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Abstract

Knitting is an ancestral textile manufacturing technique which is still commonly used nowa-
days. This method allows to manufacture textiles possessing high recoverable strains, an
anisotropic mechanical behavior easily tuned by varying the knit loop dimensions, the ability
to obtain general forms (preforms) or internal forms (holes) during the manufacturing process,
and more, making those textiles particularly attractive and cost-efficient. More recently, the use
of Shape Memory Alloys (SMA), notably Nickel-Titanium (Ni-Ti) wires, for producing those tex-
tiles allowed to propose textiles with new functional properties, such as very high recoverable
strains, shape-shifting effects under temperature changes, high damping capacity, ezc.

However, such SMA knitted textiles mechanical behavior remains relatively unknown, and
even if a certain number of studies have dealt with the knitted textiles mechanical characterization,
the application to NiTi knitted textiles remains insufficiently done.

In this work, a set of experimental and numerical tools have been developed to study knitted
NiTi textiles deformation, especially to evaluate the influence of material parameters, knit geome-
try, friction, efc., on the mechanical behavior. An experimental setup has been developed to char-
acterize such textiles in biaxial tension. It is inspired by methods developed for soft membranes
aiming at obtaining strain fields as uniform as possible in the sample working area. Furthermore,
its conception as well as a dedicated image processing software allow measuring boundary forces
distributions and knit loops morphology during deformation.

The knitted textile mechanical behavior has been modeled using numerical homogenization
method by performing finite elements numerical simulation of a representative knit loop under pe-
riodic conditions. Simulations predictions are validated in regard to experimental results obtained
on knitted NiTi textiles, in simple tension and biaxial tension in course and wale directions. They
are then used to analyze the importance of different deformation mechanisms depending on the
loading case studied.
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CHAPTER

I

General Introduction and Objectives

1 Context

Textiles are present in a large number of industrial applications, from composites materials
industry to individual protection equipment, including the biomedical field (prostheses, ortheses,
sensors, efc.). Knitting textiles in particular have seen their applications field widen due to their
particular mechanical properties and their easy manufacturing.

Common woven textiles possess, schematically, the same mechanical behavior as their con-
stitutive wires when loaded along their weaving axis (weft and warp). Kanitted textiles, however,
show a mechanical behavior drastically different from the constitutive wire due to the undulating
shape of the wire and the high mobility of the latter within the textile. This induces large recover-
able strains for small local strains, allowing to use stiff elastic material such as stainless steel, for
example. Furthermore, this high mobility induces friction between knit loops which confers the
textile with significant damping capacity. Finally, the internal knitted morphology provides the
textile with anisotropic mechanical behavior which can be finely tuned by adapting the knit loop
geometry. The knitted textiles mechanical properties allow to consider knitted textiles as excellent
candidates for biomimetic materials production.

Recently, Shape Memory Alloys (SMA) wires have been used to produce textiles possess-
ing enhanced or new mechanical properties and capacities. Thus, knitted textiles produced from
Nickel-Titanium (NiTi) wires have been created to propose textiles possessing large recoverable
strains (greater than 50%). The NiTi alloy also possesses an intrinsic damping capacity, which
adds to the natural damping capacity of the knitted textile. The NiTi mechanical behavior de-
pendence on temperature confers this textile the capacity to ajust its mechanical behavior to the
temperature it is subjected to, or even to change shape to create an actuator.

2 Thesis objectives

In order to develop industrial applications for knitted NiTi textiles, it is inevitable to fully un-
derstand and to be able to analyze numerically their mechanical behavior. Many studies have been
performed on the NiTi alloy to propose several material behavior models. The model proposed
by Aurrichio is commonly used nowadays. Knitted textiles, in a general way, have also been



studied in a certain number of studies, which propose experimental or analytical and numerical
approaches to study their mechanical behavior.

However, few studies dealt with knitted NiTi textiles. Few methods mixing experimental
analysis and numerical have been proposed, and those methods are usually limited to study the
textiles macroscopic mechanical behavior.

In order to characterize these particular NiTi textiles mechanical behavior, a complete char-
acterization method is proposed. This method also provide means to determine a knitted NiTi
textiles properties (knit loop dimensions, wire diameter and properties, etc.) depending on the
application desired.

3 Content

In Chapter II, the shape memory alloy Nickel-Titanium is presented to provide the reader
with the base knowledge linked to this alloy specific material behavior. A summary regarding
knitted textiles, their specific properties as well as the state of the art about SMA textiles is drawn.
The chapter is concluded by the state of the art on the experimental and analytical and numerical
characterization techniques for knitted textiles.

Chapter III presents the experimental characterization method developed to study knitted NiTi
textiles and a jersey-type knit. The method is composed of an image processing software, allowing
to measure kinematic fields within the sample zone of interest, as well as computing at each time
the knitted textile loop morphology. A wire-to-wire friction coefficient measurement method is
then presented in order to characterize the impact of friction on the textile mechanical behavior.
Finally, a biaxial testing setup is presented, providing a strain field as uniform as possible within
the sample, together with the ability to perform direct boundary conditions measurement applied
to the sample. The system ability to provide uniform strain field is studied on soft isotropic
membranes, and the boundary conditions measurement precision is discussed.

The numerical analysis method for knitted NiTi textiles is then presented in Chapter I'V. This
method is inspired by different methods presented in literature. Beam elements are used to model
the thin wire, and periodic boundary conditions are used to simulate the strain field within the sam-
ple zone of interest. Encountered difficulties and hints used for successful model implementation
are discussed at the chapter end.

In Chapter V, the methodology previously presented is applied to a knitted NiTi textile sample.
The wire mechanical behavior is first studied, then the textile knit loop representative geometry
is computed in the initial state to feed the numerical model. The textile is then experimentally
characterized in uniaxial and biaxial tension, and the change in knit loop representative geometry
dimensions are studied during loading thanks to the dedicated image processing software. The
loading case performed experimentally are numerically modeled and the macroscopic behavior
obtained is compared with experimental results to validate the method. The model is finally used
to study the influence of various material parameters on the textile macroscopic behavior. Critics
are ventured afterward regarding the results obtained and errors related to the characterization
method.
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Literature review

1 General presentation of SMA

In the first half of the 20th century, Swedish chemist Arne Olénder discovered that the gold-
cadmium (Au-Cd) alloy possesses the particularity to be able to recover its original shape after
permanent deformation by heating the material above a characteristic temperature 7. Later on,
other alloys are discovered with the same shape recovery property. This shape recovery property
gave the name Shape Memory Alloys (SMA) to this class of metallic alloys.

SMAs possess a second particular property, namely superelastic behavior. Those two proper-
ties are consequences of the material phase transformation at solid state between two stable phases,
called the martensitic transformation. The first phase is the austenite phase «, stable above the
characteristic temperature 7 .. The second phase is the martensite phase 3, stable below 7.

To trigger such transformation, temperature or stress changes are required. The transformation
from martensite to austenite is performed by heating the material from an initial temperature
Ty < T to a final temperature Ty > T¢. This transformation triggers the shape memory effect.

The transformation from austenite to martensite is obtained in two ways, when starting with
the material with an initial temperature above T .: upon cooling the material to a final temperature
lower than T, or upon applying stress to the material. In the second case, the martensitic phase
created is called Stress Induced Martensite (SIM), and is conveniently oriented compared to the
applied stress. During such loading, the particular mechanical response of the alloy is observed.

2 Nickel-Titanium Alloys

2.1 Phase Transformation in NiTi alloys

In this paragraph, phase transformation mechanism will be explained in a simple way. For
more detailed lectures about SMA and phase transformation, the reader is invited to refer to liter-
ature [10-14].

The most used SMA is the near equiatomic Nickel-Titanium alloy (NiTi). In NiTi, the austen-
ite phase is an ordered cubic centered crystalline structure B2 of high symmetry, while the marten-
site is a phase with monoclinic structure B19* of lower symmetry (Figure I1.1). Given that atoms
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Figure Il.1. Crystal structure of austenite, martensite, and R-phase for NiTi SMA.

move in an highly coordinated and cooperative way and without diffusion, a particular atom al-
ways retains its neighborhood. This neighborhood is also conserved when martensite transforms
back to the parent phase. Each atom returns back exactly where it was before the first transforma-
tion, and the shape is thus retained. This deformation is derived from a change in lattice shape,
thus the maximum strain can be calculated for each transformation in ideal single crystals. Wires
in tension can reversibly deform up to 10%. In polycrystals, grains orientation and texture come
into play thus influencing maximum reachable strain in a specific direction.

Figure II.1 represents the NiTi phases and their respective atomic structures, and Figure I1.2
represents these structures depending on the thermomechanical loading applied. The phase trans-
formation can be triggered either by temperature or stress changes. During thermal cycling, the
transformation from austenite to martensite (A-M) starts at M and ends at M. Similarly, the
transformation from martensite to austenite (M-A) starts at A, and ends at Ay.

At a temperature below My, the material presents a pseudoplastic mechanical behavior, and
if heated above A after releasing the load, the material presents the shape memory effect (Fig-
ure 1.2, bottom i) ). When a mechanical loading is applied at a temperature above Ay, the trans-
formation A-M starts at a critical stress 075 < o), and the superelasticity is observed (Figure I1.2,
bottom ii) ). The temperature 7}, corresponds to the temperature at which the transformation stress
o M s equals the yield stress o, At such temperature and above, the plastic flow of austenite occurs
before transformation, and an elastoplastic mechanical behavior is observed (Figure 11.2, bottom
iii) ).

Those three mechanical behaviors and their respective mechanisms are briefly described in
following paragraphs 2.2, 2.3, and 2.4.

2.2 Shape Memory Effects

There are two categories of shape memory effect:
e One-way shape memory effect
e Two-way shape memory effect

The two-way shape-memory effect is not presented in this thesis, and the reader is encouraged
to refer to literature for further reading on this shape memory effect [15].
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2.2.1 One-way shape memory effect

This effect can be observed after a particular loading on the alloy decomposed in three se-
quences (Figure I1.3):

e A-B: Zero stress cooling (0 = 0) from an initial temperature 7; > Ap to a final temperature
Ty < Mr

e B-C-B: Loading and unloading involving residual strain at constant temperature 1y < Mp
e B-A: Heating back to a temperature T > Ap at zero stress (¢ = 0)

During the mechanical loading of the material in the second step, the SMA behaves like a
standard metallic alloy, with mechanical characteristics corresponding to those of the martensite
itself. The loading is composed of a linear part up to the yield stress (o.). Detwinning then
happens, and a residual strain is observed upon removing the load.

The one-way shape memory effect is observed for a thermomechanical loading corresponding
to the previous sequence A-B + B-C-B + B-A (Figure I1.3). During the first sequence, martensite
is formed, but the transformation strain is null. During the second sequence, no transformation
is observed but a reorientation of martensite variants formed during cooling, going along with a
residual strain. In the last sequence, the crystalline network returns to the associated austenitic
state, and as no slip of atomic plane occurs during twinning of martensite, the parent shape is
recovered.

The term one-way shape memory effect comes from the fact that a mechanical loading is
necessary to induce the residual strain in the martensitic state, to be recovered later upon heating.

2.3 Superelasticity

The second remarkable property of SMA after shape memory effect is the superelasticity.
Unlike other metallic alloys, SMA exhibits a large recoverable strain of up to 10% in tension,
i.e. 40 times greater than most steel based alloys. This effect is derived from, like the shape
memory effect, the phase transformation between martensite and austenite. This property may yet
be observed only during mechanical loading at high temperature, i.e. at T' > Ap, while for shape
memory effect, the alloy must be mechanically loaded at low temperature (T' < Mp).

To observe such mechanical behavior, the material must first be heated to a temperature
T > Ap at zero stress. While keeping constant temperature, a loading/unloading mechanical
cycle can be applied to the material. The relation between stress and strain will present three re-
markable sequences corresponding to the following sequences of the stress-temperature diagram
(Figure I1.3):

e A-1: austenitic phase elasticity
e 1-2: transformation from austenite to martensite
e 2-D : martensitic phase elasticity and plasticity (after reaching point D)

And three similar sequences are found upon unloading, namely sequence D-3 (martensite elastic-
ity), sequence 3-4 (reverse phase transformation), and sequence 4-A (austenite elasticity).
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Figure I1.4. Typical stress-strain superelastic behavior of nitinol showing the different phases and charac-
teristic physical quantities.

A schematic representation of SMA superelastic mechanical response, depicting the three
steps presented above, is given in Figure 11.4. From such mechanical behavior, it is possible to
calculate a set of parameters that defines the superelastic behavior, namely:

e o)/, stress at which the austenite to martensite transformation starts

e o) /y: stress at which the austenite to martensite transformation finishes
e 04, stress at which the martensite to austenite transformation starts

® 04y stress at which the martensite to austenite transformation finishes
e FE4: Young’s modulus of austenite

e st Young’s modulus of martensite

e ¢;: transformation strain

H': mechanical hysteresis, computed as ;s — 045 (Or oprp — 0ay)

During unloading, the curve is similar to that of loading, noting only a mechanical hysteresis
H, generally with a magnitude about 300 MPa for nickel-titanium alloys. It is worth noting that
the transformation from austenite to martensite and the reverse transformation happens under the
effect of applied stresses. The martensitic phase induced in that case is known as Stress Induced
Martensite (SIM).

2.4 Elasto-Plasticity

When the alloy is mechanically loaded at an initial temperature 7; > 7),, the material is in
the austenitic phase. As the loading carried, the normal stress first reaches the yield stress o,
before the transformation stress o,s5. Hence, the plastic flow of the austenite occurs before the
transformation A-M, and a typical elasto-plastic behavior is observed (Figure IL.5).
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Figure I1.5. Typical elasto-plastic mechanical behavior observed in NiTi when 1" > T, in the a) Stress-
Strain plane, b) Stress-Temperature plane.

After releasing the load on the material, permanent strain remains and can not be recovered
by heating.

2.5 R-Phase

A third phase may be induced in NiTi alloys during a thermomechanical loading. This phase
is called the R-phase as it was initially thought to have a rhomboedric crystalline structure. This
phase is, in fact, triclinic and originates from a distortion of the austenite along a diagonal (Fig-
ure I1.1) [16].

This phase is observed in certain alloys depending on its chemical composition and the tem-
perature of the test.

In such state, the mechanical behavior is very similar to that presented in paragraph 2.3, with
however a first transformation plateau of small strain amplitude which appears during the elastic
deformation of austenite (Figure I1.6). Hence, a first elastic slope is observed, with an elastic
module corresponding to that of the austenite (F 4, Figure I1.6 green dash line). Then, the austenite
is transformed into the R-phase at low stresses. A second elastic slope is then observed after
complete transformation of the austenite with an elastic modulus of the R-phase (£, Figure 11.6
blue dash line) corresponding to the elastic deformation of the R-phase. Once the transformation
stress oy 1S reached, the R-phase transforms into martensite, and the material then behaves as
described in the previous paragraph.

During unloading, the martensite phase may, in some cases, transform back into R-phase, or
simply transform to austenite, completely skipping the R-phase. This transformation path during
unloading depends on the chemical composition and material heat-treatment.

3 Knitted textiles

Knitted textiles are obtained with a unique wire interlocking with itself in a looping manner,
opposing woven textiles which are obtained from a large amount of yarn bundles running from one
side to another and cut. In this section, knitting techniques, general properties of knitted textiles
and a few SMA textiles applications will be reviewed. For a detailed lecture on knitted textiles
and relative technologies, the reader is invited to refer to books from Horrocks A. & Anand S.
(2000) [17] and D. Spencer (2001) [2].
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Figure I1.6. Tensile test on NiTi wire (Fort Wayne Metals, NiTi#1) showing A-R transformation. Horizontal
axis is expanded before 2% to improve visibility.

3.1 Khnitting techniques

There exists a wide variety of interlocking patterns to create a knitted textile, from the most
simple loop structure (“jersey” type) to more complex shapes (laid-in structure, interlocked warp
knit, efc.) (Figure 11.7) [2, 17, 18]. Complex three-dimensional shapes can also be obtained from
specialized knitting patterns [19]. There are two specific directions in knitted textiles, namely
course and wale.

To obtain such textiles, there exist three main knitting techniques, from the most ancient to
most recent: i) manual needle knitting, ii) knitting bench, and iii) automatized knitting machine.

The first technique is the most basic and most commonly known (Figure I1.8a). Two needles
(the sinker and the jack) are manually handled to intertwine wires and to form loops. This tech-
nique allows obtaining easily simple loop shapes, but may also produce complex shapes, such as
3D volumes (clothes).

Knitting bench uses the manual needles technique semi-automatized (Figure I1.8b). A succes-
sion of hooks and needles placed face to face on each side of the machine allows to grasp the wire
as it passes by in the trolley. This technique is referred as semi-automatic as the trolley is moved
back and forth manually by the operator. Each time the trolley completes a length, a row (course)
is completed, and the next row will be one step above (wale).

Thanks to past centuries industrialization and automation, industrial knitting machines have
appeared (Figure I1.8c).Thus, machines dedicated to forming tubular knit structures of infinite
length and constant diameter have been created. For flat knit structures, flat bed machines have
been created to perform knitting row by row (course), making it possible to vary each course
length to obtain non-square textiles.
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Figure I.7. Several knit patterns, from simple (left) to complex (right) for both weft knitting (top) and wale
knitting (bottom) directions.

Figure 11.8. Knitting techniques: a) manual hand knitting, b) flat bed semi-automatic machine, c) fully
automated flat bed (top) and circular bed (bottom) machines, from [2].
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3.2 General properties of knitted textiles

Due to their particular inner structure, knitted textiles possess a wide variety of properties spe-
cific to that kind of structure. The first remarkable property is the large recoverable strain during
uniaxial tensile loading. Using standard steel wires to manufacture a jersey knit sample, Heller et
al. [20] shows that such textile exhibits recoverable up to 20%, while the wire possesses only 0.2%
elastic strain. This large recoverable strain arises from the knit loops high mobility against each
other, leading to a ratio of local maximum strain to global maximum strain comprised between 1/5
and 1/50 approximately. Furthermore, from this high internal mobility arises another interesting
property, namely damping. The large stress hysteresis, added to the natural material hysteresis,
provides energy dissipation during loading/unloading cycles [21]. The movement between course
rows induces wire to wire friction, affecting directly the damping efficiency of the textile. Finally,
the textile internal mobility allows for high formability, i.e. such textile can comply with non-
uniform surfaces such as organs, bones and articulations, composites molds, etc. [22-25]. This
property is particularly interesting for composites where the reinforcement formability is one of
the crucial problems encountered with woven textiles where corners and sharp edges show high
local stresses and shape defects [24,26-29].

The knit structure is also highly porous, i.e. large air volumes are present within the textile
which provides the textile with low density. For example, the low density allows for light con-
struction panels [22]. For another example, porosity also improves biomedical applications of
knitted textiles as it allows for cell ingrowth in and around the implant, to increase cohesion be-
tween implant and surrounding tissues and the healing process in the case of scaffold [25, 30].
In this context, porosity also allows for body fluids to flow through the implant as it would in
porous bones or organs, increasing the implant osteointegration [25,31]. The textile porosity is
also primordial when used as composite reinforcements, as the matrix material is able to flow
easily through the textile. This tends notably to decrease the risk of air cavity defects often found
with woven reinforcements. Finally, the fabric porosity induces a quasi absence of compression
resistance, allowing such textile to be fitted in small cavities and used as filler if needed.

Another knitted textile characteristic to be mentioned is the mechanical anisotropy, as pre-
sented in Figure I1.9. This property refers to the loading curves differences when unaxially loading
the sample in its principal directions, namely course and wale directions.

Further advantage of knitted textiles is the wide range of mechanical behavior available simply
by tuning the knit loop dimensions, or directly changing the knit pattern. This characteristic allows
for high flexibility of applications fields.

Due to the manufacturing process of knitted textiles, it is also possible to directly preform
specific shapes within the fabric, for example holes can be knitted directly during the fabrication
process, removing unraveling defects when internal shapes are cut inside the fabric, in the case of
woven fabrics for example. This advantage also implies that no secondary fabrication steps are
required to create such cuts, and therefore reduces manufacturing costs.

Yet unraveling is a major drawback to knitted textiles due to the fact that the fabric consists in a
single wire being interlocked with itself. A single cut can lead to a complete textile disintegration.

Furthermore, during knitting process, it has been shown that high local strains are induced
within the wire [32]. This implies loop shape defects and non-uniformity when a low elastic strain
wire is used, such as stainless steel wire (Figure I1.10).

Finally, it has been found that knitted textiles porosity may lead to adhesion problems in some
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Figure 11.9. Mechanical behavior of a jersey knit textile made of 100% acrylic yarns, with two different
loop shapes (left and right) (courtesy of Eberhardt (1999) [3]), showing anisotropic behavior and strong
dependence to the stitch shape.

Figure 11.10. Stitch geometry of a stainless steel knitted textile showing shape defects due to the wire
plasticity during knitting process.

biomedical applications, as in the case of anterior crucial ligament scaffolds [25]. To overcome
such cohesion problems, in this particular case, the wire has been replaced by microfibers yarns
that, due to the rough surface of the yarn, provides better adhesion with surrounding tissues.

3.3 SMA textiles review

From a general point of view, textiles using shape memory alloys are few and concealed to rel-
atively specific field of applications. Yvonne Chan thesis work [33] has established an exhaustive
list of several SMA usages in textiles, mostly oriented toward interior decoration elements and
aesthetics aspects those wires can provide [34-36]. Yet often, those textiles are restrained to stan-
dard textiles (polymer yarns, cotton or wool fiber yarns, efc.) with SMA wires inserted in-between
and not directly integrating SMA wires into textile patterns. SMA wires integrated into textiles
improve or create new properties, such as increased damping and impact resistance [37—40], shape
memory and wrinkle recovery capabilities triggered by temperature change or SMA superelastic-
ity [35,41-45], or increased fabric stiffness [20], to name a few.
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SMA knitted textiles have yet been proposed or are currently used for few specific applica-
tions, and some of them are presented thereafter. In the biomedical field, knitted nitinol stents have
been produced and studied for external veins reinforcement [46,47]. A tubular spiral knit can be
easily manufactured with knitting machines presented in Section 3.1 with a SMA wire, and uses
the specific properties of knitted textiles to match the mechanical behavior of the patient artery
(anisotropy, non-linear response, efc.). Furthermore, it is known that every tissue in every patient
behaves differently, and therefore implants may need to be tuned to the desired behavior easily,
without the need of a broad set of stents with distinct dimensions. SMA knitted stents uses the
shape setting capability of knitted SMA textiles to allow preforming stents to the corresponding
behavior and implant size, making it a cost efficient solution. A similar product is proposed for
esophageal closure pathology [48] and is obtained from a tubular knitted stent wrapped in a fabric
cover (Ultraflex stent, Boston Scientific).

Still in the biomedical field, a multimaterial internal vein stent has been proposed by Tokuda
et al. [49]. The stent is knitted in a spiral tubular motion, as previously presented stents, from two
distinct wires at the same time, alternate one knit row to the other (wale direction, tube axis). The
first material is a nitinol wire, and the second a bioresorbable polyparaphenylene-benzobisoxazole
(PBO) multifilament fiber. The nitinol wire provides superelasticity, as in standard nitinol stents
for their insertion into small catheters. The catheter is then introduced through the patient femoral
artery usually, up to the delivery point where the stent is released from the catheter. The supere-
lasticity returns the stent back to its original shape, opening the previously closed artery. During
the artery healing process, the PBO wire degrades, and its degradation time is tuned to the healing
time. This lead to a fully degraded wire after the healing is complete, leaving only a free nitinol
filament to be removed from the patient artery, reducing drastically post-operative complications.

In another field, knitted NiTi textiles have been proposed as the response for high stroke con-
tractile actuators, yet light, small, simple and cost-efficient [S0]. Most hydraulic, magnetic, elec-
tric, efc. common solutions prove efficient for high stroke/hig force solutions, yet are generally
large and heavy, and for certain applications may be prohibitive, or can be even unusuable due
to environment restriction (temperature, pressure, radiations, efc.). Knitted nitinol textiles can be
electrically driven, heated by Joule effect. These textiles provide high stroke/high forces (stroke
up to 100% and forces between tens to hundreds Newtons) with limited size and energy consump-
tion. Their activation temperature can also be tuned to fit external temperature restrictions thanks
to the wire chemical composition and heat treatment. In addition, the damping capabilities of
knitted nitinol textiles have been studied in vibration damping solutions [21]. A particularity of
knitted textile is the high internal mobility, inducing prominent friction energy dissipation. Using
nitinol wires not only allows for higher sliding strokes but also provides a second source of en-
ergy dissipation, namely the superelastic mechanical hysteresis. Coupling such two main nitinol
properties allows for knitted textiles to be high damping materials compared to knitted or woven
textiles made of stainless steel, carbon-fiber, glass fiber, ezc.

Finally, knitted NiTi textiles have been thought about for spatial counter-pressure suit for
astronaut [51]. This suit aims at providing pressure to the astronaut’s body to counteract outer
space vacuum that tends to inflate indefinitely the astronaut’s body. Yet their use has been rejected
due to difficulties to use recoverable strain to act as counter-pressure. This underlines the lack of
knowledge around knitted nitinol textiles and the lack of tools to fully understand the deformation
mechanisms and mechanical behavior of such textiles. Few analytical and numerical models for
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knitted textiles are presented thereafter.

4 Experimental and numerical analysis of knitted textiles

Analysis tools have been proposed to study knitted textiles. They can be divided into ex-
perimental, numerical, and analytical analysis. Experimental tools allow to perform mechanical
tests on textile samples. Numerical and analytical tools provide a way to analyze the mechanical
behavior of a knitted textile depending on the loop and sample geometries and wire properties.

4.1 Experimental analysis

Experimental tools dedicated to knitted textiles allow to apply various loading situations to
specimens, such as uniaxial tension and biaxial tension.

4.1.1 Uniaxial tension

During uniaxial tensile test, a sample is stretched along a principal direction. This test is partic-
ularly useful to characterize isotropic material; those materials require to characterize mechanical
properties in only one direction of space to entirely characterize the material.

A stretch A\, is imposed along a direction of the specimen (Figure II.11). The reaction
force is recorded and allows the stress state inside the sample working area to be computed. The
stress state is usually assumed to be uniform. The relation between stress and strain is analyzed
to provide parameters depending on the chosen behavior model (elastic-plastic, viscoelastic, su-
perelastic, efc.). Finally, by measuring the section variations normal to the tensile direction, the
material Poisson’s coefficient can be computed.

In the working area, the following Cauchy stress tensor is expected for any point M in the
working area:

ozz 0 0
agM)=10 00 IL1)
0 0 -
(z3y,2)

This particular tensor is obtained due to St Venant principle, and free edges in y and z directions.

To obtain such stress tensor, the sample is clamped in a jaw at each end to stretch the sample
in the desired direction. This griping method yet constrains all three displacements at once in
the grips. To reduce the impact of grips and boundary effects on the stress field distribution, the
working area is generally slender as opposed to the clamping area, drawing a “dog-bone” shape
(Figure 11.11). Yet this specimen shape is not obtainable for materials such as knitted textiles
due to unraveling. Furthermore, to have a representative mechanical behavior in the working area
of an architectured materials, the ratio between sample section width and RVE size is a crucial
parameter. For porous metallic foams, a minimal ratio of seven have been defined before the
ultimate stress is significantly modified [52]. In that case, the sample needs either to have a very
long x dimension to keep the aforementioned hypothesis [53], or gripped by a system providing
free y displacement, assuming a plane stress case (z direction neglected) [50].

To allow such free transverse displacement, a system of metallic rings piercing through the
knit loops holes and thread around a stiff rod has been proposed [50] (Figure II.12a). One rod is
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Figure 1.12. Knit uniaxial tension test devices, reproduced from a) Abel ef al. (2012) and b) Komatsu et
al. (2008).

fixed while the second is moved out to stretch the specimen. The rings used to attach the specimen
to the rods can slide, allowing the specimen to contract when stretched. However, this system is
highly sensitive to friction between rings and rods. The width reduction is therefore not totally
free and affects the measured mechanical behavior.

Another system of uniaxial tension for knitted textiles uses tubular knit structure [54]. Two
rigid rods are inserted in the inner hollow of the knitted tube, and fixed in grips (Figure I1.12b). The
specimen is then stretched and the tube is then equivalent to testing two flat specimens at once.
This prevents most stress field non-uniformities induced by the griping method. Yet transverse
displacements of the textile remain constrained by friction between textile and rods. Furthermore,
only wale direction may be tested as tubular knits can not be manufactured with the wale direction
aligned with circumferential direction.

For both methods, the textile unraveling imposes to have a closing straight wire on the sample
edges running along the wale direction. This wire is stretched during tensile test on the knitted
structure and stiffens the specimen. This wire can be however removed yet the integrity of the
structure becomes compromised, as seen in Figure I1.12a.
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Figure 11.13. Bulge tests methods on disk specimen (left) and tubular specimen (right).

4.1.2 Biaxial tension

As knitted textiles show high degree of anisotropy and a strong dependence of mechanical be-
havior on loading path, the simple tensile test is not enough to totally characterize their mechanical
behavior. Biaxial tensile tests are thus preferable to characterize such materials as they allow for
more complex and closer to reality loading cases. Several methods to apply biaxial loading to
specimens have been proposed during past decades.

Two main categories of biaxial tension exist: i) out-of-plane biaxial tests, and ii) in-plane
biaxial tests.

4.1.2.) Out-of-plane biaxial tests (bulge test) This test is realized by holding a sample between
grips and inflating the sample with a fluid under pressure. This technique can be applied to tubes
[55,56] or membrane specimens [57-59]. For both specimen shapes, the strain field on the outer
surface is computed thanks to Digital Image Correlation (DIC). The sample respects the membrane
hypothesis (negligible bending in the sample thickness)

Flat specimen In this case, the specimen is held between two flanges (Figure 11.13). An
hydraulic or pneumatic pressure system is used to inflat the sample, and the pressure is recorded
during the test. Two cameras record the full strain field on the outer surface of the sample. Using
the membrane hypothesis (negligible bending in the sample thickness) and the hypothesis of ax-
isymmetry (isotropic material and circular sample working area) the stress state inside the sample
can be deduced from pressure and sample curvature.

To test knitted textiles in such a way, a waterproof addition has to be used due to the textile
porosity. A soft silicone membrane is usually placed under the knitted textile [20] (Figure I1.14).
The silicone stiffness has to be small compared to the knitted textile to lower its impact on the
overall mechanical behavior.

However, the use of such a membrane generates “bubbles” of silicone through the textile
and strongly impacts the system mechanical behavior. Such a test presents drawbacks such as
non-uniform stress distribution induced by clamping method, and the impossibility to control the
loading path which depends on sample geometry and mechanical properties [60]. Eventually, due
to the textile anisotropy, stress state cannot be computed within the sample.

Cylinder specimen For that type of bulge tests, the tubular specimen is held at each
tube ends by dedicated hollow grips (Figure II.13). The sample axial stretch and torsion are
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Figure Il.14. Bulge test on knitted textile with impermeabilizer, reproduced from Heller et al. (2012).

usually controlled. The applied load-case history can therefore be highly complex. Similarly
to the aforementioned disk bulge test, a soft membrane has to be used to overcome the textile
porosity. In this test, the axisymmetry hypothesis is also necessary to compute the stress state
inside the sample. A set of two cameras allows the strain field to be computed on approximately
one third of the tube.

However, as for the first bulge test method presented, “bubbles” appear and impact the me-
chanical behavior of the textile. Furthermore, stress gradients are observed across the tube wall
unlike in planar biaxial tests preventing computing the exact stress state within the sample [60].

4.1.2.i) In-plane biaxial tests Regarding the in-plane biaxial tensile test, different experimental
setups have been proposed throughout the years. Several griping methods and corresponding
specimen shapes have thus been developed (Figure II.15, grips represented hatched).

A first common experimental setup uses cruciform specimens griped at the end of each arm
(Figure II.15a). This method is mostly used for massive or metallic plates and is an extension of
dog-bone shaped specimens used in uniaxial tensile tests [60—66]. Specific specimen shapes have
been designed to improve strain uniformity on the specimen zone of interest [62,67—73].

Some specific materials, such as knitted textiles or living tissues, yet prevent the use of cruci-
form shaped specimen due to the nature of their inner structure. In those cases, square samples are
mandatory, and the mounting setup must be adapted. For such specimens, three main types of se-
tups are used [74] (Figure I1.15b-d). The first one uses a single grip along each edge of the square
(Figure I1.15b) [5,75]. For this griping method, displacements transverse to tensile directions are
prevented in the grips, constraining the sample expansion in those directions.

For soft membranes, a modification of the previous method has been proposed, removing the
constraint on transverse displacements. This method uses multiple attachment points along each
edge instead of a single rigid grip (Figure II.15¢c-d) [6,54,74,76-81]. The attachment points can
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Figure I1.15. Plane biaxial test - common specimen shapes and grips: a) cruciform [4], b) square with solid
grips [5], ¢) square with point grips [6], and d) square with point grips and pulleys [7,8]; hatching represents
grips.

either be directly the fixation points of small grips [71, 82] or the extremities of linkages between
the specimen and grips [6, 76, 80, 81, 83]. For example, the commercial device BioTester 5000
test system (CellScale Biomaterials Testing, Waterloo, Ontario, Canada) uses a set of rigid bars
piercing through the sample; those links allow free rotation of each attachment point in the sample.
As a limitation, forces distributions along the specimen edges are unknown.

Further improvements of previous setup led to the use of pulleys sets to link pairs of attachment
wires in order to balance boundary forces on each edge (Figure 11.15d) [7, 8, 84]. Low friction in
pulleys rotation axes implies identical forces at each attachment point. This method yet limits the
number of attachment points.

4.2 Numerical and analytical analysis

The experimental analysis tools described earlier allow existing textiles to be characterized
macroscopically, yet do not provide local stress state in the wire section. To perform local wire
studies, two methods are available: i) analytical analysis, and ii) numerical analysis.

4.2.1 Analytical analysis

Analytical analysis applied on a single loop proposes to solve static or dynamic equilibrium
equations in regard to the loop geometry and boundary conditions. Due to the small wire diam-
eter compared to curve length, the approximation of beam theory is commonly used to simplify
models.

The loop geometry can be described by a set of parametric equations proposed by Leaf &
Glaskin (1955) [85]. Several analytical models are found in literature, and three of them have
been selected to illustrate such diversity.

The first analytical model presented has been proposed by Wada et al. (1997) [86] where a
complete loop is studied. The loop geometry has been chosen so as the contact points in the wale
direction are in the RVE (Representative Volume Element) (Figure I1.16). Crossing points A — B
and A" — B’ are used to define the contact line of action L, and L/,. Then, contact points C' — D
and ¢’ — D' are defined on each segment A — B and A’ — B’. These points are initially placed
halfway to crossing points. Points C' and D are linked by two springs. One is orthogonal to the
line of action (AB) to define the radial stiffness of the contact. The second spring is defined
collinear to (AB) to represent the sliding friction. Forces are then simply applied on the loop
ends to stretch in the knit principal axes. This model has been shown to represent accurately the
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Figure 11.16. Analytical models for plain weft knitted textiles from Wada et al. (1997) (left) and Araujo et
al. (2003) (right).

mechanical behavior of a knitted textile over small deformations, when the geometry of loops does
not change much. However, this model is limited in terms of maximum deformation and loading
path, restricted to the textile principal axes.

Araujo et al. (2003) [87] considered half a loop and assumed symmetrical boundary condi-
tions along the vertical axis. Then, considering the central symmetry of the loop geometry, the
hypothesis that each yarn presents identical stress state as the other is proposed. The problem is
reduced to one half yarn from the whole loop (Figure I1.16). A few hypotheses regarding the yarn
behavior are also necessary (incompressible yarns, no friction between fibers, inextensible yarns,
etc.). This model has been shown to fit accurately the mechanical response of a knitted textile
stretched in the wale direction, but under-estimates the response in the course direction. This
model has also the advantage to fit for maximum strains up to 27% in the wale direction and 65%
in the course direction. However, like the previous model, only loadings in the principal directions
are allowed.

Lastly, Abel ef al. (2012) [50] extended the model proposed by Araujo et al. (2003) [87] to
knitted textiles made of NiTi wires. NiTi material allows the hypothesis regarding yarns incom-
pressibility in the general model to be removed: the superelastic mechanical behavior of the ma-
terial is approximated by a succession of three linear elastic behavior, considering a full austenitic
or martensitic material when appropriate (no mixed state is allowed). This model has been ex-
tended to take into account the possible activation of the NiTi due to the shape memory effect and
the thermomechanical cycle. Therefore, this model is able to take into account the textile loading
history. This model has proven to precisely reproduce the mechanical behavior of a knitted NiTi
textile in fully austenitic and in fully martensitic state during a wale-wise uniaxial tensile loading
after calibration of the friction coefficient of NiTi wires. However, this model has not been tested
on course-wise loading.

Those models have been shown to simulate accurately the behavior of a knitted textile in
specific loading cases. However, limitations exist regarding the loop geometry, the loading path,
etc.: the loop geometry from Leaf & Glaskin (1955) is restrictive since this geometry is centered
symmetric, while textile loops can have arbitrary geometries. These analytical models also do not
aim at analyzing the local behavior of the wire during tests.

Therefore, other analysis tools should be used to study biaxial loading cases and local wire
behavior. This will help to understand the mechanical behavior of knitted textiles.
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Figure 1.17. Numerical models from a) Araujo et al. (2004), b) Bekisli et al. (2009), and c¢) Demircan et
al. (2011).

4.2.2 Numerical analysis

Numerical analysis tools using finite elements allow to study any chosen loop shapes and com-
plex loading cases. They propose to study a large sample by simplifying the textile architecture
or to study a single loop using homogenization method. The single loop models also enable to
study friction influence between wires and provide insight in the local stress state of the wire.
However, calculation times can drastically lower the applicability of such tools. Three different
finite element models are described hereafter.

Araujo et al. (2004) [88] proposed to simplify the knitted textile looping geometry by a regular
hexagons mesh (Figure 1I.17a). Curved yarn segments are represented by straight truss elements.
Two truss properties are defined, one used for elements aligned in the course direction, and one
used for elements in the wale direction. In that way, a large sample can be modeled. This model
has been shown to reproduce accurately the mechanical behavior of a plain weft knitted textile in
both wale-wise and course-wise uniaxial tensile tests, up to 25% deformation. The formability
over a rigid sphere has also been presented to highlight the high formability of such textiles. As
opposed to its analytical counterpart, this model is reliable in both wale-wise and course-wise
directions. Furthermore, as the whole sample is modeled, boundary conditions impact is less
critical and strain fields non-uniformities are simulated. The use of the simplified structure allows
calculation costs to be reduced drastically. However, this model does not allow to study the local
behavior of the wire, weak spots around contact, and friction gliding phenomena during tests.

In Bekisli et al. (2009) [18], a finite element model dedicated to study plain weft knitted tex-
tiles made of glass fibers yarns composites is proposed (Figure I1.17b). The studied loop geometry
is taken from Leaf & Glaskin (1959) presented earlier yet is not restricted to such geometry. The
yarn neutral fiber is modeled using 3D beam elements which drives the yarn mechanical behavior.
The volume occupied by the yarn is modeled using 3D elements and represents the yarn volume
change during loading. Finally, the contact is managed by surface elements on the outer surface of
the yarn volume elements. This complex model is made over a few loops in the course direction
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and periodic boundary conditions are applied in the wale direction. This model has been shown to
be able to predict the stretch at which locking occurs for several knit samples. At this point, loops
do not glide anymore, and yarn segments between contact zones extend in their axial direction.
However, this model remains specific to uniaxial loading case in wale-wise direction.

Demircan et al. (2011) [89] studied the mechanical behavior of a composite made of a vinyl
ester resin and a knitted glass fibers textile reinforcement. The interest has been drawn towards
the different Young’s moduli of the composite depending on the loading direction (course and
wale). Beam elements have been used to model the reinforcement, and the remaining volume of
the RVE was filled with 3D elements for the matrix (Figure I1.17¢). This simplified model allowed
an estimation error of less than 3.1% of the Young’s moduli of two composites made of knitted
textile reinforcement. The failure stress of the studied specimen has also been properly predicted.
However, this model was tested only in uniaxial wale-wise tension.

5 Conclusion

A large number of analysis tools has already been proposed in literature to study knitted tex-
tiles mechanical behavior in an experimental or analytical/numerical way. However, few of them
are able to study the wire internal and contact stresses during textile loading. Furthermore, only
one analytical model can account for thermomechanical behavior of nitinol wires.

In order to better understand the mechanical behavior of knitted textiles, a versatile numerical
tool is developed in this work and is inspired by these models. Relevant experimental results will
also be provided to validate such numerical model. The required numerical model should be able
to predict the behavior of the knitted NiTi textile while keeping computational times as low as
possible. Different model hypotheses will be analyzed and confronted with experimental data one

by one.
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CHAPTER

101

Experimental analysis tools

1 Introduction

To experimentally study knitted NiTi textiles, a complete method has been proposed in this
work. This method consists of a knitted textiles dedicated image analysis software, a biaxial
tension setup, and a method to characterize the friction coefficient between two NiTi wires.

2 Kinematic fields measurement

To perform experimental kinematic fields measurement, two options are available: Digital
Image Correlation (DIC), and an in-house developed software. In this section, the DIC principle
is first briefly described and application examples on knitted textiles pictures are presented (Sec-
tion 2.1). Due to limitation of DIC compared to the required data to extract, a software has been
developed in-house specifically for knitted textiles studies (Section 2.2). Lastly, an illustration
example of kinematic fields is given on an experimentally obtained picture (Section 2.3).

2.1 2D Digital Image Correlation

Digital Image Correlation (DIC) is an optical method that employs tracking and image regis-
tration techniques for accurate 2D and 3D measurements of changes in images. This technic is
often used to measure 2D/3D displacements and is widely applied in many areas of science and
engineering '. Thereafter is presented two-dimensional DIC method used in the study of planar
samples for analysis of displacement and associated strain fields.

A few definitions are required for the following sections (Figure IIL.1):

Subset: square part of the initial image centered on point M; to be tracked, size n x n pixels;
Area of Interest (AOI): zone of the image where tracking points M are of interest;
Step: distance in pixel between centers M; of two neighbors subsets;

Speckle: random marks realized on the sample surface used to track the subset;
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Figure lll.1. Representation of AOI, Subset, and subset Step used in DIC analysis (left) and representation
of subsets center M; grid

The speckle pattern is usually realized with spray paint of contrasting color. In order to track
each point M;, the subset speckle is required to be specific (the speckle needs thus to be as random
as possible and contains at least 7 to 9 specks). Each subset will then be tracked in each successive
image. The area of interest is decomposed in a regular grid of subsets, whose centers M; are
separated by a distance equal to the chosen step. The size of the subset is usually chosen such as
the ratio between step and subset size is equal to 1/3.

Subset and step sizes are important parameters: a small subset size implies a better resolution
as more points M; displacements will be obtained over the AOIL. However, the subset needs to be
large enough so that the subset speckle is unique. The step size ratio with subset size refers to
the overlap of subset and the redundancy of data. A small ratio will prevent loss of data as the
same speck will be contained in many subset. However, the smaller the step size, the longer the
calculation and the smothered the data.

The DIC operational principle can be decomposed in 3 main successive steps:

e Placement of initial subsets in the initial image (img 0)
e Detection of the new position of each subset in next images
e Calculation of various quantities from subsets center M; position

To perform the image correlation analysis, the pattern of a group of pixels in subset 5; is
correlated to the new position of the subset in the following image (Figure I11.2). Positions around
the initial coordinates are tested by matching the pixels gray scale value. A correlation factor is
calculated at different possible positions M/(x + u, y + v) as:

(n—1)/2
C(x,y,u,v) = Z To(z +i,y +75) — Lz +utiy+ov+i)? (IIL.1)
i,j=—(n—1)/2

!One very common application is for measuring the motion of an optical mouse.
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Figure lll.2. Schematic representation of initial image with initial subset (left) and successive image with
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where Iy and I, are the reference and current images respectively; (X,y) are the subset center M;
coordinates in initial image Iy and (u,v) are its displacements in the actual image I,; n is the subset
width; and (i,j) are indexes that cover pixels in the subset

The correlation factor C' is computed for neighbor possible couple (u, v) in the image /. The
sought displacement corresponds to the lowest value of C' (Eq. III.1).

To search for the subset .S in successive images, two options are available: initial correlation or
incremental correlation. For initial correlation, the deformed subset .S, in image I, is correlated in
reference to the initial subset Sy in image Iy. During incremental correlation, the deformed subset
Sp in image I, is correlated in reference to the subset S, 1 in image I, 1. This method provides
with correlation where subsets are largely deformed. However, computation precision decreases
as errors in successive image stack on each other. Furthermore, the loss of a subset in image I,
induces the loss of the subset in next images.

After the image analysis is complete, grid displacements are obtained from the subsets center
M; position. Several quantities can be computed, such as interpolated displacement field in the
camera axis. For the strain fields computation, the distance variation between subsets center M;
is used: let a regular grid be indexed with k for row index and [/ for column index (Figure III.1,
right). Each point M; of such grid is indexed M;(k, ) and possesses a set of initial coordinates
(x,y) and deformed coordinates (x + u,y + v). A step S is defined as the difference in index k or
[ around the point of interest. The gradient at a point M;(k, ) is defined as:

Ao(M;(k, 1) = u(M;(k,1 + S)) — u(M;i(k,1 — S))

(I11.2)
Ay (M;(k, 1)) = v(M;(k + S,1)) — vo(M;(k — S, 1))

Then, the calculation of strain components can be performed using the distance variation
(Eq.II1.2) and the desired formulation of strain (engineering, Hencky, Lagrange, etc.).

To perform DIC analysis on knitted textile pictures, the wire structure itself constitutes the
pattern used as speckle. The subset is defined to include almost 2 knit loops (Figure II1.3). This
method coupled with incremental correlation when high loops deformation occurs allowed dis-
placements and associated strain fields to be computed for the textile at the scale of few loops.
Such data does not provide with explicit data about the wire slipping, curvature changes, efc.
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Figure lI.3. Picture of a tested knitted textile with zoom on wire and a typical subset for knitted textiles
(green dash)

2.2 In-house software for knitted textiles image tracking
2.2.1 Displacement field

A software dedicated to the knitted textiles study has been coded in-house. The software aims
at providing displacement fields measurement for the textile and local wire curvature and slipping
during loading. The basic functioning is as follows:

1) Detection and numbering of knit loops,

2) Building map of the textile loops structure,

3) Tracking versus time of loops centers,

4) Computation of loops singular points,

5) Estimation of each wire 2D shape,

6) Post-processing of data (displacement, strain, shape, etc.).

Initially, captured images are treated to reinforce contrast in order to strongly dissociate wire
from background. Contrast function used for such leveling is user-defined.

The knit loops detection is first performed (Figure I11.4). A function 2 detects closed area
of same pixels value and labels those areas with a random number. Knit loops are therefore
distinguished and referenced uniquely.

On the reference image, the position of loops centroid is computed. From the position of such
center points, the neighboring loops are detected and organized in line in the wale direction (Fig-
ure II1.5a). Possible rhomboidal textile structures are then automatically built and user selected
(Figure II1.5b).

The centroids position in image ), is transferred in image 1 (Figure II1.6). The new position
of loops centroid is updated and the tracking of each loop centroid can be performed. This method
yet implies that the maximum displacement increment between two successive images is small
compared to the loop size.

2bwlabel function in Matlab
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« Centroid previous position

= Centroid current position

Figure Ill.6. Previous and current position of loops centroid superimposed on previous image
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Figure IlIl.7. Knit loop singular points and associated loop dimensions (left), and the corresponding seg-
ments and singular points in actual textile image (right)

2.2.2 Wire detection and loop geometry

The tracking of loops centroid allows displacement fields to be computed inside the textile.
Yet, this information is limited, and images contain more information that can be deduced by
tracking wire organization and shape. Wire sliding, curvature, and loop dimensions can be com-
puted thanks to such tracking. The loop dimensions are described by 7 parameters, namely L, H,
dy, Wi, Wa, aq, and o (Figure I11.7, left).

The loops are composed of wire segments and contact zone between two wale rows. The wire
segments are named as follows:

e S1 between I and I7,
e S5 between Ig and I7,
e S3 between I, and I,
e S, between I5 and I3.

Hence, the first step is to compute the loop wire structure and segments. Intersection points
I; to Ig are approximated as the closest pixel (red squares) of the loops area (green area) between
neighbor loops, using the rhomboidal structure defined (Figure I11.7, right).

Then, to identify wire segments .S; to Sy, the color difference between background and wire is
used. For each segment, a straight line is created between the two intersection points I delimiting
the segment (Figure I11.8). Two points are then created on this line, one in the middle and a second
one shifted two pixels aside on the line. These points serve as an initial guess of the first points on
the wire neutral axis.

The wire local center of mass is then computed into a circle centered on the initial guess
(Figure I11.8). The same process is applied on the second starting point to provide a second point
on the wire neutral axis. Then, points are firstly guessed by extrapolating the position from the
two previous points found. The same method is applied afterward to find points that define the
neutral axis.
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Figure II1.8. Starting point for wire neutral axis detection and wire segments numbering (left) and circular
mask and barycenter of subset for neutral axis detection (right)

This method is applied along the segment until the point I is found in the circle. When an
extremity has been found, the wire is scanned in the opposite direction, starting from the two first
points detected, up to the second intersection point.

2.2.3 Post-processing

Morphological parameters variations are computed after tracking each loop shape versus time.
Dimensional parameters (L, H, and d,)) and morphological parameters (W1, Wa, a1, and ap) are
computed.

2.2.3.i) Dimensional parameters To perform the loop dimensional parameters, mid points in the
sense of the curvilinear abscissa are defined, named M7, Mo, and Ms. The knit loop length L is
defined as the distance between points M; and M3, belonging to adjacent loops. The knit loop
height is defined as the distance between the straight line (M7, M3) and the point M,. Lastly, the
distance between two knit rows d,, is computed as the distance between M, Y and M.

2.2.3.ii) Morphological parameters The loop widths are calculated as the distances between the
intersection points: the loop larger width W is the distance between I3 and Ig; and the smaller
width is the distance between I and I7.

To measure the characteristic angles of the loop ¢, the loop theoretical symmetry axis is defined
as the line (M, M>). Then, angles o1 and o are defined as (1273, ]\/[é’qu) and (1776, ]\/[é’qu)
respectively.

2.2.3.iii) Mechanical analysis The textile displacement fields U and corresponding global strain
fields ¢ are computed using loops centroid positions. The sliding between loops is computed using
the variation of curvilinear length of segment 1 (course oriented) versus segment 2 and 3 (wale
oriented).

2.3 lllustration example

Displacement fields U have been calculated on experimentally obtained pictures of a knitted
NiTi textile subjected to wale-wise uniaxial tension (%) to serve as an illustration example.
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Figure II.9. Displacement fields, in pixels, obtained by the in-house software (top) and differences with
VIC2D measurements, in pixels, (bottom) during uniaxial tensile loading in walewise direction (y)

The software developed in-house and presented in Section 2.2 computes displacement fields
alongside several other data. Displacement fields obtained with such software are compared with
results obtained using image correlation software VIC2D (Section 2.1) and presented in Fig-
ure IIL.9.

The first line of Figure II1.9 presents displacement fields in pixel obtained with the software
along x and y directions, and displacement vectors norm. The second line presents the difference
between fields obtained by the software and by VIC2D. Error fields are scarce and random, show-
ing only critical points in the sample zone of interest borders, where measurements tend to lack
precision for both methods. However, the random repartition of error values indicates that no error
are induced by loops movement and that those errors, being of the order of 2 pixels, are solely due
to post-processing errors, either imputed to VIC2D and to the in-house software. At the zone of
interest edges, high errors are found on few points, which are due to DIC measurement errors and
therefore neglected. Errors are found less or equal to 5%, which is considered satisfactory.

3 Method to determine wire friction coefficient

During textile stretching, knit loops segments slide along each other. Friction thus has a pre-
ponderant impact on the mechanical behavior and energy damping capability of the knitted textile.

The friction coefficient between nitinol wires has not been widely studied throughout littera-
ture. Many studies focus on friction forces intensity, mainly for orthodontic applications. Few
studies provide a friction coefficient, and found values are scarce, ranging from 0.04 [90] to
0.13 [50] for the static friction coefficient to 0.51 for the dynamic friction coefficient [91]. An
experimental setup has thus been developed to estimate the friction coefficient between two wires.
The proposed principle is drawn in figure III.10.

To measure the friction cone angle, the orientation of the reaction force R between two NiTi
wires is measured. When the reaction force R lies within the cone, no gliding occurs. When wires
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Figure 111.10. Principle schematic of the wire friction coefficient measurement device developed. Top: the
mobile in the random state within friction cone; Bottom: mobile axis along the friction cone depicted limit
angle ¢; and angles notation used to compute friction cone angle .

start sliding, the reaction force is held on the friction cone surface. The friction cone angle can
thus be deduced from the reaction force R orientation compared to the fixed wire when sliding
occurs. The reference wire (1) is held horizontal and the second wire (2) is held perpendicularly.
This wire is gripped into a mobile at point E. The mobile is articulated at its extremities (E and
G) and submitted to two forces, namely wire reaction force R and mobile weight P. Hence, the
two forces are equal in norm and opposed directions, collinear to vector EG. To vary the force R
orientation in order to place it on the friction cone surface, an horizontal force T is applied to the
mobile at point G. The reaction force R then becomes R = —(f + ]3) The friction cone angle ¢
can then be computed. The associated friction coefficient f is equal to f = tan .

To perform the reaction force R orientation measurement, two pairs of points have been intro-
duced. Pair (A,B) defines the reference wire orientation. Pair (C,D) defines the mobile orientation.
Those points are the centroid of targets that can be tracked in pictures during tests. The targets may
not be exactly aligned with their respective reference. Therefore, error angles o and 8 have been
introduced between wire 1 and line (AB) and between mobile axis EG and line (CD), respectively
(Figure II1.10, Bottom). The angle measured is the angle between (AB) and (CD), named ¢. The
friction angle ¢ and the measured angle v are linked by the relation:

a+Y+B4+p= (111.3)

ol
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To remove from the calculation angles « and 3, two sets of measures are realized, with op-
posite sign for the tension T. In such case, two values of 1) are obtained, named ¢* and 1), for
T>0andT <0 respectively. Hence, equation II1.3 becomes:

at+ypT+p—p=
(I11.4)

NSIEINE

at+yT +B+p=

Substracting both equations of Eq. III.4 results in the following relation between measured
angles and friction cone angle:

20 =t — o~ (I11.5)
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Figure lll.11. Principle sketch of the setup in initial state.

4 Biaxial experimental setup

4.1 Introduction

Preliminary tensile tests have been performed on knitted textiles and deformations obtained
range from 0% to 40%. The corresponding lineic force level has been measured to 0.2 N.mm ™!
approximately. During biaxial tests, strain fields heterogeneities in the specimen may be caused
by boundary conditions distributions or the textile intrinsic architecture heterogeneities. There-
fore, the experimental setup boundary conditions heterogeneities are studied on homogenous soft
silicone membranes. The membranes have been chosen for the strain range required. The mem-
branes thickness has been chosen to result in a corresponding lineic force level at maximum strain
as knitted NiTi textiles provided.

A description of the principle of the new proposed experimental method is first presented
(Section 4.2). An experimental setup based on this principle is then presented (Section 4.3.1 to
4.3.2.ii)). Specimen and fabrication process used to test the device are then introduced (Sec-
tion 4.3.3). Finally, results are presented (Section 4.4) and analyzed (Section 4.5) before conclud-

ing (Section 4.6).

4.2 Principle of the experimental setup

The aim of the setup proposed in this work is to combine both methods ¢ and d advantages
(Figure I1.15 c and d). To do so, attachment wires used in setups ¢ and d have been replaced by
elastic elements (Figure I11.11). Pictures of springs and specimen zone of interest are acquired by
cameras during tests. The displacement and strain fields inside the sample zone of interest are then
obtained by DIC analysis. Elongations of the elastic elements are analyzed to provide boundary
loads distributions.

4.3 Experimental setup method

The proposed experimental setup will be first further described in Section 4.3.1. The bound-
ary loads calculation method is then presented in Section 4.3.2, followed by the definition
of physical quantities used to characterize and to analyze samples mechanical behavior (Sec-



3

3

'.Il’.i

an b8y

White paint

Black mark

(target) \ B

/

Sample

Fishing hook

Figure lll.12. Pictures of a) the biaxial tensile machine with experiment set up and the two cameras “Cam0”
and “Caml”, b) “Cam0” picture, and c) linkage and associated target design.

tion 4.3.2.i1)). Lastly, the material preparation and the samples fabrication procedure are described
(Section 4.3.3).

4.3.1 Method

The biaxial tensile machine (C&B Tessile, Cinisello Balsamo, Italy) used is composed of two
pairs of grips, moving symmetrically compared to the machine origin (Figure III.12a). One grip
per direction is equipped with a load-cell with maximum force of 500N and a resolution of 0.1N.

In this work, small diameter helicoidal steel springs were used to measure force distributions
on the sample boundaries: one spring end is fixed into the grip while the other end is hooked onto
the sample (Figure I1I.11). The sample zone of interest is delimited by the springs attachment
points. Its dimensions have been noted ag X by, and its thickness eg. Each spring has an initial
length L; and a stiffness k (Table 4.3.1). Springs link between the sample edge and the grip are
equivalent to ball joints: springs have been attached to the sample using fishing hooks. Targets
have been painted on each hook tip so as to be used as specific tracked points (Figure II1.12c).
The helicoidal springs outside diameter is reduced to allow a maximum number of springs on the
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Table Ill.1. Springs parameters

n | D(@mm) | d(@mm) | L; (mm) | kK (N.mm™!)
19 1.6 0.28 153 0.21

sample edges without interference. Moreover, a higher number of attachment points is expected
to provide a more uniform strain field inside the sample area of interest [83,92].

To measure the required displacements, two cameras have been used (Stingray F-504B/C,
Allied Vision Tech., Stadtroda, Germany) (Figure III.12a). Camera "Cam 0" is used to record
images of the sample zone of interest (Figure I11.12b). A Digital Image Correlation (DIC) analysis
of the strain fields inside the sample is processed with these pictures (VIC 2D, Correlated Solution,
US). Camera "Cam 1" provides images of the setup on which grips and springs hook targets
displacements have been tracked. "Cam 0" and "Cam 1" have been synchronized by an acquisition
software (Mercury RT, Sobriety s.r.o., Czech Republic).

4.3.2 Definition of measures

4.3.2.)) Spring loads Each spring i develops a force Ef] proportional to its length variation
(Figure I11.13), which can be written:
—FEi — Pigi
Fi =k(lpigi | - Li) —=— (IIL.6)
I pigi ||

where each spring is indexed with the letter ¢ € [1,n]. Each specimen edge is noted Ej
(j € [1,4]). p; refers to the spring attachment point on the sample along edge Ej and g; to the
spring end hooked onto the grip Gj. Grips have been noted G5 with the number j corresponding
to the sample edge Ej to which they are linked.

. —kEj .
Eventually, each spring force F; can be seen as the sum of its two components:

—Ej —Ej —SEj
F, =N, +T; (II1.7)

—Ej . —Ej
where N, 1is the force component normal to edge Ej, and 7', 1is the force component tangent

to edge F'j (Figure I11.13-detail A).

4.3.2.i)) Resulting load To characterize the sample mechanical behavior, macroscopic stress
quantities are required and defined.
The force measured by grips load-cell is noted ﬁgj and will be compared to the corresponding

macroscopic force measured via the springs system ﬁiﬁm , defined as:
—Ej —Ej
Fspring: Z F; (II1.8)
i

4.3.2.ii) Stresses The nominal stress (Piola-Kirchoff stress) is computed using macroscopic

Fspring'

provided by the grip load-cell ﬁgj, a first definition of stress components have been chosen:

forces ﬁGj provided either by the grips load-cell or the springs system Using the force

[P
ol = and Oy =
by ep

||

ap €o

(I11.9)
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Figure lIl.13. Notations and labels used in the experimental setup.

—Ej

Similarly, using the force measured by the springs system F' another Piola-Kirchoff

spring?
stress can be defined in a similar way:

—FE4 —FE1
B Fspm’ng B Fspm'ng
0,y = =—————— and o,, = ——— (I11.10)
rT b Yy
0 €0 ap €g

4.3.2.iv) Sample strains Strains used in this paper are logarithmic strains (Hencky formulation)
to assess for large deformations. Attachment points spatial coordinates have been noted l’fij and
m(%,é along the X axis and yfij and yégpi along the Y axis at current and initial times, respectively.

Likewise, grip spatial coordinates have been noted z¢;; and zo¢; along the x axis and y¢; and
Yoc; along the y axis at current and initial times, respectively. Grips displacements can be defined
as (Figure II1.13):

Ucj = x5 — zoc; and Vaj = yaj — Yoc; (IIL.11)

The DIC analysis performed on pictures of the sample loaded area provides the local strain

DIC DIC
Y

2~ and €

field components €., and €,,. The averaged values ¢ can be computed as:

eDIc DIC — mean(ey,) (IL.12)

= mean(é;,) and €,

Other macroscopic strains have been defined using the mean distance between attachment
points edge to edge, as:

mean(z5? — o)

ao

mean El— 53
) and €] =In(1 + Wy~ Uy, )) (I11.13)

E
T
bo

€, =In(l+
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Figure Ill.14. Monotonic unixial test data of silicone and identification of a Neo-Hookean behavior model.

A third calculation of the sample macroscopic strains e,f and (—:UG has been proposed using only
machine measurements (grips displacements Ug4 and Vg1 and grips forces Fgy and Fy as:

AL F:G4
e§:1n(1+ aX) where ALy =2 x (Ugy — ‘K ‘)
0 E eq‘ (IIL.14)
AL For
e?zln(l%- Y) where ALy =2 x (Vg1 — )
b() Keq

where K., is the springs equivalent stiffness used to evaluate the averaged springs length
variation. Assuming that the springs remain parallel and normal to their attachment edge during
testing, the approximate equivalent stiffness is given by K., = n x k (Eq. I1L.14).

Those three macroscopic strains definitions have been compared to assess the accuracy of the
proposed control methods. The error associated to the equivalent stiffness K., approximation has
also been studied in Section 4.4.3.

4.3.3 Specimen

A charged silicone elastomere RTV 3428 (BlueStar Silicone, Saint-Fons, France) has been
used and prepared using the methodology of Machado et al. and Rey et al. [93,94]. This silicone
is highly resistant to tearing and possesses recoverable strains up to 300%, low viscoelasticity,
and is initially isotropic. The material has been formerly mixed with a hardener with a weight
ratio of 1/10, degased, and injected into a mold under near vacuum atmosphere. The 2.2 mm thick
membrane is then cured in an oven at 70°C during 4 hours. The silicone mechanical behavior in
uniaxial tension is drawn in solid line in Figure I11.14.

The sample used for biaxial test was of 50x50 mm area and cut from the membrane with a
precision knife. A black paint speckle has been realized on the inner zone of interest with an
airbrush, delimiting a centered zone of interest of 44x44 mm (Figure II1.12b). This speckle will
be used to experimentally compute the sample strain fields using DIC.
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Figure lll.15. a) Grips displacement (left scale) and resulting reaction forces (right scale), b) Stress/strain
macroscopic behavior.

4.4 Experimental Results
4.41 Macroscopic behavior

The loading cycle has been controlled using the sample macroscopic strains ¢ and 65
(Eq. TI1.13). The measurement of ¢ and 65 has been performed in real time using a target track-
ing software linked with the machine pilot software. An optimal solution would be to use the
strain provided by DIC measurement inside the sample ¢27¢ and 65 IC (Eq. I11.12). However,
DIC measurement can not be performed in real time by our system; the values e? 1€ and eyD IC can
not be used to control the test.

A specimen has been stretched via 4 sets of 19 springs. An equibiaxial loading cycle is
performed on the virgin sample (no Mullins effect [57]) up to a maximum logarithmic strain
ek . = 35% at a strain rate of 0.48 s~! in both directions. The reaction forces from load cells
ng (Figure III.15a) and grip displacements allow to compute the macroscopic stress o* versus
strain €“ relations using Egs. I11.9 and III.14 (Figure II1.15b). The curves overlap; the sample
mechanical response is identical in both directions due to isotropy and equibiaxial loading. Only
results on the vertical direction will be retained for further macroscopic studies.

Four specific times have been presented in this section. These specific times have been referred
to as states A, B, C, & D corresponding to macroscopic strains eyE of 9%, 17.5%, 26%, and 35%
respectively.

Force distributions along the specimen edges have been first investigated in Section 4.4.2. The
results of the three different macroscopic strains definitions are then compared in Section 4.4.3

before presenting the obtained experimental strain fields in Section 4.4.4.

4.4.2 Force distributions

. —Ej . ok . 2Ej
The distributions of normal N, and tangential 7'; components of spring forces F;

(Eq. I11.7) along the specimen boundaries are first presented (Figures I11.16 & I11.17).
—Ej
The normal force distribution V; presents an increase at each sample corner (Figure II1.16).

Springs number 1 and 19 differ from the mean value by 12% and springs 2 and 18 by 6.5%
approximately at every step time A to D. The force distributions between springs 3 to 17 remain
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Figure II..18. Ratio of tangential over normal springs forces on sample boundaries. A: ¢Z = 9%, B:
£ . =175%,C: & =~ =26%,D: €&, = 35%.

max
uniform with a standard deviation inferior to 3%. o
. . -5, .
As expected, the central spring tangential force 7', is equal to zero (Figure III.17): the
tangential force distributions are symmetrical due to sample, mounting, and grips displacement

symmetries. In theoretical biaxial tests, only normal forces should be applied on sample edges.
Therefore, the influence of tangential force shas been qualified using a criterion R defined as:

T

R= F (I11.15)

H —Ej

N;

The ratio R presents a symmetrical distribution along each edge, with a maximum value of
4%, which is considered negligible (Figure 111.18).

4.4.3 Comparison of macroscopic strains

The experimental results obtained with the three definitions of the sample macroscopic strains

have been compared (Figure II1.19a). The strains measured with DIC analysis e”7¢ present lower

E

values than strains measured via grip displacements ¢ and targets positions ¢, with a maximum

relative difference of 7.7% relatively to P, The target and grip strains ¢© and €“ overlap.
These macroscopic strains have been used to control the test targeted strain by compensating the

deviation with respect to the DIC strains ¢?/¢",

Then, stresses obtained from grip forces and displacements a,ﬁu = Hﬁ@q” /SEY (Eq. TILY)
El
and spring forces ozﬁ/ =122 EZ / S(;E ! (Eq. I11.10) have been plotted versus the sample macro-

G
Y

E

scopic strains € yy

and 65 , respectively, and compared (Figure II1.19b). The macroscopic stress o
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Figure ll1.19. a) Comparison of macroscopic strains measurements and b) stress/strain relations calculated
from grip measured forces and summed spring forces.

. . . G . .
measured by the spring system overestimates the macroscopic stress o,; measured using grips

forces by 15% at 12% strain and 3.7% at 35% strain, maximum and minimum errors respectively.

4.4.4 Strain Fields

The DIC strain fields maps have been plotted for each time A, B, C, and D, in order to as-
sess the strain uniformity inside the sample working area (Figure III.20). The three in-plane
components have been plotted (i) to iii)), with the same scale for €,, and €,,. To study the
equibiaxiality of the strain field components observed on the macroscopic behavior of the sample
(Figure IIL.15b), the absolute difference |e;, — €, | is also computed (iv)). This absolute difference
is then normalized using the mean DIC strains ¢/ ¢ and 65 IC (Eq. 11.12) as:

|€ae — €yyl
h = - I11.16
GHEE P (10

This calculation has been performed to highlight zones where strains are uniform relatively
to the mean strain (v)). Areas where strains are matching the criterion 0% < h < 5% have been
countoured in white. The size of such areas relatively to the zone of interest area has been marked
into these areas.

4.5 Analysis
4.5.1 Macroscopic behavior

The measurement of macroscopic strains estimated from grip load-cell forces and displace-
ments €& (Eq. II1.14) and targets position variations £ (Eq. II1.13) overlaps (Figure III.19a).
Either data set used to control the macroscopic strain level during the test will provide the same
control quality.

However, mean DIC strains 65 IC (Eq. M1.12) return a lower value than grips and targets
measured strains 65 and ef . This difference is explained by the deformation of attachment holes.
These holes deformations induce a lower strain state inside the sample compared to the strain
computed directly from attachment points displacements.
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Figure lll.21. Geometry of finite elements models with a) experimental hooks disposition and b) ideal
hooks disposition.

Moreover, as expected, stresses deduced from grip forces agj (Eq. II1.9) and springs macro-
scopic forces afy (Eq. III.10) are similar and validate the measurement of spring forces (Fig-
ure I11.19b).

4.5.2 Strain fields

Despite the applied equibiaxial boundary conditions, the strain field components €, and €,
are not perfectly symmetrical, which is underlined by the difference |e,, — €yy| (Figure III.20,
lines i), ii), iv) respectively). This difference is caused by symmetry defects of attachment points
placement, springs characteristics deviations, and sample internal defects. The error on attachment
points placement impact will be further analyzed in Section 4.5.3.

Strain field uniformity has been characterized using relative strain h maps (Eq. III.16, Fig-
ure II1.20 v). Strain field is considered uniform where 2~ < 0.05. The area where this criterion
is verified is outlined in white and observed firstly on the upper third of the sample, and then
grows as the sample is stretched. At maximum stretch, this zone covers approximately 50% of the
sample speckled area, in accordance with literature [83]. The increasing stress produces a more
uniform strain field inside the sample zone of interest.

4.5.3 Finite Elements model

Finite elements models have been created using a finite elements software (Abaqus, DDS
Dassault Systemes, France). The model aimed at proposing a simple yet effective simulation to
enable optimizing experimental parameters such as springs characteristics, specimen shape, efc.
This model also provides insight to study the impact of springs attachment points placement on
boundary forces distributions and strain field uniformity. Models using perfect and experimental
hooks implantation schemes have been first realized (Figure I11.21).

Hooks circular sections have been defined as rigid bodies and their perimeter nodes have been
merged with specimen nodes on the outward pointing semicircle to study holes deformation upon
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Figure 111.22. Comparison of stress/strain relations between experiment and FE model with experimental
hooks disposition.

loading as observed experimentally.

A Neo-Hookean hyperelastic material model has been used to simulate the material mechani-
cal behavior and has been fitted on uniaxial tensile tests realized on virgin samples (Figure 111.14).
The strain energy density function requires the two mechanical parameters C'10 and D1. The
resulting parameter C'10 is found equal to 0.131 MPa, and D1 is taken equal to 10~* MPa™!, cor-
responding to a Poisson’s coefficient of 0.4999, to simulate the silicone quasi-incompressibility.

Those models have been validated by comparing experimental and model results on the sample
macroscopic stress Jg/ (Eq. II1.9) versus strain 65 (Eq. I11.14) (Figure II1.22). The macroscopic
stress deduced experimentally from grips force afy is properly simulated with a difference lower
than 8.5%. Even if the Neo-Hookean non-linearity observed on the fitted curve diverges from
experimental results, the model is considered validated in regard to the macroscopic behavior of
the sample.

Normal forces ]\ZE 7 distributions have then been compared between FE analysis and exper-
imental results (Figure II1.23). For concision sake, only experimental and numerical results on
edges E1 and E4 have been compared. The normal forces NZEj distributions with experimental
placement of hooks (solid lines) are well predicted by the model compared to experimental dis-
tributions, with a maximum deviation of 11% on edge El at step B, and 8.5% on edge E4 at step
D.

The normal forces ]\71-Ej distributions of the model using ideal placement of attachment points
(dash lines in Figure II1.23) highlights that errors in springs attachment points placement are re-
sponsible for small variations in the normal forces values. These variations are of an order of 4%
at maximum value. The increase seen on normal forces distributions borders are observed inde-
pendently of springs placement errors. These gradients were caused by the peripheral material
situated behind hooks (between attachment points and sample outer edges). Numerical tests (not
presented in this paper) highlight that the thinner this part is, the lower the increases at the sample
corners are.

Finite elements models also provide analysis on the differences observed experimentally on
the three sample strains formulations €”/€ versus € and € (Eq II1.12, I11.13, and II1.14) (Fig-
ure II1.24). The same relative difference is found on the mean strain in the sample working area

ePIC as opposed to the value measured via grips €& and targets €, confirming that holes defor-
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Figure 111.24. Comparison of macroscopic strains calculations using the FE model with ideal hooks place-
ment.

mation causes such sample strains deviation.

Finite elements strain field components €., €,,, and €., maps have also been plotted to ob-
serve strain non-uniformities when experimental attachment points placement is simulated (Fig-
ure I11.25). Strain field components maps highlight strain concentrations around attachment points
as could be expected for such a setup. These heterogeneities at the sample edges were not sym-
metrical as experimental attachment positions have been implemented in the model. Strain het-
erogeneities were not directly related to normal forces distributions as higher forces value does
not implies higher strain value in the attachment point neighborhood.

Unfortunately, strains concentrations are over-estimated by the model. The shear strain is
specifically over-estimated by a factor 2 as opposed to experimental data (Figure I11.25 iii).

A model ignoring every incertitude related to springs characteristics, placement, sample ho-
mogeneity, symmetry defects, and calculation approximation has been created. As expected, this
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model presents non-uniform yet symmetrical strain field components (Figure I11.26). As opposed
to the real implantation scheme, for time A, B, and C, strain concentrations area around attach-
ment points were smaller. Uniformity criterion i (Eq. II1.16) maps obtained with such model
are symmetrical and uniform through time. The size of the uniform area h < 0.05 decreases
slightly from 54% to 51% of the sample loaded area. The last results is similar to results obtained
experimentally (Figure I11.20)

The placement of spring attachment points thus possesses a limited impact on strain field
uniformity inside the sample working area, considering the standard deviation of hooks placement
around the ideal position is as small as +0.3mm (equal to the hooks radius). Optimizing such
placement yields very small strain field uniformity improvement in return.

4.5.4 Improvement perspectives

It has been shown that small deviations in the placement of springs attachment points were
responsible for small deviation of approximately 4% of normal forces distributions along the sam-
ple edges, and partially responsible for strain non-uniformities. A special care may yet be taken
to place hooks precisely to reduce such deviations.

Springs initial and final length (L; and L; + AL respectively) impact the value of the ratio
R (Eq. III.15); R criterion and tangential forces are needed to be as small as possible. Springs
parameters such as initial length L; and stiffness k have to be adjusted to comply with machine
constraints and to have the greatest final length available so as to reduce the tangential spring
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Figure 111.26. Strain field components (%) and normalized absolute difference of the strain field compo-
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forces intensity, and therefore to diminish the ratio R.

Finite elements models can be used to optimize such an experiment and to study the influence
of the sample geometry on the strain fields uniformity. The distance between external springs of
each edge may be responsible for high stress concentration and the influence of such parameter
have to be studied. Furthermore, the size of the excess of material behind the springs attachment
points may induce force distributions gradients and should be analyzed.

4.6 Conclusion

The setup presented in this paper has been used to perform equibiaxial tensile tests on a sil-
icone membrane. Using an uniformity criterion h < 5%, a uniform strain field is obtained over
50% of the sample zone of interest.

The developed method also provides boundary conditions measurement such as displacements
and forces distributions. The resulting boundary forces measured using springs have been shown
to match forces measured using grips load-cell. Boundary forces distributions have been shown
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to be partially dependent on the precision with which hooks have been placed. Errors of 3 mm
resulted in a maximum deviation of 4% of normal forces distributions.

In theory, planar biaxial tests only result in normal forces applied on the sample boundary. A
ratio of tangential over normal forces R lower than 5% has been obtained experimentally, which
has been considered satisfactory.

DIC strain fields have been computed on images, and provide a measurement of the sample
macroscopic strains. Two alternative definitions of such macroscopic strains have been proposed
and provide a moderate error of less than 7.7%. Such definitions yet allows driving the test with
ease and requires less complex real-time measurements.

Finally, a finite element model has been proposed and validated in regard to the sample macro-
scopic behavior and normal forces distributions along the sample edges. Such model provides sat-
isfactory results to predict the impact and to optimize values of various parameters such as springs
attachment point placement errors, springs number, springs characteristics, etc.

5 General conclusion

To experimentally study knitted textiles, a testing setup providing direct boundary load dis-
tributions measurement has been developed and validated using soft silicone membranes. An
in-house developed software has been proposed alongside to analyze the textile structure evo-
lution on experiment pictures. These data grant access to several key parameters of the textile
deformation, gliding, local curvature, efc, that are not obtainable by common DIC methods. This
program has been developed specifically for knitted textiles and uses their particular inner struc-
ture to perform tracking of stitches. An illustration example presented similar displacement fields
between the two image analysis method obtain on experimental pictures. It has been shown that
the average error in displacement measurement is lower than 4%. Only few critical points show
higher errors which is induced by DIC method errors on the area of interest edges. This error is
considered acceptable has standard DIC can not precisely detect the difference between two con-
secutive knit loops. Yet few drawbacks are to be noted, such as the time-efficiency of the method
and the restrictive application that requires only weft knitted textile.

Those experimental tools can also be used to validate analytical and/or numerical tools.
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CHAPTER

IV

Numerical analysis tool

1 Introduction

In this chapter is presented the finite elements model used to study knitted NiTi textiles. It
aims at studying stresses and strains distribution and evolution, material parameters and geometry
dimensions influence, efc. Analytical models are limited (loading case, loop geometry, efc.) and
numerical models are either highly simplified (no bending, no friction, efc. [88]) or computation
heavy (3D elements [79], no periodicity, efc.). This model is inspired by models presented in
Chapter II [18, 88, 89], and tends to combine advantages of each model.

The used geometry is based on a single loop which represents the textile Representative El-
ement Volume (RVE). A set of parametric equations has been written to describe the knit loop
geometry (Vokoun & Heller). Considering the wire curvilinear length over diameter ratio, beam
elements have been used to reduce the model size.

The knit loop deformation is constrained by periodic boundary conditions (homogenization
method). Continuity boundary conditions have also introduced to constrain the deformed geome-
try periodicity due to the presence of rotational degrees of freedom. The contact management is
performed via general contact definition.

2 Stitch finite elements model

The finite elements model aims at providing with information on the local wire stress-strain
state, which can not be obtained experimentally. Furthermore, the finite element model allows
performing simulation on various knit loop size and geometry, various material quantities, efc., to
study the impact of such parameters on the textile behavior.

In Section 2.2, the knitted NiTi textile studied has been briefly introduced. It can be seen
on pictures (Figure I11.2) that the wire diameter is small compared to the loop curvilinear length.
Therefore, to simplify the finite element model and reduce calculation time, beam finite elements
are used to mesh the loop.

The material model used to model the wire superelastic behavior is first presented in Section
2.1. The knit loop and the finite element model geometries are then introduced in Section 2.2.
To verify the beam finite elements ability to reproduce a superelastic wire in simple bending, a
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Figure IV.1. Aurrichio behavior model used to model the NiTi superelastic-plastic mechanical behavior.

benchmark is performed and presented in Section 2.3. Periodic boundary conditions are then for-

mulated for beam elements in Section 2.4. Contact management methods between beam elements

are then described depending on the resolution method used in Section 2.5.

2.1

Material Model

To model the NiTi wire superelastic mechanical behavior presented in Chapter II (Section

2.3), the Aurrichio behavior model has been used (Figure IV.1). This behavior model requires

parameters listed below. In the stress/strain plane (o, €), the required parameters are:

O Ms, O 2 martensitic transformation start and end tensile stresses

0 As» 0 Af: austenitic transformation start and end tensile stresses

op, (0%, €): martensite yield stress and yield curve points coordinates
09 s: martensitic transformation start stress in compression

E 5, Ejs: austenite and martensite Young’s moduli

€;: transformation strain

va, Vs austenite and martensite Poisson’s coefficients

In the stress/temperature plane (Clausius-Clapeyron law), the additional required parameters

are:

=g

($%)A: austenitic transformation start stress variation versus temperature

S,

(§7)n: martensitic transformation start stress variation versus temperature

Ty: temperature at which above parameters have been measured
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Figure IV.2. Left: Multiple repeating unit cell of a knit loop (red & green) or cut unit cell (dash squares);
Right: Knit loop geometry and shape parameters

2.2 Loop geometry and shape parameters

2.2.1 Geometry equations

The knitted structure of a sample is a repetition of a unit cell, which can be defined in different
ways (Figure IV.2, left). The knit loop geometry has been modeled using parametric equations and
dimensional parameters along the course direction. The equations describe the undulating shape
of the wire over a single knit loop.

A set of dimensional parameters has been used to describe the knit loop morphology (Fig-
ure IV.2), namely:

e L: the knit loop length,

e H: the knit loop height,

W1 & Wa: the knit loop large and small width of inner curvature,

e: the knit loop thickness,
e d,: the distance between two courses in the wale direction.

Additionally, to describe the loop shape and symmetry, three angles have been defined, namely
a1, ag, and § = a1 + «ao. For idealized textiles, oy and «g are equal. In the case of a physical
textile, the manufacturing process induces defects in the loop symmetries. These defects can be
partly quantified by the difference between those two angles. 6 represents the knit loop opening.

These parameters allow the knit loop geometry to be defined with less loop shape restrictions
as proposed in earlier models (Chapter II, Section 4.2.1). The spatial coordinates (z,y, z) of a
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point N along the loop neutral axis can be determined from a parameter ¢ € [0, 27| referring to
the normalized curvilinear abscissa of the point N (Eq. IV.1) and the equation defines below:

t
x =L o + ksin(2t) 4+ asm sin(t)
T

¢
y = H CO‘;J (IV.1)
St
T XS
with
. T ., T
St = sin(= + 2(t — t;1)) + sin(= + 2(t — ti1))
2 2 (IV.2)

. sin(% Lot —tin)) — sin(% +2(t - tis))

where k and asm are curvature parameters around dimensions Wy and Ws respectively. t;1, t;2,
ti3, and t;4 correspond to the intersection points between two course rows normalized curvilinear
abscissa t.

2.2.2 Finite elements stitch geometry

The knit stitch geometry consists here only in the wire medium fiber. Such geometry is de-
scribed using the parametric model presented in Section 2.2.1 and with experimental geometrical
parameters obtained using the image correlation software presented in Section 2.2.

A quasi-infinite number of repeating patterns composes the knit structure. The finite element
model geometry is chosen to represent a full knitted periodical structure as depicted in Figure IV.3
(green rectangle). The geometry is extracted using a box measuring L wide and d,, high, arbitrarily
placed.

M;

Figure 1V.3. Creation of the finite elements model knit loop geometry and reference points for periodic
boundary conditions.
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Figure IV.4. Schematization of initial (left) and deformed (right) beam according to Euler-Bernoulli (top)
and Timoshenko (bottom)

2.3 Beam finite elements
2.3.1 Beam theory

Two main kinematic hypotheses sets exist to model beams: i) Euler-Bernoulli theory, and ii)
Timoshenko theory (Figure 1V.4).

Euler-Bernoulli formulation is the simplest formulation: the beam cross-section initially pla-
nar and perpendicular to the beam axis is supposed to remain planar and perpendicular to the beam
axis when deformation occurs. This theory is valid for slender beams.

Timoshenko theory takes into account for cross-section deformation and is suitable for thicker
beams. Using such formulation, the initially right and planar cross-section may deform under the
effect of shear strains.

In this work, the wire superelastic behavior is expected to induce large bending with shear
stress. The contact pressure is also expected to induce shear stress in the wire section. The
Timoshenko formulation is therefore used in the model.

2.3.2 Beam finite elements

In beams, nodal displacements allow to compute the deformed shape of the structure and the
nodal section strains e and stresses o. The section stresses are then used to compute the nodal
bending moment ;. Considering a 2D planar problem, the bending moment around z-axis Mj,
can be computed as:

M, — // YO padS (IV.3)
S

In order to numerically solve such integral, the trapezoidal rule is used with a certain number
of integration points in the section. The default number is 3 points radially and 8 circumferentially,
allowing for accurate material plasticity reproduction. The number of integration points can be
user-defined in order to simulate more precisely more specific material behavior.

The NiTi wire superelastic behavior is non-linear and presents non-symmetric tension-
compression. A benchmark in simple bending has thus been realized to determine the optimal
number of integration points in the beam section to balance between precision and computation
time. The benchmark geometry is presented in Figure IV.5. The model consists in a beam of
length L, with a circular section of diameter d. The loading case consists in simple bending ap-
plied by a displacement U, at the beam free extremity. Quadratic beam elements B32 have been
used, of length 0.5 mm. Three number of integration points have been tested, namely 3x8, 9x8,
and 15x8 (Figure IV.6, 15x8 is not represented for clarity reasons).
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Figure IV.5. Beam bending benchmark performed to compare beam finite elements and standard 3D brick
elements.

e o1o " . :

OOOOOGO
B B .O'OO. E

Figure IV.6. Illustration of the integration points organization and numbering in the section using default
3x8 integration (left) and user-defined 9x8 integration points (e, X eg) (right)

Table IV.1. Geometrical and material parameters of the benchmark performed to compare 1D beam ele-
ments and 3D brick elements.

L d Uy Ey VA Ey vm | €7 OMs oMy Ocs
Smm | 04mm | -5mm | 60GPa | 045 | 40GPa | 045 | 5% | 550 MPa | 610 MPa | 770 MPa

The benchmark geometrical and material parameters are summarized in Table I'V.1.

The bending moment M}, has been studied against the element curvature p for the three in-
tegration points number at the control section (Figure IV.7, green line), during a single loading
cycle. It appears that the default integration diverge from the user-defined integrations by 16% at
the martensitic transformation end, yet recovers identical bending moment for larger curvatures
(p > 0.9mm~1). Small difference can also be seen at the martensitic transformation start. How-
ever, both non-default integrations yield the same bending moment versus curvature relation, with
a maximum difference equal to 5% at p = 0.7mm—1. The calculation times are summarized
in Table IV.2. Increasing the number of integration points increases computation times, as ex-
pected. Therefore, to balance precision with computation times, it has been decided to use 9x8
user-defined integration points in the beam section, to represent the wire bending accurately while
reasonably increasing calculation times.
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Figure IV.7. Bending moment versus curvature using 3x8 (red dash), 9x8 (green crosses), and 15x8 (blue
line) integration points along €, and €3 respectively.

Table IV.2. Computation (CPU) times of the benchmark depending on the number of integration points
used.

Integration 3x8 (17) | 9x8 (65) | 15x8 (113)
CPU Time (s) | 27.3 63.5 101
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@

Figure IV.8. Repetition of a 2D periodic pattern in initial state (a), and in any deformed state (b) [9]

2.4 Periodic boundary conditions
2.4.1 3D continuum

For 3D continuum, the kinematic unknowns are the displacements noted, noted u, v, and w
along #, ¥, and 2 axis respectively. In this case, the homogenization method consists in con-
straining displacements between point pairs on opposite faces. With this expression, surface may
deform under the effect of loads; the adjacent patterns concordance is kept (Figure IV.8).

Let a cube ABCDEFGH be defined with its edges aligned with %, ¢, and 2" space axis re-
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Figure I1V.9. Representation of a cubic volume and corresponding points pair for periodic boundary condi-
tions

spectively (Figure IV.9). P is a point belonging to the face ABFE (plain color), and its pair P’
belonging to the surface CDHG (hatching colored), so that PP = ‘ PP
vectors of P and P’ are written as < up;vp;wp > and < upr;vpr;wpr > respectively. The

Z. The displacement

periodic boundary condition between P and P’ is written:

_up(t) — up(t)
i Up(t) — 'Up/(t)
Cua(t) = —H 0 ‘ Iv.4)
_ wp(t) —wp(t)
T Tl

Cluz(t), Cyz(t), and Cy,(t) are constant over pairs (PP’) at each deformed state. The same
equation array is written for point pairs of faces BCGF and ADHE, and point pairs of faces ABCD
and EFGH, with new sets of constants C'yy (1), Cuy (), Cuy(t) and Cy; (1), Cyz(t), Cuw-(t) respec-
tively. Those quantities describe strain gradients along the RVE principal directions and ensure
the deformed pattern periodicity.

2.4.2 Application to knit loop model

For beam elements, nodal kinematic unknowns are displacements (, ¥/, ) and rotations (R,
Ry, R.). Periodic boundary conditions can be formulated using the general definition introduced
in Section 2.4.1 for the knit loop model and beam elements.

With such geometry, 3 pairs of periodic boundary nodes are present (Figure I'V.10):

e Pair (M| — M) for vertical edges;

e Pairs (M, — M}) and (M5 — M) for horizontal edges;



Figure IV.10. Knit loop model presenting boundary points and master nodes E and F.

A set of 15 periodic boundary conditions equations are thus obtained to constrain nodal dis-
placements and rotations for each pair as: Nodal displacements:

Con(t) — MM —u(M)()
MM (t)
M)() — v(M}) (1)
MM (t)
Gy — LB —w(M)()
| Mgy (e)]

Cralt) = &

Iv.s5)

_u(Mp () —u(Ma)(t) _ w(ME)(t) — u(Ms)(t)

| MM(2)] MEMs(1)

My)(t) —v(Ma)(t) _ v(Ms)(1) — v(Ms)(t)

MM (1) MM (t) (IV.6)

Coon(t) = w(M)(t) —w(Ma)(t) _ w(Mg)(t) — w(Ms)(t)
' | by(o)| |z (1)

Cuy(?)

va(t) = U(

Nodal rotations:

0
Ry(Mg) — Ry(My) =0 (IV.7)
0
M) =0
Ry(M}) — Ry(My) =0 (IV.8)
My) =0

Ms) =0
Ry(M;) — R,(Ms5) =0 Iv.9)
M) =0
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The strain field is applied to the knit loop by controlling the periodic gradients constants C,;
to Cyy (Eqs IV.5 to 7?) (“master nodes” method [95] ). The stitch loop kinematic boundary
conditions are applied as nodal displacements or forces on the master nodes E and F. The relation
between master nodes displacements and periodic gradients constants are as follows:

Cu:L' = U(I‘/E)
Clw = U(LE) (IV.10)
sz = _w(LE)
and
_u(F)
¢y, = 2 (IV.11)
& dy
_w(F)
Cuuy = T

Hence, nodal displacements of master nodes E and F are introduced into Egs. IV.5 and
Eqgs. IV.6 and ?? respectively. Eqgs. IV.6 and ?? are also combined to obtain periodic boundary
conditions equations as:

u(Ms) — u(M]) = u(E)
v(M}) — v(M]) = v(E) (IV.12)
w(Mz) — w(M]) = w(E)

w(M) — u(My) = u(Mg) — u(Ms) = u(F)
o(Mj) = v(Ma) = v(Mg) — v(Ms) = o(F) Iv.13)
w(Mf) = w(My) = w(Mg) — w(Ms) = w(F)

2.5 Contact management and resolution method

The contact are modeled with a “distant contact” condition between slave nodes and master
geometry 2. Such “distant contact” condition may become difficult to implement when the section
of both slave and master geometries are not circular as this requires to know the current configu-
ration of the section and its orientation in the global coordinates system for each slave and master
geometry. Hence, several simplifications have been introduced in the finite elements code to com-
pute such “distant contact” condition between beam elements. These hypotheses depend on the
chosen resolution method: i) implicit or ii) explicit.

'Two master nodes, namely E and F, are used to constrain constants Cl, Cyy and Ciy, and Clyy, Cuy and Clyy,
respectively.

2As opposed to 3-dimensional case where the contact occurs when the distance between slave nodes and master
geometry is zero
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Figure IV.11. Illustration of the contact management between a node and a beam element in Abaqus using
implicit resolution method.

2.5.1 Implicit resolution method

The contact between a node and a beam finite element is represented in figure IV.11. The
master surface is defined by beam finite elements of length L between nodes A, B, C and D.
Those elements possess a circular section of diameter D. Let consider a node M, moving along the
master surface in direction of the element AB axis with a direction vector noted U (M). A contact
pressure noted Pe is applied on the element at point M. Using the implicit resolution method
in Abaqus, the contact is performed by creating “contact spheres” of diameter equal to 2 x D
around the master surface nodes. The contact condition is defined by restraining slave nodes from
moving inside such spheres. Two cases are depicted in figure IV.11. The first case represents a
master surface where elements length L is less than elements diameter 2 x D. The second case
represents a master surface where elements length L is greater than 2 x D.

In the first case, contact spheres around nodes A and B intersect and form a continued contact
surface. Slave node M may therefore slide along this surface, describing a set of arcs with rough
points at each intersection of spheres outer surface.

In the second case, however, contact spheres around nodes A and B do not intersect, and the
obtained contact surface is discontinued. Hence, the node M may slide on the spherical surface
around node B, in this case, and then move through the entire element AB due to the vertical force
Pc.

This method may be therefore used in very specific cases, where elements used in the model
are thick beams with 2D > L, or when no movement is intended between master elements and
slave nodes. A special care should be taken to align both master and slave nodes in the initial
configuration to ensure a correct contact distance.

2.5.2 Explicit resolution method

When using an explicit resolution formulation, the contact between beam elements is con-
strained similarly to contact between solid elements. The distance a between the slave node M
and each master surface elements is computed at every increment start. This distance is compared
to the sum of both master and slave surfaces section radii. A common contact penalty method
is then used to solve contact restrictions. Therefore, the contact surface obtained along the beam
element axis is continued and represents the actual element volume.

Yet few restrictions are present, such as the circular shape of the contact surface, equal to the
smallest outbound circle around the section in the case of non-circular sections. The contact sur-
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Figure 1V.12. Illustration of contact management between beam finite elements using explicit resolution
method.

face is also computed in straight line between master nodes, reducing the effective representation
of the element volume in the case of highly deformed quadratic beam elements for example.

In knitted textiles, high slip distances are traveled during tensile tests. Hence, due to the
implicit resolution contact management restrictions, explicit resolution method is used.

2.5.3 Mass scaling and kinetic energy

The contact between beam elements requires the use of explicit resolution method for the knit
loop model. Such resolution method is conditionally stable, and the stability is dependent to time
increment. The critical time increment is generally small, and computational times may increase
drastically. Furthermore, the explicit resolution method takes into account dynamic effects in
the form of kinetic energy, while experiments are conducted at low strain rates for quasi-static
deformations.

As the stable time increment depends on the mesh size and material density, to increase the
stable time increment artificially, the “mass-scaling” process is used. This process increases the
material density by a specific factor, or to reach a certain time increment, both user-defined, if
density is not a relevant parameter in the analysis.

However, as mass-scaling increases material density, kinetic energy is increased as well. High
kinetic energy induces oscillations in nodal displacements, and may distort the analysis results.
Therefore, mass-scaling factor or target time increment have to be chosen carefully to not induce
a large amount of kinetic energy in the model.

To help reduce the amount of kinetic energy stored in the model during loading, material
damping has been introduced, and the influence of its intensity studied in simple bending with
beam elements. A simple model has been created in order to define the optimal damping coeffi-
cient. The geometry used is the same model as presented in Section 2.3.2. The beam free end is
constrained in displacement, with a maximum displacement u,, = —14mm. This value has been
chosen to induce large nodal displacement and strain energy to increase the damping coefficient
impact visibility. The material used is linear elastic material to keep a conservative model, apart
from the material damping studied. A Rayleyh type material damping has been chosen for sim-
plicity reasons. Five damping coefficient values have been tested. The impact of the coefficient o
on the model kinetic energy and reaction force during bending is shown in Figure IV.13. The ref-
erence analysis is calculated with the implicit method (dots), while the study of damping influence
is performed in explicit resolution (lines).

When no material damping is introduced, kinetic energy shows the oscillations mentioned
previously, leading to similar oscillations in the reaction force at the beam free end. With the in-
crease of damping coefficient «, kinetic energy decreases earlier during loading. Peak values also
decreases, resulting in lower to negligible oscillations on the reaction force for o« > 50. However,
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Figure IV.13. Kinetic energy (top) and reaction force at the beam free end (bottom) for different values of
material damping.

the increase in damping coefficient causes an increase in reaction force due to the absorption of
internal strain energy. For a parameter o = 100, the estimated reaction force is 10% higher than
the reference value. A value of v = 50 returns an error in the reaction force estimation of 6.7%,
which is considered satisfactory. Such value has been used for the numerical analysis of the knit
loop.

2.6 Conclusion

In this chapter, the periodic boundary conditions and beam elements have been presented and
applied to create the knit loop unit cell model. The geometrical model has been derived from
the knit loop dimensions and models the contact between two knit rows. The general equations
defined for periodic boundary conditions on a cube have been translated to the stitch model and
allow simplified boundary conditions with only few constraints. A set of 9 equations has been
introduced in addition to the general equations to ensure the beam mean fiber tangent continuity
between consecutive patterns in the deformed state. The method led to a total of 18 equations to
fully constrain the stitch periodicity and continuity. The master nodes technique has been used
with those equations to enforce the knit loop strains in the (Z, §) plane.

The explicit resolution method is used to allow beam contact and sliding management. Be-
cause of the explicit resolution, kinetic effects and long computational times are yet involved. The
mass scaling technique is therefore used to increase the stable time increment to a target time
increment giving reasonable calculation times while minimizing dynamic effects. Furthermore,
to reduce undesired dynamic effects, Rayleigh material damping has been introduced and vali-
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dated in simple bending on beam elements. A typical value of 50 for the damping coefficient has
been found to lead to low to negligible dynamic effects while limiting the bending reaction force
overestimation.

Lastly, the influence of the number of integration points on the beam section has been studied
in terms of bending moment to curvature relation in simple bending for a superelastic material
behavior. It has been shown that default integration (3x8 points) lead to an overestimation of the
bending moment up to 16%. The number of integration points has hence been increased, and the
increase in precision over computation time balanced. The final number has been chosen equal to
9 points radially and 8 circumferentially.

The model will then be validated in regards to experimental results in the following chapter
on knitted NiTi textiles.
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CHAPTER

\Y%

Knitted NiTi textile characterization

1 Introduction

The goal of this chapter is to apply the methodology developed in this work to characterize
the various deformation mechanisms taking place in the knitted NiTi textile and their influence on
the textile mechanical behavior during tensile loading. The experimental analysis and numerical
tools (Chapters III and IV) are applied to the knitted NiTi textile sample in uniaxial and biaxial
tension.

The textile mechanical behavior depends on several parameters, such as knit loop geometry,
wire characteristics, friction coefficient, efc. To analyze those parameters, the knit loops dimen-
sions distributions and populations are first studied in order to characterize the textile geometrical
uniformity. The wire material parameters are computed from a simple tensile test and the friction
coefficient between NiTi wires is estimated. These parameters are introduced in the numerical
model in order to study the influence of material constants and friction coefficient on the knit loop
mechanical behavior.

In a first time, studied samples are presented (Section 2). Experimental results obtained on
such samples are then presented (Section 3). The corresponding finite element model results are
introduced and validated in regard to the experimental results (Section 4). A conclusion is finally
made on the knitted NiTi textiles mechanical behavior (Section 5).

2 Samples

Kanitted textiles used to run experiments are presented here. The wire properties, the heat treat-
ment performed to shape-set the textile, and the wire tensile behavior are first introduced. It has
been tested with the experimental setup (Chapter III, Section 4) adapted to knitted textiles. Then,
the knit loop pattern at the initial state is studied in terms of value, population, and spatial repar-
tition, with the in-house software (Chapter III, Section 2.2). The knit loop mean representative
geometry is computed from those measurements.
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Figure V.1. Simple tensile test of a NiTi wire, composition of 50.8 at% Ni and @0.1 mm diameter (Fort
Wayne Metals, NiTi#1)

2.1 Wire composition and behavior

The wire used for the knitting process is composed of 50.8 at% Ni (Fort Wayne Metals,
NiTi#1), possesses a diameter of @0.1 mm, and is provided in the “cold-work™ state. In such
state, the wire has a common elasto-plastic behavior with a high yield stress, of the order of 1.5
GPa.

A flat bed bench knitting machine is used to manufacture the fabric. After the knitting process,
the wire does not possess the superelastic behavior and residual stresses remain within the wire
due to the knitting. The shape-setting stage is performed using a simple setup to hold the textile
and to obtain more even loop shape. The system is then put in a furnace at 450°C for 30 minutes
to reduce internal stresses and to heat-treat the wire to the superelastic behavior. The wire is tested
in simple tension after treatment, and the resulting mechanical behavior is presented in Figure V.1.

The experimental biaxial testing setup presented in Chapter III (Section4) and tested on soft
silicone membranes has then been adapted to fit knitted textiles. Springs hook-like extremities are
used to grab the textile directly within each loop, taking advantage of the fabric porosity (Figure
V.2, zoomed insets). However, because of the knit loop geometry and the convexity of segments
S1 and S3 (cf Chapter III, Section 2.2.2), springs aligned with the wale direction (y in this case)
are not placed symmetrically side to side (Figure V.3). The hooking point stability is not insured if
a symmetrical spring disposition was to be chosen. A similar problem occurs with springs aligned
along the x-axis as the sinusoidal shape of segments S2 and S4 does not offer a stable hooking

point.
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Figure V.2. Knitted NiTi textile set-up in the biaxial tensile test experimental apparatus

-

Figure V.3. Springs placement in the wale direction and symmetry defect due to the knit loop wire curva-
ture.
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Figure V.4. Knit loop dimensional parameters.

2.2 Knit pattern and representative geometry

The numerical model developed in this work uses a single knit loop chosen to be representa-
tive of the textile sample tested. The knit loop geometry obtained after the sample shape-setting
(Figure V.4) is studied thanks to the in-house software presented in Chapter III (Section 2.2).
Each knit loops dimension spatial distribution is analyzed within the sample zone of interest. This
distribution is studied to verify the random characteristic, or to highlight particularity resulting
from manufacturing or shape-setting process instabilities. Assuming a Gauss repartition the mean
value and standard deviation in absolute value and in percent of the mean value are computed and
presented in text box within the histogram plots with letters p, o, and og, respectively.

The knit loop dimensional parameters L, H, and d,, are randomly spread across the sample
zone of interest (Figure V.5), indicating no particular defect in the knitting and shape-setting pro-
cess. The standard deviation for each dimension is equal to 3.4%, 5.4%, and 8.1% respectively.
These low values indicate that the representation of the global textile morphology using the mean
dimensions values is representative.

The knit loop widths are also randomly distributed in the textile zone of interest, and no direct
link can be made between the spatial repartition of both dimensions. These distributions indicate
that the knitting process and shape-setting process did not induce particular defects in the loop
geometry. The standard deviation obtained for these dimensions are equal to 6.5% and 13.3%
respectively. The W, standard deviation is satisfactory, while W, standard deviation is superior
to the maximum deviation considered satisfactory (10%). Hence, the use of the mean value may
induce errors in the simulated mechanical behavior, and the influence of such deviation on the
textile mechanical behavior should be studied.

The knit loop angular opening a; + ao spatial distribution appears here also randomly dis-
tributed across the sample zone of interest (Figure V.7). However, the loop warping angle a1 — a
spatial distribution shows a distinctive alternated pattern between positive and negative values in
the wale direction (y).The mean value is close to zero (0.89°) which corresponds to an almost
right angle between course and wale direction (89.11°). Two main populations can be distin-
guished: a population centered around -2° and a second around +3°, equivalent to the mean value
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distributions and gaussian fit with mean value and standard deviation (right)
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Figure V.6. Distribution maps of knit loop widths 1, and W5 in the initial state (left) and population
distribution and gaussian fit with mean value and standard deviation (right)

+o (£2.78°). The high standard deviations for both angles highlight the difficulty of shaping a
wire with a considerable elastic modulus. During knitting process, the local curvatures are very
small and induces large axial strains in the wire. The sample being knitted with a cold-work wire
(Ea =~ 60GPa and o, ~ 1.5G Pa), large residual stresses are present after knitting is complete,
and create shape defects. These shape defects are kept after shape-setting, even if residual stresses
are removed from the wire. However, the effect of alternating warping is expected to be negligible
as it compensates itself to provide a mean value close to zero.

The mean values and standard deviations are recapitulated in table V.1, and the mean represen-
tative geometry has been identified with such dimensions and the parametric equations presented
in Chapter III, Section 2.2. The resulting knit loop is presented in Figure V.8 (green line) along-
side with 8 copies (blue lines) and superimposed over the textile picture in its initial state. This
superposition over a zone larger than a single knit loop shows the approximation of a mean rep-
resentative geometry over the real varying geometry, yet depicts that idealizing the textile as a
repetition of perfect loops fits a larger sample area. This figure also highlights that alternating
warping does not induce noticeable deviation of the mean representative geometry over 3 knit
TOWS.
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Figure V.7. Distribution maps of knit loop opening a; + a2 and warping o1 — a2 in the initial state (left)
and population distribution and gaussian fit with mean value and standard deviation (right)

Table V.1. Experimental initial mean loop dimensions

L(mm) | H(mm) | dy(mm) | Wi(mm) | Wa(mm)
Mean 4.42 3.29 2.30 1.92 1.12
Std dev | 0.15 0.18 0.13 0.15 0.19

3 Experimental results

In this section, experimental results obtained on knitted NiTi textile are presented. Firstly, the
wire friction coefficient between NiTi #1 wires heat treated at 450°C for 30 minutes is presented
and briefly opposed to values found in literature. Then, uniaxial tensile tests on knitted NiTi tex-
tiles are presented, starting with the sample macroscopic behavior, followed by knit loop geometry
changes during loading, and finally boundary forces distribution measured via the spring system
presented in Chapter III. On the same plan are then presented results obtained for the same textile
in biaxial tension.

3.1 NiTi wires friction coefficient

Using the principle presented in Chapter 111, Section 3, the friction coefficient between NiTi#1
(FWM) wires heat-treated at 450°C during 30 minutes has been experimentally determined.
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Figure V.8. Initial geometry identified on experimental picture created using parametric equations pre-
sented in Chapter 2.2
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Figure V.9. Total friction cone angle measurement between two nitinol wires plotted versus time

Values obtained during time of the angle 1) — % are plotted in the two configurations, namely
T>0 (blue line) and T <0 (green line) (Figure V.9). A single measurement set is presented
over the three performed for clarity purposes. Peak values correspond to instants when the mobile
begins sliding along the reference wire, i.e. instants when R relies on the friction cone edge.

The friction cone half summit angle ¢ is defined by the peak-to-peak values of curves ¢ — %
divided by 2, repeated over the three measurements sets. In this case, a total number of 121
values have been obtained for ¢ and the corresponding histogram distribution plot is presented
Figure V.10. Assuming a Gaussian distribution, a mean value ¢,,,,, = 0.186 rad and a standard
deviation ¢ = 0.016 rad have been obtained. The friction coefficient is therefore found equal to
f =0.185+0.02. In literature, few values are found, and range from 0.13 to 0.51. The coefficient
measured with this method is relatively close to the coefficient 0.13 obtained by Abel et al. [50],
identified using a reverse analysis method, taking an analytical model and experimental results in
uniaxial tension on knitted NiTi textiles made of @ 0.2 mm wire.

3.2 Uniaxial tension

This section regroups experimental results obtained for the knitted NiTi textile in uniaxial
tension.
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Figure V.10. Demi-friction cone angle obtained with a set of three measurements, mean value
¢m = 0.186 rad and a standard deviation o = 0.016 rad

An initial pretension Fyy = 0.02 N.mm ™! is applied in both course and wale directions before
conducting tests in order to remove the textile looseness. This force is maintained constant during
uniaxial tension in the transverse direction. The working area targeted strains are measured via
camera extensometers placed on springs target, one extensometer in each direction. The maximum
strain is equal to 30%, and the strain rate equal to 0.0025 s~ 1.

3.2.1 Stress-strain relations

The sample macroscopic behavior measured with the spring system (Fllfn and "', Chapter III,
Section 4) is presented Figure V.11. The upper part presents the mechanical response in lineic
force versus axial strain for course (blue line) and wale (red dash) directions. The bottom part
presents the transverse strain versus axial strain. Four specific step times A, B, C, and D, have
been included and are referenced in further figures as specific strain states.

The experimental results highlight the mechanical properties and particularities of the knitted
textile tested. The textile anisotropy appears clearly in this figure, depicting the course direction
(blue line) stiffer than wale direction (red curve). At 24% strain, the lineic force in the wale
direction is 30% lower than in the course direction.

At strain state A, in the course direction, the strain is equal to 6%, and the hysteresis in lineic
force is equal to Ho(A) = 3.5 1072 N.mm ™!, and at strain state C (sample strain equal to
18%), the lineic force hysteresis is equal to Ho(C) = 4.6 1072N.mm~!. The increase ra-
tio between this minimum and maximum values is equal to 1.316. In another hand, in the
wale direction, at 6% sample strain, the lineic force hysteresis Hy (A) = 2 1072 Nomm 1,
almost two times lower than its course-wise counterpart. However, at 18% sample strain, the
hysteresis is equal to Hy(C) = 3.9 1072 N.mm ™', hence an increase ratio of 1.9. Finally,
at final stage of loading (30% strain), the maximum hysteresis value is reached and is equal to
Hy (D) = 4.91072 N.mm™!, being 2.5 times greater than Hyy (A). The course direction also
shows a greater “stiffening” of its force response. Finally, no residual strain appears in each direc-
tion after charges are released.

The curves presenting the transverse strain versus axial strain also highlight the textile
anisotropy in an opposite way, in the sense that, in the course direction, the textile is more com-
pliant inducing an higher transverse strain. The Poisson’s coefficient in the course direction is
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Figure V.11. Mechanical behavior of knitted NiTi textile in uniaxial tension; lineic force - axial strain
relations (top), and transversal strain - axial strain (bottom)

thus higher than in the wale direction, and estimated at v,,, = 1.05 while in the wale direction,
the Poisson’s coefficient is estimated at v, = 0.94. This strains anisotropy may prove useful
in specific applications, such as tubular actuator, for example, with the wale direction parallel to
the tube axis and course direction to the circumferential axis. Inflating the tube leads to an axial
stroke, and the anisotropy allows higher axial strains for lower tube inflation, reducing volume
needed for the actuator to inflate.

3.2.2 Representative loop geometry under loading

The knit loop mean representative geometry has been determined at the textile initial state.
This geometry has been shown to represent the global textile morphology with low deviation
except for the knit loop width W5 and opening and warping angles. During loading, initial geo-
metrical uniformity defects and strain field uniformity defects may degrade this mean geometry
representative capacity. These defects may therefore reduce the precision of the numerical model.
The evolution of the mean representative loop dimensions is therefore studied during loading, as
well as the standard deviation associated, in order to assess for loop geometry uniformity varia-
tions. In the following figures, the mean value is represented in thick lines, and standard deviation
by the colored area centered around the mean value, plotted at -o.

The wale-wise tensile test is first studied (Figure V.12). The knit loop length L presents an
opposite variation compared to the vertical distance between rows d,,. These variations correspond
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Figure V.12. Loop dimensions variations during loading cycles in wale-wise tension
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Figure V.13. Loop dimensions variations during loading cycles in course-wise tension

to the sample global strains. The standard deviation of each dimension retains its initial absolute
value, implying that no uniformization of loop dimensions occurs with the increasing loading.

The knit loop height H also increases yet of a smaller quantity than d,,. The standard deviation
retains its initial value until step C, where the transverse contraction of the textile implies contact
between segments S2 and S4, preventing the detection of segment S1 and intersection points
correctly (Figure V.14). This error is also reproduced during the second loading, in same intensity
and time span, inducing that the error is phenomenological and not consequent to the method.
Mean values and standard deviations of the loop widths W, and W5 decrease with loading. The
almost zero value of W, indicates the contact between segments S2 and S4, and such measure
may be taken with caution as well because of errors in intersection points placement described.

Finally, the mean warping value oy — a9 shifts from zero value, while the standard deviation
decreases. The springs symmetry defects on each side on the wale direction and hooking points
instability in both wale and course direction may induce small shear strains in the sample working
area and modify the warping mean value. The loop angular opening a1 + a2 follow a stable
increase while the standard deviation decreases. Loading in wale direction tends to standardize
the angular opening.

The tensile test in course direction is then studied (Figure V.13). The knit loop length L and
the knit rows distance d,, vary in an opposite way, corresponding to the sample strains, similarly
to the tensile test in wale direction. The standard deviation of both dimension remains constant
throughout loading cycles.

As previously, the knit loop height H decreases alike knit rows distance d, with a lower
intensity, and the standard deviation remains constant. For this loading case, knit loop remains
well defined, and the in-house software is able to detect correctly intersection points and loop
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Figure V.14. Deformation of a random knit loop during wale-wise tensile loading (top) and course-wise
tensile loading (bottom)

segments, removing the increase in the standard deviation seen in the previous test. The knit
loop smaller width W5 increases largely as compared to the larger width W7y, up to close values.
Knit loops tend to change to a rectangular shape, without change in standard deviations of both
dimensions. There is no standardization of knit loop dimensions with this type of loading.

Finally, shape parameters are analyzed. The angular opening a1 +ao decreases slightly despite
the rectangular shape depicted previously. The standard deviation increases by 40% (from +5°
to £7°) implying that the deformed knit loops initial defects are amplified by the loading case.
Such deduction can be performed on the loop warping cv; — ars which mean value remains close
or equal to zero, yet the standard deviation greatly increases from +£2.5° to £7.5°.

The deformed shape of a loop chosen randomly in the sample central area is presented in
Figure V.14 for both wale-wise and course-wise uniaxial tension. In the former load case, the knit
loop horizontal symmetry is preserved as the loading is also of the same symmetry and therefore,
initial defects in the loop warping and opening are preserved. Horizontal segments [, I;] and
[Ig, M3] remain horizontal, and initial warping does not interfere and the deformation mechanism
is thus stable. On the contrary, for the second load case, initial warping defects, which can be
linked to alignment defects of segments [Mi, ;] and [Ig, M3, tend to destabilize deformation
mechanisms, and such defects are amplified with the increased loading, as seen previously. The
initial knit loops dimensions uniformity is thus key to stable deformation mechanisms.

Knit loops length L and knit rows spacing d, illustrate the knit loop encompassing box strains.
Logarithmic strains of each loop are thus computed using such dimensions as:

L
d, (V.1)
Cyy = ln(@)
Y

The evolution of the loops strains mean value (thick lines) and standard deviation (colored
surface) are plotted versus time and compared to the sample strains in the same direction (sym-
bols) (Figure V.15). The stitch strains mean value correspond to the global sample strains, in both
course-wise and wale-wise uniaxial tension, allow correlation between the mean representative
knit loop strains and the sample strains, thus allowing the study of such loop numerically. Further-
more, stitch strains spread in the course direction (blue lines/surfaces) is narrow (+2% to +4% at
maximum sample strains), indicating more uniform strains in that particular direction and better
approximation of the sample strain with the homogenization method. In the wale direction, the
standard deviation in strains ranges from +5% to +7% at maximum sample strains. The homog-
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Figure V.15. Correspondence between global area of interest strains and local loops dimensions variations
in wale-wise tension (top) and course-wise tension (bottom)

enization method in that direction may lead to slightly larger errors but remains in the confidence

interval.

3.2.3 Boundary force distributions

Boundary forces distributions are then analyzed at strain increments A, B, C, and D, for each
load case in uniaxial tension to verify the quasi-unixial loading hypotheses. Those distributions
are presented along edges E1 and E4 for reasons presented in Chapter III.

In a first time, forces distributions are presented for the wale-wise uniaxial tension test. In
chapter III, silicone membranes in their deformed shape presented a concave edge shape, resulting
in a distribution showing an increasing force close to corners (springs 1 & 2 and 18 & 19) and a
uniform distribution in springs in between. In the case of uniaxial tension on knitted textiles, the
sample deformed shape shows edges concave in the tensile direction and convex in the transverse
direction (Figure V.16). A similar distribution as obtained with silicone membranes is attained
on edge E4, while an opposite distribution is present on edge E1 because of the edge convexity
(Figure V.17). In the tensile direction, normal force is considered uniform between springs 4 and
13 included, with a deviation of +8% for step B, C, and D. At step A, only spring 1 is off the
uniformity criterion with a deviation of 20%. Along edge E1, normal force distribution is highly
heterogeneous, with a variation of approximately +27% in the central area between springs 3 to
17 at steps B, C, and D, and +33% for all springs at step A. This non-uniformity is mainly caused
by the low forces measured during loading, inducing a strong influence of measurement errors and
springs defects (initial length, placement, knit loop geometry, efc.).

Along edge El, tangential forces are almost non-existent, either because of the low normal
forces than because of the low angle formed by springs compared to their initial normal position.
Along edge E4, in another hand, normal forces induce stronger tangential forces, with a distri-
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Figure V.16. Schematic representation of the Zol deformed shape in uniaxial tension.

3
E1T(N) | 510 E1(M |
0s ] el
06 40
@ =
071 20
06 >
Z
9 051 i P %‘F@ﬁiﬁ
g 8
5 04 S
- 03 A LL'ZO'
7 .
v ,/ vV, —-@—B
021 ,\//L\‘:f,q:/‘\ \'4 —A-C 40-
B At A s JEs
12345678 91011121314151617 1819 12345678 910111213141516171819
3
N E4(N) | 010 M| .
09 v
08 v\ /v 40
0.7 \\ // 20| /"r‘
_oel N . _ )
z "N—v—v" z —A —e—0—0
g 051 \\\‘\/\ N A 3 O wq;:! '-;-—--
£ 047 A A A AN & A
AN\ a -20
03] o s -././c" A 201 &
34 _.\".\./'\. /‘v
—O<¢' @B
021 /.\./H —A-C 40 v
01 gau-8tg i g tatytuygnta -v-D /
Lo e S B e e LA, AL L e S S Sy LT T T T T T T
12345678 91011121314151617 1819 12345678 910111213141516171819

Spring index i

Spring index i
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Figure V.18. Tangent component 7" over normal component NV ratio (in %) along edges E1 (left) and E4
(right) during wale-wise tension; Values are given at strain increments A, B, C, and D

bution consistent with observations realized on silicone membranes. The criterion for negligible
tangential forces has been introduced in Chapter III, equal to R < 5%, is controlled in the case
of uniaxial tension. Along edge El, the ratio ’%‘ is always inferior to 5% (Figure V.18). The
boundary conditions applied are thus considered equivalent to simple tension. Along edge E4,
in the zone defined previously as uniform in regard to normal forces, the ratio obtained verifies
the criterion introduced, validating the absence of shear forces in the sample. However, on exter-
nal springs, this ratio overcomes the maximum value of 5%, unlike tests performed on silicone
membranes on which the ratio remained under 4%.

As for the tensile test in the wale direction, in course-wise tension edge E1 possesses the “U-
shape” distribution on normal forces and the opposite distribution on edge E4 (Figure V.19). On
edge El, the center zone between springs 3 and 18 included is poorly uniform, with a variation of
+46% around the mean value. The same observation is performed on edge E4 where the normal
force variation between springs 3 and 17 included represents 57% of the mean value. Stitch
warping defects, amplified by the sample strains as well as attachment points instabilities for
springs aligned with the tensile direction on segments S2 and S4, are the cause of this distribution
non-uniformity.

Tangential forces distributions are of the same configuration as for tests carried out on silicone
membranes, with however an off-center zero value on edge El, obtained on spring 12 instead of
spring 10, which correspond to a vertical translation of 5 mm, i.e. 12% of edge E1 length. Despite
the normal forces lack of uniformity during such test, the 5% criterion on ratio ‘%‘ is verified all
along edge E1, and on 18 over 19 springs on edge E4, with the dismissed value equal to 6%. This
criterion allows to neglect shear effects in course-wise uniaxial tension as well.

These uniaxial tensile tests present satisfactory tangential over normal forces ratio (< 8%),
even with large displacements of springs attachment points. However, in course-wise uniaxial
tension, the transverse normal force (along edge E4) is relatively close or equal to the normal
forces in the tensile direction (edge E1). This implies that this loading case can not be considered
as a uniaxial loading case. In addition, a “buffer-zone” can be drawn between the sample working
area outer edges and uniform zone of width equal to 3 springs.
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Figure V.19. Boundary forces measurement along edges El (top) and E4 (bottom) during course-wise
tension, normal component N is on the left side, and tangent component 1" on the right side; Values are
given at strain increments A, B, C, and D
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3.3 Biaxial tension

In this section are presented experimental results obtained in biaxial tension for the knitted
NiTi textile tested in uniaxial tension in previous section (Section 3.2). The macroscopic behavior
is first presented, followed by the evolution of stitch dimensions and mean representative geometry
during loading. Finally, boundary forces distributions are analyzed for this loading case.

3.3.1 Stress-strain relations

For this test, Figure V.21 depicts the sample zone of interest (orange) and the working area
(green). The maximum strain used to carry out the loading case is measured with visual exten-
someters (camera 1), one for each direction, following the movement of one spring target on each
working area edge. The maximum strain defined for this test is equal to 10%, and the strain rate
to 0.02 s~ 1. Two cycles of loading/unloading are performed.

Principal strains of the working area e'Vorkingarea (Jines) and the zone of interest ¢Z°/ (sym-
bols) are presented during the two loading cycles (Figure V.22). The control strain 'V erkingarea
follows the desired equi-biaxiality condition during the first loading. This strain differs after the
first loading and for the next cycle because of the constant grip speed, the sample anisotropy, and
the friction causing residual strains after unloading. Principal strains of the zone of interest €%/
(symbols) resulting from such test, however, dramatically differ from the working area strains.
There are two main causes for this difference. The first cause rises from the spring attachment
method. In the wale direction, springs are attached on long segments which may bend excessively
under the effect of spring forces. This bending induces large springs target displacement but
no strain on the corresponding knit loop. The second mechanism comes from the “buffer-zone”
strains. This zone is defined as the area comprised between the zone of interest and the working
area borders. In the course-wise direction, the segment bending under spring loads is reduced
because of the segment shorter length. Therefore, the buffer-zone deformation in the course direc-
tion is very large to generate the large difference seen between working area strain ¢!/ orkingarea
and zone of interest strain ef"f . Nevertheless, some stabilization occurs after the first unloading
since strains (both working area and Zol) in the second cycle reproduce strains of the first cycle
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minus the loading step between t = 0 and ¢ = 150 s.

Despite the non-monotonic zone of interest strains during such biaxial test, resulting macro-
scopic lineic forces evolution is monotonic and linear in time (Figure V.23), which implies that
the control sequence is actually performed on macroscopic forces instead of strains.
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Figure V.24. Loop dimension variations during loading cycles in biaxial tension

3.3.2 Representative loop geometry under loading

Similarly as the presentation scheme used for uniaxial tension test (Section 3.2.2), the knit loop
mean representative geometry, as well as the standard deviation associated with each dimension,
is studied during loading cycles. The mean values are represented in thick lines while the standard
deviations correspond to the colored area around, drawn at +o (Figure V.24).

As for the uniaxial tension tests, the knit loop length L and knit rows distance d,, vary corre-
spondingly to the zone of interest strains, with a constant standard deviation. The biaxial loading
does not imply dimensions standardization.

In opposition, knit loop height H varies in the opposite way as d,, decreasing under the effect
of loading, while maintaining a constant standard deviation. This is due to two main deformation
mechanisms, different or absent in uniaxial tension. The first mechanism is the straightening of
segments S1 and S3, implying a lower height I even if a constant spacing d, is considered, as the
middle points of segments S1 and S3, namely M, and M5 used to measure the stitch height move
toward each other as the segment straighten. The second part is the decreasing contact distance
between (' and Cs, allowing for a slightly higher distance d,,, even if a constant height is taken.
The loop greater width W7 mean value and standard deviation remain practically constant, with
a decrease of less than 10% of the mean value. The loop smaller width W5 follows an evolution
similar to the loop length I with a constant standard deviation. This is due to locking preventing
the wire to slide between two contacting loops, and only the rotation around z-axis of segments
S2 and S4 and segments S1 and S3 axial strains allow the textile to deform in the course direction
(x-axis).

The stitch mean angular opening a1 + «g and its standard deviation absolute value are de-
creased by 35% at the end of the first loading. This is due to the deformed loop shape, which
becomes almost rectangular under biaxial loading. This deformed shape can be observed with the
knit loop widths W; and W5 variations. The mean warping value oy — o remains stable around its
initial value, while the standard deviation decreases significantly during loading, to reach a 50%
reduction at step D. The locking happening in the case of biaxial loading implies the straightening
of the loops segments S1 to S4. The phenomenon removes defects present initially because of
the manufacturing and shape-setting processes which was responsible for the warping standard
deviation increase in course-wise uniaxial tension (Section 3.2.2).

Therefore, biaxial loading does not allow stitch dimensions uniformization, notably because
of the lack of sliding which prevent stitches height and length to balance. Yet, locking allows
reducing shape defects (warping and opening) contrarily to course-wise uniaxial tension.

The stitches strains are computed following Eq. V.1 using dimensions L and d,, and the
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mean value (thick line) as well as the corresponding standard deviation (colored area) are pre-
sented Figure V.25 and compared to the zone of interest strains. Knit loops strains appear poorly
uniform, with a standard deviation increasing with loading up to 100% increase in course direc-
tion and 200% increase in wale direction. Yet, the mean stitches strains reproduce the zone of
interest strains, allowing to use the homogenization method and study the behavior of the mean
representative loop with care.

3.3.3 Boundary force distributions

Normal (N) and tangential (T) boundary forces distributions are plotted for steps A, B, C, and
D along edges E1 (top) and E4 (bottom) (Figure V.26).

Along edge E1, no corner effects are present as all springs are comprised around +15% around
the mean normal force, yet this spread is too large to consider this distribution uniform. Springs
attachment points instability is the main cause of this non-uniformity. Along edge E4 however,
springs hooking points are very stable, and the central zone between springs 2 and 18 included is
therefore uniform at 2% around the mean value, and external springs 1 and 19 differ only from
10% and 15% respectively. This value is of the same order as measured with silicone membranes
where external springs where off by 12% to 13%. Yet, in the case of knitted textiles, only one
spring at each edge extremity is to be considered non-uniform, as opposed to two for silicone
membranes. Normal force distributions on this edge highly uniform.

The tangential forces distribution along edge E4 presents a similar shape as obtained in uni-
axial tension and with silicone membranes, yet off-center of 30% of the edge length. The zero
position remains stable during loading, indicating potential lack of symmetry in the displacement
field along x-axis, inducing a larger angle between current and initial spring axis for springs 11 and
above than symmetry would impose. Along edge E1, the distribution appears randomly spread and
is consequence of springs hooking points instability coupled with measurement precision, springs
initial defects, and knit loops geometry defects. Yet, the ratio ’%‘ obtained on both edges is al-
ways less or equal to 3%, verifying the previously defined 5% criterion, and validating the biaxial
loading hypothesis (Figure V.27).

The biaxial loading hypotheses are therefore verified in this case. This indicates that the
application of boundary conditions is not responsible for the large differences in working area and
zone of interest strains.
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Figure V.28. Initial geometry identified on experimental picture created using parametric equations pre-
sented in Chapter 2.2

4 Numerical simulations

In order to evaluate the influence of material parameters on the textile macroscopic behavior,
the finite element model presented in Chapter IV is used with the initial geometry defined in
Section 2.2. The numerically obtained macroscopic behavior is opposed to experimental results to
assess for the model precision, in uniaxial and biaxial tension. Then, after validation, the model is
used to analyze the influence of the material austenite Young’s modulus and wire-to-wire friction
coefficient on the knit loop mechanical behavior.

4.1 Model parameters
4.1.1 Boundary conditions

The finite element geometry is computed using the parametric equations defined in Chapter
IV, Section 2.2.1, and the mean representative knit loop dimensions presented in Table V.1 (Figure
V.28). This initial geometry yet presents a large penetration of both [My, Ms] and [M{, Mj],
and identically for segments [Mo, M5] and [MZ, Mj], because of the stitch curvature in the z
direction. In order to remove such penetration, the stitch distance d, is reduced artificially, and
a pre-load force F is applied taking the experimental value (Figure V.29). During this step,
horizontal gradients Cy(t), Cyz(t), and Cy.(t) are maintained equal to zero. Therefore, the
vertical symmetry and knit length L are preserved during this step, but vertical translation is
allowed. This pre-loading step is common for all three loading cases.

The next step depends on the loading case chosen. In the case of uniaxial tension, the stitch
kinematic is constrained in the axial direction and determined with the experimental zone of in-
terest axial strain. In the transverse direction, a constant force Fj is imposed taken equal to the
experimental value.

In the case of biaxial tension, a second pre-loading step is performed as experimental initial
loading is different than uniaxial tension. This step is performed by imposing experimentally
measured forces Fip;q, in both x and y directions. Then, the complete stitch kinematic in x and y
directions is imposed to control stitch strains determined with experimental zone of interest strains
(Figure V.22).



84

ﬂ Initial Boundar?/ conditions
=== Displacement
‘ == Force

tFO y

m Preloading

L
-F, X

blax
f
-U « -F} Fl i o Biaxial
_/ﬁ\ /ﬁ\ /ﬁ\ " Preloading
‘

- 'FO biax
Uniaxial Tension Uniaxial Tensmn ‘
Coursewise Walewise U
U, U, Biaxial
@ =  Tension
4

Figure V.29. Loading steps for the finite elements model depending on the tensile direction.

Table V.2. Superelastic material parameters identified on wire uniaxial tension (Figure V.30) for use with
the Auricchio superelastic material behavior model.

i Ey va | oa oA
Austenite al f € To

46 GPa | 0.45 | 210 MPa | 160 MPa

Ey Uy OMs OMf UJCWf
18 GPa | 0.45 | 553 MPa | 563 MPa | 774 MPa

Martensite 3.33% | 22° C

4.1.2 Material behavior models

Using the tensile test carried out on an heat treated NiTi wire (Figure V.30), necessary param-
eters used for Auricchio superelastic material behavior are identified, and presented Table V.2.

A simplifying approximation has also been introduced by using a linear elastic material of
Young’s modulus E equivalent to austenite modulus F4 (Figure V.30). This approach allow
considerable computing time reduction compared to a model using superelastic behavior model.
The macroscopic behavior of both methods are compared with experimental results in further
sections.

4.2 Uniaxial tension

Firstly, uniaxial tension is studied. The knit loop mechanical behavior obtained numerically is
first compared to experimental results, using a linear elastic material model first then the supere-
lastic material behavior. The material is then chosen and the influence of the austenite Young’s
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modulus £ 4 and the friction coefficient on the stitch mechanical behavior is analyzed numerically.

4.2.1 Macroscopic behavior

The stitch macroscopic behavior in wale-wise tension using linear elastic material is presented
in Figure V.31. The lineic force versus axial logarithmic strain overestimates by 50% experimen-
tal results at the loading start, up to step B where this overestimation decreases to less than 4.5%
at step D. The unloading however reproduces precisely experimental unloading, with an over-
estimation equal to 5%. The transverse logarithmic strain computed numerically overestimate
experimental results by 23.5%. The strain hysteresis is also overestimated by 95%.

In order to verify for these errors possible origin, the superelastic material behavior model is
then used in the same conditions. The resulting macroscopic behavior is compared to numerical
results with linear elastic material and to experimental results (Figure V.32). The overall lineic
force response is similar to the elastic material response, excepting with the appearance of oscil-
lations. The almost equivalent hysteresis (2.5% difference) between the two simulations indicates
that only geometrically induced hysteresis (friction and structural) is present. The material stress
state is expected to remain on the linear part common between the two materials (Figure V.30).
The transverse strain versus axial strain relation yields similar observation. It can be determine
that the material behavior is not the cause of the model errors. Experimental errors (initial loops
uniformity, strain field uniformity, efc.) are most likely responsible, for a large amount, of the
errors measured with the numerical model.

The stitch macroscopic behavior with linear elastic material in course-wise uniaxial tension is
compared to experimental results (Figure V.33). The finite elements model reproduces the exper-
imental response of the textile in lineic force versus logarithmic axial strain with 7% error during
loading. The numerical unloading path overestimates experimental results because the finite el-
ement model fails to reproduce the textile stabilization happening experimentally, highlighted by
the shifting zero position after the first loading and constant after the next loading cycle (Figure
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simple elastic material model.

V.11). The transverse logarithmic strain is underestimated by 14% while the hysteresis is overes-
timated by 19%.

The stitch macroscopic behavior with the superelastic material is then compared to the linear
elastic model and experimental results together (Figure V.34). With such material model, the stitch
maximum lineic response is overestimated by 20%, while unloading is correctly reproduced. The
transverse maximum logarithmic strain is still underestimated yet by 9% with the superelastic
material, while the hysteresis is overestimated by 50%. The higher lineic force hysteresis in
the case of the superelastic material indicates that geometrically induced hysteresis is not only
responsible for the whole mechanical hysteresis observed. The use of a superelastic material,
however, does not increase significantly the model precision, while still increases computation
times by a factor 6 approximately.

Despite the presence of martensitic transformation in course-wise tension, the linear elastic
model reproduces the stitch experimental mechanical response better in both course-wise and
wale-wise tension.

To assess for the presence of martensitic transformation in the wire during loading, the section
maximum Von Mises stress o, ¢ _ is plotted along the normalized curvilinear abscissa for strain
increments A, B, C, and D. Because of the stitch initial geometry, mesh, and loading and geo-
metrical vertical symmetry, only half of the loop is represented for clarity purposes, i.e. segments
[My, Ms] and [M{, M}], each plotted on a separate graph. Contact points are named Cy and Co
and C{ and CY for segments [My, Ms] and [M], M}] respectively, and contact pressure along the
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Figure V.32. Comparison between linear elastic (triangles) and superelastic (asterisks) material behavior
models with experimental results (lines) in uniaxial wale-wise tension.

normalized curvilinear abscissa is plotted to detect their position.

The wale-wise uniaxial tension is first studied (Figure V.35). Bending occurring between My
and C rises a maximum Von Mises stress lower than martensite start stress o,,s. This threshold
is only exceeded between contact points C; and C5 until point Mo, after step B. Along segment
[M{, M}], the transformation stress is surpassed between points M and shortly after C7, at steps
C and D. Martensitic transformation would therefore occur over a long curvilinear length in the
wire. However, bending being the most preponderant deformation mechanism, transformed zone
is located on the outer layers of the section. Therefore, the transformed asutenite volume repre-
sents only a small proportion of the total volume in the stitch. Furthermore, equivalent Von Mises
stress does not allow separating tension to compression within the section, and as the compressive
martensite start stress is generally 40% higher than its tension counterpart o,,s, the worst case
scenario has been used by placing the tension threshold for both tension and compression. Hence,
the low martensite volume fraction and worst case scenario for compression explains the limited
impact of using a superelastic behavior model.

Then, maximum Von Mises stress within the wire section is studied for the course-wise tension
(Figure V.36). Along segment [My4, M>], martensitic transformation start stress o, is surpassed
only at step D, at point M» vicinity, under the effect of the wire straightening. During loading,
sliding induces a constant distance between contact points C; and C, while moving both points
toward point My. The sliding distance traveled corresponds to 10% of the segment [My, M|
curvilinear length. Along segment [N, M), the section maximum Von Mises stress surpasses
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Figure V.33. Comparison between FE model and experimental results in uniaxial course-wise tension using
simple elastic material model.

the martensite start stress earlier, from step C, in the vicinity of point M{. The maximum Von
Mises stress is reached at contact point C%, acting like the pivot for segment [M7, M}] bending.
For such loading case, martensitic transformation would still occur in the wire yet with a lower
martensitic volume fraction as the threshold stress o,,5 is exceeded over a shorter wire length.
This observation indicates that location of martensite transformation has a greater impact on the
stitch macroscopic behavior than the volume fraction as using a superelastic material to model the
course-wise tension lead to larger hysteresis in both lineic force and transverse strain.

Due to the low transformed austenite volumes, the linear elastic material is used for further
analysis as it allows for better stitch macroscopic behavior simulation and large computation time
reduction, usually by a factor 6.

4.2.2 Influence of Young’s modulus

In order to provide with a first mechanical behavior analysis of knitted NiTi textiles and the
influence of wire parameters, the austenite Young’s modulus F' 4 impact over the knit loop macro-
scopic behavior is studied. Two values have been tested, namely 46 GPa and 70 GPa. The first
value has been identified on the wire behavior in simple tension and corresponds to the elastic
modulus on the first linear part of the load (Figure V.1). However, during this phase, R-phase ap-
pears more or less significantly and the austenite modulus computed on the whole charge blends
together austenite and R-phase modulus. Usually, initial nickel-titanium austenite Young’s modu-
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lus is around 70 GPa.

Young’s modulus influence is first analyzed in wale-wise tension (Figure V.37). Increasing
Young’s modulus induces a strong stiffening because of bending deformation mechanisms and
stress levels presented previously (Section 4.2.1). At strain increment D, the lineic force response
suffers a 35% increase. However, slopes at the unloading start are identical, and passed 20%
strain, both unloading curves are superimposed over experimental results. This observation indi-
cates that sliding only is present at this point. The transverse strain obtained with both moduli is,
however, perfectly superimposed, indicating that the stitch Poisson’s coefficient v, is unrespon-
sive to Young’s modulus variation.

Then, the influence of such moduli is studied in course-wise tension (Figure V.38). Similar
conclusions as the wale-wise uniaxial tension case are drawn, namely the lineic force stiffening
with a maximum force increased by 35% and identical initial unloading slopes. Passed 17% strain,
both models fit experimental results. Like previously, only sliding is present from this point. The
transverse strain however slightly shifts with the change in Young’s modulus, with a 8% increase
of transverse strain at strain increment D. Transverse strain hysteresis increases also by 15%,
indicating that the stitch Poisson’s coefficient is dependent on the material Young’s modulus.

4.2.3 Influence of friction coefficient

The stitch deformation mechanism being also highly dependent on wire sliding, friction coef-
ficient is a preponderant parameter in the mechanical response of knitted textiles. The influence
of such parameter has been studied by using three distinct values for f, namely f = 0.185 found
experimentally (Section 3.1), f = 0.13 found in literature [50], and f = O to verify the presence
of structural hysteresis (hysteresis not created by friction nor material).

In a first time, the wale-wise tension is studied (Figure V.39). A decreasing friction coefficient
f induces better fitting of experimental results at loading start. However, the lineic force response
differs from experimental results at 15% and 2.5% strains and the maximum lineic force reached
at strain increment D is decreased by 16% and 70% for f = 0.13 and f = 0, respectively. The
absence of friction induces an almost stiffless stitch. Friction is therefore the most important pa-
rameter controlling the stitch mechanical response in lineic force in wale-wise tension. The error
at the loading starts seen when using f = 0.185 is therefore potentially due to the preloading step
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Figure V.37. Influence of Young’s modulus on the mechanical behavior of the knit loop in wale-wise ten-
sion.

and friction occuring during this step. Maximum transverse strain, however, is barely increased
by less than 3% for both f = 0.13 and f = 0. The strain hysteresis is almost insensitive to small
f change but becomes nullified for f = 0. Hence, no structural hysteresis is detected in wale-wise
tension.

Course-wise tension is then analyzed for its dependence on the friction coefficient (Figure
V.40). The friction coefficient decrease induces, similarly to wale-wise tension, a softening of
the stitch mechanical response. However, even with no friction the stitch produces a non-constant
lineic force response, yet with a maximum value decreased by 40%. With f = 0.13, the maximum
lineic force is reduced by 13%. The transverse strain increases with the reduction of friction
coefficient, with 9% and 40% increase for f = 0.13 and f = 0, respectively. The strain hysteresis
decreases with the friction coefficient, up to a zero value without friction. In this case again, no
structural hysteresis is detected, and friction coefficient plays a less important role as in wale-wise
tension.

4.3 Biaxial tension

The numerical model is used in this section to compute the knit loop mechanical response in
biaxial tension, depending on the material behavior model used, and compared to experimental
results. As for the uniaxial tension case, the material model in then chosen in regard to the stitch
macroscopic behavior, and the influence of the austenite Young’s modulus £ 4 and friction coeffi-
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Figure V.38. Influence of Young’s modulus on the mechanical behavior of the knit loop in course-wise
tension.

cient f on the macroscopic behavior are analyzed. In this analysis, only the first loading cycle is
studied.

4.3.1 Macroscopic behavior

The linear elastic material behavior is then used for biaxial tension and resulting stitch lineic
forces are compared to experimental results (Figure V.41). Until time increment A, elastic material
reproduces exactly experimental results. Then, after this step, elastic material starts to overesti-
mate the experimental stitch response up to a factor 2.3 at step D for both course and wale direc-
tion. Therefore, superelastic material is used to model biaxial tension, and reproduces precisely
the knit loop experimental mechanical behavior until step time B. From this point, the model un-
derestimates experimental response by 17% in the wale direction and less than 3% in the course
direction (Figure V.42). Taking into account hypothesis linked to initial knit loop and strains uni-
formity, the finite element model using superelastic material is validated in regard to the stitch
macroscopic behavior and superelastic material behavior is used for further analysis.

Then, the section maximum Von Mises stress o, = along the curvilinear abscissa is studied
for this loading case (Figure V.43).

Along segment [My, Ms], the Von Mises stress exceeds the martensitic transformation stress
oms immediately at time A, between contact points C; and Cy (Figure V.43), indicating the pres-
ence of martensitic transformation in the wire external layers. Along segment [M{, M|, marten-
site appears at time A at the close vicinity of contact point C%. Because of stresses distributions
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Figure V.39. Influence of the wire friction coefficient on the knit loop mechanical behavior in wale-wise
tension.

in bending, martensite is expected to be located only in the external layers of the wire. As the
martensite transformation start stress oy, is surpassed only in a small length of the wire, a small
portion of the wire volume is expected to transform into martensite. This low martensite volume
yields similar results between the elastic material model and superelastic material model. Further-
more, stress level analysis in uniaxial tension highlights that surpassing martensitic transformation
stress, even with maximum stress 50% higher, still yields correct simulation of the stitch macro-
scopic behavior with the linear elastic material.

However, since step time B, a large portion of segment [My, Ms] curvilinear length possesses
a maximum Von Mises stress superior or equal to the martensitic transformation stress, causing the
lineic force response overestimation observed with the linear elastic material. Stress levels reached
between contact points C'y and C> for step times C and D would theoretically cause martensite
plasticity, not taken into account in the model. However, only small shift in strains are present at
the end of the first cycle, namely -1.2% and -0.5% for course and wale directions, respectively.
The shift strains negative signs indicate that the shift is not plastic permanent strain but knit loops
shape balance because of sliding and friction. Therefore, martensite plasticity is negligible.

Along segment [M{, M}], stress levels are of similar magnitudes, with however a slower in-
crease in time, as at time C, a longer portion of the segment curvilinear length possesses a max-
imum equivalent stress lower than the martensitic transformation stress. Contrarily, at time D, a
slightly smaller portion of the segment curvilinear length lies below 0,5, namely 6.3% of segment
[M{, M}] against 15.2% of segment [M,, Ms], with yet a peak maximum stress value lowered by
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tension.
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Figure V.44. Influence of Young’s modulus on the lineic forces response of the knit loop in biaxial tension.

20%, and also located between contact points. The large martensitic volume fraction on this part
of the loop confirms the overestimation induced by the use of the linear elastic material.

Finally, the position of contact points Cy, C, C1, and C% varies only until step B. This in-
dicates that sliding occurs only before this time, and friction coefficient is expected to yield an
impact only on this part of the force response.

4.3.2 Influence of Young’s modulus

As for uniaxial tension loading cases, the austenite Young’s modulus influence on the stitch
macroscopic behavior is studied in this section. Same modulus values as defined previously are
used. The mechanical response is presented in Figure V.44.

The increase in Young’s modulus induces an overestimation of lineic forces response yet only
before step time B. This is explained by the presence of sliding and important bending before time
B, inducing lower stress state in the section, thus a large austenite volume fraction. Hence, the
impact of austenite Young’s modulus is present only in this period. The maximum lineic forces in
both directions are equal for the two moduli.

Another impact of the austenite Young’s modulus appears during pre-loading, where the ma-
terial remains in austenitic phase. The Young’s modulus variation induces changes in the knit
loop dimensions before the loading step, causing potential deviation at the macroscopic and mi-
croscopic scale.

4.3.3 Influence of friction coefficient

Finally, the influence of the friction coefficient on the stitch macroscopic behavior is studied
for the biaxial loading case with the superelastic material model, and three values of friction
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Figure V.45. Influence of the wire friction coefficient on the knit loop lineic forces response in biaxial
tension.

coefficient as introduced previously (Section 4.2.3). The knit loop lineic force responses for such
models are plotted alongside experimental results in Figure V.45.

The friction coefficient reduction induces the stitch softening, similarly as observed in uniax-
ial tension, yet with no sliding happening after step B previously identified (Section 4.3.1). No
friction induces small oscillations at the loading start because of the lack of energy dissipation by
friction and low dissipation due to the material hysteresis because of the low stress level in this
time period. The maximum lineic force decreases with the friction coefficient, by 23.5% and 28%
in the wale direction, and 14% and 9.5% in course direction, for f = 0.13 and f = 0 respectively.

As for the austenite Young’s modulus, friction coefficient variation induces initial geometry
shifts after the second pre-loading step, modifying the lineic force response with the application
of the experimental stitch kinetic.

5 General conclusion

In this chapter, direct measurement of heat treated nitinol wire-to-wire friction coefficient has
been brought and validated through the numerical analysis of the influence of the coefficient on
the stitch macroscopic behavior. The coefficient has been estimated at f = 0.185, similar to the
coefficient found in literature and identified on knitted NiTi textiles [50].

The knit loops dimensions have been analyzed thanks to the dedicated software developed
in-house and a mean representative loop geometry has been determined, with a relatively con-
stant standard deviation in absolute value, equal to 0.15 £ 4mm, for all dimensional parameters.
This constant standard deviation is yet to be understood, and potentially rises from manufacturing
process precision.
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Table V.3. Summary of parameters £ 4 and f influences depending on the loading case

Uniaxial Wale Uniaxial Course Biaxial
X X €T
F#@am Hy Vyw Fmam H Va?y Fma:c F%ax
Ey + + - - + + + -- - -
f +++ | ++ | -- + ++ | +++ - ++

The experimental setup, validated on soft silicone membranes in previous chapter, has been
adapted to fit knitted textiles and allowed computing stitch geometry changes during loading, to
verify concordance between the zone of interest and mean stitch strains, allowing the use of the ho-
mogenization method for numerical analysis. Boundary forces distributions have been measured
and corner effects characterized. It has been shown that uniaxial tension offers poor boundary
forces distribution with high standard deviation in central zone (27% for course-wise tension),
and 3 external springs at each edge extremity off the mean value by a larger amount. The ratio
‘% ‘, however, has validated the hypothesis of negligible shear effects at the sample edges.

In biaxial tension, in another hand, boundary forces have been shown as highly uniform with
10% to 15% deviation on a single spring at each edge end, and less than 3% deviation on the
remaining springs. However, biaxial tension tests on the textile shown the experimental setup
limits by highlighting the dramatic difference between working area and zone of interest strains,
removing the possibility to control the sample strains effectively.

The mean representative geometry has been imported in the finite element model, and the
model has then been used to validate the use of a linear elastic material in order to optimize com-
putational times (reduction by a factor 6) in uniaxial tension. This study has shown that such
approximation yields confident results in uniaxial tension in the strains range obtained experimen-
tally. The maximum Von Mises stress in the wire section along the curvilinear abscissa revealed
the linear elastic material approach is validated even if local stresses highly surpass martensitic
transformation stress o,,,;. The biaxial numerical results yet has depicted limits of such approx-
imation as the linear elastic material overestimates 2.3 times experimental results at maximum
strains. The Auricchio model however has been shown to be fitting experimental forces with a
maximum error of 17% in the wale direction, and less than 3% in the course direction. Maximum
Von Mises stress in the section has highlighted that a large length of the wire is transformed into
martensite during such loading, explaining the important errors obtained with the elastic material.
Yet, this finite elements analysis has shown that a very simple model, using beam elements ap-
proximation and simple material behavior, can be used to estimate the mechanical behavior of a
knitted NiTi textile.

Finally, the finite elements model has been used to compute the influence of two key parame-
ters on the knit loop macroscopic behavior, namely the austenite Young’s modulus F' 4 and friction
coefficient f, summed up in Table V.3. This study highlights the importance of friction in uniaxial
tension (mainly in wale-wise tension) and the absence of structural hysteresis. This leads to the
conclusion that, no matter the loading case, the wire-to-wire friction coefficient is more impacting
on the knitted textile mechanical behavior than the austenite Young’s modulus.
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CHAPTER

V1

Conclusion & discussion

1 Conclusion and improvements

1.1 Conclusion

In this work, a complete set of analysis tools has been proposed to provide a methodology
to perform architectured material based on knitted NiTi textiles design. For the knitted NiTi tex-
tiles experimental characterization, an experimental setup to perform uniaxial and biaxial tests
has been proposed, which also provides direct boundary forces distributions measurement. This
setup has been inspired by studies performed on textiles as well as on soft polymers and biologi-
cal membranes, as the textile overall mechanical behavior is similar to such materials. This setup
aims at providing the sample with strain fields uniformity within the sample working area. To
complement this experimental setup, the image analysis software developed computes the internal
morphology of the textile and dimensions changes during loading. Then, based on the assumption
of uniform knit loops dimensions and strain fields during tensile loading, a finite element model
has been proposed using the homogenization method and a single knit loop geometry to compute
the textile mechanical behavior. This model uses beam finite elements in order to reduce computa-
tion times as the wire diameter is small compared to its curvilinear length. The model is solve with
the explicit method in order to be able to take into account for contact implying sliding between
beam elements. Finally, in order to complete the model configuration, an experimental setup to
compute the wire-to-wire friction coefficient has been developed. The value obtained after several
measurements is averaged and implemented in the model. The mechanical behavior analysis of a
knitted NiTi textile has then been performed with the methodology developed specifically in this
work.

The macroscopic behavior obtained in uniaxial tension presents the characteristic anisotropy
and large recoverable strains. The anisotropy is characterized by a lineic reaction force lower in
the wale direction than in course direction. Recoverable strains of up to 32% have been achieved
in uniaxial tension. The experimental analysis setup proposed allowed to perform boundary forces
distributions direct measurement and orientation (normal and tangential) in order to verify uniaxial
and biaxial tension hypotheses. This measurement also allows to quantify boundary effects and
forces concentrations on the sample edges.
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The image processing software developed for knitted textiles allowed to measure several knit
loop parameters (dimensions and shape) and provided the knit loop mean representative geome-
try and standard deviation. The standard deviation associated with the mean value appeared of
the same order of magnitude for every of the loop dimensions, requiring further study to analyze
the origin of such value. The mean dimensions values and standard deviations have been studied
throughout loading and revealed that no uniformization occurs during uniaxial and biaxial loading.
It has been shown that, in course-wise tension, small shape and symmetry defects are the main
reasons for knit loop deformed shape instability. Lastly, the knit loops dimensions allowed com-
puting each loop strains along the x and y-axis, using the loop length and row spacing respectively.
During loading, the knit loops strains uniformity has been evaluated with the corresponding stan-
dard deviation value and evolution. Uniaxial tensile tests present highly uniform knit loops strains,
and such strains correspond to the global sample strains. These two observations imply that the
homogenization method can be used numerically to model the sample mechanical behavior and
extrapolate its behavior from a single knit loop.

The numerical analysis has then been performed on the knit loop representative geometry, us-
ing periodic boundary conditions in order to reproduce the behavior of a virtually infinite textile,
and beam elements in order to reduce computational times and periodic boundary conditions en-
forcement complexity. The model has also been further simplified by using a simple linear elastic
material behavior instead of a superelastic behavior model, in order to verify the possibility of
further reducing calculation times. The kinematic boundary conditions have been implemented
in the model to constrain the stitch strains, and the resulting mechanical behavior has been com-
pared to experimental measurements. The model using linear elastic material behavior presents
good agreement with experimental measurements in uniaxial tension. The analysis of the section
maximum Von Mises stress along the wire curvilinear abscissa revealed that stress levels within
the section are relatively low, and only locally exceeds the superelastic martensitic transformation
stress oprs. These low stresses levels explains the similar knit loop mechanical behavior when
computed using linear elastic material or superelastic material. This simple finite element model
thus provides precise evaluation of the knitted NiTi textile mechanical behavior, and can be used
for early studies as a time saving method to refine the research domain, prior to use more complex
yet more precise models.

Two preliminary studies have been presented to estimate the influence of two key parameters
for knitted NiTi textiles, namely the austenite Young’s modulus E'4 and the heat-treated NiTi wires
friction coefficient f. It has been shown that the austenite Young’s modulus has a limited impact
on the mechanical behavior of the textile, specially in biaxial tension. The friction coefficient f,
however, plays an important role on the mechanical behavior of the knitted textile, even in biaxial
tension where locking occurs directly at the beginning of the loading step. Hence, studies on the
NiTi wires friction coefficient could valuable for knitted NiTi textiles studies.

1.2 Improvement perspectives

Biaxial tests on knitted textiles appear difficult to really control due to stitch deformations
with the proposed hooking system. The local forces on the loop segments induced large concen-
trated bending on loop and thus large deviation of the global strain versus the mean loops strain.
However, such defects may also be observed with other setups which use very local attachment
technique. This study has thus brought to light such defects induced by the griping method and
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particular precautions have to be taken for biaxial tests on knitted textiles. Those tests have to be
performed by taking into account the difference between global and zone of interest strains, and
the global strains measurement (grips or targets for the setup proposed) should not be used as the
mean zone of interest strains.

The spring system also highlight difficulties to obtain uniform initial spring forces. Springs
used for this setup were commercially provided with jointed coils, inducing an initial contraction
forces, and their free length was low (25 mm). Hence, each spring has been elongated on a tensile
machine up to a final free length of 150 mm. Yet, this elongation can not be performed with a
high enough precision to allow for an initial free length to be comprised between 150 4+ 0.25 mm.
On top of such defect, the knit loop dimensions initial non-uniformity induces springs attachment
point placement defects. Therefore, initial spring tension present strong heterogeneities, and few
springs may be totally freely bent down or in the contrary stretch excessively. Therefore, a system
providing adjustable initial spring tension could be developed to tune each spring initial tension
to put every spring in a similar state before loading. Yet such system may not require to provide
with precise tension measurement as the initial tension only aims at straightening springs at the
initial state. Hence, such tension may be easily manually evaluated without the introduction of a
too large initial tension.

During tests presented in this work, two camera were used to take pictures of the sample and
setup, respectively. The two cameras may be replaced by a single one having large enough field
of view, coupled with an high resolution (about 16 Mpx) to provide with the capability of tracking
springs and grips target movements and knitted textile structure changes. Using only one camera
reduces the complexity of the camera mounting system, camera coupling software and synchro-
nization with the tensile machine recordings, and also reduces the overall data weight as each
picture usually weight around 5 Mo. Yet, such camera may, to this day, still be expensive and
not always available in laboratories. Furthermore, to perform targets tracking and knit morphol-
ogy computation, two different contrast settings are used due to lighting and reflection problems.
Hence, using a single camera implies to define for each test pictures the knit structure zone of
interest and the target location to perform two black and white level treatment, leading to largely
increased computation times.

In the present study, only a small part of the data available on test pictures have been used. The
focus has been kep on knit loop dimensions and shape, but sliding distance, axial deformations,
textile porosity/loop density, and few more can also be computed on the images. The image
processing software developed for knitted textiles can also be further improved to give access
to even more precise information such as wire initial curvature and change during loading for
example, and could be used as well on composites using knitted textiles as reinforcement, as long
as the matrix offers enough transparency and low diffraction to analyze the textile deformation
mechanisms while locked inside the matrix.

The finite element model uses an idealized knit loop geometry computed from the textile knit
loops mean dimensions. It has been shown that associated standard deviation are greater than
5% (commonly assumed satisfactory deviation). Therefore, testing different knit loop geometries
could lead to different mechanical behaviors, and testing real knit loop geometries may be impor-
tant. To compute the real knit loops geometry in 3D, X-ray tomography could be used. To further
improve the model precision, more complex material behavior model could be implemented in
place of the Aurrichio behavior model.
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2 Discussion and perspectives

The study presented in this thesis has only skimmed over the knitted textiles mechanical be-
havior comprehension. Further studies are required to complete the knowledge base on such par-
ticular textiles in order to propose concrete applications, such as the effect of the initial knit loop
dimensions over the mechanical behavior of the sample or the characterization of shape-setting
method in order to provide reproducible stitch dimensions after heat treatment. In such purpose,
the analysis method has been presented and validated in this work to prepare future studies.

The huge interest of knitted textiles resides the wire high mobility within the structure, which
is responsible for the textile high recoverable strain and damping capability, mainly. Therefore,
when used as composite reinforcement, the matrix blocks the wire movement and negates such
properties. The remaining aspect is the high formability and the ability to produce complex pre-
forms without any steps subsequent to knitting. After molding is completed, the textile looses
its special abilities (loss of mobility) and its mechanical behavior should become close to woven
textiles, i.e. similar to a wire in simple tension. In such case, the cohesion between the matrix and
the textile plays an important role as the wire bending may induce strong shear stresses and cut
through the matrix.

In the case of biomedical use of knitted NiTi textiles, the question of organism protection
may be asked. Indeed, nickel-titanium alloys may release nickel atoms in the organism which are
highly allergen and can even be hazardous for the patient’s health. Furthermore, chemical attacks
may appears when the alloy is exposed to acidic environment such as gastric fluids (esophageal
stents, for example), inducing premature damaging and braking of the implant. Finally, when
aiming at using the shape-memory capacity of the alloy, the heating of the implant can prove
tricky as biological tissues start to be severally damage when the temperature rises above 42°C.
Hence, coating the wire in a neutral material to provide the implant with a chemical and thermal
shield can be performed. Yet, such coating implies a strong modification of the wire to wire
friction coefficient, and therefore can modify greatly the knitted textile mechanical properties.
And as the frictional forces rise, when sliding occurs, high tangential forces at the contact layer
between the NiTi wire and its coating arise and may fracture the bond. Deep studies on the bond
between nickel-titanium wires and polymer coating have to be perform to investigate the bond
strength and its possible damage under such loading conditions (Thierry Rey thesis work (2014)).

Bioresorbable polymers have already been used to produce knitted stents allowing easy man-
ufacture at low costs, controlled anisotropy and mechanical behavior, and easy removing opera-
tion [49]. Thanks to the analysis tools proposed in the present study, stents produced purely from
bioresorbable wires could be developed, their mechanical properties tuned to fit the artery which
they will be fitted in, to provide implants which degrades within the patient’s body to remove the
need of post-operative intervention to remove the stent.
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