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Résumé du mémoire de thèse de Mr Vaibhav VIBHU, 

soutenu  le 12 février 2016 à l’Université de Bordeaux 

 
Introduction 

Ce travail concerne le développement de nouveaux matériaux de cathode pour pile à 
combustible haute température (SOFC pour Solid Oxide Fuel Cell), qui constituent une source de 
production d’énergie dite « propre ». La dernière génération de piles SOFC, dite à Métal Support 
(MSC), est moins coûteuse tout en permettant de travailler à température réduite. Du côté 
cathodique, outre la nécessité de travailler sur des matériaux à conductivité mixte (ions oxydes 
/électrons), il est ici impératif d’employer des oxydes stables sous pression partielle d’oxygène 
réduite, de manière à pouvoir les déposer puis fritter dans des conditions acceptables par le métal. 

Vis-à-vis de l’ensemble de ces contraintes, ce travail de thèse s’est concentré sur des oxydes 
de praséodyme et de nickel substitués partiellement voire totalement par le lanthane. Il débute par 
une revue bibliographique relative aux matériaux classiques de SOFC ainsi qu’aux différents designs 
incluant les piles de type MSC (chapitre 1). Les propriétés physico-chimiques des nickelates de 

formulation générale La2-xPrxNiO4+ (LPNO) ont été examinées dans le but de trouver le meilleur 
compromis entre stabilité chimique et performances électrochimiques (chapitre 2). Les analyses 
structurales initiales ont montré l’existence de trois domaines cristallographiques qui dépendent de 
la valeur de x. Le chapitre 3 se focalise sur une étude structurale complète des nickelates LPNO en 
mettant en œuvre des mesures de diffraction Synchrotron et neutronique, ainsi que des analyses HR-
TEM. Après les premières mesures électrochimiques effectuées à « t = 0 », des études de 
vieillissement ont été conduites, à la fois sans et sous polarisation. En parallèle, la stabilité chimique 
des matériaux a été étudiée, et ce comme pour la partie précédente sur des temps longs, soit un 
mois, et ce entre 600 et 800°C. L’ensemble de ces travaux est présenté au chapitre 4. Une conclusion 
issue de celui-ci est que, du côté riche en Pr de la solution solide, les matériaux se décomposent en 

perovskite (La, Pr)NiO3-, (La, Pr)4Ni3O10+d et Pr6O11. Les propriétés physico-chimiques et 

électrochimiques de PrNiO3- et Pr4Ni3O10+ sont étudiées aux chapitres 5 et 6, respectivement. Enfin, 
les performances électrochimiques d’une cellule de type anode supportée (Ni-YSZ//YSZ) incluant la 
cathode ont été mesurées à 700 et 800°C. 
 
Chapitre 1 – Revue bibliographique 

Dans une première partie, cette revue se concentre sur les piles à combustible au sens large : 
après un historique de leur développement, les différents types, avantages et applications sont 
présentés. L’accent est mis sur la problématique des pertes de potentiel qui caractérisent les courbes 
tension-densité de courant enregistrées sur les piles. 

La seconde partie se focalise sur les piles SOFC, en présentant tout d’abord très rapidement 
la problématique rencontrée à l’anode. Puis l’électrolyte et ses caractéristiques sont présentés plus 
en détails, en insistant uniquement sur les matériaux les plus classiques. Enfin, l’accent est mis sur la 
présentation du matériau de cathode, depuis les conducteurs purement électroniques jusqu’aux 
matériaux à conductivité mixte (O2-/e-). Au sein de cette dernière catégorie, on peut distinguer très 
principalement les matériaux de structure perovskite, les perovskites doubles et les matériaux de la 
série de Ruddlesden-Popper An+1MnO3n+1. Les nickelates correspondant au terme n=1 de cette série 

(Ln2NiO4+avec Ln = La ou Pr) constituent la base de ce travail. 
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La troisième partie de cette revue porte sur les développements, assez récents, des piles de 
type MSC. Les différents designs sont présentés, ainsi que les métaux potentiels de support et la 
fenêtre de température acceptable pour un bon fonctionnement des cellules. 

Chapitre 2 –  Les phases La2-xPrxNiO4+ comme cathodes de piles à combustible à Métal support 

Les phases La2-xPrxNiO4+ ont été synthétisées par la voie citrate-nitrate à partir des 
précurseurs Pr6O11, La2O3 et Ni(NO3)2.6H2O traités thermiquement à 1200 °C sous air pendant 12 h. 
Suivant la composition (i.e. la valeur de x), l’analyse en diffraction des rayons X met en évidence, 
l’existence de trois domaines  structuraux.  Pour x < 0,5 et x > 1,0, les phases de structure 
orthorhombique  cristallisent en groupe d’espace Fmmm et Bmab respectivement, tandis que les 
compositions intermédiaires (0,5 < x < 1)  correspondent à un domaine biphasé.  

L’écart à la stoechiométrie (), évalué par analyse thermogravimétrique, augmente de 0,16 à 
0,24 en fonction de la teneur en Pr. De plus, quelle que soit l’atmosphère de recuit (T < 1000 °C, sous 
air ou argon), les nickelates restent sur-stoechiométriques en oxygène. Les bonnes propriétés de 
conduction électrique, sont illustrées par une conductivité maximum de 110 S.cm-1 à 600 °C pour les 
compositions riches en Pr (x > 1).  Les coefficients de diffusion, D*, et  d’échange de surface de 

l’oxygène, k*, des phases La2-xPrxNiO4+, augmentent avec la teneur en Pr. Les valeurs de D* sont 
comprises entre celle de LNO (1,5 10-8 cm2s-1) et celle de PNO (2,5 10-8 cm2s-1). Les valeurs de k* sont 
légèrement supérieures aux valeurs de LNO et PNO. Les bonnes propriétés de conduction électrique 
et ionique laissent présager des propriétés électrocatalytiques intéressantes.    

Les propriétés électrochimiques ont été évaluées par spectroscopie d’impédance sur des 
cellules symétriques LPNO/GDC/8YSZ/GDC/LPNO, pour des électrodes frittées à 1150 °C sous N2 
pendant 1 heure. Les diagrammes d’impédance, représentés dans le plan de Nyquist sur la Figure 1, 
ont été affinés par un Gerisher classique pour LNO et à partir de deux circuits R//CPE pour les phases 
LPNO (Exemple x = 1 sur la Figure 1b). L’évolution de la résistance de polarisation, Rp calculée à partir 
de l’intersection de la partie réelle de l’impédance, en fonction de x, montre une diminution du Rp 
lorsque x augmente (Fig.  2). Par exemple, à 600 °C, la valeur de Rp diminue de 0,93 Ω.cm2 pour LNO 
à 0,29 Ω.cm2  pour LPNO (x = 1,0) et 0,15 Ω.cm2 pour PNO.  

Figure 1 : a) Diagramme d’impédance dans le plan de Nyquist, mesurés à 600 °C, sur des cellules 
symétriques, LPNO/GDC/8YSZ/GDC/LPNO, et b) exemple de simulation de diagramme d’impédance 

pour la phase La1,5Pr0,5NiO4+ (i.e. x = 0.5) avec deux éléments R//CPE (Constant Phase Element). 
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Figure 2 : Variation de Rp en fonction du temps pour des cellules symétriques, 
LPNO/GDC/8YSZ/GDC/LPNO dans une gamme de température de 500 à 800 °C. 

L’étude préliminaire des phases La2-xPrxNiO4+ a mis en évidence leurs bonnes propriétés 
électrocatalytiques comme électrodes à oxygène pour piles à combustible. Dans le chapitre suivant, 
une étude structurale plus approfondie sera présentée (chapitre 3) tandis que le comportement en 
vieillissement thermique et en fonctionnement sera détaillé dans le chapitre 4.  

Chapitre 3 – Détermination structurale avancée par étude couplée en diffraction de neutron et 

synchrotron des phases La2-xPrxNiO4+ 

L’analyse par diffraction des rayons X de laboratoire ayant laissé plusieurs zones d’ombre 
quant à (i) la présence de raies de diffraction dédoublée, affinée incorrectement en symétrie 
orthorhombique, de la phase PNO et (ii) la détermination des limites du domaine biphasé (0,5 < x < 
1) et de sa nature, une étude structurale couplant diffraction synchrotron (HR-SPD) et diffraction de 
neutrons (NPD) a été menée.  

Dans le cas de PNO, l’analyse couplée HR-SPD et NPD confirme la présence d’une distorsion 
monoclinique d’une maille orthorhombique (Groupe d’Espace : C2/m)  résultant d’une perte de 
symétrie associée à deux positions équivalentes pour Pr, Ni, O1 et O2. La détermination structurale 
semble toutefois plus complexe avec la présence de raies de diffraction non indexées dont l’origine 
pourrait être liée une modulation de la structure comme identifié sur les clichés de microscopie 
électronique haute résolution enregistrés à température ambiante et à 100 K. 
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Figure 3 : Clichés de diffraction électronique haute résolution et de diffraction synchrotron haute 
résolution pour la phase PNO à Tamb. et à 100 K. Les flèches bleues en HR-SPD et en rouge en HR-TEM 

correspondent aux raies non indexées. 

L’étude couplée HR-SPD et NPD des phases LPNO, confirme la structure monoclinique jusqu’à 
une valeur en Pr de x = 1,1. Dans le domaine biphasé, borné à 0,5 < x < 1, 15, coexiste deux phases de 
structure monoclinique et de structure orthorhombique, dont les proportions et compositions 
restent à affiner. Dans le domaine riche en Pr (x > 1,15), la distorsion monoclinique semble dépendre 

plus fortement du rapport La/Pr que de l’écart à la stoechiométrie Fig. 4. En effet, pour PNO, une 

diminution de l’écart à la stoechiométrie est associée à une faible modification de l’angle  tandis 
que les variations de volume et d’angle sont nettement plus marquées pour les phases La/Pr.  

 

Figure 4 : Variations des volumes de maille monoclinique et de l’angle  pour PNO, traité sous air  et 

sous argon, et pour les phases La2-xPrxNiO4+riches en Pr (1.2 < x <2 .0) 
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Afin de préciser l’origine des pics supplémentaires, des études sur monocristal seraient à 
envisager.    

Chapitre 4  – Etude du vieillissement des matériaux de la famille La2-xPrxNiO4+LPNO

Dans le but de trouver le meilleur compromis entre performances électrochimiques 

(Pr2NiO4+) et stabilité chimique (La2NiO4+, l’étude de la famille La2-xPrxNiO4+a donc été entreprise. 
Dans cette partie de la thèse, l’attention a été portée sur deux points principaux : 1) l’étude de la 
stabilité chimique des matériaux (poudres) sous air à la température de travail, et 2) la mesure de 
l’évolution des résistances de polarisation (Rp) des électrodes correspondantes au cours de leur 
vieillissement thermique (pendant un mois) conduit soit sans courant, soit sous polarisation. En effet, 
les mécanismes de dégradation affectent directement les différentes étapes composant la réaction 
globale de réduction de l’oxygène (notée ORR). La spectroscopie d’impédance est donc bien adaptée 
à de telles études. 

Le vieillissement thermique des poudres a été effectué sous air, pendant des durées 
comprises entre une semaine et un mois, à 600, 700 et 800°C. L’analyse par diffraction des rayons X 
après le vieillissement a conduit aux conclusions suivantes : 1) Les matériaux riches en lanthane (x ≤ 
0.5) sont stables ; 2) au contraire, les matériaux contenant un taux de praséodyme plus élevé (x ≥ 1) 

se décomposent partiellement en différents termes de la série de Ruddlesden-Popper : (La,Pr)NiO3- 

et (La,Pr)4Ni3O10+, plus l’oxyde simple Pr6O11. La quantité de chaque matériau formé dépend de la 
température et du taux de praséodyme comme le montre un tableau exhaustif présenté dans le 

manuscrit. Il est à noter par exemple que Pr2NiO4+ est totalement décomposé en PrNiO3- et Pr6O11 à 

600°C, alors qu’à 700 et 800°C Pr4Ni3O10+ est également présent. 

Les études électrochimiques ont été conduites sur des cellules symétriques de type 
LPNO//GDC//8YSZ//GDC//LPNO en fonction de la température et sous air. Avant vieillissement, les 
résistances de polarisation décroissent progressivement, à température fixe, lorsque le taux de 
praséodyme augmente. Dans un second temps les cellules ont été maintenues pendant un mois à 
600 et 700°C, et les mesures électrochimiques enregistrées sans courant (i=0). Pour toutes les 
compositions LPNO la résistance de polarisation n’évolue pas. En particulier la forme des 
diagrammes d’impédance n’est pas modifiée. Le résultat est très intéressant, puisque les résistances 
de polarisation ne sont pas modifiées après le vieillissement, et ce en dépit de la décomposition au 
moins partielle des matériaux, observées également sur les électrodes et correspondant au descriptif 
précédent. A ce stade de l’étude, une conclusion partielle est que certaines des phases formées 

pourraient également être électro-chimiquement actives. Pour Pr2NiO4+, la résistance de 
polarisation augmente légèrement avec le vieillissement et la forme des diagrammes évolue aussi. 
Ensuite, les cellules de type LPNO ont subi un vieillissement thermique du même type que 
précédemment, mais sous polarisation (i = ± 300 mA.cm-2). A cet effet, une électrode de référence a 
été ajoutée sur toute la tranche de l’électrolyte. Ainsi, le fonctionnement de l’électrode ayant 
fonctionné en cathode peut-il être distingué de celui de l’électrode ayant fonctionné en anode. A la 
suite du vieillissement, les mesures électrochimiques sont effectuées sans courant comme 
précédemment.  Le résultat principal de cette étude est qu’en mode cathodique la résistance de 
polarisation des électrodes de type LPNO augmente avec le vieillissement, alors qu’elle reste stable 
en mode anodique. Pour arriver à ces conclusions, une déconvolution minutieuse des diagrammes, 
en particulier du côté anodique, a dû être employée. La figure 1 montre l’évolution de la résistance 
de polarisation en fonction du temps, enregistrée sur chacune des deux électrodes après 
vieillissement sous polarisation. 
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Figure 5 : Variation de Rp en fonction du temps pour les 3 électrodes LNO, PNO et La1.5Pr1.5NiO4+ 
vieillies sous courant (idc=-300  mA.cm-2) à 700°C pendant 1800h, (a) mode SOFC et (b) mode SOEC 

Des analyses post-mortem ont ensuite été entreprises sur les cellules vieillies. Les mesures de 
DRX confirment les conclusions déjà établies après le vieillissement des poudres et aucune différence 
n’est notée entre les côtés anodique et cathodique. Ainsi, l’origine de l’augmentation de Rp côté 
cathodique pourrait provenir d’une modification chimique de l’interface entre l’électrode et la 
couche barrière de CGO. Pour pouvoir conclure en ce sens des analyses de cette interface ont été 
menées par FIB-SEM. La diffusion partielle de praséodyme dans la couche barrière est directement 

visible par un changement de couleur caractéristique (orange). Dans le cas de La2NiO4+, une 
interphase (composition chimique non déterminée contenant à la fois du cérium et du lanthane, a 
minima) est bien présente entre les deux couches concernées.  

Finalement, une discussion a été construite conduisant à formuler l’hypothèse selon laquelle 
certaines interfaces pourraient être électro-chimiquement actives alors que d’autres pourraient 
bloquer au moins partiellement la réaction de réduction de l’oxygène. 

Chapitre 5  – Etude du matériau PrNiO3+ 

L’étude des phases, en vieillissement thermique et en fonctionnement, a montré une 

décomposition de la phase PNO en Pr6O11, Pr4Ni3O10+ et PrNiO3-, associée toutefois à une stabilité 
des performances électrochimiques. Afin, de comprendre, l’origine de cette stabilité, les propriétés 

des phases PrNiO3- et Pr4Ni3O10+ ont été caractérisées séparément. Le chapitre 5 est dédié à la 

caractérisation de la phase perovskite PrNiO3-. 

La phase PrNiO3- a été synthétisée par voie citrate-nitrate, à partir des précurseurs Pr6O11, et  
Ni(NO3)2,6H2O,  recuit à 850 °C sous flux d’oxygène pendant 48 h. Huit recuits successifs ont conduit 
à l’obtention d’une phase bien cristallisée, de structure orthorhombique (G.E. : Pbnm). Une étude en 
diffraction des rayons x haute température a mis en évidence une transition orthorhombique-
rhomboédrique aux alentours de 600 °C. Afin de déterminer les conditions de frittage les plus 

appropriées pour la préparation d’électrode, la stabilité thermique de PrNiO3- a été étudiée sous 

différentes atmosphères, argon, air et oxygène. Quelle que soit l’atmosphère considérée, PrNiO3- se 

décompose en Pr2NiO4+(+ NiO)soit en une seule étape sous Ar au dessus de 800 °C, soit en passant 

par la formation de Pr4Ni3O10+sous air (1000 °C) et sous oxygène (1040 °C). En parallèle, une étude 
de stabilité thermique, en conditions de fonctionnement (600 °C, 700 °C, 800 °C sous air) par 

diffraction des rayons X démontre que la phase PrNiO3+ est stable dans ces conditions. 

La conductivité électrique de PrNiO3- présente un comportement de type métallique 

diminuant de 180 S.cm-1 à température ambiante à 120 S.cm-1 à 600 °C. 
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Les propriétés électrochimiques ont été évaluées par spectroscopie d’impédance sur des 

cellules symétriques PrNiO3-/GDC/8YSZ/GDC/PrNiO3-. La première étape de notre travail a consisté 
à optimiser les conditions de frittage de l’électrode en relation avec l’étude de stabilité précédente. 
Un frittage à 950 °C sous air pendant 2 heures conduit à une valeur de résistance de polarisation très 

élevée de l’ordre de 4,5 cm2.  Une élévation de la température de frittage à 1050 et 1150 °C sous 
air, suivi d’un recuit additionnel à 800 °C sous oxygène de 24 h, permet de diminuer la valeur de la 

résistance de polarisation à des valeurs de Rp de 0,44  .cm2.  Cependant pour ces conditions de 

frittage, l’électrode correspond à un mélange de PrNiO3- et Pr6O11.  Une électrode de  PrNiO3-  

« pure» a été obtenue en co-frittant à 950 °C pendant 2 heures les couches PrNiO3- et GDC. Le co-

frittage conduit à une valeur de polarisation Rp de 0,91 .cm2 supérieure à celle enregistrée pour 

Pr2NiO4+suggérant qu’une compréhension plus poussée du  mécanisme de dégradation nécessite 

l’étude de la phase Pr4Ni3O10+De plus, des premières simulations des diagrammes d’impédance 
démontre la présence de deux ou trois contributions pour les électrodes frittées séparément et  co-
frittées ; L’origine de la contribution supplémentaire dans le cas du frittage en deux étapes reste à 
expliciter.  
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Figure 6 : Variation de Rp en fonction de la température pour les demi-cellules frittées en deux étapes 

ou cofrittées PrNiO3-/GDC/8YSZ/GDC/PrNiO3-.  

Chapitre 6 – Etude du matériau Pr4Ni3O10+ 

Cette thèse a déjà permis de bien mettre en évidence la décomposition de Pr2NiO4+ en 

PrNiO3-, Pr6O11 et Pr4Ni3O10+, lors de chauffages en température longs conduits entre 600 et 800°C. 
Un point très intéressant, cependant, est qu’en dépit de cette décomposition quasi-totale les 
performances électrochimiques, au moins à l’OCV, ne changent pas ou très peu comparativement à 
celles enregistrées sur le matériau initial. L’objectif de cette partie du travail était d’apporter des 

éléments de réponse à cette interrogation via une étude détaillée du matériau Pr4Ni3O10+. 

Le matériau a été préparé par voie glycine-nitrate, et les recuits ultimes réalisés à 1000°C 
pendant 48h sous flux d’oxygène ont permis d’obtenir une phase pure. Le matériau cristallise dans 
une structure orthorhombique de groupe d’espace Fmmm. Cette structure est conservée lors de 
chauffages effectués sous air jusqu’à 1000°C. Ces études de DRX en fonction de la température ont 
également permis de déterminer un coefficient d’expansion thermique de l’ordre de 10x10-6 °C-1, qui 
est du même ordre de grandeur que celui des autres composants céramique s de la pile SOFC. La 

détermination du taux de sur-stœchiométrie en oxygène  (via des ATG conduites sous atmosphère 

réductrice) a conduit à la valeur  = 0.1 à température ambiante. 
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Des analyses thermogravimétriques effectuées sous air et oxygène dans le but de déterminer 
à la fois le domaine de stabilité chimique et de trouver la température adéquate pour le frittage des 

électrodes sur les supports de YSZ recouverts d’une couche de cérine substituée. Sous air Pr4Ni3O10+ 

est stable jusqu’à 1050°C, température au-delà de laquelle il se décompose en Pr2NiO4+ et NiO. Cette 
décomposition est irréversible sous air. Sous oxygène, la stabilité chimique est améliorée, la 
décomposition précédente se produisant à plus haute température. Par ailleurs, la décomposition est 
partiellement réversible sous oxygène, en accord avec les résultats précédents de la littérature (une 

faible quantité de PrOx, NiO et Pr2NiO4+ reste présente). La variation thermique du taux initial de sur-
stœchiométrie en oxygène a ensuite été suivie sous air et sous oxygène, jusqu’à 1000°C. Des cycles 
réversibles au chauffage et refroidissement sont observés dans les deux cas, à condition d’avoir au 
préalable équilibrés les matériaux sous l’atmosphère considérée. La conclusion principale est que 
quelles que soient les conditions et la température le matériau conserve une sur-stœchiométrie en 
oxygène, laissant à penser qu’il conserve ses propriétés de conductivité mixte. 

La suite du travail a consisté à étudier la stabilité thermique du matériau à la température de 
travail de la pile SOFC, soit entre 600 et 800°C et sous air, mais sur des durées longues (1 mois). Les 
mesures par DRX après ces traitements permettent de conclure à la bonne stabilité thermique du 
matériau dans ces conditions. 

La mesure de la conductivité totale a été effectuée par la méthode des 4 points, sous air et 
jusqu’à 800°C. Le comportement est de type métallique. La valeur de conductivité maximale est de 

l’ordre de  = 200 S.cm-1 à température ambiante, qui est une des plus élevées enregistrées pour un 

matériau nickelate. Elle diminue ensuite pour atteindre environ  = 85 S.cm-1 à 800°C, valeur qui 
dépasse le seuil minimal fixé pour un matériau de cathode. Des mesures de conductivité ionique ont 
ensuite été entreprises via la méthode dite IEDP (Isotopic Exchange Depth Profiling). Cependant, 
dans ce cas un prérequis est de pouvoir disposer de pastilles parfaitement denses (compacité > 95%), 
condition qu’il fût très difficile d’atteindre avec ce matériau. Néanmoins, quelques pastilles denses 
ont été obtenues et des mesures réalisées. Les coefficients de diffusion de l’oxygène et d’échange de 

surface semblent, selon ces mesures préliminaires, proches de ceux déterminés pour Pr2NiO4+, qui 
figurent parmi les plus élevés de la littérature parmi ceux des matériaux à conductivité mixte. Par 
ailleurs, ils ne semblent pas dépendre de la pression partielle d’oxygène maintenue dans l’enceinte 
qui, rappelons-le, détermine le taux de sur-stœchiométrie en oxygène. 

Préalablement aux études électrochimiques, un travail a consisté à optimiser le dépôt de 
l’encre contenant le matériau et utilisée pour la sérigraphie. La taille moyenne des grains de la 
poudre est de l’ordre de 600 nm. Une première méthode a consisté à réaliser le dépôt de l’électrode 
en deux étapes, c’est-à-dire après le dépôt/recuit préalable de la couche barrière de CGO. Le dépôt 
de l’électrode a été effectué à haute température sous air, étape suivie d’un refroidissement lent 
(1°C/min) conduit sous flux d’oxygène depuis la température maximale jusqu’à 950°C, température 

maintenue pendant 6h de manière à favoriser au maximum la formation de Pr4Ni3O10+. Il est à noter 
que porte le matériau à 1150°c sous aire avant le cycle de refroidissement décrit ci-dessus permet de 
minimiser les résistances de polarisation (Rp) des électrodes, qui est bien entendu le but recherché. 
La seconde méthode de mise en forme des électrodes, toujours conduite par sérigraphie, a consisté à 

effectuer un cofrittage de la couche de Pr4Ni3O10+ avec celle de la couche barrière de CGO. Un cycle 
conduit à 950°C pendant 2h sous air a été optimisé.  

La figure 2 montre la variation de la résistance de polarisation en fonction de la température, 
et ce pour les deux méthodes de mises en forme, résistances déduites des mesures menées par 
spectroscopie d’impédance complexe. Les valeurs de Rp sont un peu plus faibles, à température 
identique, pour les électrodes cofrittées comparativement aux électrodes déposées selon le 
processus en deux étapes. A 600°C et pour les électrodes cofrittées, la valeur est très proche de celle 

mesurée dans notre groupe pour Pr2NiO4+qui constitue un matériau de référence. La différence, 
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examinée au travers des différentes composantes des diagrammes d’impédance, pourrait provenir 
soit de la présence (même faible) de phases additionnelles, soit d’une morphologie d’électrode 
différente, cette seconde hypothèse semblant privilégiée à la suite d’études MEB conduites sur les 
cellules après les mesures.  

 

Figure 7 : Variation de Rp en fonction de la température pour les demi-cellules frittées en deux étapes 
ou cofrittées.  

Enfin, des mesures en cellules complètes (anode/électrolyte/couche CGO/électrode) ont été 
conduites (Figure 3). Les performances sont très élevées à 700 et 800°C, avec par exemple un 
maximum de densité de puissance de 1.6 W.cm-2 à 800°C. Par ailleurs, les cellules ont été maintenues 
en température et sous courant pendant des durées longues (500h), et aucun vieillissement notable 
n’a été mis en évidence. 

Au final, le comportement électrochimique de Pr4Ni3O10+ est très proche de celui de 

Pr2NiO4+, mais sa stabilité chimique et électrochimique bien supérieure dans les conditions de 
fonctionnement de la pile SOFC. 

 

Figure 8 : courbes i-V et densités de puissance mesurées sur une mono-cellule constituée d’une demi-

cellule commerciale et d’une cathode de Pr4Ni3O10+ 
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Conclusion 

En conclusion, l’objectif de cette thèse était double. D’une part identifier des matériaux susceptibles 
d’être utilisés comme électrodes à oxygène dans des cellules à métal support, impliquant des 
conditions de frittage sous faible PO2, et d’autre part d’étudier leur stabilité chimique et thermique 

en conditions de fonctionnement. Ainsi les phases La2-xPrxNiO4+ont été choisies dans le but de 

trouver un compromis entre la stabilité électrochimique du La2NiO4+et les bonnes performances du 

Pr2NiO4+. Une étude structurale couplant diffraction de laboratoire, diffraction synchrotron et 
neutrons a démontré l’existence de trois domaines structuraux en fonction de x. Un des résultats 
majeurs de ce travail a été l’identification d’une structure monoclinique pour les phases riches en Pr. 

La caractérisation des propriétés physico-chimiques et électrochimiques des phases La2-xPrxNiO4+a 

permis de démontrer leur bonnes performances. En particulier,  la phase La1,5Pr0,5NiO4+a été 
déterminée comme le meilleur compromis entre performance et stabilité. Par ailleurs, cette dernière 
est fortement dépendante non pas de la stabilité chimique des matériaux mais majoritairement de 
l’interface/interphase entre l’électrode à oxygène et la couche barrière GDC. Pour finir, ce travail de 

thèse a mis en évidence le comportement très prometteur du nickelate Pr4Ni3O10+de performance 

très proche dePr2NiO4+mais de stabilité plus élevée et ceci en cellule complète.  
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Introduction 

 The sustainable sources of energy are mandatory for maintaining the quality of life in 

developed countries and improving the standard of living in emerging ones. The conventional 

ways of generating energy especially from coal and petroleum suffer from their limited 

source and contamination of environments caused by them. The striking example is the rise 

in the average sea level as a consequence of global warming threatening the low lying land 

masses. The very recent COP21 conference helps to convince everybody about the need for 

solutions. It is for instance urgently required to look for clean and long-lasting sources of 

energy with minimum environmental impact. Among various alternative clean sources, fuel 

cells based energy production appears highly promising. A fuel cell is a device that generates 

electricity by an electrochemical reaction without combustion.  

 There are several kinds of fuel cells, each operating a bit differently. Out of them, 

Solid Oxide Fuel Cell (SOFC) has proved to be the most efficient, with more than 80% 

output efficiency. Nevertheless, this technology is still not used at large scale because of 

problems related to the use of hydrogen, lack of durability and high expenses involved. One 

of the challenging issues for the development of economically competitive SOFCs include 

lowering the operating temperature from above 1000 °C down to Intermediate Temperature 

600−700 °C (i.e. IT-SOFCs) in order to reduce the overall cost and increase their lifetime. 

Lowering the operating temperature below 800 °C extend material selection as well as cell 

reliability. Indeed it allows the use of low-cost component materials, improvement of sealing 

capability, reduction of the interfacial reaction and limitation of chromium poisoning during 

the cell operation. Aiming at lower cost devices, the last generation of SOFC concerns the 

Metal Supported Cells (MSCs). However, it is generally recognized that the performance of 

SOFCs deteriorate at lower temperature, mainly due to the overpotentials generated at the 

cathode interface and to the decrease in ionic conductivity of the electrolyte. At the lowered 

temperatures, polarization resistance of the cathode becomes dominant in determining overall 

performance of the cell due to high activation energy of oxygen reduction reaction (ORR) 

taking place at the cathode and consequently cathode materials with improved properties are 

needed. 

 Current efforts aimed at finding oxides that have fast oxygen diffusion and surface 

exchange kinetics. Among them, the cobalt-containing oxides with perovskite-type structure 

such as La0.6Sr0.4Co0.2F0.8O3-δ (LSCF) and La0.8Sr0.2CoO3-δ (LSC) are extensively used as IT-

SOFC cathode materials due to their Mixed Ionic and Electronic Conducting (MIEC) 
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properties and catalytic activity. However, they suffer from four main disadvantages namely 

(i) their high values of thermal expansion coefficients (TECs) in comparison with the other 

parts of the cell, (ii)) their reactivity with zirconia electrolyte to form SrZrO3 insulating 

phase, (iii) the easy formation of SrSO4 insulating phase in the presence of sulphur, (iv) the 

Sr-segregation at the electrode electrolyte interface, leading to a degradation of the cell 

performance. 

 Therefore, there is a strong need for MIEC cathode materials which are stable at 

operating temperature, very efficient for oxygen reduction reaction with no or less interface 

modification with time and temperature. In this respect, nickelates belonging to the 

Ruddlesden-Popper series are good candidates. They have been studied in our group since 

about 2003
1
. 

This PhD work concerns the study of praseodymium based nickelates as cathode 

materials for IT-SOFCs.  

Chapter 1 deals with a short literature review regarding fuel cells and more especially 

Solid Oxide Fuel Cells. In particular the description of the various SOFC designs including 

the Metal Supported Cells is done. The starting point of our study was the following one: in 

the Ln2NiO4+δ (Ln = La, Pr) compounds with the K2NiF4-type structure, Pr2NiO4+δ shows 

excellent electrochemical performance at intermediate temperature with limited thermal 

stability range, while La2NiO4+δ exhibits good chemical stability but lower electrochemical 

performance. The properties of La2-xPrxNiO4+δ (hereafter labelled LPNO) mixed nickelates 

are thus investigated with the aim to find the best compromise between chemical stability and 

electrochemical performance. The synthesis and several physico-chemical characterizations 

of these LPNO mixed nickelates are reported in Chapter 2. More precisely, preliminary 

structural characterizations, mixed ionic and electronic conducting (MIEC) properties 

investigated through the evolution of the oxygen over-stoichiometry, δ, measured as a 

function of temperature and oxygen pressure pO2, are discussed. The electrochemical 

performance measured in symmetrical cells using LPNO materials sintered under low pO2 ( 

10
-4

 – 10
-5

 atm), as requested in Metal Supported Cells are presented.   

                                                      
1
 E. BOEHM, J.M. BASSAT, C. STEIL, P. DORDOR, F. MAUVY and J.C. GRENIER, “Oxygen transport 

properties of La2Ni1-xCuxO4+ mixed conducting oxides“, Solid State Science 5, 973 – 981 (2003). 
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      Initial structural analysis of LPNO nickelates indicates the existence of three domains 

depending on x value (i.e. Pr content). In between the La-rich and Pr-rich parts, a third one 

consisting of a biphasic domain is observed.  

         Chapter 3 focuses on an in-depth structural study of the LPNO nickelates using 

Synchrotron and Neutron diffraction as well as HR-TEM analysis. Some of the synchrotron 

diffraction experiments were performed at low temperature. 

       With the aim to find the best compromise between chemical stability and 

electrochemical performance, the chemical stability of the La2-xPrxNiO4+δ mixed nickelates 

under air at operating temperatures as well as the evolution of the polarization resistances 

during ageing (recorded under air at idc = 0 and idc ≠ 0 conditions) were studied for duration 

up to one month (at 600, 700 and 800 °C). The results are summarized in Chapter 4.  

         Upon ageing Pr-rich phases (and in particular Pr2NiO4+δ) decompose into the perovskite 

(La, Pr)NiO3-δ, the Ruddlesden-Popper (La, Pr)4Ni3O10+δ and Pr6O11. The properties of 

PrNiO3-δ and Pr4Ni3O10+δ as possible active cathodes for SOFCs are presented in Chapter 5 

and Chapter 6, respectively. In Chapter 5, prior to the electrochemical measurements, the 

thermal stability of PrNiO3-δ, coupling thermal gravimetric analysis (TGA) and X-ray 

diffraction (XRD)  is carefully investigated at high temperature (up to 1200 °C) as well as in 

various atmospheres (air, oxygen and argon).  

    The structural stability of Pr4Ni3O10+δ in temperature up to 1000 °C under air and 

oxygen is discussed in Chapter 6 in relation with the variation of oxygen content (10+δ). The 

polarization resistance (Rp) of Pr4Ni3O10+δ electrode is measured both for GDC/co-sintered 

and two-step sintered half cells. Finally, the electrochemical performance of an anode 

supported (Ni-YSZ//YSZ) single cell including GDC//Pr4Ni3O10+δ co-sintered electrode were 

measured at 700 and 800°C.  
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Note to the reader on the “Structure of the thesis” 

 

Except for Chapter 1 which concerns Literature Survey, this manuscript gathers 

articles either already published (Chapter 2, Solid State Ionics, 278 (2015) 23 -27), submitted 

(Chapter 5, Journal of Solid State Electrochemistry and Chapter 6, Journal of Power 

Sources) or in preparation (Chapters 3 and 4). Thus, I do apologize for some repetitions in 

paragraph of introductions and experimental descriptions. Additional information and 

experiments have been added at the end of Chapters 2, 4, 5 and 6. 

The annex1 describes the principle of the impedance spectroscopy measurements; the 

annex 2 gathers the list of articles in which I am co-author, additional proceedings and list of 

my presentations in several conferences.  
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Chapter 1 

Literature Survey 

 

Abstract 

 A short general introduction is given on fuel cells. The history, advantages, 

description of different types, working principle as well as applications of fuel cells are 

discussed. The second part of this chapter concerns the Solid Oxide Fuel Cell (SOFC), its 

main components and used materials. Particular attention is devoted to the presently available 

knowledge on the Metal Supported Cells (MSCs) and to a description of nickelates oxides, 

which are MIEC materials possibly used as cathodes for IT-SOFCs, especially in MSCs 

conditions.  

1. Fuel cells 

 A fuel cell is a device that converts electrochemical energy into electrical energy (dc 

current). Typically, a direct process of electricity generation from fuels involves several 

energy conversion steps, namely: 

1. The combustion of fuel converts chemical energy of fuel into heat, 

2. The heat is then used to boil water and generates steam, 

3. The steam is used to run a turbine in a process that converts thermal energy into 

mechanical energy, and finally 

4. The mechanical energy is used to run a generator that generates electricity. 

 A fuel cell avoids all these processes and generates electricity in a single step with 

high efficiency. 

 

1.1. Historical Background 

 The principle of the fuel cell (FC) was discovered in 1839 by Swiss scientist Christian 

Friedrich Schoenbein. Simultaneously, the English scientist William Robert Grove [1] built 

the first practical fuel cell. By this time, he demonstrated that the reaction between oxygen 

and hydrogen is used to produce electricity and water through a reverse reaction of the 

electrolysis. The first cell was thus built with porous platinum electrodes in an electrolytic 
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solution of sulfuric acid. However, competition with other types of power generators having 

greater powers and the difficulty to achieve effective and inexpensive electrodes impeded the 

development of this technology for over a century. In 1953, Francis Thomas Bacon revives 

the studies and generated a 1 kW prototype as a model to the stack used in the Apollo space 

missions [2]. Over the past twenty years, this technology and associated research experienced 

a new craze in a general context of finding new sources of clean energy.  

1.2. Various types of Fuel Cells 

 There are currently almost six types of fuel cells, depending on the type of membrane 

(electrolyte) they used, i.e. AFC: Alkaline Fuel Cell, PEMFC: Polymer Electrolyte 

Membrane Fuel Cell, DMFC: Direct Methanol Fuel Cell, PAFC: Phosphoric Acid Fuel Cell, 

MCFC: Molten Carbonate Fuel Cell, SOFC: Solid Oxide Fuel Cell. The working principle of 

all these fuel cells is the same but the operating temperature ranges, electrolytes as well as the 

used fuels largely differ from one to the other. Moreover, the efficiencies differ. Some 

characteristics of various fuel cells, including the possible applications, are presented in 

Table 1. 

1.3. Advantages and applications of Fuel Cells 

 Figure 1 summarizes the main advantages of fuel cells with respect to their type. The 

advantages and drawbacks of fuel cells systems are different depending on the kind of fuel 

cell and are related to their operating temperatures, having direct consequences on the trends 

for their respective commercial applications. 

For instance, low temperature fuel cells (PEMFC, AFC) are characterised by their 

rapid start-up and are thus competitive in mobile applications. However, they need a good 

quality of hydrogen supply with a low CO content in the fuel. On the contrary, thanks to their 

high operating temperatures, SOFC and MCFC are able to operate on fuels containing large 

fractions of carbon monoxide, and can thus run either with an external or internal reformer 

without extensive gas cleaning. 

 

 

 

 



14 

 

Table 1: Various types of fuel cells 

Type of 

Fuel Cells 

Typical 

electrolyte 

Ion 

diffusing 

through 

the 

electrolyte 

Operating 

Temperature 

(°C) 

Fuel Efficiency 

(%) 

Applications 

Alkaline 

Fuel Cell 

(AFC) 

 

KOH 

solution 

OH
-
 60-80 Pure H2 60-70 Buses and 

Spaceships 

Proton 

Exchange 

Membrane 

Fuel Cell 

(PEMFC) 

 

Polymer 

membrane 

(Perfluoro 

Sulfonic 

acid) 

H
+
 50-220 Pure or 

reformed 

H2 

40-60 Vehicles 

mobile and 

stationary 

Direct 

Methanol 

Fuel Cell 

(DMFC) 

Polymer 

membrane 

(Nafion, 

sulfonated 

tetrafluoro 

ethylene) 

 

H
+
 50-120 methanol 40-60 Vehicles 

mobile and 

stationary 

Phosphoric 

Acid Fuel 

Cell 

(PAFC) 

 

Phosphoric 

acid 

H
+
 150-200 Pure or 

reformed 

H2 

55 Stationary 

Molten 
Carbonate 
Fuel Cell 
(MCFC) 

 

Solution of 

Lithium, 

Sodium and/ 

or Potassium 

Carbonates 

 

CO3
2-

 500-650 Pure or 

reformed 

H2 

55 Stationary 

and heavy 

vehicle 

 

Solid Oxide 

Fuel Cell 

(SOFC) 

Yttria 

Stabilized 

Zirconia 

(YSZ) 

 

O
2-

 550-1000 Pure or 

reformed 

H2 

60-80 Stationary 

and heavy 

vehicle 

 

 

The main advantages of fuel cells are listed below:  

(1) High energy conversion efficiency. Because of the direct conversion of 

electrochemical energy to electrical energy, the usual losses linked to the combustion (related 

to the Carnot cycle), due to the conversion of fuel to heat, heat to mechanical energy and 

mechanical energy to electrical energy, are avoided. The efficiency is further improved when 

the by-product heat is fully retrieved. 

http://en.wikipedia.org/wiki/Tetrafluoroethylene
http://en.wikipedia.org/wiki/Tetrafluoroethylene
http://en.wikipedia.org/wiki/Phosphoric_acid_fuel_cell
http://en.wikipedia.org/wiki/Phosphoric_acid_fuel_cell
http://en.wikipedia.org/wiki/Phosphoric_acid_fuel_cell


15 

 

(2) Environmental compatibility. Fuel cells mainly use hydrogen as energy source, 

thus with minor environmental impacts (almost no CO2 and NOx produced per kWatt of 

power). 

(3) Modularity. The size of a fuel cell can be easily increased or decreased in order to 

adapt it to the targeted application. The electric efficiency is relatively independent of size. 

(4) Sitting flexibility. Because fuel cells can be made in a large variety of sizes, they 

can be placed at different locations with minimum sitting restrictions. Consequently fuel cells 

can be easily located near points of use.  

(5) Silence. Fuel cells are quiet because they have no moving parts, even those with 

extensive extra fuel processing equipment.  

 

 

Figure 1: Chart summarizing the applications and main advantages of fuel cells of 

different types, and in various applications [3]. 

 

 Applications of fuel cells are mainly related to combined heat and power systems (for 

both large- and small-scale applications), and to mobile power systems, especially for vehicles 

and electronic equipment such as portable computers, mobile phones, and military 

communications equipment (Figure 1). More specifically, low temperature fuel cells 

(PEMFC, AFC) can be used in mobile applications. On the contrary, high temperature fuel 

cells (MCFC, SOFC) are competitive in stationary applications. A key point is the wide range 

of applications of fuel cell power, from systems ranging from few watts up to megawatts. In 

this respect, fuel cells are quite unique as energy converters; their range of application far 

exceeds all other types of energy production/conversion. 
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1.4. Working principle of the Fuel Cell 

 The working principle of the fuel cell is here illustrated in the case of the SOFC, 

which will be considered in this work (Figure 2). Air (oxygen) flows along the cathode. The 

cathode is also called oxygen electrode. When oxygen molecule gets to the reaction site, it 

catalytically acquires two electrons from the cathode and splits into oxygen ions O
2-

. The 

oxide ions diffuse into the dense electrolyte layer and migrate to the other side of the cell, 

where they encounter the anode. The anode is also called fuel electrode. The oxygen ions 

encounter the fuel at the anode/electrolyte interface and reacts catalytically to produce water, 

heat and electrons. The balance equations of the electrochemical reactions are:  

Cathode Reaction:    1/2 O2 + 2e
-
 → O

2-
 

Anode Reaction:      H2 + O
2-

 → H2O + 2e
- 

Overall Reaction:    H2 + 1/2 O2 → H2O (ΔG
0
= − 237 kJ/mol at 25 °C) 

 

 

Figure 2: Working principle of the Solid Oxide Fuel Cell (SOFC). 

 The electrons are transported through the anode to the external circuit and return to 

the cathode, providing electricity in the external circuit. 

 In practice, a fuel cell consists of several single cells (labelled as SRU for Single 

Repeat Unit) separated by interconnects forming a "stack”. The power of a cell therefore 

depends on the number of SRU constituting the stack. The thermodynamic efficiency, also 

called conversion factor, is defined by the ratio between the energy which can be recovered in 

the form of electrical work and the total amount of energy theoretically available. 
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Interestingly, the system performance is not limited by Carnot's principle, unlike thermal 

machines, since the power generation is carried out without thermal combustion. However, 

part of the energy appears in the form of heat of which portion can be recovered by working 

at high temperatures, for cogeneration (electricity and heat) type of application. 

The performance of the fuel cell is linked to the Nernst potential relationship: 

𝐸𝑖=0 = 𝐸0 +
𝑅𝑇

2𝐹
𝑙𝑛(

𝑃𝐻2
∙ 𝑃𝑂2

1
2⁄

𝑃𝐻2𝑂
) 

Where, Ei=0 = thermodynamic potential at equilibrium or Open Circuit Voltage (OCV) 

E
0
= Standard potential 

R= gas constant 

T=Temperature 

2= electrons number exchanged in the reaction 

F= Faraday constant  

 The electric power density is the product of voltage by current density at each point of 

the current/voltage curve (Figure 3). At OCV, no power is produced. The power then 

increases with increasing current density up to a maximum. Beyond the maximum, the drop 

in cell voltage is stronger than the increase in current density.  

 The voltage across the cell (Ecell, i0) in operation is lower than the thermodynamic 

one (i=0) because of losses from polarization effects appearing when applying the current. 

The cell potential is then modified as follows: 

Ecell = Ei=0 – │ ηcathode│– ηanode – ηohmic 

Ei=0 = potential at zero current, called open circuit voltage (OCV) 

ηcathode (<0) = cathodic overpotential; ηanode (>0) = anodic overpotential  

ηohmic = Ri = ohmic losses due to electrolyte as well as contact resistances (the resistances 

due to anode and cathode are negligible) 
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Figure 3: E = f(i) characteristic of a fuel cell.  

1.5. Losses 

 The evolution of the cell voltage against current density expressed by the polarization 

curve (Figure 3) can be separated into three parts: 

• The rapid initial drop in voltage. 

• The voltage then falls less rapidly, and more linearly. 

• The voltage falls again rapidly at higher current density. 

 Three main mechanisms of voltage losses exist in polarization curve, namely 

activation, ohmic and concentration over-potentials which lead to the decrease of 

performance of the cell. The dependency of these losses versus the temperature, current 

density and species concentrations mainly determine the characteristics of the fuel cell.  

1.5.1. Activation over-potential  

 The activation overpotential losses are limiting at low current density. They are 

caused by the slowness of the reactions taking place on the surface of the two electrodes. A 

proportion of the voltage generated is lost in driving the chemical reaction that transfers the 

electrons to or from the electrodes. The activation overpotential of the electrodes (labelled 

ηanodic and ηcathodic) is thermally activated and kinetically controlled. This effect is increased 

by a decrease in temperature. To reduce the activation overpotential, it is needed to improve 
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the electrode material and microstructure, by preparing electrodes having a larger area active 

towards electrochemical reactions. As shown in Figure 3, the voltage drop is highly non-

linear. The voltage drop increases at low reaction rates and after a certain level it becomes 

almost constant. Activation over-potential is the dominant source of losses for low 

temperature fuel cells, while its influence is in principle smaller for SOFCs. 

 

1.5.2. Ohmic losses (ohmic overpotential/overvoltage) 

 The ohmic (resistive) losses are mainly caused by the resistance of the conducting 

ions (mainly through the electrolyte) and contact resistances between the cell components. 

The effects of these losses are mostly limiting at intermediate current densities. This voltage 

drop is linearly proportional to the current density.  

The ohmic polarisation, ηohmic, is expressed as: 

ηohmic = Ri 

R represents the total ohmic cell resistance, including both ionic and electronic resistances. 

 

1.5.3. Concentration or diffusion losses (concentration 

overpotential/overvoltage):  

 The concentration or diffusion losses mostly limit the cell voltage at high current 

densities and result from the change in concentration of the reactants at the surface of the 

electrodes as the fuel is used. Reactants must flow through the porous electrodes to the Triple 

Phase Boundaries TPBs (see part 2.3.1.), and product must be evacuated, driven by diffusion. 

As the current increases, the amount of reactant available at the reaction sites decreases. In 

the meantime, the amount of water produced increases and limits the reactants access to the 

reaction sites. These two phenomena imply that the concentration of reactants at the reaction 

sites becomes lower, which creates a potential drop called diffusion or concentration over-

potential. The voltage drop increases with increasing current toward an asymptotic maximum 

current. At this point, the concentration of one of the reactants at the TPB is close to zero and 

no further current increase is possible. An improvement can be done when changing the 

microstructure and increasing flow rate of the gas.  
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2. Solid Oxide Fuel Cells (SOFCs) 

 The SOFC, which operates at high temperature, is built with solid (ceramic) 

components (anode, electrolyte, and cathode). There are two main designs, planar and 

tubular. The main advantages of SOFCs are the following ones: 1) SOFC can retrieve heat 

from the reaction (combined heat and power (CHP)), allowing to increase the maximum 

efficiency up to around 85 %, and 2) SOFCs show a great versatility in terms of fuels which 

can be possibly used, moreover without poisoning by carbon monoxide. The main drawbacks 

are related to: 1) the fabrication cost of the SRUs and interconnects, 2) the chemical reactivity 

between the cell components, linked to the high operating temperature. The different 

components of a SOFC cell, i.e. anode, electrolyte, cathode and interconnect are described 

below. 

 

2.1. Anode 

 The chemical reaction occurring at the anode is the oxidation of gaseous fuel with the 

release of electrons and formation of water vapour by using the oxide ions that migrated 

through the electrolyte. Physically, this reaction takes place at the TPB where the fuel gas, 

electrolyte and anode material meet. 

 The activity of the anode is improved when the surface of the anode, then the TPBs 

number, increases. Accordingly, the anode is generally made of a porous cermet (30-40% 

porosity) combining ceramic and metal phases, providing the ion and electron conduction 

respectively.  The fuels most likely used in SOFCs are hydrogen (possibly obtained from 

reformed natural gas), hydrocarbons, oil or coal gasification. The most common anode 

material is Ni/Yttria stabilized zirconia (YSZ, see electrolyte part) cermet [4]. About 30% by 

volume of nickel is required to ensure the electronic percolation.  Nickel is cheap and has 

good catalytic properties for the oxidation of fuel (hydrogen). Copper could also be 

considered as a replacement for nickel [5, 6], but has a higher propensity for carbon 

deposition and sulphur poisoning at lower temperature.  Even if the anode does not limit the 

cell performance as much as the electrolyte and the cathode, research is still conducted on the 

particular problems of anodic degradation [7], as well as possible new materials with MIEC 

(mixed ionic and electronic conductivity) properties. 

 

http://en.wikipedia.org/wiki/Ceramic
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2.2. Electrolyte 

 The SOFC electrolyte is a dense layer of ceramic that conducts oxygen ions O
2-

. For 

ensuring such ionic conduction, the cell has to be heated above T > 600°C. The transportation 

of oxide ions takes place from the cathode to the anode through the electrolyte, which has to 

be a dense membrane (density > 95%). The electrolyte must retain its properties of chemical 

stability and ion transport in the presence of oxidizing and reducing atmospheres, as well as 

possess thermal expansion coefficients compatible with the other components of the stack. It 

is mostly the electrolyte that defines the TEC of all other cell components. 

While a quite large number of recent studies in the SOFC field concern possible new 

chemical compositions, we focused here only on the presentation of doped zirconia and ceria, 

which are by far the most used electrolytes. 

 

2.2.1. Yttria Stabilized Zirconia (YSZ) 

 The most widely used electrolyte material is Yttria Stabilized Zirconia (YSZ): ZrO2-

Y2O3 [8, 9]. YSZ has good mechanical properties and excellent chemical stability over a wide 

range of temperatures and oxygen partial pressures (10
-22 

< pO2 (atm) < 0.2). The cubic 

structure of ZrO2 can be stabilized using Y2O3, as well as other divalent and trivalent dopants 

such as MgO, CaO, Sc2O3 and Yb2O3 for example, providing oxygen vacancies, which 

amount depend on the nature of dopants and on the substitution level [9, 10]. The oxygen 

vacancies are responsible for the ion conduction for this type of material provided there are 

sufficiently mobile, a characteristic that increases with temperature. The radius of the dopant 

ion should be as close as possible to that of the host Zr
4+

 ion (rZr
4+

 = 0.84 Å [11]) to avoid 

high mechanical stresses which reduce the ionic mobility [12, 13]. 

 The most used dopants are yttrium (rY
3+

 = 1.02 Å [11]) and scandium (rSc
3+

 = 0.87Å 

[11]), allowing to obtain materials having the highest ionic conductivity [14-17]. For instance, 

at 800 °C, the ionic conductivity of 8-10 mol% Sc2O3-ZrO2 is 0.12 S.cm
-1

, while it is 0.052 

S.cm
-1

 for 8-8.5 mol% Y2O3-ZrO2 (YSZ) [15]. Substitution with scandium is less used for 

cost reasons and also because of the presence of a phase transition (rhombohedral-quadratic) 

at 650 °C.  

 A maximum of conductivity values is observed for a doping rate of about 8 mol% 

Y2O3 doping in ZrO2 (8YSZ) (Figure 4), which also stabilizes the cubic phase. A material is 
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considered as a pure ionic conductor when the transport number (ti) is greater than or equal to 

0.99. The number of ion transport is defined as follows: 

ti = σionic/σtotal 

 The ion transport number of 8YSZ is very close to 1, between 500 and 1000 ° C, for 

oxygen partial pressures ranging from 0.1 atm (oxidizing atmosphere) to 10
-22

 atm (reducing 

atmosphere). Therefore 8YSZ is a pure ionic conductor in this pressure range, compatible 

with its use in SOFC [14].  

 

Figure 4: Evolution of the ionic conductivity as a function of the substituting rate of 

Y2O3 in YSZ; (○) single crystal (●) polycrystal [12]. 

 For a doping rate of about 3 mol% Y2O3 doping in ZrO2 (3YSZ), the thermo-

mechanical properties are improved [18] with respect to 8YSZ, but the ionic conductivity is 

lower (Figure 4). 

 Nevertheless, the stabilized zirconia has the disadvantage of chemically reacting at 

high temperature with several cathode materials, including La1-xSrxCoO3-δ (LSC), La1-

xSrxCo1-yFeyO3-δ (LSCF), La1-xSrxCr1-yMnyO3-δ (LSCM), LaNi1-xFexO3-δ (LNF), La1-xSrxFeO3-δ 

(LSF), Ba1-xSrxCo1-yFeyO3-δ (BSCF), the most commonly used cathodes. This reactivity leads 

to the formation of two insulating phases at the electrode/electrolyte interface: SrZrO3 and 

La2Zr2O7, which are of perovskite and pyrochlore-type, respectively [15, 19-22]. This 

chemical reactivity at the interface which appears during the synthesis and shaping of the cell 

components at high temperature becomes larger as a function of time at the operating 
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temperature. Then a degradation of the performance occurs during operation, because the 

conductivity of the formed two phases is substantially lower than that of electrolyte [23-27]. 

 

2.2.2. Doped ceria 

 Ceria is another well-known electrolyte material with fluorite-type structure [28, 29]. 

However, the un-doped ceria has a low ionic conductivity. To improve it, CeO2 can be 

substituted with trivalent cations, for ex. Sm
3+

, Gd
3+

, Nd
3+

, Dy
3+

, Y
3+

, Yb
3+

 and Ho
3+

. 

Similarly to stabilized zirconia, the partial substitution of tetravalent cations with trivalent 

leads to the formation of oxygen vacancies, which result in the mobility of O
2-

 ions upon 

raising the temperature. Among the substituents cations, ionic conduction is maximal for 

samarium and gadolinium (Figure 5). However, substitution with gadolinium is the most 

promising, because of the high cost and low availability of samarium. In this case the 

substituted ceria can replace YSZ as electrolyte for IT-SOFC. A substituting level of 10 

mol% (Ce0.9Gd0.1O1.95: GDC10) offers a larger ionic conduction than 20 mol% doping 

(Ce0.8Gd0.2O1.9: GDC20) [30, 31]. The ionic conductivity of ceria doped with 10GDC is 

higher than that of YSZ, i = 2 x 10
-2

 S.cm
-1 

and i = 8 x 10
-3

 S. cm
-1

 for 10GDC and YSZ at 

650 °C, respectively [16, 31-33].  

 

Figure 5: Evolution of the ionic conductivity of ceria (20 mol. %) at 800 °C, based on the 

type of dopant [28]. 
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 But a concern often expressed with regards to the use of GDC electrolytes in SOFCs 

is that, at elevated (> 600°C) temperatures, Ce
4+ 

ions can be reduced to Ce
3+

 under fuel rich 

conditions, i.e. towards the anode compartment [14, 31, 34-35]. The mixed valence Ce
4+

/Ce
3+

 

creates electronic mobility and hence n-type electronic conductivity, which can detrimentally 

short circuit the SOFC cell. In addition, under reducing atmosphere ceria undergoes a strong 

volume expansion [36], leading to a sharp increase in thermo-mechanical stresses. However, 

at temperatures T < 600 °C the reduction of Ce
4+

 ions to Ce
3+

 at the GDC/anode interface is 

minimized  [31, 37], and can be neglected under typical cell operating conditions.  

 The thermal expansion coefficient of ceria increases with the amount of dopant. For 

example, the TEC of GDC10 is in between 11 × 10
-6

 K
-1

 and 13 × 10
-6

 K
-1

 between 30 and 

1000 °C [38]. Unlike YSZ, GDC is more chemically stable with the typical electrode 

materials, LSM, LSC, LSF, LSCF, LNF [39-43], despite some possible lanthanum and 

strontium diffusion as evidenced by Izuki et al. [44]. 

 Samarium doped Ceria (SDC) has also good electrolytic properties that however 

depends on the oxygen partial pressure. For example, Abrantes et al. studied the electronic 

conductivity of SDC as a function of pO2 [45] and reported an electronic conductivity of 0.37 

S.cm
-1

 at pO2 = 10
-16

 atm and 0.58 S.cm
-1

 at pO2 = 10
-18

 atm at 800 °C. 

 

2.3. Cathode 

2.3.1. General requirements – electronic conductors 

 The cathode, or oxygen electrode, is a porous layer where the reduction of the oxygen 

molecules to oxide ions O
2-

 (ORR) takes place:  

½ O2 + 2e
-
  →  O

2-
 

 Consequently, a high level of electronic conductivity of the cathode material is 

required. Moreover, the microstructure (especially the porosity) of the electrode is a key 

parameter to ensure the access of gaseous oxygen to the surface in between the cathode and 

the electrolyte, where O
2-

 species are available. 

Let us summarize here the general requirements for SOFCs cathode:  

• High electronic conductivity.  

• High catalytic activity towards oxygen reduction.  
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• Thermal expansion coefficient (TEC) comparable to that of other SOFC-components.  

• Low chemical reactivity towards other materials used in the SOFC.  

• High thermal stability.  

• Optimised microstructure, low cost materials and mechanical strength. 

• Because the SOFC is operated at high temperatures for long periods of time, it should be 

able to withstand repeated thermal cycling. 

 In the case of electronic conductors, the ORR occurs at the interface between the 

electrode, the electrolyte and the gaseous phase, then on the triple contact lines (labelled TPB 

for Triple Phase Boundary). The number of TPBs has to be as high as possible. In order to 

increase the length of the triple contact lines, composites electrodes formed with electronic 

conductor (the cathode material) and an ionic conductor (possibly an electrolyte type 

conductor) are often prepared, as shown in Figure 6. It’s mandatory that both phases formed 

two percolating networks.  

 

Figure 6: Scheme of the oxygen reduction reaction occurring on the TPBs lines (in 

yellow) in a composite oxygen electrode including both an electronic conductor (black 

grains) and an ionic conductor (white grains). 

 For instance the strontium substituted lanthanum manganite (LSM) [46], with very 

high electronic conductivity (thanks to the mixed valency of manganese, Mn
3+

/Mn
4+

 with the 

formation of electronic holes), has been studied (including SOEC (Solid Oxide Electrolyzer 
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Cell) operations) in combination with YSZ [47-49]. LSM was during long time the classical 

SOFCs cathode material, in case of high operating temperature (900-1000 °C). 

 

2.3.2. MIEC Materials  

 Materials with MIEC (Mixed Ionic and Electronic Conductivity) properties [50, 51] 

allow the incorporation of oxide ions directly in the network and their diffusion occurs 

through the material, as shown in Figure 7. 

 

Figure 7: Scheme of the oxygen reduction reaction occurring in an oxygen electrode 

with MIEC properties.  

 In this case the effective area of the cathodic reaction is extended with respect to the 

first situation; hence the reaction is delocalized at the overall surface of the cathode, 

improving the cell performance.  The use of cathode materials with MIEC properties has 

been largely developed over the last years. There are mainly three kinds of MIEC materials: 

i) oxygen deficient compounds with perovskite-type structure (ii) double perovskites, and iii) 

oxygen over-stoichiometric materials with Ruddlesden-Popper type structure.  
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(a) Oxygen deficient MIEC Materials 

 Among the different materials with the perovskite structure (Figure 8) identified as 

MIEC conductors, the strontium-substituted cobaltites La1-xSrxCoO3- (LSC) have a high 

ionic conductivity and good catalytic properties with respect to the oxygen reduction reaction 

(Table 2) [52-54]. However, their TEC coefficients are very high with respect to YSZ or 

GDC. Using the ferro-cobaltites La1-xSrxFe1-yCoyO3- (LSFC) a good compromise is obtained 

between the thermo-mechanical constraints and the ionic properties [55-58]. In LSFC 

materials, the electronic conductivity arises thanks to the strontium to lanthanum substitution 

leading to the mixed valencies Fe
3+

/Fe
4+

 and Co
3+

/Co
4+

. Another consequence is the 

formation of oxygen vacancies in the 3D network, the under stoichiometry  being dependent 

on the x value as well as on the oxygen partial pressure. The higher  and best ionic 

conductivity (arising from migration of oxygen in the vacant network) values are obtained for 

Co-rich materials. 

 

 

 

Figure 8: Oxygen deficient perovskite structure (e.g. LSCF).  

 Another studied composition as cathode material is La0.6Sr0.4Fe0.8Ni0.2O3-δ (LSFN). In 

Table 2, the electrical conductivity, TEC, oxygen diffusion (D*, which is directly related to 

the ionic conductivity) and surface exchange (k*, which characterize the ability of gaseous 

oxygen to be reduced at the surface of the material) coefficients of these perovskite materials 

are compared with traditional La1-xSrxMnO3-δ (LSM). D* and k* values of these MIEC 
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perovskites are higher than those of LSM. The high TEC values [59-61] compared to those of 

LSM are evidenced. Another disadvantage of these materials is that they easily form 

insulating phases such as La2Zr2O7 and SrCoO3 at the interface with YSZ electrolyte, which 

further degrade the performance of the cell.  

 

Table 2: comparison of electrical conductivity, TEC, oxygen diffusion (D*) and surface 

exchange (k*) coefficients of some MIEC perovskite materials with LSM 

 

Composition σe at 900°C 

S.cm
-1

 

TEC, α 

(10
-6

 K
-1

) 

D* at 900°C 

(cm².sec
-1

) 

k* at 900°C 

(cm.sec
-1

) 

LSC 500-1500 [62] 18-26 [63] 10
-9

 (x = 0.1) 

3×10
-6

 (x=0.7) 

[64] 

10
-6

 (x = 0.1) 

2×10
-5

 (x=0.7) 

[64] 

LSCF (6428) 200 [61] 16 [61] 5×10
-8 

[61] 7×10
-7 

[61] 

LSFN (6428) 300 [61] 14 [61] 5×10
-8 

[61] 7×10
-7 

[61] 

LSM 200 [65] 10-12 [66] 10
-13 

(x=2) [67] 5×10
-8 

(x=2) [67] 

 

Ba0.5Sr0.5Co0.8Fe0.2O3- (BSCF) can also be used as SOFC cathode materials [68]. Its 

electronic conductivity is high (~ 30 S cm
-1

 at 600°C) [69], the oxygen diffusion properties 

interesting (D* ~ 5.10
-7

 cm² s
-1

 and k ~ 10
-5

 cm s
-1

 at 600°C) [70], and the oxygen under 

stoichiometry high ( ~ 0.3 at RT) [71]. However, BSCF is highly sensitive to the presence of 

CO2. The formation of strontium and barium carbonates at the grains surfaces is observed, 

which is detrimental in particular for the oxygen diffusion properties [72, 73]. 

 

(b) Double perovskites 

 Several materials belonging to a family directly derived from the perovskite have 

recently been studied as O
2-

 - SOFC cathodes: this family is labelled “double perovskites” 

with general formulation AA’B2O5+ (A = rare earth, A’ = alkaline earth metal, B = transition 

metal). A characteristic of those phases is the ordering of the rare earth and alkaline earth 

metal layers along the (001) axis, leading to a doubling of the c parameter with respect to the 

perovskite with cubic symmetry [74]. As a result of this cationic ordering, the oxygen 

vacancies are mainly located in the rare-earth layer (AO), and for an oxygen stoichiometry 

value   0.5 they are as well ordered along the a-axis, leading to a doubling of the b 

parameter [75]. To our knowledge, only cobalt and manganese allow obtaining these 

compounds. Moreover, the ordering of the cationic layers is induced by a large difference 
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between the rare-earth and alkaline rare earth metal radii; therefore barium is mainly used, as 

well as rare-earths with small radii. 

 With respect to the applications, the main studies are focused on cobaltites. The first 

studies on the MIEC properties on these materials were performed by Taskin et al. [76-78]. 

The most studied compositions are GdBaCo2O5+ and PrBaCo2O5+[77, 79-80]. However, 

substitutions (Co-Fe, Co-Ni and Ba-Sr) enable to slightly improve the electrode performance 

[81-83]. Currently, the oxygen diffusion values are still under debate; regarding the electronic 

conductivity, the higher value is obtained for PrBaCo2O5+ [84, 87]. 

 

(c) The Ruddlesden-Popper (RP) series An+1MnO3n+1  

 The compounds belonging to the RP series adopt the general formulation 

An+1MnO3n+1. A is a lanthanide or alkaline-earth metal and M a transition metal. The structure 

can be described by the intergrowth of octahedra layers (perovskite type) with AO layers 

(NaCl -type). “n” is related to the number of octahedra layers between the AO layers. Figure 

9 shows the first three terms of the RP series, which are the only ones known at least for the 

most used transition metals. For n =  the perovskite structure is described.  

 

 

Figure 9: Schematic representation of the different structures in the Ruddlesden-

Popper series An+1MnO3n+1, n=1, 2, 3,   : A cation,  : M cation,  : oxygen. 

n=1 n=∞

Perovskite

n=2 n=3n=1 n=∞

Perovskite

n=2 n=3
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(d) Ln2NiO4+δ (Ln = La, Pr and Nd) 

 With respect to the RP class of materials, the nickelate series Lnn+1NinO3n+1 where Ln 

= La, Pr and Nd, have gained significant attention in recent years, especially n = 1 phases as 

alternative cathode materials [85-89]. It has been established that Ln2NiO4+δ (Ln = La, Pr and 

Nd) with K2NiF4 structure exhibit a large range of oxygen over-stoichiometry. The reported 

mean oxygen over-stoichiometries values are 0.16 for La2NiO4+δ [90, 91], 0.22 for Pr2NiO4+δ 

[92, 93] and 0.25 for Nd2NiO4+δ [94], then being dependent on the rare-earth size. The 

oxygen over-stoichiometry δ value is also depending upon the condition of synthesis for a 

given composition [95, 96]. 

The additional (interstitial) oxygen is located in the Ln2O2 rock-salt interlayer. 

Moreover, the NiO6 octaedra is elongated along the c-axis, hence three kinds of oxygen are 

finally distinguished: Oapical, Oequatorial and Ointerstitial (Figure 10). 

 

 

Figure 10: Schematic representation of the Ln2MO4+ structure (M = Ni, Co, Cu).  

 Thanks to the oxygen over-stoichiometry, a mixed valence (Ni
2+

/Ni
3+

) appears. The 

oxygen excess and charge compensating Ni
3+

 ions (electronic holes) stabilize the K2NiF4 

structure by reducing i) the intrinsic charge separation between the electropositive Ln2O2 and 

electronegative NiO2 layers and ii) the structural strain due to the misfit between the Ln2O2 

and NiO2 layers. The Goldschmidt tolerance factor [97]:  
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𝑡 =
(𝑟𝐿𝑛 + 𝑟𝑂)

√2 ∗ (𝑟𝑁𝑖 + 𝑟𝑂)
 

 

 where rLn, rO and rNi are the effective ionic radii of Ln
3+

, O
2-

 and Ni
2+/3+

, respectively enables 

to predict the stability domains of the various structural varieties (which are either tetragonal 

or orthorhombic) of the K2NiF4 structure. 

 The oxygen diffusion (D*) and surface exchange (k*) coefficients of these nickelates 

are among the highest values available in the literature, especially at intermediate 

temperatures (about one order magnitude larger than that of conventional perovskites in an 

intermediate temperature range (600 < T°C < 800)). For example, the reported D* values at 

600 °C are 1.5×10
-8 

, 2.5×10
-8

 and 7×10
-9

 cm
2
.s

-1
 for La2NiO4+δ, Pr2NiO4+δ and Nd2NiO4+δ 

respectively [86, 89, 98]. The ionic conductivity of these materials is directly related to the 

D* value, hence the ionic conductivity is the highest for Pr2NiO4+δ [99]. The favoured 

mechanism is probably of intersticialcy type, involving both apical and interstitial oxygens 

[100, 101]. Compared to the perovskite materials, the ionic conductivity of the here 

considered materials has a strong 2D character (being the values about 100 times higher in 

the (a,b) plane compared to the c-axis direction) [102-104]. The corresponding k* values at 

600 °C are 1×10
-6

, 5×10
-7

 and 10
-7

 cm.s
-1

 for La2NiO4+δ, Pr2NiO4+δ and Nd2NiO4+δ 

respectively [89], these characteristics are associated with good electro-catalytic activity and 

hence the oxygen reduction reaction (ORR). 

 Finally, thanks to the mixed valency of nickel and to the oxide ion conductivity, 

Ln2NiO4+δ materials are mixed ionic and electronic (O
2-

/e
-
) conductors, showing as well good 

electro-catalytic properties with respect to the oxygen reduction reaction. 

Hence these materials are suitable for cathodes in SOFCs applications. Up to now, to 

our knowledge the best electrochemical result, i.e. the lowest polarization resistance (Rp = 0.1 

Ω.cm² at 600 °C), was obtained for Pr2NiO4+δ (in symmetrical half-cell configuration 

Pr2NiO4+δ//GDC//YSZ [105]). The power density is also maximum, 400 mW.cm
-2

 for 

Pr2NiO4+δ electrode with anode supported cells [105]. However, the chemical stability is an 

issue for Pr2NiO4+δ material [106, 107] while La2NiO4+δ and Nd2NiO4+δ are stable [107] in 

the 700-900 °C temperature range up to 72 hours. 

 As an additional point, it’s interesting to note that the electronic conductivity of the 

upper- terms (n = 2, 3) of the RP series involving nickel is generally increased with respect to 

the term n = 1 [108, 109]. These materials can be either oxygen under or over stoichiometric, 
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also depending on the synthesis way [108, 110, 111]. To our knowledge, very few data are 

available regarding their ionic properties. 

 

2.4. Interconnects 

 In order to generate enough power, fuel cells should be used in combination. This 

means that single cells need to be connected together, hence there is a need of interconnects. 

In a unit cell, interconnects are the current collectors, their main function is thus to collect 

electrons, but they are also used for the distribution of gases. These collectors must be 

carefully arranged and assembled to achieve a large contact surface with porous electrodes. In 

addition, they act as sealed barriers to prevent any reaction between the gases present at each 

electrode. Interconnects should have the following requirements. They should: i) have high 

electrical conductivity; ii) be chemically, mechanically and structurally stable in the overall 

pO2 range (10
-22

 < pO2 < 0.2 atm) ; iii) have no porosity (to avoid mixing of fuel and oxygen); 

iv) have a thermal expansion compatibility and be inert with respect to the other fuel cell 

components; v) be easy to manufacture. At high operating temperature (900-1100°C), nickel 

based alloys are generally used. At or below 800°C, ferritic steels can be used. At even lower 

temperature (below 700°C), stainless steels are used as interconnects. A variety of alloy 

systems have been investigated as interconnect materials, such as Fe-Cr, Fe-Ni, Ni-Cr and 

Fe-Ni-Cr alloys. 

 At low temperatures, it is possible to use metallic materials thanks to their high 

electronic and thermal conductivities, low cost and easy manufacturing. Many metal alloys 

which are resistant to heat and corrosion are studied [112-114]. 

 

2.5. IT-SOFCs 

 Fuel cells appear as good candidates for clean energy technology. However, their 

development at large scale is limited by problems related to the use of hydrogen, durability as 

well as economical reasons. The challenging issues facing the development of economically 

competitive SOFCs include lowering the operating temperature from above 1000 °C down to 

600-700 °C (IT-SOFC) in order to reduce the overall cost and to increase the lifetime. Ageing 

problems due to the reactivity between the components of the cell at high temperature leading 

to insulating phases or solid solutions and characterized by lower ionic conductivity are one 

of the main limitations to their development. Long-term operation requires individual cell 

components that are thermally compatible, thus in particular stable interfaces have to be 
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established at 600-800 °C. Therefore, the need to improve the performance at intermediate 

temperatures is straight forward. However, it is generally recognized that the performance of 

SOFCs deteriorate at lower temperature, mainly due to the over-potentials generated at the 

cathodic interface and to the decrease in ionic conductivity of the electrolyte. Regarding the 

electrolyte, a way is to decrease the thickness of electrolyte to reduce the ohmic loss at 

intermediate temperature. When the operating temperature is decreased, the use of 

inexpensive metallic materials as interconnects is possible, improving the mechanical 

strength and seal efficiency of stack. Nowadays, researchers focused on metal supported cells 

(MSCs) which is also called the third generation of SOFCs. Since both the electrodes and 

electrolyte ceramic layers are thin in the new configuration, this is an additional step towards 

the cost limitation because the amount of the expensive ceramic materials is decreased to 

minimum. 

 

2.6. Metal Supported Cells (MSCs) 

2.6.1. Different SOFC designs 

 The majority of SOFC development to date focuses on Electrolyte-supported cells 

(ESCs) then more recently on Anode-supported cells (ASCs). The schematic is presented in 

Figure 11. 

 

Figure 11- Schematic representation of the ceramic cells architecture (left part: ESC, 

middle part: ASC and right part: MSC configurations).  

 The very first ESC design utilizes a thick electrolyte layer to provide mechanical 

support for thin anode and cathode layers. Because an efficient cell operation is possible 

when the ohmic impedance of the electrolyte is minimized, a relatively high operating 

temperature is needed as the conductivity of typical SOFC electrolytes displays Arrhenius 

dependence on temperature [8, 115]. Thus, ESCs with 100 µm
 
- 200 µm electrolyte, thick 

enough to provide mechanical support for the cell, are typically operating in the range 850 – 
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1000 °C. Such high temperatures cells require significant thermal insulation and expensive 

high-temperature materials to be used in the stack. Alternatively, the ohmic impedance of the 

electrolyte may be decreased simply by making it thinner. Then the thin-electrolyte-film ASC 

design was developed in order to reduce the operating temperature, enabling the use of more 

economical stack. Anode-supported electrolyte films are typically  50 µm thick, allowing 

operation below 800 °C.  

 In the ESC and ASC cases, the mechanical support is a brittle ceramic or cermet, 

which contains expensive materials. In contrast, the metal supported cell (MSC) design 

utilizes three thin ceramic layers, only as thick as necessary for electrochemical function 

(within processing constraints); the mechanical support is made from inexpensive and robust 

porous metal, and the electrochemically active layers are directly applied to the metal 

support, as shown in Figure 11.  

 The MSC design provides significant lowering of the manufacturing cost, increased 

robustness, thus operational advantages that make it a promising candidate for 

commercialization. Many SOFC applications would benefit greatly from increased 

mechanical ruggedness, redox tolerance, and rapid thermal cycling promised by metal-

supported cells. The benefits of mechanical ruggedness are especially obvious for portable 

applications where the cell or stack is likely to experience shock, vibration, or mechanical 

loading. The improved redox cycling tolerance is also important because it allows the cells to 

be cooled without damaging the components during a possible interruption in fuel supply. 

Rapid thermal cycling is of course advantageous for many SOFC applications, being till now 

one of the main drawbacks of the SOFC. Finally, a low oxidation rate of the MSC is 

preferred. 

 

2.6.2. Early MSC development 

 The advantages of the metal supported SOFC design were first recognized in the 

1960s [115]. This early work used flame spray deposition of zirconia-based electrolyte onto 

pre-sintered stainless steel supports. Cells were operated in the range 700–800 °C, producing 

a power density of 115 mW.cm
−2

 at 750 °C. Cell operation with hydrogen, methanol, and 

kerosene as fuels was demonstrated. At the end of 20
th

 century, colloidal and wet-chemistry 

methods for applying and sintering thin films of electrolyte onto anode supports were 

recognized as suitable for metal-supported cell designs as well. These inexpensive deposition 

techniques resulted in thinner electrolytes that could be operated at lower temperatures 
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compatible with low-cost ferritic stainless steels. This approach was pioneered at Imperial 

College/Ceres Power for GDC electrolyte [116, 117], and at Lawrence Berkeley National 

Laboratory for YSZ electrolyte [118]. 

 

3.6.3. Choice of metal for support 

 Metal-supported solid oxide fuel cells have recently been prepared on supports with a 

variety of metal compositions, mainly Fe-based and Ni-based materials. Although most 

metal-supported SOFC developers use planar supports, tubular supports are also gaining 

popularity [119-122]. Most developers favour ferritic stainless steel for the metal support. 

Ferritic stainless steels primarily contain iron and chromium with very low carbon content. 

Typical alloy designations include commercial labels such as 430, 409, 410 and 441. These 

alloys are widely used for automotive exhaust because of their low-cost and high-temperature 

oxidation resistance. The alloys often include Ni, Mo, Si, Ti, Al among others which help to 

improve the various physical properties. A number of advantageous properties of ferritic 

stainless steels recommend them for application as the mechanical support for SOFC devices: 

they are quite inexpensive [123], produce a thin, continuous and protective chromia scale, 

and can have very long lifetimes at the SOFC operating temperature. Furthermore, their TEC 

is around 10 – 12 × 10
-6

 °C
−1

 and therefore the metal is compatible with the ceramic cell 

components. Additional useful information, especially on shaping of the cells, can be found 

in refs [116-118, 120-139]. 

The Ni-based supports are mainly relative to NiCrAlY alloys. For instance, early work 

used thick plasma-sprayed yttria-stabilized zirconia (YSZ) electrolyte applied to porous 

NiCrAlY metal supports prepared by die pressing [140]. The excellent oxidation resistance of 

the NiCrAlY alloy (TEC = 15-16 ×10
-6

 K
-1

) allowed operation up to 900 °C, so reasonable 

performance was obtained despite the thick electrolyte. In a less extend pure Ni and FeNi 

were also used. However nickel suffers for high cost and poor TEC matching with ceramic 

components. The addition of iron mitigates the cost and TEC mismatch of pure nickel, but it 

is sensitive towards sulphur and carbon poisoning, as well as redox tolerance. Additional 

information can be found in references [141-148]. 
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3.6.4. Suitable operation temperature window 

 Normally the MSCs are operated under intermediate operating temperature range 

(500-800 °C) which is a relatively narrow but acceptable operation temperature window. This 

operating window can be determined by two ways. The first one is relative to the choice of 

the electrolyte materials and the other one to the oxidation of the metal support. 

1) As usually and for each SOFC design, in order to select the operating temperature by 

considering the chosen electrolyte materials, it is assumed that the electrolyte 

component should not contribute more than 0.15 .cm
-2

 to the total cell specific 

resistance (labelled ASR), then for an electrolyte film thickness (L) of 15 μm the 

associated specific ionic conductivity (σ) value of the electrolyte should exceed 10
-2

 

S.cm
-1

. The ionic conductivity of 8YSZ attains this target value above 700ºC, while 

GDC attains this conductivity at temperatures above 500ºC [149]. Therefore, the use 

of a GDC electrolyte allows the cell operating temperature to be lowered to around 

500 ºC. However, with respect to the issue of the possible reduction of Ce
4+

 into Ce
3+

 

already discussed (see 2.2.2.) the operating temperature window for SOFCs based on 

GDC is around 500-600 °C.  

 

2) The formation of a continuous and protective Cr2O3 scale on ferritic stainless steel is 

critical for long term performance of a metal-supported SOFC (on both anode and 

cathode chamber), resulting in the spallation (cracking and delamination of the oxide 

scale). Also, the stainless steel acts as a current collector from the electrodes. The 

current passes between the electrode and the metal support through the chromia scale, 

and in that case spallation would lead to electrical disconnection of the 

electrochemically active area and therefore cannot be tolerated. The upper acceptable 

operating temperature is then also determined by the oxide growth kinetics and the 

desired SOFC device lifetime. Failure of the device will occur when the protective 

Cr2O3 scale becomes thick enough that leads to spallation. Thus, expected lifetime is a 

strong function of temperature. The addition of reactive elements (Y, La, Ce, etc.) to 

the stainless steel is well-known to improve scale adhesion and reduce oxidation rate 

[124, 150]. For instance, the results reported by Belogolovsky et al. [151] suggest that 

using an yttria-treated steel the operating temperature can be decreased below 800 °C. 

In the temperature range 600-950 °C, ferritic stainless steels form the desired 

continuous and protective Cr2O3 scale. To achieve the oxidation rates required for 
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5000 h lifetime the maximum temperature is about 800 °C, whereas for lifetimes 

greater than 50,000 h (as required for stationary power plants) the maximum 

acceptable temperature is in the 650-700 °C range. This lower temperature makes 

achieving high power. Most of the groups demonstrating metal-supported cells with 

YSZ electrolyte have reported performance and testing at 800 °C. Operating at such a 

high-temperature limits the expected lifetime to several thousand hours. The 

appropriate coatings, treatments, or alloy modifications can reduce the oxidation rate 

and improve the scale adhesion for dense interconnect materials, thereby improving 

expected lifetime before failure via scale spallation. Exploring the effects of similar 

treatments on oxidation of porous stainless steel supports leads as well to fruitful 

results. 
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Abstract 

 Aiming at a tradeoff between the chemical stability of La2NiO4+δ (LNO) and the high 

electrochemical performance of Pr2NiO4+δ (PNO), La2-xPrxNiO4+δ mixed nickelates, further 

referred as LPNO, were studied as possible oxygen electrodes for Solid Oxide Fuel Cells 

(SOFCs). LPNO phases were synthesized using the modified citrate-nitrate route followed by 

a heat treatment at 1200 °C for 12 h under air. Structural characterizations of those K2NiF4-

type compounds show the existence of two solid solutions with orthorhombic structure, 

namely a La rich one from x = 0 to 0.5 with Fmmm space group, and a Pr rich one from x = 

1.0 to 2.0 with Bmab space group. The mixed ionic and electronic conducting (MIEC) 

properties of LPNO phases were investigated through the evolution of the oxygen over-

stoichiometry, δ, measured as a function of temperature and pO2, the electrical conductivity, 

the diffusion and surface exchange coefficients versus x, showing that all compositions 

exhibit suitable characteristics as cathode materials for SOFCs. In particular, the 

electrochemical performance measured in symmetrical cells using LPNO materials sintered 

under low pO2, as requested in Metal Supported Cell, (MSC-conditions) confirmed a 

decrease in polarization resistance values, Rp, from 0.93 Ω.cm² (LNO) down to 0.15 Ω.cm² 

(PNO) at 600 °C with increasing x. 

Keywords: SOFCs, Metal Supported Cells, oxygen over-stoichiometry, lanthanum- 

praseodymium mixed nickelates, oxygen diffusivity 

 

1. Introduction  

 Solid Oxide Fuel Cells (SOFCs) are good candidates for clean energy technology 

converting hydrogen into electricity through a clean electro-chemical process. Indeed, fuel 

cells provide many advantages over traditional energy conversion systems including high 



45 

 

efficiency, modularity and fuel adaptability [1, 2]. However, SOFCs are not used in large 

scale mainly because of issues related to the use of hydrogen, durability and also economic 

reasons. The challenging issues facing the development of economically competitive SOFCs 

include lowering the operating temperature from about 1000 
o
C down to 600−700 

o
C, in an 

intermediate temperature (IT) range so-called IT-SOFCs, in order to reduce their overall cost 

and increase their lifetime [3]. IT-SOFCs should reduce the thermal degradation and enable 

the use of low cost interconnect materials such as ferritic stainless steel. 

 Nowadays, metal supported cells (MSCs), also called 3
rd

 generation of SOFC, are an 

attractive option for IT-SOFCs [4−11]. The main advantages of MSCs are summarized here, 

i.e. a) both electrode and electrolyte layers successively deposited on the metal support are 

thin, as a result the cost will be lower, b) an easier thermal cycling is anticipated, c) the metal 

support acts as a good current conductor due to its high electrical conductivity, d) the metal 

support is more ductile than the anode supported cells and e) MSCs can be used at 

intermediate operating temperatures. In most cases, a four-layer structure is commonly used 

for MSCs, consisting of thick porous alloy substrates and three thin functional layers - a 

dense electrolyte in between porous anode and cathode. 

 The main issue for MSCs deals with the chemical stability of the components at high 

temperature and under low pO2, which are the sintering conditions required to avoid any 

detrimental oxidation of the metal support as for instance using N2 atmosphere (pO2 ≈ 10
-4

 

atm). In this study, the work is focused on the cathodic part. In this respect, new cathode 

materials with mixed ionic and electronic conducting (MIEC) properties at intermediate 

temperature have to be developed, exhibiting good chemical stability as well as high activity 

towards the electrochemical oxygen reduction reaction in the 600−700 °C operating 

temperature range. 

 There are mainly two kinds of MIEC materials; the first one concerns oxygen 

deficient oxides, for example LSC (La0.8Sr0.2CoO3-δ), LSCF (La0.4Sr0.6Co0.8Fe 0.2O3-δ) etc. The 

three main disadvantages of Sr-containing materials are a) their high values of thermal 

expansion coefficients (TECs) [12, 13], b) they react with zirconia to form SrZrO3 insulating 

phase [14] and c) they easily form SrSO4 insulating phase in presence of sulphur [15], leading 

to a degradation of the cell performance. 

 Another type of MIEC oxides deals with oxygen over-stoichiometry, for example 

nickelates Ln2NiO4+δ (Ln = La, Pr, Nd) [16, 17]. These compounds with the K2NiF4 -type 
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layered structure have shown promising cathode performance for IT-SOFCs because of their 

large anionic bulk diffusion as well as surface exchange coefficients, combined with good 

electrical conductivity and thermal expansion properties matching with those of yttria-

stabilized zirconia (YSZ) or Ce0.8Gd0.2O2-δ (GDC) used as electrolytes [18−21]. The structure 

of Ln2NiO4+δ consists of alternate NiO2 square plane layers and Ln2O2 rock salt type-layers, 

leading to the first member (n=1) of the Ruddlesden-Popper series Lnn+1NinO3n+1. This type 

of structure has a strong ability to accept interstitial oxygen located in the Ln2O2 rock-salt 

interlayer leading to a mixed valence of Ni (Ni
2+

/Ni
3+

), which further results in a mixed ionic 

and electronic conductivity (O
2-

/e
-
) [18]. The δ-value (the amount of interstitial oxygen) is 

closely dependent on the rare-earth cation size. For instance, the oxygen excess in La2NiO4+δ 

(LNO) is δ  0.16 at room temperature, as reported by Zhao et al. [22]. On the opposite, 

Pr2NiO4+δ (PNO) shows a larger amount of interstitial oxygen (δ ≈ 0.22), resulting from the 

smaller ionic radius of Pr
3+

 ((r (Pr
3+

) = 1.126 Å and r (La
3+

) = 1.16 Å) [23] that induces large 

structural stresses released by a larger oxygen insertion [24, 25]. 

 The polarization resistance (Rp) of the Ln2NiO4+δ (Ln = La, Pr, Nd) compounds 

deduced from electrochemical impedance spectroscopy measurements performed on 

symmetrical cells shows that the smallest values are obtained for the Pr phase [26], while 

LNO shows better chemical stability under low pO2 [27]. 

 The present work is focused on praseodymium substituted lanthanum nickelates La2-

xPrxNiO4+δ (0.0 ≤ x ≤ 2.0) (LPNO) and aims in particular at finding the optimized 

compositions to be used as cathodes in MSCs. At first, the chemical stability and the 

evolution of the oxygen over stoichiometry δ with temperature (25−1000 °C) and under low 

pO2 conditions (down to 10
-4

 atm) of LPNO phases synthesized in air, are studied. Then, 

further characterizations, including the electrical properties and electrochemical behavior, are 

investigated in SOFC operating conditions, namely in air over a temperature range 500−800 

°C.  

2. Experimental 
 

Chemical synthesis and characterization of the powders 

 LPNO phases (0.0 ≤ x ≤ 2.0) were prepared using the citrate-nitrate route (modified 

Pechini method) [28] from Pr6O11 (Aldrich chem, 99.9%), La2O3 (Strem Chemical, 99.99%) 

and Ni(NO3)2.6H2O (Acros Organics, 99%) precursors. Pr6O11 and La2O3 were pre-fired in a 
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first step at T = 900 °C overnight to remove the water content, due to their high hygroscopic 

character, then to weight the exact amount of precursors. The final annealing was performed 

at 1200 °C for 12 h in air, leading to well crystallized phases. The obtained powders were 

attrited with zirconia balls and ethanol for 4 h with the aim to obtain a mean particle size of 

about 0.6 to 0.8 µm (as checked using laser granulometry measurements). 

The powders were characterized by X-Ray diffraction (XRD) at room temperature 

using a PANanalytical X’pert MPD diffractometer with Cu-Kα incident radiation. 

 Thermogravimetry analyses (TGA) were carried out using a TA Instrument TGA-Q50 

device, with the aim i) to determine the delta values (at room temperature) of the various 

nickelates under air and ii) to study the δ variation vs. T under air as well as Ar atmospheres. 

In the first case the powders were previously heated under air up to 1000 °C then cooled 

down to room temperature with a slow rate (2 °C.min
-1

), this cycle being reproduced twice to 

ensure the reproducibility. Then a second cycle was performed under Ar−5% H2 flux with a 

very slow heating rate of (0.5 °C.min
-1

), the complete decomposition of the materials leading 

to determine the oxygen stoichiometry after cycling the sample down to room temperature 

[29]. Secondly, the variation of the oxygen stoichiometry of the materials was studied either 

under air (pO2 = 0.21 atm) or Ar atmosphere (pO2 ≈ 10
-4

 atm). For this purpose, the powders 

were first thermodynamically equilibrated under air in the TGA device as described above 

(i.e. two cycles were performed). Then the gas was changed from air to Ar at high 

temperature for faster solid/gas reactivity, and the same experiment was performed under Ar. 

Both experiments show a reversible oxygen exchange, at least along the second thermal 

cycle, the TGA curves being perfectly reversible. Thermal variations of the relative 

expansion of dense pellets (dL/L) were carried out in the temperature range 25−1000 °C, 

under air using a differential dilatometer (Netzsch
®
 402 ED), with the aim to determine the 

TECs of the materials. The electrical conductivity of the materials was determined under air 

using the four-probe technique, in the temperature range 25−1000 °C with the heating and 

cooling rate of 1 °C.min
-1

. The nickelates were previously sintered at 1350 °C for 4 h in order 

to get dense pellets. 

 The oxygen diffusion coefficient D* and surface exchange coefficient k* were 

determined by the so-called isotopic exchange depth profile (IEDP) technique combining 

isotopic exchange of 
18

O (used as an oxygen tracer) for 
16

O then secondary ion mass 

spectrometry (SIMS) analyses [30, 31]. The ceramics were first abraded with silicon carbide 

papers of successive grades, and then polished with an alumina paste down to a roughness 
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close to 0.3 µm. The samples were annealed at a pressure of 210 mbar in an 
18

O enriched 

atmosphere (97%, Eurisotop) for 500 < T °C < 700. The 
18

O penetration profiles, i.e 

normalized 
18

O isotopic fraction (
18

O / (
16

O + 
18

O)), were recorded as a function of the 

analyzed depth using a Cameca
®
 IMS 6F SIMS apparatus with a Cs

+
 ions source [32]. The 

oxygen profiles were then fitted using an appropriate solution to the diffusion equation given 

by Crank, for a solution of the second Fick’s law of gas diffusion in solids [33]. 

 For the electrochemical studies, symmetrical half cells 

(electrode/GDC/8YSZ/GDC/electrode) were prepared. Dense pellets of 8YSZ (8 mol.% yttria 

stabilized zirconia) with diameter ≈ 18 mm and thickness ≈ 1.2 mm were used. Terpineol-

based slurries were prepared for each nickelate or GDC powder (from Rhodia). In order to 

increase the electrochemical performance of the half-cells [26], a 2 µm GDC layer was 

initially screen printed on both sides of the 8YSZ electrolyte pellet and sintered at 1300 °C 

for 1 h under air. The nickelate layer (thickness ≈ 20 µm) was then screen printed on each 

side. The optimal sintering temperature of the cathode previously determined in air was 1150 

°C for 1 h [26]. A similar study was performed for sintering conditions under low pO2 (≈ 10
-4

 

atm.). Among three sintering temperatures Ts = 1100, 1150 and 1200 °C, the best 

electrochemical performance (i.e. lowest Rp value) was found at Ts = 1150 °C. Hence herein, 

sintering was performed at 1150 °C for 1 h under nitrogen (pO2 ≈ 10
-4

 atm) [27]. The half-

cells were re-oxidized at 800°C under air for 12 h before the measurements. 

 The electrochemical measurements were performed under air, using a two electrodes 

configuration with signal amplitude of 50 mV under zero current condition with the aim to 

determine the Rp values. The frequency range was scanned from 10
6
 Hz to 10

-2
 Hz with 91 

points, using an Autolab PGSTAT 302N, equipped with a frequency response analyzer 

(FRA). All the impedance diagrams were fitted using the Zview
®

 (Scribner Associates) 

software.  

3. Results and Discussion 

3.1. XRD characterizations 

 The XRD study shows that all LPNO phases with 0.0 ≤ x ≤ 0.5 and 1.0 ≤ x ≤ 2.0 are 

single phases, their patterns being indexed with an orthorhombic cell described either by the 

Fmmm space group for La rich solid solution [0.0 ≤ x ≤ 0.5] or Bmab space group for Pr rich 

solid solution [1.0 ≤ x ≤ 2.0]. Furthermore, full pattern matching was carried out using the 
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FULLPROF software. As examples, for La1.75Pr0.25NiO4+δ and La0.5Pr1.5NiO4+δ, a good 

agreement is obtained between the experimental and refined patterns (Figure 1). 

 

Figure 1: Fullprof refinement of the X-ray patterns of La1.75Pr0.25NiO4+δ and 

La0.5Pr1.5NiO4+δ using Fmmm and Bmab space group, respectively. 

 

 For the XRD refinements, Bmab and Fmmm space groups were used for Pr and La-

rich phases, respectively. The variation of the lattice parameters as a function of x is reported 

in Figure 2. The substitution of lanthanum by praseodymium leads to a smooth decrease in 

each lattice parameters for both La-rich and Pr-rich solid solutions. This decrease in a and b 

cell parameters with the increasing Pr content is consistent with the variation of the ionic 

radius [23] leading to an overall decrease in the cell volume. For the x ≈ 0.5−1.0 region, the a 

parameter suddenly decreases while b suddenly increases suggesting a phase transition in 

agreement with the results reported by Allançon et al. [34] and Nishimoto et al. [35]. 
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Figure 2: Variation of the lattice parameters as a function of x for La2-xPrxNiO4+δ. 

In grey, the biphasic domain. 

 The exact chemical composition corresponding to this phase transition is still to be 

determined. For this purpose, additional compositions (x = 0.6, 0.7, 0.75, 0.8 and 0.85) were 

synthesized and characterized. XRD patterns of those additional compositions could not be 

accurately fitted using a single space group, but it was possible using simultaneously both 

Fmmm and Bmab space groups, which suggests the existence of a biphasic domain in 

between x = 0.5 and x = 1.0, represented by the grey region in Figure 2. Aiming at deeper 

understanding, synchrotron experiments are currently in progress
2
. 

 

3.2. Thermo gravimetric analyses 

 The oxygen over-stoichiometry (δ) at room temperature for LPNO phases was 

calculated using the results of TGA experiments performed under reducing conditions 

(Ar−5% H2 atmosphere, heating rate 0.5 °C.min
-1

). As earlier reported [29], two weight 

losses occur. The first one, around 400 °C, corresponds to the reduction of Ni
3+

 into Ni
2+ 

(the 

oxygen over-stoichiometry being reduced down to δ = 0 when expecting only La
3+

 and Pr
3+

 

cations). The second weight loss characterizes the complete reduction of LPNO in 

                                                      
2
  Chapter 3 
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appropriate ratio (i.e. x dependent) into La2O3, Pr2O3 and Ni, leading to the determination of 

1+δ. The value of δ was also calculated via iodometric titration of the Ni
2+

/Ni
3+ 

couple [18]. 

The δ values calculated by iodometry and TGA are gathered in Table 1. As expected, an 

increase of δ, from 0.16 (LNO) to 0.25 (PNO), is evidenced with praseodymium substituting 

lanthanum. In this study, the δ value for PNO (δ = 0.25) is slightly higher than that earlier 

reported (δ = 0.22) [25]. This is probably due to small differences in the Pr over Ni ratio, 

which can easily decrease at least down to 1.95 leading to a simultaneous decrease in δ, as 

evidenced in previous works for LNO [20, 36]. In the present work the Pr/Ni ratio is equal to 

2 as determined by ICP measurements, probably explaining the higher δ value. 

Table 1 Oxygen over-stoichiometry δ calculated from TGA and iodometry measurements,  

and the average δ value. 

 
Nickelates δ (by TGA) δ (by Iodometry) δ (average) 

La2NiO4+δ 0.16 0.16 0.16 

La1.5 Pr0.5NiO4+δ 0.16 0.17 0.17 

LaPrNiO4+δ 0.19 0.19 0.19 

La0.5 Pr1.5NiO4+δ 0.22 0.20 0.21 

Pr2NiO4+δ 0.25 0.25 0.25 

 

 The thermal variations of the oxygen content, 4+δ, under air for the La2-xPrxNiO4+δ 

phases and under air and Ar (i.e., pO2 ≈ 10
-4

 atm) for LaPrNiO4+δ are plotted in Figure 3a 

and Figure 3b, respectively.  

Under air and Ar atmosphere, LPNO nickelates remain always oxygen over-stoichiometric (δ 

> 0) over the whole temperature range confirming MIEC properties under air and under low pO2 

conditions. A sudden release of oxygen around T ≈ 400 °C is evidenced under air upon heating for 

PNO (x = 2) and for La0.5Pr1.5NiO4+δ (x = 1.5) (Figure 3a). This discontinuity is ascribed to the 

structural phase transition from orthorhombic phase to the tetragonal one [37, 38].  For La rich 

domain (x = 0, 0.5 and 1), a very smooth transition is observed. In addition for LNO, in good 

agreement with Nakamura et al., δ decreases from 0.11 to 0.08 at operating conditions from 600 °C to 

800 °C [39]. The small drop in oxygen content (∆δ = 0.02) after changing the gas flow from air to Ar 

(Figure 3b) results from the oxygen loss under low pO2 condition. 
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Figure 3: Thermal variation of the oxygen content (4+) (50 °C ≤ T ≤ 1000 °C) (a) for 

La2-xPrxNiO4+δ, under air; (b) for LaPrNiO4+δ under air and Ar. 
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3.3. Electrical Conductivity Measurements 

 The variation of the total electrical conductivity σ vs. 1000/T under air for LPNO 

compounds is reported in Figure 4. 

 

Figure 4: Thermal variation of the electrical conductivity measured under air for  

La2-xPrxNiO4+δ. 

 The nickelates exhibit a semi-conducting behavior for T < 600 °C, with a maximum of 

conductivity observed in the 400−600 °C range. Above this temperature range, their 

conductivity decreases; this pseudo-metallic behavior is directly correlated to the decrease of 

oxygen content as evidenced by TGA data (Figure 3) and correspondingly to the decrease of 

the hole carrier density even though the compounds remain semi-conducting [20]. Pr-

containing phases exhibit higher conductivity than LNO in the considered temperature range. 

As an example, a small addition of Pr in LNO (x = 0.5) leads to an increase of the 

conductivity from 50 to 70 S.cm
-1

 at 600 °C. For x = 1, 1.5 or 2, (i.e. high praseodymium 

contents), the conductivity largely increases, being about twice the one of LNO, reaching a 

value close to 110 S.cm
-1

 at 600 °C for the three compositions (inset in Figure 4). 

Praseodymium-rich compositions are then of high interest to determine the best compromise, 

at least regarding the conductivity values at the operating temperature.  
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3.4. Dilatometry Measurements 

 The thermal variations of the relative expansion dL/L measured under air for LPNO 

phases are reported in Figure 5. The thermal expansion coefficients (TECs), calculated from 

the slope of the corresponding straight lines in the full range of temperature, are in between 

13 to 13.5 × 10
-6

 °C
-1 

for all nickelates,  indicating that from a thermo-mechanical point of 

view these nickelates can be used in SOFCs involving 8YSZ as well as GDC as electrolytes 

[38]. Besides the absence of a major deviation of the dL/L vs. T, the so-called chemical 

expansion contribution has not been considered as a significant feature. It agrees with 

previous works [37, 39−41] that report a near zero chemical expansion coefficient for K2NiF4 

-type phases. 

 

Figure 5: Thermal variation of the relative expansion (dL/L) for La2-xPrxNiO4+δ,  

under air (30 °C ≤ T ≤ 1000 °C). 

 

3.5. Oxygen diffusion and surface exchange coefficients (D*, k*) 

 The thermal variation of the oxygen diffusion coefficients, D*, and surface exchange 

coefficients, k*, for LPNO (x = 0.5, 1 and 1.5) are plotted in Figure 6, for T = 500, 600, 650 

and 700 °C in comparison with  PNO and LNO (data from reference [18]).  
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Figure 6: Thermal variation of (a) the diffusion coefficient D* and (b) the surface 

exchange coefficient k* for La2-xPrxNiO4+δ (x = 0.5, 1 and 1.5). The values of D* for x = 

0, 2 and LSCF are from references [18]. The error bars represent the deviation from the 

average value of the coefficients determined using three different measurements. 
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The D* values of mixed phases are in the range of those reported for PNO (2.5 × 10
-8 

cm
2
.s

-1
) and LNO (1.5 × 10

-8
 cm

2
.s

-1
) at 600 °C [18] with an increase of D* with increasing 

Pr-content. It is worth mentioning that the D* values of the nickelates are among the highest 

ones available in the literature, especially at low temperatures (around 500 < T °C < 600) due 

to a low activation energy (0.6 to 0.7 eV, against 1.4 to 1.8 eV for the perovskite-type 

materials) [32]. Indeed, the D* values for LSCF are much smaller than the ones of the 

nickelates (Figure 6a) [18]. 

Because the diffusion coefficients in the whole solid solution are found in between 

less than an order of magnitude at a given temperature, the ionic conductivity would normally 

not be a penalizing parameter, whatever the mixed nickelates composition, with respect to the 

SOFCs application. 

Regarding the k* values (Figure 6b), except at 500 °C, they are slightly higher at high 

temperature than those reported for PNO and LNO [18]. However, the k* values highly 

depend on the surface state of the ceramics, itself being dependent on the grain size for 

similar polishing conditions. In addition, at a given temperature, the various k* values are 

found in a range less than one order of magnitude.  

 

3.6. Electrochemical Measurements 

 The impedance diagrams were recorded in the temperature range 500−800 °C under 

air following the sintering of the electrodes at high temperature under low pO2 as detailed in 

the experimental part, then allowing the determination of Rp. The Rp values were obtained by 

fitting the impedance diagrams recorded for all the LPNO half cells with two RǁCPE 

(constant phase element) in series, which is the simplest equivalent circuit model that yields a 

good fit to the data.  
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Figure 7:  (a) Nyquist plots recorded for LPNO electrodes at 600 °C, (b) Impedance 

diagrams for La1.5Pr0.5NiO4+δ in symmetrical half cell, at 600 °C, fitted using Rs (series 

resistance), R1ǁCPE1 and R2ǁCPE2 elements. 

 

However, the EIS diagram of the LNO electrode was fitted using Gerischer 

impedance as reported in earlier studies [42, 43].  In the current study the fit was limited to 

the extraction of the Rp value, therefore no attempt was made to interpret the two elements 

representing the total electrode processes. The Nyquist impedance diagrams for LPNO 

electrodes, at 600 °C, are shown in Figure 7a, whereas Figure 7b represents a typical fit of 

impedance data for the La1.5Pr0.5NiO4+δ electrode (600 °C) using two RǁCPE elements.  
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Figure 8: Composition dependence of the polarization resistance, Rp, for La2-xPrxNiO4+δ 

phases in the 550 °C to 800 °C temperature range. 

 

 The variations of calculated Rp for LPNO electrodes, in the 550 °C to 800 °C 

temperature range, as a function of x are shown in Figure 8. The electrochemical 

performance is notably improved (i.e. decrease of Rp) by the substitution of La by Pr, 

whatever the temperature. For instance, a Rp value of 0.93 Ω.cm² is achieved at 600 °C 

for LNO while after substitution of La by Pr, the Rp values decrease down to 0.37, 0.29, 

0.23 and 0.15 Ω.cm² for La1.5Pr0.5NiO4+δ, LaPrNiO4+δ, La0.5Pr1.5NiO4+δ and PNO, 

respectively (Figure 8). Whatever the temperature, Rp notably decreases nonlinearly 

with increasing Pr content, for example, by 3 times (0.93 to 0.37 Ω.cm²) from LNO to 

La1.5Pr0.5NiO4+δ. From those preliminary results, it can be concluded that the best 

electrochemical properties (i.e. lowest Rp) are achieved with the PNO electrode. In 

addition it is worth mentioning that a lower Rp value of 0.08 Ω.cm² was earlier reported 

[26]. However, as pointed out in the introduction, a definitive conclusion on an 

optimized composition requires the study of long term ageing experiments. For this 

purpose, the chemical stability of the LPNO nickelates under air at operating 

temperatures as well as the variation of Rp during ageing (recorded under air at idc = 0 

and idc ≠ 0 conditions) are currently under investigation for duration up to one month.  

LNO is highly stable whereas PNO is completely dissociated after 1 month at 600, 700 
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and 800°C. Interestingly, the ageing of the mixed LPNO//GDC//8YSZ half cells during 

1 month under air shows no change in the Rp value at idc = 0 condition. The complete and 

detailed description of these experiments will be reported in a forthcoming paper
3
.  

 

4. Conclusions 

 The present study is focused on alternative oxygen electrodes for IT-SOFCs prepared 

in MSC-type conditions, i.e. under low pO2. Belonging to the K2NiF4 structural type, the La2-

xPrxNiO4+δ mixed nickelates (LPNO) were synthesized and depending on the La/Pr ratio, two 

domains of solid solutions with orthorhombic structure were identified. One is related to La-

rich phases, from x = 0 to x = 0.5, with the Fmmm space group while Pr-rich phases, from x = 

1.0 to x = 2, crystallize with Bmab space group. All the Lanthanum-Praseodymium nickelates 

are oxygen over-stoichiometric in the whole temperature range either under air or argon. The 

δ value increases with increasing x. All other physico-chemical properties including electrical 

conductivity, TECs, oxygen diffusion and surface exchange coefficients confirm the 

suitability of LPNO for MS-SOFCs application. Besides, the decrease in the polarization 

resistance as a function of x suggests that the Pr-rich compounds are more efficient for the 

oxygen electrode reaction than the La-rich ones. Studies of ageing behavior especially at the 

operating conditions are in progress. 
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Additional Information: Chapter 2 

 

Additional experiments under Argon 

1. Electrical conductivity measurements 

The electrical conductivity of the nickelates was measured under argon using the four-

probe technique, in the temperature range 25 - 1000 °C with the heating and cooling rate of 1 

°C.min
-1

. The experiment was first performed under air (two cycles) then the gas flow was 

switched from air to argon at 1000 °C. The gas flow was kept for 6 h for the stabilization of 

the oxygen composition of the material and then the measurements were performed during 

two cycles under argon. The variation of the total electrical conductivity σ vs. 1000/T under 

air and argon for LPNO (x = 0.5, 1.0, 1.5) phases are compared in Figure 1. 
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Figure 1: Thermal variation of the electrical conductivity for La2-xPrxNiO4+δ (x=0.5, 1.0, 

1.5). Dashed and bold lines represent the conductivity under air and argon respectively. 
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When the gas flow is switched from air to argon a sharp decrease in electrical 

conductivity is observed. The electrical conductivity is always higher under air than under 

argon throughout the whole temperature range (25-1000 °C). This sharp decrease under argon 

as well as the lower conductivity is directly correlated to the decrease of oxygen content. All 

the nickelates exhibit a semi-conducting behavior and the maximum conductivity is observed 

in the 400-600 °C range.  
 

2. Dilatometry measurements  

Thermal variations of the relative expansion of dense pellets (dL/L) were carried out 

in the temperature range 25 − 1000 °C under argon for LPNO phases with the aim to 

determine the TECs of the materials. The corresponding results are reported in Figure 2.  
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Figure 2: Thermal variation of the relative expansion (dL/L) for La2-xPrxNiO4+δ (x=0.0, 

0.5, 1.0, 1.5 and 2.0), under argon (30 °C ≤ T ≤ 1000 °C). 

 

For La rich phases (x = 0.0 and 0.5), a single TEC value is measured for both heating 

and cooling. On the contrary, Pr rich phases (x = 1.0, 1.5 and 2.0) show hysteresis during 

heating and cooling in the temperature range ~100-600 °C. A larger discrepancy in cooling 
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and heating is observed with increasing the Pr content. The reason for this hysteresis is still 

unclear. 

The thermal expansion coefficients (TECs), calculated from the slope of the 

corresponding straight lines are in between 12 to 13.7 × 10
-6

 °C
-1 

for all nickelates. For La 

rich phases, the TEC values are the same under air (cf. chapter 2) and argon but for Pr- rich 

phases mainly x =1.5 and 2.0, lower value are observed under argon.  
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Abstract 

 The present study is focused on the structural study of La2-xPrxNiO4+δ (LPNO) mixed 

nickelates examined by analysis of powder samples using Synchrotron X-ray, Neutron and 

Electron diffraction probes. The properties of La2-xPrxNiO4+δ (LPNO) mixed nickelates were 

recently investigated as cathode materials for Solid Oxide Fuel Cells (SOFCs). Based on 

structural analysis of LPNO nickelates, the existence of three domains depending on x value 

(i.e. Pr content) is evidenced. La-rich phases display an Fmmm orthorhombic structure (0 ≤ x 

< 0.5), Pr-rich phases (1.1 < x ≤ 2.0) display a C2/m monoclinic structure and in between, 

for 0.5 ≤ x ≤ 1.1, a third mixed biphasic domain is observed.  For Pr rich compositions, both 

the monoclinic unit cell distortion and additional weak unindexed reflections (observed both 

in X-ray and electron diffraction) are found to be dependent on both interstitial oxygen 

content and A-site cation substitution. These additional peaks for which the intensity 

decreases with reduced Pr content may be evidence of a complicated modulated structure that 

is not addressed in this work.  

 

Key words: Nickelates, Oxygen over-stoichiometry, Neutron diffraction, Synchrotron 

diffraction, HR-TEM 

1. Introduction 

         The importance of Mixed Ionic and Electronic conducting (MIEC) materials are 

increasing for future eco-friendly societies because for instance of their use as cathode 

materials for solid oxide fuel cells (SOFCs) and oxygen separation membranes [1-8]. It is 

well known that SOFCs directly and efficiently convert chemical energy to electrical energy. 

The operating temperature of SOFCs is high (e.g. about 800−1000 °C), which results in 

problems of costs and materials compatibility. Currently, a main objective is to decrease 
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SOFC operating temperatures down to around 600 – 700°C, in an effort to lower the device 

cost (for example, using stainless steel instead of ceramic materials as interconnects) and to 

improve the cell durability. However, since both electrode reactions and ion transport through 

the electrolyte are temperature-driven, the electrochemical performance drastically decreases 

at lower temperature. Hence, it is mandatory to improve the materials and architecture of the 

cell in order to reach reasonable performance at Intermediate Temperatures (IT-SOFCs). The 

MIEC cathode materials have received considerable attention because the cathode 

significantly contributes to the overall cell resistance.  

   Rare earth nickelates with the general formula Ln2NiO4+δ (Ln = La, Nd or Pr) have 

already shown good cathodic performance with various electrolytes (mainly YSZ, GDC and 

LSGM). In our previous research on Ln2NiO4+δ (Ln = La, Nd or Pr) compounds, Pr2NiO4+δ 

(PNO) showed the lowest polarization resistance using GDC interface and YSZ electrolyte 

[9].  

 The MIEC properties of the nickelates are ultimately connected to their 

crystallographic structure, it is therefore interesting to examine carefully the structural trends 

in the La2-xPrxNiO4+δ (LPNO) series. Generally, the structure of Ln2NiO4+δ consists of 

alternate NiO2 square plane layers and Ln2O2 rock salt type-layers, leading to the first 

member (n=1) of the Ruddlesden-Popper series (Lnn+1NinO3n+1). This type of structure has a 

strong ability to accept interstitial oxygen (which is located in the Ln2O2 rock-salt interlayer), 

leading to a mixed valence of Ni (Ni
2+

/Ni
3+

), which further results in a mixed ionic and 

electronic conductivity (O
2-

/e
-
) [10]. The amount of interstitial oxygen δ is closely dependent 

on the rare-earth cation size and is also influenced by the cooling rate and annealing 

atmosphere. For instance, the oxygen excess in La2NiO4+δ (LNO) is δ  0.16 at room 

temperature, while it is larger in Pr2NiO4+δ (PNO, δ ≈ 0.25) [11], as a consequence of the 

smaller ionic radius of Pr
3+

 ((r (Pr
3+

) = 1.126 Å and r (La
3+

) = 1.16 Å) [12] that induces large 

structural stresses released by a greater interstitial oxygen insertion [13,14]. These materials 

show a reversible oxygen exchange during heating and cooling under air and low pO2 

conditions [15]. In addition, a phase transition from orthorhombic to tetragonal was also 

reported during heating for Ln2NiO4+δ (Ln = La, Nd or Pr) compounds [15].   

 In the literature there are very few reports characterizing La2-xPrxNiO4+δ mixed 

nickelates as SOFC with respect to their physico-chemical and electrochemical properties 

[11, 16-18], but except for the end members none discuss the structural properties of LPNO 

series in particular using high resolution synchrotron powder diffraction (HR-SPD) and 
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neutron powder diffraction (NPD). Herein, the structural properties of LPNO are discussed in 

detail based on an analysis of diffraction data collected on LPNO powder samples using 

synchrotron X-ray, neutron, and HR-TEM probes.  

2. Experimental 

 LPNO phases (0.0 ≤ x ≤ 2.0) were prepared using the citrate-nitrate route (modified 

Pechini method) from Pr6O11 (Aldrich chem, 99.9%), La2O3 (Strem Chemical, 99.99%) and 

Ni(NO3)2.6H2O (Acros Organics, 99%) precursors. Pr6O11 and La2O3 were pre-fired in a first 

step at T = 900 °C overnight to remove the water content, due to their high hygroscopic 

character, then to weight the exact amount of precursors. The final annealing was performed 

at 1200 °C for 12 h in air, leading to well crystallized phases.  

The powders were first characterized by laboratory X-ray diffraction (XRD) at room 

temperature using a PANanalytical X’pert MPD diffractometer with Cu-Kα incident radiation 

using a flat-plate reflection geometry. 

Selected LPNO samples were also measured by high-resolution synchrotron powder 

diffraction (HR-SPD) at beamline 11-BM of the Advanced Photon Source (APS) at Argonne 

National Laboratory. The samples were measured at room temperature in a transmission 

capillary mode using an incident beam energy of 30 keV (≈ 0.41 Å) over the range 0.5 to 

50° in 2θ. For the PNO composition, in situ variable temperature synchrotron diffraction 

experiments at 11-BM were also performed in 100 to 450 K range. 

In order to gain additional structural information on LPNO compositions, time of 

flight neutron powder diffraction (TOF-NPD) data were collected for selected compositions 

(x = 0.6, 1.2, 1.5 and 2) at 298 K on the POWGEN beamline of the Spallation Neutron 

Source (SNS) at Oak Ridge National Laboratory. Data obtained via the POWGEN mail-in 

service were collected for ~ 2 hours per sample on ~ 5 grams of powder loaded into 8.0 mm 

diameter V cans using detector banks covering a range 0.4 – 9.0 Å. Rietveld refinement of 

both X-ray and Neutron powder diffraction (including combined joint refinements when HR-

SPD and TOF-NPD were collected on exactly the same powder sample) were performed 

using both FullProf and GSAS/EXPGUI software packages [19, 20]. Refined crystal 

structures and difference Fourier maps were displayed using the VESTA software package 

[21]. 
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High Resolution TEM (HR-TEM) electron diffraction analysis of PNO sample was 

performed at ICMCB using a JEOL 2100 electron microscope system. Experiments were 

achieved at 100 K in order to prevent a modification of the sample caused by the electron 

beam under high vacuum. The powder ground in ethanol was deposited on a carbon film 

supported copper grid. The electron diffraction patterns were obtained by selected area 

electron diffraction (SAED). 

3. Results and Discussion 

3.1. Initial structural characterizations 

  Initial structural characterizations of the LPNO phases by laboratory powder XRD 

show that all nickelates crystallize in an orthorhombic K2NiF4 type structure. Depending on x 

value (i.e. Pr content), different domains can be distinguished. One is related to La-rich 

phases, from x = 0 to x = 0.5, fitted with the Fmmm space group, and the second one is 

related to Pr-rich phases, from x = 1 to x = 2, that were initially fit with an orthorhombic 

Bmab space group as commonly done in the literature [11, 22-23]. A biphasic domain was 

evidenced in between ~ x = 0.5 to x = 1.0 but the exact region was unclear. A more detailed 

examination performed with a very long counting time laboratory XRD data analysis of PNO 

revealed that few reflection peaks (hhl) split into two, as shown in Figure 1. Those were not 

fitted well using either Fmmm or Bmab symmetry, suggesting some distortion in the 

structure. It was determined later in this study that the distortion could be well fitted using a 

monoclinic unit cell.  In Table 1, ambient temperature results of refinement performed on 

laboratory XRD data for PNO are compared in the orthorhombic Fmmm and monoclinic 

C2/m space groups. The fitting statistics parameters (χ², Rp and Rwp) show lower values when 

refined using monoclinic C2/m structure, indicating that the monoclinic cell better describes 

the measured laboratory diffraction data. 
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Figure 1: Rietveld refinement of laboratory XRD data of Pr2NiO4.25 at 25 °C, using 

C2/m space group. Example of peak splitting: (220) into (202) and (-202). 

 

Table 1: Refined atomic position using Fmmm and C2/m space group for Pr2NiO4+δ at RT 

  Pr2NiO4+δ Fmmm Pr2NiO4+δ C2/m 

Lattice parameters 

and atomic 

positions 

a = 5.3914(3) Å, b = 12.4479(3)  Å,        

c = 5.4572(4) Å, β = 90° 

Pr1 (x, y, z): 0, 0.359(3), 0 

Ni1 (x, y, z): 0, 0, 0 

O1 (x, y, z): 0.25, 0, 0.25 

O2 (x, y, z): 0, 0.175(2), 0 

a = 5.3913(3) Å, b = 12.4476(4) Å,        

c = 5.4573(1) Å, β = 89.931(1)°     

Fit parameters χ² = 3.08, Rp = 7.08 %  

Rwp = 9.93 %  

χ² = 1.91, Rp = 5.56 %  

Rwp = 7.40 %  

 

For further investigation regarding the exact structure of these Pr-rich LPNO phases, 

high resolution synchrotron and neutron powder diffraction studies were performed. The high 

angular resolution of synchrotron powder diffraction collected at APS beamline 11-BM 

(using multiple single-crystal analyzer detectors) allows the detection of subtle pseudo-

symmetry or weak intensity modulation peaks that could be missed by laboratory XRPD or 
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by Neutron Powder Diffraction (NPD). Additionally, TOF-NPD was also performed to 

provide complimentary diffraction data, exploiting the distinct elemental sensitivity of X-ray 

and neutron probes, to give extra details especially about oxygen atoms in the unit cell. 

Before analyzing the data of mixed LPNO phases, we first considered the end 

members of the series i.e. Pr2NiO4+δ (PNO) and La2NiO4+δ (LNO). The structure of LNO is 

clearly   orthorhombic type with Fmmm symmetry as reported in the literature [24, 25] while 

for PNO the structure is still not fully determined. Hence it was our first aim to investigate 

more carefully the structure of PNO then further move on the complete LPNO series.  

The earlier studies regarding the structure of PNO at RT suggested its existence in 

orthorhombic structure with Fmmm or Bmab symmetry [23, 26-28]. The Bmab space group 

allows the systematic out of plane tilting of NiO6 octahedra on axes parallel to the square 

plane layers of NiO6. On the other hand, Singh et al. [29] proposed for the first time the 

monoclinic symmetry in PNO on the basis of bond distances considerations but the authors 

did not discuss additional details about the structure.  

Very narrow diffraction peaks in the high resolution synchrotron powder diffraction 

(HR-SPD) data of Pr2NiO4.25 recorded at RT (Figure 2a) indicate notable crystalline quality. 

The indexing of major peaks suggests an average structure similar to previously reported 

Bmab models for PNO. However, splitting of selected (hhl) reflections are also clearly 

evidenced, e.g.  the (220) peak is split into distinct (202) and (-202) reflections. As a result, a 

small monoclinic distortion of the unit cell is required to fully explain the observed splitting 

of the (hhl) reflections. Refinement and details of this model for PNO are discussed below. 

 

3.2. Structure of Pr2NiO4+δ 

3.2.1. Joint synchrotron and neutron data refinement of Pr2NiO4+δ 

 For further analysis a joint Rietveld refinement of synchrotron and neutron data was 

performed.  X-rays interact with electrons, whereas neutrons are scattered by nuclei, which 

means that the two techniques probe the same structural parameters through different 

particles. The HR-SPD data are very sensitive to small distortions and weak intensity peaks.  

NPD data can provide more details about low Z ions like oxygen in the structure, which is 

important for studying MIEC materials.  Also, NPD can provide greater contrast between 

similar Z cations (like Pr and La) than what is possible for synchrotron X-rays. 
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Figure 2: Joint synchrotron (a) and neutron (b) powder diffraction data refinement of 

Pr2NiO4+δ using C2/m space group, recorded at 25 °C. (+) represent experimental data 

points, solid line refined data fit. The vertical sticks are Pr2NiO4+δ monoclinic phase. 

 

(b) NPD data 

(a) SPD data 
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Based on a best match with observed peak reflections in the data, a monoclinic space 

group C2/m (N° 12) was selected to describe the RT diffraction pattern of PNO and later on a 

new structural model is proposed. For the joint Rietveld refinements discussed here, 

structural models were refined simultaneously against both HR-SPD and TOF-NPD datasets. 

Refined values included: background functions, unit cell parameters, atom positions (except 

for Oi sites), occupancy of the interstitial oxygen sites, atom site thermal parameters (using 

anisotropic parameters for oxygen sites except Oi), and instrument appropriate profile terms 

that included anisotropic strain terms for the HR-SPD dataset.  Limited model constraints 

were included for cation sites with mixed Pr/La occupancies, and on oxygen anisotropic 

thermal parameters to improve the global refinement stability.  Suitable sample absorption 

terms were included for both datasets. Phase scale factors were refined in cases of multiphase 

joint refinements (discussed later for the LPNO biphasic regions). The refined parameters 

obtained from the joint Rietveld refinement are listed in Table 2.   

 

Table 2: Refined lattice parameters and atomic positions from joint refinement of PNO using 

C2/m space group 

Lattice 

parameters 

a = 5.3917(2) Å          b = 12.4480(2) Å        c = 5.4572(3) Å 

β = 89.931(3)°                  χ² = 14.10, Rwp = 12.5 %                  

Atom x y z occupancy Uiso × 100  

Pr1 0 0.358(2) 0 1 0.953(4)  

Pr2 0 0.140(1) 0.5 1 0.875(2)  

Ni1 0 0 0 1 0.732(3)  

Ni2 0 0.5 0.5 1 0.234(6)  

O1 0 0.171(1) 0 1 4.713(7)
*
  

O2 0.753(4) 0 0.253(1) 1 1.765(1)
*
  

O3 0 0.324(6) 0.5 1 8.988(8)
*
  

O4 0.237(2) 0 0.260(1) 1 1.764(8)
*
  

Oi 0.25 0.25 0.25 0.126(1) 5.00  

* U11 U22 U33 U12 U13 U23 

O1 5.97 0.97 7.22 0 -5.68 0 

O2 0.26 4.66 0.37 0 0.21 0 

O3 5.97 0.97 20.0 0 5.68 0 

O4 0.26 4.66 0.37 0 -0.21 0 
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 The joint refinement fits of HR-SPD and NPD data are shown in Figure 2a and 2b, 

respectively. In the figure, red (+) points represent the experimental data, solid green line 

represent refined data fit, black sticks represents PNO monoclinic phase and the purple line 

represent the difference between experimental and calculated data. The lattice parameters are 

a = 5.3917(2), b = 12.4480(2), c = 5.4572(3) Å and β = 89.931(3)° with χ² =14.1 and Rwp = 

12.5 % for two histograms. The values obtained for the global χ² testify the quality of the 

refinements.  

Schematics of the refined PNO monoclinic are shown in Figure 3.  In Figure 3a, 

looking just off-axis along the c unit cell direction shows clearly the alternate layers of grey 

colour NiO6 octahedra between layers of yellow colour A site cations (occupied fully by Pr in 

the PNO structure).  Red ellipsoids oxygen anions (reflecting the refined shape of anisotropic 

thermal parameters) are located at the vertices NiO6 octahedra, and a round partial occupied 

isotropic oxygen interstitial site is observed between the layers. Figure 3b shows the same 

PNO structure, but with a view looking along the long b-axis of the unit cell, where the 

distorted anisotropic shape of NiO6 apical oxygen ions is clearly visible. Two kinds of NiO6 

octahedra (containing the Ni1 and Ni2 sites) are also noticed from a more detailed viewing 

along b-axis, (Figure 3c). The crystallographic structure of Pr2NiO4.25 is basically same as 

that of the Fmmm or Bmab average model, but a monoclinic distortion leads to the loss of 

some symmetry elements. This symmetry loss generates two non-equivalent splitting of Pr, 

Ni, O1 and O2 positions [(0, 0.358, 0) and (0, 0.140, 0.5)], [(0, 0, 0) and (0, 0.5, 0.5)], [(0, 

0.171, 0) and (0.753, 0, 0.253)] and [(0, 0.324, 0.5) and (0.237, 0, 0.260)] respectively, with 

respect to the Fmmm space group. The position of interstitial oxygen (Oi) in the C2/m model 

is fixed at (0.25, 0.25, 0.25) having been located by calculated difference Fourier maps of 

preliminary joint Rietveld refinement models that did not include an Oi site. 

 



75 

 

 

 

 

(a) 

(b) 
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Figure 3: a) Average structure of Pr2NiO4.25 at RT along c-axis, b) view along the b axis 

evidencing the rotation along a, c plane, and c) again along b-axis showing schemes of 

octahedra tilts at the origin of monoclinic distortion. 

 

3.2.2. Discussion of distortion details in PNO structure  

It is well known that Ln2NiO4+δ type materials crystallize at high temperature under 

air in a tetragonal structure [15]. Indeed, at high temperature, the oxygen atoms mobility 

should be high leading possibly to the more symmetrical tetragonal structure. In the high 

temperature tetragonal phase of PNO, all Ni-Oeq (Oeq: equatorial oxygen) bonds have the 

same length in the NiO4 square plane, whereas the longer Ni-Oap (Oap: apical oxygen) bonds 

distort the NiO6 octahedra and thus the unit cell in a direction perpendicular to the NiO4 

sheets (unit cell direction b for structures described here). In the tetragonal phase all Oeq-Ni-

Oeq bond angles are equal to 90°. At RT, normally the movement of oxygen atoms is frozen 

and leads to rigid orthorhombic structure. Moving from high temperature tetragonal phase to 

a RT Fmmm orthorhombic phase, all Ni-Oeq bonds have the same length and the longer Ni-

(c) 
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Oap bonds from the tetragonal distortion are maintained. However, at RT the Oeq-Ni-Oeq bond 

angles deviate from 90°, leading to additional orthorhombic distortion. Comparing the 

different possible orthorhombic Fmmm and Bmab models, a Bmab model would permit 

additional distortion caused by the tilting of octahedron due to oxygen displacements out of 

the NiO4 plane. However, in our diffraction data we find no experimental evidence for long 

range Bmab type tilting. But the refined ellipsoidal shaped oxygen anisotropic thermal 

parameters in the C2/m model are compatible with local range tilting and/or a long range 

modulated tilt distortion, which is not described in the refined monoclinic unit cell.  We note 

that there is the possibility of a structural modulation in Pr-rich LPNO phases, where this 

monoclinic structure describes an average unit cell, as already reported for PNO single crystal 

[30]. This possibility is discussed later in the text, and may explain additional weak 

unindexed reflections observed in HR-SPD and HRTEM-ED.  

Now approaching from an Fmmm orthorhombic to a C2/m monoclinic structure, an 

additional distortion appears caused by the deviation in the bond angles Ni1-O2-Ni2 and Ni1-

O4-Ni2 from 180°, leading to a relative “twisting” of octahedron on axes parallel to the long 

unit cell direction, as indicated by grey arrows in Figure 3c.  In the monoclinic cell two kinds 

of apical (Oap1, Oap3) and equatorial (Oeq2, Oeq4) oxygen can be evidenced Figure 3c. It can be 

noticed that Ni1-O2, Ni1-O4 and Ni1-O1 bonds are no longer exactly the distance as the Ni2-

O2, Ni2-O4 and Ni2-O3 bonds, respectively. This results in different octahedra for the two 

Ni sites, which includes deformation along NiO4 plane and more significantly varying Ni1-

O1 and Ni2-O3 bond length in the long axis unit cell direction. These distortions and changes 

in bond length are possibly due to two kinds of static distortion: a) the twist of octahedra 

releasing the strain between the perovskites and rock salt layers and/or b) the steric repulsion 

with interstitial oxygen (Oi). The difference in the bond lengths leads to the distortion in the 

unit cell. From structural analysis (Figure 3b, c), the oxygen atoms show diffuse ellipsoid 

shape and indeed apical oxygen atoms seem more diffused than equatorial oxygen ones. At 

RT the origin of this diffuse apical oxygen Oap is not thermal but possibly due to the static 

distortion effects and/or subtle structural modulations in Pr-rich LPNO phases as discussed 

above.  

 Despite the good statistical fit of our refined PNO C2/m monoclinic structure to the 

combined TOF-NDP and HR-SPD data, a number of minor intensity - but clearly visible - 

peaks remain unindexed in the synchrotron X-ray data refinement (see for instance Figure 5c 

later in the text). A very few number of unindexed peaks were observed as well in the neutron 
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data refinement. Such reflections are not associated with the monoclinic unit cell or any 

impurities. Demourgues et al. have proposed a monoclinic model for the homologous 

compound La2NiO4.25 [31, 32], (space group C2, a = 13.832, b = 10.930, c = 10.912 Å and β 

= 113.31°, four times larger than the orthorhombic unit cell). In this case also it was not 

possible to index all the above mentioned super-lattice peaks using smaller lattice. Hence, 

those unindexed reflections should be ascribed to another phenomenon such as an 

incommensurate structural modulation, probably associated with an ordered tilt scheme of the 

NiO6 octahedra and/or an occupational modulation of interstitial oxygen atoms (Oint) as 

proposed previously by Allançon et al. [23]. 

 

3.2.3. Variation of extra peaks  

 To better understand the extra peaks observed in PNO diffraction data, we examined 

how they change as a function of interstitial oxygen amount and temperature, and used other 

probes like HRTEM.  
 

Variation of extra peaks with δ-value 

  The variation of XRD patterns measured on different samples of PNO, namely: as 

prepared powder under air (cooling with 2 °C from 1200 °C), slow cooled under air (cooling 

with 1 °C from 1200 °C) and cooled under argon (cooling with 2 °C from 1000 °C), are 

compared in Figure 4. Their δ-values were determined by iodometry and TGA and found to 

be 0.25, 0.25 and 0.19, respectively.  
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Figure 4: X-ray diffraction patterns for Pr2NiO4+δ for as prepared powder in air (black), 

slowly cooled in air (red) and cooled in argon (blue). The magnification in 10.84 –10.92° 

region is shown on the right side. 
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The slow cooled under air and as prepared samples do not show a significant change 

in the extra peaks intensity, shape and position. These samples have approximately the same 

oxygen  value. The extra peaks are also evidenced in the sample prepared under argon but 

the intensities are much smaller compared to air prepared samples.   

In order to understand the origin of the extra peaks, a HRTEM analysis was 

performed on Pr2NiO4.25 powders at room temperature as well as at low temperature (100 K) 

(Figure 5). 

 

 

Figure 5: HR-TEM electron diffraction (a, b) and HR-SPD (c, d) patterns of Pr2NiO4.25 

at 300 and 100 K. The red arrows in TEM-electron diffraction pattern and Blue arrow 

in HR-SPD show the unindexed reflections. 

A careful examination of these images shows the existence of several extra spots at 

RT as well as at 100 K, as shown in Figure 5. These extra spots in HRTEM-ED are not 

indexed by the main unit cell, and may be connected to the same modulation previously 

discussed, causing the extra reflections in the HR-SPD. 
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3.2.4. Synchrotron diffraction vs. Temperature for Pr2NiO4.25 from 450-100 K 

 High resolution synchrotron diffraction at “low” temperatures, i.e. XRD vs T (in situ), 

were performed with the aim to check the phase stability and most importantly the evolution 

of unindexed peaks in the low temperature range (100 < T (K) < 450). Figure 6 shows the 

contour plot of Pr2NiO4.25 synchrotron data, in which it is confirmed that the extra peaks 

appeared for all “low temperature” data. From 100 K to 450 K, a slight shift in the peaks is 

observed which is associated to the lattice expansion with increasing temperature.   

 

 

Figure 6: Contour plot of Pr2NiO4.25 HR-SPD data in the temperature range (100 ≤ T 

(K) ≤ 450). 

The Pr2NiO4.25 phase is highly stable throughout the low temperature range. The 

structure always keeps monoclinic symmetry and is indexed with C2/m space group. The 

thermal variation of refined lattice parameters is shown in Figure 7. All the lattice parameters 

increase with increasing temperature from 100 K to 450 K, showing almost linear variation. 
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Figure 7: Variation of lattice parameters a, b, c and β as a function of T (100 < T (K) < 

450) for Pr2NiO4.25. 

Consequently, the volume of unit cell increases throughout the temperature range 

from 100 to 450 K and is connected with the lattice expansion with temperature. The 

monoclinic distortion associated with the lattice is also dependent on temperature: a smooth 

decrease in distortion angle is observed from 100 to 450 K temperature range. It means that 

the structure is more distorted at lower temperature than at RT.  
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Figure 8: Variation of one extra non monoclinic indexed peak in Pr2NiO4.25 as a function 

of temperature. 

The variation of one extra non monoclinic indexed peak with temperature is shown in 

Figure 8. All the extra peaks are shifted towards lower angle by increasing temperature from 

100 K to 450 K, while keeping the same intensity with temperature. It means that any 

possible incommensurate structural modulation existing in PNO is maintained throughout the 

temperature range studied here.  

As an intermediate conclusion, the above study confirms that Pr2NiO4.25 crystallizes 

with monoclinic structure with C2/m symmetry, with a possibility of a more complicated 

tilting or distorted modulation, of which the study is beyond the scope of our work.  With this 

new insight about the structure of the PNO end member, we can now consider to study the all 

LPNO series.  

 

3.3. Pr-rich LPNO mixed nickelates 

 A careful investigation of high resolution synchrotron data revealed that all examined 

Pr-rich compositions (x = 2, 1.5 and 1.2) exhibit a monoclinic structure and their distortion 

angle varies with the A-site cation substitution. Rietveld refinements of all Pr-rich phases 

described below were performed using an equivalent joint refinement approach and 

considering a similar structural model as discussed above for PNO. 
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3.3.1. Joint synchrotron and neutron data refinement of La0.5Pr1.5NiO4+δ  

 The crystal structure of La0.5Pr1.5NiO4+δ was refined using C2/m space group with a 

monoclinic structure using the same approach described above for PNO. The refined 

parameters obtained from the joint refinement are listed in Table 3. In the refined structure 

both Pr and La cations homogeneously occupy equivalent sites and are appropriately 

constrained when refined (e.g. same x, y, z, U). Test refinements found no statistical evidence 

in these data for preferred Pr/La site occupancy or a meaningful deviation from the target 

Pr/La stoichiometry, and thus La/Pr occupancies were fixed at 0.75/0.25 for the final 

refinement. The observed, calculated and difference plots for the jointly refined TOF-NPD 

and HR-SPD data are shown in Figures 9a and 9b, respectively. The final refined lattice 

parameters are a = 5.4064(2) Å, b = 12.5113(3) Å, c = 5.4649(3) Å and β = 89.953(3)°  with 

a combined χ² = 13.66 and Rwp = 10.92 %.  

As observed for PNO, in the HR-SPD data refinement of La0.5Pr1.5NiO4+δ, several 

non-indexed peaks are also detected, and they may possibly be explained by the same 

conclusion discussed for PNO, for example by an incommensurate structural modulation. 

 

 

 

(a) NPD data 
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Figure 9: Joint neutron (a) and synchrotron (b) powder diffraction data refinement of 

La0.5Pr1.5NiO4+δ using C2/m space group, recorded at 25 °C. (+) represent experimental 

data points, solid line refined data fit. The vertical sticks are La0.5Pr1.5NiO4+δ monoclinic 

phase. 

 

Table 3: Refined parameters from joint refinement of La0.5Pr1.5NiO4+δ, La0.8Pr1.2NiO4+δ and 

La1.4Pr0.6NiO4+δ 

Parameters La0.5Pr1.5NiO4+δ La0.8Pr1.2NiO4+δ La1.4Pr0.6NiO4+δ (biphasic) 

Space group C2/m C2/m Pr-rich: Fmmm La-rich: Fmmm 

a (Å) 5.4064(2) 5.4148(4) 5.4376(2) 5.4537(2) 

b (Å) 12.5113(3) 12.5461(3) 12.6220(2)  12.6210(3) 

c (Å) 5.4649(3) 5.4691(3) 5.4699(2) 5.4559(3) 

β (°) 89.953(3) 89.974(2) 90 90 

Site (Pr/La)1     

x, y, z 0, 0.359(1), 0 0, 0.359(8), 0 0, 0.360(3), 0 0, 0.359(8), 0 

U-iso× 100 0.648(4) 0.547(6) 0.789(5) 0.789(5) 

Occupancy 0.25/0.75 (La/Pr) 0.4/0.6 (La/Pr) 0.7/0.3 (La/Pr) 0.7/0.3 (La/Pr) 

Site (Pr/La)2     

x, y, z 0, 0.139(9), 0.5 0, 0.140(1), 0.5 -- -- 

(b) SPD data 
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U-iso× 100 0.648(4) 0.617(3) -- -- 

Occupancy 0.75/0.25 (La/Pr) 0.4/0.6 (La/Pr) -- -- 

Site Ni1     

x, y, z 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

U-iso× 100 0.206(7) 0.443(8) 0.512(2) 1.614(7) 

Occupancy 1 1 1 1 

Site Ni2     

x, y, z 0, 0.5, 0.5 0, 0.5, 0.5 -- -- 

U-iso× 100 0.206(7) 0.443(8) -- -- 

Occupancy 1 1 -- -- 

Site O1     

x, y, z 0, 0.167(7), 0 0, 0.178(1), 0 0, 0.174(7), 0 0, 0.168(2), 0 

U-iso× 100 4.221(7) 9.633(2) 1.933(7) 4.903(4) 

Occupancy 1 1 1 1 

Site O2     

x, y, z 0.745(4), 0, 0.248(6) 0.742(9), 0, 0.248(6) 0.25, 0, 0.25 0.25, 0, 0.25 

U-iso× 100 0.494(5) 0.832(2) 1.093(8) 2.594(2) 

Occupancy 1 1 1 1 

Site O3     

x, y, z 0, 0.321(8), 0.5 0, 0.330(1), 0.5 -- -- 

U-iso× 100 4.221(7) 1.971(2) -- -- 

Occupancy 1 1 -- -- 

Site O4     

x, y, z 0.258(1), 0, 0.255(7) 0.252(3), 0, 0.246(4) -- -- 

U-iso× 100 0.494(5) 0.312(8) -- -- 

Occupancy 1 1 -- -- 

Site Oi     

x, y, z 0.25, 0.25, 025 0.25, 0.25, 025 -- -- 

U-iso× 100 1.133(2) -- -- -- 

Occupancy 0.09019 -- -- -- 

χ² 13.66 15.27 15.86 15.86 

Rwp 10.92 % 11.29 % 11.68 % 11.68 % 
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3.3.2. La0.8Pr1.2NiO4+δ joint refinement 

 The crystal structure of La0.8Pr1.2NiO4+δ is also well refined using a similar monoclinic 

C2/m model. The refined parameters obtained from the joint refinement are listed in Table 3. 

The model for Rietveld refinement was built on the basis of above reported atomic 

arrangement for PNO and La0.5Pr1.5NiO4+δ.  The observed, calculated and difference for two 

patterns are shown in Figures 10a and 10b. The lattice parameters are a = 5.4148(4) Å, b = 

12.5461(3) Å, c = 5.4691(3) Å and β = 89.974(2)° with χ² =15.27 with Rwp = 11.29 %  for 

two histograms.  

Once again, in the synchrotron data refinement, several extra weak unindexed peaks 

(not shown) are also detected and most probably are due to incommensurate structural 

modulation. 

 

 

 

(a) NPD data 
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Figure 10: Joint neutron (a) and synchrotron (b) powder diffraction data refinement of 

La0.8Pr1.2NiO4+δ using C2/m space group, recorded at 25 °C. (+) represent experimental 

data points, solid line refined data fit. The vertical sticks are La0.8Pr1.2NiO4+δ monoclinic 

phase. 

Comparing La0.8Pr1.2NiO4+δ and La0.5Pr1.5NiO4+δ with PNO, the main difference 

appears in the distortion angle and in the intensity of extra peaks. The substitution on A-site 

cation (i.e. replacing Pr with La) affects the structure. Indeed, the Pr
3+

 cation size is smaller 

than that of La
3+

 cation ((r (Pr
3+

) = 1.126 Å and r (La
3+

) = 1.16 Å) [12], leading to a reduced 

distortion in the structure for compositions with lower Pr content. The intensity of extra peaks 

is also decreasing with reduced Pr-content. 

 

3.3.3. Variation of β –angle for Pr-rich phases 

 The variations of diffraction reflections split by the monoclinic distortion as well as 

the refined monoclinic distortion angle  are illustrated in Figure 11 for samples with various 

Pr-rich compositions. The distortion angle decreases from PNO i.e. 90.07° down to 90.03° 

for La0.8Pr1.2NiO4+δ with decreasing the Pr-content. It means that this distortion is highly 

dependent on A-site cation substitution. 

 

(b) SPD data 
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Figure 11: Variation of (a) monoclinic distortion HR-SPD peaks and (b) the distortion 

angle, with x in Pr-rich LPNO phases. 

After the analysis of Pr-rich phases, the biphasic region was investigated using 

synchrotron diffraction data analysis.  

 

3.3.4. Determination of biphasic zone 

 From the HR-SPD data analysis now it is clear that the examined Pr-rich phases for x 

= 2, 1.5 and 1.2 exist with monoclinic structure with C2/m symmetry and the examined La-

rich phases for x = 0 and 0.25, exist with an Fmmm orthorhombic structure. In between these 

single phase Pr rich monoclinic and La rich orthorhombic structure regions, a biphasic region 

exists from 0.5 ≤ x ≤ 1.1, as shown in Figure 12.  
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Figure 12: HR-SPD data plots illustrating the co-existence of [(002) and (200)] family 

reflections from both Pr and La rich structures. 

In this region it was not possible to perform good refinement of the HR-SPD pattern 

using a single phase model (such as C2/m, Fmmm or Bmab). A satisfactory fit could only be 

achieved using a two-phase model. In this biphasic domain, no significant monoclinic 

distortion can be observed (< 90.02
o
) and/or because of overlapping reflections with the 

mixed phases. Nor was any evidence found for extra reflections associated with long range 

Bmab tilting. Therefore, for the sake of simplicity and Rietveld refinement stability the 

biphasic refinements were performed considering two orthorhombic phases with Fmmm 

space group and in this way a satisfactory fit to the data is obtained for all the samples of 

biphasic region. 

 

3.3.5. La1.4Pr0.6NiO4+δ joint refinement 

 The La1.4Pr0.6NiO4+δ (x = 0.6) composition belongs to the biphasic domain in between 

pure La- and pure Pr-rich phases (0.5 ≤ x ≤ 1.1).  It was impossible to refine the biphasic 

composition using single space group.  The crystal structure of La1.4Pr0.6NiO4+δ was then 

refined using two Fmmm space groups with different orthorhombic structure. The refined 

parameters obtained from the joint refinement are listed in Table 3. In the two existing 

phases, one is for La-rich and the other one is Pr-rich phase. The observed, calculated and 
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difference for NPD and SPD patterns are shown in Figure 13. The lattice parameters are a = 

5.4376(2) Å, b = 12.6220(2) Å, c = 5.4699(2) Å, V = 375.5 Å
3
 and a = 5.4537(2) Å, b = 

12.6210(3) Å, c = 5.4559(3) Å, V = 375.9 Å
3
 for Pr-rich and La-rich phases respectively, 

with χ² =15.86 with Rwp = 11.68 % for two histograms. In addition, extra peaks are not 

detected for La1.4Pr0.6NiO4+δ.  

 

 

 

(a) NPD data 
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Figure 13: Joint neutron (a) and synchrotron (b) powder diffraction data refinement of 

La1.4Pr0.6NiO4+δ using Fmmm space group, recorded at 25 °C. (+) represent 

experimental data points, solid line refined data fit. The upper markers (red sticks) are 

Pr-rich phase, lower markers (black sticks) are La-rich phase. 

Further it was tried to quantify Pr- and La-rich phases using the Rietveld refinements 

of HR-SPD data. The percentage of each phase is given in Table 4.  

 

Table 4: Percentage of Pr- and La-rich phases in biphasic domain 

Samples Pr-rich phase (%)  La-rich phase (%) 

La1.5Pr0.5NiO4+δ 58 42 

La1.4Pr0.6NiO4+δ 70 30 

LaPrNiO4+δ 80 20 

La0.9Pr1.1NiO4+δ 93 7 

 

Interestingly, in all compositions the percentage of Pr-rich phase is more than La-rich 

one. The percentage of Pr-rich phase is decreased with decreasing Pr-content. For example, 

La1.5Pr0.5NiO4+δ (with 25 % of Pr) contains of 58 % Pr- rich and 42 % of La-rich phases. 

(b) SPD data 
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Finally, the variation of La2-xPrxNiO4+δ phases with x is summarized as follows: the La 

rich phases exist only for (0.0 ≤ x < 0.5), then a biphasic domain (0.5 ≤ x ≤ 1.1) and Pr rich 

phases (1.1 < x ≤ 2.0) are observed, as shown in Table 5.  

 

Table 5: Variation of all La2-xPrxNiO4+δ phases with x 

La-rich side  

(0 ≤ x < 0.5) 

(Fmmm) 

Orthorhombic 

 

Biphasic region  

(0.5 ≤ x ≤ 1.1) 

(Fmmm + Fmmm) 

Orthorhombic 

Pr-rich side  

(1.1 < x ≤ 2) 

(C2/m) 

Monoclinic 

 

 

3.3.6. Variation of lattice parameters 

 The lattice parameters of all the phases were determined by refinement of high 

resolution synchrotron data as well as joint refinement. Their variation as a function of x is 

reported in Figures 14a and 14b. The substitution of La by Pr leads to a smooth decrease in 

each lattice parameters for all La- and Pr-rich phases. The lattice parameters a and c for La-

rich phases smoothly decrease whereas for Pr-rich phases a separate increase in lattice 

parameter c and decrease in parameter a is evidenced. In the biphasic domain the lattice 

parameter c seems almost constant. The b parameter decreases throughout from x = 0 to x = 

2.  
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Figure 14: Variation of (a, b) lattice parameters and (c) volume, as a function of x for 

La2-xPrxNiO4+δ. 
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The decrease of the cell parameters with increasing Pr-content is consistent with the 

variation of ionic radius ((r (Pr
3+

) = 1.126 Å and r (La
3+

) = 1.16 Å) [12], leading to the 

overall decrease in volume. An interesting point can be noted, i.e. the volume of both La- and 

Pr-rich phases is very similar in the biphasic domain, as shown in Figure 14c. This suggests 

both phases (La and Pr rich) have similar average A-site cation compositions for equivalent x 

values. 

3.3.7. Variation of extra peaks with A-site cation substitution 

 The variation of weak extra unindexed peaks is also highly dependent on A-site cation 

substitution. First of all, these extra peaks are observed only for Pr-rich phases, while for La-

rich and biphasic domain no extra peaks are evidenced. The evolution of unindexed peaks for 

Pr-rich phases (x = 2, 1.5 and 1.2) is shown in Figure 15. 
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Figure 15: HR-SPD pattern of Pr rich phases. (a) Circles highlight extra peaks that are 

not indexed in the C2/m unit cell and (b) Magnification of the 10.82 to 10.94° region. 

The intensity of extra peaks is the highest for PNO, it is decreased for La0.5Pr1.5NiO4+δ 

with decreasing Pr-content. In the case of La0.8Pr1.2NiO4+δ the intensities are almost 

negligible. Moreover, a shift in the unindexed peaks (towards the low 2θ values with La-

substitution) is also noticed. 
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3.3.8. Effect of δ-value and A-site cation substitution  

 LPNO structural changes like cell volume and monoclinic distortion can be affected 

by two factors, a) the oxygen stoichiometry δ-value and b) the A-site cation substitution. In 

order to better understand how these parameters modify the structure, the variation of the 

volume and distortion angle as a function of δ is shown in Figure 16. 

 

Figure 16: Variation of volume and distortion angle as a function of δ for Pr-rich 

phases. 

When the δ-value is decreased in a fixed A-site cation composition (for example in 

Pr2NiO4.25 (air) to Pr2NiO4.19 (argon)), a very small decrease in the β angle (from 90.07 to 

90.06) as well as in volume (from 366.41 to 366.30 Å
3
) is observed. On the contrary, in the 

case of a decrease of δ by A-site cation substitution, i.e. by decreasing the Pr-content, a large 

increase in the cell volume and a large decrease in β- angle is observed. The volume of 

Pr2NiO4.25 is 366.41 Å
3
, and it increases to 369.66 and 371.54 Å

3 
for La0.5Pr1.5NiO4.22 and 
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La0.8Pr1.2NiO4.20, respectively. At the same time the distortion angle is decreased from 90.07° 

for Pr2NiO4.25 to 90.05° and 90.03° for La0.5Pr1.5NiO4.22 and La0.8Pr1.2NiO4.20 respectively. 

Finally it can be concluded that structural changes in the PLNO series such as volume 

and the distortion angle are more strongly affected by the overall A-site cation substitution 

than by the interstitial delta value. 

4. Conclusions 

La2-xPrxNiO4+δ (0.0 ≤ x ≤ 2.0) phases were structurally characterized by synchrotron 

and neutron diffraction. Through this study it has been established that Pr2NiO4+δ exists with 

a monoclinic structure and the model that provides the best fit to the diffraction data at room 

temperature is based on a C2/m unit cell. This structure is maintained from low temperature 

100 K to 450 K.   

The structural analysis of LPNO nickelates shows the existence of three different 

domains depending on x value (i.e. Pr content). One is related to the La-rich phases with 

Fmmm orthorhombic structure (0.0 ≤ x < 0.5), the second one is related to Pr-rich phases 

(1.1 < x ≤ 2.0) with C2/m monoclinic structure. In between (0.5 ≤ x ≤ 1.1), a third one i.e. a 

biphasic domain is observed.   

Few unindexed extra peaks with low intensity are observed on Pr2NiO4+δ HR-SPD 

data, which could be related to incommensurate structure or modulation. The intensity of 

these unindexed peaks decreases with decreasing the Pr-content and the δ value. Moreover, 

the additional unindexed extra peaks are not observed for La rich phases and in the biphasic 

domain. 

The monoclinic distortion angle (β) is observed only for Pr-rich phases, and it 

decreases with decreasing Pr-content. It is more highly dependent on A-site cation 

substitution than on the δ value. In addition, the volume of unit cell does not show significant 

change by decreasing delta value but show larger changes with varying A-site cation 

substitution. 
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Abstract 

      The present study is focused on the ageing study of La2-xPrxNiO4+δ (LPNO) mixed 

nickelates, used as alternative oxygen electrodes for Solid Oxide Fuel Cells (SOFCs), thanks 

to their mixed ionic and electronic conductivity (i.e. MIEC properties). Herein, the chemical 

stability of the LPNO mixed nickelates under air at operating temperatures as well as the 

evolution of their polarization resistances during ageing (under air at idc = 0 and idc ≠ 0 

conditions, all impedance diagrams are recorded at OCV) were studied for duration up to one 

month. La-rich phases (x = 0 and 0.5) are highly stable whereas Pr-rich phases (x = 1, 1.5 and 

2) show decomposition under air after 1 month at 600, 700 and 800°C. For instance 

Pr2NiO4+δ (PNO) is completely decomposed into PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11. 

Interestingly, the ageing of the mixed LPNO//GDC//8YSZ half cells during 1 month under 

air shows no significant change in the polarization resistance (Rp value) at idc = 0 condition, 

whatever the composition, despite their various degrees of chemical stability. For the three 

studied materials, a different behavior is observed under current (idc = ±300 mA.cm
-2

 

conditions) with a faster degradation (i.e. large increase in Rp) in SOFC (cathodic) mode 

compared to the SOEC mode, where the Rp values are stable.  

           Finally, we demonstrate that the electrochemical properties of La2-xPrxNiO4+δ under 

ageing depend more on the interface and interphases formed between the cathode and the 

barrier layer GDC than on the chemical stability of the nickelates.  

 

Keywords: SOFCs, Nickelates, Chemical stability, Ageing, Interface  
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1. Introduction 

 The reduction of the operating temperature of the SOFCs is a critical challenge for 

their commercialization. Currently, the main objective is to decrease it down to around 600 – 

700°C, in an effort to decrease the device cost (for example, using stainless steel instead of 

ceramics as interconnects) and to improve the long term cells durability, which is a key issue 

to take into account when considering the commercialization of Solid Oxide Fuel Cells 

(SOFCs). In this scope the study of the long term stability of the SOFC components is very 

important, since the degradation rate of the fuel cell is determined by the degradation rates of 

its ceramic parts (i.e. cathode, electrolyte and anode) [1, 2]. The cell degradation generally 

occurs due to grain coarsening, particle smoothing/rounding, phase instability, interfacial 

segregation, evaporation, impurity accumulation at critical interfaces, inter-diffusion and 

reactions.  

 Our study focuses on the degradation phenomena related to the cathode materials. The 

degradation mechanisms directly affect the different steps involved in the oxygen reduction 

reaction (ORR) at the cathode, decreasing the electrochemical performance. In order to 

identify the different contributions to the ORR, electrochemical impedance spectroscopy 

(EIS) is normally recorded under varying conditions. Although the ORR at cathodes has been 

extensively investigated in the last decades, still today there is not yet a general agreement 

regarding which mechanisms are involved and which one is the rate limiting step. The overall 

rate-limiting mechanisms depend on the cathode composition and microstructure, 

temperature, pO2, current density, polarization, and thermal and electrochemical conditions. 

On the other hand, since the electrode reactions as well as ion transport through the 

electrolyte are temperature-driven, the electrochemical performance drastically decreases 

with decreasing temperature.  

 It is as well important to develop the materials and architecture of the cell in order to 

reach reasonable performance. Recently, the third generation metal supported IT-SOFC (T ≈ 

700 °C), namely Metal Supported Cell (MSC), has attracted many researchers because thinner 

electrodes and electrolyte layers are used in this architecture, which leads to lower the overall 

cost. In addition, good thermal cycling and easier current collection are expected from the 

metallic interconnect. However, the main issue with the MSC concerns the stability of the 

components (mainly the cathode) at high temperature under low pO2 (i.e.  under N2, pO2 ≈  

10
-4

 atm). Indeed, the sintering of the complete cell has to be performed under such 

conditions to prevent the oxidation of the metallic support. As the cathode contributes to a 
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large extent to the cell polarization resistance, our work aims to design cathode materials with 

MIEC properties able to be used in MSC-type devices. 

 Today it is well known that the most promising materials for cathodes are Mixed 

Ionic and Electronic Conducting (MIEC) oxides [3-8]. Rare earth nickelates with general 

formula Ln2NiO4+δ (Ln = La, Nd or Pr) have already shown good cathodic performance in 

combination with various electrolytes (mainly YSZ and GDC) thanks to their MIEC 

properties [9-14]. Moreover, Ln2NiO4+δ (Ln = La or Pr) type materials are chemically stable 

under air as well as under low pO2 (10
-4

 atm) up to 1300 °C, which indicates the suitability of 

these two materials as MSCs [15]. The opposite conclusion was drawn for Nd2NiO4+δ (NNO). 

Among Ln2NiO4+δ (Ln = La, Pr or Nd) compounds, Pr2NiO4+δ (PNO) shows the lowest 

polarization resistance using GDC interface and YSZ electrolytes [12] while La2NiO4+δ 

(LNO) exhibits high chemical stability. Aiming at high electrochemical performance, 

recently praseodymium substituted lanthanum nickelates La2-xPrxNiO4+δ (0.0 ≤ x ≤ 2.0) 

(hereafter labelled LPNO materials) were investigated [16]. However, in order to find the 

best compromise between high electrochemical performance and chemical stability, long 

term ageing experiments are mandatory. Some authors have previously reported the middle 

term chemical stability of these nickelates Ln2NiO4+δ (Ln = La, Pr or Nd). Montenegro-

Hernandez et al. have reported that LNO and NNO are chemically stable whereas PNO is 

not, being partially decomposed into Pr4Ni3O10 and Pr6O11, at 700 and 900 °C up to 72 h [17]. 

Kovalevsky et al. have also reported such kind of decomposition of PNO below 950 °C [18, 

19]. But the authors did not discuss the long term chemical stability of these materials. 

 To the best of our knowledge, the ageing of these nickelates used as electrodes for 

SOFCs and SOECs (Solid Oxide Electrolyzer Cells) has not yet been reported. An effort was 

then made in this work to characterize the LPNO electrodes during long term at operating 

conditions. We focus our attention on two points: 1) the study of the chemical stability of the 

LPNO powders under air at operating temperatures, 2) the measurements of Rp variation 

during ageing, either under idc = 0 and idc ≠ 0 conditions, for duration up to one month, with 

the aim to find the best compromise between chemical stability and electrochemical 

performance. 
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2. Experimental 

 Powder preparation 

 Five compositions belonging to the La2-xPrxNiO4+δ (x = 0.0, 0.5, 1.0, 1.5 and 2.0) solid 

solution were prepared using the citrate-nitrate route (modified Pechini method) [20]. The 

corresponding precursors were Pr6O11 (Aldrich chem, 99.9%), La2O3 (Strem Chemical, 

99.99%) and Ni(NO3)2.6H2O (Acros Organics, 99%). The final annealing was performed at 

1200 °C for 12 h under air, leading for all compositions to single and well crystallized 

phases. The resulting powders were attrited using zirconia balls and ethanol for 4 h with the 

aim to reach an average particle size of about 0.6 µm. More details about the powders 

preparation are given in ref. [16]. 

 Thermal ageing of powders 

 Ageing of LPNO powders was performed under air. Green pellets (about 60 % 

density) were first prepared and then left into a furnace either for one week or for one month 

at 600, 700 and 800 °C (i.e. at the operating temperatures of IT-SOFCs). After one month, the 

pellets were crushed into powder and characterized by XRD by using a PANanalytical X’pert 

MPD diffractometer with Cu-Kα incident radiation.  

 Cell manufacturing 

 Symmetrical half cells (electrode//GDC//8YSZ) were shaped for the electrochemical 

studies. Terpineol-based slurries were prepared with each nickelate material as well as with 

gadolinium doped (20%) ceria GDC powder. First, GDC layers (thickness ≈ 3 µm) were 

symmetrically screen printed on both sides of dense 8YSZ pellets (diameter ≈ 18 mm and 

thickness ≈ 1.2 mm), then sintered at 1300 °C for 1h under air. The nickelate layers 

(thickness ≈ 10-15 µm) were afterwards symmetrically screen printed and sintered at 1150 °C 

for 1 h under nitrogen atmosphere (pO2 ≈ 10
-4

 atm, MSC conditions) [16].  These sintering 

temperatures were previously optimized to obtain a controlled homogeneous porous electrode 

microstructure. However let us recall that the electrodes show close behaviour when sintered 

either in air or nitrogen. More especially, the electrochemical performance of PNO electrode 

are the same after sintering under air or nitrogen, and it is even better for LNO when sintered 

under nitrogen [21]. 
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 Electrochemical Characterization 

 In order to characterize the electrochemical properties of these electrodes on 

symmetrical half cells, two geometries were used: (i) two electrode system, both electrodes 

covering the GDC surface; in that case impedance spectroscopy measurements were 

performed under zero dc conditions, (ii) three electrodes system, a reference electrode being 

set all around the edge of the thick 8YSZ electrolyte ceramic in order to perform ageing 

under current.  

 The initial EIS measurements were carried out under air, in the temperature range 500 

− 800 °C under zero dc conditions. Gold grids (1.024 cm
-2 

meshes) were used as current 

collectors. When the negative current is applied from upper side of the symmetrical half cells, 

the working electrode (WE) behaves like cathode of the SOFC and the counter electrode (CE) 

behaves like anode of SOEC device. The current was removed and left 10 minutes for the 

stabilization before the EIS measurements at OCV, which were performed after each few 

hours of current flow. The impedance diagrams were recorded at steady state under 

potentiostatic control with 50 mV ac amplitude, from 10
6
 Hz down to 10

-1
 Hz, using a 

frequency response analyser module Autolab FRA2, coupled with a potentiostat/galvanostat 

PGSTAT 302N. The complex impedance diagrams were fitted using an equivalent circuit by 

means of the Zview
®
 software. The polarization resistance Rp values were calculated from the 

difference between the low (LF) and the high frequencies (HF) diagram intercepts with the 

Z′-axis of the Nyquist representation.  

 FIB-SEM analyses 

 The microstructures of the electrodes before and after ageing were observed by field 

emission Scanning Electron Microscopy (JEOL JSM 6330 A) equipped with an EDS 

detector. Cross sections preparations by focused ion beam milling, subsequent SEM images 

and elemental microanalysis were carried out using a Dual Beam SEM / FIB FEI Helios 

600i equipped with an EDS X-MAN SDD detector. 

3. Results and discussion 

 A detailed investigation of the La2-xPrxNiO4+δ (0.0 ≤ x ≤ 2.0) series was recently 

reported [16], a short summary being given there: XRD characterizations of the LPNO phases 

show that all nickelates crystallize in an orthorhombic K2NiF4 type structure. Depending on x 
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value (i.e. Pr content), two main domains can be distinguished. One is related to La-rich 

phases, from x = 0 to x = 0.5, fitted with the Fmmm space group, and the second one is 

related to Pr-rich phases, from x = 1 to x = 2, with Bmab space group [16]. All nickelates are 

always oxygen over-stoichiometric under air (the δ value at room temperature increases from 

0.16 (LNO) up to 0.25 (PNO) along with the increase of x) as well as under low pO2 (~10
-4

 

atm) in the temperature range (25 < T (°C) < 1000), then keeping their MIEC properties in 

these temperatures and pO2 ranges. For all compositions, the TEC values are almost the same 

(around ~ 13 × 10
-6

 °C
-1

) being nicely comparable with those of 8YSZ [16]. The electrical 

conductivity of LPNO increases with Pr-content up to x =1.0 while similar conductivity is 

observed for the Pr-rich phases, reaching a maximum value of ~100 S.cm
-1

 at 700 °C for 

LaPrNiO4+δ, La0.5Pr1.5NiO4+δ and PNO. At this temperature, the oxygen diffusion (D*) and 

surface exchange (k*) coefficients of LPNO (x = 0.5, 1 and 1.5) are in the order of 10
-8

 cm².s
-

1
 and 10

-6
 cm.s

-1
, respectively, which is also in the same range of the ones of PNO and LNO 

[16].  

At the stage of our work, in order to propose the best composition suitable as an oxygen 

electrode, it became mandatory to study the ageing of these materials. 

 

3.1. Thermal ageing of the mixed nickelates: powders 

 The XRD patterns of all LPNO phases (x = 0.0, 0.5, 1.0, 1.5 and 2.0) after 1 month 

ageing under air at 600, 700 and 800 °C are plotted in Figure 1. Depending on the 

composition, two different behaviors were observed: i) La-rich phases with x = 0 and x = 0.5 

are highly stable, no additional XRD peaks being observed; this result is in agreement with 

the work of Solis et al. [22], who reported no decomposition of LNO and La1.5Pr0.5NiO4+δ 

after 2 weeks at 750 °C ii) On the contrary, from x = 1 to x = 2 the XRD patterns of the aged 

LPNO samples show the appearance of new peaks attributed to the perovskite (La,Pr)NiO3-δ, 

the Ruddlesden-Popper (La,Pr)4Ni3O10+δ and Pr6O11 phases, the amount of each of them 

depending on both the Pr content as well as the ageing temperature. At 600 °C the perovskite 

(La,Pr)NiO3-δ phase is the major phase. At 700 °C, the strong decrease in the La2-xPrxNiO4+δ 

proportion is associated with the coexistence of (La,Pr)4Ni3O10+δ, (La,Pr)NiO3-δ and Pr6O11 as 

illustrated in Figure 1d for La0.5Pr1.5NiO4+δ. At 800 °C the (Pr,La)4Ni3O10+δ phase is 

predominant.  
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Figure 1: (a-e) XRD patterns of LPNO powders after 1 month ageing at 600, 700 and 

800 °C under air, (f) zoom on the XRD pattern of PNO for 38 < 2° < 45.  

(*) La2-xPrxNiO4+δ, (♦) (La, Pr)4Ni3O10+δ, (ο) (La,Pr)NiO3-δ, (●) Pr6O11. 
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Regarding the end-term (PNO),  it is totally decomposed into PrNiO3-δ and Pr6O11 at 

600 °C , while at 700 °C and 800 °C, the Ruddlesden-Popper Pr4Ni3O10+δ phase also appears. 

The amount of the various phases formed after ageing also depends on the duration at 

a given temperature. Table 1 gathers the results obtained after 1 week and 1 month. However, 

due to some peak overlapping, we did not succeed to precisely quantify the amount of each 

phase. Depending on the intensity of the more intense peaks from X-ray diffractograms, 

major (M), minor (m) and very little (lit) phases were distinguished.  

 

Table 1: Phases appearing in LPNO powder after 1 week and 1month ageing at 600, 700 and 800 °C 

under air (M = major phase, m = minor phase, lit = small amount) 

 

Sample 600°C/ 

1week 

600°C/ 

1month 

700°C/ 

1week 

700°C/ 

1month 

800°C/ 

1week 

800°C/ 

1month 

 

La
2
NiO

4+δ
 La

2
NiO

4+δ
 La

2
NiO

4+δ
 La

2
NiO

4+δ
 La

2
NiO

4+δ
 La

2
NiO

4+δ
 La

2
NiO

4+δ 

 

La
1.5

Pr
0.5

NiO
4+δ

 (La,Pr)
2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
  

 

LaPrNiO
4+δ

 (La,Pr)
2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ 
(M), 

(La,Pr)NiO
3-δ 

(m), 

Pr
6
O

11 
(m) 

(La,Pr)
2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (M), 

 (La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ
,
 

Pr
6
O

11
 

(La,Pr)
2
NiO

4+δ
 (M), 

(La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ,  

Pr
6
O

11
 

 

(La,Pr)
2
NiO

4+δ
, 

(La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ
 (M), 

Pr
6
O

11
 

La
0.5

Pr
1.5

NiO
4+δ

 (La,Pr)
2
NiO

4+δ
 (La,Pr)

2
NiO

4+δ
 (m), 

(La,Pr)NiO
3-δ 

(M), 

Pr
6
O

11
 

(La,Pr)
2
NiO

4+δ 
(M), 

 (La,Pr)NiO
3-δ

 (m), 

Pr
6
O

11
 (lit) 

(La,Pr)
2
NiO

4+δ
 (lit), 

(La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ
, 

Pr
6
O

11
 

(La,Pr)
2
NiO

4+δ
 (m), 

(La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ
 (M), 

Pr
6
O

11
 (M) 

 

(La,Pr)
2
NiO

4+δ
 (m), 

(La,Pr)NiO
3-δ

, 

(La,Pr)
4
Ni

3
O

10+δ
 (M), 

Pr
6
O

11
 (M), 

Pr
2
NiO

4+δ
 Pr

2
NiO

4+δ 
(M), 

PrNiO
3-δ

,  

Pr
6
O

11
 

Pr
2
NiO

4+δ
 

(traces), 

PrNiO
3-δ 

(M), 

 Pr
6
O

11
 

 

Pr
2
NiO

4+δ
 (lit), 

PrNiO
3-δ

 (M), 

Pr
4
Ni

3
O

10+δ
, 

Pr
6
O

11
 

PrNiO
3-δ

, 

Pr
4
Ni

3
O

10+δ
, 

Pr
6
O

11
 

PrNiO
3-δ

, 

Pr
4
Ni

3
O

10+δ, 

Pr
6
O

11
 

Pr
4
Ni

3
O

10+δ
,  

PrNiO
3-δ

,  

Pr
6
O

11
 

 

3.2. Symmetrical half-cell characterization  

 In a first step, the measurements were performed on as prepared symmetrical half cells 

of LPNO//GDC//8YSZ//GDC//LPNO as a function of temperature under air [16]. Note that 

thin GDC layers, labelled as buffer layers, were deposited in order to increase the 

electrochemical performance of the cells [12]. The lowest polarization resistances were found 

for the PNO electrode, namely Rp = 0.01, 0.03 and 0.15 Ω.cm² at 800 °C, 700 °C and 600 °C 

respectively. The substitution of La for Pr leads to a significant increase in the polarization 

resistances up to values of 0.13, 0.28 and 0.93 Ω.cm² at 800 °C, 700 °C and 600 °C 

respectively, for LNO.  
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3.3. Ageing of half cells under idc = 0 

           In a second step, half-cells were placed inside a furnace during one month at 600 and 

700 °C, under air (Ageing at 800 °C was not performed due to lack of time). After one month 

ageing, EIS measurements were performed under idc = 0 condition. The comparison of the 

polarization resistances for the five compositions (x = 0.0, 0.5, 1.0, 1.5 and 2.0) is shown in 

Figure 2 for as prepared and aged samples. As a very interesting result for all LPNO 

compositions, the polarization resistance remains almost the same before and after ageing, no 

significant evolution being observed. For example, at 700 °C Rp = 0.08 Ω.cm² for 

La1.5Pr0.5NiO4+δ half-cell before and after ageing.  

 

          It’s remarkable to note that this trend was observed despite the complete decomposition 

of PNO into PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11, firstly suggesting that those phases should be 

as well active in the oxygen electrode reaction (OER). Indeed, we have recently reported the 

electrochemical properties of these forming PrNiO3-δ and Pr4Ni3O10+δ materials [23, 24]. 

PrNiO3-δ is not a very efficient material regarding its electrochemical performance (Rp= 0.91 

Ω·cm² at 600 °C) [23], the opposite conclusion being drawn for Pr4Ni3O10+δ, for which 

similar Rp values compared to PNO being recorded [24] (Rp = 0.16 Ω·cm² and 0.15 Ω·cm² at 

600 °C for Pr4Ni3O10+δ and PNO, respectively).   

 

 As examples, the evolution of the impedance diagrams for the two end-terms of the 

LPNO series i.e.  LNO and PNO during electrochemical ageing at 700 °C, under air, is 

plotted in Figure 3(a, b) and 3(c, d), respectively. For LNO, the Rp value slightly increases 

from 0.21
4
 (0 h) to 0.24 Ω.cm² (750 h) (Figure 3a) and the overall shape of impedance plot 

does not change with time, in good agreement with the chemical stability of the LNO 

electrode.  

 

 

                                                      
4
 The difference in Rp values in between chapter 2 and 3, Rp =0.28 Ω·cm² and Rp = 0.21 Ω·cm² for LNO may be 

attributed to the use of different GDC inks. 
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Figure 2:  Rp measured on as prepared and aged (T= 600 and 700 °C) symmetrical half 

cells (at idc = 0 condition), under air, for LPNO electrodes. (■) as prepared, (●) aged at 

600 °C/1 month, (▲) aged at 700 °C/1 month. 
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Figure 3: Variation of the Nyquist and Bode diagrams for symmetrical cells (a, b) LNO 

and (c, d) PNO electrodes, at 700°C under air. 

For PNO the Rp value increases more significantly, i.e. about 50% from 0.03 to 0.045 

Ω.cm² (Figure 3c). Moreover, contrarily to LNO the shape of the impedance plots changes 

with time.  At an early stage (t < 106 h), the Bode plots show only two contributions, namely 

P1 and P2, that correspond to the oxygen electrode reaction (OER) [25] and molecular O2 gas 

diffusion, respectively [26, 27]. Upon ageing, an extra contribution (P3 in between the 

frequency 1-100 Hz) more easily depicted in the bode plot (Figure 3d) appears and increases 

with time. This extra contribution could illustrate the dissociation of PNO. 

   

3.4. Ageing of half cells under idc ≠ 0 up to 1800 h 

          The ageing under current of three LPNO electrodes, i.e. namely LNO, La1.5Pr0.5NiO4+δ 

and PNO was studied using the electrochemical impedance spectroscopy measurements. In 

addition to the two end members, La1.5Pr0.5NiO4+δ was chosen due to its good chemical 

stability at operating temperature as LNO (contrarily to PrLaNiO4+δ and La0.5Pr1.5NiO4+δ, 
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Figures 1c, d); moreover, the Rp at OCV is 0.08 Ω·cm² for La1.5Pr0.5NiO4+δ, which is around 

three times lower than LNO (Rp = 0.21 Ω·cm²). 

          For the electrochemical measurement under current, a specific three electrode setup 

was used. The main interest of the three electrode EIS setup is to record the electrochemical 

performance of the working (WE) and counter electrodes (CE) separately, by using a 

reference electrode (RE). Usually the RE is placed on the electrolyte surface at some distance 

expected to be sufficiently far from the active electrodes in a region of un-uniform potential 

distribution [28-30]. However, several authors observed artifacts in the impedance diagrams 

related to the placement of the reference electrode [31-34]. 

As an initial point, EIS measurements were performed before the ageing process. As 

an example, Figure 4 shows the Nyquist plot of the data recorded on the half-cell including 

PNO as electrode, at 700 °C and t = 0 h. The Rp value and the shape of the diagram are the 

same when recorded on both sides of the half cell. This trend was observed with all LPNO 

samples.  

 

Figure 4: Nyquist plot measured by 3 electrodes system on both sides of the half cell 

including PNO as electrode, recorded at 700°C and t = 0 h (idc = 0). 

 

3.4.1. Behavior of the electrode in SOFC mode during ageing 

 The evolution of the impedance diagrams was recorded for LNO, La1.5Pr0.5NiO4+δ and 

PNO electrodes in SOFC and SOEC modes during ageing under current. An intermediate 

current value (idc ± 300 mA.cm
-2

) was chosen for the ageing experiments. The results are 

plotted in Figure 5. 
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 In SOFC mode (cathodic current), the polarization resistances of LNO, 

La1.5Pr0.5NiO4+δ and PNO samples significantly increase with time, while in SOEC mode the 

increase seems less significant. Let us discuss below the different situations regarding each 

considered composition. 

 

3.4.2. Behaviour under cathodic current (SOFC mode) 

 For LNO the Rp value is ~ 0.19 Ω·cm² for both upper and lower electrodes at idc = 0 

condition, but under current the impedance is affected on both short and long term. The 

performance of LNO electrode during ageing under cathodic current flow (−300 mA.cm
-2

) is 

compared in Figure 5a.  
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Figure 5: Evolution of impedance diagrams (Nyquist plot) at 700 °C with time under 

cathodic current (idc = − 300 mA.cm
-2

) for (a) LNO (b) La1.5Pr0.5NiO4+δ and (c) PNO 

electrode. 

As for some other electrodes, such as for example LSM [34], the LNO electrode is initially 

activated by the current load, i.e. Rp measured at OCV decreases upon increasing time. After 

120 h under cathodic current (Figure 5a), the Rp of LNO electrode decreases down to 0.10 

Ω·cm², then further decreases down to 0.09 Ω·cm² after 310 h of ageing (see Figure 5a and 

inset inside). Further ageing leads to a short increase of the Rp values up to 0.12 Ω·cm² after 
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589 h with addition of an extra contribution which  kept on increasing up to 1800 h with 

higher rate. The capacitance of this additional contribution was calculated from the data 

obtained by fitting using R//CPE, it is equal to 3.5 × 10
-4

 F.cm
-2

. This capacitance value 

reveals that this contribution is somewhat related to the interface. A long ageing (up to 1800 

h) leads to a very large increase of the Rp values (up to about 2 Ω·cm²).  

 The activity of La1.5Pr0.5NiO4+δ electrode under cathodic current is different than the 

one of LNO. No decrease of Rp is noticed during the first few hours of ageing  the 

polarization resistance remains stable at ~ 0.08 Ω·cm² up to 313 h of ageing under cathodic 

current. Upon further ageing, a quite large increase is observed up to Rp ~ 0.46 Ω·cm² after 

1800 h ageing (Figure 5b). 

 PNO electrode shows a progressive very large increase in Rp as a function of time 

under cathodic current (Figure 5c). The Rp value is increased up to 1.25 Ω·cm² after 1800 h 

(from the initial value 0.03 Ω·cm²). The gas diffusion process (smaller arc in Figure 4), 

which was clearly visible before starting the ageing process, is progressively overlapped by 

the OER process.  

 

3.4.3. Behaviour under anodic current (SOEC mode) 

 The performance of LNO electrode during ageing performed under anodic current 

flow (+300 mA.cm
-2

) is plotted in Figure 6a.  After 120 h of ageing, the polarization 

resistance Rp increases from 0.21 to 0.26 Ω·cm². Then a small similar increase is observed up 

to 0.33 Ω·cm² in much longer time namely up to 1800 h. The behavior under anodic current 

then appears different and more “stable” than under cathodic current.  
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Figure 6: Evolution of impedance diagrams (Nyquist plot) at 700 °C with time under 

anodic current (idc = + 300 mA.cm
-2

) for (a) LNO (b) La1.5Pr0.5NiO4+δ and (c) PNO 

electrode. 

The activity of La1.5Pr0.5NiO4+δ electrode under anodic current (+300 mA.cm
-2

) is 

somewhat complex: during the first few hours of ageing (up to 313 h) Rp values are almost 

stable (~ 0.08 Ω·cm²). Then the appearance of a small inductive loop is observed at lower 

frequency (Figure 6b). Further ageing leads to an increase in the inductive loop while the 

electrode contribution itself seems stable. The same behaviour is observed for PNO, the Rp 

value remains quite stable while again an inductive loop appears after 360 h of ageing, and 

increases up to 1800 h of ageing (Figure 6c).  
 

3.4.4. Discussion about the inductive loop 

 At t = 0 i.e. idc = 0 condition, the overall shape of the OER impedance diagrams at the 

cathodic and anodic side were the same, showing equivalent Rp values (as an example Figure 

4). An inductive loop appears in the EIS diagram but only at the anodic side (SOEC mode) 

within the ageing process. Reinhardt et al. showed that change in the potential lines 

distribution in the solid electrolyte when the EIS measurements frequency varies, can induce 

distortions in the measured impedance using the three electrode system [35]. Adler suggested 

that misalignment of the electrodes, or differences in their time constant (τ = RpCdl, where Rp 

is the polarization resistance and Cdl is the double layer capacitance of the 
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electrode/electrolyte double layer) can generate inductive loops in the impedance spectra, 

also known as inductive artifacts [29], leading to experimental misinterpretations. In 

summary, this artifact or distortion appears when the potential probed by the reference 

electrode is not stable toward the EIS frequency measurement. 

 In our case, the alignment of the electrode was satisfactory, since the Rp was the same 

for both electrodes before starting the ageing process, and no inductive loop was observed 

(Figure 4). During the ageing process, a differentiation in the relaxation time of the 

phenomena (anode and cathode) could occur, as the electrodes go through chemical changes, 

with respect to possible additional interface and/or change in composition of the electrode 

itself as discussed earlier) after few hours of ageing. These phenomena could be responsible 

for the progressive inductive loop appearance. This indicates that the ageing of the electrode 

material is different depending on the SOFC or SOEC mode.  The calculation of Rp is 

complex in this situation. These kinds of impedance spectra (Figure 6b, c) lead to large 

errors in the determination of Rp and will not be accurate if only the intercept on Z' -axis of 

the Nyquist plot is taken into account. 

 

3.4.5.  Determination of the “true” Rp in SOFC and SOEC modes 

 In case of LNO, no inductive loop was observed, and hence the Rp can be calculated 

simply fitting the experimental diagram using R//CPE elements. The situation is more 

complicated in the case of La1.5Pr0.5NiO4+δ and PNO because the appearance of the inductive 

loop. Typical impedance diagrams recorded for the cathodic and anodic side of electrodes 

(using the three electrode setup, idc ± 300 mA.cm
-2

), as well as the global response of the cell 

(symmetrical measurements, using the two electrode setup, idc = 0) are compared in Figure 7 

for La1.5Pr0.5NiO4+δ as an example. The inductive loop is only visible in the anodic side. 
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Figure 7: Nyquist plot of the impedance diagrams, recorded at 700°C a) under current 

(idc = ± 300 mA.cm
-2

) after 1800 h for La1.5Pr0.5NiO4+δ  a) cathodic side, b) anodic side 

and c) symmetrical half cell (measured by 2 electrode system) on the same sample. 

 

 Usually, the Rp value is calculated from diagrams recorded on both cathodic and 

anodic sides, as well as in symmetrical configuration, considering the difference between low 

and high frequency intercepts on real Z axis as depicted in Figure 7.  It is expected that [Rp 

(total, 2 electrodes) = (Rp (anode) + Rp (cathode))/2 Ω.cm²], which is not verified in this study, as Rp (total, 2 

electrodes)  = 0.23 Ω.cm² < (Rp (anode) + Rp (cathode))/2 Ω.cm² = 0.27 Ω.cm
2
. Actually, the result 

includes some error because of the appearance of an inductive loop impedance at the anodic 

side. It is then particularly difficult to separate it from the “true” OER from the cathodic side. 

Boukamp [31] proposed to fit the loop appearing at one side using a negative R//C parallel 

circuit, and to use the same R//C circuit to fit the impedance diagram at the other side – 

together with the OER processes. The methodology is depicted in Figure 8 and 9. 
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Figure 8: Nyquist plot of La1.5Pr0.5NiO4+δ impedance data fitted by Zview at 700°C 

under current (idc = ± 300 mA.cm
-2

) after 1800 h a) anodic side and b) cathodic side.  
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Figure 9: Nyquist plot of PNO with fitting by Zview at 700°C under current (idc =±300 

mA.cm
-2

) after 1800 h a) anodic side and b) cathodic side. (Rs =series resistance and L = 

inductance) 
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For La1.5Pr0.5NiO4+δ electrodes, the impedance diagram at the anodic side was fitted 

considering two contributions: namely R1//CPE1 and -Ra//-CPEa (Figure 8a). The 1st and 

2nd contributions are for the OER and the artifact, respectively. The impedance diagram at 

the cathodic side was fitted considering two contributions R1//CPE1 and Ra//CPEa (Figure 

8b). The first and second contributions correspond to the OER and the artifact, respectively.  

For PNO electrode, the impedance diagram at the anodic side was fitted considering 

three contributions: namely R1//CPE1, R2//CPE2 and –Ra//−CPEa (Figure 9a). The 1st and 

2nd contributions are attributed to the OER while the 3
rd

 contribution is attributed to the 

artifact. The impedance diagram at the cathodic side was fitted considering four contributions 

R1//CPE1, R2//CPE2, R3//CPE3 and Ra//CPEa (Figure 9b). The first three contributions are 

for OER and/or oxygen diffusion at the interface, and the 4
th

 one is for the artifact. Using this 

methodology, the relation [Rp (total, 2 electrodes) = (Rp (anode) + Rp (cathode))/2 Ω.cm
2
] was verified, as 

listed in Tables 2-3. Regarding the origin of the additional contributions, it is expected that 

they could be related to different materials formed during ageing and/or formation of 

additional interphases at the GDC/electrode interface.  

 

Table 2: Rp determined by fitting the impedance data of La1.5Pr0.5NiO4+δ (after 1800 h ageing 

under current) 

 WE (cathode) CE (anode) 

R1 (Ω) 0.04 0.19 

Ra (Ω) 0.06 -0.06 

R = R1 (Ω) 0.04 0.19 

Rp (Ω.cm²)  0.08 0.38 

Rp total = (Rp, WE + Rp, CE)/2 (Ω.cm²) 0.23 

Rp total (by two electrode set up) (Ω.cm²) 0.23 
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Table 3: Rp determined by fitting of impedance data of Pr2NiO4+δ (after 1800 h ageing under 

current) 

 WE (cathode) CE (anode) 

R1 (Ω) 0.03 0.01 

R2 (Ω) 0.19 0.01 

R3 (Ω) 0.40 -- 

Ra (Ω) 0.11 − 0.11 

R =R1+R2+R3 (Ω) 0.62 0.02 

Rp (Ω.cm²) 1.06 0.03 

Rp total = (Rp, WE + Rp, CE)/2 (Ω.cm²) 0.54 

Rp total (by two electrode set up) (Ω.cm²) 0.54 

 

3.4.6. Variation of polarization resistance with time 

 The evolutions of Rp vs ageing time (up to 1800 h) for LNO, La1.5Pr0.5NiO4+δ and 

PNO are plotted in Figures 10a and 10b for cathodic (SOFC mode) and anodic (SOEC 

mode) sides, respectively. In SOFC mode, the Rp increases for all three electrodes.  
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Figure 10: Variation of Rp with time for LNO, PNO and La1.5Pr0.5NiO4+δ electrodes aged 

under current (idc = ± 300 mA.cm
-2

) at 700°C up to 1800 h, (a) in SOFC and (b) in 

SOEC modes. 

 

 Interestingly, for La1.5Pr0.5NiO4+δ, the rate of increase in Rp is smaller than for PNO 

and LNO. The rate of increase is much faster for LNO and PNO after 1000 h: Rp increases 

~35 times from the initial value (0.03 to 1.06 Ω.cm² at 700 °C) for PNO and ~ 9 times from 

the initial value (0.21 to 1.96 Ω.cm² at 700 °C) for LNO after 1800 h of ageing, while for 

La1.5Pr0.5NiO4+δ, it increases by ~ 4 times (0.08 to 0.36 Ω.cm² at 700 °C). On the contrary, in 

SOEC mode all the electrodes show rather stable and constant Rp values up to 1800 h ageing.  

 

3.4.7. Postmortem analyses 

 In order to understand the evolution of Rp, post mortem analysis were performed on 

PNO, La1.5Pr0.5NiO4+δ and LNO electrodes just after the electrochemical ageing under 

current. 
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(a) XRD analysis 

  XRD experiments were performed on the top surface of all the three electrodes after 

the ageing process under current. Similar XRD patterns are observed at the cathodic and 

anodic sides for La1.5Pr0.5NiO4+δ and LNO electrodes, as shown in Figures 11 (a, b), a slight 

decomposition being observed whatever the side. 
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Figure 11: X-ray patterns after 1800 h ageing under current (idc = ± 300 mA.cm
-2

) at 

700°C for La1.5Pr0.5NiO4+δ (a), LNO (b) and PNO (c) electrodes. 

 

On the other hand, PNO electrode was completely dissociated on both sides, as shown 

in Figure 11c. On the cathodic side, Pr4Ni3O10+δ, Pr6O11 and NiO were observed, whereas on 

anodic side PrNiO3-δ and Pr6O11 were detected. A small peak of GDC was also observed on 

both sides. As the local partial pressure of oxygen (pO2) is higher at anodic side (SOEC 

mode), PrNiO3-δ was preferentially formed (stable at high pO2) as expected, contrarily to the 

cathodic side (SOFC mode) where the pO2 is lower. 

However, the phase decomposition does not explain the increase of Rp for the LNO 

and La1.5Pr0.5NiO4+δ electrodes in SOFC mode. It means that the chemical stability of material 

does not prevent an increase in Rp for these materials. Then the interface between the 

electrode and the electrolyte was further considered. 

(b) Analysis of the interface between electrode and GDC/YSZ 

 The interfaces at both sides of the symmetrical half cells were roughly analyzed by 

scratching the electrodes. As an example, for La1.5Pr0.5NiO4+δ, both sides were visually 

different, the side working in SOFC mode showing a light orange interface, while on the 

SOEC side the interface was grey (Figure 12a, b).  
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Light orange colour clearly indicates some chemical reactivity at the cathodic side 

between electrode and GDC, the main hypothesis being the partial diffusion of Pr in the 

GDC layer [36, 37]. The grey interface towards the anodic side reveals that there is almost 

no diffusion of Pr-cation into GDC layer. 

 

  

  
 

Figure 12: Interfacial difference between cathodic (a, c) and anodic (b, d) sides after 

1800 h ageing under current (idc = ± 300 mA·cm
-2

) at 700°C for La1.5Pr0.5NiO4+δ (a, b) 

and PNO (c, d) electrode. 

  In the case of PNO electrodes, both sides are brown, but on the SOFC mode the colour 

was darker and more intense than on the SOEC side (Figure 12c, d), which clearly indicate 

that on cathodic side the diffusion of Pr-cation is higher than on the anodic side. On the other 

hand, in case of LNO the interface is grey on both sides (not shown), which doesn't mean that 

there is no diffusion of La-cation into GDC layer. Indeed, the La-diffusion into GDC leads to 

(a)  (b)  

(c)  (d)  

Electrode  Electrode  

interface  
interface  
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La-doped ceria which is whitish in colour and hence it is not further distinguishable by 

colour.  

Then, as partial conclusions it can be expected that a Pr and/or La diffusion at the 

electrode/GDC interface takes place. The diffusion could occur via thermally activated 

chemical reactivity, but it should be as well driven by the current load, possibly explaining 

the differences between cathodic and anodic sides.  

(c) FIB-SEM analyses 

 In order to learn know more about the chemical diffusion at the electrode/GDC 

interface, FIB-SEM analyses were performed.  

We first aim to compare the behavior of the two studied interfaces after ageing under 

cathodic current: i) for LNO an additional interphase is clearly observed between the 

electrode and GDC layer (see the white dashed circle on Figure 13a), clearly indicating that a 

chemical reactivity occurs between GDC and the electrode; a La-diffusion into GDC is 

expected, which was however not visible just looking at the color of the interface as 

previously explained, ii) on the contrary, only a minor change in the morphology of the GDC 

layer as well as in the interface between electrode and GDC layer is observed on the 

La1.5Pr0.5NiO4+δ cathodic half cell (Figure 13b). With respect to the FIB-SEM results, a slight 

chemical reactivity could be only suspected (see arrow on Figure 13b).  

The additional interface layer is absent on the anodic sides whatever the studied half 

cells (see Figure 13c as an example). 
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Figure 13: SEM morphology and EDS of the electrode and interface at (a) LNO cathode 

side (b) La1.5Pr0.5NiO4+δ  cathode side and (c) La1.5Pr0.5NiO4+δ anode side after 1800 h 

ageing under current (idc = ±300 mA·cm
-2

) at 700 °C. 

 

(d) Discussion 

 During ageing either in SOFC or SOEC mode, a chemical reactivity occurs between 

the nickelates and the GDC layers. It is partly thermally driven then similar on both anodic 
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and cathodic sides of the cell. However, it is proposed that this chemical reactivity could be 

as well driven by the current load, being larger on the cathodic sides, especially for PNO and 

LNO. For instance, the cathodic interface of LPNO is orange (Figure 12a), which highlight 

the presence of Pr-doped ceria [36, 37]. On the contrary, on the anodic side, the interface is 

grey (Figure 12b), leading to conclude to a less pronounced chemical reactivity on this 

anodic side. Note that corresponding conclusions can’t be drawn regarding the cathodic side 

of PNO (possibly giving orange interfaces as well), because it was not studied due to the 

delamination, while for LNO both interfaces are grey, but unfortunately it is also the colour 

of the La-doped ceria. 

 These differences regarding chemical reactivity lead to differences in electrochemical 

performance depending on the side, as shown on Figure 10. Moreover, the inductive loop in 

the EIS impedance diagram only appears on the anodic side. The behaviour of the new 

formed inter-phase (La or Pr-doped ceria) is very important to understand the degradation 

mechanism. 

 In case of LNO a large reactivity is observed on the cathodic side (Figure 13b). To 

our opinion, ageing under cathodic current leads to the diffusion of La cation in the GDC 

layer, forming a thin layer of La-doped ceria. This interphase is seen as the additional 

contribution in Figure 5a, which could be at least partly an oxygen ion blocking layer, 

leading to the huge increase in Rp. From the EIS measurements, an additional contribution 

was also appearing on the cathodic side of LNO half cell (cf. Figure 5a), which is in very 

good agreement with this expectation. On the contrary, under anodic current the reactivity is 

less and hence Rp seems stable. 

 In the case of PNO cathode, during ageing under current the diffusion of Pr into GDC 

layer leads to the formation of a layer of Pr-doped ceria between GDC and the electrode. 

Contrarily to the previous case, the Pr-doped ceria is known as a MIEC material [36, 37], 

then probably helping in the formation of an improved electrochemical interface. Then, the 

reason for the Rp increase should be different. Then we can suggest two main hypotheses for 

the increase of Rp for PNO cathode: 

a) Depending on the considered side (either cathodic or anodic), the local pO2 on the 

electrode is different. For ex. on cathodic side the O2 is reduced hence pO2 will be 

low. Contrarily, the O2 is produced towards anodic side resulting in higher pO2 at the 

local scale. We have already observed the effect of pO2 on each side, as the 

decomposition product is not the same on both side (cf. Figure 11c). Moreover, the 
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behavior of Pr6O11 is different depending on pO2. Under air or slightly low pO2 it 

shows a phase transition from Pr6O11 to Pr7O12 [38] (Pr6O10.3) at ~ 700°C, then 

corresponding to an oxygen amount decrease, which may lead to partial delamination 

of the electrode.  

b) As an additional point, it is also suggested that on the top surface of the cathode side, 

because of the Pr6O11 segregation, the current collection is reduced, leading to an Rp 

increase. 

 

On the anodic side Rp is not increased even after complete decomposition of PNO, which can 

be understood according to the following points:  

a) On anodic side the pO2 is high and in that condition the transition from Pr6O11 to 

Pr7O12 is only observed at ~800 °C. Correspondingly, because the ageing was 

performed at 700°C, no delamination is noticed. 

b) Moreover the decomposition products on anodic side may be active electrodes.    

 

 Finally La1.5Pr0.5NiO4+δ shows the most promising electrochemical behavior among 

all LPNO series. In the La/Pr nickelate, the diffusion of cation is also expected, but small 

amount of Pr makes the mixed nickelate different from LNO. Under current load, the 

diffusion of Pr into GDC forms a very thin layer of conducting Pr-doped ceria (orange color, 

Figure 12a), which is indeed helpful to form an improved electrochemical interphase 

between electrode and GDC layer due to its MIEC property. This Pr-doped ceria would act as 

a barrier layer for the La-cation diffusion and hence in this case only small increase in Rp is 

observed during ageing under cathodic current. On the anodic side again the diffusion of 

cation is negligible, hence showing stable Rp values throughout the ageing. 

Finally it can be concluded that the formation of conducting interphase is a key point 

with respect to the long term electrochemical performance of the material.  

4. Conclusion 

 This work reports the ageing study of mixed nickelates electrode, La2-xPrxNiO4+δ 

(referred as LPNO), by both chemical and electrochemical ways. Initially, the ageing of 

powders was performed under air during one week then one month at 600 °C, 700 °C and 

800 °C. La-rich nickelates (LNO and La1.5Pr0.5NiO4+δ) are chemically stable, contrarily to the 

Pr-rich nickelates (PNO, LaPrNiO4+δ and La0.5Pr1.5NiO4+δ). The extent of the decomposition 
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of LPNO decreases with La content. The end member PNO is completely dissociated into 

PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11, while the proportions of each phase changed as a function 

of the ageing temperature. In a second step, electrochemical measurements were performed 

on LPNO//GDC//YSZ half cells under idc=0 conditions. As starting performance, the Rp 

progressively decreases from LNO (0.21 Ω.cm² at 700 °C) to PNO (0.03 Ω.cm² at 700 °C) by 

increasing Pr content. Despite various degrees of chemical stability, and even for a complete 

dissociation of the end member PNO, Rp values for all LPNO phases do not show significant 

change after ageing at idc = 0 condition. A different behaviour is observed under current (idc = 

±300 mA.cm
-2

 conditions) with a faster degradation (i.e. large increase in Rp) in SOFC 

(cathodic) mode. For PNO and LNO, a large increase in Rp is observed after 1000 h of ageing 

up to 1800 h, while for La1.5Pr0.5NiO4+δ, the rate of increase of Rp is small.  Contrarily, in 

SOEC (anodic) mode all the electrodes are stable with constant Rp values up to 1800 h. In this 

study it can be concluded that the chemical stability of La1.5Pr0.5NiO4+δ is the same as LNO 

even though there is small amount of Pr. The electrochemical performance of La1.5Pr0.5NiO4+δ 

under current is far better than the one of PNO and LNO in SOFC mode. So, La1.5Pr0.5NiO4+δ 

appears the best compromise as cathode in terms of chemical stability and electrochemical 

performance. Moreover, the chemical stability of the nickelate is not only an issue for the 

degradation, the major problem arising from the interface between electrode and GDC. The 

interface should be very efficient to achieve the long term electrochemical performance, 

either as a conductive interphase or a diffusion barrier layer.   
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Additional Information: Chapter 4 

1. Three electrode set-up for EIS measurements 

           In order to perform the electrochemical ageing measurements under current, the three 

electrodes geometry was used, in which a reference electrode was set around the edge of the 

thick 8YSZ electrolyte. The corresponding setup is shown in Figure 1.  

 

 

Figure 1: a) Architecture of symmetrical half cell, b) Schematic of three electrode  

set-up. 

 

For the electrochemical ageing experiments, a negative current is supplied from the 

working electrode (WE). In this manner, the WE electrode behaves as cathode side for SOFC 

and the counter electrode (CE) behaves as anode side of SOEC (Solid Oxide Electrolyzer 

Cell). It is then possible to investigate the behavior of electrode on both SOFC and SOEC 

conditions. 

2. Long term ageing of La2-xPrxO4+δ (x = 0.0, 0.5, 1.0, 1.5 and 2.0) phases under argon 

Long term ageing of all LPNO powders was also investigated for 1 month at 700 °C 

under argon. Interestingly the mixed nickelates are stable under argon for one month. The X-

ray diffraction pattern of Pr2NiO4+δ after one month ageing at 700 °C is compared with as 

prepared powder in Figure 2, as an example. 
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Figure 2: X-ray diffraction patterns of Pr2NiO4+δ powders for as prepared and after 

ageing at 700 °C for 1 month under argon. 
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Abstract 

Careful investigation of the  thermal stability and electrochemical properties of 

PrNiO3-δ phase, as cathode for Solid Oxide Fuel Cells (SOFCs) is reported. PrNiO3-δ, 

synthesized from citrate-nitrate route, cristallizes in an orthorhombic structure (S.G. : Pbnm). 

Under air, a transition to high temperature rhombohedral struture (S.G. :R-3c) occurs at 

around 600 °C. The variation of the oxygen content (3−δ) investigated as a function of 

temperature in various atmospheres (air, oxygen and argon) shows that PrNiO3-δ remains 

always sub-stoichiometric, starting from δ ≈ 0.05 at room temperature. Thermal gravimetry 

analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterizations are 

used to compare the PrNiO3-δ phase stability in air, oxygen and argon. Above 800 °C (in Ar), 

1000 °C (in air) and 1040 °C (in oxygen), PrNiO3-δ starts to decompose into Pr2NiO4+δ and 

NiO in a single step under Ar while intermediate transformation into Pr4Ni3O10+δ is observed 

under air and oxygen. The polarization resistance (Rp) of co-sintered GDC-PrNiO3-δ electrode 

is of  0.91 Ω.cm² at 600 °C under air, while the value is about half (Rp  0.46 Ω.cm²) for a 

two-step sintered half-cell. 

1. Introduction 

 Over the last few decades, there has been a growing interest towards fuel cell 

development. Due to high operating temperatures of Solid Oxide Fuel Cells (SOFCs), high 

quality heat is produced (at the same time as electricity) in the form of steam which can be 

used further for instance for the production of hydrogen by High Temperature Steam 

Electrolysis. The efficiency of SOFC is the highest among the other kind of fuel cells because 

of combined heat and power (CHP) technology. Nowadays many efforts are being carried out 

towards identifying an adequate cathode material for solid oxide fuel cells (SOFCs) working 

at intermediate temperatures ~700 °C because of too high over-potentials values at this side 
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of the cell. The promising materials for cathodes are Mixed Ionic and Electronic Conducting 

(MIEC) oxides [1-6]. If on one side, La0.6Sr0.4Co0.2Fe0.8O3-δ (LCSF) or La0.5Sr0.5CoO3-δ (LSC) 

remain largely investigated in respect of high performance (Rp = 0.13 Ω.cm² at 600 °C for 

LSCF electrode [7]), on the other side rare earth nickelates, Ln2NiO4+δ (Ln = La, Pr and Nd) 

compounds with the K2NiF4-type structure are promising candidates [8-10]. Among all the 

three nickelates, Pr2NiO4+δ shows excellent electrochemical properties at intermediate 

temperature [11]. In a careful investigation, we recently reported that Pr2NiO4+δ decomposes 

into PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11 during long term operation at temperatures ranging 

between 600 to 800 °C [12]. However, it was evidenced that even after complete chemical 

dissociation of the material the electrochemical performance under idc = 0 conditions do not 

show significant change (i.e. Rp remains the same). Aiming at a better understanding of the 

Pr2NiO4+δ behaviour, the properties of PrNiO3-δ, Pr4Ni3O10+δ were investigated. Herein, we 

focus our attention on the study of PrNiO3-δ while the one of Pr4Ni3O10+δ will be reported in a 

forthcoming paper [13]. 

 The lanthanide perovskite oxides LnNiO3 (Ln= La, Pr and Nd) have been 

largely studied in the frame of high temperature superconductivity [14-20]. LnNiO3 

(Ln= La, Pr, Nd) compounds crystallize in a distorted orthorhombic perovskite 

structure belonging to Pbnm space group symmetry [14]. In these perovskites, the 

electrical conduction mechanism is directly dependent of the oxygen content. An 

increase in the amount of oxygen vacancies leads to a drastic change in the electrical 

conductivity from metal to insulator. For instance, LaNiO3, LaNiO2.75 and LaNiO2.5 

exhibit metallic, metal-insulator transition and insulating behaviour, respectively, at 

temperature lower than 300 K. PrNiO3 and NdNiO3 also reveal a first order metal-

insulator transition in 130-400 K temperature range [14], while  PrNiO3 shows the 

highest electrical conductivity among LnNiO3 (Ln = Nd, Pr and Sm) in low 

temperature range (from 100−200 K) [14]. In addition, differential scanning 

calorimetric measurements on PrNiO3 reveal a first order phase transition at 780 K 

[20].   

 In the literature, the synthesis of stoichiometric PrNiO3 required high oxygen 

pressures as it is not easy to synthesize this phase at oxygen pressure pO2 ≤ 1 atm,  

Ni
3+

 being difficult to stabilize. However as stated above, the oxygen stoichiometry 

(i.e. amount of oxygen vacancies) is a key feature in the perovskites properties. 

Synthesis of deficient perovskites LnNiO3- (Ln= La, Pr, Nd), have been reported on 



140 

 

LaNiO3-δ and NdNiO3-δ phases having small values of sub-stoichiometry [21-23], but 

to the best of our knowledge, no data is available yet for PrNiO3-δ in the literature. The 

combination of high electrical conductivity and sufficient concentration of disordered 

oxygen vacancies should lead to MIEC properties allowing sub-stoichiometry 

perovskites as oxygen electrode in the field of Solid Oxide Fuel Cells (SOFCs). In this 

work, we focus on the properties of PrNiO3-δ, mainly the structural and thermal 

stability, the electronic properties prior to the investigation of their electrochemical 

activity under air as oxygen electrode for SOFCs. In the field of SOFCs, recent 

evolutions towards the development of metal supported cells, MSCs also called 3
rd

 

generation of SOFC, required to sinter the electrode materials at high temperature 

under low pO2 to avoid any detrimental oxidation of the metallic substrate. Aiming at 

fully investigating the suitability of PrNiO3-δ as oxygen electrode, herein, thermal 

stabilities in argon, air and oxygen atmospheres are compared allowing a further 

determination of the most appropriate sintering conditions. 

2. Experimental 

 Synthesis of powder 

 PrNiO3-δ was synthesised using the citrate-nitrate route (modified Pechini 

method) from Pr6O11 (Aldrich Chem, 99.9%), and Ni(NO3)2.6H2O (Acros Organics, 

99%) precursors [24]. The Pr6O11 powder was pre-fired at T = 900 °C overnight to 

remove the remaining water content due to its highly hygroscopic character. After the 

auto combustion step, a final annealing was performed at 850 °C for 48 h under 

oxygen flow and repeated eight times leading to well crystallized phases.  

 

 X-ray diffraction analysis  

 The as-prepared PrNiO3-δ powder was first characterized by X-ray diffraction 

(XRD) at room temperature using a PANanalytical X’pert MPD diffractometer with 

Cu-Kα incident radiation to check the phase purity. XRD vs. T, i.e. in situ XRD were 

afterwards, performed to check the stability of this phase with temperature under air. 

The XRD data were collected for both heating and cooling, after each 100 °C (for the 

500-700 °C temperature range, the data were recorded after each 50 °C in order to 

carefully investigate the phase transition) up to 950 °C. The heating and cooling rate 
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was fixed to 2 °C.min
-1

. After reaching a given temperature, the powder was 

equilibrated for 1 h and then the XRD data was recorded. With respect to 

thermodynamic equilibrium reached more easily, the XRD diffractogram of powder 

during cooling is reported here. Ageing of the phase was performed under air. Pellets 

were first prepared and then left into a furnace for one month at 600, 700 and 800 °C 

before XRD characterization. The X-ray diffraction patterns were fitted by profile 

matching using the Fullprof software. 

 

 Thermo Gravimetric Analysis (TGA) 

 TGA experiments were carried out using a TA Instrument TGA-Q50 device, 

with the aim i) to determine the oxygen deficiency,  i.e. the delta value, δ, at room 

temperature after heated the material in air up to 800 °C then cooled down to room 

temperature with a slow rate (2 °C.min
-1

), this cycle being reproduced twice to ensure 

the reproducibility. Then, the determination of the oxygen stoichiometry was achieved 

via the decomposition of the material into Ni metal and Pr2O3 under Ar -5% H2 flux 

with a very slow heating rate of (0.5 °C.min
-1

),  ii) to investigate its thermal stability 

under air, oxygen and argon atmospheres and iii) to study the δ variation vs. T in the 

domain of stability, under air (pO2 = 0.21 atm), oxygen (pO2 = 1 atm) and argon 

atmosphere (pO2 ≈ 10
-4

 atm).  

 

 Conductivity measurements 

 The electrical conductivity was determined under air using the four-probe 

technique, in the temperature range 25 - 800 °C with heating and cooling rates of 1 

°C.min
-1

. The green pellet of PrNiO3-δ was previously sintered at 900 °C for 24 h 

(density ~ 65 %). Two cycles were performed to confirm the reproducibility of 

measurement. 

 

 Preparation of symmetrical half cells and electrochemical measurements 

 

 For the electrochemical studies, symmetrical half cells 

(electrode//GDC//8YSZ//GDC//electrode) were prepared. To increase the 

electrochemical performance [11], a GDC layer was added between the electrolyte and 

the cathode. 
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  Dense pellets of 8YSZ (8 mol. % yttria stabilized zirconia) with diameter ≈ 18 

mm and thickness ≈ 1.2 mm were used as electrolyte. Terpineol-based inks were 

prepared from PrNiO3-δ and GDC powder (from Rhodia) for screen printing the 

cathode and the barrier layer, respectively.  

 The symmetrical half-cells were prepared using two ways, either a two-step 

sintering process or by co-sintering. At first, a 2 µm GDC layer was screen printed on 

both sides of the 8YSZ electrolyte pellets and sintered at 1300 °C for 1 h in air. The 

electrode layer was then screen printed on each side. Several sintering temperatures 

were tried starting from 900 °C to 1150 °C in air with the aim to optimize the sintering 

conditions of the cathode.   

 In a second way, the symmetrical half-cells were prepared by co-sintering GDC 

and the electrode. For this purpose, single layer of GDC ink was first deposited on 

both sides of YSZ pellet and dried at T ~ 80 °C; then, the electrode layer was 

deposited on both sides. Finally, both layers were co-sintered at 950 °C for 2 h in air. 

The electrochemical properties of the symmetrical half cells were characterized by 

Electrochemical Impedance spectroscopy, EIS. The initial EIS measurements were 

carried out under air, in the temperature range 500 – 800 °C under zero dc conditions. 

Gold grids (1.024 cm
-2 

mesh) were used as current collectors. The impedance 

diagrams were recorded at steady state under potentiostatic control with 50 mV ac 

amplitude, from 10
6
 Hz down to 10

-1
 Hz, using a frequency response analyser module 

Autolab FRA2, coupled with a potentiostat/galvanostat PGSTAT 302N. 

 The complex impedance diagrams were fitted using an equivalent circuit by 

means of the Zview
®

 (Scribner Associates) software in order to extract the polarization 

resistance (Rp) values. The Rp values were calculated from the difference between the 

low frequencies (LF) and the high frequencies (HF) diagram intercepts with the Z' axis 

of the Nyquist representation.  

3. Results and discussion 

3.1. XRD Analysis 

 The XRD characterization of the powder shows that as-synthesized PrNiO3-δ 

phases are well crystallized in an orthorhombic structure described by Pbnm space 
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group. Two extra small peaks corresponding to non-reactive NiO as well as traces of 

PrOx are also detected. 

  In the literature, synthesis of pure phase is only reported under oxygen pressure. 

Aqino et al. have also synthesized PrNiO3 using Pechini method but with very large 

amount of Pr6O11 and NiO as impurities [25]. The full pattern profile matching is 

shown in Figure 1. The lattice parameters a = 5.4254(4) Å, b = 5.3882(5) Å and c = 

7.6414(4) Å are slightly higher than those reported  by Lacorre et al. [20] and Huang 

et al. [26] for stoichiometric PrNiO3. This trend can be related to oxygen deficiency 

(i.e positive δ values as determined below) associated with the presence of larger Ni
2+ 

than Ni
3+ 

(r(Ni
3+

)  0.60 <  r(Ni
2+

) 0.69) [27].  

 In addition, a close examination of the XRD pattern shows asymmetric tails 

located at the right side of some reflections, including (002) and (022). The anisotropic 

peak broadening mainly results from stacking faults, as earlier reported for SmNiO3 

and GdNiO3 at room temperature by Alonso et al. [28]. 

 

3.1.1. Stability with Temperature (XRD vs. T) 

 The evolution of the X-ray patterns vs. T shows that the PrNiO3-δ phase remains 

stable up to 950 °C (Figure 2) while a structural transition from orthorhombic (S.G. 

Pbmn) to rhombohedral (S.G. R-3c) occurs at about 600 °C, which is in good 

agreement with Huang et al. data [26]. The transition is completely reversible.  

The full pattern profile matching of the XRD patterns was performed for all 

temperatures, which allows the determination of the lattice parameters and the 

calculation of the volume of the unit cell and TECs. 

 

3.1.2. Variation of lattice parameters and TECs 

 The thermal variation of the lattice parameters is shown in Figure 3a. The 

lattice parameters of orthorhombic and rhombohedral unit cells were first normalized 

with respect to cubic unit cell [29]. 
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Figure 1: Fullprof refinement of the pattern of PrNiO3-δ using Pbnm space group. 

 

 

Figure 2: Evolution of the X-ray diffractograms vs. T of PrNiO3-δ powder under air up 

to 950°C. 
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(𝑎, 𝑏)𝑐𝑢𝑏𝑖𝑐 =
(𝑎, 𝑏)(𝑂𝑟𝑡ℎ𝑜𝑟ℎ𝑜𝑚𝑏𝑖𝑐)

√2
 

 (𝑎, 𝑏)𝑐𝑢𝑏𝑖𝑐 =
(𝑎, 𝑏)(𝑟ℎ𝑜𝑚𝑏𝑜ℎ𝑒𝑑𝑟𝑎𝑙)

√2
 

𝑐𝑐𝑢𝑏𝑖𝑐 =
𝑐(𝑂𝑟𝑡ℎ𝑜𝑟ℎ𝑜𝑚𝑏𝑖𝑐)

2
      and     𝑐𝑐𝑢𝑏𝑖𝑐 =

𝑐(𝑟ℎ𝑜𝑚𝑏𝑜ℎ𝑒𝑑𝑟𝑎𝑙)

2√3
 

 

 The a and b lattice parameters increase non-linearly throughout the temperature 

range whereas the c parameter decreases after the structural transition. At around 600 

°C, the change of symmetry from orthorhombic (Pbnm) to rhombohedral (R-3c) 

results in the concomitance of the a and b lattice parameters and sudden decrease in 

the c parameter. Overall, the volume of the unit cell increases throughout the 

temperature range while it exhibits a small plateau around 600 °C (Figure 3b).  
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Figure 3: Variation of (a) lattice parameters, (b) cell volume and (c) TECs of PrNiO3-δ 

as a function of temperature up to 950 °C under air. 

 

 The non-linear evolution of the cell parameters and volume result in the 

distinction of two TECs values before and after the structural transition, namely of 10× 

10
-6

 °C
-1

 below 600 °C and of 9 × 10
-6

 °C
-1 

above 600 °C (Figure 3c). In comparison, 

a TEC value of 13 × 10
-6

 °C
-1

 was also calculated from dilatometry measurements; the 

discrepancy likely results from the fact that pellets with only 65 % density could be 
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prepared. Finally, the TEC values match rather well the one of GDC electrolyte ~ 12 × 

10
-6

 °C
-1

 [30]. 

 

3.2. TGA  

3.2.1. Determination of δ 

 The value of the oxygen sub-stoichiometry (δ) at room temperature for PrNiO3-δ 

phase was determined from the reduction of the material under 5% H2-Ar atmosphere. 

The single weight loss occurring at around 400 °C (Figure 4) corresponds to a 

complete reduction of PrNiO3-δ into appropriate ratio of Pr2O3 and Ni, as confirmed by 

XRD analysis. Indeed, the reduction of Ni
3+

 into Ni
0
 occurs without any intermediate 

stabilization of another composition containing either Ni
2+

 or even Ni
1+

 cation. This 

weight loss allows the determination a δ value of 0.055, corresponding to the 

PrNiO2.945 formula at room temperature.  

 

 

Figure 4: TGA plot under 5% Ar-H2 for the determination of delta value. 
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3.2.2. Thermal stability under argon, air and oxygen  

 The thermal stability under argon, air and oxygen atmospheres was investigated 

in order to find the most appropriate sintering conditions for SOFC electrodes. The 

comparison of the weight loss variation with temperature for PrNiO3-δ under argon, 

air, and oxygen shows very different behaviours depending on the atmosphere (Figure 

5). Under argon (pO2 ~ 10
−4 

atm), PrNiO3-δ is stable up to ~ 800 °C. Above this 

temperature, the material changes directly into Pr2NiO4+δ and NiO, the decomposition 

being complete at 1000 °C as confirmed by XRD analysis at the end of cooling  

(Figure 6a). No significant evolution is observed during cooling. 

 

 

Figure 5: Variation of the weight loss with temperature for PrNiO3-δ under 

argon, air and oxygen atmospheres with 2°C.min
-1

 heating and cooling rates. 
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Figure 6: X-ray diffractograms of the PrNiO3-δ powders after TGA under (a) argon, (b) 

air and (c) oxygen. 

 Under air and oxygen, PrNiO3-δ exhibits a higher stability than under argon. The 

phase is stable up to 1000 °C under air, and then starts to decompose into Pr4Ni3O10+δ 

and NiO. The Pr4Ni3O10+δ phase remains stable over a very short temperature window 

(~ 1045−1055 °C) (Figure 5). 

 The XRD pattern of the PrNiO3-δ powder, quenched at 1050 °C under air 

confirms the presence of Pr4Ni3O10+δ and NiO phases (Figure 7a).   Above this 

temperature, Pr2NiO4+δ and NiO are again only present as under argon (Figure 6b) and 

remain upon cooling.  

 Among the three atmospheres, PrNiO3-δ shows maximum stability up to 1040 

°C under oxygen (Figure 5). Above this temperature, it decomposes into Pr4Ni3O10+δ 

and NiO as confirmed by the X-ray diffractogram of the quenched powder at 1070 °C 

(Figure 7b).  Again the Pr4Ni3O10+δ phase is only stable in a short temperature 

window (~ 1050−1120 °C). Above ~ 1120 °C Pr2NiO4+δ and NiO are only present. 

Interestingly, the cooling behaviour under oxygen is completely different from that 

previously observed under air or argon (Figure 5). With a cooling rate of 2 °C.min
−1

, 

Pr2NiO4+δ again starts changing into Pr4Ni3O10+δ and PrOx (around 950°C). The XRD 
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analysis at the end of the cooling process shows the presence of a mixture of 

Pr4Ni3O10+δ, Pr2NiO4+δ, PrOx and NiO (Figure 6c), in relation with the instability of 

Pr2NiO4+δ under oxygen. 

 

Figure 7: X-ray diffractograms of quenched samples (a) from 1050 °C under air 

and (b) from 1070 °C under oxygen. 

 In addition, aiming at better understanding of the thermal behaviour under 

oxygen, various heating and cooling rates, namely 1°, 2° and 5 °C.min
−1

 up to 1300 °C 

were used (Figure additional info. 1a, b, c). Higher heating and cooling rates prevent 

the formation of Pr4Ni3O10+δ leading to a final mixture of Pr2NiO4+δ, PrOx and NiO as 

end products.  

The thermal evolution of PrNiO3-δ with the corresponding derivatives observed 

during heating and cooling, under argon, air and oxygen atmospheres is summarized in 

Figure 8a and 8b, respectively.  
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Figure 8: Thermal stability of PrNiO3-δ, and its derivatives under air, oxygen and argon 

during (a) heating and (b) cooling. 

 To summarize, one can conclude that the maximum temperature at which 

PrNiO3-δ is stable varies from 800 °C, 1000 °C, and 1040 °C under argon, air and 

oxygen, respectively. When heated above these temperatures, the decomposition into 

Pr2NiO4+δ and NiO seems to be irreversible. We are aware that those observations are 

governed by kinetics and that a complete study requires to take into account the 

thermodynamics of the system.  
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3.2.3. Variation of oxygen content under argon, air and oxygen  

Remaining in the stability domain of PrNiO3-δ in the different considered 

atmospheres (see above), the variation of the oxygen content was studied by TGA. For 

any atmosphere, two cycles were performed to check the reversibility while the 

powder was kept for 1 hour at the maximum temperature before cooling.   

 

Figure 9: Thermal variation of the oxygen content (3-) of PrNiO3-δ, (a) under oxygen 

(30 °C ≤ T ≤ 1000 °C), (b) under air (30 °C ≤ T ≤ 950 °C) and (c) under argon (30 °C ≤ T 

≤ 800 °C). 

 In all atmospheres, a reversible behaviour is observed (Figure 9). The drop in 

3−δ occurs at lower temperature under Ar (T  680 °C) in relation with a slightly 

larger drop of about 0.04, while under air and argon, a smoother drop of about 0.025 is 

observed for T above 700 °C. However, those values have to be considered with care 

as for instance, the equilibrium time of 1 h appears not sufficient under Ar atmosphere 

(i.e. drop of 0.01 between cooling and further heating). The initial (room temperature) 

calculated δ values decrease from 0.063, 0.055 and 0.052 under argon, air and oxygen, 

respectively.  In other words, the content of oxygen is maximum (2.948) under oxygen 

and slightly decreases in air (2.945) and a bit more in argon (2.937). The 

corresponding Ni
2+

 percentage in the structure increases from 10 % under O2, to 11 % 

under air and reaches 13 % under argon.  
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3.2.4. Stability above 950 °C and in operating SOFCs condition 

 To go further in the investigation of the stability duration at 1000 °C and 950 

°C under oxygen and air respectively (as maximum stability under these atmospheres), 

additional TGA experiments were carried out. For this purpose cycles were performed 

in each case with the heating and cooling rate of 2 °C.min
-1

 for a different dwell time 

(till 5 h with 1 h steps) at 1000 °C and 950°C, respectively. The variations of weight 

during heating and cooling are plotted in Figure 10a, b.  

Under oxygen, the PrNiO3-δ phase is stable during the first two cycles and 

shows almost reversible behaviour. In the third cycle, for a dwelling time of 3 h, a 

large weight loss associated with a partial decomposition of PrNiO3-δ into Pr4Ni3O10+δ 

is observed, as confirmed by XRD (Figure 11). 
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Figure 10: Thermal variation of the oxygen content (3-) of PrNiO3-δ, (a) under oxygen 

(30 °C ≤ T ≤ 1000 °C) for various dwell times 1h, 2h and 3h at 1000 °C (b) under air (30 

°C ≤ T ≤ 950 °C) for different dwell times 1 h, 2 h, 3 h, 4h and 5 h at 950 °C ( with 

heating and cooling rate of 2 °C.min
-1

). 

 Under air, PrNiO3-δ phase is only stable up to 4 h at 950 °C, for longer time it 

also starts to decompose into Pr4Ni3O10+δ and NiO (Figure 10b). Similarly, Martinez-

Lope et al. reported the thermal stability of PrNiO3-δ under air up to 900 °C up to 4 

hours [31]. 

 Such observations were further used as guidelines for the sintering of the 

electrode.  Basically for pure phase, only two options, either 950 °C/4h (maximum 

dwell time) under air or 1000 °C/2h (idem) under oxygen can be chosen. Sintering 

under Ar will be avoided due to a too low value of the stability temperature (i.e. T max 

≈ 800 °C).  

 



155 

 

3.3. Long term chemical stability of PrNiO3-δ powder under air at 

operating conditions 

 The XRD patterns of PrNiO3-δ powder after ageing at 600, 700 and 800 °C 

under air along with as prepared powder are compared in Figure 12. Overall, there is 

no modification of the XRD pattern after the ageing period. The PrNiO3-δ powder is 

chemically stable at the operating temperature of SOFCs i.e. 600, 700 and 800 °C 

under air up to 1 month. Although it is somewhat difficult to synthesize this material, 

once it is formed, then it shows high stability. 

 

Figure 11: X-ray diffractograms of PrNiO3-δ powder, after TGA experiment under 

oxygen (30 °C ≤ T ≤ 1000 °C) with the rate of 2 °C.min
-1

 for different dwell times of 2 h 

and 3 h at 1000 °C. 
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Figure 12: X-ray diffractograms of PrNiO3-δ, as prepared and after ageing for 1 month 

at 600, 700 and 800 °C, under air. 

 

3.4. Electrical Conductivity 

 The electrical conductivity shows a metal-like behaviour over the temperature 

range up to 800 °C, under air. The maximum of the conductivity value, close to σ = 

180 S.cm
-1

, recorded at room temperature, decreases to σ = 120 S.cm
-1 

at 600 °C. 

Interestingly, the latter value is close to the one of Pr2NiO4+δ that exhibits however a 

semi-conductor behaviour as shown in Figure 13.  
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Figure 13: Thermal variation of the electrical conductivity of PrNiO3-δ and Pr2NiO4+δ 

under air up to 800 °C. 

 

3.5. Electrochemical measurements  

 EIS measurements were carried out on PrNiO3-δ//GDC//8YSZ symmetrical half 

cells prepared using two ways, namely a two-step process and co-sintering, as detailed 

in the experimental part. 

3.5.1. Optimization of the sintering two-step process 

  Initial sintering at 950 °C for 2 h, in agreement with phase stability discussed 

above, leads to very high Rp value of 4.5 Ω∙cm² (Figure14). Therefore, sintering at 

higher temperatures, namely 1050 °C and 1150 °C, followed by an additional step at 

800 °C for 24 h under oxygen associated with a partial recovery of the PrNiO3-δ 

together with a small amount of PrOx and NiO (Figure 15b) were carried out. The Rp 

values decrease down to 1.6 and 0.44 Ω∙cm², respectively.  
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These results first indicate that the temperatures of 950 °C and 1050 °C are not high 

enough, either to form a good quality GDC//electrode interface, and/or to form enough 

sufficient connections between the electrode grains themselves.  

3.5.2. Co-sintering of GDC and PrNiO3-δ half cell 

  Pure PrNiO3-δ phase was successfully maintained for symmetrical half-cell, 

prepared by the co-sintering of GDC and the electrode, at 950 °C for 2h, as confirmed 

by X-ray diffraction (Figure 16). By both in-situ and ex-situ co-sintering at 950 °C/2h 

under air lead to similar Rp values of 0.91 Ω∙cm² at 600 °C. 

 

Figure 14:  Polarization resistances, Rp, measured under air on the half cells prepared 

by two-step sintering process at 950/2h/air, 1050°C/2h/air (+ 800 °C/24h/O2) and 

1150°C/1h/air (+ 800 °C/24h/O2). 
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Figure 15:  X-ray diffractograms of half cells (a) after sintering at 1150 °C for 1h under 

air, (b) after recovery of PrNiO3-δ phase respectively. 

 

Figure 16:  X-ray diffractograms after EIS measurement by co-sintering technique 

(comparison with as-prepared powder). 
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3.5.3. Discussion  

 Figure 17 (a, b) and Figure 17 (c, d) compare the Nyquist impedance 

diagrams, recorded for PrNiO3-δ electrode at 600 °C and 700 °C  for two-step sintering 

and co-sintering half-cells, respectively. 

 

Figure 17:  Nyquist plots recorded for PrNiO3-δ electrode at 600 °C and 700 °C for:  (a, 

b) two-step sintered and (c, d) co-sintered half cells. The diagrams are fitted using an 

equivalent circuit composed of Rs (series resistance), R//CPE and Warburg element 

(Ws). 

 Depending on the sintering conditions, either three processes (P1, P2 and P3) for 

the two-step sintering or two processes (P1 and P3) for the co-sintering are 

distinguishable. The P1 and P2 (occurring at middle frequencies (10
3
 – 1 Hz)) 

processes are assigned to the oxygen electrode reaction (OER) and were fitted for the 

sake of simplicity using two parallel R//CPE elements. The process P3 is assigned to 

gas diffusion impedance as already reported [32, 33], and usually fitted using a 

Warburg element Ws. The origin of the co-existence of two contributions P1 and P2 is 

still unclear. Our assumption is that the two processes are related to the OER in two 
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different materials. Indeed, for the two-steps sintering process XRD experiments 

showed that PrNiO3-δ, PrOx and NiO are present (Figure 15), while for the co-

sintering process PrNiO3-δ is almost pure (Figure 16).   For co-sintered sample, as 

shown in Figure 17(c, d) from 10
3
 Hz down to 1 Hz, the diffusion of O

2-
 is probed 

into the PrNiO3-δ electrode, which yields only one  R//CPE contribution. 

 

Figure 18:  Variation of the polarization resistance Rp as a function of 

temperature for both two-step, PrNiO3-δ, and co-sintered PrNiO3-δ and Pr2NiO4+δ 

half cells . 

 This shape is typical of electrode for which only the relaxation of the oxygen 

exchange at the gas//electrode interface is measured [34]. The comparison of the Rp 

values calculated in the temperature range 500−800 °C shows that the Rp values 

obtained by co-sintering are always higher and up to almost twice the ones of the two-

step process (Figure 18). For instance, it is of 0.91 Ω∙cm² at 600 °C for co-sintering, 

as compared to 0.46 Ω.cm² for two-step sintering. In addition, these values are higher 

than the ones of GDC and Pr2NiO4+δ co-sintered half cell, showing for Pr2NiO4+δ 

similar low Rp value of 0.15 Ω∙cm² at 600 °C as for two-step sintering [35]
5
.    

                                                      
5
 The optimization of the co-sintering process in terms of temperature under air is not detailed in this 

dissertation but corresponds to a nice achievement in terms of half-cells fabrication at “low” temperature. 
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Figure 19: Thermal variation of (a) Capacitance and (b) Frequency of relaxation of the 

different processes occurring on PrNiO3-δ electrodes operating in air and prepared 

using two-step or co-sintering technique. 
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 The capacitance and frequency of relaxation of the different processes involved 

for both two-step and co-sintered half cells are reported in Figure 19a, b. It is worth 

noting that the capacitance of process P1, which corresponds to PrNiO3-δ electrode 

process for both two-step and co-sintered half cells are quite comparable and the value 

of capacitance is in between 1−2 × 10
-2

 F.cm
-2

. The process P2 evidenced for the two-

steps sintered half-cell has a higher capacitance value (~0.2−0.3 F.cm
-2

), its origin 

being unclear at this moment.   

 The capacitances corresponding to gas diffusion process are higher (~40−50 

F.cm
-2

), and in the same range for both two-steps and co-sintered half cells. The 

frequency plot in Figure 19b also confirms that the processes P1 of both half cells are 

equivalent. 

4. Conclusion 

This work reports the structural and thermal stability studies of PrNiO3-δ as a 

cathode material for IT-SOFCs. PrNiO3-δ was successfully synthesized via citrate-

nitrate route under oxygen flow (pO2 ~ 1 atm). The XRD vs. temperature study shows 

a phase transition from the room temperature (Pbnm space group) orthorhombic to 

rhombohedral structure at ~ 600 °C. Whatever the atmosphere PrNiO3-δ remains 

always sub-stoichiometric. For instance, a delta value δ ≈ 0.05 is obtained in air. In all 

atmospheres and temperature, PrNiO3-δ decomposes into Pr2NiO4+δ and NiO end 

products while intermediate Pr4Ni3O10+δ appears under air and oxygen. 

Electrochemical characterizations as oxygen electrode in SOFC, shows that the half 

cells prepared by two-steps sintering process exhibits lower Rp value (Rp = 0.46 Ω.cm² 

at 600°C) than the co-sintered half cell (Rp = 0.91 Ω.cm² at the same temperature). 

However, the Rp values remain by far higher than the one of Pr2NiO4+δ (Rp = 0.15 

Ω.cm² at 600 °C) [35], suggesting that the mechanism of degradation, at the origin of 

our investigation is more complicated and further investigation, on Pr4Ni3O10+δ for 

instance, are currently carried out. 
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Additional Information: Chapter 5 

 

Additional TGA experiments under oxygen 

          While heating under oxygen PrNiO3-δ is completely dissociated into Pr2NiO4+δ and 

NiO above 1120 °C, the cooling behavior in the same atmosphere is different. This 

experiment is important to understand the stability of the Pr-based nickelates (PrNiO3-δ, 

Pr4Ni3O10+δ and Pr2NiO4+δ) and their inter conversion into one to another under oxygen, 

which is highly dependent on heating and cooling rates. The TGA plots of PrNiO3-δ recorded 

under oxygen with 2°, 5° and 1° C.min
-1

are reported in Figure 1a, b and c respectively. The 

description about these plots is discussed in chapter 5 (Figure 8). 
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Figure 1: Variation of weight loss with temperature for PrNiO3-δ, under oxygen with 

(a) 2°, (b) 5° and (c) 1 °C.min
-1

 heating and cooling rates. 
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Abstract 

           The present work is focused on the study of Pr4Ni3O10+δ as a new cathode material for 

Solid Oxide Fuel Cells (SOFCs). The structural study leads to an indexation in orthorhombic 

structure with Fmmm space group, this structure being thermally stable throughout the 

temperature range up to 1000 °C under air and oxygen. The variation of oxygen content 

(10+δ) as a function of temperature under different atmospheres show that Pr4Ni3O10+δ is 

always oxygen over-stoichiometric, which further suggests its MIEC properties. The 

polarization resistance (Rp) of Pr4Ni3O10+δ electrode is measured for GDC/co-sintered and 

two-step sintered half cells. The Rp for co-sintered sample is found to be 0.16 Ω∙cm² at 600 

°C under air, which is as low as the one of highest performing Pr2NiO4+δ nickelate (Rp = 0.15 

Ω∙cm² at 600 °C). Moreover, an anode supported (Ni-YSZ//YSZ) single cell including 

GDC//Pr4Ni3O10+δ co-sintered electrode shows a maximum power density of 1.60 W·cm
-2

 at 

800 °C and 0.68 W·cm
-2

 at 700 °C. Here, the work is emphasized on the very close 

electrochemical performance of Pr4Ni3O10+δ compared to the one of Pr2NiO4+δ with higher 

chemical stability, which gives great interests to consider this material as a very promising 

oxygen-electrode for SOFCs. 

Keywords: SOFC, Nickelates, Chemical stability, Oxygen over-stoichiometry, OER 

1. Introduction 

 The decrease of the operating temperature of the SOFCs is a critical challenge for 

their commercialization. Currently, the main objective is to decrease it down to around 600 – 

700°C, in an effort to decrease the device cost (for example, using stainless steel instead of 

ceramics as interconnects) and to improve the cell durability. However, since the electrode 

reactions as well as ion transport through the electrolyte are temperature-driven, the 

electrochemical performance drastically decreases with temperature. Hence, it is mandatory 

to improve the materials and architecture of the cell in order to reach reasonable performance 
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at intermediate temperatures (600−700 °C). It is well known that promising materials for 

cathodes are Mixed Ionic and Electronic Conducting (MIEC) oxides [1-7].
 
Several attempts 

were made to find the best MIEC material for SOFCs in last few decades. 

 Recently Ruddlesden-Popper (RP) phases Lnn+1NinO3n+1 (Ln = La, Pr or Nd) have 

shown excellent transport and electrochemical properties [6, 8-9]. The crystal structure of 

these phases can be described by the stacking of a finite number (n = 1, 2, 3 mainly) of 

perovskite-type LnNiO3 layers and one rock salt LnO layer along the crystallographic c-

direction ((LnO).(LnNiO3)n) [10-11]. The first member of the RP family of nickelates, n = 1, 

is Ln2NiO4+δ, which adopts the K2NiF4 –type structure with one layer of corner-sharing NiO6 

octahedra along the c-direction.  

     In the second member of RP nickelates, n = 2 (Ln3Ni2O7±δ), two infinite NiO6 sheets 

are connected in c-direction between the rock salt layers. For n = 2, the electrical conductivity 

is significantly enhanced compared to Ln2NiO4+δ as the nickel oxidation state and electronic 

correlation along c-direction increase. 

 Similarly, the structure of Ln4Ni3O10+δ (n = 3) is built with three infinite NiO6 sheets 

connected in c-direction between the rock salt layers. Greenblatt reported that the smallest 

rare earth ion able to still stabilize Ln4Ni3O10+δ is Nd [11]. A metallic conductivity is observed 

for all the Ln4Ni3O10+δ phases and a metal-to-metal transition is observed for the Ln = Pr and 

Nd at 145 and 165K, respectively [11, 12]. The Pr4Ni3O10+δ has higher conductivity value in 

the 25−300 K temperature range than Nd4Ni3O10+δ, but lower than La4Ni3O10+δ. Regarding 

Pr4Ni3O10+δ, Bassat et al. have previously shown that the material is metallic [12], the 

transport properties being highly dependent on the δ-value. Depending on the synthesis 

technique the δ varies from −0.1 to +0.1. 

 The first member of RP family, Ln2NiO4+δ (Ln = La, Pr and Nd) compounds have 

already evidenced promising results when used as cathode materials for SOFCs due to their 

MIEC properties [13-15]. Pr2NiO4+δ has the best electrochemical properties among three 

nickelates, especially at intermediate temperature (600−700°C) [16]. We have recently 

reported the decomposition of Pr2NiO4+δ into PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11 at the 

operating temperature range (600 to 800 °C) during long term [17]. A very interesting point is 

that even after complete dissociation the electrochemical performance, at least under idc = 0 

condition, do not show significant change (i.e. the same polarization resistance (Rp) values 
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are obtained before and after ageing). Therefore, it is our goal to study the behaviour of these 

new forming materials, and in this study we especially focused on Pr4Ni3O10+δ.   

 According to author’s knowledge, the literature on Pr4Ni3O10+δ remains scarce and 

limited to non-stoichiometry, transport and magnetic properties [10, 12], whereas its use as 

oxygen electrode in the field of SOFCs has never been reported. An effort was then made to 

investigate the properties of Pr4Ni3O10+δ, mainly the non-stoichiometry, chemical stability 

under different pO2 and electrochemical activity under air for use as an oxygen electrode 

material of SOFCs.  

2. Experimental 

Powder preparation 

 The Pr4Ni3O10+δ phase was synthesised using the Glycine Nitrate Process (GNP) [18]. 

The corresponding precursors were Pr(NO3)3.6H2O (Sigma Aldrich , 99.99%), 

Ni(NO3)2.6H2O (Acros Organics, 99%) and glycine (Sigma Aldrich , 99.9%). The final 

annealing was performed at 1000 °C for 48 h under oxygen leading to well crystallized 

phases. Intermediate grinding and annealing steps were performed three times.  

 X-ray diffraction analysis 

The powders were first investigated by X-ray diffraction (XRD) at room temperature 

using a PANanalytical X’pert MPD diffractometer with Cu-Kα incident radiation to check the 

purity of phase. The XRD vs T (i.e. in situ XRD) were performed to check the stability of 

phase with temperature under air. The data were recorded for both heating and cooling, from 

room temperature up to 1000°C, by steps of 100°C. The heating and cooling rate was fixed to 

2 °C.min
-1

, the powder being thermally equilibrated for 2 h at each particular temperature 

prior to the XRD data recording. The X-ray diffractogram recorded on the powder during 

cooling is preferentially reported here thanks to a thermal equilibrium which is expected to be 

more easily reached in this case. 

The ageing test of powder was performed under air. Green pellets were first prepared 

and then left into a furnace for 1 month at 600, 700 and 800 °C, before the XRD 

characterization. Each X-ray diffractogram was fitted by profile matching using the Fullprof 

software. 
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SEM analysis  

The microstructures of Pr4Ni3O10+δ powder and the electrodes morphology were 

observed by field emission Scanning Electron Microscopy (JEOL JSM 6330 A) equipped 

with an EDS detector. 

  Thermo Gravimetric analysis (TGA) 

 TGA experiments were carried out using a TA Instrument TGA-Q50 device, with the 

aim i) to determine the delta value, δ, at room temperature under air, ii) to investigate the 

thermal stability vs. pO2 and iii) to study the δ variation vs. T  under air and oxygen 

atmospheres. In the first case the powders were beforehand heated under air up to 1000 °C, 

then cooled down to room temperature with a slow rate (2 °C.min
-1

), this cycle being 

reproduced twice to ensure a stable state of the material, i.e. a reproducible oxygen content. 

Then, a second cycle was performed under Ar - 5% H2 flux with a very slow heating rate of 

(0.5 °C.min
-1

), the decomposition of the material leading to the determination of the oxygen 

stoichiometry after cycling the sample down to room temperature (Pr2O3 and metallic Ni 

being formed as checked by XRD after the thermal cycle). Secondly, the thermal stability of 

Pr4Ni3O10+δ was investigated as a function of pO2, the variation of the oxygen stoichiometry 

of the materials being successively studied under air (pO2 = 0.21 atm) and oxygen (pO2 = 1 

atm), using heating and cooling rates of 2 °C.min
-1

. For this purpose, the powders were first 

thermodynamically equilibrated under air in the TGA device as described above (i.e. two 

cycles were performed under air). The gas was changed at room temperature and again two 

cycles were performed under oxygen. During cycling, the powder was left for 1 h at 1000 °C 

and room temperature.  

Conductivity measurements 

 It was first expected to prepare dense pellets by sintering the green pellets at 1000 °C 

for 24 h under oxygen, which are mandatory conditions to ensure keeping the pure 

Pr4Ni3O10+δ phase. However, it is worth mentioning that we could not succeed probably 

because of such limitation of temperature, 70 % being the highest density value obtained.  

The electrical conductivity was then determined under air using the four-probe technique, in 

the temperature range 20 − 800 °C with the heating and cooling rate of 1 °C.min
-1

. 
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Preparation of symmetrical half cells  

 For the electrochemical studies, symmetrical half cells 

(electrode//GDC//8YSZ//GDC//electrode) were prepared. Dense pellets of 8YSZ (8 mol.% 

yttria stabilized zirconia) with diameter ≈ 18 mm and thickness ≈ 1.2 mm (preliminarily 

sintered at T = 1400 °C) were used. The symmetrical half-cells were prepared by screen 

printing using two ways, i.e. two-step or co-sintering of the GDC/electrode layers. Terpineol-

based slurries were prepared from as prepared Pr4Ni3O10+δ powder and commercial GDC 

powder (Rhodia-Solvay). In order to increase the electrochemical performance of the half-

cells [16], a 2-3 µm GDC bi-layer was initially screen printed on both sides of the 8YSZ 

electrolyte pellet. The main role of GDC is, a) to obtain good interface and b) to stop the 

reactivity, between electrode and electrolyte. 

 Regarding the two steps sintering way, the GDC layer was first sintered at 1375 °C for 

1 h under air. The electrode layer was then screen printed on each side of the 

GDC//8YSZ//GDC. The sintering study of the electrodes will be detailed in the Results and 

Discussion part. 

 The symmetrical half cells were also prepared by co-sintering the GDC and electrode 

layers. For this purpose, in a first step a single GDC layer was deposited on both sides of 

8YSZ pellet. After drying (T  80 °C), the electrode layer was deposited on both sides by 

screen printing technique and co-sintered with GDC layer at 950 °C for 2 h under air.  

 A single cell was fabricated starting from a commercial anode supported half cell 

(Elcogen ASC-10C type) made of a 500 µm thick Ni-8YSZ anode and a 3 µm thick 8YSZ 

electrolyte membrane (Ø = 50 mm). A GDC layer (Ø = 25 mm) was first deposited on Ni-

8YSZ//8YSZ support and then dried at 80 °C. After the deposition and sintering of the 

cathode layer (Ø = 16 mm, see Single Cell measurements part), a LaNi0.6Fe0.4O3-δ (LNF) 

layer (Ø = 16 mm) was deposited to improve the current collection [19]. 

 

Electrochemical measurements 

 The electrochemical properties of the symmetrical half-cells were characterized by 

Electrochemical Impedance Spectroscopy (EIS). The initial EIS measurements were carried 

out under air, in the temperature range 500 – 800 °C under zero dc conditions. Gold grids 

(1.024 cm
-2 

meshes) were used as current collectors. The impedance diagrams were recorded 

at steady state under potentiostatic control with 50 mV ac amplitude, from 10
6
 Hz down to  
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10
-1

 Hz, using a frequency response analyser module Autolab FRA2, coupled with a 

potentiostat/galvanostat PGSTAT 302N. The polarization resistance (Rp) values were obtained 

by taking the difference between the low frequency (LF) and the high frequency (HF) 

intercepts with the real Z'-axis of the Nyquist representation. The complex impedance 

diagrams were fitted using an equivalent circuit by means of the Zview
®
 (Scribner 

Associates) to measure the Rp of different processes.   

Prior to single cell measurements, the anode was reduced using the following 

procedure: after heating in N2 up to 800 °C, the anode side was flushed with hydrogen gas 

with a flow rate of 250 ml.min
−1

. On the cathode side, synthetic flowing air was supplied as 

oxidant with flow rate of 500 ml.min
−1

. The impedance diagrams were recorded at OCV, 0.9, 

0.8 and 0.7 V, at the operating temperatures, namely 800 and 700 °C. The ageing of a single 

cell at 700 °C was performed at a current density of 0.3 A·cm
−2

, using a Frequency Response 

Analyzer module Autolab FRA2, coupled with a potentiostat/galvanostat PGSTAT 302N. 

3. Results and discussion 

3.1. XRD analysis 

 The XRD characterization of as-prepared Pr4Ni3O10+δ phase shows that the material 

crystallizes in an orthorhombic structure with Fmmm space group. The full pattern profile 

matching refinement leads to determine the following lattice parameters: a = 5.3714(2) Å, b 

= 5.4611(2) Å and c = 27.5271(3) Å (Figure 1a), these values are in good agreement with the 

previously reported results [10, 12]. 
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Figure 1: Fullprof refinement of the patterns of Pr4Ni3O10+δ at (a) 25 and (b) 1000 °C 

using Fmmm space group. 

 

3.1.1. Thermal behaviour of the material with temperature under air (XRD vs. T) 

 The thermal variation of the X-ray diffractogram under air shows that the Pr4Ni3O10+δ 

phase remains stable up to 1000 °C; with increasing temperature, the structure keeps always the 

orthorhombic symmetry and is indexed with the Fmmm space group. An example is given in 

Figure 1b; at 1000 °C the refinement of the data leads to the following lattice parameters: a = 

5.4300(4) Å, b = 5.4858(3) Å and c = 27.8910(3) Å. The absence of additional peaks with 

regard to the room temperature diagram confirms the stability of the material up to 1000 °C 

under air. 
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Figure 2: Variation of (a) lattice parameters and (b) (λ-λ0/λ0) of Pr4Ni3O10+δ under air as 

a function of temperature up to 1000 °C (λ and λ0 are cubic root of volume at particular 

temperature and room temperature respectively). 
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3.1.2. Variation of lattice parameters with temperature: determination of TEC 

 In Figure 2a, the variations of a, b and c lattice parameters as a function of 

temperature are plotted. All of them show linear increase throughout the temperature range. 

The thermal expansion coefficient of Pr4Ni3O10+δ was calculated from the thermal variation of 

the lattice parameters i.e. the slope of (λ-λ0/λ0) vs T (Figure 2b), where λ and λ0 are cubic root 

of volume at particular temperature and room temperature respectively. The value of TEC is 

close to ~10 × 10
-6

 °C
-1 

which is in the same order of those of the other components of 

SOFCs [20]. Following dilatometry measurements, a TEC value of 12 × 10
-6

 °C
-1 

was also 

determined; the observed discrepancy could be assigned to the fact that the pellet was not 

sufficiently dense. 

 

3.2. TG analyses 

 Because the electrochemical behaviour of the material will be studied under air, we 

aim first to determine the over-stoichiometry value δ after thermal equilibration under air, 

following the synthesis which is performed under oxygen. Later on, the evolution of δ vs. T 

under air and oxygen will be recorded. Another part of this TGA study will aim to determine 

the thermal stability range of the material either under air or oxygen. 

 

3.2.1. Determination of 𝛿 of material equilibrated under air 

 The δ-value for Pr4Ni3O10+δ was calculated using TGA experiments performed under 

reducing conditions (5% H2/Ar atmosphere, Figure 3). Two major weight losses occur: the 

first one at around 400 °C, which corresponds to the reduction of Ni
3+

 into Ni
2+

 

(corresponding plateau Pr4Ni3O9 is formed [21]), while the second weight loss corresponds to 

the complete reduction of Ni
2+

 into metallic Ni
0
. Finally the total reduction of Pr4Ni3O10+δ 

into Pr2O3 and Ni (within the appropriate ratio) is then evidenced, leading to the 

determination of δ. The calculated value corresponding to the first plateau and after total 

reduction results in the almost same value, δ = 0.10  0.01 at room temperature.  
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Figure 3: TGA plot under 5% Ar-H2 for the determination of delta value. 

 

3.2.2. Behavior under air and oxygen  

 TGA experiments were carried out under air and oxygen with the aim to investigate 

the chemical stability and to find the most appropriate temperature and atmosphere for the 

sintering of electrodes made of this material (refer to experimental part). Figure 4a and 4b 

show the variation of the weight loss with temperature for Pr4Ni3O10+δ in air and in oxygen 

atmosphere, respectively; the results largely depend upon pO2. Under air, Pr4Ni3O10+δ exhibits 

thermal stability up to ~1050 °C. Above this temperature it starts decomposing and around T 

= 1140 °C, it is completely decomposed into Pr2NiO4+δ and NiO (Figure 4a). This 

decomposition was checked by XRD both on the powder at the end of this TGA cycle 

(Figure 5a) or after quenching another set of powder from 1200 °C to RT in a separate 

furnace (not reported). This decomposition is completely irreversible under air, Pr2NiO4+δ 

phase being stable under air as confirmed by a second TGA cycle (not reported).  
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Figure 4: Thermal variation of weight loss with temperature for Pr4Ni3O10+δ under (a) 

air and (b) oxygen atmospheres. 

 Under oxygen, Pr4Ni3O10+δ shows higher stability than in air, up to 1120°C (Figure 

4b) and above this temperature, it decomposes again into Pr2NiO4+δ and NiO (as checked by 

XRD again). However, the behaviour when cooling under oxygen is completely different than 
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what was previously observed under air. Indeed, Pr2NiO4+δ starts again changing into 

Pr4Ni3O10+δ and PrOx (around 950 °C). The XRD analysis at the end of cooling process shows 

the presence of mixture of Pr4Ni3O10+δ, Pr2NiO4+δ, PrOx and NiO (Figure 5b), which is in 

agreement with the previously reported results for PrNiO3-δ [22]. 

 

Figure 5: X-ray diffractograms after TGA performed on Pr4Ni3O10+δ powder under (a) 

air and (b) oxygen. 

 

3.2.3. Variation of the oxygen content ( value) under air and oxygen 

 In the following, the thermal variation of the oxygen content was investigated over the 

stability domain of Pr4Ni3O10+δ, i.e. from room temperature up to 1000 °C (cf. Figure 4). 

Before starting the experiment, the powder was first equilibrated under air, ensuring the 

starting value of δ ~ 0.10. For both atmospheres, two cycles were performed to reach the 

reversibility while the powder was kept for 1 hour at the 1000 °C before cooling. The thermal 

variation of the oxygen content, 10+δ, under air and oxygen is plotted in Figure 6. In air, a 

reversible behaviour is observed during both cycles. 

 Under oxygen, the material is up taking oxygen during first cycling, then, a reversible 

behavior is observed (2
nd

 cycle is reported). One should point out that the material is always 

oxygen over-stoichiometric within the whole stability temperature range.   
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Figure 6: Thermal variation of the oxygen content (10+) for Pr4Ni3O10+δ, (a) under air 

and (b) under oxygen at 30 °C ≤ T ≤ 1000 °C. 

 

 The cycling was also performed under argon up to 800 °C (cf. Figure additional info. 

1 and 2), and as expected a small decrease in oxygen content is observed during first cycle 

while during second cycle a reversible behavior is observed. The calculated δ values at room 

temperature after thermal equilibration under the considered atmospheres are 0.14 (Ni
3+

 ~ 

76%), 0.10 (Ni
3+

 ~ 73%) and 0.07 (Ni
3+

 ~ 71%) under oxygen, air and argon, respectively. 

Furthermore it can be concluded that the material is “breathing” oxygen quite easily i.e. it is 

easy to include more interstitial oxygen under oxygen after equilibration under air, and it is 

also quite easy to remove the same amount of oxygen under argon (~ 0.03 in both cases).  

 As an intermediate conclusion, the above TGA study indicates that the thermal 

stability limit is 1120 °C and 1050 °C under oxygen and air, respectively, but we are aware 

that these observations are governed by kinetics. Moreover we checked that the long term 

thermal stability of the material is ensured at 1000 °C under oxygen, indeed this is the 

synthesis condition of Pr4Ni3O10+δ. It was also investigated that the material is stable under air 

at 950 °C. Such observations were further used as guidelines for the sintering of electrodes.  
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3.2.4. Long term chemical stability at operating temperatures 

 Following previous studies performed till high temperature, it’s also mandatory to 

check the thermal stability of the material at the operating temperatures of SOFCs. Then the 

ageing of Pr4Ni3O10+δ powder was performed under air during one month at 600, 700 and 800 

°C.  

 

Figure 7: X-ray diffractograms of Pr4Ni3O10+δ powder after ageing 1 month at 600, 700 

and 800 °C under air. 

 The corresponding XRD diffractograms along with as prepared powder are shown in 

Figure 7. The material is chemically very stable at these SOFCs operating conditions, indeed, 

only a very small peak of PrOx is observed (however existing in the as-prepared powder as 

well). This long term stability indicates that this material is suitable to be used as oxygen 

electrode, which will be checked in the final part regarding electrochemical measurements.  

 

3.3. Electrical Conductivity 

 The variation of the total electrical conductivity σ vs. 1000/T for Pr4Ni3O10+δ is 

reported in Figure 8, and compared with the corresponding data for PrNiO3-δ and Pr2NiO4+δ. 
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Pr4Ni3O10+δ shows metal-like behaviour over the temperature range up 20−800 °C under air, 

as PrNiO3-δ but unlike Pr2NiO4+δ which shows semiconducting behaviour. The maximum 

conductivity value observed for Pr4Ni3O10+δ is close to  200 S.cm
-1

 (at room temperature) 

which is the highest value among Pr4Ni3O10+δ, PrNiO3-δ and Pr2NiO4+δ phases and  is in 

agreement with the one earlier reported result [12]. The conductivity varies from ~85−200 

S.cm
-1

 from 800 °C to room temperature. At a typical operating temperature of 600 °C, 

Pr4Ni3O10+δ shows electrical conductivity, σ = 90 S.cm
-1

, similar to those of other Pr-based 

nickelates for ex. PrNiO3-δ (σ ~ 106 S.cm
-1

) and Pr2NiO4+δ (σ ~ 112 S.cm
-1

) (Figure 8), 

meeting the requirement for a SOFC cathode material.   

 

 

Figure 8: Thermal variation of the electrical conductivity of Pr4Ni3O10+δ compared with 

PrNiO3-δ and Pr2NiO4+δ, under air up to 800 °C. 

 In general, in a material showing metallic behavior the decrease in conductivity 

observed with increasing temperature can be understood in terms of decrease of the charge 

carrier mobility while the charge carrier amount remains almost constant. Here, because the 

material exchanges oxygen with the surrounding atmosphere upon heating (Figure 6), one 

can wonder if the corresponding decrease of the holes amount (Ni
3+

) is large or not. As the 

Ni
3+

 percentage is not showing significant change with increasing temperature (73 to 70 % 
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from room temperature to 800 °C), it can be concluded that the decrease in the conductivity is 

due to a decrease of the charge carrier mobility as expected. 

 Considering the expected MIEC properties of the Pr4Ni3O10+δ phase, as in all 

atmospheres, the material remains always oxygen over-stoichiometric (see TGA part), the 

behavior should be MIEC whatever the pO2 throughout the temperature range of stability, 

however it would be to confirm experimentally measuring the ionic (oxygen) conductivity.  

 

3.4. Electrochemical studies 

 In the second part of the work, we aimed first at the preparation of electrode ink using 

Pr4Ni3O10+δ powder prior to its shaping by screen-printing on 8YSZ//GDC supports. The 

sintering was performed using two different ways. The EIS vs. T measurements were 

performed and the results discussed comparing both sets of data obtained with the two kinds 

of half cells. Finally, single cells measurements (i-V curves recording at the operating 

temperatures 800 and 700°C) were performed using the sintering way optimized in the 

previous step (at idc=0). 
 

3.4.1. Morphology of as-prepared powder 

 Before the preparation of ink, the morphology of the as prepared powder was 

investigated by SEM and is shown in Figure 9. It evidences grains which are highly 

connected with each other. The high flame temperature which characterized the auto-

combustion GNP process may explain this result. Therefore this powder was attrited with 

zirconia balls in ethanol medium for 1 h with the aim to obtain very fine powder, indeed a 

mean particle size of about 0.6 μm (as checked using laser granulometry measurements) was 

finally obtained. 
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Figure 9: Morphology of as-prepared powder after synthesis by GNP. 

 

3.4.2. EIS characterization: symmetrical cell 

 EIS measurements were carried out on Pr4Ni3O10+δ//GDC//8YSZ symmetrical half 

cells. These ones were prepared using two routes, either by a two-step process or co-sintering 

GDC and the electrode (detailed in experimental part). Then it will be possible to compare 

the polarization resistances, Rp, and the shape of impedance curves obtained in both cases.  

 

3.4.3. Optimization of the two-step sintering process  

 The two-step sintering condition was first optimized using several sintering 

temperatures under oxygen. The sintering was first performed at the temperature 

corresponding to the phase stability limit, i.e. 1000 °C as discussed above. However one hour 

sintering is not sufficient from the mechanical point of view (confirmed by "tape test"); 

therefore 2 h of sintering is minimal. When the sintering was performed during 2 h at 1000 

°C, the Rp value is very high (Rp = 2.7 Ω∙cm² at 600 °C, Figure 10). Hence for better 

electrochemical performance it is mandatory to sinter the electrode at higher temperature. 
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Figure 10: Polarization resistances, Rp, measured  at 600 °C under air on the half cells 

prepared by two-step sintering process at 1000°C/2h/O2, 1050°C/2h/O2 (+ 950 °C/6h/O2), 

1150°C/1h/O2 (+ 950 °C/6h/O2) and 1200°C/1h/O2 (+ 950 °C/6h/O2) and slowly cooled. 

Pr2NiO4+δ is completely absent. 

 

 The sintering at T > 1050 °C/1h leads to partial decomposition into Pr2NiO4+δ and 

NiO, however, a slow cooling under O2 leads to the re-formation of Pr4Ni3O10+δ (Figure 4b) 

[22].
 
The lowest the cooling rate is, the lowest the amount of Pr2NiO4+δ is expected. Then for 

preparing the electrodes, the half cells were cooled at 1°C/min from the sintering temperature 

(T = 1050, 1150 and 1200 °C) and also kept at 950 °C for 6 h under O2, to make sure of the 

recovery of Pr4Ni3O10+δ phase. The corresponding X-ray diffractogram of the half cell 

sintered at 1150°C is shown in Figure 11 as an example, in which  Pr4Ni3O10+δ appears as 

major phase and no peak for Pr2NiO4+δ is observed.  
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Figure 11: X-ray diffractogram of half cells after sintering at 1150 °C for 1 h under O2 

(+ 950 °C/6h/O2). 

 

 Progressive increase of sintering temperature up to 1050 and 1150 °C leads to further 

decrease in the Rp values down to 1.05 and 0.25 Ω∙cm² respectively at 600 °C. Further 

increase of the sintering temperature leads to small increase of Rp, up to 0.40 Ω∙cm² when the 

sintering temperature is 1200 °C. Hence the sintering at 1150 °C for 1 h is obtained as an 

optimized condition, however it leads to the appearance of some additional phases (PrOx and 

NiO) (cf. Figure 11). To avoid such additional phases, it’s important to perform the sintering 

up to 1000 °C (thermal stability domain of Pr4Ni3O10+δ). For this purpose, co-sintering of 

GDC and electrode was applied. 

 

3.4.4. Co-sintering of GDC and Pr4Ni3O10+δ half cell 

 Aiming at favoring pure Pr4Ni3O10+δ phase, the symmetrical half cells were prepared 

by co-sintering GDC with the electrode at 950 °C for 2 h. The sintering condition was already 

optimized in our group. Air was chosen instead of oxygen for sake of simplicity. In-situ (in 

the electrochemical cell) and ex-situ (in the furnace) co-sintering experiments lead to similar 

Rp values of  0.16 Ω∙cm² at 600 °C. Moreover after the co-sintering thermal cycle, no 

change is observed in the X-ray diffractogram of the electrode with respect to the starting 

Pr4Ni3O10+δ powder. 
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Figure 12:  Nyquist plots recorded for Pr4Ni3O10+δ electrode at 600 °C and 700 °C for 

both two-step sintered (1150 °C/1h) (a, b) and co-sintered (950 °C/2h) (c, d) half cells 

and fitted using Rs (series resistance), R//CPE and Warburg element (Ws). 

 

3.4.5. Discussion 

 The EIS data were recorded between 500 and 800 °C. In Figure 12 (a, b) and Figure 

12 (c, d) the Nyquist impedance diagrams are compared at 600 °C and 700 °C  for two-step 

sintered and co-sintered half-cells, respectively. The different value of Rs at the same 

temperature is due to difference in the thickness of electrolyte support. 

 In both cases, three processes for T < 700 °C (P1, P2 and P3) instead of two (P2 and 

P3) for T ≥ 700 °C are distinguished. At higher temperature, T ≥ 700 °C, as all processes are 

shifted toward higher frequencies, the process P1 is hidden by the inductance of the wires and 

hence could not be distinguished anymore. The processes P1 (appearing at high frequency 

(10
4
 – 10

3
 Hz)) and P2 (appearing at middle frequencies (10

3
 – 1 Hz)) were fitted using two 

parallel R//CPE elements for the sake of simplicity, at 600 °C. The origin of process P1 is 

likely due to O
2-

 solid state diffusion in the interphase formed at the interface of 

GDC//electrode layer, as reported for Pr2NiO4+δ [23]. Indeed, at the electrode//GDC interface 
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Pr-cations partly diffuse into the GDC layer forming Pr-doped ceria interphase, and the O
2-

 

diffusion should occur on this new phase formed thanks to its MIEC properties [24, 25]. 

  

 

Figure 13:  Variation of Rp as a function of temperature for both two-step and 

co-sintered half cells. 

 The process P2 is assigned to the oxygen electrode reaction (OER) at the Pr4Ni3O10+δ 

electrode (R//C shape), it is due to the relaxation of oxygen exchange reaction at the interface 

gas//electrode similar as Pr2NiO4+δ [23].
  
The process P3 is due to gas diffusion impedance as 

already reported [26, 27], and usually fitted using one Warburg element Ws. The fit of the 

impedance data was carried out in order to extract only the Rp values. The total Rp, calculated 

for all temperatures (500−800 °C range) for the two-step sintered and co-sintered half cells 

under air, are plotted in Figure 13.
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Figure 14: Variation of (a) Rp and (b) frequency of relaxation, of different processes with 

temperature, recorded under air for Pr4Ni3O10+δ electrode for both two-step and co-

sintered half cells. 
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The Rp values obtained by co-sintering are slightly lower than those corresponding to 

the two-step sintering way, for ex. at 600 °C, the Rp for co-sintered and two-step sintered half 

cells are 0.16 and 0.25 Ω∙cm², respectively.  However, these Rp values remain close to that of 

Pr2NiO4+δ (Rp = 0.15 Ω∙cm² at 600 °C), which is currently the lowest value exhibited by 

nickelates [28]. In order to identify the origin of the difference in Rp values, the thermal 

variations of Rp related to the three processes namely P1, P2 and P3, are plotted in Figure 14a. 

Interestingly, the Rp values of the P1 and P3 processes for co-sintered and two-step 

sintered half cells are almost the same, however the differences are only observed for P2 

process, depending on the sintering way. For the co-sintered half-cell, the Rp values are lower 

than that for the two-step sintered half cells. So it can be concluded that in both ways of 

sintering, the main difference is coming from the OER due to Pr4Ni3O10+δ electrode (process 

P2). The slightly higher value of Rp for P2 of two-step sintered half cells can either be related 

to the presence of additional phases (PrOx and NiO (Figure 11)) or to the electrode 

microstructure. In general, at high sintering temperature, the particles coarsening should 

result in the decrease in active surface area that could affect the OER. 

 The frequency of relaxation of different processes involved in both fabrication 

processes are compared in Figure 14b.  Only the P1 process shows some differences, which 

is likely related to the morphology of the interface (cf. Figure 15). Indeed, for the two-step 

sintered half cell, the GDC layer (sintered separately at 1375 °C for 1h) is much denser than 

the one of the co-sintered half cell (Figure 15), which leads to a higher relaxation frequency. 

It is worth noting that the frequencies of processes P2 (OER on Pr4Ni3O10+δ electrode) and P3, 

(gas diffusion process), are logically almost identical for both processes.  

 

3.4.6. Morphology of half cells after EIS measurements 

 SEM observations of the Pr4Ni3O10+δ electrode were carried out after EIS 

measurements (Figure 15). The thicknesses of the electrodes are estimated to be ~10 µm. It 

can be noticed that all the layers show well adhesion with each other. From the SEM 

micrographs it seems that the GDC layers are different in both two-step and co-sintered half 

cells. The thickness of GDC is ~ 2 µm and 3 µm respectively for two-step sintered and co-

sintered half cells. A careful observation of the microstructure also suggests the morphology 

of the electrode is denser in case of two-step sintering. This can be linked to particles 

coarsening at high sintering temperature. 
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Figure 15:  SEM morphology of half cells after EIS measurements (a) two-step sintering 

and (b) co-sintering. 

 

3.4.7. Single cell measurements 

 The cathode sintering was performed using the previous optimized conditions 

determined for half cells, which is co-sintering together with the GDC layer at 950 °C for 2 h 

under air. The single cell was mounted into the measurement setup, with flows of air and N2 

on the cathode and anode sides, respectively. The cell was heated at 800 °C and N2 at the 

anode side was progressively replaced by dry hydrogen (H2) to reduce NiO into metallic Ni. 

The open circuit voltage (OCV) was around 1.1 V as expected. The i-V characteristic was 

measured from OCV down to 0.4 V, and the impedance diagrams were recorded at OCV, 0.9, 

0.8, and 0.7 V (not reported). Then the temperature was decreased down to 700 °C to 

measure again the i-V characteristic and impedance diagrams. 

(b) (a) 



194 

 

 

Figure 16:  i-V curves and resulting power densities of a single cell made of a 

commercial half-cell and Pr4Ni3O10+δ as cathode. 

 

Figure 17:  Ageing of the single cell at 700 °C, with a current density of 0.3 A·cm
-2

, for 

500 h. 
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 Figure 16 shows the cell voltage as a function of the current density, as well as the 

resulting power density at 800 °C and 700 °C. The cell performance is high, reaching 

maximum power densities of 1.6 W·cm
-2

 at 800 °C and 0.68 W·cm
-2

 at 700 °C. For a 

potential of 0.7 V, the current density is 1.6 A·cm
-2

 at 800 °C and reaches 0.64 A·cm
-2

 at 700 

°C. 

 Following the measurements at 800 and 700 °C, the cell was aged at 700 °C for 500 h 

at a current density of 0.3 A·cm
-2

. Figure 17 shows the cell voltage as a function of time; the 

potential started at around 0.80 V, then a slight decrease is observed and after 500 h the 

potential is around 0.76 V.  

4. Conclusion 

 This work reports the structural, stability and electrochemical studies of Pr4Ni3O10+δ 

as a new promising cathode material for SOFCs. Pr4Ni3O10+δ was successfully synthesized 

via glycine-nitrate route under normal oxygen flow (pO2 ~ 1 atm). It crystallizes in 

orthorhombic structure with Fmmm space group. The XRD vs. temperature experiment under 

air shows a stable phase throughout the temperature range up to 1000 °C.  

 An over-stoichiometry, delta value δ = 0.10 is obtained under air. The measurement of 

oxygen content vs. T shows that the material is always over-stoichiometric whatever the pO2 

is, which should indicate that this material is MIEC-type under oxygen and air up to 1000 °C.  

Pr4Ni3O10+δ phase is stable maximum for 2 h under air and fully stable under oxygen at 1000 

°C. Further increase of temperature leads to decomposition into Pr2NiO4+δ and NiO, under air 

and oxygen.  

 The half cell prepared by co-sintering process shows lower Rp value (Rp = 0.16 Ω∙cm² 

at 600°C) than the one made by two-step sintering (Rp = 0.25 Ω∙cm² at the same temperature), 

which is almost same as Pr2NiO4+δ. A single cell with Pr4Ni3O10+δ electrode produced high 

power density of 1.60 W·cm
-2

 at 800 °C and 0.68 W·cm
-2

 at 700 °C. 

 Endly, the Pr4Ni3O10+δ phase is highly stable during long term up to 1 month under air 

at different SOFC operating temperatures: 600, 700 and 800 °C, contrarily to Pr2NiO4+δ 

which forms PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11 in the same conditions [17]. It can be then 

concluded that the electrochemical behavior of Pr4Ni3O10+δ is similar to that of Pr2NiO4+δ, but 

with a quite higher stability, which gives great interest to consider this material as a very 

promising oxygen electrode. 
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Additional Information: Chapter 6 

 

1. TGA experiments under argon atmosphere 

TGA experiments were carried out under argon on Pr4Ni3O10+δ with the aim to 

investigate its chemical stability. Figure 1 shows the corresponding variation of the weight 

change with temperature. Under argon, Pr4Ni3O10+δ exhibits thermal stability only up to ~900 

°C. Above this temperature it starts decomposing and around T = 1000 °C, it is completely 

decomposed into Pr2NiO4+δ and NiO (Figure 1). This decomposition was checked by XRD 

both on the powder at the end of this TGA cycle or after quenching another set of powder 

from 1000 °C to RT in a separate furnace. This decomposition is completely irreversible, 

Pr2NiO4+δ phase being stable under argon as confirmed by a second TGA cycle.  
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Figure 1: Thermal variation of weight for Pr4Ni3O10+δ recorded under argon 

atmosphere. 
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Figure 2: Thermal variation of the oxygen content (10+) for  

Pr4Ni3O10+δ under argon (30 °C ≤ T ≤ 800 °C). 

 

The thermal variation of the oxygen content was also investigated over the stability 

domain of Pr4Ni3O10+δ under argon, i.e. from room temperature to 800 °C. Before starting the 

experiment, the powder was first equilibrated under air, ensuring the starting value of δ ~ 

0.10. The thermal variation of the oxygen content, 10+δ, is plotted in Figure 2. During the 

first cycle, a weight loss upon heating is observed while in the second cycle an almost 

reversible behavior is noticed. 

 

2. Preparation of dense pellets of Pr4Ni3O10+δ  

It is very difficult to prepare dense pellet of Pr4Ni3O10+δ due to its restricted thermal 

stability range (<1000 °C under air and oxygen). Nevertheless, we tried in somewhat 

different way following the results of the earlier TGA experiments.  Above T > 1120 °C 

Pr4Ni3O10+δ is decomposed into Pr2NiO4+δ and NiO. But if the resulting mixed phases is 

cooled slowly, the Pr4Ni3O10+δ phase is recovered, only containing small amounts of 

impurities (PrOx and NiO). Pellets of Pr4Ni3O10+δ were prepared using this strategy. The 

schematic of heating and cooling is summarized in Figure 3. After cooling the relative 

density was found to be higher than 96 %. 
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Figure 3: Schematic of heating and cooling rates to prepare dense pellets of Pr4Ni3O10+δ. 

 

3. XRD analysis after the preparation of the dense pellets  

The X-ray diffractogram of dense pellet is shown in Figure 4. The major phase is 

Pr4Ni3O10+δ, few peaks of PrOx and NiO are also observed.  
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Figure 4: X-ray diffractogram recorded on the dense pellets of Pr4Ni3O10+δ. 
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4. SEM-EDS Analysis on dense pellets 

SEM images of the cross section of dense pellets are shown in Figure 5, which 

confirm quite high density of pellets without any porosity. Figure 5a and b corresponds to 

secondary electron images with different magnification while Figure 5c is a back scattered 

electron image. Some grey spots are visible on Figure 5c. EDS analysis was performed on 

the grey spots, confirming the presence of NiO (Figure 6).  

 

 

Figure 5: SEM images of the cross section of dense pellets of Pr4Ni3O10+δ. 
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Figure 6: SEM-EDS analysis on a grey spot present on a Pr4Ni3O10+δ dense pellet. 

 

5. Isotopic Exchange Depth Profiling – SIMS Experiments 

The oxygen diffusion coefficient D* and surface exchange coefficient k* were 

determined by the so-called isotopic exchange depth profile (IEDP) technique combining 

isotopic exchange of 
18

O (used as an oxygen tracer) for 
16

O then secondary ion mass 

spectrometry (SIMS) analyses. The dense pellets were first abraded with silicon carbide 

papers of successive grades, and then polished with diamond paste down to a roughness close 

to 0.3 µm. The samples were annealed at a pressure of 210 mbar in an 
18

O enriched 

atmosphere (97%, Eurisotop) at 600 and 700 °C. Later on the experiment was also performed 

at higher oxygen partial pressure i.e. at 1000 mbar at 600 °C. The 
18

O penetration profiles, i.e 

normalized 
18

O isotopic fraction (
18

O / (
16

O + 
18

O)), were recorded as a function of the 

analyzed depth using a Cameca
®
 IMS 6F SIMS apparatus with a Cs

+
 ions source. The 

profiles were then fitted using an appropriate solution to the diffusion equation given by 

Crank, for a solution of the second Fick’s law of gas diffusion in solids. The fits of depth 

profiling at 700 and 600 °C are reported in Figure 7.  
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Figure 7: Oxygen diffusion depth profiling for Pr4Ni3O10+δ . 

Table: D* and k* values deduced from above depth profiles 

Condition D* (cm².s
-1

) k* (cm.s
-1

) 

700 °C/20 min – 210 mbar 4 × 10
-9

 1 × 10
-7

 

600 °C/40 min – 210 mbar 2 × 10
-9

 4 × 10
-8

 

600 °C/40 min – 1000 mbar 2 × 10
-9

 3.4 × 10
-7

 

 

The diffusion coefficient (D*) obtained from above depth profiling is around one 

order magnitude lower for Pr4Ni3O10+δ (D* at 600 °C = 2×10
-9

 cm².s
-1

) compared to 

Pr2NiO4+δ (D* at 600 °C = 2.5 ×10
-8

 cm².s
-1

). Interestingly the D* is the same at 210 and 

1000 mbar pressure of 
18

O despite the slightly higher value of oxygen over-stoichiometry 

when the material is equilibrated under oxygen (Chapter 6, Figure 6) 
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The surface exchange coefficient (k*) at 600 °C is 4×10
-8

 cm.s
-1

 which is also 

approximately one order magnitude less than Pr2NiO4+δ  (k* at 600 °C 5×10
-7

 cm.s
-1

). Under 

higher oxygen partial pressure, the k* value increases.  

The lower values of D* and k* in Pr4Ni3O10+δ compared to Pr2NiO4+δ can be 

understood in terms of presence of impurities in the material.   
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Conclusion 
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Conclusion 

 The initial objective of this PhD thesis was mostly twofold: 1) to focus on alternative 

oxygen electrodes for IT-SOFCs prepared in MSC-type conditions i.e. at sufficiently high 

temperature, which is a mandatory requirement with respect to the sintering of the electrode 

on an electrolyte substrate, but under low pO2 (10
-4

-10
-5

 atm) and 2) to investigate their long 

term chemical stability and electrochemical performance in the operating conditions of the 

SOFCs. To achieve our goals, the lanthanide based nickelates, which have been well known 

in our group at ICMCB-CNRS Bordeaux for several years, appear as good candidates due to 

their MIEC properties.  In this context, the preparation of new compositions was considered 

at the starting point of our study. The understanding of the possible degradation mechanisms 

of these materials at the operating condition of SOFCs was also addressed.  

 The properties of the scarcely explored La2-xPrxNiO4+δ (LPNO) series were 

investigated with the aim to find the best compromise between chemical stability and 

electrochemical performance. Indeed Pr2NiO4+δ (PNO) shows excellent electrochemical 

properties at intermediate temperature while La2NiO4+δ (LNO) exhibits higher chemical 

stability. Belonging to the K2NiF4 -type structure, the LPNO nickelates were successfully 

synthesized by the citrate nitrate route. Their initial structural characterization by XRD 

shows two main domains of solid solutions depending on the La/Pr ratio with orthorhombic 

structure. One is related to La-rich phases, from (0.0 ≤ x ≤ 0.5), with the Fmmm space group 

while the other one, Pr-rich phases, from (1.0 ≤ x ≤ 2.0), crystallize with Bmab space group. 

The (0.5 < x < 1.0) range corresponds to a biphasic domain. In addition, a careful 

investigation of PNO using laboratory XRD reveals the splitting of some reflections 

indicating some distortion in the structure.   

 For a deeper understanding of the structural properties of the LPNO series, 

synchrotron and neutron diffraction measurements were performed on several compositions. 

Joint refinements converged and confirmed the existence of three domains depending on x 

value (i.e. Pr content). One is related to La-rich phases with Fmmm orthorhombic structure 

(0.0 ≤ x < 0.5), the second one being related to Pr-rich phase (1.1 < x ≤ 2.0) with C2/m 

monoclinic structure at room temperature. Till now, this result has never been reported in 

the literature. In between 0.5 ≤ x ≤ 1.1, a third region corresponding to a biphasic domain was 

confirmed.  For Pr-rich compositions, both the monoclinic unit cell distortion and additional 

weak unindexed reflections were found to be dependent on both interstitial oxygen content 

(δ-value) and even more strongly on A-site cation substitution.  
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  The LPNO phases are oxygen over-stoichiometric in the whole temperature range 

either under air or argon. The δ value increases with increasing x. The physico-chemical 

properties including TECs, electrical conductivity, oxygen diffusion and surface exchange 

coefficients indicate the suitability of LPNO for MS-SOFCs application. Regarding the 

electrochemical performance, the polarization resistance (Rp) progressively decreases from 

LNO (0.28 Ω.cm² at 700 °C) to PNO (0.03 Ω.cm² at 700 °C) by increasing Pr content. 

Besides, the decrease in Rp as a function of x confirms that the Pr-rich compounds are more 

efficient for the oxygen electrode reaction than the La-rich ones.  

 The thermal ageing of the powders was carried out under air during one week and one 

month at 600 °C, 700 °C and 800 °C. La-rich nickelates, i.e. LNO and La1.5Pr0.5NiO4+δ are 

chemically stable, contrarily to the Pr-rich nickelates i.e. La0.5Pr1.5NiO4+δ, LaPrNiO4+δ and 

PNO. The extent of the decomposition of LPNO decreases with La content leading to a 

complete decomposition of PNO into PrNiO3-δ, Pr4Ni3O10+δ and Pr6O11.  

The long-term electrochemical measurements were performed at idc=0 conditions on 

LPNO//GDC//YSZ half cells under air. Despite various degrees of chemical stability, and 

even for a complete decomposition of the end member PNO, the Rp values for all LPNO 

phases do not show significant change after ageing. A different behaviour is observed under 

current (idc = ±300 mA.cm
-2

) with a fast degradation (i.e. large increase in Rp) in SOFC 

(cathodic) mode. For PNO and LNO, a large increase in Rp is observed after 1000 h of ageing 

up to 1800 h, while for La1.5Pr0.5NiO4+δ, the increase of Rp is very small.  Contrarily, in SOEC 

(anodic) mode for all LPNO electrodes the Rp values remain almost constant up to 1800 h, 

whatever the composition. The electrochemical performance of La1.5Pr0.5NiO4+δ under current 

is far better than the one of PNO and LNO in SOFC mode. So finally La1.5Pr0.5NiO4+δ 

appears to be the best compromise as cathode in terms of combining chemical stability and 

electrochemical performance among all LPNO nickelates. Furthermore, the chemical stability 

of the material may be not an issue for the degradation, the major problem arising from the 

interface between the electrode and GDC. In case of LNO, an additional interphase appears 

between both layers, after 1800 h ageing at 700 °C under current, which leads to fast 

degradation even though the material itself was stable. It is concluded that the new forming 

interphase in between GDC and electrode, plays a key role in the electrode 

performance, despite the high chemical stability of the electrode material. To achieve long 

term performance, the interphase should be conductive and not be oxide ion blocking in 

nature. 
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 PrNiO3-δ and Pr4Ni3O10+δ phases (being the main decomposition products of PNO) 

were fully investigated as suitable cathode materials for SOFCs. Firstly, PrNiO3-δ was 

successfully synthesized via citrate-nitrate route under oxygen flow (pO2 ~ 1 atm). The XRD 

vs. temperature study showed a phase transition from room temperature (Pbnm space group) 

orthorhombic to rhombohedral structure at ~ 600 °C. Whatever the atmosphere is, PrNiO3-δ 

always remains oxygen sub-stoichiometric. The delta value δ ≈ 0.05 is obtained at room 

temperature in air and it varies depending on pO2 (studied in argon, air and oxygen). In all 

atmospheres and temperature, PrNiO3-δ decomposes into Pr2NiO4+δ and NiO as end products 

while intermediate Pr4Ni3O10+δ is formed under air and oxygen. Electrochemical 

characterizations as SOFC oxygen electrode show that the half cells prepared by a two-step 

sintering process (being the GDC layer sintered in a first step, and then the sintering of the 

electrode in a second step) exhibits lower Rp value (Rp = 0.46 Ω.cm² at 600°C) than the co-

sintered (at the same time than the GDC layer) half cell (Rp = 0.91 Ω.cm² at 600°C). 

However, the Rp values remain always higher than the one of Pr2NiO4+δ (Rp = 0.15 Ω.cm² at 

600 °C), limiting the interest of the perovskite phase as SOFC cathode. 

 The properties of high order Ruddlesden-Popper Pr4Ni3O10+δ phase were also studied. 

The nickelate, successfully synthesized via glycine-nitrate route under normal oxygen flow 

(pO2 ~ 1 atm), crystallizes in orthorhombic structure with Fmmm space group. The XRD vs. 

temperature experiment under air evidences a stable phase throughout the temperature range 

up to 1000 °C. An over-stoichiometry delta value δ = 0.10 is obtained under air at room 

temperature. The measurement of oxygen content vs. T shows that the material remains 

always over-stoichiometric whatever the pO2 is, which should indicate that this material is 

MIEC-type under oxygen and air up to 1000 °C.  Pr4Ni3O10+δ phase is stable for about 2 h 

under air and fully stable under oxygen at 1000 °C. Further increase of temperature leads to 

decomposition into Pr2NiO4+δ and NiO, under air and oxygen. The half cell prepared by co-

sintering process (with GDC layer) shows lower Rp value (Rp = 0.16 Ω∙cm² at 600 °C) than 

the one made by two-step sintering (Rp = 0.25 Ω∙cm² at the same temperature). This value is 

almost same as Pr2NiO4+δ. At the end, the Pr4Ni3O10+δ phase is highly stable during long term 

up to 1 month under air at different SOFC operating temperatures: 600, 700 and 800 °C, on 

the contrary to Pr2NiO4+δ which decomposes in the same conditions. A single cell with 

Pr4Ni3O10+δ electrode produced high power density of 1.60 W·cm
-2

 at 800 °C and 0.68 W·cm
-

2
 at 700 °C for duration up to 500 h showing that Pr4Ni3O10+δ is very promising as cathode 

material.  
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Major achievements in my PhD work  

 La2-xPrxNiO4+δ (0.0 < x < 2.0), LPNO series were successfully synthesized. 

 Pr2NiO4+δ and Pr-rich phases are reported for the first time as monoclinic structure at 

room temperature.   

 LPNO phases are suitable for MSCs. The best compromise between stability, 

performance and ageing is La1.5Pr0.5NiO4+δ. 

 Chemical stability of the cathode material itself is not the main parameter upon ageing 

in operation conditions. The interface/interphase in between the GDC barrier layer 

and the electrode is a key issue.  

 Among PrNiO3-δ, Pr2NiO4+δ and Pr4Ni3O10+δ, Pr4Ni3O10+δ (n = 3 term of Ruddlesden-

Popper series) is the most stable (chemically as well as structurally) and appears as 

the most promising cathode material. 

 

This work opens some future perspectives.  

 In order to validate the main achievements during this work, single cell measurements 

involving the mixed La1.5Pr0.5NiO4+δ nickelate as cathode need to be performed.  

 Aiming at the determination of the origin of the unindexed extra peaks that might be 

attributed to modulation or superstructure in PNO and Pr-rich phases, HR-TEM 

experiments should be further carried out. 

 A critical point remains the nature of the interface located in between the electrode 

and electrolyte support, requiring the most appropriate “couples” and to favour the 

formation of conductive interphase. For instance, recent result in our group 

demonstrates the benefit using Pr-doped ceria //LNO
6
 instead of GDC, in terms of 

stable performance at operating conditions.  

                                                      
6 A. Flura, C. Nicollet, V. Vibhu, A. Rougier, J. M. Bassat, J. C. Grenier, “Ceria doped with praseodymium instead of 

gadolinium as interface layer for lanthanum nickelate electrode in SOFC application”, To be submitted. 
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Annex 1 

Impedance spectroscopy 

 The Electrochemical Impedance Spectroscopy (EIS) is a method of electrical 

measurements used with the aim to determine the various contributions of a given 

electrochemical system (such as for instance the symmetric half-cell 

electrode/electrolyte/electrode shown on Figure 1). It is based on the point by point analysis 

of the alternating current response to a sinusoidal voltage. 

 The electrical impedance Z (ω) of a circuit is the ratio of the sinusoidal voltage 

applied U(ω)=Uo Exp (jωt) over the resulting current I(ω)=I0Exp(jωt+φ).  

 

 

 

 

 

Figure 1: Principle of the impedance spectroscopy (U: applied voltage, I: response 

current, Z: impedance, ω: angular frequency with ω= 2πf (where f: frequency and φ: 

phase shift) 

 Z(ω) is a complex number that can be represented in polar coordinates by its modulus 

|Z| and phase φ or in Cartesian coordinates by: Z(ω) = Re(Z)+jIm(Z) = Z'+jZ". Re(Z)= Z' and 

Im(Z)= Z" represent the real and imaginary parts of the impedance, respectively. The 

relations between the different quantities are as follows:  

|𝒁|𝟐 = 𝐑𝐞𝟐(𝐙) + 𝐈𝐦𝟐(𝐙) = (𝐙′)𝟐 + (𝐙")𝟐                (1) 

𝜑 = tan−1(𝑍"
𝑍′⁄ )                                                      (2) 

Z′ = |Z| cos φ and Z" = |Z| sin φ                               (3) 

 If the angular frequency ω varies, the end of vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   of the impedance Z describes 

the complex plane (Figure 2). 

𝑈(𝜔) = 𝑈0exp(jωt) 

𝐼(𝜔) = 𝐼0exp(jωt+φ) 

 
⇒  𝑍(𝜔) = |𝑍|exp(-jφ) 
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Figure 2: Real (Z') and imaginary (Z") component of the impedance vector in the 

complex plane 

 

The impedance is generally represented by two ways: 

a. In the complex plane using Nyquist plot; in which -Im(Z) = f [Re(Z)]. 

b. Bode plot; in which |Z| = f[log(ω)] and φ =  f[log(ω)], are plotted. 

 

Instrumentation 

The instrument of Impedance spectroscopy consists of two devices:  

a. Solartron Modulab, which can operate in the range of frequency 10
 
µHz to 1 MHz and 

deliver a sinusoidal voltage amplitude which is adjustable between 0 and 1 V.  

b. Autolab PGSTAT30, which is capable to operate in the frequency range 10
-3

 Hz to 1 

MHz and deliver a sinusoidal voltage amplitude which is adjustable between 0 and 

300 mV. 

 The measurement setup were designed and built at ICMCB-CNRS. It consists of 

alumina tubes, gold grids are used as current collector and various contacts are made of 

platinum.  

 In the Nyquist plot showing the answer of a symmetrical cell, the negative of 

imaginary part of impedance; Z" = -Im[Z(ω)] is plotted as a function of real part of 

impedance; Z' = Re[Z(ω)]. The theoretical diagram is shown in Figure 3. 
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Figure 3: Theoretical impedance diagram of the cell composed of electrolyte and 

electrode. 

 The theoretical diagram is a combination of various arcs of circle, ranging from high 

frequency (HF, on the left part of the Z’ axis) to low frequency (LF, right part of the Z’ axis). 

The first arc is related to the diffusion of O
2-

 through the bulk of electrolyte (being the 

corresponding resistance labeled Rb). The second arc is related to the diffusion of O
2-

 through 

grain boundaries of the electrolyte (with resistance Rgb). These two arcs come under high 

frequency region. In the medium frequency (MF) range, a contribution related to the transfer 

of O
2-

 ions at the interface between cathode and electrolyte is often evidenced (with 

resistance Rt). The arc located at low frequency (LF) is related to the electrode processes 

(adsorption of O2, dissociation of O2, charge transfer-diffusion (O
2-

) in the electrode, with 

resistance Re). As there is several processes involved in the electrode reaction, the 

contribution is usually more complex than one simple R//C. The frequencies f at the top of 

these arcs are different and constitute a signature enabling to identify each of the 

electrochemical phenomenon previously considered.   

 The capacity 𝐶0 of the circuit can be calculated in terms of angular frequency (𝜔0) or 

frequency (f0) at the top of semicircle by using the following relation: 

𝐶0 =
1

𝜔0𝑅
=

1

2𝜋𝑓0𝑅
                                 (4)       

 It is then possible to determine the resistance of the electrolyte (Rb and Rgb) and the 

polarization resistance (𝑅𝑝) of the electrode by using the complex impedance diagram. 
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𝑅𝑝 = 𝑅𝑡 + 𝑅𝑒                                      (5) 

 By calculating the polarization resistance (𝑅𝑝), one can calculate the area specific 

resistance (ASR). 

𝐴𝑆𝑅 = (𝑅𝑝). 𝑆. (1 2)                       (6)⁄  

 The surface area (S) of the electrodes is expressed in cm² and the coefficient 1/2 is 

introduced due to symmetry of the cell. The same normalization accounts for the capacitance 

C (in F.cm
-2

).  

𝐶 =
2. 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑆
                               (7) 

 The measurements were performed under ambient air, in a two electrode 

configuration with signal amplitude (Eampl) 50 mV and no DC voltage was applied. The 

frequency range was scanned from 1MHz to 10
-2

 Hz with 71 points. 
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Résumé 

Ce travail de thèse est consacré à l’étude des nickelates La2-xPrxNiO4+δ, comme nouveaux matériaux 

de cathodes pour piles à combustible haute température, SOFC, et en particulier à la caractérisation 

de leur stabilité chimique et leur comportement en fonctionnement. En effet, du fait de leur 

propriété de conduction mixte ionique et électronique, MIEC, les nickelates de structure type 

K2NiF4,  Ln2NiO4+δ (Ln = La, Pr, Nd), correspondant au terme n = 1 de la série de Ruddlesden-

Popper (An+1MnO(3n+1)), sont des matériaux prometteurs pour des fonctionnements à température 

intermédiaire, IT-SOFC (T < 800 °C). Compromis entre la stabilité chimique de La2NiO4+δ et les 

très bonnes performances électrochimiques de Pr2NiO4+δ, les phases  La2-xPrxNiO4+δ, ont été 

synthétisées et leurs propriétés physico-chimiques, de transport et électrochimiques ont été 

déterminées.  L’étude approfondie des caractéristiques des électrodes par spectroscopie 

d’impédance en cellules symétriques a été réalisée à courant nul et sous polarisation anodique et 

cathodique sur des périodes d’un mois. De façon surprenante, même après la dissociation complète 

de Pr2NiO4+δ en PrNiO3-δ, Pr4Ni3O10+δ et Pr6O11, la résistance de polarisation ne montre pas de 

changement significatif. L’étude de PrNiO3-δ et Pr4Ni3O10+δ, comme matériau de cathode pour piles 

à combustible, démontre l’excellent comportement de la phase Pr4Ni3O10+δ et ceci en cellule 

symétrique (Rp (Pr4Ni3O10+δ)  =  Rp (Pr2NiO4+δ) = 0.15 Ω.cm² à 600 ° C) et cellule complète (1.6 

W.cm
-2

 at 800 °C). 

Mots-clés: Piles à Combustible Haute Température (SOFC), Nickelates, Conducteur ionique et 

électronique mixte (MIEC), Électrode à oxygène, Stabilité chimique, Vieillissement en 

fonctionnement, Spectroscopie d’impédance électrochimique (EIS) 

 

Summary 

This PhD work is dedicated to stability and ageing studies of Praseodymium based nickelates as 

cathodes for Solid Oxide Fuel Cells (SOFCs). With this respect Ln2NiO4+δ (Ln=La, Pr or Nd) 

compounds with the K2NiF4 type structure act as alternative cathode materials for IT-SOFC due to 

their mixed ionic and electronic conductivity (i.e. MIEC properties). Pr2NiO4+δ shows excellent 

electrochemical properties at intermediate temperature (i.e. low polarization resistance Rp value, Rp 

= 0.03 Ω.cm² at 700 °C), while La2NiO4+δ exhibits higher chemical stability. So, the properties of 

La2-xPrxNiO4+δ nickelates were investigated with the aim to find best compromise between chemical 

stability and electrochemical performances. After synthesis, the physical and chemical properties as 

well as their transport and electrochemical properties have been determined. Measurements of the 

polarization resistance of symmetrical half-cells have been carried out by impedance spectroscopy. 

Then, the chemical stability and the electrochemical performance of the materials have been studied 

for duration up to one month. As an interesting point, even after complete dissociation of Pr2NiO4+δ 

into PrNiO3-δ,Pr4Ni3O10+δ and Pr6O11, the polarization resistance does not show significant change. 

So finally, two new materials PrNiO3-δ and Pr4Ni3O10+δ were investigated as SOFCs cathode 

showing very promising results for Pr4Ni3O10+δ in symmetrical cell (Rp (Pr4Ni3O10+δ)  =  Rp 

(Pr2NiO4+δ) = 0.15 Ω.cm² à 600 ° C) and complete cell (1.6 W.cm
-2

 at 800 °C). 

Key-words: Solid Oxide Fuel Cell (SOFCs), Solid Oxide Electrolyzer Cell (SOECs), Mixed ionic 

and Electronic conductor (MIEC), Nickelates, Oxygen over-stoichiometry, Chemical stability, 

Ageing, Electrochemical Impedance Spectroscopy (EIS) 
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