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ABSTRACT  

 

Cochlear implants are used by severely deaf people for partial hearing sensation. The improvement of this electronic 

device may lead to better neurostimulation resulting in increase  sound perception. Cochlear implants are separated into 

two parts, one inserted surgically inside the patient’ s skull and the other part outside the body, behind the ear. An 

external microphone registers the sounds which are processed by a Digital Signal Processing Unit before their wireless 

transmission to the receiver which will select the right electrode to stimulate, depending on the external sound 

frequency. 

Implanted people often complain of aesthetical issues, due to the voluminous part of the implant. As current trends 

in electronic aim to make chips smaller and less consuming, a redesign of the implant may be of interest to tackle this 

problem. In the work presented by Y. Viarello and used as basis for the receiver implant design, a new type of emitter 

was proposed, encapsulating a RF transmitter, a battery and a microphone. The RF choice was preferred to the coil 

antenna communication for space saving. This new type of external part of the implant was planned to be inserted inside 

the ear canal, rendering it almost unnoticeable. However due to the very reduced space of the ear canal and the low 

power supply of the embedded battery, the Digital Signal Processing unit was encapsulated inside the receiver, requiring 

a complete receiver electrical architecture restudy. 

Behavioral modeling of the external part of the cochlear implant was first performed using the software Matlab®. 

Then the propagation channel was modeled using electrical analogy of the biological tissues. Noise extraction of the 

propagation channel  was performed in order to obtain the specifications for the RF receiver.  

Based on the RF transmitter specifications and noise propagation channel theoretical results, three types of suitable 

RF receiver architectures were discussed and compared in term of power consumption and Noise Figure. The retained 

architecture was then implemented in Matlab® in order to obtain an overall transceiver testing. Worst parameters 

extraction was performed defining the blocks to optimize. As the receiver is implanted inside the patient’s skull, 

extended testing of the overall RF circuitry is of great significance. 

Two types of signal modulation are performed in the transmitter part: a Pulse Width Modulation (PWM), followed by 

an On Off Keying (OOK) modulation to send the signal in RF. Both modulations required an oscillator, making the study of 

phase noise of importance for LF signal recovery as well as ISM frequency band enclosure. The theoretical review of 

phase noise theories presented by Leeson and by Hajimiri and Lee was accomplished before proposing a new unifying 

model linking both theories. This model, currently under development, may further facilitate phase noise computation. 

Computing timing jitter from phase noise, permitted extended testing of the accuracy of the overall transceiver and 

mainly defined the maximum precision that could be expected with the PWM using this particular architecture and ring 

oscillator . 

The major ameliorations that can be made on cochlear implants to improve their hearing efficiency are mainly related 

to the electrode array inserted inside the cochlea. The limited number of electrodes, which is by far lower  
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ABSTRACT 

 

than the number of nerve fibers present inside the cochlea, makes the stimulation of the auditory nerve very 

approximate. The precise understanding and modeling of the different part of the ear resulting in nerve fibers 

stimulation is proposed in this document. The mechanical model of the external and middle ear followed by the Basilar 

Membrane variations associated with an external sound wave was extracted from various models. Then a new 

mechanical equivalent of the organ of Corti and stereocilia displacement was developed and confirmed by physical 

experiments results available on literature. The hair cells depolarization associated with the stereocilia movement was 

also computed and the synapse between the HC and nerve fibers was mathematically modeled, in order to obtain the 

electrical stimulus of the auditory nerve associated with a random sound stimulus. Furthermore a new analog model of 

the nerve fiber information propagation was realized in order to obtain a realistic electrical analogy with nerve fiber 

depolarization propagation. 

Based on impedance spectroscopy biological tissue characterization, we proposed a new electrical analogy of the 

system composed of the electrodes inserted inside the cochlea. This electrical analogy permitted theoretical results 

extraction defining the maximum battery duration as well as the minimum power required for an electrode to stimulate 

the surrounding nerve fibers. Then a topographic map based on the threshold of hearing function and on the spiral 

ganglion cells repartition inside the cochlea was proposed in order to stimulate differently the nerve fibers depending on 

their position inside the cochlea, to obtain a sound perception closer to the one reached by an healthy ear. A new 

algorithm based on an adapted Fourier Transform for the electrodes selection based on the sound wave frequency was 

discussed with poor theoretical expectancy. A similar principle using the same mathematical background was developed 

in order to develop hypothesis on how deaf people using cochlear implants can perceive sounds. 

The different works performed which cover a large spectrum of physical disciplines, aimed to improve the implants 

sound restoration, justifying many independent researches. 
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RESUME 

 

 

Les implants cochléaires permettent aux personnes atteintes de surdité profonde de percevoir des sons. Toutefois 

les sons restitués grâce à l’implant cochléaire sont souvent différents des sons originaux. L’amélioration de l’implant, 

grâce à une neurostimulation plus sélective par exemple, pourrait résulter en une meilleure qualité des sons perçus. Les 

implants cochléaires se divisent en deux parties, la première insérée chirurgicalement dans la boîte crânienne des 

patients implantés et  la seconde qui se place à l’extérieur du corps, derrière l’oreille. Un microphone externe enregistre 

les sons qui sont transformés par une unité de calcul digitale avant leur transmission sans fil vers le bloc de réception 

qui sélectionne les électrodes à stimuler en fonction de la fréquence du son. 

Les patients implantés sont souvent dérangés par la partie externe de l’implant, très encombrante. La 

miniaturisation des circuits électroniques devenant toujours plus petits et consommant de moins en moins d’énergie, a 

permis le développement d’un nouveau type d’implant tel que proposé par exemple par Y. Vaiarello. Dans ce nouveau 

type d’implant, la partie externe serait réduite et se placerait dans le canal auditif du patient.  Nous avons utilisé ce 

nouvel émetteur (composé d’un module Radio Fréquence (RF), une batterie et un microphone) afin de créer un 

récepteur complémentaire dont l’architecture et le cahier des charges seraient grandement dictés par la composition de 

l’émetteur. Toutefois à cause de la place réduite dans le canal auditif et de la faible batterie insérée dans la partie 

externe de l’implant, l’unité de calcul digitale devra donc être placée dans la partie chirurgicalement implanté (interne) 

de celui-ci, aboutissant à une  nouvelle étude complète de l’architecture électrique de l’implant. 

La modélisation comportementale de la partie externe de l’implant a été réalisée avec le logiciel Matlab®. L’étude du 

canal de transmission et sa modélisation utilisant des modèles électriques de tissus biologiques a été ensuite effectuée 

ainsi que l’étude du niveau de bruit introduit par le canal. Ceci a permis la définition complète du cahier des charges du 

récepteur RF.  

En utilisant les spécifications de l’émetteur RF et les résultats théoriques obtenus liés à la modélisation du canal, 

trois types d’architectures diverses pour le récepteur ont été comparés en terme de puissance consommée et de 

facteur de bruit. L’architecture retenue a été implémenté en Matlab® afin de modéliser la chaîne de réception 

complète. Cette modélisation a permis l’extraction théorique des paramètres critiques ainsi que l’évaluation des blocs à 

optimiser. Le test approfondi du récepteur est capital considérant la difficulté d’extraction de celui-ci une fois implanté. 

Deux types de modulations différentes sont réalisés à l’émission : une modulation PWM ainsi qu’une modulation 

OOK, la dernière permettant d’envoyer le signal en RF. Chacune de ces deux modulations nécessite un oscillateur. 

L’étude et la restriction du bruit de phase est donc de grande importance afin de garantir une précision suffisante pour 

la modulation PWM et de ne pas émettre hors de la bande ISM sélectionnée. La description de deux théories très 

utilisées décrivant le bruit de phase (la théorie de Leeson et le modèle d’Hajimiri et Lee) est proposée et un nouveau 

modèle unifiant ces deux théories a été extrait. Ce modèle, qui est toujours en cours de développement, pourrait 

permettre de faciliter le calcul du bruit de phase pour divers oscillateurs. L’extraction du jitter à partir du bruit de phase 

et son impact sur le  transmetteur complet, a restreint la précision maximale du signal PWM. 
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RESUME 

 

L’amélioration principale qui pourrait être effectuée sur les implants cochléaires pour augmenter la reconstitution du 

signal sonore, concerne le fil contenant les électrodes qui est inséré à l’intérieur de la cochlée. Le nombre limité 

d’électrodes qui est très largement inférieur au nombre de terminaisons nerveuses présentes dans la cochlée, aboutit à 

une restitution du signal sonore approximative. La compréhension précise et la modélisation des différentes parties de 

l’oreille humaine qui conduisent à la stimulation des terminaisons nerveuses ont été effectuées. Le modèle mécanique 

de l’oreille externe et de l’oreille moyenne ainsi que la vibration de la membrane basilaire (due à la perception d’un son 

externe) ont été extraits de différents modèles disponibles et assemblés. Par la suite nous avons développé un nouveau 

modèle mécanique de l’organe de Corti et du déplacement des stéréociles, que nous avons validé à l’aide de données 

provenant d’expériences physiques caractérisant ces deux différentes parties. La dépolarisation des cellules ciliées suites 

au mouvement de la membrane basilaire a été calculée et la modélisation mathématique de la synapse entre les cellules 

ciliées et les fibres nerveuses a été réalisée, afin d’obtenir le stimulus électrique relatif à un son perçu quelconque. De 

plus un nouveau modèle analogique décrivant la propagation de l’information nerveuse a été développé et pourrait 

permettre une étude complémentaire des connections neuronales. 

En se basant sur la spectroscopie d’impédance électrochimique des tissus biologiques, nous avons créé un modèle 

électrique du fil d’électrodes inséré dans la cochlée. Ce modèle électrique a permis de définir de manière théorique la 

durée estimée de la batterie ainsi que la puissance minimale requise pour stimuler les cellules nerveuses autour de 

chacune des électrodes. 

Ensuite nous avons créé une carte topographique des cellules ganglions spirales dans la cochlée que nous avons modifié 

par l’inclusion de la fonction du seuil d’audition afin de stimuler de manière différente les nerfs présents dans la cochlée 

en fonction de leur position dans cette dernière. L’utilisation de cette carte topographique modifiée pourrait aboutir à 

une perception des sons plus proches d’une oreille saine. Un nouvel algorithme concernant la sélection des électrodes à 

stimuler en fonction de la fréquence du son perçu et utilisant la Transformée de Fourier Discrète, est proposé. Celui-ci 

pourrait permettre une meilleure répartition de l’énergie sur l’ensemble des électrodes. Toutefois l’amélioration de la 

perception des sons qui pourrait être apportée par cet algorithme est hautement spéculative. En utilisant un 

développement mathématique similaire, nous avons également tenté de reproduire les sons que pourraient percevoir 

les personnes utilisant un implant cochléaire. 

Les différents travaux réalisés et décrits dans ce document couvrent un large éventail de disciplines physiques et les 

différentes recherches menées ont pour but l’amélioration globale des implants cochléaires. 
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PREFACE 

 

 

“Every great advance in science has issued from a new audacity of imagination.” ~John Dewey, The 

Quest for Certainty, 1929 

 

“Nature composes some of her loveliest poems for the microscope and the telescope.” ~Theodore 

Roszak, Where the Wasteland Ends, 1972 

 

“Science is simply common sense at its best.” ~Thomas Huxley 

 

“There is two possible outcomes: if the result confirms the hypothesis, then you have made a 

measurement. If the result is contrary to the hypothesis then you have made a discovery.” ~Enrico 

Fermi 

 

“In questions of science, the authority of a thousand is not worth the humble reasoning of a single 

individual.”  ~Galileo Galilei 

 

“Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make, because 

they lead little by little to the truth.” ~Jules Verne, Journey to the Center of the Earth 

 

“The scientist is not a person who gives the right answers, he's one who asks the right questions.” 

~Claude Lévi-Strauss, Le Cru et le cuit, 1964 

 

“Science, in the very act of solving problems, creates more of them.” ~Abraham Flexner, 

Universities, 1930 
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STFT Short Time Fourier Transform 

SNR Signal to Noise Ratio 

SPEAK Spectral Peak 

SR Slew Rate 

TM Tectorial Membrane 

UWB Ultra Wide Band 

V&V Verification & Validation 

VCO Voltage Controlled Oscillator 

VGA Variable Gain Amplifier 

VHDL VHSIC Hardware Description Language 
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A. General introduction of biomedical engineering 
 

Communication and communicating devices are today the leading words in industry as well as in 

our society. Long distances are not a challenge anymore for communication as structures were 

especially created to relay the signal such as antennas or satellites. Furthermore even for close 

communications, signals are transmitted more and more in a wireless way for convenience and 

simplicity. Wireless systems are nowadays ubiquitous all around us: cell phones, WI-FI, wireless 

sensors, RFID are some examples. Research on wireless system has increased incredibly during the 

last decades making them more efficient, more autonomous and easier to use. 

Moreover biomedical engineering has recently emerged as a discipline mixing engineering fields 

such as mechanical engineering, electrical engineering, chemical engineering, etc. in order to cope 

medical challenges or to create medical devices. The creation of reliable medical sensors (for 

medical imaging or biological quantities detectors for instance) as well as the creation of embedded 

systems to cure illnesses such as peacemakers or cochlear implants are major applications of 

bioelectrical engineering. 

 

B. Introduction to cochlear implant 

 
Cochlear Implants (CIs) are neuro stimulating devices used to remedy partial or complete hearing 

loss. After decades of research, persons with hearing disabilities using CIs are able to communicate 

and to enjoy music or to follow a telephone conversation.  Top performers cochlear implantees with 

present-day can obtain very high scores in diverse tests of hearing capacity such as speech 

recognition such as Consonant-Nucleus-Consonant words (50% of recognition achieved by top 

performers), recognition of sentences (around 90% achieved by top performers), recognition of 

syllabus in various tests such as developed in [1] (around 95% for top performers, very close to 

control patients with a healthy ear). These current results are encouraging and are proof of an 

almost complete restoration of hearing, for speech recognition at least, in a previously total 

deafened ear [1]. In addition as stated in [2], for most implanted patient speech recognition is 

mainly influenced by the audio signal (80% of speech recognition is achieved using only auditory 

indications, 40% using only lip reading and 90% using both), certifying better communication for 

implantees. 
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Various parameters poorly quantified are also involved in hearing restoration such as the time of 

deafness, the cause of deafness, the survival rate of Spiral Ganglion Cells (SGC), the age of 

implantation, the proximity of the electrodes array with the modiolus (during surgical insertion of 

the electrode array)or even the intelligence of the patient, maybe indicating better brain 

plasticity[3]. 

Furthermore the time involved for hearing restoration process in cochlear implantees is influenced 

by the age of implantation [4] and reaches a plateau after several months. As an example, the 

cortical response to brief speech sounds is within the normal range after 9 months in early 

implanted patients (around 3 years old) but only after one and a half year for late implanted 

patients (implantation around 12 years old) [1].  

CIs allow direct stimulation of the auditory fibers with an electrodes array designed to reproduce 

the stimulus that would be generated by a healthy cochlea (FIGURE 1). In a functioning ear, when a 

sound wave strikes the eardrum, movement of the ossicles results in a liquid wave propagation 

inside the cochlea and stimulation of only a precise area depending on sound wave frequency. 

Complex mechanisms are involved (reviewed in Chapter III and Chapter IV) to finally produce 

auditory nerve fibers stimulation allowing sound perception. In the majority of patients, deafness is 

attributed to cochlea defects (cf. Section I.F). 

 

FIGURE 1: EAR ANATOMY AND COCHLEAR IMPLANT (ATTRIBUTED TO [5]) 

 

To do so, an external part of the hearing devices is located within the outer ear and contains a 

microphone that captures the acoustic waves and transforms them into an electrical signal. A Data 
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Processing Unit (DSP) subsequently creates the right stimulus for the electrodes array. Then, this 

signal is up-converted from baseband (audio signal from 20Hz to 20kHz) to the transmit frequency 

defined by the chosen ISM standard (13,56MHz, 433MHz, 866MHz or 2.45GHz). In the vast majority 

of cochlear implants, a transmitter coil antenna is preferred to send data to the receiver which is 

embedded inside the human body. Avoiding direct connection between the transmitter and the 

receiver is nowadays the solution retained by all the cochlear implants manufacturing companies to 

avoid infection risk. Several decades ago, CIs with a simple wire connection between these two parts 

(percutaneous connection) were commercially available [6]. The occurrence of infection may have 

motivated the withdrawal of single block cochlear implants, to prefer the use of two blocks, one 

external and the other inside the body, with an electromagnetic transmission between those. 

However electromagnetic transmission or wireless systems are not entirely safe. In fact the 

conclusions of the Bioinitiative report validated by the European Environment Agency [7] stated that 

WIFI waves can cause headaches, loss of concentrations, cardiac problems and even cancer (brain 

cancer, thyroid cancer and others neoplasms). Other documents [8, 9] have indicated possible 

protein conformation change, alterations in binding ligands to cell surface receptors and enhanced 

attraction between cells. 

The danger of wireless systems are still controversial, hence extreme caution is advised for the 

use of such technology near the brain. Furthermore, the human body is mainly composed of water 

(70-80% depending on age). As the absorption coefficient of water at 2.45GHz is around 1m (cf 

Figure 2, attributed to [10]), all the brain may be affected by this wireless transmission. 

New ways of transmission (light, vibrations) could be investigated to create safer CIs (outside the 

scope of this document). 

 

 

FIGURE 2: ABSORPTION COEFFICIENT OF WATER OVER FREQUENCIES (EXTRACTED FROM[10]) 
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The corresponding receiver is located within the patient’s head, close to the skull. It is composed 

of a demodulator and a set of electrodes, called the electrodes array. The electrodes array is driven 

by electrical signals resulting in stimulation of the auditory nerve fibers [11, 12].It is surgically 

inserted inside the scala tympani of the cochlea (Figure 3). The insertion depth of the electrodes 

array inside the cochlea (scala tympani) is around 25mm which is insufficient to stimulate all the 

cochlea nerve fibers since the cochlea measures approximately 35mm, resulting in inability of 

Cochlear Implant to stimulate low frequencies (explain in details in Section I.C). 

Furthermore there are also safety concerns about cochlear surgery. Very low rate of abandoned 

procedures are achieved (less than 1%) but about 5% of the operations were followed by some 

forms of complications [13]. Major complications require a revision surgery as it may be the case in 

persistent ear infection, meningitis, facial nerve damage or repositioning of the electrode array but 

these complications are rare events [13].  

As CIs performances are also dependent on the correct placement of the electrodes array inside 

the cochlea, incorrect positioning of the implant may result in poor language recognition. Hence 

correct insertion of the implant, with deep insertion and proximity to the modiolus is of capital 

importance. Delicate insertion surgery is required to avoid supplemental damage to the intra-

cochlea structure [14]. 

As the technology is evolving very fast, CI replacement is advised after several years for better 

hearing sensation. However implant replacement is not the main preoccupation of manufacturing 

companies and the very elevated cost of the implant and surgery may discourage various users for 

system upgrade. A partial solution proposed in [14] could be to make the electrodes array 

detachable from the internal electronics to avoid cochlea surgery and damages. However to the 

author’s personal belief, electrodes array future improvements would be the major reason for more 

accurate hearing in CIs users. New electrodes array are being investigated such as intramodiolar 

implants or functional nanoparticules coating the electrode pads for neurites growth toward the 

implant for very precise nerve fibers stimulation [1, 15]. 

Not all deaf people are candidate to CIs insertion. There are several criteria for acceptance such 

as profound bilateral sensorineural hearing loss or severe impairment of speech discrimination and 

recognition performance [16]. Besides the hearing improvement brought by CIs may greatly reside 

on the brain plasticity for adaptation to these new stimuli as well as the preservation of auditory 

nerve fibers and central nervous pathway neurons, explaining the better results obtained when the 
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device is inserted in very young patients or in patients who just become deaf (the main non genetic 

causes of deafness are presented in [17]). 

Despites the incredible advantages brought to cochlear implantees, there is yet much room for 

improvement. At present, the reconstructed signal is not the same as the original sound due to the 

fact that the number of active channels is limited (around 8 depending on the type of CIs as 

explained in Section I.B) resulting in signal distortion. This explains the need of prolonged 

(re)learning process after patients implantation in order for them to ear and pronounce words 

correctly. As previously noted, any improvement especially in the electrodes array may be 

significant for patient hearing sensitivity. Electrodes array containing 30 electrodes [18] or nerve 

stimulation using light [19], hence very accurate, are also currently under study. 

 

C. Undiscernible cochlear implants 
 

Despite the disturbances associated with the electronics such as noise perception, battery 

lifetime, poor or no music perception as example, cochlear implantees often complains of various 

issues as reported in [20], such as electromagnetic perturbations near cell phones, esthetical issues 

or inconvenient external part for external activities. In order to tackle these secondary issues, new 

types of implants are being developed. Several years ago, the University of Melbourne research 

team proposed a Totally Integrated Cochlear Implant (TIKI) and phase I clinical trial results are 

available in [21]. Similar system was developed at Pittsburgh Ear Associates [22] 

Other CIs manufacturing companies such as MXM® chose to lower aesthetic discomfort due to 

the voluminous shape of the external part of the cochlear implant. One of these prototypes (MicrA) 

proposed an architecture reorganization to insert the DSP (which is the most ample block) inside the 

receiver. In this work, presented in [23], the transmitter is inserted inside the auditory canal, 

sending RF waves (allowing reduced antenna size) to the receiver inside the patient’ s skull. As the 

auditory canal space is limited, the DSP is now integrated on receiver, forcing electrical architecture 

reworking (this system is recalled in Figure 3).  
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FIGURE 3: DEVELOPED COCHLEAR IMPLANT WITHIN EAR [24] (BACKGROUND EAR DRAWING ATTRIBUTED TO[25]) 

 

The transmitter architecture selected in [23], is based on a Pulse Width Modulation (PWM) 

encoding before sending the signal to the Industrial Scientific and Medical (ISM) band using an On 

Off Keying (OOK) modulation. This architecture selection was justified in [24]. The OOK modulation 

was preferred due to low power consumption but resulted in high noise sensitivity degrading the Bit 

Error Rate (BER) ratio. To ensure encapsulation of the antenna, the modulating frequency was 

2.45GHz, however suffering of high attenuation as the propagating middle is human tissue. Finally 

the PWM was selected offering many advantages such as low integration surface, no need of 

numerical part and low power consumption. However the computational velocity and resolution 

were impacted (further discussion in Section V.C defining theoretically the maximum resolution 

reached by this type of system embedded in the auditory canal). 

The work presented by Y. Vaiarello [23] is used as basis for the receiver specifications and 

receiver architecture selection as well as for the modeling of the overall CI system. 

 

D. Main challenge in the field and project main goals 

 
To create a suitable receiver to the work performed by Y. Vaiarello [23] in our laboratory, 

allowing a complete prototype of the presented less noticeable CI, the behavioral modeling of the 

transmitter and the propagation channel were first completed to obtain specifications for the 

receiver. Architecture choice of the receiver was considered before the electrical design of the 
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selected one. Behavioral modeling of the receiver blocks was performed to obtain the entire 

electrical system modeling to study parameters influence and to deduct system optimizations. 

Phase noise influence on signal integrity was also studied, especially the influence of the low 

frequency oscillator. As we performed time simulations, conversion from phase noise to timing jitter 

was reviewed and integrated to the block model of the low frequency oscillator used for PWM signal 

creation. 

As already introduced, the electrodes array and its interface with the nerve fiber are the 

elements involved in sound restitution accuracy. Any improvements in this stimulation may greatly 

increase the hearing perception.  

In deaf patients, nerve response may be registered using back telemetry. Their hearing responses 

following sound wave detection are often evaluated in terms of evoked Compound Action Potential 

(eCAP) which characterizes the auditory nerve activity. A complete multi-disciplinary model from 

eardrum displacement to eCAP production has been developed.  

To the author’s best knowledge, such a heterogeneous model including the external and middle 

ear structures, connecting sound frequency and amplitude with the vibrations of the Basilar 

Membrane (BM), including the organ of Corti mechanical model and ultimately stimulating auditory 

nerve fibers, was not available until now. Synapses functioning and nerve fibers membrane voltage 

depolarization propagation were reviewed in that purpose. 

This multi-disciplinary model may bring new insights, especially if validated by case 

measurements, to link special nerve responses with ear pathologies. 

In addition, the deep understanding of the hearing mechanism may be of great importance to 

improve CI nerve stimulation and hearing restitution. 

There is constant research ongoing to find new algorithms for improving sound perception in 

implanted patients. These improvements aim to recreate the illusions of a continuous and precise 

cochlea stimulation whereas the electrodes array constituting the cochlear implants are partly 

stimulating the cochlea.  Using signal processing theory, we proposed new algorithms that may 

bring greater sound perception for deaf people. These algorithms are however waiting to be 

implemented in cochlear implants processing unit, for physical testing. 

As already introduced, the nerve fiber electrode interface is central to hearing reconstitution. 

The accuracy of sound reproduction by cochlear implants is mainly dependent on this interface. 

Consequently, the precise understanding and modeling of this interface as well as new solutions for 

its improvement may be the main factors for cochlear implants ameliorations. 
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Cochlear implants often require extended learning process in order for deaf people to 

understand words and correctly express themselves as the sound they perceived is disturbed. 

Creating profiled learning exercises may hence diminish the learning time. In that intent it may be 

interesting to estimate or reproduce the sound perceived by deaf people using cochlear implants. 

The previous points were investigated and we proposed new solutions to tackle these difficulties. 

Besides they are also numerous issues that are not covered in this document and may improve 

the hearing sensitivity in implanted people: increasing battery duration allowing reduced battery 

reloading frequency, decreasing the noise brought by the electronic device and resulting in constant 

low level sound perturbations. 

 

E. Technical choices 
 

For biomedical implant more than any other application, foreseeing the behavior of electrical 

device in situ is of capital importance as failing to do so would immediately result in implanted 

patient discomfort. On top of that, the low power aspect of implanted electronics often leads to 

unusually poor designs in terms of performances compared to classical designs. Modeling of such 

designs for extended testing purpose is hence required. 

The overall model is composed of an RF part, an analog one, a digital one and physical models of 

hearing stimulation. For modeling purposes, two main systems were considered: the Mixed Signals 

(MS) system (RF/analog/digital) and the heterogeneous system (mixed signals system/physical 

model of the hearing process). 

 

1. Mixed signals system 
 

MS languages may be used for the description of such system due to the presence of an analog 

part and a digital part. The different simulation frequencies needed for the analog part simulation 

and for the digital part simulation are still nowadays problematic [26].In fact at present time, SPICE 

simulators translate electrical circuits into matrices (using Kirchhoff' s circuits laws) and solve them 

at frequencies much higher than the working frequency (2.45GHz in our case) whereas DSP are 

working at frequencies often much smaller (around 100MHz), hence resulting in very long  

simulation time of the digital part. To decrease the simulation time of a MS System, various 

solutions exist such as partionning [27] or dynamic delay creation [28]. 
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A solution often retained is the behavioral description of analog blocks [29].Avoiding a transistor 

level simulator for such a system can lead to significant saves in terms of CPU time and makes it 

possible to perform a fast architecture exploration and to find out which electrical parameters are of 

particular importance to device functioning. This MS system simulation is limited to time domain 

simulation only and require blocks design and testing before MS model creation. 

VHDL AMS, Verilog A and SystemC AMS are currently the most popular MS languages used, 

ensuring high accuracy, integrating a large level of abstraction and reducing simulation time. At 

higher level of abstraction, Matlab/Simuling® simulation can be used for architectural exploration. 

Simulink® has an inbuilt analog toolset giving simulation results often as accurate as the ones 

obtained by SPICE simulations [30]. However the increase in simulation time is consequent 

compared to other MS tools which makes it unpopular at present. 

 

2. Heterogeneous system 
 

The modeling of the complete hearing process was performed connecting various models. As far 

as the author knows, no other accurate hearing model with external hear modeling, physics of the 

cochlea integration, mechanical modeling of the organ of Corti and mathematical modeling of nerve 

fibers transmission was developed.  

The electrical stimulation of the organ of Corti by the electrodes array was theoretically 

developed to connect the electrical stimulation with the nerve fibers stimulation. We choose 

Matlab/Simulink® environment to model such an heterogeneous system providing advantages such 

as high level modeling (mathematical modeling), graphic function for visualizing data, data reading 

made easy from different inputs (USB key or various ports for instance).To improve portability, to 

refine the behavioral description and add noise sources, it was decided to create our own behavioral 

models (for the electrical blocks) instead of using existing ones. From this perspective, we created 

these models discarding Matlab® existing functions except for the Gaussian noise generator and the 

waveread function which can be found in other languages. 

To implement the cochlea movement following sound perception or nerve fiber transmission, 

Maple Sotware® was used as it allows symbolic mathematical calculus.  

The design of the electrical blocks (such as VCO or LNA) and their results extraction, previously 

accomplished before their behavioral modeling, was done in SPICE. 
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F. Modeling guidelines 
 

For the blocks modeling, several rules were followed in order to ensure efficient model creation, 

to reduce simulation time and to increase results accuracy: 

 Behavioral modeling of the blocks was preferred to structure modeling. In that intent  

equations were favored than precisely describing the internal architecture [31]. 

 Although the corresponding physical effects were studied, it was not necessary to model 

the behavior of the blocks outside their normal working range, a warning message was 

acceptable [31]. 

 Refining the model should be made only for significant parameters to optimize 

simulation time. 

 For MS modeling, the models should take into account the perturbations of the load and 

the source. 

 No digital noise coupling or substrate noise injection were considered. 

 Parasitic effects were found insignificant (cf Section I.C.6) when comparing circuit 

measurements with circuit design performances hence they were neglected. 

 

G. Verification and Validation 
 

Testing process goal is to discover defects in the model created: blocks behavior may be incorrect 

or not in accordance with the specifications. To ensure that the modeling was correct, we used a 

similar approach to Verification and Validation (V&V) principle [32-34]. 

V&V ensures that the models are correct with a certain degree of confidence. The verification of 

each electrical block model was mainly done by single unit testing, where each block was considered 

as a black box. The comparison of this testing with results from SPICE simulation for diverse input 

cases ensured that the model was conformed to specifications.  

Model creation may be disconnected from real world and often very restricted to narrow case 

representation. The validation of model is hence of primary importance. In the V&V procedure, the 

validation is often done after the model has been verified, and is used to demonstrate that the 

model fulfills its intended function [35]. Modeling main goal is to extend the testing of the real 

system as well as to make predictions about future events [33]. The validation of MS modeling was 
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achieved by comparison of the results from physical testing and by statistical analysis (as explained 

in Chapter I and II). 

Furthermore there is a complementary work to validate the model: which are the particular 

cases where the model is validated (in accordance to physical measurements)? How can model re-

use in other cases be performed? Our model validation of the complete hearing process was only 

targeting the healthy cochlea models. 

 

H. Thesis outlines 
 

This document is subdivided into 5 main Chapters. Chapter 1 focuses on model development for 

the transmitter and for the propagation channel. As the propagation channel is composed of 

biologic tissues, review of human tissue modeling theory is presented. 

Chapter 2 explains the architecture selection motivation for the receiver followed by the 

electrical SPICE design of three different receiver architectures. The testing process of the overall 

system was carried out and could permit to recognize the restricting parameters for eventual block 

optimization. Then phase noise modeling was introduced and converted into timing jitter. The 

timing jitter inclusion into the low frequency oscillator model used for PWM creation permitted to 

extract the maximum precision envisaged. Besides phase noise restriction in the ring oscillator used 

for OOK modulation was necessary to respect the ISM radio bands specifications. 

The creation of a heterogeneous model for the hearing process, starting from the sound 

reception to nerve fibers stimulation, is proposed in Chapter 3, for a healthy ear. Mechanical model 

of the outer ear and of the organ of Corti associated with nerve fibers stimulation by 

neurotransmitters at synapses were defined in order to express the auditory nerve response as a 

function of the sound wave input. To theoretically test the validity of our hypothesis, two sound 

waves of 300 Hz and 600 Hz respectively with 50 dB of magnitude were used as input and the 

subsequent results were discussed. 

Chapter 4 discusses the nerve fibers information propagation (also called Action Potential (AP) 

propagation) spatial and time properties. A new analog model of action potential propagation was 

created with same wavelength, velocity and frequency as experimental ones. Then spikes trains 

were introduced before reviewing the current electrophysiological techniques to record nerve fibers 

activity.   
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Finally Chapter 5 describes the electrical model of the organ of Corti, created from anatomical 

study. Organ of Corti and electrodes interface was theoretically studied and an electrical analog of 

such a system was realized. The theoretical results obtained from this model may permit to define 

battery sizing of the cochlear implant, electrode stimulation type or minimal spacing size between 

electrodes. 

A topographic map which indicates the afferent nerve fibers repartition inside the cochlea 

weighted by the cochlea sensitivity toward certain frequencies was created. This map may be used 

to increase cochlear implants sound perception. Applying the Discrete Fourier Transform (DFT) 

formula to only the frequencies stimulated by the electrodes, permitted a new algorithm 

proposition for electrodes selection. In addition this adapted Fourier transform was also used to 

estimate the sound sensitivity in deaf people using cochlear implants. 

State of the art and technical background review was performed in each chapter separately 

rather than gathered into a single section. This choice was the most convenient, as the prerequisites 

and physical fields covered were often different and chapter specific. 
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A. Opening notifications 
 

As the transmitter was available from the start, the modeling efforts were concentrated on this 

part. In this chapter the emitter architecture is presented, then each analog and RF block (and their 

corresponding behavioral models) that we created for this work are described more in detail. The 

encountered modeling and design bottlenecks are emphasized and the results are compared to 

SPICE simulations for block design optimization purpose. The maximum theoretical precision of the 

Pulse Width Modulation (PWM) signal (cf Section I.C) is discussed based on the ISM frequency band 

specifications and from prototype measurements. 

Finally, the physical model of human tissues we implemented is presented to characterize the 

propagation channel and to obtain realistic receiver specifications.  

 

B. Transmitter architecture 
 

The architecture considered for modeling is described in Figure 4. It consists of a 2.45GHz OOK 

transmitter and the associated receiver.  

 

 

FIGURE 4: TRANSMITTER ARCHITECTURE 

 

The transmitter gathers of a 2.45GHz oscillator generating a sine voltage which is amplified to the 

maximal allowed power in the ISM band and PWM. The modulating signal’s duty cycle is determined 

according to the amplitude of the audio signal. The ramp block receives a rising edge from the 
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sampling reference clock which is approximately one thousand times higher than the sampling 

frequency of the microphone allowing to reach a maximal theoretical resolution of 10 bits at 20kHz 

[24]. The determination of the maximum number of bits reached by the PWM are one of the goals 

of the modeling and are discussed in the Section I.C.6 and II.D. The shape of the signals of relevance 

are given in Figure 5. 

An example of ideal simulation, without noise nor distortion is given in Figure 5, where the 

different voltages represented are plotted as a function of time. In the top window, the output 

voltages of the low frequency amplifier (sine), ramp (triangle) and comparator (rectangle) are 

superimposed. In the bottom window, the RF signal (2.45 GHz carrier modulated with a PWM signal) 

is presented. 

 

 

FIGURE 5: TRANSIENT IDEAL SIMULINK® SIMULATION. TOP : AMPLIFIER, RAMP AND COMPARATOR OUTPUT, BOTTOM : RF SIGNAL. 

 

C. Model implementation 
 

1. Baseband module implementation 
 

The implementation in Matlab/Simulink® (displayed in Figure 6) was graphically very close to the 

electrical architecture, allowing a fine tuning of each block. In this way, corruption of these blocks 

with non linearities or noise perturbations was made easier as well as new implementation in case 

of architecture redesign. 
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FIGURE 6: BASEBAND MODULE DESCRIPTION IN SIMULINK® ENVIRONMENT (THE BLOCKS WERE CREATED USING MATLAB® CODE) 

 

For the first system simulation, the number of bits associated with the PWM encoding (NPWM) has 

to be defined. The PWM upper limit depends on the product of the microphone frequency and the 

PWM Least Significant Bit (LSB) which should be enclosed in the ISM frequency range of the selected 

ISM band [2.4GHz;2.5GHz]. The maximum baseband frequency should be lesser than two times the 

selected ISM frequency range to respect the Shannon theorem [36, 37], which established the upper 

limit of NPWM.  

𝑓𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒 ∗ (2
(𝑁𝑃𝑊𝑀 +1)) <

(50) ∗ 106

2

⇒ 𝑒𝑥𝑝((𝑁𝑃𝑊𝑀+1)∗𝑙𝑛2) <
50 ∗ 106

𝑓𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

⇒ 𝑁𝑃𝑊𝑀 <

(𝑙𝑛 (
50∗106

𝑓𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒
))

𝑙𝑛(2)
− 1

⇒ 𝑁𝑃𝑊𝑀  ≤  10

 

EQ.  1 
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where fmicrophone is the maximal microphone frequency and was equal to 20kHz for the microphone 

used.Furthermore to permit efficient filtering, the PWM signal frequency band, defined by the Least 

Significant Bit (LSB) should be significantly lower than the selected ISM band frequency range. 

Therefore the NPWM value selected for subsequent testing was 8 bits (further refined in Section II.C 

and II.D) 

 

2. Cyclic Ratio block and Oscillators description 
 

a) Voltage Controlled Oscillators (VCO) 

 

Jitter and phase noise limitations are of particular importance in this architecture since a high 

jitter on the low frequency oscillator irremediably causes demodulated signal distortion and high 

phase noise on the local oscillator results in spectral leakage outside the allowed frequency band. 

In this Section, we did not study the influence of phase noise, resulting in a unsophisticated 

modeling of the oscillators. The study of oscillator perturbations on the signal integrity were studied 

in Section II.E, in terms of phase noise characteristics to determine statistical parameters for time 

domain simulation. Mathematical models were developed in Section II.E, to study jitter influence on 

the signal integrity. These models were mainly statistical, discarding their use in temporal 

simulations since the temporal simulation may characterize statistical effects only if repeated a 

significant number of times, which obviously would lead to a significant increase in simulation time. 

In this case, temporal models for oscillators included in the transmitter models brought no 

significant advantages than considering jitter inclusion independently of the other blocks. 

The proposed architecture is composed by an initial PWM followed by an OOK modulation thus 

two oscillators working at different frequencies were required. The low frequency oscillator with a 

central frequency of 20kHz associated to the PWM ramp generator was critical for the system 

accuracy and the high frequency oscillator working with a central frequency of 2.45GHz had to be 

confined in the 2.4 – 2.5 GHz ISM band.  

Furthermore anticipating eq.  30, presented in Section II.G.1 (which indicates that phase noise is 

inversely proportional to the consumed power and this characteristic is of interest for further 

optimization of the transmitter),the power budgeting of each block set a maximal phase noise value 

and thus a maximal carrier frequency shift within the ISM band (cf Section II.E). 
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b) Cyclic Ratio generation block 

 

The cyclic ratio module has two clock generators as inputs: 

 The first clock generator (clk1) has a frequency of 20kHz which corresponds to the sampling 

frequency of the signal coming from the microphone. 20kHz is therefore the maximum 

frequency allowed between two consecutive frames.  

 The second clock generator (clk2) has a frequency of 20000 ∗ (2(NPWM + 1)) where NPWM is 

the maximum number of bits that will compose the PWM signal. As discussed above, NPWM is 

fixed to 8. This clock generator should not be confused with the carrier oscillator (fosc) used 

for the OOK modulation 

 

The cyclic ratio generator creates a clock signal having a frequency of 20 kHz and with a clock ratio 

of
1

2(N+1)
. The cyclic ratio algorithm is summarized by the flowchart exhibited in Figure 7. 

 

 

FIGURE 7: FLOWCHART OF THE ALGORITHMS USED FOR THE CYCLIC RATIO CREATION (LEFT) AND FLOWCHART OF THE RAISING EDGE 

DETECTOR (RIGHT) 
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where ycyclicratio is the output of the cyclic ratio block. Remembering that clk1 is the variable 

associated with the first oscillator(having a frequency of 20kHz) and clk2 is a variable associated with 

the second oscillator(with a frequency of 20000 ∗ 2(8)), clk_1 is the previous state associated with 

the local variable clk in the raising edge detection 

For the cyclic ratio generator algorithm, first the reading of persistent variables and then the 

update of local variables is made in order to load variable contents between two program 

executions (clk1, clk2).Then one raising edge detector linked to the faster clock clk2and also a second 

raising edge detector which identified the raising edge of the second clock signal clk1, were 

employed. The principle of this algorithm is straightforward: an output signal of time length equal to 

1

20000∗2(8)
 is created each time the two raising edge detectors are equal to 1.  

The raising edge detection was performed using a simplistic algorithm which used a buffer to 

store the value of an external clock (clk). The current value of clk and the previous state value (clk_1) 

were compared (the output raised to 1 when clk=1 and clk_1=0). 

The time variations of clk1, clk2 and the created ramp reset signal (also named local oscillator) are 

indicated in Figure 8. 

 

 

FIGURE 8: LOW FREQUENCY (LOCAL) OSCILLATOR PULSE CREATION BY THE CYCLIC RATIO BLOCK USING TWO OTHER OSCILLATORS 

 

3. Power Amplifier 
 

The mathematical model ofthe Power Amplifier (PA) can be found in [38, 39] and is usually 

described by eq.  2: 
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𝑣𝑠(𝑡) =  𝑎1𝑣𝑒(𝑡) + 𝑎2𝑣𝑒
2 + 𝑎3𝑣𝑒

3 
EQ.  2 

where ve(t) is the input voltage, vs(t) the output voltage, and a1, a2, a3 scalar coefficients which 

depend on the 1 dB compression point (P1DB) and the Intermodulation Products of the second and 

third order (IIP2, IIP3) as described in [40-43]. The corresponding powers are then derived from eq.  

2 according to the circuit input and output impedances. The PA mathematical model was limited to 

the third order time description but can be further extended as expressed in [44, 45] if needed.  

However as the a3 coefficient is negative to account for saturation effects, using only eq.  2 would 

lead to a vs decrease if ve was higher than a specific value vmax. Consequently, in the PA model 

construction, the local maximum of eq.  2 is used to switch equations for vs description (cf eq.  3). 

𝑣𝑠(𝑡) =  {
𝑎1𝑣𝑒(𝑡) + 𝑎2𝑣𝑒(𝑡)

2 + 𝑎3𝑣𝑒(𝑡)
3 𝑖𝑓 𝑣𝑒   ≤    𝑣𝑚𝑎𝑥

𝑣𝑠(𝑡) + 𝑎1 𝑣𝑒(𝑡)            𝑖𝑓  𝑣𝑒 > 𝑣𝑚𝑎𝑥
 

EQ.  3 

The time where ve=vmax is reached (tp) can easily be computed from the previous equation. The 

transfer expression for ve>vmax has to be modeled in order to correctly simulate input signals in the 

saturation region of the PA. 

The modeled characteristic is compared to actual SPICE simulation in Figure 9. 

 

 

FIGURE 9: COMPARISON BETWEEN THE POWER GAIN CURVES FROM MATHEMATICAL MODELING AND SPICE SIMULATIONS 

 

The PA model also includes noise corruption. The added PA noise (Na) was supposed to be white 

noise because 1/f noise can be neglected around the working frequency (2.45GHz). The added noise 

is described by the Noise Factor (F), given by eq.  4: 
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𝐹 = 
𝑁𝑎 +  𝐺𝑁𝑖
𝐺𝑁𝑖

 
EQ.  4 

where Na is the PA added noise,G the power gain and Ni the input noise. Na and Ni were obtained 

using a SPICE Periodic Noise analysis on the PA only or on the PWM output block respectively. Only 

the output noise was take into account. G was obtained by a Periodic Steady State (PSS) analysis in 

Cadence. Other analysis may be used to extract those parameters (Scattering Parameters (SP) 

analysis for power gain, direct noise analysis for output noises floor,...) 

 

 

FIGURE 10: COMPARISONS BETWEEN THE MATHEMATICAL NF MODELING SIMULATIONS AND SPICE NF SIMULATION OF THE PA 

 

Figure 10 presents the comparison between the Noise Figure (NF) from analytical model and 

electrical simulations. The NF simulated shape was not perfectly following the SPICE simulated NF 

since the equations implemented for NF modelling were standard equations to ease the 

computations, however the difference was very small (less than 1dB) between the NF values. 

Furthermore this parameter is not of critical importance because the PA is placed at the end of the 

transmitter and, according to Friss Formula [46]. 

Figure 11 shows the block diagram of the PA model. For modelling purpose, two PA were 

associated, one modelling the ON state of the PA and the other the OFF state. In this model the gain 

KpOFF of the OFF state was set to zero to decrease the simulation time. However this approximation 

is inexact as the real measurements made on the CMOS prototype (cf Section I.C.6) showed that 

during the OFF state of the PWM a few signal flowed from the PA input to the output at the working 

frequency due to parasitic capacitance. 
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The 2.45 GHz Voltage Controlled Oscillator (VCO) signal was applied to the respective PA inputs. 

The PA outputs were controlled by PWM and 𝑃𝑊𝑀̅̅ ̅̅ ̅̅ ̅. Finally white noise corruption (Na) was added 

in the PA model. 

 

 

FIGURE 11: BLOCK DIAGRAM OF THE PA MODEL WITH NOISE CORRUPTION 

 

The errors between the SPICE simulations and the mathematical models may arise from the low 

power design which causes huge non linearities, just partly taken into account in this modelling 

work, to reduce simulation time.  

 

4. Ramp creation 
 

The PWM signal was obtained using a ramp block generator which was compared to the input 

signal (wave sound from the microphone). A pulse is generated at a frequency of 20kHz and resets 

the ramp. Shorter is this pulse time length, greater is the accuracy that can be reached by the PWM. 

The entire ramp can be constructed adding both the raising and the falling part equation selected 

by associated window functions (eq.  5) 

𝑠(𝑡) =  𝑠1(𝑡)∏ (𝑡) + 𝑠2∏ (𝑡)
𝑓𝑎𝑙𝑙𝑖𝑛𝑔𝑟𝑎𝑖𝑠𝑖𝑛𝑔

 
EQ.  5 

where Πraising is a window function equal to 1 only when the ramp is raising and Πfalling the opposite 

window function; s1 and s2 are obtained using polynomial extraction functions of the raising region 

of the ramp and the falling region of the ramp respectively. 
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Inaccuracies between the analytical model and the SPICE simulations shown in Figure 12 results 

from low level rank polynomial modeling. There is a maximum error between the 2 curves that can 

reach high values in the falling part and is much more limited, around 3%, in the rising part. The rank 

of polynomial extraction directly impacts the simulation time, however modeling the exact transient 

shape of falling part of the ramp is not critical because the signal distortion is due to the raising part 

of the ramp only. The falling part mainly impacts the data rate, meaning that only the fall time is of 

relevance independently of the transient model accuracy. 

 

 

FIGURE 12: RAMP OBTAINED BY TRANSIENT SIMULATIONS BETWEEN THE ELECTRICAL DESIGN AND ANALYTICAL MODEL 

 

5. Comparator modeling 
 

The comparator is central to PWM modeling as it compares the input with a temporal ramp 

signal, yielding in a time length modulation. The comparator model includes constant distortion and 

offset perturbation as well as maximum rate change limitation of the output voltage, i.e. SlewRate 

(SR), extracted from SPICE simulations (by feeding the comparator input with a square function and 

computing the maximum output slope). 

The mathematical comparator model without distortion is presented in eq.  6: 

𝑦 =  {
1  𝑖𝑓 𝑣𝑖𝑛  ≥  𝑣𝑟𝑒𝑓 + 𝑣𝑜𝑓𝑓𝑠𝑒𝑡

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

EQ.  6 

where y is the comparator output, vin and vref are the comparator input signals and voffset is the 

voltage offset defined by SPICE simulations as the minimum vref voltage (when vin voltage is set to 

0V) required for a comparator steady-state variation. 
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Both comparator input signals are analog, they are hence corrupted by noise especially high 

frequency noise. Filtering of the input signals with a digital filter like a Moving Average (MA) filter is 

required first before every comparison with constant slope (eq.  7): 

𝑣𝑓(𝑛) =  𝑀𝐴 [𝑣𝑖𝑛(𝑛)] =   
1

𝑀
∑𝑣𝑖𝑛(𝑛)

𝑀

1

 

EQ.  7 

where n is the current sample, vin is the input signal of the filter, vf is the filtered signal and M a 

scalar coefficient. 

The MA filter was not used to filter physical analog signals but used only for modeling purpose 

and no hardware implementation was done. The value of M was fixed at 32 samples that allowed 

sufficient accuracy for comparison of the input slope with the comparator SR obtained with SPICE 

simulations. Applying the MA filter to both input derivatives was required to obtain the slope of the 

input signals with reduced noise corruption, as presented in Figure 13: 

 

 

FIGURE 13: BLOCK DIAGRAM FOR INPUT SR COMPUTATION 

 

where SRinput is the maximum SR of the signals feeding the comparator. 

The output SR (SRoutput) of the comparator is computed after the comparison of the input signals 

SR (SRinput) with the fixed SR obtained by SPICE simulations (SRSPICE) (representing the SR of the 

comparator alone). If the slope of the input signals is greater than the SR obtained with SPICE 

simulations during the raising part of the comparator model, the slope of the output is limited to the 

comparator SR (as shown in eq.  8). If the slope of the input signal is lower than the SPICE obtained 

SR, the input slope can be conserved as the comparator maximum switching velocity is not reached. 

Inverse relations are obtained for the falling part of the comparator model. 

𝑆𝑅𝑜𝑢𝑡𝑝𝑢𝑡  =   {
𝑆𝑅𝑖𝑛𝑝𝑢𝑡          𝑖𝑓  𝑆𝑅𝑖𝑛𝑝𝑢𝑡 < 𝑆𝑅𝑆𝑃𝐼𝐶𝐸
𝑆𝑅𝑆𝑃𝐼𝐶𝐸             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 
EQ.  8 
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SRoutput is used to define the comparator output (eq.  9): 

𝑦𝑆𝑅(𝑛)     =       𝑦 (𝑛 − 1)       +       𝑆𝑅𝑜𝑢𝑡𝑝𝑢𝑡 EQ.  9 

where ySR is the output of the comparator corrupted by the SR, SRSPICE is the SR given by SPICE 

simulations. 

eq.  9 is only valid for the raising part of the comparator model (i.e. vin>vref). The SR creation block 

incorporates different SR for the raising part and the falling part of the comparator output, obtained 

from electrical simulations. 

It should be noted that in the second version of the chip (MicRA v2), the practical SR of the 

comparator obtained by electrical simulations was few volts per nanosecond that is totally 

neglectful compared to the phase noise of the 20kHz oscillator (this oscillator is corrupting the PWM 

signal and hence the signal time length). 

This block was simulated and the results were similar to SPICE simulations (not reported in this 

document). 

 

6. System modeling validation 
 

Transient simulations of the analytical model were compared with transient electrical 

measurements and presented in Figure 14. 

 

 

FIGURE 14: MATLAB® TRANSIENT SIMULATIONS OF THE OVERALL SYSTEM (LEFT FIGURE). MEASUREMENTS ON A 130 NM CMOS 

PROTOTYPE (RIGHT FIGURE) (FROM [24]) 
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The general shape of the signals obtained by mathematical modeling or direct measurement on 

MicRA prototype was similar. The differences between the system modeling simulations and the 

measurements may be explained by the creation of the models which were made based on 

transistor-level description (SPICE) simulations and not directly on measurements, as they were not 

available when the models were created. Indeed SPICE simulations show also some differences with 

measurements. 

As seen on Figure 14, there is a residual noise when the power amplifier is turned off but this 

noise can be reduced by PA subsequent optimized design. Nevertheless it can be noticed that the 

Pon over Poff ratio is high enough not to introduce demodulation error if using a threshold detection 

on the receiver. 

The critical parameter for this application is the duty cycle which is close to SPICE extracted duty 

cycle, rather than to the measured one. The accuracy of the duty cycle is lower than 0.25% which 

ensures 8-bits precision for the PWM signal (remembering that 8 bits precision is the theoretical 

maximum accuracy than can reach the PWM for ISM specifications respect). This value was however 

not precisely verified as no extended tests to determine the duty cycle of the prototype as well as 

the ISM band inclusion verification were performed. 

In addition, mathematical modeling exhibited simulation times about 15 times lower than SPICE 

netlisting while allowing to reach a relatively good transmit signal estimation. 

 

D. Propagation channel modeling 
 

1. Models of biological tissues 
 

Dielectric materials conductivity and permittivity expressions related to Maxwell’s equations 

development are reminded in Annex A.  

The electric analog of biological tissues over frequencies available in literature are restricted to 

the interval between few hertz and few hundred giga Hertz as frequencies above may harm tissues 

(ionizing radiations). The most intuitive model is the Fricke model (recalled in Figure 15) which 

represents biomedical tissues as only a resistance at low frequencies (the current is passing through 

the extracellular space) or by a capacitance and another impedance in serial (in high frequency, the 

current is crossing the cells represented by a capacitance, which models the cell membrane (the 
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passage of ions and electrons through cell membrane is very highly controlled by the cell), and 

another resistance which models the intracellular space). 

However this model is not in adequacy with impedance measurements (impedance spectroscopy 

of biological tissues) of various tissue types; the biological tissue permittivity shows generally several 

steps like decrease over frequencies and the conductivity increases in a steps like manner over the 

frequencies. The Fricke model is not modeling those discontinuities in the frequency response of 

permittivity or conductivity. The Debye model is based on the mathematical description of the 

frequency response. This model describes the permittivity frequency response similar to a filter 

frequency description response with consecutive low pass filter (each one with a different cutoff 

frequency), resulting in a step like frequency response. The initial Debye model, mathematically 

described by eq.  10, is based on a first order frequency response [47]. 

𝜖𝐷𝑒𝑏𝑦𝑒 = 𝜖ℎ𝑖𝑔ℎ  +   
𝜖𝑙𝑜𝑤 − 𝜖ℎ𝑖𝑔ℎ

1 + 𝑗𝜔𝜏
 

EQ.  10 

where ℰ is the complex permittivity, ℰlow is the static permittivity measured and ℰhigh is the observed 

permittivity at a very high frequency, ω is the pulsation and τ is the time constant associated with a 

relaxation phenomenon (practically defined using the cutoff frequency of the tissue measured 

impedance over frequencies). 

The Debye model was further improved adding the static middle conductivity (𝑗 
𝜎𝑠

𝜔𝜖0
 ) and may 

integrate different relaxation phenomenon (with different cutoff frequencies) to precisely suit the 

mathematical frequency response. The mathematical description of this model can be found in [47] 

(cf eq.  11), and can be split into real part (ℰ’’) and imaginary part (σeff also called σ’). 

𝜖𝐷𝑒𝑏𝑦𝑒 = 𝜖ℎ𝑖𝑔ℎ  −  𝑗 
𝜎𝑠
𝜔𝜖0

+ 
∆𝜖1

1 + 𝑗𝜔𝜏1
+ 

∆𝜖2
1 + 𝑗𝜔𝜏2

+ 
∆𝜖3

1 + 𝑗𝜔𝜏3
 

EQ.  11 

where τi are the time constant for the different relaxation phenomenon and Δℰi are the 

permittivity difference of each permittivity intervals as indicated in Figure 15(redrawn from 

[47]). 

Although describing the general shape of the permittivity response, many materials show an non 

Debye behavior with asymmetric loss tangent [48, 49]. To obtain a better fit with measurements 

Cole et al.[47]included a distribution parameter α. The Cole model is purely mathematical and is 

reminded in eq.  12 
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𝜖𝐶𝑜𝑙𝑒 = 𝜖ℎ𝑖𝑔ℎ  −  𝑗 
𝜎𝑠
𝜔𝜖0

+ 
∆𝜖1

1 + (𝑗𝜔𝜏1)
1−𝛼

 
EQ.  12 

Defining Z as the complex impedance given by the ratio of the complex voltage form over the 

complex current form such as 𝑍 = 𝑍′ −   𝑗 𝑍′′  and the complex permittivity as 𝜖 =  𝜖′ −   𝑗𝜖′′  =

 
1

𝑗𝐶0𝜔 𝑍
  where C0 is the vacuum capacitance given by 𝐶0 = 

𝜖0𝐴

ℎ
 (A is the area of cross section and h is 

the thickness of the material), the relations between the complex impedance and the complex 

permittivity can be extracted [50](eq.  13): 

𝜖′ = 
1

𝜔𝐴𝜖0
[

𝑍′′

𝑍′2 + 𝑍′′2
] 

𝑎𝑛𝑑 𝜖′′ = 
1

𝜔𝐴𝜖0
[

𝑍′

𝑍′2 + 𝑍′′2
] 

EQ.  13 

After inverting the relations, the general expression of Z can be expressed using first orders 

electrical system leading to the electrical analog model presented in Figure 15. 

 

 

FIGURE 15: (ABOVE) PERMITTIVITY AND CONDUCTIVITY RESPONSES OVER FREQUENCY IN MUSCLE ATTRIBUTED TO [47]. (BELOW) DEBYE 

OR COLE ELECTRIC MODEL OF TISSUE ATTRIBUTED TO [47] 
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𝑅𝑎 = 
𝑘

𝜎𝑡
𝑍𝐷𝑒𝑏𝑦𝑒 = 

𝑘𝜏

휀0 (휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ)
𝑍𝐶𝑜𝑙𝑒 = 

𝑘𝜏0(𝑗𝜔𝜏)
−𝛼

휀0 (휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ)
 

𝐶ℎ𝑖𝑔ℎ = 
휀0휀ℎ𝑖𝑔ℎ

𝑘
𝐶𝑑 = 𝐶𝑙𝑜𝑤 − 𝐶ℎ𝑖𝑔ℎ = 

휀0 (휀𝑙𝑜𝑤 − 휀ℎ𝑖𝑔ℎ)

𝑘
 

EQ.  14 

where k is a geometric parameter. Above formulas were extracted from[47]. 

As indicated in [51], the complex permittivity of an heterogeneous material may be expressed as the 

sum of each atomic complex permittivity weighted by their respective concentrations (if several 

conditions are verified), expressed in eq.  15 

𝜖 =  𝜌1𝜖1 + 𝜌2𝜖2 + …                            EQ.  15 

where ρi are the concentrations of the various elements and ℰi are the complex permittivity of each 

element. 

To the author personal interpretation, the biological tissue permittivity which has a step like 

frequency response may correspond to the addition of the most significant ionic permittivity 

responses  (the ones of Na+, K+, Cl-  for instance) over frequency. If this hypothesis were true, it 

might have explained the theoretical limits of the impedance spectroscopy technique, as different 

biological tissue with close ionic tissue distribution may have the same frequency impedance 

response. 

For this work purposes, the complete electric model of biological tissue behavior over 

frequencies was not required as only electrical model at low frequency (below 20 KHz for the 

stimulation of the cochlea by electrodes study) and around 2.45 GHz (for transmission canal noise 

study) was necessary. In order to increase the simulation time, the model considered was a 

resistance in parallel with a capacitance where the resistance value was computed using the ℰ’’ 

value at the desired frequency and the capacitance value was computed using the ℰ’ value at the 

desired frequency. It should be notified that the permittivity frequency responses are tissue 

dependent. The impedance implementation was made using a cylindrical resistance model and the 

capacitance implementation was made using a parallel plate capacitors which formula are reminded 

in eq.  16 

𝑅 =
1

𝜎′
∗
𝑙

𝑆
                  𝑎𝑛𝑑                  𝐶 = ℰ0ℰ

𝐴

ℎ
 

EQ.  16 

where σ’ is the total electrical conductivity, l is the length and S is the cross sectional area. ℰ the 

relative permeability, A the area of the plates and h the distance separating the two plates. 
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FIGURE 16: SIMPLIFIED MODEL OF THE PROPAGATION CHANNEL (FROM [24]) (A) AND ITS ELECTRIC ANALOG CORRESPONDING MODEL 

(WITH CURRENT NOISE SOURCES GENERATORS REPRESENTING THE JONHSON-NYQUIST NOISE IN BOTH RESISTORS AND CAPACITORS) (B). 
ELECTRIC ANALOG USED FOR NOISE POWER ASSOCIATED WITH FAT TISSUE (AS IT IS THE MAIN CONTRIBUTING NOISE IN TISSUES) NOISE 

ESTIMATION (C) 

 

a) 

b) 

c) 
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The propagation channel simplified model and its electrical analog are presented in Figure 16. This 

model is a simplified 3 dimensional model accounting only for direct propagation between the 

transmitter antenna (Tx) and the receiver antenna (Rx). In real world, multi paths or other distortions 

may exist and may provoke results far from the ones predicted. The model is composed of a thin layer of 

skin, bone and cartilage and a thick layer of fat and the dimensions are indicated in Figure 16. The 

resistance and capacitance values were computed from the values of the relative permeability and 

electrical conductivity for human tissues which were found in [52, 53].The electrical components values  

are indicated in Table 1. 

 

TABLE 1: VALUES OF THE COMPONENTS USED FOR THE ELECTRICAL ANALOG OF THE PROPAGATION CHANNEL (CONDUCTIVITY 

MEASUREMENTS FROM [52]AND FROM [53]) 

 Skin Cartilage Fat Bone 

ℰ’ 

(2.45GHz) 

42 74 4.2  11.5 

σ  (S/m) 

(2.45GHz)  

1.1 0.9 0.7 32 

C (F) 21n 9 n 61 p 5.7 n 

R (Ω) 0.4 20 216 0.12 

 

2. Propagation channel noise estimation 
 

In biological tissues, major influencing noise are: thermal noise which is mathematically 

described as white noise, 1/f noise which is associated with ion entry inside the cells, shot noise 

which is often negligible and background electric fields in nerve or muscle tissues [54]. Because the 

RF frequency is very high compared to the membrane channels frequency dynamics and because we 

neglect the nervous or muscular cells in our model (cf Figure 16), we considered only the 

perturbations introduced by the thermal noise. 

 In the electrical model of the propagation channel illustrated in Figure 16, thermal noise is 

associated with temperature carrier agitations (called Jonhson-Nyquist noise) and is generated 

mainly by resistances in our model, regardless of any applied voltage [55]. The noise current 

generated by a resistor is expressed by eq.  17 [56] 
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𝐼𝑊𝑁̅̅ ̅̅ ̅
2
= 
4 𝑘 𝑇 𝐵

𝑅
 

EQ.  17 

where 𝐼𝑊𝑁̅̅ ̅̅ ̅
2

 is the current variance in the frequency band B (equal to 100MHz in the selected ISM 

band), k the Boltzmann constant, T the absolute temperature in Kelvin and R the resistance 

generating the Johnson-Nyquist noise. Dielectric properties measurements performed on various 

biological tissues state that the thermal noise power is around 1µV/sqrt(Ω) at 300 Kelvins [8], 

confirming the results obtained from eq.  17. 

Using the formula in Figure 16 and voltage division principle in this circuit permitted to express the 

noise contribution of each resistance (representing a particular tissue). Then considering 

uncorrelated noise sources (which may not entirely be true), the propagation channel noise Power 

Spectral Density (PSD) was equal to the sum of each resistance noise PSD. The total PSD of the noise 

in this propagation channel was found equal to -121dBm. Running noise analysis in Cadence® gave 

the same noise power estimation. 

The noise power of the RF oscillator concatenated to the propagation channel was evaluated using 

SPICE noise analysis. The estimated noise power at the end of these two blocks was -95dBm. 

This value still has to be confirmed by measurements and represent a minimal estimation since 

other noise sources in biological tissues have been discarded. If so, the noise power may be too 

close to the signal received (only 8 dB separating them as indicated in Section I.B, without the 

inclusion of the noise added by the PWM blocks of the transmitter). In consequence, an architecture 

reworking or even another transmission way should be evaluated.  

 

E. Transmitter and receiver antennas characteristics 
 

The transmitter antenna is a dipole antenna with a central balun and no ground plane, a length of 

5.3mm and a width of 3.25mm, with 35 meanders and a spacing of 100µm between each meanders, 

allowing a measured maximum total gain of -13.9 dB [57].The antenna was printed on a substrate using 

the Integrated Passive Devices (IPD) technology to decrease the substrate losses and ensure better 

antenna characterization (decreasing interference due to cables used for measures)[58]. 

The receiver antenna should exhibit a reduced size, a proper radiation pattern to avoid radiations 

into the brain and sufficient gain. For such small antenna dimension and these overall constraints, 

direct antenna types reuse may be challenging. In [59], an Integrated F Antenna (IFA) was used in this 

context. For the receiver antenna, a custom design antenna might give better results. 
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It should be emphasized that in [24] and [58], the propagation channel length is estimated at 4cm 

and the antenna were supposed closely attached to the transmitter (Tx antenna) or to the receiver (Rx 

antenna). However as indicated in Section I.D, noise power inside this propagation channel is very 

closed to the received signal power. To increase the received Signal to Noise Ratio (SNR) and because 

antennas gains are further limited by other constraints, the distance between both antenna should be 

reduced (bringing the Rx antenna closer to the Tx antenna with the help of a biocompatible wire linking 

the Receiver and the Rx antenna). This simple solution needs further analysis as it may not be feasible 

or results in a difficult surgery insertion procedure. 

 

F. Closure remarks 
 

As a first emitter prototype was available, we decided to create behavioral models of the various 

blocks for extended testing purpose. Besides the receiver embedded a DSP unit to run cochlear 

implants speech algorithms, making the overall system a mixed system. Based on these 

considerations and because these models will be reused for heterogeneous electrophysiological 

simulations (latter described in Chapter III-IV) Matlab/Simuling environment was chosen. 

The power consumption of the entire transmitter was already available from the works produced 

by Y. Vaiarello. 

The theoretical restriction of the PWM signal accuracy was discussed based on ISM frequency 

band rang (100MHz) which was limited to 8 bits for a sampling frequency of 20kHz in the ideal case. 

This data rate will further be decreased by phase noise (developed in the next Chapter) and noise in 

the propagation channel.  

This later noise was studied based on electrical modeling of human tissue by mean of the 

implementation of Cole and Cole impedance model and permitted the creation of a power budget 

for complete receiver specifications defined in the next Chapter. 
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Receiver architecture selection,  

behavioral modeling  

and overall RF chain  

optimization guidelines 
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A. Opening notifications 
 

Change in patients request for aesthetic considerations has led to new CIs architecture 

specifications most particularly regarding overall power consumption. According to previous work 

done in our laboratory [23], the DSP that was initially located in the emitter, can be integrated in the 

receiver. This architecture change reduces the emitter consumption but on the other hand implies 

finding a fitting receiver architecture.  

 In this Chapter, the receiver chain architecture study and design for new type of cochlear 

implants is presented. We proposed three possible receiver architectures which were compared in 

terms of power consumption and noise figure, both of fundamental importance in biomedical 

embedded systems. SPICE simulations of these architectures were carried out and transient results 

were presented for the solution retained. Furthermore optimization of the LNA using mathematical 

computations that was done in collaboration with Mons University microelectronics research team 

is presented, increasing the entire receiver performances. 

Then the behavioral modeling of the receiver architecture was performed and added to the 

transmitter and propagation channel models. This overall system modeling permitted to extract the 

parameters impacting the transceiver output signal integrity and hence the blocks that required 

optimization. 

In addition it was found that phase noise is of first importance as it can alter both the baseband 

(PWM) and the RF (OOK) signals. For modeling considerations we proposed a new theoretical model 

for phase noise extraction based on simplification of Hajimiri and Lee theory.  

After introducing timing jitter mathematical description, the conversion to phase noise into 

timing jitter was performed using different methodologies for the two oscillators of the transmitter 

chain. Phase noise Power Spectral Density of the oscillator utilized for the PWM signal creation 

resulted in timing jitter value not suitable with the previously found PWM precision. 

 

B. Receiver chain OOK demodulation architecture 
 

1. Receiver architecture 
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The communication channel between the transmit- and the receive antenna is presented in 

Section I.D, resulting in an added noise in the propagation channel alone of -121dBm using the 

maximal authorized emitted power in the ISM band (20dBm), the attenuation in human tissue with 

corresponding dielectric constants, the ISM bandwidth (100MHz) and assuming a white noise 

distribution. The estimated power losses through the channel and antenna was estimated by Y. 

Vaiarello [24] and was around -87dBm. This fixes the LNA sensitivity and is used as basis for the 

receiver specifications and architecture selection. 

 

 

 

FIGURE 17: RECEIVER ARCHITECTURE OVERVIEW, WITH SIGNAL OUTPUTS IN COLOR 

 

The selected architecture for the receiver includes a LNA followed by an amplitude demodulation 

stage and a digital signal processing unit controlling the electrodes array which is implanted inside 

the patient’s cochlea.  

The power consumption and distribution in commercially available CI is estimated in Section 

II.B.3. The total electronic consumption should be lowered as possible to increase battery lifetime. 

Most particularly, a high consumption would lead to an increase of the battery reload frequency 

which is inconvenient for the patients. Because of low power constraints, power repartition 

between blocks become fundamental. The unique block allowed to consume more power was the 

LNA in order to decrease the total SNR of the entire receiver as explained in Section II.B.2. 

As presented in Figure 17, three architectures are investigated for the AM demodulation:  

 a power detection using a mixer with the RF and LO inputs connected together, 
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 a coherent demodulation composed of a mixer and a local oscillator at the same 

frequency as the input signal, 

 PN junction associated with a transformer. 

 

The output signal is a PWM-like waveform and is low-pass filtered to recover the initial signal 

amplitude. Linearity is not significant as the PWM signal maximum frequency (around 2MHz) is 

substantially lower than the carrier frequency (2.45GHz).  

 

2. LNA optimization 
 

Common formulas for Noise Factor (F) and Noise Figure (NF) calculus, under matched conditions 

and with source at 290 K, are reminded in eq.  18 [60] 

𝐹 = 
𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡
𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡

 
EQ.  18 

where SNR is the Signal over Noise Ratio. For Noise Temperature Tin which are different from T0, the 

achievable Noise Factor (Fa) is defined (eq.  19) 

𝐹𝑎 = 
𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡
𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡

 
EQ.  19 

The noise figure expression from the noise factor is reminded in eq.  20 

𝑁𝐹 = 10 ∗ log (𝐹) EQ.  20 

Remembering that the noise power introduced by the propagation channel alone is -121dBm and 

that the estimated noise power concatenating the RF oscillator block with the propagation channel 

rises to -95dBm, the characteristics of the receiver in terms of noise is of primary importance. 

Minimum achievable Noise Factor of the receiver is obtained considering the lowest output SNR 

needed to recover the signal. We fixed the minimum output SNR to 3 dB to allow PWM signal 

demodulation. Consequently using eq.  21, we can define the maximum acceptable Noise Factor (Fm) 

of the receiver, that we included into the receiver specifications. 

10 ∗ log (𝐹𝑚)  =   −87𝑑𝐵𝑚 − (−95𝑑𝐵𝑚) − 3𝑑𝐵 = 5 𝑑𝐵  EQ.  21 

Every value greater than this would result in inability to extract signal from noise at the receiver 

output. 
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As a direct consequence of the Friss equation [46] (reminded in eq.  22) the Noise Factor of the 

entire receiver is greatly dependent on the LNA noise factor and gain. Consequently we decided to 

optimize the LNA design in terms of power consumption and NF. 

𝐹𝑡𝑜𝑡𝑎𝑙  =   𝐹𝐿𝑁𝐴 + 
𝐹𝑑𝑒𝑚𝑜𝑑 −   1

𝐺𝐿𝑁𝐴
 +   

𝐹𝑓𝑖𝑙𝑡𝑒𝑟 −   1

𝐺𝐿𝑁𝐴𝐺𝑑𝑒𝑚𝑜𝑑
 

EQ.  22 

where FLNA, Fdemod and Ffilter are the noise factor of the LNA, the noise factor of the blocks composing 

each demodulating topology and the noise factor of the lowpass filter respectively. GLNA and Gdemod 

are the power gains with load of the LNA and the blocks composing each demodulating topology 

respectively. 

As the LNA block was compulsory in both the solutions and significantly impact the overall 

architecture NF, its optimization using mathematical computation was first performed before its 

implementation in Cadence® and subsequent refinement. 

 

 

FIGURE 18: CIRCUIT OF THE LOW NOISE CASCODE AMPLIFIER 

 

Figure 18shows the schematic of the implemented LNA. The cascode stage (M2) is used to 

improve input-output isolation, reduce the Miller effect and, consequently, increase the bandwidth. 

The resonant circuit formed by LL and CL permits a high gain with a low voltage supply at the 

frequency of interest. With LG and LS a narrow band input impedance matching is obtained. The input 

transistor (M1) is used in inductively degenerated common-source configuration. The width of the 

transistor and the other parameters of the circuit were mathematically computed using a similar 

development than the method presented by Thomas H. Lee [61] minimizing the NF while optimizing 

power consumption. 

 

M2

M1

LLCL

LS

LGRFIN+VG

VCC

RFOUT



65 
 

For each architecture type and for the LNA, we evaluated the receiver performances using a 

0.13µm RF CMOS technology. Table 2shows the values obtained, from calculations, after some 

minor modifications according to the target CMOS 130 nm process. 

 

 

 

 

TABLE 2: COMPONENT VALUES OF THE LNA OBTAINED BY MATHEMATICAL  COMPUTATION 

 
Implemented 

values 

Center Frequency 2.475 GHz 

Voltage supply 1.2 V 

Current Consumption 10 mA 

LL 1.3 nH 

CL 3.18 pF 

LM1,M2 0.15 um 

WM1,2 165 um 

NF 1. 4 

LS 0.14 nH 

LG 14.3 nH 

 

The results of simulations are summarized in Table 2. In practice equations used for this 

optimization were derived from first order modeling (SPICE level 1) and provided general 

characterization of the LNA further refined by Cadence® simulations (especially modifying the bias of 

M1), explaining the improvements in Table3. 

 

TABLE3: PARAMETERS OBTAINED BY MATHEMATICAL COMPUTATION  AND WITH CADENCE SIMULATION 

 Mathematical 

computation 

Cadence 

evaluation 

RF Frequency  2.4GHz  2.45GHz 

S21  >17dB  24.7dB 

S11  -10dB  -7.11dB 

S22 -10.1dB -1.5dB 
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NF  <1.4 dB 0.75dB 

Power Consumption  13.2 mW 11.71mW 

 

(1) LNA Figure Of Merit comparison 

 

As LNAs may use different technologies and respond to diverse specifications, their performance 

characterization is complex. In that intent, the Figure Of Merit (FOM) was developed to compare the 

different LNA designs and can also serve as a benchmark for future progress (eq.  1)[62] 

𝐹𝑂𝑀 = 
𝑆21 ∗ 𝐼𝑃𝑃3 ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝐹 − 1)𝑃𝑠𝑢𝑝𝑝𝑙𝑦
 

EQ.  23 

where S21 is the linear LNA gain, IIP3 is the 3rd order Input Inter modulation Product and has to be 

expressed in mW, frequency is the central working frequency of the LNA also expressed in GHz, F is 

the noise factor and Psupply is the power consumption of the LNA reported in mW. The variation of 

this formula including the LNA bandwidth is expressed in eq.  24[63] 

𝐹𝑂𝑀 = 
𝑆21 ∗ 𝐵𝑊 ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝐹 − 1)𝑃𝑠𝑢𝑝𝑝𝑙𝑦
 

EQ.  24 

where BW is the LNA bandwidth and must also be expressed in GHz. As the LNA bandwidth was not 

of importance in our application we excluded all literature relative to wide bandwidth LNA such as 

Ultra Wide Band (UWB) customized LNA. The FOM of the LNA developed is 4.5 which is in the range 

of current LNA state of the art FOM extending from 1 to 10 [63-66]. 

 

3. Receiver architectures implemented 
 

The three architectures presented in Figure 17 were implemented in SPICE and they were 

compared in terms of power requirements and noise addition. The LNA and the filter were common 

to all the solutions. The bias circuitry is not shown in the Figures. 

 

a) Solution 1: LNA and Power Detector 

 

The input signal is the one received by the antenna (2.4GHz carrier modulated in amplitude by a 

PWM signal) and the LNA output is connected to the Local Oscillator input (LO +) as well as on the 
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RF input of the mixer. The power detector is therefore created using a mixer with its inputs 

connected to the same source. We designed a single balanced mixer because of its low power 

consumption. However as the DC offset is injected directly in the RF source, it degrades the mixer 

linearity [67], which is not of importance in our application.  

 

 

FIGURE 19: RECEIVER ARCHITECTURE SOLUTION 1 WITH A LNA AND A POWER DETECTOR 

 

 

FIGURE 20: TRANSIENT SIMULATIONS INCLUDING THE INPUT SIGNAL, THE LNA OUTPUT, THE MIXER OUTPUT (LEFT) AND THE RC FILTER 

OUTPUT (RIGHT) 

 

The designed mixer has a NF of 20dB, and its output is directly connected to the RC filter. The 

simplified schematic of the solution 1 is presented Figure 19 (with bias circuit removed for clarity 

reasons) and the associated transient simulations are exposed in Figure 20. 
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For the test case, the PWM signal was created with a 1 kHz sine wave which was sampled at 

1MHz. The RF input signal is represented in light blue in Figure 20, its corresponding magnitude is 

low enough to make the LNA operate within the linear region. Removing the DC voltage, the output 

signal is represented in pink, where one can see that the ratio between the maximal and minimal 

magnitude is around 5, which is high enough for a further OOK demodulation. The effects of rising 

and falling times are also visible on the curve. As a result, after filtering, we obtained a signal that 

corresponds to the emitted signal, where the distortions and the low output magnitude are mainly 

due to the low power consumption of the Mixer (100µA).  

 

b) Solution 2: LNA, Mixer and VCO 

 

As the ring oscillator in the transmitter chain was not satisfying in term of jitter performances as 

described in Section II. H, the receiver oscillator chosen was a RLC oscillator instead. 

Although most likely not ensuring a better signal transmission (in compare to reusing the same 

oscillator since the frequency drift was already introduced), this oscillator topology change 

permitted to proximately evaluate performances of a RLC oscillator for this application (in term of 

jitter, power consumption, temperature drift, power supply resistance, …). 

The oscillator used is an L-C tank oscillator with a central frequency of 2.45GHz and frequency 

control (Vtune) to compensate the frequency shift due to temperature variations within the human 

body (presented in Figure 21). The width of the NMOS of the differential pair is 210µm and the 

length is 130nm, which drives a current of 10mA. The NF of the cross coupled pair was obtained 

with SPICE simulations and was found equal to 7dB. Then, using PSS analysis, we estimated the 

phase noise which was around -120dBc/Hz at 1MHz from the carrier (PWM maximal frequency) (a 

more accurate description of our implemented ring oscillator phase noise can be found in Section 

II.G.5). 
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FIGURE 21: RECEIVER WITH MIXER AND VCO 

 

 

FIGURE 22: SECOND ARCHITECTURE MIXER OUTPUT TRANSIENT SIMULATION RESULTS 

 

Transient simulation results are presented in Figure 22, where one can see that the output voltage 

magnitude of the mixer is more linear than in the previous architecture, at the cost of higher output 

oscillations due to the frequency shift between LO and RF. Indeed this shift is inevitable as low 

power constraints did not allow carrier recovery. Nevertheless this distortion may be removed by 

subsequent signal processing. 

 

c) Solution 3: LNA, transformers and PN junction 
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The last solution implemented is based on transformers followed by a PN junction in order to cut 

the negative part of the RF signal. The use of magnetic components (inductors, transformers,…) is 

the main limitation to increase chip size and capacitive and magnetic coupling with substrate [68]. 

To reduce chip size, we used two consecutive transformers to obtain the desired mutual inductance, 

allowing the voltage to become superior to the built-in potential of the Gate-Drain junction (of a 

NMOS transistor used as diode). However the current diminution after the transformers associated 

with the low voltage gain of the NMOS transistor used as diode, are responsible for the very high 

noise factor of this entire solution (cf Figure 23). In fact the noise factor of only the transformers and 

the NMOS was around 2.5 but the power gain of this block was very low (1.7*10-3). 

 

 

FIGURE 23: SOLUTION 3 COMPOSED OF LNA, TRANSFORMERS  AND A NMOS USED AS DIODE 

 

4. Architecture comparison 
 

The main requirements of the receiver were its low power consumption and a much reduced NF. 

Maximizing SNR at the receiver output (before DSP computation) is hence very relevant and consists 

on minimizing the total noise factor of the receiver, as explained in Section VI.B.2. 
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TABLE4: NOISE FACTOR (F), NOISE FIGURE (NF) AND POWER CONSUMPTION COMPARISON FOR THE DIVERSE ARCHITECTURES. THE 

VOLTAGE GAIN, CURRENT GAIN AND POWER GAIN WERE COMPUTED WITHOUT THE FILTER BLOCK 

 Power 

Detector 

Mixer and VCO Transformers 

and PN junction 

Power 

consomption (mW) 

11.91 21.4 1.9 

Noise Factor (F) 2.57 2.61 101.6 

Noise Figure (NF) 

(dB) 

4.01 4.16 20.01 

Voltage Gain (dB) 6.8 -0.5 -6.2 

Current Gain (dB) -38.4 -21.5 -34.4 

Power Gain (dB) -31 -22 -40.6 

 

Total noise factor computation is expressed by the Friss formula as previously stated in eq.  22 

The noise factors comparison for each solution is shown in Table4, as well as their respective 

power consumption estimation. 

Based on these results, solution 3 offers very reduced power consumption. However this solution 

can be eliminated suffering of the very low power gain of the transformers and the diode (Gsolution3), 

increasing the entire noise factor (Ftotal3) and might render the signal extraction from the noise not 

possible. Furthermore the layout of this solution may be complex to conceive due to severe chip 

surface constraints. 

The solution with VCO is consuming twice as much power as the solution with the power 

detector. This results in a total extra energy of about 100mA*h per day (assuming that the device is 

activated during 8 hours per day).As discussed in Section II.B.3. the increase in power consumption 

of the RF frontend represents between 20% to 40% of the power consumed by the electrodes array 

depending on the selected topology. 

Besides, as stated in Section II.G.5, the effect of the VCO phase noise is not significant compared 

to the frequency shift associated with the absence of carrier recovery in the receiver. This frequency 

shift may significantly corrupt the signal rectification as the signal translation into lower frequencies 

is followed by the RC filter. 
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In consequence, it is author belief that the first architecture should be preferred for this 

application. Optimization algorithms such as Non dominated Sorting Genetic Algorithm (NSGA-II) 

presented in [69] are available and could permit optimization of the overall architecture to maximize 

parameters of interest (still under work). 

For this work we made a collaboration with the University of Mons (Belgium), the mathematical 

optimization was mainly performed by the microelectronic team of the Mons University. The 

optimization of the overall LNA and power detector architecture is ongoing by Mons University 

microelectronic team, using a nonlinear multi-objective optimization, based on the Genetic 

Algorithm NSGA II. This overall optimization may be necessary if the measured noise power inside 

the transmission channel would be greater that the estimated one, yet very close to the signal 

power received by the antenna. 

 

5. RF front end state of the art 
 

The overall transceiver power consumption is nowadays limited to a range between few mW and 

50mW for top designs depending on the modules involved and their specific requirements [70-72]. 

The RF frontend part only may consume only 100µWin top designs whereas current power 

consumption performances from literature are approaching 5mW [73-79]. Our design is consuming 

more energy to lower the NF as indicated in the previous Section. Modern RF frontend receivers 

with a reduced NF (around 4 dB such as the one we obtained in simulations) are consuming a little 

more power (between 7-30mW but are associated with more complex architectures, rendering the 

comparison uneasy) [80, 81]. 

 

C. Receiver architecture behavioral modeling 
 

The aim of the behavioral modeling of the receiver (behavioral modeling of the LNA and mixer 

solution) was to model the overall electrical system, in order to find critical blocks and technological 

advantages and limits of the overall architecture including electrodes stimulation. As discussed in 

Section I.C, the accuracy of the PWM was restricted to 8 bits due to perturbations impacting the 

duty cycle of the transmitter. This duty cycle may further be diminished if others disturbances were 

taken into account in the receiver part. The optimization of the critical blocks affecting the PWM 

accuracy may be performed or an architecture part modification (such as changing the type of 



73 
 

modulations) may also be anticipated. Modeling all the electrical system ensures extended testing 

capacities. These results defined blocks optimization or partial architecture redesign depending on 

the impact of the parameters tested on the overall circuit performances. Although architecture 

selection is generally made sooner than electrical design, unaccounted design issues may request 

architecture reworking (bottom up methodology). Furthermore the RF transmission at 2.45GHz may 

be particularly inefficient due to high absorption losses and can provoke damages to the brain, 

suggesting an possible entire architecture restudy with complete abandon of the transmission 

circuitry presented in [57] 

 

1. Filter design and implementation 
 

The only analog filter required in the receiver is the low pass filter for 2.45GHz signal 

rectification. The other filters have only modeling purposes and the physical filter implementation 

recommendations do not apply to them.  

As the behavioral modeling of the entire chain was performed in Matlab® environment which 

does not efficiently integrate analog simulation, transformation of analog filters into equivalent 

digital ones was required. 

The development of the methodology for complete filter design is reviewed extensively in [82] 

and in [83]for instance. The discussion of complete filter design is beyond the scope of this 

document and may be irrelevant for research purposes. The very succinct review of the analog and 

digital filter design methodology is proposed in this section to define the rectification filter and to 

understand precisely the issues associated with simulation frequency change, as it may be the case 

in block reuse with a different simulation tool. Design automation tools simulator automatically set 

the simulation frequency to several times the highest frequency found (this frequency hence 

corresponds to the sampling frequency). Because digital filters are highly dependent on simulation 

frequency value (the normalized cutoff frequency is equal to the real cutoff frequency divided by the 

sampling frequency), a simulation frequency change requires to modify the entire digital filters 

coefficient (redesign of the filters) to maintain the same frequency response of those digital filters. 

Hence a fixed simulation frequency equal to 10 times (for sufficient accuracy without lowering 

significantly the simulation time) the maximum receiver frequency (2.45 GHz), called fs, was the 

solution retained. Digital filter with coefficient adjustment depending on the simulation frequency is 

another solution, not considered as it required increased development time. 
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The filters we designed were: one low pass filter and a band pass filter:  

 The low pass filter was associated with signal rectification. Butterworth approximation 

function was selected ensuring reduced ripple in the passband [84]. In fact the SNR at the 

end of the LNA was already small as described in Section II.B, so for functional PMW 

demodulation, the ripple in the pass band had to be minimal.  

 In order to model correctly the frequency response of the LNA (to model RC resonance 

inside the LNA), a band pass filter was added at the end of the LNA module. The 

characteristics of this filters were chosen from SPICE AC simulations performed on the LNA 

presented in Section II.B.2. This filter had only modeling purposes. In fact the LNA gain was 

not constant in its working frequency band, but displayed variations similar to ripple, hence 

to correctly model the LNA behavior, these variations were reproduced using Chebyshev 

filter type. For this modeling, purely digital filter such as Finite Impulse Response (FIR) filter 

may have been used as well but was discarded due to unrealistic transient response.  

All the steps from the analog design of the low pass filter (the one associated with signal 

rectification), followed by the transformation of its transfer function in digital domain for computer 

based simulations are reviewed in the following part. 

a) Analog Filter design 

 

The ideal filter response is 1 in the passband and 0 in the stopband. The abrupt transition 

between the passband and the stopband cannot be reached physically [82]. Hence filter 

specifications graph and approximation functions are created. Filter specifications graph set the 

frequency response ranges where the filter approximation function must fit [82]. Filter specifications 

depend on the application and require frequency normalization and magnitude quantification in the 

standard procedure of analog filter design[82]. In Figure 24, filter specifications for low pass filter, 

associated with RF signal rectification, are established. 
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FIGURE 24: NORMALIZED FILTER SPECIFICATION GRAPH FOR LOW PASS FILTER DESIGN[82]. ALL THE CONSTANT VALUES FOR PRACTICAL 

FILTER CREATION CAN BE FOUND IN TABLE 5. THE REFERENCE FREQUENCY FOR NORMALIZATION WAS THE DESIRED CUTOFF FREQUENCY 

AND THE REFERENCE GAIN FOR NORMALIZATION WAS THE MAXIMUM GAIN IN THE FILTER PASS BAND. 

 

The signal transmitted is RF modulated around 2.45GHz, and the baseband maximum frequency 

(which corresponds to the frequency of the LSB of the PWM) is20000 ∗  2(8) = 5.12MHz  (further 

used in filter specifications). The ripple in the passband must be kept minimal because of the low 

SNR available and was found with SPICE simulations to be equal to 1dB. The important frequency 

interval between Fpass and Fstop permitted to decrease the number of stages available. 

The filter design practical methodology can be found in [85], [86], or may be straightforward 

using analog filter approximation design and synthesis tools like FIESTAII®[87], dedicated Matlab® 

functions, Advanced Design System® (ADS®)  filter design tool, etc. 

Besides all the different filter types (high pass filter, passband filter, …) can be converted into a 

low pass filter using the transposition method (for approximation function calculus) and then back 

to their original forms[83].  

 

TABLE 5: FILTER DESIGN PARAMETERS. FPASS, FSTOP AND ℰ (=5 DB) FOR THE CHEBYSHEV FILTER WERE DEFINED USING SPICE  

SIMULATIONS. THE FILTERS PARAMETERS WERE OBTAINED USING ADS® DESIGN TOOL 

 LOW PASS BUTTERWORTH 

FILTER 

BAND PASS CHEBYSHEV FILTER 

(ONLY FOR MODELING 

PURPOSES) 

Fpass 10e6 [2.018e9 ; 2.580e9] 
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Fstop 
200e6 [1e9 ; 3.7e9] 

Apass (dB) 1 3 

Astop (dB) 20 20 

Number of stages 2 2 

 

The low pass filter physical architecture (filter topology) selected aimed to lower the power 

consumption. Consequently, Ladder topology was retained as it is only composed of passive 

components. The L section was preferred over the T section to minimize the inductance value for 

filter integration in the chip, as the inductance space occupation is related to its value (the 

implementation was directly performed by ADS software, as shown in Figure 25). However as L 

remains elevated (around 400nH), the filter may rather be outside of the chip. 

 

 

FIGURE 25: ANALOG FILTER DESIGN USING ADS® . A) MAGNITUDE RESPONSE. B) GROUP DELAY RESPONSE. C) LADDER IMPLEMENTATION 

DIRECTLY PERFORMED WITH ADS® 

 

2. Digital filter design 
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To include these filters in the entire chain Matlab/Simulink®modeling, the transformation of analog 

filters into digital ones was performed. The transfer function of a discrete system is the z-transform of 

its impulse response and can fully describe a filter behavior[82]. Other ways to characterize a digital 

filter is by its impulse response or by the difference equation; the system equations in continuous time 

become a difference equation that rely the input x(n) and the output of a filter y(n), cf eq.  25. It should 

be noted that the frequency response of a digital filter only describes its steady state behavior [88]. 

𝑦(𝑛) =∑𝑏𝑖

𝑀

𝑖=0

𝑥(𝑛 − 𝑖) −∑𝑎𝑗

𝑀

𝑖=1

𝑦(𝑛 − 𝑗) 
EQ.  25 

where n is the current sample, x and y are the filter input and output respectively and ai and bi are 

scalar coefficients. 

Different analog to digital switching techniques exist such as impulse invariant, step invariant, 

matched z-transform methods and are evaluated in [82]. Bilinear transform was the one selected as it is 

the most commonly used in digital filter design. This transformation preserves filter stability and is 

bijective like every Mobius transformations [89]. The main drawback of the bilinear transform is the 

frequency distortion also called frequency warping. For low frequencies, the frequency mapping is 

linear but this is not the case for high frequencies [82]. The creation of a digital filter from an analog 

one should be done considering the frequency warping phenomena in order to obtain proportional 

cutoff frequencies. The methodology that indicates all the steps to pass from an analog filter to the 

equivalent digital filter using the bilinear transform can be found in [82],[90]. 

Using the bilinear transform, the conditions of stability change. For a digital filter to be stable, all its 

roots have to be inside the unit circle. However, several authors have indicated that this condition was 

too weak to ensure digital filter stability and proposed that if in the difference equation (cf eq. 35) the 

value of bi coefficients is greatly lower than the value of ai coefficients, the round off noise may be 

important and could make the filter unstable [91, 92]. Another hypothesis to ensure filter stability may 

be that in the difference equation the sum of all the ai should be lower than 1 [93]. 

The impulse response of the low pass digital filter (using Butterworth approximation function) and 

then its bilinear transformation is presented in Figure 26. 

As the difference equation is less resources consuming than the convolution method and results in 

an almost similar interval length than the input interval length, the difference equation implementation 

was preferred in order to model the digital filter block and to find the filter output. This digital filter 
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form (difference equation) fits particularly to our behavioral models as the simulations we performed 

were entirely temporal. 

 

 

FIGURE 26: A) FREQUENCY RESPONSE OF THE DIGITAL FILTER. B) IMPULSE RESPONSE OF THE DIGITAL FILTER. C) ZEROS AND POLES OF THE 

DIGITAL FILTER 

 

To conserve similar digital filter specifications and ensure filter stability, Fpass and Fstop were 

modified (for digital filter implementation only), as the simulation frequency was significantly higher 

than the cutoff frequency, resulting in poor ADS® filter design convergence. For instance, in the low 

pass filter used to rectify the received signal, Fpass was changed to 100MHz and Fstop was changed to 

1GHz. Those frequencies still permit signal demodulation as no jitter was added to the oscillator 

model. 

 

D. Critical parameters 
 

Once the transient modeling for the overall RF chain completed and because each model 

contains inherent parameters, the study of these parameters variation on the output signal integrity 

was performed. The variation of these parameters between three different values (minimum, typical 

and maximal) was accomplished and the amplitude distortion between the signal sent and the one 

received was computed for each single variation. It should be noted that when a parameter value 

was modified, the other parameters remained constant discarding any correlation study between 

these. Hence no statistical correlation function can be extracted from the results. This choice was 

dictated by the high number of parameters evaluated (around 15). To initially evaluate the critical 
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parameters impacting the signal integrity, we compared the signal amplitude coming from the 

microphone with the signal received and PWM demodulated. This demodulation was first 

accomplished using a threshold detector, hence the output signal may not be reconstructed if the 

amplitude preceding the threshold detector was too low (explaining why the amplitude 

perturbation can reach 100% in some cases). An alternative solution (not tested in this modeling 

analysis) can be the use of a second low pass filter for PWM signal demodulation. 

As presented in Figure 27, the parameters impacting the most the signal integrity are the 

preamplifier gain and the comparator offset which should be kept minimal. Then the LNA output 

signal, if too low, could affect the signal integrity as the output signal may be too weak for PMW 

demodulation using a threshold detector. Finally, a significant reduction of antenna gain or an 

inconsistency in propagation channel attenuation estimation may impair very profoundly the signal 

received. 

If the typical value of each parameter was retained, there is around 12% of amplitude distortion 

between the signal coming from the microphone and the one received at the end of the transceiver. 

To decrease the amplitude distortion between these two signals, increasing PA gain, increasing 

antenna efficiency or decreasing the comparator offset may be investigated. In consequence, based 

on these results, antenna efficiency improvement and comparator offset lowering should be 

performed first. 
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FIGURE 27: CRITICAL PARAMETERS STUDY 
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E. Phase noise modeling 
 

1. Introduction to phase noise 
 

The transmitter modulation choice is a time modulation (PWM), before sending the signal to RF 

frequencies. In consequence, the phase noise introduction in the oscillator associated with the PWM 

encoding may result in output signal distortions. Furthermore a second oscillator is used for the OOK 

modulation and phase noise is also of capital importance to ensure signal inclusion in the ISM 

frequency band retained. Phase noise study and restriction is hence essential for proper transceiver 

performances. 

Circuit and device noises generally perturb oscillator’s output as they introduce amplitude and 

phase noises. Often oscillators contain amplitude limitation mechanisms which limit amplitude 

noise. As a result phase noise is in general more significant and degrades oscillator performances. 

Linking phase noise with oscillator’s parameters was performed by Leeson [94] who connected the 

oscillator power spectrum side band with circuit parameters that can be minimized by proper 

design. In[95], the mathematical analysis of the Leeson’s formula has been performed and has 

conducted to a more general case, not only with a RLC filter in the feedback loop. However later 

measurements have shown limitations of the Leeson’s theory [96]. The Linear Time Invariant (LTI) 

model of the oscillator system proposed by Leeson was hence replaced by a Linear Time Variant 

model (LTV) proposed by Hajimiri and Lee [97]. When a noise impulse current is injected to an 

oscillator node, it results into permanent phase error. Furthermore the phase noise contribution 

depends on the time of noise injection as explained in [97], justifying the need of a time variant 

model to link current noise with phase noise in oscillators. The LTV model proposed in [97] involves 

the computation of the Impulse Transfer Function (ISF) which is central for phase noise 

characterization. However both models suppose that the noises disturbing the oscillator are mainly 

white noise and pink noise (also called 1/f noise).  

Numerous electronic automation devices simulators use specific input blocks and simulation 

types to simulate phase noise which are often computational resources greedy. 

We wanted to create a homogenous system which permits to account for phase noise 

perturbations and to further extend this system to phase noise computation without the use of 

Spice simulation results using an Impulse Sensitivity Function (ISF) database for diverse oscillator 

topologies. This system was based on the filtering of the input noises (white noise and Flicker noise). 
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Only for LTI systems the Power Spectral Density (PSD) expression is simplified as described in the 

Annex B.2, thus worsening the LTV model of Hajimiri and Lee [97] into a LTI model was performed 

before comparing the obtained phase noise with SPICE simulations or direct measurements (only for 

the ring oscillator). Besides we developed a filtering function allowing the estimation of phase noise 

using input noises relative to the design technology selected. 

Mathematical formalism associated with stochastic processes and mathematical systems analysis 

is inserted in Annex B.1 and Annex B.2.  Furthermore the mathematical description of white noise 

and Flicker noise (or 1/f noise) and their physical interpretation is presented in Annex C 

We also created a new function to express timing jitter from phase noise. The jitter of the 

oscillator used for PWM signal creation was statistically evaluated and resulted in the restriction of 

the PWM signal accuracy. 

 

2. Additive process of the white noise and the 1/f noise  
 

As defined in Annex B.1 the autocorrelation functions permits to characterize noises and led to 

the computation of their PSD. However the autocorrelation function is non linear and the addition 

of two noises will not result in addition of their autocorrelation and hence will not result in the 

direct addition of their PSD as developed in eq.  26. 

Suppose X(t) and Y(t) two random processes (representing for instance white noise and 1/f noise): 

𝐸[(𝑋(𝑡1) + 𝑌(𝑡1))(𝑋(𝑡2) + 𝑌(𝑡2))

= 𝐸[𝑋(𝑡1)𝑋(𝑡2)] + 𝐸[𝑋(𝑡1)𝑌(𝑡2)] + 𝐸[𝑌(𝑡1)𝑋(𝑡2)]

+ 𝐸[𝑌(𝑡2)𝑌(𝑡1)] 

EQ.  26 

eq.  26 further simplifies if both processes are stationary. However, the simplification cannot fit here 

as 1/f noise is non-stationary [98]. The evaluation of the cross correlation functions is needed before 

computing the PSD of the additive process. The cross correlation function between white noise and 

1/f noise is available in [99] and it is called the colored cross correlation function. In [99] authors 

assumed that both cross correlation functions are equal (eq.  27): 

𝐸[𝑋(𝑡1)𝑌(𝑡2)] = 𝐸[𝑌(𝑡1)𝑋(𝑡2)]

=  
𝜆√𝛼𝐷

𝜏2
exp(

− | 𝑡1 − 𝑡2 |

𝜏2
)  
𝜏2→0
→         2 𝜆 √𝛼𝐷 𝛿 ( 𝑡1 − 𝑡2 ) 

EQ.  27 
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where λ is a parameter that measures the strength of the correlation between X(t) and Y(t) and τ2 is 

the correlation time between X(t) and Y(t). Correlation time is defined as the average time between 

molecular collisions for molecules in some state of motion and is the sum of three different times: 

the rotational correlation time, the residence time and the electron spine lattice relaxation time[99]. 

The time between two collisions for a molecule is very small and naturally tends to 0, explaining the 

limit. The result of the colored cross correlation is hence a delta dirac function multiplied by a 

coefficient proportional to the strength of the correlation between the X(t) process and the Y(t) 

process. The colored cross correlation is hence similar to the white noise autocorrelation function 

presented in Annex B.3. The autocorrelation function resulting from the addition of a white noise 

and a 1/f noise is thus the same as the autocorrelation of a 1/f noise added to the autocorrelation 

function of another white noise with different variance. To obtain the variance of the white noise 

X(t) from the PSD of the sum TF(E[(X(t1)+Y(t1))(X(t2)+ Y(t2))]), estimation of the correlation 

parameter λ is therefore of importance. 

 

F. Assumptions made for model creation 
 

The model created and presented in Section II.G was based on the following assumptions: 

 We supposed that the cross correlation between white noise and Flicker noise is null 

as we supposed that this function was negligible compared to the autocorrelation of 

white noise. However this is mathematically incorrect as indicated above in this Section. 

This assumption aims to simplify the model and can account for the model divergence 

with the measurements. 

By assuming that the colored cross correlation between the two input noises are null, 

the autocorrelation function of the sum of the two noises is supposed to be equal to the 

sum of the autocorrelation of the two noise processes, as indicated in eq.  28: 

𝐸[(𝑤1(𝑡) + 𝑤2(𝑡))(𝑤1(𝑡 +  𝜏) + 𝑤2(𝑡 + 𝜏))]

=  𝐸[𝑤1(𝑡)𝑤1(𝑡 +  𝜏)] +  𝐸[𝑤1(𝑡)𝑤2(𝑡 +  𝜏)]

+  𝐸[𝑤2(𝑡)𝑤1(𝑡 +  𝜏)] +  𝐸[𝑤2(𝑡)𝑤2(𝑡 +  𝜏)] 

→ 𝐸[(𝑤1(𝑡) + 𝑤2(𝑡))(𝑤1(𝑡 +  𝜏) + 𝑤2(𝑡 + 𝜏))]

≈  𝐸[𝑤1(𝑡)𝑤1(𝑡 +  𝜏)] +  𝐸[𝑤2(𝑡)𝑤2(𝑡 +  𝜏)]                           

EQ.  28 
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where w1 is the Gaussian white noise process and w2 is the 1/f noise process and the 

operator E is the mathematical expectation. 

 We further supposed that the sum of the white noise Gaussian process and the 1/f 

noise process is stationary. This assumption is controversial as various authors have 

advanced each hypothesis [98, 100]. 

 It was shown in [97], that the transfer function relating noise currents to phase 

distortion is time dependent. In fact different noise current injections in the same node 

but at successive starting times result in different phase perturbations. However in this 

paper we considered that the phase alterations over a period was constant, meaning 

that we supposed the transfer function as time invariant. 

All these misleading assumptions were built to simplify the computation (thus greatly decreasing 

the simulation time) of the phase noise PSD. If the input process is assumed stationary and the 

transfer function is presumed time invariant, the phase PSD computation is simply expressed as (eq.  

29)[101]: 

𝑆𝜑𝜑(𝑓) =  | 𝐻(𝑓)|
2𝑆𝑋𝑋(𝑓) 

EQ.  29 

where Sxx, Sφφ are the PSD of the input process and phase noise process respectively and H is the 

Fourier Transform (FT) of the transfer function. 

Tests have shown (cf Section II.G.5) that the errors introduced by these assumptions are narrow 

when compared to physical measurements, despite the fact that they are physically untrue. 

Besides we only account for the phase noise around the first harmonic of the oscillator signal. 

 

G. Creation of a new LTI model using Hajimiri and Lee theory 
 

1. Leeson model 
 

The Leeson formula permits to study the circuit parameters influence on the output phase noise 

in order to minimize it. It is presented in eq.  30 and gives the sideband power spectral density of the 

phase noise leading to identification of the most significant causes of phase noise in oscillators [94]. 

𝑆𝜑𝜑(𝑓𝑚) =
1

2
[1 +

1

(𝑓𝑚)
2
(
𝑓0
2𝑄𝐿

)
2

]
𝐹𝑘𝑇

𝑃𝐴𝑉𝑆
( 1 + 

𝑓1
𝑓

(𝑓𝑚)
) 

EQ.  30 
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where QL is the quality factor with load, fm the offset frequency, f0 the oscillator central frequency, T 

the temperature, PAVS is the average power through the resonator, F the noise factor of the active 

device and k the Boltzman constant. 

The system transfer function permitting to obtain the output phase noise from the input noises 

(the 1/f noise and the white noise) is LTI.  

In eq.  30 it can be seen that the power side band spectrum of the oscillator (Sφφ) can be split into 

a transfer function (HL) multiplied by the input noise PSD (Sxx).  

Identifying HL and Sxx, related to the Leeson model, is performed in eq.  31 

𝐻𝐿(𝑓𝑚) =  
1

2
[𝑗 +

1

(𝑓𝑚)
2
(
𝑓0
2𝑄𝐿

) ] 

𝑆𝑥𝑥(𝑓𝑚) =  
𝐹𝑘𝑇

𝑃𝐴𝑉𝑆
( 1 + 

𝑓1
𝑓

(𝑓𝑚)
) 

EQ.  31 

This identification is not new and can be found for instance in [97, 102, 103] 

In this model, the intersection point of the 1/f noise and the white noise (called f1/f) is the same 

as the intersection point of the output phase noise between the 1/f3 region and the 1/f2 region 

called (f1/f3). However it is not always the case as noted by Hajimiri and Lee and furthermore the 

noise factor is obtained by measurements and not by theoretical expression which decreases the 

estimation power of this model. In addition the evaluation before simulation of QL may be difficult 

for other oscillator topologies than LC.  

The Leeson model of phase noise is further extended in [95, 104] and both models describe the 

oscillator for noise analysis as an amplifier followed by a resonator on the feedback loop. In 

document [95], the mathematical analysis of the Leeson formula has been performed and has 

conducted to a more general case. 

 

2. Hajimiri and Lee model of phase noise 
 

Hajimiri and Lee [97] have demonstrated that the total single side band phase noise power 

spectral density due to white noise is: 

𝑆𝜑𝜑{𝑓𝑚} =

𝑖𝑁
2

∆𝑓
𝛤𝑟𝑚𝑠

2

4𝑞𝑚𝑎𝑥
2(𝑓𝑚)

2
 

EQ.  32 
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where qmax is the maximum charge displacement across the capacitor, iN
2 / Δf the white noise PSD 

integrated over 1Hz bandwidth, Γrms the Root Mean Square (RMS) value of the Impulse Sensitivity 

Function (ISF) and  fm the offset frequency. Using a similar development, the total power sideband 

phase noise power due to 1/f noise is: 

𝑆𝜑𝜑{𝑓𝑚} =

𝑖𝑁
2

∆𝑓
2𝜋𝑓1/𝑓𝑐0

2

8𝑞𝑚𝑎𝑥2(𝑓𝑚)
3

 

EQ.  33 

where c0 is given by the decomposition of the ISF into a Fourier serie as the ISF is a periodic function 

[97]: 

𝛤(𝑓𝑂𝑡) =   
𝑐0
2
+ ∑ 𝑐𝑛

∞

𝑛=1

cos(𝑛2𝜋𝑓0𝑡 + 𝜃𝑛) 

EQ.  34 

Where θn is the phase of the nth harmonic.  

In particular the relation between the f1/f3 (which is the frequency where the 1/f3 output noise 

becomes smaller of the 1/f2 output noise) and f1/f is given by eq.  35 [97]: 

𝑓1/𝑓3 = 𝑓1/𝑓
𝑐0
2

2𝛤𝑟𝑚𝑠
2 

EQ.  35 

It is worthwhile to note that f1/f and f1/f3 frequencies are not equal in contradiction with the 

Leeson model. 

 

3. Time invariant Hajimiri and Lee model 
 

In a similar way that was made for the Leeson model, we wanted to identify input noises and a 

common filter function, allowing easier algorithmic implementation and hence faster simulation.  

Supposing that the Hajimiri and Lee model is time invariant and that the colored cross correlation 

of the input noises are null, permit to combine eq.  32 and eq.  33. The phase noise PSD can hence be 

expressed as a system transfer function multiplied by the PSD of the input processes. The side band 

power spectral density of this new system is called Stt and gives similar expression than the LTV 

model of the final PSD, although the mathematical assumptions to obtain it are incorrect. 

𝑆𝑡𝑡{𝑓𝑚}  =   
1

𝑞𝑚𝑎𝑥24
(
𝛤𝑟𝑚𝑠

2

(𝑓𝑚)
2)(

𝑖𝑁
2

∆𝑓
+ 

𝑖𝑁
2

∆𝑓
2𝜋𝑓1

𝑓

𝑐0
2

2 𝛤𝑟𝑚𝑠
2𝑓𝑚

) 

EQ.  36 
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The identification of a filter function and the PSD of the input noises (white and Flicker noise) is 

shown in eq.  37 

𝐻𝑡𝑡(𝑓𝑚) =  
1

𝑞𝑚𝑎𝑥 2
(
𝛤𝑟𝑚𝑠
𝑓𝑚

) 

𝑆𝑥𝑥(𝑓𝑚) =  (
𝑖𝑁
2

∆𝑓
+ 

𝑖𝑁
2

∆𝑓
2𝜋𝑓1

𝑓

𝑐0
2

2 𝛤𝑟𝑚𝑠
2𝑓𝑚

) 

EQ.  37 

However when we implemented this equation, the results were distant of approximatively 15dB 

to 25dB from Spice simulations results realized on two different oscillator topologies and presented 

in Section II.G.5.b). 

The inclusion of cyclostationary noises coming from modulated noise sources (such as white 

noise originating from periodic bias current) or modulated signal paths (such as periodic operating 

point) [105] modified the ISF function as emphasized in the eq.  38 [97]. To the authors 

comprehension, when cyclostationary noises exceed the other noise sources, it results in ISF new 

definition [97]: 

𝛤𝑒𝑓𝑓(𝑡) =   𝛤(𝑡) ∗ 𝛼(𝑡)   𝑤𝑖𝑡ℎ𝛼(𝑥) =  
𝑖𝑛(𝑡) 

𝑖𝑛0(𝑡)
 

EQ.  38 

where Γ is the ISF function (which mathematical expression is function of the oscillator output signal 

and is presented in [97]), in is the cyclostationary process and in0 is the white noise process. α is a 

periodic dimensionless value with a peak value of unity [97] 

Consequently we modified eq.  37 by replacing Γ by Γeff , giving other values of cn. 

As precised in [97], the cyclostationarity noises are increased in LC oscillators in compare to ring 

oscillators.  

 

4. System creation 
 

The implementation of the eq.  37 was made using Matlab®. The computation of the PSD was 

performed with the periodogram estimator or by taking the Fourier transform of the 

autocorrelation function (as input noises are white noises). Both techniques gave very similar 

results. The system used to simulate phase noise is presented in Figure 28. 
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FIGURE 28: BLOCK DIAGRAM CREATED TO COMPUTE  PHASE NOISE 

 

where H√1/f is the filter converting white noise into Flicker noise and was created mathematically. It 

should be notified that using the assumptions made in Section II.F, Flicker noise PSD may also be 

obtained by computing first the PSD of white noise and then multiplying the PSD by a simple 1/f 

factor, further increasing the simulation time. As cross correlation were supposed null, both inputs 

PSD were added to obtain the input noise PSD (Sxx), and further filtering using Htt, permitted to 

obtain the phase noise PSD (Sφφ). 

 

5. Results 
 

a) Oscillator topologies for tests 

 

The first oscillator, designed with Cadence®, is an RLC VCO with a central frequency of 2.45GHz, 

presented Figure 29. The width of the NMOS of the differential pair is 210µm and their length is 

130nm. 

 

 

FIGURE 29: VCO RLC OSCILLATOR SIMULATED IN CADENCE WITH A CENTRAL FREQUENCY OF 2.45GHZ 
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The second oscillator used is a 3 stages ring oscillator with a central frequency of 2.67GHz (but 

can be modified to 2.45GHz using variable capacitors or biasing currents) based on CMOS inverters. 

This oscillator was realized and measures were extracted from its tests. The simplified electric 

schematic of this oscillator is presented Figure 30. 

 

 

FIGURE 30: VCO RING OSCILLATOR IN TECHNOLOGY CMOS 130NM 

 

b) Simulations and measurements 

 

For both oscillators topologies, the result extracted from SPICE simulations are compared first to 

the Leeson model to ensure that the filter time invariance gives close result and then with the time 

invariant Hajimiri and Lee model that we created (Htt). Only for the ring oscillators the tests were 

available allowing the best reference for models comparison. 

 

(1) RLC oscillators simulations 

 

The noise factor was obtained with SPICE simulations and was found equal to 4.47. Pavs was 

estimated at 4.8mW. To estimate the Ql, S-parameters analysis was run with an intrinsic resistance 

in parallel of the inductance of 20Ωhms and a load resistance of 50Ωhms. Ql was found to be around 



90 
 

1.7. The value of f1/f for the two NMOS was determined with a noise analysis and found around 

300MHz. 

The comparison between the SPICE simulation of the VCO phase noise and the results obtained 

from Matlab® implementation of the Leeson model is presented in Figure 31. 

 

 

FIGURE 31: COMPARISON BETWEEN THE PHASE NOISE POWER SPECTRUM OBTAINED BY SPICE SIMULATIONS AND THE PHASE NOISE POWER 

SPECTRUM OBTAINED WITH THE LEESON'S MODEL 

 

Satisfying compliance is obtained between the two simulations with a maximum error less than 

4dB (cf. Figure 31). When f > f1/f  the Lesson’s model shows a smaller slope than the phase noise 

power spectrum simulated with SPICE most probably due to error in the f1/f computation (f1/f may be 

greater than the one estimated). Furthermore the Leeson model was modified with the addition of a 

thermal noise in order to keep it in realistic values for large offset frequencies (Δf> 1GHz). 

The Hajimiri and Lee model considered here is the time invariant one (Htt). The corresponding 

simulation results are presented in Figure 32.  

The most challenging value to obtain to implement the Hajimiri model was the precise ISF 

function. As stated in Section II.G.2, the effective ISF was computed to include cyclostationary noises 

which impact greatly a RLC oscillator. We use the following expression for the ISF [97]: 

𝛤(𝑥) =  
𝑓′

𝑓′ 2 + 𝑓′′ 2
 

EQ.  39 

where f is the oscillator output. The determination of the α function (eq.  38) is based on the shape 

of the cyclostationary noise current which has a similar shape to the drain current of the NMOS 

transistor.  
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FIGURE 32: COMPARISON BETWEEN THE PHASE NOISE PSD OBTAINED BY SPICE SIMULATIONS AND THE IMPLEMENTATION OF THE TIME 

INVARIANT HAJIMIRI AND LEE MODEL. 

 

The number of points from SPICE simulations is sometimes insufficient as the fundamental tone 

is at 2.45GHz. In consequence to compute the first and second derivatives of the oscillator output, 

low pass filters were used and may explain small uncertainties in parameters computation.  

By performing the same development than in [97], co was found equal to -0.36 and Γrms equal to 

0.073. 

Good compliance is obtained also between the SPICE simulations and the time invariant Hajimiri 

and Lee model created. A maximum error of 5 dB is present between the different simulation 

results. Supposing time invariant the Hajimiri and Lee model is hence conceivable in the particular 

case of a RLC VCO. Furthermore the error is stronger when f >f1/f3 most probably due to inaccurate Γ 

or poor f1/f estimation. 

 

(2) Ring oscillator simulations and measurements 

 

In the series of measurements performed on our CMOS prototype with the phase noise analyzer 

Agilent® 5500, there is a flat curve for frequencies lower than 200 kHz (cf. Figure 33). The most likely 

explanation is that noise present on the DC supply voltage also called “power pushing” modifies the 

central oscillation frequency of the ring oscillator. The PLL inside the measurement device was not 

able to lock the ring oscillator central frequency with accuracy and the measures were erroneous for 

offset frequencies lower than 200 kHz.  
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FIGURE 33: COMPARISON BETWEEN THE PHASE NOISE PSD OBTAINED BY SPICE SIMULATIONS, THE PHASE NOISE PSD OBTAINED WITH THE 

LEESON'S MODEL AND THE MEASUREMENTS MADE ON A CMOS PROTOTYPE FOR THE RING OSCILLATOR 

 

Figure 34 presents the variation in the central oscillation frequency of the ring oscillator for a 

modification of the supply voltage between 1.19 and 1.21 V. As expected the central frequency 

changed between 2.71GHz and 2.48GHz. Therefore to obtain a central frequency variation lower 

than 200 KHz, the noise in the voltage supply in our design should be far less than 0.01V, which is 

difficulty achievable. 

 

 

FIGURE 34:FREQUENCY VARIATION OF THE CENTRAL FREQUENCY OF THE RING OSCILLATOR DEPENDING ON VOLTAGE SUPPLY MODIFICATIONS  
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As the Leeson formula was first developed to compute phase noise in RLC oscillator [94], the 

Leeson formula implementation for other oscillator topologies may be tricky. In the document [106], 

the computation of the implicated parameters of the Leeson formula, but this time related to a ring 

oscillator, is performed. For convenience two of these formulas are repeated here: 

𝑃𝑎𝑣𝑠 = 𝑛 ∗ 𝑁𝑏 ∗ 𝑉𝑑𝑑 ∗ 𝑞𝑚𝑎𝑥 ∗ 𝑓𝑜 

And   

𝑄𝑙 =  
𝑁𝑏
2
sin (

𝑁𝑏
2
) ∗ √

3𝜋𝑉𝑚𝑎𝑥

8𝑉𝑑𝑑
 

𝑞𝑚𝑎𝑥 =  𝐶𝑒𝑞 ∗  max (𝑉𝑜𝑢𝑡) 

EQ.  40 

where n is a technology factor around 0.7 and Nb is the number of stages of the ring oscillator. Ceq is 

the equivalent capacity of the node where the input current is injected. Ceq was determined 

replacing all the MOS by a SPICE 2 RF equivalent schematic and was found equal to 25fF. 

Figure 33reveals very close results between the SPICE simulations and the Leeson model (less 

than 3db of error) but is farer from the measurements, especially for very high offset frequencies 

(>1GHz). The measurements however were not performed on the ring oscillator directly but a PA 

was connected after the ring oscillator and the output pin used for the measurements was the 

output of the PA. The noise of the PA may increase the noise floor of the ring oscillator and that 

could explain the flattening of the phase noise curve for very high offset frequencies.  

As explained in detail in the Hajimiri document related to phase noise computation for ring 

oscillators[107], the effective ISF function is very closed to the ISF function meaning fewer 

perturbations from cyclostationary sources. After computing the ISF from eq.  39, co was found equal 

to 0.0567 and Γrms equal to 0.1334 meaning a closer f1/f3 from f1/f for the ring oscillator than the RLC 

oscillator. 

In Figure 35, it can be noted than the absolute margin between the time invariant Hajimiri model 

(Htt) and the SPICE simulation may reach 10db only for very high offset frequencies maybe due to 

poor f1/f3 estimation. In fact for smaller frequencies the difference is around 3dB, and because of a 

too low f1/f3 estimation in our model, the slope is only of -20db/decades for frequencies greater than 

10MHz in our model which is not the case for SPICE simulations (still a -30db/decades slope). 

However, our model is closer to the measurements than the SPICE simulations are. For this special 

case of ring oscillator topology, we can conclude that the time invariant Hajimiri model (Htt) can be 

applied to determine phase noise with sufficient accuracy. 
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FIGURE 35: COMPARISON BETWEEN THE PHASE NOISE PSD OBTAINED BY SPICE SIMULATIONS, THE PHASE NOISE PSD OBTAINED WITH THE 

TIME INVARIANT HAJIMIRI MODEL AND THE MEASUREMENTS MADE ON A CMOS PROTOTYPE FOR THE RING OSCILLATOR 

 

As this electronic design for the RLC and the ring oscillator topologies are very common, the 

results obtained in this document may be extended to not only single designs but also to these two 

topologies.  

(3) Simulation time: 

 

Using the Leeson model implementation or the time invariant model we created from Hajimiri 

and Lee theory permits to fasten simulation by approximately 103 times, in the same computer. In 

fact the simulation took only few seconds, whereas for SPICE simulations (BSIM 3), it lasted several 

hours for the ring oscillator phase noise simulation. For RLC oscillator, the time gain is less significant 

as SPICE simulations are faster due to the decrease number of transistors. 

 

(4) Phase noise estimation using Time Invariant Hajimiri and 

Lee Model 
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As we obtained good compliance between our model simulation and the SPICE ones for the two 

oscillator topologies, we wanted to create a phase noise estimation system, in order to obtain phase 

noise perturbations before the design of the oscillator. However this system has the following 

limitations: 

 The phase noise can be estimated only for offset frequencies close to the oscillator 

carrier which corresponds to the 1/f3 and 1/f2 regions. These offset frequencies are most of 

the time the ones of interest in phase noise study. 

 The phase noise estimation is restricted to oscillators with low cyclostationary 

noises. Meaning that Γeff is close to Γ. It is the case in ring oscillators as described in Section 

II.G.2 

 

Leeson model of phase noise does not permit easy estimation of phase noise before oscillator 

simulation mainly due to difficulty in estimating the noise factor F (cf Section II.G.1).  

However in the model we created, the computation of Htt can be obtained before the oscillator 

design, first by computing the ISF function which is approximated by eq.  39 [97], and is only 

dependent on the oscillator output signal. By extracting oscillator (with different type of topologies) 

output functions from literature, a database of ISF functions can be created. However, as described 

above, it is only valid for topologies where cyclostationary noises are not significant such as ring 

oscillators, etc. Once the ISF function is obtained, all the cn coefficients are known from eq.  34 [97]. 

The other variable to estimate is qmax which is equal to Ceq multiplied by Vmax. Recalling that Ceq is 

the equivalent capacity of the node where the input current is injected, it can be theoretically 

computed using the analog model of the oscillator. In the same way using the theoretical analog 

model of the oscillator, Vmax can be estimated without requiring precise Spice simulations. 

Although incomplete, the presented work could be fulfilled to theoretically evaluate oscillator 

output waveforms (hence corresponding ISF), Ceq and Vmax for phase noise estimation without 

benefits of Spice simulations. This would most likely allow very significant architecture selection and 

design time savings. 

 

H. Timing jitter estimation 
 

1. Timing jitter introduction 
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The transitions spacing over time in any given oscillator are not constant but fluctuate, which 

commonly define timing jitter. Although several jitter definitions exist such as period jitter, long 

term jitter and cycle to cycle jitter [108, 109], all these quantities can be defined from the jitter 

accumulation description. Besides only random jitter is studied in this document, discarding any 

deterministic jitter effect. Naming ΔT the measurement time interval period, and εi the random 

variable with gaussian distribution, zero mean and variance σεi
2, it can be proved [110] that the 

accumulation jitter over time is a gaussian random process with zero mean and variance σjitter such 

as defined by EQ.  41 [110]: 

𝐽𝑖𝑡𝑡𝑒𝑟(𝑡) =  ∑ 휀𝑛

𝑓𝑙𝑜𝑜𝑟(
∆𝑇

𝑇0
)

𝑛=1

 

EQ.  41 

where T0 is the oscillator period and εn are the random gaussian variables representing the timing 

error introduced at each period transitions. floor function permits to find the truncated value, giving 

an integer value. Furthermore the variance of the cumulative jitter process is defined as [110], with 

N being the number of period (or similarly the number of transitions) in the time measured interval 

ΔT [110]: 

𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2

= 

{
  
 

  
 

𝜎 1
2 + 𝜎 2

2 +⋯+ 𝜎 𝑁
2 =  𝑁휀2                               𝑖𝑓 𝜎 𝑖

2  𝑎𝑟𝑒 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 

                             𝑑𝑖𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 휀

𝑁2휀2                             𝑖𝑓 𝜎 𝑖
2  𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑑𝑖𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑦 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 휀

𝑁𝛼휀2   𝑤𝑖𝑡ℎ 1 ≤  𝛼 ≤ 2        𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑐𝑎𝑠𝑒 (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 

                                             𝑝𝑒𝑟𝑖𝑜𝑑 𝑐𝑎𝑛 𝑏𝑒  𝑑𝑖𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 휀)

 

EQ.  

42 

 

The statistics of the timing jitter depends on the correlation of the jitter at the end of each period 

and more physically on the correlation of the noise sources creating it [111]. If each transition 

period is affected by uncorrelated noise sources, the total variance of the jitter is equal to the sum 

of the variances of the timing fluctuations introduced at each stages. As the number of transitions N 

is proportional to the time measured ΔT, in this particular case, the variance of the jitter is 

proportional to the time measured ΔT [111]. 

𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2 = 𝑘1 ∆𝑇 EQ.  43 
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When noise sources are totally correlated such as supply or substrate noise, the standard 

deviations rather than the variance add [111], justifying EQ.  44. 

𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2 = 𝑘2∆𝑇

2 EQ.  44 

In the general case however both correlated and uncorrelated noise sources exist in a circuit 

resulting in correlated and uncorrelated timing perturbations at transitions, as described in EQ.  45: 

𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2  ~  ∆𝑇𝛼    𝑤𝑖𝑡ℎ 1 ≤  𝛼 ≤ 2  EQ.  45 

In a log-log plot of the jitter standard deviation over the measured time delay ΔT, the 

uncorrelated jitter is more important for smaller ΔT, whereas correlated jitter is more significant for 

longer measurement time, due to their respective mathematical properties 

 

FIGURE 36 : JITTER MEASUREMENT IN A TIME INTERVAL (THIS FIGURE IS REDRAWN FROM [111]) 

 

2. Relation between jitter and phase noise 
 

a)  Jitter Accumulation process 

 

The output of an oscillator perturbed by phase noise 𝜑(𝑡) can be described by EQ.  46: 

𝑉𝑜𝑢𝑡(𝑡) = 𝐴(𝑡) cos(2𝜋𝑓0𝑡 +  𝜑(𝑡)) EQ.  46 
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Phase noise 𝜑(𝑡) can be further related to the frequency variations around f0 called Δf as 

presented in EQ.  47[112]: 

∀ 𝑡 ∈ [0; 𝑇],      𝜑(𝑡) = 2𝜋 ∫ ∆𝑓(𝑡)𝑑𝑡
𝑡

0

 
EQ.  47 

The Jitter Accumulation process (JAP) is defined by 𝐽𝐴𝑃(𝑡, 𝛥𝑇)  =  𝜑(𝑡 +  𝛥𝑇) −  𝜑(𝑡) which 

represents the phase perturbation associated with the time measured ΔT (the phase is accumulated 

due to jitter in the ΔT interval). The JAP is improperly named as it is a phase difference rather than a 

jitter. JAP is proportional to the measurement of the jitter in the [t; t + ΔT] interval, starting at any 

random time t. For a better comprehension, the JAP will be called ∆𝜑(∆𝑇). JAP and the jitter can be 

related using EQ.  48, as it is the jitter which results in phase perturbation [113]: 

𝐽𝐴𝑃(𝑡, 𝛥𝑇) =  𝜑(𝑡 +  𝛥𝑇) −  𝜑(𝑡)  =   𝜔0 (𝐽𝑖𝑡𝑡𝑒𝑟(𝑡 + ∆𝑇) − 𝐽𝑖𝑡𝑡𝑒𝑟(𝑡)) EQ.  48 

From EQ.  48, the variances relation between phase perturbations and the jitter: 

𝜎𝐽𝐴𝑃(𝑡,𝛥𝑇)
2 = 𝜎∆𝜑(∆𝑇)

2 = 𝜔0
2𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2  EQ.  49 

It should be noted that in the particular case that t=0 and supposing that the initial jitter is null 

(𝐽𝑖𝑡𝑡𝑒𝑟(0) = 0) as well as the initial signal phase noise (𝜑(0) = 0), EQ.  48 reduces to: 

𝐽𝐴𝑃(𝛥𝑇) =  𝜑(𝛥𝑇)  =   𝜔0 (𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)) EQ.  50 

Hence the relation between variance is further simplified as expressed in EQ.  51: 

𝜎𝐽𝐴𝑃( 𝛥𝑇)
2 = 𝜎𝜑(∆𝑇)

2 = 𝜔0
2𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2  EQ.  51 

Remembering that the phase noise variance is equal to the integral of the phase noise PSD as 

shown in Annex B.1, the timing jitter variance and its statistical properties are easily deduced from 

the phase noise PSD. This relation can be found in various documents [111, 112, 114], and is a good 

approximation of the timing jitter process statistical properties. However as the timing jitter value is 

critical for the application (restricting the PWM accuracy), a more precise conversion from phase 

noise to timing jitter is required. 
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b) Phase noise Power Spectral Density to timing jitter 

conversion 

 

Several authors have proposed formulas to convert phase noise PSD into timing jitter with small 

discrepancies between them [115, 116]. Three of these formula will be developed as they can be 

simply implemented and they do not required strong mathematical background. 

 

(1) Defining the JAP process with a LTI system 

 

This discussion is further detailed in [113]. It can be shown in [113] that the JAP is a gaussian 

random process with zero mean and this process can be expressed as a convolution of a gaussian 

white noise with the impulse response of a Linear Time Variant (LTI) system called h(t) and 

developed in EQ.  52[113]: 

ℎ(𝑡, ∆𝑇) =  𝛿(𝑡 + ∆𝑇) −  𝛿(𝑡)  EQ.  52 

where δ(t) is the delta dirac function.  

Using the Wiener Khintchine theorem presented in Annex B.1, an remembering that the gaussian 

white noise is a stationary process entering into a LTI system, the autocovariance of the JAP, named 

RJJ(τ) is defined in EQ.  53[113]: 

𝑅𝐽𝐽(𝜏) =  ∫ 𝑆𝜑(𝑓)|𝐻(𝑗2𝜋𝑓)|
2

∞

− ∞

𝑒𝑗2𝜋𝑓𝜏𝑑𝑓 

→ 𝑅𝐽𝐽(𝜏) =  8∫ 𝑆𝜑(𝑓)𝑠𝑖𝑛(𝜋𝑓∆𝑇)
2

∞

0

cos (𝑗2𝜋𝑓𝜏)𝑑𝑓 

EQ.  53 

where 𝑆𝜑(𝑓) is the PSD of the phase noise. The PSD of the phase noise has a 1/f3 behavior followed 

by a 1/f2 behavior as described in Section II. G. The PSD of 𝑆𝜑2(𝑓) which represents the 1/f2 phase 

noise contribution has shown in EQ.  54[113]: 

𝑆𝜑2(𝑓) =  
𝐾2

𝑓2 + 𝛾2
2 

EQ.  54 

where K2 is the 1/f2 figure of merit and γ2 the cutoff frequency [113]. In this case the autocorrelation 

of the JAP is defined by EQ.  55: 

𝑅𝐽2𝐽2(𝜏) ≈  {
4𝐾2𝜋

2∆𝑇         𝑖𝑓 𝜏 = 0
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
EQ.  55 

For the 1/f3 noise portion, the PSD is expressed as: 
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𝑆𝜑3(𝑓) =  
𝐾3

|𝑓|3 + 𝛾3
3 

EQ.  56 

where similarly K3 is the 1/f3 figure of merit and γ3 the cutoff frequency [113]. The 

autocorrelation of the JAP for this noise portion is much more complex and only the value for τ = 0 is 

of interest as the JAP variance is investigated, this value is developed in EQ.  57[113]: 

𝑅𝐽3𝐽3(0) =  −8𝐾3𝜋
2∆𝑇2(Λ + log(2π𝛾3∆𝑇)) EQ.  57 

where Λ = Γ – 3/2 where Γ is the Euler-Mascheroni constant and is equal to 0.5772 [113]. However 

as the variance cannot be negative, this relation is valid for ∆𝑇 <
100.5772

2π𝛾3
 . Extracting the tangent of 

the 𝑅𝐽3𝐽3(0) formula permits to obtain the timing jitter for longer observation time. 

Assuming that 𝜑2 and 𝜑3 are mutually independent the total autocorrelation of the JAP can be 

expressed as [113]: 

𝑅𝐽𝐽(𝜏) =  𝑅𝐽2𝐽2(𝜏) + 𝑅𝐽3𝐽3(𝜏)  EQ.  58 

The calculated variance of the JAP is hence proportional to the time measured ΔT or to its square 

value depending on the type of noise considered, justifying the results found in Section I.H.1.  

 

(2) Standard deviation of the timing uncertainty 

computation from phase noise 

 

The following discussion is greatly inspired by [111]. The variance of the timing jitter process can 

also be expressed by EQ.  59[111]: 

𝜎∆𝜑(∆𝑇)
2 = 𝐸[(𝜑(𝑡 +  𝛥𝑇) −  𝜑(𝑡))2] 

     →     𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2 =

1

𝜔0
2 𝐸[(𝜑(𝑡 +  𝛥𝑇) −  𝜑(𝑡))

2] 

→ 𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2 = 

1

𝜔0
2 𝐸 [(𝜑(𝑡))

2
] + 

1

𝜔0
2 𝐸 [(𝜑(𝑡 + ∆𝑇))

2
] −

2

𝜔0
2 𝐸[𝜑(𝑡)𝜑(𝑡 + ∆𝑇)] 

EQ.  59 

The autocorrelation function of 𝜑(𝑡) is defined as: 

𝑅𝜑𝜑(𝜏) =  𝐸[𝜑(𝑡)𝜑(𝑡 + ∆𝑇)] EQ.  60 

Using the above equation, the variance of the timing jitter process can be rewritten as [111]: 

𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2 =

2

𝜔0
2  [𝑅𝜑𝜑(0) − 𝑅𝜑𝜑(∆𝑇)] 

EQ.  61 
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As detailed in [111], the relation between clock jitter and phase noise is expressed by EQ.  62: 

𝜎𝐽𝑖𝑡𝑡𝑒𝑟(∆𝑇)
2  =  

8

𝜔0
2∫ 𝑆𝜑(𝑓)𝑠𝑖𝑛(𝜋𝑓𝜏)

2
∞

0

𝑑𝑓 

EQ.  62 

Such mathematical description permits to obtain the variance of the jitter as developed in [111]. 

This result is almost similar to the result obtained with the JAP estimation using a LTI system as the 

mathematical development are very close. 

In the particular case of a single white noise source, an expression of the phase noise variance 

can be computed as presented in [111], which is reminded in EQ.  63 (assuming that the observation 

time is much longer than the oscillator period or multiple of this period): 

𝜎∆𝜑𝑊𝑁
2 = 

𝛤𝑟𝑚𝑠
2 𝑖𝑁

2

∆𝑓

2 𝑞𝑚𝑎𝑥2
 ∆𝑇 

EQ.  63 

where the various elements were defined extensively in Section II.G.3. This expression was 

computed with the help of EQ.  62 and eq.  32 and supposing that the input current was a white 

noise source. Changing the expression of the input current into a 1/f noise source and following the 

same methodology permits to obtain the value of 𝜎∆𝜑1/𝑓
2  for a single 1/f noise source [111], which is 

equal to: 

𝜎∆𝜑1/𝑓
2 = (

𝑖𝑁
2

∆𝑓
∗ 𝜔1

𝑓
𝑛𝑚𝑜𝑠

+ 
𝑖𝑁
2

∆𝑓
∗ 𝜔1

𝑓
𝑝𝑚𝑜𝑠

) ∗ 
𝑐0
2

16 𝜋 𝑞𝑚𝑎𝑥2
∆𝑇2 

 

EQ.  64 

where 𝜔1
𝑓
𝑛𝑚𝑜𝑠

 and 𝜔1
𝑓
𝑝𝑚𝑜𝑠

 are cutoff pulsations where 1/f noise is less important than white noise 

in nmos and pmos respectively. These parameters are dependent on the components utilized for 

the oscillator design and can be extracted running a noise analysis in Cadence®. They were found 

equal to 1.25e8 rad.s-1 and to 6.27e7rad.s-1 respectively. According to [117], these values can also be 

found theoretically. 

 

(3) Timing jitter computation using the frequency noise 

 

Remembering EQ.  47, which relates phase noise (𝜑) to frequency offset (Δf): 
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∀ 𝑡 ∈ [0; 𝑇],      𝜑(𝑡) = 2𝜋 ∫ ∆𝑓(𝑡)𝑑𝑡
𝑡

0

 

EQ.  65 

Assuming that the frequency offset is a random gaussian process [112], the variance of the phase 

deviation (𝜎𝜑) can be computed from the autocorrelation of the frequency offset RΔfΔf as indicated in 

EQ.  66 [112]: 

𝜎𝜑
2(𝑡) = 2. 2𝜋2∫ 𝑅∆𝑓∆𝑓(𝜏)(𝑡 −  𝜏)𝑑𝜏

𝑡

0

 
EQ.  66 

Considering the baseband signal as expressed in eq. 67, its relative spectrum is developed (the 

Wiener Khintchine theorem applies since the phase noise is supposed stationary in this 

demonstration), and its contribution to the spectrum output is expressed in EQ.  67 [112]: 

𝑉𝐵𝐵(𝑡) = cos(𝜑(𝑡)) 

→  𝑅𝑣𝐵𝐵𝑣𝐵𝐵(𝑡) = 𝑒
− 𝜎𝜑

2 (𝑡)

2  

𝑆𝑣𝐵𝐵(𝑓) = 2 ∫ 𝑒
− 𝜎𝜑

2 (𝑡)

2 𝑒𝑗2𝜋𝑓𝑡  𝑑𝑡
∞

0

 

𝑆𝑉𝑜𝑢𝑡(𝑓) =  
1

2
 (𝑆𝑣𝐵𝐵(𝑓 − 𝑓0) + 𝑆𝑣𝐵𝐵(𝑓 + 𝑓0)) 

EQ.  67 

where f0 is the oscillator central frequency and  𝜎𝜑
2(𝑡) the phase noise variance defined in EQ.  66 

The phase perturbations due to white noise frequency modulation can be defined in term of 

jitter or phase noise PSD. The PSD of a white noise is expressed by EQ.  68, and as it is a stationary 

process, its relative autocorrelation function can be easily extracted (EQ.  68) [112]: 

𝑆𝑊𝑛(𝑓) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 =  𝐶1 

𝑅𝑊𝑁𝑊𝑁 (𝑡) =  𝐶1𝛿(𝑡) 

EQ.  68 

Using EQ.  66, as white noise is usually modeled with a gaussian distribution, the rms phase jitter 

can be computed [112]: 

𝜎𝜑𝑊𝑁(𝑡) =  √2 𝐷𝜑  𝑡 
EQ.  69 

with 𝐷𝜑 called the phase diffusion constant and is equal to [112]: 

𝐷𝜑 = 2 𝜋
2𝐶1 EQ.  70 

The baseband PSD is obtained inserting EQ.  69, into EQ.  67 [112], giving the Lorentzian 

describing the PSD of the phase noise perturbations as already discussed by various authors [118]: 

𝑆𝑣𝐵𝐵(𝑓) = 2 ∫ 𝑒
− 𝜎𝜑𝑊𝑁

2 (𝑡)

2 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑡 =  
2 𝐷𝜑

𝐷𝜑
2 + (2𝜋𝑓)2

∞

0

 
EQ.  71 
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When the frequency offset is caused by 1/f noise, the PSD of the offset is directly obtained using 

a constant called K, determining the strength of the modulation as developed in details in [112]. 

However it is important to note that the observation time ΔT is limited and any spectral components 

with frequency lower than the reciprocal frequency of the observation time cannot be distinguished 

from the DC components of the signal [112]. Hence the observed offset frequency noise PSD can be 

defined as [112]: 

𝑆∆𝑓|∆𝑇
= 

{
 

 
𝐾

|𝑓|
      𝑖𝑓     |𝑓| >

1

∆𝑇

0             𝑖𝑓       |𝑓| <
1

∆𝑇

 

EQ.  72 

It should be noted than the random process associated with the 𝑆∆𝑓|∆𝑇
 PSD also referred as band 

limited 1/f noise is a WSS process and hence its autocorrelation can be simply extracted as detailed 

accurately in [112]. The band-limited 1/f noise is of great value in converting phase noise into jitter, 

making the conversion easier as illustrated in Annex B.1. 

Complete discussion from autocorrelation extraction of band-limited 1/f noise to phase noise 

variance and ending with phase noise PSD can be found in [112]. Only main results are reported in 

this Section, such as phase noise variance (EQ.  73) and phase noise PSD associated with band 

limited 1/f noise (EQ.  74): 

𝜎𝜑1/𝑓(𝑡)  ≈ 2𝜋√𝐾√1.85 + 2ln (
∆𝑇

2𝜋𝑡
) 𝑡 

EQ.  73 

and 

𝑆𝑉𝐵𝐵(𝑓) =  
𝑆∆𝑓|∆𝑇
𝑓2

= 
𝐾

|𝑓3|
 

EQ.  74 

These results are close to the ones obtained using the JAP process with a LTI system description. 

For large offset frequencies the phase noise PSD follows the white noise frequency modulation 

spectrum, for offset frequencies closer to 0, the phase noise PSD follows the power law defined with 

the band-limited 1/f noise frequency modulation. In similar ways, for small delay times, the jitter is 

mainly influenced by white noise frequency modulation and for longer delay times the opposite is 

true [112]. 
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c) Concluding remarks on timing jitter estimation 

 

The above presented methods, reviewed from existing literature are particularly straightforward 

to convert phase noise into timing jitter. This conversion helps to understand the phase noise effects 

in the transceiver transient model. It can be notified that for all the methodologies presented, 

timing jitter is assumed to be a gaussian process which variance is function of the observation time 

as indicated in EQ.  75: 

𝜎∆𝑇
2 = 𝑐 ∆𝑇 + 𝑘 ∆𝑇2 EQ.  75 

where c depends on the properties of the 
1

𝑓2
 phase perturbations (maybe caused by a frequency 

modulation with white noise sources) and k is related to the properties of the 
1

𝑓3
 phase 

perturbations (perhaps attributed to a frequency modulation with 1/f noise sources). 

 

3. Timing jitter estimation for PWM accuracy deduction 
 

The transmitter involves two oscillators, one directly associated with the PWM modulation (it 

resets the ramp signal) and the other one associated with the OOK modulation as discussed in 

Section I.B. Obviously the oscillator impacting the most the PWM signal is the one associated with 

the ramp resets although the 2.45GHz oscillator may also diminish the PWM precision. Two 

different methodologies will be utilized for the timing jitter computation of each oscillator to better 

illustrate the previous discussion. The timing jitter of each oscillators does not affect similarly the 

PWM accuracy and in each case the number of bits (NPWM) reached by the PWM will be extracted 

and solutions will be introduced to increase it. Besides it should be reminded that the PWM 

accuracy is already limited to 8 bits from the Section I.C.6 development. 

 

a) NPWM restrictions associated with the first oscillator 

 

This oscillator timing jitter estimation was performed defining a JAP process entering into a LTI 

system. The discussed oscillator has a central frequency of 20000 ∗ (2NPWM), and choosing NPWM 

equal to 8 bits as starting value gives fosc1 = 5.12 MHz and a period around 19.5µs. Using the phase 

noise spectrum extracted with Cadence, the parameters 𝐾2, 𝛾2, 𝐾3, 𝛾3were extracted and depicted 

in TABLE 1. 
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TABLE 1: PARAMETERS USED FOR THE FIRST OSCILLATOR TIMING JITTER ESTIMATION 

Parameters Values 

K2 1110.12 

γ2 (Hz) 5.47e7 

 
K3 9.99e11 

γ3 (Hz) 9.6e5 

c1 (s) 9.55e-1 

k1 9.3e-4 

 

The timing jitter associated with this oscillator can hence be expressed as: 

𝜎∆𝑇
2 = 

1

2 𝜋 𝑓𝑜𝑠𝑐1
2  ( 𝑐1 ∆𝑇 + 𝑘1∆𝑇

2 ) 

  →   𝜎∆𝑇
2 = 

1

2 𝜋 (20000 ∗ (2NPWM))2
 ( 𝑐1 ∆𝑇 + 𝑘1∆𝑇

2 ) 

EQ.  76 

where c1 and k1 are defined in TABLE 1. As indicated in EQ.  76, the timing jitter variance increases 

with the observation time and decreases when increasing the precision of the PWM. However this 

deduction is in this case (time modulation) erroneous as greater is the PWM number of bits (giving 

the PWM accuracy), lower is the time interval of the Least Significant Bit (LSB) which is equal to  

1

20000∗(2NPWM)
 and hence greater is the impact of the oscillator jitter. FIGURE 37 helps in 

understanding this concept as the oscillator is used to reset the ramp every 1/20e3 period. Greater 

is the jitter and greater are the ramp timing distortions, finally resulting in superposition of the 

PWM points. Besides if the observation time increases, the oscillator jitter variance increases 

resulting in comparable PWM signal disturbances. For a more graphical representation of the errors, 

every single combination of the PWM signal is associated with a particular place on the unity circle 

with equidistant space between points. The maximum number of bits that can be reached by the 

PWM signal depends greatly on the timing variance of the first oscillator which is function of the 

observation time. For observation times around 0.1ms, the maximum accuracy of the PWM is 4 bits. 

Introduction of a Phase Lock Loop (PLL) [119] or lowering the phase noise of this oscillator by 

improved electronic design, is compulsory as the device should function for several hours. 
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FIGURE 37: PWM ACCURACY IS ASSOCIATED WITH THE TIMING JITTER OF THE FIRST OSCILLATOR WHICH STATISTICAL PROPERTIES ARE 
ASSOCIATED WITH THE NUMBER OF BITS CHOOSEN AND WITH THE OBSERVATION TIME DURATION 

 

b) PWM restrictions associated with the 2.45GHz oscillator 

 

The 2.45GHz oscillator is associated with the OOK modulation and is not directly connected to 

the PWM signal creation. In consequence the impact of its jitter on the PWM signal characteristics 

will be studied in a more conventional manner. The theory used to compute the standard deviation 

of the timing uncertainty from phase noise is the one developed by Hajimiri and Limotyrakis and has 

been reviewed in Section II.H.2.b)(2), since several involved parameters have been already 

computed in Section II.G. 

Following the methodology of Section II.H.2.b)(2), the ISF computation from phase noise 

spectrum and the white noise PSD estimation leads to the timing jitter: 

𝜎∆𝑇
2 = 

1

2 𝜋 𝑓𝑜𝑠𝑐2
2  ( 𝑐2 ∆𝑇 + 𝑘2∆𝑇

2 ) 
EQ.  77 
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where c2 was equal to 1.13e10s, k2 was equal to 4.19e3 and fosc2 to 2.45GHz. 

As already discussed in Section II.H.1, timing jitter is considered as a gaussian process with zero 

mean and variance 𝜎∆𝑇
2  . Furthermore the empirical 3-sigma rule applied in gaussian process states 

that for a zero mean gaussian process the probability that the process is in the -3 * standard 

deviations to 3 * standard deviations interval is 99.7%. In consequence the maximum value of ΔT 

(ΔTmax) can be extracted from eq. 78, in order to obtain a standard deviation equal to half of the LSB 

signal period divided by 3. 

√𝜎∆𝑇
2  = √

1

2 𝜋 𝑓𝑜𝑠𝑐
2  ( 𝑐2∆𝑇𝑚𝑎𝑥  +  𝑘2∆𝑇𝑚𝑎𝑥

2 )   =   
1

2 ∗ 3 ∗  20000 ∗ (2NPWM))
 

EQ.  78 

ΔTmax was found approximately equal to 2.25e-5s.This value is inferior to the PWM total period 

which is 
1

20000
 s, and because it is an OOK modulation (the oscillator is on the OFF state when the 

PWM signal is null, according to the electrical architecture defined in Section I.B), the influence of 

this high frequency oscillator on the PWM signal is negligible. 

 

I. Closure remarks 
 

To ensure reduced power consumption and low noise introduction, the receiver frontend 

architecture made of a LNA, a mixer and a low pass filter was retained. We created behavioral 

models of the blocks composing this RF frontend architecture and concatenated them with the 

behavioral models of the transmitter and the propagation channel in the Matlab/Simulink® 

environment. Among the numerous parameters that we varied in order to determine critical blocks, 

the ones impacting the most the signal integrity were the preamplifier gain, the comparator offset 

and the LNA gain. Furthermore, a significant reduction of the antenna gain or an inconsistency in 

propagation channel attenuation estimation may corrupt very deeply the transceiver output. 

Phase noise was studied independently as related signal corruption cannot be removed by other 

blocks tuning. Phase noise study is statistical and its conversion to timing jitter was required for its 

inclusion in the transient models created. We further simplified this study and applied it to two 

different oscillators topologies (ring- and LC tank-oscillators).Based on the oscillator timing jitter 

inclusion in the PWM process, we found that timing jitter had a huge impact on the PWM signal 

accuracy leading to a maximal PWM resolution of4bits for an observation time of 0.5ms instead of 

the initial 8 bits at 20kHz in the noiseless case presented in Chapter 1. Hence the inclusion of PLL 
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architecture is required for the low frequency oscillator to diminish such jitter perturbations on the 

PWM signal and also possibly for 2.45 GHz oscillator to respect ISM frequency band specifications. 
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A. Opening notifications 
 

This chapter aims to provide theoretical basis of the hearing process from sound wave reception 

in the external ear to nerve fibers stimulation inside the cochlea. The models we developed are 

mainly mathematical, mechanical and electrical in order to embrace the overall system. We 

gathered current literature physical description of various parts of hearing process and proposed an 

overall heterogeneous description of this process. To render this model compatible with the ones 

developed in the previous chapters, we favored mathematical and electrical like description (e.g. 

organ of Corti electro-mechanical equivalent model we adapted from anatomical description).   

As some hearing mechanisms are still under study and not fully understood yet, many theories 

compete to describe the various parts of the hearing process. The author’s choice for model 

implementation was based on the most quoted theories.  

This modeling work is necessary to understand advantages and limitations of cochlear implants 

and provide new considerations for possible device improvements. 

 

B. Introduction to hearing process 
 

The ear is a receptive organ: it translates physical pressure changes into a perceptual experience 

[120]. The ear contains three functional parts: the outer ear which captures sound waves, the 

middle ear which avoids energy loss in the sound wave conversion into a wave propagating inside a 

liquid (the perilymph) and the inner ear which transforms the wave into an electrical signal allowing 

brain interpretation. Other functions associated with the different parts of the ear are further 

described in [121, 122]and are not presented in this document. 

Hearing perception and sound recognition are performed by the brain which interprets the 

electrical signals sent by the Hair Cells (HC), once a sound wave excites the tympani (further details 

are provided in Section III.D). Superior olive, Inferior coliculus, medial geniculate nucleus, auditory 

cortex may play a role in sound perception, localization and interpretation (as shown in Figure 38) 

although little is known about their role [120, 123]. More details are available in [124]about sensory 

pathways in the central nervous system. 
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FIGURE 38: BRAIN INVOLVED CENTERS FOR HEARING PROCESSING (ATTRIBUTED TO[120, 123]) 

 

The hearing process is hence very complex, involving many organs and is nowadays partly 

understood. The physiological description of the three parts of the ear is reminded in Figure 39 and 

Figure 40. 

 

FIGURE 39: EAR DESCRIPTION (EXTRACTED FROM [125]) 
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FIGURE 40: EAR STRUCTURE MODELED WITH AUTOCAD® 

 

C. Middle air impedance matching 
 

The external ear is not discussed or modeled in this document. We discarded the study of the 

pinna contribution to sound localization as well as the frequency filtering and resonance associated 

with the ear canal.   

When an acoustic wave traveling inside the outer ear canal strikes the eardrum, the ossicles 

located inside the middle ear then amplify the sound intensity. This is achieved by producing a lever 

effect. The last ossicle (stirrup) hits the oval window of the cochlea. The fluid (perilymph) inside the 

scala vestibuli of the cochlea provides support for mechanical waves propagation. The amplification 

provided by the ossicles aims to correct the loss of energy associated with the impedance change at 

the air to liquid interface [126] (Figure 39).  

Figure 41 [127] shows the physical schematic associated with the middle ear. When the sound 

wave hits the eardrum, there is an amplification of 26 dB explained by the difference in area of the 

eardrum which is 15 times the one of the oval window, as explained by eq.  79 [127] 

𝑃2
𝑃1
= 
𝐴2
𝐴1
∗  
𝐿2
𝐿1
 ≈ 26𝑑𝑏                          

EQ.  79 
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where P1 is the power associated with the sound wave and P2 the power of the mechanical wave 

transmitted by the stirrup. A1 is the area of the eardum and A2 is the area of the oval window. L1 and 

L2 represent the distances indicated in Figure 41.  

However because of the impedance mismatch in the oval window interface (the mechanical 

wave is converted into a wave propagating inside a liquid, as the scala vestibuli of the cochlea is 

filled with a lymphatic type solution), the transmitted power from the mechanical wave into the 

liquid wave is reduced by 29db as expressed by the power transmission coefficient [127] 

𝜏 =
4 ∗  𝑍𝑎𝑖𝑟 ∗  𝑍𝑓𝑙𝑢𝑖𝑑

(𝑍𝑎𝑖𝑟 + 𝑍𝑓𝑙𝑢𝑖𝑑)
2
 ≈  −29𝑑𝑏           

EQ.  80 

where Zair is the impedance of the air and the Zfluid is the impedance of the liquid inside the scala 

vestibuli. As demonstrated by various authors [128, 129], the main function of the ossicles in the 

middle ear is to reduce the power loss due to the impedance mismatch. 

For the following parts, we considered that the wave power at the oval window interface is equal 

to the power of the air wave.  

 

FIGURE 41:  MIDDLE EAR SCHEMATIC, Φ1 IS THE SOUND WAVE HITTING THE EARDRUM AND P1, P2, P3 ARE THE ASSOCIATED POWER 

(EXTRACTED FROM [127]) 

 

D. Wave propagation theories inside the cochlea 
 

The theory of hearing attempts to explain the physical transformation of the sound wave leading 

to nerve fiber stimulation. Four major hearing theories will be described in this document and 

further precisions are available in [130]. The hearing theories may be divided into place coding 

theories and temporal coding theories 

 Place coding theories: 

o Resonant theory: Helmholtz proposed that the cochlea was composed of segments 

with diverse degree of tension based on their position inside the cochlea. The 
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segments were responsive only to certain frequencies and the cochlea was acting as 

an harp where only one string was vibrating depending on the sound wave 

frequency. 

o The above theory was demonstrated inexact by Von Bekesy who proposed the 

traveling wave theory. In fact the Basilar Membrane(BM) is not under radial tension, 

the energy of the wave traveling inside the perilymph is taken up by the BM 

resulting in its vibration [131]. 

 Temporal coding theories: 

o The telephone theory assumes that the BM entirely and singularly vibrates when 

stimulated by a sound and further decoding is performed in the brain. However as 

nerve fibers can fire only once per millisecond, it would not be possible to perceive 

sounds with a frequency above 1000Hz. Another problem with this theory is that a 

damaged cochlea may respond to certain frequencies [132]. 

o The volley theory:  This model was based on the telephone theory and aimed to 

explain the frequency perception above 1000Hz. In this theory, the nerve fibers of 

the BM respond to a BM variation with different time delays and when these delays 

are combined, a greater frequency of sound can be sent to the brain. 

The BM motions in response to acoustic signals in the resonance theory and telephone theory 

were all shown conceivable (depending on the BM elasticity and on the part of the cochlea) and  

incorporated into a same physical model (traveling wave theory) by Von Bekesy [133]. 

  

E. Traveling wave theory model implementation 
 

The cochlea is the central structure of the inner ear. It works by converting a wave propagating 

inside the perilymph into nerves stimulation using the complex organ of Corti structure. Inside the 

cochlea, the Hair Cells (HC) are stimulated by the basilar membrane vibrations and release chemical 

messengers which excite nerve cells (more details are available in Section III.G). 
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FIGURE 42: BASIC PROPAGATION OF THE MECHANICAL WAVE INSIDE THE MIDDLE EAR (LEFT). ANATOMY OF THE COCHLEA (RIGHT). THE 

FIGURES ARE ATTRIBUTED TO [134] 

 

FIGURE 43: COCHLEA STRUCTURE MODELED WITH AUTOCAD® 

 

FIGURE 44.A) EAR SCHEMATIC WITH INCLUSION OF THE ELECTRODES ARRAY INSIDE THE COCHLEA.  B) EAR SCHEMATIC AND THE WAVE 

PROPAGATION LEADING TO A BASILAR MEMBRANE HEIGHT CHANGE (H(X,T)) 
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According to biophysical theories [135, 136] when a mechanical wave propagates inside the 

cochlea, the BM distorts to absorb the wave energy. In consequence the height (denoted as h(x,t) in 

the following parts) of the BM excitement mainly depends on the sound intensity as well as the 

position along the Ox  ⃗⃗⃗⃗⃗⃗  ⃗axis (that we called x which is the distance from base of the cochlea). In fact 

the cochlea has different mechanical properties (different stiffness and mass) changing with the 

distance from the base and hence the mechanical wave makes vibrating only a precise area of the 

cochlea depending on the wave frequency. The width (denoted as W(x)) of the BM excitement 

around the resonance greatly depends on the distance from the cochlea base (called x). As the 

number of excited HC depends on W(x) the number of auditory fibers excited is hence associated 

with the width of BM vibration (more information are provided in Section III.C) . 

The cited wave propagation theory is quickly reviewed in this section for a better understanding 

of the biophysics of hearing and for determining the characteristics of the BM resonance in terms of 

amplitude and width. This theory and the computations are extracted from [137]and[127], the main 

results are recalled here for the reader’s convenience. 

Suppose a sound wave φ1 with the mathematical description given by eq.  81 

𝜑1 =  𝐴1𝑒𝑥𝑝
𝑖(𝑘1∗𝑥−𝜔∗𝑡) EQ.  81 

where A1 is the sound amplitude, k1 is the wave number and ω is the pulsation. The wave is 

supposed propagating in the x direction. 

This sound wave then results in a wave propagating inside the scala vestibuli (called φ3) and its 

general form is extracted from [137]: 

𝜑3 =  
𝐴3
2
∗ [𝑒𝑥𝑝(𝑖(𝑘∗𝑐𝑜𝑛𝑗(𝑧)− 𝜔∗𝑡)) + 𝑒𝑥𝑝(𝑖(𝑘∗𝑧− 𝜔∗𝑡)) + 𝑒𝑥𝑝(−𝑖(𝑐𝑜𝑛𝑗(𝑘)∗𝑧− 𝜔∗𝑡))

+ 𝑒𝑥𝑝(−𝑖(𝑐𝑜𝑛𝑗(𝑘)∗𝑐𝑜𝑛𝑗(𝑧)− 𝜔∗𝑡))] 

EQ.  82 

where A3 is the amplitude of the liquid wave, k is the wave number and z the complex variable: z = x 

+iy. The conj operator represents the conjugate function. φ3 is not collinear with x but propagates 

inside the 2 directions. The eq.  82is simplified in [137] into two equations: one for the long wave 

region (where the wavelength is long compared to the duct height, which is the region near the base 

of the cochlea) and one for the short wave region (where the wavelength is similar to the duct 

height). It is indicated in [137] that only in the short wave region, the propagation loss becomes 

significant. However as we considered that the losses are still important in the long wave region, we 

chose to only apply the short wave region equation for the entire cochlea (eq.  83): 
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𝜑3 = 𝐴3 ∗ 𝑒𝑥𝑝
(𝑘𝑟𝑦−𝑘𝑖𝑥 ) ∗ cos(𝑘𝑟𝑥 + 𝑘𝑖𝑦 −  𝜔𝑡) 

EQ.  83 

where 𝑘 =  𝑘𝑟 + 𝑖𝑘𝑖  is the wavenumber. Applying the Newton formula inside the cochlea and 

discarding the basilar membrane mass and the cochlea tension gives the value of krand ki which 

depends on the distance x (the complete description is performed in[137]). 

Mathematical equations developed in[137] lead to the following relation between membrane 

height displacement (called h(x,t))  and auditory wave: 

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
=  − 

𝜕𝜑3(𝑥, 𝑦, 𝑡)

𝜕𝑦
 

EQ.  84 

Solving this equation permits to obtain the BMheight displacement (h(x,t)). We use the software 

Maple® to implement the BM height displacement for a sound wave with a frequency of 600Hz 

(Figure 45): 

 

FIGURE 45: BASILAR MEMBRANE DISPLACEMENT (NM) WITH RESPECT OF THE DISTANCE FROM THE COCHLEA BASE (X IN µM) AND 

TIME (MS) FOR A 600HZ INPUT ACOUSTIC WAVE 

One can observe that the BM displacement is a function of the distance from the cochlea base and 

the amplitude of the auditory wave. 

The width of the BM displacement greatly depends on the position x as shown inFigure 46. The 

detection of a BM displacement permits to obtain the width of this excitement: 

𝑊(𝑡) =  ∫ ℎ(𝑥, 𝑡)𝑑𝑥                               

𝑋𝑊

 

  𝑤𝑖𝑡ℎ 𝑋𝑊  =  {𝑥 | 𝑎𝑏𝑠(ℎ(𝑥, 𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} 

EQ.  85 
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The BM movement compresses the organ of Corti resulting in a membrane potential variation in 

the corresponding auditory fiber. If this potential variation is greater than a threshold voltage 

around 30mV[138], the nerve fiber is excited. We implemented the mechanical model of the organ 

of Corti found in [139]and more details are provided in Section III.G as well as the threshold value 

definition. 

Extraction of the width W for acoustic waves of different frequencies varying from 60Hz to 20kHz 

(hence resulting in different place of excitation of the BM) is shown in Figure 46. 

 

 

FIGURE 46.A: COMPARISON OF A BASILAR MEMBRANE EXCITATION BY A 600HZ SOUND WAVE AND BY A 300HZ SOUND WAVE WHICH MAKE 

THE BM TO RESONATE AT DIFFERENT PLACES(X) WITH DIFFERENT BASILAR MEMBRAN EEXCITATION WIDTH (W). B: REPETITION SIMILAR 

EXPERIMENT USING THE SAME MATHEMATICAL MODEL FOR DIVERSE FREQUENCIES GIVES THE FUNCTION W(X) 

 

The relation between the distance from the oval windows where the BM displacement is 

maximal and the frequency of the acoustic wave is given by repetition of the experiment for sound 

input wave frequencies covering all the human frequency hearing range. This experiment was 
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carried out and is not shown in this document as it gives close results with the Greenwood function. 

Because the Greenwood function [140]  verified by physical experiments [141], it was used 

thereafter in the document to express the distance x where h(x) is maximal in function of the 

soundwave frequency, rather than using the obtained function. 

 

F. Biophysical limits of human hearing 
 

The wave traveling inside the cochlea has a speed of about 12 m/s at the basal (high frequency) 

end and slows to about 2 m/s at the apical (low frequency) end [37]. The human cochlea measures 

around 35mm. To reach the apical end, the wave inside the cochlea makes 17.5ms as expressed by 

eq.  86 

𝑡𝑆𝐶 = 
𝐶𝑜𝑐ℎ𝑙𝑒𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 

EQ.  86 

where tSC is the time needed for BM stimulation depending on the wave velocity traveling inside the 

cochlea. 

After 17.5 ms, the apical end of the BM (for low frequency) vibrates if properly stimulated. This 

BM vibration phenomenon resulting of wave excitation has a frequency of 57.14Hz. This frequency 

value is very close to the human hearing lowest frequency capability. Similarly if we suppose that 

the Hair Cells (HC) distribution starts very close to the basal end of the cochlea (for instance 

0.5mm)[142], the time needed for the BM to oscillate at the basal end is around 0.03ms which 

corresponds to a frequency of 30kHz (close to the human maximum hearing frequency capability). 

This new correlation between BM variations and the wave velocity inside the cochlea may explain 

the human hearing interval frequency. It may further indicate that the frequency sensitivity of the 

cochlea is mostly dependent on cochlea physical properties (such as stiffness or width for example) 

variations along its distance and that the BM vibration time is close to Action Potential (AP) time 

interval. This could also indicate why different mammal species can hear at lower frequency 

(because of a propagating wave with reduced velocity or because of an increase length of their 

cochlea for instance) and bring new insights on why some mammals species can hear ultrasounds 

(higher velocity wave propagation inside their cochlea, maybe because of different BM physical 

characteristics or different perilymph composition for instance). 
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Furthermore in very loud environment the Inter Spike Delay (ISD), which is the time delay 

between two consecutive APs, lowers (it could reach 5ms) and this result in incapacity to properly 

process low frequency sounds (as the time needed for the BM excitement is around 17ms). 

 

 

G. Modeling the organ of Corti structure 
 

According to biophysical theories [143, 144]when a mechanical wave propagates inside the 

cochlea, the BM distorts to absorb the wave energy, resulting in a height variation of the BM which 

compresses the organ of Corti. As shown in Figure 48, the organ of Corti is composed of Hair Cells 

(HC) (Outer Hair Cells (OHC) and Inner Hair Cells (IHC)), which have stereocilia at their end. When 

BM vibrates, stereocilia position changes allowing potassium channels to open [138, 145]. Opening 

of the potassium channels creates the depolarization of the HC allowing complex mechanisms to 

take place (reviewed in [132, 146, 147]), and finally, resulting in neurotransmitter released in the 

synapse. Once released, these neurotransmitters travel to the post synaptic cell (the nerve fiber) 

and creates the depolarization of the nerve fiber. This depolarization, if sufficiently important, 

generates an Action Potential (AP) running through the nerve cell membrane [148, 149] (cf. Figure 

48). 

Various mechanical models have been presented for the organ of Corti structure [45], [150], 

[151], [152], [153] as well as for the stereocilia displacement [154-157] 

Besides physiological studies aiming to explain the HC membrane potential variations with the 

stereocilia displacement, following the BM motion are available with a general agreement about the 

mechanisms involved. Studies found in [152, 158, 159] are based on OHC experiments and relate 

OHC membrane potential variations in function of the stereocilia angle.  

The synapse is still an extended area of research, aiming to understand the phenomenal brain 

complexity. Numerous postsynaptic receptors, neurotransmitters, reuptake mechanisms as well as 

more complex effects such as Long Term Potentiation (LTP), are still under study and several new 

molecules are produced each year by the pharmaceutical industry targeting these proteins. 

Synapses are separating hair cells with afferent nerve cells. The anatomical description of afferent 

nerve cells and their HC connections can be found in [142, 160]. To the author’s knowledge, no 
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study are indicating the precise HC depolarization value needed or the number of HCs required to 

stimulate an afferent nerve cell response (an action potential generation).  

This Section may partially fill the modeling gap between the presented models, connecting the 

BM displacement with the afferent nerve cells stimulation and developing each step of the 

theoretical solutions. The models were mainly mathematical and the softwares used were Matlab®, 

Maple® and a SPICE simulator.  

 

1. Organ of Corti mechanical model 
 

The organ of Corti is a structure found only in mammals which responds to fluid vibrations of the 

cochlea [39]. Organ of Corti is mainly composed by the BM, Deiters cells which support Outer Hair 

Cells (OHC) and Inner Hair Cells (IHC). The two hair cells type have hair like structure at their top, 

called stereocilia. Above them the Tectorial Membrane (TM) extents parallel to the BM [41, 43].  

 

 

FIGURE 47: INNER EAR STRUCTURE (LEFT) AND ORGAN OF CORTI DISPLACEMENT DUE TO BASILAR MEMBRANE VIBRATION. THE FIGURES 

ARE ATTRIBUTED TO [134], [15] AND [161] 
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FIGURE 48: ORGAN OF CORTI 

 

Diverse mechanical models of the organ of Corti are available in the literature [45], [150], [151], 

[152], [153]. However the precise mechanical and mathematical description has yet to be fully 

defined. As experiments [162] in radial shearing motion are limited (they aim to link the BM 

movement with the TM longitudinal and radial angle), we hence supposed that the TM was fixed. 

Furthermore the TM variations also depend on the Reissner’s membrane variations and hence BM 

displacement cannot fully define the TM radial and longitudinal displacement. To the author’s 

knowledge, this phenomenon is nowadays poorly described in literature. 

The mechanical equivalent of the organ of Corti we proposed is shown in Figure 49: 

 

 

FIGURE 49: MECHANICAL ANALOG OF THE ORGAN OF CORTI (ONE DIMENSIONAL ANALOG) 

 

This mechanical equivalent is simplified as it only takes into account the vertical movement 

(along the y direction in Figure 49). It is hence a 1 dimension mechanical model, where k0 represents 
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the spring coefficients of the OHC and Deiters cells, kBM the spring coefficient of the BM,  RL is the 

reticular lamina, STM is the TM damping coefficient, S0 is the OHC and Deiters cells damping 

coefficient and SBM is the BM damping coefficient. The boxes represent masses. The values of k0, kBM, 

S0 and SBM are extracted from [163] as well as the mass values of the BM and RL. The damping 

coefficients were extracted from [164] and all these values are recalled in Table 6 for reader’s 

convenience.   

 

TABLE 6: MECHANICAL MODEL COEFFICIENTS EXTRACTED FROM [165]  AND FROM [164]. IT SHOULD BE SPECIFIED THAT THE VARIATIONS 

OF THE COEFFICIENT WITH THE COCHLEA POSITION ARE OFTEN NONLINEAR. 

Values obtained per 

10µm radial section 

Base Apex 

Basilar Membrane mass 

(g) 

2.76e-9 14.2e-9 

Basilar Membrane static 

compliance (kBM) (N/m) 

10e-10 10e-14 

Basilar Membrane 

friction coefficient (SBM) 

(N.s/m-1) 

150e-9 150e-9 

Reticular Lamina mass (g) 0.74e-9 36.1e-9 

Reticular Lamina static 

compliance (N/m) 

4.18 0.147 

 

As explained above, we supposed STM very low and because the force applied to the stereocilia 

cannot move the TM (mass of TM >> mass of the stereocilia), we neglected STM and we supposed 

that TM was not moving. Hence the mechanical analog of the organ of Corti (presented in Figure 49) 

became the one presented in Figure 50: 

 

 

FIGURE 50: SIMPLIFIED MECHANICAL ANALOG OF THE ORGAN OF CORTI 
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This mechanical model is very similar to the one that can be found in [153]. Using the mechanical 

electrical analogy in [166], we modeled the force applied to the RL mass as the current going 

through the capacitor in Figure 51. 

 

FIGURE 51: ELECTRICAL ANALOG OF THE SIMPLIFIED MECHANICAL MODEL REPRESENTING THE ORGAN OF CORTI TO ALLOW EXTENDED 

SIMULATIONS WITH ELECTRONIC ADVANCED DESIGN (EAD) TOOLS 

 

In the analogy used, currents represent forces, inductors are equivalent to compliance (1 𝑘⁄ ), 

resistances are equivalent to lubricity (1 𝑆⁄ ) and masses are equivalent to capacitors. 

As iBM = ic that means that the force applied perpendicular to the BM is equal to the one applied 

perpendicular to the RL. 

Furthermore the ratio between the BM mass (mBM) and the RL mass (mRL) varies between
1

3
at the 

base and around 2 at the apex [165]. Hence the ratio between the BM acceleration (
𝜕2𝑦𝐵𝑀

𝜕 𝑡2
) and the 

RL acceleration makes similar variation ( 
𝜕2𝑦𝑅𝐿

𝜕 𝑡2
) as expressed in eq.  87 

𝑚𝐵𝑀
𝜕2𝑦𝐵𝑀
𝜕 𝑡2

 =  𝑚𝑅𝐿
𝜕2𝑦𝑅𝐿
𝜕 𝑡2

 

𝐴𝑠 
𝑚𝐵𝑀
𝑚𝑅𝐿

 ∈  [
1

3
, 2] ⇒

𝜕2𝑦𝑅𝐿

𝜕 𝑡2

𝜕2𝑦𝐵𝑀

𝜕 𝑡2

  ∈  [
1

3
, 2] 

EQ.  87 

From various experiments [167, 168], it has been shown that the amplitude of the RL 

displacement was close to the amplitude of the BM displacement, which validates our mechanical 

model. Inaccuracies may come from the TM supposed fixed as well as oversimplification in 

supposing that the mechanical equivalent of the organ of Corti was moving in a single direction only. 
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2. Stereocilia displacement 
 

The BM displacement creates a vertical movement of the IHC and OHC and hence of the 

stereocilia. As stereocilia is an hair cell tissue, it contracts and slides over the TM. OHC stereocilia are 

anchored in the TM [169] while IHC stereocilia are not attached to the TM in their resting position 

and the contact between these two structures is only happening during important BM excitement 

[170] (suggesting that hearing precision may be more related to OHC than to IHC).  

We decided to model the stereocilia motion of OHC as being only a sliding motion associated 

with no vertical compression, as we thought that the angle between the TM and the stereocilia 

(called αTM in Figure 52), avoided any strong compression. 

As presented in Figure 52, we modeled the stereocilia TM connection in a wagon rail motion type 

with no compression of the stereocilia. 

 

FIGURE 52: MECHANICAL MODEL OF THE STEREOCILIA MOTION 

 

 

FIGURE 53: MATHEMATICAL DESCRIPTION OF THE STEREOCILIA MOVEMENT 
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Δy is the displacement of the BM (or similarly of the RL) and β is the deflection angle which is the 

angle between the resting position of the stereocilia and the stereocilia position when the BM (or 

similarly the RL) is moved. 

Using the model presented in Figure 53 and the Al-Kashi formulas [171] we developed the following 

system (eq.  88): 

{
 
 

 
 𝑆𝐿

2 = (𝑆𝐿 − ∆𝑦)2 +  𝑑1
2 −  2 ∗ (𝑆𝐿 − ∆𝑦) ∗ 𝑑1cos (

𝜋

2
+  𝛼)

𝑑1
2 =  𝑆𝐿2 + (𝑆𝐿 − ∆𝑦)2 −  2 ∗ 𝑆𝐿 ∗ (𝑆𝐿 − ∆𝑦) ∗ cos(𝛽)

𝑑1 = 2 ∗ 𝑆𝐿 ∗ sin (
𝜋 −  𝛽

2
)          

 

EQ.  88 

where SLis the length of the stereocilia which is between 1µm (at the base) and 5µm (at the apex) of 

the cochlea [172]. Typically the RL displacement (Δy) around 500nm induces a deflection angle of 

approximatively 2 degree [173], so the stereocilia length is far greater than the RL displacement for 

normal amplitude sound stimulation, suggesting that in this case, the variations in the deflection 

angle are small enough and that they can be approximated by a linear function. 

The OHC potential is linearly related to the deflection angle in a |5°| interval [152, 158, 159] and 

saturation phenomenon appear at a deflection angle lower than -10° or greater than +10°. The 

model we developed must hence contain a stop mechanism associated with the deflection angles 

lower than -10° or greater than +10° to be accurate. 

The mechanical model presented in this document considers OHC as it is more described in 

literature, however very similar mechanisms define IHC movement. 

 

 

FIGURE 54: PIEZOELECTRIC MODEL OF THE STEREOCILIA 
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As previously stated by authors [174, 175], the organ of Corti acts as a piezoelectric material: 

when a mechanical strength is applied to the BM, the membrane potential of the hair cells (OHC or 

IHC) change. To represent the piezoelectric behavior of the organ of Corti we used a potentiometer 

linked to the stereocilia deflection angle or more simply to the RL height displacement as explained 

in Figure 54. 

The entire electric and mechanic model of the organ of Corti which adds all the models 

presented in this Section, is shown in Figure 55. 

 

 

FIGURE 55: ENTIRE MECHANICO-ELECTRIC ANALOG DEVELOPED FOR THE ORGAN OF CORTI STUDY 

 

3. Nerve cells excitation due to hair cells movement 
 

At the tip of the IHC and OHC there are hair bundles also called stereocilia [176]. Stereocilia are 

surrounded by a fluid (the endolymph) which is rich in K+ ions. There are filamentous connections 

(called tip links) between each cilia [177-179]. When the stereocilia performs a rotational motion, 

the tip links are stretched and the ionic channels (Kv7.4 and TRP4) open and admit K+ ions and 

Ca
2+ions respectively [152] to enter inside the Hair Cells (IHC or OHC). The mechanism described 

below concerns the IHC, more complex processes occur in OHC as OHC express more motor proteins 

such as prestin [180], etc. The current concept is that the tip links are connected to the channel 

gates, allowing the mechanical gate of the channels to be opened when the tip links elongate and 

conversely to close them when the tip links shorten [178, 181] (Figure 56). 
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FIGURE 56: WHEN BM IS EXCITED, TIP LINKS MOVE AND ALLOW IONIC CHANNELS TO OPEN WHICH IS THE STARTING POINT OF THE HAIR 

CELL MEMBRANE DEPOLARIZATION (REDRAWN FROM [178]) 

 

Because more positive ions are entering inside the cell than the ones that are leaving the cell, the 

membrane depolarizes (however the equilibrium potential of K+ is not -97mV because in this precise 

case, the concentration of K+ ions in the perilymph is greater than usual). Depolarization of the IHC 

results in the activation of Voltage Gated Ions Channels (Cav1.3) located along the lateral cell 

membrane. KCNQ4 channels allows K+ to leave the cell, whereas calcium channels increase the 

cellular concentration of Ca
2+[182]. The influx of Ca

2+ activates the neurotransmitter (glutamate) 

release at the base of IHC, close to the nerve fibers (in the synapse). The amount of glutamate 

release is proportional to the voltage membrane depolarization strength [183]. This mechanism is 

controversial as some authors suggest that the Ca2+ concentration increase in the cell cytoplasm is 

due to Inositol trisphosphate (IP3) activation pathways due to ATP binding during IHC mechanical 

rotation [184]. As previously stated the voltage membrane depolarization depends on the rotational 

angle made by the stereocilia once excited (the precise description of the Organ of Corti and model 

is described in Section III.G.2). Glutamate binds to receptors located in the afferent nerve fiber 

terminal, resulting in action potential generation in the afferent nerve cells (if the stimulus is strong 

enough) [183]. 

Experiments show that there is a linear relation between the firing rate (number of spikes per 

second, also called spikes frequency) and the sound wave amplitude in dB [185-188]. As a relation 

between the OHC membrane voltage (VOHC) and the sound wave amplitude can also be extracted, 

we can suppose that the spikes firing rate depends on OHC membrane voltage and that similar 

deductions can be made for IHC.  
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Remembering that IHC are not directly producing AP which is made by the afferent nerve fiber 

due to VIHC change, we are proposing a possible mechanism that links VIHC and AP generation. 

 

4. Theoretical results using the model developed 
 

The electro-mechanical modeling presented in the previous Section aims to connect the BM 

height variation, following a sound wave detection with the OHC voltage variation. Two sound 

waves of 50dB of amplitude and a frequency of 300Hz and 600Hz were used for theoretical model 

testing. The BM height displacement for 50dB sound waves with a frequency of 300Hz and 600Hz 

(described in Section III.E) is redrawn in Figure 57: 

 

FIGURE 57: BASILAR MEMBRANE DISPLACEMENT ASSOCIATED WITH 50DB 300HZ AND 600HZ SOUND WAVE 

 

The use of the equations presented in eq.  84, gave the stereocilia displacement associated with 

these BM height variations (Figure 58). 

Using the mathematical relation found in [152, 158, 159](obtained from experimental data 

performed on OHC), we transformed the stereocilia motion into OHC potential. It should be noticed 

that as this mathematical relation was defined only in a certain range, we performed a polynomial 

extraction to obtain values outside the given interval. Furthermore we suppose in this document 

that IHC dynamics are similar to OHC dynamics. This assumption may be inaccurate but was 

necessary, as to the authors’ knowledge, no such data were extracted from IHC displacement. 
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FIGURE 58: STEREOCILIA ANGLE ASSOCIATED WITH 50DB SOUND WAVES OF 300HZ AND 600HZ 

 

 

FIGURE 59: OUTER HAIR CELL MEMBRANE POTENTIAL VARIATION PRODUCED BY 300HZ AND 600HZ 50DB SOUND WAVES. THE RED LINE 

IS THE OUTER HAIR CELL MEMBRANE VARIATION REQUIRED TO PRODUCE AN ACTION POTENTIAL 

 

5. Synapse modeling 
 

Consequently to IHC release of glutamate in the synaptic cleft, glutamate receptors in 

postsynaptic afferent nerve, also called type I Spiral Ganglions Cells (SGC), provoke nerve cell 

excitation (voltage membrane change) and may produce an AP. The mechanisms by which IHC are 

stimulated (mechanical stimulation of the tip links which open the ionic channels) and release the 
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neurotransmitters to excite afferent nerve cells are very different from afferent nerve cell signal 

production (glutamate-mediated postsynaptic excitation of neural cells), and propagation. Dendritic 

input potentials variation also known as dendritic Excitatory Post Synaptic Potentials (EPSP) produce 

an afferent nerve cell soma depolarization that may result in an AP creation on those cells. 

Glutamate receptors in postsynaptic afferent nerve cells (ionotropic receptors (AMPA, NMDA,…) 

and metabotropic receptors (allowing nerve cell response modulation as developed in [183]) 

stimulate ions entry inside the cell, producing a depolarizing current (excitatory post synaptic 

current) [189, 190]. If enough glutamate receptors are activated, this may trigger an AP generation 

in the postsynaptic neuron. 

 

 

 
b) 

a) 
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FIGURE 60: DYNAMICS OF THE SYNAPTIC TRANSMISSION, FROM NEUROTRANSMITTER LIBERATION IN THE PRESYNAPTIC CELL (IHC), 
SYNAPSE DIFFUSION, RECEPTOR ANCHORAGE AND TO IONS PENETRATION IN THE POST SYNAPTIC CELL[191-193] 

 

a) Ribbon synapse 

 

Neuronal ribbon synapses constitute a special subclass of chemical synapses, characterized by 

multivesicular release mechanisms as well as unusual calcium channel positioning allowing 

increased exocytosis cycle resulting in extremely fast, precise and sustained release of glutamate in 

the synaptic cleft in response to presynaptic cell membrane potential change. This augmented and 

continuous glutamate release allows very efficient neurotransmission which is of great importance 

for perception of complex senses such as vision or hearing (sound amplitude perceived can cover six 

order of magnitude [194]). The synaptic ribbon is a structure positioned several nanometers away 

from the pre-synaptic membrane and tethers 100 or more synaptic vesicles. Each pre-synaptic cell 

may possess from 10 to 100 ribbons anchored at the membrane [195-197]. In experiments 

c) 

d) 
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quantifying the sizes of presynaptic ribbons and postsynaptic AMPA receptor patches in more than 

1200 synapses in mouse cochleas performed in [198, 199], it was established that each nerve cell 

contacts only one hair cell ribbon synapse, justifying the numerous type 1 Spiral Ganglion Cells (SGC) 

connecting each single IHC. Ribbon synapses unchangingly use glutamate as the primary transmitter 

[200].  

 

 

 

FIGURE 61: HAIR CELL RIBBON SYNAPSE MODELING. FOLLOWING INNER HAIR CELL (IHC)  DEPOLARIZATION, CALCIUM IONS ENTER INSIDE 

THE IHC ALLOWING GLUTAMATE VESICLES TO BE RELEASED IN THE SYNAPTIC CLEFT. THE PRECISE MECHANISMS OF VESICLES EXOCYTOSIS 

AT A RIBBON SYNAPSE ARE COMPLEX AND STILL PARTIALLY UNDERSTOOD [201, 202] 

b) Presynaptic model 

 

The ionic channels open when the presynaptic membrane potential (Vpresynaptic) is greater than the 

opening threshold voltage for Voltage Gated Ca2+ Channels (Cav), allowing Ca2+  ions entry inside the 

presynaptic cell which permits the release of the glutamate neurotransmitter in the synapse. In this 

case, the presynaptic cell corresponds to an activated IHC but this mathematical model can be 

extended with simplicity to other types of presynaptic cells. The ionic channels dynamics are 

described by the following equation (eq.  89) [191-193]: 

𝐼𝑖𝑜𝑛 = 𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ∗  𝜌𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑛  EQ.  89 

where 𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the conductivity of the ionic channel, Vchannel is the channel voltage activation 

threshold, ρchannel the presynaptic cell channel density (often neglected by various authors), mchannel 
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the probability that the channel is in its opened state and n the number of gates composing the 

channel. In the following development we assumed that n=1 and we suppose that ρchannel was 

already included in channel conductivity. This simplification is often retained by various authors as it 

does not alter the comprehension of ions dynamics in the synapse. 

The probability that the channel is in its opened state (mchannel) is described by functions 

α(Vpresynaptic) and β(Vpresynaptic) (Figure 62) [203, 204]. 

 

FIGURE 62: KINETIC MODEL OF PRESYNAPTIC CELL GLUTAMATE RECEPTORS 

 

where α(Vpresynaptic) represents the opening rate of the channel and β(Vpresynaptic) the closing rate of 

the channels. These functions are extracted from experiments and are easily available on literature 

[203, 204]. 

Applying the law mass principle permits to obtain the differential equation found in [193, 205], 

and reminded in eq.  90 

𝑑 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑑𝑡

 =   𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗ (1    −   𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙) −  𝛽(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙) 
EQ.  90 

From this mathematical model, further parameters can be extracted such as the fraction of 

channels which are in the open state if the presynaptic membrane potential is hold at a constant 

potential. This parameter is obtained when t is very large (eq.  91) [206]. 

𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) =  
𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)

(𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) +  𝛽(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)) 
 

EQ.  91 

Furthermore the average time needed for the channel to change state is given by eq.  92 [206]: 

𝜏𝑚(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) =  
1

(𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) +  𝛽(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)) 
 

EQ.  92 

The dynamics of a receptor is more complex than the one presented by the differential eq.  90. 

Other models such as Markov chain [193] or other kinetic schemes as the ones presented in [207] 

are available to model more precise behavior. As the channel opening is probabilistic, stochastic 
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description of the channels dynamics are also available [208] but were discarded in this document to 

ease the computations. 

In a presynaptic neuron (or IHC in our case), depolarization which is caused by stereocilia 

displacement or more generally due to AP arriving at the presynaptic neuron synapse for instance, 

will cause Ca2+ channels to open, leading to calcium ions entry and finally to vesicles fusion 

(containing the glutamate) with the presynaptic membrane. Vesicles fusion with the presynaptic 

membrane liberates glutamate into the synaptic cleft. The number of glutamate released is hence 

directly proportional to the fraction of channels maintained in the opened state for a presynaptic 

potential (Vpresynaptic) as described in eq.  93: 

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 = 𝑇𝑚𝑎𝑥 ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙 EQ.  93 

where Tglutamate is the concentration of glutamate in the synaptic cleft and Tmax is the maximum 

glutamate concentration (when all the channels are opened). 

The mathematical model reused in this document, extracted from [206], gives the analytical 

solution of mchannel (which is defined in eq.  94) 

𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 , 𝑡)

=  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)

− (𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) − 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(0)) ∗  𝑒𝑥𝑝
−𝑡

𝜏𝑚
𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 

EQ.  94 

Replacing this solution in eq.  89, permits to obtain the general conductance of the channel 

(recalled in eq.  95) 

𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)

− (𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) − 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝(0)) ∗  𝑒𝑥𝑝
−𝑡

𝜏𝑚
𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 

EQ.  95 

Another mathematical model for the transmitter concentration in the synaptic cleft is to consider 

that the vesicles fusion with the presynaptic membrane happens very fast, hence the number of 

transmitters released is dependent on the number of channels maintained in an opened state at a 

fixed presynaptic potential (hence replacing mchannel by 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝ in eq.  93). In this case Tglutamate 

is simply given by eq.  96 

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 = 𝑇𝑚𝑎𝑥 ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑡→ ∝ = 
𝑇𝑚𝑎𝑥 𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)

(𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) +  𝛽(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)) 
 

EQ.  96 

This model of transmitter release is often preferred in literature [191, 193, 209]. 
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Considering usual synaptic models results in Excitatory Post Synaptic Potentials (EPSP) (that are 

the potentials of the afferent nerve cells due to the IHC depolarization) around 5mV for AMPA 

Receptors (absolute values) [210-212] and 3mV for NMDA Receptors [212, 213], unable to generate 

an AP. Besides the non continuous stimulation of post synaptic cells in usual synapse is incompatible 

with the maintained hearing sensation of a continuous sound. IHC have ribbon structures close to 

the synapse allowing precise, continuous and fast glutamate release in the synaptic cleft as 

described in Section I.G.5.a). 

Various mathematical models of ribbon synapses have been developed in literature [214], and 

their conclusions will be adapted in our model. We created a mathematical function estimating the 

quantity of glutamate released in the synaptic cleft depending on Vpresynaptic and on time. We 

estimated as a first approximation than this function could be split into two independent functions, 

one related only to the presynaptic membrane potential and the other only to time as described by 

eq.  97: 

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = 𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛1(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛2(𝑡) EQ.  97 

The concentration of Ca2+ entering inside the IHC following IHC depolarization has been 

quantified experimentally [214] and the glutamate quantity released in the synapse is directly 

proportional to the Ca2+ concentration inside the IHC (until vesicles exocytosis saturation when more 

than 1mMol of Calcium is entering inside the IHC)[214] [199]. Besides Calcium Voltage Channels are 

time dependent and we supposed frequency of glutamate released into the ribbon synapse identical 

to the frequency of glutamate clearance. Consequently we used the Calcium concentration inside 

the IHC in function of the presynaptic voltage potential to determine the quantity of glutamate 

released into the ribbon synapse in function of this potential and we used the time dynamics of the 

Calcium Voltage Channels to estimate the temporal fluctuation of the glutamate into the ribbon 

synapse. This second relation does not include exocytosis or endocytosis mechanisms and discards 

reuptake mechanisms lowering its physical interest, however it models roughly the glutamate 

quantity into the ribbon synapse, provided non saturation of the vesicles released due to very 

important IHC intracellular Calcium.  

Furthermore the maximum quantity of glutamate released in the ribbon synapse was defined in 

[214] and is close to the maximum quantity of glutamate released by an entire normal synapse. We 

modeled the glutamate quantity released in the ribbon synapse applying eq.  98: 
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𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛

= (𝑇𝑚𝑎𝑥𝑟𝑖𝑏𝑏𝑜𝑛(
1

1 + 𝑒
− (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝1)

𝜏1

+ 
1

1 + 𝑒
(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝2)

𝜏2

)

+ 𝑇𝑚𝑖𝑛) ∗ (
𝑡 − 𝑡0
𝜏

∗  𝑒1− 
𝑡− 𝑡0
𝜏 ) 

EQ.  98 

where Vp1 is the glutamate activation threshold potential and was set to -10mV, Vp2 is the glutamate 

deactivation voltage and was found around 50mV. τ1 and τ2 are respectively the raising constant and 

the falling constant both set to 0.01V-1. Tmin is the minimum glutamate released fixed to 1µMol since 

the ribbon synapse constantly release glutamate. t0 is the time when the intracellular Calcium is 

maximal and is fixed at 7ms. τ represents the decay time constant and was found equal to 0.01s to 

obtain the same dynamics as in various experiments. 

Figure 63 exhibits the quantity of glutamate released in the ribbon synapse in function of the IHC 

(presynaptic cell) potential and the time, following our model implementation in Maple®. The 

function shape of the glutamate released in the synaptic cleft can be related to experimental results 

presented in [215], although precise comparison is difficult since adequate testing was not 

performed. 

 

FIGURE 63: GLUTAMATE RELEASED IN THE SYNAPTIC CLEFT AT A RIBBON SYNAPSE (MODELED WITH MAPLE®) 

 

c) Synaptic cleft model 

 

There are more than 1014 neurons in the human body and each of these may contain up to 105 or 

even more synapses. The synapses may be electrical (gap junctions) or chemical with 
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neurotransmitters used as signaling molecules [216]. Additionally the same neurotransmitter may 

bind with different affinity to different postsynaptic neurons receptors and may result in various 

neuronal responses.  

The mathematical model proposed here is very basic discarding complex mechanisms such as 

neurotransmitter reuptake. 

We considered in this model that the neurotransmitters sent into the synaptic cleft by the 

presynaptic neurons travel to the postsynaptic membrane where they bind to postsynaptic 

membrane receptors, as described by eq.  99[217]: 

𝐼𝑠𝑦𝑛𝑎𝑝𝑠𝑒 = ∑𝑤𝑗 ∗  ∑𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑡 − 𝑡𝑗
(𝑓)
)  ∗ (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

𝑗𝑗

 EQ.  99 

where j is the number of neurons releasing neurotransmitter into the synapse (we supposed for 

simplification purposes that j=1), wj is the synapse efficiency (supposed equal to 1) and tj is the time 

needed for the presynaptic neuron to fire (as described in Section I.C, mean inter spike delay is 

around 15ms for auditory nerve fibers). 

 

d) Postsynaptic receptors mathematical modeling 

 

The aim of the mathematical synapse modeling in this work is to express the postsynaptic (type II 

SGC) membrane potential variations (ΔVpostsynaptic) as a function of the presynaptic membrane 

potential (Vpresynaptic), and modeling choices were made for that intent. 

When the neurotransmitters arrive in the postsynaptic membrane receptors (generally on 

activator sites of gated channels), it will allow ionic channel opening resulting in ions diffusion (such 

as Na+, K+). These ions are entering or leaving the postsynaptic cells depending on their resting 

concentration in the various compartments. This ionic diffusion will modify the postsynaptic cell 

membrane potential (Vpostsynaptic). This potential is defined by a set of equations, attributed to 

Hodgkin and Huxley [149, 209, 218-220], mathematically describing the action potential generation. 

The postsynaptic membrane current associated with neurotransmitter glutamate arrival is 

expressed by the following equation (eq.  100) [209, 221]: 

𝐼𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 =  𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑛 ∗  𝜌𝑐ℎ𝑎𝑛𝑛𝑒𝑙  ∗ (∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙) EQ.  100 
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This equation is very similar to the presynaptic membrane conductivity equation and the same 

assumptions about n and ρchannel were considered.  

 

 

FIGURE 64: KINETIC MODEL OF THE POSTSYNAPTIC RECEPTORS 

 

Similarly to the presynaptic conductivity, the following equation (eq.  101) is used to describe the 

channel opening probability. However this time the rate opening function is weighted by the partial 

transmitter concentration inside the synapse, as the channels only open if neurotransmitters are 

binding to it [191] as described by Figure 64. 

𝑑 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑑𝑡

 =   𝛼(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒  ∗ (1    −   𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

−  𝛽(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙) 

EQ.  101 

The meaning of the different parameters were defined in Section III.G.5.a) 

The mathematical system describing the AP generation was introduced by Hodgkin and Huxley 

[206, 218] and is recalled in eq.  102, for reader’s convenience. This system precisely models the 

physics of the AP, in particular the behavior of the voltage channels present in the nerve cell surface. 
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{
 
 
 
 

 
 
 
 −𝐶𝑚

𝑑𝑉𝑚
𝑑𝑡

=  𝑔𝑁𝑎̅̅ ̅̅ ̅ ∗  𝑚
3 ∗ ℎ1 ∗ (𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝑘̅̅ ̅

∗  𝑛4 ∗ (𝑉𝑚 − 𝑉𝑘) + 𝑔𝑙 ∗ (𝑉𝑚 − 𝑉𝑙) + 𝐼𝑖𝑛 (𝑡)
𝑑 𝑛

𝑑𝑡
 =   𝛼𝑛(𝑉𝑚) ∗ (1    −    𝑛) − 𝛽𝑛(𝑉𝑚)( 𝑛)

𝑑 ℎ

𝑑𝑡
 =   𝛼ℎ(𝑉𝑚) ∗ (1    −    ℎ) − 𝛽ℎ(𝑉𝑚)( ℎ)

𝑑 𝑚

𝑑𝑡
 =   𝛼𝑚(𝑉𝑚) ∗ (1    −    𝑚) − 𝛽𝑚(𝑉𝑚)( 𝑚)

 

EQ.  102 

where 𝑔𝑁𝑎̅̅ ̅̅ ̅ is the conductance of the Voltage gated Sodium channels (Nav), VNa is the potential of 

Na+ inversion. 𝑔𝑘̅̅ ̅ is the conductance of the Voltage gated Potassium channels (Nkv), Vk is the K+ ions 

potential inversion. gl is the conductance of the channels associated with the leakage current and Vl 

is the reversing potential of these channels. Iin is the input current injected in the nerve cell, for 

instance during neurotransmitters release in the synapse. As the Nav channels have a set of 3 

identical, rapidly-responding, activation gates (the m-gates), and a single, slower-responding, 

inactivation gate (the h-gate)[222], this explains the power value of the probabilistic functions 

associated with the channel gate opening m and h. The voltage gated potassium channels contain a 

single class of gate consisting of 4 individual activation gates (the n-gates), which respond more 

slowly than the activation gates of the Nav channels [222] 

The factors αi and βi are called the transition rate constants, where αi represents the number of 

times per second that a gate which is in the closed state opens, while βi represents the number of 

times per second that a gate which is in the opened state closes [222].These functions are easily 

found on literature [206, 223, 224]. 

Cm is the postsynaptic membrane capacitance and was supposed constant to simplify the 

computations. This postsynaptic membrane capacitance value has a major impact on the time 

response of Vpostsynaptic and was computed from nerve fibers capacitance (1µF/cm2 ) [225, 226] 

multiplied by the surface covered by a ribbon synapse (diameter of a ribbon synapse active zone 

around 0.1µm) [199]. 

We hence obtained a system with 6 equations and with 7 unknown variables, which are sufficient 

to express Vpostsynaptic = f(Vpresynaptic), as emphasized in eq.  103[191, 205, 206]: 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 −𝐶𝑚

𝑑𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐

𝑑𝑡
=  𝑔𝑁𝑎̅̅ ̅̅ ̅ ∗  𝑚

3 ∗  ℎ1 ∗ (𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑁𝑎) + 𝑔𝑘̅̅ ̅

∗  𝑛4 ∗ (𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑘) + 𝑔𝑙 ∗ (𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑙)

+ 𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠  (𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

𝑑 𝑛

𝑑𝑡
 =   𝛼𝑛(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗ (1    −    𝑛) − 𝛽𝑛(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)( 𝑛)

𝑑 ℎ

𝑑𝑡
 =   𝛼ℎ(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗ (1    −    ℎ) − 𝛽ℎ(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)( ℎ)

𝑑 𝑚

𝑑𝑡
 =   𝛼𝑚(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗ (1    −    𝑚) − 𝛽𝑚(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)( 𝑚)

𝑑 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑑𝑡

 =   𝛼𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛  ∗

(1    −    𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙) −  𝛽𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = (𝑇𝑚𝑎𝑥𝑟𝑖𝑏𝑏𝑜𝑛 (
1

1 + 𝑒
− (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝1)

𝜏1

+ 
1

1 + 𝑒
(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝2)

𝜏2

) + 𝑇𝑚𝑖𝑛)

∗ (
𝑡 − 𝑡0
𝜏

∗  𝑒1− 
𝑡− 𝑡0
𝜏 )

 

EQ.  103 

The last two equations were developed in Section III.G.5.a). It should be noted that the channel 

parameters are the parameters of the channels in the postsynaptic membrane, whereas only the 

Tglutamateribbon function concerns the presynaptic membrane channels. 

The system presented in eq.  103 can be solved numerically, and the various parameters values 

may be found in [206, 223, 224], although there is sometimes controversies between documents 

about these values. 

When Vpostsynaptic  is greater than V1/2Na (which is the potential that the postsynaptic membrane 

has to reach to activate half of the Nav channels and is around -20mV), an AP is generated [227]. An 

AP has always the same physical characteristics hence the same mathematical description with a 

peak of 30mV reached in approximately 0.2ms (average value for AP propagating in nerve fibers). 

Consequently, it is sufficient to only compute the increase in the postsynaptic membrane potential 

associated with the transmitter released, as described in eq.  104 

∆𝐼𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 = 𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙) EQ.  104 

This permits to reduce the system presented in eq.  103, into the following one (eq.  105) 
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{
 
 
 
 
 
 

 
 
 
 
 
 −𝐶𝑚

𝑑∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐

𝑑𝑡
 =  𝑔𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗  𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

𝑑 𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝑑𝑡

 =   𝛼𝑐ℎ𝑎𝑛𝑛𝑒𝑙(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛  ∗ 

(1    −    𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙) − 𝛽𝑐ℎ𝑎𝑛𝑛𝑒𝑙(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = (𝑇𝑚𝑎𝑥𝑟𝑖𝑏𝑏𝑜𝑛 (
1

1 + 𝑒

− (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝1)

𝜏1

+ 
1

1 + 𝑒

(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝2)

𝜏2

) + 𝑇𝑚𝑖𝑛)

∗ (
𝑡 −  𝑡0

𝜏
∗  𝑒

1− 
𝑡− 𝑡0
𝜏 )

 

EQ.  105 

We may further specify that the enzymatic inactivation of the neurotransmitters in the 

postsynaptic cells are related to the activation rate and inactivation rate constant as described in 

[205]. 

 

e) Postsynaptic membrane receptors 

 

Various experiments have reported that AMPA receptors mediate fast synaptic transmission at 

the hair cell afferent synapse [195, 201].  

Immunolabelling study have indicated that Kainate-type Glutamate receptors (KAR) are 

expressed in both IHC, OHC and Spiral Ganglion Cells (SGC) and may be possibly involved with OHC 

acoustic transmission [228]. 

NMDA receptors responses of SGC are particularly relevant for salicylate induced tinnitus study 

models, suggesting an implication of these receptors in sounds perception [195, 229]. NMDA 

receptors require activation of the postsynaptic cell in order to become open as a Magnesium ion is 

blocking the canal in their normal state. In consequence it is hence very likely that NMDA receptors 

work to modulate postsynaptic cell activation following AMPA receptors opening. 

Using molecular biology and immunolabeling method, it was shown in [230], that glutamate also 

activates second messenger systems via G-protein-coupled metabotropic glutamate receptors 

(mGluRs) and their activation did not initiate postsynaptic nerve cell response but raised the 

excitatory postsynaptic cell response of Spiral Ganglions neurons. 

Purinergic receptors are expressed in almost all the cells of the organ of Corti structure, they are 

involved in various complex pathways partially understood mainly as second messengers [231]. 
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A number of substances have been proposed to function as neurotransmitter from efferent input 

(from the lateral part of the efferent olivocochlear system), stimulating the IHCs or OHCs such as 

acetylcholine, gamma-aminobutyric acid (GABA), dopamine, enkephalin and dynorphin [232]. 

We decided to only model AMPA and NMDA Receptors as they mainly contribute to the auditory 

nerve cell response and because they are the most characterized in electrophysiological literature. 

 

(1) AMPA receptors 

 

AMPA receptors are ionotropic transmembrane receptors for glutamate, that mediates fast 

synaptic transition as they open and close rapidly. Their name is derived from the artificial 

glutamate analog α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) acting as an 

agonist [233] . Each AMPAR has four sites to which an agonist (such as glutamate) can bind which 

opens the pore. The channel opens when two sites are occupied [234] and increases ionic current as 

more binding sites are occupied [235]. Once open, the channel may undergo rapid desensitization, 

described by various mathematical temporal functions [204, 208]. The AMPA Receptors may be 

permeable to sodium, potassium and calcium (depending on the presence of the GluR2 subunit). 

Long Term Potentiation (LTP) involved in synaptic plasticity [216], implicated in memory study is not 

modeled in this document. In specialized auditory nuclei, AMPA receptor kinetics may be extremely 

rapid with rise and decay time constants in the millisecond range [236]. We implemented the above 

equations with the software Maple® and the results are presented in Figure 65 and in Figure 66. 

AMPA receptors opening probability function (nAMPA) model implementation indicates that the 

AMPA receptors opening starts when Vpresynaptic reaches -20mV and quickly decrease after 1ms, 

except if there is elevated presynaptic membrane depolarization.  

 The AMPA receptors conductance points out that for time greater than 5ms or for presynaptic 

membrane potential below -40mW, the current passing through the AMPA receptor is reduced in 

accordance with the nAMPA results. 
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FIGURE 65: AMPA RECEPTOR OPENING PROBABILITY FUNCTION (NAMPA) PLOTTING RELATED TO THE PRESYNAPTIC MEMBRANE POTENTIAL 

AND TO TIME 

 

FIGURE 66: POSTSYNAPTIC CELL CONDUCTANCE FUNCTION ASSOCIATED WITH AMPA RECEPTORS ONLY, PLOTTING RELATED TO THE 

PRESYNAPTIC MEMBRANE POTENTIAL AND TO TIME 

 

Although temporal functions, modeling the AMPA receptors temporal dynamics, are available in 

literature [204, 208], we preferred to implement the general mathematical model of a receptor in 

order to conserve the relation with the presynaptic membrane potential (Vpresynaptic). In fact 

considering only the temporal function describing the AMPA receptor dynamics and using this 

function in both systems presented in eq.  103 and eq.  105, led to inability to correlate Vpostsynaptic 

with Vpresynaptic as mchannel is only depend on t and not on Vpresynaptic in this case. 
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The system used to model Vpostsynaptic in function of Vpresynaptic for AMPA receptors only is 

presented in eq.  106 

{
 
 
 
 
 
 

 
 
 
 
 
 −𝐶𝑚

𝑑∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐

𝑑𝑡
 =  𝑔𝐴𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅ ∗  𝑚𝐴𝑀𝑃𝐴

(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝐴𝑀𝑃𝐴)

𝑑 𝑚𝐴𝑀𝑃𝐴
𝑑𝑡

 =   𝛼𝐴𝑀𝑃𝐴(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛  ∗ 

(1    −    𝑚𝐴𝑀𝑃𝐴) − 𝛽𝐴𝑀𝑃𝐴(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝐴𝑀𝑃𝐴)

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = (𝑇𝑚𝑎𝑥𝑟𝑖𝑏𝑏𝑜𝑛 (
1

1 + 𝑒

− (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝1)

𝜏1

+ 
1

1 + 𝑒

(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝2)

𝜏2

) + 𝑇𝑚𝑖𝑛)

∗ (
𝑡 −  𝑡0

𝜏
∗  𝑒

1− 
𝑡− 𝑡0
𝜏 )

 

EQ.  106 

The values for the different parameters related to the AMPA receptors can be found in various 

documents [191, 204, 205, 208]. However these values are not similar between the documents and 

we modified these in order to obtain the same temporal dynamics as the ones obtained in 

experiments. In documents [205, 216, 237, 238] the Excitatory PostSynaptic Potential (EPSP) are 

presented for various presynaptic stimuli for AMPA Receptors, giving the time response of the post 

synaptic cell to these particular stimuli. Although these stimuli are limited in number, they do 

provide a testing environment for our model and authorizes constant values identification. The 

parameters values obtained are presented in Table 7. 

 

TABLE 7: AMPA RECEPTORS PARAMETERS USED IN THE MAPLE® SOFTWARE IMPLEMENTATION 

Parameters Values 

VAMPA (V) 0e-3 

𝒈𝑨𝑴𝑷𝑨̅̅ ̅̅ ̅̅ ̅̅  (S) 5e-10 

αAMPA (M/s) 5e5 

βAMPA (M/s) 400 

τ1 (V-1) 10e-3 

τ2 (V-1) 10e-3 

t0 (s) 7e-3 

τ (s) 1e-2 

Tmax (M) 1e-3 

 

The analytical resolution of the system presented in eq.  106, was performed using Maple® 

Software and is not proposed here as the mathematical solution contains numerous terms. It should 
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be notified that the constants of this solution were set in order to obtain values suitable with 

experiments. The general shape of the solutions obtained were as presented but the precise 

mathematical values of the solutions were set to fit physical experiments such as whole cell patch-

clamp recordings from afferent dendrites with IHC contacts in excised postnatal rat resulting in 

Excitatory PostSynaptic Potentials (EPSP) of variable amplitude (1–35 mV) with time constant of rise 

times of about 1 ms and time constants of decay of about 5 ms at room temperature (presented in 

[239]). In [240, 241] current-clamp recordings were performed from IHCs and voltage-clamp 

recordings from afferent fibers in postnatal rats gave similar results. 

nAMPA and gAMPA functions are plotted in Figure 65 and in Figure 66. The opening probability of the 

AMPA receptors is directly related to the presynaptic cell membrane potential in our model. 

Furthermore both figures emphasize that the AMPA receptors are only activated during few 

milliseconds before they start closing. 

The mathematical description of the postsynaptic membrane potential (ΔVpostsynaptic) in function 

of the time and the presynaptic membrane potential (Vpresynaptic) restricted to AMPA receptors only is 

proposed in Figure 67 where the inactivation time is much more important than the AMPA receptor 

one, mainly because of the nerve cell membrane capacitance value. 

 

 

FIGURE 67: POSTSYNAPTIC MEMBRANE POTENTIAL VARIATIONS RELATED TO PRESYNAPTIC VOLTAGE AND TIME FOR AMPA RECEPTORS 
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(2) NMDA Receptors 

 

The NMDA Receptors are another type of ionotropic glutamate receptors, N-methyl-D-aspartate 

(NMDA) is the name of a selective agonist that binds to NMDA receptors, giving the name to this 

receptor class. Activation of NMDA receptors results in the opening of an ion channel that is 

nonselective to cations [242]. The NMDA receptor channel is blocked by Mg2+ at resting membrane 

potential and to unblock it, the postsynaptic cell must be depolarized [243].Therefore two 

conditions are needed for NMDA Receptors opening: glutamate must be bound to the receptors, 

and the postsynaptic cell must be depolarized. When these two conditions are realized the NMDA 

receptors displace the Mg2+ ions blocking the channel, allowing diffusion processes to occur. This 

property of the NMDA receptor explains many aspects of Long-Term Potentiation (LTP) and synaptic 

plasticity, not studied in this document [243] 

The fraction of channels that are not blocked by Mg2+ ions is given by the formula extracted 

from [204, 205, 244] and recalled in eq.  107. 

𝐵(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) =  
1

1 −  𝜂[𝑀𝑔2+] ∗ 𝑒𝑥𝑝−𝜐 𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐
 

EQ.  107 

where the parameters η and υ can be found in [204, 205, 244]. [Mg2+] is the extracellular 

magnesium concentration and is around 1 milliMole in physiological conditions. 

To the author’s belief, NMDA receptors cannot be modeled efficiently with the deterministic 

differential equations used in eq.  101, as the time solution of this differential equation is composed 

of a simple exponential modeling the receptor closure. This supposes that the receptor opening is 

instantaneous. For NMDA receptors the opening time (defined by its raising time) is around 20ms 

which is comparable to its closing time (defined by its falling time which is between 25 and 125ms) 

[204]. The temporal behavior of the channel opening probability function is rather defined by two 

exponential functions, one defining the opening of the receptor and the other one its closure as 

described in [204, 205]. This temporal behavior can be obtained using more complex kinetics model 

leading to second order derivatives of mNMDA. Besides if we consider only the temporal description of 

the NMDA channel opening probability (𝑚𝑁𝑀𝐷𝐴), the connection between 𝑚𝑁𝑀𝐷𝐴 and the 

presynaptic voltage (Vpresynaptic) will be lost, hence we will not be able to correlate ΔVpostsynaptic and 

Vpresynaptic. To still maintain the  𝑚𝑁𝑀𝐷𝐴dependency on Vpresynaptic, and facilitate solution convergence 

of the differential equations we discarded the NMDA receptors raising time response and use the 

simple first order differential system of synaptic receptors already discussed multiplied by the 
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magnesium block function (B). Whereas inaccurately describing the NMDA receptors time response, 

this NMDA receptor modeling may also be preferred by various authors [205] (cf Figure 68). We 

selected this NMDA model to decrease the simulation time as the postsynaptic membrane voltage 

variation was our major concern rather than the precise temporal dynamic of this receptor. 

 

 

FIGURE 68: NMDA RECEPTOR OPENING PROBABILITY FUNCTION (NNMDA) PLOTTING RELATED TO PRESYNAPTIC MEMBRANE POTENTIAL AND 

TIME (THE B(VPOSTSYNAPTIC) FUNCTION WAS NOT INCLUDED) 

 

FIGURE 69: POSTSYNAPTIC CELL CONDUCTANCE ASSOCIATED WITH NMDA RECEPTORS ONLY 

 

NMDA opening probability is presented in Figure 68 showing an elevated inactivation time 

(100ms) when compared to AMPA receptors. NMDA receptors conductance is exposed in Figure 69 
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and indicates that less presynaptic membrane depolarization compared to AMPA receptors is 

required for ionic current to pass through (10-20mV) and that there is a marked channel inactivation 

for times greater than 0.4s. 

The system permitting to correlate Vpostsynaptic with the presynaptic membrane potential with only 

NMDA receptors insertion is described in eq.  108 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 −𝐶𝑚

𝑑∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐

𝑑𝑡
 =  𝑔𝑁𝑀𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗   𝐵(∆ 𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)

𝑚𝑁𝑀𝐷𝐴(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 − 𝑉𝑁𝑀𝐷𝐴)

𝑑 𝑚𝑁𝑀𝐷𝐴
𝑑𝑡

 =   𝛼𝑁𝑀𝐷𝐴(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) ∗  𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒  ∗ 

(1    −   𝑚𝑁𝑀𝐷𝐴) − 𝛽𝑁𝑀𝐷𝐴(∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐)(𝑚𝑁𝑀𝐷𝐴)

𝐵(𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐) =  
1

1 −  𝜂[𝑀𝑔2+] ∗ 𝑒𝑥𝑝−𝜐 𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐

𝑇𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = (𝑇𝑚𝑎𝑥𝑟𝑖𝑏𝑏𝑜𝑛 (
1

1 + 𝑒

− (𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝1)

𝜏1

+ 
1

1 + 𝑒

(𝑉𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐− 𝑉𝑝2)

𝜏2

) + 𝑇𝑚𝑖𝑛)

∗ (
𝑡 −  𝑡0

𝜏
∗  𝑒

1− 
𝑡− 𝑡0
𝜏 )

 

EQ.  108 

The values for the different parameters related to the NMDA receptors can be found in various 

documents [191, 204, 205, 208] but inconsistencies exist about these values. As for AMPA receptors 

associated dynamics, we selected parameter values in order to obtain experimental time and 

voltage dynamics similar to those in [205, 216, 237, 238] for the same presynaptic cells stimuli. 

These parameters values obtained are presented in Table 8. 

 

TABLE 8: NMDA RECEPTORS PARAMETERS USED IN THE MAPLE® SOFTWARE IMPLEMENTATION 

Parameters Values 

VNMADA (V) 0e-3 

𝒈𝑵𝑴𝑫𝑨̅̅ ̅̅ ̅̅ ̅̅ ̅ (S) 23e-12 

αNMDA (M/s) 1.1e4 

βNMDA (M/s) 18 

η (M) 0.33e-3 

υ (V) 0.11e-3 

[Mg2+] (M) 1e-3 – 2 e-3 

τ1 (V-1) 10e-3 

τ2 (V-1) 10e-3 

t0 (s) 7e-3 

τ (s) 1e-2 
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Tmax (M) 1e-3 

 

We extracted the analytical solution of the system presented in eq.  108 using Maple® software. 

The numerical approximation of the solution was obtained and displayed close shape similarities 

with the postsynaptic cell depolarization associated with AMPA receptors only. Of particular 

importance was the maximum voltage peak of ΔVpostsynaptic around 35mV. The duration of this peak 

was by far greater than the duration associated with AMPA receptors as the resting state was 

restored after approximately 900ms.  

 

 

FIGURE 70: POSTSYNAPTIC MEMBRANE POTENTIAL VARIATIONS RELATED TO PRESYNAPTIC  VOLTAGE  AND TIME FOR 

NMDA RECEPTORS 

 

The differential equations resolutions lead to constants parameters which were set in order to 

obtain a solution similar to experimental data extracted from voltage clamp techniques realized on 

NMDA receptors of various neuron types [205, 216]. IHC or afferent SGC EPSPs only attributed to 

NMDA Receptors could be obtained using NMDA Receptors antagonists (D(-)-2-amino-5-

phosphopentanois acid and by the phosphatase inhibitor okadoic acid) and then comparing this 

solution with control EPSPs, as exemplified in pyramidal neurons [210, 245]. However EPSPs 

recording associated only with NMDA Receptors for afferent SGC cells are still lacking as far as the 

author knows. 
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f) Total Postsynaptic Membrane Potential 

 

The total postsynaptic membrane potential variation (ΔVpostsynaptic) also called Excitatory 

PostSynaptic Potential (EPSP) is given by the sum of the various depolarization associated with 

neurotransmitter release weighted by the partial density of these different types of receptors in the 

postsynaptic cell as described by eq.  109 (results using only AMPA receptors and NMDA receptors 

were considered in this equation which can easily be extended to other receptors provided the 

receptors dynamics and postsynaptic membrane density). The postsynaptic membrane potential 

(Vpostsynaptic) or EPSP is simply the addition of the resting potential with ΔVpostsynaptic, as long as no AP is 

produced (if ΔVpostsynaptic is lower than V1/2Na (half activation potential of Nav chnnels), as expressed in 

eq.  109) 

∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐𝑡𝑜𝑡𝑎𝑙

=  𝑤𝑟𝐴𝑀𝑃𝐴𝑅 ∗  ∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑚𝑝𝑡𝑖𝑐𝐴𝑀𝑃𝐴𝑅 + 𝑤𝑟𝑁𝑀𝐷𝐴𝑅

∗  ∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐𝑁𝑀𝐷𝐴𝑅 

EQ.  109 

where wr functions represent the partial density of one receptor type in the postsynaptic 

membrane. 

𝐸𝑃𝑆𝑃 =  

{
 
 

 
 

𝑉𝑟𝑒𝑠𝑡 + ∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝑡𝑜𝑡𝑎𝑙
𝑖𝑓 (∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐𝑡𝑜𝑡𝑎𝑙) < 𝑉1/2𝑁𝑎
𝐴𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚  
𝑖𝑓 ∆𝑉𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐𝑡𝑜𝑡𝑎𝑙   ≥  𝑉1/2𝑁𝑎

 

EQ.  110 

where V1/2Na is the half activation potential for Nav 1.5 channels and is around -20.89mV [223]. 

Simulated EPSPs associated with AMPA receptors only are shown in Figure 71 and EPSPs associated 

with NMDA receptors only are shown in Figure 72. The modeled developed do not include the 

AMPA receptors contributions on the NMDA receptors associated EPSPs and inversely, occurring in 

real experiments. However our mathematical model can be easily extended to take into account 

these correlations. 

Implementing the above equation leads to APs generation for postsynaptic membrane potential 

variations greater than V1/2Na. As indicated the APs absolute magnitude is fixed to approximately 

100mV. 
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FIGURE 71: SIMULATED EXCITATORY POSTSYNAPTIC POTENTILAS (EPSP)  (ABSOLUTE MAGNITUDE) ASSOCIATED WITH AMPA RECEPTORS 

ONLY 

 

FIGURE 72: SIMULATED EXCITATORY POSTSYNAPTIC POTENTIALS (EPSP)  (ABSOLUTE MAGNITUDE) ASSOCIATED WITH NMDA RECEPTORS 

ONLY 

 

From the results extracted in this model, the excitation of a single ribbon synapse on IHC is able 

to generate an AP on type II SGC based on AMPA receptors or NMDA receptors responses alone. In 

fact the maximum variation in the postsynaptic membrane potential, once summed all the receptors 
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contribution is around 40mV, which is sufficient to stimulate an AP on these cells (the postsynaptic 

variation must be above V1/2Na). 

Several nerve fibers are generally connected to a single IHC [185, 246, 247], suggesting sufficient 

stimulus to generate several AP. Every type II SGC cells are most probably connected to a single 

ribbon synapse based on microscopic imaging studies [198]. 

Furthermore several hypotheses can be made to better explain the transmission efficiency at the 

Inner Hair Cell ribbon synapse. Although these following hypotheses are highly speculative and 

based on modeling conclusions, they aimed to explain the very accurate and powerful ribbon 

synapse transmission and experiments should be developed accordingly. 

If we consider the mathematical model of synaptic transmission presented in this document and 

previously used by various authors [191, 208]as realistic, this may suggest that glutamate ionotropic 

receptors are sufficient to stimulate an AP and that other ionotropic receptors maybe associated 

with different neurotransmitters, might be present. For instance glutamate metabotropic receptors 

also exist in the postsynaptic cell possibly increasing its depolarization (more details in[147]). 

However the time response of metabotropic receptors is usually longer than ionotropic receptors 

ones and may not suit with sound wave velocity [248].  

Other neurotransmitter signaling may be released by HC (acetylcholine, serotonin, …), suggesting 

complementary HC metabolism. These neurotransmitters could hence potentiate the glutamate 

response. 

Another hypothesis may be that if the sound stimulus resulting in BM vibration is maintained for 

a certain time, this suggests increased neurotransmitter accumulation in the postsynaptic 

membrane receptors. Supposing that the total postsynaptic membrane potential is the addition of 

all the membrane potential variations in time and in space and that glutamate reuptake or 

internalization mechanisms could be saturated, this may imply that the repetition of the same 

stimulus (at the same frequency) in time, brings enhanced neurotransmitter in the synaptic cleft, 

that possibly increase the AP stimulating frequency (hence decreasing the Inter Spike Delay). 

Ionotropic receptors with different voltage dynamics or in higher density might also result in a 

postsynaptic membrane potential greater than usual postsynaptic neuronal. Literature studies seem 

to suggest that the number of AMPA Receptors in HC ribbon synapses is similar to the number of 

AMPA Receptors in other brain neurons (there are between 10-200 AMPA receptors in cerebellum 

or pyramidal cells [249, 250] and around 100 AMPA receptors at ribbon synapses [251]). 
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Other type of voltage sodium gated channels with lowered half activation potential may be 

present in the post synaptic cells (spiral ganglions), hence having a decreased voltage threshold for 

AP generation. 

Stochastic resonance associated with neuronal noise, in particular with synaptic noise could be 

enhanced in ribbon synapses, intensifying the postsynaptic cell depolarization allowing to quickly 

reach half activation potential of the Nav 1.5 channels for AP generation [252]. 

All these speculations should be verified and physical experiments should be designed 

accordingly. 

Such a complete heterogeneous model of the internal ear has never been developed previously 

as far as the author’s knows, and aims to theoretically connect essential parts of the hearing 

process. Further, this model could be used to study organ of Corti components responses when 

physiological experiments are difficult to carry out. This precise model may bring a greater 

comprehension of physiologic mechanisms associated with inner ear damages. Besides it may be 

possible to precisely target the source of a few hearing disorder. 

 

H. Closure remarks 
 

The implementation and creation of heterogeneous models was presented in this chapter aiming 

to understand the hearing process for CI improvements. The models we created describe the organ 

of Corti mechanical response, the sterocilia displacement and the synapse transmission. In addition 

the middle ear description, the basilar membrane displacement and the hair cell potential variation 

were implemented from existing theories. All models were adapted to fit in the Matlab/Simulink 

heterogeneous modeling environment.  

Two sound waves of 300 and 600 Hz respectively with 50dB of amplitude were used as test 

signals. The corresponding variations (physical, mechanical and electrical) from the eardrum to the 

hair cells membrane potential were reported to validate this modeling realization.  
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 Multi domain modeling of the cochlea: from Basilar Membrane stimulation to Spiral 
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A. Opening notifications 
 

Measurements of nerve fibers excitation are nowadays directly performed by back telemetry. As 

an example evoked Compound Action Potential (eCAP) recording may be used to obtain information 

regarding the nerve fibers stimulated. In that intent eCAP modeling, resulting from sound wave 

reception and evaluated with the models developed in the previous chapter, would permit our 

overall created system comparison with experimental measurements. To precisely model an eCAP 

over time, spikes train dependence with sound wave intensity were investigated.  

The statistical firing frequency of a neuron has been shown to depend mainly on sound wave 

amplitude and spike train can be efficiently described as a Poisson process. Most particularly we 

applied our model to different sound wave amplitudes and theoretically recreate their associated 

single nerve fiber spike train (statistical evaluation). After adding many nerve fibers with the same 

distribution we approximated the overall electrical response of auditory nerve. 

Furthermore the propagation of an action potential along a nerve fiber is currently modeled 

using the cable theory adapted to neurons or with a mathematical system made of the Hodgkin-

Huxley equations associated with the wave propagation equation. After reviewing the limits of such 

models, we proposed a new analog model ensuring same wavelength, velocity and frequency as a 

typical measured action potential.  

In addition current electrophysiological recording techniques are then discussed in the last 

Section of this Chapter. 

 

B. Action potential propagation model 
 

Excitable cells as nerve fibers are able to transmit information in an electric manner. The 

variation of the nerve fiber membrane potential starts at a neuron place then propagates along all 

the nerve fiber as a transversal wave. This electric wave permits the information transmission.  

At one end of the nerve cell, neurotransmitters are released inside a synapse, which results in 

the postsynaptic cell excitement. This stimulation is called Action Potential (AP) generation and is 

reviewed in [208, 221, 253].The AP consists in a variation of the membrane potential of the nerve 

fiber locally starting at the synapse generally. The propagation of the AP on the nerve fiber 
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membrane consists on an electric field propagation on the nerve cell surface. This propagation may 

be seen as a transverse electromagnetic wave.  

Because it is caused by repeated ionic diffusion, the AP velocity is around 20m/s, which makes 

the electromagnetic theory incompatible to model the AP propagation.  

The two most widespread theories developed to model the AP propagation in the nerve fiber are 

the cable model theory and the Wave theory using the Hodgkin Huxley equations of the AP 

generation and are reviewed in Section III.G.5. 

The cable model theory describes the diffusion of electrons inside a conductive wire. This theory 

precisely defines the AP spatial propagation but fails to describe its temporal response. Furthermore 

the electron velocity in cables or other materials such as nerve fibers is several orders of magnitude 

higher than the AP practical velocity, making this model inappropriate. 

The wave propagation theory using the Hodgkin Huxley equations is very precise and 

incorporates the physical mechanisms of the AP generation. As those equations are complex, this 

model is poorly used and often restricted to interpretative purposes. 

In this Section, we propose an alternative electric model which incorporates the physical 

processes and respect the AP practical velocity, wavelength and frequency.  

 

1. Physics of an action potential generation 
 

The membrane resting potential (Vm ) of a neuron is around -70mV [254, 255]. When an impulse 

current is injected in a nerve cell, if it is sufficiently important, it will produce nerve membrane 

depolarization, which will open the Voltage Gated Sodium Channels (Nav). Once these channels are 

opened, sodium ions flow occurs, where the ions direction results from two main forces: the 

electronic force resulting from the different ionic concentration between the intracellular and 

extracellular space and their concentration gradient differences between the intracellular and 

extracellular space. 

Following this membrane depolarization, Na+ ions enter inside the neuron, which provokes Vm to 

rise significantly. Then, the Voltage Gated Potassium channels (Nkv) open and K+ ions start to leave 

the cell. As positive charges leave the cell, the neuron undergoes depolarization then overshoot (as 

the Vm potential becomes positive. More precisions in Figure 75). During this time Nav channels start 

to close first, followed by the closure of Nkv channels. 
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Ions channel inactivation is time and voltage dependent as explained in [220]. Finally 

Na+/K+ATPases restore progressively the resting state ions concentration, first at the stimulus site, 

then toward all the axon. 

Once entered inside the neurons, Na+ ions diffuse in area where they are less concentrated, 

causing the next neuron area to depolarize (the membrane potential in the next area makes the 

same variations than the stimulus site region). More detailed information can be obtained in [256], 

[257] and [258]. 

The AP generation in nerve fibers is still an extended area of research [259], [260]. Once a 

chemical (or even mechanical) stimulus creates a nerve fiber depolarization greater than the Nav 

threshold, Nav opens and there is a massive load of Na+ inside the nerve cell which is the starting 

point of AP generation. 

The probability of Nav opening is partly driven by neuron voltage (if not in their inactive state) and 

the closure probability of Nav is time and voltage dependent [220, 261]. 

Figure 73displays the mean activation time and mean inactivation time of Nav which depend on 

the cell membrane voltage (redrawn from [220]). 

 

 

FIGURE 73: ACTIVATION AND INACTIVATION TIME OF THE NAV CHANNELS DEPENDING ON THE NERVE MEMBRANE POTENTIAL (ATTRIBUTED TO[220]) 
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FIGURE 74: AP GENERATION, NAV CHANNEL CONDUCTANCE AND KV CHANNEL CONDUCTANCE EXTRACTED FROM [262]. THE 

CHRONOGRAPHS EXPLAIN WHY THE NAV CLOSURE IS REACHED AFTER ONLY 2MS. THIS CLOSURE IS MADE POSSIBLE BECAUSE OF ENTRANCE OF 

POTASSIUM IONS HYPERPOLARIZING THE NERVE 

 

Hence both the probability of activation, the probability of inactivation and the inactivation time are 

influenced by cell membrane voltage for Nav channels. 

Resulting from these data, when there is an increase in the afferent nerve cell membrane potential 

(following the IHC depolarization resulting in glutamate release in the synapse), the opening probability 

of Nav channels increases (there are more Nav channels in the opening state) but the Nav channels time 

for inactivation also increases. 

If the stimulus of the nerve cell was held constant (as done in patch clamp techniques), the mean 

inactivation time of the Nav channels would be around 8ms (cf Figure 74) whereas in physical 

experiments the inactivation time is a little greater than the absolute refractory period (which is the 

period when Nav channels are maintained in their inactivate state and no AP can be generated). This 

period is around 2ms [263]. This can be explained by the opening of the Kv channels just after the Nav 

channels opening which allows potassium ions flow inside the nerve cell, hyperpolarizing its membrane. 

As a consequence, the inactivation time of the Nav channels decreases greatly as the neuron membrane 

potential is close to 0mV (as indicated in Figure 74). This precise mechanism is reviewed in details in 

Figure 75. 
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FIGURE 75: A) DIFFERENT STATES OF THE NAV CHANNELS. B), C), D), E), F): AP RELATION TO NERVE IONIC DISTRIBUTION CHANGES. G) 

PROPAGATION OF THE AP FROM A NEURON REGION TO A CONSECUTIVE ONE. EXTRACTED FROM [263-266] 

 

2. Action potential propagation along the nerve fiber  
 

The massive Na+ movement entering inside the nerve cell, followed by the K+ ions leaving the cell 

are the main events creating an AP. Once entered inside the nerve cell, Na+ ions start diffusing to 

area where there are less concentrated (diffusion mechanism). The Na+ diffusion from one area of 

the neuron to the next area is at the origins of the AP propagation.  

The ion drift from a neuron portion to other neuron portion can be modeled similarly as electron 

drift inside a conductive wire along the gradient of the electrical potential, explaining the physical 

relation between the ion drift and the cable theory.  

 

a) Cable model theory 

 

To model the propagation of an Action Potential (AP) among a nerve fiber, the cable model 

theory was adapted to neurons by K.S. Cole, A.L. Hoglgkin and Rushten [267, 268] and[269]. The 

linear cable equation model, which can be found in [269, 270] and reminded ineq.  111, models the 

g) 
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membrane potential variation of the nerve fibers depending on the distance from its initial 

stimulation position. 

1

𝑟𝑖
∗  
𝜕2𝑉𝑚(𝑥, 𝑡)

𝜕𝑥2
= 𝐶𝑚 ∗ 

𝜕 𝑉𝑚
𝜕 𝑡

+ 
𝑉𝑚
𝑟𝑚

 

EQ.  111 

where Vm is the nerve cell membrane potential, Cm the membrane capacitance, rm is the longitudinal 

membrane resistance of the neuron and ri the axial resistance. The values of the different 

parameters can be found in[269]. This equation describes a diffusion process. 

The partial differential equation of the cable model theory has a unique solution if the initial 

conditions are well defined and is very similar to the heat diffusion equation through a thermal 

conductor [268]. 

The steady state solution (
𝜕𝑉𝑚

𝜕𝑡
= 0) assuming that the cable is infinite permits to obtain the 

membrane potential depending on the distance from the stimulus (eq.  112) [271]: 

𝑉𝑚(𝑥) = 𝑉0𝑒
− |𝑥|

𝜆  𝑤𝑖𝑡ℎ 𝑉0 =
𝐼0𝜆𝑟𝑚
2

 
EQ.  112 

where Vm is the membrane potential, x is the distance from the stimulus, λ is the space constant 

controlling the membrane potential decay toward the x direction and I0 is the injected current [271]. 

In the cable model theory [269]λ is defined as: 

𝜆 =  √
𝑟𝑚
𝑟𝑖

 
EQ.  113 

Numerical values for those variables are available in [269] and depends on the axon diameter (d). 

The sealed end solution is the most relevant in neurons as it assumes that the end of the nerve 

fiber is covered with a neuronal membrane which is quite similar to reality where neurons end with 

synapses. However for simplification purposes, the infinite cable model solution study was preferred 

and reported in this document. 

In real neurons, the current injection is not constant meaning that the steady state solution cannot 

be applied, rather time dependent solutions must be considered. A system can be completely 

characterized by its impulse response. A solution to the cable model equation depending in both x 

and t can be found in literature [271] and is rewritten here for reader convenience (eq.  114): 

𝑉𝛿(𝑥, 𝑡) =  
𝐼0𝑟𝑚

2𝜆(𝜋𝑡)
1

2

𝑒
𝜏𝑥2

4𝑡𝜆2𝑒−
𝑡

𝜏 
EQ.  114 
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where Vδ(x,t) is the time and space dependent solution of the nerve fiber membrane potential, t is 

the time variable and τ the time constant (τ = rm*Cm). 

However Vδ(x,t) cannot be easily separated into the product of two expression with separate 

variable, making this expression more difficult to manipulate. Furthermore this time solution is 

significantly distinct from the time response of an AP. In fact the time response obtained by the 

cable theory model is divergent from the time response of an excited nerve fiber (which produces 

an AP). This is caused by the physics of the cable model equation which supposes that a diffusion 

occur (of Na+ ions from the site of injection to the extremity of the cable). However the diffusion 

process is repeated in each neighboring area of the nerve cell. A real AP is supposed regenerating in 

each neighboring area with only small decrease in the membrane voltage amplitude along the x 

position [254]. The physical mechanism involved is self regenerating hence acts as a wave 

propagating inside the nerve cell, not a diffusion from a single stimulus point.  

Further models (non linear cable theory for example) have been proposed to overcome the 

inaccuracies of the linear cable model. The assumptions underlying the cable model theory and 

limiting its physical meaning are reported in [272]. 

Besides the velocity of electrons propagation in the cable model solution which is close to the 

light velocity is several orders of magnitude greater than the AP propagation velocity in nerve cells, 

rendering this model inappropriate for neurons study. 

 

b) Wave model of action potential propagation 

 

Another new model for AP propagation was proposed in[269], based on wave propagation 

theory. An AP was considered as a transverse wave which starts at a point of stimulus, runs through 

the nerve membrane to the synapse, with a nearly constant propagation velocity. 

A little remembering of wave theory is provided in this document, allowing better 

comprehension of the wave model of an AP. Every solution of the D’ Alembert equation [273] can be 

considered as a wave (the spatial position must vary with time). Applying this equation to the 

membrane potential was performed in[269], and is recalled in eq.  115 

𝜕2𝑉𝑚
𝜕 𝑥2

= 
1

𝑘

𝜕2𝑉𝑚
𝜕 𝑡2

 
EQ.  115 
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where k is the wave number. The solution of this equation is indicated in eq.  116, made of the 

forward propagating wave Vm1 and the backward propagating wave Vm2: 

𝑉𝑚(𝑥, 𝑡) =  𝑉𝑚1(𝑥 − 𝑘𝑡) + 𝑉𝑚2(𝑥 + 𝑘𝑡) EQ.  116 

We considered only Vm1 in the following development, as it is the forward propagating wave and 

aimed to construct a wave Vm1 with the time response and spatial responses close to a real AP. 

Using the Hodgkin Huxley equations permitted to obtain a waveform in relation with the 

mechanisms involved in AP generation, as defined by eq.  117, extracted from [269] 

𝜕2𝑉𝑚
𝜕 𝑡2

= 𝐾 ∗ ( 
𝜕 𝑉𝑚
𝜕 𝑡

+ 
1

𝐶𝑚
∗ (− 𝑔𝑁𝑎̅̅ ̅̅ ̅ ∗  𝑚3 ∗ ℎ1 ∗ (𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝑘̅̅ ̅  ∗  𝑛

4 ∗ (𝑉𝑚 − 𝑉𝑘) + 𝑔𝑙

∗ (𝑉𝑚 − 𝑉𝑙)))    

where the variables m, h, n, VNa, Vk and Vl were already defined in Section III.G.5.d) 

EQ.  117 

This mathematical model describes with great precision the AP movement through the nerve fiber. 

However it is often discarded for practical AP simulations in neuronal network as it is very resources 

consuming.  

 

3. Electromagnetic wave analogy limits 
 

As partly pointed out by the cable model theory, the electromagnetic theory of AP propagation is 

not suitable directly as the propagation velocity of an AP (which is around 20m/s depending on the 

nerve fiber diameter) is by several order of magnitude lower than the electromagnetic wave 

propagation velocity. Moreover the mean AP duration is around 3ms and its generation time 

interval is around 15ms (please refer to Inter Spike Delay (ISD) in [160, 185, 274]), which corresponds 

to a wavelength in electromagnetic theory of several meters, hence making it impossible to 

propagate in a thin neuron cell.  Remembering that the AP waveform represents the membrane 

potential variation over time, the electromagnetic representation of the AP should display an 

electric field with similar propagation characteristics. In the electromagnetic theory developed in the 

following Sections, the electric field is of known form whereas the waveform can be related to it 

using the Maxwell’s equations as indicated in [275], [276] 
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The mean refractive index computation from the nerve tissue permittivity and conductivity is 

performed in eq.  118. The permittivity and conductivity curves depending on frequency for nerve 

tissue are extracted from [53] 

𝑛𝑛𝑒𝑟𝑣𝑒 = √𝜇 휀 =  √𝜇0휀0 ∗ √𝜇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒휀𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 

𝑤ℎ𝑒𝑟𝑒 휀𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 휀
′ −  𝑖휀′′ −  𝑖 

𝜎

𝜔 휀0
 

→ 𝑛𝑛𝑒𝑟𝑣𝑒(1000𝐻𝑧)   ≈     130 − 𝑖 ∗ 120          

EQ.  118 

where μ is the nerve permeability, ℰ the dielectric permittivity which is a complex number 

composed of the real part which is the energy stored in the medium and the complex part made of 

the energy losses inside the medium. Part of these losses may be related to the material 

conductivity σ. ℰ0 is the vacuum permittivity and 𝜔 is the pulsation.  

 The electromagnetic wave velocity (phase velocity vφ) is related to the light velocity in free space 

(c) by the refractive index as described in eq.  119 

𝑣𝜑 = 
𝜆 ∗ 𝜔

2 ∗ 𝜋
=  

𝑐

𝑛𝐴𝑃
 ≈  20 𝑚/𝑠 

→ 𝑛𝐴𝑃  ≈      1.5𝑒7 − 𝑖 ∗ 1.69𝑒7                              

EQ.  119 

where λ is the wavelength, nAP is the theoretical refractive index that should have the nerve tissue to 

propagate the electromagnetic wave at the AP velocity. Obtaining physically this refractive index is 

nowadays illusory. 

From eq.  118 and eq.  119, it can be deduced that the refractive index required for an 

electromagnetic wave propagation with the same wavelength, frequency and mostly the same 

velocity has unrealistic values and may not be found nowadays on a created physical material. 

 

4. Mathematical function describing an action potential 
 

We hence propose a new model for AP propagation. We considered an AP as a transverse wave 

which starts at a point of stimulus and runs through the nerve membrane to the synapse. The 

propagating wave aimed to have a time and spatial responses close to a real AP. 

A nerve AP has three main phases: depolarization, hyperpolarization and repolarization whereas 

in AP running through skeletal muscle time response is different due to different physiological 
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processes occurring [277]. We modeled only the AP relative to cochlear nerve response but similar 

development can be followed to obtain cardiac AP generation for instance.  

The mathematical function we developed, aimed to model the three phases of the AP generation 

and used exponential functions to duplicate the general AP shape and a sinus function to sketch the 

hyperpolarization region, similarly as Ultra Wide Band (UWB) mathematical modeling. The forward 

propagating electronic field expression we developed (called f1 (x,t)) is indicated in eq.  120 

∀ 𝑡 ≥  
𝑥

𝑣𝜑
 ,           𝑓1(𝑥, 𝑡) =  𝐴0 sin (𝜔0(𝑡 −

𝑥

𝑣𝜑
)) 𝑒

−𝜔1(𝑡−
𝑥

𝑣𝜑
)+

1

𝜔2
|(𝑡−

𝑥

𝑣𝜑
)|
𝑒
− 𝑥

𝜆  
EQ.  120 

where ω0 and ω1 were pulsations obtained to fit the AP values obtained from experiments. We 

chose ω0 = 1200 rad/s, ω1 = 2000 rad/s and ω2 = 1/3000 rad/s. These values were determined to fit 

experimental AP behavior. The last term in eq.  120, which represents the AP energy damping among 

the nerve fiber distance, may be neglected in practice. λ is extracted from experiments on single 

nerve fiber [44, 278-280] 

Vφ is the velocity of propagation of the AP along the axon. This velocity has been proved to be 

dependent on the nerve fiber diameter, although neglected in this Section to permit easier 

implementation. 

It must be noticed that the equation f1(x,t) gives the AP propagation in the forward direction with 

a temporal response very accurate (because designed mathematically), but the spatial propagation 

response (along the x direction) is correct only as long as 𝑒
− 𝑥

𝜆  is greater than the other terms, thus as 

long as: 

|
𝑥

𝜆
|      ≫     

𝜔1
𝑣𝜑
     𝑎𝑛𝑑       |

𝑥

𝜆
|     ≫    

1

𝜔1𝑣𝜑
 

EQ.  121 

The values used for the pulsations ω0 and ω1 and the values extracted from the cable model 

theory verify the above equations. 

The spatial propagation of the wave, implemented using the software Maple® is presented in 

Figure 76, which displays the same wave at two different times. The mathematical model of the AP 

will be used in the next Sections to theoretically simulate nerve cells responses from acoustic wave 

amplitude.  
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FIGURE 76: AT A DISTINCT TIME, THE MEMBRANE IS DEPOLARIZED AT DIFFERENT POSITION.3.A) NERVE FIBER MEMBRANE POTENTIAL AT 

T=1E-3S, B) NERVE FIBER MEMBRANE POTENTIAL AT T=5E-2S, C) SUPERPOSITION OF THE TWO MEMBRANE POTENTIALS, INDICATING A 

PROPAGATION OF THE AP ALONG THE NERVE FIBER 

 

5. Electric analog circuit used for action potential 
propagation modeling 

 

a) A. Pulse generator 

 

By noticing that the temporal behavior of the mathematical function used to model the AP 

(f1(x,t)) is very similar to an Ultra Wide Band (UWB) pulse time response or to a Gaussian pulse time 

response, which are used in telecommunication domain, we decided to create an electric analog of 

an AP using a UWB pulse generators circuitry. 

The time domain waveform for a UWB signal is based on a basic pulse shape often called 

monocycle [166, 281]. We recreated a similar basic pulse based on this theory (proposed in Figure 

77) 

The UWB pulse generator is excited by cyclical input waveforms (square waves or sinusoidal 

waves). Diverse technologies may be used to generate a Gaussian pulse: a tunnel diode or an 
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avalanche transistor may be used [282] or four differential pairs made of NMOS transistors as 

explained in [283]. 

The band pass filter after the pulse generator does not need to be included for AP generation (in 

UWB it ensures that the pulse is transmitted in the frequency band in accordance with the country 

transmission standards). 

AP time length is around 4ms [265] which corresponds to a frequency of 250Hz. For such low 

frequency, even more simple circuits may be used such as a RC circuit instead of the more complex 

UWB pulse generator circuitry described. 

The electrical circuit presented above, generates a pulse (with shape similarities of the AP 

generated in nerve fibers as indicated in Figure 80) and may model AP propagation. The physical 

connections of this circuit with the events generating the AP are approximate and better physical 

matching is provided by complex models such as in Hodgkin Huxley model. 

This circuit description is close to the Integrate and Fire model which permits fast simulations 

and is currently used to model neuronal networks [192, 217]. The dot lined circled elements in 

Figure 77 gather the pulse generation circuitry from a Square Voltage generator for instance. This 

pulse is the input of the circuit, acting as the stimulus that may result from different inputs such as 

from mechanosensory cells or a synaptic transmission, etc. The varying resistance models the inertia 

of the ionic channels disclosure, the capacitor models the difference in ionic concentration between 

the outside of the cell and the inside. This interpretation is similar with the Hodgkin Huxley model. 

The inductor, which is specific to our model, is associated with the K+ escape of the cell following the 

Na+ entry (details of the AP generation are provided in Section I.B.1). The ionic K+ current may be 

interpreted as an induced current associated with the Na+ subsequent accumulation inside the cell. 

The diode, which allows only positive current to propagate aims to model the inactivation time 

(avoiding the negative peak creation in the electrical circuit). The diode may hence model the single 

direction of the ionic currents due to ionic concentration differences between the extracellular and 

intracellular compartments.  

Hence an electrical system aiming to produce a similar function is drawn in Figure 77: 

 



174 
 

 

FIGURE 77: ULTRA WIDE BAND CIRCUIT REUSED FOR ACTION POTENTIAL MODELING AND TRANSMISSION THROUGH NERVE FIBERS.  

 

b) Delays incorporation 

 

The direct electromagnetic wave propagation model is not directly suitable with the AP 

propagation due to the very low velocity of the electromagnetic field during AP propagation. We 

hence decided to recreate the mechanical process done in nerve cells that was at the roots of the AP 

generation. In order to obtain an electric field velocity similar to the one produced during AP 

generation, we introduced delays between the pulse propagation. 

Several pulse generators were required, depending on the length of nerve fiber that we wanted 

to model as indicated in eq.  122. For a nerve fiber of length L, the number of pulse generators 

required to obtain the experimental AP propagation are: 

𝑁 = 
𝐿

𝑣𝜑 ∗ 𝑓
 

𝑖𝑓 𝐿 = 1𝑚  →   𝑁 ≈  100             

EQ.  122 

where f is the AP generation frequency and vφ is the AP velocity. 

However these pulse generators have to start at different times to model the AP propagation 

from an area of the nerve cell to another area. A first pulse is sent then it is delayed by a delay block 

which output value is connected to the enable entry of the second pulse generator and the same 

process is repeated for each N pulse generators. The enable function ensures that the pulse starts 

only after the previous pulse is delayed.  

The electrical implementation of a delay block associated with an enable function however does 

not precisely gives the same waveform between two consecutive pulse as enable entry are used to 

receive Transistor-Transistor Logic (TTL) signals. Another way to create a delay is to detect a 
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particular value (which should correspond to the membrane voltage at which Nav channels open but 

for simplicity purposes was set to the maximum of the pulse) of the AP using a comparator for 

instance. A system similar to logical cascaded gates was selected. When the first pulse is generated 

the other ones are switched off. This mechanism is repeated for all the pulse generators as 

described in Figure 78. Another RC filter was required as the comparator detection returned to ‘0’ 

when the pulse voltage failed after the detected value. Hence the comparator signal was lengthen 

to the pulse duration using a RC filter. The Operational Amplifier after the comparator block aimed 

to increase the filtered signal amplitude.  

 

FIGURE 78: ELECTRIC MODEL OF AP GENERATION, CONSERVING THE AP TIME CHARACTERISTICS 

 

The AP electric analog was implemented with PSpice® and the simplified electric schematic (with 

only the two first stages) is presented in Figure 79. Developing such an analog model may allow 

faster and more complex simulations than theoretical and computer based models. Other modeling 

environments such as VHDL-AMS could have been utilized for such modeling but we preferred the 

PSpice® environment since the development time needed was reduced.  
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FIGURE 79: ELECTRIC MODEL OF ACTION POTENTIAL GENERATION (ONLY TWO STAGES). THE VARIABLES REPORTED ARE THE ONES THAT 

ARE USED IN THE SIMULATION WITH PSPICE® 

 

It should be specified that the electromagnetic field propagation of each stage before the delay is 

at the velocity of the light in free space, however the delays permit to stop the electric field 

propagation for a certain amount of time resulting in an overall electric field propagating close to 

the AP velocity. 

 

6. Simulation results 
 

Running transient simulations of the electric schematic presented above (limited to 2 stages) 

showed that the delay introduced by each stage (which is dependent on the comparator value) is 

approximately 200µs. If we assume a mean AP propagation velocity of 20m/s, that means that each 

stage models around 1cm of nerve fiber.  

As previously indicated, the second amplifier aims to lengthen the time during which the second 

pulse generator is enabled (V(amp_out) in the Figure 79). The amplitude variation of an AP is 

respected in this electric model (corresponding to a membrane depolarization of 100mV) but not its 

real value (the resting membrane potential of a nerve fiber is around -70mV). An electric block 

performing a subtraction operation may be included to obtain the precise AP voltage. 
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FIGURE 80: TIME SIMULATIONS OBTAINED WITH THE SOFTWARE PSPICE® 

 

The amplitude damping between the two pulses is introduced by tuning the supply source of the 

Operational Amplifier (OpAmp). A mathematical function may be used to define this amplitude in 

relation to the nerve distance (that is modeled by pulse generators). In such a way, the amplitude of 

the following pulse would be decreased exactly as the AP amplitude decreases during its 

propagation 

Figure 81 represents the analogy between the created model and the nerve fiber for AP 

propagation.  

 

FIGURE 81: PROPOSED ELECTRIC MODEL OF THE NERVE CELLS 
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It should be further emphasized that the electric model we propose for AP propagation, respects 

the AP practical velocity, the AP electric field wavelength and the AP frequency. This new model is 

hence very adapted for nerve cell propagation study, and may further be used to propose new 

mechanisms for neurons communication or memory mechanisms understanding. 

 

C. Spike trains model 
 

1. Spike trains generation 
 

Dendrites are branched projections of the nerve fibers hence resulting in a nerve fiber modeling 

with multiple inputs and multiple outputs. They were not taken into consideration as this greatly 

complicate the model. Consequently, we considered only a single axon propagating APs. 

In diverse patch clamp experiments, it has been noted that when the nerve fiber potential is hold 

to a value greater than the Nav conduction threshold, APs are generated randomly and the time 

interval between two APs is called the Inter Spike Delay (ISD) [284]. These notions are further 

extended in the Section I.C.2. 

Spikes train is a time series of discrete APs from same or a group of neurons[285]. Neural spikes 

train analysis often referred as the neural code is a vast area of research [286, 287]. 

To mathematically describe a spikes train diagram, several APs starting at different times must be 

generated. Hence the starting time of each AP must be different and the minimum time length 

between two consecutive APs corresponds to the absolute refractory period at least (more details in 

Section I.C.2). eq.  123 shows the mathematical expression of the n-order AP (called Vswn) that is 

delayed by a time tp(n) compared to the first AP (called Vsw0) : 

𝑉𝑠𝑤0  =   𝑓1(𝑥, 𝑡) = 𝑓1(𝑡 − 
𝑥

𝑣𝜑
 ) 

𝑉𝑠𝑤𝑛 = 𝑓1(𝑥, (𝑡 − 𝑡𝑝(𝑛)) =  𝑓1 ((𝑡 − 𝑡𝑝(𝑛)) − 
𝑥

𝑣𝜑
) 

EQ.  123 

where f1 is the function defined in the previous Section. tp(n) – tp(n-1) is the time interval between 

the n-order spike and the (n-1) order spike. It was shown in experiments [285] that spikes train can 

be modeled as a Poisson process. Hence the Inter Spike Delay (ISD) can be modeled using an 
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exponential distribution [285]. However this assumption is sometimes controversial [288] and more 

complex ISD models have been proposed but were discarded to ease the computations. 

We implemented an exponential distribution generator by using a random generator which was 

used to select the time interval given by the exponential distribution. eq.  124 gives the probability 

distribution of an exponential distribution. 

𝐹(𝑡) =  𝜆𝑝𝑒
− 𝜆𝑝 𝑡 EQ.  124 

where λp is a parameter of the exponential distribution and is equal to the expected value of the 

probability distribution (𝐸[𝐹(𝑡)] =  𝜆𝑝) 

λp can be extracted from physical measures [289, 290] and was found around 15ms for a typical 

stimulus. 

Hence the reverse function ( F-1 ) gives the time associated with a probability p and is expressed 

in eq.  124 

𝐹−1(𝑝) =  
−1

𝜆𝑝
ln(
𝑝

𝜆𝑝
)            

EQ.  125 

We generated the probability p using a random generator provided by Matlab® creating 

uniformly distributed pseudorandom numbers. 

The ISD is given by the eq.  126 

𝑡𝑝(𝑛) =  𝐹
−1(𝑟𝑎𝑛𝑑𝑜𝑚(𝑛)) 

⇔ 𝑡𝑝(𝑛) =  𝐹
−1 (

−1

𝜆𝑝
ln(
𝑟𝑎𝑛𝑑𝑜𝑚 ( 𝑛 )

𝜆𝑝
)) 

EQ.  126 

Figure 82 represents the simulation results of the developed theory. The time interval was the 

same in both experiments (3s) but the stimulus amplitude was different (30 or 50dB of input sound 

power). It can be noted that the ISD is lower for the stronger nerve stimulus and consequently that 

the number of spikes is more important for this stimulus as the experiment time was the same in 

both experiments. 
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FIGURE 82: INTER SPIKES DELAY  GENERATED WITH THE POISSON GENERATOR PRESENTED IN EQ.  126 FOR A 50DB SOUND WAVE AS 

INPUT (A) OR A 30 DB SOUND WAVE AS INPUT (B) 

 

2. Spikes train frequency rate: 
 

As previously described, spike trains are time series of multiple waves starting at different times 

(tp). We hence defined a spikes train (VMW(x, t)) as the addition of non-overlapping waves starting at 

different times (eq.  127): 

𝑉𝑀𝑊(𝑥, 𝑡) =  𝑓1 (𝑡 − 
𝑥

𝑣𝜑
) + 𝑓1 ((𝑡 − 𝑡𝑝(1)) − 

𝑥

𝑣𝜑
) + 𝑓1 ((𝑡 − 𝑡𝑝(2)) − 

𝑥

𝑣𝜑
) +⋯ 

EQ.  127 

a) 

b) 
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𝑉𝑀𝑊(𝑥, 𝑡) =  ∑ 𝑓1((𝑡 − ∑ 𝑡𝑝

𝑛

𝑚=1

(𝑚)) − 
𝑥

𝑣𝜑
)

𝑁𝑏𝑠𝑝𝑖𝑘𝑒𝑠

𝑛=1

 

where Nbspikes is the number of spikes generated and tp(m) is the inter spikes delay defined in the 

previous Section. This number depends on the wave amplitude as shown by diverse measurements 

[39, 186]where further details are available to define precisely the number of spikes associated with 

the amplitude of the membrane depolarization. 

The mathematical function described above does not perfectly model spike train as overlapping 

between two spikes is hence possible. However for simplification purposes we presented the 

general form of the equation which, once restricted the interval of tp, gives realistic spikes train. 

 

 

FIGURE 83: SPIKES TRAIN GENERATED IN A UNIQUE NERVE FIBER FOR A 50DB SOUND WAVE AS INPUT (A) OR A 30 DB SOUND WAVE AS 

INPUT (B) 

a)

 

b) 
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The addition of AP function delayed by the ISD defined in Figure 82, permitted to generate a 

theoretical spike trains running on a single nerve fiber (Figure 83). These results are in accordance 

with simulations results obtained from auditory nerve fibers of animals presented in [291, 292], 

where the frequency of spikes for same amplitude and frequency stimuli is comparable with our 

simulations data. 

As outlined in the Zalewska and Hausmanowa-Petrusewicz experiment [293], the amplitude of 

the APs may also vary depending on the nerve fiber diameter (d). The relation extracted from [187] 

is shown eq.  128 (we considered the relation as almost linear, so we performed a first order 

polynomial extraction): 

𝛼 = 𝑘 𝑑 EQ.  128 

where d is the fiber diameter, α is the amplification factor and k a scalar evaluated to be around 

0.01. 

Once the Basilar Membrane is excited due to a mechanical wave, a special place is excited in 

relation to the wave frequency. The BM excitation results in variation of several IHC membrane 

potential, resulting in a packet of nerve fibers firing. 

The sum of all the APs generated in the different nerve fibers is of importance in the 

computation of the Compound Action Potential (CAP) (later described in Section I.D.2). 

This packet of single fiber waves (called VAN(x,t) or CAP) is expressed in eq.  129 

𝑉𝐴𝑁(𝑥, 𝑡, 𝑑) =  ∑ 𝛼(𝑑)𝑓1 (𝑡 − 
𝑥

𝑣𝜑(𝑑)
)

𝑁𝑏𝑓𝑖𝑏𝑒𝑟𝑠

𝑛=1

 

EQ.  129 

where α is the amplitude factor associated with the fiber diameter d, vφ is the wave velocity 

which also depends on the fiber diameter d and Nbfibers is the number of nerve fibers stimulated by 

the mechanical wave with the same diameter (more information about this number can be found in 

Section I.D.1). 

APs propagation on several nerve fibers due to the same excitation phenomenon (hence starting 

at the same time), which represents a packet of nerve fibers excited, should not be confused with 

spike trains, which represent the consecutive excitement (at various time interval) of a single or 

multiple nerve fibers.  
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The mathematical series of the multiple excited nerve fibers (VAN) starting at different time 

intervals is used to model spike trains of several nerve fibers. Delays between parallel nerve fibers 

excited from the same stimulus may also exist in practice as the AP generation is probabilistic but is 

poorly described in current literature. Hence this phenomena was discarded in our nerve model. 

This mathematical description permits to model theoretical cochlea nerve stimulation over time 

and is expressed in eq.  130. Furthermore this mathematical description can also be used to compare 

the auditory nerve fibers output with experimental data (as eCAPs on overall or fractions of the 

auditory nerve are usually measured in practice), possibly detecting nerve fiber damages. 

𝑉𝐴𝑆𝑇(𝑥, 𝑡, 𝑑) =  ∑ 𝛼(𝑑){ ∑ 𝑓1((𝑡 − ∑ 𝑡𝑝

𝑛

𝑚=1

(𝑚)) − 
𝑥

𝑣𝑝(𝑑)
)

𝑁𝑏𝑠𝑝𝑖𝑘𝑒𝑠

𝑘=1

}

𝑁𝑏𝑓𝑖𝑏𝑒𝑟𝑠

𝑛=1

 

EQ.  130 

 

FIGURE 84: SPIKE TRAINS GENERATED AS A RESULT OF MULTIPLE NERVE FIBERS FIRING IN THE SAME TIME FOR A 50DB 

SOUND WAVE AS INPUT. THE  AMPLITUDE AND THE VELOCITY OF THE  ACTION POTENTIALS  PROPAGATION CHANGE  AS 

MULTIPLE NERVE  FIBERS ARE INCLUDED. 

 

Single cell neural spike recording using a microelectrode is often challenging due to local neurons 

activity. Single nerve cell activity determination often requires spike sorting algorithms in order to 

separate the recorded electric signal into different nerve cells potential. In that intent this sorting 

often uses the main feature of spike shape: the spike amplitude (or the ratio between its maximum 

and minimum values) [294]. In consequence to measure the activity of a neuron, a voltage threshold 

trigger may be used to separate the nerve cell activity from other neurons activity. However in case 

of synchronous firing of multiple nerve fibers or if the nerve cell recorded has a small diameter 
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compared to its neighboring cells for instance, clustering algorithms (such as k-clustering or 

Bayesian clustering for instance) are employed to extract the targeted neuronal activity [294]. 

Several different neurons may generate action potentials having very similar shapes in the 

recorded waveform such as when the neurons are similar in morphology and about equally distant 

from the recording electrode [294]. Dendritic action potentials may also mix with axonal action 

potentials making much more complex single neuron activity extraction. For more accurate spikes 

clustering, the number of recording electrodes may be increased, each electrode having different 

locations (as with tetrodes for instance) [295]. In fact if multiple recording electrodes are used, 

neighboring cells will be less likely to be equidistant from both electrodes [295]. Furthermore 

multiple electrodes also permit to study the activity of local population of neurons, provided 

efficient spike sorting and nerve cells characterization. 

Many of the spike-sorting techniques for single electrodes extend naturally to multiple 

electrodes. Besides other methods, initially developed for multiple source analysis, may also be 

applied such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

[294, 296, 297]. ICA have been used successfully in various analysis of EletroEncephaloGrams (EEG), 

however it requires a greater (or equal) number of electrodes than the number of neurons studied 

[298, 299]. Other techniques based on wavelet transform are also available in literature [300].   

Various issues are still difficult to address such as burst firing neurons, electrode drifts or non 

stationary background noise [288]. Figure 84 shows the simulation result of eq.  130 with a packet of  

20 nerve fibers which diameter varies linearly from 5µm to 15 µm (and with corresponding AP 

propagation velocities varying from 17 m/s to 52 m/s according to [187]). The mathematical 

expectancy of the exponential generator was set to 15ms. 

To get closer to practical measurements neuronal noise has to be included. Sources of neuronal 

noises are reviewed in the following documents [301-303]  and only the most significant ones will be 

described in this Section.  

Thermal noise is present in every biological systems due to thermal carriers agitation and is 

probably contributing to most of the noises presented thereafter. In the model developed, we 

included two sources of thermal noise, the one associated with nerve cells (that we supposed 

myelinated) and the one associated with the electrodes (made of platinum or tungsten). The 

standard deviation mathematical expression of the thermal noise (σWN) and the associated 

numerical values can be found in eq.  131.  



185 
 

𝜎𝑊𝑁
2 = 4𝑘𝑇𝐵𝑅 EQ.  131 

where k is the Boltzmann constant, T the absolute temperature in Kelvin, B the noise bandwidth 

supposed equal to 1KHz (close to AP generation frequency) and R the resistivity of the material 

which was extracted from [304] for myelinated nerve fibers or from [305] for tungsten electrode 

Channel shot noise is also present due to variation in the number of ions entering the 

postsynaptic channels as this number is discrete and fluctuating around a mean value [306]. 

Mathematical formulas of channel shot noise mean (µSN) and standard deviation (σSN) can be found 

in [307] and are recalled in eq.  132 

𝜇𝑆𝑁 = 𝜆𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ∗  ∫ 𝐼(𝑡)𝑑𝑡
∞

0

 

𝜎𝑆𝑁 = 𝜆𝑝 ∗  ∫ 𝐼2(𝑡)𝑑𝑡
∞

0

 

EQ.  132 

where λp is the mathematical expectancy of the Poisson generator presented in Section I.C.1 and I is 

the current caused by the movement of one ion across the membrane. To simplify we supposed that 

I has the same shape of the resulting AP and its maximal value was fixed to 20mA. 

Probabilistic gating of voltage-gated ion channels generate voltage noise in neuronal membranes 

which is called channel noise [308, 309]. It was determined that this noise may limit the reliability of 

neuronal responses to identical stimuli, as this noise is able to generate post synaptic APs. Channel 

noise has been shown to have a 1/f noise PSD [306]. The variance associated with channel noise is 

described in  [310, 311] and rewritten in eq.  133 

𝑆𝐶𝑁 =
𝑆𝐶0
𝑓𝛼

 

𝜎𝐶𝑁
2 =  ∫ 𝑆𝐶𝑁(𝑓)𝑑𝑓  

∞

0

 

EQ.  133 

restricting the computation of the variance in the [fl;fh] interval, gives: 

 𝜎𝐶𝑁
2 (𝑓𝑙 , 𝑓ℎ) =   ∫ 𝑆𝐶𝑁(𝑓)𝑑𝑓   ≈    ln(

𝑓ℎ
𝑓𝑙

𝑓ℎ

𝑓𝑙

) 

EQ.  134 

where SX is the PSD of the channel noise integrated from frequency fl to fh. fl was fixed by the 

simulation time and fh by the refractory period of the AP. SC0 is the maximum amplitude reached by 

the noise PSD and α the slope of the PSD in a logarithmic scale. We used a Matlab® pink noise 

generator with a filter in √
𝑆𝐶0

𝑓𝛼
  to model channel noise. 
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Synaptic noise is the most influencing noise in nervous tissues. It is caused by packets of 

neurotransmitters released in the synapse from presynaptic networks. It is often described as 

stochastic with a PSD (𝑆𝑆𝑁) with Lorentzian shape such as indicated in [312-314] and reminded in 

eq.  135. The variance of a such stochastic process can be approximated to the integral of its PSD as 

described in [312].  

𝑆𝑆𝑁 =
𝑆𝑆0

1 + 
𝑓

𝑓𝑐

𝑚 

𝜎𝑆𝑁
2 =  ∫ 𝑆𝑆𝑁(𝑓)𝑑𝑓 

∞

0

 =   
𝜋 𝑓𝑐𝑆𝑆0
2

 

EQ.  135 

where SS0 is the maximum amplitude of the PSD, fc is the cutoff frequency and m a scalar coefficient. 

According to [312], SS0 was fixed to 0.1, fc to 70Hz and m to 2.25. 

Synaptic noise is caused in part by channel noise as the channel density fluctuations in the 

presynaptic cell results in change in vesicles release in the synaptic cleft. In addition carrier 

agitations due to thermal noise participates to channel noise and synaptic noise generation. In 

consequence those different noises are highly correlated. 

Figure 85 shows the neuronal noises we simulated. The inclusion of these noises to the simulated 

spike train is displayed in Figure 86, which is comparable to experimental auditory nerve fibers spike 

trains fulfilled in [315-321]. The amplitude of the simulated signals is often different from the 

measured ones since it greatly relates on the measurement technique used. 

 

 

FIGURE 85: NEURONAL NOISES SIMULATED 
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The developed neuronal noises model is still incomplete and under study. In fact synaptic noise 

or channel noise are able to generate spikes which increases the unpredictability of spikes 

generation timing. By modifying synaptic channels dynamics including such noises as performed in 

[309], spike train generation could also depends on these noises. 

 

 

FIGURE 86: SPIKE TRAIN SIMULATED WITH NEURONAL NOISES INCLUSION 

 

It has been shown that spontaneous activity can facilitate neuronal information transmission. 

The discovery of stochastic resonance in non linear systems using a threshold for information 

transmission such as neurons, has suggested that unpredictable noise is beneficial [252]. 

Subthreshold stimuli which cannot stimulate a nerve response may, given an optimal noise level, 

reach the threshold value and result in a spike production. Furthermore it has been advanced that 

the nervous transmission is more efficient when the signal is multi-frequential and not periodic, 

hence suggesting an advantageous role for the noise in enhancing sensory information transmission 

[252]. 
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D. Cognitive science and electrophysiolological recording 
techniques 

 

1. Electrophysiological recording techniques 
 

The complete list of recordings procedures is outside the scope of this document. The 

classification and presentation of some of the nowadays commonly used electrophysiological 

recording techniques is proposed in this Section. 

Ions channels protein are usually studied with patch clamp or voltage clamp experiments [322]. 

Current clamps are used mainly to study postsynaptic membrane potential variations following 

neurotransmitter introduction in the synapse [323]. 

Amperometry major utility is the study of vesicles release from the intracellular space to the 

extracellular space. This technique is of particular value in studying cell chemical communications 

and may be used to study vesicles release in the presynaptic cells [324]. 

Optical physiological techniques are also available and use fluorescent proteins or voltage 

sensitive drugs to provide measurements of neuronal firing activity of single or multiple cells [325]. 

Voltage sensitive drugs are used to detect membrane voltage change and provide information of the 

AP duration and velocity. 

To better monitor electrical activity inside cell organelles where electrode insertion is not 

possible (as in mitochondria), potentiometric drugs may be used. They also permit the study of the 

spatial propagation of the AP on the surface of a single neuron[326]. 

The study of neurons activity can be performed in vivo (with surgical insertion of electrodes close 

to the neurons as in ElectroCorticoGraphy (ECoG) for instance) or in vitro. 

Single nerve recordings gather the techniques used to record a single neuron frequently 

employing one microelectrode insertion inside the intracellular space. 

Multi unit recordings are made by often larger electrodes inserted in the extracellular space. It is 

a less precision requiring method, which may be used in living animals, but often require spikes 

sorting in order to obtain the diverse neurons proper activity. 

Then extracellular field potentials recordings techniques such as ElectroEncephaloGraphy (EEG), 

ElectroCorticoGraphy (ECoG) or MagnetoEncephaloGraphy (MEG) permit to study relations between 

different nerve cell groups and are of great interest for brain comprehension. However these 
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recordings involve summation of different neuron activities and are hence prone to noise 

corruption. 

The propagation of a single AP or several APs running on nerve fibers belonging to the same 

nerve may also be investigated in order to detect nerve ruptures or myelinations defects. Packet of 

nerves fibers depolarization due to the same stimulus is called Compound Action Potential (CAP). 

The recording of the propagation of an AP or a CAP may be performed by putting both the recording 

electrodes close to the nerve fiber (biphasic recording) at different places along it. In monophasic 

recording one electrode is inserted inside of the nerve or in the extracellular space and the other 

one is at the ground.  

Communication process by which measurements are made and data transmitted from 

inaccessible locations is called telemetry. Using voltage telemetry, voltages between electrodes can 

be recorded. The Modiolus current model (defined in [327]) permits to characterize intracochlear 

impedances.  

Neural Response Telemetry (NRT) circuitry and associated software may also be used to send a 

stimulus to an electrode and records the evoked Compound Action Potential (eCAP) produced [328], 

which is defined as a CAP recorded from a sensory receptor such as the Spiral Ganglions Cells. Some 

CIs also included electric filed recording in these neighboring electrodes after central electrode 

activity. Using telemetry techniques, included in a great majority of modern CIs, facilitates device 

fitting and parameters tuning especially in young patients not able to communicate [327].  

 

2. Compound action potential mathematical characterization 
 

Physical experiments involving nerve fibers transmission often use compound action potential 

recording as it is often difficult to isolate only one nerve fiber. CAP results from the addition of 

simultaneous APs generated at the same time, in the same area, of several nerve fibers (CAP are 

usually recorded from an entire nerve). Each CAP contains the electric stimulation of several axons 

in parallel with different diameters, threshold and degree of myelination [329]. 

In this Section, only biphasic CAP recording is studied and mathematically defined. When a large 

stimulus is delivered to the nerve by electrode A, many axons fire and the signal recorded by two 

electrodes (B1 and B2 with B1 placed very close to A and with B2 placed farer in the axon) is used to 

measure a CAP [330]. CAP biphasic recording and measurement results expected are reported in 

Figure 87. 
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Spikes train are not included in the CAP simulation because the time needed for an AP to 

propagate from B1 to B2 (called tB1B2 which is defined in eq.  136) is much lower than the mean Inter 

Spike Delay which is around 15ms (cf Section I.C). To avoid unnecessary simulation time and 

because the spike train generation principle can be applied to CAP generation, we discarded 

inclusion of multiple spikes in biphasic CAP generation. In consequence we defined CAP by several 

APs, once per nerve fiber stimulated, but all starting at the same time. 

𝑡𝐵1𝐵2 = 𝑣𝜑𝑑𝐵1𝐵2 EQ.  136 

where vφ is the propagation velocity of an AP (cf Section I.H) and dB1B2 is the distance between the 

two electrodes B1 and B2 

As a starting point we considered that only one AP defines a CAP (biphasic recording). Recalling that 

at time t0, AP is generated at electrode B1 and that at time tB1B2, the same AP is received by 

electrode B2, the potential between electrode B1 and electrode B2 (called VB1B2) is equal to VB1 – VB2. 

This potential (VB1B2) is expressed in eq.  137 

𝐴𝑡 𝑡0, 𝑉𝐵1 = 𝑓1(0,0),    𝑉𝐵2 = 𝑓1(𝑑𝐵1𝐵2, 0 ) ~ 0 

𝐴𝑡 𝑡𝑥 > 𝑡0, 𝑉𝐵1 = 𝑓1(𝑡𝑥 , 0),    𝑉𝐵2 = 𝑓1(𝑑𝐵1𝐵2 , 𝑡𝑥) ~ 0 

⇒ ∀ 𝑡 > 𝑂 , 𝑉𝐵1𝐵2 = 𝑉𝐶𝐴𝑃−1𝐹−𝐵𝐼   =  𝑓1(𝑑𝐵1𝐵2 , 𝑡𝑥) − 𝑓1(0 , 𝑡𝑥) 

EQ.  137 

where VCAP-1F-BI  is the CAP produced by a biphasic recording in the case where only one nerve fiber 

was firing, and is equal to the potential difference between electrode B1 and electrode B2. f1 is the 

forward propagation wave function defining an AP propagation (cf Section I.H). 

 

 
a) 
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FIGURE 87: BASIC EXPLANATION DIAGRAM OF A CAP (BIPHASIC RECORDING). THE PROPAGATION OF AN AP ALONG A NERVE FIBER PERMITS 

TO RECORD A CAP. A PEAK STIMULUS IS SENT TO ELECTRODE A. THE RECORDED POTENTIAL OVER TIME (CAP) IS THE POTENTIAL 

DIFFERENCE BETWEEN THE RECORDING ELECTRODE B1 AND ELECTRODE B2, DURING THE AP PROPAGATION. THIS FIGURE SHOWS THE 

DIFFERENT TIME STEPS OF THE BIPHASIC CAP CREATION (ELECTRICAL SYSTEM REPRODUCED FROM [331]) 

 

As a nerve is composed of several nerve fibers, the previous equation was modified as exhibited by 

eq.  138 

𝑉𝐶𝐴𝑃−𝐵𝐼(𝑥, 𝑡, 𝑑) =  ∑ 𝛼(𝑑)(𝑓1 (𝑡 − 
𝑥𝑑𝐵1𝐵2
𝑣𝜑(𝑑)

) − 𝑓1(𝑡 −  0 ))

𝑁𝑏𝑛𝑓𝑐

𝑛=1

 

EQ.  138 

b) 

c) 

d) 
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where VCAP-BI is the theoretical potential of the theoretical biphasic recorded CAP, which depends on 

t and on the distance between the two electrodes. Nbnfc is the number of nerve fibers with the same 

diameter d included in the CAP. α is the gain in amplitude associated with the fiber diameter (d) and 

vφ is the velocity of the AP propagation both defined in Section I.C. 

It should be indicated that a CAP can represent the APs propagation of a packet of nerve fibers 

excited (VAN in eq.  129 (monophasic recording)) or the potential variation between the two 

recording electrodes during APs propagation (biphasic CAP recording). 

 

 

FIGURE 88.A) BIPHASIC CAP CONSTRUCTION FOR A SINGLE NERVE FIBER. BIPHASIC RECORDED CAP IS DEFINED AS THE DIFFERENCE 

POTENTIAL BETWEEN ELECTRODE B1 AND ELECTRODE B2.B) CAP SIMULATION FOR MULTIPLE NERVE FIBERS WITH DIFFERENT DIAMETERS 

HENCE DIFFERENT PROPAGATION VELOCITIES AND AMPLITUDE OF THE APS. 

 

Figure 88.acompares the theoretical CAP (biphasic recording) obtained with a single nerve fiber. The 

electrode B1 was suppose at a distance of 10µm from the stimulating electrode and the electrode 

B2 was at a distance of 53µm from electrode B1. In a second experiment, electrode B1 and B2 were 

separated by 106µm and the resulting biphasic CAP value was increased as shown in the Figure.  

a) 

b) 
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 Just as pointed out in Figure 88.b as 20 nerve fibers with different diameters varying linearly 

from 6µm to 15µm (hence with different velocities) were included in the multiple fibers CAP 

computation, the multiple nerve fibers CAP resulted in a smooth version with greater amplitude of 

the single fiber CAP. It should be specified that for such electrode distance, the different velocities of 

the nerve fibers have almost no influence on the overall CAP. 

 

 

 

E. Closure remarks 
 

The development of a new analog model for action potential propagation along the nerve fibers 

membrane is proposed. This new propagation model (presented in Section IV.B) depicts same wave 

properties of measured action potentials and may be of interest in brain cognition studies. In 

addition the spike train modeling based on statistical neuronal properties was performed. This 

model can further be refined in future work by including more nerve fibers diameters (hence nerve 

fibers velocity) as well as asynchronous delays between spikes resulting in more realistic spike train 

diagram. Adding neuronal noise to our ideal spike train model improved spike trains diagrams that 

fitted with actual measurements.    

Summing Action Potentials propagation of different nerve fibers permitted to estimate the 

evoked compound action potential produced which is commonly used as a metric in cochlear 

implant back telemetry.  

 

F. Work submitted 
 

 New electric system analog of Action Potential propagation with equivalent wave dynamics, 

U. Cerasani, W. Tatinian, IEEE Communications Magazine, 2014 
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A. Opening notifications 
 

Cochlear Implants (CIs) are very efficient neurostimulating prosthesis. However CIs still present 

many drawbacks and the hearing sensation brought to these patients is often restricted to a close 

frequency range, requiring a significant learning process. The review of the major limitations of CIs is 

proposed in this Chapter such as the electrodes and nerve fibers rough interface resulting in limited 

number of stimulating channels. Based on this review, we proposed a new electrical model of this 

interfacing based on the physiology of the cochlea which may define the electrode array electric 

specifications. Furthermore we reused the Spiral Ganglions Cells (SGC) repartition map inside the 

cochlea, to express the number of nerve fibers stimulated by each electrodes. This map was of 

importance to permit amplitude sound restitution in cochlear implants. Then, using a modified 

Discrete Fourier Transform (DFT) expression, we developed a program reproducing the sound that 

may be heard by deaf people using cochlear implants. Successively a hypothetical algorithm for 

electrodes selection is discussed.    

  

B. Introduction to cochlear implants 
 

CIs are used to remedy partial or complete hearing loss. They allow direct stimulation of the 

auditory fibers with an electrodes array designed to reproduce the stimulus that would be 

generated by a healthy cochlea. 

Only current commercially available CIs architectures are reviewed in this Section.  

To do so, the behind-the-ear part of the CI contains a microphone that captures the acoustic 

waves and transforms them into an electrical signal. Then, this signal is processed by a Digital Signal 

Processing Unit (DSP) which uses speech coding strategies in order to produce the currents that will 

be sent to the electrodes [332]. The frequency of the sound determines the electrodes to stimulate 

and the sound intensity is directly proportional to the current sent to these electrodes. This signal is 

then transferred to the receiver using a RF link composed mainly of a PA (as there is not battery in 

the stimulator) and a coil antenna. The transmit frequency is defined by the chosen ISM standard 

(for instance 13,56MHz, 433MHz, 866MHz, 2.45GHz). Both Figure 89 and Figure 90 which display the 

general components of the Cochlear implant were inspired by Cochlear® available products and 

modeled using the 3D modeling software Autocad®. The external part of the ear was provided from 

[71] 
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FIGURE 89: X-RAY REPRESENTATION OF THE COCHLEAR IMPLANT (INSPIRED BY COCHLEAR® DEVICES AND MODELED WITH AUTOCAD®) 

 

FIGURE 90: COCHLEAR IMPLANT (MODELED WITH AUTOCAD®) 

 

FIGURE 91: COCHLEAR IMPLANT OVERVIEW. ELECTRODES ARRAY ARE INSERTED INSIDE THE SCALA TYMPANI OF THE COCHLEA. VARIOUS 

TYPES OF ELECTRODES ARRAY EXIST, THE CURRENT ONES ARE USING BIPOLAR STIMULATION FOR MORE ACCURATE NERVE STIMULATION. THE 

FIGURES ARE ATTRIBUTED TO [1], [333] AND TO [334] 
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An hermetically sealed stimulator located within the patient’s head, close to the skull, is held in 

place by a magnet. This device is composed of active electronic circuitry [332] (containing a data 

decoder, a data distributor, a Programmable Gain Amplifier (PGA), …) which derives power from the 

RF signal and converts it into electric current sent to a set of electrodes (contracting the cochlea and 

stimulating the auditory nerve) [11, 12, 332]. 

The integrated part is encapsulated into biocompatible materials (further details in [332]). 

 

 

FIGURE 92.A) EAR SCHEMATIC WITH INCLUSION OF THE ELECTRODES ARRAY INSIDE THE COCHLEA. B) EAR SCHEMATIC AND THE WAVE 

PROPAGATION LEADING TO A BASILAR MEMBRANE HEIGHT CHANGE (H(X,T)) 

 

1. Coding strategies and electrodes array design 
 

Improvements in coding strategies have produced large ameliorations in speech reception 

performances in CIs users [1, 335]. The use of multiple sites of stimulation also called channels have 

ensured higher scores in words perception tests. However the use of active channels is currently 

fixed to 6-8 in current CIs (cf [6]). In fact various studies have shown that the increase in channels 

number does not produce better hearing perception and may eventually degrade it [1, 336]. 

Similarly increasing the number of electrodes from 8 to 20 does not improve the hearing accuracy in 

CIs patients [337], [336]. It may be deduced and further demonstrated by various authors [338], 

[339], [333], that the very strong electrical coupling between electrodes (electric field interferences 

between neighboring electrodes) is responsible for the lack of precision of cochlea area stimulation. 
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To overcome this issue, the electrodes array have evolved. First ground based stimulation showed 

very high coupling between electrodes, this coupling was reduced using monopolar stimulation 

where the ground wire is separated from the electrode array wire, increasing electric field directivity 

and hence nerve fibers targeting. Best stimulation was achieved with the help of multipolar 

stimulation (in bipolar stimulation the nearest electrode to the firing electrode is used as ground 

electrode. Another technique termed "field steering" uses the two nearest neighboring electrodes 

as ground electrodes. As noted in [1], field steering may result in more accurate nerve stimulation 

allowing more channels recognition by CI patients). 

Electrodes array associated with Acoustic Stimulation (EAS) are also commercially available, 

increasing the sound perception in low frequencies. As the low frequencies are detected by the apex 

of the cochlea, this part of the cochlea should be intact and working for the success of this system. 

As demonstrated by various studies such as [1], [340], the hearing amelioration in low frequencies 

and the noise distinction for these frequencies are indicated by numerous patients testing the EAS 

system. Binaural stimulation also offers great advantages facilitating sound localization and hearing 

perception as the cochlea may be damaged at different places in the two ears. 

Currently implemented speech coding strategies use parallel bandpass filter bank to extract the 

frequency components of the sound signal recorded by the microphone. Then the envelope of these 

signals are retained using lowpass filters. It was demonstrated by various authors [341] that Hilbert 

Transformation can be applied to sound waves allowing its splitting into envelope and fine structure. 

As envelope was found to be the main carrier of voice information, only the envelope of the sound 

is further processed. Fine structure appears to be of importance in music perception, better noise 

separation,… [1]. The Spectral Peak (SPEAK) or Advanced Combination Encoder (ACE) strategies 

selects the n-signals among the m channels with the highest amplitude (n-of-m strategies). The 

stimulus are sent only to the electrodes that correspond to the n-channels selected. Differences 

between the stimulation rates, number of channels selected and other parameters distinguish these 

n-of-m speech coding strategies. More information are available in [1], [332]. Other speech coding 

strategies implemented in present day are the Continuous Interleaved Sampling (CIS) or HiRes. 

These strategies use all the envelope extracted outputs and each of these are directed toward a 

single electrodes. Using delayed biphasic pulse for each single electrodes, the corresponding 

electrodes are interleaved in time, ensuring non simultaneous electrodes stimulation [1], [334], 

[342].  
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Because the number of electrodes is greater than the number of active channels available, 

various authors decided to simultaneously stimulate electrodes with varying intensity to achieve 

better spatial resolution. Although arguable, when two neighboring electrodes (HiRes 120 coding 

strategy) or more electrodes (hybrid stimulating strategies) are stimulated in a particular way, it 

seems to narrows the stimulation area, allowing more precise nerve fibers selectivity. These new 

intermediate channels created, also called virtual channels, may allow more precise cochlea 

stimulation increasing the frequency selectivity reached by the implant. Currently there are 120 

virtual channels in the HiRes120, which uses only two neighboring electrodes to create these 

channels whereas 300 virtual channels can be reached using 4 consecutive electrodes stimulation 

(FECSS strategy not currently implemented in commercially available CIs) [1, 338, 343]. Results using 

these virtual channels are very encouraging  (approaching 100% recognition scores in white noise) 

[338]. It should be noted that the virtual channels can be created with a single current source as 

nerve fibers stimulation duration is about 4ms (absolute refractory period of the nerve fiber), 

consequently neighboring electrodes stimulation time lower than nerve fiber absolute refractory 

period but with added delay between the electrodes stimulation will result as a single stimulation 

for the nerve fibers selected.  

Then amplitude mapping is performed, which permits to convert acoustic levels into current 

amplitudes  [334]. The diverse steps of the signal transformation in the CI are indicated in Figure 93. 

 

 

FIGURE 93: CURRENT COCHLEAR IMPLANTS ARCHITECTURE OVERVIEW. MAINLY BASED ON THE STUDY OF [255] AND [254] 
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Other architectures such as Asynchronous Interleaved Sampling (AIS) has been proposed. They 

associate an Integrate-and-Fire block to each channel where the first channel to fire is the one with 

the highest average amplitude (more information about this architecture may be found in [344, 

345]). Traveling wave based architectures [346], which are closer to the biophysical processes 

operating inside the cochlea, have also been developed. 

The study of stimulation rate of electrodes is complicated by the number of different CIs 

available and shows important variations between patients. As stated in Section I.B, CIs directly 

stimulate the nerve fibers. Considering the absolute refractory period of the action potentials as 

around 4ms, we may expect no further improvement with a stimulation rate greater than 250 pulses 

per channel (pps/ch). Higher stimulation rates may reproduce the stochastic stimulation of the 

nerve fibers, decreasing the Inter Spikes Delay (ISD), and hence resulting in a stimulation perceived 

with higher magnitude by the brain. Results from various documents [334, 347] showed an optimum 

in hearing restoration for stimulation rates between 350 pps/ch to 500pps/ch, although it was 

greatly varying between patients. Stimulation rates above 1500 pps/ch may result in some patients 

in disturbances such as tinnitus [347]. 

Biphasic current pulse is preferred for electrode stimulation because there is not net current, 

avoiding long lasting residual currents [327]. As previously stated in Section I.B.1, the negative value 

of the biphasic peak may decrease the absolute refractory time of the Action Potential (AP), maybe 

explaining why rates of stimulation superior to 250 pps/ch are optimal.     

 

2. RF transmission link in cochlear implants 
 

Wireless inductive power link brings energy to the internal part of the implant as current CI 

contains no battery. Data telemetry and power transfer uses the same pair of inductively coupled 

coils[14]. Bit coding is usually required for wireless transmission robustness (and is different among 

commercially available CIs, some of them relying on On OFF Keying (OOK), others on Pulse Width 

Coding (PWC), etc.)[332]. Nowadays most of the CIs utilize the Amplitude Shift Keying (ASK) 

modulation for RF transmission, but the carrier frequencies used are diverse. This modulation is 

preferred because of easier implementation and lower power consumption. Furthermore frame 

coding is required to transmit functional information such as pulse amplitude or pulse duration 

[332]. 
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3. Power consumption of the implant 
 

As CIs must hold behind the ear, it should be as light as possible. This requirement greatly 

impacts the battery size and hence the battery lifetime [14]. Power consumption reported on 

commercially available CIs with present days are between 20mW and 100mW for the three different 

major brands of CIs manufacturing companies [332]. The current typical power consumption 

associated with the electrodes stimulation varies between 1mW to 10mW, the power dissipated in 

the RF link is around 10-20mW and the most consuming part of the implant is associated with signal 

processing and is around 20mW [348]. However electronic technology is evolving amazingly fast and 

CIs significant improvements are expected, as described by modern research.  

In [349], a DSP architecture for use in CIs consuming around 1.7mW (with a standby power 

dissipation of 330µW) is described. Recently CIs processors with 250µW of signal computing power 

have been created. Besides ultra low power Biomedical Signal Processors (BSP) are being developed 

consuming few µW at MHz frequencies when running basic algorithms [350-352]. RF link efficiency 

is very impacted by the reduction in power consumption. Low RF power consumption (by 

appropriate class E amplifier conception) of around 100µW with 60% of link efficiency is presented 

in [353]. Ultra Wide Band (UWB) transmission may be used instead allowing reduced power 

consumption (below 100µW), low spectral perturbations and increased robustness against 

interferences [354, 355]. 

Low consuming power electrodes (dissipating only 750µW of power) are presented in [356] 

A recent implantable chip consuming less than 1mW is proposed in [357]. Other documents 

indicate that bionic ear circuitry consuming less than 3mW of power with a coil separation distance 

of 5mm can be elaborated [353]. 

In addition, micropower designs are also available for various blocks of the CI such as 

microphone, preamplifier, AGC and VGA. These might be adapted and integrated to the overall 

system [353, 358]. 

 

C. Electrical analog of electrodes and nerve fiber interface and 
associated equations 
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The aim of the electrodes inserted inside the cochlea is to generate an AP once a sound is 

perceived. Their selection mainly depends on the wave frequency. 

Consequently to obtain the same AP at the nerve fiber using only electrodes stimulation, two 

possibilities exist. First the direct nerve fiber stimulation can be made by changing the nerve 

membrane potential in order to produce a membrane depolarization above the threshold of Voltage 

Sensitive Na+ Channels (Nav) to create an AP [359]. The second solution consists in opening the 

potassium channels of the stereocilia to recreate the complete stimulation process. As Hair Cells 

(HC) or stereocilia are dysfunctional in the vast majority of implanted patients, only the first 

mechanism was considered in this work.  

Electrical model of electrodes inserted within the cochlea have been proposed by Hartmann et 

al.[360], where the spatial distribution of electrical potential was measured for intracochlear 

stimulation.   In addition, electronic model of electrode/neuron coupling is available in [361] in order 

to reveal the most efficient coupling conditions. However, both models lack of physical connection 

with AP generation. In this document, we present an electrical description of the electrodesclose to 

the organ of Corti in order to obtain theoretical minimal stimulation voltage sent to the electrodes 

for AP generation. Furthermore, this model allowed us to link the stimulation voltage with the 

duration of the nerve fibers stimulation. Then the impact of surrounding electrodes were 

theoretically investigated. We developed a theoretical model developed for the organ of Corti 

associated with the electrodes. Thereafter, simulation results from SPICE software were presented.  

 

1. Organ of Corti electrical analog 
 

The electrical equivalent circuit of human tissue used in this paper is the one presented in Figure 

94 and extracted from Cole and Cole impedance model [362], which has been shown to fit 

experimental data (cf Section I.D.1 for extended precisions). The human tissues considered were the 

ones presented in Figure 48. The value of Rs, Rp, Cpand Ch (defined in Section I.D.1) were obtained 

using available literature on impedance spectroscopy applied to human tissues. As the maximum 

hearing frequency is 22kHz, it was considered in this paper that Rp and Cp could be neglected as their 

model the energy loss and tissue response in high frequencies. 
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FIGURE 94: HUMAN TISSUE ELECTRICAL ANALOG [362] 

 

To obtain the numerical values for Rs and Ch for all the tissues or interfaces, we used the physical 

equations for the capacitance (parallel-plate capacitor) and for the resistance computation 

(cylindrical resistor model) [30, 363]. 

The values of the relative permeability and electrical conductivity for the nerves were extracted 

from [364] or from [365] for platinum as electrodes are mainly composed of it. However as far as 

the author knows, no relative permeability or electrical conductivity was available for Deiter cells or 

Basilar Membrane (BM) tissue. As Deiter cells are mainly composed of microtubules[366], which are 

involved in mechanical transport as actin proteins found in muscles cells and because the width of 

the BM is negligible compared to the Deiter cell height, we chose to take the relative permeability 

and electrical conductivity of muscle cells to characterize those two tissues.  

On the other hand, the computation of the capacitance and the resistances (Cpatch, Rppatch, Rspatch ) 

between two electrodes is more complex, as highlighted in Figure 95, those variables depend on the 

distance between the two electrodes. The cable model theory was used to compute those variables 

as the current can return to the ground in every place in its way to the neighboring electrodes, 

similar to the current that can return to the ground during its propagation inside a cable, as 

expressed in Figure 95. 

We simplified the tissue between two electrodes as only made of Deiter cells, then we 

implemented the cable model theory in order to obtain a general impedance depending on the 

electrodes distance.  
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FIGURE 95. TWO SURROUNDING ELECTRODES INFLUENCES THE NERVE FIBERS TARGETED. WE USED THE CABLE MODEL THEORY TO ACCOUNT 

FOR THE CURRENT RETURNING TO THE GROUND BETWEEN THE TWO ELECTRODES . 

 

To compute Rspatch, the cylindrical model of resistance was considered. The cylinder going from the 

first electrode to the second electrode, as defined in Figure 96.a, was used to compute Rspatch 

(expressed in eq.  139) 

𝑅𝑠𝑝𝑎𝑡𝑐ℎ = 
1

𝜎𝑀
∗  
𝑙𝑠𝑝𝑎𝑡𝑐ℎ

𝑆𝑠𝑝𝑎𝑡𝑐ℎ
 

𝑤𝑖𝑡ℎ   𝑙𝑠𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ 𝑦 ∗ 𝑑𝑦
𝑌𝑡𝑜𝑡

0

 

𝑎𝑛𝑑    𝑆𝑠𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ ∫ 𝜌 ∗ 𝑑𝜌 ∗ 𝑑𝛳

𝑋1

2

−
𝑋1

2

2∗𝜋

0

 

EQ.  139 

where Ytot is the distance between the two electrodes, X1 is the distance between one electrode and 

the corresponding nerve fibers. Those values were respectively extracted from {,  #400} and[227]. y 

is the variable shown in Figure 96.a, Figure 96.b and Figure 96.c. σM is the electrical conductivity of  

muscle cells. 

Rppatch models the resistance between the two longitudinal edges of the cylinder defined previously. 

Hence, this computation changes as expressed in eq.  140, since it models all the losses through the 

ground from one electrode to another one. 

𝑅𝑝𝑝𝑎𝑡𝑐ℎ = 
1

𝜎𝑀
∗  
𝑙𝑝𝑝𝑎𝑡𝑐ℎ

𝑆𝑝𝑝𝑎𝑡𝑐ℎ
 

EQ.  140 
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𝑤𝑖𝑡ℎ   𝑙𝑝𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ 𝑑𝑧
𝑍1

0

 

𝑎𝑛𝑑    𝑆𝑠𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ ∫ 𝜌 ∗ 𝑑𝜌 ∗ 𝑑𝛳
𝑦

0

2∗𝜋

0

 

where we supposed Z1 equal to X1 for simplification purposes (X1 and Z1 correspond to the 

distances indicated in Figure 96). 

We defined Cppatch as a squared parallel plate capacity (Figure 96.c) (developed in eq.  126): 

𝐶𝑝 = ℰ0ℰ𝑀
𝐴𝑝𝑎𝑡𝑐ℎ

𝑑𝑝𝑎𝑡𝑐ℎ
 

𝑤𝑖𝑡ℎ   𝑑𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ 𝑑𝑧
𝑍1

0

 

𝑎𝑛𝑑    𝐴𝑝𝑎𝑡𝑐ℎ(𝑦) =  ∫ 𝑑𝑦1

𝑦

0

∫ 𝑑𝑥
𝑋1

0

 

EQ.  141 

where ℰM is the muscle relative permeability. 

For reader’s convenience, the value of the capacitances and resistances described previously are 

summarized in Table 9. 

 a) 
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FIGURE 96. PHYSICAL MODEL OF RSPATCH (A), RPPATCH (B) AND CPPATCH (C) 

 

The electrical description containing only a single electrode is shown in Figure 97. The input 

voltage generator is directly connected to the electrodes analog model (low frequencies model), 

which can be eventually considered as a perfect conductor compared to the other resistance values.  

The electrodes array configuration implemented here is the common ground electrodes array 

(where the wire is working as the ground) which is usually not found in modern CIs as it is associated 

with increased power loss and hence electrodes consumption. However with this common ground 

electrode array, the model created is more precise than considering a monopolar stimulation (as the 

distance from the two wire is not known) or a bipolar stimulation (the electrodes working as ground 

in bipolar stimulation may depend on the CI system used). 

 

b) 

c) 
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Then the current can flow to the nerve cell or can go back to the ground. The current loss 

through the physical isolation between the electrode and the ground is neglected as the insulator 

has a low loss tangent (high resistivity). The membrane rest potential of a nerve cell is around -

70mV, explaining the two -70mV voltage generators, in Figure 97. We defined the analog equivalent 

circuit of a nerve cell using a resistance (Rn) in parallel with a capacitor (Cn). This electrical 

description should not be confused with the Hodgkin-Huxley model [367], which is used to model 

ions flow through the nerve cell membrane and not the electron flow. 

In addition, the electrical description of the system starting from the nerve and going through all 

the body to the ground was not considered because very little electrical current is going through this 

pathway. 

Usually longitudinal impedances are included in propagation channel modeling associated with 

layers of diverse tissues resulting in a mesh of complex impedances [368]. In the propagation 

channel modeling of biological tissue associated with a single electrode, longitudinal impedances 

were not included because we supposed that membrane properties were similar between different 

tissues (we used a single wire instead). However we included the impedances associated with the 

cable theory model, in the propagation channel modeling of biological tissues associated with 

multiple electrodes.  

 

TABLE 9: RESISTANCES AND CAPACITANCES USED IN THE ELECTRICAL  MODEL 

Electrodes Re= 1.5 Ω, Ce=11 fF 

Basilar Membrane and 

Deiter  cells 

Rbc= 933 Ω, Cbc= 300 nF 

Nerve fibers Rn= 1076Ω, Cn= 3µF 

Cable Model Theory Rspatch= 8 MΩ, Rppatch= 1265 

Ω Cppatch= 92.6 nF 

 

Figure 97 exhibits the electrical description of the overall system with two surrounding 

electrodes added. They are composed of a voltage generator, the platinum electrode equivalent 

circuit and the cable model (Rspatch, Rppatch and Cpatch), to connect the peripheral electrodes with the 

nerve fibers that we want to activate. 
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FIGURE 97.A. ELECTRICAL ANALOG OF THE ELECTRODE AND NERVE (NOT AT THE RIGHT SCALE FOR BETTER UNDERSTANDING).  

B. ELECTRICAL ANALOG WITH THREE ELECTRODES 

 

The main goal of the addition of the two surrounding electrodes was to study theoretically the 

influence of these on the stimulation of selected nerve fibers (or more precisely of the packet of 

nerve fibers that should only be stimulated by the central electrode). These perturbations, if 

significant, could make the sound reconstitution inaccurate. 

 

a) 

b) 
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2. Interpretation of this electrical analog 
 

The membrane potential (Vm) which corresponds to the difference of potential between point A 

and point B in Figure 97, have to vary of 30mV to generate an AP. The electrode stimulation (Velec) 

was made using first a DC source. Neglecting the effect of the capacitors, Vm varied linearly with Velec 

and the variation of 30mV was reached for an electrode stimulus around 0.9V. 

When a nerve fiber is stimulated constantly, it will not produce an AP indefinitely but rather 

produce a succession of randomly spaced AP called spike trains. The spike train length that could be 

produced by a sound of given intensity has to be reproduced with the electrodes of the cochlear 

implant. We performed transient simulation including the capacitors effects by injecting a square 

voltage with a period of 15ms.  This experiment was repeated for input square voltages varying from 

1V to 5V (Figure 98). The aim of this simulation was to study if the voltage amplitude sent to the 

electrode would affect the spike train duration and starting time. Figure 98 reveals that the delays 

for Vm potential to reach its maximum value were around 0.1µs, which were small compared to the 

duration of a nerve AP (few ms). This result pointed out that theoretically the electrode voltage 

magnitude had a very insignificant effect on the spike train duration. In addition, the recreated spike 

train starting time has negligible delay with the electrode stimulation starting time. 
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FIGURE 98.A. TRANSIENT SIMULATION WITH DIFFERENT ELECTRODE VOLTAGE AS INPUT AND VM VOLTAGE AS OUTPUT. 

B. TIME BEFORE AP GENERATION DEPENDING ON THE ELCTRODE VOLTAGE 

 

A general overview of the spike train related to the Vm amplitude is presented in Figure 99. The 

AP generated were obtained from basic mathematical functions in order to model the nerve fiber 

AP created after square voltage electrode stimulation. The Inter Spike Delay (ISD) was taken 

randomly and greatly depends on the amplitude of the stimulus[285]. However, the electrical analog 

presented in this document does not account for this effect. 

 

FIGURE 99. SPIKE TRAIN GENERATED BY THE ELECTRODE INPUT VOLTAGE 

 

We performed also a parametric simulation using the electrical description ofFigure 97, where 

the surrounding electrodes were added. The central electrode had a DC amplitude of 1V and we 
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varied the voltage of the surrounding electrodes between 0.9 and 5V. According to RC values used in 

Figure 97, analytical computation showed that when the voltage of the surrounding electrodes was 

maximum (5V), the nerve fibers (above the central electrode) membrane potential Vm variation was 

0.5mV, which was not high enough to stimulate these nerve fibers (the ones that should be 

stimulated only by the central electrode). 

The overall system consumption is of great significance as cochlear implants are not convenient 

for the users to recharge. The study of the power consumption is presented in Figure 100. 

 

 

FIGURE 100. CURRENT CONSUMPTION DURING ONE STIMULATION PERIOD 

 

The current peaks during each input signal transitions could reach 1A. Consequently, the 

maximum power consumed during a square input signal generation by the electrodes was around 

1W (peak value), whereas the mean power consumed per period was around 50mW. These results 

may be used for the electrodes array conception to define battery size as well as electrode minimum 

width. 

 

3. Limits of the model created 
 

The electrodes array power consumption mean value is by far more important than the one 

reported in current CIs (cf Section II.B.3 for more details). This may be explained by the fact that we 

implemented an old stimulating electrode technology (common ground electrodes array) rather 

than the one used in modern CIs which is more directive and hence less power consuming (bipolar 
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electrodes array). This modeling choice was made for the precise restitution of the physical 

phenomenon involved as indicated the previous Section.  

Besides in commercially available CIs, the number of channels (with distinct stimulation area of 

the cochlea) is lower than the total number of electrodes as indicated in Section I.B, possibly caused 

by strong electric field coupling between the electrodes, which disagrees profoundly with our 

model. The main explication is that the scala tympani, where the electrodes array is inserted, is filled 

with perilymph, hence there is conductive fluid between all the electrodes (explaining why very poor 

accuracy is associated with common ground technology). We did not account for perilymph 

perturbation in our study, maybe explaining the model disagreement with experimental results. 

However, if this conclusion were true, that would suggest that reducing the perilymph perturbations 

may result in very precise nerve stimulation. 

 

D. Nerve fibers selected by the electrodes array 
 

1. Nerve repartition map 
 

The biomechanical most widespread theory of BM vibration is the traveling wave theory: 

following acoustic vibrations, the BM is excited and vibrates at a particular place inside the cochlea. 

This place depends on the sound wave frequency as well as sound amplitude [164, 369]. CIs aim to 

recreate the neural stimuli of a healthy cochlea using a wired electrodes array inserted inside the 

scala tympani, close to the BM. As each electrode is at a fixed place inside the cochlea, electrode 

stimulation will excite only a limited region of the cochlea which will be further interpreted in the 

brain as a sound of a certain frequency. Consequently sound division into single frequency using the 

Fast Fourier Transform (FFT) algorithm for instance or using more complex algorithms based on the 

BM width motion (as presented in Section VI.B.1) are necessary to select the right electrodes to 

activate, which then stimulate their surrounding nerve fibers. 

In order to better reproduce the original sound amplitude with functioning Hair Cells (HC), we 

created an afferent nerve fiber map of the cochlea including the frequency selective mechanisms of 

the ear. 

 

2. Spiral ganglions 
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There are between 30000 to 40000 nerve fibers in the cochlea of a healthy adult [370]. Three 

types of nerve fibers innervate the cochlea: autonomic (associated with blood vessels for example), 

afferent (conducting information from the cochlea to the brain) and efferent (conducting 

information from the brain to the cochlea, especially to the Outer Hair Cells (OHC)). Afferent nerve 

fibers are produced by Spiral Ganglions Cells (SGC) [160]. Spiral ganglions are synaptically connected 

to the IHC and OHC as indicated in Figure 102. 

 

 

FIGURE 101: IMMUNOFLUORESCENT LABELING OF NEURAL PROTEINS, SHOWING THE NERVE FIBERS, INNER HAIR CELLS (IHC)  AND OUTER 

HAIR CELLS (OHC).  MORE DETAILS ARE AVAILABLE AT[142] . THE PICTURE IS ATTRIBUTED TO [142] 

 

Type I SGC represent 95% of the SGC and each one connects to a single IHC whereas a single IHC 

is connected to 10-20 type I SGC [160]. There are around 15 nerve fibers per IHC in the lower second 

turn of the cochlea and this number changes from the base to the apex, most probably slightly 

contributing the cochlea sensitivity toward certain frequencies as explained in [246, 247, 286]. 

Type II Spiral Ganglions Cells (SGC) are smaller and unmyelinated and mostly connect OHC.  

It may be deduced that IHC are surrounded by almost all the afferent nerve fibers, therefore they 

are thought to function primarily as sensory receptors [371]. OHC otherwise are more connected 

with motor properties of the stereocilia [180], they may permit an higher accuracy in sound 

perception. 

 In [372], the Spiral Ganglions repartition over the cochlea distance from the base is presented 

for cats. We assumed that the spiral ganglions cochlea distribution for other terrestrial mammal 
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species was similar [160, 373] (this assumption may be inaccurate as the cat hearing frequency 

range is often larger than the other species, but may be used as first approximation). 

 

 

FIGURE 102: AUDITORY NERVE  FIBERS AND HAIR  CELLS. REDRAWN FROM [374] 

 

As type II SGC function in hearing sensation has been partially understood and because their 

number is limited compared to type I SGC number, we neglected type II SGC, and supposed in this 

model that: 

 the total SGC number and repartition was entirely defined by type I SGC.  

 the total afferent nerve cell number and repartition inside the cochlea was therefore similar 

to type I SGC number and repartition.  

 

3. Ear frequency sensitivity hypothesis 
 

The human ear is composed of the outer ear, the medium ear and the inner ear (where BM 

makes the organ of Corti oscillates)[126]. When the eardrum is stimulated, the nerve response over 

frequency presents a peak amplitude around 4kHz [375]. This particular human hearing frequency 

sensitivity may result from the combined effects of outer ear resonance, the middle ear resonance 

and the cochlea sound filtering and amplification. 
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It has been suggested that the outer ear and the medium ear contribute to frequency sensitivity 

in mammalian hearing, especially for frequencies around 3kHz [375-379]. 

The cochlea frequency sensitivity may also result from other various mechanisms still 

controversial. Considering only the cochlea biophysics, the Intracochlear/eardrum magnitude  of the 

scala tympani over frequency found in [380] may indicate varying vibrations amplitude depending 

on the sound wave frequency. The BM displacement (when stimulated by a mechanical wave) 

contributes to produce the frequency sensitivity of the cochlea due to the BM different physical 

properties (stiffness, mass) inside the cochlea (distance from the base). 

The cochlea sensitivity toward certain frequencies may be further affected by other physiological 

factors, such as different afferent nerve fibers repartition and stimulation, depending on the 

position on the cochlea. Several mechanisms have been proposed such as: 

 IHCs frequency response which is similar to a low pass filter with a resonating pulse around 

10kHz [274, 381]. The IHCs frequency response may result from different IHCs length inside 

the cochlea or to their stereocilia and cellular mechanical properties. Furthermore gradient 

of IHC ionic channels along the cochlea length exist and increase the frequency hearing 

sensitivity of the cochlea [382]. Besides ribbon synaptic contacts with type II SGC are diverse 

with respect to their cochlea location with highest numbers (15 contacts) for frequencies in 

the 8kHz-16kHz range [199]. 

 Spiral ganglions density increases slowly and linearly with the cochlea position with respect 

of the cochlea location hence spiral ganglions repartition is related to the frequency of the 

sound wave but fails to explain the 4kHz frequency peak (cf spiral ganglions frequency map, 

presented in Figure 104) [372, 380]. Furthermore AMPA Receptors density of type II SGC is 

changing depending on their place inside the cochlea.  

To the author’s personal interpretation the frequency selectivity of the cochlea is greatly linked to 

biophysics of the cochlea, to IHCs potential change and repartition and ear/middle ear resonance 

rather than nerve fiber topography (as they seem to contribute less to the amplification peak in the 

3-4kHz range [380]). 

 

4. Afferent nerve fibers repartition inside the cochlea 
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As indicated in [370], the number of afferent nerve fibers in the cochlea is around 40000 and 

their effective stimulation is depending on the sound wave frequency. We hence decided to create 

an afferent nerve repartition map already including all the physical or anatomical mechanisms 

presented in the above Section (that we called Afferent Nerve Fibers Repartition Map Including Ear 

Frequency Selection Mechanisms or MEFFRINAM map), in order to roughly define the number of 

afferent nerve fibers affected by a sound wave. This map presents great interest for cochlear 

implants application as the electrodes array are directly stimulating these nerve fibers and the 

outer/middle ear resonance, the BM variations depending on wave frequencies, the organ of Corti 

selective mechanisms,… are bypassed in cochlear implants, making the use of this map fundamental 

to recreate a realistic hearing.  

To develop this topographic map we took first the reverse function of the human hearing 

threshold over frequencies [383] to get the human ear sensitivity toward the frequencies.  

By making this function linear (R(f)) and then reversing it (IR(f)), it allowed us to estimate the 

cochlea sensitivity toward frequency.  

Transforming the IR(f) function into a probability density function (PIR(f)) and  multiplying it with 

the total number of afferent nerves in the cochlea (Nbafferentnerves) resulted in the Afferent Nerve 

Fibers Repartition Map Including Ear Frequency Selection Mechanisms (MEFFRINAM map) of the 

cochlea as expressed in eq.  142. The afferent nerve cells inside the cochlea are weighted by healthy 

hearing responsiveness as only nerve fibers are involved in sound perception in CIs users. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑓 ℎ𝑒𝑎𝑟𝑖𝑛𝑔 =  10 log |𝑅(𝑓)| 

→ 10 log|𝐼𝑅(𝑓)| =  −10log |𝑅(𝑓)| 

𝑃𝐼𝑅𝑇(𝑓) =  
𝐼𝑅 (𝑓)

∫ 𝐼𝑅 (𝑓)
𝑓𝑚𝑎𝑥
𝑓𝑚𝑖𝑛

𝑁𝑏𝑎𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑛𝑒𝑟𝑣𝑒𝑠 

EQ.  142 

where PIRT (f) is the equivalent afferent nerve stimulated repartition map over the frequencies (f). 

The Greenwood function [384] was used to change from the resonant frequency into a position 

in the cochlea between the base and the apex[384]. Therefore PIRT(f) can be transformed into PIRT 

(dA) where dA is the distance from the apex as described in eq.  143 

𝑓 = 165.4 (102.1 𝑑𝐴 − 1) 

𝑃𝐼𝑅𝑇(𝑓) =  𝑃𝐼𝑅𝑇 (165.4 (10
2.1 𝑑𝐴 − 1)) 

EQ.  143 

According to Greenwood parameters for human ear fitting [384]. 
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Figure 103 displays the afferent nerve fibers stimulated map including ear amplification 

mechanisms (MEFFRINAM map) compared to cochlea position. The comparison between the spiral 

ganglions topographic map (attributed to [372]) and the created topographic map is presented in 

Figure 104. Based on the assumptions presented in the above Section, both maps have the same 

number of cells but these are differently affected over frequencies. 

  

 

FIGURE 103: AFFERENT NERVE FIBERS REPARTITION MAP INCLUDING EAR FREQUENCY SELECTION MECHANISMS (MEFFRINAM MAP) IN 

RELATION TO THE DISTANCE FROM THE APEX  

 

FIGURE 104: COMPARISON OF SPIRAL GANGLIONS REPARTITION MAP (ATTRIBUTED TO [372]) AND EQUIVALENT AFFERENT NERVE FIBERS 

STIMULATED MAP DEPENDING ON THE COCHLEA AND EAR BIOPHYSICS (MEFFRINAM  MAP IN DARK BLUE) 

 

5. Benefits of the created topographic map for cochlear 
implants 

 

In severely deaf people the use of cochlear implants helps to partially recover the hearing 

function. In implanted patients the afferent nerve fibers stimulation is directly done through 

electrodes and does not require the organ of Corti. By remembering that we made the 
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approximation that the afferent nerve fibers were equivalent to the SGC, the afferent nerve fibers 

selected by the electrodes is given by the spiral ganglions repartition map. 

We use CI422® device characteristics with an insertion depth of 20-25mm, a mean diameter of 

the electrodes around 0.35mm and a spacing between the electrodes around 0.45mm {,  #400}. As 

explained in {,  #400} the number of nerve fibers stimulated by an electrode is a function of the 

power magnitude as well as the proximity of the electrodes with the SGC. 

We supposed that the electrodes are very close to the SGC, resulting in a window type selection 

(very accurate) of the afferent nerve fibers stimulation by the electrodes (Himplants.) displayed in 

Figure 105. In practice, this may be inexact as the insertion of the electrode array inside the scala 

tympani is difficult and usually result in spacing between the electrodes array and the Spiral 

ganglions [385]. In consequence, in practice, the nerve fibers selection mathematical description is 

closer to a Gaussian function. 

 

 

FIGURE 105: PACKET OF AFFERENT NERVE FIBERS SELECTED BY THE ELECTRODES OF THE COCHLEAR IMPLANTS. THE NUMBER OF SPIRAL 

GANGLIONS REPARTITION IS ATTRIBUTED TO [372] 

 

From Figure 104 and Figure 105, it can be easily deduced that the cochlear implant electrodes do 

not provide the required amplification in the 2kHz – 6kHz frequency range (corresponding to 

distances from the apex in the 19-24mm interval according to Greenwood function [384]) as 

cochlear amplification is not done. Algorithmic correction by modifying the energy sent to the 

electrodes may be used to correct this defective amplification. This algorithmic correction should be 

based on the human hearing threshold or similarly on the equivalent afferent nerve fibers 

stimulated map which takes into consideration the amplification mechanisms of a healthy cochlea. 



220 
 

Using the mathematical logarithmic spiral representation presented in [386], the spatial 

representation of the cochlea can be performed. The mathematical equation in the cited document 

describes a flat spiral disagreeing with a real cochlea, however we may use the z direction to plot 

information such as the nerve fiber topographic map or the nerve fibers selected by the electrodes 

array, as indicated in Figure 107 and Figure 108. 

 

 

FIGURE 106: SNAIL LIKE STRUCTURE OF THE COCHLEA (ATTRIBUTED TO [387]) 

 

 

FIGURE 107: AFFERENT NERVE FIBERS REPARTITION MAP INCLUDING EAR FREQUENCY SELECTION MECHANISMS INSIDE THE COCHLEA 

DEPENDING ON THE COCHLEA SPATIAL POSITION 

 

 

FIGURE 108: PORTION OF THE AFFERENT NERVE FIBERS INSIDE THE COCHLEA STIMULATED BY THE COCHLEAR IMPLANT ELECTRODES 
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6. Amplification coefficients associated with the topographic 
maps comparison 

 

CI electrodes should hence be multiplied by scalar coefficients to correctly model the frequency 

sensitivity of a healthy ear. This correction is required as the central nervous system interprets 

neuronal signals already amplified in some particular frequencies (though it may partially adapt to 

distorted sounds). If the frequency amplitude dependence is not reproduced in cochlear implants it 

may result in inability to correctly hear certain frequencies (especially in the 3-4kHz band), 

ultimately resulting in sound distortion.  

 

FIGURE 109: COMPARISON BETWEEN THE SPIRAL GANGLIONS STIMULATED BY THE ELECTRODES AND THE  CREATEDMEFFRIMAM  MAP 

 

Comparison between the MEFFRIMAM map and the Spiral Ganglions topographic map selected 

by the cochlear implants is exposed in Figure 109. To correctly model the frequency response of an 

healthy ear, each electrode should be multiplied with the coefficient indicated in Figure 110. We 

further supposed that the number of nerve fibers stimulated is linearly increasing with the 

amplitude of the electrode. This may be inaccurate for high voltage stimulus or very low voltage 

stimulus due to saturation mechanisms [152, 158, 159]. To compute this average coefficient a simple 

division was performed between the afferent nerve fibers number in the MEFFRIMAM map and the 

afferent nerve fibers number defined by the spiral ganglions map for the same position inside the 

cochlea. The average value of this coefficient was retained for each electrode.  

The multiplication of these coefficients with the voltage value, which must be sent at an 

electrode to stimulate an afferent nerve fiber response, could be done in the processing unit of the 
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cochlear implant. However due to strong electrode coupling in modern CIs, these coefficients should 

rather be used to correct the channel amplitude rather than the electrode amplitude. The 

computing technique still apply for such modifications. 

 Furthermore coefficients amplitude tuning tests (using back telemetry) performed in deaf 

people using cochlear implants for each electrode may add precision in the hearing response of 

these patients. 

 

 

FIGURE 110: ELECTRODES AMPLIFICATION COEFFICIENTS TO ENSURE SIMILAR FREQUENCY RESPONSE WITH AN HEALTHY COCHLEA 

 

E. New algorithmic model developed for electrodes array 
stimulation 

 

As previously stated in Section I.D, we supposed that the electrodes array is very close to the SGC 

resulting in a rectangular window-like function called Himplants(x). 

The selection and the power sent to the electrodes may use the function h(x,t) and w(x) (described 

in Section III.E) as depicted in Figure 111. Such speech coding strategy is called traveling wave based 

stimulation [346]. The basilar membrane width excitement (w(x)), following a sound wave 

perception in an healthy cochlea may be recreated by selecting the right electrodes to stimulate as 

indicated in Figure 111, and the amplitude of the electrodes may be found using the function h(x).  

As indicated in the previous Section, the Greenwood function [140]permits the easy conversion 

of the central resonant frequency of the cochlea with the BM distance from the apex. Himplants(x) can 

be converted into Himplants(f) by using the Greenwood function. 



223 
 

 

 

 

FIGURE 111.A: HIMPLANTS FUNCTION WHICH INDICATES THE POSITION IN THE COCHLEA OR THE FREQUENCIES STIMULATED BY THE 

ELECTRODES ARRAY. B: USING BASILAR MEMBRANE MOVEMENT FOR ELECTRODES STIMULATION DEPENDING ON THE FUNCTION H(X) AND ON 

THE STIMULATION WIDTH (W(X)) IS PROPOSED IN TRAVELING WAVE BASED SPEECH CODING STRATEGIES 

 

Figure 112 shows that not all the frequencies can be stimulated by the electrodes and the main 

limitation of this electrode array is that the input frequency must match with the frequencies 

coverage by the implant, which is rarely the case for high frequencies. In consequence we proposed 

an alternative model. 

 

FIGURE 112.A: THE AUDITORY NERVE FIBERS POSITION STIMULATED BY THE ELECTRODES ARRAY. B: BM DISPLACEMENT FOR A 1250HZ 

SINE WAVE. C: RESULTING ELECTRODES STIMULATED BY THE 1250 HZ SINE WAVE BASED ON THE BM SPEECH CODING STRATEGY 
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1. Created algorithm for numerous electrodes selection 
 

The function Himplants selects the frequencies stimulated by the electrodes array. We chose to only 

compute the Fourier Transform (FT) on the frequencies which can be stimulated by the cochlear 

implants. Speech coding strategies such as SPEAK (developed in Section I.B.1) also uses the band 

pass filtering for electrode selection similar to applying the FT on an infinite number of points (as the 

signal is still analog). However our algorithm is diverse, the FT is not applied to a very large number 

of points and its result mapped to the electrodes, rather we directly computes the FT on only 22 

frequencies associated with each electrode central estimated stimulation frequency.  

Hence we obtain the following equations for the FT computation (eq.  144): 

𝑋𝑘 = ∑ 𝑥𝑛

𝑁−1

𝑛=0

∗  𝑒−
𝑖2𝜋𝑓𝑐𝑒𝑛𝑡𝑟𝑎𝑙(𝑘)𝑛

𝑁  

and  

𝑥𝑛 = 
1

𝑁
∑ 𝑋𝑘

𝑓𝑐𝑒𝑛𝑡𝑟𝑎𝑙(𝑁−1)

𝑓𝑐𝑒𝑛𝑡𝑟𝑎𝑙(𝑘=0)

∗ 𝑒
𝑖2𝜋𝑓𝑐𝑒𝑛𝑡𝑟𝑎𝑙(𝑘)𝑛

𝑁  

EQ.  144 

where Xk are normalized frequencies (the normalizing frequency is the sampling frequency chosen 

at 44KHz, similar to audio formats as .wav or .mp3),fcentral is the central frequency of each 

rectangular sub window of  Himplants(f) as one electrode can only have one voltage value and N is the 

number of electrodes.  

As time signals after sampling largely exceeded N, the time signal was buffered and cut into M 

frames of length N. The FT and the IFT computation were performed over these M frames before 

concatenating the results (similar to the Short Time Fourier Transform (STFT) principle [388, 389], 

[390] but different to the Sliding DFT principle where all the FT of the different windows computed 

are superimposed [391]). The corresponding results for a 1250 Hz sine wave stimulus is shown in 

Figure 113.  

Each time a sound wave is received, the STFT is performed only on the frequencies stimulated by 

the cochlear implants. These STFT coefficients directly gives the amplification coefficient for the 

electrodes stimulation. In such a way with this created algorithm, only one electrode is stimulated if 

the signal frequency is exactly the same as the one associated with the electrode position or several 
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electrodes may be stimulated if the frequency is outside a specific frequency associated with an 

electrodes. 

 

2. Created algorithm testing 
 

As the frequency of 1250Hz does not match with a frequency covered by one electrode, in the 

traveling wave speech coding strategy used for instance as a comparison, the signal power is 

distributed to the two closest frequencies covered by the electrodes, causing distortion in the 

reconstructed signal. Reversely in our new algorithm, the signal power is distributed over all the 

electrodes, resulting in less distortion. As electrodes coupling is significant in modern CIs, time 

interleaved electrode stimulation is required after such algorithmic calculus for stimulating only one 

electrode at a time. 

Transient simulations were completed and the reconstructed signal from the STFT model was 

significantly less distorted than the other one (Figure 113). This test signal stimulates only two 

electrodes (in the actual physical model as presented Figure 112) or all the electrodes (in the STFT 

model). 

However when the frequency of the test input signal was inside the frequency range 

corresponding to the electrodes position shown in Figure 112, both models gave approaching results 

(not shown in this document). In that case the most efficient model in terms of processing resources 

should be selected. 
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FIGURE 113.A: NORMALIZED VOLTAGE SENT TO THE ELECTRODES FOR A 1250HZ INPUT AUDITORY WAVE (USING THE STFT MODEL).B: 

NORMALIZED VOLTAGE SENT TO THE ELECTRODES FOR A 1250HZ INPUT AUDITORY WAVE (USING THE TRAVELING WAVE STRATEGY).C: 

COMPARISON BETWEEN THE TWO TEMPORAL SIGNALS RELATED TO THESE TWO TYPES OF STIMULATION 

 

   Testing this hypothesis may provide new insights of the hearing process. Tests require CIs users 

with a reprogrammed implant following speech perception assessments such as Word Identification 

by Picture Identification, Grammatical Analysis of Elicited Language-Presentence Level, Phonetic task 

evaluation, Sentence in Noise test, etc. In fact if the STFT model would give better results in person 

using cochlear implants than the algorithms that might be implemented at present, this could mean 

that the brain could adapt to these new nerve stimulation. 

The brain adaptation to these stimulus may probably not happen in people who became deaf as 

the signal received in the central nervous system is very different in the case of a sound frequency 

not covered by the electrode array. Taking the previous example (1250 Hz sound wave stimulation), 

the nerve fibers stimulated by an healthy cochlea will be localized in a similar area (traveling wave 

theory) whereas the nerve fibers stimulated by cochlear implants using the STFT algorithm will be 

stimulated in very heterogeneous locations of the cochlea resulting in differently nerve fibers 

locations that the brain could not interpret (illustrated in Figure 114). If this algorithm would be 

implemented and utilized in very young implanted patients (maximal brain plasticity and with 

extended learning process), this could give new insights in the brain nerve adaptation and possibly 

provide better results than the algorithms used commercially. In all the case animal models may 

allow efficient testing without affecting or confusing the learning capacities of young implanted 

patients. 
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FIGURE 114: OUR NEW ALGORITHM FOR ELECTRODE SELECTION MAY LEAD TO INCORRECT BRAIN INTERPRETATION. TESTING THIS 

HYPOTHESIS MAY BRING NEW INSIGHTS ON BRAIN SIGNALS COGNITION AND INTERPRETATION 

 

F. Reconstructed sound perceived by a damaged cochlea with 
cochlear implant 

 

1. Hearing loss filters 
 

The five main factors causing hearing loss are heredity, infections like meningitis, acute or 

chronic exposure to loud sounds, age and ototoxic antibiotics or chemotherapeutic drugs [392]. 

Outer ear and middle ear pathologies are nowadays easier to correct as they involve mainly the 

eardrum and the ear ossicles.  

Cochlea dysfunction is associated with inner ear malfunction and is very common in elderly 

people. Furthermore, the majority of hearing loss implicates loss of Hair Cells (HC). Hearing aids such 

as amplifiers can help when the HC loss is moderate whereas cochlear implants are used to correct 

severe or absence of HC.  

We created filters based on hearing reduction or hearing loss associated with different causes, 

permitting to model the hearing capacity in these situations. The filters were designed using the Hair 
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Cell Loss (HCL) plot over the auditory frequency range. In this document only two cases were 

developed from mice experiments attributed to [393]: hearing loss filters due to loud noise damage 

with Octave band noise (centered at 4KHz, 120 dB SPL for 5 hours) and the hearing loss associated 

with Octave band noise (centered at 4KHz, 105 dB SPL for 6 hours). These two hearing loss are both 

associated with loud noise damage as it is a quick way to damage HC experimentally and both 

centered at 4Khz as the cochlea amplification is maximal in this frequency area. The HCL plots and 

the reconstructed signal after filtering are shown Figure 115. 

Cochlear implants bypass the non-functional HC by directly stimulating the auditory nerves. It is 

commonly reported [394] that the surgery needed to enclose the electrode array inside the scala 

tympani of the cochlea damages the hearing mechanism hence in this case the HC stimulation can 

be supposed negligible. 

 

 

FIGURE 115.A: HAIR CELL LOSS CORRESPONDING TO THE TWO CASES OF LOUD DAMAGES PRESENTED IN SECTION V.F.1. B: DIFFERENCES 

BETWEEN THE TIME SIGNAL RECORDED BY THE MICROPHONE AND THE TIME SIGNAL AFTER FILTERING WITH ABOVE BLUE FILTER 

 

Following the previous hypothesis, after the patient implantation, the hearing capacity resides 

almost exclusively on the electric stimulation of the electrodes array (except for low frequencies as 

the electrodes array is less long than the entire cochlea, resulting in preservation of the apex 

structure). Consequently we supposed that for a patient using a cochlear implant, only the nerve 

fibers near the electrodes will be stimulated.  
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2. Electrodes based Fourier transform 
 

Systems using band pass filters applied to the signal recorded by the microphone have been 

developed to estimate sound perception in CIs patients. Simple FT algorithms have also been 

implemented in that intent.  

The function Himplants presented in Section I.E.1 selects the frequencies stimulated by the 

electrodes array. We chose to only compute the FT on the frequencies which can be stimulated by 

the cochlear implants, applying the same algorithm presented in Section I.E.2. It should be 

emphasized that this methodology is different from simple FT computation over an important 

number of points and selection of several amplitudes peaks. 

The FT and the IFT involve same number of frequency samples and time samples, explaining the 

use of STFT computation as already indicated. 

 This theoretical model was not confirmed in practice as tests were difficult to perform and to the 

authors knowledge no precise model of hearing after implantation is now available. As previously 

stated in Section I.E.1, the main drawback of this model is the stimulation of all the electrodes for 

every sound.  

 

3. Created models 
 

Two models were created, one for hearing reduction and the other for severe or total hearing 

loss with cochlear implants use (presented Figure 116). The aim of these models was to evaluate the 

hearing restitution brought by CIs on a damaged ear. For real time application such as direct speech 

decoding, rendering this algorithm parallel may be necessary with the use of filter bank for instance. 

The power estimation of this algorithm was not performed since no implementation platform was 

fixed yet.  

Besides these models can be easily modified to estimate the hearing improvement associated 

with the use of hearing prosthesis utilized by mild hearing loss patients. 
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FIGURE 116: SYSTEM CREATION  TO MODEL THE SOUNDS PERCEIVED BY DEAF PEOPLE  IN THE  CASE OF LOUD SOUNDS 

DAMAGE (A) OR IN THE CASE  OF SEVERELY DEAF PEOPLE USING COCHLEAR IMPLANTS (B) 

 

It is worth notifying that it was really difficult to quantify mathematically the loss of hearing 

perception in the two models. A temporal correlation or a frequency signals superposition could be 

used to quantify the loss of hearing but the better evaluation remains the hearing difference 

between the original sound signal and the reconstructed one by a functional ear. 

As the results were difficult to describe, a specific experiment we performed is available in 1, 

comparing an historic speech sequence and a famous music track without an with CIs.   

 

G. Closure remarks 
 

Cochlear implanted patients with best auditory tests are able to follow a conversation in a noisy 

environment and understand a telephonic discussion. However they still suffer from drawbacks such 

as battery frequent reloading and approximate speech restitution. The work proposed in this 

chapter is aiming at possible enhanced audio signal reconstruction.  

We enriched the theoretical electrical model of the organ of Corti stimulated by electrodes. The 

results obtained are slightly different from experiment outputs found in literature possibly indicating 

modeling inaccuracies but are still encouraging for first electrical model attempt. We further 

                                                             
1 Example of audio signal reconstruction are available at http://youtu.be/x5o4jeTZt5M (“cochlear implants 
estimation film”) 

http://youtu.be/x5o4jeTZt5M
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developed two algorithms for speech perception improvement; one permitting an adapted 

electrode stimulation amplitude depending on electrode position, the other more speculative and 

related to the use of a modified STFT applied only to the frequencies covered by the electrodes 

array. A testing environment was developed to theoretically validate our hypothesis. 

It should be notified that to verify audio signal integrity, we preferred hearing the audio signal 

reconstructed rather than mathematical comparative functions such as least squares method 2 
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 Study of cochlear implants electrodes stimulation based on the physics of the ear for audio 

signal integrity improvement, U. Cerasani, W. Tatinian, CENTRIC, October 2013 ,Venice 

(ITALY) 

 Modeling of the organ of Corti Stimulated by Cochlear Implant Electrodes and electrodes 

potential definition based on their part inside the cochlea, U. Cerasani, W. Tatinian, 

International Journal On Advances in Life Sciences, v 6 n 1&2 2014. 

 

  

                                                             
2 Example of audio signal reconstruction are available at http://youtu.be/x5o4jeTZt5M (“cochlear implants 
estimation film”) 

http://youtu.be/x5o4jeTZt5M
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CIs are one of the most successful prosthesis of modern medicine, restoring with very high rate 

the hearing function. 

The heterogeneous modeling of the CIs and cochlea interface is proposed in this document. This 

modeling ensures accurate understanding of the mechanisms involved in hearing and pointed out 

the limitations of cochlear implants at present, possibly suggesting new solutions to test for CIs 

system improvement. 

As CIs manufacturing companies are currently developing less noticeable devices, the electrical 

system architecture redesign may be obligatory. Using the transmitter design of Y. Vaiarello [24] for 

these new types of CIs as a basis to this work, we then proposed a complete behavioral model of 

this entire transmitter. The propagation channel between the transmitter and the receiver was also 

modeled using a simplified Cole and Cole [49, 362] impedance model which is an electric description 

of biological tissue that has been proven to match physical experiments. Concatenating those 

models allowed us to estimate the power received in the receiver and the noise introduced. 

However these values have still to be confirmed by physical measurements. 

The transmitter behavioral model was concatenated with the propagation channel model and 

the simulation results defined the specifications of the receiver. As the receiver will be implanted 

inside the patient skull, robust design and low power consumption are required.  The noise power 

introduced by the propagation channel was found a little lower than the power received, adding 

more constraints on the receiver LNA design. In order to correctly design the LNA, a mathematical 

optimization algorithm developed by P. Ndungidi [395] was utilized before its SPICE implementation 

and refinement.  

Three common receiver architectures were compared in terms of power consumption and Noise 

Figure, using a SPICE simulator. The receiver architecture composed of a LNA and a power detector 

was found the most suitable with the receiver specifications and its behavioral modeling was 

realized. 

The entire behavioral modeling of the transceiver was hence performed permitting extended 

simulations.  The most sensitive parameters extraction was investigated selecting a set of critical 

parameters and defining a minimum, a typical and a maximum value of them. However this testing 

was not covering all the possible cases combinations. From this study it resulted that the 

preamplifier gain, the comparator offset, the antenna efficiency and the LNA output dynamics were 

fundamental in the transceiver output signal integrity. 
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The receiver layout was not done, neither was the receiver physical realization and testing. This 

could further bring new issues about the receiver specifications and disagreements on the entire 

transceiver architecture imposed by the transmitter part. 

As the transmitter performed PWM modulation before sending the signal to the RF band, the 

study of phase noise is of capital importance for the overall signal integrity as well as the ISM band 

specifications respect. However the study of phase noise was statistical and could hardly be 

incorporated into transient simulation models. Jitter extraction from phase noise models was 

performed and applied to the oscillators of the transmitter. The PWM signal accuracy was greatly 

reduced based on the simulation results obtained, suggesting that control systems such as PLL may 

be necessary for efficient signal encoding and transmission.  

After reviewing the mathematical basis of stochastic process and systems, the review of the 

current understanding and description of noise types was proposed. Two major theories describing 

phase noise were discussed, Leeson model and Hajimiri and Lee model, both interpreting phase 

noise as white and 1/f noise entering inside a physical system. We then proposed a new model 

combining both the Lesson model and the Hajimiri and Lee model of phase noise. The model was 

tested on two different oscillator topologies and gave satisfying accuracy. This model permitted a 

system creation which ensures consequent simulation time gain. We are currently extending this 

system to avoid running SPICE simulation for system parameters extraction, rendering our model of 

great convenience. 

Conversion of phase noise into timing jitter theories were discussed before computing the timing 

jitter introduced by the oscillators of the transmitter by two diverse methodologies. The timing jitter 

introduced by the ramp creating oscillator significantly restricted the PWM accuracy, suggesting 

oscillator design optimization. 

Besides hearing is a very complex mechanism and understanding it deeply may bring new 

solutions for cochlear implant system. The external ear, middle ear and the propagation 

biomechanics occurring inside the cochlea were quickly reviewed. We also decided to implement 

the traveling wave theory, which is the most accepted theory describing the pressure propagation 

inside the cochlea. This implementation led to BM vibrations, which excites the organ of Corti. We 

proposed a mechanical model of the organ of Corti, close to literature available one, and completed 

this model with the HCs study. Two theoretical sound wave of 300 Hz and 600 Hz respectively and 

with an amplitude of 50 dB were used for model verification. 
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Then HC depolarization occurs and we modeled the complex mechanism of synaptic transmission 

which probably result in SGCs depolarization and APs generation. We gather into a single 

mathematical model some of the current understanding of ribbon synapse, synaptic transmission 

and synaptic receptors, to explain the AP generation following a HC membrane depolarization. 

Following SGCs excitation, different part of the brain, still partly understood, are stimulated 

resulting in the hearing perception. 

We proposed a new analog model of AP propagation on nerve cells. The two main literature 

available models of AP propagation along a nerve fiber were reviewed and theirs advantages and 

theirs limitations were pointed out. This new model was mimicking very closely to the physics of the 

events occurring during AP propagation. We were able to obtain a model with similar velocity, 

wavelength and frequency like an experimental AP. This model may be of importance for brain 

study of more complex mechanisms. 

The consecutive firing of nerve cells following a maintained stimulus, called spikes train, can be 

recorded using multiple microelectrodes, requiring spikes sorting. We first mathematically defined 

the single spikes train generation which indicated single nerve cell activity, based on the AP 

propagation function that we defined. The ISD statistics were also reviewed. ISD is often modeled by 

various authors with an exponential distribution, and has been shown to be inversely proportional 

to the nerve fiber stimulus. 

To monitor the activity of the auditory nerve in vivo, the total or partial auditor nerve activity is 

generally measured by electroencephalograhy. The study of the AP creation and propagation 

involving many nerve fibers was then performed, with the mathematical description of the CAP 

propagation (biphasic recording only). 

The understanding of the physiological description of the cochlea is of great value in order to 

analyze cochlear implants and to propose possible improvements. 

We performed the study of the interface between the electrodes and the organ of Corti and we 

proposed an electrical analog of this interface. After running SPICE simulations, we obtained the 

theoretical minimum voltage and power needed for a single electrode to stimulate a packet of nerve 

fibers and we also studied the influence of neighboring electrodes. 

Besides the threshold of hearing describes the hearing sensitivity toward the sound frequencies. 

This function is not constant, meaning that amplification of certain frequency bands is achieved by 

the ear, mainly associated with the cochlea physical properties. We hence created a topographic 

map of the SGCs as a function of their place inside the cochlea and weighted by the threshold of 
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hearing function. This map may be of importance in order to restitute the hearing sensitivity toward 

certain frequency in cochlear implants. In fact we defined scalar coefficients associated with this 

map that we multiplied to the standard voltage sent to the electrodes and needed to stimulate the 

nerve fibers. 

We further developed a new algorithm for electrodes selection, based on STFT, that may 

increase the hearing sensation when the frequency of the sound received is not directly covered or 

close to frequencies covered by the electrodes. The implementation of this algorithm in cochlear 

implanted people was not done and the benefits are however highly hypothetical. As described in 

details in Section I.E, when a sound wave frequency is not inside the frequency set associated with 

the electrodes, our new algorithm may lead to stimulation of spaced electrodes. The brain 

interpretation of such signals may not be optimal and may even result in patient discomfort. 

Finally we also proposed a system attempting to define sound perception in deaf people (using 

filters to model hearing loss) or in deaf people with CIs (using DFT applied only on the frequencies 

activated by the electrodes). The mathematical results obtained were less concluding than the 

analysis by an healthy hear of the sound reconstructed after signal processing. 

This work was mainly driven by the application and we aimed to propose new hypothesis in area 

partly characterized in literature and also to expose solutions for better signal transmission or sound 

perception in people using cochlear systems. 

The various theoretical models presented were mainly based on data extracted from physical 

experiments. The inclusion of these diverse models into two single parametric models may be 

envisaged and is currently under study: one system gathering all the models associated with a 

healthy ear and a second system bringing together all the CIs modeling works and their effect on 

auditory nerve fibers. The comparison of these two global system results may permit to quantify 

theoretically the gap in sound perception between a healthy ear and a CI sound production. 

Furthermore, if verified by physical experiments, it may also allow extending tests of this device 

which could be of significance as they are surgically implanted inside the patient’s skull and hence 

hard to remove or upgrade. 

CIs are among the best prostheses available to date and many improvements may appear in 

future, especially associated with a nerve cells profound understanding and very accurate 

stimulation. Besides research on stem cells and regenerative medicine is currently exploding, and 

that may bring new hope for deaf people. Furthermore, manipulations of the human genome, which 
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started around 50 years ago with the discovery of DNA structure and various genetic techniques 

may also be exploited in few decades to cure genetic illnesses leading to deafness.  

For now, genetic, biochemical and microelectronic technologies just begin to be combined and 

may one day permit very efficient and convenient hearing restitution. 
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Considering the Bohr atomic model [150, 396], and the free electron model [151, 397], in metals, 

if sufficient energy is applied, the valence electrons of the metals become conducing electrons and 

move freely through the metals. The free electrons may hence be oversimplified as  gas [152, 398]. 

In the Bohr atomic model, positive atom nucleus are surrounded by negatively charged electrons. 

If the electrons are averaged in space and time and no electric field is applied, the center of gravity 

of the atom will coincide exactly with the center of gravity of the electrons sum. If an electrical field 

is applied, the centers of charge will be changed: the electrons sum will be pulled in the direction of 

the positive pole of the field and the nucleus to the negative one [399], leading to a dipole moment. 

The charges of opposite sign hence appear on each surface of the capacitor plate, due to this dipole 

moment. The charges brought by polarization due to the electric filed, define the displacement 

current. Applying an electric field to the extremities of two parallel plates of a capacitor without any 

dielectric between them, result in increased charge surface density in these plates (cf Figure 117). 

The charge accumulation per unit area present in both extremities of the capacitor due to an electric 

field is called the displacement current, as indicated in eq.  145: 

𝐷 =    𝜎   =   𝜖0 𝐸                               EQ.  145 

where σ is the charge density on the capacitor plate, ℰ0 is the vaccum permittivity and E is the 

applied electric field (equation extracted from[400]). 

If a dielectric material is introduced between the plates, the free charges on the plates are now 

neutralized by the polarization charges contained in the dielectric, as shown in Figure 117.  

Because of dielectric insertion, eq.  145 then becomes eq.  146: 

𝜎  =      𝜖0 𝐸  +  𝜎𝑝   =  𝜖 𝐸 EQ.  146 

where σp represents the polarization charge density (also called P)and ℰ the electronic permittivity 

(equation extracted from [400]). Hence the dielectric polarization is decreasing the net force of the 

electric field proportionally as expressed in eq.  147 

𝑃 =  𝜖0𝜒𝑒 𝐸 EQ.  147 

where χe is called the electronic polarizability or electronic susceptibility [401].  

Equating eq.  146 and eq.  147 leads to the relation between the electric permittivity and the 

electric susceptibility as described in eq.  148 

𝜖 = 1 + 𝜒𝑒  EQ.  148 
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Because of the causality property of polarization, as well as the electric field, these variables are 

complex and hence the electric permittivity is complex (eq.  149): 

𝜖 =  𝜖′  −   𝑗 𝜖′′ EQ.  149 

 

 

FIGURE 117: DISPLACEMENT CURRENT AND POLARIZATION OF THE MIDDLE[399]. THE POLARIZATION IS LOWERING THE EFFECT OF THE 

ELECTRIC FIELD 

The electric field is generated by any charge particle or magnetic field and describes the electric 

attractive force applied at any point in space experienced by a secondary particle[402]. By applying 

the Maxwell Faraday equation, the Maxwell Ampere law and supposing that the electric filed E 

propagates into the single direction x, the following relation can be extracted (eq.  150)[403]: 

𝜕2𝐸𝑥
𝜕𝑥2

  =   𝜇0𝜖0
𝜕2𝐸𝑥
𝜕𝑡2

 

EQ.  150 

where μ0 is the vaccum permeability. This equation is referred as a De D’ Alembert equation and it 

can be verified that the function 𝑓(−�⃗� . 𝑟 +  𝜔𝑡) verifies this equation  ([403, 404]). This leads to an 

electric field function expressed as a mathematical wave function as indicated by eq.  151 

𝐸𝑥 =  𝑓(− �⃗� . 𝑟 +  𝜔𝑡) EQ.  151 

where f represents the electric field propagating in the x direction (as the D’ Alembert equation Is 

linear, electric fields verify the superposition principles) and r is the direction of the wave 

propagation. ω is the wave pulsation and k is the wave number depending on the refractive index of 
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the material (eq.  153). Therefore a wave corresponds to periodic time based space translation 

function. Discarding the vectors and the phase delay, the electric field may be expressed as (eq.  

152): 

𝐸𝑥(𝑟, 𝑡) =  𝐸0𝑒
𝑗(( 𝜔𝑡−𝑘𝑟)) EQ.  152 

The relation between the wave number, the refractory index and the electric permittivity are 

recalled in eq.  153 (from [405] and[406]) 

𝑛 =  
𝑐 𝑘 

𝜔
  𝑎𝑛𝑑 𝑘 =   √𝜇 𝜖

𝜔

𝑐
     ≈     √ 𝜖

𝜔

𝑐
  (𝑓𝑜𝑟 𝑚𝑜𝑠𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)       

EQ.  153 

where n is the refractory index, μ the complex permeability, ℰ the complex permittivity and c the 

light velocity in free space. 

Once the electric filed mathematically characterized, the Ampere Maxwell law is applied in eq.  

152, to obtain a general expression for the complex permittivity (eq.  154) 

𝐽 =   𝐽𝑐  +   𝐽𝐷 =  𝜎 𝐸𝑥 +  𝜖 
𝜕 𝐸𝑥
𝜕𝑡

 

⇒  𝐽 =  𝜎 𝐸𝑥 +  𝑗 𝜔 𝜖 𝐸𝑥 

EQ.  154 

where j is the total current density, Jc is the conduction current density, JD is the displacement 

current density, σ Is the electrical conductivity and ℰ the electrical permittivity as defined above. 

Replacing complex permittivity by its expression in eq. 20,  gives eq.  155[407]: 

𝐽 =  𝜎 𝐸𝑥 +  𝑗 𝜔 𝜖
′𝐸𝑥 +   𝜔 𝜖

′′𝐸𝑥 EQ.  155 

In several documents the conductivity σ is named abusively and rather corresponds to the 

effective conductivity 𝜎𝑒𝑓𝑓 = 𝜎 +   𝜔 𝜖′′[407]. 

The complex permittivity expression may be further refined in [405] or in [275] where it is shown 

to be dependent on the pulsation ω (dispersion phenomenon). As depicted in Figure 118, in low 

frequency region, the permittivity is high because of the dielectric polarization (as the electrons 

have sufficient time to rotate around the atomic nucleus and reach their optimal dipole moment). At 

moderate frequency, molecules does not have the time to polarize and the energy is too low to be 

absorbed by the electrons. This energy causes molecules vibrations (leading to bond breakage and 

hence heat generation) as electrons and atoms are constantly affected by the electric field (but not 

reaching their optimal dipole moment) before returning to their initial position. Finally at very high 
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frequencies, energy is directly absorbed by the atomic structure exciting electron energy levels 

(ionizing radiations)[408]. 

 

 

FIGURE 118: GENERAL SHAPE OF THE PERMITTIVITY RESPONSE OVER FREQUENCIES AND ASSOCIATION WITH CHANGE IN THE PHYSICAL 

MODEL OF THE ATOMIC STRUCTURE DUE TO ENERGY ABSORPTION[409] 
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1. General properties of stochastic processes:  

 

Precise definition of random variables and extended theory review of stochastic processes can be 

found in [410, 411]. Mathematical description of probability and measures can be found in [412-418]. A 

stochastic process is a collection of random variable {X(t1), X(t2), X(t3), X(t4), X(t5),… } often described as 

the random transient evolution of the process. The study of the evolution of a stochastic process is 

performed by repeating the same experiment with the same initial conditions. This allows to study the 

process statistically. A stochastic process is fully characterized by the absolute probability of the process 

giving the probability of its trajectory, as described in eq.  98 extracted from [3]: 

𝑃(𝑥1, 𝑡1, 𝑥2, 𝑡2, … , 𝑥𝑛, 𝑡𝑛)  =  𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛 

𝑃(𝑥1, 𝑡1, 𝑥2, 𝑡2, … , 𝑥𝑛, 𝑡𝑛)  =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑓𝑜𝑢𝑛𝑑 {𝑥(𝑡1) = 𝐼1, 𝑥(𝑡2) = 𝐼2, … , 𝑥(𝑡𝑛)

= 𝐼𝑛} 

𝑃(𝑥1, 𝑡1, 𝑥2, 𝑡2, … , 𝑥𝑛, 𝑡𝑛)  =  
𝑁𝑏 𝑜𝑓 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡 𝐼1, 𝐼2, … , 𝐼𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

= 𝑓𝑋(𝑡1)𝑋(𝑡2),…,𝑋(𝑡𝑛)(𝑥1, 𝑥2, … , 𝑥𝑛) 

EQ.  156 

where xi are the random variables associated with time ti and P is the probability of the event. f is the 

distribution function(also called density function) associated with the random process X(t) 

A stochastic process that can be thought of as 'memoryless' is called a Markov process. In fact if 

predictions for the future of the process can be made, based solely on its present state, the process is 

Markovian. Markov process hence satisfies the following property (eq.  157 obtained in [4]): 

∀ 𝑡1, 𝑡2, … , 𝑡𝑛−1 < 𝑡𝑛      𝑃(𝑥1, 𝑡1; 𝑥2, 𝑡2; 𝑥𝑛−1, 𝑡𝑛−1|𝑥𝑛, 𝑡𝑛) = 𝑃( 𝑥𝑛−1, 𝑡𝑛−1 | 𝑥𝑛, 𝑡𝑛 )         EQ.  157 

where 𝑃(𝑥𝑛−1, 𝑡𝑛−1 | 𝑥𝑛, 𝑡𝑛) is the probability that 𝑥(𝑡𝑛)  =  𝑥𝑛 knowing that 𝑥(𝑡(𝑛−1))  =  𝑥𝑛−1 

Sometimes only one realization of the process is available. In this case the stochastic process study is 

made possible through the assumption of stationarity. A process is called stationary when this process 

does not change when temporal translations are applied i.e. (eq.  158 extracted from [410]): 

∀ 𝜏 ∈ 𝑅, ∀ 𝑛 ≥ 1      𝑃(𝑥1, 𝑡1, 𝑥2, 𝑡2, … , 𝑥𝑛, 𝑡𝑛)  =  𝑃(𝑥1, 𝑡1 +  𝜏, 𝑥2, 𝑡2 +  𝜏, … , 𝑥𝑛, 𝑡𝑛 +  𝜏) EQ.  158 

A weaker form of stationarity is the weak sense stationarity (WSS) that only requires that the first and 

the second order moments do not vary with respect to the time [5]. A process is WSS if it has the 

following restrictions: 

∀ 𝑡 , 𝜏 ∈  𝐼𝑅 , 𝐸[𝑋(𝑡)] = 𝐸[𝑋(𝑡 + 𝜏)] 
EQ.  159 
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𝑎𝑛𝑑 ∀ 𝑡1, 𝑡2  ∈  𝐼𝑅 , 𝐸[𝑋(𝑡1)𝑋(𝑡2)] = 𝐸[𝑋(𝑡1 − 𝑡2), 𝑋(0)] 

where E is the expectancy operator. 

A process X is said cyclostationary if it is invariant under time shift for some period T [419] 

∀ 𝑡1…𝑡𝑛  ∈  𝐼𝑅, ∃ 𝑇 ∈  𝐼𝑅  𝑠𝑢𝑐ℎ 𝑎𝑠 {𝑋(𝑡1),… , 𝑋(𝑡𝑛)} = {𝑋(𝑡1 + 𝑇),… , 𝑋(𝑡𝑛 + 𝑇)} EQ.  160 

The following properties hence results from a cyclostationary process: 

∀ 𝑡1, 𝑡2  ∈  𝐼𝑅, ∃ 𝑇 ∈  𝐼𝑅 𝑠𝑢𝑐ℎ 𝑎𝑠 𝐸[𝑋(𝑡1)] = 𝐸[𝑋(𝑡1 + 𝑇)] 

𝑎𝑛𝑑 𝐸[𝑋(𝑡1)𝑋(𝑡2)] = 𝐸[𝑋(𝑡1 + 𝑇)𝑋(𝑡2 + 𝑇)] 

EQ.  161 

The study of a stochastic process is made by statistical properties. Of particular importance are the 

correlation functions, as explained in [7]. The n-th order correlation function of the stochastic process is 

given by eq.  162 

𝐶(𝑡1, 𝑡2, … , 𝑡𝑛) ≡    〈𝑋(𝑡1)𝑋(𝑡2)…𝑋(𝑡𝑛)〉      

=   ∫ 𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛𝑥1𝑥2…𝑥𝑛 𝑃(𝑥1,   𝑡1,   𝑥2,   𝑡2 ,    …,    𝑥𝑛,   𝑡𝑛)
𝑅𝑛

 

EQ.  162 

The main correlation functions used are the mean (1th order moment) and the autocorrelation 

function that can be described with correlation functions as shown in eq.  186 [416, 420]: 

𝐶(𝑡1) =          〈𝑋(𝑡1)〉        =       ∫ 𝑑𝑥1𝑥1 𝑃(𝑥1,   𝑡1)
{𝑋1(𝑡)}

 

𝑅𝑋𝑋(𝑡1, 𝑡2) =  〈(𝑋(𝑡1) − 〈𝑋(𝑡1)〉)(𝑋(𝑡2) − 〈𝑋(𝑡2)〉〉 = 𝐶(𝑡1, 𝑡2) − 𝐶(𝑡1)𝐶(𝑡2) 

𝑅𝑋𝑋(𝑡1, 𝑡2) =  ∫ ∫ 𝑥1𝑥2𝑃(𝑥1, 𝑡1, 𝑥2, 𝑡2)𝑑𝑥1𝑑𝑥2

{𝑋2(𝑡)}{𝑋1(𝑡)}

 

𝑅𝑋𝑋(𝑡1, 𝑡2) =  ∫ ∫ 𝑥1𝑥2𝑓𝑋(𝑡1)𝑋(𝑡2)(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
{𝑋2(𝑡)}{𝑋1(𝑡)}

 

where {X(t1)} and {X(t2)} are the definition domains associated with X(t1) and X(t2) 

respectively. 

When the time average of a random process (horizontal mean) is equal to the vertical 

mean of process, the process is ergodic (interested reader can refer to [421] for 

complementary information) and is defined as: 

< 𝑋(𝑡) > =  lim
𝑇 →∞

1

𝑇
∫ 𝑥(𝑡)𝑑𝑡
𝑇

−𝑇

 

EQ.  163 

In the following development, the random process are described using lower case 

letter, to avoid misunderstanding between Fourier Transforms (in upper case letters) 

The Fourier Transform of a signal x(t) is defined as: 

EQ.  186 
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𝐹𝑇[𝑥(𝑡)] = 𝜒(𝑓) =  ∫ 𝑥(𝑡)𝑒𝑗𝜔𝑡 𝑑𝑡

∞

− ∞

 

EQ.  164 

where ω is the varying pulsation. The inverse Fourier Transform of the χ(f) signal is 

defined as: 

𝐹𝑇−1[𝜒(𝑓)] = 𝑥(𝑡) =  ∫ 𝜒(𝑓)𝑒𝑗𝜔𝑡 𝑑𝑓

∞

− ∞

 

EQ.  165 

In some other definition a normalization factor (2π) may also be found. 

The energy and power definition of a deterministic signal or a random one will be 

reminded in this Section, introducing the theoretical basis of the Power Spectral Density 

(PSD) analysis. 

The total energy of a deterministic signal x(t) is defined by eq.  166[422]: 

𝐸𝑛 = ∫ 𝑥(𝑡)2𝑑𝑡
∞

−∞

 
EQ.  166 

There is energy conservation between the time domain and the frequency domain such 

as indicated in the Perceval’s theorem, which is recalled in eq.  167: 

𝐸𝑛 = ∫ 𝑥(𝑡)2𝑑𝑡 = 
∞

−∞

∫ |𝜒(2𝜋𝑓)|2𝑑𝑓 
∞

−∞

 
EQ.  167 

where |χ(f)|2 is the Energy Density Spectrum (ESD) of the deterministic signal x(t) and is 

expressed in Joules/Hz. 

For communication signals, the energy is effectively infinite (the signals are of 

unlimited duration), so power quantities are usually used. The average power of a 

deterministic signal is defined by eq.  168[422]: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 =  𝑃𝑇̅̅ ̅ =  lim
𝑇 →∞

1

𝑇
∫ 𝑥(𝑡)2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

= lim
𝑇 →∞

1

𝑇
∫ 𝑥𝑇(𝑡)

2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

 
EQ.  168 

where xT(t) is the x(t) truncated signal in the [-T/2;T/2] interval  

Using the Parseval’s theorem, the Power Spectral Density (PSD) of a deterministic 

signal could be extracted [422]:  

𝑃𝑇̅̅ ̅ =  lim
𝑇 →∞

1

𝑇
∫ 𝑥𝑇(𝑡)

2𝑑𝑡

𝑇
2⁄

−𝑇 2⁄

=  lim
𝑇 →∞

1

𝑇
∫ |𝜒𝑇(2𝜋𝑓)|

2𝑑𝑓 
∞

−∞

=  ∫ lim
𝑇 →∞

|𝜒𝑇(2𝜋𝑓)|
2

𝑇
𝑑𝑓 

∞

−∞

 

EQ.  169 

where lim
𝑇 →∞

|𝜒𝑇(2𝜋𝑓)|
2

2𝑇
 also noted Sxx(f) is the PSD of the xT(t) signal. Sxx(f) is expressed in 

Watts/Hz and 𝜒𝑇(2𝜋𝑓) is the Fourier Transform of the truncated signal  xT(t) and is 
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defined as ∫ 𝑥𝑇(2𝜋𝑓)𝑒
𝑗2𝜋𝑓𝑡 𝑑𝑡

𝑇
2⁄

− 𝑇 2⁄
 

The above definitions apply to random signals by replacing the signal by the vertical mean 

of it. In consequence for random signals, the energy and the PSD are defined by eq.  

170[422]: 

𝐸𝑛 = ∫ 𝐸[(𝑥(𝑡))2]𝑑𝑡
∞

−∞

 

𝑆𝑥𝑥(𝑓) =  lim
𝑇 →∞

𝐸[|𝜒𝑇(2𝜋𝑓)|
2]

𝑇
 

EQ.  170 

The computation of the PSD for stochastic processes is simplified in the particular case of 

WSS and much more complex when the following assumption does not hold true. 

The PSD of WSS processes can be simplified using the Wiener Khintchine theorem (the 

proof is developed in [423, 424]) which states that the PSD of a WSS is equal to the 

Fourier Transform of its autocorrelation function as expressed by eq.  171: 

𝑆𝑥𝑥(𝑓) =   𝐹𝑇[𝑅𝑥𝑥(𝑡)] = ∫ 𝑅𝑥𝑥(𝑡) 𝑒
−𝑗𝜔𝑡 𝑑𝑡

∞

− ∞

 

EQ.  171 

And 

𝑅𝑥𝑥(𝑡) =  ∫ 𝑆𝑥𝑥(𝑓)𝑒
𝑗𝜔𝑡 𝑑𝑓

∞

− ∞

 

EQ.  172 

In consequence, the relation between variance and PSD which is always true for 

WSS processes is reminded in eq.  173 (taking τ = 0 in eq.  171): 

𝑉𝑎𝑟[𝑥(𝑡)] =  𝑅𝑥𝑥(0) = ∫ 𝑆𝑥𝑥(𝑓)𝑒
𝑗𝜔𝑡  𝑑𝑓

∞

− ∞

 
EQ.  173 

The PSD of non WSS is much more complex as the autocorrelation of the process 

depends on two time variables and not on their difference. Following the general formula 

for PSD computation reminded in eq.  170, the Fourier Transform of the vertical 

expectancy of the random process should be computed first, but does not always 

converge[425]. Although several authors proposed an extension of the Wiener Khintchine 

theorem for non WSS processes using the 2 dimensional Fourier Transform [23]or the 

Short Time Fourier Transform (SHFT) [426], the physical interpretation of the resulting 

PSD is often complicated. In[427], the extension of Wiener Khintchine theorem for non 

WSS processes conserving an unique PSD dependency into the single frequency variable f 

is presented. In order to obtain such result, the mean autocorrelation function over a 2T 

interval is computed before evaluating its Fourier Transform as expressed in eq.  174 
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𝑅𝑥𝑥̅̅ ̅̅ ̅(𝜏) =  lim
𝑇 → ∞

1

2𝑇
∫ 𝑅𝑦𝑦(𝑡, 𝑡 −  𝜏)𝑑𝑡
𝑇

− 𝑇

 
EQ.  174 

The following discussion summarizes the main findings extracted from[428]. Non 

stationary process often has a time-dependent spectrum. There are at least two different 

possibilities to construct the time-dependent spectrum. Primarily it is to impose a linear 

relation between the PSD of the random process and its covariance function. Secondly, it 

may be possible to create a time-dependent spectrum directly from the process itself. 

Time-dependent spectrum estimations based on these theories are presented below. 

o The Evolutionary Spectra aimed to describe the temporal evolution of 

spectral contributions, frequency by frequency. Supposing that At(λ) are 

slowly time varying function, the evolutionary spectra is defined byeq.  175: 

𝑥(𝑡) =  ∫ 𝐴𝑡(𝑓)𝑑𝑍(
∞

− ∞

𝑓) 
EQ.  175 

with 

𝐸[|𝑑𝑍(𝑓)|2] = 𝑑𝜇(𝑓) EQ.  176 

and 

𝑆𝑥𝑥(𝑡, 𝑓) =  |𝐴𝑡(𝑓)|
2
𝑑𝜇(𝑓)

𝑑𝑓
 

EQ.  177 

where Sxx(t,f) is the PSD of the x(t) process around t, Z(f) is an orthogonal 

process and At(f) is an admissible modulation function. The measure dµ is 

absolutely continuous with respect to f. Complementary information can be 

found in [428]. 

o According to[428], the Wigner-Ville distribution is defined as: 

𝑊𝑥(𝑡, 𝜔) =  ∫ 𝑥(𝑡 + 
𝜏

2

∞

− ∞

)𝑥(𝑡 − 
𝜏

2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)𝑒−𝑖𝜔𝜏𝑑𝜏 

EQ.  178 

Calling 

𝑌𝑡(𝜏) =  𝑥(𝑡 + 
𝜏

2
) 𝑥(𝑡 − 

𝜏

2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) 

EQ.  179 

and supposing that the absolute value of the autocorrelation of Yt(τ) is finite, 

the expected value of the Wigner-Ville distribution can be defined (and is 

called the Wigner-Ville spectrum), such as described byeq.  180: 

𝐸[𝑊𝑥(𝑡, 𝜔)] =  𝑆𝑊𝑉(𝑡, 𝜔) EQ.  180 

The variance and its two-dimensional spectral distribution function along the 

principal diagonal is developed ineq.  181[428]: 
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𝑉𝑎𝑟[𝑥(𝑡)] =  
1

2𝜋
∫ 𝑆𝑊𝑉(𝑡, 𝜔)𝑑𝜔

𝜋

2

− 
𝜋

2

 
EQ.  181 

o The evolutive spectrum of Tjostheim and Melard is based on the 

decomposition of a random process into a stationary gaussian process(x(t))  

entering into a LTV system, such as indicated by eq.  182[428]: 

𝑦(𝑡, 𝜏) = ℎ(𝑡, 𝜏) ∗ 𝑥(𝑡) EQ.  182 

where * denotes the convolution product. The evolutive spectrum of 

Tjostheim and Melard is defined by the general definition of the PSD already 

presented in eq.  170 and rewritten below for reader’s convenience: 

𝑆𝑇𝑀(𝜔, 𝑡) =  lim
𝑡 → ∞

1

𝑇
 𝐸[|𝑇𝐹(𝑦(𝑡, 𝜏)|2] 

EQ.  183 

However if h is supposed LTI rather than LTV, and if x(t) is a stationary 

gaussian process with variance σWN the evolutive Tjostheim and Melard 

spectrum simplifies into[428]: 

𝑆𝑇𝑀(𝑡, 𝜔) =  
𝜎𝑊𝑁
2

2𝜋
 . | ∑ ℎ(𝑡, 𝑠)𝑒𝑖𝜔𝑠

𝑡

𝑠= − ∞

| 
EQ.  184 

The variance of y(t) is obtained by integrating the Tjostheim and Melard 

spectrum over a 2π interval, as described by eq.  185[428]: 

𝑉𝑎𝑟[𝑦(𝑡)] =  
1

2𝜋
∫ 𝑆𝑇𝑀(𝑡, 𝜔)𝑑𝜔
𝜋

− 𝜋

 
EQ.  185 

 
 

 

2. Mathematical operations associated with systems 
 

As one goal of phase noise modeling was to express phase noise as input noises entering inside a 

system and resulting in phase noise, the mathematical theory of systems is quickly reviewed in this 

document. The stochastic processes generally introduced in Section I.H.1, will be the ‘input’ of a system 

for phase noise study. The only systems considered are determinist and causal as they are supposed to 

model physical systems. A system can be defined by a function h : CIR -> CIR that maps an input {x(t), - ∞< 

t <∞ } into an output {y(t), - ∞< t <∞ } [8]. 

Important properties that will lead to simplified relations are the system linearity and the time-

invariance. A system is said to be linear if[429]: 

∀ 𝑥1, 𝑥2 𝑖𝑛 𝐶
𝐼𝑅 𝑎𝑛𝑑 ∀ 𝑎1, 𝑎2 𝑖𝑛 𝐶

2 ℎ(𝑎𝑥1 + 𝑏𝑥2) = 𝑎ℎ(𝑥1) + 𝑏ℎ(𝑥2) EQ.  187 

A system is time-invariant if[429]: 
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ℎ({𝑥(𝑡 + 𝜏) , − ∞ < 𝑡 <  ∞ }) =   { ℎ(𝑥, 𝑡 + 𝜏),− ∞ < 𝑡 <  ∞ } EQ.  188 

It is shown in [9] that if h is a linear system and x € CIR is an input function, its output is given by the 

eq.  189 reminded from [10]: 

𝑦(𝑥, 𝑡) =  ∫ 𝑥(𝑢)ℎ(𝑡, 𝑢)𝑑𝑢                    
∞

− ∞

 
EQ.  189  

However these notations are far from the usual covariance definition. It can be shown in [430], [431], 

[432] than the above definition can be rewritten in a more conventional way, closer to the usual one 

dimension covariance definition: 

𝑦(𝑥, 𝑡) =  ∫ 𝑥(𝑢)ℎ(𝑡, 𝑢 − 𝑡)𝑑𝑢                    
∞

− ∞

 
EQ.  190 

If h is a Linear Time Invariant system (LTI) and the input x(t)=exp(j2πft), the output of the system 

is[429]: 

𝐻(𝑓) =  ∫ ℎ(𝑢 − 𝑡)exp (2𝑗𝜋𝑓 (𝑢 − 𝑡))𝑑𝑢
∞

− ∞

 
EQ.  191 

where H(f) is the Fourier Transform of the impulse response h(t) also called system transfer function. 

Useful Fourier or Laplace transform of LTI systems can be easily found on literature. Lotfi and Zahed 

extended the Fourier/Laplace transform theory for Linear Time Variant systems (LTV) study. For a LTV 

system the system transfer function H(f,t) is given by the following equation[429]: 

𝐻(𝑓, 𝑡) =  ∫ ℎ(𝑡, 𝑢 − 𝑡)exp (2𝑗𝜋𝑓 (𝑢 − 𝑡))𝑑𝑢
∞

− ∞

 
EQ.  192 

For an input x(t)=exp(j2πft) feeding a LTV system, the output is then obtained by eq.  193[10], 

defining the inverse Fourier Transform operation [10, 425]: 

ℎ(𝑥, 𝑡) =  ∫ 𝐻(𝑓, 𝑡)𝑋(𝑓) exp(−2𝑗𝜋𝑓𝑡)𝑑𝑓
∞

− ∞

 
EQ.  193 

where X(f) is the Fourier Transform of the input function x(t) 

Although some authors questioned the utility of these definitions [429], the system transfer function 

H(f,t) is only valid around t.  

The study of LTV system is further simplified if the system is Linear Periodically Time Varying system 

(LPTV) with an impulse response which satisfies[429]:  

∀ 𝑡, 𝑢 € 𝐼𝑅2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 > 0 ℎ(𝑡, 𝑢) = ℎ(𝑡 + 𝑇, 𝑢 + 𝑇) 
EQ.  194 
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The impulse response of a LPTV system is hence periodic and can be decomposed using the Fourier 

series. It can be shown in [11] that the LPTV system function is also periodic in t, as described in eq.  195 : 

𝐻(𝑓, 𝑡) =  ∫ ℎ(𝑡, 𝑡 − 𝜏)exp (−2𝑗𝜋𝑓𝜏)𝑑𝜏
∞

− ∞

 
EQ.  195 

This system transfer function can be hence decomposed using the Fourier series [12], as defined by 

equation eq.  196 [429]: 

𝐻(𝑓, 𝑡) =  ∑ 𝐻𝑛( 𝑓 + 𝑛𝑓𝑐 )exp (𝑗2𝜋𝑛𝑓𝑐𝑡)

∞

𝑛= − ∞

 
EQ.  196 

where  

𝐻𝑛(𝑓) =  ∫ ℎ𝑛(𝜏) exp(−𝑗2𝜋𝑓𝜏)𝑑𝜏                               
∞

− ∞

 

The output of the system to a LPTV system can be found in [13] and is reminded in eq.  197 

𝑦(𝑥, 𝑡) =  ∫ ∑ 𝐻𝑛(𝑓 + 𝑛𝑓𝑐) 𝑒𝑥𝑝(𝑗2𝜋𝑓𝑐𝑡)𝑋(𝑓) 𝑒𝑥𝑝(𝑗2𝜋𝑓𝑡) 𝑑𝑓

∞

𝑛= − ∞

∞

− ∞

 

ℎ(𝑥, 𝑡) =  𝑇𝐹−1 { ∑ 𝐻𝑛(𝑓)𝑋(𝑓 + 𝑛𝑓𝑐)

∞

𝑛= − ∞

} 

EQ.  197 

Assuming that the above integrals are well defined for all t in some rigorous sense, the mean and the 

autocorrelation of the output signal y(x,t) are defined by the eq.  198. 

𝑚𝑦(𝑡) =  ∫ 𝑚𝑥(𝑢)ℎ(𝑡, 𝑢)𝑑𝑢
∞

− ∞

 

𝑅𝑦𝑦(𝑡1, 𝑡2) =  ∫ ∫ 𝑅𝑥𝑥(𝑟, 𝑠)ℎ(𝑡1, 𝑟)ℎ(𝑡2, 𝑠)𝑑𝑟𝑑𝑠
∞

− ∞

∞

− ∞ 

 

EQ.  198 

where mx is the esperance of the x(t) process and Rxx its autocorrelation function. For further 

development of these equations, interested readers should refer to [432], [431] for additional 

information. 

The statistic properties of the system output and well as its PSD are greatly simplified on the following 

special cases and are the basis of the current noise analysis. 

 If the input X is a WSS process and the system is a stable LTI system (the condition of stability can 

be found in [11]), the cross correlation of the input X and the output Y are given by eq.  199: 

𝑅𝑌𝑋(𝜏) = 𝑅𝑋(𝜏) ∗ ℎ(𝜏) 

𝑅𝑋𝑌(𝜏) = 𝑅𝑋(𝜏) ∗ ℎ(−𝜏) 

EQ.  199 
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where * is the convolution operator. The PSD of the output Y is hence obtained by eq.  200 and is of 

great importance in system study: 

𝑆𝑌𝑌(𝑓) =  | 𝐻(𝑓)|
2𝑆𝑋𝑋(𝑓) 

EQ.  200 

 Another special case that is commonly found in literature and extracted from [13] is when a 

cyclostationary process is the input of a stable LPTV system. Assuming that the fundamental 

frequency of the cyclostationary process is equal to the fundamental frequency of the LPTV 

system, it can be shown [433] that the output of the system is also cyclostationary with the same 

fundamental frequency. The autocorrelation function and the output PSD can be found in [433].  

 Other special cases include the LTI system with a cyclostationary process in input or the opposite 

case a WSS process feeding a LPTV system. The autocorrelation function and the output PSD in 

these cases are detailed in [410]. 

 More general cases are however more difficult to handle. The following development is based on 

the author’s personal computations. 

o If h(t, τ) is a Linear Time Varying (LTV) system and the input process x(t) is WSS: 

𝑅𝑦𝑦(𝛼, 𝑡) = 𝐸[𝑦(𝑡), 𝑦(𝑡 + 𝛼)] 

𝑅𝑦𝑦(𝛼, 𝑡) = 𝐸[ ∫ ℎ∗(𝜏1, 𝑡)
∞

− ∞

𝑥∗(𝑡 − 𝜏1)𝑑𝜏1 . ∫ ℎ(𝜏2,   𝑡 +  𝛼)𝑥(𝑡 +  𝛼 − 𝜏2)𝑑𝜏2]
∞

− ∞

 

𝑅𝑦𝑦(𝛼, 𝑡) = ∫ ∫ 𝐸[ℎ∗(𝜏1, 𝑡)ℎ(𝜏2, 𝑡 +  𝛼)]𝑅𝑥𝑥(𝛼 − 𝜏1 − 𝜏2)𝑑𝜏1𝑑𝜏2

∞

− ∞

∞

− ∞ 

 

EQ.  201 

If h(t,τ) is LTV, its Fourier Transform has two variables. The understanding of the PSD 

computed is difficult implying both STFT (only valid around t) and the 2 dimensions 

Fourier Transform of the system transfer function. The Wiener Khintchine theorem can 

be applied as the process is WSS, greatly simplifying the PSD computation. 

𝑆𝑦𝑦(𝑓, 𝑡) =  ∫ 𝑅𝑦𝑦(𝜏, 𝑡)𝑒
−𝑗2𝜋𝑓𝜏

∞

− ∞

𝑑𝜏 

𝑆𝑦𝑦(𝑓, 𝑡)  =  ∫ ∫ ∫ 𝐸[ℎ∗(𝜏1,
∞

− ∞

∞

− ∞ 

∞

− ∞

𝑡)ℎ(𝜏2, 𝑡 +  𝜏)]𝑅𝑥𝑥(𝜏 − 𝜏1 − 𝜏2)𝑑𝜏1𝑑𝜏2 𝑒
−𝑗2𝜋𝑓𝜏 𝑑𝜏  

EQ.  202 

Naming the following expressions: 

𝐻∗(𝐹, 𝑡) =  ∫ ℎ∗(𝜏1, 𝑡)
∞

− ∞

𝑒−𝑗2𝜋𝐹𝜏1𝑑𝜏1 

𝑎𝑛𝑑 𝐻(𝐹, 𝑓) =  ∫ ∫ ℎ(𝜏2, 𝛼)𝑒−𝑗2𝜋𝐹𝜏2𝑒−𝑗2𝜋𝑓𝛼𝑑𝜏2
∞

− ∞

∞

− ∞ 

𝑑𝛼 

EQ.  203 
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→ 𝑆𝑦𝑦(𝑓, 𝑡) =   ∫ 𝑆𝑥𝑥

∞

− ∞

(𝐹)𝑒𝑗2𝜋𝑓𝑡𝐻∗(𝐹, 𝑡) 𝐻(𝐹, 𝑓) 𝑑𝐹 

  This result is very difficult to interpret and is only valid close to t. 

o The general case is to consider h(t,τ) has a Linear Time Variant (LTV) process and x(t) is a 

non WSS process. As the input process is not WSS, the Wiener Khintchine theorem 

cannot be applied. However a generalization of the Wiener Khintchine theorem for 

nonstationary process already discussed above, can be used to greatly ease the calculus. 

Other development to compute the PSD of the overall process such as proposed in 

Annex B.1, may be utilized also but render the result interpretation more complex as 

many independent variables are involved. 

Noting the mean autocorrelation function of the non WSS x(t) process around t as: 

𝑅𝑦𝑦̅̅ ̅̅ ̅(𝜏) =  lim
𝑇 → ∞

1

2𝑇
∫ 𝑅𝑦𝑦(𝑡, 𝑡 −  𝜏)𝑑𝑡
𝑇

− 𝑇

 
EQ.  204 

Taking the mean of the autocorrelation function permits to express the autocorrelation 

only depending on a single variable, hence the definition for the PSD still holds true. 

Ryy(t,τ) is the autocorrelation of the x(t) process defined in eq.  197 (however the 

simplification of the autocorrelation into one single variable cannot be made for non 

WSS). Using both eq.  201and eq.  204, the mean autocorrelation function can be 

defined such as: 

𝑅𝑦𝑦̅̅ ̅̅ ̅(𝜏) =  lim
𝑇 → ∞

1

2𝑇
∫ 𝐸[ ∫ ℎ∗(𝜏1, 𝑡)

∞

− ∞

𝑥∗(𝑡
𝑇

− 𝑇

− 𝜏1)𝑑𝜏1 . ∫ ℎ(𝜏2,   𝑡 +  𝜏)𝑥(𝑡 +  𝜏 − 𝜏2)𝑑𝜏2] 𝑑𝑡
∞

− ∞

 

EQ.  205 

The PSD of this process can be defined by eq.  206, according to the Wiener Khintchine 

theorem extended to non WSS processes: 

𝑆𝑦𝑦(𝑓) =  ∫ 𝑅𝑦𝑦̅̅ ̅̅ ̅(𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏

∞

− ∞

 
EQ.  206 
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The noise description is still an vast area of research in physics, not restricted to electronic. 

Physical description of the different types of noise is of value to understand its origins to permit 

more efficient correction.  

In common description of phase noise[434], input noises such as thermal noise, shot noise are 

responsible for phase perturbations in an oscillator. 

 

3. White noise general introduction 
 

White noise has the same energy over all the frequencies (constant PSD) [435]. White noise is a 

Gaussian process defined with a null mean and with a covariance𝐶(𝑡1, 𝑡2) = 𝛤𝛿(𝑡2 − 𝑡1), where δ is 

the delta function and Γ is its associated energy. The covariance is hence non null when t1 is very 

close to t2 meaning that the white noise f(t1) is uncorrelated to f(t2) except when t1≈t2[435]. 

Thermal noise is associated with carrier agitations which increase with temperature and is 

described mathematically as white noise. 

We used the Matlab® function randn to generate a white Gaussian noise.  

 

4. Higher order noises 
 

a) Introduction to the Fokker Plank equation 

 

The theory presented in this section is mostly derived from [435]. This theory is of importance to 

define the physical processes associated with higher order noises than white noise. 

To study diffusive Markovian process, the probability of transition P(x0|x,t) is defined as the 

probability of a particle to be at a position x at a given t, knowing that its initial position was x0.The 

three properties given by eq.  207defines completely a diffusive process [435]. 

〈∆𝑥〉𝑥0 = ∫ 𝑑𝑥 (𝑥 − 𝑥0)𝑃(𝑥0|𝑥, 𝑡) =
𝑡→0

𝑅

 𝑎(𝑥0)𝑡 +  𝜃(𝑡
𝛼) , 𝛼 > 1 

〈(∆𝑥)2〉𝑥0 = ∫ 𝑑𝑥 (𝑥 − 𝑥0)
2𝑃(𝑥0|𝑥, 𝑡) =

𝑡→0

𝑅

𝑏(𝑥0)𝑡 +  𝜃(𝑡
𝛼) , 𝛼 > 1 

〈(∆𝑥)𝑘〉𝑥0 = ∫ 𝑑𝑥 (𝑥 − 𝑥0)
𝑘𝑃(𝑥0|𝑥, 𝑡) =

𝑡→0

𝑅

 𝜃(𝑡𝛼) , 𝛼 > 1     ,          𝑘 > 2 

EQ.  
207 
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where a(x) is the derive function and b(x) is the diffusion function of the process 

The properties presented in eq.  207leads to the Fokker-Plank equation (eq.  208): 

𝜕

𝜕𝑡
𝑃(𝑥0|𝑥, 𝑡) =  − 

𝜕

𝜕𝑥
(𝑎(𝑥)𝑃(𝑥0|𝑥, 𝑡)) +

1

2

𝜕2

𝜕𝑥2
(𝑏(𝑥)𝑃(𝑥0|𝑥, 𝑡)) 

EQ.  208 

The solution of this equation can be found in [435] and will give the P(x0|x,t) function.  

 

b) Wiener process 

 

A special case of the diffusion equation is the Wiener process taking a = 0 and b = 2D =2
𝐾𝑏𝑇

𝑚𝛾
  

(Einstein relation [434]) where m is the mass of the particle, γ is the friction coefficient Kb is the 

Boltzmann constant and T the absolute temperature. The Wiener process is used to describe the 

diffusion process called Brownian motion (or random walk of a particle) and also the Brownian 

noise. 

 The main relations useful for noise description are available in [435] and are recalled in eq.  209 

𝑃(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒
−𝑥2

4𝐷𝑡            𝑡 > 0 

〈𝑥(𝑡)〉 = 0 

〈𝑥(𝑡1)𝑥(𝑡2)〉 = 2𝐷𝑡1 

𝑆𝑥𝑥(𝜔) = ∫ 𝐶(𝑡)
𝑅

𝑒𝑖𝜔𝑡𝑑𝑡 =
𝐷

−2𝜋2𝑤2
 

EQ.  209 

where C(t) is the autocorrelation function. A Wiener process has hence a PSD proportional to 
1

𝜔2
 

 

c) I.5 Ornstein-Uhlenbeck process 

 

This process represents a second well known particular case of the diffusion equation, with a(v)=-

γv and b(v)=2γ2D which describes the particle movement due to thermal agitation in a fluid. As for 

the Wiener process, the mean, covariance and DSP are significant and presented in eq.  210 

(extracted from [435]) 
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𝑃(𝑣, 𝑡) =  √
𝑚

2𝜋𝐾𝑏𝑇
𝑒
−𝑚𝑣2

2𝐾𝑏𝑇  

EQ.  210 

This process is stationary, Gaussian and with null mean, in consequence: 

〈𝑣(𝑡)〉 = 0 

〈𝑣(𝑡0)𝑣(𝑡)〉 =  
𝐾𝑏𝑇

𝑚
𝑒−𝛾(𝑡−𝑡0) 

EQ.  211 

Because the process is stationary, the simplification of the PSD formula can be applied and the PSD 

of this process is given by eq.  212 

𝑆𝑣𝑣(𝑤)      =       
𝐾𝑏𝑇

𝑚

1

(2𝜋𝑖𝜔 −  𝛾)2
 

EQ.  212 

Hence the magnitude of the PSD of this process is proportional to 
1

𝑤2
 

It must be noted that the PSD considered is the PSD of the velocity of the particle and not the PSD of 

its position. Integrating the velocity to obtain the position will give 𝑆𝑥𝑥(𝑓) proportional to  
1

𝜔4
 

 

5. 1/f noise general overview 
 

The other type of electronic noise which mainly influences phase noise is the Flicker noise (also 

called pink noise or 1/f noise) related to the shape of its PSD. However the integration of white 

noise leads to the Wiener process also called Brownian motion (which PSD is in 1/f2). 

1/f noise has been intensively studied in an attempt to find a physical explanation with a 

mathematical description but there is not yet an unified theory [98, 100, 436]. Mathematical models 

have been proposed such as recurrence models, non linear differential equation stochastic models, 

reversible Markov chain models,… (summarized in [100]). The early description of the 1/f noise in 

vacuum tubes was made by Johnson and described mathematically by Schottky and presented in eq.  

213 

Suppose that {tk} with k> 0 is a Poisson process. Shot noise process is obtained by attaching to 

each tk, an exponential relaxation law and summing on k [100]: 

𝑆𝑛(𝑡, 𝑡𝑘) =  ∑𝑁0𝑒
−𝜆(𝑡−𝑡𝑘)

𝑘

 

EQ.  213 
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where N0 is the initial number of electrons and λ the relaxation constant of the exponential law. The 

Fourier Transform (FT) of shot noise is given by eq.  214[100] 

𝐹(𝜔) = ∫ ∑𝑁(𝑡, 𝑡𝑘)𝑒
−𝑖𝜔𝑡𝑑𝑡 =  

𝑁0
𝜆 + 𝑖𝜔

𝑘

∞

−∞

∑𝑒𝑖𝜔𝑡𝑘

𝑘

 

EQ.  214 

Applying the general equation for the PSD computation, the PSD of the shot noise is given by the 

Lorentzian function shown in eq.  215[100] 

𝑆𝑛𝑛(𝜔) =  
𝑁0
2

𝜆2 + 𝜔2
 

EQ.  215 

where n is the average pulse rate of electrons before being captured by the trapping sites. However 

this mathematical description felt to describe the 1/ω behavior. Superposing such process with a 

distribution of the relaxation rate uniformly distributed can conduce to the 1/ω if some assumptions 

are made [100]: 

𝑆𝑛𝑛(𝑤) =  
1

𝜆2 − 𝜆1
∫

𝑁0
2

𝜆2 + 𝜔2

𝜆2

𝜆1

 𝑑𝜆 =  
𝑁0
2𝑛

𝜔 ( 𝜆2 − 𝜆1 )
 [arctan

𝜆1
𝜔
− arctan

𝜆2
𝜔
 ] 

𝑆𝑛𝑛(𝜔) =  

{
 
 

 
 
𝑁0
2𝑛                                0 <  𝜔 ≪ 𝜆1 ≪ 𝜆2

𝑁0
2 𝑛 𝜋

2 𝜔 ( 𝜆2 − 𝜆1 )
𝜆1 ≪  𝜔 ≪ 𝜆2

𝑁0
2 𝑛

𝜔2
𝜆1 ≪ 𝜆2 ≪  𝜔      

 

EQ.  216 

Making these assumptions permit to obtain the 1/ω behavior, more details are available in[100]. 

In electronics field the two most significant descriptions are attributed to McWhorther (which 

associated 1/f noise with random surface trapping and detrapping of the mobile carriers of the 

channel [30, 437]) and to Hooges (which attributed Flicker noise to mobility fluctuations of the 

charge carriers[438]). 

Generating pink noise was made by using a white noise generator as input of a 
1

√𝑓
 transfer 

function which has a 
1

𝑓
 PSD not achievable with common filters. For instance, this transfer function 

can be created using the fracpole suite [439]. However this algorithmic description of 1/f noise, has 

no physical meaning.  

 

 



282 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

References Annex 
 



283 
 

 

 

  



284 
 

 
[1]  B. S. Wilson and M. F. Dorman, "Cochlear implants: current designs and future possibilities", J Rehabil 
Res Dev, Vol. 45-5, pp. 695-730, (2008) 
[2]  J. Rouger and et. al., "Evidence that cochlear-implanted deaf patients are better multisensory 
integrators", Vol. 104-17, pp. 7295-7300, (2007) 
[3]  O. Bø Wie, E.-S. Falkenberg, O. Tvete and B. Tomblin, "Children with a cochlear implant: 
Characteristics and determinants of speech recognition, speech-recognition growth rate, and speech 
production: Niños con Implante Coclear: Características y determinantes del reconocimiento, de la tasa de 
crecimiento del reconocimiento y de la producción de lenguaje", International Journal of Audiology, Vol. 46-5, 
pp. 232-243, (2007) 
[4]  M. Burger, "Biosciences in the 21st century, Lecture 2: Innovations and Challenges", LeHigh 
University, Online: http://www.lehigh.edu/~inbios21/PDF/Fall2008/Burger_08292008.pdf 
[5]  "Cochlear Implant 1", common.wikipedia.org,  
[6]  A. N. P. Fan-Gang Zeng, Richard R. Fay, "Cochlear Implants: Auditory Prostheses and Electric Hearing", 
ed. Springer. (21 avr. 2004 - 437 pages) 
[7]  M. Carlberg and e. al., "BioInitiative 2012: A  Rationale for Biologically Exposure Standards for Low 
Electromagnetic Radiation", (December 31, 2012) 
[8]  H. P. Schwan and K. R. Foster, "RF-field interactions with biological systems: electrical properties and 
biophysical mechanisms", Proceedings of the IEEE, Vol. 68-1, pp. 104-113, (1980) 
[9]  L. Challis, "Mechanisms for interaction between RF fields and biological tissue", Bioelectromagnetics, 
Vol. 26-S7, pp. S98-S106, (2005) 
[10]  U. Møller, D. G. Cooke, K. Tanaka and P. U. Jepsen, "Terahertz reflection spectroscopy of Debye 
relaxation in polar liquids", Advances in Optics and Photonics, Vol. 26, pp. A113-A125 (2009) 
[11]  J. K. Niparko, "Cochlear Implants: Principles and Practices (chapter 7)". (2009) 
[12]  G. Clark, "Cochlear Implants: Fundamentals and Applications (ch. 4-8)", ed. Springer-Verlag. (2003) 
[13]  M. Bond, S. Mealing, R. Anderson, J. Elston, G. Weiner, R. Taylor, M. Hoyle, Z. Liu, A. Price and K. 
Stein, "The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in 
children and adults: a systematic review and economic model", Health technology assessment, Vol. 13-44, pp. 
1-330, (2009) 
[14]  A. Moctezuma and J. Tu, "An overview of cochlear implant systems", USA: University of Illinois, 
Urbana-Champaign, (2011), Online: 
https://wiki.engr.illinois.edu/download/attachments/48137228/ECE+415+Cochlear+Implant+Final.pdf 
[15]  P. Senn, "Making deaf people hear (better?) European project ", University Department of 
Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern, Switzerland, (2013), Online: 
http://www.euronanoforum2013.eu/wp-content/uploads/2013/07/P-Senn-ENF2013.pdf 
[16]  J. Spitzer, "Evaluation of decisions regarding candidates for cochlear implants", Archives of oto-rhino-
laryngology, Vol. 245-2, pp. 92-97, (1988) 
[17]  J. Nancy and M. Roizen, "ETIOLOGY OF HEARING LOSS IN CHILDREN, Nongenetic Causes , HEARING 
LOSS IN CHILDREN", Department of Pediatrics, University of Chicago Pritzker School of Medicine,  
[18]  P. M. Carter and e. al., "Cochlear implant system with soft turn on electrodes", Patent US5755747 A, 
USA, (2008),  
[19]  R. Nowak, "Light opens up a world of sound for the deaf", Newscientist.com, (21 November 2008),  
[20]  A. Wheeler, S. Archbold, S. Gregory and A. Skipp, "Cochlear implants: The young people's 
perspective", Journal of Deaf Studies and Deaf Education, Vol. 12-3, pp. 303-316, (2007) 
[21]  R. J. Briggs, H. C. Eder, P. M. Seligman, R. S. Cowan, K. L. Plant, J. Dalton, D. K. Money and J. F. Patrick, 
"Initial clinical experience with a totally implantable cochlear implant research device", Otology & 
Neurotology, Vol. 29-2, pp. 114-119, (2008) 
[22]  D. A. Chen, D. D. Backous, M. A. Arriaga, R. Garvin, D. Kobylek, T. Littman, S. Walgren and D. Lura, 
"Phase 1 clinical trial results of the Envoy System: a totally implantable middle ear device for sensorineural 
hearing loss", Otolaryngology--Head and Neck Surgery, Vol. 131-6, pp. 904-916, (2004) 
[23]  Y. Vaiarello, Y. Leduc, N. Veau and G. Jacquemod, "Ultra Low Power Transmitter for Cochlear Implant 
Application", IEEE Circuits and Systems Society Forum on Emerging and Selected Topics (CAS-FEST), (2011) 

http://www.lehigh.edu/~inbios21/PDF/Fall2008/Burger_08292008.pdf
http://www.euronanoforum2013.eu/wp-content/uploads/2013/07/P-Senn-ENF2013.pdf


285 
 

[24]  Y. Vaiarello, "Étude et conception d’un microphone sans fil très faible comsommation pour implants 
cochléaires", LEAT, Sophia Antipolis, (2012),  
[25]  R. Roby, "Roby Institute - Advanced treatment for a healthy living", (2011), Online: 
http://onlineallergycenter.com/dr_roby.php 
[26]  J. K. Kevin D Jones, Victor Konrad, "Some "Real World" Problems in the Analog and Mixed Signal 
Domains ", Malta, (2008),  
[27]  K. Kundert, "Informative note: Simulation of Analog and Mixed Signal Circuits", (1998),  
[28]  X. Zhou and T. Tang, "Accurate Timing Simulation of Mixed-Signal Circuits with a Dynamic Delay 
Model", Proceedings of the Int. Workshop on Computer-Aided Design, Test, and Evaluation for Dependability, 
pp. 309-311, (1996) 
[29]  S. B. Bibyk, "Mixed-Signal IC Design Kit Training Manual", Ohio, (2003),  
[30]  N. Padmaraju, "Analog and Mixed Signal Modeling Approaches", MindTree Limited, Online: 
http://www.design-reuse.com/articles/22773/analog-mixed-signal-modeling.html 
[31]  K. Kundert, "Introduction to The Design of Mixed-Signal Systems on Chip, MS-SOC", (1998),  
[32]  J. L. T. Elisabeth M. S. J. Van Gennip, "Assessment and Evaluation of Information Technologies in 
Medicine", ed. IOS Press. (1995) 
[33]  C. M. Macal, "Model Verififcation and Validation", Threat Anticipation: Social Science Methods and 
Models, (2005) 
[34]  R. G. Sargent, "Verification and Validation of simulation models", Simulation Conference (WSC), pp. 
166 - 183 (2010) 
[35]  J. A. Sokolowski and C. M. Banks, "Principles of Modeling and Simulation: A Multidisciplinary 
Approach", ed. John Wiley & Sons. (2009) 
[36]  Fang Lin Luo, Hong Ye and M. H. Rashid, "Digital Power Electronics and Applications", ed. Elsevier, 
USA. (2005) 
[37]  A. Bell, "A Resonance Approach to Cochlear Mechanics", PloS one, Vol. 7-11, pp. e47918, (2012) 
[38]  E. S. Ferre-Pikal and e. al., " Draft revision of IEEE std 1139- 1988 standard definitions of physical 
quantities for fundamental frequency and time metrology – random instabilities", IEEE international, 
Frequency control symposium, pp. 338 - 357, (1997) 
[39]  L. A. Werner and L. Gray, "Behavioral studies of hearing development",in Development of the 
auditory system, ed. Springer. 12-79, (1998) 
[40]  K. Kundert, "Accurate and rapid measurement of IP2 and IP3", The designer guide to SPICE and 
Spectre, Version 2b, (2002) 
[41]  N. Pernick, "Ear Anatomy", (2013), Online: 
http://www.pathologyoutlines.com/topic/earnormalanatomy.html 
[42]  R. Arvind, Nuttapong, Srirattana and Joy Laskar, "Modeling and design techniques for RF power 
amplifier", ed. John Wiley & Sons. (2008) 
[43]  R. A. Bergman, A. K. Afifi and P. M. Heidger, "Plate 16.312 Organ of Corti", 
http://www.anatomyatlases.org/MicroscopicAnatomy/Section16/Plate16312.shtml, Online: Anatomy Atlas 
[44]  M. M. Radmanesh, "Advanced RF and microwave circuit design: the ultimate guide to superior 
design". I. 978-1-4259-7243-1, (2009) 
[45]  J. Prikkel, "Modelling cochlear mechanics", Order, Vol. 501, pp. 2395, (2009) 
[46]  G. Vasilescu, "Electronic Noise and Interfering Signals: Principles and Applications", ed. Springer. 
(1999) 
[47]  M. Hubin, "Propriétés des milieux biologiques", (22 Mars 2013),  
[48]  S. M. Sze, & Ng, K. K., "Physics of semiconductor devices", (2006), Online: 
maktabkhooneh.org/files/library/eng/electrical/5.pdf 
[49]  P. B. Filho, "Tissue Characterisation using an Impedance Spectrosocpy probe", (2002),  
[50]  S. M. Sze and K. K. Ng, "Physics of semiconductor devices in Chapter V: Investigation of ac 
conductivity and electronic modulus of LBS, LPBS and LVBS samples", (2006),  
[51]  H. L. Friedman, "Theory of the dielectric constant of solutions ", The Journal of Chemical Physics, Vol. 
2, (1976) 
[52]  D. Andreuccetti, "Dielectric Properties of Biologic Tissues in the frequency range of 10 Hz - 100 GHz", 
IFAC,  

http://onlineallergycenter.com/dr_roby.php
http://www.design-reuse.com/articles/22773/analog-mixed-signal-modeling.html
http://www.pathologyoutlines.com/topic/earnormalanatomy.html
http://www.anatomyatlases.org/MicroscopicAnatomy/Section16/Plate16312.shtml


286 
 

[53]  S.Grimnes, Ø.G.Martinsen, J.Malmivuo, R.Plonsey, D. S. Holder and J. G. Webster, "Measurement of 
Electrical Bio-Impedance (the EBI) and its diagnostical applications", Thomas Johann Seebecki 
elektroonikainstituut, Online: 
http://www.elin.ttu.ee/mesel/Study/Courses/Biomedel/Content/BioImped/BioImped.htm 
[54]  S. Ueno, "Biological effects of magnetic and electromagnetic fields", ed. Springer. (1996) 
[55]  R. Sarpeshkar, T. Delbruck and C. A. Mead, "White noise in MOS transistors and resistors", Circuits 
and Devices Magazine, IEEE, Vol. 9-6, pp. 23-29, (1993) 
[56]  J. Johnson and H. Nyquist, "Thermal Agitation of Electricity in Conductors - details of the experiment", 
Phys. Rev., Vol. 32-97, (1928) 
[57]  Y. Vaiarello, W. Tatinian, Y. Leduc, N. Veau and G. Jacquemod, "Ultra low power radio microphone for 
cochlear implant application", IEEE Journal of Emerging and Selected Topics in Circuits And Systems Vol. 1-4, 
pp. 622-630, (2011) 
[58]  O. Diop, "Study and optimisation of the quality factor of small antennas", (2013), Online: LEAT, Sophia 
Antipolis 
[59]  O. Diop and e. al., "Planar antennas on Integrated Passive Device technology for biomedical 
applications", IEEE International Workshop on Antenna Technology (iWAT), pp. 217 - 220, (2012) 
[60]  R. A. York, "Noise and radiating systems", Microwave Electronics Laboratory of the University of 
California in Santa Barbara, (2014), Online: http://my.ece.ucsb.edu/York/Bobsclass/201C/Handouts/chap4.pdf 
[61]  T. H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", ed. Cambridge. (2003) 
[62]  "Low Noise Amplifier (LNA)", University of California San Diego, Computer Science and Engeneering, 
Online: http://www-cse.ucsd.edu/ 
[63]  W.-H. Cho and S. S. Hsu, "An ultra-low-power 24 GHz low-noise amplifier using 0.13 CMOS 
technology", Microwave and Wireless Components Letters, IEEE, Vol. 20-12, pp. 681-683, (2010) 
[64]  M.-T. Lai and H.-W. Tsao, "Ultra-Low-Power Cascaded CMOS LNA With Positive Feedback and Bias 
Optimization", (2013) 
[65]  J. Jeong, J. Kim, D. S. Ha and H.-s. Lee, "A reliable ultra low power merged LNA and Mixer design for 
medical implant communication services", Life Science Systems and Applications Workshop (LiSSA), 2011 
IEEE/NIH, pp. 51-54, (2011) 
[66]  P.-Y. Chang, S.-H. Su, S. S. Hsu, W.-H. Cho and J.-D. Jin, "An ultra-low-power transformer-feedback 60 
GHz low-noise amplifier in 90 nm CMOS", Microwave and Wireless Components Letters, IEEE, Vol. 22-4, pp. 
197-199, (2012) 
[67]  "Presentation on Fundamentals of Mixer Design", Agilent Technologies, (2001),  
[68]  A. Helmy and M. Ismail, "On Chip Inductors Design Flow", Substrate Noise Coupling in RFICs Analog 
Circuits And Signal Processing Series, pp. 63 - 86, (2008) 
[69]  P. Ndungidi, H. García-Vázquez, J. d. Pino, F. Dualibe and C. Valderrama, "RF specification driven by 
Multi-Objective Optimization Method", DCIS, (November, 2012) 
[70]  B. Vigraham and P. R. Kinget, "An ultra low power, compact UWB receiver with automatic threshold 
recovery in 65 nm CMOS", Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE, pp. 251-254, 
(2012) 
[71]  A. C. W. Wong, G. Kathiresan, C. K. T. Chan, O. Eljamaly, O. Omeni, D. McDonagh, A. J. Burdett and C. 
Toumazou, "A 1 V wireless transceiver for an ultra-low-power SoC for biotelemetry applications", IEEE 
JOURNAL OF SOLID-STATE CIRCUITS, Vol. 43-7, pp. 1511-1521, (2008) 
[72]  P. D. Bradley, "An ultra low power, high performance medical implant communication system (MICS) 
transceiver for implantable devices", Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE, pp. 
158-161, (2006) 
[73]  W. Wu, M. A. Sanduleanu, X. Li and J. R. Long, "17 GHz RF front-ends for low-power wireless sensor 
networks", IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol. 43-9, pp. 1909-1919, (2008) 
[74]  J. Jin and K. Fu, "An Ultra-low-power Integrated RF Receiver for Multi-standard Wireless 
Applications", IETE Journal of Research, Vol. 59-4, (2013) 
[75]  X. Huang, A. Ba, P. Harpe, G. Dolmans, H. de Groot and J. R. Long, "A 915 MHz, ultra-low power 2-
tone transceiver with enhanced interference resilience", Solid-State Circuits, IEEE Journal of, Vol. 47-12, pp. 
3197-3207, (2012) 

http://www.elin.ttu.ee/mesel/Study/Courses/Biomedel/Content/BioImped/BioImped.htm
http://my.ece.ucsb.edu/York/Bobsclass/201C/Handouts/chap4.pdf
http://www-cse.ucsd.edu/


287 
 

[76]  M. Lont, D. Milosevic, A. van Roermund and G. Dolmans, "Ultra-low power FSK wake-up receiver 
front-end for body area networks", Radio Frequency Integrated Circuits Symposium (RFIC), 2011 IEEE, pp. 1-4, 
(2011) 
[77]  L. Huang, M. Ashouei, R. F. Yazicioglu, J. Penders, R. J. Vullers, G. Dolmans, P. Merken, J. Huisken, H. 
de Groot and C. Van Hoof, "Ultra-Low Power Sensor Design for Wireless Body Area Networks-Challenges, 
Potential Solutions, and Applications", JDCTA, Vol. 3-3, pp. 136-148, (2009) 
[78]  H.-H. Hsieh, H.-S. Chen, P.-H. Hung and L.-H. Lu, "Experimental 5-GHz RF frontends for ultra-low-
voltage and ultra-low-power operations", Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 
Vol. 19-4, pp. 705-709, (2011) 
[79]  M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat and T. Parra, "A 5.4 mW/0.07 mm 2.4 GHz front-end 
receiver in 90 nm CMOS for IEEE 802.15. 4 WPAN standard", Solid-State Circuits, IEEE Journal of, Vol. 43-6, pp. 
1372-1383, (2008) 
[80]  X. Hua, W. Lei, S. Yin and D. F. Foster, "Design and optimization of a 2.4 GHz RF front-end with an on-
chip balun", Journal of Semiconductors, Vol. 32-9, pp. 095004, (2011) 
[81]  J.-F. Chang and Y.-S. Lin, "3.15 dB NF, 7.2 mW 3–9 GHz CMOS ultra-wideband receiver front-end", 
Electronics letters, Vol. 47-25, pp. 1401-1402, (2011) 
[82]  L. Thede, "Practical Analog and Digital filter design", (2004), Online: http://dsp-
book.narod.ru/PADFD.pdf 
[83]  S. Larribe, "Le filtrage analogique", CNAM Saclay, (2005), Online: 
http://sylvain.larribe.free.fr/CNAM/2004-2005/CNAM_2005_Filtrage.pdf 
[84]  C. G. Dunenberg, "Filter Approximation Theory: Butterworth, Chebyshev, and Elliptic Filters", Online: 
http://doctord.dyndns.org/courses/topics/Circuits/Filter_Approximation_Theory.pdf 
[85]  A. D. Poularikas, "The handbook of formulas and tables for signal processing, Analog Filter 
Approximations", ed. A. D. Poularikas. (1999) 
[86]  V. Meghdadi, "Première partie: le filtrage analogique, Chapitre 2: Approximations", ENSIL,  
[87]  E. Sanchez, "A Designer’s Guide To Filter Approximations", (Fall 2004),  
[88]  S. Icart, "Elec 4: Automatique", Polytech Nice Sophia Antipolis University, Online: 
http://users.polytech.unice.fr/~icart/ 
[89]  D. Earl, "Möbius transformations and the extended complex plane", (2007), Online: 
http://people.maths.ox.ac.uk/earl/G2-lecture4.pdf 
[90]  C. Mello, "IIR filter design example", Carnegie Mellon University, (2005), Online: 
https://www.ece.cmu.edu/~ee791/lectures/L22/IIRDesign.pdf 
[91]  K. K. Parhi, "Chapter 11: Scaling and Round-off Noise", University of Minnesota , Department of 
Electrical and Computer Engineering, Online: http://www.ece.umn.edu/users/parhi/SLIDES/chap11.pdf 
[92]  O. Hinton, "Chapter 5 Design of IIR Filters ", Newcasle University, (2001), Online: 
http://www.staff.ncl.ac.uk/oliver.hinton/eee305/Chapter5.pdf 
[93]  A. kolesnikov, "Efficient algorithms for vectorization and polygonal approximation ", Universityof 
joensuu computer science dissertations, (2005),  
[94]  D. B. Leeson, "A simple model of feedback oscillator noise spectrum", Proceedings IEEE, Vol. 54, pp. 
329–330, (1966) 
[95]  G. Sauvage, "Phase noise in oscillators: a mathematical nalysis of Leeson’ smodel", IEEE Transactions 
on instrumentation and measurments, Vol. IM-26-4, (1977) 
[96]  A. Hajimiri and T. Lee, "Oscillator Phase Noise: A Tutorial", IEEE J. Solid-State Circuits, -35, (2000) 
[97]  T. Lee and A. Hajimiri, "A general theory of phase noise in electrical oscillators", IEEE JOURNAL OF 
SOLID-STATE CIRCUITS, Vol. 33, pp. 179-194, (1998) 
[98]  M. S. Keshner, "1/f noise", Proceedings of the IEEE, Vol. 70-3, pp. 212-218, (1982) 
[99]  Y. Jia and J. Li, "Stochastic system with colored correlation between white noise and colored noise", 
Physica A: Statistical Mechanics and its Applications, Vol. 252-3, pp. 417-427, (1998) 
[100]  E. Milotti, "1/f noise: a pedagogical review", Corwnell University Library, classical physics, (2002) 
[101]  J. A. Gubner, "Probability and Random Processes for Electrical and Computer Engineers, Chap. 10: 
Introduction to Random Processes", ed. Cambridge University Press. (2006) 
[102]  E. Rubiola, FEMTOST Institute, (2006), Online: http://www.ieee-uffc.org/frequency-
control/learning/pdf/Rubiola.pdf 

http://dsp-book.narod.ru/PADFD.pdf
http://dsp-book.narod.ru/PADFD.pdf
http://sylvain.larribe.free.fr/CNAM/2004-2005/CNAM_2005_Filtrage.pdf
http://doctord.dyndns.org/courses/topics/Circuits/Filter_Approximation_Theory.pdf
http://users.polytech.unice.fr/~icart/
http://people.maths.ox.ac.uk/earl/G2-lecture4.pdf
http://www.ece.cmu.edu/~ee791/lectures/L22/IIRDesign.pdf
http://www.ece.umn.edu/users/parhi/SLIDES/chap11.pdf
http://www.staff.ncl.ac.uk/oliver.hinton/eee305/Chapter5.pdf
http://www.ieee-uffc.org/frequency-control/learning/pdf/Rubiola.pdf
http://www.ieee-uffc.org/frequency-control/learning/pdf/Rubiola.pdf


288 
 

[103]  A. M. Niknejad, "Oscillator Phase Noise", University of Berkley, (2009),  
[104]  H. Abidi and A. Asad, "How phase noise appears in oscillators",in Analog Circuit Design, ed. Springer. 
271-290, (1997) 
[105]  J. Phillips and K. Kundert, "Noise in Mixers, Oscillators, Samplers & Logic, an introduction to 
Cyclostationary noise", Cadence Design Systems,  
[106]  A. Hajimiri and H. Donhee, "Virtual damping in oscillators", Proceedings of the IEEE, pp. 213-216, 
(2002) 
[107]  A. Hajimiri, S. Limotyrakis and T. H. Lee, "Jitter and Phase Noise in Ring Oscillators", IEEE JOURNAL OF 
SOLID-STATE CIRCUITS, Vol. 34-6, (2006) 
[108]  B. L. a. A. Lowenberger, "Understanding Jitter Requirements of PLL-Based Processors Rev 1 ", Analog 
Devices, Engineer-to-engineer note, (January 20, 2005),  
[109]  C. Emmerich, "Introduction to Jitter", Iowa State University, Department of Electrical and Computer 
Engineering 
(October 23), Online: http://class.ee.iastate.edu/mmina/ee418/Notes/Introduction_to_Jitter.pdf 
[110]  M. Zielinski, M. Kowalski, D. Chaberski and S. Grzelak, "Estimation of the Clock Signal Jitter Using the 
Time-Interval Measurement System", Proc. of XVIII IMEKO World Congress Metrology for a Sustainable 
Development, (2006) 
[111]  A. Hajimiri, S. Limotyrakis and T. H. Lee, "Jitter and phase noise in ring oscillators", Solid-State Circuits, 
IEEE Journal of, Vol. 34-6, pp. 790-804, (1999) 
[112]  M. Grozing and M. Berroth, "The Effect of 1/f Noise on the Spectrum and the Jitter of a Free Running 
Oscillator", Research in Microelectronics and Electronics 2006, pp. 485-488, (2006) 
[113]  M. R. Khanzadi, A. Panahi, D. Kuylenstierna and T. Eriksson, "A model-based analysis of phase jitter in 
RF oscillators", Frequency Control Symposium (FCS), 2012 IEEE International, pp. 1-4, (2012) 
[114]  D. Howe and T. Tasset, "Clock jitter estimation based on PM noise measurements", ed. IEEE. 541-546, 
(2003) 
[115]  R. Poore, "Phase Noise and Jitter", Agilent, Online: 
http://www.keysight.com/upload/cmc_upload/All/phase_noise_and_jitter.pdf?&cc=FR&lc=fre 
[116]  A. Zanchi, "How to Calculate the Period Jitter σT from the SSCR L(fn) with Application to Clock Sources 
for High-Speed ADCs", Texas Instruments, (December 2003), Online: 
http://www.ti.com/lit/an/slwa028/slwa028.pdf 
[117]  "Noise Modeling in MOSFET and Bipolar Devices", Silvaco, Online: 
http://www.silvaco.com/content/kbase/noise_modeling.pdf 
[118]  A. Chorti and M. Brookes, "A spectral model for RF oscillators with power-law phase noise", Circuits 
and Systems I: Regular Papers, IEEE Transactions on, Vol. 53-9, pp. 1989-1999, (2006) 
[119]  M. Mansuri and C.-K. Ken, "Jitter optimization based on phase-locked loop design parameters", Solid-
State Circuits, IEEE Journal of, Vol. 37-11, pp. 1375-1382, (2002) 
[120]  M. J. Rossano, "Chapter 10: Perception of sounds", Southeaster Louisiana University, Online: 
https://www2.southeastern.edu/Academics/Faculty/mrossano/perception/index.html 
[121]  J. O. Pickles, "An introduction to the physiology of hearing", Vol. 2, ed. Academic press London. (1988) 
[122]  W. A. Yost, "Fundamentals of hearing: An introduction", ed. Academic Press. (1994) 
[123]  R. E. Turner, "An introduction to hearing", University of Cambridge, (2013), Online: 
https://camtools.cam.ac.uk/access/content/group/d4fe6800-4ce2-4bad-8041-
957510e5aaed/Public/3G3/RET/2013/hearing.pdf 
[124]  P. A. Santi and P. Mancini, "Chapter 140: Cochlear Anatomy and Central Auditory Pathways", Predrag 
M. Maksimović Web Site, Online: http://famona.tripod.com/ent/cummings/cumm140.pdf 
[125]  Nicole, "Anatomy of the Ear", Yournursingtutor.com, (2012), Online: 
http://www.yournursingtutor.com/ANATOMY-OF-THE-EAR/ 
[126]  P. W. Alberti, "The anatomy and physiology of the ear and hearing", University of Toronto, Canada, 
Online: http://www.who.int/occupational_health/publications/noise2.pdf 
[127]  J. Whittaker, "Physics of the ear, Comps II presentation", John Hopkins University, (2006),  
[128]  H. Kurokawa and R. L. Goode, "Sound pressure gain produced by the human middle ear", Vol. 113 -4, 
pp. 349-355, (1995) 
[129]  J. P. Wilson and B. M. Bull, "Mechanics of middle and inner ear", Vol. 43-4, pp. 821-837, (1987) 

http://class.ee.iastate.edu/mmina/ee418/Notes/Introduction_to_Jitter.pdf
http://www.keysight.com/upload/cmc_upload/All/phase_noise_and_jitter.pdf?&cc=FR&lc=fre
http://www.ti.com/lit/an/slwa028/slwa028.pdf
http://www.silvaco.com/content/kbase/noise_modeling.pdf
http://famona.tripod.com/ent/cummings/cumm140.pdf
http://www.yournursingtutor.com/ANATOMY-OF-THE-EAR/
http://www.who.int/occupational_health/publications/noise2.pdf


289 
 

[130]  J. E. Roeckelein, "Dictionary of theories, laws, and concepts in psychology", ed. Greenwood Publishing 
Group. (1998) 
[131]  B. H. J. Runsung Munkong, "Auditory perception and cognition", IEEE SIGNAL PROCESSING 
MAGAZINE, pp. 98-108, (2008) 
[132]  S. K. Griffiths, "Inner ear", University of Florida, Department of Communication Sciences and 
Disorders, (2010), Online: http://web.clas.ufl.edu/users/sgriff/A&P.html 
[133]  J. Tobias, "Foundations of modern auditory theory, Volume 1", ed. Elsevier. (2012) 
[134]  Kewley-Port, "S 319  Auditory system ", Indiana University, (2012), Online: 
http://www.indiana.edu/~acoustic/ 
[135]  E. S. Olson, H. Duifhuis and C. R. Steele, "Von Békésy and cochlear mechanics", Hearing research, Vol. 
293-1, pp. 31-43, (2012) 
[136]  J. Ashmore, P. Avan, W. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. Hackney, A. 
Hudspeth and F. Jülicher, "The remarkable cochlear amplifier", Hearing research, Vol. 266-1, pp. 1-17, (2010) 
[137]  C. A. M. Richard F. Lyon, "Cochlear hydrodynamics demystified", Caltech-CS-TR-88-4,  
[138]  C. Kubisch and e. al., "KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is 
Mutated in Dominant Deafness", Cell, Vol. 96-3, pp. 437–446, (5 February 1999) 
[139]  C. A. S. Stephen J Elliott, "The cochlea as a smart structure ", Vol. 21-6, (2012) 
[140]  D. D. Greenwood, "A cochlea frequency position function for several species – 29 years late", Vol. 87-
6, pp. 2592-2605, (1991) 
[141]  E. L. LePage, "The mammalian cochlear map is optimally warped", The Journal of the Acoustical 
Society of America, Vol. 114-2, pp. 896-906, (2003) 
[142]  M. Barclay, A. F. Ryan and G. D. Housley, "Type I vs type II spiral ganglion neurons exhibit differential 
survival and neuritogenesis during cochlear development", Neural Dev, Vol. 6-33, pp. 101-186, (2011) 
[143]  G. V. Békésy, "Experiments in Hearing,  part 3. Chap 12-14". (1989) 
[144]  F. N. F. Mammano, "Biophysics of the cochlea: linear approximation", Vol. 93-6, (June 1993) 
[145]  L. Trussel, "Mutant ion channel in cochlear hair cells", Vol. 97-8, pp. 3786 –3788, (2000) 
[146]  B. A. H. a. R. M. O. Steven K. Juhn, "Blood-Labyrinth Barrier and Fluid Dynamics of the Inner Ear", Vol. 
Vol. 7-nº 2, pp. 78-83, (Jul/ Dec de 2001) 
[147]  R. Yehoash and R. A. Altschuler, "Structure and innervation of the cochlea", -60, pp. 397 - 422, (15 
January 2003) 
[148]  M. F. Bear, "Neuroscience, Chapter 4, The Action Potential", ed. Lippincott Williams & Wilkins. (2007) 
[149]  "Essential Neuroscience, Section II The Neuron", ed. Lippincott Williams & Wilkins. (April 2010) 
[150]  R. Nobili, F. Mammano and J. Ashmore, "How well do we understand the cochlea?", Trends in 
neurosciences, Vol. 21-4, pp. 159-167, (1998) 
[151]  A. Saremi and S. Stenfelt, "A physiological signal-transmission model of cochlea", Linkoping 
University, Online: https://www.liu.se/ihv/head/mobility/1.288026/Amin_poster_mechanics.pdf 
[152]  S. J. Elliott and C. A. Shera, "The cochlea as a smart structure", Smart Materials and Structures, Vol. 
21-6, pp. 064001, (2012) 
[153]  S. Ramamoorthy and A. L. Nuttall, "Outer hair cell somatic electromotility in vivo and power transfer 
to the organ of Corti", Biophysical journal, Vol. 102-3, pp. 388-398, (2012) 
[154]  J. A. Vernon and A. R. Møller, "A model for cochlear origin of subjective tinnitus: Excitatory drift in 
operating point of inner hair cells",in Mechanisms of Tinnitus, Chapter 11 
  ed. Jack A. Vernon, Aage R. Møller.  
[155]  P. Martin, "Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the 
hair cell", Proceedings of the National Academy of Sciences, Vol. 97-22, pp. 12026-12031, (2000) 
[156]  J. R. Cotton and J. W. Grant, "A finite element method for mechanical response of hair cell ciliary 
bundles", Journal of biomechanical engineering, Vol. 122-1, pp. 44-50, (2000) 
[157]  S. T. Smith, Chadwick, Richard S, "Simulation of the response of the inner hair cell stereocilia bundle 
to an acoustical stimulus", PloS one, Vol. 6-3, pp. e18161, (2011) 
[158]  R. Zelick, "Vertebrate Hair Cells", Randy Zelick's laboratory at Portland State University, Online: 
http://web.pdx.edu/~zelickr/sensory-physiology/lecture-notes/OLDER/L12b-hair-cells.pdf 
[159]  A. W. Peng, F. T. Salles, B. Pan and A. J. Ricci, "Integrating the biophysical and molecular mechanisms 
of auditory hair cell mechanotransduction", Nature communications, Vol. 2, pp. 523, (2011) 

http://web.clas.ufl.edu/users/sgriff/A&P.html
http://www.indiana.edu/~acoustic/
http://www.liu.se/ihv/head/mobility/1.288026/Amin_poster_mechanics.pdf
http://web.pdx.edu/~zelickr/sensory-physiology/lecture-notes/OLDER/L12b-hair-cells.pdf


290 
 

[160]  J. R. Ison, "Auditory Nerve I, Innervation of the Cochlea, Frequency and Level Coding", University of 
Rochester, Brain and Cognitive Sciences, (1999), Online: 
http://www.bcs.rochester.edu/courses/crsinf/221/ARCHIVES/S11/Auditory_Nerve1.pdf 
[161]  R. Fettiplace and C. M. Hackney, "The sensory and motor roles of auditory hair cells", Nature Reviews 
Neuroscience, Vol. 7-1, pp. 19-29, (2006) 
[162]  H. Cai, B. Shoelson and R. S. Chadwick, "Evidence of tectorial membrane radial motion in a 
propagating mode of a complex cochlear model", Proceedings of the National Academy of Sciences of the 
United States of America, Vol. 101-16, pp. 6243-6248, (2004) 
[163]  K. G. a. N. Deo, "Mechanical-electrical-acoustical modeling of the cochlea", Institute of Pure and 
Apllied Mathematics, (2005), Online: www.ipam.ucla.edu/publications/.../es2005_5406.ppt 
[164]  R. F. Lyon and C. A. Mead, "Cochlear Hydrodynamics demystified 
", Department of Computer Sciences, California Institute of Technology, (1989) 
[165]  K. L. Tsang, "Determination of effective masses and parametric study of the organ of Corti", (2012), 
Online: http://www.rochester.edu/college/kearnscenter/pdf/Xerox_2013/Ka_Lai_Tsang.pdf 
[166]  T. Kato, S. Omachi and H. Aso, "Asymmetric gaussian and its application to pattern recognition",in 
Structural, Syntactic, and Statistical Pattern Recognition, ed. Springer. 405-413, (2002) 
[167]  F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi and A. L. 
Nuttall, "A differentially amplified motion in the ear for near-threshold sound detection", Nature neuroscience, 
Vol. 14-6, pp. 770-774, (2011) 
[168]  D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang and A. L. 
Nuttall, "In vivo outer hair cell length changes expose the active process in the cochlea", PloS one, Vol. 7-4, pp. 
e32757, (2012) 
[169]  C. Q. Davis and D. M. Freeman, "Direct observations of sound-induced motions of the reticular 
lamina, tectorial membrane, hair bundles, and individual stereocilia", Department of Physiology at the 
University of Wisconsin - Madison, (1995), Online: http://www.neurophys.wisc.edu/auditory/qdavis/talk.html 
[170]  S. T. Smith and R. S. Chadwick, "Simulation of the response of the inner hair cell stereocilia bundle to 
an acoustical stimulus", PloS one, Vol. 6-3, pp. e18161, (2011) 
[171]  A. Pierre, "Cours de Trigonométrie", ed. Éditions Aurélien PIERRE. (2013) 
[172]  A. Jilkine and K. Leiderman, "Modeling Length Regulation of Stereocilia", Park City Mathematics 
Institute, (2005), Online: pcmi.ias.edu/2005/documents/K2.ppt 
[173]  A. Fridberger, I. Tomo, M. Ulfendahl and J. B. de Monvel, "Imaging hair cell transduction at the speed 
of sound: dynamic behavior of mammalian stereocilia", Proceedings of the National Academy of Sciences of 
the United States of America, Vol. 103-6, pp. 1918-1923, (2006) 
[174]  K. Grosh and N. Deo, "Mechanical-electrical-acoustical modeling of the cochlea", Institute of Pure and 
Apllied Mathematics, (2005), Online: www.ipam.ucla.edu/publications/.../es2005_5406.ppt 
[175]  Y.-W. Liu and S. T. Neely, "Outer hair cell electromechanical properties in a nonlinear piezoelectric 
model", The Journal of the Acoustical Society of America, Vol. 126, pp. 751, (2009) 
[176]  D. Purves, G. Augustine, D. Fitzpatrick and e. al., "Hair Cells and the Mechanoelectrical Transduction 
of Sound Waves",in Neuroscience. 2nd edition, ed. http://www.ncbi.nlm.nih.gov/books/NBK10867/. (2001) 
[177]  C. M. Hackney and D. N. Furness, "Mechanotransduction in vertebrate hair cells: structure and 
function of the stereociliary bundle", American Journal of Physiology-Cell Physiology, Vol. 268-1, pp. C1-C13, 
(1995) 
[178]  J. L. Fitzakerley, "Stereocilia tiplinks & transduction channels, Inner Ear Physiology ", University of 
Minnesota Duluth, (2013), Online: 
http://www.d.umn.edu/~jfitzake/Lectures/DMED/InnerEar/Transduction/TipLinks.html 
[179]  P. Fuchs, "Hair Cell Mechanotransduction - Neurobiology of Hearing, Neurobiology of Hearing MEDS 
5377", UConn health Center, (2011), Online: 
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_Periphery/Fuchs%20Salamanca2%20
handout.pdf 
[180]  J. Zheng, W. Shen, D. Z. He, K. B. Long, L. D. Madison and P. Dallos, "Prestin is the motor protein of 
cochlear outer hair cells", Nature, Vol. 405-6783, pp. 149-155, (2000) 
[181]  P. Brodal, "The central nervous system: structure and function", ed. Oxford University Press. (2004) 

http://www.bcs.rochester.edu/courses/crsinf/221/ARCHIVES/S11/Auditory_Nerve1.pdf
http://www.ipam.ucla.edu/publications/.../es2005_5406.ppt
http://www.rochester.edu/college/kearnscenter/pdf/Xerox_2013/Ka_Lai_Tsang.pdf
http://www.neurophys.wisc.edu/auditory/qdavis/talk.html
http://www.ipam.ucla.edu/publications/.../es2005_5406.ppt
http://www.ncbi.nlm.nih.gov/books/NBK10867/
http://www.d.umn.edu/~jfitzake/Lectures/DMED/InnerEar/Transduction/TipLinks.html
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_Periphery/Fuchs%20Salamanca2%20handout.pdf
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_Periphery/Fuchs%20Salamanca2%20handout.pdf


291 
 

[182]  F. Lang, V. Vallon, M. Knipper and P. Wangemann, "Functional significance of channels and 
transporters expressed in the inner ear and kidney", American Journal of Physiology-Cell Physiology, Vol. 293-
4, pp. C1187-C1208, (2007) 
[183]  Y. Raphael and R. A. Altschuler, "Structure and innervation of the cochlea", Brain research bulletin, 
Vol. 60-5, pp. 397-422, (2003) 
[184]  F. Mammano, M. Bortolozzi, S. Ortolano and F. Anselmi, "Ca2+ signaling in the inner ear", Physiology, 
Vol. 22-2, pp. 131-144, (2007) 
[185]  L. A. Werner, "The auditory nerve response", Introduction to Hearing Science, Online: 
http://depts.washington.edu/ 
[186]  C. Darwin, "Ear and Auditory Nerve", Hearing Lecture Notes (2), (1994), Online: 
http://www.lifesci.sussex.ac.uk/ 
[187]  D. B. Koch and E. H. Overstreet, "Neural Response Imaging: Measuring Auditory-Nerve Responses 
from the Cochlea with the HiResolution™ Bionic Ear System",  
[188]  C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard and R. Meddis, "A revised model of the inner-hair cell 
and auditory-nerve complex", The Journal of the Acoustical Society of America, Vol. 111, pp. 2178, (2002) 
[189]  R. Dingledine, K. Borges, D. Bowie and S. F. Traynelis, "The glutamate receptor ion channels", 
Pharmacological reviews, Vol. 51-1, pp. 7-62, (1999) 
[190]  O. A. Petroff, "Book Review: GABA and glutamate in the human brain", The Neuroscientist, Vol. 8-6, 
pp. 562-573, (2002) 
[191]  S. G. Tewari and K. K. Majumdar, "A mathematical model of the tripartite synapse: astrocyte-induced 
synaptic plasticity", Journal of biological physics, Vol. 38-3, pp. 465-496, (2012) 
[192]  R. Jolivet, T. J. Lewis and W. Gerstner, "Generalized integrate-and-fire models of neuronal activity 
approximate spike trains of a detailed model to a high degree of accuracy", Journal of Neurophysiology, Vol. 
92-2, pp. 959-976, (2004) 
[193]  A. Destexhe, Z. F. Mainen and T. J. Sejnowski, "Synthesis of models for excitable membranes, synaptic 
transmission and neuromodulation using a common kinetic formalism", Journal of computational 
neuroscience, Vol. 1-3, pp. 195-230, (1994) 
[194]  H. von Gersdorff, "Synaptic ribbons: versatile signal transducers", Neuron, Vol. 29-1, pp. 7-10, (2001) 
[195]  E. Glowatzki, L. Grant and P. Fuchs, "Hair cell afferent synapses", Current opinion in neurobiology, Vol. 
18-4, pp. 389-395, (2008) 
[196]  D. Lenzi and H. von Gersdorff, "Structure suggests function: the case for synaptic ribbons as 
exocytotic nanomachines", Bioessays, Vol. 23-9, pp. 831-840, (2001) 
[197]  E. Glowatzki, "The Auditory Periphery 4 – Afferent synaptic transmission by cochlear hair cells 
Structure and Function", Johns Hopkins School of Medicine, (2011), Online: 
http://pages.jh.edu/~strucfunc/strucfunc/2011_files/2011_09_13.pdf 
[198]  L. D. Liberman, H. Wang and M. C. Liberman, "Opposing gradients of ribbon size and AMPA receptor 
expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses", The Journal of 
Neuroscience, Vol. 31-3, pp. 801-808, (2011) 
[199]  T. Moser, "The hair cell ribbon synapse", Ludwig Maximilians Universitat Munchen, Online: 
http://www.bio.lmu.de/~benda/teaching/mnsws07/Moser-RibbonSynapse.pdf 
[200]  P. Sterling and G. Matthews, "Structure and function of ribbon synapses", Trends in neurosciences, 
Vol. 28-1, pp. 20-29, (2005) 
[201]  L. Grant, E. Yi and E. Glowatzki, "Two modes of release shape the postsynaptic response at the inner 
hair cell ribbon synapse", The Journal of Neuroscience, Vol. 30-12, pp. 4210-4220, (2010) 
[202]  T. Parsons and P. Sterling, "Synaptic ribbon: conveyor belt or safety belt?", Neuron, Vol. 37-3, pp. 379-
382, (2003) 
[203]  M. H. Hennig, "Modeling Synaptic Transmission", ANC, Informatics, University of Edinburgh,  
[204]  A. R. Sargsyan, A. A. Melkonyan, C. Papatheodoropoulos, H. H. Mkrtchian and G. K. Kostopoulos, "A 
model synapse that incorporates the properties of short-and long-term synaptic plasticity", Neural networks, 
Vol. 16-8, pp. 1161-1177, (2003) 
[205]  C. Koch and I. Segev, "Methods in neuronal modeling: from synapses to networks", ed. The MIT Press. 
(1998) 

http://depts.washington.edu/
http://www.lifesci.sussex.ac.uk/
http://pages.jh.edu/~strucfunc/strucfunc/2011_files/2011_09_13.pdf
http://www.bio.lmu.de/~benda/teaching/mnsws07/Moser-RibbonSynapse.pdf


292 
 

[206]  S. H. Koslow, S. Subramaniam and S. Subramaniam, "Databasing the Brain: From Data to Knowledge 
(Neuroinformatics)", ed. Wiley-Liss. (2005) 
[207]  R. Veltz and O. Faugeras, "Introduction to the biology of synapses", INRIA, (2013), Online: 
http://www-sop.inria.fr/members/Olivier.Faugeras/MVA/Slides13/lecture5.pdf 
[208]  A. Roth and M. C. van Rossum, "Modeling Synapses", University of Edinburgh, School of Informatics, 
(2009), Online: http://homepages.inf.ed.ac.uk/mvanross/reprints/roth_mvr_chap.pdf 
[209]  T. Yu and G. Cauwenberghs, "Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-
Huxley neurons", Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International 
Conference of the IEEE, pp. 3335-3338, (2009) 
[210]  M. Xiao, M. Karpefors, B. Gustafsson and H. Wigstrom, "On the linkage between AMPA and NMDA 
receptor-mediated EPSPs in homosynaptic long-term depression in the hippocampal CA1 region of young 
rats", The Journal of Neuroscience, Vol. 15-6, pp. 4496-4506, (1995) 
[211]  J. Ruel, C. Chen, R. Pujol, R. P. Bobbin and J.-L. Puel, "AMPA-preferring glutamate receptors in 
cochlear physiology of adult guinea-pig", The Journal of Physiology, Vol. 518-3, pp. 667-680, (1999) 
[212]  J.-H. Cho, I. T. Bayazitov, E. G. Meloni, K. M. Myers, W. A. Carlezon Jr, S. S. Zakharenko and V. Y. 
Bolshakov, "Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in 
amygdala", Nature neuroscience, Vol. 15-1, pp. 113-122, (2012) 
[213]  D. F. de Sevilla, M. Fuenzalida, A. B. P. Pazos and W. Buño, "Selective shunting of the NMDA EPSP 
component by the slow afterhyperpolarization in rat CA1 pyramidal neurons", Journal of Neurophysiology, Vol. 
97-5, pp. 3242-3255, (2007) 
[214]  M. A. Sikora, J. Gottesman and R. F. Miller, "A computational model of the ribbon synapse", Journal of 
neuroscience methods, Vol. 145-1, pp. 47-61, (2005) 
[215]  R. Rao-Mirotznik, G. Buchsbaum and P. Sterling, "Transmitter concentration at a three-dimensional 
synapse", Journal of Neurophysiology, Vol. 80-6, pp. 3163-3172, (1998) 
[216]  A. Borisyuk and e. al., "Modeling Synaptic Plasticity", Mathematical Biosciences Institute, (2004),  
[217]  N. Shepard, "Integrate and Fire Model", www.nathanshepard.net, (2007), Online: 
http://www.nathanshepard.net/documents/Integrate_and_Fire_Model.pdf 
[218]  R. Vandiver, "Hodgkin-Huxley Model of Action Potentials", Bryn Mawer College, (201O), Online: 
http://www.brynmawr.edu/math/people/vandiver/documents/HodgkinHuxley.pdf 
[219]  J. Selgrade, "Hodgkin-Huxley and Fitzhugh-Nagumo Models", North Carolina State University, (2005), 
Online: http://www.phaser.com/modules/maa05/h-h_model.ppt%E2%80%8E 
[220]  F. Fröhlich and S. Jezernik, "Feedback control of Hodgkin–Huxley nerve cell dynamics", Control 
engineering practice, Vol. 13-9, pp. 1195-1206, (2005) 
[221]  "From Hodgkin-Huxley to Integrate-and-Fire", University of Paris V, Laboratory of Neurophysics and 
Physiology, (2011), Online: http://neurophys.biomedicale.univ-paris5.fr/~brunel/tutorial.pdf 
[222]  W. Heitler, "The Hodgkin-Huxley Model for the Generation of Action Potentials", School of Biology, 
University of St Andrews, Online: http://www.st-andrews.ac.uk/~wjh/hh_model_intro/ 
[223]  D. Zhou, D. Cai, S. Li and Y. Xiao, "Mathematical Modeling of Biological Neurons", (2012) 
[224]  M. Chung, B. Göbel, A. Peters, K. M. Oltmanns and A. Moser, "Mathematical modeling of the biphasic 
dopaminergic response to glucose", Journal Biomedical Science Engineering, Vol. 4, pp. 36-145, (2011) 
[225]  N. S. Imennov and J. T. Rubinstein, "Stochastic population model for electrical stimulation of the 
auditory nerve", Biomedical Engineering, IEEE Transactions on, Vol. 56-10, pp. 2493-2501, (2009) 
[226]  "Topic 11: Nerve Conduction", Centenary College of Luisiana, Online: 
http://www.centenary.edu/attachments/biophysics/bphy304/11a.pdf 
[227]  Y. J and W. JB, "Morphological observation and electrophysiological properties of isolated Deiters' 
cells from guinea pig cochlea", Vol. 14-1, pp. 29-31, (2000) 
[228]  T. Fujikawa, R. S. Petralia, T. S. Fitzgerald, Y.-X. Wang, B. Millis, J. A. Morgado-Díaz, K. Kitamura and B. 
Kachar, "Localization of kainate receptors in inner and outer hair cell synapses", Hearing research, Vol. 314, 
pp. 20-32, (2014) 
[229]  J. Ruel, C. Chabbert, R. Nouvian, R. Bendris, M. Eybalin, C. L. Leger, J. Bourien, M. Mersel and J.-L. 
Puel, "Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses", The Journal of 
Neuroscience, Vol. 28-29, pp. 7313-7323, (2008) 

http://www-sop.inria.fr/members/Olivier.Faugeras/MVA/Slides13/lecture5.pdf
http://homepages.inf.ed.ac.uk/mvanross/reprints/roth_mvr_chap.pdf
http://www.nathanshepard.net/
http://www.nathanshepard.net/documents/Integrate_and_Fire_Model.pdf
http://www.brynmawr.edu/math/people/vandiver/documents/HodgkinHuxley.pdf
http://www.phaser.com/modules/maa05/h-h_model.ppt%E2%80%8E
http://neurophys.biomedicale.univ-paris5.fr/~brunel/tutorial.pdf
http://www.st-andrews.ac.uk/~wjh/hh_model_intro/
http://www.centenary.edu/attachments/biophysics/bphy304/11a.pdf


293 
 

[230]  B. Peng, Q. Li, T. Ren, S. Ahmad, S. Chen, P. Chen and X. Lin, "Group I metabotropic glutamate 
receptors in spiral ganglion neurons contribute to excitatory neurotransmissions in the cochlea", 
Neuroscience, Vol. 123-1, pp. 221-230, (2004) 
[231]  G. Burnstock and A. N. Verkhratskiĭ, "Purinergic signalling and the nervous system", ed. Springer. 
(2012) 
[232]  E. Oestreicher, W. Arnold and D. Felix, "Neurotransmission of the cochlear inner hair cell synapse-
implications for inner ear therapy", (2004) 
[233]  T. Honoré, J. Lauridsen and P. Krogsgaard‐Larsen, "The binding of [3H] AMPA, a structural analogue of 
glutamic acid, to rat brain membranes", Journal of neurochemistry, Vol. 38-1, pp. 173-178, (1982) 
[234]  S. R. Platt, "The role of glutamate in central nervous system health and disease–a review", The 
Veterinary Journal, Vol. 173-2, pp. 278-286, (2007) 
[235]  C. Rosenmund, Y. Stern-Bach and C. F. Stevens, "The tetrameric structure of a glutamate receptor 
channel", Science, Vol. 280-5369, pp. 1596-1599, (1998) 
[236]  T. Otis, I. Raman and L. Trussell, "AMPA receptors with high Ca2+ permeability mediate synaptic 
transmission in the avian auditory pathway", The Journal of Physiology, Vol. 482-Part 2, pp. 309-315, (1995) 
[237]  A. Destexhe, Z. F. Mainen and T. J. Sejnowski, "Fast kinetic models for simulating AMPA, NMDA, GABA 
A and GABA B receptors",in The Neurobiology of Computation, ed. Springer. 9-14, (1995) 
[238]  C. S. a. Engineering, "Modeling single neurons", University of Washingthon, (2013), Online: 
http://courses.cs.washington.edu/courses/cse528/05wi/Lect5.pdf 
[239]  E. Yi, I. Roux and E. Glowatzki, "Dendritic HCN channels shape excitatory postsynaptic potentials at 
the inner hair cell afferent synapse in the mammalian cochlea", Journal of Neurophysiology, Vol. 103-5, pp. 
2532-2543, (2010) 
[240]  E. Glowatzki and P. A. Fuchs, "Transmitter release at the hair cell ribbon synapse", Nature 
neuroscience, Vol. 5-2, pp. 147-154, (2002) 
[241]  L. Grant, E. Yi, J. D. Goutman and E. Glowatzki, "Postsynaptic recordings at afferent dendrites 
contacting cochlear inner hair cells: monitoring multivesicular release at a ribbon synapse", Journal of 
visualized experiments: JoVE, -48, (2011) 
[242]  A. I. S. Darwish, "Central and Peripheral N-methyl-D-aspartate (NMDA) Receptors: Sites, Actions, 
Modulators and Possible Clinical Applications", (2009) 
[243]  D. C. Cooper, "Introduction to neuroscience I", ed. Donald C. Cooper Ph. D., (2011) 
[244]  S. Coombes, "Synapses", The University of Nottingham Department of Mathematical Sciences 
B12412: Computational Neuroscience and Neuroinformatics, Online: 
https://www.maths.nottingham.ac.uk/personal/sc/cnn/CNN6ToDo.pdf 
[245]  S. S. Kumar and J. R. Huguenard, "Properties of excitatory synaptic connections mediated by the 
corpus callosum in the developing rat neocortex", Journal of Neurophysiology, Vol. 86-6, pp. 2973-2985, 
(2001) 
[246]  R. Jonsson, "Field interactions in the peripheral auditory neural system with reference to cochlear 
implants", University of Pretoria, Electrical, Electronic and Computer Engineering, (2011),  
[247]  A. F. Jahn and J. Santos-Sacchi, "Physiology of the Ear", ed. Cengage Learning. (2001) 
[248]  J. C. Fiala, S. Grossberg and D. Bullock, "Metabotropic glutamate receptor activation in cerebellar 
Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response", The Journal of 
Neuroscience, Vol. 16-11, pp. 3760-3774, (1996) 
[249]  M. Masugi-Tokita, E. Tarusawa, M. Watanabe, E. Molnár, K. Fujimoto and R. Shigemoto, "Number and 
density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-
fracture replica labeling", The Journal of Neuroscience, Vol. 27-8, pp. 2135-2144, (2007) 
[250]  Z. Nusser, R. Lujan, G. Laube, J. D. B. Roberts, E. Molnar and P. Somogyi, "Cell type and pathway 
dependence of synaptic AMPA receptor number and variability in the hippocampus", Neuron, Vol. 21-3, pp. 
545-559, (1998) 
[251]  L. O. Trussell, A. N. Popper and R. R. Fay, "Synaptic Mechanisms in the Auditory System", ed. Springer. 
(2012) 
[252]  S. F. Traynelis and F. Jaramillo, "Getting the most out of noise in the central nervous system", Trends 
in neurosciences, Vol. 21-4, pp. 137-145, (1998) 

http://courses.cs.washington.edu/courses/cse528/05wi/Lect5.pdf
http://www.maths.nottingham.ac.uk/personal/sc/cnn/CNN6ToDo.pdf


294 
 

[253]  L. Abbott, "Realistic synaptic inputs for model neural networks", Network: Computation in Neural 
Systems, Vol. 2-3, pp. 245-258, (1991) 
[254]  D. Purves, G. Augustine, D. Fitzpatrick and e. al., "Neuroscience: The Ionic Basis of the Resting 
Membrane Potential", ed. Sinauer Associates, Sunderland (MA). (2001) 
[255]  J. Koester and S. A. Siegelbaum, "Membrane Potential", http://www.bioltis.fmed.edu.uy/,  
[256]  R. Rhoades and D. R. Bell, "Medical Physiology: Principles of Clinical Medicine, Chapter 3: Action 
Potential, Synaptic Transmission, and Maintenance of Nerve Function", ed. Lippincott Willams and Wilkins. C. 
Forehand,  
[257]  V. Weerasinghe, "Excitable Tissues, Resting Membrane Potential & Action Potential", Faculty of 
Medicine, University of Peradenyia,  
[258]  "Ionic Basis of Action Potentials", Medical University of South California (MUSC), Woodward Lab: 
Department of Neurosciences,  
[259]  L. H, Berk A, Z. SL and e. al., "The Action Potential and Conduction of Electric Impulses",in Molecular 
Cell Biology, Vol. Section 21.2. http://www.ncbi.nlm.nih.gov/books/NBK21668/, (2000) 
[260]  M. F. Bear, B. W. Connors and M. A. Paradiso, "Neuroscience: Exploring the Brain plus CD Rom 
Testbank", Neuroscience research, (2000) 
[261]  N. Yang, R. Kondo, J. Dolzer and D. Yamane, "Analysis Of The Biophysical Properties Of Sodium 
Channel Na", moleculardevices.com,  
[262]  M. D. Mann, "Properties of excitable cell membranes: the spike", (2013), Online: 
http://michaeldmann.net/mann3b.html 
[263]  C. J. Forehand, "The action potential, synaptic transmission, and maintenance of nerve function", 
Medical Physiology: Principles for Clinical Medicine, Rhoades RA, Bell DR, eds., Lippincott Williams & Wilkins, a 
Wolters Kluwer business, Philadelphia, USA, pp. 38-64, (2009) 
[264]  B. Alberts, "Essential cell biology: an introduction to the molecular biology of the cell", Vol. 1, ed. 
Taylor & Francis. (1998) 
[265]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, "Ion Channels and the Electrical 
Properties of Membranes", (2002) 
[266]  N. Al-Shorbaji, "Health and medical informatics", World Health Organisation, Cairo, (2001) 
[267]  C. Koch, "Biophysics of Computation: Information Processing in Single Neurons (Computational 
Neuroscience)", Vol. Chapter 2: Linear Cable theory. (1999) 
[268]  E. Young, "Models of the Neuron (580.439/639)", John Hopkins University, (Fall 2013), Online: 
http://www.jhu.edu/motn/ 
[269]  F. Rieke, "Action potential propagation", University of Washington, Online: http://rieke-
server.physiol.washington.edu/People/Fred/Classes/532/HH408.pdf 
[270]  E. Young, "Lecture 9, Nonlinear cable theory in Systems Biology II: Neural Systems (580.422)", (2006), 
Online: http://www.shadmehrlab.org/Courses/physfound_files/Eric_5.pdf 
[271]  E. Young, "Systems Biology II: Neural Systems (580.422), Lecture 9, Nonlinear cable theory", Online: 
http://www.shadmehrlab.org/Courses/physfound_files/Eric_5.pdf 
[272]  R. Rhoades and D. R. Bell, "Medical Physiology: Principles of Clinical Medicine", Vol. Chapter 3: Action 
Potential, Synaptic Transmission, and Maintenance of Nerve Function, C. Forehand, ed. Lippincott Willams and 
Wilkins.  
[273]  D. Mittleman, "Waves and the wave equation", ECE Department at Rice University,  
[274]  "Auditory Nerve Processing", University of Rochester, Brain and Cognitive Sciences, (2013), Online: 
http://www.bcs.rochester.edu/courses/crsinf/504/ARCHIVES/F05/audition2.pdf  
[275]  Tschang, "Chapter 34 Maxwell’s Equations, Electromagnetic Waves", Department of Physics at 
National Tsing Hua University Online: http://www.phys.nthu.edu.tw/~thschang/notes/GP34.pdf 
[276]  Orfanidi, "Maxwell' s equations", Information, Networks, and Signal Processing Research (INSPIRE) 
Lab, Online: http://www.ece.rutgers.edu/~orfanidi/ewa/ch01.pdf 
[277]  W. F. Boron and E. L. Boulpaep, "Medical Physiology, 2e Updated Edition: with STUDENT CONSULT 
Online Access", ed. Elsevier Health Sciences. (2012) 
[278]  S. Kim, S. J. Guzman, H. Hu and P. Jonas, "Active dendrites support efficient initiation of dendritic 
spikes in hippocampal CA3 pyramidal neurons", Nature neuroscience, Vol. 15-4, pp. 600-606, (2012) 

http://www.bioltis.fmed.edu.uy/
http://www.ncbi.nlm.nih.gov/books/NBK21668/
http://michaeldmann.net/mann3b.html
http://www.jhu.edu/motn/
http://rieke-server.physiol.washington.edu/People/Fred/Classes/532/HH408.pdf
http://rieke-server.physiol.washington.edu/People/Fred/Classes/532/HH408.pdf
http://www.shadmehrlab.org/Courses/physfound_files/Eric_5.pdf
http://www.shadmehrlab.org/Courses/physfound_files/Eric_5.pdf
http://www.bcs.rochester.edu/courses/crsinf/504/ARCHIVES/F05/audition2.pdf
http://www.phys.nthu.edu.tw/~thschang/notes/GP34.pdf
http://www.ece.rutgers.edu/~orfanidi/ewa/ch01.pdf


295 
 

[279]  B. Sivyer and S. R. Williams, "Direction selectivity is computed by active dendritic integration in retinal 
ganglion cells", Nature neuroscience, Vol. 16-12, pp. 1848-1856, (2013) 
[280]  A. Destexhe, "High-conductance state", Scholarpedia, 2(11):1341, (2007),  
[281]  X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system", Circuits and Systems, 2002. 
ISCAS 2002. IEEE International Symposium on, Vol. 1, pp. I-597-I-600, (2002) 
[282]  Y. Yeap, "Ultra wideband signal generation", Microwave Journal, Vol. 48-9, pp. 172, (2005) 
[283]  M. Dhieb, M. Lahiani and H. Ghariani, "Pulse generator monocycle Gaussian for UWB applications", 
WSEAS Transactions on Circuits and Systems, Vol. 9-12, pp. 756-766, (2010) 
[284]  G. J. Goodhill, "A theoretical model of axon guidance by the robo code", Neural computation, Vol. 15-
3, pp. 549-564, (2003) 
[285]  X. Wang, "Neural representation of Sensory Stimuli: Properties of Spike Trains", Biosystem II: 
Neuroscience, Online: http://www.shadmehrlab.org/ 
[286]  L. A. Werner, "inner ear anatomy", Introduction to Hearing Science, Online: 
http://depts.washington.edu/ 
[287]  P. Dayan, L. F. Abbott and L. Abbott, "Theoretical neuroscience: Computational and mathematical 
modeling of neural systems", (2001) 
[288]  C. Pouzat, "Extracellular Recording and Spike Train Analysis", CNRS UMR 8118 and Paris-Descartes 
University Paris, (2009), Online: http://www.biomedicale.univ-
paris5.fr/SpikeOMatic/Papers_folder/Pouzat_ENP_2009.pdf 
[289]  J. Laudanski, S. Coombes, A. R. Palmer and C. J. Sumner, "Mode-locked spike trains in responses of 
ventral cochlear nucleus chopper and onset neurons to periodic stimuli", Journal of Neurophysiology, Vol. 103-
3, pp. 1226-1237, (2010) 
[290]  N. X. Tritsch, A. Rodríguez-Contreras, T. T. Crins, H. C. Wang, J. G. G. Borst and D. E. Bergles, "Calcium 
action potentials in hair cells pattern auditory neuron activity before hearing onset", Nature neuroscience, Vol. 
13-9, pp. 1050-1052, (2010) 
[291]  I. C. Bruce, "Spatiotemporal coding of sound in the auditory nerve for cochlear implants", ed. 
University of Melbourne, Department of Otolaryngology. (1998) 
[292]  T. Hromádka, "Representation of Sounds in Auditory Cortex of Awake Rats", Cold Spring Harbor 
Laboratory, (2008),  
[293]  E. Zalewska and I. Hausmanowa-Petrusewicz, "Approximation of motor unit structure from the 
analysis of motor unit potential", Clinical Neurophysiology, Vol. 119-11, pp. 2501-2506, (2008) 
[294]  M. S. Lewicki, "A review of methods for spike sorting: the detection and classification of neural action 
potentials", Network: Computation in Neural Systems, Vol. 9-4, pp. R53-R78, (1998) 
[295]  J. S. Pezaris, M. Sahani and R. A. Andersen, "Tetrodes for monkeys",in Computational Neuroscience, 
ed. Springer. 937-942, (1997) 
[296]  M. Laubach, M. Shuler and M. A. Nicolelis, "Independent component analyses for quantifying 
neuronal ensemble interactions", Journal of neuroscience methods, Vol. 94-1, pp. 141-154, (1999) 
[297]  C. Savin, P. Joshi and J. Triesch, "Independent component analysis in spiking neurons", PLoS 
computational biology, Vol. 6-4, pp. e1000757, (2010) 
[298]  S. Takahashi, Y. Anzai and Y. Sakurai, "A new approach to spike sorting for multi-neuronal activities 
recorded with a tetrode—how ICA can be practical", Neuroscience research, Vol. 46-3, pp. 265-272, (2003) 
[299]  S. Takahashi, Y. Anzai and Y. Sakurai, "Automatic sorting for multi-neuronal activity recorded with 
tetrodes in the presence of overlapping spikes", Journal of Neurophysiology, Vol. 89-4, pp. 2245-2258, (2003) 
[300]  E. Hulata, R. Segev and E. Ben-Jacob, "A method for spike sorting and detection based on wavelet 
packets and Shannon's mutual information", Journal of neuroscience methods, Vol. 117-1, pp. 1-12, (2002) 
[301]  W. Gerstner and W. M. Kistler, "Spiking neuron models: Single neurons, populations, plasticity", ed. 
Cambridge university press. (2002) 
[302]  M. N. Shadlen and W. T. Newsome, "Noise, neural codes and cortical organization", Current opinion in 
neurobiology, Vol. 4-4, pp. 569-579, (1994) 
[303]  J. Rinzel, "Computational Modeling of Neuronal Systems (Advanced Topics in Mathematical 
Physiology)", The Center for Neural Science at New York State University, Online: 
http://www.cns.nyu.edu/~rinzel/CMNSF07/Neuronal%20dyns%20cell_CMNSF07.pdf 

http://www.shadmehrlab.org/
http://depts.washington.edu/
http://www.biomedicale.univ-paris5.fr/SpikeOMatic/Papers_folder/Pouzat_ENP_2009.pdf
http://www.biomedicale.univ-paris5.fr/SpikeOMatic/Papers_folder/Pouzat_ENP_2009.pdf
http://www.cns.nyu.edu/~rinzel/CMNSF07/Neuronal%20dyns%20cell_CMNSF07.pdf


296 
 

[304]  "Nerve Conduction", Centenary College of Louisiana, Online: 
http://www.centenary.edu/attachments/biophysics/bphy304/11a.pdf 
[305]  A.-M. Systems, "Tungsten electrodes", (2014), Online: http://www.a-msystems.com/s-70-
tungsten.aspx 
[306]  L. M. Ward and P. E. Greenwood, "1/f noise", Scholarpedia, Vol. 2-12, pp. 1537, (2007) 
[307]  A. Longtin, "Neuronal noise", Scholarpedia, Vol. 8-9, pp. 1618, (2013) 
[308]  J. A. White, J. T. Rubinstein and A. R. Kay, "Channel noise in neurons", Trends in neurosciences, Vol. 
23-3, pp. 131-137, (2000) 
[309]  M. Kearns, S. Solla and D. Cohn, "Advances in Neural Information Processing Systems 10", Cambridge, 
MA, (1999) 
[310]  S. Roy, "The role of noise in living systems", Universita degli studi di Palermo, Online: 
http://www.unipa.it/daa_erice11/DAA2011_Conference/Speakers_files/Roy.pdf 
[311]  T. Markl, "1/f noise, telegraph noise", Karlsruher Institut für Technologie, Online: 
http://www.phi.kit.edu/noise/abbildungen/Noise-03_Non-Thermal_Noise_1_over_f_Noise.pdf 
[312]  A. Destexhe and M. Rudolph-Lilith, "Neuronal noise", Vol. 8, ed. Springer. (2012) 
[313]  H. Feldwisch-Drentrup, A. B. Barrett, M. T. Smith and M. C. van Rossum, "Fluctuations in the open 
time of synaptic channels: An application to noise analysis based on charge", Journal of neuroscience methods, 
Vol. 210-1, pp. 15-21, (2012) 
[314]  D. A. Stanley, "Synaptic Noise-Like Activity in Hippocampal Interneurons", University of Toronto, 
(2009),  
[315]  B. Delgutte, "Auditory Nerve Laboratory: What was the Stimulus?", Massachusetts Institute of 
Technology  Online: web.mit.edu/hst.723/www/Labs/ANF%20Lab.ppt 
[316]  D. Johnson and N. Kiang, "Analysis of discharges recorded simultaneously from pairs of auditory 
nerve fibers", Biophysical journal, Vol. 16-7, pp. 719-734, (1976) 
[317]  B. L. Tempel, "The auditory system", Washington University,  
[318]  A. R. Palmer, "The basic physiology of the  auditory nerve ", MRC Institute of Hearing Research, 
University of Nottingham, Online: 
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_nerve/PALMER%20Auditory%20Nerve
%20Physiology-ARP.pdf 
[319]  A. M. Simmons, J. J. Schwartz and M. Ferragamo, "Auditory nerve representation of a complex 
communication sound in background noise", The Journal of the Acoustical Society of America, Vol. 91-5, pp. 
2831-2844, (1992) 
[320]  I. Fukui, T. Sato and H. Ohmori, "Improvement of phase information at low sound frequency in 
nucleus magnocellularis of the chicken", Journal of Neurophysiology, Vol. 96-2, pp. 633-641, (2006) 
[321]  R. Roeser and M. Valente, "Audiology diagnosis", ed. Thieme. (2007) 
[322]  E. R. Kandel, J. H. Schwartz and T. M. Jessell, "Principles of neural science", Vol. 4, ed. McGraw-Hill 
New York. (2000) 
[323]  P. Revest, "Neuroscience Methods: A Guide for Advanced Students", ed. Elsevier. (1998) 
[324]  D. C. Johnson and W. R. LaCourse, "Liquid chromatography with pulsed electrochemical detection at 
gold and platinum electrodes", Analytical Chemistry, Vol. 62-10, pp. 589A-597A, (1990) 
[325]  "Electrophysiology", wikipedia.org, (2014), Online: http://en.wikipedia.org/wiki/Electrophysiology 
[326]  B. Singhal, "Drug Analysis: A Perspective of Potentiometric Sensors", World Journal of Chemistry, Vol. 
6-2, pp. 59-74, (2011) 
[327]  R. v. Rohr, "Cochlear Implant Impedance Telemetry Measurements and Model Calculations to 
Estimate Modiolar Currents", Swiss Federal Institute of Technology Zurich, (2011),  
[328]  N. Dillier, W. K. Lai, B. Almqvist, C. Frohne, J. Muller-Deile, M. Stecker and E. Von Wallenberg, 
"Measurement of the electrically evoked compound action potential via a neural response telemetry system", 
Annals of Otology Rhinology and Laryngology, Vol. 111-5, Part 1, pp. 407-414, (2002) 
[329]  J. Mitchell, "Conduction/Synapse, Chapter 4, Neurophysiology II courses", University of Vermont, 
Online: http://www.uvm.edu/~biology/Classes/255/Lab3.pdf 
[330]  J. M. Simone Helluy, Jocelyne Dolce, Emily A. Buchholtz, "Lab 9: Conduction Velocity of Nerves in BISC 
111/113: Introductory Organismal Biology", OpenWetWare, (July 2012), Online: 
http://openwetware.org/wiki/Lab_9:_Conduction_Velocity_of_Nerves 

http://www.centenary.edu/attachments/biophysics/bphy304/11a.pdf
http://www.a-msystems.com/s-70-tungsten.aspx
http://www.a-msystems.com/s-70-tungsten.aspx
http://www.unipa.it/daa_erice11/DAA2011_Conference/Speakers_files/Roy.pdf
http://www.phi.kit.edu/noise/abbildungen/Noise-03_Non-Thermal_Noise_1_over_f_Noise.pdf
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_nerve/PALMER%20Auditory%20Nerve%20Physiology-ARP.pdf
http://neurobiologyhearing.uchc.edu/Course_Content_Library/Auditory_nerve/PALMER%20Auditory%20Nerve%20Physiology-ARP.pdf
http://en.wikipedia.org/wiki/Electrophysiology
http://www.uvm.edu/~biology/Classes/255/Lab3.pdf
http://openwetware.org/wiki/Lab_9:_Conduction_Velocity_of_Nerves


297 
 

[331]  Y.-A. Song, R. Melik, A. N. Rabie, A. M. Ibrahim, D. Moses, A. Tan, J. Han and S. J. Lin, "Electrochemical 
activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-
selective membranes", Nature Materials, Vol. 10-12, pp. 980-986, (2011) 
[332]  F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun and H. Feng, "Cochlear implants: system design, 
integration, and evaluation", Biomedical Engineering, IEEE Reviews in, Vol. 1, pp. 115-142, (2008) 
[333]  N. S. Lawand, J. van Driel and P. French, "Electric Field Density Distribution for Cochlear Implant 
Electrodes", COMSOL Conference, (2012) 
[334]  A. Komal, R. Dowell and P. Dawson, "Cochlear Implant Stimulation Rates and Speech Perception", 
(2012) 
[335]  B. Somek, S. Fajt, A. Dembitz, M. Ivković and J. Ostojić, "Coding strategies for cochlear implants", 
AUTOMATIKA: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, Vol. 47-1-2, pp. 69-
74, (2006) 
[336]  "Cochlear implant simulation", University of Canada, (2006), Online: 
http://www.ugr.es/~atv/web_ci_SIM/en/seccion_4_en.htm 
[337]  L. M. Friesen, R. V. Shannon, D. Baskent and X. Wang, "Speech recognition in noise as a function of 
the number of spectral channels: comparison of acoustic hearing and cochlear implants", The Journal of the 
Acoustical Society of America, Vol. 110-2, pp. 1150-1163, (2001) 
[338]  C. T. Choi and Y.-H. Lee, "A Review of Stimulating Strategies for Cochlear Implants", Intechopen, 
Online: http://cdn.intechopen.com/pdfs-wm/36343.pdf 
[339]  J. D. Falcone, "Validation of high density electrode arrays for cochlear implants: a computational and 
structural approach", (2011) 
[340]  T. Rader, "Speech Perception of Cochlear Implanted Patients with Combined Electric-Acoustic 
Stimulation", ed. Verlag Dr. Hut. (2012) 
[341]  "FineHearing™ Technology - Med-El", Med-El, Online: http://www.medel.com/data/pdf/20287.pdf 
[342]  M. Y. Srinivas, M. P. Darwin and V. Sailja, "Continuous Interleaved Sampled (CIS) Signal Processing 
Strategy for Cochlear Implants MATLAB Simulation Program", International Journal of Scientific & Engineering 
Research, Vol. 3-12, (2012) 
[343]  M. Vondrášek, P. Sovka and T. Tichý, "ACE Strategy with Virtual Channels", Radioengineering, Vol. 17-
4, (2008) 
[344]  T. Zajdel, "Asynchronous Stimulation for Cochlear Implants", The Ohio State University, (2012),  
[345]  J.-J. Sit and R. Sarpeshkar, "A cochlear-implant processor for encoding music and lowering stimulation 
power", Pervasive Computing, IEEE, Vol. 7-1, pp. 40-48, (2008) 
[346]  H. P. Wolmarans, "Cochlear implant speech processing, based on the cochlear travelling wave", 
University of Pretoria, (2005),  
[347]  A. E. Vandali, L. A. Whitford, K. L. Plant and G. M. Clark, "Speech perception as a function of electrical 
stimulation rate: using the Nucleus 24 cochlear implant system", Ear and hearing, Vol. 21-6, pp. 608-624, 
(2000) 
[348]  R. Saba, "Cochlear implant modelling: stimulation and power consumption", University of 
Southampton, (2012),  
[349]  E. D. Marsman, R. M. Senger, G. A. Carichner, S. Kubba, M. S. McCorquodale and R. B. Brown, "DSP 
architecture for cochlear implants", ISCAS ed. Citeseer, (2006) 
[350]  T. Instrument, "C5000™ Ultra Low Power DSPs Datasheet",  
[351]  CSEM, "icyflex4 Datasheet", Online: http://www.capdigital.com/wp-
content/uploads/2012/11/icycom_CapDigital_121205-pdf.pdf 
[352]  X. L. e. al., "Ultra-Low-Energy Near-Threshold Biomedical Signal Processor for Versatile Wireless 
Health Monitoring", IEEE Asian Solid-State Circuits Conference, (Kobe, Japan) 
[353]  M. W. Baker and R. Sarpeshkar, "Feedback analysis and design of RF power links for low-power bionic 
systems", Biomedical Circuits and Systems, IEEE Transactions on, Vol. 1-1, pp. 28-38, (2007) 
[354]  T. Buchegger, G. Ossberger, E. Hochmair, U. Folger, A. Reisenzahn and A. Springer, "An ultra low 
power transcutaneous impulse radio link for cochlea implants", Ultra Wideband Systems, 2004. Joint with 
Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International 
Workshop on, pp. 356-360, (2004) 

http://www.ugr.es/~atv/web_ci_SIM/en/seccion_4_en.htm
http://cdn.intechopen.com/pdfs-wm/36343.pdf
http://www.medel.com/data/pdf/20287.pdf
http://www.capdigital.com/wp-content/uploads/2012/11/icycom_CapDigital_121205-pdf.pdf
http://www.capdigital.com/wp-content/uploads/2012/11/icycom_CapDigital_121205-pdf.pdf


298 
 

[355]  T. Buchegger, G. Oß, A. Reisenzahn, E. Hochmair, A. Stelzer and A. Springer, "Ultra-wideband 
transceivers for cochlear implants", EURASIP Journal on Advances in Signal Processing, Vol. 2005-18, pp. 3069-
3075, (1900) 
[356]  J.-J. Sit, A. M. Simonson, A. J. Oxenham, M. A. Faltys and R. Sarpeshkar, "A low-power asynchronous 
interleaved sampling algorithm for cochlear implants that encodes envelope and phase information", 
Biomedical Engineering, IEEE Transactions on, Vol. 54-1, pp. 138-149, (2007) 
[357]  N. M. Neihart and R. R. Harrison, "Micropower circuits for bidirectional wireless telemetry in neural 
recording applications", Biomedical Engineering, IEEE Transactions on, Vol. 52-11, pp. 1950-1959, (2005) 
[358]  A. Yodtean and A. Thanachayanont, "A Micropower CMOS Preamplifier for Cochlear Implant System", 
ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, pp. 997-
1000, (2008) 
[359]  Charand and K. Xiong, "Action Potentials", Hyperphysics and Biology, Online: http://hyperphysics.phy-
astr.gsu.edu/hbase/biology/actpot.html 
[360]  A. Kral, R. Hartmann, D. Mortazavi and R. Klinke, "Spatial resolution of cochlear implants: the 
electrical field and excitation of auditory afferents", Vol. 121-1-2, pp. 11-28, (1998) 
[361]  M. C. e. al., "BioInitiative 2012: A  Rationale for Biologically Exposure Standards for Low 
Electromagnetic Radiation", (December 31, 2012) 
[362]  H. Solmaz, Y. Ülgen and M. Tümer, "Design of A Microcontroller Based Cole-Cole Impedance Meter 
for Testing Biological Tissues", Vol. 25-7, pp. 488-491, (September 7-12 2009) 
[363]  P. Glover, "Resistivity theory", Petrophysics MSc Course Notes, Online: 
http://www2.ggl.ulaval.ca/personnel/paglover/CD%20Contents/GGL-
66565%20Petrophysics%20English/Chapter%2017.PDF 
[364]  "The Electrical Conductivity of Tissues ",in The Biomedical Engineering Handbook: Second Edition, ed. 
Joseph D. Bronzino. (2000) 
[365]  N. Ida, "9.2 electromagnetic properties of materials",in Engineering Electromagnetics, ed. Springer. 
(2003) 
[366]  "Microtubules and Filaments", Scitable by Nature education, Online: 
http://www.nature.com/scitable/topicpage/microtubules-and-filaments-14052932 
[367]  A. L. Hodgkin and A. F. Huxley, " A quantitative description of membrane current and its application 
to conduction and excitation in nerve", Vol. 117-4, pp. 500-544, (1952) 
[368]  M. Wegmuller, "Intra-Body Communication for Biomedical Sensor Networks", ETH Zurich Library 
Collection, (2007), Online: http://e-collection.library.ethz.ch/eserv/eth:29911/eth-29911-02.pdf 
[369]  L. Watts, "Cochlear mechanics: Analysis and analog VLSI", California Institute of Technology, (1992),  
[370]  E. Mancall and D. Brock, "Gray's clinical neuroanatomy", ed. Elsevier Health Sciences. (2011) 
[371]  M. Deol and S. Gluecksohn-Waelsch, "The role of inner hair cells in hearing", Nature, Vol. 278, pp. 
250-252 (1979) 
[372]  I. Chen, C. J. Limb and D. K. Ryugo, "The effect of cochlear-implant-mediated electrical stimulation on 
spiral ganglion cells in congenitally deaf white cats", Journal of the Association for Research in Otolaryngology, 
Vol. 11-4, pp. 587-603, (2010) 
[373]  R. R. Fay, "Structure and function in sound discrimination among vertebrates",in The evolutionary 
biology of hearing, ed. Springer. 229-263, (1992) 
[374]  "Innervation of the organ of Corti. Afferent fibres arise from nerve cell bodies within the spiral 
ganglion", Online: http://dspace.jorum.ac.uk/ 
[375]  S. Errede, "The Human Ear  Hearing, Sound Intensity and Loudness Levels ", 
http://courses.physics.illinois.edu,  
[376]  D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, J. O. McNamara and S. M. 
Williams, "The External Ear in Neuroscience. 2nd edition", ed. Sinauer Associates. (2001) 
[377]  S. S. Stevens and H. Davis, "Hearing: Its psychology and physiology", ed. Wiley New York. (1938) 
[378]  "All about ears in Physics of the Human Body - Physics 3110", University of Utah, (2013),  
[379]  "IV. Functions and pathphysiology of the middle ear", University of Wisconsin, Departement of 
Neurophysiology, (1996),  
[380]  "Coclia Anatomy and physiology of hearing ", University of Vermont, College of Medicine, (2012),  

http://hyperphysics.phy-astr.gsu.edu/hbase/biology/actpot.html
http://hyperphysics.phy-astr.gsu.edu/hbase/biology/actpot.html
http://www2.ggl.ulaval.ca/personnel/paglover/CD%20Contents/GGL-66565%20Petrophysics%20English/Chapter%2017.PDF
http://www2.ggl.ulaval.ca/personnel/paglover/CD%20Contents/GGL-66565%20Petrophysics%20English/Chapter%2017.PDF
http://www.nature.com/scitable/topicpage/microtubules-and-filaments-14052932
http://e-collection.library.ethz.ch/eserv/eth:29911/eth-29911-02.pdf
http://dspace.jorum.ac.uk/
http://courses.physics.illinois.edu/


299 
 

[381]  P. Dallos, "Response characteristics of mammalian cochlear hair cells", The Journal of Neuroscience, 
Vol. 5-6, pp. 1591-1608, (1985) 
[382]  J. Ashmore, "Biophysics of the cochlea–biomechanics and ion channelopathies", British medical 
bulletin, Vol. 63-1, pp. 59-72, (2002) 
[383]  C. Fielding, "Lecture 007 Hearing II", Colege of Santa Fe Auditory theory, Online: 
http://www.feilding.net/sfuad/musi3012-01/html/lectures/007_hearing_II.htm 
[384]  D. D. Greenwood, "A cochlear frequency‐position function for several species—29 years later", The 
Journal of the Acoustical Society of America, Vol. 87, pp. 2592, (1990) 
[385]  R. Shepherd, S. Hatsushika and G. Clark, "Electrical stimulation of the auditory nerve: the effect of 
electrode position on neural excitation", Hearing research, Vol. 66-1, pp. 108-120, (1993) 
[386]  K. Cheng, V. Cheng and C.-H. Zou, "A logarithmic spiral function to plot a Cochleaogram", Trends in 
Medical Research, Vol. 3-1, pp. 36-40, (2008) 
[387]  D. Furness, "Cochlea of the inner ear", Welcome Images,  
[388]  P. Bebis, "Short Time Fourier Transform (STFT)", University of Nevada, Computer Sciences and 
Engineering, Online: http://cse.unr.edu 
[389]  R. G. Osuna, "L6: Short time Fourier analysis and synthesis in Introduction to Speech Processing", 
Computer Science & Engeneering, Texas A&M University, Online: 
http://research.cs.tamu.edu/prism/lectures/sp/l6.pdf 
[390]  T. F. Quatieri, "SHORT-TIME FOURIER TRANSFORM in Discrete-Time Speech Signal Processing, 
Principles and Practice. PHI, 2002. (Chapter 7)", University of Hong Kong, Department of Electrical and 
Electronic Engineering, Online: http://www.eee.hku.hk/~work3220/Speech%20analysis%20and%20synthesis-
2%20STFT.pdf 
[391]  R. Bradford, R. Dobson and J. ffitch, "Sliding is smoother than jumping", University of Bale, 
Department of Computer Science, Online: http://quod.lib.umich.edu/cgi/p/pod/dod-idx/sliding-is-smoother-
than-jumping.pdf?c=icmc;idno=bbp2372.2005.086 
[392]  I. Shipsey, "Bionic Hearing: the science and the experience", University of Minnesota, (2010),  
[393]  K. Kawamoto, S.-H. Sha, R. Minoda, M. Izumikawa, H. Kuriyama, J. Schacht and Y. Raphael, 
"Antioxidant gene therapy can protect hearing and hair cells from ototoxicity", Molecular Therapy, Vol. 9-2, 
pp. 173-181, (2004) 
[394]  M. O'Leary, J. Fayad, W. House and F. Linthicum Jr, "Electrode insertion trauma in cochlear 
implantation", The Annals of otology, rhinology, and laryngology, Vol. 100-9 Part 1, pp. 695-699, (1991) 
[395]  P. Ndungidi, H. García-Vázquez, J. d. Pino, F. Dualibe and C. Valderrama, "RF specification driven by 
Multi-Objective Optimization Method", DCIS, (2012) 
[396]  N. Bohr, "On the Constitution of Atoms and Molecules, Part I", Philosophical Magazine, Vol. 26-151, 
pp. 1–24, (1913) 
[397]  D. T. Marx, "Physics 355, Metals: Free Electron Model", Department of Physics at Illinois State 
University,  
[398]  E. Y. Tsymbal, "Free Electron Model", University of Nebralska-Lincoln, Department of Physics and 
Astronomy,  
[399]  L. Kienle, "3.1.1 Polarization and Dielectric Constant", Institut für Materialwissenschaft, Christian-
Albrechts-Universität zu Kiel,  
[400]  "Electric Displacement", The world of David Darling, Encyclopedia of Science, Online: 
http://www.daviddarling.info/encyclopedia/E/electric_displacement.html 
[401]  Lavrentovich, "Introduction_to_dielectric_measurments", Online: 
http://www.lci.kent.edu/Lavrentovich/Introduction_to_dielectric_measurments2.htm 
[402]  R. Nave, "Electricity and Magnetism", Georgia State University, Hyperphysics Online: 
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html 
[403]  "Maxwell Equations: The Displacement Current and the Maxwell Equations", Ware, MIT Open 
Courses, Online: http://ocw.mit.edu/courses/physics/8-02sc-physics-ii-electricity-and-magnetism-fall-
2010/maxwells-equations/the-displacement-current-and-maxwells-equations/MIT8_02SC_notes26to30.pdf 
[404]  "Phénomènes de propagation–Equation de d’Alembert", Classes Préparatoires de Brizeux, (2014), 
Online: http://www.cpge-brizeux.fr/casiers/jnb/cours/physondes/chpo1.pdf 

http://www.feilding.net/sfuad/musi3012-01/html/lectures/007_hearing_II.htm
http://cse.unr.edu/
http://research.cs.tamu.edu/prism/lectures/sp/l6.pdf
http://www.eee.hku.hk/~work3220/Speech%20analysis%20and%20synthesis-2%20STFT.pdf
http://www.eee.hku.hk/~work3220/Speech%20analysis%20and%20synthesis-2%20STFT.pdf
http://quod.lib.umich.edu/cgi/p/pod/dod-idx/sliding-is-smoother-than-jumping.pdf?c=icmc;idno=bbp2372.2005.086
http://quod.lib.umich.edu/cgi/p/pod/dod-idx/sliding-is-smoother-than-jumping.pdf?c=icmc;idno=bbp2372.2005.086
http://www.daviddarling.info/encyclopedia/E/electric_displacement.html
http://www.lci.kent.edu/Lavrentovich/Introduction_to_dielectric_measurments2.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html
http://ocw.mit.edu/courses/physics/8-02sc-physics-ii-electricity-and-magnetism-fall-2010/maxwells-equations/the-displacement-current-and-maxwells-equations/MIT8_02SC_notes26to30.pdf
http://ocw.mit.edu/courses/physics/8-02sc-physics-ii-electricity-and-magnetism-fall-2010/maxwells-equations/the-displacement-current-and-maxwells-equations/MIT8_02SC_notes26to30.pdf
http://www.cpge-brizeux.fr/casiers/jnb/cours/physondes/chpo1.pdf


300 
 

[405]  A. Woslky, "Advanced Electromagnetism (Part2)", University of Liverpool, Online: 
http://pcwww.liv.ac.uk/~awolski/Teaching/Liverpool/PHYS370/AdvancedElectromagnetism-Part2.pdf 
[406]  R. F. Lyon and C. A. Mead, "Cochlear Hydrodynamics demystified", Caltech University, (1988),  
[407]  I. Inc, "Course Syllabus: EEE498 Overview of Electrical Engineering for Non-ME's, Lecture 9: Faraday’s 
Law Of Electromagnetic Induction, Displacement Current, Complex Permittivity and Permeability", Lect09.ppt - 
download.intel.nl,  
[408]  J. S. Seybold, "Introduction to RF propagation", ed. Willey and sons. (2005) 
[409]  B. Lambert, "Dielectric responses", University of Southern Misissipi, Research Group of Dr. Kenneth A. 
Mauritz, Online: http://commons.wikimedia.org/wiki/File:Dielectric_responses.svg 
[410]  B. S. Wilson and M. F. Dorman, "Cochlear implants: current designs and future possibilities", Journal 
of Rehabilitation Research & Development, Vol. 45-5, (2008) 
[411]  J. Rouger and e. al., "Evidence that cochlear-implanted deaf patients are better multisensory 
integrators", Vol. vol. 104-no. 17, pp. 7295-7300, (2007) 
[412]  J.-C. Breton, "Fondements des Probabilités, de (O;F; P) aux conséquences de la LGN et du TCL", 
Université de Rennes 1, L3/M1 Mathématiques, (Avril 2014),  
[413]  T. Gallouet, "Chapitre 3: Fonctions mesurables, variables aléatoires", Aix-Marseille Université, Online: 
http://www.cmi.univ-mrs.fr/~gallouet/licence.d/int/part2.pdf 
[414]  T. Gallouet, "Chapter 2: Tribus et mesures", Aix-Marseille Université, Online: http://www.cmi.univ-
mrs.fr/~gallouet/tele.d/tele90/envoi1-cours.pdf 
[415]  "Correlation in Random Variables, Lecture 11", Chester F. Carlson, Center for Imaging Science, (Spring 
2002), Online: http://www.cis.rit.edu/class/simg713/Lectures/Lecture713-11.pdf 
[416]  J. F. L. Gall, "Intégration, Probabilités et Processus Aléatoires", FIMFA, (Septembre 2006),  
[417]  I. F. Wilde, "Measure, integration & probability", King's College London: Mathematics Department,  
[418]  V. V. Veeravalli, "Gaussian Random Variables and Vectors", University of Illinois, (Fall 2006), Online: 
http's://courses.engr.illinois.edu/ece461/handouts/notes1.pdf 
[419]  Fan-Gang Zeng, Arthur N. Popper and R. R. Fay, "Cochlear Implants: Auditory Prostheses and Electric 
Hearing - 437 pages", ed. Springer. U. University of California Irvine, (21 avr. 2004 ) 
[420]  N. Semiconductor, "Power spectra Estimation", (November 1980),  
[421]  Y. Jin, "Signals and Spectra (3)", Jiao Tong University, (2008-09-19),  
[422]  I. J. Wassell, "Power and Energy Spectral Density", Online: www.cl.cam.ac.uk 
[423]  C. A. Bouman, " Digital Image Processing", (13 January 2014),  
[424]  B. Hassibi, "EE160 Handout number 5: The Wiener-Khintchine Theorem", (26 January 2010), Online: 
http://www.ee2.caltech.edu 
[425]  G. Matz and F. Hlawatsch, "Time-varying power spectra of nonstationary random processes",in Time-
Frequency Signal Analysis and Processing: A Comprehensive Reference, ed. B. Boashash, Oxford, UK. 400–409, 
(2003) 
[426]  M. Sandsten, "Time-frequency analysis of non-stationary processes: an introduction", (2013), Online: 
Lund University, Center for Mathematical Sciences 
[427]  W. Lu and N. Vaswani, "The Wiener-Khinchin Theorem for Non-wide Sense stationary Random 
Processes", arXiv preprint arXiv:0904.0602, (2009) 
[428]  A. Bruscat and C. M. C. Talo, "Spectral analysis of non stationary processes using the Fourier 
Transform", Brazilian Journal of Probability and Statistics, Vol. 18, pp. 69–102, (2004) 
[429]  A. Demir, "Analysis and simulation of noise in nonlinear electronic circuits and systems", University of 
California, Berkeley, (1997),  
[430]  F. Römer, "Some notes on time varying convolution integral", Technische Universitat Ilmenau, Online: 
http://www2.tu-ilmenau.de/nt/en/private_home/roemer/TimevaryingConvolution.pdf 
[431]  C. Fliu, "Chapter 5: Linear system: random process", Xidian University, Online: 
http://web.xidian.edu.cn/cfliu/files/20121125_153218.pdf 
[432]  G. F. Margrave, "Theory of nonstationary linear filtering in the Fourier domain with application to 
time-variant filtering", Geophysics, Vol. 63-1, pp. 244-259, (1998) 
[433]  A. Moctezuma and J. Tu, "An overview of cochlear implant systems", (2011),  
[434]  W. A. D. Ham, and D. Ricketts, "Phase noise in oscillators", ed. Harvard University.  

http://pcwww.liv.ac.uk/~awolski/Teaching/Liverpool/PHYS370/AdvancedElectromagnetism-Part2.pdf
http://commons.wikimedia.org/wiki/File:Dielectric_responses.svg
http://www.cmi.univ-mrs.fr/~gallouet/licence.d/int/part2.pdf
http://www.cmi.univ-mrs.fr/~gallouet/tele.d/tele90/envoi1-cours.pdf
http://www.cmi.univ-mrs.fr/~gallouet/tele.d/tele90/envoi1-cours.pdf
http://www.cis.rit.edu/class/simg713/Lectures/Lecture713-11.pdf
http://www.cl.cam.ac.uk/
http://www.ee2.caltech.edu/
http://www2.tu-ilmenau.de/nt/en/private_home/roemer/TimevaryingConvolution.pdf
http://web.xidian.edu.cn/cfliu/files/20121125_153218.pdf


301 
 

[435]  P. A. Martin, "Mécanique statistique avancée", Ecole Polytecnique Fédérale de Lausanne, Online: 
http://itp.epfl.ch/webdav/site/itp/shared/import/migration/coursEPFL.pdf 
[436]  P. Hanggi and P. Jung, "Colored noise in dynamical systems", Advances in chemical physics, Vol. 89, 
pp. 239-326, (1995) 
[437]  W. M. Sansen, "Low-noise wide-band amplifiers in bipolar and CMOS technologies", Vol. 117, ed. 
Springer. (1991) 
[438]  T. G. M. K. a. L. K. J. V. F N Hooge, "Experimental studies on 1/f noise", Reports on Progress in Physics, 
Vol. 44, pp. 1981,  
[439]  K. Kundert, "the fracpole suite", designer guide community, version 1.b, (June 2008),  

 

 

http://itp.epfl.ch/webdav/site/itp/shared/import/migration/coursEPFL.pdf

