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GENERAL INTRODUCTION 

 

Neuropsychiatric disorders, such as Autism Spectrum Condition (ASC) or schizophrenia (SZ), and 

neurodegenerative diseases, such as Alzheimer’s disease AD , represent an enormous burden to afflicted 

individuals and their families. Contrary to rare brain diseases which impact less than 0.001% of people, these 

common brain diseases are striking more than 1% of the world-wide population and their heritability is also 

very high with more than 50% chance of transmission (Table 0.1). Some of these diseases begin early in life, 

are life-long, and damage the patients’ self-perception, productivity and relationship to others. Mental 

disorders also have a cost for the society which have been estimated to about 800 billion euros per year in 

Europe in 2010 (Olesen et al., 2012) and the average cost per European citizen was evaluated around € 5.550 

per year. )mportantly, many of brain diseases have no morphological phenotypes, such as Alzheimer’s disease 
in which predominant morphological abnormalities (such as plaques or tau entanglement) can be used as 

pathological diagnosis.  

 

 
Table 0.1: Key features of 9 mental disorders. Life prevalence, heritability and specific features are shown. 
From (Sullivan et al., 2012). 
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However, molecular biomarkers of each brain diseases are lacking and objective medical diagnosis 

and efficient drug treatments are not available yet. Fortunately, common brain diseases, such as SC or ASC, 

involve the interaction of a large number of genes (polygenicity) in combination with non-genetic risk factors, 

such as environmental factors like child mistreatment (McCarroll en Hyman, 2013). Therefore, genetic 

information can provide invaluable insight on brain disorders for four reasons that are intrinsically linked: to 

understand and diagnose each brain disease as well as to design and follow response to drug treatments. To 

diagnose neuropsychiatric disorder, psychiatrists use standard classification, namely the Diagnostic and 

Statistical Manual of Mental Disorders, 5th Edition (DSM-5) (2013). This manual is based on well-stratified and 

characterized psychiatric disorders. However, recent data from genetics, cognitive neuroscience or imaging 

argue that psychiatric disorders are much more heterogeneous as we may have thought (Hyman, 2007). 

Moreover, the DSM defines disorders in terms of arbitrary lists of symptoms, and diagnosis is thus biased 

(McCarroll et al., 2014). Contrary to other common polygenic diseases such as cancer or immunologic diseases, 

neurobiologists studying brain diseases cannot, ethically and practically, sample the human brain for bench 

experiments. Thereby, genetic analysis will play a key role to improve and refine clinical diagnosis of 

individuals with mental illnesses.  

While understanding the complexity of mental disorders is an important goal of neurogenomics, 

providing better treatments is also crucial. Current psychiatric medications are based on drugs discovered 

between 1949 (lithium) and 1951-1957 (neuroleptics: 1951, chlorpromazine, Henri Laborit & Pierre Deniker, 

Sainte-Anne Hospital, Paris; 1957, haloperidol, Paul Janssen) which can only treat a subset of symptoms such 

as antipsychotic drugs antagonizing D2 dopamine receptors (McCarroll et al., 2014). And no significant 

improvement has been done since then. What slow down the discovery of new therapeutic agents is the lack 

of insight into the molecular mechanisms and anatomical basis of brain diseases. Across all levels of analysis 

in medicine, molecular data have proven to be the most important information to identify and validate drug 

targets and to discover biomarkers specific to each mental disorders (Hyman, 2012; Jack en Holtzman, 2013). 

Altogether, the facts highlighted here stress the utmost importance to dissect the underlying 

neurobiology for each mental disorder to have a chance to objectively diagnose them and cure all afflicted 

individuals. The complex polygenic nature of brain diseases suggests that truly multidisciplinary approaches 

involving neurobiology, neurogenomics, chemistry and physics must be performed to identify relevant 

biological markers of each brain diseases. As a first step of this rising challenge, neurogenomics analysis can 

be used to filter out relevant biological pathway and eventually develop dedicated molecular diagnosis assay 

(Figure 0.1). 
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Figure 0.1: From Bed to Bench. A novel molecular diagnosis assay of neuropsychiatric disorders (right; from 
Munch, Le Cri ) based on intraneuronal tracking (middle) of Nitrogen-Vacancy-color center fluorescent 
nanodiamonds (right).  

 

 

OUTLINE of the PhD MANUSCRIPT 

 

This manuscript contains the research work carried out during my three years of PhD (October 2012 – September 2015). This work was supported by a public grant overseen by the French National Research 

Agency (ANR) through the "IDI 2015" project (Initiative Doctorale Interdisciplinaire) funded by the IDEX 

Paris-Saclay, ANR-11-IDEX- 0003-02. Most of the work was done at ENS Cachan in the Biophotonics team (PI 

Prof. François TREUSSART) before it moved to Laboratoire Aimé Cotton  LAC, CNRS UMR9188, Université 

Paris Sud and ENS Cachan) in Orsay, and in the Neuropathophysiology team (PI Prof. Michel SIMONNEAU) of Centre de Psychiatrie et Neurosciences , Sainte-Anne Hospital, (CPN, INSERM UMR894, Université Paris 

Descartes). The LAC’s team has developed the applications of nitrogen-vacancy (NV) color centers in diamond 

nanocrystals to fluorescence bioimaging. Other activities of LAC researchers on NV center comprise 

nanomagnetometry and quantum information processing. The main research topics of the CPN’s team is the 

functional analysis of genetic mutations and the discovery of dysregulated gene networks based on functional 

genomics in the context of neuropsychiatric and neurodegenerative diseases.  

 

This manuscript contains four chapters.  

The first chapter details the complex polygenic architecture of mental disorders that combines 

common and rare genetic variants which synergistically impair specific biological pathways such as synaptic 
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plasticity. Then, two widespread approaches, namely electrophysiology and super-resolution nanoscopy, 

commonly used to address the question of the functional impact of genetic mutations associated to 

synaptopathies are described. Finally, we demonstrate the disease relevance of monitoring the intraneuronal 

transport, by using state-of-the-art bioinformatics meta-analysis of schizophrenia and ASC gene datasets. 

The second chapter shows that fluorescent nanodiamond (fND) appears to be the probe of choice to 

record intraneuronal transport dynamics. This chapter starts with a brief review of organic and inorganic 

fluorescent probes potentially useful for such a study. Then, the production, physical properties and bio-

applications of fNDs are described. Finally, we detail our experimental procedure to internalize fNDs inside 

neurons dissociated from mouse embryo, and to image motions of fND-containing cargos. Internalization 

pathway and cytotoxicity are also discussed.  

The third chapter is dedicated to the quantitative analysis of fNDs trajectories and to the validation 

of the single particle tracking (SPT) assay. We first discuss the choice of the SPT software and the 

measurement of the localisation precision of our live-cell imaging setup. Then, we review common SPT 

analysis tools to study dynamical processes and we explain how we automatically detect the STOP and GO 

binary motion, characteristic of microtubule-based transport. Finally, we validate the intra and inter-

experiment stability of the fND tracking assay  and we demonstrate the sensitivity of this approach to 

nanomolar concentrations of pharmacological compounds.  

The fourth chapter is devoted to the application of the fND tracking assay to measure the functional 

impact on the intraneuronal transport of brain disease-related genetic risk factors. We first review the 

neurobiologists’ Toolbox commonly used for in vitro and in vivo expression of brain disease-related genes. 

Then, we evaluate the techniques sensitivity to subtle changes impacting either the microtubule tracks  (1st 

order perturbation), or the mitochondria (2sc order perturbation), or the transcription machinery located in 

the nucleus (3rd order perturbation). Whether it is functionally close to the intraneuronal transport 

mechanism or far from it, we observe significant impairment of the intraneuronal transport  when mimicking 
the effect of brain disease-related genetic risk factors. Altogether, we prove this nanoparticle-based 

technology to be sufficiently sensitive to screen the functional impact of genetic variants, paving the way for 

future development in translational nanomedicine. 
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1.1 Introduction 

This chapter draws the global framework of my PhD. It emphasizes the need to scrutinize the 

intraneuronal transport endophenotype in order to evaluate the functional impact of genetic mutations at the 

neuron scale, leading to the development of a novel molecular diagnosis assay. We first describe the polygenic 

architecture of brain diseases which relies on a complex combination of common variants of low penetrance 
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(i.e. effect) and rare variants of high penetrance, called genetic risk factors  (McCarroll et al., 2014; Veltman 

en Brunner, 2012). Current genetic evidences converge on specific molecular complexes and pathways such 

as postsynaptic components of excitatory synapses (Fromer et al., 2014; McCarroll en Hyman, 2013; McCarthy 

et al., 2014; De Rubeis et al., 2014). The next part therefore details recent achievements in understanding the 

functional impact of these genetic variants in synaptic plasticity using electrophysiology and super-

resolution imaging, with the description of some results I’ve obtained apart from my PhD project. Eventually, 

using state-of-the-art bioinformatics analysis on Schizophrenia and ASC gene datasets (Chang et al., 2015; 

Gilman et al., 2012), we demonstrate in the last part of this Chapter 1 that abnormal endophenotypes 

associated to these mental disorders might also be due to impairment of the intraneuronal transport.   

 

1.2 Polygenic architecture of psychiatric diseases combining 

common and rare genetic variants. The failure of linkage studies 0’s and 0’s  and candidate-gene association studies 0’s and 000’s  in their effort to identify disease-associated genes in neuropsychiatric disorders started to highlight 

the polygenic architecture of mental illnesses and urged neurogeneticists to develop new approaches to tackle 

this challenge. Briefly, the first genetic approach aims at identifying genomic segment (loci) that are enriched 

within neuropsychiatric disorders in families with multiple affected individuals. Even though it did not work for ASC and Schizophrenia, this approach was successful for familial Alzheimer’s disease. The later disease 
displays a Mendelian pattern of inheritance, with the finding of highly penetrant loci, for which in vitro 

mimicking leads to recent breakthrough in the field (Choi et al., 2014; Rovelet-Lecrux et al., 2006). The second 

genetic approach is based on the underlying biological knowledge of the disease and is thus hypothesis-driven 

and biased: once appropriate genes are selected, association studies are conducted to check if a particular 

allele of one gene is enriched in cohort of affected subjects compared to healthy control individuals. The 

traditional family-based genetic studies being unsuccessful for complex polygenic diseases, neurogeneticists 

shifted toward population-based genetic studies. 

Since 2009, and thanks to innovation in sequencing technologies, unbiased analysis of the entire 

genome conducted on large cohorts of affected versus unaffected individuals has been demonstrated to be a 

powerful approach for the study of multifactorial brain diseases. Common-Variant Association Studies (CVAS, 

also referred to as GWAS for Genome-Wide Association Studies) and Rare-Variant Association Studies (RVAS) 

for the discovery of common variants of low penetrance and rare variants of high penetrance respectively, 

allow to decipher the underlying polygenicity of mental disorders (Figure 1.1 and Figure 1.2).  

In this section, we address the polygenic architecture of mental disorders with the description of the 

concepts and the methods standardly used to unravel brain disease-related common and rare variants. 
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Figure 1.1: Polygenic architecture of mental disorders. Allele frequency represents a continuum in human 
populations, with cut-offs between common  and rare  being somewhat arbitrary. The frequency of common 
variants and the large range of frequencies of rare variants are displayed along with the methodologies used to 
detect different types of variations. From (McCarroll et al., 2014).  
 

1.2.1 Genome-Wide Association Studies for common variants 

GWAS have evolved over the last ten years into a powerful tool for investigating the genetic 

architecture of human diseases. Before going further, one needs to take a brief detour through human 

population history to understand the concept of Common Disease/Common Variants, and how CVAS studies 

are conducted (Bush en Moore, 2012; McCarroll en Hyman, 2013; McCarroll et al., 2014).  

If more than 7 billion human beings inhabit the Earth today, only a far smaller number of people (few 

thousands individuals) of our species were living 5000 generations ago (i.e. 100 000 years ago). At each 

generation, several dozen of de novo mutation appeared (see section 1.1.2) and all of our 23 chromosomes 

pairs recombined each other. Therefore, after the filtration of natural selection, the dramatic expansion of 

human populations from smaller groups of ancestors has profoundly fashioned the patterns of variation that exist in human genomes in our modern society: the sequence variation called polymorphism  that was 
present in those small, ancestral populations is today common and found throughout the world. GWAS aims 

at evaluating such polymorphisms on thousands of genetic backgrounds and in diverse environmental 

contexts.  

Human populations contain about 10 million common sequence polymorphisms and whole-genome 

sequencing has permitted these polymorphisms to be systematically catalogued, as by the 1000 Genomes 

Project (Durbin et al., 2010; Project et al., 2012). Moreover, due to the chromosomal recombination effects, 

some polymorphisms (the so called Single Nucleotide Polymorphism, SNPs) near one another on a 

chromosome are often transmitted together to the next generation without any chromosomal recombination between them. This phenomenon is called linkage disequilibrium  and such a region is called haplotype . 
These genomic segments, or haplotype, are typically tens of kilobases long and are called locus  loci  if 
several) and encompass several genes (only one third span one gene) (Figure 1.2). Therefore, from this 
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knowledge, it is possible to genotype only a few hundred thousand well-selected SNPs across the genome and 

then statistically infer the others. Practically, to conduct such a GWAS study, around one million of DNA 

sequences (DNAseqi for  SNPi + Σ SNPinfered)) are studied using a DNA microarray chip for each individual from 

the case/control cohorts (McCarroll et al., 2014). 

Considering the concept of Common Disease/Common Variants, GWAS aims to identify alleles that are 

more common in individuals affected by common human disease than in unaffected ones. The first successful 

GWAS was published in 2005 (Klein et al., 2005), in which the authors investigated patients with age-related 

macular degeneration and only two SNPs were found significantly enriched in cases versus controls. Indeed, 

due to multiple hypothesis testing, GWAS demand a high level of statistical evidence for relationship to 

disease, with a typical threshold of p = 5×10−8 (Lander en Kruglyak, 1995). Consequently, larger cohorts are 

required to reach this level and to have a chance to detect a genetic variant. For this reason, GWAS applied to 

psychiatric disorders appeared for many years to be unsuccessful. For example, the most deeply studied 

neuropsychiatric disorders, namely Schizophrenia (SZ), did not allow establishment of sufficiently high 

number of patients and GWAS studies were always underpowered. As international collaborations around SZ, 

namely Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC), have expanded sample 

size, GWAS studies are finding far more genetic risk factors. Years after years, by increasing the size of cohorts, 

PGC uncovered 5 more loci in 2011 using 10,000 cases (Lee et al., 2012), then 22 more loci in 2013 (Ripke et 

al., 2013) and the up-to-date in 2014 showed a total of 108 loci using 36,989 cases and 113,075 controls 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).  

Such studies have a direct impact on the understanding of mental disorders because they are pointing 

out several individual genes for further biological and functional analysis. Indeed, GWAS are creating an initial molecular short list  for Schizophrenia and in close future for Bipolar Disorder and ASD, each of them being 

currently underpowered (Anney et al., 2010; Weiss et al., 2009). Nevertheless, GWAS by itself failed to explain 

common mental disorders because the penetrance of common genetic variants is low, contrary to other 

components of the polygenic architecture of neuropsychiatric and neurodegenerative diseases (Figure 1.1 and 

Figure 1.2). 

 

1.2.2 Rare and de novo variants: SNVs, Indels & CNVs 

Apart from common genetic polymorphisms, which are inherited from ancestors (could have been 

rare at this time i.e. 100 000 years ago), recent genetic variants in the modern populations have arisen. These 

variants are rare and relatively unfiltered by natural selection, thus likely to have more deleterious effects. 

Rare variants can either be transmitted from parents with no natural selection or be de novo (Figure 1.1 and 

Figure 1.2) (Krumm et al., 2015; McCarroll et al., 2014). Predicting the pathogenicity of rare mutations in novel 

genes is particularly challenging and the identification of these mutations requires large (international) 

collaborations. However, it is greatly facilitated by the identification of recurrent mutations in patients with 

similar disease phenotypes, allowing detailed genotype-to-phenotype studies to be carried out. 
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The first clue of these rare variants came from Copy Number Variants (CNV) found in the genome of 

a non-negligible proportion of patients displaying either ASC or Schizophrenia. CNVs differ from Insertion-

Deletion (indels) and Single-Nucleotide Variants (SNV also previously referred as SNP) based on their DNA 

size. When SNV correspond to only one nucleotide change, indels are small insertions or deletions of 1-1000 

nucleotides whereas CNV are large insertions or deletions of more than 1000 nucleotides (Figure 1.2). As 

studies of CNVs have expanded, more than a dozen loci have been found in Schizophrenia at which large (>200 

kb), recurring deletions or duplications are present in 0.1–1% of affected individuals but are 3–30 times rarer 

in the general population (Rees et al., 2014a). As described in (Sanders et al., 2011), large (500 kb) de novo 

CNVs found in the genome are observed several times more frequently in patients with autism than in controls. 

However, these CNVs are randomly distributed across all the genome and, only a small minority of the disease-

associated CNVs are recurrent at specific sites within the genome (they are called recurrent CNVs; see section 

1.4.2.). Moreover, a large number of genes are included in one CNV and therefore, it is difficult to determine if 

the damaging effects are mediated by a single gene or by interactions among genes within the CNV. 

 

 

Figure 1.2. Common brain diseases are induced by many genetic risk factors that change the gene 
expression or function. These genetic variants can be classified into 4 types with respect to the number of 
nucleotide involved: SNV, InDel, CNV and GWAS Loci. Another classification can also rely on their occurrence 
frequency for a given disease: common, rare and de novo variants from highly frequent (more than 10 over 100) 
to lowly frequent (less than 1 over 1 million). GWAS Loci are the common variants whereas the other ones can be 
both rare and de novo variants. The penetrance of a genetic variant is inversely proportional to its frequency in 
the overall population.   
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As rare variants are not frequent enough to stand out from association studies like CVAS, the search 

for such a rare mutations, including de novo mutations, requires unbiased whole-genome or whole-exome 

sequencing. Most rare-variant studies have focused on the protein-coding parts of the human genome (the 

exome), thus allowing the detection of missense mutations, which are likely to be more penetrant. Moreover, 

the exome comprises only about 1.5% of the human genome, thus requiring less sequencing than the whole 

genome, and so larger number of patients can be sequenced within one study.  

Rare-variant studies can be performed following two main approaches: case-control and trios. As in 

CVAS, case-control studies for rare mutation detection involve sequencing of a large number of affected versus 

unaffected individuals. On the other hand, the trio-based studies only focus on mutations present in child but 

not his parents (called de novo mutations). Most genomes contain about 77 new mutations not present in parent’s genomes and usually about 0–2 of these new mutations are present in the exome, and about half of 

them will affect the sequence of an encoded protein. De novo mutations are now well studied and have been 

proved to play a prominent role in both rare (syndromic) and common (sporadic) forms of neuropsychiatric 

diseases such as ASC, Schizophrenia or intellectual disability  (Fromer et al., 2014; Iossifov et al., 2014; 

McCarthy et al., 2014). At each generation, approximately 74 de novo SNVs, 3 indels and 0.02 CNVs arise in the 

sibling genome compared to his parents (Veltman en Brunner, 2012).  

 

1.2.3 Network-based approach to unravel impacted biological pathways 

Identification of disease-related genetic risk factors can be used for diagnostic purposes, especially for 

monogenic diseases. However, mutations by themselves are poorly informative on the underlying biology of 

pathogenesis and disease evolution. Rather, understanding in which biological process the proteins coded by 

the altered genes are engaged is of crucial importance to unravel the molecular basis of brain disorders. 

Several approaches can be instrumental to this purpose. The most frequently used are protein-protein 

interaction (PPI) (Gonzalez en Kann, 2012), network-based analysis (Cho et al., 2012) and gene ontology 

study (Shah et al., 2012), which are often performed altogether.  

Proteins are constitutive of all organisms. In order to mediate metabolic and signalling pathways, and 

other cellular processes, proteins interact with other proteins, with RNA and /or with DNA. A mutation of the 

gene coding for a protein can have a dramatic deleterious effect on the protein functions (disruptions in 

protein-DNA interactions, protein misfoldings, new undesired interactions… . Therefore, mapping the 

physical PPI can provide a vast source of molecular information. Furthermore, PPI networks can elucidate the 

molecular basis of disease, which in turn can be useful for prevention, diagnosis, and treatment.  

Practically, in PPI network (see section 1.4), the nodes represent the proteins and the lines connecting 

them represent the interactions between them. Physical PPI networks map the link of real protein 

interaction, detected through experimentation like co-immuno-precipitation, which is thus biased by an a 

priori knowledge. However, physical PPI network has evolved in more complex and integrated genotype-to-

phenotype functional networks, less biased and more informative. Indeed, by assuming such a relationship 
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in polygenic brain disorders, not only are physical PPI between two proteins taken into account but also the 

probability that these two proteins share a genetic phenotype (e.g. shared GO annotations, shared biological 

pathways, shared tissue-specific expression, shared interaction partners or similar domain composition… . 
These functional network-based approaches, such as NetBag+ (see section 1.4, Figure 1.5), have been shown 

to be a powerful alternative approach to identify significant enrichment of specific molecular function, 

biological processes or cellular component (Cho et al., 2012). 

In particular Gene Ontology (GO)-based computational tool like DAVID (Huang et al., 2009b) can be 

used to identify over-represented GO categories in a given gene set. This bioinformatics tool can of course be 

performed on the starting list of significantly altered genes from CVAS and RVAS neurogenomics data to have 

a first idea of the highest altered GO classes. Practically, these GO terms belong either to a biological process 

(BP), to a molecular function (MF), or to a cellular component (CC). The enrichment study of a particular GO 

category begins with two sets of data: the set of interest of size M and a reference set of size N (usually the 

whole human genome). Then, for a given GO category, we will have m genes of the set M belonging to this GO 

versus n genes of the set N. Enrichment of this GO is stated if, knowing that n genes among the N genes of 

reference are in this GO class, the occurrence of having m genes among the M genes of interest was not by 

chance (p-value less than 0.05, after multi-testing adjustment) (Shah et al., 2012). 

 

1.2.4 Conclusion 1.2 

In this section, we discussed about the polygenic architecture of mental disorders displaying various 

genetic risk factors that change the gene expression and function, and mentioned that network-based 

approaches and gene ontology classification can jointly unravel the relevant biological pathway impacted in 

each polygenic brain disease. These neurogenomics techniques made it possible to achieve major 

breakthrough, such as the discovery of potential impairment of neurobiological mechanisms like chromatin 

remodelling, transcription machinery or synaptic plasticity in Schizophrenia and ASC (McCarthy et al., 2014; O’Dushlaine et al., 2015; De Rubeis et al., 2014). However, how can a given microscopic genetic mutation 

induce a given macroscopic abnormal phenotype? These genotype-to-phenotype relationships are still poorly 

understood, and it is therefore of crucial importance to develop new tools to measure the functional impact of 

brain disease-related genetic risk factors. 

 

1.3 Functional impact of synaptopathy-related genetic variants 

Although key leaders in the field of psychiatry proposed a more integrated phenotype analysis based 

on connectomics (Akil et al., 2010), there are increasing genetic evidences that converge on specific molecular 

complexes, with postsynaptic components of excitatory synapses being the most important one in both 

Schizophrenia (Glausier en Lewis, 2013) and ASC (Peça et al., 2011), but also in Alzheimer’s disease (Kirov et 

al., 2011; Penzes et al., 2011). To allow neurobiologists to get these so called synaptopathies under scrutiny 
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(Ting et al., 2012), several powerful methodologies have been developed in many different fields, ranging from 

transgenic models to neurobiological techniques to microscopic approaches. 

Therefore, we describe in this section two of the most powerful techniques standardly used to study 

the synaptic plasticity and which allow recent achievements in the understanding of the functional impact of 

psychiatric risk factors on postsynaptic excitatory synapses. First, intracellular and extracellular 

electrophysiological recording techniques and their recent applications in ASC and Schizophrenia are detailed. 

Then, super-resolution nanoscopy is briefly described followed by recent achievements in a context of brain 

diseases. Some personal results are shown for these two approaches that were performed for other projects from the CPN’s group.  

 

1.3.1 Electrophysiology and brain disorders  

Electrophysiology techniques 

Electrophysiology is the study of the electrical properties, applicable at different scale of biological 

systems ranging from single ion channel proteins to whole organs like brain. All the related techniques rely on the Ohm’s law V=R.I. The measurements of the electric potential difference (V) or current (I) changes in 

neurons, and particularly action potential activity, have made it possible to understand fundamental 

neurobiological mechanisms. Moreover, they have shown to be invaluable approaches to evaluate the 

functional impact of psychiatric risk factors likely to induce electrophysiological abnormalities related to 

postsynaptic or pre-synaptic dysfunctions. Practically, electrical activity can be recorded from in vivo brain, 

acute brain slice or in vitro cultured neurons using either a solid conductors or a glass pipette filled with 

electrolyte solution. Mainly three different classical electrophysiology techniques exist depending on the 

electrode position (inside, upon or outside) with respect to the plasma membrane of the neurons, leading to 

either intracellular or extracellular recording of electrical activity. Here we only focus on intracellular 

recording using the whole-cell patch-clamp strategy (used in Chapter 2), and extracellular recording (used in 

this section). 

One technique to record intracellular electrical activity is the patch-clamp technique (see Figure 2.15 

in Chapter 2), which was developed by Erwin Neher and Bert Sakmann, rewarded by the Nobel Prize in 1991 

(Neher en Sakmann, 1976; Sakmann en Neher, 1984). Contrary to conventional intracellular recording, which 

consists in perforating the neuron membrane with a sharp electrode, whole-cell patch-clamp recording takes 

a different approach. A patch-clamp microelectrode is a micropipette with a tip diameter of few micrometers, 

filled with electrolyte solution, the composition of which mimics the intraneuronal one. The microelectrode is 

slowly driven onto the cell membrane until the microelectrode tip attaches a piece of the cell membrane (the patch , thus showing a high resistance sealing . By applying high pressure through mouth suction, the small 
patch of membrane in the electrode tip is cracked, thus allowing stable intracellular recording of electrical 

activity. Then, briefly, two different approaches of intracellular recording can be applied: voltage and current 

clamp. The former (the latter resp.) technique allows the operator to fix ("clamp") the cell potential (current 
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resp.  at a specific value and then subsequently record the current voltage resp. , based on the Ohm’s law. 
This makes it possible to measure how much ionic current crosses the plasma membrane at any given voltage, 

or how membrane voltage adjusts to a given current. We tested this approach to internalise fluorescent 

nanodiamonds in primary culture of hippocampal neurons, as described in Chapter 2. 

Pioneered by David Hubel and Torsten Wiesel (Nobel Prize in Physiology or Medicine in 1981), 

extracellular recording consists in introducing an electrode into the brain of a living animal or into an acute 

brain slices and further detect electrical activity that is generated by the neurons close to the electrode tip. 

Not only is the spontaneous electrical activity being recorded, but also extracellular electric field can be 

recorded through electrical stimulation in a given brain sub-region (e.g. granular cells in dentate gyrus of 

hippocampus) which will synchronize many neurons displaying the same specific synaptic connection in 

another brain sub-region (e.g. CA3 pyramidal neurons through Mossy fiber synapses in the Stratum Lucidum; 

Figure 1.3). This approach is used in this section to study the functional impact of DYRK1A gene 

overexpression on NMDA-independent long-term potentiation (LTP) in Mossy Fiber synapses.  

Eventually, due to limitations in studying larger spatial distribution of neuronal activity using classical 

techniques, electrophysiological activity monitoring can also be performed with light, with simultaneous 

optical perturbation and measurement of membrane voltage (Hochbaum et al., 2014). Optical recording of 

electric activity was thus developed through the well-known voltage-sensitive dyes, calcium sensitive 

fluorescent proteins and more recently under Karl Diesseroth’s lead, engineered ion channels to allow 

tremendous achievements (Chen et al., 2013; Fenno et al., 2011; Ferezou et al., 2006) 

 

Electrophysiology reveals functional impact of psychiatric risk factors 

In the recent literature, the whole-cell patch-clamp intracellular recording and extracellular field 

potential recording are both broadly used to understand the functional impact of psychiatric risk factors and 

to evaluate drug treatments on animal models.  

Neurexins constitute a well-known family of proteins impacted in ASC and Schizophrenia as reviewed 

in (Südhof, 2008). In human, neurexin genes NRXN1, NRXN2 and NRXN3 are known to code for trans-synaptic 

cell adhesion molecules that organize and synchronize assembly of synapses, as well as determine their 

spatiotemporal properties and diversity. Mutations in human NRXN1 and NRXN2 genes have been associated 

with autism and schizophrenia, while genetic variants in human NRXN3 have been associated with autism, drug addiction and obesity. The group of Thomas S“dhof’s Nobel Prize of Physiology or Medicine 2013), 

which is one of the most active in the world, tries to dissect the functional impact of these different risk factors. 

Due to its historical expertise, this group used electrophysiology approach extensively. Combining 

intracellular mEPSC and mIPSC (miniature Excitatory/Inhibitory PostSynaptic Current) and extracellular 

fEPSP (field Excitatory PostSynaptic Potential) recording with conditional or constitutive transgenic knock-in 

and knock-out mouse, they were able to address and answer very precise and specific neurobiological 

questions (see Chapter 4, Section 2 for details on the neurobiologists’ toolbox . Consequently, they were able 
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to demonstrate that NRX3 performs distinct pre- or postsynaptic functions in different brain regions by 

distinct mechanisms, as well as the unexpected specific role of an alternative splicing of this protein. Indeed, 

extracellular part of presynaptic NRX3 protein mediates trans-synaptic regulation of postsynaptic AMPA 

receptors in the hippocampus, whereas in the olfactory bulb, intracellular part of presynaptic NRX3 protein 

mediates presynaptic GABA release (Aoto et al., 2013, 2015).  

Another very recent example are from non-coding variants in the human miR137 gene locus in which 

SNVs were associated to ASC and schizophrenia (Siegert et al., 2015). The authors dissect the functional 

consequence of four associated risk alleles. They performed fEPSP recording to study the functional impact of 

these genetic variants on the NMDA-independent LTP, as miR137 is enriched in the dentate gyrus. They 

proved that rare SNV of miR137 caused down-regulation of the presynaptic target genes CPLX1, NSF and SYT1, 

leading to impaired vesicle release, and therefore impaired induction of Mossy fiber long-term potentiation 

and deficits in hippocampus-dependent learning and memory.  

Eventually, electrophysiological approaches are also extremely powerful techniques to follow 

response to treatment and some researchers are working on the development of new drugs to cure or at least 

treat ASC. For example, one of the leader group in this field is the Yehezkel Ben Ari’s group from )NMED in 
Marseille (France). Combining electrophysiological recording and behavioral phenotyping, this group was 

able to prove that the administration of bumetanide –a diuretic drug– during the delivery process induces the 

release of oxytocin in pregnant mouse model of autism, which a rescue of the abnormal phenotypic traits. 

Conversely, when oxytocin is blocked in naïve pregnant mothers, offspring get autistic-like features. This 

discovery can lead to direct translational application to short circuit the autism pathogenesis in the offsprings 

during gestation (Tyzio et al., 2014). 

Altogether, these three examples we highlighted stress how unique and powerful electrophysiological 

techniques are to unravel the functional impact of psychiatric-related genetic risk factors in primary neurons 

culture and acute brain slices. 

 

Down Syndrome-related DYRK1A overexpression impairs synaptic plasticity 

Aside from my PhD project, I contributed to another project of Pr. SIMONNEAU in collaboration with Dr. 

Valérie CRÉPEL (INMED, Marseille). The goal of this project (Viard et al., in preparation; see Appendices) is to 

understand whether or not Dyrk1a gene overexpression impacts NMDA-independent LTP in the context of 

Trisomy 21 (Down syndrome). Dyrk1a displays high levels of expression in dentate gyrus, CA1 and CA3 

hippocampus subregions (Figure 1.3a). Therefore, we established transgenic mouse (called 189N3) with an 

extra copy of Dyrk1a gene, allowing to study the functional effects of a dosage of Dyrk1a similar to that found 

in Down syndrome afflicted individuals. We then performed fEPSP recording in the hippocampus to analyse 

the synaptic plasticity at the afferent Mossy fiber synapses in the stratum lucidum following electrical 

stimulation in the dentate gyrus (Figure 1.3b). We found that the non NMDA-dependent LTP was absent in the 

dentate gyrus-CA3 synapse (p = 0.0057) (Figure 1.3c). Material and methods are described in Appendices. 
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Figure 1.3: DYRK1A gene overexpression impacts non-NMDA dependent LTP at the dentate gyrus-CA3 
hippocampal synapse. (a) False-color image of ISH from Allen Brain Atlas showing DYRK1A transcript 
expression in adult mouse hippocampus. Scale bar: 500 m. (b) Description of the Mossy Fiber synapses between 
DG (stimulation) and CA3 in the stratum lucidum (recording). (c) Summary data of mossy fiber field-EPSPs 
(fEPSPs) recording. Left: electrical field depression following stimulation before (black) and after (red) for WT 
and 189N3 TG acute slice. Middle: time course of the fEPSP amplitudes before and after mfLTP induction (black 
arrow) for three experiments. Right: data are means ± SEM and calculated from 4 different mice with 3 slices per 
mouse for both genotypes. ** corresponds to p<0.01. 
 

1.3.2 Super-Resolution nanoscopy and brain disorders 

Super-Resolution techniques 

In addition to electrophysiology, one of the most successful techniques to evaluate the functional 

impact of synaptopathy-related genetic risk factors is the fluorescence microscopy. Indeed, it is commonly 

used to study dynamic processes inside living cells with exquisite sensitivity and specificity. More precisely, 

super-resolution fluorescence microscopies are techniques with resolution better than the diffraction limit. 

They allow to perform a structural analysis of subcellular entities and macromolecular complexes having sizes 

of only a few tens of nanometres. 

New super-resolution techniques split into two main groups. The first group encompasses techniques 

that exploit non-linear response of the fluorescence under patterned light excitation. Stimulated emission 

depletion microscopy (STED) (Hell en Wichmann, 1994; Willig et al., 2006) and structured illumination 

microscopy (SIM) (Gustafsson, 2000, 2005) belong to this category. The second group includes techniques 
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that are based on randomized single-molecule localization, namely photo-activated localization microscopy 

(PALM)/stochastic optical reconstruction microscopy (STORM) (Betzig, 1995; Betzig et al., 2006; Rust et al., 

2006). Other closely related techniques, such as RESOLFT, sptPALM or uPAINT, have been developed and 

further used in neurosciences, leading to tremendous breakthrough. As these techniques are out of the scope 

of this PhD manuscript, their description and specific applications in neurosciences will not be provided here 

and readers are invited to refer to the following reviews (Hell, 2007; Huang et al., 2009a; Maglione en Sigrist, 

2013; Tønnesen en Nägerl, 2013).  

However, as we will apply dSTORM super-resolution nanoscopy in the last part of this subsection, a 

brief description of this technique is given hereafter. Direct stochastic optical reconstruction microscopy 

(dSTORM) uses conventional fluorescent probes and enable imaging of cellular nanostructure with a lateral 

resolution of ~20/30 nm. In contrast to PALM, dSTORM experiments start with fluorescent probes being in 

the bright ON state and will immediately be transferred to a metastable and reversible OFF state, with a 

lifetime ranging from 100 ms to several seconds. Then, a sparse subset of fluorophores is getting back to the 

ON state, either spontaneously or by photoinduction through irradiation with a second laser at 405 nm 

wavelength. The fluorescence is detected using a wide-field fluorescence microscope equipped with a 

sensitive CCD array detector and the centroid coordinates of single molecule spots are precisely and 

accurately determined. Repetitive activation / localization process allows a temporal separation of spatially 

unresolved structures and a super-resolution image is finally reconstructed using all single-molecule 

localizations (Figure 1.4a). When using a localisation-based super-resolution approach, it is important to 

minimize artefacts in data analysis, thus being sure that only one single fluorophore emits at each frame within 

a diffraction-limited area (van de Linde et al., 2011). As an example, a major breakthrough in the mechanism 

of chromatin remodelling has been recently achieved using dSTORM super-resolution microscopy (Ricci et al., 

2015) . 

 

Super-resolution nanoscopy reveals some functional impact of psychiatric risk factors 

The combination of super-resolution techniques with human genetics and transgenic mouse model 

very recently appeared to be a powerful approach to elucidate gene function in health and disease, and 

therefore to understand the functional impact of genetic variants.  

The first example came from STED nanoscopy that was used to reveal nanoscale defects in the 

dendritic spine morphogenesis in a mouse model of Fragile X Syndrome (FXS) (Wijetunge et al., 2014). Related 

to ASC, FXS is associated with impairment of the human gene FMR1 (Fragile X Mental Retardation 1) located 

on the X chromosome. This human gene codes for the FMRP protein. By mating FMR1-KO mouse with YFP-KI, 

the authors obtained volume intraneuronal staining and used STED to precisely image the dendritic spines in 

acute brain slices. Surprisingly, they found that the spine morphogenesis in FMR1-KO mice was not impacted, 

except for age-dependent and brain region-dependent alterations, which are only detectable at the nanoscale. 
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Another example came from SIM super-resolution microscopy. Common and rare variants in the ANK3 

gene, encoding ankyrin-G protein, have been associated with bipolar disorder, schizophrenia, and ASC. This 

protein is a scaffolding adaptor that links membrane proteins to the actin/spectrin cytoskeleton and organise 

them into specific domains in the plasma membrane. Using SIM super-resolution microscopy, Smith et al. 

found that ankyrin-G forms distinct domain nanostructures within the spine head and neck (Smith et al., 

2014). Therefore, these results bridge the gap between a putative post-synaptic disease-associated gene and 

a functional key role in dendritic spine sub-compartment at the nanoscale, opening directions for basic and 

translational investigation.  

Super-resolution microscopy is also an extremely powerful technique to follow response to drug 

treatment. For example, by using STORM approach, Dudok et al. demonstrated that chronic THC 

administration induces endocannabinoid receptor (CB1) downregulation in a dose-dependent manner 

(Dudok et al., 2014). CB1 receptors are known to mediate the cannabis effects in humans, with strong and 

long-lasting cognitive deficits for chronic users. Practically, to unravel the nanoscale organization of CB1 in a 

cell type– and subcellular compartment–specific manner, the authors combined electrophysiology and 

confocal morphology analysis with high-throughput STORM microscopy on acute brain slice to characterize 

CB1-positive synapses.  

Altogether, the three examples we highlighted here stress how unique and powerful super-resolution 

techniques are to unravel nanoscale organisation of protein complex and the functional impact of psychiatric-

related genetic risk factors in primary neurons culture and acute brain slices. 

 

AUTS2 is a key regulator of synaptic plasticity  

Aside from my PhD project, I contributed to another project of Pr. SIMONNEAU in collaboration with 

Antoine TRILLER’s group )BENS, Paris . The goal of this project (Lepagnol-bestel et al., in preparation; see 

Appendices) is to decipher the role of Auts2 in synaptic plasticity through its direct action as a postsynaptic 

protein. Auts2 is a key gene with numerous mutations found in Autism and Schizophrenia (Oksenberg en 

Ahituv, 2013) (see Chapter 4, section 4.4 for more genetic details). Auts2 was recently demonstrated to be 

located either in the nucleus where it plays the role of a transcriptional and chromatin regulator (Gao et al., 

2014), or in the growth cones of early-stage developing neurons with an unknown function (Hori et al., 2014). 

Here, we decided to use super-resolution nanoscopy to precisely localized Auts2 proteins inside the dendritic 

spines (Figure 1.4). Auts2 clusters were found to be both in the dendritic shaft and spines. Half of the dendritic 

spines have clusters only inside the spine head, 16% only in the neck, 26% in both neck and head and only 

10% of the dendritic spines show no Auts2 clusters. Moreover, the number of Auts2 clusters per dendritic 

spines was measured to be around 4 in the head or neck and 8 in the entire dendritic spine. We also found 

linear correlations of the number of Auts2 clusters with respect to the spine area, the spine length and the 

head width (Figure 1.4f-h). Eventually, we observed that the sub-compartmentalization of Auts2 clusters is 

dependent of the synaptopodyne protein (Figure 1.4i-k).  



Chapter 1 - Genetic architecture of mental disorders 

 

28 

 

 

Figure 1.4: Superresolution dSTORM imaging of Auts2 clusters inside dendritic spines. (a-c) Sub-
compartmentalization of Auts2 clusters inside dendritic spines as shown by dSTROM imaging of Auts2-Alexa647 
(a, top) merged with conventional imaging of actin stained with phalloïdine-Alexa488 (a, bottom and b). Scale 
bar: 1µm. (c) Auts2 clusters were found to be both in the dendritic shaft and spines. Half of the dendritic spines 
have clusters only inside the spine head (green), 16% only in the neck (salmon), 26% in both neck and head 
(purple) and only 10% of the dendritic spines show no Auts2 clusters (blue). (d) Histogram of the Auts2 cluster 
per dendritic spines, with in average 4,1±0.3 clusters/spine. (e) Cumulative probability density of the number of 
Auts2 cluster in neck (salmon), neck&head (purple) and head (green). Inset: bar plots show the average of Auts2 
cluster per spine sub-region, with 3.6±0.2 clusters in the head, 3.5±0.5 clusters in the neck and 7.1±0.6 clusters in 
the entire spine (neck&head). (f-h) Linear correlations of number of Auts2 clusters with respect to spine area (f), 
spine length (g) and head width (h). (i-k) The sub-compartmentalization of Auts2 clusters is dependent of 
synaptopodyne. (i) Conventional imaging of Actin (green), synaptopodyne (red) and super-resolution dSTORM 
image of Auts2 (white) and merged image showing that Auts2 clusters are preferentially localized in the neck for 
synpo-positive spines and in the head for synpo-negative spines. (j) Proportion of dendritic spines displaying 
Auts2 cluster only inside the spine head (green), only inside the neck (salmon), in both neck and head (purple) or 
with  no Auts2 clusters (blue) for dendritic spines without (top) or with (bottom) synpatopodyne. (k) 
Quantification of the number of Auts2 clusters for each of the previous classes. All data are given as mean±s.e.m.; 
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figures inside bar plots in (e) represent the number of sample. Statistical significance was calculated using the 
Mann-Whitney test (***: p<0.001). Scale bars: 1µm 

 

1.3.3 Conclusion 1.3 

Thanks to neurogenomics analysis of common brain diseases, a large repertoire of psychiatric risk 

factors has been catalogued, combining common and rare genetic variants. We briefly described two powerful 

approaches standardly used to gain insight into the functional impact of synaptopathy-related genetic 

variants, namely electrophysiology and super-resolution microscopy.  

However, synaptic plasticity is not the only biological pathway which is impaired in neuropsychiatric 

and neurodegenerative diseases. Several sparse evidences point out abnormalities of the intraneuronal 

transport associated to brain diseases (Hirokawa et al., 2010; Millecamps en Julien, 2013), and one can wonder 

if this is a random observation or a generic rule. 

 

1.4 Disease relevance of monitoring the intraneuronal transport 

As discussed in the last part of section 1.2, one strategy to unravel which biological pathways are 

impacted in a given brain disease consists in combining functional network biology approach with gene 

ontology (GO) classification (Cho et al., 2012; Gonzalez en Kann, 2012; Shah et al., 2012). Several network-

based approaches have been developed so far but NETwork-Based Analysis of Genetic associations (NETBAG) developed in 0  by the Vitkup’s group proved to be the most relevant. Therefore, in this section, we briefly 

describe NETBAG+ and subsequently apply this method to a bioinformatics meta-analysis of schizophrenia 

(SZ) gene datasets, followed by a GO enrichment analysis of the established network. Finally, we apply GO 

enrichment analysis to de novo variant datasets of SZ and ASC. All bioinformatics analysis described in this 

part were performed by Yann LOE-MIE, PhD. 

 

1.4.1 Brief description of the NETBAG+ network-based approach 

As mentioned in section 1.2, geneticists developed the network-based approaches to understand 

which biological pathways are impaired in a given brain disease (Figure 1.5 and Figure 1.6). The specificity of 

NETBAG+ is that it assumes a genotype-to-phenotype relationship. Therefore, it is a more complex and 

integrated functional network, than standard physical PPI networks. Here, each edge of the network is 

scored given the probability that the corresponding pair of genes is involved in the same genetic phenotype 

(e.g. shared GO annotations, shared biological pathways, shared interaction partners, shared tissue-specific 

expression or similar domain composition… . Usually, edge widths are proportional to the likelihood score 

between the two genes (Figure 1.5a), and node sizes are proportional to the gene contribution to the sub-

network (e.g. hub genes with many connections like HTT or MYH9 in Figure 1.6). Such a phenotype network 

is established based on all genes in the human genome (control genes) (Figure 1.5a). Then, for a given disease, 

different types of genetic variations (CNV blue; SNV green; GWAS red) are mapped on this network (Figure 
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1.5b). Finally, sub-network with the highest additive score is selected (black circle) and the statistical 

significance of this result is measured by a randomization test (Chang et al., 2015; Gilman et al., 2011, 2012). 

 

 

Figure 1.5: The NETBAG+ functional approach for gene cluster identification. (a) A phenotype network is 
established based on all genes in the human genome. From (Gilman et al., 2011). (b) For a given brain disease, 
different types of genetic variations are mapped on this network (CNV blue; SNV green; GWAS red). From (Gilman 
et al., 2012). 

 

Because several genes are included in one CNV region, the NETBAG method was historically applied 

to identify a biological network affected by CNVs in ASC (Gilman et al., 2011). Interestingly, they found that 

the GO establishment and maintenance of cell polarity  is ranked in the top 10 enriched GO for this disease. 

This biological process is well-known to be regulated by microtubule organisation which is molecular motor-

dependent (Kapitein en Hoogenraad, 2015). Then, this approach was extended (NETBAG+) to take into 

account all possible genetic variants (SNV, CNV, GWAS) and was applied to schizophrenia (Gilman et al., 2012). 

At this time, the initial gene dataset was smaller than the one we use hereafter. 

 

1.4.2 Application of NETBAG+ to a gene dataset of Schizophrenia 

To elucidate functional networks perturbed in schizophrenia, we applied NETBAG+ computational 

method to a set of genes affected by de novo SNVs (n = 609) (Fromer et al., 2014) and CNVs (n = 58) (Rees et 

al., 2014b). We also used GWAS data from a multi-stage schizophrenia genome-wide association study 

involving up to 36,989 cases and 113,075 controls (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). This study identified 108 loci from which 347 genes were found associated to 

schizophrenia. From this repertoire of 1014 altered genes, we found that the largest network comprises 559 

genes (p = 0.012) (see Appendices). We used DAVID methodology (Huang et al., 2009b) to identify Gene 

ontology terms that are significantly enriched among network gene annotations (Table 1.1). We first observed 

an alternation between transport-related and synapse-related gene ontology (in red and green respectively in 

Table 1.1).  

 



Chapter 1 - Genetic architecture of mental disorders 

 

31 

 

 

Table 1.1: Alternation between transport-related and synapse-related GO terms significantly enriched in 
the NETBAG+ functional network (see Appendices). GO enrichment analysis of the 559 genes was performed 
with DAVID (Huang et al., 2009b). N is the number of network genes annotated with a given GO term and X is the 
total number of human genes in the same GO. p_adj values in the table represent p-values adjusted by Benjamini-
Hochberg procedure in DAVID. MF: molecular function; BP: biological process; CC: cellular component. 
 

 

The three most significant GO term are Microtubule-Based Process (MBP), Actin Cytoskeleton and 

Synaptic Transmission, whose altered gene for each of them are shown in Table 1.2. When considering only 

these genes for the network mapping of NETBAG+ (Figure 1.5b), we obtained the sub-network shown in 

Figure 1.6.  
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Table 1.2: Genes of the network associated to the three first GO categories from Table 1.1. Type of variants 
(SNV, CNV or GWAS) are indicated in parenthesis. 
 

 

The GO MBP contains genes encoding proteins that are associated with intraneuronal transport such 

as MARK4 which phosphorylates microtubule-associated proteins, KIF1A, KIF13B or KIF20B which are 

members of kinesin family, DNAH1, DNAH3 and DNAH9 which are members of dynein family and DCTN3, 

another member of DCTN protein family essential for dynein activity in vivo (McKenney et al., 2014). Here, 

seven KIF genes are part of the 559 genes network, indicating a statistically significant enrichment 

(p < 0.0001) for the KIF superfamily that includes 45 genes (http://www.genenames.org/genefamilies/KIF). 

The actin subcluster (GO: 00015629; Actin Cytoskeleton) contains actin-related proteins (ACTA2, CAPZA1, 

CTNNA2) and myosins (MYO15A, MYO18A or MYO18B). The synapse sub-cluster (GO: 0007268; Synaptic 

Transmission) contained synaptic adhesion molecules such as neurexin (NRXN1), components of the 

presynapse (RIMS1), receptors of glutamatergic synapses (GRM3, GRIN2A, GRID2), AKAP9 that directly 

interacts with NMDA receptors and voltage-gated calcium channels (CACNA1C, CACNB2). It also includes the 

dopaminergic receptor (DRD2) that is the target of all effective antipsychotic drugs, as already mentioned the 

General Introduction of this PhD Manuscript.  

 

http://www.genenames.org/genefamilies/KIF
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Figure 1.6: The NETBAG+ functional sub-network of genes belonging to the three highly enriched GO 
classes (described in table 1.1 and 1.2). 

 

1.4.3 Intraneuronal transport as a relevant endophenotype of ASC. 

The genetic overlapping of mental disorders such as SZ, ASC or intellectual disability (ID) was recently 

reported. In 2013, the genetic relationship between five major psychiatric disorders, from which ASC and SZ, 

was demonstrated using CVAS gene sets (Group en Consortium, 2013). Interestingly, they showed significant 

overlaps between SZ and ASC. Then, in 2014 and 2015, studies reported overlapping between SZ, ASC and ID 

de novo mutation gene sets (Fromer et al., 2014; Li et al., 2015). 

We therefore evaluated the genetic overlapping between the GO MBP category previously studied, and 

SZ, ASC and ID de novo mutation gene sets, as for (Fromer et al., 2014). Using Babelomics v4.2 (Medina et al., 

2010), we found statistically significant overlapping of the MBP GO term with the ASC and SZ-related de novo 

mutation repertoires (p = 0.00049 and p = 0.00013 respectively), as shown in the bar plot of Figure 1.7. 

Conversely, no overlapping was found between MBP GO category and IDs de novo mutation repertoire. 
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Altogether, these findings suggest that microtubule-based processes impairment may result in abnormal 

endophenotype for both schizophrenia and autism. 

 

 

Figure 1.7: Enrichment of Gene Ontology Microtubule-Based Process  in Schizophrenia (SZ) and in 
Autism Spectrum Condition (ASC). In Venn diagram (left), the overlap area indicates the number of genes 
between/among different disorders and MBP. 

 

1.4.4 Conclusion 1.4 

In this section, we showed that the NETBAG+ network-based methodology combined with gene 

ontology classification is a powerful approach to unravel biological pathways impacted in common polygenic 

mental disorders. By applying it to a meta-analysis data set in schizophrenia, we demonstrated the enrichment 

of the Microtubule-Based Process GO category. Moreover, we also obtained enrichment of this MPB GO class 

for ASC gene data set, and subsequent overlapping between schizophrenia and ASC, as already reported 

elsewhere. Altogether, for the first time, we showed that intraneuronal transport is a relevant endophenotype 

of neuropsychiatric diseases. Our study illustrates the complex and evolving view of the polygenic architecture 

of psychiatric diseases and suggests a possible change from synapse to transport paradigm.  

 

1.5 Conclusion of Chapter 1 

In this chapter, we briefly drew up the state-of-the-art of mental disorders genetic risk factors. We 

showed that the clinical phenotypes of these diseases are associated to genotype enrichment of mutated genes. 

Among them, genes related to synaptic function are found, with still the open question of whether dendritic 

spine impairment is the cause or the consequence of the neuropathology. Well-established and new 

techniques help to unravel abnormal endophenotypes in synaptic plasticity. Electrophysiology, super-

resolution microscopy and optogenetics just started to give novel insights into the nanoscale organization and 

the dynamic of chromatin remodeling (Ricci et al., 2015), transcription machinery (Chen et al., 2014; 

Normanno et al., 2015) and synaptic plasticity (Dudok et al., 2014; Smith et al., 2014). 
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However, several genetic and functional neurobiology studies recently pointed out the role of 

abnormal intraneuronal transport of proteins in neuropsychiatric diseases (Hirokawa et al., 2010; Kitagishi et 

al., 2015; Millecamps en Julien, 2013). Several protein kinases regulating the membrane trafficking have been 

shown to be involved in ASC (Kitagishi et al., 2015). Using a bioinformatics meta-analysis of recent 

schizophrenia and ASC gene datasets, we found an enrichment of altered genes coding for proteins involved 

in the intraneuronal transport. This neurobiological mechanism is of utmost importance for the establishment 

and maintenance of sub-neuronal compartments, such as synapses, because it delivers important materials to 

this specific locations far from the cell body (Figure 1.8). 

The current paradigm in the field is that patients with mental disorders display abnormalities of the 

synaptic function. However, because the intraneuronal transport is upstream to the synaptic function, our 

hypothesis is that abnormalities of the intraneuronal transport might induced endophenotypes of mental 

disorders. Therefore, the same way as electrophysiology can be instrumental to detect subtle abnormalities 

of the synaptic plasticity, we now have to develop a methodology that can be instrumental to detect slight 

impairment of the intraneuronal transport. 

 

 

Figure 1.8: A possible change of paradigm in the field of brain diseases: from synaptic defect to transport 
defect.  
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2.1 Introduction 

From the Chapter 1, we know that brain diseases are based on polygenic risk factors. Then, we know 

that numerous impacted genes are engaged in specific biological processes such as chromatin remodelling or 

synaptic plasticity. In the last section of this chapter, we have showed that brain disease-related genetic risk 
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factors may induce abnormalities in microtubule-based transport and can therefore be a relevant biomarker 

of ASC and Schizophrenia. Overall, these observations prompted us to mimic in vivo the subtle gene expression 

changes linked to brain disease-related genetic variants and subsequently quantify their functional impact on 

the intraneuronal transport using primary cultures of hippocampal neurons.  

To this aim, the use of fluorescent probes seem to be the appropriate tool as they are powerful and 

versatile tools for in vivo and in vitro spatiotemporal study of complex biological mechanisms. However, given 

the plethora of genetically and non-genetically encoded nano-sources of light, the optimal approach to address 

the aforementioned question has to meet several criteria: (i) keep the homeostasis integrity of neurons (i.e. 

no genetic modification; no cytotoxicity); (ii) allow long-term bioimaging in neurons (i.e. perfect 

photostability, no cytotoxicity); (iii) reach high spatiotemporal resolution (i.e. high brightness and large 

signal-to-background ratio, perfect photostability); (iv) produce high-throughput data (i.e. reproducibility and 

efficiency of the method). 

In this second chapter, we first detail the different types of fluorophore suitable for intracellular 

dynamical studies. Then the production and physical properties of fNDs are described, along with some 

biological applications. Finally, the different strategies tested to internalize fNDs inside neurons are discussed, 

as well as the wide-field microscopy technique used to perform single-particle tracking. We conclude this 

chapter with the qualitative description of the intraneuronal motions, validating our experimental pipeline 

 

2.2 Fluorescent probes for intracellular transport recording 

The usual tools employed to study the intracellular transport are based on nano-source of light. These 

nanotools rely on the fluorescence phenomenon, first describe in the late 16th century by Nicolás Monardes, a 

Spanish physician and botanist, and refined by George Gabriel Stokes in 1852 who created the term of fluorescence  fluo-rite and opal-escence). From organic fluorescent probes (e.g. fusion protein GFP family; 

synthetic dyes: Cy3, Alexa488) to solid-state inorganic fluorescent probes (e.g. fNDs, Qdot), a plethora of 

fluorescent probes can be used to dissect biological processes (Figure 2.1a). These probes are standard tools 

in all biology laboratories around the world, and they are becoming even more essential with super-resolution microscopy. )ndeed, in Ernst Abbe’s day and until the achievement of super-resolution techniques, better 

images were obtained with better microscope objectives (i.e. less aberrant and with larger numerical 

aperture), but today better images come from improvement of fluorophores photophysical properties (Marx, 

2013). Therefore, it is important to be aware of all available probes and of their main physical characteristics, 

to be sure that we use them in a good manner (see Appendices).  
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Figure 2.1: Florescent probes and in vivo imaging. (a) Relative size of commonly used organic and inorganic 
fluorescent probes, with IgG antibody for the comparison. (from http://zeiss-campus.magnet.fsu.edu/ ). (b) The 
NIR window is ideally suited for in vivo imaging because of minimal light absorption by haemoglobin (650 nm). 
Reprinted from (Weissleder, 2001). 

 

2.2.1 Organic fluorescent probes 

Organic fluorescent probes are the most widespread probes for fluorescence microscopy in biology. They can be coupled  to biomolecules peptides, proteins, oligonucleotides) or to cell compartments in three 

main ways: (i) by a covalent coupling (e.g. EDC/NHS amidation, click chemistry, halo-tag… ; ii  by affinity 
coupling (e.g. two conjugated antibody, streptavidin-biotin… ; iii  by producing in vivo an exogenous fluorescent protein e.g. transfection, transduction… . The techniques of ImmunoCytoChemistry (ICC), 

transfection and transduction with adeno-associated virus (AAV) are described in Chapter 4, section 4.2 and 

Appendices, as we used them for this work.  Synthetic organic dyes such as Cyanine Cy , Cy …  or Alexa-dye Alexa , Alexa …  are widely 
used for immunostaining. As shown in Figure 2.1a, they are small in size (few nanometers), and they present good performances brightness, stability…  for super-resolution microscopy (dSTORM or STED). Apart from 

the organic dye molecules, the genetically encoded fluorescent proteins constitute another category of organic 

fluorophores widely used for bio-imaging. The Green Fluorescent Protein (GFP), originating from jellyfish, was 

the first fluorescent protein to be discovered. It was in 1962 when Osamu Shimomura purified it from the 

Aequorea Victoria jellyfish (Shimomura et al., 1962). GFP protein emits green fluorescence light under blue 

light excitation. It was only in 1992 that Douglas Prasher cloned the sequence of GFP and Martin Chalfie 

expressed this sequence in vivo (Prasher et al., 1992). Later on, the group of Roger Tsien reported the first 

crystal structure of GFP, showing the way for the creation of GFP mutants, to finally obtain different color 

variants and improve the fluorescence signal and photostability (Ormö et al., 1996; Shaner et al., 2005; Zhang 

et al., 2002). Shimomura, Chalfie and Tsien were awarded in 2008 with the Nobel Prize in Chemistry for their 

work on genetically encoded fluorescent proteins. The reason why GFP became so popular in biology is that 

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/introduction.html
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with no external labelling, cellular compartments, whole cells, tissues or organisms can be labelled using the 

appropriate GFP-cDNA. 

Some drawbacks such as photobleaching and cytotoxicity arise when using organic fluorophore. 

Although methods have been developed to reduce these effects (by a weak excitation power, or by using 

oxygen scavenger systems), they still exist and makes organic dyes not the appropriate fluorescence probes 

for long-time observations of dynamic biological processes such as intracellular transport. Moreover, the use 

of chimeric protein-fluorophore constructs is limited in neuronal studies for some reasons (low transfection 

efficiency, uncontrolled protein overproduction and fluorescent protein photobleaching), to which we have to 

add toxicity for the transfected cells due to both the technique (lipofectamine induced depolarization of 

neurons) and the protein overexpression (usually, transfection has to be done early in hippocampal neurons 

development to limit mortality). Another possibility is to use knock-in transgenic mouse construct to control 

a 1:1 stoichiometry (see Chapter 4 section 4.2). 

Nevertheless, organic fluorescent probes have been successfully used to study intracellular transport. 

We will present some recent examples but because transfection coupled to standard fluorescence microscopy 

is a very common way to study intraneuronal transport, we will only focus on super-resolution and optogenetic approaches. Pointillism  super-resolution techniques STORM and PALM were shown to be 

powerful techniques to unravel new neurobiological mechanisms (Xu et al., 2013). However; the former 

approach does not allow dynamic live cell imaging and to our knowledge, the latter approach was never 

applied to study the intraneuronal transport dynamics (Hoze et al., 2012; Nair et al., 2013). Otherwise, even 

though STED super-resolution technique is based on raster scan, it was shown to be a powerful technique to 

dissect synaptic vesicle movement at high frame rate (Westphal et al., 2008). However, STED is not very suited 

to quantitatively study the intraneuronal transport in a high-throughput manner as it is subject to low 

transfection rate, photobleaching (high laser power needed) and small region raster scanning. 

 

 
Figure 2.3: Local and reversible activation of microtubule-based transport with light. (Left) Assay and 
constructs. (Right) Peroxisome distribution in primary hippocampal neuron expressing PEX–LOV and MYO–PDZ 
when activated with light. Arrow heads point out spine with myosin. Scale bars, 5 µm. From (Bergeijk et al., 2015). 
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Another approach to investigate intraneuronal transport is the one developed first in  Kapitein’s group, 
and soon after in Cui’s group (Bergeijk et al., 2015; Duan et al., 2015). Using dedicated genetic constructs and 

optogenetics, they succeeded in controlling and positioning organelles and molecular motors with light. The 

former group achieved even more impressive breakthrough by positioning one organelle inside a dendritic 

spines (Figure 2.3left). However, while our goal is to monitor the intraneuronal transport, this strategy aims at dissecting some fundamental transport mechanism e.g. traffic laws, road map…  with optical manipulation 
of this process. Moreover, this approach is based on multiple transfections, leading to cytotoxicity and low 

throughput. But for sure, this optogenetic approach coupled with super-resolution microscopy, 

electrophysiology (Novak et al., 2013) and CRISPR/Cas9 genome engineering (Cong et al., 2013; Ratz et al., 

2015) will lead to breakthroughs in a close future.  

 

2.2.2 Inorganic fluorescent probes 

Even though fluorescent organic probes can lead to unprecedented achievements in the understanding 

of intracellular mechanisms, photobleaching and cytotoxicity of overexpressed chimeric proteins or synthetic 

dyes make them inappropriate for long lasting live cell imaging. During the last 20 years, inorganic fluorescent 

probes have been proposed as an alternative. However, the application of nanoparticles as fluorescent probes 

in biology requires some specific properties: 

 Small size: nanoparticles are highly mobile even in the viscous cellular environment. 

Additionally, for biomolecule tracking, the fluorescent probe must have a tiny size in comparison to the stained 

biomolecule, so that it does not impact its motion. 

 High brightness: as the cytoplasm contains auto-fluorescent proteins (e.g. NADPH and flavins), 

fluorescent nanoprobes have to be a strong emitter to achieve high signal-to-background ratio. Moreover, for 

in vivo imaging, these probes should emit in the far red region (figure 2.1b) 

 Biocompatibility: no toxicity for the cell and/or the organism, and should be easily degraded 

or eliminated for theranostic applications.  

 Well-defined surface chemistry for further functionalization with biomolecules. 

 

The most famous inorganic fluorescent particles are the semiconductor nanocrystals, so-called 

Quantum Dots (QDs) (Alivisatos, 2004), which are mostly composed of elements of the II/VI or III/V periodic 

table columns. Owing to their unique photophysical and photochemical properties, group II–VI (e.g. CdSe, CdS 

and CdTe) and III–V QDs (e.g. InAs/GaAs) have been widely used for many years to tackle biological questions 

both in vitro and in vivo (Biermann et al., 2014; Dahan et al., 2003; Gao et al., 2004).  

These nanocrystals are made of a few hundreds to thousands of atoms and the electron wave function 

is confined by potential barriers in the three dimensions, forming a point-like  structure. QDots 
photoluminescence characteristics stem from the small size of these particles leading to quantization of its 

energy levels making it possible to tune its emission wavelength (Alivisatos, 1996). The core size of typical 
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QDs is 2-10 nm and a shell of ZnS is necessary to stabilize the fluorescence properties (Figure 2.4a). Polymer 

coating of QDots is then mandatory to obtain stable colloidal suspensions and suitable chemical groups for 

further bioconjugation. All in all, the total size of the particles is in the range of 20-50 nm which is one order 

of magnitude larger than a single dye molecule. However, the advantages of QDots over organic dyes are that 

they have a brighter fluorescence signal, thanks to a higher absorption cross section, and better photostability, 

thus allowing observations and tracking over an extended period of time. 

However, QDs present also some drawbacks for biological applications, namely cytotoxicity and 

photoblinking. One of the main drawbacks of QDots for long-lasting bioimaging is the toxicity of its constitutive 

elements such as cadmium (Kirchner et al., 2005; Lewinski et al., 2008). The second drawback is related to 

photoluminescence binary state, alternating between bright and dark periods (Nirmal et al., 1996), which 

prevents from high fidelity single particle tracking (Figure 2.4). Yet, the blinking phenomenon can be reduced 

or even suppressed but at the expense of a higher photobleaching (Wang et al., 2009) or an increase of shell 

thickness (Mahler et al., 2008) (NB: Wang et al., 2009 was just retracted from Nature in November 2015 

because of artefacts). Even though, one can also take advantage of this phenomenon to distinguish single dots 

from aggregates, and actually single QDots tracking has led to tremendous breakthroughs in neurobiology 

with the study of extracellular post-synaptic receptor trafficking (Choquet en Triller, 2013). 

 

 
Figure 2.4: Structure and properties of QDots probes. (a) Schematic representation of a QDots probe. The 
inorganic CdSe core nanocrystal and ZnS shell (red) dictate the optical properties in a size-dependent manner. 
Organic surface coatings (grey) such as small molecules, peptides and amphiphilic micelles or polymers provide 
colloidal stability in biological buffers. Key features of the surface coating include PEG to reduce nonspecific 
interactions and reactive groups to enable conjugation of biomolecules. Biomolecules such as DNA, streptavidin 
and antibodies are conjugated to the surface to enable specific binding to biological targets. GFP and fluorescein 
dye are shown for size comparison. Scale bar, 5 nm. (b) Typical fluorescence images of a single QDots as observed 
by fluorescence microscopy showing changes in emission intensity (AU, arbitrary units). The intensity time trace 
illustrates the random alternation between on  and off  states, known as photoblinking, which is a signature 
feature of an individual QDots. From (Pinaud et al., 2010) 
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Application of QDots for intracellular transport study 

QDots have been successfully used not only to probe extracellular events with one quantum dot at a 

time, but also to probe intracellular events (Pinaud et al., 2010). Delivering nanoparticles into the cells require 

to cross the cellular membrane and many protocols have been developed for this purpose (Delehanty et al., 

2009). We present two strategies using endocytotic mechanisms to deliver QDots inside living cells: osmotic 

shock and receptor-mediated internalization. 

The former internalization approach was used by Maxime Dahan’s group (Courty et al., 2006; Pierobon 

et al., 2009). They developed a new methodology to track the motion of intracellular proteins (kinesin and 

myosin respectively) with a high sensitivity using semiconductor quantum dots (QDs). They incubated the 

kinesin or myosin-functionalized QDots complexes, which get spontaneously internalised inside vesicles and 

subsequently applied an osmotic shock to break the vesicles and release QDs into the cytoplasm. Kinesin or 

myosin-functionalized QDots are then free to move inside the cell (Hela cells) and they can be tracked using 

standard wide-field microscope. 

 

 

Figure 2.5: Receptor-mediated internalization of QDots in endosome and its subsequent tracking in axon 
of DRG neurons. (a) Microfluidic platform for single fluorophore imaging of axonal transport. (b) Trajectories 
of several endosomes moving in the same axon through the same field of view. The majority of endosomes move 
independently (black circles). Endosomes moving together or having trajectories crossing each others are shown 
in red and green for clarity. The blue arrows indicate the places where some trajectories paused at the same 
axonal location. (c) Fluorescently labelled organelles that are traveling along microtubules in an axon appear as 
diffraction-limited spots. At each time point, the central positions of those organelles (containing a single QDots) 
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are determined to high accuracy by fitting with a 2D Gaussian function. As organelles travel along the axon, their 
time-lapse central positions trace out the microtubule tracks along which they move. Cumulative trajectories 
depict densely packed microtubules that are otherwise unresolvable using conventional optical imaging. From 
(Mudrakola et al., 2009). 

 

Alternatively, Bianxiao Cui’s group used the receptor mediated approach to deliver QDots inside 

neurons (Chowdary et al., 2015; Cui et al., 2007; Mudrakola et al., 2009) (Figure 2.5). They dissected 

retrograde axonal transport of nerve growth factor (NGF) signals by tracking quantum dot functionalized with 

NGF (QD-NGF) in compartmentalized culture of rat dorsal root ganglion (DRG) neurons. To perform their 

experiments, DRG neurons are cultured inside a microfluidic chamber (Figure 2.5a) that separates the 

chemical environment of the distal axons from that of the cell bodies. Fluorescent QD-NGF are applied only to 

the distal axons where they bind to its membrane receptor and is subsequently endocytosed and retrogradely 

transported toward the cell body. Pseudo-TIRF (oblique illumination) imaging setup is restricted to the 

microchannels, so that only internalized and transported QD-NGF molecules are observed. Using this 

approach, they unravelled the binary STOP&GO motion of retrograde axonal transport (Figure 2.5b) and they 

were able to map part of the microtubule subnetwork (Figure 2.5c). 

 
Other inorganic probes for intracellular transport study 

Semiconductor QDots are not the only inorganic probes that have been used to study of intracellular 

transport. Gold nanoparticles or nanorods and Single-Walled carbon NanoTube (SWNT) are other inorganic 

probes whose their detection relies on different physical properties. Gold nanostructures use plasmonic 

resonances that can be excited with a laser in the visible range with subsequent thermal increase. Gold 

nanorods were used to study rotational dynamics of cargos at pauses during axonal transport in PC12 cell 

lines (Gu et al., 2012). Practically, transferrin-coupled gold nanorods were endocytosed and the rotational 

dynamics were imaged using Differential Interference Contrast (DIC). Another interesting example is the use 

of photothermal imaging of 5 nm gold nanoparticles functionalized with a nanobody anti-GFPs for long-term 

tracking of proteins in COS7 cell lines (Leduc et al., 2013). The strengths of these nanobody-coated gold 

nanoparticles are their small size, perfect photostability, high specificity, and versatility of use against GFP-

tagged proteins. However, this imaging technique requires high power laser and the internalization of this 

nano-complex was done by electroporation, which induced high mortality of primary neurons. 

SWNT are fluorescent probes that can be excited by an infrared laser. As previously described, 

endocytotic methods have the disadvantage that internalized particles are entrapped in endosomal 

compartments, which block their ability to reach specific intracellular targets. To solve this issue, Fakhri et. al. 

used electroporation to internalize HaloTag-coupled near-infrared fluorescent SWNT in Cos7 cells, previously 

transfected with kinesin-receptor halo. This lead to the intracellular formation of SWNT-kinesin complex that 

can be tracked by fluorescence microscopy. With this approach, the authors were able to get a high spatio-

temporal resolution mapping of intracellular fluctuations (Fakhri et al., 2014). However, as already 

mentioned, this experimental procedure is only applicable to cell lines which are far more robust than primary 



Chapter 2 – Fluorescent nanodiamonds for intraneuronal transport monitoring 

 

45 

 

neurons. Altogether, even though these inorganic probes brought interesting results for some biological 

system, to our knowledge, none of these techniques were used in primary neurons. 

 

2.2.3 Conclusion 2.2 

In this section, we detailed the standard labelling tools that are used to study intracellular transport 

and associated examples. From organic fluorescent proteins to inorganic probes, coupled with super-

resolution microscopy or optogenetic, these existing tools brought important breakthroughs in biology and 

neurosciences. However, none is these techniques were used to study intraneuronal transport in homeostatic 

native conditions. Indeed, either they overexpress some protein of interest (Bergeijk et al., 2015; Westphal et 

al., 2008), or they force the spatial arrangement of neurons (Mudrakola et al., 2009). Therefore, there is still a 

need for other alternative nanotools to quantitatively investigate the active transport inside primary neurons 

with high spatiotemporal resolution and without changing neuronal homeostasis. 

 

2.3 Production, physical properties and bio-applications of 

fluorescent nanodiamonds 

As we aim at developing a non-genetic and minimally invasive assay to spatiotemporally quantify long-

term intraneuronal transport, fluorescent nanodiamonds (fNDs) seem to be a probe of choice. Indeed, fNDs 

are emerging as versatile probe for both in vitro and in vivo bioimaging, taking advantages of their perfectly 

photostable emission in the far red, their high brightness and their absence of cytotoxicity. Therefore, in this 

section, we first describe production and physical properties of fNDs, before reviewing recent applications of 

fNDs in biology. For more detailed information, readers can refer to the two following reviews on the 

properties and applications of nanodiamonds and their comparison with silicon quantum dots for in vitro and 

in vivo long-term bioimaging (Mochalin et al., 2012; Montalti et al., 2015). 

 

2.3.1 Production of fNDs 

As already mentioned, getting a stable aqueous colloidal suspension of nanoparticles is challenging 

and NDs are not an exception. However, fNDs have the advantages of a surface chemistry that can be modified 

after the last step of its fabrication by strong acid and air oxidation leading surface chemical groups (in particular carboxyl  that ensures colloidal stability in water at p(≈  by electrostatic repulsion carboxylated 
fNDs have a negative surface charge as evidence by a zeta-potential value of about -40 mV in water at pH=7). 

Furthermore, diamond displays a chemical inertness, which prevents degradation and can also be 

instrumental for covalent biomolecule functionalization. 

Nanodiamond crystalline structure is based on tetrahedral sp3 hybridization (sp2 if graphite) 

(Figure 2.6a). Top-down and bottom-up approaches are used to synthetize nanocrystals diamond (ND) as 
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detailed below. Nitrogen vacancy color centers can be created in diamond combining the presence of nitrogen 

atoms as natural impurities and the generation of vacancies by irradiation with high-energy particles (protons 

in particular). NV centres are formed after thermal annealing (see details later in this section). Finally, ND 

oxidative treatment allows the removal of possible graphitic shell leading to stable, water dispersible, 

fluorescent NDs (fNDs). Moreover, fNDs emit in the far red and near infrared region (600-800 nm), which 

make them ideal for low-background in vivo detection (Figure 2.6b). Most results also demonstrated an 

unprecedented high biocompatibility of fNDs both in vitro and in vivo.  

 

 

Figure 2.6. Structural and emission properties of fNDs. (a) Molecular model of a single 5 nm ND after 
oxidative treatment purification. The diamond core is covered by a layer of surface functional groups, which 
stabilize the particle by terminating the dangling bonds. The majority of surface atoms are terminated with 
oxygen-containing groups (oxygen atoms are shown in red, nitrogen in blue; hydrocarbon chains in green and 
and hydrogen in white). From (Mochalin et al., 2012). (b) Comparison of the fluorescence spectrum (red curve) 
of NV centers in FNDs with the near-infrared (NIR) window of biological tissues. The black, dark gray, and light 
gray curves are the absorption spectra of H2O, oxygen-bound hemoglobin (HbO2), and hemoglobin (Hb), 
respectively. From (Vaijayanthimala et al., 2012) 
 

Nanodiamond production: HPHT & Detonation techniques The name diamond  comes from the ancient greek word α α ας  which mean unbreakable . Given 
its unique physical properties (e.g. optical, electrical or thermal), this material allows a broad range of 

applications. It exists under natural and synthetic form, but for the majority of the applications, the synthetic 

form is used. Most NDs used for bioimaging are prepared from commercial diamond powders resulting from 

ball milling of diamond microcrystals produced by high pressure high-temperature (HPHT) method (Korobov 

et al., 2013). NDs can also be synthesized by detonation techniques (Korobov et al., 2013; Mochalin et al., 

2012). Although they were not proved to be suitable for creating fluorescent NDs, other methods have been 

reported for ND production, such as laser ablation, plasma-assisted chemical vapor deposition (CVD), 

autoclave synthesis from supercritical fluids, ion irradiation of graphite, chlorination of carbides, electron 

irradiation of carbon onions and ultrasound cavitation (Montalti et al., 2015). 
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HPHT technique involves large presses that produce high pressures (∼6 GPa) at high temperatures 

(∼1500°C) and yielding micrometre-size diamond crystallites (100- 00 m . Graphite and metallic catalysts 

are placed in hydraulic presses for few hours, leading to graphite-diamond conversion. Then, other steps are 

needed to obtain nanometer-size diamonds. The most common size reduction technique consists in milling 

diamonds with hard balls (e.g. made of zirconium) in a planetary mill. Yet, this approach leads to irregular 

shape that could be responsible for breaking the membranes of endosomes (Chu et al., 2014). Finally, 

monodispersed diamond nano-powders with a size being hardly below 10 nm are obtained (Mochalin et al., 

2012). 

Another way to produce diamond nanoparticles under high-pressure high-temperature conditions is 

by using explosives. Indeed, smaller NDs can be prepared by detonation processes that yield aggregates of 

NDs with sizes of 4–5 nm embedded in a detonation soot (Danilenko, 2004; Mochalin et al., 2012). An explosive 

mixture (typically trinitrotoluene and hexogen in a mass ratio ranging from 40:60 to 70:30) provides both a 

source of carbon and energy for the conversion. The detonation chamber reaches temperature of ∼3000–
4000°C and pressure of ∼20–30 GPa. Additional purification steps are needed because NDs production is often 

impure due to contamination with other carbon allotropes, metals and oxide residuals, and generation of 

graphitic layers on the ND surface. What makes detonation ND unique is that surface hydrogenation of these 

NDs allows mono-disperse colloidal water solution with exceptional long time stability in a wide range of pH, 

and with high positive zeta potential (>60 mV) (Petit et al., 2013; Williams et al., 2010). However, detonation-

based fNDs suffer from low efficiency of the color center formation (Smith et al., 2009) and the low 

photostability (Bradac et al., 2010). 

 

Creation of NV centers in diamond 

NDs do not absorb light and do not show any luminescence unless they present structural crystal 

defects (Aharonovich et al., 2011). Whereas the emission of QDots results from quantum confinement effects, 

the emission of fNDs come from lattice defects that produce localized excited states upon light absorption. 

Interestingly, diamonds may host over 500 kinds of photon absorbing and/or emitting defects (color centers) 

(Zaitsev, 2000) and some of them have been used as single-photon sources at room temperature (Aharonovich 

et al., 2010; Wu et al., 2006). 

Diamond classification is based on its nitrogen content and its optical absorption. In general, diamonds 

containing nitrogen impurities are classified as type I while those with no measurable traces of nitrogen are 

type II (Walker, 1979). Only type I diamonds are suitable for producing intrinsic luminescent probes. In type 

I diamonds, the paramagnetism and optical absorption are due to the nitrogen impurities. They are sub-

divided into two categories, denoted type Ia (most of the natural diamonds) and type Ib (most of the synthetic 

diamonds). In type Ia, nitrogen is at a concentration up to 3000 ppm and clustered, whereas in type Ib 

diamonds, nitrogen is at a concentration of about 100 ppm, and impurities are isolated from each other. Then, 

in the typeII category, the nitrogen concentration is very low (<1020 atoms/cm3). It is divided into two sub-
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categories, the type IIa and IIb. The first one is the purest diamond, colorless and free from all impurities, while 

the second one contains high quantities of boron atoms, leading to semi-conductor properties. 

The general approach to produce bright fNDs compatible with a physiological environment and 

suitable for bioconjugation is schematized in Figure 2.7. This figure shows that two main strategies exist to 

prepare aqueous dispersions of fNDs, depending if nanometer-size reduction is done before or after the 

irradiation step. In both cases, the creation of NV centers in diamond crystals can be achieved by two ways: (i) 

with irradiation damage of type Ib diamond using high energy particle beam (electron, neutrons, ions) and 

subsequent thermal annealing (at temperature >800°C in vacuum); (ii) with direct implantation of nitrogen 

in pure (type IIa) diamonds and subsequent thermal annealing. In both cases, a surface sp2 graphitic shell is 

formed after the thermal treatment and oxidation step is thus needed to remove it. A benefit side-effect is the 

creation of surface carboxylate groups which enhance the colloidal stability. It is worth underlying that fND 

photoluminescence is related to the nature of the defect embedded in the diamond nanocrystal which implies 

that the emission spectrum cannot be tuned continuously like in the case of semi-conductor QDots, by 

changing size.  

Vacancy creation by irradiation relies on the mechanism described hereafter. As a charged particle 

passes through matter, part of its particle kinetic energy can be transferred by elastic collision to a lattice 

atom, leading to the removal of this atom from its normal lattice position. The ejected atom may cause a 

cascade of atomic displacements before eventually losing its kinetic energy and stop moving. This effect is 

significant when the incident particle is heavy (proton or alpha particle) or has an energy higher (a few MeV 

for electrons) than the displacement energy of the atom. For NV creation in the diamond lattice, various type 

of particles can be used: neutrons, alpha particles, protons or electrons. The defect creation efficiency varies 

with respect to the particle type and energy. Chang et al. developed a medium-energy (40 keV) He+ beam for 

mass production of NDs with high concentration of color centers. As a comparison, a single 40 keV He+ ion can 

create up to 40 vacancies as it penetrates diamonds, compared to the 0.1 and 13 vacancies generated by a 

2 MeV electron and a 3 MeV proton, respectively (Chang et al., 2008). 

 

 

Figure 2.7: Schematic representation of the two main strategies to prepare an aqueous dispersions of 
fNDs. From left to right: micro-sized diamonds (Ds) are reduced in size (NDs), then ion beam damaged and finally, 
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thermally treated to create color centers (Activated NDs ANDs). Thermal annealing produces a surface graphitic 
layer, which is eliminated by oxidation producing surface carboxylic groups together with other functions 
(anhydride and hydroxyl groups, not shown). In the alternative approach (from right to left), microdiamonds are 
first activated to produce fluorescent diamonds, which are then reduced in size and oxidized to produce fNDs. 
From (Montalti et al., 2015) 

 

This irradiation step is followed by a thermal annealing step. Performed under vacuum or inert gas, 

this step is compulsory for NV creation and in practical situation, the sample is exposed for 2 hours at a 

temperature of about 800°C. At such temperature, the vacancies start migrating and stabilize themselves in 

the adjacent site of the nearest substitutional nitrogen atom as this position is the most thermodynamically 

favorable one (Iakoubovskii en Adriaenssens, 2001). In the case of nanodiamond, the optimal values of 

temperature and timing of the annealing process are still open questions, but one can use experiments done 

in bulk diamond at ENS Cachan (France) and CEMHTI (Orléans, France) laboratories as a guide (Botsoa et al., 

2011). Interstitial atoms (carbon displaced during irradiation) also move upon temperature annealing and 

there is a competition between N-V formation and interstitials-V recombination. 

For biological applications, a high density of NV centers per nanoparticle is desired, so that irradiation 

of type Ib diamond is preferred, while for quantum information applications, single NV center is needed, thus 

implantation in pure type IIa diamond is more adequate.  

In all our studies, we used far-red emitting NV-center fNDs from HPHT type Ib NDs fabricated by 

Huan-Cheng CHANG’s group at Institute of Atomic and Molecular Sciences (Academia Sinica, Taiwan) and 

based on the following procedure irradiation. The nanodiamonds were radiation-damaged with a high-energy 

(3 MeV) proton beam, as detailed in Su et al. (Su et al., 2013). A thin diamond film (thickness<50 µm) was prepared by depositing ≈  mg of nanodiamond powder on a silicon wafer (1x1 cm2 size) and subsequently subjected to the ion irradiation at a dose of ≈ x 016 H+.cm-2. Afterwards, the radiation-damaged 

nanodiamonds were annealed at 800°C for 2 h to form fNDs. To remove graphitic carbon atoms on the surface, 

the freshly prepared fNDs were oxidized in air at 490°C for 2 h and microwave-cleaned in concentrated H2SO4–
HNO3 (3:1, v/v) at 100°C for 3 h. 

 

2.3.2 Optical properties of single fluorescent nanodiamonds 

The spectral region of fNDs can be tuned from the NIR to green or blue depending on the nature of the 

color center. Red-NIR emitting fNDs are broadly used in many fields of science. Here, the photoluminescence 

comes from the negatively charged nitrogen-vacancies (NV− centers) which are produced in type Ib diamonds 

together with their neutral counterpart NV0 (Rondin et al., 2010), as shown in Figure 2.8a. These centres show 

distinct Zero Phonon Line (ZPL) at 637.6 nm and 575.4 nm for the negative and neutral defects respectively. 

ZPL is the wavelength at which an excitation/relaxation process giving PL properties is not phonon assisted. 

It was shown that the ratio NV−/NV0 increases with respect to the size of the NDs and is enhanced when 

graphitic defects on the surface are removed. Another type of fNDs is the green emitting fNDs, which is 

produced in type Ia diamonds where the N atoms are clustered in the structure. Here the complex N–V–N 
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shows a ZPL at about 504 nm and a maximum absorption in the blue at 470 nm. This center emits exceptionally 

stable green fluorescence with a maximum center on 531 nm with a fluorescent quantum yield close to 1, an 

excited state lifetime of 16 ns and no photoblinking (Hsu et al., 2011; Wee et al., 2009). Eventually, the blue 

emitting fNDs stem from the N3 centers, which are composed of three nitrogen atoms surrounding a vacancy 

(Davies et al., 1992). The formation of N3 color center uses the same procedure as for creating NV center but 

with a pre-treatment with He+ ions followed by molecular N2+ ions beam (Himics et al., 2014). Finally, it is 

worth noting that other types of defects color centers can be found in fNDs. For example, embedded silicon-

vacancy (Si-V) color centers were created in NDs, grown by microwave plasma-enhanced chemical vapor 

deposition (CVD) (Neu et al., 2011). Negatively charged SiV– centers have a strong narrow-band fluorescence 

at room temperature with a 738 nm ZPL. SiV color centers in NDs have been recently observed by 

cathodoluminescence (Zhang et al., 2014). One basic example of bioapplication of SiV was shown in (Merson 

et al., 2013). 

 

 

Figure 2.8: Photophysical properties of NV-color center fNDs. (a) Normalized PL spectra of single NV– and 
NV0 color centers in NDs. The zero-phonon line (*) is an intrinsic feature of NV– (637 nm) and NV0 (575 nm). The 
inset shows the atomic structure of the NV defect, consisting of a substitutional nitrogen atom N associated with 
a vacancy V in an adjacent lattice site of the diamond crystalline matrix. From (Rondin et al., 2010). (b) Resolving 
multiple adjacent defects located in single NDs using STED super-resolution microscopy. STED rasterscan (blue 
to red colors) is superimposed to scanning electron microscopy image (grey color) of the same nanocrystal. From 
(Arroyo-Camejo et al., 2013). (c) Photostability of fND (red) versus fluorescent polystyrene nanospheres (blue) 
excited under the same conditions. From (Yu et al., 2005).  

 

From now on, we will only focus on the most famous fNDs, namely Red-NIR emitting ones. As shown 

in Figure 2.9a with a schematic description of the energy levels of the NV− center, the ground and excited states 

are triplet spin states of multiplicity type 3A and 3E respectively. There is also a metastable singlet state 1M of 

intermediate energy. When a photon is absorbed by the NV− center, the system is excited to the 3E state. From 

this state, either the system falls back to the ground state, or is trapped in a metastable state 1M if an inter-

system crossing transition occurs. The decay rate 3E →1M (0.005 ns−1) is low in comparison to the decay rate 

of the 3E→3A transition ≈0.0  ns−1) so de-excitation mostly occurs through the 3E→3A photoluminescent 

transition. Thanks to their perfect photostability (Figure 2.8c), NV defects can be investigated at the single emitter level and STED microscopy can be pushed to its record of resolution. Doing so, Stefan (ell’s group 
succeeded to resolve NV center down to 2.4 nm (Wildanger et al., 2012), and ENS Cachan team, in collaboration 
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with (ell’s team later showed that multiple adjacent defects located in single NDs can be imaged individually 

(Figure 2.8b) (Arroyo-Camejo et al., 2013).  

The brightness of individual fNDs depends on three main features: the fluorescence quantum yield, 

the molar absorption coefficient and the number of color centers per ND. NV-color center fNDs quantum yield  and fluorescence lifetime τ have been inferred by the team of Femius KOENDERINCK and showed a broad dispersion of  from 0% to 0% and τ from 0  ns to 40 ns,  being partly affected by unfavourable orientation 
of NV dipole relative to the surface ND (Mohtashami en Koenderink, 2013). The molar absorption coefficient 

of fNDs has been inferred by the team of Taras PLAKHOTNIK with an absorption cross-section of about 

0.95±0.25 x 10-16 cm2 (Chapman en Plakhotnik, 2011) which is of the order of magnitude of organic dyes 

(Table 2.1). The number of color centers produced in each ND is dependent on the fabrication process, but the 

largest concentration achieved to date in the team of H.-C. CHANG in Taiwan, correspond to about 15 NV centers per fND of size≈ 0 nm and 500 in fND of size ≈ 00 nm as estimated from overall fluorescence intensity 

comparison to single emitter reference.  

A direct comparison of the photoluminescence properties of a single QDots and fNDs with a single NV-

color center demonstrated that, at saturation of their excitation, PL intensity of fND with a single NV-color 

center is only three times smaller than the one of a single QDots (Faklaris et al., 2009a). However, the 

excitation power to reach the saturation level was two order of magnitude higher for fND than QDots.  

Table 2.1 summarizes the fluorescent properties of organic probes, QDots and fNDs and other characteristics such as the physical properties e.g. size, fluorescence stability… , production processes or 
biological properties e.g. toxicity… . 
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Table 2.1: Comparison of the fluorescent properties of organic dyes, QDots and fNDs. Values are from 
(Montalti et al., 2015; Schirhagl et al., 2013), except for (a) from (Chapman en Plakhotnik, 2011); (b) from 
(Mohtashami en Koenderink, 2013); (c) sell by Adamas and Sigma-Aldrich. 

 

Apart from the PL property of fNDs, the unique quantum properties of the NV spin can also be 

instrumental for in vitro and in vivo imaging (readers can refer to the following review (Montalti et al., 2015; 

Schirhagl et al., 2013)). Indeed, NV-center fNDs presents degenerated spin energy states where the triplet 

state is split into two energy levels with ms = 0 and ms = ± 1. The energy diagram of NV center in Figure 9a 

shows the fine structures of both fundamental and excited states, as well as the metastable state. Here, the 

continuous (resp. dashed) arrows point out radiative (resp. non-radiative) transitions. Owing to strong non-

radiative transition from ms = ± 1toward the metastable state and then the ground state, ms = ± 1 is defined 

as a dark state whereas ms = 0 is the bright state. As a consequence, two different ways to emit fluorescence 

are possible, with a quantum yield which differ between each other of about 20% (Epstein et al., 2005) (Figure 

2.9b). Moreover, the spin state can be tuned with a radiofrequency (rf) wave and directly monitored through 

a PL variation (Figure 2.9b). In addition, a variation of the surrounding magnetic field or temperature will 

change the population configuration of the two sub-level, which can also be monitored through PL variations. 

An example of application is shown in Figure 2.9c in which spin resonance spectra of a single NV center is 

acquired under different external magnetic field, which creates a Zeeman effect. This last phenomenon is 

performed in the magnetometer (Le Sage et al., 2013). 

 

 

Figure 2.9: Optically detected magnetic resonance. (a) Energy diagram of NV center showing fine structures 
of both fundamental and excited states, as well as the metastable state. Continuous (resp. dashed) arrows point 
out radiative (resp non-radiative) transitions. (b) The spin state can be tuned with a radiofrequency (rf) wave 
(top) and directly monitored through a PL variation as ms = 0 is a bright state whereas ms = ± 1 is a dark state 
(bottom). (c) Spin resonance spectra of a single NV center showing variation of the PL with respect to the rf 
frequency for different external magnetic field, due to Zeeman effect. This phenomenon is exploited for nano-
magnetism recording. Adapted from (McGuinness et al., 2013; Tetienne, 2014). 
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2.3.3 Biological applications of fNDs  

fNDs fluorescent probe combines photostability and biocompatibility which make it possible to 

achieve extraordinary broad range of applications in various scientific fields (Schirhagl et al., 2013). In this 

subsection, we mainly detail both in vitro and in vivo biological applications. However, theranostic applications 

of NDs and fNDs is not discussed here (readers can refer to the following reviews (Montalti et al., 2015; 

Perevedentseva et al., 2013a). Eventually, we conclude this subsection with a brief detour on its use as a 

nanosensor in biology via the manipulation of the NV spin, which makes this probe unique.  

 

fNDs biological applications using fluorescence properties 

fNDs production process leads to carboxylated surface (after the cleaning stage), which is in the 

negatively charged form –COO– at pH=7. When mixed with the cell culture medium supplemented with serum, 

fND are quickly covered by a protein corona (Tenzer et al., 2013). fNDs were first used in non-targeted in vitro 

cellular imaging applications (Fu et al., 2007; Neugart et al., 2007; Yu et al., 2005), (Wee et al., 2009). 

Thereafter, in vivo imaging of bare fNDs was also achieved in C-elegans using standard epifluorescence 

microscopy (Mohan et al., 2010) (Figure 2.10a). However, because of light scattering from the tissue, standard 

microscopy techniques show limitations. Therefore, other fluorescence features of NV– centres in 

nanodiamond, such as long fluorescence lifetime (>25 ns) or sensitivity to magnetic field, can be instrumental 

to increase the fND imaging contrast. Therefore, FLIM (Fluorescence Life Time Imaging) was used to study 

intercellular transport of yolk lipoproteins in C-elegans (Figure 2.10b) (Kuo et al., 2013). FLIM imaging of fNDs 

was also used to track lung stem cells in vivo in a mouse model and helped to understand how they incorporate 

and contribute to tissue regeneration (Hsu et al., 2014; Wu et al., 2013) (Figure 2.10c). 

Let us finally mention cathodoluminescence as another imaging modality of fNDs, in which colour 

centres in diamond luminescence are excited with a focused electron beam, serving at the same time to image 

nanoparticles and their environment with the nanometer resolution of electron microscopy. Moreover, all 

colour centres can be excited with the same electron beam allowing multicolor imaging. This approach was 

applied in proof-of-principle experiments to integrated and correlated imaging of fND in cells together with 

their ultrastructure (Glenn et al., 2012; Nawa et al., 2014; Zhang et al., 2014). 
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Figure 2.10: Biological applications of fNDs using their fluorescence properties. (a) C-elegans fed with 
dextran-coated fNDs (red). (Inset) A 100×magnified image showing fNDs within the intestinal cells. From (Mohan 
et al., 2010). (b) Observation of GFP::YLC and fNDs in C. elegans by FLIM. From (Kuo et al., 2013). (c) 
Identification of transplanted fND-labelled Lung Stem Cells in bronchiolar epithelia using FLIM. From (Wu et al., 
2013). 

 

fNDs biological applications using NV-center nanoscale sensors 

The aforementioned ODMR is another unique property of NV– centre fNDs. (Figure 2.10). This quantum 

feature was applied to reduce the tissue autofluorescence background to perform in vivo imaging. By ON-OFF 

modulation of the microwave field, it is possible to detect only the fNDs, as demonstrated in C-elegans and rat 

(Igarashi et al., 2012). By applying a gradient of magnetic field, like in Magnetic Resonance Imaging, Hegyi and 

Yablonovitch showed that fNDs can be imaged through scattering and autofluorescent tissues (Hegyi en 

Yablonovitch, 2013). Eventually, a simple magnetic modulation also allowed to enhance the signal-to-

background ratio up to 100-fold in in vivo imaging (Sarkar et al., 2014). Although modulation of the NV center 

emission using microwave and magnetic field still needs technical improvements to apply them to relevant 

biological questions, non-optical modulation of fND emission is a very promising approach to perform 

background-free in vivo imaging.  

Other applications of the unique quantum property of fNDs was performed in Hela cells for quantum 

measurement and orientation tracking in vitro (McGuinness et al., 2011). Then, the first biological application 

of fNDs-based magnetometry was performed in bacteria (Le Sage et al., 2013; Steinert et al., 2013) and this 

approach was applied in genetic for probing the functional diversity of magnetosome formation (Rahn-Lee et 

al., 2015). Moreover, its thermometer feature was demonstrated in human embryonic fibroblast where fNDs 

were deliver jointly with gold nanoparticles as local heaters (Kucsko et al., 2013). Eventually, numerical 
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simulations seem to prove the benefit of measuring the quantum decoherence of NV-center fNDs for the 

monitoring of ion-channel function in real time (Hall et al., 2010; Kaufmann et al., 2013) as well as for high 

spatiotemporal resolution wide-field imaging of neuron activity (Hall et al., 2012). However, no proof-of-

principle were performed so far in real neurons. 

 

2.3.4 Conclusion 2.3 

In this section, we described in detail the production, physical characteristics and biological 

application of NV-center fluorescent nanodiamonds. From fluorescent properties to quantum features, fNDs 

were shown to be an overwhelming inorganic fluorescent probe for bioimaging with a lot of advantages 

compared to standard nano-source of light. Chemical inertness, emission in the NIR region and 

biocompatibility make it possible to detect fluorescence from fNDs in the long term for in vitro and in vivo 

imaging. Overall, due to its photophysical properties such as a perfect photostability and a high brightness, it 

seems that fNDs is the probe of choice to non-genetically monitor the intraneuronal transport for a long period 

of time with high spatiotemporal resolution. However, fNDs were never used for quantitative studies at the 

molecular level and no approaches were conducted in living neurons dissociated from brain of mouse embryo. 

Therefore, how can we deliver fND inside hippocampal neurons dissociated from mouse embryo? Is fND toxic 

for primary neurons? Which optical system can be used to address this question?  

 

2.4 Live-cell imaging for fNDs tracking inside primary neurons 

In this section, we describe the experimental approach we used to monitor intraneuronal transport. 

We first discuss about the neurobiological and optical tools suitable for our study, namely primary culture of 

neurons and the live-cell imaging setup. Then, we explain how we can efficiently deliver fNDs inside 

hippocampal neurons. Uptake mechanism and cytotoxicity of fNDs are discussed. 

 

2.4.1 Primary neuron culture from mouse embryo 

As we aim at evaluating the functional impact on intraneuronal transport of psychiatric risk factor, 

neurons have to be used as the substrate of our study. Indeed, cell lines contain a mutant genome with the 

presence of gene recombination and huge number of gene copies. Moreover, even cell lines derived from 

central nervous system precursors have limitations because the neurons derived from these lines cannot form 

well-defined axons, dendrites and synapses, all mandatory to establish a functional network of neurons. One 

of the best animal model available to study psychiatric disorders is the mouse as it is genetically closer to 

human than C-elegans, drosophila or zebrafish, mainly used for in vivo study of connectomics and 

embryogenesis.  

The hippocampus and cortex are complex structures, which make them challenging to analyse and 

manipulate in vivo. Instead, primary cell culture techniques have been successfully developed to study these 
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neurons in vitro. One of the most well-established and widely used techniques for the study of hippocampal 

and cortical neurons is the primary neuron culture from mouse embryo, whose main steps are shown in 

Figure 2.11 (Banker en Cowan, 1977; Kaech en Banker, 2006). This culture system allows neurons to be 

cultured in vitro in a far less complex environment than that used in vivo (i.e. without glial cells and blood 

vessel for example), making them highly accessible for further manipulations and observations. The vast 

majority of cells in these preparations are excitatory pyramidal neurons, with inhibitory neurons representing 

about 18–20% of the population. The dissociated embryonic neurons maintained in culture undergo distinct 

stages of differentiation and form well-established synaptic connections (Beaudoin et al., 2012). These cells 

can be grown and maintained in single layers on glass coverslips and subsequently observed by fluorescence 

microscopy imaging. Gene expression can also be manipulated to dissect plethora of neurobiological 

mechanisms (see Chapter 4, Section 4.2). 

Some laboratories perform primary neuron culture on an astrocyte feeder layer. This allows for the 

neurons not to be in direct contact with the astrocytes, but to be exposed to growth factors they have secreted 

into the medium. In our lab, we use an alternate protocol that does not involve the use of the feeder layer. 

Instead, the culture medium is complemented with serum-free medium (B27) supplemented with cofactors 

necessary for neuronal growth and maintenance (Brewer et al., 1993).  

 

 

Figure 2.11: Primary culture of hippocampal neurons. Left: main steps of the technique from brain extraction 
of the mouse embryo, to the dissection of hippocampus and neuron dissociation using chemical compound. Right: 
Phase-contrast images of hippocampal cultures after 1 day and 13 days in culture showing different 
developmental stage. Non-neuronal cells can be plated with neuronal cells (arrow). Scale bar, 50 µm. (Beaudoin 
et al., 2012) 
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In vitro development of neurons has well-defined developmental stage with axon/dendrite 

polarization after DIV 7, then immature dendritic spines around DIV 12, synaptic connection after DIV 15 and 

well established neuronal network around DIV 21. In the rest of the study, we will focus only on hippocampal 

neurons, which give a homogeneous pyramidal neuron culture. A fully detailed protocol of primary culture of 

hippocampal neurons dissociated from mouse embryo is presented in Appendices.  

 

2.4.2 Pseudo-TIRF microscopy for live cell imaging 

Physicists have developed for a long time powerful microscopes to get biological samples under 

scrutiny. Invented in 1665 by Robert Hooke, an English physicist, architect and natural philosopher, the 

microscope has undergone tremendous innovation and revolution. The last breakthrough in the 000’s was 
achieved by the development of super-resolution microscopy, which was rewarded in 2014 by the Nobel Prize 

in Chemistry. When the field of microscopy meets the field of neurosciences, we obtain overwhelming 

discoveries, whose the first one was achieved by the Spanish neurobiologist Ramon y Cajal in 0’s with the 
discovery of neurons and rewarded in 1906 by the Nobel Prize in Physiology or Medicine. The microscope 

becomes even more compulsory when dealing with Neurosciences because neurons are one of the most 

complex cell types in the human body with the presence of submicron functional compartments, namely post-

synaptic and pre-synaptic part of a synapse.  

One important issue when imaging a fluorescent dye is to choose the right microscopy technique, as a 

trade-off have to be made between spatial and temporal resolution of imaging. One of the easiest microscopy 

technique to implement, after Epifluorescence microscopy, is the Total-Internal Reflection Fluorescence 

(TIRF) microscopy (Axelrod, 1981). This technique is based on the Snell-Descartes law, which states that at a 

specific angle (called the critical angle c) to the interface between two media with different refractive index, 

the entrance beam undergoes a total reflection with the same angle. In another word, no transmitted light will 

be detected at this angle. However, at the contact point of the interface, if considering a glass coverslip and 

water as being the two interface, an evanescent wave will propagate into the water for a distance d which 

follow the mathematic expression below:  =  λπ ∗ √�� � . sin – � � �             .  

where d is the penetration depth and is dependent upon the wavelength  of the incident beam, the angle of incidence , and the refractive indices n of the two medium nglass and nwater. 

 

Practically, a wide range of optical arrangements for TIRF microscopy can be used, such as prism or high NA objective configuration. (ere, we will only detail the prismless  configuration to understand how a 
TIR effect is obtained. The incident beam must be constrained to pass through the periphery of the objective's 
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pupil and must emerge with only a narrow spread of angles. This can be accomplished by setting the incident 

beam to be focused off-axis at the objective's back focal plane (Figure 2.12). The farther from the off-axis, the 

larger the output angle.  On the one hand, the condition to not have any refracting beam is that  > c, for which Snell-Descartes 

law becomes:   �wa e =  �gla . sin �           .  

On the other hand, the incident beam will emerge from the immersion oil of refractive index noil at a maximum possible angle m (measured from the optical axis) given by: � =  �oil sin           .  

From equations 2.2 and 2.3, and by matching the oil refractive index with the glass one, we perfectly 

understand why having objective NA greater than nwater with a substantial margin is preferable. The highest 

aperture available is an Olympus 100X NA = 1.65, which allow higher flexibility and penetration depth. 

However, the mismatch of refractive index will produce spherical aberrations, and thus it is mandatory to use 

coverslips and objective oil with higher refractive index, which both have drawbacks. As a good compromise, 

we will use Nikon 100X NA = 1.49 and standard coverslips and oil with n = 1.518. For TIRF alignment, once 

the beam is aligned to the optical axis and focused at the back focal plan of the objective (epifluorescence 

configuration), the illumination angle is continuously switched all the way from standard epi to TIR simply by 

increasing the off-axis position of the beam (Figure 2.12). Once TIR is achieved, further increase in off-axis 

position will increase the incidence angle and thereby decrease the depth of the evanescent field (equation 

2.1). In our experimental conditions, nglass = 1.518 and nwater= .  which lead to c≈ ° equation 2.2), and the 

maximal angle achievable with our objective of NA=1.49 is θmax≈ ° equation .3). Therefore, given that 

exc = 561 nm, the penetration depth at θc≈ ° is about  nm whereas at θmax≈ °, the penetration depth is 
only about 66 nm (equation 2.1). Therefore, as we want to monitor the intraneuronal transport and that 

neurites can be as big as few micrometre in diameter, TIRF configuration does not seem to be a relevant 

approach.  

Therefore, we decided to use oblique illumination which is a technique related to TIRF that is often 

used in SPT and localization microscopy (Figure 2.12). The angle of the incident excitation laser beam was 

kept to be slightly less than the critical angle θc≈ ° required for complete TIR. While most of the light was 

reflected at the glass-water interface like in TIRF illumination, the pseudo-TIRF also resulted in a highly 

refracted beam that propagates at a very small angle from the glass-water surface. This pseudo-TIRF 

configuration offers the advantage of high signal-to-background ratio of traditional TIRF, while at the same 

time penetrates deeper into the sample.  

We implemented the oblique illumination on a two-stages inverted microscope (Eclipse Ti-E, Nikon, 

Japan), equipped with 100x magnification and NA 1.49 immersion oil objective (CFI Apo TIRF 100X Oil, Nikon, 

Japan). The excitation beam from a continuous-wave diode-pumped solid-state laser emitting at the 

wavelength of 561 nm with a maximum power of 100 mW (SLIM-561-100, Oxxius S.A., France) was expanded 
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16x. The maximum laser intensity was 1 kW/cm2 in the sample plane. We used filters adapted to the spectral 

characteristics of NV color centers in diamond: a dichroic beamsplitter with a steep edge at 561 nm and a 97% 

flat transmission above this wavelength (zt561rdc, Chroma Corp., USA) and a band-pass filter centered on 

697 nm wavelength with a full-width at half maximum (FWHM) of 75 nm (HC 697/75, Semrock, USA), on the 

detection channel. White-light illumination observations were done with the differential interference contrast 

mode (DIC) of the microscope without changing the microscope objective. Images and videos were recorded 

with a cooled Electron Multiplied CCD array detector (iXon-DU885, Andor Technology, Ireland). We calibrated 

the EMCCD pixel size at 100x magnification for which one pixel corresponds to a length of 80 nm in the sample 

plane. Eventually, because it is compulsory to maintain a temperature of 37°C, 5% partial CO2 pressure and 

100% hygrometry to perform live neuron imaging, the whole microscope was enclosed in a cage incubator 

(Okolab, Italy). All the dynamic intraneuronal transport studies that are shown in this thesis were acquired 

using this setup.  

 

 

Figure 2.12: Scheme of the live cell imaging set-up. L: lens; BE: beam expander; DM: dichroic mirror; BFP: 
back focal plane. The microscope stage is enclosed inside an incubator to perform live cell imaging (37°, 5% CO2). 

 

2.4.3 fNDs delivery inside neurites of hippocampal neurons 

Incubation of cells with nanoparticles in the external medium often leads to their internalization by 

nonspecific endocytosis, depending on factors such as the size, shape, surface chemistry, concentration, cell 

type and the duration of incubation (Albanese et al., 2012; Kim et al., 2013). In this subsection, we describe 
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the strategies we used to deliver fNDs inside neurons. Both internalization pathways and cytotoxicity of fNDs 

in vitro and in vivo are discussed. 

 

Internalization of fNDs and uptake mechanisms 

Many routes lead to intracellular compartment and many parameters can affect the uptake efficiency 

of nanoparticles (Figure 2.13). Among others, nanoparticle size, shape or surface chemistry may affect the 

delivery of nanoparticles as well as the degree of their accumulation in the cellular compartments and their 

cytotoxicity (Canton en Battaglia, 2012; Montalti et al., 2015). Various experimental studies of nanoparticle 

internalization pathways have been conducted, but, we will only focus here on the ones which dissect fNDs 

delivery pathways (Chu et al., 2014; Faklaris et al., 2009b; Weng et al., 2012). 

 

 
Figure 2.13: Cellular uptake pathways for nanoparticles. (a) phagocytosis, (b) macropinocytosis, (c) 
clathrin-mediated endocytosis, (d) caveolin-mediated endocytosis, (e) non-clathrin- and non-caveolin-mediated 
endocytosis. (f) Parameters that regulate cellular uptake. From (Montalti et al., 2015) 

 

Kinetics of the uptake of transferrin or amino group functionalized fNDs by HeLa cells demonstrated 

that the receptor-mediated endocytosis was more effective than the endocytic process involving surface 

electrostatic interactions (Weng et al., 2012). The internalization pathways of 25 nm fNDs in HeLa cancer cells 

were also investigated by selectively blocking the different possible internalization pathways with specific 
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drugs. These experiments, conducted in the TREUSSART’s group, demonstrated that fNDs enter (eLa cells 
mainly by clathrin-mediated endocytosis and that some of the smallest particles appeared to be free in the 

cytosol (Faklaris et al., 2008, 2009b). These results were confirmed elsewhere with cancer and non-cancer 

cell lines and 100 nm fNDs (Perevedentseva et al., 2013b). 

 

Strategies to internalised fNDs inside hippocampal neurons 

All studies of cellular uptake of fNDs were conducted in cell lines such as Hela cells and not in primary 

neuron cultures. Even though neurons are quite different from cell lines, we can assume that the 

internalization process described in Figure 2.12 will occur in a similar way. Therefore, we first decided to 

make use of this endocytosis process occurring in primary neurons (Blanpied et al., 2002). Two of the three 

approaches tested are described in Figure 2.14a. 

The first strategy, proposed by Dr. LEPAGNOL-BESTEL, consists in incubating neurons with fNDs in 

15 mL falcon for 30 min at 37°C, right after their mechanical dissociation from mouse embryo but before 

plating them onto the coverslip. Initially, the excess of fNDs was not washed out to avoid any cellular damage, 

but non-internalized fNDs were responsible for background fluorescence. Therefore, in a second approach, 

we decided to apply a centrifugation washing step. As shown in Figure 2.14b,c, the centrifugation step 

eliminates the excess of extracellular fNDs (white arrow), whereas internalized fNDs are more numerous 

(yellow arrows). The internalization pathway was investigated by studying the level of colocalization between 

TGN38 (Girotti en Banting, 1996) and fNDs using a confocal microscope. This experiment was performed by 

Dr. Marie-Pierre ADAM and readers can refer to Chapter 3 Section 3.2 of her PhD dissertation for more details 

(Adam, 2013). The conclusion was quite disappointing as less than 10% of internalized fNDs did colocalized 

with TGN38. Unfortunately, even though fNDs were successfully internalized inside primary neurons, this 

strategy does not give any intraneuronal transport of fNDs. This might be because fNDs are internalized too 

early and after few days, they got parked somewhere inside the cell or even exocytosed. 

Therefore, the second strategy we developed in the lab consists in incubating fNDs few days after 

having plated the neurons (Figure 2.14a). This internalization approach has the advantage to be performed at 

various day in vitro (DIV). We succeeded in delivering fNDs very efficiently into neurons from DIV8 to DIV20 

days in culture. To carry out the intraneuronal transport experiments, we chose to deliver fNDs between 14 

and 17 days in culture because dendritic spines and neuronal network are more functional after 13/14 days 

(Kaech en Banker, 2006) and endocytotic function is less efficient in older neurons due to altered clathrin 

dynamics after 17/18 days (Blanpied et al., 2003). The precise internalization protocol we used for all the 

results that will be presented in Chapter 3 and Chapter 4 is detailed in Appendices. 
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Figure 2.14: Internalization strategies based on endocytosis mechanism. (a) Two distinct strategies of fNDs 
internalization inside hippocampal neurons. (b) DIV1 and (c) DIV3 hippocampal neurons with 35 nm fNDs 
internalised in the soma. Images are superimposed with white-light image and Alexa488-phalloïdine image 
respectively. Scale bars: 5µm. 

 

A third strategy we tried to deliver fNDs inside the cell was based on the whole-cell patch-clamp 

approach (collaboration with Dr. Brigitte POTIER, at the Centre de Psychiatrie et Neurosciences, INSERM 

UMR 894, Paris) (Figure 2.15). Different from microinjection, this approach allows electrical activity recording 

along with internalization of fNDs through the patch pipette. This strategy was tested because we were 

supposed to get fNDs covalently functionalized with anti-GFP nanobody within my first year of PhD (see Figure 

5.1). The idea was to specifically target and track FMRP-GFP proteins using this nanotool. Indeed, this protein 

is required for RNA granule active transport and has been shown to be impaired in Fragile X Syndrome 

(Alpatov et al., 2014; Brown et al., 2001). This strategy has the advantage to escape the endosomal pathway 

and preliminary results obtained were encouraging. However, we decided to focus the rest of our study on the 

spontaneous endosomal internalization, as covalently functionalized fNDs were difficult to produce and 

characterize. 

A preliminary experiment was conducted on brain slices of rat. Patch pipette was filled with 

Rhodamine-Dextran and 25 nm fNDs, the former helping to re-localize the patched neuron for microscopy 

acquisition. Hippocampal neuron from the hippocampus CA1 region was patched for 90 min, a time long 

enough to be sure fNDs diffuse throughout the patched membrane. The 300 µm-thick brain slice was fixed in 

PFA 4%/Sucrose 3% overnight at 4°C and additional slicing of 50 µm thickness was done right after. Confocal 

imaging of Rhodamine (Figure 2.15b left) and Epifluorescence imaging of fNDs (Figure 2.15b middle, right) 

were performed to evaluate the internalization efficiency of fNDs. Even though Rhodamine photobleached, 

the perfect photostability of the red signal reveals the presence of fNDs. Unfortunately, it seems that fNDs were 

mostly aggregated in the soma, where the pipette was placed.  
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Figure 2.15: Whole-cell Patch Clamp strategy for fNDs delivery. (a) Top: electrophysiology set-up with a 
CMOS camera (top), the micropipette holder (left) and the neuron culture at DIV21 (yellow rectangle). Bottom: 
camera field of view during neuron electrophysiology recording. (b) fNDs delivery in one hippocampal neuron in 
a brain slice of the CA1 region (dashed white line). Pipette was filled with both Rhodamine (left) to re-localise the 
patched neuron and 25 nm fNDs (middle). Zoom of the dashed white circle region is shown in right, with white 
arrows pointing out neurons and the dashed white circle and triangle to help recognize the nucleus and the soma 
respectively. Scale bar from left to right: 50 µm, 25 µm and 5 µm. (c) fNDs delivery in one hippocampal neuron of 
primary neuron cultures at DIV21 as observed by Leica Confocal microscopy. Pipette was filled with both 
Alexa488 dye (left) and 100 nm fNDs (right). The internalization did not work. Scale bar: 5 µm. 
 

Therefore, we decided to test this approach directly on mature primary neuron cultures (at DIV21) as 

it will be easier to image the cell (Figure 2.14c). A culture with well-established network is mandatory as we 

analyzed electrical signals to understand the state of the membrane opening and the health of the patched 

neuron. The pipette was filled with Alexa488-hydrazide (LifeTechnology, A- 0  and size≈ 00 nm fNDs. 

Neurons were patched for 30min and fixed in PFA 4% for 20 min at room temperature. Unfortunately, as 

shown in Figure 2.15b-c, no fNDs seem to be delivered inside neurons. However, because too few experiments 

were conducted to unambiguously observed fNDs inside neurons, further optimization are needed. This 

negative result might be due to fNDs aggregation inside the pipette or more basically because the commercial 

Leica Confocal setup in the lab is not well adapted to detect size≈ 00 nm fNDs (dwell time for the raster scan 

is not slow enough to accumulate photon and power laser in not high enough). Therefore, as covalently 

functionalized fNDs were difficult to product, we decided to focus our study on spontaneous endosomal 

internalization. 

Altogether, the best internalization strategy, which allows reproducibility and high throughput, is the 

second strategy which consists in incubating fNDs directly in the culture medium at variable neuron 
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development stages. Therefore, starting from this point, we will only consider this strategy (unless otherwise 

stated). 

 

In vitro and in vivo cytotoxicity of fNDs. Application to neurons 

Cytotoxicity of fNDs was assessed since the first biological application by H.-C. CHANG’s group in 00  
(Fu et al., 2007), demonstrating the short-term low toxicity of fNDs. Then, cytotoxicity of fNDs was investigated 

in more details by considering parameters such as the incubation time, nature of the cells, method of 

production and functionalization of fNDs, as well as their shape and size (Schrand et al., 2007; Zhu et al., 2012). 

Moreover, fNDs were shown not to produce reactive oxygen species, a chemophysical mechanism at the origin 

of the cytotoxicity of some organic fluorophores. 

Usual assays to study in vitro cellular cytotoxicity are based on the monitoring of mitochondrial 

function (MTT) or luminescent ATP production with respect to various input parameters (e.g. time after incubation, concentration of fNDs… . Also, other readouts can be used such as neurite length, number of living 

cells for in vitro study and specific stress biological markers for in vivo study (Mohan et al., 2010). 

Other studies also reported no cytotoxicity effect of bare fNDs mostly in Hela cells (Faklaris et al., 2008; 

Vaijayanthimala et al., 2009). However, still on Hela cells, when fNDs are functionalized with either transferrin 

or amino groups, the inhibition of the cellular growth (about 50% after 24 h) was observed, except for bare 

fNDs with carboxylic acid group on its surface (Weng et al., 2012). 

We also studied the cytotoxicity of fNDs on primary culture of mouse embryonic neurons(Figure 

2.15a). Here, we qualitatively studied the effect on neuronal morphology of both 30 nm and 100 nm at a 

concentration of 25 µg/ml, using the first strategy. This strategy is suitable here because the centrifugation 

step helps to discriminate neurons with fNDs inside from those without. This classification is crucial as not 

100% of freshly dissociated neurons are internalized by fNDs, leading to potential biases of blind study. In our 

case, we did observed morphological impairment with size≈ 00 nm fNDs but not with size≈ 0 nm fNDs. 

Interestingly, during the course of this work, a paper was published dealing with the effect of 100 nm-size 

fNDs on neuronal survival and morphogenesis (Huang et al., 2014). Almost no neuronal toxicity were reported 

except for concentration larger than 25 µg/ml, which is consistent with our preliminary qualitative results. 
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Figure 2.16: Qualitative and quantitative cytotoxicity assessment in primary neurons isolated from 
mouse embryo. (a) Qualitative analysis performed in the lab (fND in red; actin in green). Top: internalization of 
size≈  nm fNDs (white arrow head) reduce neurite outgrowth compare to fNDs-free neurons where longer 
neurites and growth cones lamelipodia can be observed (white dots). Scale bar: 5 µm. Bottom: internalization of 
size≈  nm fNDs (white arrow head) does not seem to reduce neurite outgrowth and growth cones lamelipodia. 
Scale bar: 5 µm. (b) Quantitative analysis reported in (Huang et al., 2014). 100 nm-size fNDs reduced neurite 
outgrowth in a dosage-dependent manner in dissociated hippocampal neurons. Top: merged images of 
dissociated hippocampal neurons treated with 25 µg/ml (left) and 250 µg/ml (right) of fNDs 4 hours after seeding 
and incubated for 3 days in vitro (fND (red) and b-III-tubulin staining (green)). Scale bars represent 100 µm. 
Bottom: quantification of total neurite length per neuron in fND treated hippocampal neurons (* p = 0.05, ** 
p = 0.01, *** p = 0.001). Bar graph is expressed as mean +/- SEM 

 

Observation of a STOP&GO binary motion inside neurites 

As already mentioned, primary neurons are particularly difficult to study because of the low efficiency 

with which exogenous compounds, such as expression vectors and nanoparticles, are internalized. However, 

as shown in Figure 2.17, application of strategy #2 is very efficient to deliver fNDs inside freely developing 

branches of hippocampal neurons dissociated from brain of mouse embryos. The experimental pipeline on 

which we converged is shown in figure 2.17a. It was possible to study the movement of mean size=30 nm NV-

center fNDs entrapped in endosomes of living hippocampal neurons using pseudo-TIRF microscopy in a high-

throughput manner. Indeed, around 40 trajectories are effectively taken into account for final statistical tests, 

given that a lot of trajectories are filtered out before this point (e.g. trajectory too short, too dim, too much split…  see Chapter . Usually, image acquisition of fNDs transport is done by focusing on the distal portions 

of neuronal branches displaying low mesh density as displayed in Figure 17b. The latter displays white-light 

illumination image of a main dendrite and its smaller branches, merged with one movie frame of fNDs motion, 
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pointing out four fNDs (yellow arrows) which move retrogradely. Snapshots are depicted on Figure 17b (right) 

showing two fND-labeled endosomes moving in the same dendrite (from the white rectangle). Figure 2.17c 

shows the kymograph for the motion of these fNDs, highlighting the stop-and-go  characteristics of organelle 
transport in neurons (Overly et al., 1996). The go  phase corresponds to directed motion mediated by molecular motors, whereas the stop  phase may involve different mechanisms tug-of-war  situation of 
motors driving the endosome (Hancock, 2014), motor detachment from the microtubule or steric hindrance 

on the fND-containing endosome). This show for the first time proof-of-principle for a simple methodology to 

deliver fNDs inside neurites of living hippocampal neurons to non-genetically study intraneuronal transport. 

 

 

Figure 2.17: STOP&GO movement of fNDs-containing endosomes inside branches of living hippocampal 
neurons. (a) Experimental pipeline from hippocampal neuron culture to fNDs-containing endosome trajectory 
acquisition using pseudo-TIRF microscopy. (b) Left: white-light illumination image of the dendritic branches 
merged with the fluorescence channel showing four fNDs moving within dendrites (yellow arrows), two static 
fNDs located outside dendritic membranes (blue arrows) and nine fNDs superimposed on dendritic membranes 
but not moving (gray arrows). The cell soma associated with the main dendrite is on the left (not shown). During 
the two-minute movie, two fND-containing endosomes, labeled #1 and #2 (in the box outlined with a solid white 
line) were observed moving towards the cell soma, in the same dendrite (retrograde transport). Right: 
superimposition onto a bright-field image of the positions of the two fNDs, determined by particle tracking, with 
a persistence of 10 s, at different times. Scale bars: 5 µm and 1 µm respectively. (c) A cartoon of our system 
showing the fND entrapped inside a cargo that travel along microtubule. Kymograph of the motion of fNDs #1 
and #  shown in a  white box , illustrating their stop-and-go  behavior. Scale bars: 5 µm (space) and 10 s 
(time).  

 

2.4.4 Conclusion 2.4 

In this section, we detailed our experimental strategy to perform dynamic study of intracellular 

transport inside branches of living neurons. We started with the choice of the biological material, namely 
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primary culture of hippocampal neurons, then the optical setup was adapted so that live cell imaging with 

optimal signal-to-background ratio can be performed. Finally, the most difficult part was to find a way to 

deliver fNDs into neurons. We detailed three different strategies and finally converged toward one utilizing 

the natural endocytosis pathway. Altogether, this allowed us to observe binary STOP&GO motion inside freely-

developing branches of living neurons. 

 

2.5 Conclusion of Chapter 2 

Previous attempts to quantify intraneuronal transport have been based on cargo labelling with genetic 

constructs of chimeric fluorescent proteins. Limitations of this strategy are low transfection yield, 

uncontrolled protein overproduction, photobleaching of the reporters, and substantial cytotoxicity. QDots 

have been widely used to probe a variety of cellular events(Pinaud et al., 2010), owing to their high 

photoluminescence yield and good photostability. However, attempts to use QDs to study intraneuronal 

transport have been limited to the specific model of long axons of dorsal root neurons cultured in microfluidic 

devices. Moreover, the toxicity of QDs constitutive elements potentially limits their use in long-lasting studies 

and QDs blinking impedes high spatiotemporal resolution tracking. Considering these intrinsic limitations, 

there is a need for developing new generic approaches able to screen the functional impact of brain disease-

related genetic modifications. 

fNDs are emerging as versatile tools for both in vitro and in vivo bioimaging, taking advantages of their 

perfectly photostable emission in the far red, their high brightness and their absence of cytotoxicity. We have 

detailed our experimental strategy to perform dynamical study of the intraneuronal transport inside branches 

of living hippocampal neurons dissociated from mouse embryos, leading to the monitoring of the well-known 

binary STOP&GO motion. 

However, for precise spatiotemporal quantification of this active transport, we will first have to extract 

the fND-labeled endosome trajectories from the videos using single-particle-tracking processing. But what can 

be the best approach to quickly and accurately perform this task? Moreover, as the stop  and go  phases of 
motion display specific spatiotemporal features, how can we automatically extract these two features to 

quantify them separately in space and time? Eventually, is our fNDs-tracking assay stable and sensitive enough 

to tackle relevant neurobiological questions? 
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3.1 Introduction 

At the end of Chapter 2, we showed that bare fNDs are easily endocytosed by living hippocampal 

neurons dissociated from mouse embryos. A large amount of trajectories can be recorded by this approach. 
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However, we now need to automatically extract trajectories and define relevant intraneuronal transport 

parameters. 

This third chapter is dedicated to the quantitative analysis of fNDs trajectories and the validation of 

the single particle tracking (SPT) assay. We first discuss the choice of the SPT software and the measurement 

of the localisation precision of our live-cell imaging setup. Then, we review common SPT analysis tools used 

to study biological processes and we detail how we automatically detect the STOP and GO phases of motion, 

resulting in a set of eight transport readouts. We then describe how we have validated the fND tracking assay  
by demonstrating the microtubule-dependent transport of fNDs as well as the intra and inter-experiment 

stability of this approach. Finally, we conclude with some achievement this technique made possible. 

 

3.2 Tracking of fluorescent nanodiamonds 

Several microscopy techniques can be used to study biological processes at the molecular scale. 

Fluorescence Correlation Spectroscopy (FCS) or Fluorescence Recovery After Photobleaching (FRAP) are 

powerful approaches to study the motion dynamics of an ensemble of molecules inside living cells. However, 

only SPT approach allows direct visualization of the trajectory of a single fluorescent probe. First proposed in the late 0’s, SPT is of key importance for molecular scale quantitative analysis of intracellular motion 

processes. However, manually detecting and following a large number of individual particles are impossible 

and automated computational methods have been developed to perform such a tasks. Therefore, in this 

section, we first detail the principles underlying SPT. Then, we present the tracking software we used. Finally, 

we describe the calculation of the localisation precision of our live-cell imaging setup.  

 

3.2.1 Precise and accurate localisation of single emitters  

Conventional fluorescence light microscopies, such as confocal or two-photon microscopy, are widely 

used to study subcellular organisation and dynamic of proteins. However, as demonstrated by Abbe Ernst in 

the late 19th century, optical microscopy resolution is fundamentally limited by diffraction (to a spatial 

resolution of about 200 nm), meaning that light originating from a point source (e.g., one fluorescent molecule) 

in the object plane cannot be re-focused in the image plane as a single point. Both the wave property of light 

and the spatial filtering of the microscope circular aperture create an intensity distribution called the point 

spread function (PSF) which is the mathematical shape of the Airy pattern (see equation 3.1 and Figure 3.1a). 

Indeed, when light goes through a circular aperture (e.g. the microscope objective), the intensity of the 

diffraction pattern on a screen located far from the circular aperture (e.g. the camera) is given by: 

i y �  =  � ( sin �sin � )  =  � ( )      ,    .  

where Ia is the maximum intensity at the center of the pattern, J1 is the Bessel function of the first kind of order 

one, k= π/  is the wavenumber, r is the radius of the aperture, and θ is the angle of observation, i.e. the angle 

between the axis of the circular aperture and the line between aperture center and observation point. 
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There is no simple analytical expression of the standard deviation of the Airy disk. A common 

approximation consists in ignoring the outer bright rings and approximate the first lobe by a Gaussian function 

as follow (in 1D): 

Ga  =  �exp − �       ,     .  

where x represents the radial distance from the center of the pattern, and σ is the standard deviation. Here, σ 

is adjusted so that we obtain the optimal approximation to the Airy pattern, which leads to σ ≈ Ra/3, where Ra 

is the radius of the first dark ring (Figure 3.1a). 

 

 
Figure 3.1: From PSF fitting to trajectory registration. (a) Gaussian approximation of the PSF Airy disk. (b) 
Single-molecule image on an array detector fitted by a Gaussian to pinpoint the center of emission, which is 
further represented as a localised data point  by a narrower Gaussian function of sub-pixel size width). From 
PALM Zeiss web site. (c) Localisation precision and accuracy. From (Deschout et al., 2014) (d) Issue of linking 
detected spot in the case of trajectory crossings. 

 

Due to diffraction, two objects very close to each other may not be distinguished as their PSFs sum up. 

Therefore, a resolution limit has to be defined. As for, the Rayleigh’s resolution criteria states that these two 

objects can be optically separated if the maximum of the second emitter is located at a distance from the first 

emitter center larger than the position of the first minimum. On can show that this criteria yields a smallest 

distance at which two PSF of the same brightness can be resolved equal to 0.61  / NA, where  is the 

wavelength of light and NA is the numerical aperture of the microscope objective. In our case, using 100x 

objective with NA=1.49 and an emission wavelength of fNDs of =680 nm, the resolution limit is approximately 

280 nm. To go further, please refer to recent reviews on the diffraction limit (Carlton, 2008; Schermelleh et 

al., 2010). 

Although any single fluorescent probe will appear as a diffraction-limited spot through an optical 

microscope, its center coordinates can be determined with higher precision. This concept, at the heart of SPT, 

was stated a long time ago (McCutchen, 1967), but the first proof-of-principle came only in the 0’s where 

technological achievement for light sensitive detectors have made it possible to perform the really first SPT 

experiment. This technique have been largely used for the study of receptor diffusion on cell surfaces at this 
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time. Pioneered by W.W. Webb (Barak, 1981) who realized the tracking of biomolecules coupled to an organic 

fluorescent dye, Kusumi was then the first to perform the tracking of gold nanoparticle-coupled membrane 

receptor using light diffraction (Kusumi et al., 1993). Then, Triller and Dahan’s breakthrough was to track 
single QDot-coupled membrane receptor in the synaptic cleft (Dahan et al., 2003). 

The biological insights that can be gain with the application of single molecules or single particle 

tracking and localisation-based super-resolution nanoscopy is strongly dependant on the precision and 

accuracy at which single fluorescent probe can be localized. For example, in the late 0’s, a lot of studies 
reported anomalous subdiffusion behavior. Based on SPT of membrane bound particles, researchers have 

suggested that anomalous subdiffusion is a ubiquitous process in biology. However, it was shown that this 

phenomenon was actually inherent to SPT approach having weak localisation accuracy (Martin et al., 2002).  

Therefore, it is mandatory to fully understand the concepts of localization precision and accuracy of 

single emitters. Let us assume the ground truth position of a fluorophore and the multiple recordings of its 

position using an optical setup (Figure 3.1c). The localisation precision corresponds to the spread of the 

multiple detections of the fluorophore positions around its mean value. It is usually calculated as the standard 

deviation or the Full Width Half Maximum (FWHM) of this dispersion. Conversely, the localisation accuracy 

measures the difference between this mean value and the ground truth value, which cannot be experimentally 

measured. Consequently, these two parameters are independent and can be impacted by different parameters, 

such as emitter properties (e.g. single-dipole emitters) or experimental factors (e.g. sample background, drift 

during detector exposure…  (Deschout et al., 2014). Many research groups have tried to theoretically describe 

the localization precision or accuracy of a single fluorescent probe. The reader can refer to the following 

reviews for more details (Deschout et al., 2014; Small en Stahlheber, 2014).  

Practically, fluorescence emission is recorded by photoelectric conversion-based device such as 

Electron Multiplying Charge Coupled Device (EMCCD) array detector or Avalanche photodiode (APD) point 

detector. Image is constituted by the signal of the fluorescent probe and some background and noise. The 

localisation precision was theoretically described by the following equation (Thompson et al., 2002): 

� ≡ ∆ ≈ √� + � ⁄� + � 4��� �      ,     .  

where s is the PSF standard deviation, N is the number of detected photons per exposure time, a is the pixel 

size, and σB the background standard deviation. Two sources of noise are present in this equation: (i) photon 

shot noise varying as N-1/2, and which corresponds to the standard deviation of the photon distribution 

detected by one pixel (Poisson distribution) (first term in equation 3.3) and (ii) background noise varying as 

N-1, and which is created by out-of-focus fluorescence, detector readout noise, dark counts, auto-fluorescence 

and other factors (third term in eq. 3.3). Moreover, we have to take into account the pixelation noise related 

to the uncertainty of where the photon arrives within the pixel and which is easily calculated as the standard 

deviation of a top-hat function (second term in eq. 3.3). At high light level, the shot noise is the dominant term 

of the localisation precision formula, while at low light level it is the background noise. 
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However, in practical situations, depending on the acquisition procedure, external perturbations, such 

as mechanical vibrations, thermal and mechanical drifts, should also be considered. Therefore, as shown in 

Figure 3.2, the experimental value of the localisation precision will be always larger than the theoretical limit 

of eq. 3.3. 

 

3.2.2 Choice of the Single Particle Tracking software 

A plethora of parameters can affect the robustness of single-particle tracking: the dynamics of the 

biological process, the density and signal of tracked particles, but also non-uniform background (like in cell), 

spot shape and size (varying between images due to defocusing), and photobleaching. A time-lapse image 

sequence often contains a high number of particles so that manual annotation is not feasible, and computer 

algorithms are compulsory to perform this tedious task.  

SPT need two distinct steps for trajectory reconstruction: (i) spot detection and (ii) spot linking 

(Figure 3.1b, d). Therefore, tracking software can be classified with respect to the spot detection algorithm 

and to the trajectory reconstruction algorithm. Spot detection can be done using either a Gaussian fitting or a 

wavelet fitting (for the most recent and widely used approaches). The latter was shown to be one order of 

magnitude faster than the former (Izeddin et al., 2012). Then, two classes of tracking algorithm exist to do 

trajectory reconstruction: deterministic tracking and probabilistic tracking. The former performs spot 

detection and linking at the same time, through a nearest-neighbouring algorithm. The latter is based on spot 

detection first and once the entire stack has been processed, an algorithm based on a Bayesian inference 

approach links the spots with each other. The second strategy is more robust as it can easily overcome the 

issue of crossing particles (Figure 3.1d) (Godinez et al., 2009). 

An objective comparison of particle tracking methods has been done by all the leading groups in this 

field (Chenouard et al., 2014). Although no single method performed best whatever the experimental 

configuration is, the results revealed clear differences between the various approaches. In particular, the 

authors concluded that all methods perform well for sufficiently high signal-to-noise ratio SNR ≥ .  
Therefore, we decided to process our data with ICY Particle Tracking plugin (GPLv3 open source) 

developed by the Quantitative Image Analysis Unit at Institut Pasteur (Paris, France) (Chenouard et al., 2013). 

Interestingly, although the objective comparison study came out after we started this experiment, we were 

glad to see that our choice was relevant. Indeed, our specifications are as follow: medium fNDs density per 

field of view (intra and extracellular), high SNR (>4), alternation between two motion types (directed and 

brownian), 2D+time image acquisition, and dynamic fNDs intersecting with static fNDs (on the extracellular 

membrane). For these criteria, the authors of (Chenouard et al., 2014) showed that ICY Particle Tracking 

plugin is the most efficient one. This plugin is also performing the best for most of the criteria evaluated during 

this challenge. 

The strength of this plugin is that it allows automatized trajectories extraction of multiples objects 

simultaneously in a 3D image sequence (x,y,t), where the number of targets can vary through time (objects 



Chapter 3 – Quantification of intraneuronal transport parameters 

 

74 

 

can appear and disappear). Also, false detections (not originating from a target) are automatically detected 

and discarded. Moreover, as it is based on Bayesian inference approach, different dynamical processes can be 

considered (diffusive, directed, or both). Eventually, the probabilistic tracking method is based on a multi-frame’ approach in the sense that the best set of tracks is determined within multiple past and future frames.  

 

3.2.3 Measurement of the live-cell imaging setup localisation precision 

The quantitative analysis of trajectories depends on SPT experimental localization precision. The latter 

can be affected trivially by mechanical vibration or thermal fluctuations. The first ones are drastically reduced 

by installing the microscope on an anti-vibration optical table system. Since thermal fluctuations can induce 

drift during the course of video acquisition, we have enclosed the whole imaging setup inside a chamber 

thermalized at a controlled temperature of 37.0±0.1°C. The remaining fluctuations most likely originate from 

residual mechanical vibrations. 

We measured the localization precision by considering a sample of fNDs immobilized by spin-coating 

an aqueous suspension of the nanoparticles onto a coverslip and recording a video of n=200 frames with the 

same acquisition parameters (20 frames per second, 35 MHz camera reading frequency, pre-amplifier setting: 

3.8 and EM gain: 50) and in the same conditions as for live-cell imaging (37°C and water-saturated air flow 

with a partial pressure of 5% for CO2). FNDs tracking was done using the same tracking software parameters 

as routinely performed. Then, we obtained the positions of about 180 fNDs having different fluorescence 

intensities covering a range comparable to the one encountered during the tracking of fND entrapped in 

endosomes. Then, we quantified the localization precision based on the standard deviation of all recorded 

coordinates for each fND independently.  

For a given fND, the localization precision is described by the spread of its coordinates xi estimated n 

times (n=200 here) and is commonly expressed in terms of standard deviation σx (respectively for σy):  

σ = √� −  ∑ � − ̅  �=      ,      .  

Another representation of the localization precision is based on the mean squared displacement. 

Indeed, the spin-coated fNDs can be seen as molecules undergoing a motion within a confined area (see section 

3.3.1) of size L inferred from the MSD fit with respect to time using the following equation (Kusumi et al., 

1993): MSD = � − exp (− � )      ,     .  

where L2=πR2 is the confined area in which the motion is restricted and D is the diffusion coefficient. 

Then, we plotted these two representations of the localization precision with respect to signal-to-

noise ratio (SNR) (Figure 3.2a, red and blue curves respectively), where SNR was determined as follow: 
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SNR = −� = −√ + �      ,     .  

where F is the maximum fluorescence level, F0 is the background level, and σ is the standard deviation of the 

noise, which is calculated from the photon shot-noise and the background noise σB by: σ2=F+σB2. For this SNR 

measurement, we converted all the parameters from Analog-to-Digital unit (ADU) into photon number Nphotons, 

using the following equation: Nphotons =  CountsADU − � � � DU ∗ sensitivityEMgain. �      ,     .  

where, according to our Andor iXon+ DU885 EMCCD array detector specifications, at 35 MHz and 3.8x preamp 

setting, the mean BaseLevel is equal to 394 ADU, the sensitivity is 1.5 electron/ADU, the EMgain is 30 and the 

quantum yield QE at 700 nm is 0.65. 

We finally compared these experimental curves with the theoretical one described by equation (3.3) 

(Figure 3.2a in grey). Here, the standard deviation of the PSF was experimentally measured to be 

s=100.9±0.7 nm (mean±SDev), which is consistent with the expected value of diffraction limited imaging. 

Then, the pixel size a is of 80 nm, σB corresponds to the standard deviations of F0 measured over the 200 

frames and the total number of detected photon N is equal to the volume of the 2D-gaussian function � =π − . � . Therefore, in the case of one of the brightest fND, we had F= 15,726 ADU counts, F0=816 ADU 

counts leading to SNR=31 and N=11,500 photons. The theoretical limit of the localization precision precision  

(deduced from equation 3.3) associated to these values is 1.5 nm using fNDs containing 15 NV color-center 

per particle imaged at 50 ms integration time per frame. These values are comparable to the ones published 

by (Yildiz, 2003), who have imaged a single cyanine 5 dye with 500 ms integration time and have obtained a 

SNR=32 and N=14,000 photons and achieved a localization precision of 1.2 nm. This comparison shows that 

we have gained one order of magnitude in temporal resolution thanks to the high brightness of fNDs. 

Figure 3.2a displays the localization precision vs SNR. We observed that both the experimental curves 

have a similar shape than the theoretical calculation (all of them fitted by an exponential function as guides 

for the eyes), with the experimental ones shifted up by several tens of nanometers (from 1.5 nm (grey), 8.2 nm 

(red) to 18.4 nm (blue)). As already mentioned, this is because the theoretical equation does not take into 

account the environmental perturbation but only the electronic, photon and background noise on the camera 

array detector.  

However, for the rest of the study, we used a more operational definition to evaluate the brightness of 

the spot, namely the signal-to-background ratio (SBR), defined as follow: SBR = −      ,     .  

where F is the maximum fluorescence level and F0 is the surrounding background fluorescence level, both of 

them in ADU counts unit. The theoretical and the experimental localization precision can also be plotted with 
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respect to SBR as shown in Figure 3.2b, and we have observed that these curves have a similar shape than the 

ones of Figure 3.2a. 

According to Figure 3.2b, to achieve a localization precision better than 30 nm as reported in the field 

of SPT (Mudrakola et al., 2009) we need to discard spots having a SBR<3. According to Figure 3.2a, the same 

precision of localization if obtain for a signal-to-noise ratio SNR≈ 0. Practically, for the quantification of 

transport parameters we did not include trajectories for which more than 30% of their points had a SBR 

smaller than 3. For a given experiment, this represent a fraction of about 13±2% (mean±s.e.m.) of the 

trajectories that are not included in the final calculation of the intraneuronal transport parameters. 

Incidentally, the measurement range of the endosome velocity is therefore limited on its lower bound by the 

setup spatial (30 nm) and temporal (50 ms) resolution to about 600 nm/s.  

 

Figure 3.2: Theoretical and experimental localisation precision of the live cell imaging set-up as 
measured using immobile fND spin-coated onto a coverslip. (a) Localisation precision with respect to the 
signal-to-noise ratio (defined in eq. 3.6) inferred from the theoretical limit of equation (3.3) (in grey) and from 
measurements of the fluorescence and background intensities at each fND location (standard deviation [eq. 3.4] 
in red and MSD confinement radius in blue [eq. 3.5]). (b) Localisation precision vs the signal-to-background ratio 
as defined in eq. 3.8 for both the experimental value (standard deviation, in red) and theoretical value (grey). 
 

3.2.4 Conclusion 3.2 

In this section, we detailed the basics of the SPT method, from the PSF fitting to the concept of 

localisation precision. Then, we saw that open-access particle tracker  plugin from )CY offers the best 
processing time/accuracy trade-off. Finally, we described the calibration of our live cell imaging setup, leading 

to less than 30 nm when restricted to fNDs with a SBR>3. However, at this point, only the coordinate sequences 

of the position of each tracked object at each time point have been extracted. Therefore, how can we 

automatically extract and quantify fNDs transition rates from these single-molecule tracking data? 
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3.3 Spatiotemporal quantitative measurements of the STOP&GO 

binary motion 

Dynamic parameters such as velocity, pausing time or diffusion coefficient can be assessed in various 

ways. For example, the two first readouts can be evaluated by auto and cross-correlation of neighbouring 

images (Welzel et al., 2009), which does not require any single particle tracking. However, contrary to SPT, 

this approach cannot reveal the full complexity and heterogeneity at a single trajectory level, thus providing 

limited throughputs.  

Consequently, to extract intracellular transition rates from single-molecule tracking data, standard 

methods such as mean squared displacement (MSD) and kymograph have been used (Ehrensperger et al., 

2007). Therefore, in this section, we describe both approaches and discussed their limitations when dealing 

with precise spatiotemporal description of the STOP&GO binary motion. Then, we present the specific tools 

that we developed to automatically measure the intraneuronal transport parameters. Finally, we explore the 

spatial distribution during a STOP phase. 

 

3.3.1 Common SPT analysis tools to study dynamic processes 

Several basic mathematical tools can be applied to extract relevant features of a trajectory and gain 

more insight into intracellular dynamics (Table 3.1). For example, geometrical tools such as directional change 

can inform on the back-and-forth movement of cargos undergoing tug-of-war motion (Hancock, 2014), or 

switching from one to another microtubule or to another neuronal branch. Others more sophisticated 

automated approaches have been developed to characterize trajectories. The two most common tools are the 

mean-square-displacement (MSD) and the kymograph. 

The most commonly used SPT analysis tool is the MSD. This easily computed function is performed to 

determine the mode of displacement of particles over time. Its measurement can give access to the diffusion 

coefficient D and the velocity of directed motion (Kusumi et al., 1993; Qian et al., 1991). 

MSD �∆ = � ∑ �+ − � + �+ − ��
�=      ,     .  

where N is the total number of frames, Δt is the time interval between two consecutive frames, and (xi; yi) are 

the positions on the ith frame. 
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Table 3.1: Basic quantitative measurements applicable to describe particle dynamics. From (Meijering et 
al., 2012) 
 

Three distinct modes of motion can be depicted on the basis of the MSD measurement versus lagging 

time (Figure 3.3): 

- Simple diffusion mode (Figure 3.3 (i)): the particle undergoes simple Brownian diffusion. MSD varies 

linearly with the time with a slope nD (n=4 or n=6 in 2D or 3D). MSD(t) = 4D.t in 2D. 

- Directed diffusion mode (transport mode) (Figure 3.3 (ii)): the particle moves in one direction at a 

constant velocity with superimposed random diffusion with a diffusion coefficient D. The MSD varies as a 

parabola with a differential coefficient of 4D at time 0 (initial slope): MSD(t) = 4D.t + v2.t2 

- Restricted diffusion mode (Figure 3.3 (iii) and equation 3.6): the particle undergoes Brownian 

diffusion within a confined area of size L. Here, the curve at the infinity can be approximated by a horizontal 

asymptote corresponding to MSD=L2/3 in each dimension (Kusumi et al 1993). Another way to perform motion classification is to measure the α-coefficient of the power law curve 

MSD(t), as: log[MSD Δt ]=αlog Δt)+Cte. Therefore, anomalous diffusion, pure Brownian diffusion and directed 

diffusion motion will be assigned with respect to α < , α = , and α > , respectively. 
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Figure 3.3: MSD calculation for the study of molecular dynamics. (a) Typical trajectories of gold particles 
attached to E-cadherin membrane proteins. (b) MSD plots as a function of time t for the particles in (a) with the 
following motion mode: (i) Brownian diffusion, (ii) Directed diffusion and (iii) Confined diffusion. From (Kusumi 
et al., 1993) 
 

MSD can be instrumental to perform lateral diffusion measurement of QDot-targeted membrane 

receptors of synaptic and peri-synaptic part (Triller en Choquet, 2008). In the case of intracellular tracking, 

MSD calculation has been perform to infer dynamic characteristic of QDots-targeted and SWNT-targeted 

kinesin motion for example (Courty et al., 2006; Fakhri et al., 2014; Sun et al., 2014). Figure 3.4a shows an 

example of MSD calculation to measure both diffusion coefficient of fixed and moving particle and the velocity 

of the latter. 

However, MSD analysis is not robust enough when dealing with short or long trajectories which 

contain both diffusive and directed parts (Meijering et al., 2012). Moreover, this measurement requires a 

minimum of ten points as the inaccuracy of diffusion coefficient measurement increases when the length of 

trajectory decreases (Weimann et al., 2013). Therefore, it is not sufficiently precise to use MSD analysis to 

automatically detect the two states of motion. 

Another widely used SPT analysis tool is the kymograph (Chenouard et al., 2010; Zhang et al., 2011). 

It is a powerful 2D representation of spatial and temporal information. Usually, the horizontal axis 

corresponds to the spatial coordinate along this path, while the vertical axis corresponds to the time frame in 

the image sequence. Hence, the pixel value at position (s, tn) in the kymograph image corresponds to the pixel 

intensity at position s along the extraction path at frame n of the sequence. Kymograph can give access to 

several parameters and can be processed simultaneously on a lot of trajectories only if they are all moving in 

a single direction (Figure 3.4b). This approach can be easily performed for trafficking study in axon if they are 

enforced to develop in only one direction using a microfluidic device (Mudrakola et al., 2009; Zala et al., 2013). 
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Figure 3.4: Example of MSD and kymograph analysis of single molecule dynamics. (a) Typical trajectories 
of linear motions of QDs-labelled kinesin and random motions of PEG-QDs, together with their associated MSD 
plotted vs time. From (Sun et al., 2014). (b) Forward and backward displacement analysis of fast axonal transport 
using kymograph. Yellow stars show biased measurement. From (Zala et al., 2013).  

 

However, it will not be suitable for our analysis where freely developing neuronal brnaches show 

random isotropic morphology. Moreover, user definition of the path of interest is necessary to get a more 

reliable outcome, which makes kymograph analysis slow and tedious when dealing with biological question 

requiring high statistical power. Besides, fine and robust spatiotemporal parameters of the trajectory cannot 

be extracted. When kymograph is used to tackle biological question, it only consider velocity (forward and 

backward), run length and/or pausing time but no other readouts (Courty et al., 2006; McKenney et al., 2014; 

Zala et al., 2013). An example from recent literature is shown in Figure 3.4b. In this case, readouts can be 

biased due to the smoothing algorithm isolating straight segments. Indeed, anterograde and retrograde 

velocity are extracted from green and red segment respectively, while static motion is depicted in blue. Herein, 

the yellow star shows a region where three consecutive stop and go motions are considered as a single 

anterograde segment, resulting in an underestimation of the velocity. 

Altogether, the MSD and kymograph drawbacks that we highlighted stress the need for developing a 

new SPT analysis tool that provide a more precise and unbiased quantitative description of transient dynamics 

of the intraneuronal transport. 

 

3.3.2 Spatiotemporal detection of STOP&GO binary motion 

Custom-made algorithm for the detection of STOP&GO motion 

The confinement ratio (CR), also known as meandering index or straightness index, is often used for 

cell tracking, such as immune cells (Beltman et al., 2009). CR corresponds to the ratio of the vectorial 
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displacement over the total travelled length (Figure 3.5a). Therefore, CR varies between 0 (perfectly confined 

motion) and 1 (perfectly directed motion). However, CR is useless if the full trajectory is taken into account 

because it will tend to zero. Therefore, as we want a local knowledge of the particle dynamic and not the entire 

one, the use of a sliding window of few consecutive frames is a perfect trade-off. 

 

 

Figure 3.5: Detection of the stop-and-go  motion phases. (a) Definition of the confinement ratio for the first 
coarse detection. (b) Application to trajectory#2 of Figure 2.16 (Chapter 2). Green and blue stars referred to 
short GO and STOP phase respectively. (c) Kymograph of trajectory#1 and #2 showing green and blue arrow 
heads pointing out the same position as stars in (b). These events are usually missing when kymograph is used to 
infer velocity, run length and pausing time, leading to erroneous measurements. (d) Short stop  filter. (e) 
Directional change  filter. (f) False positive  filter. Scale bar for e-f): 100 nm, 50 nm and 100 nm respectively. 

 

Here, the confinement ratio function Rconf is calculated for each trajectory point, using a forward sliding 

window of four consecutive points (empirically determined), as the relative distance drel between extreme 

positions i=1 and i=4 over the absolute distance Σdi (i= ,…, . Rconf is used to discriminate between static 

stop  and directed go  phases of motion, where Rconf ≈ 1 corresponds to an endosome in a directed motion go  state, and Rconf ≈ 0 corresponds to the stop  state. A graphical representation of Rconf function 

applied to trajectory #2 (from Chapter 2 Figure 2.17b, c) is shown in Figure 3.5b. In the trajectory analysis algorithm, all the trajectory points are first initialized to the stop  state. Then, a go  state is assigned to each 
trajectory point based on its Rconf value which have to be larger than a cutoff fixed at Rconfcutoff=0.9 (horizontal 

dashed black line).  
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As in figure 3.5b, the Rconf function reveals the presence of these two phases, with a histogram for Rconf 

distribution on the right. This result is in agreement with the one given by the kymograph #2 of the same 

trajectory depicted in Figure 3.5c. However, the two-state motion discrimination using the confinement ratio 

is more accurate than with the kymograph as shown by the stars and arrow heads (blue and green for STOP 

and GO respectively) pointing to the same events in Rconf and kymograph representation respectively. 

Then, we sequentially apply three different filters to refine the detection of stop  phases (Figure 3.5d-

f). The first filter, namely short stop , is based on the localisation precision through the calibration curve in 
Figure 3.2. )f two consecutive go  state positions depicted in green) are separated by a distance smaller than 

the localization precision of 30 nm, the first is considered to be a stop  Figure . d . This implies that a 
velocity cut-off is set at 30/0.05=600 nm/s. The second filter, namely directional change , is based on the angle between two consecutive segments where points are go  tagged. )f this angle is larger than 0° 

(empirically determined), the point separating the two segments is considered to correspond to a stop  
(Figure 3.5e). Finally, the third filter, namely false positive , is based on the detection of a point identified as a go  which is within a stop  region. This point is considered to be a false positive and is reassigned as a stop . 

 

 

Figure 3.6: STOP&GO motion and molecular landscape. (a) Examples of a color-coded trajectory displaying 
STOP (blue) and GO (green) spatially and temporally. Scale bars: 500 nm and 1 s respectively (b) Possible 
interpretations of short pausing and long pausing due to microtubule crossings or hindrance close to dendritic 
spines position. Adapted from (Bálint et al., 2013). 
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Altogether, this procedure leads to a precise colour code of trajectories as shown in Figure 3.6a. Before 

going further, some qualitative observations can be done. Indeed, the presence of short pauses and long pauses 

separated by directed motion is quite intriguing. These alternation of dynamical processes might be due to the 

presence of a particular molecular landscape encountered by the moving cargo, such as roadblocks, traffic 

jams…(Lakadamyali, 2014). Another explanation might be that cargos have to deal with different 3D spatial 

organisations of microtubules or particular hindrance at the basis of a dendritic spine (Figure 3.6). Indeed, it 

was shown that microtubules cross each other (Bálint et al., 2013) and at this crossing location, the cargo can 

behave differently. The cargo does not stop if no microtubule is beneath, but if there is a microtubule above, it 

can be squeezed and even can detach if the distance between the two microtubule is less than ≈ 00 nm. It 

would be interesting to unravel the processes responsible for such a cargo behaviors by combining 

microtubule imaging (with 3D super-resolution microscopy) and cargo SPT in a dual-view manner. 

 

Readouts measurements and spatial description of stop  phase  

Based on this color-coded trajectory, the different stop-and-go  phases of the fNDs entrapped in 

cargos are registered and we are now able to quantify them in both space and time, leading to eight 

intraneuronal transport readouts, namely velocity (in µm/s), processivity (in seconds), run length (in µm), 

pausing time (in seconds), pausing frequency (events per minute), longitudinal and perpendicular 

displacements (in nanometers), and the diffusion coefficient (in µm2/s). Mean values and other statistical 

properties of these parameters for wild-type embryos are provided in Table 3.2. 

 

 

Table 3.2: Intraneuronal transport readouts statistics. All trafficking parameters were extracted from n=460 
trajectories acquired from n=11 C57Bl6 (wild type) mouse embryos. The range and interquartile range 
correspond to the 0-100% and 25-75% percentiles, respectively. 

 

The velocity v was calculated as the length of the displacement vector over time from the first to the last point of a go  phase, whereas the curvilinear distance and time separating these two points corresponded 
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to run length and processivity, respectively. The diffusion coefficient D was calculated during the go  
phase, by fitting the mean-square displacement MSD  to the quadratic equation MSD Δt)= v2.Δt2 +4DΔt. 

According to the Stokes-Einstein law, D is inversely proportional to intracellular viscosity. During a stop  
phase, the pausing time was defined as the duration from the first to the last point, the pausing frequency was the number of stop  phases per minute, and the longitudinal and perpendicular displacements were 

calculated as described in Figure 3.7. 

Briefly, these two parameters were calculated as follow (Figure 3.7a): for each STOP phase, a straight line Δ  was drawn between the first STOP and the next first GO with its director vector u. Consequently, the line Δ⊥  is perpendicular to Δ  and is defined by its normal vector n (equation 3.7 and 3.8). Then, algebraic 

projections �i� and �iu on the straight line Δ  were calculated for each point i of this STOP phase (equation 

3.9 and 3.10). For both directions, amplitudes of the displacement were calculated and minor and major axis 

were assigned accordingly. ∆ : − + =    ,   .    ��    ∆⊥ : + − =    ,   .  

 � = � − � +√ +     ,   .    ��    � = � + � −√ +    ,   .  )nterestingly, we observed that the stop -phase positions were located within an ellipse (Figure 3.7b, 

c). Indeed, when longitudinal versus perpendicular displacement are plotted (n= 0 stop  events extracted 
from n=460 trajectories acquired from n=11 C57Bl6 mouse embryos), we observed a correlation around a line 

(dashed red) having a slope of 0.287 ± 0.003 (mean ± standard deviation) and a correlation factor R2= 0.55 

which highlights the elliptical pattern of motion.  Thereafter, we also proved that the longest elliptical axis is aligned with the direction of the go  
motion most of the time (Figure 3.7d,e). A schematic diagram in Figure 3.7c shows the direction Δ1 (Δ2) of the trajectory before and after  the stop  phase which were determined as the linear fit to the last (or first) 3 points before or after  the first or last  stop . θoutput is the output  angle between Δ2 and Δ1 and θellipse is the ellipse  angle between Δ and Δ1. Therefore, the distribution of output  angle was proved to be centered on 
θoutput= - 0.10±0.65°, close to zero. This result suggests that microtubules are locally parallel to each other, presumably running along the shaft of the dendrite. Then, the distribution of ellipse  angle was proved to be 

centered on θellipse = 0.66±0. °, close to zero. This result suggests that, during a stop  phase, endosomes 
rarely change microtubules. Eventually, when θoutput and θellipse are plotted against each other, two forbidden 

configurations occur when both θoutput and θellipse display strong directional changes of opposite angle. 

However, we did not go further to explain this observation. 

As already mentioned in the Chapter 2, one tracking experiment will lead to roughly 40 trajectories. 

Therefore, the next step is to find a way to treat this batch of trajectories to compare two or more different 

data sets related to different biological configuration. However, two main constraints have to be taken into 

account to avoid bias. First, because both STOP&GO motion states are measured in space and time, the 
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extremities of each trajectory underestimate the parameter ground truth values (Figure 3.8a). Secondly, the 

SBR of each trajectory point has to be evaluated to ensure that 30 nm localization precision is reached at any 

time. 

 

 

Figure 3.7: Elliptical quantification of stop  phases and qualitative descriptions. (a) Geometrical 
references for perpendicular and longitudinal displacement calculations. (b) Plot of longitudinal versus 
perpendicular displacement proving the elliptical shape. Black line and dashed red line are the first bisector and 
the linear data fit respectively (c) Schematic diagram showing how references were chosen. (d) Distribution of 
output  angle θoutput. (e) Distribution of ellipse  angle θellipse. (f) Dots plot of θoutput versus θellipse showing two 

forbidden configurations. 
 

Therefore, the first strategy we tried was to use the bootstrapping approach to artificially recreate a 

past and a future behavior based on the entire set of data. A randomization of the full data set was performed 
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using a random generation function and then the trajectories were concatenated all together. Then, 

considering the precision localization calibration curve, all trajectory segments having a SBR<3 were deleted. 

At the end, this procedure was repeated several times to be unbiased (Figure 3.8b).  

However, each trajectory may reveal a unique neurobiological process, which can be different between 

two neurons. Even in the same neuron, we can expect different dynamics for each fND-containing cargos, as 

the type of cargos, the number of molecular motor recruited and even the landscape with dynamical 

rearrangements (obstacles, microtubule depolymerization…  can vary spatially and temporally. 
Consequently, to account for biological variability, we decided to extract the readouts for each trajectory 

independently, and did not apply any bootstraping. Blunt extremities were not included for the mean or 

median readouts calculation. Moreover, we did not consider short trajectories (less than 50 frames) as well as 

trajectories with more than 30 % of points imprecisely localized. Altogether, we obtained the statistical figures 

of intraneuronal trafficking readouts shown in Table 3.2, calculated from n=460 trajectories acquired from 

n=11 C57Bl6 mouse embryos. 

 

 

Figure 3.8: Batch treatment of extracted trajectories. (a) One trajectory at a time with exclusion of the first 
and the last events (b) Bootstrapping Stochastically Reconstructed Intraneuronal Trajectory. Briefly, all 
trajectories are first aligned with each other, then they are randomly concatenated and finally dim segments are 
detected and deleted. Readouts calculation is made and the all process is repeated one thousand times.  
 

3.3.3 Conclusion 3.3 

In this section, we described the most common SPT analysis tools, namely MSD and kymograph, which 

can be used to measure dynamical parameters such as diffusion coefficient, velocity or run length. However, 
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both have limitations that prevent the detection of fine intraneuronal transport dynamics. These observations 

prompted us to develop our own analysis approach based on the confinement ratio function, yielding eight 

distinct dynamic parameters. However, is our fNDs-tracking assay stable within the course of one experiment 

and between two independent experiments? What is its sensitivity? How can we demonstrate that we are 

recording microtubule-dependent transport?  

 

3.4 Validation of the nanodiamond-tracking assay  

When a novel methodology is developed, several validation tests have to be successfully passed. This 

is mainly the purpose of this section. First, we evaluate the stability during the course of one experiment (intra-

stability) and between two independent experiments (inter-stability). Then, we assess its sensitivity to 

nanomolar concentration of drugs that depolymerize either microtubules or actin. Eventually, we show that 

the fNDs-tracking assay can be instrumental to optically resolve microtubule bundles in living neurons. 

 

3.4.1 Intra and inter-experiment stability of the method 

The intra-stability of the fNTA was assessed to prove that this methodology does not affect the normal 

functioning of the neurons, due to cyto or photo-toxicity for example. To do so, we first evaluate the global 

variation of velocity and processivity over the entire course of the experiment (Figure 3.9a). The slope of both 

linear fits are -3.9x10-4 and 5.7x10-4 respectively, very close to 0, indicating no dependence of experimental 

procedure with time. Then we compared the eight transport parameters measured during the first and the 

last 15 min of the 45 min duration experimental runs for three independent experiments (Figure 3.9b, c). No 

statistically significant changes are observed, except for longitudinal displacement, for which p=0.03, 

indicating that this readout is not entirely reliable. Because both longitudinal and perpendicular displacement 

are linked throughout their calculation, we will not pay much attention on these two parameters for the rest 

of the study. Therefore, most of the trafficking readouts remained constant during the 45-minute recordings 

for each culture well.  

Finally, the inter-stability of the technique was assessed for two distinct experiments (different 

cultures and different pregnant females). Figure 3.10 shows no significant differences between the readout 

values (even though longitudinal displacement tends to decrease). Altogether, these results demonstrate the 

good stability of the fNDs-tracking assay.  

However, because both perpendicular and longitudinal displacements are intrinsically linked in the 

way we extract them, we decided to consider none of them to interpret the data elsewhere. 
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Figure 3.9: Intra-experiment stability of the method. (a) Variation of two readouts (mean values of velocity 
and processivity) for 64 consecutive trajectories over a total duration of 45 minutes acquired from a single 
hippocampal neuron culture well. The dashed black lines are linear fits to the data. (b) Comparison of the 
readouts between the first 15 minutes and the last 15 minutes of acquisition, for experiments carried out in 
triplicate. (c) Corresponding Wilcoxon U-test p-values. 

 

 
Figure 3.10: Inter-experiment stability of the method. (a) Intraneuronal transport parameters for two 
different experiments: one well each from two cultures and two different pregnant females (n>30 trajectories 
from n=4 embryos each experiment). (b) Corresponding Wilcoxon U-test p-values. 



Chapter 3 – Quantification of intraneuronal transport parameters 

 

89 

 

3.4.2 Quantification of kinesin versus dynein trafficking parameters  

Intracellular transport is fundamental for morphogenesis and biological function. It requires both molecular motors and rail tracks  where long-range transport is performed by kinesin and dynein traveling along microtubule tracks , while short-range transport is done by myosin traveling along filamentous actin 

(Hirokawa et al., 2009). 

In some occasions, the fND-containing endosomes display directional changes, going back on 

themselves for short periods of time. These observations suggest that endosomes can change motor type, as previously reported for kinesin and dynein, which oppose each other in a sort of tug-of-war  situation 
(Hancock, 2014). Therefore, this prompts us to measure intraneuronal transport parameters separately for 

kinesin (motion from the soma to the distal part) and dynein (motion from the distal part to the soma). In 

Figure 3.11a, given the uniform polarization of microtubules in the distal region, the retrograde motion of #1 

is dynein-driven, whereas the anterograde motion of #2 is kinesin-driven. As shown in Figure 3.11b,c, no 

statistically significant changes were observed, except for longitudinal displacement, for which p=0.003, 

confirming that this readout is not entirely reliable, as already observed in intra-stability tests.  

 

 

Figure 3.10: Quantification of kinesin versus dynein active transport parameters. (a) DIC image merged 
with maximum intensity projection of fND movie (red channel), superimposed to trajectories #1 and #2. Green 
arrows indicate the two different directions of motion. Scale bar: 5 µm. (b) Intraneuronal trafficking readouts 
for kinesin versus dynein molecular motors (trajectories extracted from different experiments). (c) Wilcoxon U-
test p-values for the eight readouts.  
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Altogether, these results allow us to pool all trajectories for each set of data, without worrying about 

the molecular motor recruited and regardless of the direction of motion. Therefore, we can focus exclusively 

on generic changes of the intraneuronal endosome transport. 

 

3.4.3 Microtubule-dependent transport of fNDs entrapped in cargos 

Microtubules are cytoskeletal scaffolding polymers involved in various processes such as mitosis, 

maintenance of cell shape, cell polarization and intracellular transport. Microtubule assembly, organization 

and dynamics in axons and dendrites are still under scrutiny but some fundamental mechanisms are well 

known (Conde en Cáceres, 2009). For instance, microtubules undergo dynamical instabilities, which consist 

in cycles of rapid growth (polymerization) and shrinkage (depolymerization). Taxol and nocodazole are two 

drugs allowing stabilization or destabilization of microtubule network respectively. 

 

  
Figure 3.12: Nanomolar sensitivity of the fND-tracking assay to nocodazole impairment of the 
microtubule cytoskeleton integrity. Cumulative probability densities are shown for the control (black), 
concentrations of 2 nM (green) and 5 nM (red). Inset: bar plots (mean ± s.e.m.). A cartoon illustrate the underlying 
biological mecanisms. (n>35 trajectories from n=4 embryos for each experiment). 

 

To assess the fNDs-tracking assay sensitivity and to confirm the microtubule-dependent fNDs 

transport, we perturbed the traffic by destabilizing the microtubule network with nanomolar concentrations 
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of nocodazole during the course of the 1 h-experiment. It is worth noting that a standard is to use nocodazole 

between 0.2 µM to 10 µM for several hours (Courty et al., 2006; Jaworski et al., 2009). We incubated primary 

cultures of mouse hippocampal neurons with two concentrations of nocodazole (2 nM and 5 nM), which 

interfere with microtubule polymerization within few minutes (Vasquez et al., 1997). As shown in Figure 3.12, 

we observed for 2 nM and 5 nM respectively a decrease in velocity (p=3.8x10-4, p=1.4x10-7 respectively), in 

run length (p=3.4x10-4, p=5.3x10-6 respectively), in processivity (p=4.5x10-3, p=9.8x10-5, respectively) and in 

pausing frequency (p=0.54, p=0.016 respectively), and an increase in pausing time (p=0.003, p=6.4x10-

5 respectively). Conversely, perpendicular displacement, longitudinal displacement and the diffusion 

coefficient were not significantly affected by the addition of nocodazole (p-values of p=0.989, p=0.479, 

p=0.575, respectively, for 2 nM nocodazole, and p=0.379, p=0.18, p=0.544, respectively, for 5 nM nocodazole). 

The significant increase in pausing time is as expected for motors unable to overcome the interruption 

of active transport caused by depolymerization of the plus-end tips of microtubules. This interruption of such 

an active transport also results in a significant decrease in run length and processivity, and all the 

intraneuronal transport parameters vary in a dose-dependent manner. Altogether, these results demonstrate 

the sensitivity of the fNDs-tracking assay as well as the fact that cargos containing fNDs traffic along 

microtubules, and are therefore fully equipped with kinesin and dynein motors and their specific adaptors.  

 

3.4.4 Dependence of intraneuronal transport on filamentous actin integrity 

fNDs-containing cargoes are transported in a microtubule-dependent manner, but it may also involve 

the actin network. Therefore, we tested the impact on the traffic of cytochalasin D, which is known to interfere 

with filamentous actin (FA) polymerization (Casella et al., 1981). We incubated primary cultures of mouse 

hippocampal neurons with either 10 nM or 100 nM concentrations of cytochalasin D (Figure 3.13). Transport 

parameters were not affected by 10 nM concentration. Conversely, when neurons are treated with 100 nM of 

cytochalasin D, we observed an increase in processivity and run length (p=0.025, p=0.023 respectively), and 

velocity, pausing time, pausing frequency, perpendicular displacement, longitudinal displacement and 

diffusion the coefficient were not significantly affected by the addition of 100 nM cytochalasin D (p= 0.472, 

p=0.822, p=0.133, p=0.554, p=0.333, p=0.6415) (Figure 3.13).  

Using super-resolution microscopy, Xu et al.(Xu et al., 2013) showed that there were long FA fibers 

running along dendritic shafts. Moreover, a dozen of protein families have been identified as candidate cross-

linkers between FA and MT (Rodriguez et al., 2003). Therefore, the facilitation of trafficking observed (with 

100 nM cytochalasin D) is consistent with co-trafficking involving myosin V/VI and kinesins/dyneins, FA-MT 

structural interactions, or both. Consequently, a schematic model of intraneuronal endosome trafficking can 

be proposed (Figure 3.13), in which FA-driven transport opposes the main microtubule-driven motion (left), 

and/or structural interactions between MT and FA, mediated by cross-linking proteins (in green), affect cargo 

motion. 
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Figure 3.13: Nanomolar sensitivity of the fND-tracking assay to cytochalasin D impairment of the actin 
cytoskeleton integrity. Cumulative probability densities are shown for the control (black), concentrations of 
10 nM (green) and 100 nM (red). Inset: bar plots (mean ± s.e.m.). A cartoon illustrate the possible underlying 
biological mecanisms. (n>35 trajectories from n=4 embryos for each experiement). 
 

3.4.5 Optically resolving microtubule bundles in living neurons 

Unlike axonal microtubule bundles, dendritic microtubule bundles are not aligned (Conde en Cáceres, 

2009) as observed by electron microscopy. In live cells, imaging of microtubule was done only in cell lines 

where microtubule are well separated and not strongly packed and twisted.  

As we were interested in imaging the microtubule network in control versus anomalous case, we first 

started to collaborate with Elisa D’ESTE from Stefan HELL’s laboratory at Max Planck for Biophysical Chemistry 

(Göttingen, Germany). At this time, we thought that STED super-resolution microscopy could resolve 

microtubule spacing. In this case, both fixation protocol and labeling density have to be optimized to be sure 

that the structure is well conserved and well sampled, as shown with the discovery of the actin ring in axon 

using STORM super-resolution microscopy (Xu et al., 2013). Unfortunately, microtubule fine structure was 

barely resolvable (Figure 3.14a, b). Interestingly, the long-lasting challenge of mapping microtubule bundles 
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inside primary neurons was recently met using dSTORM super-resolution nanoscopy (Mikhaylova et al., 

2015), but yet at young developmental stage (DIV1) in fixed neurons and very close to the soma where 

microtubule are less packed together and twisted than in distal portion. 

Here, the tracking of fND-labeled endosomes can help to solve this problem. Indeed, it is a powerful 

tool for mapping the intraneuronal microtubule network in living cell, as shown in Figure 3.14c, d. Four trajectories of endosomes driven by kinesin or dynein can be seen in the same dendrite, no more than ≈ 00 nm 

apart (Figure 3.14c). Moreover, adjacent trajectories are separated by a distance of about 40-160 nm which is 

consistent with reported values (Chen et al., 1992; Mudrakola et al., 2009).  

 

 
Figure 3.14: Microtubule mapping using the fND-tracking assay. (a-b) Confocal versus STED imaging of 
microtubule in hippocampal neurons. )mmunostaining was done with β -Tubulin (a) and MAP2 (b) primary 
antibody and Alexa561nm as secondary antibody. Scale bar: 1 µm. (c) Trajectories of fND-containing endosomes 
either kinesin or dynein driven, revealing four underlying well-separated microtubules within the same dendrite. 
Scale bar: 400 nm. (d) Mapping of microtubule bundles (different cell that in (c)) with single fND-containing 
endosomes doing back-and-forth motion. 
 

Moreover, considering that microtubules are parallel within a bundle, one can also look for 

preferential directions in the trajectory of a single vesicle moving back and forth. Practically, straight sections 

(longer than 3 frames) of the trajectory are linearly fitted (Figure 3.14d). The distribution of trajectory slopes 
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reveal three main values colorized in green, blue and orange. Because sections with the same slope may belong 

to the same bundle, we extended the colorized segments on one of their side in order to display what could be 

a part of the microtubule bundle organization. The three bundles observed appear entangled in the 5-8 µm x-

coordinate portion of the trajectory, which is consistent with its local higher level of complexity. Altogether, 

with additional mathematical processing, the microtubule mapping using the fNDs-tracking assay could be 

useful for assessing the integrity of the cytoskeleton in both normal and abnormal configuration while 

performing live cell imaging. 

 

3.4.6 Conclusion 3.4 

In this section, we demonstrated that the fNDs-tracking assay is stable and sensitive enough to detect 

molecular perturbations in the nanomolar range that can impact the intraneuronal transport either directly 

by depolymerizing microtubule network or indirectly by deconstructing the filamentous actin cytoskeleton. 

Moreover, this approach can be instrumental to gain insight into the complex intraneuronal transports by 

selecting either kinesin-driven or dynein-driven transports. Finally, it is a powerful nanoparticule-based 

methodology to optically resolve microtubule bundles inside freely developing branches of living neurons.  

 

3.5 Conclusion of Chapter 3 

In this Chapter 3, we described how we automatically extracted the large number of fND-labelled 

endosome trajectories using SPT tracking tools. Because the experimental localisation precision knowledge is 

of utmost importance to draw any robust biological conclusions, we first calibrated our live-cell imaging setup 

and proved that fNDs coordinates can be determined at a temporal resolution of 50ms with a spatial accuracy 

better than 30 nm for particles with a signal-to-background ratio larger than 3. Then, we developed a 

dedicated quantitative trajectory analysis based on the confinement ratio to extract eight trafficking 

parameters. However, it is worth underlying that a coming standard to infer transient particle transport 

dynamics in living cells will be to apply Bayesian model selection to hidden Markov modelling, as shown very 

recently (Monnier et al., 2015). 

Thereafter, we proved our approach to be stable during technical and biological duplicates. Moreover, 

we showed its sensitivity to nanomolar perturbation of either the microtubule or the actin network. Finally, 

we used the fNDs-tracking assay to gain insight into the complex intraneuronal transports by selecting either 

kinesin-driven or dynein-driven transports, and to unveil the underlying microtubule network. Altogether, we 

are now equipped to tackle biological questions related to normal versus dysfunctional cases.  
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4.1 Introduction 

Neurogenomics is a powerful approach to pre-select a first set of interesting genes and guide 

neurobiologists to analyse selected pathways. However, the emerging polygenic architecture of mental 

disorders makes it mandatory to screen the functional impact of genetic variants. Through bioinformatics 

meta-analysis approach, we have demonstrated the disease relevance of monitoring the intraneuronal 

transport. We then developed and validated the fNDs-tracking assay which provides spatiotemporal 

quantification of intraneuronal transport.  

This chapter is devoted to the application of the fND tracking assay to measure the functional impact 

on the intraneuronal transport of brain disease-related genetic risk factors. We first review the 

neurobiologists ToolBox commonly used for in vitro and in vivo expression of brain disease-related genes. 

Then, we evaluate the fNDs-tracking assay sensitivity to subtle changes on the microtubule track 

(overexpression of Mark1), then on the energy pathway (overexpression of Slc25a12) and eventually on the 

transcription machinery (haploinsufficiency of Auts2). 

 

4.2 Neurobiologists’ toolbox for in vitro and in vivo gene expression 

From neurogenomics studies, many genetic variations associated to neuropsychiatric diseases are 

now available. The effect of these mutations can be mimicked both in vitro and in vivo by the modulation of 

gene expression either transiently or constitutively. The former can be performed using transfection (e.g. lipofection, electroporation…  or transduction e.g. lentivrus, AAV…  for both in vitro and in vivo studies, 

whereas the latter can be induced in vivo like in transgenic animal models of brain diseases. In this section, we 

first describe transfection and infection genetic approaches for overproduction or silencing (knock-down) of 

a protein of interest. Then, we detail the constitutive or conditional knock-in and knock-out of a gene of 

interest using either homologous recombination or Cre/LoxP system. 

 

4.2.1 Transfection and Transduction 

Static or dynamic study of proteins, RNAs or DNA in cultured cells and tissues often use fluorescent 

probes. In the case of proteins, it is necessary to fuse them with fluorescent proteins as reporters (e.g. GFP, mCherry… . The only way to produce such a chimeric construct inside a cell is to introduce the DNA-coding 

sequence into the nucleus so that the transcription/translation machinery of the cell itself will produce this 

exogenous protein. This strategy relies on two critical steps: the DNA-coding sequence production and its 

introduction into the cell. First, the DNA-sequence coding for the fluorescent fusion protein is genetically 

engineered from circular bacterial DNA (plasmid) (Figure 4.1a). Then, the plasmid has to be introduced into 

the host organism to be expressed in the cytoplasm for a short period of time (from few hours to 96 hours 

after introduction of plasmid DNA into mammalian cells). 
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Figure 4.1: Lipid-mediated transfection in Mammalian cells. (a) Mechanism of plasmid internalization 
throughout the plasma membrane mediated by liposomes (From https://www.microscopyu.com). Plasmid 
circular DNA is shown with the four minimum requirement to perform transfection of exogenous sequence inside 
cell for fluorescent fusion protein with (1) bacterial replication origin, (2) promoter, (3) cDNA of interest, (4) 
antibiotic resistance gene. (b) Image of a neuron transfected at DIV2 with the vector TGN38-GFP and imaged 
with a Leica SP5 confocal microscope at DIV4. Scale bar: 5 µm.  
 

The plasmid vector used for this purpose has several requisite components. One group of DNA 

sequence is needed to produce the plasmid itself whereas a second group of DNA sequences will code for the 

protein of interest. First, the plasmid must contain prokaryotic nucleotide sequences coding for a bacterial 

replication origin specific to a type of bacteria, usually E. Coli. Moreover, an antibiotic resistance gene (e.g. 

Ampicillin or Neomycin) or a luminescent protein coding gene (e.g. luciferase) has to be inserted to allow the 

selection of only the bacteria which incorporated the plasmid. Then, the second group of DNA sequence in the 

plasmid is related to eukaryotic genetic elements that will trigger the cDNA transcription. A promoter is 

required to trigger the transcription of the cDNA of interest (Figure 4.1a).  

Once the protein-coding plasmid sequence is ready, it has to be delivered throughout the plasma 

membrane of the cell. A wide spectrum of transfection reagents and techniques are available, ranging from 

vehicle-mediated delivering liposome, virus, calcium phosphate precipitation…  to direct internalization electroporation, microinjection, GeneGun… . The more widespread strategy is the liposome-mediated 

transfection reagent, which will sequester the plasmid DNA in lipid vesicles that will fuse to the cell membrane 

and deliver the contents to the cytoplasm (Figure 4.1a). Indeed, the negatively charged DNA will be entrapped 

inside the positively charges liposomes allowing them to overcome the electrostatic repulsion of the cell 

membrane. The transfection efficiency is low (around 5% in primary neurons) because either the neurons die 

before expressing the transgene, or the transgene expression is cytotoxic for the cell or even, the transfected 

genetic material may never reach the nucleus as it may be disrupted somewhere along the delivery process.  

As mentioned in Chapter 2, when we studied the uptake pathway of fNDs inside primary neurons, a 

colocalization study was performed using transfection of marker of early endosomes, the TGN38 protein. In 

this experiment, as shown in Figure 4.1b, primary neurons were transfected at DIV2 and imaged at DIV4. The 

plasmid DNA vector coding for the fusion protein TGN38-GFP and the liposomes (Lipofectamine 2000 reagent, 

LifeTechnology, ref 11668027) were diluted for 5 min at room temperature in Opti-MEM® I Reduced Serum 

Medium (Life Technology, ref 31985-062). Then they were mixed together for 20 min at room temperature 

https://www.microscopyu.com/
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with two vortex steps in order to break early liposome complex and increase the probability to get DNA 

entrapped inside the liposomes. The suspension was diluted in DMEM serum-free medium and incubated for 

2 hours. The old complemented neurobasal medium was kept warm and put back. After 24 h to 48 h, neurons 

express the protein of interest that can be imaged (Figure 4.1c). 

Another way to induce exogenous protein expression inside primary neuron is to use viral vectors. The term transduction  is used to describe a virus-mediated DNA transfer into cells. In contrast to transfection of cells with foreign DNA or RNA, viral vectors retrovirus, lentivirus, AAVs…  are able to infect 
cells and transport the DNA directly into the nucleus, hence, no transfection reagent is needed. After the 

release of the DNA into the nucleus, the protein of interest is produced using the host’s own machineries. 
Transduction efficiencies is up to 100% and can be easily achieved without severely affecting cell viability, 

even in difficult-to-transfect cells, such as primary neurons. Furthermore, some viruses integrate into the cell 

genome facilitating stable expression. However, transfection is still the method of choice for many applications 

as construction of a viral vector is a much more laborious process. 

Viral vectors can be used either as a transfection substitution for exogenous protein expression in 

mammalian cell or to regulate endogenous protein expression through siRNA-mediated knock-down (KD). 

They can be split into four families: retrovirus, lentivirus, adenovirus and adeno-associated virus. Briefly, 

retroviruses are enveloped particles of about 100 nm in diameter containing two identical single-stranded 

RNA molecules of 7–10 kb in length. Retroviruses can infect only dividing cells contrary to lentivirus, a 

subclass of retrovirus, which has the ability to integrate into the genome of non-dividing cells. Then, 

adenovirus are non-enveloped (without an outer lipid bilayer) particles of about 90–100 nm, containing a 

double stranded DNA genome. It does not integrate into the genome and is not replicated during cell division. 

Adenovirus can be used to transduce genes of interest in postmitotic neurons (Lepagnol-Bestel et al. Dyrk1A 

HMG, 2009). 

The last viral vector category is the Adeno-associated virus (AAV). It is a small virus that can infect 

both dividing and non-dividing cells and may incorporate its genome into that of the host cell but does not 

replicate. The AAV is non-enveloped virus of about 20 nm in size, with a single-stranded DNA of about 4.7 kb 

long. The main limitation of AAV is the limited size of DNA that can be integrated (around 2 kb). This viral 

vector will be used in section 4.4 for siRNA-induce haploinsufficiency of the ASC-related Auts2 gene.  

 

4.2.2 Transgenic mouse model from homologous recombination 

Modeling of human brain diseases to understand the function of related genes usually relies on the 

establishment of transgenic mouse mimicking the effect of genetic mutations (de Angelis et al., 2015; Nestler 

en Hyman, 2010). As our working hypothesis is to mimic in hippocampal neurons the subtle changes induced 

by genetic variants, we cannot use the aforementioned transfection strategy that modify gene expression at 

levels not found in patients with mental disorders. Although transduction can be used for down-regulation of 

a protein using siRNA, transfection is limited by its low efficiency and uncontrolled protein overproduction. 
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Therefore, genetically modified mice are required with either constitutive (permanently triggered) or 

conditional (spatiotemporally triggered) genetic modification leading to endogenous protein expression level. 

Different type of animals can be used to model neuropsychiatric disorders (zebrafish, C elegans, Drosophila… . 
However, mouse is genetically closest to human and a variety of genetic engineering tools are available for 

mouse. Furthermore, mouse lines can be obtained in a pure genetic background and phenotypic traits (e.g. memory, social behaviour, stereotypies…  can serve as proxies of abnormal traits found in patients and can 
be quantified by behavioural studies. 

Basically, two strategies have been developed to produce genetically modified mice. The first 

approach, which is the most common method used to create transgenic mice with specific gene 

overexpression, is based on random integration (RI) of exogenous DNA into the mouse genome, by injection 

of DNA into the mouse pronuclei (this method was instrumental for our study in section 4.3 and 4.4; see Figure 

4.4) (Gordon et al., 1980). This procedure involves collecting fertilized eggs at the single cell stage. The two 

pronuclei containing the genetic material from both the sperm and the egg are visible for a short period of 

time. At this specific stage, a linearized DNA construct is injected into one of the pronuclei. The injected eggs 

are then transferred into a foster mice. Generally 10 to 20% of the pups born to the foster mothers have 

integrated the injected DNA into their genomes, thus becoming transgenic. Yet, as the DNA integrates 

randomly into the genome, the copy number of the gene of interest cannot be controlled and thus, each pup is 

a unique founder mouse. Therefore, to check in which part of the mouse genome the exogenous sequence is 

located and how many copies are integrated, PCR followed by sequencing has to be performed. Moreover, 

even though a copy was integrated, this does not imply that it will produce a protein (caused by epigenetic, alternative splicing… : a protein quantification is thus mandatory see for example L38het in section 4.3). 

The second approach, pioneered by Mario R. Capecchi, Martin J. Evans, and Oliver Smithies (Nobel 

Prize in Physiology or Medicine 2007), uses the spontaneous homologous recombination (HR) phenomenon 

that occurs in genome of all species. As this event has a low probability of occurrence in comparison to RI (in 

the range of 10-3), a selection strategy is needed to sort out clones displaying HR in embryonic stem cells (ES 

cells). Conversely to RI, this strategy is able to generate either knock-in (KI) or knock-out (KO) transgenic 

mouse lines (Capecchi, 2005), but require specific design of the exogenous DNA to target a specific endogenous 

segment. 

As shown in Figure 4.2, the experimental procedure is roughly the same for RI and HR, except that for 

HR, the DNA sequence must be carefully designed. As for transfection, a plasmid is generated with the 

appropriate DNA sequence of the gene of interest. In parallel, ES cells are extracted from a mouse female 

embryo displaying totipotent embryonic stem cells at the blastocyst stage and cultivated in vitro. The ES cells 

are then transfected with the plasmid. Here, RI or HR occurs and induces the DNA sequence integration into 

the genome of the host ES cell. As the phenomenon is very rare, it is necessary to select the few genetically 

modified ES cells (using antibiotic as these cells also incorporate an antibiotic resistance gene). After 

purification, the transgenic ES cells are re-injected inside the blastocyst, which are then re-implanted inside a 
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surrogate mouse. From this step, mosaic animals are mostly generated (i.e. no transgene in the gonads). After 

the embryo birth and breeding, these animals are subsequently coupled until the transgenic line is stabilized 

with the exogenous DNA sequence expressed in every cells (Figure 4.2). 

 

 

Figure 4.2: Induction of specific gene modifications in mice using ES cells. (1) Embryonic stem (ES) cells are 
cultured from mouse blastocysts, which have the potential to differentiate into any type of cell. The target gene 
(genetic material to be modified) is identified in the ES cell. (2) Construction of a targeting vector, which contains 
a cloned gene consisting of regions that are homologous with the target gene and antibiotic and/or antiviral 
resistance gene to allow ES cell line selection. ES cell transfection e.g. electroporation, viral infection… . (3) 
Homologous Recombination, which induces disruption of the target gene. However, random genome integration 
is also possible and ES cells have to be selected and enriched. (4) Selection and proliferation of targeted ES cells, 
followed by (5) microinjection into the blastocyst. (6) The blastocyst was implanted into the mouse, which acts 
as a surrogate mother and (7) the mosaic embryos are mated with normal mice to generate stable transgenic 
mouse line, appropriate mating will render the mutation homozygous. (Adapted from 
http://www.nobelprize.org/). 

 

4.2.3 Cre/loxP recombinase system 

The main drawback of the aforementioned HR technique to generate constitutive KO transgenic mouse 

is that it is often lethal for the embryos. However, neurobiologists need to decipher the role of a given gene 

usually later in development. Therefore, conditional transgenesis is required to study the spatio-temporal 

gene function. 
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As it is often the case in biology, a novel technology was inspired from the Cre–loxP site-specific 

recombination system of Coliphage, which is a type of bacteriophage that infects Escherichia coli (Sauer en 

Henderson, 1988). Cre is a DNA recombinase (38 kDa), which specifically recognizes 34-bp loxP-sites (LOcus 

of cross-over of P1). Then, Cre–loxP recombination between two sequential loxP sites excises all DNA 

sequences located between the two sites, forming a covalently closed circle with the ablated gene plus one 

loxP, and a linear product with the other loxP (e.g. NMDA DNA sequence in Figure 4.3). This Cre–loxP-mediated 

recombination is highly efficient and precise. In most cases, both loxP sites are placed in the same chromosome 

and repeated in the same direction (arrow direction in Figure 4.3) so that the desired DNA sequence can be 

deleted. However, the loxP sites can also be positioned in an opposite direction to create a switch to inactivate 

and activate genes of interest, or even be placed in different chromosomes for inter-chromosome 

recombination. In the case of the AUTS2 project of Prof. SIMONNEAU’s team to which ) contributed to, the loxP 
sites have been inserted in two distinct transgenic lines at a distance of 1 Mb. 

 

 
Figure 4.3: Cre–loxP mediated recombination for regional restriction of gene expression. See main text for 
details (adapted from (Deng, 2012; Mayford et al., 1996)). 

 

Spatiotemporal gene ablation by Cre recombinase (Figure 4.3) requires two transgenic mouse lines, 

initially generated by homologous recombination. The first one has to be generated to encompass the 
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endogenous gene by two loxP sites (NMDA gene in Figure 4.3). The second transgenic mouse is designed so 

that Cre is express at a given time at a given place in the mouse brain. Usually, a specific promoter is used, such 

as CamKII, which is expressed specifically in the forebrain CA1 hippocampal region (Figure 4.3). Then, the 

loxP-modified mice are mated with the Cre-transgenic mouse. This generates a double-transgenic mouse in 

which the loxP-modified gene has been deleted in a specific cell-type in which the Cre transgene has been 

expressed (here CA1 pyramidal neurons with KO-NMDA receptor).  

Overall, the Cre/LoxP recombinase system is useful to create constitutive or conditional KI or KO in 

post-mitotic neurons of mouse in a cell type-specific manner. For example, stoichiometric endogenous KI 

mouse with florescent protein tagging can be performed with Cre/LoxP recombinase system. Also, Cre gene 

can be expressed directly in vivo using recombinant viral vectors or by in utero electroporation (IUE). All in 

all, the Cre/loxP technology has revolutionized the way neurobiologists modulate neural activity in vivo. It has 

made it possible to develop optogenetics with light-activated channels (Madisen et al., 2012) as well as to 

dissect connections between neuronal networks, which is another field known as connectomics (Livet et al., 

2007; Loulier et al., 2014).  

 

4.2.4 Conclusion 4.2 

The ability to perform precise genetic manipulations in a cell-type specific manner is essential for 

analysis of genes, cells, and circuits dysfunction in neuropsychiatric diseases. From coarse gene manipulation 

with transfection to fine tuning of gene expression with Cre/Lox transgenesis, we showed in this section that 

numerous neurobiological tools were developed to increase the versatility of applications. Moreover, given 

the current CRISPR/Cas9 revolution in the field of genome editing (Charpentier en Doudna, 2013), it will 

become even easier to mimic human brain diseases through a broad spectrum of transgenic animals. 

Neurobiologists are better equipped to tackle neurogenomics challenges. 

 

4.3 Sensitivity to subtle changes on the microtubule track 

In this section, we first review the implication of microtubule-related Mark1 in mental disorders. Then, 

as we want to mimic the protein over-production level found post-mortem in the forebrain of patients with 

ASC, we detail the establishment of transgenic mouse lines with subtle Mark1 overexpression. Finally, we 

evaluate the fNDs-tracking assay sensitivity to subtle changes impacting the microtubule tracking using this 

transgenic mouse model. 

 

4.3.1 MARK1 is a brain disease-related genetic risk factors 

Microtubule-related MARK1 gene belongs to the microtubule-affinity regulating kinases family, as part 

of serine/threonine-protein kinases. MARK proteins have the ability to phosphorylate tau protein and related 

microtubule-associated proteins like MAP2. This mechanism makes it possible to regulate microtubule 



Chapter 4 – Application to neuropsychiatric-related genetic risk factors 

 

103 

 

dynamics in neurons, and may subsequently regulates dendritic spine morphology and synaptic plasticity 

(Jaworski et al., 2009). Members of the MARK family were also found to have key roles in cell processes such 

as determination of polarity, cell-cycle control, intracellular signal transduction, transport and cytoskeleton 

(Matenia en Mandelkow, 2009). More specifically, MARK1 phosphorylates MAPT/tau, causing detachment 

from microtubules (Mandelkow et al., 2004). As hyperphosphorylation of MAPT/tau can lead to its 

pathological aggregation, this process may be in the early steps of Alzheimer’s disease (Querfurth en LaFerla, 

2010). Interestingly, subtle increase in Mark1 expression was recently reported in MAPT/tau model of familial Alzheimer’s disease, using whole-genome gene expression analysis (Matarin et al., 2015). Furthermore, Pr. 

Michel SIMONNEAU’s group showed in 2008 that several SNVs within the MARK1 gene were associated with 

Autism Spectrum Condition (ASC). Moreover, they found postmortem that MARK1 was overexpressed in the 

forebrain region of ASC patients by about 38% (Figure 4.4a) (Maussion et al., 2008). Finally, we identified the 

microtubule-associated MARK4, a paralog of MARK1, being part of the schizophrenia NETBAG+ network as 

SNV de novo mutation was discovered on this gene (Fromer et al., 2014)(see Chapter 1 Figure 1.6).  

Altogether, these observations highlight the need for studying the functional impact of MARK1 with an 

overexpression level close to the one found in patients with mental disorders. As this gene is engaged in the 

microtubule organization through phosphorylation of MAP2, the monitoring of intraneuronal transport is 

likely to reveal abnormal endophenotype associated to such a genetic modification.  

 

Figure 4.4: Establishment of transgenic mouse to model Human Brain diseases. (a) MARK1 was found to 
be overexpressed by about 38% in brain of patients with Autism. From (Maussion et al., 2008) (b) SLC25A12 was 
found to be overexpressed by about 35% in brain of patients with Autism. From (Lepagnol-Bestel et al., 2008) (c) 
Modelling of these subtle overexpressions in transgenic mouse using the Random Integration technique. The 
plasmid is first generated and then injected inside one pronuclei of a fertilized egg through a micropipette. The 
egg is inserted back into a female and after 1 years of breeding, the transgenic mouse line is established. 
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4.3.2 Constitutive overexpression of Mark1 in the hippocampus 

These aforementioned neurogenomics evidence of the implication of MARK1 in mental disorders 

prompted us to generate transgenic mice that slightly overexpress Mark1 genes, in order to mimic the 

functional impact of genetic variants (Figure 4.4 and 4.5a). Consequently, we used a promoter derived from 

the CaMKIIα gene known to give a fine spatio-temporal regulation and to yield slight overexpression at 

postnatal stages in the neurons of the forebrain of transgenic animals (Mayford et al., 1996).  

The generation of this transgenic construct consisted in two steps: design of the transgene and 

injection in C57/Bl6 fertilized eggs. The first step is a transgene plasmid construction following the method 

described in Section 4.2.1 and performed by Dr. LEPAGNOL-BESTEL in the Pr. SIMONNEAU’s group at CPN 
(protocol detailed in Appendices). Then, the transgene was injected in C57/Bl6 fertilized eggs (CNRS 

SEAT/TAAM UPS 44, Villejuif, France). It is worth underlying that transgenesis was done in a pure genetic 

background (C57/B16) that is technically demanding but gives a unique advantage for behavioural tests 

(many transgenic lines are generated in a mixed genetic background that complicates behavioural test 

analysis). After stabilization of the construct, two transgenic mouse lines for Mark1 (namely L38het and L8het) 

were used for further functional analysis (Figure 4.5).  

To quantify the level of Mark1 gene overexpression in our transgenic mouse, we performed Western 

blotting (WB) to evaluate the protein level between WT, L38het and L8het (Figure 4.5b, c), and RT-QPCR to 

evaluate the mRNA level between WT, L8het and L8hom (Figure 4.5d). The first technic was done on 

hippocampal tissue dissected from P15 mice of Mark1 transgenic lines. WB was carried out with an antibody 

against Mark1 and an antibody against actin for normalization. In P15 transgenic mice, we measured 7.4±4.2% 

(p=0.85) for L38het and 32.0±6.5 % (p=0.011) for L8het overproduction of Mark1 (n=11 WT, n=9 L38het and n=9 

L8het respectively). In DIV15 cultured hippocampal neurons, we measured increases of mRNA Mark1 

transcript levels of 41.5±4.7% (L8het, p=0.0013) and 87.4±14.9% (L8hom, p=0.0010). RT-qPCR was carried out 

on the same neurons as were used for the fND-tracking assay (n=3 WT, n=4 L8het, n=3 L8hom respectively). 

Interestingly, the level of transcript increase is about 41.5% and the level of the protein increase is about 32%, 

which is consistent with a regulation of the transcript level in cells. Altogether, the quantification of Mark1 

overexpression indicate that we generated a gradient of four Mark1 protein levels, namely WT, L38het, L8het 

and L8hom, with subtle over-production. 

 

4.3.3 Intraneuronal transport modification correlates with Mark1 

overexpression. 

We then applied the fNDs-tracking assay on these Mark1 transgenic lines (Figure 4.5e). Quantification 

of the intraneuronal transport dynamic revealed significant variations for L8het and L8hom, but not for L38het in 

which no changes were observed in any of the readouts. This is consistent with the absence of Mark1 

overexpression for this transgenic line, therefore acting as another control. In L8het and L8hom, the monotonous 
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increase in Mark1 protein levels was accompanied by a monotonous increase in velocity from 1.28±0.04 µm/s 

(WT) to 1.53±0.09 µm/s (L8het, p=0.03) and 1.64±0.06 µm/s (L8hom, p=0.006), in run length from 0.92±0.07 µm 

(WT) to 1.22±0.12 µm (L8het, p=0.029) and 1.49±0.13 µm (L8hom, p=0.022), and in processivity from 

0.47±0.02 s (WT) to 0.54±0.04 s (L8het, p=0.337) and 0.66±0.08 s (L8hom, p=0.037). We also obtained a 

monotonous decrease in pausing frequency, from 66.5±2.9 events/min (WT) to 63.8±4.3 events/min (L38het, 

p=0.787) and 57.6±1.5 events/min (L8het, p=0.044). By contrast, no significant change was noted for pausing 

time, perpendicular and longitudinal displacements and diffusion coefficient for L38het, L8het and L8hom 

(p=0.684, p=0.41, p=0.213, p=0.164, respectively, for L38het; p=0.413, p=0.044, p=0.587, p=0.337, respectively, 

for L8het; p=0.252, p=0.187, p=0.33, p=0.187, respectively, for L8hom), except for perpendicular displacement 

for L8het (p=0.044). However, this quantitative parameter was shown in Chapter 3 to be unreliable, because it 

yields significant difference in technical and biological replicates. 

These results are consistent with a model in which Mark1 overexpression leads to excess of 

phosphorylation of the microtubule-associated protein (MAP) and decrease of its binding to microtubule 

(Mandelkow et al., 2004), thereby acting as a roadblock  as depicted in the schematic of Figure .5f. 

Interestingly, when we compare the number of analysed trajectories for n=3 WT versus n=3 L8het 

(littermates), we are able to record 37 ± 4.2 trajectories/hour versus 55.3 ± 1.5 trajectories/hour respectively 

(two-sample two-tail t-test p = 0.0142; done in double-blind). This can be interpreted regarding the key role 

of Mark1 in clathrin-mediated endocytosis, as this protein was shown to interact with the adaptor complex 

AP-2 of clathrin-coated vesicles (Schmitt-Ulms et al., 2009). Our observations indicate that overexpression of 

Mark1 may increase the number of internalization events. Thus, STOP&GO motion of fNDs-labelled endosomes 

indicative of the clathrin-mediated endocytosis efficiency.  
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Figure 4.5: Intraneuronal transport modifications are correlated with Mark1 overexpression gradient. 
(a) Schematic representation of the Mark1 transgene used to create transgenic mouse lines L38 heterozygote 
(L38het), L8 heterozygote (L8het) and L8 homozygote (L8hom), having different of Mark1 expression levels. (b) 
Mark1 protein dosage using Western Blot (WB). (c) WB quantification in hippocampus of P15 mice of L38het and 
L8het transgenic lines (p = 0.85 and p = 0.011 respectively). (d), RT-qPCR quantification of Mark1 mRNA levels in 
L8het and L8hom (p = 0.0013 and p = 0.0010 respectively) from the same primary hippocampal neuron cultures as 
the ones used for the intraneuronal transport monitoring shown in (e), after the video acquisitions. Note that 
quantification of overexpression of Mark1 gene in Mark1 L8het is validated by both molecular biology techniques 
and that Mark1 L38het acts more like a control experiment. (e) Effects of Mark1 overexpression on intraneuronal 
transport parameters. We observed an increase in velocity for L8het (p = 0.03) and L8hom (p = 0.006); in run length 
for L8het (p = 0.029) and L8hom, (p = 0.022) and in processivity for L8hom (p=0.037). We observe a decrease in 
pausing frequency for L8het (p = 0.044). We observed an increase in perpendicular displacement for L8het (p = 
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0.044). Yet, this readouts was shown in Chapter 3 to be unreliable, because it yields significant difference in 
technical and biological replicates. For L38het, the unchanged intraneuronal transport dynamic is consistent with 
the unchanged Mark1 protein level. (f) Mechanistic model of the role of Mark1 protein on intraneuronal 
transport, as described in (Mandelkow et al., 2004) and consistent with our data. All data are presented as mean 
± s.e.m.; figures written inside the bars represent the number of samples for (c-d) or the number of 
trajectories/independent cultures for (e). Statistical significance: (*: p < 0.05; **: p < 0.01), see Statistical analysis 
in Appendices. 

 

4.3.4 Conclusion 4.3 

In this section, we reviewed the implication of microtubule-related Mark1 in various brain diseases. 

We then described the construction and validation of transgenic mouse displaying a subtle overexpression of 

this gene. When applying the fNDs-tracking assay, we demonstrated that the intraneuronal transport 

parameters vary in a gene dosage-dependent manner and they change as expected for Mark1-mediated 

regulation of the microtubule track hindrance. We therefore demonstrated the sensitivity of our assay to 

detect microtubule roadblock impairments linked to brain diseases, for protein concentration changes as small as ≈ 0%.  
 

4.4 Sensitivity to subtle changes of the energy pathway 

In this section, we first review the implication of mitochondria-related SLC25A12 in mental disorders. 

Then, as we want to mimic the protein over-production level found post-mortem in the forebrain of patients 

with ASC, we detail the establishment of transgenic mouse lines with subtle Slc25a12 overexpression. Finally, 

we evaluate the fNDs-tracking assay sensitivity to subtle changes impacting the energy pathway using this 

transgenic mouse model. 

 

4.4.1 SLC25A12 is a psychiatric disease-related genetic risk factor 

Mitochondria-related SLC25A12 is located at 2q24 and belongs to the Ca2+-dependent mitochondrial 

Aspartate-Glutamate Carrier (AGC), encoding the isoform 1 (AGC1). This gene is implicated in oxidative 

phosphorylation and ATP production (Sakurai et al., 2010; Satrústegui et al., 2007). SLC25A12 has been 

associated with different types of ASC in various populations, in family-based association studies and case-

control studies for Asperger patients (Aoki en Cortese, 2015; Durdiaková et al., 2014; Ramoz et al., 2004). 

However, these associations were not replicated in all cohorts, highlighting the importance of the individual 

genetic background (Moore et al., 2013). Importantly, they found postmortem that SLC25A12 was 

overexpressed in the forebrain region of ASC patients by about 35% (Figure 4.4b) (Lepagnol-Bestel et al., 

2008). Finally, we also identified SLC25A12 as part of the schizophrenia NETBAG+ network as SNV de novo 

mutation was discovered on this gene (Fromer et al., 2014) (see Chapter 1, Figure 1.6). 

Altogether, these observations highlight the need for studying the functional impact of SLC25A12 with 

an overexpression level close to the one found in patients with mental disorders. As this gene is engaged in 
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the energy pathway of ATP production, intraneuronal transport monitoring can be a relevant proxy to study 

such an effect. 

 

4.4.2 Constitutive overexpression of SLC25A12 in the forebrain region 

These aforementioned neurogenomics evidences of the implication of SLC25A12 in mental disorders 

prompted us to generate transgenic mice that slightly overexpress this gene (Figure 4.4c and Figure 4.6a). The 

Slc25a12 transgenic line L2het was established following the same procedure as describes in section 4.3.2 for 

Mark1 transgenic line.  

To quantify the level of protein overexpression for Slc25a12 transgenic mouse, we performed Western 

blotting (WB) on hippocampal tissue dissected from P15 mice. Because of the choice of a CaMKIIα promoter, 

the protein over-production is expected to be limited to the forebrain region only, meaning neocortex and 

hippocampus. To validate that point, we quantified the level of Slc25a12 in the hippocampus and used the 

cerebellum as an inner control. WB was carried out with an antibody against Slc25A12 and an antibody against 

actin for normalization. As shown in Figure 4.5b, compared to WT mice, in L2het mice we observed 32.2±6.9% 

overproduction of Slc25a12 in the hippocampus (p=0.043; n=5 WT and n=5 L2het), but no variation in the 

cerebellum (p=0.417; n=5 WT and n=5 L2het). This result is consistent with the role of the CaMKIIα promoter, 

validating this construction. 

 

4.4.3 Slc25a12-mediated intraneuronal transport impairment 

We then investigated the impact of a small overproduction of Slc25a12 protein on traffic parameters. 

In P15 transgenic mice, we measured 32.2±6.9% (p=0.043) overexpression of Slc25a12 protein levels 

(Figure 4.6). In cultures of hippocampal neurons (from embryos expressing the same Slc25a12 transgenic 

construct) and at DIV 15, we observed decreases in run length from 0.92±0.07 µm (WT) to 0.63±0.06 µm (L2het, 

p=0.022) and in processivity from 0.47±0.02 s (WT) to 0.35±0.03 s (L2het, p=0.012). Velocity and pausing 

frequency were found to be unchanged (p=0.749 and p=0.252 respectively) as well as pausing time, and 

diffusion coefficient displayed (p=0.092, p=0.873, respectively). However, significant differences in 

comparison with WT were observed for perpendicular and longitudinal displacements in the case of L2het 

(p=0.022 and p=0.012 respectively). However, the second parameter was shown in Chapter 3 to be unreliable, 

because it yielded significant differences in technical and biological replicates. Because both displacements 

are intrinsically linked in the way we extract them, we decided to consider none of them to interpret the data. 
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Figure 4.6: Changes of intraneuronal transport dynamic induced by subtle overexpression of Slc25a12. 
(a) Schematic representation of the Slc25a121 transgene used to create transgenic mouse lines L2het. (b) Western 
Blot quantification of Slc25a12 protein dosage in hippocampus and cerebellum of P15 mice of L2het versus WT (p 
= 0.043 and p = 0.417 respectively). (c) Effects of Slc25a12 overexpression on intraneuronal transport 
parameters. We observed an increase in run length (d) (p = 0.022) and in processivity (e) (p = 0.012). Velocity (c) 
and pausing frequency (f) were unchanged (p = 0.749 and p = 0.252 respectively). Significant differences were 
observed for perpendicular and longitudinal displacements (p=0.022 and p=0.012 respectively). However, these 
parameters were shown in Chapter 3 to be unreliable, because they yielded significant differences in technical 
and biological replicates. Data are presented as mean ± s.e.m.; means were calculated from the total number of 
samples (in b) or of independent cultures (in d-g); numbers inside the bars represent number of samples (in b-c) 
or numbers of trajectories/independent cultures (in d-g). Statistical significance: (*: p < 0.05), see Statistical 
analysis in Appendices. 
 

4.4.4 Conclusion 4.4 

In this section, we reviewed the implication of mitochondria-related SLC25A12 gene in various brain 

diseases. We then described the validation of transgenic mouse displaying a subtle overexpression of this 

gene. When applying the fNDs-tracking assay, we demonstrated the effect of this slight overexpression of 

Slc25a12 on the intraneuronal transport. Altogether, these results demonstrate the sensitivity of our tracking 
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assay to detect indirect intraneuronal transport perturbations, for protein concentration changes as small as ≈ 0%. However, although SLC25A12 is required for the mitochondria integrity, its precise molecular 

mechanism is still unknown. Therefore, additional experiments will be needed to understand how such a slight 

overexpression can impact the intraneuronal transport. Is it because the ATP production from the 

mitochondria is disturbed? Is it because the mitochondria dynamic is modified and so it creates obstacles on 

the microtubule track? 

 

4.5 Sensitivity to subtle changes on the transcription machinery  

In this section, we first review the genetic implication of AUTS2 in neuropsychiatric disorders and its 

role as a transcription factor. Then, as we want to mimic the haploinsufficiency of this gene (gene expression 

level decreases by a factor of 2) as observed in patients with ASC and SZ, we detail the down-regulation of this 

protein using AAV-shAuts2 primary culture of mouse hippocampal neurons. Finally, we evaluate the fNDs-

tracking assay sensitivity to subtle changes impacting the Auts2-dependent transcription machinery. All 

bioinformatics analysis presented in this section were performed by Yann LOE-MIE, PhD. 

 

4.5.1 AUTS2 is a psychiatric-related genetic risk factor 

AUTS2 covers more than 1 Mbp locus in the genome and is one of the genes with the largest numbers 

of rare variants in various neurodevelopmental diseases (Figure 4.7a). Furthermore, AUTS2 locus displays 

positive selection between Neanderthals and humans, as expected for a gene involved in cognition (Green et 

al., 2010). Both duplication and deletion of the whole locus result in abnormal neurodevelopmental 

phenotypes, indicating the key role of gene dosage as a parameter of phenotypic changes. Furthermore, de 

novo mutations (R152X and A495X; Figure 4.7a) in AUTS2 locus was recently associated with Schizophrenia 

(McCarthy et al., 2014). This finding supports the idea of a genetic overlap between ASC and Schizophrenia 

with a shared genetic etiology. 

The AUTS2 gene encodes a protein located both in the cytoplasm and the nucleus, with a cellular 

function that remains elusive (Gao et al., 2014; Hori et al., 2014). However, AUTS2 was identified to stimulate 

the transcription induced by PRC1 (Polycomb Repressive Complex 1), by mediating recruitment of protein 

kinase CK2 and P300 transcriptional co-activating protein (Figure 4.7b). This result demonstrated, for the first 

time, the nuclear function of AUTS2 as a transcriptional and chromatin regulator, and its capability to 

orchestrate specific cellular gene expression profiles (Gao et al., 2014). 
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Figure 4.7: Human AUTS2 genetic mutation and role as a transcription factor. (a) Schematic 
representation of the human AUTS2 locus, with variants found in neurodevelopmental diseases. (b) A model for 
the AUTS2-Polycomb Complex-mediated transcriptional activation. Adapted from Gao et al., 2014. 

 

4.5.2 AUTS2-Polycomb Complex regulates intraneuronal transport-related 

genes  

The aforementioned reports have implicated AUTS2 in neuronal migration and neuritogenesis and in 

the regulation of expression of a large repertoire of target genes via a Polycomb-dependent remodeling 

complex (Gao et al., 2014). In this paper, they performed AUTS2 ChIP-seq (Chromatin ImmunoPrecipitation-

sequencing) for mouse brain and 293T-REx cells (human cells but not from brain). As we were interested in 

AUTS2 chromatin occupancy in humans and in the brain, we retained only genes present in the intersection 

of these two gene sets (Figure 4.8a). We then used the Babelomics FATIGO tool (Medina et al., 2010) on the 

same repertoire (344 genes) to determine the enrichment in gene ontologies (Table 4.1). We found 

enrichment of this repertoire in the mitochondria and microtubule cytoskeleton Gene Ontology classes 

(p_adj=0.0004 and p_adj=0.0035, respectively) (Figure 4.8b and Table 4.1). We finally explored this repertoire 

with the DAPPLE tool (Rossin et al., 2011), which is a protein-protein interaction network tool (Figure 4.8c). 

We identified proteins involved in chromatin remodeling (i.e. SMARCA2; SMARCC1) or intraneuronal 

transport (KIF1A; MAP1B; DNM3, TUBB2B, ACTB, CAPZB). Altogether, these observations prompted us to use 

the fNDs-tracking assay to check the functional impact of Auts2 haploinsufficiency, and thus validate these 

neurogenomics findings. 
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Figure 4.8: Analysis of Auts2-Polycomb target genes. (a) Venn diagram showing the overlap (344 genes) 
between the target regions of the AUTS2 mouse and human deduced from datasets of (Gao et al., 2014) (b) 
Enrichment in the mitochondria and microtubule cytoskeleton gene ontology classes (p=0.0004 and p=0.0035, 
respectively) See Table 4.1. (c) Network of direct protein-protein interactions (PPI) restricted to the 344 genes 
defined in (a) inferred from DAPPLE analysis. The significance of participation in the PPI network is indicated by 
a color code (p value of the connections observed versus that expected). 

 
 

 

Table 4.1: Gene ontology (GO) enrichment analysis for AUTS2-regulated genes. p-value adj.: p-value 
adjusted by Bonferroni correction for multiple comparisons.  

Category Mitochondria
RiboNucleoProtein 

Complex

Microtubule 

Cytoskeleton
Ribosome

Soluble 

Fraction

Organelle Inner 

Membrane

Gene Ontology GO:0044429 GO:0030529 GO:0015630 GO:0005625 GO:0005840 GO:0019866

Fraction in 

Genome (%)
2.5 2.6 2.3 1.6 1.4 1.4

Fraction in 

Auts2-regulated 

Genes (%)

7.6 7.0 6.4 4.9 4.1 4.1

Auts2-regulated 

Genes

ABCB6,  ABCD3,  

ACSL3,  ALAS1,  

ALDH1B1,  DAP3,  

DNAJC11,  GLS,  

HSPA9,  MARS2,  

MCCC2,  MCL1,  

MRPL32,  MRPL41,  

MRS2,  NDUFAF3,  

NDUFS5,  OPA1,  

PMPCA,  RAF1,  

SDHA,  SLC25A25,  

SLC25A38,  

TIMM17A,  TIMM8A,  

VDAC1

CDC5L, DAP3, DCP1A, 

DNM3, FOXO3, 

HNRNPA0, HNRNPH1, 

LSM11, MRPL32, 

MRPL41, NCSTN, 

NFYA, POP7, PRPF3, 

RPL10A, RPL22, RPL5, 

RPL7, RPL7A, RPL7L1, 

RPS4X, SNRPC, 

ZNF687, ZNHIT6

ALMS1,  APC,  

CEP120,  CEP78,  

DCTN4,  DNM3,  

FBXO5,  FOXO3,  

HIPK1,  HNRNPA0,  

KIF1A,  LYST,  

MAP1B,  MAP4,  

MAPK14,  NFYA,  

OPA1,  PPP2CA,  

PTP4A1,  TBCC,  

TTK,  TUBB2B

ACP1, ACTB, 

ATG12, COPA, 

DOCK3, 

EFNB1, 

MAP1B, 

MAPK14, 

MED22, NAGK, 

NFYA, PKIA, 

PPP2CA, 

PRPS1, SDF4, 

YWHAQ, 

YWHAZ

DAP3, DNM3, 

MRPL32, 

MRPL41, 

NCSTN, NFYA, 

RPL10A, RPL22, 

RPL5, RPL7, 

RPL7A, RPL7L1, 

RPS4X, ZNF687

ABCD3, DNAJC11, 

MRPL32, MRS2, 

NDUFAF3, NDUFS5, 

OPA1, PMPCA, 

SDHA, SLC25A25, 

SLC25A38, TIMM17A, 

TIMM8A, VDAC1

p-value adj. 0.0004 0.0027 0.0033 0.0040 0.0294 0.0384
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4.5.3 Auts2 haploinsufficiency impacts intraneuronal transport 

Consequently, we modeled AUTS2 rare variants by inducing an haploinsufficiency as such variants are 

generally heretozygous. We silenced Auts2 in mouse primary hippocampal neurons, with two different AAV 

constructs expressing shRNAs, to mimic haploinsufficiency of this gene. The two AAVs decreased Auts2 

protein levels, as shown on the western blots (Figure 4.9a-c), but only AAV2 did it significantly, by a factor of 

two (p=0.14 and p=0.025 for AAV1 and AAV2 respectively, compared to control scrambled sh-AAV (SCR); n=5 

for each condition). Western blot quantification of Auts2 haploinsufficiency, with GFP normalization, and the 

fNDs-tracking assay was conducted in parallel, with the same batch of cells. 

 

 

Figure 4.9: The experimental haploinsufficiency of Auts2 leads to changes in the intraneuronal transport. 
(a-c) Experimental haploinsufficiency of Auts2 protein levels (means±s.e.m.; n=5 for each condition) achieved 
with two Auts2-sh adeno-associated viruses (AAV1 in blue, and AAV2 in orange), compared with scrambled sh-
AAV (SCR), for hippocampal neurons 48 hours after AAV infection. (a) shows neurites labelled with GFP to 
validate the AAV infection. (d) Radar plot showing the effects of AAV2 on trafficking readouts (percentage change 
relative to the median). (e) Cumulative probability densities with bar plots in the inset (median±s.e.m.) for the 
eight intraneuronal transport readouts, for control (black), AAV1 (blue) and AAV2 (orange) (n>38 trajectories 
from n=4 embryos). Statistical significance: (*: p < 0.05), see Statistical analysis in Appendices. 
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As shown in Figure 4.9d-e, this induced haploinsufficiency was accompanied by a velocity decrease 

from 1.28±0.07 µm/s (SCR) to 1.11±0.08 µm/s (AAV2, p=0.023), a run length decrease from 0.93±0.11 µm to 

0.63±0.18 µm (p=0.020) and a diffusion coefficient decrease from 0.16±0.02 µm2/s to 0.10±0.01 µm2/s 

(p=0.0064). Moreover, the absence of significant Auts2 haploinsificiency induced by AAV1 is also consitent 

with the absence of significant effect on the transport parameters, where the velocity equal 1.24±0.08 µm/s 

(p=0.88), the run length equals 0.89±0.15 µm (p=0.73) and the diffusion coefficient equals 0.13±0.02 µm2/s 

(p=0.40). Conversely, for both AAVs, none of the other intraneuronal transport parameters displayed 

significant changes after 48 h of infection: processivity, pausing time, pausing frequency, perpendicular 

displacement and longitudinal displacement (p=0.73, p=0.85, p=0.56, p=0.92, p=0.70, respectively, for AAV1; 

p=0.09, p=0.38, p=0.33, p=0.10, p=0.53, respectively, for AAV2). Altogether, these results demonstrate the 

functional impact of Auts2 haploinsufficiency on intraneuronal transport dynamics, which is consistent with 

the enrichment of Auts2-regulated genes in mitochondria and microtubule cytoskeleton Gene Ontology 

classes. 

 

4.5.4 Conclusion 4.5 

In this section, we first reviewed known relationships between AUTS2 transcription factor and 

neuropsychiatric disorders. Then, we showed through bioinformatics analysis on recent gene set that among 

target genes of the AUTS2-Polycomb Complex, those from the GO Microtubule Cytoskeleton  or from GO Mitochondria  are significantly enriched, therefore suggesting a deleterious effect on the intraneuronal 

transport for in ASC patients with AUTS2 haploinsufficiency. Then, by combining the fNDs-tracking assay and 

AAV-shRNA-induced AUTS2 haploinsufficiency, we observed impairment of the intraneuronal transport 

dynamic, which is consistent with the bioinformatics analysis. Overall, our results demonstrate the sensitivity 

of our technique to monitor subtle changes in gene expression linked to modifications in the transcription 

machinery. 

 

4.5 Conclusion of Chapter 4 

In this Chapter 4, after a brief review of the neurobiologists’ toolbox, we applied the fNDs-tracking 

assay to study of the functional impact of neuropsychiatric-related genetic risk factors. As a proof-of-principle, 

we used two common variants (30% overexpression of Mark1 and Slc25a12) and one rare variant (50% 

down-regulation of Auts2). This leads to three different order of perturbation (1st, 2sc and 3rd respectively) 

depending on where the perturbation takes place with respect to our system (Figure 4.10).  First, we 

established mouse lines in which microtubule-associated Mark1 and mitochondria-related Slc25a12 genes 

were slightly overexpressed as found post-mortem in brains of patients with ASC. Also, we used in vitro AAV-

shRNA to model of Auts2 haploinsufficiency. Then, we evaluated the fNDs-tracking assay sensitivity to subtle 
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changes on the microtubule track road (overexpression of Mark1), then on the energy pathway 

(overexpression of Slc25a12) and eventually on the transcription machinery (haploinsufficiency of Auts2). 

Whether mutation impact is functionally close to intraneuronal transport mechanism or far from it, we 

observed significant impairment of the intraneuronal transport  proxy when mimicking the effect of brain 
disease-related genetic risk factors. Altogether, we proved that our fluorescent nanodiamond-based 

methodology is sufficiently sensitive to screen the functional impact of genetic variants, opening the door for 

future development in translational nanomedicine. 

 

 
Figure 4.10: Sensitivity of the fND-tracking assay to subtle change in gene expression induced by Autism 
related-common and rare variants. 
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CONCLUSION and PERSPECTIVES 

 

Common brain diseases, striking more than 1% of the world population, have a highly polygenic 

architecture displaying subtle changes in gene expression. Modeling of human brain diseases to understand 

the function of related genes usually relies on the establishment of transgenic mouse mimicking the effect of 

genetic mutations (de Angelis et al., 2015; Aoto et al., 2015; Choi et al., 2014). We and others pointed out that 

intraneuronal transport abnormalities are linked to neuropsychiatric and neurodegenerative diseases 

(Hirokawa et al., 2010; Millecamps en Julien, 2013). Therefore, we decided to mimic the subtle effect of brain 

disease-related genetic variants and subsequently quantify their impact on the intraneuronal transport using 

primary cultures of hippocampal neurons. To this aim, we successfully developed a generic and non-genetic 

approach to monitor the intraneuronal transport based on tracking of fluorescent nanodiamonds (fNDs) 

inside branches of living neurons. The high brightness, the perfect photostability and the absence of 

cytotoxicity make fNDs a tool of choice to perform high throughput long-term bioimaging at high 

spatiotemporal resolution without any modification of the neuronal homeostasis integrity. We then applied 

this assay to understand the functional impact of brain disease-related genetic risk factors. We evaluated the 

technique sensitivity to subtle changes directly impacting the microtubule tracks. In neurons from transgenic 

mouse, we found that a slight overproduction of the microtubule-related Mark1 protein impacts intraneuronal 

transport parameters. Using another transgenic line with slight overproduction of the mitochondria-related 

Slc25a12 protein, we then measured the effect on intraneuronal transport of subtle changes impacting the 

energy pathway. Finally, we evaluated the assay sensitivity to subtle changes impacting the transcription 

machinery located in the nucleus by mimicking the haploinsufficiency of Aut2. Whether the changes are 

functionally close to intraneuronal transport mechanism (e.g. Mark1 and Slc25a12) or far from it (e.g. Auts2), 

our approach proves to be sufficiently sensitive to detect significant impairment of the intraneuronal transport  proxy when mimicking the effect of brain disease-related genetic risk factors. To the best of our 

knowledge, this is the first direct measurement of the functional impact of brain disease-related genetic risk 

factors using a nanoparticle-based technology.  

As a horizontal development, using the CRISPR/Cas9 genome editing technology(Doudna en 

Charpentier, 2014), it is possible to model multiple brain disease-related genetic risk factors in transgenic 

animals. Our fND tracking methodology is adapted to understand how these multiple genetic variants interact 

with each other to impair the intraneuronal transport (Figure 5.1a). Another approach would be to directly 

tackle the full polygenic complexity of each disease. The use of human induced pluripotent stem cells (hiPSC) 

from patients with brain disease is becoming a standard to address medicine questions (Dolmetsch en Geschwind, 0 ; Paşca et al., 0 ; Wang et al., 0 . Starting from skin biopsy cells, hiPSC could be 

differentiated into neurons and once a mature neuronal network is established, the fNDs-tracking assay could 

be applied (Figure 5.1b). With automation of our fNDs-tracking assay to perform high-throughput high-
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content screening, this approach can be instrumental to develop an unbiased diagnosis of neuropsychiatric 

and neurodegenerative diseases, paving the way for future development in translational nanomedicine.  

 

 

Figure 5.1: (a-b) Horizontal developments either for rare de novo variants screening or for translational 
application. (a) Neuron culture from CRISPR/Cas9-mediated transgenic mouse to mimic rare de novo variants. 
From (Charpentier en Doudna, 2013). (b) hIPSC-derived neuron cultures to mimic polygenic complexity of each 
disease. Adapted from (Urban en Purmann, 2015). (c-d) Vertical developments on either the nanotool or the 
optical system to improve the versatility of our fNDs-tracking assay. (c) Covalent functionalization of fNDs 
with anti-GFP nanobody. Adapted from (Triller en Choquet, 2008). (d) Lifetime imaging of fNDs deep in brain 
slices Time-gated microscopy setup to image fNDs in brain slices with FirstLight OCAM2S EMCCD incorporating 
an integrated electronic shutter. EMCCD clock is used as master for the synchronization. Inset: schematics of 
fluorescence decay for tissue autofluorescence (dashed line) versus fND fluorescence (plain line), displaying also 
the gate of delayed detection. DDG: digital delay generator adjusting the delay between the laser pulse and the 
camera shutter; L: lens; BE: beam expander; M: mirror; DM: dichroïc beamsplitter; Obj: high numerical aperture 
microscope objective; BFP: objective back focal plane.  

 

As a vertical development, it should be interesting to improve the protein specificity of fNDs through 

covalent functionalization with antibody, nanobody and intrabody (antibody that works within the cell to bind 

to an intracellular protein (Fukata et al., 2013)). Then, after receptor-mediated internalization or 

microinjection, monitoring of their intraneuronal transport of the protein of interest could be performed (e.g. 
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synaptic receptor screening from endocytosis/exocytosis trafficking to long-range transport). The unique 

photophysical properties of fNDs should provide invaluable insight on diverse neurobiological mechanisms 

such as the dynamic of receptor-specific endosomes or the cooperation of adjacent synapses (Figure 5.1c). 

In a close future, another vertical development will concern the optical system itself, to extend our 

fNDs-tracking assay from monolayer primary culture to 3D-organotypic culture and brain slices. This will be 

the first steps to the very challenging goal of analyzing intraneuronal transport between two brain sub-regions 

in freely moving mice. Because of their thickness (few tens of µm), brain slices or organotypic cultures exhibit 

some autofluorescence which reduces the nanoparticle fluorescence signal-to-background ratio (SBR), and 

makes the tracking of the fNDs-containing cargos harder. In order to maintain a high SBR, we will take advantage of the long radiative lifetime of fNDs ≈ 25 ns against ≈ 2 ns for autofluorescence) and make a 

temporal selection of the photons of interest. To this aim, we will develop a wide field time-gated imaging 

setup with 95% detection efficiency, high-speed acquisition (up to 2067 frames/s) and MHz pulsed laser 

repetition frequency (Fig. 5.1). We will use an EMCCD with a built-in fast electronic shutter (200 ns closing 

duration) developed by the spinoff FirstLight (http://www.first-light.fr/category/ranges/shuttered-emccd/). 

The ultrafast acquisition rate can also be used to provide images in single photon counting regime, opening the possibility of a second filtering step. The combination of these two levels of filtering  should improve the 
SBR from fNDs, thus making it possible the tracking fNDs despite the surrounding autofluorescence from thick 

biological tissue (Figure 5.1d). 

The long-term perspectives of this project is to monitor the intraneuronal transport using non-genetic 

tagging directly in freely behaving mice (control versus transgenic). This requires imaging with distal optical 

element inserted deep inside the brain. Such miniaturized endoscopic system have been developed over the 

past decade by the team of Mark Schnitzer at Stanford University (Barretto et al., 2009; Jung en Schnitzer, 

2003), who built his instrument relying on index gradient lenses optimized for multiphoton microscopy. This 

approach was recently successfully applied to study subgroups of neurons, namely island and ocean neurons 

of the entorhinal cortex, known to be involved in specific type of learning and memory (Kitamura et al., 2015; 

Sun et al., 2015). 

http://www.first-light.fr/category/ranges/shuttered-emccd/
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A.1 Materials and Methods 

All experiments were approved by the Institut National de la Santé et de la Recherche Médicale 

(INSERM) animal care and use agreement (D-13-055-19) and the European community council directive 

(2010/63/UE). 
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A.1.1 Primary hippocampal neuron cultures 

For wild type neuron cultures, hippocampi from E18.5 OF1 mouse embryos were isolated in a 

dissecting medium (HBSS-Hepes) and at least four hippocampi were pooled. Hippocampal neurons were then 

enzymatically dissociated (0.25% trypsin), mechanically triturated and plated on LabTek II (Nunc, USA) 

dishes (2x105 cells per well) coated with poly-DL-ornithin (Sigma-Aldrich, USA), in DMEM (Invitrogen, USA) 

supplemented with 10% foetal bovin serum (FBS), 0.1% GlutaMAX (Invitrogen) and 1% PenStrep 

(Invitrogen). Two hours after plating, DMEM was replaced by Neurobasal phenol-free medium (Invitrogen) 

supplemented with 0.1% GlutaMAX (Invitrogen), 2% B27 (Invitrogen) and 1% PenStrep (Invitrogen). Cultures 

from C57Bl6 transgenic mouse were conducted separately for each embryo and genotyping was performed 

elsewhere. 

 

A.1.2 fNDs internalization 

Hippocampal neuron cultures from Day In Vitro (DIV) 15 to 16 were used unless otherwise stated. The 

maintaining medium was set aside and replaced by 0.5 ml of Neurobasal phenol-free medium (Invitrogen) to 

which we added 5 µl of ≈  nm-sized fND stock solution (0.5 mg/ml). After a 10 min incubation duration, the 

medium was replaced by the old maintaining medium set aside. LabTek was then placed in the incubator 

during 20 min before starting the video acquisition. 

 

A.1.3 Cytoskeleton destabilizing-drug experiments 

Nocodazole and Cytochalasin D powder were purchased from Sigma-Aldrich (St Louis, MO, USA). 

Following supplier recommendation, Nocodazole and Cytochalasin D were kept in stock solutions of 5 mg/ml 

and 1 mg/ml respectively in dimethylsulfoxide (DMSO) at temperature of -20°C. Nocodazole (Cytochalasin D 

respectively) was added to the cultures after fND protocol internalization at final concentrations of 2 nM and 

5 nM (10 nM and 100 nM respectively. The DMSO volume added to each well was adjusted to be 0.5% of the 

total medium volume per well. 

 

A.1.4 Mark1 and Slc25a12 DNA extraction and genotyping 

DNA extraction: Tissue from mouse hippocampus embryo was digested overnight at 55°C in the 

digesting buffer: Tris HCl pH=8 (50 mM), EDTA pH=8 (100 mM), NaCl (60 mM), SDS (1% w/v), complemented 

with 15 µl of proteinase K (Qiagen N.V., Netherlands). Inactivation was done at 99°C for 10 min and 3 µl of 1% 

(w/v) RNaseA (Thermo Fisher Scientific, USA) was added prior to incubation at 37°C for 90 min. DNA was 

then extracted in 300 µl of Phenol/Chloroform, and after 5 min centrifugation at 13200 rpm, aqueous phase 

was diluted elsewhere with 10% of sodium acetate (3 M concentration). Then, 800 µl of cold ethanol were 

added before freezing the solution at -80°C for 30 min, followed by 30 min of 13200 rpm centrifugation at 4°C. 
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Supernatant was removed and the pellet was rinsed at least once with ethanol 70%. The pellet was finally 

dried at room temperature and resuspended in sterile water.  

Genotyping (performed by Christine PLANCON): PCR was then performed using primers for Mark1 and 

Slc25a12 as follow: UPCamKII  GACTAAGTTGTTCGCATCC; DW_Mark1: TGACGTAATGGAGTTTCTACAC; 

DW_Slc25a12: TTTCAAATGTCACCTCTCCA. Each PCR amplification was prepared by mixing 0.5 U Hifi taq DNA polymerase Life Technologies, USA    L of 10x Buffer, 2 mM MgSO4, each deoxynucleoside triphosphate at a 

concentration of 0.2 mM, 1 µM of each of the corresponding primer, and 0 ng of genomic DNA A final volume 
of 10 L was achieved using water. A negative control using all reagents except template DNA was also 

included. Reactions were carried out in a Mastercyler® pro S thermocycler (Eppendorf, Germany) using the 

following cycling conditions: 2 min at °C followed by  cycles of °C for  sec, °C for Mark1) or 56°C 

(for Slc25a12) for 30 s, and 72°C for 30 s. A final extension step at 72°C for 7 min was performed after the 

cycles. After this step, samples were kept at 4°C until being electrophoresed in 1.5% agarose 1xTBE gels. For 

visualization of electrophoresed PCR products, gels were stained with 1xSYBR® Safe DNA Gel Stain (Life 

Technologies) and digital images were captured in a InGenius 3 (Syngene, UK). 

RNA extractions were performed either by me or by Julia VIARD, PhD student and RT-QPCR were 

performed either by Christine PLANCON or by Aude-Marie LEPAGNOL-BESTEL,PhD. 

 

A.1.5 Protein extraction and Western Blot 

Hippocampus were dissected from P15 Mark1 and Slc25a12 transgenic mice and proteins were 

extracted in 100 µl of lysis buffer: Tris HCl pH7.4 (20 mM), NaCl (100 mM), NP40 (1% v/v) and protease 

phosphatase inhibitor dose (Thermo Fisher Scientific). After milling and restoring for 30 min on ice, 

centrifugation was performed at 13200 rpm at 4°C for 10 min. Supernatant was then removed and kept at -

80°C until Western Blots were performed. Protein electrophoresis migration was performed in 4-20% Mini-

PROTEAN Tetra TGX gels (Bio-Rad, USA) in a TGS buffer (Tris, 5 mM; Glycine, 192 mM; 0.1% SDS, pH 8.3) with 

40 µg of protein lysate after denaturation for 10 min at 95°C. Nitrocellulose membranes (Trans-Blot Turbo, 

Bio-Rad) were used for protein transfer. Membrane was then blocked in TBS 1X Tween 0.1%, 5% non-fat milk 

for 1 hour at RT under shaking. Primary antibody Mark1 (ref. 3319S, Cell Signaling, USA) and Slc25a12 (ref. 

ab107436, Abcam, UK) and Auts2 (ref. ab96326, Abcam, UK) were incubated overnight at 4°C either in 5% 

BSA and in 5% milk respectively. Normalization was performed using Actin (ref A3854, Sigma Aldrich, USA) 

or GFP (ref A290, Abcam, UK) staining. Secondary HRP-conjugated antibodies were used in corresponding 

species and enzyme reaction was activated using Clarity Western ECL Substrate (GE Healthcare, USA), and 

imaged with ChemiDoc XRS (Bio-Rad). For Auts2 experiment, proteins were extracted 48 h after 

AAVScramble, AAV1 and AAV2 infection, and five 100 mm-petri dishes at a density of 2.106 neurons were 

infected for each condition. Slc25a12 and Mark1 quantification normalized to Actin were performed using 

images acquired at the best dynamic range (very few saturated pixels). 
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A.1.6 Statistical analysis 

Comparison between two data sets was performed with the statistical analysis tools integrated in Igor 

Pro (WaveMetrics, USA). The pipeline analysis first applies a Kolmogorov-Smirnoff rank test of the null hypothesis data follow a Gaussian normal  distribution . )n most cases, normality hypothesis was rejected 

and thus a Mann-Whitney-Wilcoxon comparison two-tailed test was performed. When the normality 

hypothesis could not be rejected, two-sample two-tailed t-test was performed, after evaluating the null 

hypotheis of equal variance. Stars are referred to the following significance level: * for p<0.05; ** for 

0.001<p<0.01; *** for p<0.001. No statistical methods were used to predetermine sample sizes, but our sample 

sizes are similar to those generally employed in the field. Data collection for transgenic neurons was 

performed blind to the conditions of the experiments. 

 

A.1.7 Preparation of Hippocampal Slices 

Dirk1A 189N3 KI and WT littermate male mice aged 17–22 week-old were shipped from IGBMC 

Strasbourg to INMED Marseille. Mice were deeply anesthetized with xylazine 13 mg/kg / ketamine 66 mg/kg 

and transcardially perfused with a modified artificial cerebrospinal fluid (mACSF) containing the following (in 

mM): 132 choline, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 7 MgCl2, 0.5 CaCl2, and 8 D-glucose prior to 

decapitation. The brain was then removed rapidly, the hippocampi were dissected, and transverse 450 µM 

thick slices were cut using a Leica VT1200S vibratome in ice-cold oxygenated (95% O2 and 5% CO2) mACSF. 

Slices recovered at room temperature for at least 1 h in artificial cerebrospinal fluid (ACSF) containing the 

following (in mM): 126 NaCl, 3.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1.3 MgCl2, 2.0 CaCl2, and 10 D-glucose. Both 

cutting solution and ACSF were between 290mOsm and 310mOsm. All solutions were equilibrated with 95% 

O2 and 5% CO2, pH 7.4. 

 

A.1.8 fEPSP Recordings 

Acute slices were individually transferred to a recording chamber maintained at 30–32°C and 

continuously perfused (2 ml/min) with oxygenated ACSF. Field excitatory postsynaptic potential (fEPSP) were 

made in the lucidum of CA3 area with glass electrodes (2–  MΩ; filled with normal ACSF  using a DAM-80 

amplifier (low filter, 1 Hz; highpass filter, 3 KHz; World Precision Instruments, Sarasota, FL). Mossy fiber-

mediated fEPSP were evoked by weak electrical stimulations performed via a bipolar NiCh electrode (NI-0.7F, 

Phymep, Paris) positioned in the lucidum of CA3 area; the stimulus intensity, pulse duration, and frequency 

were around 30V, 25µs, and 0.1 Hz, respectively. Data were digitized with a Digidata 1440A (Molecular 

Devices) to a PC, and acquired using Clampex 10.1 software (PClamp, Molecular Devices). Signals were 

analysed off-line using Clampfit 10.1 (Molecular Devices). LTP was induced by tetanus at 25Hz during 5s; D-

APV (D-2-amino-5-phosphonovalerate, 40 µM) was included in ACSF during the tetanus to eliminate 

contamination of MF-CA3 LTP with NMDA receptor-dependent component. At the end of each experiment, 



 

 

125 

 

2µM DCG-IV, a group II mGluR agonist, was bath applied to confirm the mossy fiber synaptic origin of fEPSP 

recorded in CA3. The magnitude of long-term plasticity was determined by comparing baseline-averaged 

responses before induction with the last 10 min of the experiment. Example traces are averages of at least 30 

consecutive sweeps taken from a single representative experiment.  

For all reagents, stock solutions were prepared in water or DMSO, depending on the manufacturers’ 
recommendation, and stored at -20°C. Upon experimentation, reagents were bath applied following dilution 

into ACSF (1/1000). D-APV and DCGIV were purchased from Tocris Bioscience. Salts for making cutting 

solution and ACSF were purchased from Sigma. 

 

A.1.9 Sample Preparation for dSTORM nanoscopy 

Cell cultures were fixed for 20 min in PBS1x, pH 7.4, containing 4% paraformaldehyde (PFA) and 1% 

sucrose, followed by three washing steps. Fiducial markers (TetraSpeck microspheres, 100 nm diameter, 

Invitrogen T7279) were attached to the coverslips after fixation (1:200 dilution) for 5min at room 

temperature (RT). Then, fixed neurons were permeabilized with 0.3% Triton X-100 for 10 min at RT, then 

blocked with PSB1x containing 0.1% Triton X-100 and 3% BSA, and then labelled over night at 4° with 

antibodies against Auts2 (Atlas antibodies, HPA000390, 1:200) and SYNPO (Synaptic Systems, 124 011, 

1:500) followed by Alexa Fluor 647 (Invitrogen, 1:250–500) and AntiGuineaPig-Cy3 (Jackson Antibody; 1:500 

dilution) secondary antibodies (1h at RT). Finally, Phalloïdine-Alexa488 (LifeTech, 1µl/cvs) was applied for 

10min at RT for actin staining. dSTORM was conducted in PBS (pH 7.4), containing 10% glucose, 50 mM b-

mercaptoethylamine, 0.5 mg/ml glucose oxidase, and 40 mg/ml catalase, degassed with N2 (Specht et al., 

2013). 

 

A.1.10 dSTORM super-resolution imaging 

Single-molecule imaging was carried out as described elsewhere (Izeddin et al., 2011) on an inverted 

Nikon Eclipse Ti microscope with a x100 oil-immersion objective (N.A. 1.49), an additional x1.5 lens, and an 

Andor iXon EMCCD camera (image pixel size, 107 nm), using specific lasers STORM of Alexa Fluor 647 (405 

and 639 nm). Movies of 2.104 frames were acquired at frame rates of 50 ms with EMgain of 300. The z position 

was maintained during acquisition by a Nikon perfect focus system. Conventional fluorescence imaging was 

conducted with a mercury lamp and specific filter sets for the detection of Alexa 488 (excitation 485/20 nm, 

emission 525/30 nm) and Cy3 (excitation 560/25, emission 607/36). 

 

A.1.11 Super-resolution image reconstruction 

Super-resolution image reconstruction was carried out using the software ThunderStorm (Ovesný et 

al., 2014; Sage et al., 2015). First, cross-correlation was used for drift correction. Then, data point with less 

than 500 photons and with a localisation precision higher than 20 nm were filtered out and finally, points with 
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less than 5 neighbours within an area of 30 nm were also filtered out. Data rendering was performed using a 

2D-gaussian of standard deviation equal to the localisation precision, with a final pixel size of 10 nm. Once 

Auts2 dSTORM super-resolution image was merged with actin conventional image, dendritic spines were 

manually selected. The number of Auts2 clusters per sub-region were counted and using the ImageJ plugin, 

we measured the spine area, and the spine length and head width (minimum and maximum Feret diameters). 
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A.2 NetBag+ Network  

 
Figure A.1: Complete NETBAG+ network of Figure 1.6 including all GO classes. 
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A.3 Photophysical properties of fluorescent probes  

Atoms and molecules present a proper electronic structure associated to a well-defined electronic 

states and energy values. Excited states can be populated by either a physical (e.g. absorption of light), 

mechanical (e.g. friction), or chemical mechanism (Figure A.2). When this atom or molecule goes back to its 

ground state, a photon is emitted and thus fluorescence lights up. The term photoluminescence refers to the 

generation of a photon due to photon excitation whereas cathodoluminescence refers to the generation of a 

photon due to electron excitation. Photoluminescence occurring within few pico to nano-seconds after light 

excitation is named fluorescence while it is named phosphorescence when it occurs on few milliseconds to 

seconds timescales. Overall, fluorescence is the property of some atoms and molecules to absorb light at a 

particular wavelength, and re-emit it at a longer wavelength (Lakowicz, 2006). 

Figure 2.2 displays the Jablonski diagram accounting for the absorption and emission phenomena of a 

photoluminescent organic molecule with spin singlet symmetry in the ground (S0) and excited states (Sn, n≥  
and triplet symmetry in metastable lower energy state (T1). Briefly, to excite a molecule from the ground state 

S0 to the first excited state S1, a photon has to be absorbed and its energy has to be at least equal to the energy 

difference between the lower vibrational energy level of S1 state and the lower vibrational energy level of S0 

state. After vibrational relaxation (few picoseconds), the de-excitation of the system happens with the 

emission of a photon having an energy (respectively a wavelength) lower (respectively higher) than the 

incoming one. The energy difference corresponds to the so-called Stokes shift. If the de-excitation of the 

emitter happens from the metastable state, we obtain phosphorescence. 

 

 
Figure A.2: Simplified Jablonski diagram displaying energy levels of an organic dye. After an 
electron absorbs a photon the system is excited electronically and vibrationally. The system relaxes 
vibrationally, and eventually fluoresces at a wavelength longer than the excitation laser one. 
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Fluorescent probes can be characterized by a set of physical properties that are important to know for 

biologist in order to optimize experimental protocols: 

 Absorption, emission and excitation spectra: they are the fingerprints  of each fluorophore. 
The absorption spectrum is the continuous spectrum or band pattern that appears when electromagnetic 

radiation (i.e. light) is absorbed by the fluorophore over a spanning frequency range of the excitation source. 

The emission spectrum is the continuous spectrum or bright band pattern formed when light is emitted by the 

fluorophore for a given excitation wavelength. The excitation spectrum is obtained by monitoring the 

fluorescence intensity at a given wavelength (usually the one of the maximum intensity of the fluorophore) 

while the fluorophore is excited over a spanning frequency range. 

 Quantum Yield: it is the relative efficiency of the fluorescence (described by the radiative decay 

rate kr) compared to other de-excitation processes (described by the non-radiative decay rate knr): 

 =  +            .  

It can also be seen as the ratio of the emitted to the absorbed photons. Its maximal value can be 1 in 

absence of non-radiative de-excitation processes. 

 Extinction coefficient and absorption cross-section: the extinction coefficient (or molar absorption coefficient,  measures the strength of a molecule to attenuates light at a given wavelength. For 
light propagating through a solution of a fluorophore M, its intensity at a distance L is described by the Beer-

Lambert law: I(L  = ) 0   [M].L, with I(0) the incident intensity, [M] the molar concentration of the fluorophore M in solution. Thus the extinction coefficient  is the quantity of light absorbed for a specific wavelength and 
is measured in (mol.L−1)−1.cm−1. The molar absorption coefficient is related to the absorption cross-section σ usual unit is cm2  via the Avogadro constant as: σ= . × 0−21 . 

 Fluorescence decay lifetime: it is the characteristic duration that a fluorophore remains in its 

excited state after excitation, and is defined as:  τ =  +  =               .  

In the case of organic dye the fluorescence lifetime usually depends on the physico-chemical 

environment properties, like pH, solvent dipole orientation, ionic force... 

 Photostability: it characterizes the stability of the fluorescence signal under continuous 

excitation. Photobleaching of a fluorophore refers to the permanent loss of their fluorescence property after 

some time of illumination. The reasons of photobleaching vary and are not fully understood but the commonly 

accepted explanation is the reaction of the fluorophore in its triplet state with oxygen molecules leading to the 

formation of a new, non-fluorescent, molecule. Photoblinking is another phenomenon related to 

photostability, in which the fluorescence is interrupted by dark periods.  

 

Altogether, an ideal fluorescent probe for long term bioimaging should have well separated absorption 

and emission spectra, a not too broad emission spectrum (to avoid overlap with other emitter), a quantum 
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efficiency close to 1, a large extinction coefficient (to avoid high excitation powers), a perfect photostability 

and low cytotoxicity. Moreover, as shown in Figure 2.1b, excitation and detection in the far red and near infra-

red (NIR) region are ideal for in vivo imaging since biological tissues are more transparent to NIR photons Guo et al., 0 ; Lukinavičius et al., 0 . 
 

 

A.4 Articles 

 

A.4.1 Fluorescent nanodiamond tracking reveals intraneuronal transport 

abnormalities induced by brain disease-related genetic risk factors , Nature 

Nanotechnology (waiting for revision) 

 

A.4.2 Chromosome 21 large-scale yeast two hybrid screening uncovers 

chromatin and synaptic complexes involved in intellectual disabilities and 

related to Late Onset Alzheimer’s disease , PNAS (submitted) 

 

A.4.3 AUTS2, a gene implicated in psychiatric and neurodevelopmental 

disorders is a modulator of AKT2 in dendritic spines , Science (in preparation) 

  



 

 

131 

 

References 

Adam, M. 0 . Développements de microscopies optiques pour l’imagerie super-résolue de nanocristaux de diamant fluorescents comme rapporteurs d’anomalies fonctionnelles du neurone . 
Aharonovich, I., Castelletto, S., Johnson, B.C., McCallum, J.C., Simpson, D.A., Greentree, A.D., en Prawer, S. (2010). 
Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B - Condens. Matter 
Mater. Phys. 81. 

Aharonovich, I., Greentree, A.D., en Prawer, S. (2011). Diamond photonics. Nat. Photonics 5, 397–405. 

Akil, H., Brenner, S., Kandel, E., Kendler, K.S., King, M.-C., Scolnick, E., Watson, J.D., en Zoghbi, H.Y. (2010). 
Medicine. The future of psychiatric research: genomes and neural circuits. Science 327, 1580–1581. 

Albanese, A., Tang, P.S., en Chan, W.C.W. (2012). The effect of nanoparticle size, shape, and surface chemistry 
on biological systems. Ann Rev Biomed Eng 14, 1–16. 

Alivisatos, A.P. (1996). Semiconductor Clusters, Quantum Nanocrystals, and Quantum Dots. Science (80-. ). 
271, 933–937. 

Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52. 

Alpatov, R., Lesch, B.J., Nakamoto-Kinoshita, M., Blanco, A., Chen, S., Stützer, A., Armache, K.J., Simon, M.D., Xu, 
C., Ali, M., et al. (2014). A chromatin-dependent role of the fragile X mental retardation protein FMRP in the 
DNA damage response. Cell 157, 869–881. 

de Angelis, M.H., Nicholson, G., Selloum, M., White, J.K., Morgan, H., Ramirez-Solis, R., Sorg, T., Wells, S., Fuchs, 
H., Fray, M., et al. (2015). Analysis of mammalian gene function through broad-based phenotypic screens 
across a consortium of mouse clinics. Nat. Genet. 47, 969–978. 

Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T.R., Correia, C., Abrahams, B.S., Sykes, N., 
Pagnamenta, A.T., et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Hum. Mol. 
Genet. 19, 4072–4082. 

Aoki, Y., en Cortese, S. (2015). Mitochondrial Aspartate/Glutamate Carrier SLC25A12 and Autism Spectrum 
Disorder: a Meta-Analysis. Mol. Neurobiol. 

Aoto, J., Martinelli, D.C., Malenka, R.C., Tabuchi, K., en Südhof, T.C. (2013). Presynaptic neurexin-3 alternative 
splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154, 75–88. 

Aoto, J., Földy, C., Ilcus, S.M.C., Tabuchi, K., en Südhof, T.C. (2015). Distinct circuit-dependent functions of 
presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat. Neurosci. 

Arroyo-Camejo, S., Adam, M.P., Besbes, M., Hugonin, J.P., Jacques, V., Greffet, J.J., Roch, J.F., Hell, S.W., en 
Treussart, F. (2013). Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers 
in diamond nanocrystals. ACS Nano 7, 10912–10919. 

Axelrod, D. (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 
141–145. Bálint, Š., Verdeny Vilanova, )., Sandoval Álvarez, Á., en Lakadamyali, M. 0 . Correlative live-cell and 
superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. 
Sci. U. S. A. 110, 3375–3380. 

Banker, G.A., en Cowan, W.M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–
425. 

Barak, L.S. (1981). Fluorescent low density lipoprotein for observation of dynamics of individual receptor 
complexes on cultured human fibroblasts. J. Cell Biol. 90, 595–604. 

Barretto, R.P.J., Messerschmidt, B., en Schnitzer, M.J. (2009). In vivo fluorescence imaging with high-resolution 
microlenses. Nat. Methods 6, 511–512. 

Beaudoin, G.M.J., Lee, S.-H., Singh, D., Yuan, Y., Ng, Y.-G., Reichardt, L.F., en Arikkath, J. (2012). Culturing 



 

 

132 

 

pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741–1754. 

Beltman, J.B., Marée, A.F.M., en de Boer, R.J. (2009). Analysing immune cell migration. Nat. Rev. Immunol. 9, 
789–798. 

Bergeijk, P. Van, Adrian, M., Hoogenraad, C.C., en Kapitein, L.C. (2015). Optogenetic control of organelle 
transport and positioning. Nature. 

Betzig, E. (1995). Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239. 

Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., 
Lippincott-Schwartz, J., en Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer 
resolution. Science 313, 1642–1645. 

Biermann, B., Sokoll, S., Klueva, J., Missler, M., Wiegert, J.S., Sibarita, J.-B., en Heine, M. (2014). Imaging of 
molecular surface dynamics in brain slices using single-particle tracking. Nat. Commun. 5, 3024. 

Blanpied, T., Scott, D., en Ehlers, M. (2002). Dynamics and regulation of clathrin coats at specialized endocytic 
zones of dendrites and spines. Neuron 36, 435–449. 

Blanpied, T.A., Scott, D.B., en Ehlers, M.D. (2003). Age-related regulation of dendritic endocytosis associated 
with altered clathrin dynamics. In Neurobiology of Aging, bll 1095–1104. 

Botsoa, J., Sauvage, T., Adam, M.P., Desgardin, P., Leoni, E., Courtois, B., Treussart, F., en Barthe, M.F. (2011). 
Optimal conditions for NV- center formation in type-1b diamond studied using photoluminescence and 
positron annihilation spectroscopies. Phys. Rev. B - Condens. Matter Mater. Phys. 84. 

Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A. 
V, en Rabeau, J.R. (2010). Observation and control of blinking nitrogen-vacancy centres in discrete 
nanodiamonds. Nat. Nanotechnol. 5, 345–349. 

Brewer, G.J., Torricelli, J.R., Evege, E.K., en Price, P.J. (1993). Optimized survival of hippocampal-neurons in 
b27-supplemented neurobasal(tm), a new serum-free medium combination. J. Neurosci. Res. 35, 567–576. Brown, V., Jin, P., Ceman, S., Darnell, J.C., O’Donnell, W.T., Tenenbaum, S.A., Jin, X., Feng, Y., Wilkinson, K.D., 
Keene, J.D., et al. (2001). Microarray identification of FMRP-associated brain mRNAs and altered mRNA 
translational profiles in fragile X syndrome. Cell 107, 477–487. 

Bush, W.S., en Moore, J.H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol. 8. 

Canton, I., en Battaglia, G. (2012). Endocytosis at the nanoscale. Chem. Soc. Rev. 41, 2718. 

Capecchi, M.R. (2005). Gene targeting in mice: functional analysis of the mammalian genome for the twenty-
first century. Nat. Rev. Genet. 6, 507–512. 

Carlton, P.M. (2008). Three-dimensional structured illumination microscopy and its application to 
chromosome structure. Chromosom. Res. 16, 351–365. 

Casella, J.F., Flanagan, M.D., en Lin, S. (1981). Cytochalasin D inhibits actin polymerization and induces 
depolymerization of actin filaments formed during platelet shape change. Nature 293, 302–305. 

Chang, J., Gilman, S.R., Chiang, A.H., Sanders, S.J., en Vitkup, D. (2015). Genotype to phenotype relationships in 
autism spectrum disorders. Nat. Neurosci. 18, 191–198. 

Chang, Y.-R., Lee, H.-Y., Chen, K., Chang, C.-C., Tsai, D.-S., Fu, C.-C., Lim, T.-S., Tzeng, Y.-K., Fang, C.-Y., Han, C.-C., 
et al. (2008). Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–
288. 

Chapman, R., en Plakhotnik, T. (2011). Quantitative luminescence microscopy on Nitrogen-Vacancy Centres in 
diamond: Saturation effects under pulsed excitation. Chem. Phys. Lett. 507, 190–194. 

Charpentier, E., en Doudna, J. a (2013). Rewriting a genome. Nature 495, 50–51. 

Chen, J., KANAI, Y., Cowan, N.J., en HIROKAWA, N. (1992). Projection Domains of Map2 and Tau Determine 
Spacings Between Microtubules in Dendrites and Axons. Nature 360, 674–676. 

Chen, J., Zhang, Z., Li, L., Chen, B.C., Revyakin, A., Hajj, B., Legant, W., Dahan, M., Lionnet, T., Betzig, E., et al. 



 

 

133 

 

(2014). Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285. 

Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R. a, Orger, M.B., 
Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–
300. 

Chenouard, N., Buisson, J., Bloch, I., Bastin, P., en Olivo-Marin, J.C. (2010). Curvelet analysis of kymograph for 
tracking bi-directional particles in fluorescence microscopy images. In Proceedings - International Conference 
on Image Processing, ICIP, bll 3657–3660. 

Chenouard, N., Bloch, I., en Olivo-Marin, J.C. (2013). Multiple hypothesis tracking for cluttered biological image 
sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736–2750. Chenouard, N., Smal, )., de Chaumont, F., Maška, M., Sbalzarini, ).F., Gong, Y., Cardinale, J., Carthel, C., Coraluppi, 
S., Winter, M., et al. (2014). Objective comparison of particle tracking methods. Nat. Methods 11, 281–289. 

Cho, D.-Y., Kim, Y.-A., en Przytycka, T.M. (2012). Chapter 5: Network biology approach to complex diseases. 
PLoS Comput. Biol. 8, e1002820. Choi, S.(., Kim, Y.(., (ebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., et 
al. (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278. 

Choquet, D., en Triller, A. (2013). The dynamic synapse. Neuron 80, 691–703. 

Chowdary, P.D., Che, D.L., Zhang, K., en Cui, B. (2015). Retrograde NGF Axonal Transport—Motor Coordination 
in the Unidirectional Motility Regime. Biophys. J. 108, 2691–2703. 

Chu, Z., Zhang, S., Zhang, B., Zhang, C., Fang, C.-Y., Rehor, I., Cigler, P., Chang, H.-C., Lin, G., Liu, R., et al. (2014). 
Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 4, 4495. 

Conde, C., en Cáceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. 
Nat. Rev. Neurosci. 10, 319–332. 

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L. a, et al. (2013). 
Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823. 

Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., en Dahan, M. (2006). Tracking individual kinesin motors in 
living cells using single quantum-dot imaging. Nano Lett. 

Cui, B., Wu, C., Chen, L., Ramirez, A., Bearer, E.L., Li, W.-P., Mobley, W.C., en Chu, S. (2007). One at a time, live 
tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. U. S. A. 104, 13666–13671. 

Dahan, M., Lévi, S., Luccardini, C., Rostaing, P., Riveau, B., en Triller, A. (2003). Diffusion dynamics of glycine 
receptors revealed by single-quantum dot tracking. Science 302, 442–445. 

Danilenko, V. V. (2004). On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46, 595–
599. 

Davies, G., Lawson, S.C., Collins, A.T., Mainwood, A., en Sharp, S.J. (1992). Vacancy-related centers in diamond. 
Phys. Rev. B 46, 13157–13170. 

Delehanty, J.B., Mattoussi, H., en Medintz, I.L. (2009). Delivering quantum dots into cells: Strategies, progress 
and remaining issues. Anal. Bioanal. Chem. 393, 1091–1105. 

Deng, C.-X. (2012). The Use of Cre–loxP Technology and Inducible Systems to Generate Mouse Models of 
Cancer. In Genetically Engineered Mice for Cancer Research, J.E. Green, en T. Ried, reds (New York, NY: 
Springer New York), bll 17–36. 

Deschout, H., Cella Zanacchi, F., Mlodzianoski, M., Diaspro, A., Bewersdorf, J., Hess, S.T., Braeckmans, K., 
Zanacchi, F.C., Mlodzianoski, M., Diaspro, A., et al. (2014). Precisely and accurately localizing single emitters in 
fluorescence microscopy. Nat. Methods 11, 253–266. 

Dolmetsch, R., en Geschwind, D.H. (2011). The human brain in a dish: The promise of iPSC-derived neurons. 
Cell 145, 831–834. 

Doudna, J.A., en Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 
(80-. ). 346, 1258096–1258096. 



 

 

134 

 

Duan, L., Che, D., Zhang, K., Ong, Q., Guo, S., en Cui, B. (2015). Optogenetic Control of Molecular Motors and 
Organelle Distributions in Cells. Chem. Biol. 22, 671–682. 

Dudok, B., Barna, L., Ledri, M., Szabó, S.I., Szabadits, E., Pintér, B., Woodhams, S.G., Henstridge, C.M., Balla, G.Y., 
Nyilas, R., et al. (2014). Cell-specific STORM super-resolution imaging reveals nanoscale organization of 
cannabinoid signaling. Nat. Neurosci. 18, 75–86. 

Durbin, R.M., Altshuler, D.L., Durbin, R.M., Abecasis, G.R., Bentley, D.R., Chakravarti, A., Clark, A.G., Collins, F.S., 
Vega, D. La, Francisco, M., et al. (2010). A map of human genome variation from population-scale sequencing. 

Durdiaková, J., Warrier, V., Baron-Cohen, S., en Chakrabarti, B. (2014). Single nucleotide polymorphism 
rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol. Autism 5, 25. 

Ehrensperger, M.-V., Hanus, C., Vannier, C., Triller, A., en Dahan, M. (2007). Multiple association states between 
glycine receptors and gephyrin identified by SPT analysis. Biophys. J. 92, 3706–3718. 

Epstein, R.J., Mendoza, F.M., Kato, Y.K., en Awschalom, D.D. (2005). Anisotropic interactions of a single spin 
and dark-spin spectroscopy in diamond. 1, 13. 

Fakhri, N., Wessel, A.D., Willms, C., Pasquali, M., Klopfenstein, D.R., MacKintosh, F.C., en Schmidt, C.F. (2014). 
High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 344, 1031–1035. 

Faklaris, O., Garrot, D., Joshi, W., Druon, F., Boudou, J.P., Sauvage, T., Georges, P., Curmi, P.A., en Treussart, F. 
(2008). Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization 
pathway. Small 4, 2236–2239. 

Faklaris, O., Garrot, D., Joshi, V., Boudou, J.P., Sauvage, T., Curmi, P. a., en Treussart, F. (2009a). Comparison of 
the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. 
Observation of the diffusion of diamond nanoparticles in living cells. J. Eur. Opt. Soc. 4. 

Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Sennour, M., Girard, H., Gesset, C., Arnault, J.-C.C., Thorel, A., 
Boudou, J.-P.P., et al. (2009b). Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake 
mechanism in mammalian cells. ACS Nano 3, 3955–3962. 

Fenno, L., Yizhar, O., en Deisseroth, K. (2011). The development and application of optogenetics. Annu. Rev. 
Neurosci. 34, 389–412. 

Ferezou, I., Bolea, S., en Petersen, C.C.H. (2006). Visualizing the Cortical Representation of Whisker Touch: 
Voltage-Sensitive Dye Imaging in Freely Moving Mice. Neuron 50, 617–629. 

Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Dwyer, S., Gormley, P., Georgieva, L., Rees, E., Palta, 
P., Ruderfer, D.M., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 
179–184. 

Fu, C.-C., Lee, H.-Y., Chen, K., Lim, T.-S., Wu, H.-Y., Lin, P.-K., Wei, P.-K., Tsao, P.-H., Chang, H.-C., en Fann, W. 
(2007). Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. 
Natl. Acad. Sci. U. S. A. 104, 727–732. 

Fukata, Y., Dimitrov, A., Boncompain, G., Vielemeyer, O., Perez, F., en Fukata, M. (2013). Local palmitoylation 
cycles define activity-regulated postsynaptic subdomains. J. Cell Biol. 202, 145–161. 

Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., en Nie, S. (2004). In vivo cancer targeting and imaging with 
semiconductor quantum dots. Nat. Biotechnol. 22, 969–976. 

Gao, Z., Lee, P., Stafford, J.M., von Schimmelmann, M., Schaefer, A., en Reinberg, D. (2014). An AUTS2–Polycomb 
complex activates gene expression in the CNS. Nature 516, 349–354. 

Gilman, S.R., Iossifov, I., Levy, D., Ronemus, M., Wigler, M., en Vitkup, D. (2011). Rare De Novo Variants 
Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function 
of Synapses. Neuron 70, 898–907. 

Gilman, S.R., Chang, J., Xu, B., Bawa, T.S., Gogos, J. a, Karayiorgou, M., en Vitkup, D. (2012). Diverse types of 
genetic variation converge on functional gene networks involved in schizophrenia. Nat. Neurosci. 15, 1723–
1728. 



 

 

135 

 

Girotti, M., en Banting, G. (1996). TGN38-green fluorescent protein hybrid proteins expressed in stably 
transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and 
suggest a possible role for ratTGN38. J. Cell Sci. 109 ( Pt 1, 2915–2926. 

Glausier, J.R., en Lewis, D.A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107. 

Glenn, D.R., Zhang, H., Kasthuri, N., Schalek, R., Lo, P.K., Trifonov,  a S., Park, H., Lichtman, J.W., en Walsworth, 
R.L. (2012). Correlative light and electron microscopy using cathodoluminescence from nanoparticles with 
distinguishable colours. Sci. Rep. 2, 865. 

Godinez, W.J., Lampe, M., Wörz, S., Müller, B., Eils, R., en Rohr, K. (2009). Deterministic and probabilistic 
approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Med. Image 
Anal. 13, 325–342. 

Gonzalez, M.W., en Kann, M.G. (2012). Chapter 4: Protein Interactions and Disease. PLoS Comput. Biol. 8. 

Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A., en Ruddle, F.H. (1980). Genetic transformation of mouse 
embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U. S. A. 77, 7380–7384. 

Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.-
Y., et al. (2010). A draft sequence of the Neandertal genome. Science 328, 710–722. 

Group, C., en Consortium, P.G. (2013). Identification of risk loci with shared effects on five major psychiatric 
disorders: a genome-wide analysis. Lancet 381, 1371–1379. 

Gu, Y., Sun, W., Wang, G., Jeftinija, K., Jeftinija, S., en Fang, N. (2012). Rotational dynamics of cargos at pauses 
during axonal transport. Nat. Commun. 3, 1030. 

Gustafsson, M.G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination 
microscopy. J. Microsc. 198, 82–87. 

Gustafsson, M.G.L. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging 
with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086. 

Hall, L.T., Hill, C.D., Cole, J.H., Städler, B., Caruso, F., Mulvaney, P., Wrachtrup, J., en Hollenberg, L.C.L. (2010). 
Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl. Acad. Sci. U. S. A. 107, 
18777–18782. 

Hall, L.T., Beart, G.C.G., Thomas, E. a, Simpson, D. a, McGuinness, L.P., Cole, J.H., Manton, J.H., Scholten, R.E., 
Jelezko, F., Wrachtrup, J., et al. (2012). High spatial and temporal resolution wide-field imaging of neuron 
activity using quantum NV-diamond. Sci. Rep. 2, 401. 

Hancock, W.O. (2014). Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15, 
615–628. 

Hegyi, A., en Yablonovitch, E. (2013). Molecular imaging by optically detected electron spin resonance of 
nitrogen-vacancies in nanodiamonds. Nano Lett. 13, 1173–1178. 

Hell, S.W. (2007). Far-Field Optical Nanoscopy. Science (80-. ). 316, 1153–1158. 

Hell, S.W., en Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: 
stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782. 

Himics, L., Tóth, S., Veres, M., Balogh, Z., en Koós, M. (2014). Creation of deep blue light emitting nitrogen-
vacancy center in nanosized diamond. Appl. Phys. Lett. 104. 

Hirokawa, N., Noda, Y., Tanaka, Y., en Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular 
transport. Nat. Rev. Mol. Cell Biol. 10, 682–696. 

Hirokawa, N., Niwa, S., en Tanaka, Y. (2010). Molecular motors in neurons: Transport mechanisms and roles 
in brain function, development, and disease. Neuron 68, 610–638. 

Hochbaum, D.R., Zhao, Y., Farhi, S.L., Klapoetke, N., Werley, C.A., Kapoor, V., Zou, P., Kralj, J.M., Maclaurin, D., 
Smedemark-Margulies, N., et al. (2014). All-optical electrophysiology in mammalian neurons using engineered 
microbial rhodopsins. Nat. Methods 11, 825–833. 

Hori, K., Nagai, T., Shan, W., Sakamoto, A., Taya, S., Hashimoto, R., Hayashi, T., Abe, M., Yamazaki, M., Nakao, K., 



 

 

136 

 

et al. (2014). Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis. Cell Rep. 9, 2166–
2179. 

Hoze, N., Nair, D., Hosy, E., Sieben, C., Manley, S., Herrmann, A., Sibarita, J.-B., Choquet, D., en Holcman, D. (2012). 
Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis 
of live cell imaging. Proc. Natl. Acad. Sci. U. S. A. 109, 17052–17057. 

Hsu, J.H., Su, W. De, Yang, K.L., Tzeng, Y.K., en Chang, H.C. (2011). Nonblinking green emission from single H3 
color centers in nanodiamonds. Appl. Phys. Lett. 98. 

Hsu, T.-C., Liu, K.-K., Chang, H.-C., Hwang, E., en Chao, J.-I. (2014). Labeling of neuronal differentiation and 
neuron cells with biocompatible fluorescent nanodiamonds. Sci. Rep. 4, 5004. 

Huang, B., Bates, M., en Zhuang, X. (2009a). Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 
78, 993–1016. 

Huang, D.W., Sherman, B.T., en Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. 

Huang, Y.-A., Kao, C.-W., Liu, K.-K., Huang, H.-S., Chiang, M.-H., Soo, C.-R., Chang, H.-C., Chiu, T.-W., Chao, J.-I., en 
Hwang, E. (2014). The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci. Rep. 
4, 6919. 

Hyman, S.E. (2007). Can neuroscience be integrated into the DSM-V? Nat. Rev. Neurosci. 8, 725–732. 

Hyman, S.E. (2012). Revolution Stalled. Sci. Transl. Med. 4, 155cm11–cm155cm11. 

Iakoubovskii, K., en Adriaenssens, G. (2001). Trapping of vacancies by defects in diamond. J. Phys. Condens. 
Matter 13, 6015–6018. 

Igarashi, R., Yoshinari, Y., Yokota, H., Sugi, T., Sugihara, F., Ikeda, K., Sumiya, H., Tsuji, S., Mori, I., Tochio, H., et 
al. (2012). Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 12, 
5726–5732. )ossifov, )., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, (.A., Witherspoon, K.T., Vives, 
L., Patterson, K.E., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. 
Nature 515, 216–221. 

Izeddin, I., Boulanger, J., Racine, V., Specht, C.G., Kechkar,  a, Nair, D., Triller,  a, Choquet, D., Dahan, M., en 
Sibarita, J.B. (2012). Wavelet analysis for single molecule localization microscopy. Opt. Express 20, 2081–
2095. 

Jack, C.R., en Holtzman, D.M. 0 . Biomarker modeling of alzheimer’s disease. Neuron 80, 1347–1358. 

Jaworski, J., Kapitein, L.C., Gouveia, S.M., Dortland, B.R., Wulf, P.S., Grigoriev, I., Camera, P., Spangler, S. a, Di 
Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic 
plasticity. Neuron 61, 85–100. 

Jung, J.C., en Schnitzer, M.J. (2003). Multiphoton endoscopy. Opt. Lett. 28, 902–904. 

Kaech, S., en Banker, G. (2006). Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415. 

Kapitein, L.C., en Hoogenraad, C.C. (2015). Building the Neuronal Microtubule Cytoskeleton. Neuron 87, 492–
506. 

Kaufmann, S., Simpson, D.A., Hall, L.T., Perunicic, V., Senn, P., en Steinert, S. (2013). Detection of atomic spin 
labels in a lipid bilayer using a single-spin nanodiamond probe. PNAS. 

Kim, S.T., Saha, K., Kim, C., en Rotello, V.M. (2013). The role of surface functionality in determining nanoparticle 
cytotoxicity. Acc. Chem. Res. 46, 681–691. 

Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stölzle, S., Fertig, N., en Parak, W.J. 
(2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338. 

Kirov, G., Pocklington, A., Holmans, P.A., Ivanov, D.K., Ikeda, M., Ruderfer, D., Moran, J., Chambert, K., Toncheva, 
D., Georgieva, L., et al. (2011). De novo CNV analysis implicates specific abnormalities of postsynaptic 
signalling complexes in the pathogenesis of schizophrenia. 142–153. 



 

 

137 

 

Kitagishi, Y., Minami, A., Nakanishi, A., Ogura, Y., en Matsuda, S. (2015). Neuron Membrane Trafficking and 
Protein Kinases Involved in Autism and ADHD. Int. J. Mol. Sci. 16, 3095–3115. 

Kitamura, T., Sun, C., Kitch, L.J., Mark, J., Kitamura, T., Sun, C., Martin, J., Kitch, L.J., Schnitzer, M.J., en Tonegawa, 
S. (2015). Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory 
Article Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory. 
Neuron 87, 1317–1331. 

Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.-Y., Sackler, R.S., Haynes, C., Henning, A.K., SanGiovanni, J.P., Mane, S.M., 
Mayne, S.T., et al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science 
308, 385–389. 

Korobov, M. V, Volkov, D.S., Avramenko, N. V, Belyaeva, L. a L.A., Semenyuk, P.I., en Proskurnin, M. a (2013). 
Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of 
controlling the aggregation state of nanodiamond powders. Nanoscale 5, 1529–1536. 

Krumm, N., Turner, T.N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B.P., Stessman, H. a, He, 
Z.-X., et al. (2015). Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588. 

Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., en Lukin, M.D. (2013). Nanometre-scale 
thermometry in a living cell. Nature 500, 54–58. 

Kuo, Y., Hsu, T.Y., Wu, Y.C., en Chang, H.C. (2013). Fluorescent nanodiamond as a probe for the intercellular 
transport of proteins in vivo. Biomaterials 34, 8352–8360. 

Kusumi,  a, Sako, Y., en Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by 
single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial 
cells. Biophys. J. 65, 2021–2040. 

Lakadamyali, M. (2014). Navigating the cell: how motors overcome roadblocks and traffic jams to efficiently 
transport cargo. Phys. Chem. Chem. Phys. 16, 5907–5916. 

Lakowicz, J.R. (2006). Principles of fluorescence spectroscopy. 

Lander, E., en Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and 
reporting linkage results. Nat. Genet. 11, 241–247. 

Leduc, C., Si, S., Gautier, J., Soto-Ribeiro, M., Wehrle-Haller, B., Gautreau, A., Giannone, G., Cognet, L., en Lounis, 
B. (2013). A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett. 13, 1489–1494. 

Lee, S.H., DeCandia, T.R., Ripke, S., Yang, J., Sullivan, P.F., Goddard, M.E., Keller, M.C., Visscher, P.M., en Wray, 
N.R. (2012). Estimating the proportion of variation in susceptibility to schizophrenia captured by common 
SNPs. Nat. Genet. 44, 831–831. 

Lepagnol-Bestel,  a-M., Maussion, G., Boda, B., Cardona,  a, Iwayama, Y., Delezoide,  a-L., Moalic, J.-M., Muller, D., 
Dean, B., Yoshikawa, T., et al. (2008). SLC25A12 expression is associated with neurite outgrowth and is 
upregulated in the prefrontal cortex of autistic subjects. Mol. Psychiatry 13, 385–397. 

Lewinski, N., Colvin, V., en Drezek, R. (2008). Cytotoxicity of nanoparticles. Small 4, 26–49. 

Li, J., Cai, T., Jiang, Y., Chen, H., He, X., Chen, C., Li, X., Shao, Q., Ran, X., Li, Z., et al. (2015). Genes with de novo 
mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 
1–8. 

van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann, M., en Sauer, M. (2011). Direct 
stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009. 

Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., en Lichtman, J.W. (2007). 
Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 
56–62. 

Loulier, K., Barry, R., Mahou, P., Franc, Y. Le, Supatto, W., Matho, K.S., Ieng, S., Fouquet, S., Dupin, E., Benosman, 
R., et al. (2014). Multiplex Cell and Lineage Tracking with Combinatorial Labels. Neuron 81, 505–520. 

Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W. a, Garcia, A.J., Gu, X., Zanella, S., et al. 



 

 

138 

 

(2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. 
Nat. Neurosci. 15, 793–802. 

Maglione, M., en Sigrist, S.J. (2013). Seeing the forest tree by tree: super-resolution light microscopy meets the 
neurosciences. Nat. Neurosci. 16, 790–797. 

Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., en Dubertret, B. (2008). Towards non-blinking 
colloidal quantum dots. Nat. Mater. 7, 659–664. 

Mandelkow, E.-M.E., Thies, E., Trinczek, B., en Biernat, J. (2004). MARK/PAR1 kinase is a regulator of 
microtubule-dependent transport in axons. J. Cell Biol. 167, 99–110. 

Martin, D.S., Forstner, M.B., en Käs, J. a (2002). Apparent subdiffusion inherent to single particle tracking. 
Biophys. J. 83, 2109–2117. 

Marx, V. (2013). Is super-resolution microscopy right for you? Nat. Methods 10, 1157–1163. 

Matarin, M., Salih, D. a, Hardy, J., Edwards, F. a, Matarin, M., Salih, D. a, Yasvoina, M., Cummings, D.M., Guelfi, S., 
Liu, W., et al. (2015). Resource A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice 
during Development of Amyloid or Tau Pathology Resource A Genome-wide Gene-Expression Analysis and 
Database in Transgenic Mice during Development of Amyloid or Tau Pathology. Cell Rep. 1–12. 

Matenia, D., en Mandelkow, E.M. (2009). The tau of MARK: a polarized view of the cytoskeleton. Trends 
Biochem. Sci. 34, 332–342. 

Maussion, G., Carayol, J., Lepagnol-Bestel, A.-M., Tores, F., Loe-Mie, Y., Milbreta, U., Rousseau, F., Fontaine, K., 
Renaud, J., Moalic, J.-M., et al. (2008). Convergent evidence identifying MAP/microtubule affinity-regulating 
kinase 1 (MARK1) as a susceptibility gene for autism. Hum. Mol. Genet. 17, 2541–2551. 

Mayford, M., Bach, M.E., Huang, Y.Y., Wang, L., Hawkins, R.D., en Kandel, E.R. (1996). Control of memory 
formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683. 

McCarroll, S. a, en Hyman, S.E. (2013). Progress in the genetics of polygenic brain disorders: significant new 
challenges for neurobiology. Neuron 80, 578–587. 

McCarroll, S. a, Feng, G., en Hyman, S.E. (2014). Genome-scale neurogenetics: methodology and meaning. Nat. 
Neurosci. 17, 756–763. 

McCarthy, S.E., Gillis, J., Kramer, M., Lihm, J., Yoon, S., Berstein, Y., Mistry, M., Pavlidis, P., Solomon, R., Ghiban, 
E., et al. (2014). De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic 
overlap with autism and intellectual disability. Mol. Psychiatry 19, 652–658. 

McCutchen, C.W. (1967). Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57, 
1190–1192. 

McGuinness, L.P., Yan, Y., Stacey,  a, Simpson, D. a, Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, 
J., Caruso, F., et al. (2011). Quantum measurement and orientation tracking of fluorescent nanodiamonds 
inside living cells. Nat. Nanotechnol. 6, 358–363. 

McGuinness, L.P., Hall, L.T., Stacey,  a., Simpson, D. a., Hill, C.D., Cole, J.H., Ganesan, K., Gibson, B.C., Prawer, S., 
Mulvaney, P., et al. (2013). Ambient nanoscale sensing with single spins using quantum decoherence. New J. 
Phys. 15. 

McKenney, R.J., Huynh, W., Tanenbaum, M.E., Bhabha, G., en Vale, R.D. (2014). Activation of cytoplasmic dynein 
motility by dynactin-cargo adapter complexes. Science (80-. ). 345, 337–341. 

Medina, I., Carbonell, J., Pulido, L., Madeira, S.C., Goetz, S., Conesa, A., Tarraga, J., Pascual-Montano, A., Nogales-
Cadenas, R., Santoyo, J., et al. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, 
proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 38, W210–W213. 

Meijering, E., Dzyubachyk, O., en Smal, I. (2012). Methods for Cell and Particle Tracking. In Methods in 
enzymology, bll 183–200. 

Merson, T.D., Castelletto, S., Aharonovich, I., Turbic, A., Kilpatrick, T.J., en Turnley, A.M. (2013). Nanodiamonds 
with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells. Opt. Lett. 



 

 

139 

 

38, 4170–4173. 

Mikhaylova, M., Cloin, B.M.C., Finan, K., van den Berg, R., Teeuw, J., Kijanka, M.M., Sokolowski, M., Katrukha, E. 
a., Maidorn, M., Opazo, F., et al. (2015). Resolving bundled microtubules using anti-tubulin nanobodies. Nat. 
Commun. 6, 7933. 

Millecamps, S., en Julien, J.-P. (2013). Axonal transport deficits and neurodegenerative diseases. Nat. Rev. 
Neurosci. 14, 161–176. 

Mochalin, V.N., Shenderova, O., Ho, D., en Gogotsi, Y. (2012). The properties and applications of nanodiamonds. 
Nat. Nanotechnol. 7, 11–23. 

Mohan, N., Chen, C.S., Hsieh, H.H., Wu, Y.C., en Chang, H.C. (2010). In vivo imaging and toxicity assessments of 
fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 10, 3692–3699. 

Mohtashami, A., en Koenderink, A.F. (2013). Suitability of nanodiamond nitrogen – vacancy centers for 
spontaneous emission control experiments. New J. Phys. 15, 043017. 

Monnier, N., Barry, Z., Park, H.Y., Su, K.-C., Katz, Z., English, B.P., Dey, A., Pan, K., Cheeseman, I.M., Singer, R.H., 
et al. (2015). Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840. 

Montalti, M., Cantelli,  a., en Battistelli, G. (2015). Nanodiamonds and silicon quantum dots: ultrastable and 
biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 

Moore, C.B., Wallace, J.R., Wolfe, D.J., Frase, A.T., Pendergrass, S.A., Weiss, K.M., en Ritchie, M.D. (2013). Low 
frequency variants, collapsed based on biological knowledge, uncover complexity of population stratification 
in 1000 genomes project data. PLoS Genet. 9, e1003959. 

Mudrakola, H. V, Zhang, K., en Cui, B. (2009). Optically Resolving Individual Microtubules in Live Axons. 
Structure 17, 1433–1441. 

Nair, D., Hosy, E., Petersen, J.D., Constals, A., Giannone, G., Choquet, D., en Sibarita, J.-B. (2013). Super-resolution 
imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated 
by PSD95. J. Neurosci. 33, 13204–13224. 

Nawa, Y., Inami, W., Lin, S., Kawata, Y., Terakawa, S., Fang, C.Y., en Chang, H.C. (2014). Multi-color imaging of 
fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation. ChemPhysChem 15, 721–
726. 

Neher, E., en Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle 
fibres. Nature 260, 799–802. 

Nestler, E.J., en Hyman, S.E. (2010). Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–
1169. 

Neu, E., Steinmetz, D., Riedrich-Möller, J., Gsell, S., Fischer, M., Schreck, M., en Becher, C. (2011). Single photon 
emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New 
J. Phys. 13. 

Neugart, F., Zappe, A., Jelezko, F., Tietz, C., Boudou, J.P., Krueger, A., en Wrachtrup, J. (2007). Dynamics of 
diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591. 

Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., en Brus, L.E. (1996). 
Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804. 

Normanno, D., Boudarène, L., Dugast-Darzacq, C., Chen, J., Richter, C., Proux, F., Bénichou, O., Voituriez, R., 
Darzacq, X., en Dahan, M. (2015). Probing the target search of DNA-binding proteins in mammalian cells using 
TetR as model searcher. Nat. Commun. 6, 7357. 

Novak, P., Gorelik, J., Vivekananda, U., Shevchuk, A.I., Ermolyuk, Y.S., Bailey, R.J., Bushby, A.J., Moss, G.W.J., 
Rusakov, D. a, Klenerman, D., et al. (2013). Nanoscale-targeted patch-clamp recordings of functional 
presynaptic ion channels. Neuron 79, 1067–1077. O’Dushlaine, C., Rossin, L., Lee, P.(., Duncan, L., Parikshak, N.N., Newhouse, S., Ripke, S., Neale, B.M., Purcell, 
S.M., Posthuma, D., et al. (2015). Psychiatric genome-wide association study analyses implicate neuronal, 



 

 

140 

 

immune and histone pathways. Nat. Neurosci. 18, 199–209. 

Oksenberg, N., en Ahituv, N. (2013). The role of AUTS2 in neurodevelopment and human evolution. Trends 
Genet. 29, 600–608. 

Olesen, J., Gustavsson,  a., Svensson, M., Wittchen, H.U., en Jönsson, B. (2012). The economic cost of brain 
disorders in Europe. Eur. J. Neurol. 19, 155–162. 

Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., en Remington, S.J. (1996). Crystal structure of the 
Aequorea victoria green fluorescent protein. Science 273, 1392–1395. 

Overly, C.C., Rieff, H.I., en Hollenbeck, P.J. (1996). Organelle motility and metabolism in axons vs dendrites of 
cultured hippocampal neurons. J. Cell Sci. 109 ( Pt 5, 971–980. Paşca, S.P., Panagiotakos, G., en Dolmetsch, R.E. 0 . Generating human neurons in vitro and using them to 
understand neuropsychiatric disease. Annu. Rev. Neurosci. 37, 479–501. 

Peça, J., Ting, J., en Feng, G. (2011). SnapShot: Autism and the synapse. Cell 147, 706–706.e1. 

Penzes, P., Cahill, M.E., Jones, K. a, VanLeeuwen, J.-E., en Woolfrey, K.M. (2011). Dendritic spine pathology in 
neuropsychiatric disorders. Nat. Neurosci. 14, 285–293. 

Perevedentseva, E., Lin, Y.-C., Jani, M., en Cheng, C.-L. (2013a). Biomedical applications of nanodiamonds in 
imaging and therapy. Nanomedicine 8, 2041–2060. 

Perevedentseva, E., Hong, S.F., Huang, K.J., Chiang, I.T., Lee, C.Y., Tseng, Y.T., en Cheng, C.L. (2013b). 
Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanoparticle Res. 15. 

Petit, T., Girard, H. a, Trouvé, A., Batonneau-Gener, I., Bergonzo, P., en Arnault, J.-C. (2013). Surface transfer 
doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962. 

Pierobon, P., Achouri, S., Courty, S., Dunn, A.R., Spudich, J.A., Dahan, M., en Cappello, G. (2009). Velocity, 
processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275. 

Pinaud, F., Clarke, S., Sittner, A., en Dahan, M. (2010). Probing cellular events, one quantum dot at a time. Nat. 
Methods 7, 275–285. 

Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., en Cormier, M.J. (1992). Primary structure of the 
Aequorea victoria green-fluorescent protein. Gene 111, 229–233. 

Project, G., Project, G., Asia, E., Africa, S., Figs, S., en Tables, S. (2012). An integrated map of genetic variation 
from 1,092 human genomes. Nature 135, 0–9. 

Qian, H., Sheetz, M.P., en Elson, E.L. (1991). Single particle tracking. Analysis of diffusion and flow in two-
dimensional systems. Biophys. J. 60, 910–921. Querfurth, (.W., en LaFerla, F.M. 0 0 . Alzheimer’s disease. N. Engl. J. Med. 362, 329–344. 

Rahn-Lee, L., Byrne, M.E., Zhang, M., Le Sage, D., Glenn, D.R., Milbourne, T., Walsworth, R.L., Vali, H., en Komeili, 
A. (2015). A Genetic Strategy for Probing the Functional Diversity of Magnetosome Formation. PLoS Genet. 11, 
e1004811. 

Ramoz, N., Reichert, J.G., Smith, C.J., Silverman, J.M., Bespalova, I.N., Davis, K.L., en Buxbaum, J.D. (2004). 
Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. 
Psychiatry 161, 662–669. 

Ratz, M., Testa, I., Hell, S.W., en Jakobs, S. (2015). CRISPR/Cas9-mediated endogenous protein tagging for 
RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5, 9592. 

Rees, E., Walters, J.T.R., Georgieva, L., Isles, A.R., Chambert, K.D., Richards, A.L., Mahoney-Davies, G., Legge, S.E., 
Moran, J.L., McCarroll, S.A., et al. (2014a). Analysis of copy number variations at 15 schizophrenia-associated 
loci. Br. J. Psychiatry 204, 108–114. Rees, E., Walters, J.T.R., Chambert, K.D., O’Dushlaine, C., Szatkiewicz, J., Richards, A.L., Georgieva, L., Mahoney-
Davies, G., Legge, S.E., Moran, J.L., et al. (2014b). CNV analysis in a large schizophrenia sample implicates 
deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Hum. Mol. Genet. 23, 1669–1676. 



 

 

141 

 

Ricci, M.A., Manzo, C., García-Parajo, M.F., Lakadamyali, M., en Cosma, M.P. (2015). Chromatin Fibers Are 
Formed by Heterogeneous Groups of Nucleosomes In Vivo. Cell 160, 1145–1158. Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., Bergen, S.E., Collins, A.L., Crowley, 
J.J., Fromer, M., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. 
Nat. Genet. 45, 1150–1159. 

Rodriguez, O.C., Schaefer, A.W., Mandato, C. a, Forscher, P., Bement, W.M., en Waterman-Storer, C.M. (2003). 
Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 5, 599–609. 

Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., 
Chaigneau, M., Chang, H.C., et al. (2010). Surface-induced charge state conversion of nitrogen-vacancy defects 
in nanodiamonds. Phys. Rev. B - Condens. Matter Mater. Phys. 82. 

Rossin, E.J., Lage, K., Raychaudhuri, S., Xavier, R.J., Tatar, D., Benita, Y., International Inflammatory Bowel 
Disease Genetics Constortium, Cotsapas, C., en Daly, M.J. (2011). Proteins encoded in genomic regions 
associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, 
e1001273. 

Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerrière, A., Vital, A., Dumanchin, C., Feuillette, S., 
Brice, A., Vercelletto, M., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer 
disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26. 

De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Ercument Cicek,  a., Kou, Y., Liu, L., Fromer, M., 
Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–
215. 

Rust, M.J., Bates, M., en Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction 
microscopy (STORM). Nat. Methods 3, 793–795. 

Le Sage, D., Arai, K., Glenn, D.R., DeVience, S.J., Pham, L.M., Rahn-Lee, L., Lukin, M.D., Yacoby,  a, Komeili,  a, en 
Walsworth, R.L. (2013). Optical magnetic imaging of living cells. Nature 496, 486–489. 

Sakmann, B., en Neher, E. (1984). Patch clamp techniques for studying ionic channels in excitable membranes. 
Annu. Rev. Physiol. 46, 455–472. 

Sakurai, T., Ramoz, N., Barreto, M., Gazdoiu, M., Takahashi, N., Gertner, M., Dorr, N., Gama Sosa, M. a., De Gasperi, 
R., Perez, G., et al. (2010). Slc25a12 Disruption Alters Myelination and Neurofilaments: A Model for a 
Hypomyelination Syndrome and Childhood Neurodevelopmental Disorders. Biol. Psychiatry 67, 887–894. 

Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T., Moreno-De-Luca, D., Chu, S.H., Moreau, M.P., 
Gupta, A.R., Thomson, S.A., et al. (2011). Multiple Recurrent De Novo CNVs, Including Duplications of the 
7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron 70, 863–885. 

Sarkar, S.K., Bumb, A., Wu, X., Sochacki, K. a, Kellman, P., Brechbiel, M.W., en Neuman, K.C. (2014). Wide-field 
in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed. Opt. 
Express 5, 1190–1202. 

Satrústegui, J., Contreras, L., Ramos, M., Marmol, P., Del Arco, A., Saheki, T., en Pardo, B. (2007). Role of aralar, 
the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca2+ 
signaling in neuronal mitochondria. In Journal of Neuroscience Research, bll 3359–3366. 

Sauer, B., en Henderson, N. (1988). Site-specific DNA recombination in mammalian cells by the Cre 
recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U. S. A. 85, 5166–5170. 

Schermelleh, L., Heintzmann, R., en Leonhardt, H. (2010). A guide to super-resolution fluorescence 
microscopy. J. Cell Biol. 190, 165–175. 

Schirhagl, R., Chang, K., Loretz, M., en Degen, C.L. (2013). Nitrogen-Vacancy Centers in Diamond: Nanoscale 
Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 83–105. 

Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 
schizophrenia-associated genetic loci. Nature 511, 421–427. 

Schmitt-Ulms, G., Matenia, D., Drewes, G., en Mandelkow, E.M. (2009). Interactions of MAP/microtubule 



 

 

142 

 

affinity regulating kinases with the adaptor complex AP-2 of clathrin-coated vesicles. Cell Motil. Cytoskeleton 
66, 661–672. 

Schrand, A.M., Huang, H., Carlson, C., Schlager, J.J., Osawa, E., Hussain, S.M., en Dai, L. (2007). Are diamond 
nanoparticles cytotoxic? J. Phys. Chem. B 111, 2–7. 

Shah, N.H., Cole, T., en Musen, M. a. (2012). Chapter 9: Analyses using disease ontologies. PLoS Comput. Biol. 
8, e1002827. 

Shaner, N.C., Steinbach, P. a, en Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nat. Methods 2, 
905–909. 

Shimomura, O., Johnson, F.H., en Saiga, Y. (1962). Extraction, purification and properties of aequorin, a 
bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239. 

Siegert, S., Seo, J., Kwon, E.J., Rudenko, A., Cho, S., Wang, W., Flood, Z., Martorell, A.J., Ericsson, M., Mungenast, 
A.E., et al. (2015). The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat. Neurosci. 
18, 1008–1016. 

Small, A., en Stahlheber, S. (2014). Fluorophore localization algorithms for super-resolution microscopy. Nat. 
Methods 11, 267–279. 

Smith, B.R., Inglis, D.W., Sandnes, B., Rabeau, J.R., Zvyagin, A. V., Gruber, D., Noble, C.J., Vogel, R., Ösawa, E., en 
Plakhotnik, T. (2009). Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 
1649–1653. 

Smith, K.R., Kopeikina, K.J., Fawcett-Patel, J.M., Leaderbrand, K., Gao, R., Schürmann, B., Myczek, K., Radulovic, 
J., Swanson, G.T., en Penzes, P. (2014). Psychiatric Risk Factor ANK3/Ankyrin-G Nanodomains Regulate the 
Structure and Function of Glutamatergic Synapses. Neuron 84, 399–415. 

Steinert, S., Ziem, F., Hall, L.T., Zappe,  a, Schweikert, M., Götz, N., Aird,  a, Balasubramanian, G., Hollenberg, L., 
en Wrachtrup, J. (2013). Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. 
Commun. 4, 1607. 

Su, L.-J., Fang, C.-Y., Chang, Y.-T., Chen, K.-M., Yu, Y.-C., Hsu, J.-H., en Chang, H.-C. (2013). Creation of high density 
ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. Nanotechnology 24, 315702. 

Südhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–
911. Sullivan, P.F., Daly, M.J., en O’Donovan, M. 0 . Genetic architectures of psychiatric disorders: the emerging 
picture and its implications. Nat. Rev. Genet. 13, 537–551. 

Sun, C., Cao, Z., Wu, M., en Lu, C. (2014). Intracellular Tracking of Single Native Molecules with Electroporation-
Delivered Quantum Dots. 

Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L.J., Schnitzer, M.J., en Tonegawa, S. (2015). 
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proc. Natl. Acad. 
Sci. 201511668. 

Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., 
Reinhardt, C., et al. (2013). Rapid formation of plasma protein corona critically affects nanoparticle 
pathophysiology. Nat. Nanotechnol. 8, 772–781. 

Tetienne, J. (2014). Un microscope de champ magnétique basée sur le défaut azote-lacune du diamant : réalisation et application à l’étude de couches ferromagnétiques ultraminces. 
Thompson, R.E., Larson, D.R., en Webb, W.W. (2002). Precise nanometer localization analysis for individual 
fluorescent probes. Biophys. J. 82, 2775–2783. 

Ting, J.T., Peça, J., en Feng, G. (2012). Functional Consequences of Mutations in Postsynaptic Scaffolding 
Proteins and Relevance to Psychiatric Disorders. Annu. Rev. Neurosci. 35, 49–71. 

Tønnesen, J., en Nägerl, U.V. (2013). Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40. 

Triller, A., en Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. 



 

 

143 

 

Neuron 59, 359–374. 

Tyzio, R., Nardou, R., Ferrari, D.C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., Khalilov, I., Tsintsadze, V., 
Brouchoud, C., Chazal, G., et al. (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism 
pathogenesis in rodent offspring. Science 343, 675–679. 

Urban, A.E., en Purmann, C. (2015). Using iPSCs and genomics to catch CNVs in the act. Nat. Genet. 47, 100–
101. 

Vaijayanthimala, V., Tzeng, Y.-K., Chang, H.-C., en Li, C.-L. (2009). The biocompatibility of fluorescent 
nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20, 425103. 

Vaijayanthimala, V., Cheng, P.Y., Yeh, S.H., Liu, K.K., Hsiao, C.H., Chao, J.I., en Chang, H.C. (2012). The long-term 
stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–
7802. 

Vasquez, R.J., Howell, B., Yvon,  a M., Wadsworth, P., en Cassimeris, L. (1997). Nanomolar concentrations of 
nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell 8, 973–985. 

Veltman, J.A., en Brunner, H.G. (2012). De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–
575. 

Walker, J. (1979). Optical absorption and luminescence in diamond. Reports Prog. Phys. 42, 1605. 

Wang, G., McCain, M.L., Yang, L., He, A., Pasqualini, F.S., Agarwal, A., Yuan, H., Jiang, D., Zhang, D., Zangi, L., et al. 
(2014). Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell 
and heart-on-chip technologies. Nat. Med. 20, 616–623. 

Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G.E., Efros, A.L., 
en Krauss, T.D. (2009). Non-blinking semiconductor nanocrystals. Nature 459, 686–689. 

Wee, T.L., Mau, Y.W., Fang, C.Y., Hsu, H.L., Han, C.C., en Chang, H.C. (2009). Preparation and characterization of 
green fluorescent nanodiamonds for biological applications. Diam. Relat. Mater. 18, 567–573. 

Weimann, L., Ganzinger, K. a., McColl, J., Irvine, K.L., Davis, S.J., Gay, N.J., Bryant, C.E., en Klenerman, D. (2013). 
A Quantitative Comparison of Single-Dye Tracking Analysis Tools Using Monte Carlo Simulations. PLoS One 8. 

Weiss, L.A., Arking, D.E., Daly, M.J., en Chakravarti, A. (2009). A genome-wide linkage and association scan 
reveals novel loci for autism. Nature 461, 802–808. 

Weissleder, R. (2001). A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317. 

Welzel, O., Boening, D., Stroebel, A., Reulbach, U., Klingauf, J., Kornhuber, J., en Groemer, T.W. (2009). 
Determination of axonal transport velocities via image cross- and autocorrelation. Eur. Biophys. J. 38, 883–
889. 

Weng, M.F., Chang, B.J., Chiang, S.Y., Wang, N.S., en Niu, H. (2012). Cellular uptake and phototoxicity of surface-
modified fluorescent nanodiamonds. Diam. Relat. Mater. 22, 96–104. 

Westphal, V., Rizzoli, S.O., Lauterbach, M. a, Kamin, D., Jahn, R., en Hell, S.W. (2008). Video-rate far-field optical 
nanoscopy dissects synaptic vesicle movement SI. Science 320, 246–249. 

Wijetunge, L.S., Angibaud, J., Frick, A., Kind, P.C., en Nägerl, U.V. (2014). Stimulated Emission Depletion (STED) 
Microscopy Reveals Nanoscale Defects in the Developmental Trajectory of Dendritic Spine Morphogenesis in 
a Mouse Model of Fragile X Syndrome. J. Neurosci. 34, 6405–6412. Wildanger, D., Patton, B.R., Schill, (., Marseglia, L., (adden, J.P., Knauer, S., Schönle, A., Rarity, J.G., O’Brien, J.L., 
Hell, S.W., et al. (2012). Solid immersion facilitates fluorescence microscopy with nanometer resolution and 
sub-Ångström emitter localization. Adv. Mater. 24. 

Williams, O.A., Hees, J., Dieker, C., Jäger, W., Kirste, L., en Nebel, C.E. (2010). Size-dependent reactivity of 
diamond nanoparticles. ACS Nano 4, 4824–4830. 

Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R., en Hell, S.W. (2006). STED microscopy reveals that 
synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939. 

Wu, E., Jacques, V., Zeng, H., Grangier, P., Treussart, F., en Roch, J.-F. (2006). Narrow-band single-photon 



 

 

144 

 

emission in the near infrared for quantum key distribution. Opt. Express 14, 1296–1303. 

Wu, T.-J., Tzeng, Y.-K., Chang, W.-W., Cheng, C.-A., Kuo, Y., Chien, C.-H., Chang, H.-C., en Yu, J. (2013). Tracking 
the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent 
nanodiamonds. Nat. Nanotechnol. 8, 682–689. 

Xu, K., Zhong, G., en Zhuang, X. (2013). Actin, spectrin, and associated proteins form a periodic cytoskeletal 
structure in axons. Science 339, 452–456. 

Yildiz, A. (2003). Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization. 
Science (80-. ). 300, 2061–2065. 

Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M., en Yu, Y.C. (2005). Bright fluorescent nanodiamonds: No 
photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605. 

Zaitsev, A. (2000). Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B 61, 12909–
12922. 

Zala, D., Hinckelmann, M.V., Yu, H., Lyra Da Cunha, M.M., Liot, G., Cordelières, F.P., Marco, S., en Saudou, F. 
(2013). Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479–491. 

Zhang, H., Aharonovich, I., Glenn, D.R., Schalek, R., Magyar, A.P., Lichtman, J.W., Hu, E.L., en Walsworth, R.L. 
(2014). Silicon-vacancy color centers in nanodiamonds: Cathodoluminescence imaging markers in the near 
infrared. Small 10, 1908–1913. 

Zhang, J., Campbell, R.E., Ting, A.Y., en Tsien, R.Y. (2002). Creating new fluorescent probes for cell biology. Nat 
Rev Mol Cell Biol 3, 906–918. 

Zhang, K., Osakada, Y., Xie, W., en Cui, B. (2011). Automated image analysis for tracking cargo transport in 
axons. Microsc. Res. Tech. 74, 605–613. 

Zhu, Y., Li, J., Li, W., Zhang, Y., Yang, X., Chen, N., Sun, Y., Zhao, Y., Fan, C., en Huang, Q. (2012). The 
biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2, 302–312. 

 

  



 1 

Fluorescent nanodiamond tracking reveals intraneuronal transport 

abnormalities induced by brain disease-related genetic risk factors 

Simon HAZIZA1,2,*, Nitin MOHAN1,10, Yann LOE-MIE2, Aude-Marie LEPAGNOL-BESTEL2, 

Sophie MASSOU1,11, Marie-Pierre ADAM1,12, Xuan Loc LE1, Julia VIARD2, Christine PLANCON3, 

Rachel DAUDIN2, Pascale KOEBEL4, Feng-Jen HSIEH5, Chih-Che WU6, Brigitte POTIER2, 

Yann HERAULT4, Carlo SALA7, Aiden CORVIN8, Huan-Cheng CHANG5, François TREUSSART1* and 

Michel SIMONNEAU1,2,9,* 

1 Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Université Paris-Saclay, 
91405 Orsay, France 

2 Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 
75014 Paris, France 

3 Centre National de Génotypage, 91057 Evry, France 

4 Institut de génétique et de biologie moléculaire et cellulaire, CNRS UMR 7104, INSERM 
U 964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France 

5 Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan 

6 Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien 545, 
Taiwan 

7 Neuroscience Institute, CNR, 20129 Milano, Italy 

8 Department of Psychiatry, Institute of Neuroscience, Trinity College Dublin, Dublin 2, 
Ireland 

9 Department of Biology, ENS Cachan, Université Paris-Saclay, 94235 Cachan, France 

10 Current address: Institut de Ciències Fotòniques (ICFO), 08860 Castelledefels, Spain  

11 Current address: Institut Interdisciplinaire de Neuroscience, CNRS, Université de 
Bordeaux, 33077 Bordeaux, France 

12 Current address: European Laboratory for Non-Linear Spectroscopy, University of 
Florence, 50019 Sesto Fiorentino, Italy  

 

*emails: michel.simonneau@inserm.fr (M.S.), francois.treussart@ens-cachan.fr (F.T.) 
and simon.haziza@ens-cachan.fr (S.H.) 
  

mailto:michel.simonneau@inserm.fr
mailto:francois.treussart@ens-cachan.fr
mailto:simon.haziza@ens-cachan.fr


 2 

Common brain diseases, such as autism and Alzheimer’s disease, each striking 

more than one percent of the world population, have a highly polygenic 

architecture displaying subtle changes in gene expression1. Abnormalities of the 

intraneuronal transport have been linked to genetic risk factors found in 

patients2,3, pointing out the relevance of monitoring this key biological process. 

However, current methods to measure the intraneuronal transport have 

limitations that prevent the detection of its slight modifications. Here, we report a 

sensitive approach based on tracking of fluorescent nanodiamonds (fNDs) inside 

branches of dissociated neurons. The high brightness, perfect photostability and 

absence of cytotoxicity4 make fND a probe of choice to perform high-throughput 

long-term tracking in living neurons with 12 nm spatial and 50 ms time 

resolutions. As a proof-of principle, we applied the fND-tracking assay on two 

transgenic mouse lines mimicking the slight protein concentration changes 

≈30%  found in brain of patients. In both cases, this nanoparticle-based 

methodology proves sufficiently sensitive to detect these subtle changes, paving 

the way for developments in translational nanomedicine. 

A polygenic architecture of brain diseases as diverse as autism spectrum disorders, 

schizophrenia and late-onset Alzheimer’s disease is emerging, with the discovery of 

interplay between hundreds of genetic variants and subtle changes in gene expression, 

later referred as genetic risk factors1. The modeling of human brain diseases to 

understand the function of related genes usually relies on the establishment of 

transgenic mouse mimicking the effects of genetic changes5. As intraneuronal transport 

abnormalities have long been recognized to be linked to neuropsychiatric and 

neurodegenerative diseases2,3, we decided to mimic in vivo the subtle changes induced 

by brain disease-related genetic variants and subsequently quantify their impact on the 

intraneuronal transport using primary cultures of mouse hippocampal neurons. 

Previous attempts to quantify intraneuronal transport have been based on cargo 

labelling with genetic constructs of chimeric fluorescent proteins6,7. Limitations of this 

strategy are low transfection yield, uncontrolled protein overproduction, 

photobleaching of the reporters, and substantial cytotoxicity. Fluorescent 

semiconductor nanocrystals (quantum dots, QDs) have been widely used to probe a 

variety of cellular events8, owing to their high photoluminescence yield and good 

photostability. However, attempts to use QDs to study intraneuronal transport have 
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been limited to the specific model of long axons of dorsal root neurons cultured in 

microfluidic devices9,10. Moreover, the toxicity of QDs constitutive elements potentially 

limits their use in long-lasting studies11 and QDs blinking impedes high spatiotemporal 

resolution tracking. Considering these intrinsic limitations, there is a need for 

developing new generic approaches able to screen the functional impact of brain 

disease-related genetic modifications. 

Here, we developed a novel quantitative assay based on tracking of fluorescent 

diamond nanocrystals (fluorescent NanoDiamond, fND) in mouse hippocampal neurons 

(Fig. 1, Supplementary Videos 1 and 2). We used 30 nm-sized fNDs (Supplementary 

methods and Fig. S1a), whose fluorescence stems from nitrogen-vacancy (NV) color 

centers created within the nanocrystals and acting as perfectly photostable and non-

blinking emitters in the far-red spectral domain12 (Supplementary Fig. 1b). Such 

remarkable properties have been already exploited in bio-applications requiring long-

term tracking13,14. Moreover, fNDs have been reported to show a notably low cellular 

toxicity in primary neurons15. 

Fig. 1a shows the different steps of the fND-tracking assay, from neuron dissociation 

to video acquisition. To introduce fND into neurons, we used the endocytosis 

mechanism16. We subsequently tracked fND-containing endosomes by pseudo-Total 

Internal Reflection Fluorescence (pseudo-TIRF) video microscopy, with high-throughput 

(Fig. 1b) and 20 Hz frame rate, and then made a thorough quantitative analysis of their 

motion. Pseudo-TIRF microscopy excites only the region of interest, a few micrometers 

in depth above the culture glass substrate (Supplementary Fig. 1c), leading to a high 

signal-to-background ratio (SBR). We determined the localization precision of the setup 

for different SBR, using fNDs immobilized on a coverglass (see Methods), and achieved a 

localization precision smaller than 30 nm for SBR>3 (Fig. 1c). For the quantification of 

intraneuronal transport parameters, trajectories with more than 30% of constitutive 

points having a SBR<3 were excluded. Using such a filter, we obtained a mean 

localization precision of 12 nm over all trajectories (Inset of Fig. 1c). 

Fig. 1d displays a white-light illumination image of a main neuronal branch and its 

smaller branches, merged with one frame of Supplementary Video 1 showing fNDs at 

different locations (red spots), two of which moving in the same branch (Fig.1e). Fig. 1f 

shows the kymograph of these two fNDs, highlighting the stop-and-go  behavior 

characteristic of organelle transport in neurons17. For precise quantification of this 
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motor-driven activity, we first extracted the fNDs trajectories from the videos and identified the stop  and go  phases Supplementary Fig. 2, Fig. 1g) from which we 

inferred six intraneuronal transport readouts: velocity (in µm/s), run length (in µm), 

processivity (in seconds), pausing time (in seconds), pausing frequency (events per 

minute) and the diffusion coefficient (in µm2/s). 

 

Figure 1 | Intraneuronal transport monitoring by fluorescent nanodiamond tracking. a, 

Experimental pipeline from hippocampal neuron culture dissociated from E18.5 mouse embryo to 

endosome trajectory acquisition using pseudo-TIRF microscopy. DIV: day in vitro. b, Histogram of 

dataset sizes, i.e. number of trajectories exploited for readouts quantification. The mean value is 37 

trajectories/run (n=56 runs). c, Localization precision versus signal-to-background ratio (SBR) of fNDs 

immobilized on a glass coverslip (from ~100 fNDs imaged over 200 frames; data plotted as mean+/- 

standard deviation). By applying a cut-off at SBR=3, we obtained a localization precision better than 

30 nm. Inset: distribution of the mean localization precision for each fND-containing endosome 

trajectory (n=460 trajectories from 11 wild type experiments). d, Transmission white-light illumination 

image of the neuronal branches merged with the fluorescence channel (extracted from Supplementary 

Video 1) showing four fNDs moving within dendrites (yellow arrows). The cell soma associated with 

the main branch is on the left (not visible). During the two-minute movie, two fND-containing 

endosomes, labeled #1 and #2 (solid white line box) were observed moving towards the cell soma, in 

the same branch. e, Superimposition onto a white light image of the positions of these two fNDs (#1, in 

yellow; #2 in green), determined by particle tracking, with a persistence of 10 s, at different times. 

Scale bars: 5 µm in (d) and 1 µm in (e). f,  Kymograph of the motion of fNDs #1 and #2 shown in 

(e)(white box), illustrating their “stop-and-go” behavior. Scale bars: 15 µm (space) and 10 s (time). g, 

Top: trajectories of fND #1 and #2 extracted from the fluorescence video (dashed line rectangle in (e)). 

The two colors in each trajectory correspond to “go” phases (in green for fND #1 and yellow for 
fND #2) and “stop” phases (in blue for fND #1 and red for fND #2), as identified by our trajectory 
analysis algorithm (see Methods); bottom: two-state (“stop” and “go”) representation of the same 
trajectories over time: fND #1 moved faster than fND# 2 (scale bar: 1 s).  
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Velocity of fND-containing endosome was calculated as the length of the displacement vector over time from the first to the last point of a go  phase, whereas the curvilinear 
distance and time separating these two points corresponded to run length and 

processivity, respectively. The diffusion coefficient D was calculated during the go  
phase, by fitting the mean-square displacement (MSD) to the quadratic equation 

MSD(Δt)= v2 Δt2 +4D Δt, where v is the velocity. According to the Stokes-Einstein law, D is 

inversely proportional to the intracellular viscosity. During a stop  phase, the pausing 
time was defined as the duration from the first to the last point, the pausing frequency was the number of stop  phases per minute. 

We checked that these readouts remained constant during the 45-minute recordings 

for each culture well (Supplementary Fig. 3), and that there were no significant 

differences between the readout values for two independent experiments 

(Supplementary Fig. 4). Mean values and other statistical properties of these parameters 

are provided in Supplementary Table 1. Apart from these quantitative readouts, it is 

worth underlying that the fND-tracking assay can also provide a superresolution 

mapping of microtubule bundles in freely developing neuronal branches. For example, 

the two trajectories of Fig. 1g are separated by ≈100 nm, suggesting that the two fND-

containing endosomes travel along two adjacent microtubules inside the same branch. 

Supplementary Fig. 5 and Supplementary Video 3 show another region in which four 

trajectories of endosomes can be seen in the same neuronal branch, no more than ≈ 00 nm apart. Moreover, adjacent trajectories are separated by a distance of about 40-

160 nm, which is consistent with reported values9,18. 

We first tackle the sensitivity of the technic using a pharmacological drug impacting 

the microtubule-based intraneuronal transport, at nanomolar concentrations. This 

transport is dependent on the microtubule (MT) cytoskeleton integrity, and MT can be 

depolymerized by extracellular application of nocodazole. Here, we used 2 nM and 5 nM 

nocodazole concentration during the course of the 1 h-experiment, whereas this drug is 

standardly applied at micromolar concentrations for several hours19,20. As shown in 

Fig. 2, we observed (i) a decrease in velocity (p=3.8x10-4 and p=1.4x10-7 for 2 nM and 

5 nM respectively), in run length (p=3.4x10-4, p=5.3x10-6) and in processivity 

(p = 4.5x10-3, p=9.8x10-5), and (ii) an increase in pausing time (p=0.003, p=6.4x10-5). 

Conversely, we observed a decrease in pausing frequency only for 5 nM (p=0.016) and 

the diffusion coefficient were not significantly affected (Supplementary Fig. 6). The 
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increase in pausing time and decrease in run length and processivity are consistent with 

motors unable to overcome the microtubule interruption caused by depolymerization of 

the plus-end tips of microtubules. The constancy of the diffusion coefficient indicates 

that the viscosity is not affected inside neuronal branches. Altogether, intraneuronal 

transport parameters vary in a drug dosage-dependent manner and change as expected 

for MT depolymerization. 

 
Figure 2 | Nanomolar sensitivity of the fND-tracking assay to nocodazole impairment of the 

microtubule cytoskeleton integrity. Cumulative probability densities of velocity, run length, 

processivity and pausing time, for control (black), concentrations of nocodazole of 2 nM (green) and 

5 nM (red). Inset: bar plots presented as mean ± s.e.m., which were calculated from the total number 

of trajectories. Figures written inside the bars represent the number of trajectories from n=4 embryos. 

Statistical significance: two stars (**) indicate a p value smaller than 0.01 and three stars (***) mean 

that p<0.001. 

Next we evaluated if the fND-tracking assay is sensitive enough to reveal the impact of slight protein concentration changes ≈ 0%  found in brain of patients21,22 on the 

intraneuronal transport. We first assessed the sensitivity of the methodology to change 

in concentration of proteins directly bound to microtubule, such as TAU or MAP2. These 

molecules compete with molecular motors for MT binding sites, therefore acting as 

roadblocks 23. Genetic risk factors regulating the attachment/detachment of MAPs, such 

as the protein kinase coded by MARK1 gene, have long been associated to Alzheimer’s 
disease24,25 and Autism Spectrum Disorders (ASD)21. We generated two Mark1 

transgenic mouse lines (Fig. 3a) leading to three distinct Mark1 overexpression levels, 

namely line 38 (L38het, heterozygotes), line 8 (L8het, heterozygotes) and line 8 (L8hom, 

homozygotes). We first measured the protein levels of Mark1 in WT, L38het and L8het 

animals (Fig. 3b, Supplementary Fig. 7a). L38het and WT were not statistically different 

(8±4%, p=0.85), in contrast to L8het (32±6%, p=0.011). Therefore, we decided to test if this slight ≈ 0% increase is sufficient to induce changes in intraneuronal transport 
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parameters, taking advantage of four different genotypes: WT, L38het, L8het and L8hom 

(Fig. 3c). The Mark1 gene overexpression in L8hom was measured by RT-QPCR to be 

twice that in L8het (42±5% for L8het, p=0.0013 and 87±15% for L8hom, p=0.0010). This 

measurement was done on the same primary cultures as the ones used for the fND-

tracking assay, right after trajectories acquisitions. 

 

Figure 3 | Sensitivity of the fND-tracking assay to subtle concentration changes of autism-

related Mark1 protein. a, Schematic representation of the Mark1 transgene used to create transgenic 

mouse L38 and L8. b, Quantification of Mark1 gene overexpression levels. The protein levels of Mark1 

in WT, L38het and L8het animals were measured by Western Blot. Mark1 overexpression in WT, L8het 

and L8hom was evaluated by RT-QPCR (same neurons as the ones used in (c)). c, Effects of Mark1 

overexpression on velocity, run length and processivity intraneuronal transport parameters. d, 

Mechanistic model of the impact of Mark1 protein on intraneuronal transport, as described in 

Mandelkow et. al.24 and consistent with our data. All data are presented as mean ± s.e.m. (calculated 

from the total number of samples in (b) or of independent cultures in (c)). Figures written inside the 

bars represent the number of samples in (b) or the number of trajectories/independent cultures in (c). 

Statistical significance: one star (*) indicates p value smaller than 0.05, two stars (**) are for p <0.01. 

Quantification of the intraneuronal transport dynamics revealed significant variations 

for L8het and L8hom, but not for L38het in which no changes were observed in any of the 

readouts (Fig. 3c, Supplementary Fig. 7b). The latter is consistent with the absence of 

Mark1 overexpression for this transgenic line, therefore acting as an internal control. In 
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L8het and L8hom, the monotonous increase in Mark1 gene overexpression levels was 

accompanied by a corresponding increase in velocity (p = 0.03, p = 0.006 for L8het, L8hom 

respectively), in run length (p = 0.029, p = 0.022 for L8het, L8hom respectively) and in 

processivity (p=0.037 for L8hom respectively). We also obtained a decrease in pausing 

frequency for L8het (p=0.044). Altogether, intraneuronal transport parameters vary in a 

gene dosage-dependent manner and they change as expected for Mark1-mediated 

regulation of the microtubule track hindrance (Fig. 3d)24. We therefore demonstrated 

the sensitivity of our assay to detect microtubule roadblock impairments linked to brain diseases, for protein concentration changes as small as ≈ 0%. 

 

Figure 4 | Sensitivity of the fND-tracking assay to subtle overexpression of autism-related 

Slc25a12. a, Schematic representation of the Slc25a12 transgene used to create transgenic mouse 

line L2. b, Quantification of Slc25a12 overexpression in L2het through its Slc25a12 protein level (using 

Western Blot). c, Effects of Slc25a12 overexpression on velocity, run length and processivity 

intraneuronal transport parameters. All data are presented as mean ± s.e.m. (calculated from the total 

number of samples in (b) or of independent cultures in (c)). Figures written inside the bars represent 

the number of samples in (b) or the number of trajectories/independent cultures in (c). Statistical 

significance: one star (*) indicates p value smaller than 0.05. 

Finally, we evaluated if the fND-tracking assay is sensitive enough to detect the effect 

of subtle concentration change of one protein that do not belong to microtubule 

complexes but is indirectly involved in the intraneuronal transport via energy supplies. 

We focused on the psychiatric risk factor SLC25A12 that is required for the 

mitochondrial integrity and found associated with different types of ASD26,22 and with 
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Schizophrenia27. We generated one Slc25a12 transgenic mouse line (L2het) mimicking 

the slight overexpression of this gene as found in brain tissues of ASD patients22,28 

(Fig. 4a). We measured Slc25a12 protein levels in WT and L2het and found a significant 

increase in L2het (32±7%, p=0.043) (Fig. 4b, Supplementary Fig. 8). The quantification of 

the intraneuronal transport dynamic revealed significant variations with a decrease in 

run length (p=0.022) and processivity (p=0.012) (Fig. 4c). This result demonstrates the 

sensitivity of the tracking assay to detect indirect intraneuronal transport perturbations, for protein concentration changes as small as ≈ 0%. 
In this Letter, we have reported a hitherto unexplored approach to tackle the changes 

of intraneuronal transport parameters induced by brain disease-related genetic risk 

factors. Our methodology relies on fluorescent nanodiamond tracking inside freely 

developing branches of living neurons. The high brightness, perfect photostability and 

absence of cytotoxicity of fNDs make it possible to perform high throughput intracellular 

transport analysis. As a proof-of-principle, we established transgenic animals mimicking 

the subtle changes of protein concentrations (≈30%) found in brain of patients. The fND-

tracking assay was sensitive enough to detect modifications of the intraneuronal 

transport parameters in the transgenic neurons. To the best of our knowledge, this is the 

first direct measurement of the functional impact of brain disease-related genetic risk 

factors using a nanoparticle-based methodology. 

In a near future, with the swift development of the CRISPR/Cas9 genome editing 

technology29, it is possible to model multiple brain disease-related genetic risk factors in 

transgenic animals. Our fND tracking methodology is adapted to understand how these 

multiple genetic variants interact with each other to impair the intraneuronal transport. 

Furthermore, powerful methodologies to dissect the molecular basis of complex brain 

diseases are emerging such as 3D-human neuron cultures derived from induced 

pluripotent stem cells obtained from patients30,31. Our fND-tracking assay can be 

instrumental to develop an unbiased diagnosis of neuropsychiatric and 

neurodegenerative diseases, opening the door to applications in translational 

nanomedicine. 
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Methods 

Hippocampal neuron cultures and fNDs internalization. Hippocampi from E18.5 
mouse embryos were isolated, chemically and mechanically dissociated, before being 
plated in LabTekII chamber (see Supplementary Methods). fNDs internalization was 
conducted at DIV15/16. The maintaining medium was set aside and replaced by 0.5 ml 
of Neurobasal phenol-free medium (Invitrogen) to which we added 5 µl of ≈30 nm-sized 
fND stock solution, reaching a final concentration of 5 µg/ml. After 10 min incubation, 
the medium was replaced by the old maintaining medium and neurons were placed 
20 min in the incubator before starting the video acquisition. 

Video processing and trajectory analysis 

We recorded videos of total duration of 120 s, at a time resolution of 50 ms/frame with 
Nikon NIS software in the proprietary ND2 format (Fig. 1a). A filtering pretreatment was 
done with Fiji software (version 1.46j; NIH, USA), which consists in subtracting to each 
frame the median intensity of the whole stack in order to remove static fluorescent 
spots. For each dynamic fND-containing endosome, we reconstructed the full trajectory 
using the Spot Tracker plugin of ICY software (GPLv3 open source) developed by the 
Quantitative Image Analysis team at Institut Pasteur (Paris, France) 32,33. Using the Track 
Manager plugin, we exported a text file containing the spot (X,Y) coordinates and the 
signal amplitude and background (based on a 2D-gaussian fitting of fluorescence spots), 
and we processed these data with a home-made program written for Igor Pro software WaveMetrics )nc., USA . Detection of stop  and go  phases relies on two main steps, namely a coarse stop  phase detection based on the confinement ratio function, and a refine go  detection based on three different sequential filters as detailed in 
Supplementary Fig. 1 and S2. Transport readouts for each trajectory are then computed 
and the program finally makes a statistical report for the entire run set corresponding to 
one experiment, namely one LabTek well. The IgorPro program is available on request. 

Localization precision 
We calibrated the localization precision of our set-up by tracking the position of more 
than 100 fNDs immobilized on a glass coverslip and imaged over 100 frames. We then 
analyzed the video with the same tracking software parameters as for the intraneuronal 
trajectories. Movies were background-subtracted using Fiji plugin with a rolling ball of 
20 pixels, in order to mimic the effect of a median subtraction. For each fND, the 
localization precision was measured as the standard deviation of the center positions of 
the fluorescent spot over time. We then plotted all localization precisions with respect to 
the signal-to-background ratio (SBR) associated to each fND (Fig. 1c). SBR was 
determined as the ratio of the maximum fluorescence intensity of the fND (amplitude 
minus residual background) over the residual background intensity. Therefore, 
trajectories containing more than 30% of points having a SBR smaller than 3 were not 
considered, so that according to the calibration, we achieved a localization precision 
better than 30 nm. 

Transgenic mice constructs. We used a 3,200 bp mouse CamKIIα and a regulatory 
sequence of 711 bp intron and polyA SV40 in a pGL3-basic vector. The pGL3-modified 
vector was realized in two steps: (i) the regulating sequence intron+polyA SV 0  
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(711 bp) was amplified by PCR from pCDNA1.1 vector with the following primers: forward ’-TATATCTAGACCCGGGTGGACAAACTACCTACAGAG (XbaI site underlined) and reverse ’-TATAGGATCCGCGGCCGCAGAAATATGGCGTTGATACC (BamHI site 
underlined); (ii) the specific promoter mouse minimal promoter CamK))α  , 00 bp) was amplified by PCR from mouse brain cDNA with the following primers: forward ’-
TATAGCTAGCGAGATTCTTCCAGCTAGTTC- ’ Nhe) site underlined  and reverse ’-
TATAAAGCTTCCGTGCTCCTGAGTGCAAAC- ’ (ind))) site underlined). The XbaI/BamHI 
and then the NheI/HindIII digestion products of the amplicon were inserted into the two 
multiple cloning site of the pGL3 basic vector. E. coli DH5α cells were co-transformed 
with these constructs. The coding regions of the mouse Mark1 gene (2,386 bp) and 
mouse Slc25a12 gene (2,034 bp) were amplified by PCR (sequences of primers and 
probes are available on request. The two HindIII/SmaI digestion products of the 
amplicons were inserted into the multiple cloning site of the pGL3 modified vector. E. 

coli DH5α cells were co-transformed with this shuttle construct. Transgenes were 
injected in C57/Bl6 fertilized eggs for random integration into the moue genome (CNRS 
SEAT/TAAM UPS 44, Villejuif, France). See Supplementary Methods for embryo 
genotyping, RT-QPCR and Western Blots. 
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ABSTRACT 

 

Intellectual disability (ID) found in Down syndrome (DS) that is characterized by an extra copy of ~477 

genes on chromosome 21 is far to be well understood. In this study, we used two DS mouse models 

that either display an extra copy of Dyrk1A (mBAC-Dyrk1A) or of the mouse chromosome 16 syntenic 

region [Dp(16)1 Yey]. Exome sequencing of transcripts deregulated in hippocampus and mass 

spectroscopy proteomics uncover enrichment in GO: 0000786 nucleosome and GO: 0045202, 

synapse, indicating a chromatin and a synaptic deregulation in each of these two models, 

respectively. DYRK1A interacted directly with either CREBPP or EP300 in neuron nuclei. Furthermore, 

DYRK1A dosage deregulation indirectly induced changes in expression of genes encoding presynaptic 

proteins with a specific impairment of the non-NMDA long-term potentiation between hippocampal 

dentate gyrus and CA3 region. Using a large scale yeast two-hybrid screen of human brain library 

with human chr21 baits,  we identified that chr21 encoded proteins (DYRK1A, DSCAM, TIAM1, KCNJ6, 

HUNK, GRIK1 and ITSN1) interacted with proteins involved in synaptic plasticity (DLG1-DLG4, SEPT7, 

GRIN2A/B, DLGAP1, SYNPO and AGAP3). Chr21 proteins display significant a specific pattern of 

positive selection as compared to random genes. They interact more frequently that random with 

proteins involved in ID (EP300, CREBPP, DYRK1A, HCN1, GRIN2A/B, KVNQ2 and GDI1) and Late-Onset 

Alzheimer Disease (LOAD) (APBA2, RIMBP2, BIN1 and CLU). Together, our data uncover previously 

unidentified interactions of chr21 proteins with key proteins involved in synaptic plasticity, but also 

with proteins directly involved in ID and LOAD, emphasizing links between these diseases. 
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INTRODUCTION 

 

Down's syndrome (DS) is the most common form of intellectual disability (ID), affecting 1/700 births 

and results from one of the most complex genetic perturbations that is compatible with survival. DS 

is a human genetic disorder, induced by the presence of a third copy of up to ~477 genes from 

human chromosome 21 (Hsa21). In spite of a broad spectrum of clinical phenotypes, features 

consistent in all DS are the intellectual deficit that impairs learning and memory and an increased risk 

of developing a dementia very similar to Alzheimer's disease (AD) (Dierssen, 2012; Wiseman et al., 

2015). However, the precise contribution of each Hsa21 protein overexpression to the cognitive 

impairment found in DS remains undetermined. 

We focused on two mouse models of trisomy 21, a triplication of Dyrk1A based on a Dyrk1a BAC 

(189N3) (Guedj et al., 2012) and the Dp(16)1Yey model that displays a triplication of the 22Mb 

chromosome 16 syntenic region of Hsa21 corresponding two XXX genes syntenic to Hsa21  (Yu et al., 

2010). DYRK1A BAC model displays modifications in synaptic plasticity both in hippocampus and in 

prefrontal cortex (Ahn et al., 2006; Thomazeau et al., 2014). Normalization of DYRK1A levels in 

Ts65Dn indicated a partial recovery of both synaptic plasticity and episodic memory (Altafaj et al., 

2012). Together, these results indicate that synaptic plasticity changes and related episodic spatial 

memory defects depend on DYRK1A but also on other Hsa21 trisomy genes and/or non-Hsa 21 

deregulated genes contribute to both hippocampal  

The present study examined the respective contribution of DYRK1A and other Hsa21 gene products 

in pathways linked to intellectual disability (ID). Exome sequencing of transcripts deregulated in 

hippocampus and mass spectroscopy proteomics uncover enrichment in chromatin and synaptic 

repertoires deregulation in 189N3 and Dp(16)1 Yey, respectively. DYRK1A interacted directly with 

either CREBPP or EP300 that are chromatin remodelers in neuron nuclei. DYRK1A dosage 

deregulation indirectly induced changes in expression of genes encoding presynaptic proteins with a 

specific impairment of the non-NMDA long-term potentiation between hippocampal dentate gyrus 

and CA3 region. 

Using a large scale yeast two-hybrid screen of human brain library with Hsa21 baits, we identified 

that Hsa21 encoded proteins interacted with proteins involved in synaptic function, linking DS with 

synaptopathies. Hsa21 proteins display a particular pattern of significant positive selection as 

compared to random genes.  These Hsa21 proteins also interact more frequently that random with 

proteins identified as involved in ID and Late-Onset Alzheimer Disease (LOAD), indicating that 

multiple distinct pathways involving Hsa21 proteins contribute to cognitive endophenotypes and to 

the dementia that is found in DS as early as 40 years.   

These results revealed previously unappreciated pathways involving chromosome 21 gene products 

and their impact on synaptic plasticity with possible consequences for ID and LOAD, emphasizing 

links between these diseases. 
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RESULTS 

 

Whole-genome RNA sequencing and quantitative proteomics reveal two contrasted networks of 

deregulated genes of hippocampus from 189N3 DYRK1A and Dp(16)1Yey DS models 

We used two DS mouse models; the 189N3 and the Dp(16)1Yey models. The 189N3 model is based 

on the insertion of a mouse BAC including the Dyrk1A gene, inducing a functional triplication of 

Dyrk1A (Guedj et al., 2012). The Dp(16)1Yey model displays a triplication of the 22Mb chromosome 

16 syntenic region of Hsa21 that contains 115 Hsa21 gene orthologs including Dyrk1a (Yu et al., 

2010). In contrast, the most studied Ts65Dn model is partially trisomic for the mouse chr16 region 

syntenic of Hsa21 but also includes a triplication of at least 60 non-DS-related genes of chr17 that 

complicate functional analysis (Duchon et al., 2011; Reinholdt et al., 2011). The Dp(16)1Yey model 

reflects precisely the gene dosage of Hsa21 orthologues but no genome-wide information was yet 

available on the deregulation of transcripts and their isoforms. 

We first performed RNA sequencing on embryonic E17 hippocampi of these two DS models. We 

identified 84 deregulated genes in 189N3 mice (Supplementary Table S1) and 142 deregulated genes 

in Dp(16)1Yey (Supplementary Table S2) compared to their littermate controls. Gene ontology and 

gene network analyses of differentially expressed genes revealed a deregulation of chromatin 

proteins for 189N3 mice (Figure 1A&C). In contrast, Dapple analysis of Dp(16)1Yey evidenced a 

network with statistically significance for direct edge count (p<0.05)  (Supplementary Fig. XX). This 

network includes proteins involved in synaptic plasticity (NRGN, SCG2, NGEF, CAMK2A and GRIN3A), 

abnormal neuronal projections (EPHA8, CLSTN3) and enhanced abnormal compulsive behavior 

(DLGAP3). This result prompted us to analyze protein changes in adult Dp(16)1Yey hippocampi using 

mass spectrometry. We evidenced changes in GO: 0045202 synapse component (Figure 1B&C). 

Interestingly, analysis of downregulated proteins gives as first significant category the same GO: 

0045202~synapse (p=7,68E-006) with SYT1, CLSTN1, RIMBP2, LIN7C, ABI1, CDK5, PPP1R9B, SLC1A2, 

SLC1A3, GRM2, SYN1, GRIA1, SYN2, PRKAR1A, NTRK2, CYFIP1, VAMP2, SV2A, BIN1 proteins. The 

upregulated repertoire for GO: 0045202~synapse (p=0.001) includes SCAMP1, SNAP91, GABRA1, 

SYNGR1, PCLO, ITPR1, LIN7A, CTNNB1, SLC32A1, GRIA2, DLG4, CYFIP2, PEBP1, SV2B, CAMK2A. 

Altogether, these results indicate a contrasted deregulation of chromatin-related genes for Dyrk1A 

model and synapse proteins for Dp(16)1Yey model. 

 

Hsa21 and positive selection  

Some genes that display derived alleles with long haplotypes are candidates to a recent selective 

sweep (Sabeti et al., 2002). These alleles can be detected using the long haplotype test developed by 

Sabeti et al, 2002. We took advantage of recent updates of the 1000G dataset (Sudmant et al., 2015) 

to analyze three distinct populations, Africans (AFR), Asians (ASN) & Europeans (EUR). For Hsa21 

GRIK1 locus that displays long haplotype for the derived allele in AFR, analysis centered on rs363517 

showed a major derived haplotype when a variety of diverse ancestral haplotypes are evidenced 

(Figure 2B). Taking in account the three populations, we found 56 genes carrying at least one SNP 

with longer derived haplotype compared to ancestral, haplotypes including protein coding genes, 

long non coding RNAs and miRNAs (Figure 2C). From the Human Brain Transcriptome data (Kang et 

al., 2011), 36 genes (from 56) can be analyzed and showed high expression in striatum, hippocampus 

and amygdala regions at two precise developmental stages: late fetal time and adolescence time, 

respectively. 
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Establishment of a Hsa21 protein-protein interaction map by a high-throughput, protein domain-

based yeast two-hybrid (Y2H) screening 

We selected 51 human proteins based on their putative role in DS and its associated ID and screened 

a highly complex random-primed adult brain cDNA library comprising 10 million independent 

fragments in yeast. To ensure reproducible and exhaustive results, the library was screened to 

saturation thanks to an optimized mating procedure that allowed for testing on average 96 million 

interactions per screen, corresponding to a 9-fold coverage of the library. Moreover, multiple 

independent fragments of the same interactant could be isolated, enabling the delineation of a 

minimal interacting domain and the computation of a confidence score. This resource involves 5x109 

potential interactions from a brain prey library that is one order of magnitude more than the present 

reports of systematic map of 14,000 high-quality human binary protein-protein interactions 

(Corominas et al., 2014; Rolland et al., 2014). Here, we identified 1,351 protein-protein interactions. 

Although no bias is observed in the bait selection, analysis of the data suggests an enrichment of 

preys involved in specific molecular processes such as regulation of transcription, chromatin 

modification, ubiquitination and cell adhesion (Supplementary Figure SXX). 

 

Interaction of Hsa21DYRK1A with chromatin remodelers CREBBP and EP300 

DYRK1A is an important candidate to learning and memory impairment seen in DS patients (Smith et 

al., 1997) but regulatory pathways impaired by trisomy of DYRK1A remain elusive.  

We focused on DYRK1A interactome based on our results (71 interactions) and recently reported 

data from Varjosalo et al., 2013. We first validated the interaction between RNASEN (alias DROSHA) 

and FAM53C in primary neuron nuclei (Supplementary Figure S2 A-G). RNASEN and DGCR8 which 

anchors RNASEN process miRNA transcripts into precursor miRNAs transcripts (Han et al., 2006; Lee 

et al., 2003). FAM53C is a nuclear protein of unknown function. 

We next studied Y2H identified interaction between DYRK1A and EP300 or CREBBP. EP300 and 

CREBPP are the two members of the p300-CBP coactivator family. These two genes share encode 

histone acetyltransferases (HATs) that are involved in chromatin remodeling. Mutations in CREBBP 

and EP300 genes have been identified to cause Rubinstein-Taybi Syndrome RTS (Bentivegna et al., 

2006; Coupry et al., 2002). First we found DYRK1A in immunoprecipitates of HEK293 cells using 

antibodies against EP300 and CREBBP respectively (Figure 3A-B; Supplementary Figure S3C). We also 

validated direct nuclear interactions in primary cortical neurons using PLA (Figure 3C; Supplementary 

Figure S4A). DYRK1A gene dosage induced modifications the number of Dyk1a-Crebbp and Dyrk1a-

Ep300 interactions whereas downstream interactions like Crebbp-Smarca2 and Ep300-Smarca2 were 

not modified (Figure 3D; Supplementary Figures S4B). These results are in full agreement with the 

involvement of DYRK1A in the REST/NRSF–SWI/SNF chromatin remodeling complex that we 

previously reported (Lepagnol-Bestel et al., 2009). 

 

Non-NMDA dependent long term potentiation at the dentate gyrus-CA3 hippocampal synapse is 

abolished in Dyrk1A mouse models 

As CREBBP and EP300 encode HATs and impact chromatin remodeling, one can hypothesize that 

changes in number of interactions between DYRK1A and these HAT partners can consequently 

modify  the transcription of genes involved in synaptic function (Alarcón et al., 2004; Guan et al., 

2002; Kandel, 2001; Levine et al., 2005). As Dyrk1A, Ep300 and Crebbp display high levels of 

expression in dentate gyrus, CA1 and CA3 hippocampus subregions (Figure 3E), we analyzed synaptic 

plasticity at different synapses of hippocampus and found abnormal synaptic potentiation in two 
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mouse models of trisomy 21, BAC 189N3 and YAC 152F7. In contrast to BAC 189N3 which 

overexpressed only mouse Dyrk1a (Guedj et al., 2012), YAC 152F7 incorporated a ~400kb human 

genomic fragment that includes DYRK1A but also TTC3, PIGP, DSCR9 and DSCR3 (Smith et al., 1997). 

Interestingly 152F7 mice were found to have a normal LTP in CA3-CA1 hippocampal synapse but an 

impaired spatial learning assessed by Morris water maze test (Smith et al., 1997). In both models, we 

found that the non NMDA dependent long term potentiation (LTP) was absent in the dentate gyrus-

CA3 synapse (Figure 3F-G). This LTP is known to depend on molecular deregulations linked to the 

presynapse and is impaired in knockout mice where Rims1, Munc13-1 and Rab3a have been 

respectively invalided (Castillo, 2012). Using quantitative in situ hybridization and RT-Q-PCR from 

laser-assisted micro-dissection of hippocampal sub-regions, we were able to found that Rims1, 

Munc13-1 and Rab3a were decreased in 152F7 dentate gyrus (Figure 3H-I; Supplementary Figure 

S5). These results are in agreement with the deregulation of p300-CREBBP complexes by abnormal 

DYRK1A dosage that can modify the expression of genes encoding proteins involved in the molecular 

mechanism leading to presynaptic vesicle liberation such as Rims1, Munc13-1 and Rab3a (Südhof, 

2013). 

 

Interactome of Hsa21 proteins located in either dendritic spine heads or necks 

As we found an enrichment in synaptic proteins in Dp(16)1Yey transgenic mouse model (Figure 

1B&C), we analyzed the subcellular localization by proximity ligation assay (PLA) of Y2H identified 

interactions of the the cytoscape network (Figure 4A). 

First, we identified of Dscam with Dlg2 and Dlg4 in dendritic spines (Figure 4B). One-by-one Y2H 

approach identified interactions between DSCAM and the four members of DLG family DLG1, DLG2, 

DLG3, DLG4 (Supplementary Fig. XX). DSCAM is known to regulate dendrite arborization and spine 

formation during cortical circuit development (Maynard and Stein, 2012). DLG1 (alias SAP97), DLG2 

(alias PSD93/chapsyn-110), DLG3 (alias SAP102) and DLG4 (alias PSD95/SAP90) are known to bind to 

various proteins and signaling molecules at the postsynaptic density (PSD) (Sheng and Kim, 2011). 

Furthermore, mutations of DLG2 and DLG4 induce distinct cognitive phenotypes in both human and 

mice (Nithianantharajah et al., 2013). DSCAM also interacted with DYRK1A via a common domain 

shared by DSCAM, its human paralogue DSCAML and in its Drosophila orthologue Dscam4 

(Supplementary Figure S2D-F & S3B). We could hypothesize that conservation of this protein-protein 

interaction through species is consistent with roles of DSCAM similar through species.  

Hsa21 ITSN1 interacted with SNAP25 and DLGAP1 in dendritic spines. SNAP25, is a member of the 

SNARE protein family essential for the exocytosis of synaptic vesicles (Südhof, 2013) but is also 

involved in trafficking of postsynaptic NMDA receptors (Jurado et al., 2013) and spine morphogenesis 

(Tomasoni et al., 2013). DLGAP1 (alias GKAP) is a core protein of the scaffolding complex of the 

synapse (Naisbitt et al., 1999).These results are in full agreement with Itsn1 mutant mice phenotype 

that is characterized by severe deficits in spatial learning and contextual fear memory (Sengar et al., 

2013).  

Hsa21 KCNJ6, a voltage-insensitive potassium channel member of the GIRK family, interacted with 

three Dlg members, i.e. Dlg1, Dlg2 and Dlg4 (Figure 4E). We also found an increase of Kcnj6-Dlg2 

interactions in Dp(16)1Yey transgenic mouse model compared to control. In contrast, the number of 

Grin2ab-Dlg2 interactions did not change (Figure 4H; Supplementary Figure S4C). KCNJ6  is 

expressed in dendrites and dendritic spines at the PSD of excitatory synapses (Luján et al., 2009) and 

its trisomy induces synaprtic and behavioral changes (Cooper et al., 2012).  Intriguingly, mice lacking 

Dlg2 and people with DLG2 mutations had abnormal cognitive abilities (Nithianantharajah et al., 
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2013). One can propose that these phenotypic changes found in mice trisomic for Kcnj6 are 

generated via deregulations involving DLG2. 

HUNK (alias MAK-V) was found to interact with AGAP3 and SYNPO, using PLA (Figure 4F). Synpo 

localized in necks of dendritic spines and linked to the spine apparatus  assuming an essential role in 

regulating synaptic plasticity (Segal et al., 2010). We also identified a new interaction with Agap3, a 

GTPase-activating protein recently identified as an essential signaling component of the NMDA 

receptor complex that links NMDA receptor activation to AMPA receptor trafficking (Oku and 

Huganir, 2013). These results suggest that HUNK is involved in pathways localized both near PSD95 

complexes and spine apparatus. 

We next focused on protein-protein interactions implying Hsa21 GRIK1 gene product, one of the 

kainate ionotropic glutamate receptor (GluR) subunits that function as a ligand-gated ion channel. 

Kainate receptors (KARs) are found ubiquitously in the CNS and are present pre- and post-

synaptically (Lerma & Marques, 2012). We first validated GRIK-KCNQ2 interaction in dendritic spine 

(Figure 4G).  As KCNQ2 channels are known to functionally interact with HCN1 channels in prefrontal 

cortex dendritic spines (Arnsten et al., 2012), we tested if HCN1, KCNQ2 and GRIK1 physically interact 

in dendritic spines using PLA and found a direct interaction between GRIK1 and HCN in dendritic 

spines (Figure 4G). We also validated interactions of GRIK1 with SEPT and KALRN (Figure 4H). SEPT7, 

a member of the septin family of GTPases is localized to dendritic branching points and spine necks 

(Tada et al., 2007; Xie et al., 2007), regulating membrane protein access to spines (Ewers et al., 

2014). KALRN is a Rho-GEF exclusively localized to the postsynaptic side of excitatory synapses (Ma et 

al., 2003, 2008) and binds to NMDA receptor subunit Nr2b (Kiraly et al., 2011). These results indicate 

that GRIK1 is part of two synaptic complexes, one located near PSD95 (DLG4) at the tip of the 

dendritic spine and the other at the neck of spines. 

Altogether, these results indicate that Hsa21 proteins are involved in distinct dendritic spine 

pathways located either in dendritic spine heads or in dendritic spine necks that are known regulate 

compartmentalization of synapses (Tønnesen et al., 2014). 

 

Linking Hsa21 proteins to intellectual disabilities and to LOAD 

We finally asked if interactions between chromosome 21 proteins and cognition diseases-related 

gene products from the protein-protein interactions map could be validated in sub-neuronal 

compartments, in particular in dendritic spines. The Hsa21 USP25-GDI1 interaction was identified by 

Y2H (Figure 5A and Supplementary Table XX). GDI1 was one of the first X-linked-gene to be 

identified as involved in ID D’A ato et al., 1  and also in autism spectrum disorders (ASD) 

(O'Roak et al., 2012; Pinto et al., 2014). We also validated Hsa21 DYRK1A-STX1A and Hsa21 HUNK-

LIMK1 interaction in dendritic sines (Figure 5B). Both STX1A and LIMK1 are encoded by genes located 

on Williams-Beuren Syndrome (WBS) ~1.5Mb deletion region whose mouse model reproduces 

cognitive traits including hypersociability (Li et al., 2009). More than 700 genes involved in 

intellectual disabilities have been recently identified (Vissers et al., 2015). Comparison of this 

repertoire as a function of total human genes (20313 human Ensembl coding genes) and the number 

of ID proteins directly interacting with Hsa21 reveals a statistically significant increase in Hsa21 

interactors tested in neurons (p=3.9x10-3).  

Links between DS and Alzheimer-related dementia remains largely unknown, in spite of the early 

onset of LOAD-like dementia evidenced as early as 40 years in DS (Wiseman et al., 2015). Triplication 

of APP have been proposed to be responsible for LOAD-like dementia but increased expression of 

wild‑type APP, even at levels in excess of those present in Down syndrome (DS), is insufficient to 



8 

 

cause extensive Alzheimer disease (AD) neuropathology (Balducci and Forloni, 2011). Interestingly, 

RIMBP2 that was associated to LOAD displaying psychotic symptoms (Hollingworth et al., 2012) is 

deregulated in adult mouse hippocampus (Figure 1B). RimBP2 is involved in molecular machine for 

neurotransmitter release (Südhof, 2013). Different Hsa21 products interact with proteins involved in 

LOAD (Figure 5C). Hsa21 HUNK interacts with APBA2 that is a modulator of LOAD associated amyloid 

beta A4 precursor protein (APP) endocytosis and metabolism (Rhinn et al., 2013). Hsa21 TIAM1 

interacts with BIN1 that is a risk factor from LOAD-GWAS studies (Lambert et al., 2013). BIN1 was 

also identified as linked to cognition in LOAD patients (Vivot et al., 2015). Furthermore, BIN1 

genotype affects working memory, hippocampal volume, and functional connectivity in young 

healthy individuals (Zhang et al., 2015). Hsa21 TIAM1 has been proposed to be responsible in mice of 

synaptic abnormalities (Sala and Segal, 2014). Here we validated Tiam1-Bin1 interactions in dendritic 

spines, with a similar localization for Tiam1-Dlg1 interaction (Figure 5C; Supplementary Figure S6B). 

We also evidenced hsa21 DSCR9-CLU interaction (Figure 5C).  DSCR9 and DSCR10 are genes exclusive 

to primate genomes such as chimpanzee, gorilla, orangutan, crab-eating monkey and African green 

monkey and are not present in other non-primate mammals (Takamatsu et al., 2002) 

(Supplementary Figure S7). 

Together, these results indicate that chromosome 21 proteins interact with proteins previously 

identified as key molecules in cognition diseases as diverse as X-linked ID, WBS, ASD and LOAD 

dementia. 

 

Discussion 

In spite of various mouse models of DS available, cognitive impairment phenotypes found in DS have 

not been related to specific alterations of molecular pathways. Furthermore, to the best of our 

knowledge, no specific synaptic alterations have been described in models overexpressing a given 

chr21 gene as compared to models with overexpression of a syntenic region.  

In the present study, we analyzed molecular changes in hippocampus of Dyrk1A BAC (189N3) and of 

the transgenic mouse model that integrated the entire Hsa21 syntenic region on Mmu16, 

Dp(16)1Yey. We found molecular changes linked to chromatin remodeling in the 189N3 mice. Both 

the 189N3 as 152F7 mice that have a DYRK1A centered YAC fragment (Smith et al., 1997) display a 

specific impairment of non-NMDA LTP in the Dentate Gyrus-CA3 synapse. This specific cognition-

related phenotype is linked to the decrease of Rims1, Munc13-1 and Rab3a genes that are known to 

be involved in molecular machine for neurotransmitter release (Südhof, 2013). The related cognitive 

impairment appears to be rather characteristic with impaired spatial reversal learning (Smith et al., 

1997, D'Adamo et al., 2004). In contrast, mouse model of DS (Tc1) that carries an almost complete 

Hsa21 including DYR1A do not have impairment in non-NMDA LTP in the Dentate Gyrus-CA3 synapse, 

in spite of changes in presynapse properties (Witton et al., 2015). Together, these results 

demonstrate that impairment of non-NMDA LTP in the Dentate Gyrus-CA3 synapse can be obtained 

only is DYRK1A alone is in three copies and that overexpression of other hChr21 genes impact these 

molecular mechanisms. Furthermore, these results indicate that impairment of Dentate Gyrus-CA3 

synapse non-NMDA LTP depends on DYRK1A-dependent chromatin remodeling involving DYRK1A 

interaction with EP300 and CREBBP. This phenotype is a novel specific synaptic readout linked to 

DYRK1A overexpression. Consequences therapeutics not directly based on DYRK1A kiase properties 

but on downstream targets such as presynaptic components of the molecular machine for 

neurotransmitter release 
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In contrast, expression of an extra copy of the entire Hsa21 syntenic region on Mmu16 spans 22.9 

Mb and contains 115 Hsa21 gene orthologs including DYRK1A in Gene Ontology neuron projection 

and synapse classes. Novel interactions with protein involved in postsynaptic complexes have been 

identified. Hsa21 GRIK1 was found to interact with cyclic nucleotide modulated ionic channels such 

as KCNQ2 and HCN1 ion channels that are known to be involved in epilepsy, working and spatial 

memories, respectively (Schroeder et al., 1998; Wang et al., 2007; Giocomo et al., 2011). Hsa21 

GRIK1 also interacts with SEPT7 and KALRN. SEPT7 is located that is a specific protein of the neck of 

dendritic spines (Tda et al., 2007), suggesting that Hsa21 GRIK1 can be part of a complex located in 

the neck of dendritic spines. KALRN is a GDP/GTP exchange factor for Rac1, ere it regulates dendritic 

morphogenesis through Rac1 signaling to the actin cytoskeleton (Xie et al., 2007; Hayashi-Takagi et 

al., 2010). Signalosome complexes involving DISC1-KALIRIN-PSD95-RAC1 have been recently 

identified as able to modulate the RAC1 activity depending on the dosage of DISC1 (Hayashi-Takagi et 

al., 2010). Similarly, it is possible that protein-protein interactions identified here are part of different 

dendritic spine signalosome that are deregulated by three doses of Hsa21 proteins inducing 

modifications in the efficacy of these synaptic signalosomes. 

In conclusion, our results provide the first report, to our knowledge, of differential impacts of 

chromosome 21 DYRK1A on chromatin remodeling and of the 115 Hsa21 gene orthologs including 

DYRK1A on synapse function. The contrasted pathways evidenced here are novel therapeutics 

targets for treating cognitive impairments found in DS. Furthermore, our results exemplify the link of 

DS with other forms of intellectual Disability and with degenerative disease with complex genetics 

such as LOAD. 
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Figure1. Whole-genome RNA and protein sequencing in 189N3 and Dp(16)1Yey transgenic 
mouse models 
A. Schematic representation of protein-protein interactions using Cytoscape software between the 
products of differentially expressed genes from the RNA sequencing performed on 189N3 embryonic 
E17 hippocampus implied in “chromatin assembly” GO DAVID class (Red circles). 
B. Schematic representation of protein-protein interactions using Cytoscape software between the 
differentially expressed proteins from the Mass Spectometry sequencing performed on Dp(16)1Yey 
adult hippocampus implied in “synaptic transmission” GO DAVID class (Red circles). 
C. GO DAVID class probabilities represented with –log(p-value). Red bars represented the first three 
GO DAVID classes of the differentially expressed genes from the RNA sequencing performed on 
189N3 embryonic E17 hippocampus. Blue bars represented the first three GO DAVID classes of the 
differentially expressed genes from the RNA sequencing performed on Dp(16)1Yey embryonic E17 
hippocampus. Grey bars represented the first three GO DAVID classes of the differentially expressed 
genes from the Mass Spectometry sequencing performed on Dp(16)1Yey adult hippocampus. 
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Figure2. Analysis of selection pressure of chromosome 21 
A. Histogram of number of genes in function of Omega value (Ka/Ks) for chr20 and chr21. 
B. Bifurcation diagram in African population of SNP rs363517 (GRIK1 gene locus) exhibit long 
haplotype of derived allele compare to ancestral allele. 
C. Venn Diagram by population of number of genes carrying at least one SNP with long derived 
haplotype compare to ancestral allele. 
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Figure3. Deregulation of synaptic nuclear protein-protein interactions in 189N3 transgenic 
mouse model and abnormal non-associative long-term potentiation (LTP) in transgenic 189N3 
and 152F7 mice 
A. Schematic representation of nuclear protein-protein interactions perfomed by yeast-two-hybrid 
using Cytoscape software 
B. HEK293 cells were immunoprecipitated (IP) using anti-EP300 and anti-CREBBP antibodies and 
using anti-IgG antiboby as a negative control. The input and precipitated fractions were analyzed by 
western blot using anti-Ep300, anti-Dyrk1a and anti-Crebbp antibodies. The arrows indicate proteic 
bands at the expected size. Note that no cross-reaction was found with the IgGs. 
C-D. In situ proximity ligation assays (PLA) on primary cortical neurons fixed at DIC7 (red 
fluorescence) using anti-Dyrk1a and anti-Ep300 or anti-Crebbp, anti-Smarca2 and anti-Ep300 or anti-
Crebbp antibodies. Nuclear bodies were labelled using Topro3 staining (blue fluorescence). Mean 
interaction point numbers were calculated in nuclear body of 45 to 89 cortical neurons at DIC7 (from 3 
to 5 different embryos per genotype). PLA using anti-Ep300 and anti-Fibrillarin antibodies were 
performed as a negative control and no difference was shown between transgenic 189N3 and WT 
cortical neurons. Scale bars=10μm. * p < 0.05; *** p < 0.0005. 
E. False-color image of ISH from Allen Brain Atlas showing Dyrk1a, Ep300 and Crebbp transcript 
expression in adult mouse hippocampus. Scale bar = 100µm. 
F-G. Summary (mean+/-s.e.m.) of mossy fibre LTP in transgenic 189N3 compared to WT mice (F1) 
and in transgenic 152F7 compared to WT mice (G). Distributions for the magnitude of LTP were 
observed in 189N3 and WT mice (F2). Recording were performed on 4 to 6 mice in each genotypes. 
H. False-color image of antisense Rims1 RNA Q-ISH of hippocampus from juvenile P21 WT and 
152F7 mice. Q-ISH quantification indicates a significant down-regulation of Rims1 in the three 
subregions of the 152F7 mouse hippocampus. 
I. Laser-assisted microdissection of the three subregions of P21 mouse hippocampus (see 
Supplementary figure). Rims1, Syn2, Rab3a and Munc13-1 are down regulated in the DG and CA3 
hippocampal subregions of juvenile transgenic 152F7 mice compared to their WT siblings as shown by 
Q-RT-PCR analysis. Scale bar = 1mm. *p<0.01**p<0.001. ***p<0.0001 
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Figure4. Synaptic protein-protein interactions and modification in Dp(16)1Yey transgenic mice. 
A. Schematic representation of synaptic protein-protein interactions performed by yeast-two-hybrid 
using Cytoscape software. Red circles correspond to genes localized on human chromosome 21. 
B-H. In situ proximity ligation assays (PLA) on primary cortical neurons fixed at DIC21 (red 
fluorescence) using anti-Dscam and anti-Dlg1 or anti-Dlg2 or anti-Dlg4 antibodies (B), anti-Itsn1 and 
anti-Dlgap1 antibodies (C), anti-Kcnj6 and anti-Dlg2 or anti-Dlg4 antibodies (D), anti-Hunk and anti-
Agap3 antibodies (F), anti-Grik1 and anti-Hcn1 or anti-Kcnq2 antibodies (G), anti-Grik1 and anti-Sept7 
or anti-Kalrn antibodies (H). PLA using anti-Dlg2 and anti-Grin2ab (B), anti-Itsn1 and anti-Snap25 (C), 
anti-Kcnj6 and anti-Dlg1 (D), anti-Hunk and anti-Synpo (F), anti-Grik1 and anti-Dlg4 (H), were 
performed as positive controls. PLA using either anti-Smarca4 or anti-Baf155 antibodies are 
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performed as negative control. Dendritic network and dendritic spines were labelled using phalloidin 
staining (green fluorescence). Mean interaction point numbers were calculated in dendrites of 25 to 30 
cortical neurons at DIC21. Please see Supplementary Figure for negative controls. 
E. In situ PLA on transgenic Dp(16)1Yey and WT primary cortical neurons fixed at DIC21 (red 
fluorescence) using anti-Dlg2 and anti-Kcnj6 or anti-Grin2ab antibodies. Dendritic network and 
dendritic spines were labelled using phalloidin staining (green fluorescence). Mean interaction point 
numbers were calculated in dendrites of at least 26 cortical neurons at DIC21 (from 3 different 
embryos per genotype). * p < 0.05  
Scale bars=10μm. 
  



15 

 

 
Figure5. Synaptic protein-protein interactions involving neurodevelopmental disease-related 
genes. 
A. Synaptic protein-protein interactions involved in X-linked Intellectual Disability (ID). In situ proximity 
ligation assays (PLA) using anti-GFP and anti-HA or anti-MYC antibodies on HEK293 co-transfected 
cells with GFP-USP25 and HA-GDI, GFP-USP25 and MYC-SYK as positive control, GFP-USP25 
alone as negative control (red fluorescence). Green fluorescent protein was visualized on green 
channel. Mean interaction point numbers were calculated in GFP-expressed compartments of at least 
17 transfected HEK293 cells. 
B. Synaptic protein-protein interactions involved in Williams Beuren Syndrom (WBS). Scheme of the 
genetic map for the chromosomic 1.5Mb region commonly deleted in WBS (upper panel). In situ PLA 
on primary cortical neurons fixed at DIC21 (red fluorescence) using anti-Dyrk1A and anti-Stx1A 
antibodies or anti-Hunk and anti-Limk1 antibodies. PLA using either anti-Dyrk1A and anti-Tomm20 or 
anti-Hunk and anti-Baf155 antibodies were performed as a negative control. Dendritic network and 
dendritic spines were labelled using phalloidin staining (green fluorescence). Mean interaction point 
numbers were calculated in dendrites of at least 29 cortical neurons at DIC21. 
C. Synaptic protein-protein interactions involved in Late Onset Alzheimer Disease (LOAD). In situ PLA 
on primary cortical neurons fixed at DIC21 (red fluorescence) using anti-Hunk and anti-Apba2 or anti-
Bin1 and anti-Tiam1 or anti-Dlg1 or anti-Dlg4 antibodies. PLA using anti-Tomm20 and anti-Bin1 or 
anti-Tiam1, anti-Hunk and anti-Baf155 were performed as negative controls. Dendritic network and 
dendritic spines were labelled using phalloidin staining (green fluorescence). Mean interaction point 
numbers were calculated in dendrites of 24 to 30 cortical neurons at DIC21. In situ PLA on primary 
cortical neurons transfected at DIC5 and fixed 48hours later at DIC7 (red fluorescence) using anti-GFP 
and anti-Clu antibodies. PLA using anti-GFP and anti-Fibrillarin antibodies were performed as a 
negative control. Green fluorescent protein was visualized on green channel and nuclear bodies were 
labelled using Topro3 (blue fluorescence). Mean interaction point numbers were calculated in GFP-
expressed compartments of 30 transfected cortical neurons. Please see Supplementary Figure for 
negative controls. 
Scale bars=10μm. 
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AUTS2 was found disrupted in diverse psychiatric, neurological and 

neurodevelopmental disorders suggesting that its dosage contributes to molecular 

basis underlying social behavior and cognitive ability. AUTS2 locus displays a 

significant increase in the number of neuron-related transcription factor sites as 

compared to Neandertal AUTS2 locus. In spite of its potential dosage-sensitive 

contribution to neural pathways underlying social behavior and cognitive ability, the 

function of AUTS2 remains unknown. In primary neuronal cultures we found that 

AUTS2 protein localizes to dendrites and dendritic spines. We modeled AUTS2 

haploinsufficiency via shRNA-mediated knock-down in mouse neurons, and observed 

robust alterations in dendritic spine morphology (length and width) and synaptic 

currents. We find that AUTS2 interacts locally at dendrites with TTC3, the E3 ubiquitin 

ligase for AKT2, a key kinase of dendritic spines. AUTS2 silencing induces robust 

alterations in synaptic currents that are rescued by presynaptic injection of AKT2 

indicating that AUTS2 acts as a modulator of AKT2 in postsynaptic function.  

 

Since the identification of AUTS2 translocation in a pair of autistic twins (1), a variety of 

rare genomic structural variations involving AUTS2 have been reported in ASDs (2-6), in 

mental retardation (7), in epilepsy (8) and in a variety of psychiatric diseases (9-10) 

(Supplementary Table S1). Furthermore, AUTS2 common variant was recently found 

associated to alcohol consumption using a GWAS approach (11). Consistent with its role in 

psychiatric and cognitive disorders, it has been shown that the first half of AUTS2 gene has 

undergone significant evolutionary divergence since the split between Neanderthals and 

present-day humans (12). 

AUTS2 is expressed in the developing human brain (Figure 1A) and consistent with 

evidence for positive selection in early modern humans, the AUTS2 locus displays a 

statistically significant increase in neuron-specific transcription factor sites as compared to 

Neanderthal AUTS2 locus (Supplementary Figures S1; Supplementary Table S2). To 

analyze Auts2 protein function, we generated novel polyclonal antibodies raised against a 

peptide corresponding to N-terminal amino acid of the protein (see Material & Methods). In 

addition to nuclear (13-15) and dendritic staining (Supplementary Figure S2), mouse 

primary cortical and hippocampal cultures at day in culture (DIC) 21 showed a robust signal 

in dendritic spines (Figure 2A; Supplementary Figure S3).  Auts2 was found enriched in 

adult mouse brain, adult mouse brain nuclear enrichment fraction and adult mouse cortical 

synaptosomal enrichment fraction (Figure 1B). Auts2 was localized in discrete puncta 

adjacent to anti-synapsin puncta and fully overlapping with PSD95 and SYNPO, indicating 

that AUTS2 may be a novel postsynaptic protein (Figure 1C). Super-resolution analysis of 



Auts2 using d-STORM indicated that Auts2 is located in dendritic spines, with a statistically 

significant increase of clusters in the intermediate compartment of dendritic spine (“neck & 

head”) (Figure 1D). Auts2 was also found enriched in this compartment for SYNPO+ 

dendritic spines (Figure 1E). Search for protein interactors was performed using yeast two-

hybrid (Y2H) screens and identified ~18 AUTS2 potential interacting partners including 

tetratricopeptide repeat domain 3 protein (TTC3) (Supplementary Figure S4). The function 

of TTC3 as ubiquitin E3 ligase specific for AKT (16) prompted us to further study this 

interaction. We confirmed the interaction between TTC3 and AKT2 using the one-by-one 

assay. AUTS2 interacts with TTC3 in a distinct domain located to the N-terminal part of the 

protein (1-481 amino acid domain that includes the first  tetratricopeptide repeat (TPR) motif 

and including S378, a key AKT-dependent phosphorylation site (16) (Supplementary Figure 

S4). Furthermore, we confirmed the AKT2-TTC3 interaction at the same domain as 

described in (16) and identified a novel interaction between AKT2 and CITRON (rho-

interacting, serine/threonine kinase, CIT). The AUTS2, AKT2 and CITRON interactions are of 

particular interest as both AKT and CITRON kinases regulate dendritic spine morphogenesis 

(17-22). We confirmed that these proteins directly interacted in dendrites of cortical neurons, 

using the in situ proximity ligation assay (PLA), which enables detection of endogenous 

protein-protein interaction events (23) (Supplementary Figure S5). Notably, AUTS2, TTC3 

and CITRON are co-expressed in human embryonic brain subregions known to be involved 

in neurodevelopmental diseases (Supplementary Figure S6). 

To investigate whether AUTS2 is involved in spine morphogenesis we used shRNA 

vectors to mediate gene knockdown (Supplementary Figure S7). We quantified the 

dendritic spine number as well as their length and width in mature cortical neurons 

transfected with Auts2 sh1 (Figure 2A). We focused on three classes of dendritic spines; 

filopodia, stubby and mushroom spines. We did not find any changes in the total spine 

numbers, and in numbers of different spine classes (Supplementary Figure S8) but 

observed a significant decrease of the mushroom (large diameter) spine length and width 

(Figure 2B). Morphological changes in the population of mushroom spines induced by Auts2 

deficiency is an indication of abnormal spine maturation and synaptic function. We confirmed 

synaptic impairment by analysis of the electrophysiological properties of the same cells, 

demonstrating that spontaneous excitatory postsynaptic current (sEPSC) amplitude 

responses were impaired in Auts2 silenced postsynaptic neurons as compared to 

postsynaptic neurons transfected by scrambled shRNA (Figure 2C-D). In contrast, 

frequencies of sEPSC were not modified. Furthermore quantal analyses of sEPSC 

responses indicate a decrease in the elementary event, suggesting that Auts2 silencing in 

postsynaptic neurons induce a decrease in the elementary postsynaptic response that can 

be attributed to changes in properties of postsynaptic receptors. Auts2 silencing also impacts 



the complexity of neuronal processes in both axons and dendrites (Supplementary Figures. 

S8 & S9). Taken together these data strongly suggests that Auts2 deficiency such as the one 

observed in cases of disease-associated structural variants, may impact ultimately synaptic 

connectivity leading to abnormal function of excitatory synapses.  

It was previously reported that TTC3 facilitated Akt degradation both in the nucleus and 

(albeit less efficiently) in the cytoplasm of 293T cells (16), suggesting that the size of the AKT 

pool in a subcellular compartment can be modulated via TTC3-mediated degradation. 

AUTS2 may limit the activity of TTC3 by sequestering it.  Therefore AUTS2 downregulation 

may induce an increase in TTC3 E3 ubiquitin ligase activity, leading in turn to a decrease of 

the AKT2 pool in the dendritic spine subcompartment. Consistent with this expectation we 

detected, using PLA as a direct readout, a decrease in the number of TTC3-AKT2 complexes 

upon Auts2 depletion [mean interaction points, a measure of proximity between Ttc3 and 

Akt2 was 38+7 (n=18) for control (sh-NS) and 22+4 (n=25) for Auts2 sh1 (p=0.0357), Figure 

3C]. We hypothesized that the observed decrease in synaptic current amplitude induced by 

Auts2 depletion was due to a local depletion of AKT2 molecules. Accordingly, we tested if 

injection of AKT2 into Auts2-deficient cortical neurons could rescue the altered synaptic 

phenotype. As before, we observed that Auts2 knockdown was associated with a decrease 

in the mean EPSC amplitude (non transfected: -47 ± 2 pA; GFP alone: -43 ±3 pA, Auts2-

/GFP: 28 ± 2 pA, p<0.05 as compared to control groups, n=7, 3 and 5 cells respectively). To 

rescue this phenotype, we introduced purified native or inactivated AKT2 protein (7.5 nM) 

through the patch pipette, while measuring the amplitude of excitatory spontaneous currents 

(Figure 3 D-E). First we established that under control conditions, the long lasting recordings 

did not introduce changes in sEPSC mean amplitude. Indeed, in both non transfected 

neurons recorded with pipettes filled by inactivated AKT2, and in GFP-expressing cells 

infused with native AKT2, mean sEPSC amplitude recorded >40 minutes after achieving 

whole cell configuration did not differ from initial sEPSC amplitude measured 2 minutes after 

the seal opening (non transfected: 0-10 min: -43 ± 3 pA, 40-50, min: -42 ± 4 pA; GFP alone:  

0-10 min: -47 ± 2 pA, 40-50, min: -39 ± 6 pA, p>0.05). In contrast, if different at the seal 

opening, the mean sEPSC amplitude in Auts2 cells remained unchanged 40-50 minutes after 

seal opening, because of progressive increase of sEPSC amplitude in these cells (Auts2-

/GFP: 0-10 min: 28 ± 2 pA, 40-50, min: -39 ± 6 pA, p>0.05 as compared to control groups at 

40-50 min).  Importantly, upon heat denaturation, AKT2 had no effect when introduced into 

Auts2-defcient cells (0-10 min: -18 ± 1 pA; 40-50 min: 17 ± 2 pA, p>0.05, n=5 cells, data not 

shown). Overall, introduction of nanomolar concentrations of AKT2 into Auts2-deficient 

neurons, reversed the size of miniature postsynaptic currents to wild-type levels in a time 

period compatible with the trafficking of AKT2 from the soma to dendritic spines. Taken 



together, these results suggest that AUTS2 acts as a modulator of the ubiquitin E3 ligase 

TTC3 that regulates the levels of AKT2 kinase in dendritic spines.  

 

AKT signalling has been implicated both in spine formation and excitatory 

glutamatergic transmission (24-26). Therefore we propose that the effects of Auts2 on 

dendritic spines and excitatory synapses may stem, at least in part, from modulating locally 

the number of AKT2 molecules and the duration of AKT2 action, impacting the excitatory 

transmission. The involvement of the AKT signaling pathway has already been demonstrated 

in schizophrenia (27-28). Our results raise the possibility that reduced AUTS2 gene dosage 

impairs the PI3K/AKT in a number of other neuropsychiatric and neurodevelopmental 

diseases, contributing to the abnormal function of neural pathways underlying social behavior 

and cognitive ability that characterize such disorders. 
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Figure 2: Morphological phenotypes of dendritic spines and decrease in spontaneous 

excitatory post-synaptic current (sEPSC) induced in Auts2-silenced cortical primary 

neurons 

A. Dendritic spines from E17.5 primary cortical neurons transfected at DIC7 with sh-NS or 

sh1 and fixed at DIC21. Mushroom spines are indicated with arrows. Scale bars=10μm. 

B. Dendritic spine length and spine width are calculated respectively as the length of the 

neck and the width of the synaptic button of the mushroom spines present on 75 μm dendritic 

fragment samples. *p<0.01; **p<0.001; ***p<0.0001 

C. Examples of whole-cell voltage-clamp recordings of sEPSC recorded in post-synaptic 

cortical neurons transfected either with sh-control (sh-NS) or sh-Auts2 (sh1). 

D. Quantification of whole-cell voltage-clamp recordings sEPCS amplitudes and frequencies. 

Note that silencing of Auts2 induced a significant decrease in sEPSC amplitude without 

significant change in sEPSC frequency. 

E. Quantal distribution of whole-cell voltage-clamp recordings sEPCS of control as compared 

to Auts2-silenced post-synaptic cortical neurons. An enlargement of the distribution of 

sEPSC for the lowest quantal release is inserted for both control and Auts2-silenced 

postsynaptic cortical neurons. Note that this quantal component amplitude decrease from -

9.7 to -6.25 pA suggesting a post-synaptic effect of Auts2 silencing. 



 

Figure 3: Effect of Auts2 knockdown on Ttc3-Akt2 complexes and rescue of synaptic 

currents by AKT2 intracellular injection. 

A-C: Quantification of TTC3-AKT2 complexes upon changes of Auts2 levels using in situ 

PLA in primary cortical neurons. In situ PLA was performed on primary cortical neurons fixed 

at DIC3 (red fluorescence) using anti-Ttc3 and anti-Akt antibodies. Scale bars=10μm. 

A: Representative example of a neuron transfected with control sh-RNA [sh-NS] (green 

fluorescence), and of Ttc3-Akt2 complexes (red fluorescence) are shown in (A1). (A2) 

enlarged view of the merged images. 

B: Representative example of a neuron transfected by sh1 (green fluorescence), and of Ttc3-

Akt2 interactions (red fluorescence) are shown in (B1). (B2) enlarged view of the merged 

images.  

C: Number of complexes under control [sh-NS] and Auts2 knockdown [sh1] conditions.  

D-E Intracellular AKT2 injection in Auts2-depleted neurons rescues synaptic current 

alterations 

D: Sample whole-cell voltage-clamp recordings of sEPSC recorded in post-synaptic cortical 

neurons following heat-denatured or native Akt2 injection. 

E. Quantification of sEPCS amplitudes as a function of time following seal openings. Note 

the recovery of sEPCS 40 minutes after Akt2 injection.
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Methods 
 
Yeast Two-hybrid screen 
Random primers were used to construct a cDNA library from human foetal brain mRNA 
(Invitrogen) into the pP6 plasmid derived from the original pACT2, using blunt end ligation of 
a SfiI linker. A 97 million independent clone library was obtained in E. coli. The DNA from this 
library was transformed into S. cerevisiae by classical lithium acetate protocol. Ten millions 
independent colonies were collected, pooled, and stored at -80°C as aliquot fractions of the 
same library. Two-hybrid screens using a cell-to-cell mating protocol was performed as 
previously described42. Full length Aust2 was cloned in lexA based pB27 bait vector and 50 
millions interactions have been tested and selected using His3 reporter. Performed by 
Hybrigenics S.A., Paris, France (http://www.hybrigenics.com/services.html). 
 
Probe synthesis and quantitative in situ hybridization (ISH) 
We used AUTS2 human and Auts2 mouse cDNA clones from the RZPD Library 
(IRALp962I2117Q2 and IMAGp998A169209Q1 respectively). We synthesized [α35S]-rUTP 
(800 Ci/mmol, Amersham) labeled riboprobe (human probe of 1171 bp linearized with BamHI 
and mouse probe of 705 bp linearized with EcoRI), using the P1460 riboprobe in vitro 
transcription system (Promega) according to the manufacturer's instructions. Paraffin-
embedded coronal 15 μm sections were hybridized with radiolabelled RNA probe (diluted to 
105 cpm/μl in 50% formamide hybridisation buffer) in 50% formamide at 50°C. Sections were 
successively washed in 50% formamide, 2 x SSC, 10 mM DTT at 65°C and then in 
increasingly stringent SSC washing solution, with a final wash at 0.1 x SSC at 37°C. 
Hybridization was carried out with both antisense and sense riboprobes, in the conditions 
described in 1 and no signal were obtained with sense riboprobes. Expression was quantified 
with a Biospace Micro Imager, using Betavision analysis software (Biospace 
Instruments)[1,2]. 
 
Primary cell cultures, cell line culture and transfection 
We used mice of the C57BL6 strain. E17.5 mouse telencephalic and hippocampal neurons 
were at the same time dissociated enzymatically (0.25% trypsin, DNase), mechanically 
triturated with a flamed Pasteur pipette, and plated on 35mm dishes (8x105 cortical cells and 
4x105 hippocampal cells per dish) coated with poly-DL-ornithine (Sigma), in DMEM 
(Invitrogen) supplemented with 10% foetal bovine serum. Four hours after plating, DMEM 
was replaced by Neurobasal® medium (Invitrogen) supplemented with 2mM glutamine and 
2% B27 (Invitrogen). Cells were transfected with constructs using Lipofectamine and Plus-
Reagent (Invitrogen), as described by the manufacturer. Neurite and spine analysis included 
at least 12 cells per condition and was carried out with ImageJ software (Wayne Rasband, 
NIH). HeLa cell lines were cultured in DMEM supplemented with 10% of foetal bovine serum 
in 100mm dishes and were transfected close to confluence with Arrest-in (OpenBiosystems). 
 
Constructs 
To silence mouse Auts2, we used sh-RNA p-GIPZ vector (#RMM4431-98725112 for sh1 and 
#RMM4431-99010075 for sh2), as well as the control Non-Silencing sh-RNA (scrambled 
#RHS4346) from OpenBiosystems clone library (www.openbiosystems.com). 
 
Immunocytochemistry and confocal microscopy 
Cells were fixed by incubation in 4% paraformaldehyde in phosphate-buffered saline (PBS) 
for 20 min at room temperature, permeabilised by incubation for 10 min at room temperature 
in 0.3% Triton X-100 in PBS and blocked for 30 min at RT with 3% bovine serum albumin 
(BSA) and 0.1% Triton X-100 in PBS. The cells were then incubated overnight at 4°C with 
primary antibodies (rabbit polyclonal anti-PSD95, 1:500, Synaptic Systems; mouse 



monoclonal anti-Synapsin1; 1:500, Synaptic Systems; chicken polyclonal anti-MAP2, 
1:10,000, Abcam; mouse monoclonal anti-TAU1, 1:500, Chemicon; rabbit polyclonal anti-
AUTS2 6361 and 6362, 1:50, generated by Eurogentec, mapping 1-15 aa and 187-197 aa 
respectively, that have been purified using the Melon Antibody Purification Kit 
(ThermoScientific) according to the instructions of the manufacturer), diluted in the blocking 
solution. Cells were washed three times within PBS and incubated for 1h at room 
temperature with the secondary antibody (Alexa-488 anti-mouse IgG, Alexa-488 anti-rabbit 
IgG, Alexa-555 antimouse IgG, Alexa-555 anti-rabbit IgG and Alexa-647 anti-chicken IgG, 
1:1,000, Invitrogen) diluted in the blocking solution. Cells were washed three times within 
PBS and mounted with Prolong Gold Mounting Medium (Invitrogen). Sections were scanned 
using laser scanning confocal microscope (Carl Zeiss, LSM 510). 
 
In situ proximity ligation assays (PLA) 
Cells were fixed by incubation in 4% paraformaldehyde in phosphate-buffered saline (PBS) 
for 20 min at room temperature, cells were washed two times within PBS and PLA was 
performed according to the instructions of the manufacturer (DuoLink, Eurogentec). Primary 
antibodies used were rabbit polyclonal anti-AUTS2 6361 and 6362, 1:50, generated by 
Eurogentec, mapping 1-15 aa and 187-197 aa respectively, that have been purified using the 
Melon Antibody Purification Kit (Thermo Scientific) according to the instructions of the 
manufacturer); goat polyclonal anti-TTC3, 1:500, Santa-Cruz; rabbit polyclonal anti-AKT2, 
1:500, Abcam; goat polyclonal anti-CITRON, 1:500, Santa-Cruz and goat polyclonal anti-
TOM20, 1:500, Santa Cruz. Sections were scanned using laser scanning epifluorescence 
microscope (Carl Zeiss, AxioPlan2 Imaging). 
 
Statistical analysis 
T-tests were performed with Excel Software and KS-test (Kolmogorov-Smirnov) with web 
software (Kirkman, T.W. (1996) Statistics to Use. http://www.physics.csbsju.edu/stats/ 
(2011). 
 
Protein extraction and Western blot analysis 
HeLa cells transfected with shNS (n=5) and shD (n=5) were homogenised in RIPA buffer 
(0.5% NADOC, 1% NP40, 1% SDS 10% in PBS with 1x Protease Inhibitor Cocktail and 1% 
Phosphatase Inhibitor cocktails) for 10 min on ice and centrifuged 15 min at 10,000g at 4°C. 
The supernatants were stored at -80°C until used and lysate protein concentration was 
determined using the DCTM Protein assay (Biorad). Ten micrograms of protein was heated 
in the loading buffer and loaded on 5–12% gradient NuPage gels (Invitrogen). After the 
transfer on nitrocellulose membranes, filters were incubated for 1h at room temperature in 
blocking solution (5% non-fat dried milk and 0.1% Tween 20 in PBS) and then overnight at 
4°C with the primary antibody (purified rabbit anti-Auts2 1:50, mouse anti-β-actin, 1:30,000, 
Sigma). Filters were washed in 0.1% Tween 20 PBS and incubated 1h at room temperature 
with the secondary antibody HRP-conjugated (anti-rabbit and anti-mouse IgG, 1:5,000, ECL). 
Membranes were washed within 0.1% Tween 20 PBS. Chemiluminescent detection reagents 
(Pierce) were used according to company instructions and membranes were exposed to 
autoradiography film (Kodak Biomax). Protein bands were then subjected to densitometric 
analysis using ImageJ software (Wayne Rasband, NIH). 
 
 
Transcription factor sites analysis 
Neandertal sequences were downloaded from “UCSC neandertal portal”. We used 
neandertal contigs (mixed of 6 specimens sequenced). We selected fragments aligned on 
hg18 reference and analyzed only human sequences which had neandertal homologues. 
The analysis was conducted on sequences having exactly the same number of human and 
neandertal nucleotides. We obtained 12,437 pairs containing 1,212,584 nt for each species. 
We excluded from the analysis pairs which were identical between human and neandertal. 
This procedure reduced the dataset to 7,193 sequence pairs containing 797,226 nt (r1 



254,125 nt, r2 241,463 nt, r3 301,638 nt) AUTS2 locus was analyzed with the Genomatix 
MatInspector program for transcription factor sites discovery with stringent conditions (core 
sim = 0.95 and opt +0.1) for both species. We counted only site predictions which were 
present in one lineage on sequence pair. For comparison we randomly selected aligned 
regions (200,000 pair containing 18,890,929 nt, with elimination of identical pairs it was 
reduced to 115,069 pairs containing 12,312,338 nt) across whole genome and did the same 
analysis. We used boostrap approach to infer significance of matrix family hits on AUTS2 
locus. We randomly chose fragment pairs to obtain, at least, the number of nucleotides of the 
region in the randomly selected regions, counted the number of matrix family hits and did this 
analysis 10,000 times. We could estimate the number of matrix family hits for region of 
approximately the same length of the region of interest and calculated z-score for each 
matrix family and by region. 
 
Electrophysiological recordings of cortical neurons 
7 to 10 days in vitro cortical neurons grown on coverslips in neurobasal medium 
supplemented with B27 were transfected either with sh-control (sh-NS) or sh-Auts2 (sh1) 
using lipofectamine (Invitrogen, France) according to manufacturer instructions. We used 
whole-cell patch-clamp recording of transfected neurons 48 to 72h after transfection. The 
cells were perfused voltage-clamped at –70 mV. The whole-cell with a Tyrode solution 
containing (in mM): 150 NaCl, 2 CaCl2, 1 MgCl2, 4 KCl, 10 glucose, 10 HEPES (pH 7.4). 
Spontaneous excitatory postsynaptic currents (sEPSCs) were studied in transfected cells 
voltage-clamped at –70mV. Patch electrodes, fabricated from thick borosilicate glass, were 
pulled and fire-polished to a final resistance of 3-4 MΩ and filled with the standard internal 
solution (in mM): 100 CsMES, 20 CsCl, 2 MgCl2, 5 ethylene glycol tetraacetic acid (EGTA), 
10 HEPES, 4 ATP, and 15 phosphocreatine (pH 7.4). AKT2 protein (ab 79798) was obtained 
from Abcam. 
 
 
References 
 
1. Charpak G, Dominik W, Zaganidis N. (1989) Optical imaging of the spatial distribution of 
beta-particles emerging from surfaces. Proc Natl Acad Sci USA 86,1741–1745(1989). 
2. Lepagnol-Bestel AM et al. SLC25A12 expression is associated with neurite outgrowth 
and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry. 13, 385- 
397 (2008). 
 



 

Supplementary Table S1: AUTS2, psychiatric, neurodevelopmentaland neurological 

diseases 

Genetic variations Phenotype Reference 

Translocation breakpoint ASDs Sultana et al., 2002 

Translocation breakpoint ASDs Huang et al., 2010 

Chromosomal inversion ASDs Bakkagoglu et al., 2008 

CNVs ASDs Cusco et al., 2009 

Balanced translocation Mental Retardation Kalscheur et al., 2007 

CNVs ADHD Elia et al., 2010 

SNP (GWAS) Bipolar Hamshere et al., 2009 

Modified DNA methylation Schizophrenia & Bipolar Mill et al., 2009 

CNVs Epilepsy Mefford et al., 2010 

Abbreviations: 

ADHD (Attention-Deficit Hyperactivity Disorder); ASDs (Autism Spectrum Disorders); CNV 

(Copy Number Variation); SNP (Single nucleotide polymorphism); GWAS (Genome Wide 

Association Study). 

 

Supplementary Table S2: Identification of statistically significant putative transcription 

factor sites in Human and Neandertal AUTS2 loci. 

 

TF matrix name n Gene name Entrez Neuronal annotation Zscore 

IKRS 3 IKZF1 Forebrain development 3.30 

PLZF 1 ZBTB16 Central nervous system development 3.07 

GREF 3 AR / PGR Axon & dendrite / Neuron projection 4.27 

PTF1 1 PTF1A Neuron fate commitment 3.56 

HESF 2 HES1 Nervous system development 3.07 

 

TF matrix name n Gene name Entrez Neuronal annotation Zscore 

GCNR 1 GCNF / NR6A1 Neurogenesis 7.84 

AP4R 1 TFAP4 0 3.24 

RP58 3 ZNF238 0 5.65 

ZF35 1 ZNF35 0 3.51 

CP2F 2 LSF / CP2 / SEF 0 5.03 

 

We identified putative transcription factor (TF) sites using statistical approach based on 

1,000 samples bootstrap in order to select sites with Zscores ≥3 or ≤-3. 



We used Entrez Gene database to identify genes having evidence of neuronal function (ie in 

summary or in process and component of Gene Ontology Annotation) as in Prabhakar et al., 

2006. 



 

 

Supplementary Figure S1: AUTS2 expression during human brain development & 

locus positive selection 

Coronal sections of 8-week (A) and 22-week-old (B) human embryos (B1 anterior section 

and B2 posterior section) hybridized with AUTS2 antisense radioactive riboprobe. 

di: diencephalon; ic: internal capsule; fr c: frontal cortex; ge: germinal zone; hip: 

hippocampus; in: insular cortex; mes: mesencaphalon; nc: nucleus caudate; nl: nucleus 

lenticular; rho: rhombencephalon; rl: rhombic lip; tc: temporal cortex; tel: telencephalon. 

Scale bar=1mm. 

C. quantification indicating expression of AUTS2 both in cortex and hippocampus at 22-

week-old human embryonic development with a significantly higher expression level in 

cortical regions than in hippocampus. * = p<0.05 

D. Diagram of the chromosome 7 locus including the AUTS2 gene. Region 2 (377,373bp) 

was identified as displaying a signature of positive selection in the human compared to 

Neandertal lineage13. Statistically significant (Zscores ≥3 or ≤3) putative transcription factor 

(TF) matrix sites using Genomatix suite are indicated for Human and Neandertal AUTS2 loci. 

The TF matrix family names for the Human and Neandertal sites are indicated. 

E. Human-associated TF sites are disproportionately associated with neuronal expression 

using Entrez Gene neuronal annotations (p=2.51x10-4; Fisher’s exact test). 

 

 



 

 

 
Supplementary Figure S2: Nuclear and dendritic localization of Auts2 in primary 

cortical neurons 

Immunocytochemistry on cortical neurons fixed at DIC21, using DAPI to stain the nucleus 

(A1-B1), 6361-Auts2 antibody (A2-B2) and anti-Synapsin1 (A3-B3). Merged images are 

shown in (A4-B4). Scale bar=10μm (A); Scale bar=5μm (B). 

 

Supplementary Figure S3: Dendritic and dendritic spine localisation of mouse Auts2 

protein in primary cortical neurons 

Immunocytochemistry on DIC21 primary cortical neurons using anti-MAP2 (A1) to visualize 

dendrites, anti-synapsin1 as presynaptic marker (B1), anti-PSD95 as postsynaptic marker 



(C1) and 6361-Auts2 antibody (A2-B2-C2). Merged image is shown in (A3). Scale 

bars=10μm. 

 

 

 

Supplementary Figure S4.  

Dendritic spine localization of mouse Auts2 protein and protein-protein interaction 

analysis using Yeast-two-hybrid and in situ proximity ligation assays in primary 

cortical neurons 

A. Immunocytochemistry on DIC21 primary cortical neurons using 6361-Auts2 antibody (red 

fluorescence) and the presynaptic marker Synapsin1 (green fluorescence upper panel) or the 

postsynaptic marker PSD95 (green fluorescence lower panel). Pearson’s coefficient Rr = 

56.5% ± 5.1%, Rr = 80.6% ± 1.9%, respectively; n=11 and n=7. (Scale bars=10μm). 

B. Yeast two-hybrid one-by-one assays revealed TTC3 as an interactor of AUTS2. 

C+: interaction positive control 

C- (pB27ø + pP7ø): empty pB27 vector + empty pP7 vector 

C- (AUST2 + pP7ø): pB27-AUST2 + empty pP7 vector 

C- (pB27ø + TTC3): empty pB27 vector + pP6-TTC3 

AUST2 + TTC3: pB27-AUST2 + pP6-TTC3 



C. Schematic representation of the AUTS2, TTC3, AKT and CITRON interactions. In red are 

the interactions demonstrated in the study. 

D. In situ proximity ligation assays PLA on primary cortical neurons fixed at DIC19 (red 

fluorescence) using 6362-Auts2 and anti-Ttc3 antibodies (D1), anti-Ttc3 and anti-Akt 

antibodies (D2) as a positive control, and anti-Akt and anti-Citron antibodies (D3). 

Immunohistochemistry was performed using anti-MAP2 (green fluorescence) to visualize 

dendrites and Hoechst (blue fluorescence) to visualize nucleus. Enlargements of the merged 

images are shown in lower panel. Scale bars=10μm. 

E. Mean interaction point number calculated in dendrites of at least 11 cortical neurons at 

DIC19. In situ PLA was used to analyze the interaction between Auts2 and Ttc3, between 

Ttc3 and Akt2 as a positive control, and between Akt2 and Citron. As a negative control we 

analyzed interaction between Tom20 and Auts2. * p < 0.05 ; ** p < 0.005 and *** p < 0.0005. 

 

Supplementary Figure S5: In situ proximity ligation assay validation 

In situ proximity ligation assays (PLA) on primary cortical neurons fixed at DIC19 (red 

fluorescence) using 6362-Auts2 and anti-Tom20 antibodies as a negative control. 

Immunocytochemistry was performed using anti-MAP2 (green fluorescence) to visualize 

dendrites and Hoechst (blue fluorescence) to visualize nucleus. Enlargements of the merged 

images are shown in lower panel. Sale bars=10μm. 



 

Supplementary Figure S6: AUTS2, CITRON and TTC3 mRNA levels in the human 

central nervous system during early development and at mid-gestation 

A. Sagittal sections of 8-week-old human embryos hybridized with AUTS2 (A1), TTC3 (A2) 

and CITRON (A3) antisense radioactive riboprobes. The three transcripts were detected in 

telencephalon (tel), ganglionic eminence (ge), hippocampus anlagen (hipp), cerebellum 

anlagen (Cb) and liver (li) but not in heart (h) and lung (lu). 

B-C. Coronal sections of 15-week-old human brains hybridized with AUTS2 (B1-C1), TTC3 

(B2-C2) and CITRON (B3-C3) antisense radioactive riboprobes. The three transcripts were 

detected in frontal cortex (fr c), tempral cortex (temp c), insular cortex (in) and germinal zone 

(ge) but nor in nucleus caudate (nc), nucleus lenticular (nl) and internal capsule (ic). 



D. Coronal sections of 19-week-old human brains hybridized with AUTS2 (D1), TTC3 (D2) 

and CITRON (D3) antisense radioactive riboprobes. The three transcripts were detected in 

frontal superior cortex (sup fr), lateral frontal cortex (lat fr), insular cortex (ins), galglionic 

eminence (ge), internal capsule (ic) and nucleus caudate (nc) but not in thalamus (th), 

putamen (p) and lateral temporal cortex (lat temp). 

Scale bars=1mm. 

 

 

Supplementary Figure S7: Validation of the Auts2 shRNA vectors 

Immunoblot quantification of Auts2 protein in HeLa cells transfected at DIC2 with shNS or 

sh1 and harvested 48 hours later (n=5). Expression was normalized against the β-actin 

protein. Independent samples were loaded from sh-NS (lanes 1-2) or sh1 (lanes 3-4) 

transfected HeLa cells. *p<0.01. 

 

 



 

Supplementary Figure S8: Cellular phenotypes in Auts2-silenced cortical primary 

neurons 

A-B. Axonal and dendritic complexity analysis on cortical neurons transfected at DIC1 with 

shNS, sh1 or sh2 and fixed at DIC2 or transfected at DIC2 and fixed at DIC3, DIC4 and 

DIC5. Evaluation of axons and dendrites was performed taking into account the axonal (A1) 

or dendritic (B1) length and axonal (A2) or dendritic (B2) branching point number. *p<0.01; 

**p<0.001; ***p<0.0001 

C. Quantification of dendritic spine density in cortical neurons transfected at DIC7 with shNS 

or sh1 and fixed at DIC21. Total dendritic spine number was calculated per 75 µm dendritic 

fragments (C1) and classified by spine morphotype: mushroom, stubby and filopodia (C2). 

 



 

Supplementary Figure S9: Cellular phenotypes in Auts2-silenced hippocampal primary 

neurons 

A-B. Axonal and dendritic complexity analyses on hippocampal neurons transfected at DIC2 

with shNS, sh1 or sh2 and fixed at DIC3, DIC4 and DIC5. Evaluation of axons and dendrites 

was performed taking into account the axonal (A1) or dendritic (B1) length and axonal (A2) or 

dendritic (B2) branching point number. *p<0.01; **p<0.001; ***p<0.0001 
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Titre : Quantification du transport intraneuronal par suivi de nanodiamants fluorescents. Application à l’étude de 
l’impact fonctionnel de facteurs de risque génétiques associés aux maladies neuropsychiatriques. 
Mots clés : nanodiamant fluorescent, suivi de particule unique, transport intraneuronal, maladie mentale, facteur de risque 

génétique. 

Résumé : L’identification de biomarqueurs des maladies 
mentales telles que l’autisme, la schizophrénie ou la maladie 
d’Alzheimer, est d’une importance capitale non seulement 
pour établir un diagnostic objectif, mais aussi pour suivre 

l’effet des traitements. La création et le maintien de fonctions 

neuronales sub-cellulaires, telle que la plasticité synaptique, 

sont fortement dépendants du transport intraneuronal, 

essentiel pour acheminer d’importants composants à des 
positions spécifiques. Un transport actif défaillant semble être 

partiellement responsable d’anomalies de la plasticité 
synaptique et de la morphologie neuronale présentes dans de 

nombreuses maladies neuropsychiatriques. Cette thèse décrit 

(i) la mise au point d’une méthode de quantification du 
transport intraneuronal reposant sur le suivi de nanoparticules 

de diamants fluorescents (fNDs); (ii) l’application de cette 
technique simple et faiblement invasive à l’analyse 
fonctionnelle de variants génétiques associés à des maladies 

mentales. 

Ce manuscrit comporte quatre chapitres. Le premier détaille 

l’architecture polygénique complexe des maladies mentales 

et démontre la pertinence d’étudier le transport intraneuronal. 

Les deuxième et troisième chapitres sont dédiés à la méthode 

et détaillent les stratégies d’internalisation des fNDs, les 
outils de quantification du transport intraneuronal et la 

validation de la technique. La forte brillance, la photo-

stabilité parfaite et l’absence de toxicité cellulaire font des 
fNDs un outil de choix pour étudier la dynamique du transport 

intraneuronal sur une durée d’observation de plusieurs heures 
avec une haute résolution spatiotemporelle et une bonne 

puissance statistique. Enfin, dans le quatrième chapitre, nous 

appliquons cette nouvelle méthode d’analyse fonctionnelle 
pour étudier l’effet de variants génétiques associés à l’autisme 
et à la schizophrénie. Pour cela, nous utilisons des lignées de 

souris transgéniques ayant une faible surexpression des gènes 

MARK1 et SLC25A12, ainsi que des AAV-shRNA pour 

induire une haplo-insuffisance du gène AUTS2. Notre 

méthode de diagnostic moléculaire s’avère suffisamment 
sensible pour déceler des variations fines de la dynamique du 

transport intraneuronal, ouvrant la voie à de futurs 

développements en nanomédecine translationnelle. 
 

 

Title : Quantification of intraneuronal transport by fluorescent nanodiamond tracking. Application to the screening 

of the functional impact of neuropsychiatric disease-related genetic risk factors. 

Keywords : Fluorescent nanodiamond, single-particle tracking, intraneuronal transport, brain disease, genetic risk factor 

Abstract : The identification of molecular biomarkers of 

brain diseases as diverse as autism, schizophrenia and 

Alzheimer’s disease, is of crucial importance not only for an 
objective diagnosis but also to monitor response to 

treatments. The establishment and maintenance of sub-

cellular neuronal functions, such as synaptic plasticity, are 

highly dependent on intracellular transport, which is essential 

to deliver important materials to specific locations. 

Abnormalities in such active transport are thought to be partly 

responsible for synaptic plasticity and neuronal morphology 

impairment found in many neuropsychiatric and 

neurodegenerative diseases. This thesis reports (i) the 

development of a quantification technic of intraneuronal 

transport based on fluorescent nanodiamonds (fNDs) 

tracking; (ii) the application of this simple and minimally 

invasive approach to the functional analysis of 

neuropsychiatric disease-related genetic variants. 

This manuscript falls into four chapters. The first one details 

the complex polygenic architecture of mental  

disorders and demonstrates the disease relevance of 

monitoring the intraneuronal transport. The second and the 

third chapters are dedicated to the nanodiamond-tracking 

assay and describe the fNDs internalisation strategies, the 

spatiotemporal quantitative readouts and the validation of the 

technique. The high brightness, the perfect photostability and 

the absence of cytotoxicity make fNDs a tool of choice to 

perform high throughput long-term bioimaging at high 

spatiotemporal resolution. Finally, in the fourth chapter, we 

apply this new functional analysis method to study the effect 

of genetic variants associated to autism and schizophrenia. 

We established transgenic mouse lines in which MARK1 and 

SLC25A12 genes were slightly overexpressed, and AAV-

shRNA to induce AUTS2 gene haploinsufficiency. Our 

molecular diagnosis assay proves sufficiently sensitive to 

detect fine changes in intraneuronal transport dynamic, 

paving the way for future development in translational 

nanomedicine. 

 

 


