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Résumé 

 

Le mil est une céréale d’importance majeure pour la sécurité alimentaire dans les 

régions arides d’Afrique et d’Inde. Pourtant, elle a fait l’objet de relativement peu d’efforts 

d’amélioration variétale par rapport à d’autres céréales. En particulier, l’amélioration de son 

système racinaire pourrait permettre une amélioration de la tolérance de cette plantes aux 

contraintes physiques qu’elle subit (sécheresse et faible disponibilité en nutriments) et ainsi 

un accroissement substantiel de la production. L’objectif de ce travail est de caractériser ce 

système racinaire, en vue de produire des connaissances nécessaires à l’amélioration variétale, 

axée principalement sur la tolérance à la sécheresse en début de cycle.  

Dans un premier temps, nous avons décrit précisément la morphologie du système 

racinaire dans les premiers stades de développement, la dynamique de mise en place des axes 

racinaires ainsi que l’anatomie des différents types de racines. Ce travail a mis en évidence 

l’existence de trois types anatomiques distincts pour les racines latérales. Nous avons 

également mis en évidence l’existence de variabilité dans la dynamique de mise en place 

précoce du système racinaire au sein d’un panel de diversité issu de variétés cultivées. Notre 

étude a aussi révélé une grande variabilité des profils de croissance des racines latérales.  

Pour analyser plus avant cette diversité, la croissance d’un grand nombre de racines 

latérales a été mesurée quotidiennement et un modèle statistique a été conçu pour classer ces 

racines en trois grandes tendances selon leurs profils de croissance. Ces trois catégories 

distinguent les racines en fonction de leur taux de croissance et de leur durée de croissance. 

Ces différents types racinaires sont répartis aléatoirement le long de la racine primaire et il ne 

semble pas y avoir d’influence des types sur les intervalles entre racines latérales successives. 

Les trois types cinétiques correspondent, imparfaitement cependant, aux trois types 

anatomiques mis en évidence dans le premier chapitre. Un travail similaire a été effectué sur 

le maïs, ce qui a permis de comparer ces deux céréales phylogénétiquement proches.  

Enfin, nous avons débuté la recherche de marqueurs génétiques associés à la croissance 

de la racine primaire, un trait supposément impliqué dans la tolérance à la sécheresse précoce. 

Ce travail a nécessité le phénotypage de ce trait sur un panel de lignées de mil fixées, qui a 

confirmé la présence d’une grande variabilité existante pour ce trait. Ces lignées ont ensuite 

été génotypées par séquençage. Les analyses d’association génotype/phénotype sont en cours. 

Ce travail de thèse a permis de caractériser plus précisément le système racinaire du mil, 

relativement mal connu jusqu’à ce jour. Il a fourni des données utiles pour la paramétrisation 

et le test de modèles fonctionnels de croissance et de transport d’eau. La caractérisation 

cinétique précise des types de racines latérales est une approche originale et pourra être 

utilisée chez d’autres céréales. Enfin, les données acquises par génétique d’association 

devraient pouvoir servir à une meilleure compréhension de la mise en place de ce système 

racinaire et ouvrent la voie à l’amélioration assistée par marqueurs génétiques pour des traits 

racinaires chez le mil. 

 

Mots clés : système racinaire, anatomie, modélisation 
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Summary 

 

Pearl millet plays an important role for food security in arid regions of Africa and India. 

Nevertheless, it lags far behind other cereals in terms of genetic improvement. Improving its 

root system could improve pearl millet tolerance to abiotic constraints (drought and low 

nutrient availability) and lead to a significant increase in production. The objective of this 

work is to characterize pearl system root system development in order to produce knowledge 

for breeding, mainly targeted on tolerance to drought stress occurring at the early growth 

stages. 

First, we described the dynamics of early pearl millet root system development and the 

anatomy of the different root types. This work revealed the existence of three anatomically 

distinct types for lateral roots. We also showed the existence of variability in primary root 

growth and lateral root density in a diversity panel derived from cultivated varieties. Our 

study also revealed a large variability among the growth profiles of lateral roots. 

To further analyze this diversity, the growth rates of a large number of lateral roots were 

measured daily and a statistical model was developed to classify these lateral roots into three 

main trends, according to their growth profiles. These three categories distinguish roots 

according to their growth rate and their growth duration. These different lateral root types are 

randomly distributed along the primary root and there seem to be no influence of root types 

on the intervals between successive lateral roots. The three growth types correspond, though 

imperfectly, to the three anatomical types evidenced in the first chapter. A similar work has 

been performed on maize, which was used to compare these two phylogenetically close 

cereals. 

 Finally, we initiated the search for genetic markers associated to primary root growth, a 

trait potentially involved in early drought stress tolerance. A large panel of genetically fixed 

pearl millet inbred lines was phenotyped, confirming the presence of a large variability 

existing for this trait. These lines were then genotyped by sequencing. Analyses of association 

between phenotype and genotype are underway. 

This work provides a precise description of pearl millet root system that was little 

studied to date. Our data were used for parameterization and testing of functional structural 

plant models simulating root growth and water transport. The statistical tool developed for the 

characterization of the different lateral root growth types is an original approach that can be 

used on other cereals. Finally, results from our association study will reveal new information 

on the genetic control of root growth and open the way to marker assisted selection for root 

traits in pearl millet. 

 

Keywords: root system, anatomy, modeling 
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General introduction 

 

Food security is a major challenge for agronomic research in the 21
st
 century. 

According to the Food and Agriculture Organization of the United Nations (FAO, FIDA and 

PAM, 2015) hunger concerned 795 million people in 2015, including 780 million in 

developing countries. Although hunger regressed in some regions of the world, Sub-Saharan 

Africa remains the region with the highest prevalence of undernourishment, with nearly 25% 

people affected by chronic hunger. There is a need to increase food production for small 

farmers in sub-Saharan Africa in a context of global changes that poses new threats to 

agriculture. 

Pearl millet is the 6
th

 cereal grown in the world with over 33 million hectares harvested 

in 2013, and it is a crop of major importance in arid and semi-arid regions such as the Sahel. 

Pearl millet is the cereal with the largest cultivated area in West Africa, with over 13 million 

hectares in 2013. However, it is only the 4
th

 in terms of total production. Pearl millet is 

especially tolerant to harsh conditions (high temperature, low rainfall, low fertility soils) and 

is therefore preferably grown in areas where other cereals would fail. On the contrary, as soon 

as the growth conditions improve (potential irrigation for example), pearl millet is abandoned 

to the benefit of more demanding crops (sorghum, maize; National Research Council, 1997). 

Pearl millet is therefore preferably cultivated in arid and low fertility regions, where it is often 

the only viable cereal. Increasing yield in these areas would produce a substantial 

improvement of food security, but agronomic practices are often constrained and the 

deployment of irrigation or the enhanced use of fertilizers is difficult in some areas. Research 

efforts could therefore concentrate on selection and breeding in order to release varieties that 

produce more in usual pearl millet culture conditions. Pearl millet has a good nutritional 

profile among cereals, and this advantage should be kept and, if possible, improved in newly 

released varieties. 

Breeding efforts in pearl millet only targeted physiological or architectural characters 

observed on the aerial part such as grain yield, shoot height or resistance to bioagressors 

(Bilquez, 1974; Vadez et al., 2012). A novel idea would be to target root traits for breeding 

(Vadez et al., 2012). The root system is the interface between the plant and the soil, which 

constitutes the water and nutrient pool for the plant. In some cultivated plants, selection has 

led to a reduction of the size of the root system (Schmidt et al., 2016; Waines and Ehdaie, 

2007). Indeed, since cereal domestication, farmers have focused on the maximization of the 

production of edible grains and, during the Green Revolution, this objective was pursued by 

developing varieties with a high harvest index and plant architecture adapted to a massive 

input of fertilizers. However, this strategy requires the use of fertilizers unaffordable for poor 

farmers and typically African crops such as millet were left aside this breeding effort 

(Bishopp and Lynch, 2015). Target root system breeding may lead to varieties with higher 

water and nutrient capture efficiency. This opportunity is even more interesting with poor 

soils and under a dry climate, giving that yield improvement cannot be mediated by irrigation 

or by a substantial increase in fertilization. 
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1. Pearl millet 

1.1 Botanical description 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an annual cereal. It belongs to the 

PACMAD clade (for Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, 

Aristidoideae and Danthonioideae) and is a Panicoideae. It has a C4 metabolism like sorghum, 

maize or sugarcane (Edwards, 2012). The wide variability existing amongst the pearl millet 

species led to the early classification of different forms in different species. It is now well 

known that all these forms belong to a single species, in the sense of interfecundity, but 

history left a few names by which the pearl species was designated in old publications. The 

most common are Pennisetum typhoides, Pennisteum americanum and Pennisetum glaucum, 

the later being the actual binomial name of the species. 

The plant height varies from 0.5 to 3 meters at maturity and can even reach 4 meters in 

wetlands (Guigaz, 2002). Wild relative have many tillers and tillering is still frequent in 

domesticated millet. The leaves are lance-like and are 20 to 100 cm long and 5 to 50 mm 

wide. Millet seeds are held on a spike, often called panicle, measuring 10 to over 100 cm 

long. Seed size is generally around 2 to 5 mm, with a large existing variability (Brunken et al., 

1977). Seed shape varies from globular to lanceolate and its weight goes from 5 to 20 mg 

(Andrew and Kumar, 1992). Figure In-1 presents pictures of pearl millet plants in a field and 

pearl millet seeds after harvest. The plant is mainly cross-pollinated, with an allofecundation 

level around 80 to 90%. Cycle length ranges from 60 days for varieties in the desert margin 

areas in northwestern India to up to 180 days in the northern Guinea zone of West Africa 

(Bidinger and Hash, 2004). 
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Figure In-1: Picture of a millet field in Niger (left) and focus on mature seeds after harvest 

(right).  

Pictures: C. Tom Hash 

 

 
Figure In-2: Schematic diagram of the major developmental phases of pearl millet: GS1, GS2, 

GS3. The numbers 0 to 9 illustrate the detailed stages of development described in the text. The 

encircled enlargement of stage 3 shows the dome-like shape of the apex and the constriction at its base 

that may be observed at this stage of change from the vegetative to the reproductive phase.  

(Maiti and Bidinger, 1981) 
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Pearl millet development can be divided in 3 developmental phases (Maiti and Bidinger, 

1981). The vegetative phase (GS1) goes from emergence to panicle initiation, the panicle 

development phase (GS2) goes from panicle initiation to flowering and the grain-filling 

phase (GS3) goes from flowering to the end of the grain-filling period. If several shoots are 

present, the GS1 and GS2 phases are defined upon the developmental stage of the main stem. 

The relative lengths of these phases depend on the variety, but represent generally about one 

third of the whole cycle each. These phases are further divided into 10 developmental stages, 

represented in Figure In-2: 

S0: Emergence of the coleoptiles from the soil surface. This event happens 2 to 3 days 

after germination, which itself starts with seed imbibition and ends with radicle emergence 

less than 24 hours later.  

S1: Three-leaf stage. The third leaf starts to appear approximately 5 days after 

coleoptiles emergence. The first leaf is fully expanded, but not the second one. The primary 

root grows quickly and develops ramifications and crown roots start to appear. 

S2: Five-leaf stage. The fifth leaf appears about 15 days after emergence. Tiller leaf 

start to emerge from inside the sheaths of the basal leaves. The root system development 

carries on with primary root ramification and crown root growth. 

S3: Panicle initiation. This stage determines the end of the vegetative phase and the 

beginning of the reproductive phase. All leaf primordia have been initiated, though only six to 

seven are fully expanded, and the apical meristem switches to the generation of spikelet 

primordia. This change is noticeable by the dome-like shape taken by the apex, with a 

constriction at its base. The growing point, which was under or at soil surface level up to this 

point, is now above this level as the first two or three internodes begin to elongate. The 

emerged tillers undergo the same development as the main shoot with some delay. The 

primary root system is well developed and crown roots grow rapidly. 

S4: Flag leaf stage. The last leaf becomes visible, rolled in the lamina of the preceding 

leaf. The internodes follow on their elongation sequentially, from the base to the top, raising 

the young panicle. 

S5: Boot stage. The panicle is enclosed in the sheath of the flag leaf, now fully 

expanded. Its development is nearly full and it rapidly increases in length and width. 

S6: 50% flowering (half bloom). Pearl millet is protogynous, which means that stigmas 

appear before anthers. This stage is attained when half of the panicle has emerged stigmas. 

The stigmas can stay fresh if they are unpollinated, and shrivel few hours after pollination. 

The anthers appear at or just before anther emergence completion. 

S7: Milk stage. The grains become visible 6-7 days after fertilization. They are filled 

with a watery and later milky liquid. This stage marks the beginning of starch deposition in 

the endosperm. The seed dry weight increases quickly. 

S8: Dough stage. This stage corresponds to the starch filling of the seed. It is a gradual 

stage and not a distinct stage, corresponding to the change of content in the seed, from liquid 

to solid. The grain consistency changes from soft to hard. 

S9: Physiological maturity. This stage corresponds to the cessation of movement of 

materials into the grain, and thus the cessation of grain growth. It is characterized by the 
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formation of a small black layer in the hilar region of the seed. The grain has attained its 

maximum dry weight but has only partly dried. The remaining drying occurs after maturity. 

1.2 Domestication 

In West Africa, three forms of pearl millet species are found: the wild progenitor, the 

cultivated form and an intermediate form called shibra (Brunken et al., 1977). All these forms 

can hybridize and produce fertile offspring. The wild progenitor does not need any human 

intervention to survive and reproduce. Its size is generally around 1 meter. It has very small 

spike (less than 15 cm) and seeds (less than 1 mm). It grows only in the Sahel zone of West 

Africa, from Senegal to Sudan. It is a natural colonizer and is found in disturbed places like 

seasonally dry stream beds, roadsides, abandoned fields and human habitations.  

Shibra is an intermediate form between the wild progenitor and the cultivated species. It 

can have intermediate morphological characters but it is often difficult to distinguish from the 

cultivated form before maturation, as it mimics the specific characters of the cultivated plant it 

grows next to. It mixes up with cultivated plant but spreads its seeds at maturity. Shibras grow 

in most of the culture area of pearl millet in Africa, but they are less frequent in mesic zones, 

which are not the originating area of pearl millet but where cultivated pearl millet has been 

adapted. Shibras have not been found in India. To sum up, shibra is generally found in places 

where the wild progenitor grows. The origin of shibra is unclear. A first study (Brunken et al., 

1977) set that these forms have likely been selected by human intervention: as men removed 

all weeds present in cultivated fields, especially the wild form, intermediate forms, very alike 

to cultivated plants but still able to spread seeds without man intervention, were selected. A 

genetic analysis (Oumar et al., 2008) suggested on the contrary that shibra can be the result of 

hybridization between wild and cultivated plants. In fact, some accessions considered as wild 

or cultivated revealed to have hybrid genome between wild and cultivated genomes. This 

information could be interesting for selection because it implies that parts of the wild genome 

could be easily introgressed into cultivated accessions. 

The main morphological differences between wild and cultivated pearl millet, called the 

domestication syndrome, are quite typical of cereals. Cultivated forms have a lower number 

of tillers, an increased spike length, both resulting from an increase of apical dominance, the 

lost of spikelet shedding, the reduction of bracts size, parallel to the increase of seed size, 

leading to uncoated seed and the lost of seed dormancy (Poncet et al., 1998). Significant 

signatures of selection associated with domestication were also found in genes controlling 

flowering time and especially in genes associated with the circadian clock (Clotault et al., 

2012). 

The origin of domesticated pearl millet has long been localized in Africa, but its exact 

origin remained unclear until recently. Three potential domestication places were initially 

suggested (Brunken et al., 1977), the Sahel zone of West Africa being fostered. Between 5000 

and 3000 BC, Sahara was wetter than it is now. This allowed the spread of cereal cultivation 

in this region, coming from the Near East by the way of Egypt. Mediterranean cereals like 

wheat or barley were widely cultivated by the beginning of the climate aridification, around 

3000 BC. But this climate change compromised the success of the Mediterranean crops, 
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which probably led people to try agricultural practices with their local grasses. The 

domestication origin of pearl millet was therefore suggested to be along the Southern margins 

of the central highlands of Sahara, between 3000 and 2000 BC. A more recent study, based on 

genetic analysis of a large number of wild and cultivated accessions (Oumar et al., 2008) 

clarifies this domestication place to a zone comprised between Niger and Mali. The 

domestication period, however, is suggested to be around 8000 BC. Another recent study 

dealing with pearl millet domestication focuses on a specific region in North-Eastern Mali 

(Manning et al., 2011). In spite of reevaluating the domestication period to around 4500 BC, 

it details two phases in the domestication process. The first step was the non-shattering 

character of the spikelet, which facilitate harvest. After this event, small-seeded domesticated 

pearl millet spread quickly in Africa and up to India, and later phases of grain-size increase 

occurred in several places, including India. Latest analysis of genetic diversity in wild and 

cultivated pearl millet accessions refines the domestication event to around 4800 BC (Clotault 

et al., 2012). It also estimates to 1.4% the amount of gene fluxes from the wild to the 

cultivated form. In conclusion, due do this gene fluxes and the existence of the shibra form, 

the domestication history of pearl millet is still hard to date and describe precisely. 

1.3 Genomics 

Pearl millet is a diploid annual (2n = 2x = 14). Its genome size is estimated to 1.76 Gb 

(unpublished data). Pearl millet genome has a large number of gross structural chromosomal 

rearrangements relative to rice, the model cereal, and this number is greater in pearl millet 

than in any other grass genome analyzed to date, even foxtail millet (Setaria italica), which is 

phylogenetically very close to pearl millet (Devos et al., 2000). Comparative genetic helps to 

predict the location of genes underlying traits of interest already mapped in other plants and 

specificities may appear for pearl millet in terms of gene position due to this high level of 

rearrangement. The percentage of repetitive DNA in pearl millet genome is estimated to 80%, 

which is a bit less than maize (> 85%) but much higher than sorghum (~ 61%), foxtail millet 

(~ 40%) and rice (~ 42%) genomes (Bennetzen et al., 2012; Paterson et al., 2009). The most 

abundant repetitive DNA class is long-terminal repeat retrotransposons, comprising over 50% 

of the nuclear genome. Gene number is estimated to 38,579 with an average transcript size of 

3,945 bp and an average coding sequence size of 687 bp. Identification of regions with 

depleted diversity in the cultivated but not wild genome indicated potential locations for 

genes selected during domestication. Among the genes that experienced the most striking 

diversity loss, putative functions are associated with regulation of response to hormones like 

auxin and ethylene, regulation of the circadian clock and morphogenesis, along with 

transcription factors (unpublished data). 

1.4 Economics 

Agricultural data at world level may be hard to find because pearl millet data are often 

pooled with all kind of cereals called millet, as finger millet, proso millet or foxtail millet. 

According to statistics from the International Crop Research Institute for the Semi Arid 
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Tropics (ICRISAT), pearl millet fields cover an area of 31 million hectares worldwide 

(ICRISAT, 2013). The first world producer is India, with over 8.3 or 11 million tons in 2014 

according to ICRISAT or FAO data respectively. This crop occupies 9.3 million hectares in 

India (FAO, 2014). West Africa is also a major production zone, with nearly 15 million 

cultivated hectares. The main producers in this area are Niger, with over 3 million tons 

produced in 2014, Mali, Nigeria and Burkina Faso with over 1 million tons each (FAO, 

2014). Senegal comes in 6
th

 position among West African producer with 400.000 tons 

produced in 2014. Eastern and Southern Africa regions also cultivate pearl millet but the total 

surface occupied by pearl millet in this area is only 2 million hectares (ICRISAT, 2013). 

In these areas, pearl millet is usually grown as part of a mixed cropping system, 

alternate with legumes, such as groundnuts or cowpea, or with cereals such as sorghum or 

maize. Beside this staple crop usage, pearl millet is also grown in some parts of Brazil as a 

mulch crop in no-till soybean systems. The plant is not grown for its yield but for its ability to 

produce dense mulch in acidic soils. Mulch crop offers a permanent soil cover that recycles 

nutrient, limits erosion and weed growth. In central Asia, pearl millet is being tested as a 

rotational crop after wheat to increase cropping intensity and incomes and to limit soil 

erosion. These examples show that, apart from its major use as a staple crop, unique 

properties of pearl millet such as tolerance to drought and to acidic soils allow the emergence 

of novel uses for this cereal. 

Pearl millet yields are low comparing to other cultivated cereals: around 900 kg/ha in 

2014 at the worldwide level (FAO, 2014) comparing to 1.5 tons/hectare for sorghum, 3.3 

tons/hectare for wheat and 5.6 tons/hectare for maize. Short cycle varieties generally produce 

lower yields but reduced cycle length is not the only factor limiting yield in pearl millet, as 

Indian F1 hybrids were reported to yield 3 to 4 tons/ha in 80 days in optimal conditions 

(Bidinger and Hash, 2004). The world production is mainly consumed locally, the amount of 

international trade staying below 0.5 million tons in 2014. The first exporter is India, whereas 

African countries keep all their production for local consumption. The exchange price is 

around 250 $/ton. 

1.5 Nutritional data  

Pearl millet is a highly nutritious cereal with high protein content (about 10% and up to 

24% for some cultivars) and a 5% fat content (Andrew and Kumar, 1992). Its amino acid 

profile is better than that of maize or sorghum. It tends to have higher nutritional value than 

sorghum grown in equivalent culture conditions (Andrew and Kumar, 1992). Its micronutrient 

content is also good, with high iron (from 60 ppm iron for improved varieties to over 80 ppm 

iron in germplasm and breeding lines), zinc (around 30 ppm) and magnesium contents (up to 

170 mg/100 g; Souci et al., 2000). Pearl millet seeds are usually eaten as porridge or flatbread. 

Pearl millet is also used to feed animals, after harvest or directly in the field by grazing, which 

limits costs and losses of nutrients associated with harvesting, processing, storing and feeding. 

It gives good results for feeding poultry, sometimes better than maize, and seems also suitable 

for pigs and beef cattle, especially by grazing (Andrew and Kumar, 1992). Despite its high 
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nutritional interest, average yield stays under 1 ton/ha in 2014 (FAO, 2014) and production is 

uncertain. 

1.6 Factors limiting pearl millet production 

Pearl millet is mostly grown in areas where the rainfall does not exceed 800 mm per year 

(Guigaz, 2002), the lower limit being around 150 mm per year. The soil is usually sandy and 

therefore drains water quickly, deep, with low soil organic matter (SOM) content and with 

low phosphorus (P) level. It is often grown in areas where no other cereal would grow. A 

number of abiotic or biotic factors limit peal millet yield.  

1.6.1 Abiotic factors 

1.6.1.1. Drought stress 

The main physiological stress is water scarcity and randomness of rainfall, especially at 

the beginning and at the end of the growing season. The Sahelian climate is made of a rainy 

season that lasts from two to four months and a dry season that lasts the rest of the year, but 

the length of the rainy season varies from one year to another. This may lead to early and late 

drought stresses that threaten crop establishment and grain filling respectively (Eldin, 1993). 

Seeds are usually sown just before the first rain and germinate when this first rain occurs. But 

while this event symbolizes the beginning of the rainy season, it is not necessarily directly 

followed by other rain events in the next days. The young seedling, which benefited from the 

initial water input to germinate, can therefore be submitted to water shortage during several 

days. It has been pointed out that pearl millet is usually grown in deep sandy soils with low 

SOM content. This kind of soil has low water retention capacity and water can drain quickly 

out of it. Moreover, the bare soil surface temperature can reach up to 45°C in some places, so 

it becomes clear that the soil surface dries out very quickly, leaving the seedling with very 

few water resource. This can lead to early crop loss. Models predict that climate change will 

lead to increased precipitation in West Africa (Li et al., 2012). However, they also predict an 

increase in extreme events as heavy rains, drought or flooding and an increased year-to-year 

variability of precipitations (Sultan and Gaetani, 2016). 

There is a wide variability of growth cycle length amongst pearl millet varieties, varying 

from 45 days for some very early varieties up to more than 140 days for very late varieties. 

These varieties have various appellations depending on places and local dialect. For instance 

they are called “Souna” for the early varieties and “Sanio” for the late ones in Senegal. Early 

varieties are usually grown in the Northern part of the growing area, where the length of the 

rainy season is short, in order to maximize the chance of success for the crop. On the contrary, 

the rainy season is longer in the South and it is therefore possible to grow late varieties in 

order to optimize the use of all the available water resource and therefore to maximize the 

yield potential. As it is possible to adapt the variety chosen to the expected length of the rainy 

season, and therefore to the amount of water averagely available, the randomness of this 

length can be a bigger problem for the crop success than the actual amount of rain. 
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1.6.1.2 Nutrient limitation 

Pearl millet is grown on soils with a low SOM and fertilizer use is low or absent. In 

most part of West Africa, the most limiting nutrient is phosphorus (Chien et al., 1990; Payne 

et al., 1991). It is sometimes considered that the lack of nutrient is the main limiting factor for 

pearl millet growth, because its occurrence creates or reinforces the existing drought stress. 

This effect occurs because the lack of nutrients limits the development of the root system, 

thus preventing the plant from an optimal use of soil water resource. In addition, farmers tend 

to limit plant density on poor soils, leading to a greater evaporation and then lower water use 

efficiency. In a sense, water stress can then be considered as a consequence of low nutrient 

availability. Thus, the low availability of phosphorus in the soil could affect the success of the 

development of culture. After phosphorus, nitrogen is the second mineral limiting plant 

growth. This constraint limits crop yield but, unlike water or phosphorus, it does not 

jeopardize its establishment. 

1.6.1.3 Other abiotic factors 

Amongst other factors that may affect the culture, high temperatures play an important 

role. Their impact on culture is strongly linked to the state of the plant water status. Indeed, 

transpiration in leaves limits the excessive rise in temperature of the plant cover, but this 

phenomenon is only possible when water is available. Mechanical stress, which takes the 

form of a compact soil, hard to penetrate for the roots, is usually not a major problem for pearl 

millet. Sandy soils generally remain light and oppose little resistance to mechanical 

penetration. This constraint may nevertheless occur, especially when plowing led to the 

formation of a harder horizon under the plowed horizon, called hard pan. Soil acidity is also a 

limiting factor, although pearl millet is usually very tolerant to this phenomenon (Scott-Wendt 

et al., 1988). Soil salinity may also reduce pearl millet yield. 

1.6.2 Biotic stresses  

The main biological threats to pearl millet production, according to ICRISAT (2013), 

include: 

- Weeds: weedy wild relatives were already mentioned. The main weed in pearl millet 

fields is striga (Striga hermonthica), a parasitic plant. Its incidence increases with 

phosphorus deficiency and the shortage of this element for the crop is therefore a double 

punishment because, on top of lacking an essential micronutrient, it is also more likely 

to be parasitized. Striga has a strong impact on yield, going up to 100% of yield loss, 

and it affects about 40% of the cereal-producing area in sub-Saharan Africa (Gurney et 

al., 2006; Kountche et al., 2013). 

- Various fungal and pseudo-fungal diseases, especially downy mildew (caused by 

Sclerospora graminicola and Plasmopara penniseti), blast (caused by Pyricularia 

grisea), smut (caused by Moesziomyces penicillariae), ergot (caused by Claviceps 

fusiformis) and rust (caused by Puccinia substriata var. penicillariae). 

- Bacterial diseases as bacterial spot (Pseudomonas syringae) and bacterial leaf streak 

(Xanthomonas campestris pv. pennamericanum). 

- Insect pests, including millet head miner and stem borers. 



Introduction 

24 

 

- Parasitic nematodes. 

 

Many constraints limit pearl millet production and abiotic conditions play a central role 

among them, especially water and nutrient limitations. Improving pearl millet root system 

could help optimizing their uptake and therefore increase yield in limiting conditions, without 

resorting on greater inputs. A good knowledge of root system structure and functioning is 

necessary to identify relevant traits to improve. Knowing the genetic basis controlling the 

establishment of this root system may allow the use of marker assisted selection, a powerful 

tool that fasten breeding on selected traits (Steele et al., 2006). 

2. The root system of cereals 

A root is defined as a highly differentiated multicellular axis found only in the 

sporophytes of vascular plants that typically has a rootcap, endodermis, pericycle and lateral 

roots (Seago and Fernando, 2013). The root system is the network formed by all the roots of a 

plant. Its main functions are anchorage of the plant body to its substrate and absorption of 

water and dissolved minerals to support growth and development. In some cases, it also 

fulfills storage and vegetative reproduction.  

2.1 Root system organization 

The root system is formed of a plurality of root types: 

- the primary root is derived from the radicle that emerges from the seed. The destiny 

and the importance of that root vary widely depending on the plant.  

- seminal roots are embryonic roots formed within the scutellar node of the plant 

embryo in some monocotyledonous plants (Plant Ontology). Rice primary root is also 

often designed as “seminal root” (Rebouillat et al., 2009). 

- adventitious roots are post-embryonic roots emerging from non-root tissue. They have 

different names according to the tissue from which they originate. Typically, crown 

roots are shoot-borne roots emerging from a stem node (Plant Ontology). They can be 

induced by exogenous factors, like sugar in Arabidopsis thaliana (Takahashi et al., 

2003) or be produced ontogenetically.  

- lateral roots emerge from a mature root that can be a primary, seminal, adventitious or 

lateral root. They may be referred as branch roots or secondary roots.   

Root system organization differs between Monocots and Dicots. In Dicots such as A. 

thaliana, the primary root persists over time and is the major axis of the mature root system. 

This gives rise to a so-called taproot root system. In contrast, in Monocots such as cereals the 

importance of the primary root is limited and it regresses quickly. Adventitious roots form 

most of the root system, forming what is called a fibrous root system. The components of the 

root system of a young Monocot are presented in Figure In-3, based on the example of maize 

root system. 

 



Introduction 

25 

 

 
Figure In-3: Maize root system as example of cereal root system. 14-day-old maize seedling 

displaying primary (PR), seminal (SR), shoot-borne crown (CR) and lateral (LR) roots.  

Reproduced from (Hochholdinger and Feix, 2002).  

Drawing by Miwa Kojima (Iowa State University).  

2.2 Genetic control of cereal root system development 

Root system architecture depends on: 

- the growth of individual root types,  

- the formation of new roots, emerging from a root (lateral roots) or from a non-root 

tissue (adventitious roots),  

 - root angles. 

Root system development in cereals includes development of the primary root and 

lateral roots, which are common between Monocotyledonous and Dicotyledonous plants, and 

crown root development, which is characteristic of Monocots. While the genetic bases of root 

development have been largely explored in the model plant Arabidopsis, they are less well 

known in cereal crops. Genetic studies on root system development in Monocot were mostly 

performed on the model plant rice (Oryza sativa) and on maize (Zea mays).  

2.2.1 Primary root growth 

Genes controlling primary root growth have been identified in rice. They are mostly 

involved in root apical meristem maintenance and cell elongation, two processes that mainly 

drive root growth. The srt1 (short root 1) and rrl1 (reduced root length 1) mutants have 

reduced root growth, due to reduced cell elongation (Ichii and Ishikawa, 1997, Inukai et al., 

2001). RRL1 was proposed to promote the beginning of cell elongation (Inukai et al., 2001b) 

but the exact nature of the protein coded by this gene is not documented yet. RRL2 

(REDUCED ROOT LENGTH 2) inhibits the transition of the cell from division to elongation. 
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Accordingly, the rrl2 mutant has reduced root growth, due to a reduced cell length but also to 

a shorter root apical meristem and a smaller cell flux (Inukai et al., 2001b). Similarly, the 

shoebox (shb) rice mutant has shorter and fewer cells in the root meristem (Li et al., 2015). 

SHB encodes an AP2/ERF transcription factor that directly activates transcription of a 

gibberellic acid (GA) biosynthesis gene and therefore GA production. Accordingly, the shb 

phenotype can be rescued by GA application or phenocopied by application of a GA 

biosynthesis inhibitor. This indicates that GA regulates root meristem size (through cell 

division and elongation) in rice (Li et al., 2015). 

Conversely, the crl2 (crownrootless 2) mutant has longer cell size, longer apical 

meristem and higher cell flux (Inukai et al., 2001b). CRL2 promotes the transition of 

meristematic cells from division to elongation. SRT6 (Short Root 6) positively controls 

primary root growth. It was suggested that SRT6 plays a role in abscisic acid (ABA) 

perception or signal transduction (Yao et al., 2003). The srt5 (short root 5) mutant has a very 

short root system at one week, but it recovers after 45 days. The SRT5 gene was first 

suggested to be involved in ABA biosynthesis (Yao et al., 2002) but further studies suggested 

that srt5 phenotype was sugar-dependant and that ABA regulation of root growth in this 

mutant was mediated by sugar (Yao et al., 2004). Retarded seedling root growth in this 

mutant might be due to deficient sugar transport from photosynthetic leaves to seeds during 

their maturation, underlying the fact that early root growth is also determined by seed traits. 

Phosphorus-starvation tolerance 1 (PSTOL1) is a gene identified in Kasalath, 

responsible for a major quantitative trait locus (QTL) for phosphate deficiency tolerance 

(Gamuyao et al., 2012). It was isolated in a traditional rice variety and is absent from the rice 

reference genome and modern rice varieties, that are intolerant to phosphorus starvation. This 

gene codes for a protein kinase and acts as an enhancer of early root growth, enabling plants 

to acquire more phosphorus and other nutrients. This demonstrates the importance of root 

characters for abiotic stress tolerance. 

Our current knowledge of the genes regulating root growth in cereals, with rice as 

model, is summarized in Figure In-4. 

 
Figure In-4: Gene networks controlling root growth in rice. Arrows represent the positive 

regulatory action of one element of the network on another one. A line ending with a trait represents 
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the negative regulatory action of one element of the network on another one. Dotted line represent 

hypothetical link between two elements. Text color code: genes, black; hormones, blue; signals, red; 

biological processes, green.  

Modified from (Mai et al., 2014). 

2.2.2 Lateral root formation 

Lateral roots arise from divisions of specific cells within the parent root. In maize, rice, 

barley and wheat, these lateral root founder cells originate from pericycle and endodermal 

cells located opposite to phloem poles (Casero et al., 1995; Hochholdinger et al., 2004). 

Lateral root development follows an acropetal sequence, the youngest primordia forming 

closest to the root tip. In rice, lateral root primordia are first observed between 3 and 6 mm to 

the root tip but lateral root priming is supposed to happen as close as 1 mm to the root tip 

(Takehisa et al., 2012). Primordia are first observed 10 to 15 mm from the root tip in maize 

(MacLeod, 1990) and 10 to 20 mm from the root tip in barley (Babé et al., 2012).  

Lateral root initiation has been extensively studied in A. thaliana. In this model plant, 

the phytohormone auxin plays a central role in this developmental process (reviewed in 

Lavenus et al., 2013). It also plays a central role in lateral root development in cereals 

(Orman-Ligeza et al. 2013). Indeed, the majority of cereal mutants affected in lateral root 

initiation and development are related to auxin. A parallel between the gene regulatory networks 

controlling crown root and lateral root initiation in rice and lateral root initiation in Arabidopsis is 

presented in Figure In-5. 

In rice and maize, lateral root initiation requires local auxin accumulation that is 

dependent on the specific activity of auxin efflux carriers encoded by the PIN-FORMED 

(PIN) gene family (Wang et al., 2009, Jansen et al 2012). Mutation in CROWN ROOTLESS 4 

(CRL4), also known as OsGNOM1, leads to a reduced number of lateral roots and the absence 

of crown roots (Liu et al., 2009). OsGNOM1 is a large guanine nucleotide exchange factor 

(GEF) for ADP-ribosylation factor that regulates the intracellular trafficking of the PIN auxin 

efflux carriers. The expressions of OsPIN2, OsPIN5b, and OsPIN9 are also altered in crl4 

(Kitomi et al., 2008; Liu et al., 2009).  

Auxin perception mechanisms have been well characterized (Salehin et al., 2015). It 

involves a co-receptor made of a member of the TRANSPORT INHIBITOR RESPONSE1 

(TIR1)/ AUXIN SIGNALING F-BOX (AFB) protein family and an Aux/IAA protein. 

Aux/IAAs are early auxin response genes that encode repressor of auxin response. Upon auxin 

binding to the co-receptor, Aux/IAAs are degraded and this leads to de-repression of AUXIN 

RESPONSE FACTOR (ARF)-mediated transcription of auxin-responsive genes (Salehin et 

al., 2015). In maize, auxin perception in lateral root founder cells is mediated by the Aux/IAA 

gene ZmIAA10 also known as ROOTLESS WITH UNDETECTABLE MERISTEM1 (RUM1). 

RUM1 represses auxin responsive genes via the interaction with the ZmARF25 and 

ZmARF34 transcription factors (Von Behrens et al., 2011). Accordingly, the dominant 

negative rum1 mutant is impaired in LR initiation in the primary root (Woll et al., 2005). 

High level of auxin in pericycle founder cells lead to the degradation of RUM1 proteins 

which activates the expression of downstream auxin response genes and leads to the cell 

division and lateral root initiation. In rice, OsIAA13 controls the expression of genes that are 
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required for lateral root initiation in a similar way as ZMIAA10 (Kitomi et al., 2012). OsIAA11 

and OsIAA30 have similar sequences and expression patterns as OsIAA13, suggesting that 

they may have redundant function in lateral root initiation (Jain et al., 2006; Zhu et al., 2012). 

Altogether, the auxin-mediated pathway controlling lateral root formation seems to be 

conserved between Arabidopsis and model cereals (rice and maize). This was further 

confirmed by comparative transcriptomics studies that revealed a common transcriptional 

regulation during lateral root initiation in Arabidopsis and maize (Jansen et al., 2013). This 

suggests that the genetic pathways regulating root development discovered in Arabidopsis 

could be translatable in cereal crops. 

Other phytohormones regulate lateral root formation. In rice, cytokinin treatment 

inhibits lateral root initiation but increases lateral root growth (Debi et al., 2005). However, 

the genes implied in these responses are hardly known in cereals. ABA treatment leads to 

initiation of lateral root primodia in the tips of young seminal rice roots (Chen et al. 2005) 

through an increase in cytoplasmic Ca
2+

 that activate downstream signaling components, such 

as calcium/calmodulin-dependent protein kinase or phosphatase via a Ca
2+

-calmodulin 

complexe. This changes the phosphorylation status of actin depolymerization factor and 

causes rearrangement of the cytoskeleton during cell growth leading to root tip swelling, root 

hair formation and lateral root formation (Chen et al., 2005). 

 

 
Figure In-5: Gene regulatory networks controlling crown root and lateral root initiation in rice 

and lateral root initiation in Arabidopsis. The corresponding early cellular events of root initiation 

in Arabidopsis are noted. Arrows represent the positive regulator y action of one element of the 

network on another one. Genes are denoted in black, hormones in green, miRNA in blue and 

regulatory molecules in red. A line ending with a trait represents the negative regulatory action of one 

element of the network on another one. Dotted lines represent hypothetical links between two 

elements. Abbreviations: AFB2, auxin signalling F-box2; ARF, Auxin Response Factor; ARL, 

adventitious rootless; ARR, type-a response regulator2; AUX/IAA, auxin/indole-3-acetic acid; CK, 

cytokinin; CO, carbon monoxide; CRL, crown rootless; GNOM1, membrane-associated guanine 

nucleotide exchange factor of the ADP-ribosylation factor G protein (ARF-GEF); HO1, heme 
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oxygenase 1; LBD, lateral organ boundaries domain; MJ, methyl jasmonate; NO, nitric oxide; PIN, 

pin-formed auxin efflux carrier proteins; TIR1, transport inhibitor response 1; WOX11, WUSCHEL-

Related Homeobox 11.  

(Orman-Ligeza et al., 2013). 

 

2.2.3 Crown root formation 

Genes involved in crown root formation are largely common with those regulating 

lateral root development. Once again, auxin plays a central role through a pathway similar to 

the lateral root initiation pathway described in Arabidopsis (Figure In-5). However, some 

differences have been reported between lateral and crown root formation. 

In terms of auxin signaling, CROWN ROOTLESS 1 (CRL1) is required for crown root 

primordia initiation in rice (Inukai et al., 2001a). It codes for a protein of the LATERAL 

ORGAN BOUNDARIES (LOB) family also known as LOB DOMAIN 3-2 (OsLBD3-2) 

(Coudert et al., 2013) and its expression is induced by auxin, via the de-repression of OsARF1 

(Inukai et al., 2005). RTCS (rootless for crown and seminal roots) is a maize orthologous of 

CRL1 that codes for a LOB-domain protein and is involved in embryonic seminal and crown 

root emergence but not in lateral root initiation (Hetz et al., 1996; Taramino et al., 2007).  

Crown root initiation also implies cytokinin and this pathway is better known than for 

lateral root initiation. In rice, two genes from the APETALA2 / ETHYLENE RESPONSIVE 

FACTOR (AP2/ERF) transcription factor family were found to be implied in cytokinin 

pathway. The first one, CROWN ROOTLESS 5 (CRL5), is expressed in response to auxin, as 

direct target of OsARF1 (Kitomi et al., 2011). It is close to the Arabidopsis gene 

AINTEGUMENTA (ANT), which regulates growth during lateral organ development. CRL5 

positively regulates OsRESPONSE REGULATOR1 (OsRR1) and OsRR2, two type-A 

cytokinin-responsive regulator genes, expression. This pathway is only implied in crown root 

emergence, as crl5 produces fewer crown root but has a normal amount of lateral roots 

(Kitomi et al., 2011). The second one, ERF3, binds OsRR2 in crown root primordia (Zhao et 

al., 2015). In emerging crown roots, the WUSCHEL-related Homeobox gene WOX11 is 

expressed, it interacts with ERF3 and binds to OsRR2, leading to inhibition of ERF3 function 

or direct repression of OsRR2 and enhanced cytokinin signaling that promotes crown root 

growth (Zhao et al., 2009, 2015). There are two parallel pathways regulating OsRR1 and 

OsRR2, one implying CRL1/CRL5 and the other ERF3 and WOX11. They lead to the 

repression of cytokinin signaling and promotion of cell division during crown root initiation. 

2.2.4 Root angle 

Crown root angle plays an important role in the shape of the root system, as high crown 

root angles to the vertical result in an increase in deep rooting. In rice, crown root growth 

direction is positively correlated with apical diameter (Araki et al., 2002) and genotypic 

variation has been evidenced for root growth angle in upland fields (Kato et al., 2006). DEEP 

ROOTING 1 (DRO1) gene was shown to influence crown root angle by mediating root 

gravitropic response (Uga et al., 2013). Indeed, it promotes cell elongation and is degraded by 

auxin, which is distributed to the lowest part of the root in response to gravity (Band et al., 
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2012). DRO1 is thus degraded in the lowest side of the root, leading to a slower growth of 

downward cells compared to upper ones. IR64, a leading paddy cultivar with shallow rooting, 

transformed with the DRO1 allele of Kinandang Patong, an upland cultivar from the 

Philippines that shows deep rooting, showed deeper rooting due to an increased root angle 

and had enhanced drought tolerance. A noticeable fact for this gene is that this transformation 

did not lead to different root biomass.  

2.3 Pearl millet root system 

Few studies were published on pearl millet root system. A general description was 

given by Maiti and Bidinger (1981) defining different root types: 

- the seminal or primary root, derived directly from the radicle;  

- adventitious roots, which develop from nodes at the base of the stem;  

- crown (or collar) roots, which originate from several lower nodes of the stem at or 

above the soil surface.  

2.3.1 Developmental dynamics 

Lateral roots and adventitious roots start to appear respectively 3-4 days after 

germination on the primary root and 6-7 days after germination in the nodal region at the base 

of the seedling stem (Maiti and Bidinger, 1981). In the field, adventitious roots were first 

spotted at the 5-leaf stage, 9 to 10 days after germination (Chopart, 1983). Their number 

varies from three to five per shoot and they are thicker than the primary root (Maiti and 

Bidinger, 1981). The crown roots appear in the lower nodes of the stem near the soil surface 

approximately 30 days after germination. The crown roots stay unbranched during several 

days before developing many lateral branches by the time of flowering (Maiti and Bidinger, 

1981). Regular measures of average diameters in the field revealed that at 30 days, the 

average diameter stays high, meaning that the root system does not have many lateral roots at 

this stage (Chopart, 1983). 

The primary root system, formed by the primary roots and all its laterals, leads the 

growth of the root system during the first 15 days, at an average speed of 2 cm/day, and is 

then outdistanced by the adventitious root system, that grows at an average speed of 3.5 

cm/day during 50 days (Chopart, 1983). Pearl millet roots were found at up to 2 meters in 

depth (Brück et al., 2003a) and more than 3 meters laterally from the stem (Chopart, 1983). 

The primary root system remains functional up to 45 to 60 days after germination, before 

decaying (Maiti and Bidinger, 1981). This correlates with a peak of root system biomass 

observed two months after germination in well-watered plants grown in pots (Payne et al., 

1991). The decline of root biomass observed after that date was attributed to root dying and 

carbon translocation to shoots. 

2.3.2 Root function 

Adventitious roots rapidly develop a very extensive system of secondary and tertiary 

branches and are the main pathway for supplying water and nutrients to the plant during most 
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of its life and in particular during flowering and grain filling (Maiti and Bidinger, 1981). 

Crown roots are considered to serve mainly as support for the stem but their lateral roots 

appear to be active in the uptake of water and nutrients.  

2.3.3 Response to limiting conditions 

Both water and phosphorus supply have a positive influence on root system growth 

compared to situation with limited access to these two resources (Payne et al., 1991). In water 

stressed conditions, root biomass was increased by P supply, but this increase did not depend 

on the dose of P applied, which suggests that, above a minimal P supply, root biomass was 

limited more by water than P. Conversely, root biomass was increased by P supply in well-

watered conditions. The authors conclude that water supply under dry conditions cannot be 

effectively managed for pearl millet production without addressing soil fertility constraints. 

Another study confirmed that root length is positively correlated with P supply, which 

suggests that low P availability could increase pearl millet sensitivity to drought stress, due to 

a reduced root system development (Brück et al., 2003b). Pearl millet root system responds to 

drought by growing longer crown roots (Rostamza et al., 2013). In the case of water 

experimentally supplied only to primary root system, which could mimic a situation where 

water is available in depth but the subsoil is very dry, crown roots grew anyway, possibly 

with phloem-delivered water coming from the primary root system. A sufficient water uptake 

by primary root system in depth could therefore help the plant maintain its development, even 

if the topsoil is extremely dry. This situation may happen at the beginning of the growing 

season, when rain events may be spaced. Pearl millet is very resistant to drought but is in 

return very sensitive to waterlogging (Zegada-Lizarazu and Iijima, 2005). This justifies that 

pearl millet is nearly often grown on sandy and draining soils and is replaced by other cereals 

(sorghum, maize or rice) as soon as the soil is susceptible to waterlogging. 

2.3.4 Comparison with other species and existing diversity 

Pearl millet roots were shown to be longer than sorghum’s in pot experiments 

(Rostamza et al., 2013). Pearl millet has also been compared to other millet species, a group 

of small-seeded cereals, in different watering conditions (Zegada-Lizarazu and Iijima, 2005). 

It appeared that pearl millet was the most resistant plant to drought compared to other millets. 

This was explained by high water use efficiency in this condition but not by increased water 

uptake efficiency in deep soil layers as compared to barnyard millet, another drought-resistant 

millet species. This suggests that deep water uptake could be improved in pearl millet. On the 

opposite, it was the most sensitive species to waterlogging, with the largest decrease of water 

use efficiency in this condition.  

Inside pearl millet species, substantial genotypic variation were found among eight 

different varieties for root length density for root dry matter and total root length but not for 

depth of rooting or partitioning of roots between topsoil and subsoil (Brück et al., 2003b).  
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2.3.5 Ideas for improving the root system adaptation to main abiotic constraints 

The main abiotic constraints the root system may help coping with are water and 

nutrient limitation. In particular, survival of the young seedling can be critical due to both 

phosphorus and water scarcity. Interestingly, an ideal root system phenotype for water and 

phosphorus uptake was suggested (Chopart, 1983). Water uptake requests that the roots grow 

rapidly in depth because of the quick water drainage of the sandy soils where millet is usually 

grown. On the contrary, phosphorus nutrition would request the formation of a dense root 

system in the topsoil where phosphorus is present. This might seem contradictory but as 

phosphorus uptake can only occur in a wet soil layer, which is not always the case for the 

topsoil, the ideal phenotype would be a root system that grows rapidly in depth and produces 

a dense lateral root system all along the soil profile. Comparing the actual root system to the 

ideal one leads to conclude that improving the early growth speed would be beneficial for 

pearl millet crops. This hypothesis seems supported by previously cited studies, showing that 

pearl millet has low water uptake in depth compared to other millet species resistant to 

drought (Zegada-Lizarazu and Iijima, 2005) and that water uptake from the primary root 

system can be sufficient to maintain seedling development in case of very dry topsoil 

(Rostamza et al., 2013).  
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Objectives of the thesis 

 

Water and nutrient availability are two major factors limiting pearl millet growth, in 

particular in Africa. As root system architecture is a critical factor for the acquisition of these 

elements, breeding of adapted root systems is a promising strategy to improve pearl millet 

tolerance to drought and low soil fertility. However, very little is known about pearl millet 

root system development and function. Its general developmental dynamics has been 

described but variability exists among pearl millet cultivars and it has been poorly explored. 

Moreover, previous studies mainly considered the root system as a whole and did not separate 

primary, crown and lateral roots, although their functions are different. Furthermore, these 

studies mainly used destructive methods to study the root system. Modern phenotyping 

techniques now allow non-destructive studies and thus precise measurement of temporal 

characters associated to root development.  

In this context, the first aim of my work was to produce a precise description of pearl 

millet root system. We therefore performed a general morphologic description of early root 

system development, obtained quantitative data on root system development dynamics as well 

as anatomical description of the different types of root. We also evaluated the diversity 

existing among a panel of diverse pearl millet lines. These results are presented in Chapter 1.  

Our data showed that variability existed among lateral root growth. Hence we designed 

a pipeline to efficiently measure growth profiles of a large number of lateral roots and used a 

statistical model to classify lateral roots according to these growth profiles. This classification 

was used to characterize this variability and to condense it. This reduction of temporal 

complexity allowed to probe the relationship between lateral root growth behavior and other 

characters, especially root anatomy. It also allowed to characterize the repartition of these 

different lateral root types along the primary root and to assess the local influence of root 

types on neighbor lateral roots. These results are detailed in Chapter 2. This work was 

conducted in parallel on two species, pearl millet and maize, allowing us to underline 

specificities for each species. 

Little is known about the genetic control of root development in pearl millet. We 

initiated a genetic study (using a genome wide association study approach) to identify genes 

involved in primary root growth. A large diversity panel was phenotyped for primary root 

growth rate and each accession was genotyped by sequencing. Chapter 3 presents the 

methodology used and the results obtained after phenotyping and genotyping.  
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This chapter is composed of three parts. The first part is a journal article (Passot et al., 

2016) that was published in Frontiers in Plant Sciences. The general aim of this paper was to 

provide a morphological and anatomical description of pearl millet root system, especially in 

early stages. A new nomenclature for roots was also needed, as the existing names for pearl 

millet root (Maiti and Bidinger, 1981) were in contradiction with Plant Ontology, which is the 

most broadly shared reference for naming plant elements. This paper provides a dynamic 

description of early stages of pearl millet root system architecture and an anatomical 

description of the different types of roots. It revealed the existence of three types of 

anatomically distinct lateral roots. It also evidenced the existence of a large diversity in early 

primary root growth and lateral root density among a small diversity panel of pearl millet 

inbred lines thus serving as a proof of concept for genetic analyses. 

 

The second and third parts are supplementary results. The detailed root set up dynamics 

of two pearl millet inbred lines with contrasted root traits identified during the high 

throughput phenotyping experiment are compared in the second part. The root systems of 

plants grown in well-watered or drought-stressed conditions, observed with X-ray 

microcomputed tomography, are compared in the third part. 

 

1.  Characterization of pearl millet root architecture and anatomy 

reveals three types of lateral roots 
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Abstract 

Pearl millet plays an important role for food security in arid regions of Africa and India. 

Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of 

genetic improvement efforts. Breeding pearl millet varieties with improved root traits 

promises to deliver benefits in water and nutrient acquisition. Here, we characterize early 

pearl millet root system development using several different root phenotyping approaches that 

include rhizotrons and microCT. We report that early stage pearl millet root system 

development is characterized by a fast growing primary root that quickly colonizes deeper 

soil horizons. We also describe root anatomical studies that revealed 3 distinct types of lateral 

roots that form on both primary roots and crown roots. Finally, we detected significant 

variation for two root architectural traits, primary root length and lateral root density, in pearl 

millet inbred lines. This study provides the basis for subsequent genetic experiments to 

identify loci associated with interesting early root development traits in this important cereal.  

Keywords 

Lateral root, root growth, metaxylem, root architecture, breeding 

1.1 Introduction 

In Africa, most of the recent increase in agricultural production has been due to the 

expansion of cultivated lands rather than an increase in yields (Bationo et al, 2007). 

Moreover, several climate models predict that global changes may reduce the potential 

productivity of cereals (Berg et al., 2013). For example, millets potential productivity is 

predicted to decrease by 6% in the driest cultivated regions. In order to achieve future food 

security in Africa, it is therefore necessary to improve crop productivity through breeding and 

improved agricultural practices. 

Pearl millet (Pennisetum glaucum (L.) R. Br.) is the sixth most important cereal grain in 

the world (FAO, 2014). It accounts for 6% of the total cereal production in Africa, and 14% in 

West Africa alone (FAO, 2014). Pearl millet grain is a significant source of micronutrients 

such as iron and zinc with contents higher than those in other cereals (Souci et al., 2000). 

Both in sub-Saharan Africa and India, it potentially represents one of the cheapest food 

sources of these micronutrients and proteins when compared with other cereals and 

vegetables. In addition, pearl millet is well adapted to dry climates and is mostly grown in 

areas with limited agronomic potential characterized by low rainfall, in the 200-500 mm 

range, and marginal soils (Guigaz, 2002). These facts make millet an important food staple 

over much of the African continent, especially in the semi-arid areas of the Western Sahel 

where other crops tend to fail because of inadequate rainfall and poor soil conditions. Thus 

pearl millet is an important cereal in arid and semi-arid regions where it contributes to food 
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security and is expected to have an increased importance in the future adaptation of 

agriculture to climate change in sub-Saharan Africa.  

Despite its importance, pearl millet is considered as an orphan crop because it has 

received very little support from science, industry and politics while other crops such as 

wheat, rice or maize were subjected to intense efforts of genetic and agronomic improvement. 

As a result, it lags behind sorghum and far behind the other major cereals in its genetic 

improvement. Its average grain yields barely reach 900 kg/ha, compared to 1500 kg/ha for 

sorghum (FAO, 2014). Moreover, production has increased by only 0.7% a year in West 

Africa during the last two decades, the lowest growth rate of any food crop in the region and 

far less than the population's growth rate of nearly 3% per year (United Nations Statistics 

Division, 2016). However, its untapped genetic potential is vast and could be used to improve 

pearl millet tolerance to some environmental factors that are the main limitations to its growth 

potential. For instance, pearl millet is mostly grown in marginal soils such as sandy soils in 

Western Sahel where low water and nutrient (particularly phosphate) availability are major 

limiting factors. Moreover, root establishment in poor soil is essential to ensure efficient use 

of available water. 

The importance of root architecture for water and nutrient acquisition has been well 

documented in both monocots and dicots, and could be successfully used for root trait-

targeted genetic improvement. For example, targeted modifications of root architecture in pea 

to increase P acquisition efficiency were achieved (Lynch, 2011). Pearl millet is a monocot 

species displaying a fibrous root system in which different categories of roots can contribute 

to a various extent in root system growth, branching and tropism dynamics as well as to water 

transport. Importantly, substantial differences in root traits were reported for 8 pearl millet 

varieties grown in soil in Niger (Brück et al., 2003) indicating a potential genetic diversity 

that could be used for breeding and selecting new varieties with improved root systems. 

However, the detailed structure and dynamics of pearl millet root system has not been 

described and very little is known about root growth and anatomy.  

Here, we analyzed root architecture during the early phase of pearl millet development. 

Furthermore, we identified and characterized the anatomy of the different root types. Finally, 

we compared two root development parameters in 16 pearl millet inbred lines and show that 

there is a large diversity of phenotypes that could be exploited in later breeding studies. 

 

1.2 Material and Methods 

1.2.1 Plant material 

Pearl millet (Pennisetum glaucum (L.) R. Br.) inbred lines (Saïdou et al., 2009) 

originating from Indian, West and Central African landraces were used in this study. Seeds 

were surface sterilized with 5% hypochlorous acid for two minutes, rinsed three times in 

sterile water, then immerged in 70% ethanol for two minutes, rinsed three times again and 

kept for ten minutes in sterile water. Seeds were put in Petri dishes containing wet filter paper 

for 24 hours in the dark at 30°C for germination. The age of the plants are given in DAG 

(Days after Germination) i.e. the number of days from the date of seed- transfer onto the filter 

paper for germination. 
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1.2.2 Root phenotyping 

For analysis of root development, rhizotrons were built according to Neufeld et al. 

(Neufeld et al., 1989). They were composed of a 400 x 700 x 20 mm aluminum frame, and, 

from rear to front, a 5 mm extruded polystyrene layer, a 20 mm layer of substrate, a cellulose 

acetate tissue layer (40 µm mesh) and a 5 mm plexiglass (Figure 1-1A). In this system, the 

root system grows in two dimensions between the fabric and the plexiglass (Figure 1-1B). 

The cellulose acetate was chosen because it is both non-deformable, preventing roots to grow 

through (this was confirmed at harvest), and allows roots to remain hydrated. The water 

content of the substrate was evaluated at the onset of the experiment and later maintained 

above stressful threshold by daily weighing the rhizotrons and watering from the top. The 

substrate used was composed of 30% fine clay, 25% peat fibers, 5% blond peat and 40% 

frozen black peat (Klasmann-Deilmann France SARL). The average SWC (Soil Water 

Content) of the substrate was 56% (w:w). At one DAG, one germinated seedling (displaying a 

primary root of about 1 cm long) was transferred to the top of each rhizotron, in a layer of wet 

sphagnum. This layer permanently maintained wet in order to prevent the seedlings from 

drying out during the early stages of growth. The plants were placed in a 1 m² growth room 

with a 14 hour photoperiod, a temperature of 28°C/ 24°C during days/nights and a VPD of 1.5 

kPa. From the second day of growth onwards, rhizotrons were scanned (Epson Expression 

10000XL) every day at a fixed time at a resolution of 600 DPI. Root system outlines were 

then extracted using SmartRoot (Lobet et al., 2011). These outlines comprised information on 

all root lengths, branching position and angle for every scan.  

For high-throughput root phenotyping, a paper-based system was used (Figure 1-1C) 

according to Atkinson et al. (Atkinson et al., 2015).  One DAG-old seedlings were transferred 

into pouches and then maintained in a growth room with a 14 hours photoperiod (28°C during 

day and 24°C during night). Pictures of the root system were taken every 2 days for 6 days 

with a D5100 DSLR camera (Nikon) at a resolution of 16 M pixels. The camera was fixed on 

a holder to maintain the same distance between the lens and each root system. At six DAG, 

the root tip of the “fastest-growing” plants reached the bottom of the pouches. The experiment 

was repeated 4 times independently. Root traits (primary root length, lateral root density 

along the primary root and number of crown roots) were extracted using RootNav (Pound et 

al., 2013).  
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Figure 1-1: A: Scheme of the rhizotron used. B: A rhizotron at the end of an experiment. Scale 

bar: 5cm. C: One of the pouches used in the high-throughput phenotyping system. ps: plastic 

sheet, pr: plastic rod, gp: germination paper. These three elements are held together by foldeback 

clips (not visible here). 

1.2.3 Root sections and microscopy 

One DAG-old seedlings were transferred in a hydroponic system containing quarter 

strength Hoagland medium (Hoagland and Arnon, 1950) or put on the top of seed germination 

paper (Anchor Paper Company, USA) rolled on itself with the base immerged in distilled 

water (Hetz et al., 1996). The plants were kept in a growth chamber (12 hour photoperiod, a 

temperature of 27°C and an hygrometry of 60%) for 10 to 20 days. For sections of fresh 

material, 1-cm long samples were collected at the root apex and every 5 cm along the root  

and were embedded in agarose blocks (3% v/v in water) before sectioning, as described in 

Lartaud et al., (2014). The sampling positions were recorded. Transverse root sections 

(thickness 60 μm) were obtained using a HM 650V vibratome (Microm) and observed 

directly under the epifluorescence microscope. Some section were stained with Safranin and 

Alcian blue (FASGA, Tolivia & Tolivia, 1987). 

For thin sections, samples were fixed and dehydrated as described by Scheres et al. 

(1994). Samples were then embedded in Technovit 7100 resin (Heraeus Kulzer) according to 

the manufacturer’s instructions. Thin longitudinal sections (5 m) were produced with a 

HM355S microtome (Microm). Sections were stained for 15 min in aqueous 0.01% toluidine 

blue (pH=6,8) solution and mounted in Clearium Mountant (Surgipath). Sections were 

visualized using a Leitz DMRB epifluorescence microscope (objectives used: 10x, numerical 

aperture (NA)=0,3; 20x, NA=0,5; 40x, NA=0,75). Pictures were taken using a Retiga SRV 

FAST 1394 camera (QImaging) and the QCapture Pro7 software (QImaging). Vessel 

dimensions were measured using ImageJ.  
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1.2.4 X-ray microcomputed tomography 

Plants were transferred to pots (50 mm diameter and 120 mm height) containing 

“Newport Series Loamy Sand” soil (sand 83.2%, silt 4.7%, and clay 12.1%; organic matter 

2.93%; pH= 7.13; Nitrate= 5.48 mg.L
-1

; Phosphorus = Defra index of 3 (29.65 mg kg
-1

)) one 

DAG. Plants were maintained throughout the experiment at a soil water content of ~26% 

(w:w), which corresponds to 75% of field capacity. The SWC was monitored daily by 

weighing the pots. Plants were scanned with a v|tome|x M scanner (Phoenix/GE Systems), 

with a maximum energy of 240 kV, 4 times over an 18 days period (4, 8, 14 and 18 DAG) to 

image the root structure. Root systems were segmented manually from the image stacks using 

the VGStudio Max software (Volume Graphics GmbH). 

1.2.5 Statistical analyses and heritability estimates 

Statistical analyses were performed using R (R Development Core Team, 2008). An 

analysis of variance was performed to detect an effect of the line on the variability of the 

different root traits measured. When an effect was detected, a Tukey’s HSD (Honest 

Significant Difference) test was used to group lines of homogeneous means for the trait of 

interest.  

Broad sense heritability was computed by dividing the variance associated with line 

with the total variance of the character (variance associated with line + environmental 

variance + residual variance).  

Average seed weight for each line was evaluated and a Spearman’s rank correlation 

coefficient was computed to detect a putative correlation between seed weight and root trait. 

1.3 Results 

1.3.1 Early development of pearl millet root system  

The emergence and development of different roots in pearl millet seedling was studied 

in different growth conditions. Different roots observed at early stage are named according to 

the nomenclature presented in Figure 1-2A, based on the nomenclature used for maize root 

systems (Hochholdinger and Tuberosa, 2009). The first root to emerge from the seed, initially 

called the radicle, is then called the primary root. A small segment, called the mesocotyl, links 

the seed and the base of the shoot. At later stages of development, crown roots emerge from 

the base of the shoot. Branches that appear on the primary or crown roots are called lateral 

roots. The lateral roots can branch themselves, these ramifications being called secondary 

lateral roots.  

The developmental dynamics of the root system was studied more finely on pearl millet 

line LCICMB1 (line 109 of the panel). In all of the plants that we analyzed in rhizotrons (n = 

28), the early root system of pearl millet was made up of a single primary root that has 

emerged from the seed 12 to 24 hours after seed rehydration. This primary root grew 

vertically at an increasing rate during the first 6 DAG, reaching a maximum of 9.1 cm day
-1

. 

After that date, the primary root growth rate slightly slows down, but remains ca. 7 cm day
-1

 

at 11 DAG (Figure 1-2C). The average primary root length at 11 DAG was 66.3 cm. Crown 
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roots and lateral roots started to emerge respectively from the shoot base and on the primary 

root at 6 DAG. The average number of crown roots per plant is shown in Figure 1-2D. Crown 

roots started to emerge 6 DAG and were in average two per plant at the end of the experiment. 

This number is quite low and this experiment only captured the very beginning of crown root 

emergence period. Average crown root growth rate was 3.7 cm day
-1

. The number of lateral 

roots emerging each day on the primary root is shown on Figure 1-2E. Lateral roots started to 

emerge on the primary root 6 DAG. Their emergence rhythm increased until the end of the 

experiment, quickly up to 8 DAG and then slowly between 8 and 11 DAG. Lateral root 

density on the primary root was 4.2 roots cm
-1

. Lateral root growth rates were heterogeneous, 

reaching up to 3 cm day
-1

. Interestingly, crown roots and lateral roots started to appear at 6 

DAG, when primary root growth rate reached its maximum, and correlates with the 

emergence of the third leaf. 

 

 
Figure 1-2: A: Scheme of the various roots of a pearl millet seedling. B: Daily average length of 

the primary root. C: Daily average primary root growth rate. D: Daily cumulative number of 

lateral roots along the primary root. E: Daily cumulative number of crown roots. N = mean +/- 

standard deviation. 

Early root development was also analyzed in 3D in soil using micro-computed x-ray 

tomography (Figure 1-3). LCICMB1 plants were grown in small soil columns (5 cm diameter 

x 12 cm high) and scanned at 4, 8, 14 and 18 DAG. As in the rhizotrons, only primary root 

was visible at 4 DAG and crown and lateral roots could be detected from 8 DAG onwards. 

This indicated that these roots emerged between 4 and 8 DAG, but the time resolution was too 

rough to identify a precise emergence date. However, this time interval is consistent with their 

emergence time observed in rhizotron, of 6 DAG.  This observation therefore supports the 

hypothesis that rhizotrons provide a realistic assessment of root architecture development in 
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natural conditions. The 3D images also gave us information about the organization of the 

different roots in space. The primary root, first to emerge, grew nearly vertically into the soil 

volume. On the contrary, crown roots grew at an angle of between 20° and 40° to vertical. 

This angle appeared conserved for the first centimeters of crown root growth, but the small 

diameter of the pots scanned constraining root growth to just a few centimeters after 

emergence, did not allow us to check whether this angle could be maintained. Crown root 

emergence sites were distributed regularly in space around the stem base.  

Hence, early root system development in pearl millet is characterized by a fast growing 

primary root that quickly colonizes deeper soil horizons, while lateral and crown roots only 

start to emerge 6 DAG.  

 

 
Figure 1-3: Establishment of the architecture of a soil grown pearl millet root system using X-

Ray CT: 2D projection of a 3D image of the root system architecture. Images at 4, 8, 14, and 18 

DAG (days after germination). Scale bar: 1 cm. 

1.3.2 Anatomy of the different root types 

We next analyzed the cellular organization of primary, crown and lateral roots of young 

pearl millet plants (LCICMB1 line) grown on germination paper or in hydroponics. Root 

fragments were harvested at different positions along the root and transverse sections were 

obtained using a vibratome. As root characteristics did not vary strongly in the zone we 

sampled (Supplementary Figure 1-1 for example of stele diameter) we considered all the 

samples we had to define the anatomical features of the different root types (Table 1-1). 

Primary roots were characterized by a large diameter metaxylem vessel located at the 

center of the stele (Figure 1-4). Their ground tissue contained 3 to 5 layers of cortical cells. 

Aerenchyma differentiation was observed in mature parts of the root. Crown roots were 

thicker than primary roots with a significantly larger stele that contained 2 to 5 (3 in most 

cases) large metaxylem vessels separated by parenchyma cells (Figure 1-4, Table 1-1). They 

also showed 3 to 5 layers of cortical cells and aerenchyma. In both cases, cell wall 

autofluorescence was lower in the stele close to the root tip and increased particularly in the 

endodermis as the root matures, presumably because of cell wall lignification and 

suberization accompanying casparian strip formation.  
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Figure 1-4: Anatomical organization of a primary root (B-I) and a crown root (K-T), 11 and 15 

days after germination respectively. Transverse sections were performed every 5 centimeter, from 

the root apex to the root basis. A: general view of a primary root with the sampled zones marked by an 

arrow. B-E : transverse section of primary root observed in transmitted light (scale bar: 100µm). F-I : 

transverse section of primary root focused only on the root stele, observed in epifluorescence (natural 

autofluorescence at 460-480nm) (scale bar: 50µm). J: general view of a crown root with the sample 

zones marked. K-O : transverse section of crown root observed in transmitted light (scale bar: 100µm) 

P-T : transverse section of crown root focused only on the root stele, observed in epifluorescence 

(natural autofluorescence at 460-480nm) (scale bar: 50µm) co: cortex, ae: aerenchyma, MX: 

metaxylem, pX: peripheric xylem vessel, en: endodermis. 

In order to localize secondary deposition (lignin or suberin) in the cell wall, we 

performed FASGA staining on transverse sections of primary and crown roots (Figure 1-5). 

The formation of a typical horseshoe-shaped Casparian strip could be visualized in the 

endodermis of both primary and crown roots as they differentiated. In addition, the FASGA 

staining revealed 6 xylem poles, alternating with 6 phloem poles in the primary root (Figure 

1-5E), while we observed 12 to 16 xylem poles in crown roots (Figure 1-5D). Mature parts of 

crown roots displayed a sclerenchyma, surrounded by a hypodermis and a rhizodermis 

(Figure 1-5A).  
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Figure 1-5: Transverse section of crown roots and primary root stained with FASGA. Sections 

were performed at various level along the roots axis. A-C : transverse section of crown root, after 

FASGA staining. D: transverse section of a crown root after FASGA staining, focused on the stele 

(scale bar: 100 µm) sc: schlerechyma, en: endodermis, X: xylem vessel,  MX: metaxylem vessel, ph: 

phloem vessel, ae: aerenchyma. 

 

Longitudinal sections (5 m) through the primary root meristem revealed a closed 

meristem organization with cell files converging to a small group of cells whose location and 

size are consistent with those of quiescent center cells (Figure 1-6A). The metaxylem 

differentiated and expanded radially close to the putative initial cells. Cortex parenchyma 

cells accumulate metabolites, possibly starch grains, but further investigation is needed to 

identify the nature of this deposit. Longitudinal sections through the crown root meristem 

showed a similar closed meristem organization with a larger stele (Figure 1-6B). 
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Figure 1-6: Anatomical organization of primary root and crown apices observed on a 

longitudinal section, stained with toluidine blue, sampled 5 days after germination. A: 

Longitudinal section of a primary root apex. B: Longitudinal section of a crown root apex. QC: 

quiescent center, cc: central cylinder, co: cortex, MX: metaxylem vessel. (scale bar: 100 µm) 

 

Transverse sections through first order lateral roots (n = 33) branching from either 

primary or crown roots revealed distinct organizations. Interestingly, lateral roots could be 

classified into three types based on their anatomy (Figure 1-7, Table 1-1). Type 1 lateral 

roots are very thin (68-140 m diameter) with an anatomy characterized by a diarch (2 

protoxylem poles) stele without any central metaxylem vessel. Ground tissues include an 

endodermis, a bi-layered cortex, and epidermis, but neither sclerenchyma nor aerenchyma 

(Figure 1-7A, D, G, J). Type 2 lateral roots have a medium diameter (235-291 m), show 

one small (16 m diameter in average) metaxylem vessel and 3 layers of cortical cells. Like 

type 1, type 2 lateral roots have no sclerenchyma or aerenchyma (Figure 1-7B, E, H, K). 

Finally, type 3 lateral root exhibit the largest diameter (328-440 m similar to primary root) 

and the same organization as primary roots, independently of the root from which they 

emerge (i.e. primary root or crown root) (Figure 1-7C, F, I, L). Hence our anatomical studies 

have revealed that there are 3 distinct types of lateral roots that form on both the primary root 

and crown roots in pearl millet. 
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Figure 1-7: Comparative anatomical organization of lateral roots (left: transmitted light, right: 

autofluorescence). A-F : lateral root emerging from primary root. Picture F only shows the root 

stele. G-L: lateral root emerging from crown root. 3 root types are identified, independent of the 

mother root: Type I: small root diameter and no metaxylem (A, D, G & J), Type II: medium root 

diameter and small diameter metaxylem vessel, (B, E, H & K), Type III: large root diameter and large 

diameter central metaxylem vessel: (C, F, I & L). Scale bar: 20 µm 

1.3.3 Diversity in pearl millet root development 

We next addressed whether there was significant variation in pearl millet root 

architecture. We selected 16 lines from a panel of pearl millet inbred lines (Saïdou et al., 

2009). As our objective was to maximise diversity, these lines were sampled to represent the 

whole diversity observed in the phylogenetic tree of 90 inbred lines (Saidou et al., 2009), 

taking also into account a sufficient seed set availability and good germination rate. We 

analysed the root system of these plants using a germination-paper-based phenotyping 

platform (Atkinson et al., 2015).  

We observed large variation in primary root growth and lateral root density along the 

primary root among the individuals screened of this panel (Figure 1-8). In both cases, a 

significant part of this variability was explained by the genetic line variable (ANOVA p < 

0.01). The lines could be separated into groups of homogeneous means with a Tukey’s HSD 

test. For primary root length, the group identification showed some clear outliers with 

especially large or small values, associated with a group of lines with intermediate and quite 

homogeneous values (Figure 1-8A). For lateral root density, no clear outlier was observed, 

the values for all the lines forming a rather smooth continuum between small and large values 

(Figure 1-8B). The broad-sense heritability was equal to 0.72 for primary root length and to 
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0.34 for lateral root density. We tested whether the variability in early primary root growth 

was due to differences in available seed reserves (Supplementary Figure 1-2) by computing 

the Spearman’s rank correlation coefficient between average seed weight and primary root 

length for each line. The Spearman’s rank coefficient correlation was equal to 0.22. This 

value was not significantly different to zero (p = 0.21), indicating that no correlation could be 

found between seed weights and primary root length in our experiments. As seed mainly 

contains reserves, this result suggests that the differences we observed are not simply due to 

available reserves. 

 
Figure 1-8: High throughput pearl millet root phenotyping: distribution of primary root length 

(A) and lateral root density (B) among 16 pearl millet from a panel of inbred lines covering a 

large genetic diversity. Error bars represent standard deviation, letters represent Tukey’s HSD 

groups. 
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1.4 Discussion 

Here, we analyzed root system architecture at early stages of the pearl millet life cycle. 

We named the different roots following the current standards in terms of monocotyledonous 

root nomenclature (Hochholdinger et al., 2004). One striking feature of early pearl millet root 

development is the very rapid emergence and vertical growth of the primary root (7 cm day
-1

 

in our experimental conditions) compared to other cereals (3 cm day
-1

 for maize and wheat ; 

Muller et al., 1998; Pahlavanian and Silk, 1988; Pritchard et al., 1987). In contrast, root 

branching started relatively late after seedling germination (6 DAG). The X-ray CT 

experiment confirmed this global dynamics of early root system formation. Traditionally, 

pearl millet is sown at the very start of the rainy season. As it was domesticated in Sahel 

(Oumar et al., 2008) and is mostly grown in areas characterized by light soils with a low 

carbon content and water retention capacity, we hypothesize that the observed developmental 

pattern can be favorable to the rapid colonization of deep soil horizons that retain some water. 

This might therefore be an important adaptive strategy to deal with early drought stress. The 

observed anatomy of pearl millet roots is consistent with those found in other cereals such as 

rice (Rebouillat et al., 2009), wheat, barley and triticale (Watt et al., 2008) or maize 

(Hochholdinger, 2009). A striking difference between the different root types comes from the 

number of central metaxylem vessels: one (or two) in the primary root, always more than two 

in the crown roots, including the root emerging from the scutellar and coleoptile node. 

Interestingly, our analyses identified three different lateral root types on the basis of their 

diameter and radial anatomy. Variation in lateral root anatomy has been reported in other 

cereals, with numbers of distinct types varying from two in rice (Rebouillat et al., 2009) to 

five in wheat (Watt et al., 2008). Recently, a more detailed characterization of cortex cell 

layers present in rice lateral roots revealed that 3 types of lateral roots exist in rice (Henry et 

al., 2016). These anatomical distinctions share similar features across species, the smallest 

root type having a very simple organization, with only two (or three) xylem vessels and no 

aerenchyma, and the bigger type having an organization similar to a primary root. One can 

hypothesize that these different lateral root types have different roles: type 1 lateral roots may 

be involved in the exploitation of resources close to the root whilst type 3 lateral root could be 

involved in the branching of the root system and the exploration of new soil volumes. The 

role of type 2 lateral roots is still unclear. Nevertheless, the functional relevance of these 

differences in anatomy needs to be explored. Similarly, it will be interesting to unravel how 

these different lateral roots develop and how their formation is controlled by environmental 

factors. Whilst the molecular mechanism controlling lateral root development has been 

extensively studied in the model plant Arabidopsis thaliana (see Lavenus et al., 2013 for 

review), how these mechanisms are modified to form different types of lateral roots in 

Monocots is completely unknown.  

Root phenotyping of different pearl millet inbred lines revealed a high variability for 

two root traits within the panel, consistent with an earlier study (Brück, et al., 2003). Here we 

showed that this variability was also visible in vitro at a very early stage of growth (6 DAG). 

This finding together with the high heritability of the primary root length could be exploited 

to identify the genetic determinants of primary root growth, a potentially beneficial root trait 

for pearl millet early establishment. For instance, screening of natural variability of the 

primary root length have been done at the cellular level in Arabidopsis thaliana and led to the 
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identification of a root meristem regulator gene (Meijón et al., 2014). Beside, it will be 

interesting to exploit the large diversity we observed for primary root growth to test the 

adaptive value of this character for early drought stress tolerance. In conclusion, our analysis 

opens the way to dissecting the genetic determinants controlling key root phenes and the 

characterization of their impact on yield and stress tolerance in pearl millet.  
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Root type Root 

diameter (m) 

Stele diameter 

(m) 

# metaxylem 

vessels 

Metaxylem 

vessel 

diameter (m) 

n 

Primary 

root 

429 ± 103 
ab

 181 ± 34 
b
 1 58 ± 11 

a
 10 

Crown root 517 ± 76 
a
 229 ± 54 

a
 3 56 ± 9 

a
 8 

LR type 1 112 ± 27 
d
 32 ± 8 

e
 0 NA 14 

LR type 2 264 ± 22 
c
 74 ± 9 

d
 1 16 ± 2 

b
 7 

LR type 3 367 ± 66 
b
 145 ± 16 

c
 1 50 ± 6 

a
 12 

Table 1-1 : Anatomical features of the different root types in pearl millet. Mean and standard 

deviation of all sections. Letters correspond to groups formed by Tukey’s Honest Significant 

Difference test (alpha = 0.05). n: sample size. 
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2. Comparison of early root system development in two contrasted 
pearl millet inbred lines 

2.1 Material and Methods 

2.1.1 Plant material 

Two lines were selected among the inbred panel described in part 1 according to three 

root traits evaluated in the high-throughput phenotyping (Table 1-2). Line LCICMB1 (109 in 

the panel) showed high length of primary root at 6 DAG, large numbers of crown roots and 

lateral roots per plant. On the opposite, line ICMB 98222 (57 in the panel) showed low values 

for these three traits. Another selection criterion was the high number of individuals 

phenotyped for these two lines during the experiment, ensuring a good representativeness of 

the values relative to the line.  

LCICMB 1 was derived by selfing from Nigerian landraces and selected for downy 

mildew resistance. It is dwarf, long-headed and medium-early in maturity, with a moderate 

level of photoperiod sensitivity. ICMB 98222 was bred in India from Togolese landrace. 

 

Line No. of 

plants 

Primary root length (cm) 

Mean (sd) 

No. of crown root 

Mean (sd) 

No. of lateral root 

Mean (sd) 

57 46 10.3 (6.4) 0.17 (0.68) 3.1 (3.9) 

109 76 20.2 (8.6) 0.54 (1.1) 14.1 (14.3) 

Table 1-2: Means and standard deviations –s.d.- of the root traits of the two contrasted lines 

selected 

2.1.2 Root phenotyping 

Seeds belonging to both lines were individually weighted and sterilized before 

germination. Plants were then phenotyped in rhizotrons following the protocol detailed in 

Passot et al. (2016). After 11 days of growth, rhizotrons were opened and aerial and root parts 

were collected. Leaves were scanned and leaf area measured using ImageJ (Schneider et al., 

2012). Shoot and root biomasses were estimated after 72 hours of dehydration at 70°C.  

2.1.3 Statistics 

Differences of mean trait values between the two lines were assessed using Student’s t-

tests. 

2.2 Results 

2.2.1 Root system development 

Detailed results for line 109 are presented in Passot et al. (2016). This part focuses on 

the differences existing between the lines 109 and 57. Primary root growth rate followed the 
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same dynamics for the two lines, with a maximum at 6 DAG followed by a plateau (Figure 1-

9A). Line 109 had significantly higher primary root growth rates (p < 0.01) at all times.  

 

 
Figure 1-9: A: Daily average primary root growth rate for line 57 and 109. B: Daily cumulative 

number of lateral roots along the primary root for line 57 and 109. C: Daily cumulative number 

of crown roots for line 57 and 109. N = mean +/- standard deviation. 

Lateral root emergence rates show different profiles for the two lines. The number of 

lateral roots emerging on the primary root for line 109 increased all along the experiment 

duration whereas emergence rate for line 57 increased up to 8 DAG, before decreasing up to 
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the end of the experiment (Figure 1-9B). Emergence rate was significantly higher for line 109 

(p < 0.05) at all days between 7 and 11 DAG. The number of crown roots showed very similar 

profiles for the two lines (Figure 1-9C). The number of emerged lateral roots observed in 

rhizotron at 6 DAG was consistent with the numbers observed in pouches. The numbers of 

emerged crown roots at 6 DAG in rhizotron were very low, which is also consistent with the 

numbers found in pouches. 

2.2.2 Other biological traits 

Leaf areas were significantly different between the two lines (p < 0.01), as well as shoot 

biomasses (p < 0.05) and root biomasses (p < 0.01) (Table 1-3). Average seed weights were 

significantly different between the two lines (p < 0.01), but there was no significant 

correlation between individual seed weight and final primary root length among each line (p = 

0.20 for line 57 and p = 0.57 for line 109) (Figure 1-10). 

 

Line Leaf area (cm²) Shoot biomass (mg) Root biomass (mg) 

57 819 (224) 24.6 (6.4) 6.9 (1.0) 

109 1172 (220) 31.9 (6.3) 13.0 (3.1) 

Table 1-3: Physical parameters after harvest for the two lines. Means and standard deviations. 

 

Figure 1-10: Individual seed weight against final primary root length for line 57 and 109 

2.3 Discussion 

Two inbred lines were selected for their contrasted root phenotypes measured on 

pouches during the high-throughput phenotyping. This finer phenotyping experiment 

confirmed the differences between the two lines, with line 109 having a faster growing 

primary root and more lateral roots than line 57. On the contrary, crown root phenotypes were 

similar for the two lines during this experiment. However, as the experiment ended just at the 

beginning of crown root formation, differences in crown root number might appear later. The 
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two lines should be grown during a longer period to assess whether their crown root 

phenotypes are different or similar on a longer term. If crown root phenotypes appear similar, 

a comparison of these two lines in the field or under a drought stress would provide very 

interesting information on the role of primary root and lateral roots. Indeed, it would able to 

compare two lines with different primary root and lateral root phenotypes but similar crown 

root phenotypes.  

We were interested in finding the biological explanations for such differences between 

the two lines. There is no apparent compromise between primary root elongation and lateral 

root initiation, as line 109 has the highest values for both these traits. Such compromise 

between root growth in depth and branching has been found in maize, where smaller lateral 

root density was associated to deeper rooting and greater drought tolerance in the field  (Zhan 

et al., 2015). This greater “vigor” for line 109 was associated with a higher average seed 

weight compared to line 57. However, individual seed weights were not correlated with initial 

primary root growth within each line. This suggests that a higher seed weight might not be the 

only factor responsible for this greater early vigor. Line 109 also showed higher leaf area and 

shoot biomass.  

The fine phenotyping of these two lines will be used to extract root development 

parameters to develop functional-structural models of root development in those two 

contrasted lines (A. Ndour PhD thesis). In fact, modeling is a way to assess the role of 

different morphological and physiological root parameters on plant functioning, particularly 

water uptake (Xu et al., 2011). This can be done by using sensitivity analysis approaches 

(York et al., 2016). Here, the two studied lines have contrasted architectural root traits, but 

further experiments should be performed to assess whether they also differ in terms of 

anatomy. Indeed, root anatomical traits can greatly influence water acquisition (Lynch et al., 

2014). A model was already designed and implemented to study water uptake in a young root 

system, based on the data measured on line 109 (Figure 1-11). This model takes into account 

the root system architecture and the hydraulic properties of the root system. The data acquired 

with the phenotyping in rhizotrons and the histological sections were used to parameterize the 

model, together with hydraulic conductivities estimated with a pressure chamber (Javot et al., 

2003). After validation, the model will be used to test the impact of differential root growth 

and branching on water acquisition in silico, using the contrasted architectural parameters of 

lines 57 and 109. The predicted differences will be validated experimentally with soil water 

potential measurements as predictors of water fluxes in the soil (Doussan et al., 2002).  
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Figure 1-11: Simulation of water potentials using the first FSPM of pearl millet root system 

hydraulics. (Adama Ndour) 
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3. Impact of drought stress and mycorrhization on early root system 

development assessed by X-ray microcomputed tomography 

 

An experiment was set up to test whether pearl millet root system development changes 

in response to drought. Different protocols exist to monitor precisely drought, for example 

supplementing a hydroponic growth medium with polyethylene glycol to decrease the nutrient 

solution water potential by increasing osmotic pressure, without changing ion availability for 

the plant (Lagerwerff et al., 1961). We chose to simply reduce soil water content when 

growing plants in pot. Mycorrhization with symbiotic fungi as Rhizophagus irregularis is 

supposed to help plants tolerate drought stress (Jayne and Quigley, 2014). We therefore tested 

whether mycorrhization had an effect on root system architecture, especially in a context of 

drought stress.  

3.1 Material and methods 

Pearl millet line LCICMB 1 was used in this experiment. The seeds were surface-

sterilized by a 2 minute immersion in 10% hypochlorous acid followed by 2 minutes in 70% 

ethanol. Each bath was followed by 3 rinses in deionised water. Then the seeds were 

germinated in Petri dishes at 30°C in the dark for 24 hours. Germinated seedlings were 

transferred to pots (50 mm diameter and 120 mm height) containing “Newport Series Loamy 

Sand” soil (sand 83.2%, silt 4.7%, and clay 12.1%; organic matter 2.93%; pH = 7.13; Nitrate 

= 5.48 mg.L
-1

; Phosphorus = Defra index of 3 (29.65 mg kg
-1

)) one DAG. Half of the soil was 

inoculated with spores of Rhizophagus irregularis. Spores originated from 3 Petri dishes 

containing transformed carrot roots, cultivated on phytagel at room temperature (20°C) until 

the hyphae covered all the dishes. Presence of spores was assessed using a stereomicroscope 

and phytagel was dissolved in sodium citrate solution (10 mM, pH = 6) at 35°C to retrieve 

hyphae bearing the spores. Retrieved fungus material was rinsed with sterile watered and 

stored until inoculation. This was done by mixing the spores with 4.5 kg of soil. Half of the 

plants were maintained throughout the experiment at a soil water content of ~26% (w:w), 

which corresponds to 75% of field capacity. The other half was maintained at a SWC of ~9% 

(w:w) corresponding to 25% of field capacity. Overall, 4 treatments were tested on 6 plants 

each: well-watered without inoculation, well-watered with inoculation, drought-stressed 

without inoculation and drought-stressed with inoculation The SWC was monitored daily by 

weighing the pots. Plants were scanned with a v|tome|x M scanner (Phoenix/GE Systems), 

with a maximum energy of 240 kV, 4 times over a 18 days period (4, 8, 14 and 18 DAG) to 

image the root structure. Two days after the last scan, the aerial parts of the plants were 

collected, oven dried during 72 hours and weighted. The root system of each plant was 

washed and fixed at 95°C in a 10% KOH solution. The roots were then rinsed with water and 

stored in a 10% acetic acid solution. They were dyed 3 minutes at 90°C in a staining solution 

containing 5% Schaffer ink and 5% acetic acid to stain mycorrhizal (fungal) structures 

(Vierheilig et al., 1998). The roots were rinsed with water and stored at 4°C in Petri dishes 

before observation. The observations were made with a stereomicroscope (Zeiss). 

Root systems were segmented manually from the image stacks produced by the scanner 

using the VGStudio Max software (Volume Graphics GmbH). In order to extract some 
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information about the nutrient harvesting performance of different root systems, we wrote a 

Python script to compute the volume of soil exploited by the 3D root architectures obtained 

(Appendix 1-1). We considered 3 distances (3 mm, 12 mm and 50 mm) that correspond to 

resources with poor (e.g. phosphate ions), intermediate (e.g. potassium) and high (e.g. nitrate 

or water) mobility in the soil (Pagès, 2011). Our script allowed us to compute the soil volume 

exploited globally and at different depths. 

3.2 Results 

3.2.1 General considerations 

The main objective of this experiment was to study a root system growing in 3 

dimensions in a real soil using microcomputed tomography. The opportunity to study plants 

in a real soil allowed us to grow them in conditions impractical for in vitro studies: soil 

inoculated with an arbuscular mycorrhiza and drought. We wanted to have 3D data on plants 

growing in soil and to compare them between different conditions. The general results 

obtained for well-watered plants are described in Part 1. We observed that, as pearl millet has 

a rapid root growth, the limited pot volume was rapidly limiting root growth. Indeed, primary 

and crown roots touched the pot side shortly after emergence and stayed in contact with the 

pot side while growing after that moment. At the bottom of the pot, soil was maintained by a 

thin sieve roots could not go through. At that point, roots thickened and changed direction to 

grow horizontally. Interestingly, in some high-resolution scans we were able to observe the 

presence of aerenchyma in some roots (Figure 1-12).  

 

 
Figure 1-12: Enlargement of X-ray image showing 2 pearl millet roots observed transversally. 

Aerenchyma is visible in the cortex of the roots. 

3.2.2 Effect of drought treatment on root development 

The explored soil volumes at different depths were computed with a dedicated Python 

script (Figure 1-13). There was no significant difference between the two treatments if we 

considered the whole soil volume. When separated in different depth, differences (p < 0.05) in 

explored soil volumes appeared: 

At 14 DAG, in the 30-60 mm horizon, for a foraging distance of 3 mm, 

At 8 DAG, in the 60-90 mm horizon, for the foraging distance of 12 mm, 

At 8 DAG, in the 60-90 and 90-end horizons, for the foraging distance of 50 mm. 
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Figure 1-13: Calculated soil volumes explored by the root system at 3 distances and 4 depths in 

two culture conditions. N = mean +/- standard deviation. *: significant difference between drought-

stressed and well-watered plants (p < 0.05) 

At later time points, the soil volume explored by drought-stressed plants systematically 

caught up with the soil volume explored by well watered-plants. Comparison of root systems 

at different time points for well-watered and drought-stressed plants confirm that root growth 

is first inhibited between 4 and 8 DAG and then is stimulated in response to drought (Figure 

1-14). We did not observe any difference in the number of crown roots between the root 

system of drought-stressed versus well-watered plants. The drought-stressed plants presented 

a significantly reduced shoot biomass 20 days after germination (p < 0.05) (Figure 1-15). 
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Figure 1-14: Comparison of the root system architectures of a well-watered and a drought-

stressed pearl millet plant using X-Ray CT: 2D projections of 3D images. Images at 4, 8, 14, and 

18 DAG (days after germination).  

 

 
Figure 1-15: Shoot dry weights after 20 days of growth of plants grown in drought stressed or 

well-watered conditions. N = mean +/- standard deviation. 

3.2.3 Effect of soil inoculation 

Soil inoculation with Rhizophagus irregularis spores was meant to assess whether 

mycorrhization has an effect on root system architecture, especially in the case of drought 

stress. The observation of stained roots did not allow to observe any mycorrhization, either in 

the inoculated or not inoculated treatment.  
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3.3 Discussion  

We used X-ray tomography to analyse pearl millet root system growth in soil and its 

response to drought stress and interaction with the arbuscular mycorrhizal fungus R. 

Irregularis. We observed a temporary reduction of the soil volume explored by the root 

system in response to water deficit, depending on the distance studied and the depth. This 

suggests that after an early inhibition of root growth by drought between 4 and 8 DAG, root 

growth was stimulated at later stages to reach similar soil exploration at 18 DAG. Another 

option is that due to the small volume of the pot, the root growth of well-watered plants is 

restrained and the explored soil volume stabilizes. This root growth seems to be homogeneous 

in depth and not limited to a certain soil depth. Together with the reduced shoot biomass, this 

suggests a reallocation of resources for root growth in conditions of drought stress. However, 

these conclusions are to be taken cautiously and need to be confirmed by other approaches 

due to the limited soil volume used in the experiment and the limited number of samples. 

It appeared that the drought imposed to half of the seedling was too strong regarding 

their developmental stage, leading to the death of a large number of seedlings. In fact, the soil 

dried very quickly in small pots and many drought-stressed seedlings dehydrated and died. 

Future drought stress experiment should allow the seedling to be in a wet environment for a 

few days after germination, to prevent this plant loss. Because of this, the experiment was 

conducted on fewer repetitions than what was initially planned.  

We wanted to test the effect of the inoculation of the arbuscular mycorrhiza 

Rhizophagus irregularis but the experiment did not allow to see any effect of inoculation. 

Very few fungi were found in the roots after staining and, due to the absence of sterilization 

for the soil, they were found in the two inoculation treatments (with or without). We 

hypothesize that the duration of the experiment (20 days) was too short to see an effect of 

inoculation on root development. Indeed, arbuscular mycorrrhizal infection was reported to be 

low up to 30 days after germination in wheat, barley and rye, becoming significantly 

noticeable only 45 days after germination (Castillo et al., 2012). However, another study 

stated that mycorrhization was established 36 days after germination in wheat and that 

mycorrhizal fungi participated very significantly in P uptake at this stage, even without any 

difference in plant biomass (Li et al., 2006). This indicates that mycorrhization could be 

beneficial at early stages even if no effect was detected in our experiment and supports the 

interest of studying the effect of arbuscular mycorrhizal fungi on pearl millet, which is 

frequently cultivated in soils with low available phosphate. 

There is still no automation for root system segmentation from the stack of images 

generated by the scanner. The image analysis is therefore a time consuming and tedious 

manual process, compromising any scaling of this particular experimental setup for high-

throughput phenotyping. Moreover, the scan definition was not sufficient to detect all lateral 

roots, and in particular thin ones which represent 80% of pearl millet lateral root were not 

detected (see Chapter 2). This may be improved by a fine contrast adjustment associated 

with adequate image treatment. The development of an algorithm for automatic segmentation 

of roots from soil scans will be compulsory for high-throughput use of this technique. Other 

three dimensional imaging techniques, like magnetic resonance imaging (MRI), might also 

skirt this segmentation issue (van Dusschoten et al., 2016). 
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Chapter 2 

Spatio-temporal analysis of early root system development in 

two cereals, pearl millet and maize, reveals three types of 

lateral roots and a stationary random branching pattern 

along the primary root 
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The work presented here has been done in collaboration with the Laboratoire 

d’Ecophysiologie des Plantes sous Stress Environementaux (LEPSE). Two PhDs were 

conducted in parallel with one common advisor and we chose to develop a comparative study 

of two cereal species, pearl millet (my PhD) and maize (PhD of Beatriz Moreno Ortega, 

LEPSE). Protocols for plant culture and anatomical analyses have been shared between 

species and a single pipeline has been designed for analyzing the phenotyping data of the two 

species. This permitted to benefit from synergic effects of shared work and to compare two 

cereals grown and analyzed in the same conditions. 

This chapter is a manuscript in a pre-submission format. It has been written following 

submission guidelines of the focused journal and the results and discussion sections are 

therefore presented before the material and methods section. 

Authors contributions 

Sixtine Passot contributed to all the experiments concerning pearl millet, except histological 

sections, analyzed the data and wrote the manuscript. 

Beatriz Moreno-Ortega contributed to all the experiments concerning maize, except 

histological sections, analyzed the data and wrote the manuscript. 

Daniel Moukouanga performed histological sections for pearl millet and maize and 

contributed to plant culture for pearl millet. 

Crispulo Balsera contributed to rhizotron preparation and plant culture for both species. 

Soazig Guyomarc’h contributed to plant culture for pearl millet. 

Mikael Lucas contributed to plant culture for pearl millet. 

Guillaume Lobet updated SmartRoot and added specific functions for this study. 

Laurent Laplaze designed the study and wrote the manuscript. 

Bertrand Muller designed the study and wrote the manuscript. 

Yann Guédon designed and implemented the statistical models, analyzed the data and wrote 

the manuscript. 

Abstract 

Recent progresses in root phenotyping focused mainly on increasing throughput for 

genetic studies while the identification of root developmental patterns has been comparatively 

underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-

temporal root system development data and identifying developmental patterns within these 

data. This pipeline combines the SmartRoot image analysis system with statistical models for 

identifying developmental patterns. Semi-Markov switching linear models were applied to 

cluster lateral roots based on their growth rate profiles. This revealed three types of lateral 

roots with similar characteristics in pearl millet and maize. Correlation between these lateral 

root types and anatomical traits was strong for pearl millet and weak for maize. Potential 

dependencies in the succession of lateral root types along the primary root were then analyzed 

using variable-order Markov chains. The succession of lateral root types along the primary 

roots was neither influenced by the shootward neighbor root type nor by the distance from 

this root. This stationary random branching pattern was remarkably conserved despite the 

high variability of root systems in both pearl millet and maize. Precise recording and analysis 

of lateral roots spatio-temporal developmental patterns thus revealed strong similarities 
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between two cultivated cereals that are strongest than what anatomical comparisons would 

suggest. 

1. Introduction 

Cereal breeding has long ignored the belowground part of the plant but it is now 

acknowledged that root system represents an opportunity for improving plant efficiency and 

tolerance to abiotic stresses (Bishopp and Lynch, 2015). A better knowledge of root system 

structure and function is thus needed to open the way to root system improvement. 

Phenotyping, as the measure of plant traits in a given environment and in a reproducible 

manner, is one key approach to access this knowledge. 

Recent progresses in plant phenotyping platforms, including plant handling 

automation and computer assisted data acquisition, has allowed an increase in phenotyping 

throughput (Fahlgren et al., 2015b). It was critical for association studies and gene discovery 

that benefit from the large number of plants studied in automated phenotyping system. Beside 

increasing throughput, another strategy chosen in some phenotyping systems is to improve on 

data dimensionality and structure (Dhondt et al., 2013). These systems increase the amount of 

data collected on a single plant, either by measuring several traits that can be of different 

nature, in control or special conditions, or by measuring the same trait at multiple time points 

to focus on physiological processes (Fahlgren et al., 2015a). Root architecture phenotyping 

present specific challenges as compared with phenotyping of aerial parts of plants. The root 

system is by nature hidden and root phenotyping systems have to make a compromise 

between the relevance of growth conditions and trait measurement feasibility. Most root 

phenotyping pipelines focus on the high throughput measurement of selected root traits on a 

large number of plants, with the objective of detecting QTL usable in breeding (Kuijken et al., 

2015). For example, Atkinson et al. (2015) reported a phenotyping platform where root 

systems grew in 2D on a filter paper for a few days for QTL detection. Systems considering 

the 3 dimensions of root systems exist too (Iyer-Pascuzzi et al., 2010) but their objective are 

generally focused on QTL detection (Topp et al., 2013). The development of individual root 

axes during long periods of time is rarely studied, whereas temporal analyses are more 

developed for the aerial parts (see e.g. Lièvre et al., 2016). This kind of studies has been 

hampered by the difficulty of collecting individual root growth data. In addition, the analysis 

of structured data such as root growth rate profiles is more challenging than the analysis of 

simple root traits. 

The variability in lateral root length among neighbor roots borne by the same root axis 

is a widely observed feature of root systems. It is proposed that this variability contributes to 

root system efficiency (Forde, 2009; Pagès, 2011). It is observed in annual as in perennial 

species (in oak (Pagès, 1995), in banana peach (Lecompte et al., 2005), in rubber tree (Thaler 

and Pagès, 1996), in sunflower (Aguirrezabal et al., 1994)) and even in the model species 

Arabidopsis thaliana (Freixes et al., 2002). It is also observed in monocots such as maize, 

where some studies reported a high variability among lateral root length (Jordan et al., 1993; 

Varney et al., 1991; Wu et al., 2016). However, most of these descriptions did not consider 

growth dynamically. When they did (Pagès, 1995; Thaler and Pagès, 1996), they generally 

considered that the variability of growth rate profiles forms a continuum but did not 

investigate a possible structuring into distinct classes. On the other hand, different lateral root 
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types have been described among cereals, but these classifications were based on anatomical 

traits or diameter. Four types were reported in maize (Varney et al., 1991), three in pearl 

millet (Passot et al., 2016) and rice (Gowda et al., 2011; Henry et al., 2016) and five in wheat, 

barley and triticale (Watt et al., 2008). 

Here, we designed a phenotyping pipeline for producing high-quality spatio-temporal 

root system development data. This pipeline incorporates the SmartRoot image analysis 

system (Lobet et al., 2011) able to reconstruct consistent spatio-temporal data on the basis of 

successive snapshots of root system architecture. Our ultimate goal was the identification and 

characterization of root developmental patterns on the basis of these spatio-temporal data. To 

this end, we adopted a two-step approach. Lateral root growth rate profiles were first 

analyzed. This first temporal step relies on a model-based clustering of these longitudinal data 

using semi-Markov switching linear models; see Lièvre et al. (2016) for another application 

of similar statistical models. One strength of these statistical models is the capability to model 

growth phase lengths combining complete and censored growth rate profiles (since some 

lateral roots were still growing at the end of the experiment entailing growth phase 

censoring). This first step led us to identify lateral root types on the basis of growth rate 

profiles. The second spatial step thus consisted of analyzing the primary root branching 

pattern where the lateral roots were summarized by their types. The proposed root system 

phenotyping pipeline was used on two cultivated cereals, pearl millet (Pennisetum glaucum) 

and maize (Zea mays). Commonalities and differences between these two species regarding 

the growth patterns of lateral roots and the branching patterns along the primary root were 

investigated as well as their relation to anatomical (vessel numbers and dimensions) and 

morphological (apical diameter) features.  

2. Results 

In order to analyze early root system development and architecture in pearl millet and 

maize, daily images of growing root systems were recorded for 15 and 21 days respectively in 

a rhizotron system. The ability of SmartRoot (Lobet et al., 2011) to cross-link information 

corresponding to different time points was then used to build consistent spatio-temporal data 

of root system development and architecture on the basis of the corresponding series of 

images. We chose to decompose the analysis of these spatio-temporal data into two steps: 

1. temporal analysis: we first analyzed growth rate profiles of lateral roots using dedicated 

statistical models for these specific longitudinal data, characterized by the short length of 

profiles and the high censoring level, since many lateral roots were still growing at the last 

date of measurement. Lateral roots were classified in three types as a byproduct or these 

longitudinal data analysis. 

2. spatial analysis: The intervals between consecutive lateral roots and the succession of 

lateral root types along the primary root were then analyzed. 
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2.1 Model-based clustering of lateral root growth rate profiles reveals three 

growth patterns for pearl millet and maize lateral roots 

2.1.1 Model building 

After data curation, our dataset was composed of growth rate profiles of 1254 and 3050 

lateral roots from 8 pearl millet and 13 maize plants respectively. These lateral roots were 

followed up to 10 and 17 days respectively after their emergence from the primary roots. The 

exploratory analysis of these growth rate profiles highlighted a strong longitudinal 

organization with growth rates either increasing or decreasing with lateral root age (Figure 2-

1). The growth rate profiles were essentially divergent from the time origin and the growth 

rate dispersion increased with the lateral root age. Hence, lateral roots can be roughly ordered 

according to their growth rate profiles. 

 

 
Figure 2-1: Growth rate profiles for individual lateral roots of one pearl millet (A) and one 

maize (B) plant. A selection of individual growth profiles have been highlighted (black lines) 

showing contrasted behaviors. Root age refers to the number of days following emergence. 
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This raises the question of a stronger structuring of these longitudinal data than a simple 

ranking of the lateral root growth rate profiles. We thus chose to investigate a model-based 

clustering approach for these longitudinal data. This raised two types of difficulties: (i) the 

growth rate profiles were longitudinally limited (up to 10 successive growth rates for pearl 

millet and up to 17 successive growth rates for maize) and (ii) the censoring level was high 

with a high proportion of lateral roots still growing at the end of the experiment. We thus 

designed a statistical model for clustering growth rate profiles, using only profiles lasting at 

least 5 days (corresponding to 652 lateral roots for pearl millet and 2029 for maize), based on 

the following assumptions: 

- A growth rate profile is modeled by a single growth phase either censored or followed by 

a growth arrest. 

- Changes in growth rate within a growth phase are modeled by a linear trend. This strong 

parametric assumption was a consequence of the short length of growth rate profiles. 

Hence, linear trend models should be viewed as instrumental models for clustering growth 

rate profiles rather than models for fitting each growth rate profile. 

The proposed statistical model was composed of growth states, each corresponding to a lateral 

root growth rate profile type. A distribution representing the growth phase duration (in days) 

and a linear model representing changes in growth rate during the growth phase were 

associated with each of these growth states. Growth states were systematically followed by a 

growth arrest state. The overall model is referred to as a semi-Markov switching linear model 

(SMSLM; see Methods and Appendix 2-1 for a formal definition and Figure 2-2 and 

SupFigure 2-1 for an illustration in pearl millet and maize, respectively). This kind of 

integrative statistical model makes it possible to consistently estimate growth phase duration 

distributions combining complete and censored growth phases. 
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Figure 2-2: Four-state semi-Markov switching linear model estimated on the basis of pearl millet 

lateral root growth rate series: (a) Growth duration distributions; (b) Graph of transitions. The 

possible transitions between states are represented by arcs with the attached probabilities noted nearby 

when < 1. The arcs entering in states indicate initial states and the attached initial probabilities are 

noted nearby. (c) Linear trend models estimated for each state. 

2.1.2 Selection of the number of lateral root types 

We next had to define the number of growth states (i.e. the number of lateral root 

types). Because of the specific structure of the model where each state can be visited at most 

once, the usual model selection criteria such as the Bayesian information criterion do not 

apply. We thus had to design an empirical model selection method for selecting the number of 

growth states. This method detailed in Appendix 2-2 combines the following criteria: 

1. Posterior probabilities of the optimal assignment of each lateral root growth rate 

profile to a growth state (followed or not by the growth arrest state at a given age) i.e. 

weight of the optimal assignment among all the possible assignments of a given 

growth rate profile, 

2. Comparison of location and dispersion measures of growth rate profiles for each 

lateral root type deduced from the optimal assignment of each lateral root growth rate 

profile, 

3. Overlap between growth rate profiles for consecutive lateral root types. 
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We selected for both species 3 lateral root types that correspond to the best compromise 

between (i) the proportion of ambiguously assigned lateral roots, (ii) the relative dispersion of 

growth rate profiles for the most vigorous root type and (iii) the overlap between growth rate 

profiles for consecutive types. 

2.1.3 Growth phases are similar in both species 

Growth phase duration distributions for the three growth states estimated within the 

SMSLMs are shown in Figure 2-3a for pearl millet and Figure 2-3b for maize. The estimated 

growth phase duration distributions were very similar for the two species for each type (A, B 

or C), with mean growth durations of 17.3 and 15.2 days for type A, 7.6 and 6.8 days for type 

B and 3.2 and 3.0 days for type C for pearl millet and maize, respectively, and standard 

deviations equal to 7.6 and 7.7 for type A, 4.6 and 5.0 for type B, and 2.6 and 2.4 for type C. 

The censoring level is defined as the proportion of growth phase incompletely observed for a 

given lateral root type. The censoring level was computed for each growth state as a by-

product of the estimation of the corresponding growth phase duration distribution within 

SMSLM. This censoring level takes into account all the possible assignments of growth rate 

profiles of length ≥ 5 incorporated in the training sample. We obtained 96% of censoring for 

state A, 54% for state B and 14% for state C in the case of pearl millet and 80% for state A, 

36% for state B and 10% for state C in the case of maize. The growth rate profile length 

frequency distribution are superimposed to the estimated growth phase duration distributions 

shown in Figure 2-3 to illustrate the censoring level for each species. The higher censoring 

level for pearl millet compared to maize was a direct consequence of the shorter growth rate 

profiles in average for pearl millet since the growth phase duration distributions were similar 

for the two species. It should be noted that the growth rate profile lengths were similar for the 

different lateral root types of a given species (see the corresponding cumulative distributions 

functions in SupFigure 2-4).  
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Figure 2-3: Growth duration distributions estimated within the 4-state semi-Markov switching 

linear model: (a) pearl millet; (b) maize. The growth rate profile length frequency distributions are 

drawn for illustrating the censoring level. 

2.1.4 Classification of individual growth rate profiles  

Only growth rate profiles of length ≥ 5 were used for the building of SMSLMs. Growth 

rate profiles of length < 5 were then assigned a posteriori to classes using the previously 

estimated SMSLM. 

Daily median growth rate and associated mean absolute deviation for each class are 

shown in Figure 2-4a and b for pearl millet and maize respectively. In both species, daily 

median growth rate were divergent between the three types of lateral roots. Median growth 

profiles for type B and type C reached 0 mm day
-1

 by 7-8 and 3 days respectively, while type 

A median growth rate stayed positive and did not decrease in both species. The main 

difference between the two species, apart from different absolute growth rates, concerned type 

B lateral roots, where median growth rate stayed nearly constant up to day 5 in pearl millet 

whereas it started to decrease straight after emergence in maize, and type A lateral root, where 

median growth rate kept on increasing in pearl millet whereas it stabilizes after a few days in 

maize. Variability existed around these median profiles for each type. Mean absolute 
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deviations were rather similar between the two species for types B and C. Because the 

temporal sequences were longer in maize, we could observe a regular increase of mean 

absolute deviation with root age for type A, up to reaching nearly the same level as median 

growth rate at day 13. This is due to the presence in this class of lateral roots whose growth 

rate started to decrease at later stages while some lateral roots continued to increase their 

growth rate. 

 
Figure 2-4: Daily median growth rate (and associated mean absolute deviation −m.a.d.−) for (a) 

pearl millet and (b) maize. 

The growth rate profiles of all the lateral roots of a selected pearl millet and a selected 

maize plant colored according to the class they were assigned to are presented in Figure 2-5. 

This shows the variability of growth rate profiles within a class, the overlap between classes 

and the censoring level of growth rate profiles. Growth characteristics of the three lateral root 

types were very similar between maize and pearl millet. The main differences between maize 

and pearl millet root growth rate profiles concerned the absolute values of growth rates which 

were higher in pearl millet compared to maize.  
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Figure 2-5: Growth rate profiles of individual lateral roots of a pearl millet (A) and maize (B) 

plant classified with SMSLM. Colors represent the different types identified with the model. 

2.2 Comparison of apical diameter profiles and growth rate profiles for the 

3 classes of lateral roots identified in maize 

The optimal assignment of lateral roots to classes computed using the estimated 4-

state semi-Markov switching linear model was used to compute median apical diameter 

profiles and associated mean absolute deviations per lateral root type. The median apical 

diameter profiles for the different lateral root types were far more stationary than the median 

growth rate profiles (Figure 2-6). Apical diameter profiles clearly distinguish type A from 

type B or C lateral roots but not type B from type C lateral roots (see the overlaps between 

apical diameter distributions for the successive ages in Table S2-3). Type B and C lateral root 

apical diameter decreased with time and converged towards a median apical diameter around 

230 μm corresponding to a high proportion of arrested roots. 
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Figure 2-6: Maize: (a) daily median growth rate and (b) apical diameter (and associated mean 

absolute deviations −m.a.d.−) in the case of 3 groups. 

2.3 Linking root growth profile with root anatomy 

Previous studies have shown that different lateral root types can be defined in maize and 

pearl millet based on their anatomy ( Varney et al., 1991; Passot et al., 2016). To explore the 

links between root kinetics and root anatomy, we performed root cross sections in 15 maize 

lateral roots and 35 pearl millet lateral roots with contrasting growth rate profiles. The roots 

originated from 3 maize plants and 5 pearl millet plants, having grown for 16 days after 

germination and 12 to 15 days after germination respectively. Lateral roots were assigned to 

one of the 3 classes defined previously, based on their growth rate profile. We measured 2 

anatomical traits previously shown to be contrasting among individual roots (Passot et al., 

2016), stele diameter and central xylem tracheary element (XTE) diameter. For pearl millet, 

the ABC classification of growth rate profiles was mirrored by a ranking of both stele 

diameter and XTE diameter, although there was some overlap between classes (Figure 2-7). 

By contrast, no clear trend could be detected in maize, in particular due to the low number (1) 

of type A roots, the large spread of anatomical dimensions in type B and type C roots and the 
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comparatively large anatomical dimensions of the type C roots. Globally, a consistent 

tendency was observed between stele diameter and XTE diameter that encompassed both 

species. These results suggest a correlation between anatomical traits and growth profile for 

pearl millet, but not for maize lateral roots. The small sample size for maize roots could 

explain the lack of observable relationship. 

 

 
Figure 2-7: Relationship between stele and central XTE diameter of lateral roots in pearl millet 

(A) and maize (B). Colors indicate the estimated type based on the SMSLM. 

2.4 Analyzing the primary root branching pattern 

In order to explore whether lateral root type repartition along the primary root was 

random or somehow structured, we analyzed the distribution of lateral root types (A, B and C) 
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along the primary root. We first evaluated the impact of the root type on the length of the 

interval between a lateral root and its nearest neighbor in the rootward direction (Baskin et al., 

2010). No difference was found between the mean interval length for the three root types in 

both species (ANOVA, p-value = 0.83 and 0.7 for pearl millet and maize respectively) (Table 

2-1). The same type of analysis was conducted separating intervals into 9 groups, depending 

on the types of the two lateral roots delimiting the interval (Table S4 and Table S5). No 

effect of the lateral root types was found on the interval lengths (ANOVA, p-value = 0.52 and 

0.39 for pearl millet and maize respectively). Hence, our results indicate that there is no 

influence of root types on interval lengths between two successive lateral roots. 

 

Lateral root type in the 

shootward direction 
A B C 

 Pearl 

millet 

Maize Pearl 

millet 

Maize Pearl 

millet 

Maize 

Sample size 165 237 296 814 785 1950 

Mean (cm) 0.22 0.16 0.21 0.16 0.21 0.17 

Standard deviation (cm) 0.27 0.16 0.27 0.15 0.19 0.15 

Table 2-1: Length of the interval between successive lateral roots, classified according to the 

lateral root delimiting the interval in the shootward direction. No significant differences between 

the means were found (ANOVA, p = 0.83 and p = 0.70 for pearl millet and maize respectively). 

We then questioned whether lateral root type sequences were random or somehow 

structured. We first computed the Spearman rank autocorrelation function for these 

sequences. The autocorrelation function for positive lags was within the confidence interval 

corresponding to the randomness assumption for most of the plants, indicating that the 

distribution of the different lateral root types along the primary root was stationary and 

suggesting no marked dependencies between successive lateral root types. This finding was 

consistent with the growth rate profile length frequency distributions being similar for the 

three types (Supplementary Figure 2-4). Since growth rate profile lengths directly depend 

on the emergence time of each lateral root and are thus related to the lateral root position on 

the primary root, this suggests that the proportions of the 3 types along the primary root were 

essentially stationary. We further analyzed primary root branching sequences applying a 

statistical modeling approach. To this end, we modeled potential dependencies between 

successive lateral root types described from the collar to the root tip. Three-state variable-

order Markov chains, each state corresponding to a lateral root type, were built. The 

memories of variable-order Markov chains were selected (Csiszár and Talata, 2006) for each 

primary root branching sequence and for samples of branching sequences corresponding to 

each species. For all plants and for both species, a zero-order Markov chain was selected. This 

confirmed that the type of a lateral root was independent of the type of the previous lateral 

roots. Hence, our results indicate that there is no influence of the lateral root growth pattern 

on the distance to or on the growth pattern of the next lateral root.  
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We checked whether the length of the interval between successive lateral roots and the 

lateral root type proportions varied or not among individual plants. The mean interval lengths 

were not equal in all plants (ANOVA, p < 10
-5

 for pearl millet and p < 10
-6

 for maize). Plants 

were thus classified according to Tukey’s Honest Significant Difference. Two overlapping 

groups were found, both for pearl millet and maize (Figure 2-8), with average interval length 

ranging from 0.31 to 0.21 cm in pearl millet, and from 0.25 to 0.14 cm in maize.  

 

 
Figure 2-8: Distribution of interval lengths between successive lateral roots for each plant in 

pearl millet (A) and maize (B) species and plant group assignation according to Tukey’s Honest 

Significant Difference test. Outliers above 1 cm were curtailed. 

Significant differences among plants were also found for lateral root type proportions 

both for pearl millet and maize (Kruskal-Wallis test, p < 10
-10

 and p < 10
-15

 respectively, 
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Figure 2-9). For pearl millet, the 8 plants were separated into 3 significantly different groups 

with two overlapping. The proportion of type A roots ranged from 0.06 to 0.21 between these 

groups. The 13 maize plants were separated into 6 groups, with some overlaps between some 

groups, type A root proportion ranging from 0 to 0.2. These results indicated that both species 

show significant inter-individual differences in terms of interval lengths and lateral root type 

proportions. However, and despite individual differences between plants in terms of lateral 

root type proportions, the stationary random branching pattern was markedly conserved in all 

plants.  

 

 
Figure 2-9: Proportion of root types for each plant in pearl millet (A) and maize (B) species and 

plant group assignation according to Kruskal-Wallis test. Tile areas are proportional to the number 

of roots in each category. Total lateral root number per plant ranged from 119 to 248 for pearl millet 

and from 82 to 352 for maize. 
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As all plants among species are supposed to be genetically homogeneous, we 

hypothesize that small environmental variations, either during the grain filling and maturation 

period or during the experiment itself, could explain differences in lateral root type 

proportions. The link between interval length and lateral root type proportions in each plant is 

explored in Supplementary result 2-1. 

3. Discussion 

3.1 An original methodology to classify lateral roots 

 In this study, we designed a pipeline for semi-automated analysis of lateral root 

growth profiles and primary root branching pattern and applied it to explore the diversity of 

lateral roots in two cereals, maize and pearl millet. Previous efforts to classify the diversity of 

lateral roots in cereal species into classes have been reported (Henry et al., 2016; Passot et al., 

2016; Rebouillat et al., 2009; Varney et al., 1991; Watt et al., 2008) but these classes were 

often based on anatomical traits, mainly root diameters and vasculature. A first difficulty 

comes with the fact that some morphological traits change along lateral roots, typically root 

diameter (Wu et al., 2016), which was confirmed in our own data in maize. A different 

classification method, based on growth rates, was reported in rice (Rebouillat et al., 2009), 

where root growth rates were very contrasted among lateral roots but assignment to classes 

was based on expert knowledge. Here we assigned lateral roots to classes based on their 

growth profiles using a statistical model. Our approach revealed 3 similar classes of lateral 

roots in two different cereal species. Although absolute growth rates were different between 

lateral roots of the two species, general shapes of the three median growth rate profiles as well 

as relative proportion of the three lateral root types were similar between species. Growth 

durations in the three classes were also remarkably similar between the two species. In 

previous studies, three anatomical types of lateral roots were identified in pearl millet (Passot 

et al., 2016) and here these types were found to be partially related to the classes based on 

growth rate profiles. Link between growth rate profiles and anatomy was less clear in maize 

but maize root diameters were positively linked to growth rate profiles, confirming a general, 

but not systematical trend (Wu et al., 2016). However, diameter of internal root structures was 

larger for maize than for pearl millet, meaning that the relationship between root diameter and 

growth rate profiles is not transposable between species.  

3.2 Origin and roles for the three lateral root types 

The identification of 3 types of lateral roots raises questions on the origin of this 

variability and the potential functions of these three types. In rice, fast-growing lateral roots 

are also thicker and additional periclinal cell divisions in the endodermal cell layer producing 

additional ground tissue cell layers during the process of primordia establishment have been 

reported in these large lateral roots (Rebouillat et al., 2009). Variability among the size of 

lateral root primordia has been reported in maize (MacLeod, 1990) and could account for 

differences in apical diameter and root growth rate, at least at emergence. Along these lines, 

lateral root variability would be determined early in development and would be tightly 
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associated with morphology (diameter) and anatomy. The relationship between root anatomy 

(stele and central XTE diameter) and classes based on growth rate profile, evidenced in pearl 

millet goes in this direction. Root diameters at emergence were also ranked according to 

growth rate profiles in maize. Another possibility is that growth rate variability is determined 

after emergence and is controlled by different factors depending on the plant physiology (as 

local assimilate availability) and/or environmental sensing (local water and nutrients 

availability, local soil structure…). According to this hypothesis, root development may be 

more plastic. This hypothesis is for example supported by root apical meristem loss 

happening in most lateral roots of field grown maize (Varney and McCully, 1991). In this 

case, lateral roots are supposed to emerge without differences between each other and to lose 

their elongation potential after emergence, probably due to environmental conditions or 

internal clues. Our results showed that lateral root growth patterns are only partially 

determined by their initial growth rate, due to the divergent nature of the growth rate profiles. 

The parallelism between root diameter evolution and growth arrest in maize is also in favor of 

a link between structure evolution, post emergence growth and growth rate. These two 

hypotheses may not be exclusive and growth patterns may result from a combination of these 

two influences, pre- and post-emergence. Factors influencing initial growth rate, growth 

maintenance and growth arrest could also be different, therefore rendering the picture more 

complex and the overall patterns of lateral roots globally more plastic to face a variability of 

external and internal clues (Malamy, 2005). 

The functions of these different lateral root types are not precisely known. Locally, each 

lateral root type could have a preferential function, like water uptake, absorption of certain 

nutrients, exudation or mycorrhization. In maize, apical meristem loss was suggested to 

facilitate water uptake (Varney and McCully, 1991). The three major macroscopic elements 

(N, P and K) for mineral nutrition are absorbed as ions whose diffusion coefficient in the soil 

widely differ (recalled by Pagès, 2011) and the different lateral root types could share their 

efforts into those distinct functions. Moreover, these roots may have also longer term 

functions. In rice, only one lateral root type is known to participate in higher level of 

branching (Gowda et al., 2011). In perennials, these long lateral roots contribute to the 

perennial structure of the plant (Coutts, 1987). The existence of different growth profiles is 

thus likely to contribute to the economy in root system construction. The different root growth 

patterns described here could be indeed an important component for the efficiency of soil 

exploration. The interest of such variations to enhance root foraging capacity was already 

suggested (Forde, 2009) while their cost/benefit advantage as compared to more homogenous 

lateral root patterns was demonstrated using simulated root systems (Pagès, 2011). Notably, 

growth cessation appears as an important strategy to avoid an excessive cost of root system. 

In our data, root type corresponding to indeterminate lateral root growth represented only 

14% and 9% of the lateral roots in pearl millet and maize respectively. In annual cereal plants, 

the specific functions of these long roots is unknown, but we can imagine a role in further 

widening exploration in the horizontal dimension in opposition to exploration in depth 

covered by the primary and the limited horizontal exploration by nodal roots. 
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3.3 Positioning of the three lateral root classes is random along the primary 

root 

One benefit of our approach is that it enables architectural analysis. All lateral roots 

were assigned to classes and precisely positioned on the primary axis. We showed that, both 

in maize and pearl millet, the longitudinal spacing of lateral roots was highly variable, both 

within and between root systems. Despite this variability, the average between-lateral-root 

distance was relatively conserved among plants for each species, being larger for millet than 

for maize. Our analyses showed that there was no relationship between the length of the 

interval between two successive lateral roots and the growth class of these lateral roots. That 

indicates that both fast-growing and slow-growing roots may be close or far from neighboring 

roots. The absence of relationship between lateral root spacing and growth rate suggests that 

lateral root initiation and development are regulated independently. Moreover, we found that 

the succession of lateral root types was random along the primary root, indicating that there 

were no local dependencies in root type succession. In other word, lateral roots appear to 

grow independently from each other since no local inhibition or stimulation could be 

observed. The absence of local dependencies can be related to the homogeneous soil in our 

experimental system. Indeed, the existence of soil heterogeneity is known to lead to spatial 

structuring, for example local proliferation of longer roots in response to nitrate-rich soil 

patches (Drew, 1975; Hodge, 2004). Our modeling approach opens the door to the exploration 

of the link between local root environment and proportion of the different root types on a 

stronger basis. 

3.4 Extending the longitudinal modeling framework for studying the whole 

growth profile of type A lateral roots 

The experiment duration constrained by the rhizotron dimensions made that only the 

beginning of type A lateral root growth could be observed. Hence most of the growth rate 

profiles assigned to type A lateral roots were censored in the corresponding growth state for 

both species. This makes a marked difference with type B or C lateral roots for which the 

whole growth profile, up to growth arrest, was observed for many individuals. Hence, it 

would be interesting to design larger rhizotrons or to change the growth conditions in order to 

study the whole growth of type A lateral roots and in particular the transition from increasing 

or stationary growth rate to decreasing growth rate. The proposed modeling framework can 

directly be extended by adding states in series for modeling successive growth phases for type 

A lateral roots. Such extension of semi-Markov switching models with states in series was 

recently developed for modeling successive developmental phase in Arabidopsis rosette in 

Lièvre et al. (2016). We may expect a single state with decreasing growth rate following the 

current increasing growth rate state A or an intermediate roughly stationary growth state 

between the increasing and decreasing growth rate states. Although mechanisms of lateral 

root growth arrest are documented for maize (Varney and McCully, 1991), the future of 

“indeterminate” lateral roots is not documented. If their growth duration appear to be really 

longer than what our experimental set up allowed to see, it could interfere with the decay of 
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primary root system reported in cereals, occurring for example within two months in pearl 

millet (Maiti and Bidinger, 1981). 

3.5 A new look at lateral roots in future high-throughput phenotyping 

analyses? 

To date, genetic improvement based on structural feature of the root system has 

essentially concentrated on deep vs shallow rooting (Saengwilai et al., 2014) as well as on 

structural feature such as the presence of aerenchyma in maize roots, suspected to decrease 

the carbon construction cost of roots without affecting their function (Zhu et al., 2010). 

Lateral roots have been comparatively overlooked although they represent the best example of 

the overall structural plasticity of the root system to face the variable and unpredictable nature 

of the soil encountered (Drew, 1975). Therefore, there could exist a mine of genetic variation 

to exploit (and not only in cereals) if relevant phenotyping pipelines for lateral roots were 

available. By combining image analysis and statistical modeling, our pipeline is a first step in 

that direction. Importantly, the structure of the model is flexible enough to accommodate 

variation in the structure such as the number of root types. Of course, while some steps such 

as image analysis are already semi-automated, some others will need to be automated to 

upscale the pipeline to study larger plant populations. Rhizotron handling and scanning could 

be automated with robot. Moreover, basic tasks could be automated, such as image 

reconstitution by stamping top and bottom part of the rhizotron, root system alignment from 

one day to another in SmartRoot or lateral root growth profile generation. The most limiting 

step appeared to be root tracing and dataset cleaning. Indeed, we found that data curation has 

a huge impact on the final results and was necessary. Curation minimized aberrant root 

growth profiles by modifying data without necessarily going back to the original image, in 

order to keep as many roots as possible. No clear criteria exist on what a “realistic” lateral 

root growth profile should look like and we therefore hypothesized that growth rate changes 

were smooth rather than steep to clean our database. Visual checking of aberrant growth 

profiles tended to confirm that our hypotheses on the sources of errors were often reasonable. 

This cleaning algorithm could be further improved by checking steep growth rate changes 

without stopping that were not taken into account in our algorithm. 

In our experiment, with apparently uniform conditions among plants, variability in root 

type proportion appeared between plants, suggesting that proportion of each root type is very 

sensitive to small environmental variations, vigor differences between plants and/or 

differences among seeds. Based on sufficient replicate plants, our pipeline generates 

parameters that can be statistically compared among genotypes or environmental conditions, 

opening the door to high throughput phenotyping with a focus on this yet underexploited 

source of variation: lateral roots. 
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4. Materials & Methods 

4.1 Experimental 

Root observation boxes, called rhizotrons, were built according to Neufeld et al. (1989). 

The size of the frame was 400 x 700 so that they could be imaged with 2 contiguous A3 

images using a scanner. The root system was sandwiched against a plexiglass surface by a 

layer of viscose that was impermeable to roots, but permeable to water and nutrients. 

Rhizotrons were made of (back to front) a 5 mm thick extruded polystyrene plate, a 2 cm 

layer of substrate, a layer of viscose and a 5 mm thick plexiglass plate, all joined together 

using aluminum U frame held by screws. The substrate used was composed of 30% fine clay, 

25% peat fibers, 5% blond peat and 40% frozen black peat (Klasmann-Deilmann France 

SARL). The substrate was sieved before using. The rhizotrons were weighed individually 

before and after filling to determine the weight of substrate contained in each one and later to 

manage daily irrigation. 

Maize seeds (Zea mays, hybrid B73xUH007) were surface sterilized with 6% 

hypochlorite for five minutes and rinsed in distilled water for one minute. Seeds were then 

germinated on moistened filter paper in Petri-dishes (20 x 20 cm) and placed vertically in a 

growth chamber in the dark at 20°C. Pearl millet germination was performed with a similar 

protocol, except that seeds were also cleaned with ethanol solution (70%) for 5 minutes after 

the first rinsing and germination temperature was set to 30°C. Germinated seedlings were 

transferred individually in the rhizotrons. A layer of wet sphagnum on the top of the 

rhizotrons maintained the seedlings and prevented them from drying. Rhizotrons were placed 

in a growth room with climatic conditions adapted to each species: a temperature of 28°C 

during day and 24°C during night for pearl millet and a constant temperature of 20°C for 

maize, with a 14-hour-photoperiod for both species. Light was provided by 6 mercury lamps 

(HQI, 250 W, Osram, Munich, Germany) and measured by a light sensor (SKP215; Skye 

Instruments, Llandrindod Wells, Powys, UK). Temperature and air humidity were recorded 

(HC2-SH, Rotronic, Bassersdorf, CH) for each growth room. The sphagnum was watered 

twice a day at the beginning of the experiment and from 6 days after germination onward, 

rhizotrons were watered daily using a 1/10 Hoagland solution to maintain the humidity of the 

substrate. The amount of watering was monitored by a daily weighting of the rhizotron. 

4.2 Imaging and image processing  

From the second day of growth, rhizotrons were scanned with an A3 scanner (Epson 

Expression 10000XL Pro, Japan) at 600 or 720 DPI. The histogram of the gray level 

intensities was adjusted to optimize the contrast on fine roots. As rhizotrons are twice the size 

of the scanner, two images (upper part and lower part of the rhizotron) were taken and aligned 

using Align_4 (http://www.mecourse.com/landinig/software/software.html) to recover an 

image of the entire root system, thanks to landmarks visible in both parts. These landmarks 

were either added intentionally on the rhizotron or were fortuitously present (water drops, 

mist, the root system itself). 



Chapter 2 Spatio-temporal analysis of early root system development in two cereals 

83 

 

The SmartRoot software (Lobet et al., 2011) was used to extract root system 

architecture at successive dates and root growth parameters because it supports time-lapse 

images and focuses on the analysis of individual root behavior. SmartRoot needs images 

where roots appear darker than background. An ImageJ (v.1.47v; Rasband, W.S., U. S. 

National Institutes of Health, Bethesda, Maryland, USA) macro was developed to 

automatically invert and adjust the contrast of the rhizotron images by scaling the image 

intensity histogram on a fixed range. The optimal contrast (min and max values of the 

intensity range) was determined empirically to reduce the number of errors when using the 

algorithm for automatic lateral root tracing provided by SmartRoot (see next section) using a 

subset of scan images, and was applied to the whole set of images using the macro tool. 

4.3 Image analysis 

SmartRoot enables semi-automatic root tracing. The primary root was drawn on the first 

image. For the next days, the root system traced on the previous day was imported and 

aligned, in such a way that the primary root elongated progressively, using automatic tracing. 

Crown and lateral roots were added as they appeared, either manually or using automatic 

detection. Their length increased progressively on the successive scans, as for the primary 

root. 

When all roots were traced, the data were extracted with the batch export tool of 

SmartRoot. This tool provides several measurements including the length, the insertion 

position and the diameter for each root. Because the resolution was not sufficient for pearl 

millet lateral roots, we only considered root diameter for maize. Data were ordered and the 

ages of lateral root were computed at each day, age 0 being assigned to the first day of 

appearance of a lateral root. The root growth rates were extracted by differencing the length 

between 2 consecutive days. If the images were not evenly spaced in time, the growth rate 

computing was adapted to take into account the variable lengths of the time intervals. 

4.4 Correction of growth rate profiles 

In spite of manual supervision of root tracings, the exported dataset contained some 

digitalization errors. It was therefore necessary to characterize the implausible data points 

resulting from such errors and to clean out the dataset to ensure that any later analysis is 

performed on trustable data. We thus designed a data correction algorithm aiming at 

identifying implausible growth rate profiles that derive from errors in image analysis. The 

most typical errors were defaults in alignment, one-day missing root length increments or 

non-visible root tips in the case of roots encountering an obstacle. This kind of errors results 

in implausible trajectories for the root length at some time-point, which can be better 

identified by examining growth rate profiles. Depending on the type of error, growth rate 

profiles were either corrected or truncated before the first implausible growth rate. The 

proposed data correction algorithm is described in Appendix 2-3. 
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4.5 Model description 

4.5.1 Definition of semi-Markov switching linear models 

Semi-Markov switching linear models (SMSLMs) are two-scale models that generalize 

hidden semi-Markov chains by incorporating linear regression models as observation models. 

They are formally defined in Appendix 2-1. In our context, the succession and duration of 

growth phases (coarse scale) are represented by a non-observable semi-Markov chain while 

the growth rate trend within a growth phase (fine scale) are represented by observation linear 

models attached to each state of the semi-Markov chain. Hence, each state of the semi-

Markov chain represents a growth phase. A J-state semi-Markov chain is defined by three 

subsets of parameters: 

1. Initial probabilities  Jjj ,,1;   to model which is the first phase occurring in the 

series measured, 

2. Transition probabilities  Jjipij ,,1,;   to model the succession of phases, 

3. Occupancy distributions attached to non-absorbing states (a state is said to be 

absorbing if, after entering this state, it is impossible to leave it) to model the growth 

phase duration in number of days. We used, as possible parametric state occupancy 

distributions binomial distributions B(d, n, p), Poisson distributions P(d,  ) and 

negative binomial distributions NB(d, r, p) with an additional shift parameter 1d . 

 

A SMSLM adds observations linear models to the non-observable semi-Markov chain: 

4. We chose to model growth rate trends within growth phases using simple linear 

regression models because of the short length of growth phases (up to 10 successive 

growth rates for pearl millet and up to 17 successive growth rates for maize).  

 

A SMSLM composed of parallel transient states followed by a final absorbing state was 

estimated on the basis of growth rate profiles corresponding to a given species. A state is said 

to be transient if after leaving this state, it is impossible to return to it. The final absorbing 

state represented the growth arrest and a degenerate linear model corresponding to a constant 

null growth rate was associated with this state. Each estimated model was used to compute the 

most probable state series for each observed growth rate profile (Guédon, 2003). This restored 

state series can be viewed as the optimal segmentation of the corresponding observed series 

into at most two sub-series corresponding to a given growth phase either censored or followed 

by a growth arrest. Because of the transient growth states in parallel, this restoration can be 

interpreted as a classification of the lateral roots on the basis of their growth rate profiles. 

4.5.2 Definition of stationary variable-order Markov chain 

Most of the methods for analyzing local dependencies in discrete series rely on high-

order Markov chains. However, the number of free parameters of a Markov chain increases 

exponentially with its order, i.e. with the memory length taken into account. For instance, in 

the case of three states (corresponding to three lateral root types), the number of free 

parameters is 2 for a zero-order, 6 for a first-order, 18 for a second-order Markov chain, etc. 
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Since there are no models “in between”, this very discontinuous increase in the number of 

free parameters causes the estimated high-order Markov chains to be generally 

overparameterized. This drawback can be overcome by defining sub-classes of parsimonious 

high-order Markov chains such as variable-order Markov chains (Bühlmann and Wyner, 

1999; Ron et al., 1997) where the order is variable and depends on the “context” within the 

series, instead of being fixed. Stationary variable-order Markov chains are formally defined in 

Appendix 2-4. 

4.6 Root anatomy  

Plants were grown in rhizotrons as previously described. Stickers were placed on the 

viscose tissue previous to the plant transfer, evenly spaced near the position of the future root 

system to help roots tracking. Lateral root growth rate profiles were extracted before 

sampling, to determine the type of each root. Selected roots were harvested and fixed 

overnight in an acetic acid:ethanol solution (1:9) and conserved in 70% ethanol. For maize, 

two 8 mm long segments were cut from the apex (apical and subapical segments, 

respectively), as well as one segment at the root base (or basal segment). For short roots (< 8 

mm), a single segment (considered basal) was analyzed. For pearl millet, samples were taken 

indifferently along the root at 12 to 15 DAG. Root segments were gently dried on a filter 

paper and imbibed in warm (30-45°C) liquid 3% agarose solution (SeaKem GTG Agarose, 

Lonza). 55 µm-thick sections were obtained from solidified agarose blocks using a vibratome 

(Microm HM 650V, Thermo Scientific, speed 30, frequency 60). Individual root sections 

were then collected, transferred to microscope slides and covered with a coverslip for direct 

observation. 

Images were taken using a Leica DMRB microscope equipped with an epifluorescence 

filter (excitation range: UV; excitation filter: 460-480 nm). Two pictures were taken for each 

root section: one under visible light using Nomarsky optics and another using epifluorescence 

that takes advantage of the natural fluorescence of cell walls with secondary deposits. Images 

were taken using a Retiga SRV FAST 1394 camera and the QCapture Pro7 software. The 

RGB images were opened in ImageJ using the Bioformats importer plugin and transformed in 

gray level 8-bit images. A scale-bar was added to the images according to their magnification. 

Sizes of the stele and central XTE diameters and number of peripheral xylem vessels were 

recorded for each root section. 
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This chapter is the beginning of an article. Further analyses are needed beyond the first 

exploratory analyses presented here to complete the results and to write a full article. 

1. Introduction 

 

Breeding new varieties is one strategy to obtain higher and more stable agricultural 

yields. Beside trying to improve crop performance in certain environments, breeding may be 

focused on improving or on modifying a specific trait. Improving root traits has recently 

raised interest as it offers new opportunities to enhance nutrient and water acquisition and 

therefore abiotic stress tolerance and crop resilience (Comas et al., 2013; Herder et al., 2010). 

Root breeding has been little used in the past, due to the hidden nature of the root system and 

its high environmental plasticity, which made difficult the phenotyping of large collection of 

diversity (Rich and Watt, 2013). However, root trait QTLs have been recently identified in 

cereals, largely thanks to the development of high-throughput phenotyping techniques for root 

characters in hydroponic condition (Clark et al., 2013). They mainly concern rice (e.g. 

Champoux et al., 1995), maize (e.g. Burton et al., 2014) or wheat (e.g. Bai et al., 2013). Root 

QTLs concern many different root traits, including morphological root traits such as root 

diameter, total root system depth, number of roots or root system dry weight, geometrical 

traits such as root angle, or even emergent traits such as convex hull area (Atkinson et al., 

2015) or fractal dimension (Bohn et al., 2006). Some studies seek how root trait QTLs co-

localize with aboveground QTLs like field performance (Atkinson et al., 2015) or plant height 

(Bai et al., 2013).  

Further studies have led to the identification of some genes responsible for the QTL 

effect and the confirmation of the QTL influence on plant physiology by introgression into a 

control variety. A good example is DRO1, a rice gene responsible for a QTL involved in 

crown root angle (Uga et al., 2013). Its introgression into a drought sensitive cultivar led to an 

increase yield under drought stress by increasing deep rooting. The vast majority of these 

findings has been done using recombinant inbred population coming from the cross between 

two contrasted cultivars, but the advent of next generation sequencing now makes it possible 

to easily genotype large diversity panels in non-model plants (such as pearl millet) and to use 

genome wide association studiy to discover QTLs and genes controlling root traits. One 

example that can serve as proof of principle was reported recently in Arabidopsis and led to 

the discovery of KURZ UND KLEIN (KUK, from the German words for short and small), a 

gene controlling primary root elongation (Meijón et al., 2014).  

We found previously that early pearl millet root system development is characterized 

by a fast growing primary root (Passot et al., 2016). We hypothesized that this might be an 

adaptative trait for early drought stress (Padilla et al., 2007). Our previous results suggest that 

there is a high heritability for this trait, which means that it has an important genetic control 

component. 

Here we characterized a large panel of pearl millet inbred lines for primary root growth 

on young plants grown in a paper-based hydroponic system and initiated an association 

genetics study to identify genomic regions controlling this trait. 
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2. Material and methods 

2.1 Plant material 

A panel of pearl millet inbred lines derived from West and Central African landraces 

(open-pollinated varieties) was used in this study. Seeds were produced in 2014 in Niger. 

Since pearl millet is naturally outcrossing, the open-pollinated varieties experienced a high 

degree of inbreeding depression and, as a result, the inbred lines were developed using initial 

selfing for three generations, followed by two generations of sibling and then a last generation 

of selfing. This panel has already been phenotyped under low phosphorus conditions and 

genotyped with diversity array technology (DarT) markers (Gemenet et al., 2015). This 

genotyping revealed that the panel was weakly structured into 3 groups. The panel contained 

345 seed lots belonging to 192 distinct lines. Some biological replicates existed, consisting on 

seeds coming from different selfed plants belonging to the same line.  

2.2 Root phenotyping 

Plants were phenotyped for primary root growth with a paper-based hydroponic 

system, as described in Passot et al. (2016). Seeds were surface-sterilized and pre-germinated 

in Petri dishes, transferred into pouches 24 hours after germination at a density of 3 seeds per 

paper and then maintained in a growth room with a 14 hours photoperiod (28°C during day 

and 24°C during night). Pictures of the root systems were taken 6 days after germination with 

a D5100 DSLR camera (Nikon) at a resolution of 16 M pixels. The camera was fixed on a 

holder to maintain the same distance between the lens and each root system. Primary root 

lengths were measured using RootNav (Pound et al., 2013).  

 

Broad sense heritability was computed with the following formula: 
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where  

- nplant/line is the average number of plants measured per line, 

- Var(line) is the variance associated with lines, 

- Var(res) is the residual variance. 

Both variances are parameters of the following linear mixed model: 

 

                     
 

where μ is the overall mean length, αline is the random effect attached to the lines with 

))lineVar(,0(N~line  and εres is the error term with ))resVar(,0(N~res . 
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2.3 Plant genotyping 

Genomic DNA was extracted from fresh leaves sampled on young plants as described 

in Mariac et al. (2006). Leaves were frozen in liquid N2 just after sampling and ground with a 

Tissue Lyser II (Qiagen). Ground leaves (approximately 0.2 g) were re-suspended in 1 mL 

extraction buffer (Tris (100 mM), NaCl (1.4 M), EDTA (20 mM), CTAB (2%) and DTT 

(0.2%), pH = 8) and incubated at 65°C for 3 hours. Samples were centrifugated 1 minute at 8 

000 rpm and supernatants were washed (1:1) with phenol-chloroforme-isoamyl acohol 

(25:24:1). Samples were centrifugated for 10 minutes at 10 000 rpm at 10°C and supernatants 

were retrieved and incubated with 10 μL RNase A (Qiagen) for 30 minutes at 37°C. A second 

washing step with phenol-chloroforme-isoamylacohol was then applied. DNA was 

precipitated with isopropanol (0.6 volume) and sodium acetate (3 M, pH = 5, 1/10 volume) at 

4°C for 20 minutes. Samples were centrifugated 10 minutes at 10 000 rpm at 10°C and 

supernatants were removed. DNA pellet were washed two times with ethanol (70%) and 

centrifugated 5 minutes at 10000 rpm at 10°C. DNA pellets were re-suspended in 100 μL TE 

buffer and stored at -20°C. DNA concentration and purity were checked with a 

Spectrophotometer ND-1000 (Nanodrop). DNA quality was assessed on a 1% agarose gel. An 

aliquot of 10% of the samples was digested with EcoRI or HindIII (1 unit/reaction; Promega) 

for 2 hours at 37°C to check DNA accessibility to restriction. 

Genotyping was performed by the method genotyping-by-sequencing (GBS) at the 

Genetic Diversity Facility of Cornell University (Ithaca, USA). For each pearl millet line 

phenotyped for root trait (see part II.2) two runs were performed on the HiSeq2500 

(Illumina). Genomic DNA was cut with ApeK1 restriction enzyme and sequencing was done 

with single-end reads. The Genetic Diversity Facility of Cornell University provided the fastq, 

vcf and SAM files as well as the GBS bioinformatics pipeline they used for the analyses 

(TASSEL commands). To check each step of the GBS analyses and test different parameters 

of Single Nucleotide Polymorphisms (SNPs) filtering, the creation of the vcf file from the 

original fasq files was performed a second time using TOGGLE (Monat et al., 2015). The 

filtering of the SNPs was performed by VCFtools.  

3. Results 

A total of 853 plants were phenotyped, divided in 3 unequal experiments of 559, 116 

and 178 plants each respectively. Due to germination problems, only 136 seed lots, belonging 

to 108 different lines, were phenotyped. An average of 7.9 plants/line was analyzed. This 

experiment focused on primary root length at 6 days after germination and this character 

showed a large genetic variability (Figure 3-1). A broad sense heritability of 0.53 was 

estimated for this trait on this large panel confirming that primary root growth has a strong 

genetic control. 
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Figure 3-1: Primary root length of the lines of the inbred panel, measured after 6 days of 

growth. N = mean +/- standard deviation  

 

Primary analyses given by the Genetic Diversity Facility identified 1,677,181 SNPs 

before filtering, among which 481,897 were present in at least half of the plants. The mean 

site depth was 2.86. We expect that further filtration steps would lead to approximately 

300,000 SNPs. 

Analyses of the genetic structure and the genome wide association study will be done 

respectively with the R packages LEA and GAPIT. 

 

4. Discussion and perspectives 

Here we phenotyped a panel of pearl millet inbred lines for primary root length at 6 

days. This measurement can be considered as a good proxy for early primary root growth only 

if this early growth is nearly constant in all lines. Else it may be biased by differences existing 

in early growth dynamics among the panel. The variability found for this character was large 

and the individual variability within each line accounted for a significant part of it, as 

evidenced by the medium value of the broad sense heritability. Variability within line is due 

to individual differences between seeds. As seeds from the same lot all come from the same 

plant, this variability is attributed to small environmental differences during seed filling and 

maturation. In particular, seed position on the mother plant is known to influence seed 

germination (Gutterman, 2000). This effect may be negligible when studying plants during 

longer time scale, as seed reserve just play a role during the first few days of growth of the 

seedling. For very short growth durations, as it was the case here, lower variability within line 

could be obtained by choosing seeds coming from the same part of the spike. In perennial 
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grasses, it has been reported that seeds located at the basal part of the spike tend to have better 

germination rate than seeds located in the middle or the apical part of the spike (González-

Rabanal et al., 1994). Pearl millet is usually sown by putting several seeds together in a hole, 

only the vigorous seedlings being kept after germination. This practice suggests that 

maximum potential early primary growth rate could be the most interesting trait to select, as 

only the best performing plants will be kept after germination. Should this experiment be 

repeated, the protocol may consist in sampling only seeds coming from the basal part of the 

spike in order to estimate primary root length only for the seeds supposed to have the best 

germination ability. This technique may also improve average germination rate, which was 

quite low for some lines and therefore negatively impacted the total amount of plants 

measured per line. 

We also performed genotyping on the same lines in order to be able to conduct 

genotype/phenotype association studies. Genotyping-by-sequencing is a powerful genotyping 

technology permitted by the very fast decrease of sequencing cost that occurred during the 

last ten years thanks to next-generation sequencing technologies (Poland and Rife, 2012). One 

advantage of this technique for association studies is that sequencing is already done when 

markers associated to traits of interest are identified. In our case, it will for example permit to 

identify very quickly sequences homologous to known genes already characterized in other 

cereals in regions associated with our trait of interest.  

A transcriptomic approach will be used to complete the results we expect to find by 

association study. Two lines with contrasted primary root growth rate in the phenotyping 

experiment were selected from the inbred panel (lines were also chosen on the basis of the 

number of plants phenotyped in order to have a strong confidence in the phenotype). Plants 

will be grown in hydroponics (3 replicates per line) and primary root tips (first cm) will be 

harvested 7 days after germination. RNA will then be extracted and used to perform a 

RNAseq experiment. We have now optimized the experimental conditions for plant growth 

and RNA extraction. This experiment will give us two types of information:  

1) what are the genes that are expressed in the root tip (i.e. in the region responsible 

for root growth through cell division and expansion), 

2) what are the genes that are differentially expressed in this region in two contrasted 

lines. Significantly regulated genes will be confirmed on a larger number of contrasted lines 

by qPCR. 

We will then cross this information with the list of candidate genes in the genomic 

region(s) associated with primary root growth in the association study. This might help us 

identify the gene responsible for the quantitative difference. 

 The inbred panel described here has already been phenotyped for tolerance to low 

phosphate availability (Gemenet et al., 2015). It would be interesting to confront our results 

with these ones to find potential relationship between primary root growth and low phosphate 

tolerance. Drought stress tolerance is currently being assessed for this inbred panel at the 

ISRA Bambey experimental station (Senegal). Plant performances in the field are measured in 

well-watered and drought-stressed conditions along with some physiological and agronomical 

traits. Our phenotyping results will be compared with the measurements done in the field to 

assess whether primary root growth has an impact on field performance under drought. Plants 

tolerate drought differently depending on its occurrence time within the growing season 
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(early, intermediate or late) and, as we expect that early primary root growth mainly impacts 

early drought tolerance, further experiments simulating a very early drought stress may be 

performed to refine these predictions. The combined use of phenotyping experiments in 

laboratory conditions and agronomic trials in the field permit to concomitantly estimate the 

agronomic value of root traits and to look for genes controlling them (Atkinson et al., 2015). 

In this respect, further phenotyping experiment, performed on longer time scale, can be used 

to identify more traits of interest, concerning lateral roots, crown roots, distribution of the root 

length in the depth profile, etc… The inbred panel is currently tested for its capacity to 

structure the surrounding soil in rhizosphere by measuring the weight of root adhering soil 

with a standard protocol. As rhizosphere help the plant to tolerate drought episodes, selecting 

plants with higher root adhering soil mass is another way to improve pearl millet drought 

tolerance. 

 In a longer term, markers significantly associated with root traits beneficial for 

drought tolerance, identified by association study, will be included in marker assisted 

selection programs to help breeding new pearl millet varieties with improved root traits.  
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Discussion and perspectives 

 

The objective of this work was to characterize pearl millet root system development. 

This root system was poorly known and this newly-acquired knowledge will be useful for 

breeding new pearl millet varieties with improved root traits. Root system improvement is 

meant to enhance plant water and nutrient acquisition efficiency and therefore to increase 

drought and low nutrient stress tolerance, two major limiting factors in West Africa for this 

important crop.  

1. Lateral roots: an unexplored diversity  

During this PhD, we developed a novel pipeline to analyze the growth of a large 

number of lateral roots. This new approach revealed that lateral roots show three growth 

trends defining three lateral root types in two cultivated cereals, pearl millet and maize. 

Interestingly, these three growth trends were linked with three anatomical types in pearl millet 

(but not in maize). A positive link between lateral root diameter and growth duration has been 

shown on maize, but without grouping of lateral roots (Wu et al., 2016). There is therefore a 

diversity of lateral roots whose development and function is still poorly explored. 

Different lateral root types have been previously described in other cereals based on 

anatomy (Henry et al., 2016; Varney et al., 1991; Watt et al., 2008). Link between a 

classification of lateral roots based upon growth profile and anatomical groups was only 

investigated in rice (Rebouillat et al., 2009), where root growth rates are very contrasted 

among lateral roots, but assignment to classes was based on expert knowledge. Our work not 

only confirms the relevance of expert classification but also can be used to objectify the 

classification and to better characterize the different trends found. Further work could focus 

on understanding how anatomical structure numbers, that are discrete (number of xylem 

tracheary elements, in particular), are linked with growth rate profiles, that are continuous-

valued time series. The statistical approach designed at this occasion can be used to compare 

classifications in other conditions, other genotypes or other cereals. Interestingly, the lateral 

root types described in rice seem quite similar to the ones we found in pearl millet and maize. 

This might suggest that the existence of these different lateral root types is a shared feature of 

cereals. Concerning dicots, the model plant Arabidopsis only has one lateral root type. That 

simplicity allows lots of molecular studies on lateral roots in this plant (Malamy and Benfey, 

1997). In other plants, specialized lateral root types have been evidenced, especially proteoid 

roots. These are small lateral roots highly efficient in P acquisition organized in clusters that 

are produced by Proteaceae under P deficiency (Dinkelaker et al., 1995). Root clusters 

homologous to proteoid roots also exist in some other dicot families. In trees, a positive 

relationship has been shown between root growth rate and root apical diameter (Pagès, 1995). 

Hence some variability has been shown among dicot lateral roots. 

This raises interesting and important questions about the origin and the roles of these 

different lateral root types. This has been little studied but it would be very relevant to 

identify strategies to improve root system efficiency. In rice, the development of lateral root 

primordia is similar for both large and small lateral roots, except that, at a very early stage, 

additional periclinal cell divisions in the endodermal cell layer produce additional ground 
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tissue cell layers in the large lateral roots (Rebouillat et al., 2009). In maize, many lateral 

roots stay very short and this growth arrest is attributed to the loss of root apical meristem that 

differentiates into mature cells at some point (Varney and McCully, 1991). This growth arrest 

happens in the field but not when plants are grown in nutrient solution, thus indicating a clear 

effect of the environment on lateral root growth.  

The function of these different lateral root types must be understood in order to help 

finding a compromise between lateral root density, proportion of the different types and local 

conditions. In rice, lateral roots can be divided into three types: the L types are generally long 

and coarse and capable of branching into higher-order laterals; M types are long and coarse 

but without a branch and S types are short, fine and non-branching but usually numerous 

(Gowda et al., 2011). It is suggested that these three lateral root types fulfill different 

functions, among which branching is the most visible. In the case of maize, root tips have 

been observed to break in some lateral roots and this would render lateral root able to 

transport efficiently water from the soil to the xylem, as water is mainly absorbed via mature 

parts of the roots (Varney and McCully, 1991). Functions of different lateral root types could 

be further explored by analyzing potential mutants affecting lateral root type proportions. For 

example, one can imagine that some roots could exudates particular molecules favoring P 

acquisition, like proteoid roots existing in dicots (Dinkelaker et al., 1995). 

 In conclusion, it will be necessary to take into account the existence of a small number 

of well-defined lateral root types in future work. First, it would be relevant to study the impact 

of the environment on lateral root types, in terms of proportion and of average behavior of 

each type. In particular, the availability of water and phosphorus and the temperature of 

growth may have an impact on lateral roots. The pipeline propose in Chapter 2 is suitable for 

such studies. The function and mechanisms of development responsible for the formation of 

these different root types also need to be studied. Moreover, the existence of different lateral 

root types could be taken into account for breeding, where root carbon cost is a main concern 

(Lynch and Ho, 2005). It has been shown that root length heterogeneity is positively linked 

with foraging performance (Pagès, 2011). Breeding needs in a first place that targeted traits 

are genetically determined but for now nothing tells us that this is the case for relative 

proportions of the different lateral root types. These proportions could be set mainly by 

environmental conditions. This supposition is supported by the very similar proportions found 

for maize and pearl millet in similar conditions, meaning that proportions could even be 

conserved among species. Studying genetically diverse accessions will permit to know 

whether genetics influences lateral root types and in which direction: modification of type 

proportions, of growth rate profile, of growth duration… Given the high inter-individual 

heterogeneity, such genetic studies would need either to better control this heterogeneity or to 

use phenotyping methods with higher throughput than what was put in place during my PhD.  

2. Root phenotyping: the new frontier 

During this PhD, several phenotyping techniques for root architecture were used, 

offering different advantages and constraints. Hydroponic phenotyping on blue paper 

(Atkinson et al., 2015) was used in Chapter 1 to explore the existing diversity in root 

architecture and in Chapter 3 for high throughput phenotyping of primary root length. This 

set up allowed to phenotype a large number of plants in a reduced space. The limiting factor 
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for throughput in that case was seed availability and germination rate and amount of human 

intervention needed to transfer the germinated seeds on pouches on one day. This issue can be 

skirted by staggering the start of the experiment for seed lots, but this automatically raises the 

question of homogeneity of environmental conditions. An intrinsic limitation of this system is 

the artificiality of the growth conditions, that does not offer mechanical resistance to root 

growth, for example, and limited duration during which plants can grow. Moreover, it was 

especially susceptible to contaminations.  

A rhizotron system was used in Chapter 1 and Chapter 2. It offered more realistic 

growth conditions, as it opposed mechanical impedance to root system growth and water and 

nutrients were extracted from a substrate rather than from a nutrient solution. It was used to 

follow precisely the growth of individual roots, on a daily time scale, and the growth duration 

was longer than on the blue papers thanks to the bigger dimensions of the growth system. The 

main drawback of this system is the amount of human workforce it requires and therefore its 

low throughput. The system size could be increased but daily manual handling imposes some 

weight restrictions and the rhizotrons already weighted about 6 kg with that size. Robotic 

handling would solve the weight problem. The other limiting factor is the need for human 

intervention for semi-automatic tracing of the root systems. Even if growing larger number of 

plants is practically conceivable, the image analysis task will be a bottleneck for improving 

throughput. Improvement of the existing image analysis softwares like SmartRoot will be 

needed to address this issue. Solutions like analyzing only small parts of the root system could 

also be used should a larger number of plants be required, for example to compare different 

treatments.  

Last, X-ray microcomputed tomography was used in Chapter 1. This technique can 

be used to get a 3D representation of root system growing in soil. It has the advantage of 

permitting non-destructive observations of root systems grown in 3 dimensions in a real soil. 

However, the efforts to render growth conditions more realistic have their drawbacks. A 

compromise has to be found between pot sizes and scanning duration. Higher scanning 

duration at constant pot size results in better scan definition but imposes lower throughput. 

The compromise we chose implied medium pot size, in which root systems reached the 

bottom quite quickly. However, even with medium pots and with the scanning duration we 

chose, the scan definition was not sufficient to detect all lateral roots and in particular thin 

ones. This may be improved by a fine contrast adjustment associated with adequate image 

treatment. There is still no automation, even partial, for root system segmentation from the 

stack of images generated by the scanner which rendered the image analysis very time 

consuming and tedious. This also favored a certain amount of subjectivity of the tracing, that 

depends on the experimenter. Fully manual segmentation also compromises the scaling of this 

particular experimental setup for high-throughput phenotyping. The development of an 

algorithm for automatic segmentation of roots from soil scans would be ideal to improve the 

repeatability of the segmentation and the possibilities to increase throughput (Mairhofer et al., 

2012), as long as its use is simple enough and does not require too many expert interventions.  

To sum up, we used one phenotyping technique focused on high-throughput, one 

focused on information precision and one focused on reality of growth conditions. The efforts 

made on one special point always led to drawbacks on the other ones and these three 

techniques thus illustrate the necessary compromise between throughput, spatial and temporal 
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resolution, and relevance of growth conditions. Spatial resolution depends on the image 

acquisition technique and better resolution usually requires higher image acquisition duration. 

This was the case with the scanner and the CT-scan. On the other side, temporal resolution 

depends on the frequency with which images are acquired (daily with rhizotrons, one every 

other day with blue papers and every 4 to 6 days with the CT-scan). This point depends on the 

amount of work necessary to acquire the images and to treat them and also on the availability 

of the image acquisition system (limited availability in time for micro-CT). Improved 

temporal resolution can be reached by automatically moving the plants toward the image 

acquisition system or by moving the image acquisition system itself in the growth room, in 

which case spatial and temporal resolution become tightly linked (Fahlgren et al., 2015b). 

Root phenotyping is a very active field of research and many other phenotyping 

solutions exist for root system. Shovelomics consists in excavating root system of field grown 

plants and evaluating some defined root traits with a precise technique (Trachsel et al., 2011). 

Depending on the root traits of interest, this technique can be rendered high throughput and it 

is the one that offer the most realistic growth conditions. It can be used to screen large 

population of plants for genetic studies but thus needs a lot of human work. MRI is another 

solution to phenotype root systems grown in soil (van Dusschoten et al., 2016). It has the 

same dimension limitation as X-ray CT but skirts the segmentation issue with a different 

image acquisition technology. Growing root system in transparent medium is a different 

strategy. It allows 3-dimensional phenotyping of large number of plants and association 

studies (Topp et al., 2013). Growing root systems in 2 dimensions can also be done in 

transparent media, such as glass beads (Courtois et al., 2013). 

 A lot of phenotyping techniques exist, each one proposing its own compromise in 

terms of throughput and spatial and temporal resolution. Although phenotyping technologies 

and platforms may be reused or copied, it appears that experimental conditions are usually 

adapted for every phenotyping experiment in order to fulfill specific requirements and all 

existing experimental set ups are example among which ideas can be picked up. Phenotyping 

is a matter of whole pipeline rather than single technology and most phenotyping pipelines 

have their limiting step. Lots of progresses have been done in automation and image 

acquisition techniques but analyzing these images and handling large amount of data can 

reveal limiting. To finish with, good quality datasets are often underexploited. In particular, 

few experiments end up with real spatio-temporal analyses, although the data collected would 

suit these analyses, and synthetic traits are often the only ones to be really exploited. Limiting 

steps of phenotyping platforms shift from plant culture and image acquisition to analysis of 

large datasets produced and efforts are needed to exploit these dataset at best. 

3. Root breeding: how do we turn knowledge on root development to 

progresses in yield and resilience to stresses? 

High throughput phenotyping techniques can be used to screen large number of plants for 

root traits and find genetic determinant of these traits. We showed the existence of variability 

in primary root growth and lateral root density in a diversity panel derived from cultivated 

varieties, which opened the possibility to use this existing variability in root system breeding. 

An association study was started on a large panel of pearl millet inbred lines from diverse 

origins to understand the genetic control of primary root elongation and the origin of the 
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existing diversity. Results will reveal new information on the genetic control of root growth 

and open the way to marker-assisted selection for root traits in pearl millet. 

It is necessary to assess the role of root trait potentially targeted for breeding. A first 

approach is the use of functional-structural plant models to test hypotheses on the impact of 

different root traits on water or nutrient capture. The use of these models fastens trait 

evaluation in different environments and could be used to find optimal traits in certain 

conditions. Indeed, optimal traits are not always intuitive, for example low crown root number 

was shown to be beneficial for nitrate uptake in maize (Saengwilai et al., 2014) and low 

lateral root density is beneficial for drought tolerance (Zhan et al., 2015). For example, 

favoring phosphate uptake could for more efficient than water uptake if phosphate is the most 

limiting factor. For pearl millet, two contrasted lines have been phenotyped for root 

architecture and will be used for parameterization and testing of such model (Adama NDOUR 

PhD in our team). Beside, a field phenotyping study has been started on pearl millet to 

compare architectural traits measured in rhizotron and in soil and to adapt existing functional-

structural plant models to better represent root system architecture in soil. Among potential 

options, one would be to select root traits favoring mycorrhization rather than focusing only 

on direct nutrient uptake by the root system itself. Indeed, mycorrhization was shown to 

participate in early P uptake (Li et al., 2006) and favoring fungal symbiosis could be a good 

strategy for pearl millet, as it is usually grown on soils with poor available P. A study on the 

effect of mycorrhization on root system architecture and drought tolerance has been started on 

pearl millet in our team.  

Another complementary approach is to link the findings of root phenotyping in controlled 

conditions with field performance on a same panel of diverse lines (Atkinson et al., 2015). For 

our pearl millet panel, such an experiment is underway in Senegal, at the ISRA Bambey 

experimental station. It consists in submitting the plants of the panel described in Chapter 3 

to an early drought stress. This was performed during the dry season and the drought stress 

was applied by holding watering 3 weeks after germination, during 40 days. A first 

experiment was run in 2015 and a second one is underway. These two experiments will be 

analyzed to measure the early drought tolerance of our panel in field conditions. This opens 

the way to look for correlations between the root traits we measured and field performances. 

Another option is to study a selection of inbred lines with contrasted root traits, previously 

identified in controlled condition phenotyping. 

Root system architecture is known to be very plastic in response to environmental 

conditions (Rich and Watt, 2013). It is worth asking whether root breeding should be done on 

fixed traits or should select root system abilities to adapt to the environmental conditions. For 

example, in the aerial part, tillering is known to participate in pearl millet intermittent drought 

stress tolerance, as development of tillers is delayed compared to the main shoot and thus can 

compensate the loss of yield due to a drought-related failure of the main shoot (Vadez et al., 

2012). At the root level, transient drought stress has been shown to repress lateral root 

formation in barley (Babé et al., 2012). Root system architecture of different cereals have 

been compared, along with their tolerance to drought (Yamauchi et al., 1996). It has been 

found that species presenting the best drought tolerance had a root system characterized by 

few but long nodal roots, many of which elongated obliquely in the soil profile, due to a large 

rooting angle. Under drought condition, the concentration of lateral root development shifted 
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to the deeper soil layers in these cereals. Pearl millet was in this case. The better drought 

tolerance of wheat cultivars compared to rice have been suggested to be due to plant plasticity 

and especially root traits (Kadam et al., 2015). This exemplifies that improved root system 

plasticity could increase drought tolerance in a given species and would be an interesting trait 

to target. Plasticity is typically measured by comparing root traits under well-watered and 

stressed conditions (drought or nutrient scarcity for example) (Kadam et al., 2015; Padilla et 

al., 2007; Yamauchi et al., 1996), which requires to finely calibrate stress application if we 

want to insure measurement reproducibility. 

4. Orphan cereals: how do we apply knowledge from model plants to 

these poorly-known crops?  

One originality of my PhD was the focus on pearl millet, a little-studied African cereal. 

Studying pearl millet has an interest by itself as its improvement by breeding is susceptible to 

increase food security in arid countries but it also had some practical advantages. One of them 

was the very fast germination time, generally under 24 hours and the absence of need to 

vernalize seeds, as it is the case in winter wheat for example.  

The study of this plant cast light on the way knowledge acquired on model plants can be 

transposed to non-model crops. Model plants have been selected to focus research efforts on 

single species (Izawa and Shimamoto, 1996). It is expected that gene controlling root growth, 

for example, will be found more easily with the help of knowledge on Arabidopsis, rice or 

maize. Moreover, the confrontation of genes found in pearl millet with information available 

on model plants may be a way to understand the specificities of this species, for example in 

terms of root growth rate. Although studies at small scales export quite well to non-model 

plants (Orman-Ligeza et al., 2013), physiological knowledge seems to be more specific to 

each plant. In particular, abiotic stress tolerance is reported to benefit a lot from the study of 

grasses rather than model dicots (Tester and Bacic, 2005). Maize is a cereal that is at the same 

time quite close phylogenetically to pearl millet and that has been subject of many studies, but 

these two cereals still have a lot of differences. For example, domestication has led to very 

different morphologies for these two cereals, maize having numerous ears per stem but does 

not tiller, contrary to pearl millet. Culture conditions of these two cereals are also different. 

Some similarities have been found for lateral root types and anatomy between pearl millet and 

other better known cereals but it seemed to be closer to wheat or rice than to maize. Studying 

poorly explored plants belonging to various branches of the phylogenetic tree of cereals thus 

reveals unknown commonalities among its members. Model plants seem to be a useful tool 

for molecular and genetic studies but this can hardly be extended to higher scales, like 

physiological or field studies. 

 

To conclude, my PhD work provided a precise description of pearl millet root system that 

was little studied to date. Our data were used for parameterization and testing of functional-

structural plant models simulating root growth and water transport. A pipeline was developed 

for characterization of the lateral root growth rate profiles, including an original statistical 

model that may be used on other cereals. Finally, results from our association study will 

reveal new information on the genetic control of root growth and open the way to marker 

assisted selection for root traits in pearl millet. 
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Supplementary Figure 1-1: Stele diameter of primary root (A) crown root (B) and type 3 

lateral root (C) measured at different distances to the root apex 

Supplementary Figure 1-2: Seed weight of each line against average primary root length 

after 6 DAG, measured in pouches. 

Appendix 1-1: Python script to compute volume explored by the root system in 3D 

Appendix 2-1: Definition of semi-Markov switching linear models and associated statistical 

methods 

Appendix 2-2: Empirical selection of the number of classes of lateral roots. 

Appendix 2-3: Algorithm for correcting growth rate profiles 

Appendix 2-4: Definition of stationary variable-order Markov chains and associated 

statistical methods 

Supplementary result 2-1: Link between interval length and lateral root type proportions 

Supplementary figure 2-1: Four-state semi-Markov switching linear model estimated on the 

basis of maize lateral root growth rate series: (a) Growth duration distributions; (b) Graph of 

transitions. The possible transitions between states are represented by arcs with the attached 

probabilities noted nearby when < 1. The arcs entering in states indicate initial states and the 

attached initial probabilities are noted nearby. (c) Linear trend models estimated for each 

state.  

Supplementary figure 2-2: Ranked posterior probabilities of the optimal assignment of each 

lateral root growth rate series to a group: (a) pearl millet; (b) maize. Limits (dotted lines) 

between unambiguously and ambiguously explained lateral root growth rate series are 

positioned on the basis of a curve shape criterion.  

Supplementary figure 2-3: Pearl millet: daily median growth rate (and associated mean 

absolute deviation −m.a.d.−) for (a) 2 groups, (b) 3 groups and (c) 4 groups.  

Supplementary figure 2-4: Cumulative distribution functions of the length of growth rate 

profiles assigned to each group: (a) pearl millet; (b) maize.  

Table S2-1: Pearl millet: Overlaps (i.e. 1 – sup norm distance) between growth rate 

distributions corresponding to consecutive lateral root categories (α-β for 2 categories, A-B 

and B-C for 3 categories and a-b, b-c, and c-d for 4 categories) extracted from the optimal 

assignment of each lateral root growth rate profiles using the estimated 3-, 4- and 5-state 

semi-Markov switching linear models. 

Table S2-2: Maize: Overlaps (i.e. 1 – sup norm distance) between growth rate distributions 

corresponding to consecutive lateral root categories (α-β for 2 categories, A-B and B-C for 3 

categories and a-b, b-c, and c-d for 4 categories) extracted from the optimal assignment of 

each lateral root growth rate profiles using the estimated 3-, 4- and 5-state semi-Markov 

switching linear models. 
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Table S2-3: Maize: Overlaps (i.e. 1 – sup norm distance) between growth rate distributions 

and apical diameter distributions corresponding to consecutive lateral root categories (A-B 

and B-C) extracted from the optimal assignment of each lateral root growth rate profiles using 

the estimated 4-state semi-Markov switching linear model. 

Table S2-4: Length of the interval between successive lateral roots in pearl millet, classified 

according to the types of the two lateral roots delimiting the interval.  

Table S2-5: Length of the interval between successive lateral roots in pearl millet, classified 

according to the types of the two lateral roots delimiting the interval.  

Résumé substantiel en français 
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Supplementary Figure 1-1: Stele diameter of primary root (A) crown root (B) and 

type 3 lateral root (C) measured at different distances to the root apex 
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Supplementary Figure 1-2: Seed weight of each line against average primary root 

length after 6 DAG, measured in pouches. 
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Appendix 1-1: Python function to compute volume explored by the 

root system in 3D 

 

This function takes in arguments the image stack representing the root system in 3D, the 

distance at which to compute the explored volume and the image resolution. It returns the 

total volume comprised within a set distance of any point of the root system. 

 
def volume_at_distance(img, distance, resolution, zslices = [ None]): 

print 'Compute volume at distance' 
distancevoxel = distance / resolution 
voxelvolume   = resolution ** 3 
maxdepth = img.shape[2] 
 
imgatdistance =  (0 < img) & (img < distancevoxel) 
 
res = [] 
for zslice in zslices: 
    if zslice is None: 
       res.append(float(voxelvolume * np.sum(imgatdistance))) 
    else: 
       pzslice = (zslice[0]/resolution if not zslice[0] is None else 

0, min(maxdepth,zslice[1]/resolution) if not zslice[1] is None else 
maxdepth) 

            res.append(float(voxelvolume * 
np.sum(imgatdistance[:,:,pzslice[0]:pzslice[1]]))) 
 
return res 
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Appendix 2-1: Definition of semi-Markov switching linear models and 

associated statistical methods 

 

Semi-Markov chains 

Let  tS  be a semi-Markov chain with finite-state space }1,,0{ J . A J-state semi-

Markov chain  tS  is defined by the following parameters: 

 initial probabilities )( 1 jSPj   with 1 j j ; 

 transition probabilities 

- nonabsorbing state i: for each ),|(, 1 iSiSjSPpij tttij    with 1 ij ijp and 

0iip  by convention, 

- absorbing state i: 1)|( 1   iSiSPp ttii  and for each 0,  ijpij . 

 

An explicit occupancy distribution is attached to each nonabsorbing state: 

 ,2,1),,|2,,0,,()( 11   ujSjSuvjSjSPud ttvututj  

Since 1t  is assumed to correspond to a state entering, the following relation is 

verified: 

.)(),,1,,( jjvtt tdtvjSjSP     

We define as possible parametric state occupancy distributions binomial distributions, 

Poisson distributions and negative binomial distributions with an additional shift parameter d 

( 1d ) which defines the minimum sojourn time in a given state. 

The binomial distribution with parameters d, n and p ( pq 1 ), B(d, n, p) where 

10  p , is defined by 

.,,1,,)( ndduqp
du

dn
ud undu

j 











   

The Poisson distribution with parameters d and λ, P(d, λ), where λ is a real number (

0 ), is defined by: 

,1,,
! )(

)( 





ddu
du

e
ud

du

j


 

The negative binomial distribution with parameters d, r and p, NB(d, r, p), where r is a 

real number ( 0r ) and 10  p , is defined by: 

,1,,
1

1
)( 












  dduqp

r

rdu
ud dur

j  

 

 

Semi-Markov switching linear models 

A semi-Markov switching model can be viewed as a pair of stochastic processes 

 tt XS ,  where the “output” process  tX  is related to the “state” process  tS , which is a 
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finite-state semi-Markov chain, by a probabilistic function or mapping denoted by f (hence 

)( tt SfX  ). Since the mapping f is such that a given output may be observed in different 

states, the state process  tS  is not observable directly but only indirectly through the output 

process  tX . This output process  tX  is related to the semi-Markov chain  tS  by the 

observation (or emission) models. The output process at time t depends only on the 

underlying semi-Markov chain at time t. 

 

The output process  tX  is related to the state process tS , by a linear trend model 

).,0(N~, 2

jjjjjt tX    

The maximum likelihood estimation of the parameters of a semi-Markov switching 

linear model requires an iterative optimization technique, which is an application of the EM 

algorithm. Once a semi-Markov switching model has been estimated, the most probable state 

series 
*

s  with its associated posterior probability )|( *
xXsS P  can be computed for each 

observed series x using the so-called Viterbi algorithm (Guédon, 2003). In our application 

context, the most probable state series can be interpreted as the optimal segmentation of the 

corresponding observed series into at most two sub-series corresponding to a given growth 

phase either censored or followed by a growth arrest; see Guédon (2003, 2005, 2007) for the 

statistical methods for hidden semi-Markov chains that directly apply to semi-Markov 

switching linear models. 
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Appendix 2-2: Empirical selection of the number of classes of lateral 

roots 

The empirical selection of the number of lateral root classes combines the three 

following criteria: 

1. Posterior probabilities of the optimal assignment of each lateral root growth rate 

profile to a growth state (followed or not by the growth arrest state at a given age) i.e. 

weight of the optimal assignment among all the possible assignments of a given 

growth rate profile. Ambiguous assignments can be explained by two types of 

alternative assignments that can be combined: (i) assignment to an alternative growth 

state, (ii) alternative assignment corresponding to a shift (usually a 1-day shift) of the 

transition from the optimal growth state to the growth arrest state. The posterior 

probabilities of the optimal assignments are expected to decrease with the increase of 

the number of growth states. 

2. Comparison between location and dispersion measures of growth rate profiles for each 

lateral root class deduced from the optimal assignment of each lateral root growth rate 

profile. Because the empirical growth rate distributions for the less vigorous roots at 

high ages were semi-continuous and highly right-skewed combining zero values for 

arrested roots with continuous positive values for growing roots, we chose to use 

robust measures of location and dispersion (i.e. median and mean absolute deviation 

from the median). We in particular focused on the relative dispersion of growth rate 

distributions for the most vigorous root class. Relative dispersions are indeed 

irrelevant in the case of median at zero or close to zero corresponding to a high 

proportion of arrested roots. 

3. Overlap between growth rate profiles for consecutive lateral root classes deduced from 

the optimal assignment of each lateral root growth rate profile. Since the growth rate 

profiles were highly divergent at the beginning of growth, we focused on the overlap 

from age 3. The high overlap in the case of a high proportion of arrested roots in the 

two classes being compared (less vigorous roots at the highest ages) should indeed not 

be considered for the selection of the number of root classes. 

 

To assess the separability of growth rate profiles for each lateral root class, we used the 

sup-norm distances between the growth rate distributions at a given age for consecutive 

classes (i.e. A and B or B and C in the case of 3 classes): 

  .)(),(min1)()(sup  dxxgxfxGxF
x

 

This distance, which is the maximum absolute difference between the two cumulative 

distribution functions )(xF  and )(xG , is also one minus the overlap between the two 

distributions in our case of non-crossing cumulative distribution functions. This distance is 

between 0 (full overlap, i.e. identical distributions) and 1 (no overlap). In the case of crossing 

cumulative distribution functions (which was rather infrequent in our context), this distance 

generalizes to 

 
 

  .)(),(min1)()(sup
1,

 


dxxgxfxGxF
j x jj 
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where sup norm distances computed over each interval  1, jj   between two 

consecutive crossings of cumulative distribution functions are summed. 

 

As expected, the proportion of ambiguously assigned lateral root increased with the 

number of growth states (i.e. of lateral root classes). For pearl millet, approximately 5% of 

lateral roots were ambiguously assigned in the case of 2 classes, 19% in the case of 3 classes 

and 29% in the case of 4 classes; see SupFigure 2-2a., For maize, approximately 9% of 

lateral roots were ambiguously assigned in the case of 2 classes, 22% in the case of 3 classes 

and 33% in the case of 4 classes; see SupFigure 2-2b. These proportions indeed favor the 

most parsimonious models but stay reasonably low even for 4-class models confirming the 

rather strong clustering structure. It should be noted that these posterior probabilities do not 

represent, in the case of uncensored growth rate profiles, the different growth phase durations 

in the optimal growth state but only the optimal growth phase duration. They thus provide a 

more stringent criterion than the posterior probabilities of the optimal assignment of each 

lateral root growth rate profile to a growth state. 

 

The high dispersion measure with respect to the location measure at the highest ages for 

the most vigorous lateral roots makes the 2-class models rather irrelevant regarding the 

definition of growth rate profile classes. This is especially marked for pearl millet comparing 

daily median growth rate and associated mean absolute deviation of the most vigorous lateral 

root class between 2 and 3 classes (SupFigure 2-3 a and b). This is less marked for maize 

where the most vigorous lateral root class likely combines lateral roots whose growth rate 

started to decrease with lateral roots whose growth rate continued to increase at the highest 

ages. 

 

In the case of 3 classes, the overlap between growth rate profiles of classes A and B 

stays roughly constant from age 3 onward while the overlap between growth rate profiles of 

classes B and C progressively increases because of the increasing masses of zero 

corresponding to arrested roots for these two classes; see Tables S2-1 and S2-2. The situation 

was very different in the case of 4 classes were the overlap between growth rate profiles was 

high from age 3 for the two classes of the less vigorous lateral roots. These two classes were 

thus not well separated in terms of growth rate profiles. Combining these three criteria, we 

selected for both species 3 lateral root classes that correspond to the best compromise between 

the proportion of ambiguously assigned lateral roots, the relative dispersion of growth rate 

profiles for the most vigorous root class and the overlap between growth rate profiles for 

consecutive classes. 
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Appendix 2-3: Algorithm for correcting growth rate profiles 

 

Identification of putatively erroneous growth rate 

The correction algorithm was based on the observation of growth rate profiles and was 

decomposed in two steps: the labeling of each day with a qualifier and the correction of the 

growth rate profile according to the qualifiers. The qualifiers were assigned according to the 

following rules: 

- “stopped” if growth rate < 0.1 mm.day
-1

; 

- “growing” if growth rate > 0.1 mm.day
-1

;  

- “zombie” if day is labeled “growing” and the previous day is labeled “stopped”; 

- “stopping” if day is labeled “growing” and the subsequent day is labeled “stopped”; 

- “rough stopping” if day is labeled “stopping” and growth rate is higher than a 

threshold representing an improbable growth rate for a root the day preceding it arrest. 

This threshold was fixed at 10 mm.day
-1

.  

 

Correction strategy of growth rate profiles 

The roots containing problematic labels (“zombie” or “rough stopping”) were visually 

examined to identify possible common sources of error in image analysis. A frequent case 

within the zombie category was alternative stopped and zombie states with low growth rate (< 

2 mm.day
-1

). We assumed that this pattern probably arose from slight alignment defaults in 

SmartRoot tracings for roots that have stopped their growth and we forced the corresponding 

growth rates to zero. The other frequent source of zombies was the lack of manual elongation 

at a single day. The result was a zero growth followed by an overestimated growth rate. In 

these cases, we either corrected the data directly in the SmartRoot tracing if possible, or 

applied a local smoothing filter on the zombie growth rate, and its two immediate neighbors. 

All other zombies remaining after these corrections were truncated. 

Rough stops were mostly due to the root system becoming progressively denser, therefore 

increasing the probability for a fast-growing root to encounter another root, hampering correct 

monitoring of root growth. The roots containing a rough stopping were either examined and 

corrected individually in the case of pearl millet, where the low number of plants allowed to 

visually check all the images, or truncated after the last high growth rate in the case of maize. 

The intermediate case, where zombie growth rate was comprised between 2 and 10 

mm.day
-1

, were dealt manually in the case of pearl millet and removed from the dataset in the 

case of maize. 

The pearl millet dataset was initially composed of 1256 lateral roots, 9% containing a 

growth rate classified as zombie and 5% classified as rough stopping. The maize dataset was 

initially composed of 3896 lateral roots, 18% containing a growth rate classified as zombie 

and 4% classified as rough stopping. 
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Appendix 2-4: Definition of stationary variable-order Markov chains 

and associated statistical methods 

 

Stationary variable-order Markov chains 

In the following, we first introduce high-order Markov chains before defining variable-

order Markov chains. In the case of a rth-order Markov chain  ,1,0; tSt , the conditional 

distribution of tS  given 10 ,, tSS   depends only on the values of 1,,  trt SS   but not further 

on 10 ,, rtSS  , 

),,|(),,|( 110011 rtrttttttttt sSsSsSPsSsSsSP     

In our context, the random variables represent the lateral root types and can take the 

three possible values A, B and C. These possible values correspond to the Markov chain 

states. A J-state rth-order Markov chain has )1( JJ r  independent transition probabilities if 

all the transitions are possible. Therefore, the number of free parameters of a Markov chain 

increases exponentially with the order. Let the transition probabilities of a second-order 

Markov chain be given by 

.1 with),|( 21  

j

hijttthij phSiSjSPp  

These transition probabilities can be arranged as a JJ 2
 matrix where the row 

),,( 10 hiJhi pp   corresponds to the transition distribution attached to the [state h, state i] 

memory. If for a given state i and for all pairs of states ),( hh   with hh  , hijijh pp   for each 

state j, i.e. once 1tS  is known, 2tS  conveys no further information about tS , the J memories 

of length 2 [state h, state i] with 1,,0  Jh   can be grouped together and replaced by the 

single [state i] memory of length 1 with associated transition distribution ),,( 10 iJi pp  . This 

illustrates the principle used to build a variable-order Markov chain where the order (or 

memory length) is variable and depends on the “context” within the sequence. The memories 

of a Markov chain can be arranged as a memory tree such that each vertex (i.e. element of a 

tree graph) is either a terminal vertex or has exactly J “offspring” vertices. A transition 

distribution is associated with each terminal vertex of this memory tree. 

 

A stationary Markov chain starts from its stationary distribution and will continue to 

have that distribution at all subsequent time points. In the case of a variable-order Markov 

chain, the stationary distribution − which is the implicit initial distribution− is defined on the 

possible memories. 

 

Selection of the memories of a stationary variable-order Markov chain 

The order of a Markov chain can be estimated using the Bayesian information criterion 

(BIC). For each possible order r, the following quantity is computed 

,(S1)log)log(2)(BIC ndLr rr   

where rL  is the likelihood of the rth-order estimated Markov chain for the observed 

sequences, rd  is the number of free parameters of the rth-order estimated Markov chain and n 
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is the cumulative length of the observed series. The principle of this penalized likelihood 

criterion consists in making a trade-off between an adequate fitting of the model to the data 

(given by the first term in (S1)) and a reasonable number of parameters to be estimated 

(controlled by the second term in (S1), the penalty term). In practice, it is infeasible to 

compute a BIC value for each possible variable-order Markov chain of maximum order Rr   

since the number of hypothetical memory trees is very large. An initial maximal memory tree 

is thus built combining criteria relative to the maximum order (3 or 4 in our case) and to the 

minimum count of memory occurrences in the observed series. This memory tree is then 

pruned using a two-pass algorithm which is an adaptation of the Context-tree maximizing 

algorithm (Csiszár and Talata, 2006): a first dynamic programming pass starting from the 

terminal vertices and progressing towards the root vertex for computing the maximum BIC 

value attached to each sub-tree rooted in a given vertex, is followed by a second tracking pass 

starting from the root vertex and progressing towards the terminal vertices for building the 

memory tree. 
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Supplementary result 2-1: Link between interval length and lateral 

root type proportions 

 

We tested whether the interval lengths and the proportion of lateral roots types were 

related, based on the two plant classifications. As the number of plants were small (8 for pearl 

millet, 13 for maize), we put in parallel the two groupings but could not perform statistical 

comparison. The following results are therefore only descriptive and should be interpreted 

with caution. For pearl millet, two groups could be distinguished: 

- the first group was formed of 3 plants, belonging to interval group a or ab, and to 

proportion group a or ab. It corresponded to a large interval and a low proportion of type A 

lateral roots. 

- the second group was formed of 4 plants, belonging to interval group b and to 

proportion group b or c. It corresponded to a small inter-root interval and higher proportion of 

type A and type B lateral roots compared to the first group. 

- one plant (10.9) did not fit in this grouping, as it belonged to group b for interval and 

to group ab for proportion. 

This link suggested that more vigorous plants could present a higher lateral root density 

and proportionally more type A lateral roots. 

For maize, no clear similarities between groups were visible.  

 

 

Plant Interval Proportion 

1.9 a    
ab 

  

5.1  
ab 

    

15.1   a    

3.1   

b 

  b  

2.1      
c 

5.9      

3.9     b  

10.9    ab   

 

Table: Comparison of the individual plant classifications based on interval 

lengths and on lateral root type proportions in pearl millet.  
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Supplementary figure 2-1: Four-state semi-Markov switching linear model estimated 

on the basis of maize lateral root growth rate series: (a) Growth duration distributions; (b) 

Graph of transitions. The possible transitions between states are represented by arcs with the 

attached probabilities noted nearby when < 1. The arcs entering in states indicate initial states 

and the attached initial probabilities are noted nearby. (c) Linear trend models estimated for 

each state.  

 

 
  



Appendix 

124 

 

Supplementary figure 2-2: Ranked posterior probabilities of the optimal assignment 

of each lateral root growth rate series to a group: (a) pearl millet; (b) maize. Limits (dotted 

lines) between unambiguously and ambiguously explained lateral root growth rate series are 

positioned on the basis of a curve shape criterion.  
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Supplementary figure 2-3: Pearl millet: daily median growth rate (and associated 

mean absolute deviation −m.a.d.−) for (a) 2 groups, (b) 3 groups and (c) 4 groups.  
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Supplementary figure 2-4: Cumulative distribution functions of the length of growth 

rate profiles assigned to each group: (a) pearl millet; (b) maize.  
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Table S2-1: Pearl millet: Overlaps (i.e. 1 – sup norm distance) between growth rate 

distributions corresponding to consecutive lateral root classes (α-β for 2 classes, A-B and B-C 

for 3 classes and a-b, b-c, and c-d for 4 classes) extracted from the optimal assignment of each 

lateral root growth rate profiles using the estimated 3-, 4- and 5-state semi-Markov switching 

linear models. 

 

 

 2 classes 3 classes  4 classes 

Age α-β  A-B B-C  a-b b-c c-d 

1 0.47  0.55 0.53  0.53 0.67 0.4 

2 0.22  0.38 0.32  0.5 0.39 0.27 

3 0.16  0.27 0.3  0.37 0.31 0.5 

4 0.15  0.23 0.34  0.28 0.25 0.51 

5 0.17  0.2 0.39  0.09 0.31 0.65 

6 0.25  0.18 0.45  0.19 0.37 0.72 

7 0.34  0.28 0.54  0.17 0.45 0.79 
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Table S2-2: Maize: Overlaps (i.e. 1 – sup norm distance) between growth rate distributions 

corresponding to consecutive lateral root classes (α-β for 2 classes, A-B and B-C for 3 classes 

and a-b, b-c and c-d for 4 classes) extracted from the optimal assignment of each lateral root 

growth rate profiles using the estimated 3-, 4- and 5-state semi-Markov switching linear 

models. 

 

 2 classes 3 classes  4 classes 

Age α-β  A-B B-C  a-b b-c c-d 

  1 0.29  0.61 0.27  0.78 0.44 0.21 

  2 0.17  0.46 0.22  0.65 0.3 0.31 

  3 0.17  0.25 0.32  0.34 0.28 0.47 

  4 0.24  0.23 0.4  0.25 0.37 0.57 

  5 0.32  0.19 0.5  0.22 0.48 0.65 

  6 0.38  0.23 0.55  0.19 0.53 0.7 

  7 0.4  0.24 0.59  0.16 0.55 0.78 

  8 0.43  0.25 0.64  0.14 0.57 0.83 

  9 0.46  0.31 0.71  0.13 0.57 0.9 

10 0.48  0.3 0.8  0.14 0.61 0.94 

11 0.5  0.29 0.85  0.17 0.65 0.96 
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Table S2-3: Maize: Overlaps (i.e. 1 – sup norm distance) between growth rate distributions 

and apical diameter distributions corresponding to lateral root classes (A-B, B-C and A-C 

only for apical diameters) extracted from the optimal assignment of each lateral root growth 

rate profiles using the estimated 4-state semi-Markov switching linear model. 

 

 

 Growth rate  Apical diameter 

Age A-B B-C  A-B A-C B-C 

  1 0.61 0.27  0.65 0.48 0.79 

  2 0.46 0.22  0.62 0.48 0.85 

  3 0.25 0.32  0.49 0.45 0.89 

  4 0.23 0.4  0.47 0.42 0.87 

  5 0.19 0.5  0.47 0.43 0.77 

  6 0.23 0.55  0.41 0.37 0.84 

  7 0.24 0.59  0.38 0.38 0.86 

  8 0.25 0.64  0.34 0.4 0.84 

  9 0.31 0.71  0.35 0.39 0.78 

10 0.3 0.8  0.33 0.37 0.8 

11 0.29 0.85  0.39 0.33 0.62 
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Table S2-4: Length of the interval between successive lateral roots in pearl millet, 

classified according to the types of the two lateral roots delimiting the interval. No significant 

differences between the means were found (ANOVA, p = 0.52). 

 

Lateral root 

types 
A-A A-B A-C B-A B-B B-C C-A C-B C-C 

Sample size 23 37 105 48 76 172 93 182 510 

Mean (cm) 0.26 0.23 0.21 0.26 0.22 0.20 0.22 0.19 0.22 

Standard 

deviation (cm) 
0.22 0.17 0.31 0.52 0.23 0.17 0.19 0.16 0.19 

 

 

 

 

 

Table S2-5: Length of the interval between successive lateral roots in maize, classified 

according to the types of the two lateral roots delimiting the interval. No significant 

differences between the means were found (ANOVA, p = 0.39). 

 

Lateral root 

types 
A-A A-B A-C B-A B-B B-C C-A C-B C-C 

Sample size 44 67 138 59 269 502 143 491 1324 

Mean (cm) 0.17 0.19 0.14 0.15 0.15 0.16 0.15 0.16 0.17 

Standard 

deviation (cm) 
0.19 0.20 0.12 0.11 0.15 0.16 0.11 0.12 0.16 



Résumé substantiel en français 

131 

 

Résumé substantiel en français 

 

Ce résumé comprend une introduction générale et présente les objectifs de la thèse. Il 

reprend ensuite les principaux résultats présentés dans le corps de la thèse et se termine par 

une discussion et une conclusion générales. 

 

Introduction générale 

 

La sécurité alimentaire est un défi majeur pour la recherche agronomique du 21
ème

 

siècle. Selon l’Organisation des Nations unies pour l'alimentation et l'agriculture, 795 millions 

de personnes étaient en situation de sous-nutrition en 2015, dont 780 millions dans les pays en 

développement. Bien que la faim ait régressé dans certaines régions du monde, l'Afrique 

subsaharienne reste la région avec la plus forte prévalence de malnutrition, avec près de 25% 

de personnes touchées. Il apparaît nécessaire d'augmenter la production alimentaire à 

destination des paysans pauvres d’Afrique sub-saharienne dans le contexte des changements 

globaux, qui posent de nouvelles menaces pour l'agriculture. Le mil est la 6
ème

 céréale cultivée 

dans le monde avec plus de 33 millions d'hectares récoltés en 2013 et c’est une culture 

d’importance majeure dans les régions arides et semi-arides comme le Sahel. Le mil est la 

céréale qui occupe la plus grande surface cultivée en Afrique de l'Ouest, avec plus de 13 

millions d'hectares en 2013. Cependant, il est seulement quatrième en termes de production 

totale. Le mil est particulièrement tolérant aux conditions environnementales difficiles 

(température élevée, pluviométrie faible, sols peu fertiles) et est ainsi cultivé 

préférentiellement dans les zones où d’autres céréales échoueraient. Au contraire, dès que les 

conditions de culture s’améliorent (possibilités d’irrigation par exemple), le mil est abandonné 

au profit de cultures plus exigeantes (sorgho, maïs). Le mil est donc de préférence cultivé 

dans les régions arides où la fertilité est faible, où il est souvent la seule céréale viable. 

L'augmentation des rendements dans ces régions produirait une amélioration substantielle de 

la sécurité alimentaire mais les pratiques agronomiques sont souvent contraintes et le 

déploiement de l'irrigation ou l'utilisation accrue d’engrais sont difficiles dans certaines 

régions. Les efforts de recherche doivent donc se concentrer sur la sélection et l’amélioration 

variétale afin de produire des variétés plus productives dans les conditions de culture 

habituelles du mil. Le mil a un bon profil nutritionnel parmi les céréales et cet avantage doit 

être conservé et si possible amélioré chez les nouvelles variétés créées. Les stratégies de 

sélection chez le mil ont principalement ciblé des caractères physiologiques ou architecturaux 

observés sur la partie aérienne tels que le rendement en grains, la taille de la plante ou la 

résistance aux bioagresseurs. Une idée originale serait de cibler les caractères racinaires pour 

l’amélioration variétale. Le système racinaire est l’interface entre la plante et le sol et 

constitue la porte d’entrée de l’eau et des nutriments pour la plante. Dans certaines plantes 

cultivées, la sélection a conduit à une réduction de la taille du système racinaire. En effet, 

depuis la domestication des céréales, les agriculteurs se sont concentrés sur la maximisation 

du rendement en grains. Au cours de la Révolution Verte, la poursuite de cet objectif s’est 

traduite par l’augmentation de l’indice de récolte et la sélection de variétés adaptées aux 



Résumé substantiel en français 

132 

 

apports d'engrais. Cependant, cette stratégie nécessite le recours aux à des engrais souvent 

trop coûteux pour les paysans pauvres et les cultures spécifiquement africaines telles que le 

mil ont été peu concernées par cette phase d’amélioration. L’amélioration du système 

racinaire peut conduire à la production de variétés avec une meilleure efficacité d’absorption 

de l’eau et des minéraux. Cette option est particulièrement pertinente pour les plantes 

cultivées sur des sols pauvres et sous un climat aride étant donné que l'augmentation du 

rendement ne peut être obtenue par l'irrigation ou par une augmentation significative des 

apports de fertilisant. 

 

Objectifs de la thèse 

 

Le manque d’eau et la faible disponibilité en nutriments sont les principaux facteurs 

limitant la production du mil, notamment en Afrique. L'architecture du système racinaire étant 

un élément crucial pour l'acquisition de ces éléments, l’amélioration variétale axée sur 

l’adaptation du système racinaire est une stratégie prometteuse pour améliorer la tolérance du 

mil à la sécheresse et la faible fertilité des sols. Cependant, peu d’informations sont 

disponibles sur le développement et le fonctionnement du système racinaire du mil. La 

dynamique générale de son développement a été décrite mais il existe de la variabilité au sein 

des variétés de mil cultivée et celle-ci a été peu explorée. En outre, les études existantes ont 

considéré principalement le système racinaire dans son ensemble, sans séparer la racine 

primaire, les racines coronaires et les racines latérales, alors que leurs fonctions sont 

différentes. De plus, ces études ont eu majoritairement recours à des méthodes destructrices 

pour étudier le système racinaire.  Les techniques de phénotypage modernes permettent 

désormais d’étudier le système racinaire de façon non destructive et ainsi d’avoir des mesures 

plus précises de caractères temporels associés au développement des racines.  

 

Dans ce contexte, le premier objectif de mon travail était de produire une description 

précise du système racinaire du mil. Nous avons donc procédé à une description 

morphologique générale du développement précoce du système racinaire, obtenu des données 

quantitatives sur sa dynamique de développement, et décrit l’anatomie des différents types de 

racine. Nous avons également évalué la diversité existante au sein d’un panel diversifié de 

lignées de mil. Ces résultats sont présentés dans le Chapitre 1.  

 

Nos données mettent en évidence l’existence d’une variabilité dans les profils de 

croissance des racines latérales. Nous avons donc conçu un pipeline pour mesurer 

efficacement les profils de croissance d'un grand nombre de racines latérales et utilisé un 

modèle statistique pour classer ces racines en fonction de leurs profils de croissance. Cette 

classification a été utilisée pour caractériser la variabilité existante et la condenser. Cette 

réduction de la complexité temporelle a permis d’analyser la relation entre le comportement 

de croissance des racines latérales et d'autres caractères, en particulier anatomiques. Elle a 

également permis de décrire la répartition de ces différents types de racines latérales le long 

de la racine primaire et d'évaluer l'influence locale des types de racines sur les racines 

latérales voisines. Ces résultats sont détaillés dans le Chapitre 2. Ce travail a été mené en 
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parallèle sur deux espèces, le mil et le maïs, ce qui a permis de mettre en évidence les 

ressemblances et les spécificités de ces deux espèces. 

Le contrôle génétique du développement racinaire du mil est encore mal connu. Nous 

avons initié une étude de génétique d’association pour identifier des gènes contrôlant la 

croissance de la racine primaire. Un large panel de diversité a été phénotypé pour la vitesse de 

croissance de la racine primaire et chaque accession a été génotypée par séquençage. Le 

Chapitre 3 présente la méthodologie utilisée et les résultats obtenus après le phénotypage et 

le génotypage. 

 

Ce résumé en français détaille les principaux résultats présentés dans les différents 

chapitres, sans reprendre la description des méthodes expérimentales et les discussions 

détaillées de ces résultats.  

 

Chapitre 1 : Description générale du système racinaire du mil 

 

Ce chapitre est composé de deux parties. La première partie reprend les résultats d’un 

article scientifique qui a été publié dans le journal Frontiers in Plant Sciences. L'objectif 

général de cette étude était de fournir une description morphologique et anatomique du 

système racinaire du mil, en particulier dans les premiers stades de développement. Une 

nouvelle nomenclature pour la désignation des racines du mil était également nécessaire car 

les noms existants étaient en contradiction avec ceux proposés par Plant Ontology, qui est la 

référence la plus largement partagée pour nommer des éléments végétaux. Ce document 

fournit une description dynamique de l’architecture racinaire du mil dans les stades précoces 

ainsi qu’une description anatomique des différents types de racines. Il révèle l'existence de 

trois types de racines latérales anatomiquement distincts. Il met également en évidence 

l'existence d'une grande diversité dans la croissance précoce de la racine primaires et dans la 

densité des racines latérales au sein d’un échantillon de lignées de mil issu d’un panel de 

diversité de mil servant ainsi de démonstration de faisabilité de futures analyses génétiques. 

La deuxième partie décrit la comparaison de la mise en place de l’architecture racinaire chez 

deux lignées de mil avec des traits racinaires contrastés, identifiées au cours du phénotypage à 

haut débit. 

 

La première racine qui émerge de la graine, d'abord appelée radicule, est ensuite 

nommée racine primaire. Un petit segment, le mésocotyle, relie la graine et la base de la tige. 

Plus tard, les racines coronaires émergent de la base de la tige. Les ramifications qui 

apparaissent sur les racines primaires ou coronaires sont appelées racines latérales. Les 

racines latérales peuvent elles-aussi se ramifier. La mise en place précoce de l’architecture 

racinaire a été étudiée sur des plantes cultivées en rhizotrons pendant 11 jours. La racine 

primaire émerge 12 à 24 heures après réhydratation de la graine. La vitesse de croissance de 

cette racine primaire augmente pendant les 6 premiers jours de croissance pour atteindre un 

maximum de 9,1 cm/jour. Après cette date, la vitesse de croissance ralentit légèrement mais 

reste autours de 7 cm/jour après 11 jours. La longueur moyenne de la racine primaire après 11 

jours de croissance est de 66,3 cm. Les racines coronaires et latérales commencent à émerger 
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après 6 jours de croissance, lorsque la vitesse de croissance de la racine primaire atteint son 

maximum, respectivement de la base de la tige et de la racine primaire. Le nombre total de 

racines coronaires étaient en moyenne de deux par plante à la fin de l'expérience, ce qui est 

attribué à la faible durée du suivi. La vitesse moyenne de croissance de ces racines à 

l’émergence était de 3,7 cm. Le rythme d'apparition des racines latérales augmente 

rapidement entre 6 et 8 jours de croissance, puis plus faiblement jusqu'à 11 jours. Les vitesses 

de croissance des racines latérales étaient hétérogènes, atteignant jusqu'à 3 cm/jour.  

 

Le développement précoce du système racinaire a également été analysé en 3 

dimensions dans un sol grâce à la tomographie à rayons X. Les plantes ont été cultivées dans 

des petites colonnes de sol (5 cm de diamètre x 12 cm de haut) et scannées après 4, 8, 14 et 18 

jours de croissance. La dynamique de mise en place observée grâce à la tomographie a 

confirmé celle mesurée en rhizotron, appuyant l'hypothèse que les rhizotrons fournissent une 

évaluation réaliste du développement de l'architecture des racines dans des conditions 

naturelles.  

 

L’anatomie des différentes racines a été observée sur des coupes histologiques. La 

racine primaire possède un grand vaisseau métaxylème situé au centre de la stèle. Le cortex 

est formé de 3 à 5 couches de cellules. La présence d’aérenchymes a été observée dans les 

parties matures de la racine. Les racines coronaires sont plus épaisses que les racines 

primaires avec une stèle significativement plus grande et possèdent 2 à 5 (3 dans la plupart 

des cas) gros vaisseaux de métaxylème centraux, séparés par des cellules de parenchyme. Ces 

racines possèdent également 3 à 5 couches de cellules corticales et des aérenchymes. 

L’observation en autofluorescence a mis en évidence une lignification progressive de l’apex à 

la base des racines ainsi que la présence d'un cadre de Caspary en fer à cheval au niveau de 

l’endoderme. Une coloration au FASGA a permis de dénombrer 6 pôles du xylème en 

alternance avec 6 pôles de phloème dans la racine primaire, tandis que les racines coronaires 

contiennent 12 à 16 pôles de xylème. Les parties matures des racines de la couronne 

présentent un sclérenchyme, entouré d'un hypoderme et d’un rhizoderme. Des sections 

longitudinales (5 m) à travers le méristème de la racine primaire ont révélé une organisation 

en méristème fermée avec des files de cellules convergeant vers un petit groupe de cellules 

dont l'emplacement et la taille sont compatibles avec celles d’un centre quiescent. Les racines 

coronaires ont montré une organisation similaire du méristème, avec une plus grande stèle. 

 

Des coupes transversales effectuées sur des racines latérales provenant de racines 

primaires ou coronaires ont révélé l’existence d’organisations distinctes. Les racines latérales 

ont pu être classées en trois types en fonction de leur anatomie. Les racines latérales de type 1 

très fines (68-140 m de diamètre) présentent 2 pôles protoxylème (organisation diarche). 

Elles présentent un endoderme, 2 couches de cellules corticales et un épiderme mais pas de 

sclérenchyme ni d’aérenchyme. Les racines latérales de type 2 ont un diamètre moyen (235-

291 m), un petit vaisseau de métaxylème central (16 m de diamètre en moyenne)  et 3 

couches de cellules corticales. Comme les racines latérales de type 1, elles ne présentent pas 

de sclérenchyme ou ni d’aérenchyme. Enfin, les racines latérales de type 3 ont un grand 

diamètre, similaire à celui des racines primaires (328-440 m) et la même organisation que 
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les racines primaires, indépendamment de la racine à partir de laquelle ils émergent (ie 

primaire ou coronaire). Nous avons évalué la diversité d’architectures racinaires existant au 

sein d’un échantillon de lignées de mil issu d’un panel de diversité d’un panel de lignées 

fixées. Cette étude a révélé l’existence d’une grande variabilité dans la vitesse de croissance 

des racines primaires et la densité des racines latérales le long de la racine primaire. 

L'héritabilité large sens était égale à 0,72 pour la longueur des racines primaires et à 0,34 pour 

la densité des racines latérales. 

 

Au cours d’expériences complémentaires, nous avons comparé en rhizotrons les 

vitesses de développement racinaire de deux lignées identifiées comme contrastées lors de 

l’étude de diversité. Malgré des valeurs absolues distinctes, les vitesses de croissance des 

racines primaires suivaient la même dynamique pour les deux lignées, avec un maximum à 6 

jours de croissance suivie d'un plateau. En revanche, les taux d'émergence des racines 

latérales montraient des profils différents pour les deux lignées. Ce taux augmentait pendant 

toute la durée de l’expérience chez une lignée tandis qu’il augmentait jusqu'à 8 jours de 

croissance chez l’autre, avant de diminuer jusqu'à la fin de l'expérience. Les taux d'émergence 

absolus étaient également différents. Les nombres de racines coronaires étaient semblables 

chez les deux lignées. Globalement, les valeurs observées en rhizotrons étaient en cohérences 

avec celles observées lors du phénotypage du panel, donc dans des conditions différentes.  

 

Chapitre 2 : L’analyse spatio-temporelle du développement précoce du 

système racinaire chez deux céréales, le mil et le maïs, révèle 

l’existence de trois types de racines latérales et un patron de 

ramification aléatoire le long de la racine primaire 

 

Pour analyser plus finement la dynamique de développement des racines latérales, 

nous avons effectué un suivi plus précis de la croissance des racines latérales de 8 plantes de 

mil pendant 15 jours dans des rhizotrons. Cette expérience a également été réalisée sur des 

plantes de maïs dans des conditions similaires, ce qui a permis d’étudier les similarités et les 

différences entre ces deux espèces. Nous avons décomposé l'analyse de ces données spatio-

temporelles en deux étapes, temporelle puis spatiale. Nous avons d'abord analysé les profils 

de vitesse de croissance des racines latérales à l'aide de modèles statistiques dédiés à ce type 

de données longitudinales, caractérisé par la faible longueur des profils et un niveau de 

censure élevé, dû au fait que de nombreuses racines latérales étaient encore en croissance à la 

fin du suivi. Une des sorties de ces analyses longitudinales a été le classement des racines 

latérales en trois types. Les longueurs d’intervalle entre les racines latérales successives et la 

succession des types de racines latérales le long de la racine primaire ont ensuite été 

analysées. Pour cette étape, les racines latérales ont été regroupées en fonction de leurs 

profiles de croissance. 

 

Le jeu de données était composé des profils de croissance de 1254 et 3050 racines 

latérales de 8 plantes de mil et 13 plantes de maïs, respectivement. Ces racines latérales ont 

été suivies jusqu'à 10 et 17 jours respectivement après émergence des racines primaires. 
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L'analyse exploratoire de ces profils de croissance a mis en évidence une organisation 

longitudinale forte avec des taux de croissance augmentant ou diminuant avec l’âge de la 

racine latérale. Les profils de croissance étaient visiblement divergents par rapport à l'origine 

et la dispersion des taux de croissance augmentait avec l'âge des racines latérales. Par 

conséquent, les racines latérales pouvaient être grossièrement classées en fonction de leurs 

profils de croissance. Cela soulevait la question d'une structuration de ces données 

longitudinales plus forte qu'un simple classement des profils de croissance. Nous avons donc 

choisi d'approfondir l’analyse par une approche de classification basée sur un modèle pour ces 

données longitudinales. Cela a soulevé deux types de difficultés: les longueurs de profils 

étaient limitées (jusqu'à 10 taux de croissance successifs pour le mil et 17 pour le maïs) et le 

niveau de censure était élevé, avec une forte proportion de racines latérales encore en 

croissance à la fin de l'expérience. Nous avons donc conçu un modèle statistique pour classer 

les profils de croissance en utilisant seulement les profils d’une durée de 5 jours ou plus 

(correspondant à 652 racines latérales pour le mil et 2029 pour le maïs), en fonction des 

hypothèses suivantes: 

- un profil de taux de croissance est modélisé par une phase de croissance unique, 

censurée ou suivie d'un arrêt de croissance, 

- les variations de taux de croissance au sein d'une phase de croissance sont modélisées 

par une tendance linéaire. Cette hypothèse paramétrique forte était une conséquence de la 

faible longueur des profils de croissance. Par conséquent, ces tendances linéaires doivent être 

considérées comme des modèles instrumentaux pour le regroupement des profils de 

croissance plutôt que des représentations fidèles de chaque profil de taux de croissance. 

 

Le modèle statistique proposé est composé d'états de croissance, chacun correspondant 

à un type de profil de vitesses de croissance des racines latérales. Une distribution 

représentant la durée de la phase de croissance (en jours) et un modèle linéaire représentant la 

variation du taux de croissance au cours de la phase de croissance ont été associées à chacun 

de ces états de croissance. Les états de croissance ont été systématiquement suivis d'un état 

d'arrêt de croissance. Le modèle global est un modèle linéaire à transitions semi-

markoviennes (SMSLM). Ce type de modèle statistique intégratif permet d'estimer 

systématiquement les distributions de durée de la phase de croissance en combinant les phases 

de croissance complètes et censurées. Nous avons ensuite eu à définir le nombre d'états de 

croissance, c’est à dire le nombre de types de racines latérales. En raison de la structure 

spécifique du modèle, où chaque état peut être visité au plus une fois, les critères de sélection 

de modèles habituels ne sont pas applicables. Nous avons donc dû concevoir une méthode de 

sélection de modèle empirique pour sélectionner le nombre d'états de croissance. Nous avons 

sélectionné pour les deux espèces 3 types de racines latérales, ce qui correspond au meilleur 

compromis entre (i) la proportion de racines latérales assignées de façon ambiguë, (ii) la 

dispersion relative des profils de croissance pour le type de racine le plus vigoureux et (iii) le 

chevauchement entre profils de croissance pour les types voisins. 

 

Les distributions de durée de la phase de croissance estimées étaient très similaires 

pour les deux espèces pour chaque type (A, B ou C), avec des durées moyennes de croissance 

de 17,3 et 15,2 jours pour le type A, 7,6 et 6,8 jours pour le type B et 3,2 et 3,0 jours pour 
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Type C pour le mil et le maïs, respectivement, et des écarts-types égaux à 7,6 et 7,7 pour le 

type A, 4,6 et 5,0 pour le type B, et 2,6 et 2,4 pour le type C. Le niveau de censure est défini 

comme la proportion de phases de croissance incomplètement observées pour un type donné 

de racines latérales. Le niveau de censure a été calculé pour chaque état de croissance comme 

sous-produit de l'estimation de la distribution de la durée de la phase de croissance 

correspondante dans les SMSLM et prend en compte toutes les affectations possibles des 

profils de croissance de longueur ≥ 5. Nous avons obtenu 96% de censure pour l'état A, 54% 

pour l'état B et 14% pour l'état C dans le cas du mil et 80% pour l'état A, 36% pour l'état B et 

10% pour l'état C dans le cas du maïs. Le niveau de censure plus élevé pour le mil par rapport 

au maïs est une conséquence de la longueur plus courte des profils de croissance pour le mil, 

car les distributions de durée de la phase de croissance sont similaires pour les deux espèces. 

 

Les profils de croissance médians ont été  calculés à partir des profils de longueur ≥ 5, 

qui ont été utilisés pour la construction des SMSLMs, et des profils de longueur < 5, qui ont 

été attribués a posteriori à des classes en utilisant le SMSLM. Chez les deux espèces, les taux 

de croissance quotidiens médians étaient divergents entre les trois types de racines latérales. 

Les profils de croissance médians pour le type B et le type C devenaient nuls après 7-8 et 3-4 

jours respectivement, tandis que le taux de croissance médian du type A restait positif et ne 

diminuait pas chez les deux espèces. La principale différence entre les deux espèces, en 

dehors des différents taux de croissance absolus, concernait les racines latérales de type B, où 

le taux de croissance médian restait presque constant jusqu'au jour 5 chez le mil alors qu'il 

commençait à diminuer juste après émergence chez le maïs, et les racines de type A, où le 

taux de croissance médian a continué d'augmenter chez le mil alors qu'il se stabilise après 

quelques jours chez le maïs.  

 

Nous avons exploré les liens existant entre la cinétique de croissance des racines 

latérales et leur anatomie sur un échantillon de 35 racines de mil et 15 racines de maïs ayant 

des profils de croissance contrastés. Les racines latérales ont été affectées à l'une des 3 classes 

définies précédemment en fonction de leur profil de croissance. Nous avons mesuré 2 traits 

anatomiques identifiés comme contrastés entre les racines dans le chapitre 1, le diamètre de la 

stèle et le diamètre du vaisseau central. Pour le mil, la classification ABC des profils de 

croissance se reflétait dans le classement des deux diamètres mesurés, bien qu'il y ait un 

certain chevauchement entre les classes. En revanche, aucune tendance claire n'a pu être 

détectée chez le maïs, en raison notamment du faible nombre (1) de racines de type A. Ces 

résultats suggèrent une corrélation entre les traits anatomiques et le profil de croissance pour 

les racines latérales chez le mil mais pas chez le maïs. La petite taille de l'échantillon pour les 

racines de maïs pourrait expliquer l'absence de relation observable. 

 

Nous avons analysé la répartition des types de racines latérales (A, B et C) le long de 

la racine primaire afin de déterminer si elle était aléatoire ou structurée. Nous avons d'abord 

évalué l'impact du type de racine sur la longueur de l'intervalle entre une racine latérale et sa 

plus proche voisine dans la direction de l’apex racinaire. Aucune différence n'a été trouvée 

dans la longueur de l'intervalle moyen pour les trois types de racines chez les deux espèces 

(ANOVA, p-value = 0,83 et 0,7 pour le mil et le maïs, respectivement). Le même type 
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d'analyse a été effectué en séparant les intervalles en 9 groupes, en fonction des types des 

deux racines latérales délimitant l'intervalle et à nouveau, aucun effet des types de racines 

latérales sur les longueurs d'intervalle n’a été trouvé. Par conséquent, nos résultats indiquent 

qu'il n'y a pas d'influence des types de racines sur des longueurs d'intervalle entre deux racines 

latérales successives. 

 

Nous avons ensuite évalué si la séquence des types de racines latérales était aléatoire 

ou structurée d'une certaine manière. Nous avons d'abord calculé la fonction d’autocorrélation 

de Spearman pour ces séquences. La valeur de la fonction était dans l'intervalle de confiance 

correspondant à l'hypothèse d’une répartition aléatoire pour la plupart des plantes, ce qui 

indique que la distribution des différents types de racines latérales le long de la racine 

primaire était stationnaire et ne suggérait aucune dépendance marquée entre les types de 

racines latérales successifs. Nous avons analysé la structure de ramification de la racine 

primaire en utilisant une approche de modélisation statistique. Nous avons modélisé les 

dépendances potentielles entre les types de racines latérales successives décrites du collet vers 

l’apex de la racine. Des chaînes de Markov d’ordre variable à trois états ont été construites, 

chaque état correspondant à un type de racines latérales. Les ordres des chaînes de Markov 

ont été sélectionnés pour la séquence de ramification de chaque racine primaire et pour 

chaque espèce. Pour toutes les plantes et pour les deux espèces, une chaîne de Markov d'ordre 

zéro a été sélectionnée. Ceci a confirmé que le type de racine latérale est indépendant du type 

des racines latérales précédentes. Par conséquent, les résultats indiquent qu'il n'y a aucune 

influence de la dynamique de croissance des racines latérales sur la distance à la racine 

latérale suivante ou sur son profile de croissance. Les différentes plantes de mil et de maïs 

étudiées présentaient des différences dans les longueurs moyennes d’intervalles entre racines 

latérales successives ainsi que dans les proportions relatives des 3 types de racines latérales. 

Malgré cela, le motif de ramification, aléatoire et stationnaire, était nettement conservé dans 

toutes les plantes. 

 

Chapitre 3: Recherche de gènes contrôlant la croissance de la racine 

primaire chez le mil 

 

Ce chapitre présente des résultats préliminaires qui devront être approfondis et 

complétés. Nous avons caractérisé une grande collection de lignées de mil fixées pour la 

croissance de la racine primaire et entamé une étude de génétique d'association pour identifier 

les régions génomiques contrôlant ce trait. La mesure de la croissance de la racine primaire a 

été faite sur de jeunes plantes cultivées dans un système de culture hydroponique sur papier. 

Un total de 853 plantes ont été phénotypées, divisées en 3 expériences de 559, 116 et 178 

plantes. En raison de problèmes de germination, seuls 136 lots de graines, appartenant à 108 

lignes différentes, ont été phénotypés. Une moyenne de 7,9 plantes/lignée a été analysée. 

Cette expérience a porté sur la longueur de la racine primaire 6 jours après germination et ce 

caractère a montré une grande variabilité génétique. Une héritabilité au sens large de 0,53 a 

été estimée pour ce caractère sur cette collection, confirmant que la croissance de la racine 

primaire a un contrôle génétique fort. Les lignées étudiées ont été génotypées par séquençage 
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par la plateforme Genetic Diversity Facility de l’Université de Cornell. Les premières 

analyses ont identifié 1.677.181 SNP avant filtrage, parmi lesquels 481.897 étaient présents 

dans au moins la moitié des plantes. La profondeur de séquençage moyenne par site était de 

2,86. Nous attendons un nombre final d’environ 300.000 SNPs après les autres étapes de 

filtrage. Les analyses de la structure génétique de la population et l’analyse d’association se 

feront respectivement avec les packages R LEA et GAPIT.  

 

 

Discussion 

 

L'objectif de ce travail de thèse était de caractériser le développement du système 

racinaire du mil. Ce système racinaire était mal connu et cette connaissance nouvellement 

acquise sera utile pour sélectionner de nouvelles variétés de mil avec des caractéristiques 

racinaires améliorées. Cette amélioration du système racinaire vise à accroitre l’efficacité 

d’acquisition d’eau et des nutriments par la plante et donc à augmenter sa tolérance à la 

sécheresse et à la faible disponibilité en nutriments, deux facteurs importants qui limitent la 

production de cette culture en Afrique de l'Ouest. 

 

Ce travail de thèse a mis en évidence l’existence d’une grande variabilité dans les 

profils de croissance des racines latérales. Ces racines ont pu être classées en trois types à 

l’aide d’un modèle statistique et ces types cinétiques étaient fortement liés avec des traits 

anatomiques des racines. Une classification des racines latérales en types anatomiques 

distincts a été proposée chez plusieurs céréales (blé, orge, riz…) et une variabilité dans les 

taux de croissance de ces racines a également été observée chez différents végétaux, mais le 

lien entre ces caractères cinétiques et anatomiques était rarement fait. Des fonctions 

différentes pour ces types racinaires ont été suggérées (ramification, absorption d’eau…) mais 

de plus amples recherches sont nécessaires pour préciser ces fonctions. De plus, les facteurs 

influençant la formation de ces différents types, génétiques ou environnementaux, devront 

être compris. La compréhension des fonctions respectives des différents types racinaires 

pourrait permettre d’intégrer leur existence dans les programmes de sélection racinaire. 

 

Plusieurs techniques de phénotypage racinaire ont été utilisées au cours de ma thèse : 

la croissance sur papier de germination imbibé de solution nutritive, la croissance en rhizotron 

et la croissance en sol associée à la tomographie. Chaque technique présente des avantages et 

des inconvénients en termes de débit, de durée de croissance, de précision du suivi et de 

représentativité des conditions de croissance par rapport aux conditions de culture habituelles. 

Les différents modes de culture des plantes sont associés à des techniques d’acquisition 

d’image adaptées. Nous avons utilisé des techniques de phénotypage variées mais il en existe 

d’autres, qui répondent différemment à ces contraintes. Par exemple, l’excavation de systèmes 

racinaires de plantes cultivées au champ permet d’avoir un aperçu des racines de plantes 

cultivées dans des conditions proches des conditions habituelles de croissance, au prix d’une 

grande quantité de travail humain. Le MRI est une autre solution d’acquisition d’images 

racinaires en sol, ressemblant à la tomographie mais qui facilite la segmentation des racines 

par rapport au sol. Certaines équipes utilisent des milieux transparents reproduisant les 
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propriétés du sol pour faire pousser des plantes à phénotyper. Chaque technique possède des 

avantages et des inconvénients, le choix s’effectuant en fonction des objectifs scientifiques de 

chaque campagne de phénotypage. Le phénotypage ne recouvre pas seulement le mode de 

culture mais tout le processus, de la germination des graines à l’analyse de données, en 

passant par l’acquisition des images. L’analyse de grands jeux de données spatio-temporelles, 

dont l’acquisition est permise par les techniques de phénotypage actuelle, doit également être 

considérée comme faisant partie du processus, afin d’exploiter au mieux les données récoltées 

au cours des expériences. 

 

Les modèles de plante structure-fonction permettent de simuler le fonctionnement des 

plantes en fonction des valeurs de certains traits d’intérêt et permettent ainsi de comprendre le 

rôle des traits racinaires qui peuvent être la cible de programmes d’amélioration. De tels 

modèles ont permis d’identifier des architectures racinaires optimales sous certaines 

contraintes (sécheresse, faible disponibilité en azote ou en phosphore) chez le maïs, par 

exemple. Un modèle de ce type est en cours de développement chez le mil, à l’aide des 

données de phénotypage racinaire récoltés lors de ma thèse. Des expérimentations en champ 

sont également en cours sur la collection de lignées phénotypées dans le chapitre 3 et doivent 

permettre de trouver les corrélations existant entre les traits racinaires mesurés au laboratoire 

et les performances agronomiques des plantes en condition contrôle ou soumises à un stress 

hydrique. L’adaptation à la sécheresse peut être liée à certains traits racinaires mais aussi à la 

capacité des plantes à une certaine plasticité face aux conditions environnementales. Les 

évaluations agronomiques effectuées dans des conditions contrastées permettent d’avoir un 

aperçu de cette plasticité. 

 

Conclusion générale 

 

Pour conclure, mon travail de thèse a fourni une description précise du système 

racinaire du mil, qui avait été très peu étudié à ce jour. Les données acquises lors des 

expériences de phénotypage ont été utilisées pour le paramétrage et l'essai de modèles de 

plantes structure-fonction simulant la croissance des racines et le transport de l'eau. Un 

pipeline a été développé pour la caractérisation des profils de croissance les racines latérales. 

Il comprend un modèle statistique original qui pourra être utilisé sur d'autres céréales. Enfin, 

les résultats de l’étude d'association devraient révéler de nouvelles informations sur le 

contrôle génétique de la croissance racinaire et ouvrir la voie à la sélection assistée par 

marqueurs pour les traits racinaires chez le mil. 

 


