonal blocks are then updated by multiplication with the accumulated orthogonal

matrix. We perform interblock chasing first for the odd-numbered blocks and then for

the even-numbered blocks. This odd-even manner avoids conflicts between di↵erent

tightly coupled chains [68].

For each diagonal block, the corresponding orthogonal transformations are accumulated

into an orthogonal factor. Each orthogonal has the following shape:

U =

0

@U11 U12

U21 U22

1

A (5.14)

where U12 is a lower triangular matrix, and U21 is a upper triangular matrix. So matrix

multiplication by U will be broken into two dense by dense matrix multiplications and

two triangular by dense matrix multiplications. Computation time is saved because of

the triangular structure.
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Figure 5.2: Interblock parallel bulge chasing. The gray bulges are chased to the black
bulges.

5.6 Parallel AED

The parallel aggressive early deflation (AED) algorithm was proposed in [69]. We divide

the Hessenberg matrix H as follows:

H =

0

BBB@

H11 H12 H13

H21 H22 H23

0 H32 H33

1

CCCA
(5.15)

where H11 is of size (n � k � 1) ⇥ (n � k � 1) and H33 is of size k ⇥ k. We use the

pipeline parallel QR algorithm to find the Schur decomposition of H33: H33 = V TV ⇤

and perform the following similarity transformation:

0

BBB@

I 0 0

0 1 0

0 0 V

1

CCCA

⇤0

BBB@

H11 H12 H13

H21 H22 H23

0 H32 H33

1

CCCA

0

BBB@

I 0 0

0 1 0

0 0 V

1

CCCA

=

0

BBB@

H11 H12 H13V

H21 H22 H23V

0 s T

1

CCCA

(5.16)
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Now the matrix looks like as in figure 5.3. The spike s is denoted as the gray part as in

the figure 5.3.

Figure 5.3: Aggressive early deflation. The gray spike contains the vector s

It has been proved that it is often the case that the some of the last components of s are

very small [69]. If it is the case that the trailing several components of s are negligible,

they can set to be zero. The matrix is deflated. This technique often detects convergence

much earlier. If it is not the case, we move the eigenvalues to the top left corner of the

block H33.

5.7 Conclusion

In this chapter, we propose the specifically designed parallel QR algorithm for the C-

method. We present why we propose the “early shift” and how it can be used to acceler-

ate the convergence. We also present the techniques of parallel QR with tightly coupled

bulge chasing and parallel AED. These techniques are used to reduce the computational

time of the C-method.

In the next chapter, we will use these techniques including “early shift”, parallel QR with

tightly coupled bulge chasing and parallel AED to analyze gratings, one-dimensional and

two-dimensional surfaces. It is a real novelty in the context of the C-method.



Chapter 6

Numerical experiments with

parallel QR algorithm

6.1 Hardware and software platforms

In this chapter, we implement the algorithm described in the previous chapter. The nu-

merical results are presented. The experiments are performed on the machine Poincare,

hosted by IDRIS national computing center in France (http://www.idris.fr). This ma-

chine is an IBM computer, composed by mainly iDataPlex dx360 M4 servers:

• 92 nodes (“poincare[001� 092]”) equipped with:

– 2 Sandy Bridge E5-2670 processors (2.60GHz, 8 cores every processor, 16

cores every node)

– 32 GB memory every node

• 4 nodes GPU (“poincaregup[001-004]”, separate from the above 92 nodes) equipped

with:

– 2 Sandy Bridge E5-2670 processors

– 64 GB memory every node

– 2 Tesla K20 GPU (Cuda Capability 3.5, 4.8 GB memory every GPU)

• 4 interactive login nodes equipped with:

74
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– 2 Sandy Bridge E5-2670 processors

– 32 GB memory every node

We make use of the 92 nodes and login nodes. We make use of the following libraries:

mkl 11.0, intelmpi 4.0.3, lapack 3.5 gnu47. The program is written in Fortran and

compiled with the following settings:

FC = mpif90, CC = mpicc, NOOPT = �00, FCFLAGS = �03, CCFLAGS = �03,

FCLOADER = $(FC), CCLOADER = $(CC), FCLOADFLAGS = $(FCFLAGS),

CCLOADFLAGS = $(CCFLAGS)

Our implementation is based on an simple imitation of the ScaLAPACK routine PDHSEQR

we try to use this to a complex implementation with our own shift strategy. We adopt

the recommended values such as the size of the deflation window and the tuning param-

eter NIBBLE which determines when to skip a QR sweep and perform AED in [68].

For all the following experiments, we use block factor Mb = Nb = 50.

6.2 Numerical results for one-dimensional case

For the one-dimensional case, we compare the parallel algorithm with the pipeline par-

allel algorithm which is implemented in ScaLAPACK routine PZLAHQR. The routine

PZLAHQR is also compiled and built on the machine Poincare with the same compiler

and flags as our program. We also compare the parallel algorithm with or without the

“early shift”. In the following experiment, we have the physical model parameters (see

section 3.1.2 for details): ⌫ = 1, D = 200�, ✓ = 40�. The surface used is a generated

Gaussian rough surface with correlation length l = 3� and standard derivation of height

�. We set M = 1000, so the matrix size is 4002 ⇥ 4002. In fact, we have performed

experiments with di↵erent M to check the error on the power balance. If we denote

error = 1�P
✏n, see (3.12), figure 6.1 shows how the function � log10(|error|) changes

with the truncation order M . It shows if we require a precision of 10�2, it should be

enough to set M = 1000.

The accuracy of the early shift can be seen in Table 5.1, page 78, as an example. A

plot will be di�cult for recognition. The actual eigenvalues that are real are very well
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Figure 6.1: Function � log10(|error|) relative to M .

approximated, but in the picture, all one can see is blue points on the real axis. We

present the Figure 6.2 and 6.3.

Figure 6.4 shows the comparison between the pipeline parallelization and the paralleliza-

tion with parallel multishift and AED techniques. The item Pipeline parallel represents

the performance of PZLAHQR. For our parallel algorithm, the update stage takes ap-

proximately 40% of the total time, the Hessenberg translation stage takes approximately

30% to 40% of the total time, the AED stage takes approximately 15% to 25% of the

total time and the chasing stage takes approximately 5% to 10% of the total time.

Figure 6.5 shows that the early shift does speed up the convergence and save the com-

putation time. With early shift, the computational time of parallel multishift and AED

decreases approximately 16%.

We also performed an experiment where M and thus the size of the matrix is changed.

The number of cores used here is 16 (i.e. 4 ⇥ 4). Figure 6.6 shows the comparison

between the pipeline parallelization and the parallelization with parallel multishift and

AED techniques. Figure 6.6 shows that the new version of parallel QR algorithm with

parallel multishift and AED is much faster than the existing parallel QR algorithm.
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Figure 6.2: The green points represent actual eigenvalues, the blue points represent
the used early shifts

Figure 6.7 shows that the early shift does speed up the convergence and save the com-

putation time.

6.3 Numerical results for two-dimensional case

For the two-dimensional case, we performed the following experiments. To compare

the computation time of sequential algorithm and the specifically parallel algorithm,

we present figure 6.8. This figure is based on experimental result of one realisation.

The surface we consider is perfectly conducting. The area of the surface is 64 square

wavelengths and � = �(1) and lx = ly = 1.41�(1). The incident angle is chosen as

✓0 = 30�,'0 = 0�. The truncation order is M = 28, so the matrix size is N = 6498. In

term of power balance criterion, the truncation order M = 28 gives good enough results

(the error is smaller than 1%).
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Figure 6.3: The green points represent actually eigenvalues, the blue points represent
the values from equation (5.11)
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Figure 6.8 gives the results of the pairs (pr, pc) = (1, 1), (2, 2), (4, 4), (6, 6), (8, 8). The left

most point on the curve for the parallel performance represents that of one core. From

this figure, we can see if we have 12800 cores, and we simulate the problem for NR = 200

times. With the naive parallel strategy (we choose NR cores and perform a simulation

on each chosen core), it will cost us approximately 5.5 hours. With the new version of

parallel strategy (we use 64 cores for one simulation), it will cost us approximately only

8 minutes. This shows when we have many cores, the new version of parallel strategy

can be significantly more e�cient than the naive parallel strategy and if we only have a

few cores, the di↵erence may not so great.

We also compare the computation cost of sequential algorithm and parallel algorithm

when the truncation order M is varying. Figure 6.9 shows this comparison based on

one realisation. The parameters of surface are the same as above. For the parallel

realisation, the number of cores is fixed to be 16, (pr, pc) = (4, 4). These curves show

that the reduction of computation time is important. For instance, the ratio is close to

25 when M = 28. We can see from figure 6.9, the computational time of the sequential

code is approximately t = a(2(2M + 1)2)↵1 with ↵1 ⇡ 3.2 and the computational time

of the parallel code is approximately t = b(2(2M + 1)2)↵2 with ↵2 ⇡ 2.2. While these

two relations are only approximation from observing the data, they show that how the
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computational time is changed using the parallel code within a certain range of matrix

order.
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We compare the results of numerical experiments with experimental data from literature.
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6.4 Comparison with experimental data for random rough

surfaces

We consider an isotropic surface with �a = 0.352�(1) and lx = 2.21�(1). The optical

index of the lower medium is ⌫(2) = 1.62 � 0.001i. The other simulation parameters

are: D = 8�(1), ✓0 = 35� or ✓0 = 55�,'0 = 0�,M = 28 and the number of realizations is

NR = 200. The following figures 6.10-6.13 show results of the implementation of parallel

C-methods compared with the experimental data which come from [83]. In these figures,

theDRC which stands for di↵erential reflection coe�cient is plotted versus the scattering

angle. It is noteworthy that the figure 6.13 presents a minimum similar to the Brewster

angle for a planar surface. (By analogy with reflection from a smooth surface, a lossless

dielectric with a refractive index equal to 1.62 provides a Brewster angle close to 58�.)

The comparison with experimental data is excellent.
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Figure 6.10: Di↵erential reflection coe�cient versus observation angle in the incidence
plane, ✓0 = 35�, polarization(hh)

We then present the figures 6.14- 6.17 which show results of the implementation of

parallel C-methods compared with the experimental data which come from [84]. In these

figures, the bistatic coe�cient is plotted versus the observation angle. The perfectly

conducting surface under consideration is a very rough surface with �a = �(1) and lx =

1.41�(1). The other simulation parameters are: D = 8�(1), ✓0 = 20�,'0 = 0�,M = 28
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Figure 6.11: Di↵erential reflection coe�cient versus observation angle in the incidence
plane, ✓0 = 35�, polarization(vv)
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Figure 6.13: Di↵erential reflection coe�cient versus observation angle in the incidence
plane, ✓0 = 55�, polarization(vv)

and NR = 200. It is noteworthy that the surface exhibits backscattering enhancement in

both co-polarized and cross-polarized returns. The comparison with experimental data

is very good. The backscattering peaks coincide well.
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Figure 6.14: Average bistatic coe�cient versus observation angle in the incidence
plane, very rough isotropic surface, polarization(hh)
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Figure 6.15: Average bistatic coe�cient versus observation angle in the incidence
plane, very rough isotropic surface, polarization(vh)
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Figure 6.16: Average bistatic coe�cient versus observation angle in the incidence
plane, very rough isotropic surface, polarization(hv)
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Figure 6.17: Average bistatic coe�cient versus observation angle in the incidence
plane, very rough isotropic surface, polarization(vv)

We also consider an anisotropic surface with an � = �(1), lx = 2�(1), ly = 4�(1). Figure

6.18 gives the co-polarized bistatic coe�cient in the incidence plane for a perfectly

conducting surface illuminated under ✓0 = 20� and '0 = 90�. The other simulation

parameters are: D = 8�(1),M = 28 and NR = 200. Figure 6.19 gives the co-polarized

return when the incidence angles are ✓0 = 20� and '0 = 0�. Although the elementary

cell area is reduced to 8lxly, the comparison with experimental data which come from

[85] is satisfactory. The comparison is also conclusive for other polarizations.

6.5 Conclusion

In this chapter, from numerical experiments, we have observed that some eigenvalues of

the scattering matrix can be approximated e�ciently by a certain formula. We designed

the “early shift” algorithm to take advantage of this property. We plug this “early shift”

method, together with Wilkinson’s shift and exceptional shift [86], into a new parallel QR

algorithm. This new QR algorithm uses multiple chains of tightly coupled bulges chasing

technique to parallelize the conventional bulge chasing and the aggressive early deflation

technique to detect deflation quickly. We apply this specifically designed parallel QR

algorithm to the scattering matrix. We also compare the computation time with that of
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Figure 6.18: Average bistatic coe�cient versus observation angle in the Oyz incidence
plane, very rough anisotropic surface, polarization(hh)
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Figure 6.19: Average bistatic coe�cient versus observation angle in the Oxz incidence
plane, very rough anisotropic surface, polarization(hh)
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the sequential code. The results show a significant speed up to approximately 40 for 64

cores with our new QR algorithm. This combination of “early shift” and other shifts can

also be used in the problems such as linear-quadratic optimal control problem where a

large number of eigenvalues and eigenvectors are needed and background of the original

problem can provides very good initial approximations.

This parallel QR algorithm can be used for analyzing crossed gratings or two-dimensional

random surfaces. Comparisons with experimental data for moderate roughness and

isotropic or anisotropic very rough surfaces are conclusive in both co-polarized and

cross-polarized components. Comparisons allow the validity of our approach.

In the next chapter, we propose an alternative to the QR algorithm for solving the

eigenvalue problem. The proposed method has better scalability than the QR algorithm.



Chapter 7

A proposal: spectral projection

method as a global eigensolver

It has been shown that theoretical it is impossible for the standard QR algorithm to

be scalable [87]. We want a spectral divide-and-conquer algorithms that can provide

us all the eigenvalues and eigenvectors which has a very good scalability. Two related

work on spectral divide-and-conquer algorithms are [88] and [89]. In [88], the authors

present four versions of divide-and-conquer algorithms and present eigenvalue problem

that attain lower bounds, and analyze their convergence and communication costs. Pa-

per [89] shows that all linear algebra operations can also be done stably in O(n!+⌘)

operations. The authors of [89] consider known divide-and-conquer algorithms for re-

ducing the complexity of matrix inversion to the complexity of matrix multiplication

and show that these algorithm can achieve the same forward error bound (bound on the

norm of the error in the output) as a conventional backward stable algorithm. We con-

sider a spectral divide-and-conquer algorithm which essentially transform the eigenvalue

to linear system problems.

In this chapter, we propose an alternative to QR algorithm for solving the eigenvalue

problem. We propose a global eigensolver by a combination of the Sakuria and Sugiura

method (SSM) and multiple implicitly restarted Arnolid method with nested subspaces

(MIRAMns). The first method allows the computation of interior eigenvalues while the

second permits to compute the eigenvalues in the extremities of spectrum. This proposed

global eigensolver allows us to calculate all or a large number of the eigenvalues of a

89
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generalized matrix. The MIRAMns [72] is a variant of the IRAM [90] that is based on

the projection of the eigenproblem on several nested subspaces instead of a single one.

It can therefore use the eigen-information of interest obtained in all subspaces to update

the restarting vector. We will take the real matrix as an example, but this proposed

global eigensolver can also be applied to a complex matrix in a similar way. Given a

matrix A 2 Rn⇥n, MIRAMns uses the Arnoldi method to compute the Ritz elements

of A in t nested Krylov subspaces Km
i

,v, 1  i  t with Km
i

,v ⇢ Km
i+1,v. MIRAMns

selects the “best subspace” by finding which subspace contains the “best” current Ritz

elements. We denote the size of the “best” subspace mbest. The next step of MIRAMns

is to apply the shifted QR procedure to the mbest ⇥ mbest matrix. By choosing the

undesired eigenvalues as shifts, the information related to the desired eigenvalues are

concentrated in the leading submatrix. MIRAMns then completes Arnoldi projection of

t nested Krylov subspaces by restarting with this submatrix whose size is the number of

wanted eigenvalues. The MIRAMns can be used to provide the extremes of the spectrum

of A with good convergence properties.

The rest of the spectrum of A is thus located in a finite domain D described by the ex-

tremes provided by MIRAMns. The domain D is then divided into several sub-domains.

For each sub-domain, the contour integral based projection method projects the matrix

pencil (A � I) onto the subspace associated with eigenvalues that are located in the

sub-domain via numerical integration. A moment-based approach can be used to find

the eigenvalues in each sub-domain independently. To avoid the numerically unstable

problem of the computation using explicit moments, we often use a Rayleigh-Ritz proce-

dure instead. For the computation of the contour integral, we solve a certain number of

linear systems derived from the matrices A and I. When A is large, the computational

costs for solving linear systems are dominant.

7.1 Algorithms

This spectral projection method as a global eigensolver is a combination of MIRAMns

and SS method. We present these methods and how they can be combined to form a

global solver in this section.
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7.1.1 MIRAMns

The MIRAMns is a variant of the implicitly restarted Arnoldi method (IRAM). Recall

that IRAM allows us to compute a few eigenvalues in the extremes of the spectrum of

a large matrix. For that, IRAM combines the implicitly shifted QR algorithm with a

k-step Arnoldi factorization to obtain a truncated form of implicitly shifted QR iter-

ation. This approach o↵ers a more e�cient and numerically stable formulation than

explicitly restarted Arnoldi method (ERAM) [91]. By using IRAM instead of ERAM,

the numerical di�culties and storage problems normally associated with the Arnoldi

process are avoided. The algorithm is capable of computing a few (k) eigenvalues with

user specified features such as largest real part, largest magnitude, smallest real part or

smallest magnitude.

We start from the Arnoldi factorization of length m = p+ k,

AVm = VmHm + fmeTm (7.1)

where eTm means the transpose of the vector em. We apply p shifts µ1, ..., µp implicitly

AV +
m = V +

mH+
m + fmeTmQ (7.2)

where Q = Q1Q2 · · · Qp the product of the orthogonal matrices related to µ1, ..., µp

and V +
m = VmQ,H+

m = QTHmQ. From the fact that Q is the product of p (unitary)

Hessenberg matrices, it is easy to see that Q has p non-zero o↵-diagonals below its main

diagonal. So the first k � 1 elements of the vector eTmQ are zeros. So if we discard the

last p columns of equation (7.2), we will have

AV +
m (:, 1 : k) = V +

m (:, 1 : k + 1)H+
m(:, 1 : k) + fmeTmQ(:, 1 : k)

= V +
m (:, 1 : k)H+

m(:, 1 : k) + h+k+1,kv
+
k+1e

T
k + q+m,kfmeTk

= V +
m (:, 1 : k)H+

m(:, 1 : k) + (v+k+1�̂k + fm�k)e
T
k

(7.3)

where we denote �̂k = h+k+1,k,�k = q+m,k. Equation (7.3) can be also written as

AV +
k = V +

k H+
k + f+

k eTk (7.4)
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A description of this IRAM algorithm can be found in Algorithm 3.

Algorithm 3 The implicitly restarted Arnoldi process

Input: (A, V, k,m) with AVm = VmHm + fmeTm, an m-step Arnoldi factorization, with
m = p+ k
Output: k eigenvalues with user specified features and their corresponding eigenvectors.

1: for l = 1, 2, 3, ... until convergence do
2: Compute the spectrum of Hm: �(Hm), if convergence, stop. Otherwise, select

set of p shifts µ1, µ2, ..., µp;
3: qT = eTm;
4: for j = 1, 2, ..., p do
5: Factor [Qj , Rj ] = qr(Hm � µjI);
6: Hm = QT

j HmQj , Vm = VmQj , qT = qTQj ;

7: end for
8: fk = vk+1Hm(k + 1, k) + fmqT (k); Vk = Vm(1:n,1:k); Hk = Hm(1:k,1:k);

9: Begining with the k-step Arnoldi factorization, AVk = VkHk + fkeTk , apply p
additional steps of the Arnoldi process to obtain a new m-step Arnoldi factorization,
AVm = VmHm + fmeTm;

10: end for

The MIRAMns takes advantage of IRAM by choosing a set of initial Krylov subspaces

that di↵er only by their sizes. MIRAMns chooses a set of t di↵erent subspace sizes

M = (m1, ...,mt) with a strict order m1 < ... < mt. MIRAMns then performs t Arnoldi

projections on the subspaces Km
i

,v, for 1  i  t, with Km1,v ⇢ Km
t

,v and initial vector

v. MIRAMns then chooses the subspace size mbest by finding the Arnoldi factorization

which o↵ers the best Ritz estimation for k desired eigenpairs.

AVm
best

= Vm
best

Hm
best

+ fm
best

eTm
best

(7.5)

From this k-step Arnoldi factorization, pi = mi�k, 1  i  t additional steps of Arnoldi

factorizations are applied to obtain t new projections onto the updated subspaces. This

procedure can go on until convergence.

A description of this MIRAMns algorithm is presented in algorithm 4.

In order to select the best results in the above algorithm, we consider that (Vm
i

, Hm
i

, fm
i

)

is “better” than (Vm
j

, Hm
j

, fm
j

) if rmi

k < r
m

j

k where rmk = max(⇢1,m, ..., ⇢k,m) is defined

by Ritz estimates ⇢i,m = |�meTmy(m)
i |.

One advantage of the MIRAMns is that it overcomes the problem of sensitivity of con-

vergence with respect to small perturbation of the subspace size that occurs in the

normal restarted Arnoldi methods. It achieves this by choosing the “best” size among
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Algorithm 4 Multiple IRAM with nested subspaces

Input: (A, Vm
i

, Hm
i

, fm
i

) with AVm
i

= Vm
i

Hm
i

+ fm
i

eTm
i

, an mi-step Arnoldi factoriza-
tion, with mi = pi + k, where 1  i  t.
Output: k eigenvalues with user specified features and their corresponding eigenvectors.

1: for l = 1, 2, 3, ... until convergence do
2: Compute the spectrum ofHm

i

: �(Hm
i

), if convergence, stop. Otherwise compute
their associated eigenvectors and residuals for 1  i  t.

3: Select the best results in these subspaces and the associated best subspace size
mbest. Set m = mbest, Hm = Hm

best

, Vm = Vm
best

, fm = fm
best

.

4: Select a set of p = m � k shifts (µ(m)
1 , ..., µ(m)

p ) based on �(Hm) or other infor-
mation.

5: qT = eTm;
6: for j = 1, 2, ..., p do

7: Factor [Qj , Rj ] = qr(Hm � µ(m)
j I);

8: Hm = QH
j HmQj , Vm = VmQj , q = qHQj ;

9: end for
10: fk = vk+1�̂k + fm�k; Vk = Vm(1:n,1:k); Hk = Hm(1:k,1:k);

11: Begining with the k-step Arnoldi factorization, AVk = VkHk + fkeTk , apply pi =
mi � k additional steps of the Arnoldi process to obtain t new mi-step Arnoldi
factorization, AVm

i

= Vm
i

Hm
i

+ fm
i

eTm
i

;

12: end for

the di↵erent sizes. Another advantage of MIRAMns is that it has better property of

convergence with almost the same time complexity compared with IRAM.

7.1.2 SS method

The SS method was introduced in [71], [92]. Given a finite domain D, we want to

calculate the eigenvalues of A that lie in it. Suppose that we cover the domain D with

s subdomains Di, 1  i  s, such that D = [iD̄i. Now we only need to calculate the

eigenvalues that lie in each sub-domain Di, 1  i  s and these tasks can be performed

in parallel.

For each subdomain Di, 1  i  s, define

f(z) = uH(zI �A)�1v (7.6)

with non-zero vectors u, v 2 Rn. Define

µk =
1

2⇡i

Z

@D
i

(z � z0)
kf(z)dz, k = 0, 1, ... (7.7)
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where z0 is located inside Di. Suppose there are m eigenvalues lie in Di, then these

eigenvalues are exactly the same as the eigenvalues of pencil H<
m��Hm, with the m⇥m

Hankel matrices Hm = [µi+j�2] and H<
m = [µi+j�1], 1  i, j  m. See [71] for a proof,

here u, v are any non-zero vectors.

The number m can be calculated from the following formula [93]:

m =
1

2⇡i

Z

@D
i

tr(F (z)�1)dz (7.8)

For the eigenvectors, if we define

sk =
1

2⇡i

Z

@D
i

(z � z0)
k(zI �A)�1vdz, k = 0, 1, ... (7.9)

and Vm is the Vandermonde matrix

Vm =

0

BBBBBB@

1 1 · · · 1

�1 � z0 �2 � z0 · · · �m � z0
...

...
...

(�1 � z0)m�1 (�2 � z0)m�1 · · · (�m � z0)m�1

1

CCCCCCA
(7.10)

then the associated eigenvectors are given by the formula:

[q1, ..., qm] = [s0, ..., sm�1]V
�T
m (7.11)

Suppose that Di is a circle centered at point � with radius ⇢, a description of the idea

of contour integral based projection (explicit moments) can be found in algorithm 5.

Algorithm 5 The contour integral based projection method (explicit moments)

Input: (u, v 2 Rn, N,m, �, ⇢)
Output: approximated eigenvalues of A that lie in the finite domain Di: �̂1, ..., �̂m and
their associated eigenvectors: q̂1, ..., q̂m
1: Set !j = � + ⇢exp(2⇡

p�1j/N), j = 0, ..., N � 1;
2: Form yj = (!jI �A)�1v, j = 0, ..., N � 1;
3: Set fj = uHyj , j = 0, ..., N � 1;

4: Compute µ̂k = 1
N

PN�1
j=0 (!j � �)k+1f(!j), k = 0, ..., 2m� 1;

5: Compute ŝk = 1
N

PN�1
j=0 (!j � �)k+1yj , k = 0, ...,m� 1

6: Compute the eigenvalues ⇣1, ..., ⇣m of the pencil H<
m � �Hm;

7: Compute q̂1, ..., q̂m given by [q̂1, ..., q̂m] = [ŝ0, ..., ŝm�1]V̂ �T
m ;

8: Set �̂j = � + ⇣j , j = 1, ...,m.
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IF some eigenvalues are very close to each in the contour, the Hankel matrices H<
m and

Hm are very ill-conditioned. The Rayleigh-Ritz method can be used to avoid the explicit

use of moments and improve numerical accuracy. We apply a Rayleigh-Ritz procedure

by projecting the matrix A to Ã = ⇧TA⇧ with an unitary basis ⇧ 2 Cn⇥m. The

eigenvalues of A can be approximated by the Ritz values of the projected pencil (Ã, I).

In practice, the numerical value of m from equation (7.8) is not always an integer, so it

is more convenient and more e�cient to choose a number M(� m) as the size of Hankel

matrices . This choice can decrease the influence of the quadrature error su↵ered from

eigenvalues located outside the boundary.

A description of the contour integral based projection (Rayleigh-Ritz) can be found in

algorithm 6.

Algorithm 6 The contour integral based projection method (Rayleigh-Ritz)

Input: (v 2 Rn, N,M, �, ⇢)
Output: approximated eigenvalues of A that lie in the finite domain Di: �̂1, ..., �̂m and
their associated eigenvectors: x̂1, ..., x̂m
1: Set !j = � + ⇢exp(2⇡

p�1(j + 1/2)/N), j = 0, ..., N � 1;
2: Solve (!jI �A)yj = v, for yj , j = 0, ..., N � 1;

3: Compute ŝk = 1
N

PN�1
j=0 (!j � �)k+1yj , k = 0, ...,M � 1;

4: Compute construct an unitary basis ⇧ from (ŝ0, ..., ŝM�1);
5: Form Ã = ⇧TA⇧;
6: Compute eigenpairs (✓j , wj) with j = 1, ...,M of (Ã, I);
7: Set pj = ⇧wj , j = 1, ...,M ;

8: Select the approximated eigenpairs (�̂1, x̂1), ..., (�̂m, x̂m) from (✓j , pj), j = 1, ...,M ;

7.1.3 A global eigensolver

For the given matrix A, we first apply the MIRAMns algorithm to calculate ks eigenval-

ues that have the smallest magnitude and kl eigenvalues that have the largest magnitude.

Thus we get the extremes of the spectrum of A: |�1|  ...  |�k
s

|  |�n+1�k
l

|  ...  |�n|.
Denote R = |�n+1�k

l

|, r = |�k
s

|, then the rest of the spectrum lies in the finite domain

D = B(0, R) \B(0, r), where B(x, y) represents the open ball centered at x with radius

y in the complex plane. Cover the finite domain D by s subdomains Di, 1  i  s

such that D = [iD̄i. Use the contour integral based projection method to calculate the

eigenvalues in each sub-domain Di to get all the eigenvalues in D. Together with the

extremes of the spectrum, we get all the eigenvalues of A.
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Assuming that the eigenvalues of A are arranged as |�1|  |�2|  ...|�n�1|  |�n|, the
algorithm can be described as in Algorithm 7:

Algorithm 7 Spectral projection method as global eigensolver
Input: A, ks, kl, N
Output: approximated eigenvalues of A and their associated eigenvectors.

1: Apply MIRAMns to calculate �1, ...,�k
s

, �n+1�k
l

, ...,�n and their associated eigen-
vectors;

2: Divide the domain D = B(0, R) \B(0, r) by D = [iD̄i;
3: Apply the SS method to calculate the eigenvalues that lie in Di in parallel and their

corresponding eigenvectors;
4: Collect the information from each domain Di and obtain all the eigenvalues and

eigenvectors;

7.1.4 Parallelism analysis

The proposed method has a good parallel nature. For the MIRAMns, the computation

in di↵erent subspace of multiple implicitly restarted Arnoldi method (MIRAM) can be

performed in parallel. In addition to this coarse grain parallelism, the communication of

the eigen-information of interest among processes can also be made asynchronously. For

the SS method, the solving of each sub-problem associated with the sub-domain can be

done independently. Besides, for each sub-problem, one needs to use the trapezoidal rule

to calculate the contour integral. The calculation related to each quadrature points can

be done in parallel. Finally, for each quadrature point, we need to solve the associated

linear system, this can also be done using parallel linear solvers.

7.2 Numerical experiments

We test the matrix An with n = 1000, An(i, i) = 2, An(i, i + 1) = An(i + 1, i) = 1, the

other entries are 0.

An =

0

BBBBBBBBBBBBBBBB@

2 1

1 2 1

1 2 1
. . .

. . .
. . .

1 2 1

1 2 1

1 2

1

CCCCCCCCCCCCCCCCA

(7.12)
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The eigenvalues of An are proved to be

�k(An) = 2 + 2 cos(
k⇡

n+ 1
), k = 1, 2, ..., n (7.13)

We choose this matrix because the eigenvalues are known and all of them are real, so

we can check our algorithm easily with this matrix.
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Figure 7.1: MIRAMns(9, 12, 16) to calculate 3 eigenvalues with largest magnitude,
the result is compared with IRAM(16)
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Figure 7.2: MIRAMns(9, 12, 16) to calculate 3 eigenvalues with smallest magnitude,
the result is compared with IRAM(16)

Figure 7.1 and figure 7.2 gives the results of MIRAMns. The subspaces’ size are chosen

as (9, 12, 16) and we denote this as MIRAMns(9, 12, 16). We observed that MIRAMns

converges with fewer iterations than IRAM. For the testing matrix An, the 3 eigenvalues
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with largest magnitude calculated from MIRAMns(9, 12, 16) are:

0

BBB@

3.999990150111810

3.999911351284587

3.999753743363125

1

CCCA

The results have an average precision (absolute error computed using Ritz estimate

[72]) of 6.993000 ⇥ 10�8. The 3 eigenvalues with smallest magnitude calculated from

MIRAMns(9, 12, 16) are:

0

BBB@

3.939947166722805⇥ 10�5

1.575965946128510⇥ 10�4

3.545973886132522⇥ 10�4

1

CCCA

The results have an average precision of 6.757897⇥ 10�8.

So we know now that the rest of the spectrum of matrixA lies in the interval (3.545973886132522⇥
10�4, 3.999753743363125). To have certain tolerance of error, we will search the eigen-

values in the interval [0, 4].
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Figure 7.3: SS-RR method with Center = 0.5, Radius = 0.5, 333 eigenvalues are
calculated

Figure 7.3 to figure 7.6 are the results of SS-RR method applied to the interval [0, 4].

The horizontal line represents the x-axis and the vertical line represents the y-axis. The

red points represent the quadrature points and the blue points represent the eigenvalues

that are calculated in the domain described by the red points. The total number of
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Figure 7.4: SS-RR method with Center = 1.5, Radius = 0.5, 167 eigenvalues are
calculated
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Figure 7.5: SS-RR method with Center = 2.5, Radius = 0.5, 167 eigenvalues are
calculated

quadrature points is 32 for each circle, N = 32. We get all 1000 eigenvalues correctly.

The average residual is 1.59 ⇥ 10�5. Numerical experiments of the parallel version of

this global eigensolver are also performed for the test matrix An. Figure 7.7 shows

the scalability for the matrix An when we increase the number of cores. Here we use

the MPI techniques to parallelize the algorithm. Because of the independence of the

computation related to contour paths and quadrature points, we have an almost linear

speed up. Figure 7.7 shows a good scalability of the proposed global eigensolver. The

computation time is quite long for our method. A sequential MATLAB function eig()

return the value in 0.020527 second, which is more than 100 faster than our method

with 20 cores. However, the idea is that our method may still work when some existing
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Figure 7.6: SS-RR method with Center = 3.5, Radius = 0.5, 333 eigenvalues are
calculated

algorithms fail.
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Figure 7.7: Scalability for test matrix A

We next test the matrix Bn with n = 1000

Bn =

0

BBBBBBBBBBBBBBBB@

5 �4 1

�4 6 �4 1

1 �4 6 �4 1
. . .

. . .
. . .

. . .
. . .

1 �4 6 �4 1

1 �4 6 �4

1 �4 5

1

CCCCCCCCCCCCCCCCA

(7.14)
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This matrix is just the square of the previous test matrix, with diagonal similarity by

diag(1,�1, 1,�1, ...), so it should behave the same. Also both matrices are symmetric,

so the conditioning is as good as possible. The exact eigenvalues of this matrix are given

by

�k(Bn) = 16 cos4(k⇡/(2n+ 2)), k = 1, ..., n (7.15)

Figure 7.8 and figure 7.9 show the results by MIRAMns with the subspace size equals

9, 12 and 16. The three eigenvalues with largest magnitude calculated are

0

BBB@

15.999921200819772

15.999684803750737

15.999290795479558

1

CCCA

The results have an average precision of 7.991445 ⇥ 10�8. The three eigenvalues with

smallest magnitude calculated are

0

BBB@

4.473114840983656⇥ 10�8

1.762265816198667⇥ 10�5

6.482147601621269⇥ 10�5

1

CCCA

The results have an average precision of 5.393488 ⇥ 10�7. We are going to search

eigenvalues in the interval [0, 16].
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Figure 7.8: MIRAMns(9, 12, 16) to calculate 3 eigenvalues with largest magnitude,
the result is compared with IRAM(16)
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Figure 7.9: MIRAMns(9, 12, 16) to calculate 3 eigenvalues with smallest magnitude,
the result is compared with IRAM(16)
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Figure 7.10: SS-RR method with Center = 12, Radius = 4, 364 eigenvalues are
calculated, average residual is 3.53698402454027090⇥ 10�6

Figure 7.10 to figure 7.19 show how the interval [0, 16] is divided and 1000 eigenvalues

are found. It can be noticed that when some of the eigenvalues are very close, the

precision will decrease. To increase the precision, one can decrease the radius of the

circle, thus, there will be a demand of more circles to be addressed. Similar to the

test matrix An, we also run the parallel version of this global eigensolver for the test

matrix Bn. Figure 7.20 shows the scalability for the matrix Bn wiht n = 1000 when

we increase the number of cores. We can observed that the line is not as “straight”

as that for the matrix An. The slope of the approximated line is smaller than that

for the matrix An. This decrease of performance can be explained if one observes the

location of the spectra of the two matrices. For matrix Bn, there are some eigenvalues
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Figure 7.11: SS-RR method with Center = 6, Radius = 2, 136 eigenvalues are
calculated, average residual is 5.78977861683748897⇥ 10�6
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Figure 7.12: SS-RR method with Center = 3, Radius = 1, 95 eigenvalues are calcu-
lated, average residual is 2.18255949228685363⇥ 10�4

that are very close to the point zero. We can say that there is a clustered point. In

fact, the smallest theoretical eigenvalue is 16 cos4(1000⇡/2002) = 9.7020 ⇥ 10�11 and

|16 cos4(1000⇡/2002) � 16 cos4(999⇡/2002)| = 1.4553 ⇥ 10�9. These eigenvalues are so

close that it is di�cult to tell them apart from each other. Thus a very small sub-domain

is required to keep a good precision. The initial covering strategy around this clustered

point will fail which leads to a poorer performance than that for the matrix An. Even

in this case, figure 7.20 shows a good scalability of the proposed global eigensolver.
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Figure 7.13: SS-RR method with Center = 1.5, Radius = 0.5, 72 eigenvalues are
calculated, average residual is 2.59612185434167264⇥ 10�6
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Figure 7.14: SS-RR method with Center = 0.75, Radius = 0.25, 57 eigenvalues are
calculated, average residual is 1.45660089462261519⇥ 10�6

7.3 Conclusion

In this chapter, we propose a global eigensolver by combination of the contour integral

based projection method (SS method) and the multiple implicitly restarted Arnoldi

method with nested subspaces (MIRAMns). This proposed global eigensolver allows

us to calculate a large number of (or all) eigenvalues and eigenvectors of a generalized

matrix.
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Figure 7.15: SS-RR method with Center = 0.3, Radius = 0.2, 95 eigenvalues are
calculated, average residual is 2.59080105213133636⇥ 10�4
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Figure 7.16: SS-RR method with Center = 0.055, Radius = 0.045, 80 eigenvalues
are calculated, average residual is 1.40601714058967572⇥ 10�5

This is the first attempt to combine MIRAMns and SS method to form a global eigen-

solver. Numerical experiments show this combination allows us to get all the eigen-

values and their corresponding eigenvectors. MIRAMns converges with less iterations

than IRAM, and the SS method is very suitable for parallelization. The scalability of

the global eigensolver is very good, we get almost linear speed up. The complexity of

computation can be varying with the precision that is required. The precision can be

increased with smaller sub-domain.

More precise error analysis of this method and the optimal division strategy, especially

when the whole domain D is of two dimension, is a part of our future work. We may
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Figure 7.17: SS-RR method with Center = 0.0055, Radius = 0.0045, 45 eigenvalues
are calculated, average residual is 2.61507800766467365⇥ 10�6
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Figure 7.18: SS-RR method with Center = 0.00055, Radius = 0.00045, 25 eigenval-
ues are calculated, average residual is 4.74249918677096298⇥ 10�10

want to extend this method to apply it to the C-method in the future.

In the next chapter, we will propose a new approach of the curvilinear coordinate method

where we do not use the translation coordinate system. The proposed method allows

analyzing the complex phenomenon of incident energy absorption. The new version of

the C-method could be an attractive alternative to analyze multilayered grating having

parallel or non-parallel interfaces.
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Figure 7.19: SS-RR method with Center = 0.00005, Radius = 0.00005, 31 eigenval-
ues are calculated, average residual is 4.34840427877808130⇥ 10�6
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Figure 7.20: Scalability for test matrix B



Chapter 8

The C-method as an initial value

problem

The C-method in the previous chapter is not very e�cient when we are dealing with

multi-layer gratings. We want to find other solutions. Especially, we want to explore

the potential parallelization of multi-layer gratings. That is we want to find a way to

deal with each layer independently and then combine them. In this chapter we propose

a new version of the C-method.

8.1 Eigenvalue problem and initial value problem

We will propose a new approach of the curvilinear coordinate method where we don’t use

the translation coordinate system. We consider two horizontal plane above and below

the grating. We define a coordinate system that the grating surface and both horizontal

planes correspond to surface coordinate. Similar coordinate systems have been defined

for analyzing discontinuities in rectangular waveguides [51–54] and radiation loss of

optical waveguides [94]. Inside the area A delimited by the two horizontal planes, in

the air and the low medium, the covariant formalism of Maxwell’s equations lead to a

di↵erential equation system with non-constant coe�cients. This system represents an

initial value problem. The curvilinear coordinate method expressed in the translation

coordinate system leads to an eigenvalue problem. It is the fundamental di↵erence

with this new approach. The scattering matrix (S�matrix) relates the amplitudes of

108
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outgoing planes waves to those of incoming waves. We show how to determine the

S�matrix by solving the initial value problem, by satisfying the boundary conditions

on the grating interface and using the continuity relations on the two horizontal planes

between covariant components of fields and Cartesian ones.

8.2 From Maxwell’s equations in covariant form to an ini-

tial value problem

For simplicity, we consider only the one-dimensional case. In the Cartesian referential

Oxyz, the grating is represented by a periodic cylindrical surface y = a(x) (figure 8.1).

This surface separates the air (medium 1) from the medium with a real or complex

refractive index (medium 2). The grating of period D is illuminated by a monochromatic

plane wave under the incidence ✓0. The incident wave vector lies in the xOy plane. For

E// polarization, the electric vector is parallel to the grooves. For H// polarization, it

is the case of magnetic vector. The letter m denotes indi↵erently the upper medium

(m = 1) or the lower medium (m = 2). Henceforth, ⌫(m), Z(m) and k(m) indicate the

optical index. the inpendance and the wave number of medium (m).

As show by 8.1, the space is divided into four regions, Within the regions y � y1

and y  y2, we consider the Cartesian coordinates (x, y, z). Outside the grooves, i.e.

when y > max(a(x)) and y < min(a(x)), the di↵racted field can be represented by a

combination of elementary plane waves, the Rayleigh expansion (3.7).

Within the regions A1 and A2 defined by a(x)  y  y1 and y2  y  a(x), we consider

the non-orthogonal coordinate system defined as follows:

8
>>>>><

>>>>>:

x0 = x

u = ym
y�a(x)
y
m

�a(x)

z0 = z

(8.1)

The grating surface y = a(x) coincides with the coordinate surface u = 0 and the hori-

zontal plane y = ym with u = ym. The problem consists in determining the S�matrix

by solving Maxwell’s equations under covariant form expressed in the coordinate system
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Figure 8.1: Grating illuminated by a plane wave under incidence ✓0 . The space is
divided in four regions.

(3.9) and by using continuity relations in planes y = ym between covariant components

of fields and Cartesian ones.

The covariant components (vx0 , vu, vz0) of a vector v are obtained from the Cartesian

coordinate (vx, vy, vz) as follows:

0

BBB@

vx0

vu

vz0

1

CCCA
= A

0

BBB@

vx

vy

vz

1

CCCA
(8.2)

Here A is the transformation matrix:

A = Ai
i0 =

0

BBB@

@x
@x0

@y
@x0

@z
@x0

@x
@u

@y
@u

@z
@u

@x
@z0

@y
@z0

@z
@z0

1

CCCA
=

0

BBB@

1 (ym � u) ȧ(x)y
m

0

0 y
m

�a(x)
y
m

0

0 0 1

1

CCCA
(8.3)

where ȧ(x) = da(x)
dx .
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From the above equation, we can make several observations:

• the covariant component vz0(x, u, z) is equal to the Cartesian component vz(x, y, z)

and it is parallel to the surface u = 0 and u = ym.

• The covariant component vu(x, y, z) is proportional to the Cartesian component

vy(x, y, z).

• The covariant component vx0(x, u, z) is tangential to the grating interface u = 0

and can be identified with the Cartesian component vx(x, y, z) on the plane u = ym.

The passage of covariant components (vx0 , vu, vz0) to the contravariant components (vx
0
, vu, vz

0
)

is obtained by the metric tensor G

0

BBB@

vx
0

vu

vz
0

1

CCCA
= G�1

0

BBB@

vx0

vu

vz0

1

CCCA
(8.4)

The tensor G is defined by (see equation 4.6):

G = gi0j0 = AGcA
t =

0

BBB@

gx0x0 gx0u gx0z0

gux0 guu guz0

gz0x0 gz0u gz0z0

1

CCCA
(8.5)

where Gc is the Cartesian system that is equal to the identity matrix and At denotes

the transpose matrix of A.

So, we find:

G =

0

BBB@

1 + (y
m

�u)2

y2
m

ȧ2(x) (y
m

�a(x))(y
m

�u)
y2
m

ȧ(x) 0

(y
m

�a(x))(y
m

�u)
y2
m

ȧ(x) (y
m

�a(x))2

y2
m

0

0 0 1

1

CCCA
(8.6)

and

G�1 = gi
0j0 =

0

BBB@

gx
0x0

gx
0u gx

0z0

gux
0

guu guz
0

gz
0x0

gz
0u gz

0z0

1

CCCA
=

0

BBB@

1 u�y
m

y
m

�a(x) ȧ(x) 0

u�y
m

y
m

�a(x) ȧ(x)
(u�y

m

)2ȧ2(x)+y2
m

(y
m

�a(x))2 0

0 0 1

1

CCCA
(8.7)

g = det(G) =
(ym � a(x))2

y2m
(8.8)
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From the Maxwell’s equations written in the coordinate system, we find:

8
>>>>><

>>>>>:

@F (m)(x,u)
@u = �jk(m) ym�a(x)

y
m

G(m)(x, u) + jk(m) ym�u
y
m

ȧ(x)G(m)
u (x, u)

@G(m)(x,u)
@u = @G

(m)
u

(x,u)
@x � jk(m) ym�a(x)

y
m

F (m)(x, u)

@F (m)(x,u)
@x = �jk(m) ym�u

y
m

ȧ(x)G(m)(x, u) + j y
m

k(m)

y
m

�a(x)(1 +
(y

m

�u)2

y2
m

ȧ2(x))G(m)
u (x, u)

(8.9)

In E// polarization, F (m) = E(m)
z0 , G(m) = Z(m)H(m)

x0 and G(m)
u = Z(m)H(m)

u . In H//

polarization, F (m) = Z(m)H(m)
z0 , G(m) = �E(m)

x0 and G(m)
u = �E(m)

u . The covariant

components F (m)(x, u) and G(m)(x, u) are tangential to the grating interface and they

appear in the boundary conditions at u = 0.

The periodic functions a(x) and ȧ(x) are expanded in Fourier series. The periodicity

with respect to the variable x, as well as the excitation by a plane wave, leads to an

expansion of founctions F (m)(x, u), G(m)(x, u) and G(m)
u (x, u) in terms of the quasi-

periodic functions exp(�j↵nx).

8
>>>>><

>>>>>:

F (m)(x, u) =
P+1

n=�1 f (m)
n (u)exp(�j↵nx)

G(m)(x, u) =
P+1

n=�1 g(m)
n (u)exp(�j↵nx)

G(m)
u (x, u) =

P+1
n=�1 g(m)

u,n (u)exp(�j↵nx)

(8.10)

Substituting these expansions into (8.9) and projecting on basis functions exp(�j↵nx)

leads to a set of partial di↵erential equations relating f (m)
n (u) and g(m)

n (u):

8
><

>:

d~f (m)(u)
du = �j ym�u

y
m

D(u)Ȧ↵~f (m)(u)� jk(m)D(u)~g(m)(u)

d~g(m)(u)
du = j

k(m) (↵D(u)↵� k(m)2B)~f (m)(u)� j ym�u
y
m

↵D(u)Ȧ~g(m)(u)
(8.11)

where

B = I �A/ym, D = B(I +
(ym � u)2

y2m
ȦȦ)�1 (8.12)

Vector ~f (m) and ~g(m) contains the coe�cients f (m)
n (u) and g(m)

n (u) respectively. ↵ is

a diagonal matrix with the propagation coe�cients ↵n along the diagonal and I is

the identity matrix. A is the Toeplitz matrix generated by the Fourier coe�cients an of

functions a(x), such that its (p, q) element is ap�q. Ȧ is the Toeplitz matrix generated by
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the Fourier ȧn of the profile derivative. The numerical solution of system (8.11) requires

a truncation order M . Then, the covariant components F (m)(x, u) and G(m)(x, u) are

described by only 2M +1 expansion coe�cients f (m)
n (u) and g(m)

n (u), and the Cartesian

components F (m)
c (x, y) and G(m)

c (x, y) within the region y � y1 or y  y2 by the sum

of 2M + 1 outgoing plane waves (amplitude c(1+)
n , c(2�)

n ) and 2M + 1 incoming waves

(amplitude c(1�)
n , c(2+)

n ), see figure 3.2.

8.3 Numerical Implementations

The di↵erential system (8.11) has non-constant coe�cients and represents an initial

value problem. We propose a procedure for obtaining the N�dimensional S�matrix

(N = 4M+2). First, we defineN independent vectors satisfying the boundary conditions

on the grating interface u = 0. In the E// polarization, the continuity relations on the

electric and magnetic components are given by:

8
><

>:

F (1)(x, u = 0) = F (2)(x, u = 0)

⌫(1)G(1)(x, u = 0) = ⌫(2)G(2)(x, u = 0)
(8.13)

In H// polarization, we have:

8
><

>:

⌫(1)F (1)(x, u = 0) = ⌫(2)F (2)(x, u = 0)

G(1)(x, u = 0) = G(2)(x, u = 0)
(8.14)

Substituting (8.10) into (8.13) and projecting on function exp(�j↵nx) give in E// po-

larization: 8
><

>:

f (1)
n (u = 0) = f (2)

n (u = 0)

⌫(1)g(1)n (u = 0) = ⌫(2)g(2)n (u = 0)
(8.15)

Similarly, in H// polarization, we get:

8
><

>:

⌫(1)f (1)
n (u = 0) = ⌫(2)f (2)

n (u = 0)

g(1)n (u = 0) = g(2)n (u = 0)
(8.16)
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f (m)
n (u = 0) and g(m)

n (u = 0) are the initial values of field components F (m)(x, u) and

G(m)(x, u). We define N independent vectors from di↵erent initial values f (m)
n (u = 0)

and g(m)
n (u = 0). In the E// polarization, they are contained in the following matrix:

0

@F (m)(u = 0)

G(m)(u = 0)

1

A =

0

@ I �I

I/⌫(m) I/⌫(m)

1

A (8.17)

I is the (2M + 1)�dimensional identity matrix. In the H// polarization, we use:

0

@F (m)(u = 0)

G(m)(u = 0)

1

A =

0

@I/⌫(m) I/⌫(m)

I �I

1

A (8.18)

For a perfectly conducting grating, the fields inside the conductor vanish, see equation

(2.87) - (2.90). The tangential component of the electric field is zero on the grating

surface. The tangential component of the magnetic field is di↵erent to zero and gives

the surface current density. For a perfect conduction, we consider 2M + 1 independent

vectors and in E// polarization,

0

@F (m)(u = 0)

G(m)(u = 0)

1

A =

0

@0

I

1

A (8.19)

and in H// polarization, 0

@F (m)(u = 0)

G(m)(u = 0)

1

A =

0

@I

0

1

A (8.20)

The coupled di↵erential equation system (8.11) is solved for each column vector of initial

condition matrices. For each medium, this step requires numerical integrations with

iterative algorithm from u = 0 to u = ym and gives final values of N vectors (contained

in matrices F (m)(u = ym) and G(m)(u = ym)). In the horizontal plane y = ym, the

covariant components F (m)(x, u) and G(m)(x, u) become identified with the Cartesian

components F (m)
c (x, y) and G(m)

c (x, y). By projecting on basis functions exp(�j↵nx) of

the connection relationship, we find:

8
><

>:

f (m)
n (u = ym) = c(m+)

n exp(�j�(m)
n ym) + c(m�)

n exp(+j�(m)
n ym)

g(m)
n (u = ym) = c(m+)

n
�
(m)
n

k(m) exp(�j�(m)
n ym)� c(m�)

n
�
(m)
n

k(m) exp(+j�(m)
n ym)

(8.21)
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For each medium, we deduce from (8.21) the amplitudes c(m±)
n . For a dielectric grating,

the N�dimensional S�matrix is obtained as follows:

S =

0

@C(1+)

C(2�)

1

A

0

@C(1�)

C(2+)

1

A
�1

(8.22)

For a perfectly conducting grating, we have:

S = C(1+)(C(1�))�1 (8.23)

8.4 On the computational time

The used iterative algorithm is a variable order Adams-Bashforth-Moulton PECE solver

(Prediction/Evaluation/Correction/Evaluation). It is a multistep solver and needs the

solutions at several preceding spatial points to compute the current solution. Results

presented in the next section are provided using MATLAB and the solver ODE113.

The dominant computational cost of the proposed method is due to numerical integra-

tions and depends on the relative and absolute tolerances used by the algorithm. This

relative tolerance controls the number of correct digits in all solution components, ex-

cept those smaller than the absolute tolerance thresholds. The absolute tolerance is a

threshold below which the value of the ith solution component is unimportant. The ab-

solute error tolerances determine the accuracy when the solution approaches zero. For

a given grating with given tolerances, the computational cost is O(N3).

For a multilayer grating (n + 1 layer labeled with 1, 2, ..., n, n + 1 in sequence), we will

show that it is possible to form the local scattering matrix Si,i+1 and then glue them

to form the global matrix S1,n+1. We can also explore the parallelism in this gluing

operation. For example, we can in the first setp, obtain S1,3, S3,5, S5,7... in parallel,

and in the second step, obtain S1,5, S5,9,... in parallel, and so on. This needs only

O(log(n)) steps to get the global scattering matrix. Moreover, for the calculation of

the local scattering matrix Si,i+1, the proposed method leads to systems of first-order

linear di↵erential equations, the solution of which requires the choice of an iterative

algorithm. The proposed method is based on numerical integrations with N indepen-

dent initial vectors. The kernel of this computing process is the numerical integration.
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This approach is also particularly well adapted to large-scale parallel and distributed

architectures. Indeed, in the context of a distributed system comprising a network of

machines, each of the problems could be solved on a machine whose architecture can

be single or multiple processors. The proposed new method has a significant degree

of coarse grain parallelism and requires little communication. These features o↵er the

possibility of reducing dramatically the computation time. It’s an advantage compared

with the conventional C-method which leads to eigenvalue problems.

8.5 Numerical results

We consider a perfectly conducting sinusoidal grating defined by a(x) = h0 cos(2⇡x/D)

with D = �. Under the incidence angle ✓0 = 30�, the grating is in first order Littrow

mounting and ✓�1 = �✓0, see paragraph 3.1.2. Figure 8.2 shows the e�ciency curves

under the polarization H// with h0 varying from 0 to �. The truncation order M is equal

to 9 and y1 = �y2 = 1.01max(a(x)). The relative and absolute tolerances are equal to

10�6 and 10�9, respectively. For a perfectly conducting grating illuminated under first-

order Littrow mounting, the e�ciency curves when the groove depth increases oscillate

between 0 and 1.

Figure 8.2: Reflected e�ciencies versus sinusoidal grating amplitude Perfectly con-
ducting grating in H// polarization.
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As a result, the grating can present a perfect blazing in the minus-first-order. Figure

8.2 gives the e�ciency curves obtained with the reference C-method (C1) and based

on Fourier series factorization rules and the curves derived from the new version of the

C-method (C2). For the reference method, the truncation order M is 18. This value

provides a very good accuracy on the e�ciencies. Figure 8.2 shows superimposed curves.

Comparisons are conclusive and validate the proposed method. As shown in Figure 8.3,

the new version of the C-method used withM = 9 checks the power balance with an error

smaller than 10�3 whatever the groove depth. We obtain similar results in polarization

E// . The new approach is well-adapted to analyze this sinusoidal grating with the

peak-peak amplitude smaller or equal to two wavelengths. The proposed method only

uses Rayleigh expansions outside the grooves and does not use the Rayleigh hypothesis

stipulating that the scattered field away from the surface can be extended down onto

the grating even though it is formed by solely up-going waves. The theoretical validity

of the Rayleigh hypothesis has given rise to some works for di↵raction gratings. A

classical result can be mentioned: for a perfectly conducting grating defined by a(x) =

h cos(2⇡x/D) with the Dirichlet condition,the assumption does not hold if h/D > 7%

[7]. The proposed method gives the e�ciencies with a good accuracy with h/D = 1.

Figure 8.3 also shows the error on the power balance for the conventional C-method

used with the same value of truncation order. The error given by C1 is lowest when

h0 < 3�/4. When 3�/4 < h0 < �, C1 and C2 methods are equivalent in terms of

accuracy on the power balance.

Figure 8.4 shows the transmitted e�ciencies in H// polarization for a lossless dielectric

grating with a sinusoidal profile. The simulation parameters are: ✓0 = 15�, ⌫(m) =

3/2, D = 3�/2 and 0  h0  �. The truncation order is equal to 9 and y1 = y2 =

1.01max(a(x)). The relative and absolute tolerances are equal to 10�6 and 10�9. The

grating presents four di↵raction orders: ✓2 = 45.8�, ✓1 = 15.8�, ✓0 = 9.94� and ✓1 =

38.1�. For h0/� = 0, the zeroth-order transmitted e�ciency is equal to 0.98 and all

other transmitted e�ciencies are null. The incident energy is distributed into di↵erent

di↵raction orders when the groove depth increases. For h0/� > 0.42 , the zeroth-order

transmitted e�ciency is smaller than 50%. Comparison between the reference C-method

(C1) used with M = 18 and the new version (C2) used with M = 9 is conclusive and

curves of e�ciencies are superimposed.

Figure 8.5 gives the error on the power balance. The error increases with the groove
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Figure 8.3: Error on the power balance versus sinusoidal grating amplitude. Perfectly
conducting grating in H// polarization.

Figure 8.4: Transmitted e�ciencies versus sinusoidal grating amplitude. Lossless
dielectric grating in H// polarization.

depth and it is smaller than 10�3 whatever the profile amplitude. We obtain similar

results in polarization E// .The new approach of the C-method is well-adapted to analyze

this lossless dielectric grating when the peak-peak amplitude is smaller or equal to two

wavelengths. Figure 8.5 also shows the error on the power balance for the conventional
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C-method used with M = 9. The error given by C1 is lowest when h0 < 3�/10. On

the range 3�/10 < h0 < 3�/5, C1 and C2 methods are equivalent in terms of accuracy

on the power balance. When 3�/5 < h0 < � , the proposed method leads to the lowest

errors.

Figure 8.5: Error on the power balance versus sinusoidal grating amplitude. Lossless
dielectric grating in H// polarization.

Figure 8.6 gives the reflected e�ciencies versus the depth parameter p for a H-polarized

metallic grating whose the profile is defined by,

a(x) = 0.48�p cos(2⇡x/D � 11⇡/90) + 0.12�p cos(4⇡x/D + 11⇡/90) (8.24)

with �/D = 1 and 0  p  1. The optical index is equal to 0.07624�1.431j (the optical

index of gold at 3200
�
A) [95]. The grating illuminated under 20� presents two di↵raction

orders (✓0 = 20�, ✓1 = 46.2�). The relative and absolute tolerances are equal to 10�6

and 10�9, respectively. Comparison between the reference C-method (C1) used with

M = 18 and the new version (C2) used with M = 9 and y1 = y2 = 1.01max(a(x)) is

conclusive. Curves of e�ciencies are superimposed. For p = 0.54 , both the e�ciencies

are close to zero.

Figure 8.7 gives the sum of e�ciencies for the two polarizations. In the E// polarization

case, the conduction losses are weak. In H//, for the configuration defined by p = 0.54 ,

surface plasmons are excited and cause a quasi-total absorption of incident energy [95].
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Figure 8.6: Reflected e�ciencies versus grooves depth. Metallic grating in H// po-
larization.

Figure 8.7: Sum of reflected e�ciencies versus groove depth. Metallic grating in E//

and H// polarizations.

The proposed method allows analyzing the metallic grating under consideration and the

phenomenon of quasi-total absorption by surface plasmons in H// polarization.
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8.6 Application to multilayer gratings with homogeneous

medium

In this section, we extend the C-method as an initial value problem to multilayer gratings

with homogeneous medium. We consider a n+1 layer di↵raction grating, thus there are

n interfaces separating the layers. From the uppermost to downmost, these layers are

composed of medium 1 to medium n + 1. Each medium has a constant optical index.

Thus we can calculate the scattering matrix Si,i+1 which associate the incoming and

outcoming waves from medium i and i+ 1. Then we collect all the scattering matrix of

adjacent medium, Si,i+1, i = 1, ..., n and obtain the global matrix S1,n+1 by combination

of elementary matrices Si,i+1, i = 1, ..., n.

We consider a n+ 1 layer di↵raction grating. The interface is represented by a periodic

cylindrical surface y = ai(x), 1  i  n. This surface separates the medium i from

the medium i+ 1. In Figure 8.8, two representative adjacent interfaces are shown. We

consider separable layered grating, meaning that there exists a horizontal line y = yi+1

separates the interface y = ai(x) and the interface y = ai+1(x) for each i. The interfaces

in general have di↵erent functional forms and amplitudes, but there exists a value D

such that D is the period of the function or a multiple of the period. The thickness hi

is measured between the middle lines of the two boundaries. The medium between the

interface y = ai(x) and the interface y = ai+1(x) is homogeneous with optical index ⌫(i),

impedance Z(i) and wave number k(i).

As the interfaces are separable, we can consider each interface separately and then

combine to form the global matrix. For each interface y = ai(x), we consider the

problem as in the previous section. Then, we reduced the problem to the previous one.

We define the local scattering matrix(S-matrix) to relate the amplitudes of outgoing

plane waves (c(i+)
n , c((i+1)�)

n ) to those of incoming waves (c(i�)
n , c((i+1)+)

n ) such that:

0

@ c(i+)

c((i+1)�)

1

A = Si,i+1

0

@ c(i�)

c((i+1)+)

1

A (8.25)

here we use c(m±) to represent a vector containing the scattering amplitudes c(m±)
n ,

m = i, i+ 1.
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Figure 8.8: Notation for the description of a layered grating

Within the regions Ai and Ai+1 defined by ai(x)  y  yi and yi+1  y  ai(x), we

consider the non-orthogonal coordinate system defined as in the equation (8.1).

We then combine the local scattering matrices to form the global scattering matrix

S1,n+1. In fact, if we have local scattering matrices Sp,q and Sq,r such that p < q < r,

then we can obtain the scattering matrix Sp,r.

8
>>>>>>>>><

>>>>>>>>>:

0

B@
c(p+)

c(q�)

1

CA = Sp,q

0

B@
c(p�)

c(q+)

1

CA =

0

B@
S(+�)
p,q S(++)

p,q

S(��)
p,q S(�+)

p,q

1

CA

0

B@
c(p�)

c(q+)

1

CA

0

B@
c(q+)

c(r�)

1

CA = Sq,r

0

B@
c(q�)

c(r+)

1

CA =

0

B@
S(+�)
q,r S(++)

q,r

S(��)
q,r S(�+)

q,r

1
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Eliminating the vectors c(q+) and c(q�), one glue the two scattering matrices to be one

Sp,r:

Sp,r =
0

@S(+�)
p,q + S(++)

p,q (I � S(+�)
q,r S(�+)

p,q )�1S(++)
q,r S(��)

p,q S(++)
p,q (I � S(+�)

q,r S(�+)
p,q )�1S(++)

q,r

S(��)
q,r (I � S(�+)

p,q S(+�)
q,r )�1S(��)

p,q S(�+)
q,r + S(��)

q,r (I � S(�+)
p,q S(+�)

q,r )�1S(�+)
p,q S(++)

q,r

1

A

(8.27)
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So in this way, we glue S1,2 and S2,3 to get S1,3, and then glue S1,3 and S3,4 to get S1,4

and so on until we get the global matrix S1,n+1.

We perform an experiment in the article [96]. The grating considered is sinusoidal and

defined by a1(x) = a1 cos(
2⇡
D x), a2(x) = a2 cos(

2⇡
D x). Figure 8.9 shows the e�ciency

curves under the polarization E//, with the value of sin ✓0 varying from 0.24 to 0.38.

With the same parameters as in that paper, figure 8.9 is exactly the same as in the

paper [96]. We can also analyze structure with non parallel interfaces. We perform more

experiments to see how this figure changes when we change the amplitude of function

y = a1(x). With other parameters fixed, figure 8.10 shows the curve when a1 = 0.01 ,

figure 8.11 shows the curve when a1 = 0.03.
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Figure 8.9: Di↵raction e�ciency of the zeroth reflected order of the sinusoidal grat-
ing. Parameters of the system are: ⌫(1) = ⌫(3) = 1, ⌫(3) = 2.3, h1 = 0.19µm,D =

0.37µm,� = 0.6328µm, a1 = a2 = 0.02µm, for E// polarization

We see from Figure 8.9 that the zeroth-order e�ciency changes from 0 to 1. In Figure

8.10, the e�ciency can not reach 0, it changes from a small positive value to 1. In figure

8.11, the e�ciency can neither reach 0 nor 1. It can be observed that when a1 varies

from 0.03µm to 0.01µm, the jump becomes steeper. One can also observe that the place

of the jump moves towards the left direction. When we vary a2 from 0.03µm to 0.01µm,

no similar phenomena can be observed. In fact, the curves seem almost stay the same.

Figure 8.12 and figure 8.13 shows the curve when a2 = 0.03 and a2 = 0.01, respectively.
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Figure 8.10: Di↵raction e�ciency of the zeroth reflected order of the sinusoidal grat-
ing. Parameters of the system are: ⌫(1) = ⌫(3) = 1, ⌫(2) = 2.3, h1 = 0.19µm,D =

0.37µm,� = 0.6328µm, a1 = 0.01µm, a2 = 0.02µm, for E// polarization
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Figure 8.11: Di↵raction e�ciency of the zeroth reflected order of the sinusoidal grat-
ing. Parameters of the system are: ⌫(1) = ⌫(3) = 1, ⌫(2) = 2.3, h1 = 0.19µm,D =

0.37µm,� = 0.6328µm, a1 = 0.03µm, a2 = 0.02µm, for E// polarization
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Figure 8.12: Di↵raction e�ciency of the zeroth reflected order of the sinusoidal grat-
ing. Parameters of the system are: ⌫(1) = ⌫(3) = 1, ⌫(2) = 2.3, h1 = 0.19µm,D =

0.37µm,� = 0.6328µm, a2 = 0.03µm, a1 = 0.02µm, for E// polarization
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Figure 8.13: Di↵raction e�ciency of the zeroth reflected order of the sinusoidal grat-
ing. Parameters of the system are: ⌫(1) = ⌫(3) = 1, ⌫(2) = 2.3, h1 = 0.19µm,D =

0.37µm,� = 0.6328µm, a2 = 0.01µm, a1 = 0.02µm, for E// polarization
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8.7 Conclusion

In this chapter, we studied our approach of the C-method as an initial value problem for

the e�cient calculation of the N-dimensional scattering matrix of a grating. We have

shown that this formulation is an interesting tool for analyzing perfectly conducting

or dielectric gratings with deep grooves. The proposed method allows analyzing the

complex phenomenon of incident energy absorption. We then extend this method to

multilayer with homogeneous medium. We applied this method to multilayer gratings

with an arbitrary number of interfaces. We have shown how to combine the local scat-

tering matrix to obtain the global one. We have validate our method by comparison our

results with that from published paper. The proposed method has very good accuracy

as well as a natural of two level parallel property. This new version of C-method is

an attractive alternative to analyze multilayered grating having parallel or non-parallel

interfaces. We are currently working on the extension of this method to apply it to

multilayer with inhomogeneous medium and non-parallel interfaces.



Chapter 9

Conclusion

In this thesis, we study the electromagnetic di↵raction by gratings and random rough

surfaces. The C-method is an exact method based on Maxwells equations under covari-

ant form written in a nonorthogonal coordinate system. The C-method leads to the

eigenvalue problem of the high dimension, dense and non-symmetric scattering matrix.

All the eigenvalues and eigenvectors of the scattering matrix are needed. The scattered

field is expanded as a linear combination of eigensolutions satisfying the outgoing wave

condition. The boundary conditions allow the di↵raction amplitudes to be determined.

We propose the specifically designed parallel QR algorithm for the C-method. We

present why we propose the “early shift” and how it can be used to accelerate the

convergence. We also present the techniques of parallel QR with tightly coupled bulge

chasing and parallel AED. These techniques are used to reduce the computational time

of the C-method. We apply this specifically designed parallel QR algorithm to the scat-

tering matrix. We also compare the computation time with that of the sequential code.

The results show a significant speed up to approximately 40 for 64 cores with our new

QR algorithm. This combination of early shift and other shifts can also be used in

the problems such as linear-quadratic optimal control problem where a large number

of eigenvalues and eigenvectors are needed and background of the original problem can

provides very good initial approximations. This parallel QR algorithm can be used for

analyzing crossed gratings or random rough surfaces. Comparisons with experimental
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data for moderate roughness and isotropic or anisotropic very rough surfaces are con-

clusive in both co-polarized and cross-polarized components. Comparisons allow the

validity of our approach.

As a prospect, we propose a spectral projection method to solve the eigenvalue problem

e�ciently. We propose a global eigensolver by a combination of the SS method and

MIRAMns. This proposed global eigensolver allows us to calculate a large number

of (or all) the eigenvalues of a generalized matrix. Compared to QR algorithm, this

method has the advantage of having very good scalability. This promising method can

be continued in future work.

This is the first attempt to combine MIRAMns and SS method to form a global eigen-

solver. Numerical experiments show this combination allows us to get all the eigen-

values and their corresponding eigenvectors. MIRAMns converges with less iterations

than IRAM, and the SS method is very suitable for parallelization. The scalability of

the global eigensolver is very good, we get almost linear speed up. The complexity of

computation can be varying with the precision that is required. The precision can be

increased with smaller sub-domain. .

For gratings, we propose a new version of C-method which leads to a di↵erential system

with initial conditions. We studied the new version of C-method as an initial value

problem for the e�cient calculation of the N-dimensional scattering matrix of a grating.

We have shown that this formulation is an interesting tool for analyzing perfectly con-

ducting or dielectric gratings with deep grooves. The proposed method allows analyzing

the complex phenomenon of incident energy absorption. We then extend this method to

multilayer with homogeneous medium. We applied this method to multilayer gratings

with an arbitrary number of interfaces. We have shown how to combine the local scat-

tering matrix to obtain the global one. We have validate our method by comparison our

results with that from published paper. The proposed method has very good accuracy

as well as a natural of two level parallel property. This new version of C-method is

an attractive alternative to analyze multilayered grating having parallel or non-parallel

interfaces.

For the future work, we plan to extend the spectral projection method to more general

case. We also plan to extend our new version of C-method to multilayer with inhomo-

geneous medium.
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Résumé

Titre:

Di↵raction électromagnétique par des réseaux et des surfaces rugueuses aléatoires; Mise

en œuvre de méthodes hautement e�caces pour la résolution de systèmes aux valeurs

propres et de problèmes aux conditions initiales

Résumé:

Dans cette thèse, nous étudions la di↵raction électromagnétique par des réseaux et des

surfaces rugueuses aléatoires. Le méthode C est une méthode exacte développée pour

ce but. Elle est basé sur des équations de Maxwell sous forme covariante écrites dans

un système de coordonnées non orthogonales [27–29]. La discrétisation des équations

de Maxwell dans ce système de coordonnées et la méthode de séparation des variables

conduisent à une matrice de di↵usion pleine et non symétrique dont il faut déterminer

les valeurs propres. Toutes les valeurs et vecteurs propres sont nécessaires. Le champ

di↵usé est représenté par une combinaison linéaire des solutions propres satisfaisant à

la condition d’onde sortante. Les conditions aux limites permettent de déterminer les

amplitudes de di↵usion associées à chaque solution propre. Cette méthode a été utilisée

pour l’analyse des réseaux de di↵raction utilisés en optique [30–50], des guides d’ondes

et des surfaces rugueuses pour des problèmes de télédétection [55–65].

Nous nous concentrons sur l’aspect numérique de la méthode C, en développant une

mise en œuvre e�cace de cette méthode exacte. Des méthodes itératives de recherche

de valeurs propres telles que les méthodes de sous-espace de Krylov ou les méthodes

de Jacobi-Davidson [66] ont été développées pour traiter de problèmes de valeur propre
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de très grande taille. Cependant, elles ne fournissent pas systématiquement toutes les

valeurs propres et leurs vecteurs propres correspondants. Ainsi, ces méthodes itératives

sont ine�caces pour la méthode C car toutes les valeurs propres et leurs vecteurs pro-

pres associés sont nécessaires. La méthode QR qui est basée sur les transformations

semblables, calcule tous les éléments propres d’une matrice dense sans danger de man-

quer des solutions propres particulières. Nous proposons un algorithme QR parallèle

conçu spécifiquement pour la méthode C pour résoudre le problème de valeur propre.

Cet algorithme QR parallèle est une variante de l’algorithme QR basée sur trois tech-

niques: “early shift”1, ”bulge chasing”2 [67, 68] parallèle et ”aggressive early deflation

(AED)” 3 parallèle [68, 69]. Nous proposons la technique “early shift” pour la matrice de

di↵usion en fonction des propriétés que nous avons observées. En e↵et, la méthode C et

l’interprétation physique derrière la méthode C fournissent une très bonne approxima-

tion de certaines valeurs propres avant les calculs. L’utilisation de ces approximations

comme ”early shift” o↵re la possibilité de déflation rapide. Nous avons combiné le “early

shift”, le ”shift” de Wilkinsons ansi que ”le shift exceptionnel” afin d’accélérer la con-

vergence de la méthode QR. Plus particulièrement, nous utilisons le “early shift” afin de

déflater les valeurs propres approchées de la matrice de di↵usion et accélérer ainsi la con-

vergence de la méthode. L’algorithme double shift QR, pour des raisons d’économie et

d’accélération de convergence, combine deux itérations avec shift en une seule itération

avec double shift. A chaque itération, il engendre un bulbe d’éléments non-nuls à chas-

ser par la suite (bulge chasing). Nous utilisons la version multishift de l’algorithme

QR. Ainsi, pour le ”bulge chasing”, au lieu de chasser un seul bulbe, contenant deux

shifts, une châıne de plusieurs bulbes étroitement couplés, contenant chacun deux shifts,

est poursuivi au cours d’une itération de QR multishift. Cette idée et la technique

de ”retard et accumulation” [67, 68] permet d’e↵ectuer la majeur partie des calculs

en termes d’opérations BLAS de niveaux 3 (essentiellement produits matrice-matrice)

et augmenter ainsi l’e�cacité de l’algorithme en termes de performances. L’AED est

une stratégie de la déflation qui profite des perturbations de la matrice en dehors des

éléments sous-diagonaux de la matrice de Hessenberg. Elle identifie et déflate les valeurs

propres convergées longtemps avant la stratégie classique de déflation et peut améliorer

considérablement la convergence de l’algorithme QR. Les résultats présentés dans cette

1
La transformation de la matrice avec un décalage ”prématuré” des éléments diagonaux permettant

d’accélérer la convergence du processus itératif.

2
La chasse aux élément non-nuls introduits au cours du calcul

3
La dimiuntion de la taille de la matrice en fonction des valeurs propres connues et/ou déjà calculées
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thèse mettent en évidence cette amélioration de performances pour le problème con-

sidéré.

En perspective, nous proposons une méthode de projection spectrale pour résoudre le

problème de valeurs propres e�cacement. Cette méthode proposeé afin de palier au

problème de “scalability” de la méthode QR. Elle est baseé sur une combinaison de

la méthode de Sakuria et Sugiura (SSM) [71] et “multiple implicitly restarted Arno-

lid method” avec des sous-espace imbriqué (MIRAMns) proposé par S. A. Shahzadeh

Fazeli et al [72]. La méthode proposée nous permet de calculer un grand nombre de (ou

toutes) les valeurs propres de la matrice généralisée. Comparé à l’algorithme QR, cette

méthode a l’avantage d’avoir une très bonne “scalability”. Les premiers resultats ex-

perimentaux sont très encourageants. Cette méthode prometteuse peut être poursuivie

dans les travaux futurs.

La méthode C originale impose la résolution d’un système aux valeurs propres. En

définissant un nouveau système de coordonnées non orthogonales, nous établissons une

formulation qui évite la résolution d’un système aux valeurs propres. En particulier, nous

voulons explorer la parallélisation potentielle de cette nouvelle méthode pour étudier

des réseaux multicouches. Pour les réseaux de di↵ration à une interface, nous montrons

que cette nouvelle version de la méthode C conduit à un système di↵érentiel avec les

conditions initiales. Nous montrons que cette nouvelle version de la méthode C peut

être utilisée pour l’étude des réseaux comme un empilement d’interfaces délimitant des

couches homogènes. Nous montrons que cette formulation est un outil e�cace pour

analyser des réseaux parfaitement conducteurs ou des réseaux diélectriques aux sil-

lons très profonds. La méthode proposée permet d’analyser le phénomène complexe

de l’absorption totale d’énergie incidente (par des modes plasmons). Nous avons ap-

pliqué cette méthode à des réseaux multicouches avec un nombre arbitraire d’interfaces.

Nous avons montré comment combiner la matrice de di↵usion locale pour obtenir une

matrice globale caractéristique de la structure multicouches. Nous montrons que cette

nouvelle version de la méthode C permet d’analyser les réseaux multicouches ayant des

interfaces parallèles ou non parall‘eles. Nous avons validé notre méthode en comparant

les résultats fournis par cette méthode avec des résultats publiés. Nous montrons que la

nouvelle version de la méthode C a une très bonne précision et permet une parallélisation

à deux niveaux de la propriété parallèle à deux niveaux [73, 74].
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C.Pan, R.Dusséaux and N.Emad, “Parallel QR algorithm for the C-method: Ap-

plication to the di↵raction by gratings and rough surfaces”. Apr. 2015
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