
HAL Id: tel-01425136
https://theses.hal.science/tel-01425136

Submitted on 3 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intracellular and extracellular signatures of action
potentials initiated in the axon

Maria Telenczuk

To cite this version:
Maria Telenczuk. Intracellular and extracellular signatures of action potentials initiated in the axon.
Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2016. English. �NNT :
2016PA066211�. �tel-01425136�

https://theses.hal.science/tel-01425136
https://hal.archives-ouvertes.fr
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École doctorale Cerveau, Cognition et Comportement

Presentée par

Maria TELEŃCZUK
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Abstract

1.1 Abstract

The action potential is considered one of the major signalling events in the brain and

malfunction of firing of action potentials might lead to various neurological diseases. Al-

though it has been studied for years, many questions remain unanswered. The present

work is dedicated to the study of action potential generation, its impact on extracellular

field and local network establishment. We considered three questions: Firstly, (i) we asked

why mammalian neurons often have characteristically sharp onset in the somatic record-

ings of action potentials. Until recently, researchers debated on the causes of this so-called

‘kink’. We tested different hypotheses by means of computational modelling. We show

that the Critical Resistive Coupling Hypothesis is sufficient to explain how the action

potential is initiated in the axon initial segment to provide for the ‘kink’ in the soma,

while the Backpropagation Hypothesis is not sufficient to explain it. Next, (ii) we asked

how the placement of the axon initial segment might affect the extracellular field. Exper-

imental recordings reveal that the location of the axon initial segment varies in different

cell types and might be altered by elevated activity. We provide theoretical evidence that

those differences are reflected extracellularly. Most importantly, we show that the impact

of the axon initial segment position on the shape and amplitude of extracellular action

potential depends on the distance between the recording site and the axon and on its

position along the soma–axon initial segment axis. Finally, (iii) we inquired if a single

action potential might have an effect on the network activity as the impact of a single

action potential on the local network is often questioned. So-called sharp-wave ripple

complexes are hippocampal network events identified in the extracellular activity which

are believed to be responsible for memory consolidation. We show that a single action

1.1. Abstract xiii



potential from a single pyramidal neuron in the hippocampus can trigger sharp-wave

ripple activity consisting of the firing of multiple interneurons.

Altogether, our results show that action potentials are complex events shaped by the

biochemistry of the neuronal membrane and morphology of the axon. In addition these

features strongly modulate the neuron’s impact on the extracellular field and network

activity.

1.2 Résumé (en français)

Le potentiel d’action est un des événements de signalisation majeurs du cerveau. Des

défauts dans ce processus peuvent entrâıner des maladies neurologiques. Même si le

potentiel d’action à beaucoup été étudié, plusieurs questions restent sans réponse. Ce

travail est dédié à l’étude de la génération du potentiel d’action, et son impact dans le

potentiel extracellulaire ainsi que dans le réseau local. Pour ce faire nous avons abordé

trois questions principales.

Premièrement, nous nous sommes intéressés à comprendre pourquoi les potentiels

d’action ont souvent un début brutal (‘kink’) dans les enregistrements somatiques des

neurones de mammifères. L’origine de ce phénomène, est actuellement en débat. Nous

avons testé différentes hypothèses par modélisation informatique, et nous avons montré

que l’hypothèse du couplage résistif critique explique comment le potentiel d’action est

initié dans le segment initial de l’axone pour fournir le ‘kink’ dans le soma, alors que

l’hypothèse de la retropropagation n’est pas suffisante pour expliquer ce phénomène.

Deuxièmement, nous avons évalué l’impact de la position du segment initial sur le po-

tentiel extracellulaire. Des enregistrements expérimentaux révèlent que la localisation du

segment initial varie entre différents types cellulaires et peut être modifiée par l’activité.

Nous fournissons des preuves théoriques qui suggèrent que ces différences se reflètent de

façon extracellulaire. De façon importante, nous démontrons que l’impact de la position

du segment initial axonal dans la forme et l’amplitude du potentiel d’action dépend de

la distance entre le site d’enregistrement et l’axone, et de sa position par rapport à l’axe

soma-segment initial axonal.

Finalement, nous avons exploré l’impact d’un seul potentiel d’action dans l’activité

de réseau, car cet effet est souvent questionné. Les complexes “sharp-wave ripple” sont

des événements de réseau identifiés dans l’activité extracellulaire de l’hippocampe, et

sont responsables de la consolidation de la mémoire. Nous montrons qu’un seul potentiel

d’action d’un neurone pyramidal hippocampique peut commencer l’activité “sharp-wave

ripple” qui consiste en l’activation de multiples interneurones.

L’ensemble de nos résultats montre que les potentiels d’action sont des événements

xiv Contents



complexes modelés par la biochimie de le membrane neuronale et la morphologie de

l’axone. De plus, ces caractéristiques neuronales modulent fortement leur impact dans le

champ extracellulaire et l’activité de réseau.

1.2. Résumé (en français) xv
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CHAPTER 2

Introduction to action potential

The brain has fascinated people since ancient times and many have tried to understand its

secrets. However, the nerve cell in the brain was not described until the XIXth century by

Johanness Purkinje (1787–1869). Later came the pioneering discovery by Camillo Golgi

(1843–1956) who developed method for visualization of neurons which lead Santiago

Ramón y Cajal (1852–1934) to propose the concept that the nervous system is made of

individual units and not just continuous mass of tissue (neuron doctrine) (Ramon y Cajal,

1888). To him, neurons in the brain appeared to be of complex and variable structure

with many processes extending from the cell body and they quickly gathered a lot of

interest.

Although recording intracellular electrical activity posed technical difficulty, already

in 1939 the first trace of intracellular action potential from an animal cell was published

(Fig 2.1A) (Hodgkin and Huxley, 1939). Since then many researchers have thoroughly

studied the action potential: its shape (e.g. Barthó et al. (2004); Brette (2013); Mc-

Cormick et al. (1985)), origin (e.g. Hodgkin and Huxley (1952)) and function (e.g. Houwel-

ing and Brecht (2008); Li et al. (2009)).

The action potential can be described as a rapid and short-lasting rise in electric

potential in the cell. It has a distinct shape (Fig 2.1A and B, black) which has its origin

in the underlying mechanism of its generation; Hodgkin and Huxley were able to fit their

measurements of action potentials to changes in Na+ and K+ conductances as a function

of membrane potential and time.

At the resting potential the cell membrane is not permeable to sodium (Na+) which

mostly remains in the extracellular medium, while potassium (K+) is mostly concentrated

inside the cell. If a neuron is sufficiently depolarized, some of the voltage-gated sodium

channels (Nav) open, enabling Na+ to flow into the cell (example of Na+ current during

1



action potential, Fig 2.1, red). This inflow causes further depolarization and as a result,

even more Nav channels open. This forms a positive feedback cycle which eventually

drives the membrane potential of the cell to positive values and to the peak of the action

potential. The amplitude of the electrical potential during an action potential is roughly

100 mV and it lasts about 1 ms (Dayan and Abbott, 2001). The generation of an action

potential also depends on the cell’s previous firing activity. It is known to be impossible

to evoke an action potential in the first few milliseconds (the absolute refractory period)

following an action potential, and more difficult up to next tens of milliseconds (relative

refractory period) after one. After the action potential reaches its peak, membrane po-

tential is brought to resting values. This is achieved reliably and rapidly because sodium

channels become inactivated soon after generating action potential, and because voltage-

gated potassium (Kv) channels open to accelerate repolarization (example of K+ current

during action potential, Fig 2.1, blue) (Kandel et al., 2000).

The process of action potential generation described above fascinates with its beauty

and seeming simplicity. However, the details are more complex. Specifically, sodium

and potassium channels have multiple subtypes which differ in many ways, such as the

time courses of their activation and inactivation. Furthermore, their concentration and

localisation differ within neuronal segments enabling them to impact action potential in a

variety of ways, and in different cell compartments. Finally, cells themselves vary largely

in their morphology: the size of the soma, the extent of the axon, and the morphology

of the dendritic tree, not only across the different cell types but even within seemingly

similar neurons. Therefore, we wanted to know how much these differences impact single

action potential making each of them very unique.

2.1 Context and objective of this work

If the distribution of active channels within varied morphologies of neurons provide the

uniqueness of the fired action potential, it is important to know the types of currents and

ionic channels which contribute to the generation and propagation of the action potential.

Thus, in section 2.2 we will talk about currents rushing through the cell during action

potential, we will explain the types of Nav and Kv which can be found in the brain, and

we will highlight the existence and role of other voltage-gated channels.

Next, in section 2.3 we will describe different parts of the neuronal structure as mor-

phology of the cell largely impacts action potential. In many mammalian cells, action

potential is initiated in the axon initial segment, which is characterized by a distinct

structure and ionic channel composition. Initiation in this segment might be more en-

ergy efficient compared to initiation at the soma. Most recordings of the action potential

2 Chapter 2. Introduction to action potential
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Figure 2.1: Action potential. A. The first published intracellular trace of the action
potential recorded from the squid giant axon. Hodgkin and Huxley used glass capillary
electrodes filled with sea water. The sea water outside is considered to be at zero potential.
Adapted from Hodgkin and Huxley (1939). B. Contribution of sodium and potassium
currents to action potential in the soma of thick-tufted layer 5 pyramidal neuron. Black:
Action potential, blue: potassium current (Ik), red: sodium current (INa). Adapted from
Hallermann et al. (2012).

show surprisingly sharp onset (called ‘kink’). For years, the origin of this characteris-

tic pattern was debated (we explain hypotheses which tried to address this problem in

section 2.4). This unsolved question motivated us to find the origin of the ‘kink’. In

Chapter 3, we contribute to the discussion by showing that the initiation of the action

potential in the axon initial segment is responsible for the formation of the current loop

between the initiation location and the soma. As it is much larger than the axon, the

soma acts as a current sink causing the current flowing into the axon initial segment to

pass directly to the soma. The current coming from the axon to the soma is interpreded

as the part of the action potential with the sharp onset, which sufficiently rises the po-

tential in the soma to cause the opening of the somatic sodium channels and to generate

a fully blown action potential. This explanation was proposed as the Critical Resistive

Coupling Hypothesis (or Compartmentalization Hypothesis) (Brette, 2013).

The size and location of the axon initial segment have a crucial role in the initiation

of an action potential. Interestingly, it is known that the axon initial segment varies in

length and that it is present at different distances from the cell body in different cell

types. Additionally, it is plastic: its localisation and length can be altered depending

on the activity of the neuron. Since these properties have a large effect on the action

potential initiation, as we show in Chapter 3, it is essential to be able to monitor their

change in vivo. Intracellular recordings, which give access to these properties and their

2.1. Context and objective of this work 3



effects on action potential, are hard to perform. Fortunately, the action potential is a

large event that can also be recorded outside of the cell, in the extracellular medium (we

discuss it further in section 2.5). These types of recordings are much easier to perform

and are often the only possibility to measure the activity of multiple units. In Chapter 4,

we show that the change of the location of the axon initial segment can be reflected in

extracellular recordings performed near the cell but that this difference is not seen in

the recordings performed far from the neuron. These findings may help us to monitor

the morphological and chemical properties of the axon and how they affect the initiation

of action potential in vivo. Since our understanding of neuronal function can only be

obtained from intact neural networks, we hope that such recordings may allow us to

determine the functional relevance of the axon initial segment and of sharp initiation in

cortical networks.

It is possible that single action potentials carry information different from multiple

action potentials fired within a short interval (such as the burst described in more detail

in Section 2.6). The function of an individual action potential may depend on the local

network it is embedded into. For example, it has been debated whether a single action

potential could affect the entire network (Epsztein et al., 2010) or if only action potentials

of the entire population encode useful information (London et al., 2010; Softky and Koch,

1993). The importance of a single action potential initiated by a single cell has also been

shown (we provide more detail in section 2.7), as some of the action potentials can lead

network of neurons to change their state and their firing pattern. In our work we show

that single pyramidal cells in the CA3 area of the hippocampus can excite interneurons

whose joint activity creates sharp wave-ripples. These sharp wave-ripples can be recorded

both in vitro and in vivo and are believed to be responsible for the consolidation of the

memories (more on sharp waves in section 2.8). The CA3 region is known for its recurrent

connectivity (Appendix A) and therefore might support easy and quick excitation between

the cells in the network.

It is to be noted that the important role of the action potential carries its risks. For

example, the cell might fail to generate action potentials which in normal conditions would

inhibit other neurons. This may cause over-excitation of the network as it is the case

in epilepsy. Additionally, malfunctioning voltage-gated channels which do not properly

carry out their function might lead to diseases collectively called channellopathies (we

describe the diseases caused by the malfunction of the action potential in more detail in

section 2.9).
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2.2 Currents during action potential

Multiple currents constantly flow along the living neuron and through its membrane via

ion channels. Electro-chemical gradients are largely responsible for the ion movement,

but there are also other active processes supporting the function of the cell, and multiple

channels which do not remain open.

Since the initial description of two voltage-dependent conductances by the Hodgkin-

Huxley model in the giant–squid axon (which we will explain in more details in sec-

tion 2.2.1), a large number of voltage-gated channels has been discovered in mammalian

neurons and in different brain areas. This wide range of channel types allows the genera-

tion of action potentials of various shapes, frequencies and patterns (Bean, 2007; Connors

and Gutnick, 1990; Nowak et al., 2003).

ion extracellular
(mM)

intracellular
(mM)

reversal poten-
tial (mV)

potassium [K+] 5 140 -89.7

sodium [Na+] 145 5-15 61.1 – 90.7

calcium [Ca2+] 2.5 – 5 100 – 200 (nM) 136 – 145

Table 2.1: Typical intra- and extracellular ion concentration in the mammals. Table
adapted from (Johnston et al., 1995). Reversal potential was calculated from Nernst

Equation Es = RT
F
ln( [S]o

[S]i
) for K+ and Na+ and ECa = RT

2F
ln( [Ca]o

[Ca]i
) for Ca2+. Temperature

was set to 37◦ C; R is the gas constant equal to 8.3145 (J mol−1 K−1), T is a temperature
(K) and F is a Faraday’s constant equal to 9.6485·104 C mol−1, S is an ion type [S]o
and [S]i are specific concentrations inside and outside of the cell respectively (mM).
Here, RT

F
= 26.73 mV.

2.2.1 Hodgkin and Huxley Model

One of the most popular biophysical models of the action potential is the model described

by Hodgkin and Huxley in 1952 (hence Hodgkin–Huxley (HH) model) (Hodgkin and

Huxley, 1952). They defined the membrane current by the equation:

Im = Cm
dV

dt
+ IK + INa + IL

where IK is the potassium current, INa – sodium current IL – leak current, Cm is the

membrane capacitance and V is voltage. Hodgin and Huxley hypothesised that all those
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currents obey Ohm’s law, therefore the same equation can be rewritten to:

Im = Cm
dV

dt
+ gK(V, t)(V − EK) + gNa(V, t)(V − ENa) + gL(V − EL)

where EK , ENa and EL are the reversal potentials and gK , gNa and gL are the conduc-

tances.

Hodgin and Huxley proposed the currently accepted idea that sodium channels are

voltage sensitive and as such, they can be found in one of three different states: opened,

closed or inactivated. Potassium channels on the other hand, can be either opened or

closed. Channels open with various kinetics: total conductance gNa and gK through all

the channels follow the power functions of the gating variables, thus in HH model:

gK(V, t) = n4gK

and

gNa(V, t) = m3hgNa

where n, m and h are gating variables which follow an exponential time course and gK

and gNa are maximum conductances

Therefore, sodium and potassium channels might be imagined as consisting of four

independent subunits where the channel becomes open only if all of the subunits are

opened.

It is possible to describe the kinetics of the gating variable n(t) as follows:

dn

dt
= αn(1− n)− βnn

τn
dn

dt
= n∞ − n

and m(t) and h(t) accordingly. Here, α and β are rate coefficients , n∞ is the activation

function of the gating variable n, and τn is its time constant.

Hodgkin and Huxley described their model based on multiple recordings from the giant

squid axon. Furthermore, they made it isopotential by placing an electrode inside of it,

but the properties of this extraordinary cable are not always applicable to mammalian

species (Attwell and Laughlin, 2001; Fohlmeister, 2009; Hille et al., 2001; Shoukimas and

French, 1980), and variations of the HH model have been published by multiple groups

(Hallermann et al., 2012; Mainen et al., 1995). Generally we call the family of all of

those models, the HH-type models. When using them, it is important to remember that

action potentials in the mammalian neurons are usually initiated not inside, but adjacent

to the soma, in the AIS. That is why isopotential model of HH-type consisting of single
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soma cannot correctly reflect actual mammalian experimental data (Brette, 2015). We

will explain the initiation process in detail in Section 2.4 and in Chapter 3.

2.2.2 Voltage gated channels

The cell membrane is built out of a lipid bilayer which forms a virtually impermeable

barrier to ions. Ions can pass through it but only via the ion channels which are embedded

in the membrane (Kandel et al., 2000). These channels have different localisation within

the body regions but also within single cells and some of them are voltage sensitive and

can open or close depending on the difference in voltage between the inside and the

outside of the cell (Trimmer and Rhodes, 2004). When they are opened, a restricted

class of ions follow the electrochemical gradient to enter or leave the cell at high rates

(> 106 ions per second) (Hille et al., 2001).

In this section we will give a basic overview of a large family of voltage-gated channels

which are expressed in the adult mammalian brain. We will mostly focus on their locali-

sation within the single cell and the role they play in the generation of action potentials.

2.2.2.1 Sodium channels

In physiological conditions concentration of sodium (Na+) inside the cell is 5 – 15 mM

and 140 mM outside the cell (Table 2.1). This results in an equilibrium potential of Na+

ions (ENa) between 61.1 and 90.7 mV and at membrane resting potential it produces a

large drive for Na+ to enter the cell. Therefore, when sodium channels open, Na+ rapidly

enters the cell, causing the depolarization of the membrane. The rise of intracellular Na+

is responsible for the rising phase of the action potential (Catterall, 2000).

Sodium channels can generate three types of sodium currents: (1) the fast-inactivating

transient Na+ current, (2) the persistent Na+ current, which slowly activates and inacti-

vates (Crill, 1996) and (3) the resurgent Na+ current which is activated upon repolariza-

tion in sub-threshold, potentials causing membrane depolarization and enabling the cell

to fire at higher frequencies (Cruz et al., 2011; Raman and Bean, 1997).

There are three families of sodium channels: voltage-gated sodium channels (Nav),

Nax, and non-voltage-gated sodium channels which will not be discussed here (Yu and

Catterall, 2003). Voltage-gated sodium channels (Nav) can be found in three states:

closed, opened or inactivated (Hodgkin and Huxley, 1952). It is however worth noting

that Nav channels are not perfectly discriminating for Na+, thus when opened, they let a

smaller number of other ions (such as potassium and calcium) pass through (Hille et al.,

2001). Nav channels consist of one α and one or more of the smaller β subunits. The

α subunit serves as a voltage sensor while the β is responsible for modulation of voltage
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dependence and kinetics, as well as localisation of the α subunit within the cell (Catterall,

2000; Goldin et al., 2000).

There are nine known subtypes of Nav1 family of voltage-gated sodium channels:

Nav1.1-Nav1.9. Four of them are commonly found in the adult mammalian brain: Nav1.1,

Nav1.2, Nav1.3 and Nav1.6 (Goldin et al., 2000; Trimmer and Rhodes, 2004) (subcellular

expression of selected Nav channels in the mammalian brain, Table 2.2). Some studies

have also shown a selective expression of Nav1.5 (Donahue et al., 2000; Hartmann et al.,

1999; Ren et al., 2012; Wu et al., 2002), Nav1.7 (Morinville et al., 2007) and Nav1.9

(Jeong et al., 2000) at this location although they are mostly found in other parts of the

body (such as in the heart or skeletal muscles). Each of the Nav channels play different

roles in action potential initiation and propagation (Catterall et al., 2005a; Royeck et al.,

2008; Yu and Catterall, 2003).

The second family of Na channels is called Nax. It has some similarities to Nav1

channels (Catterall et al., 2005a) as members of this family have no voltage sensitivity

but are responsible for sensing extracellular sodium concentration and for regulating

salt intake behaviors (Hiyama et al., 2002). These channels localize to neurons and to

neuroglia cells of central nervous system organs (Watanabe et al., 2000).

Sodium channels can be classified as either sensitive or resistant to pharmacological

block by tetrodotoxin (TTX) (Caterall, 1980; Donahue et al., 2000; Jeong et al., 2000).

The resistant channels (Nav1.5 and Nav1.9 from those found in the brain) usually generate

slower currents, but recover from inactivation much faster. These channels are therefore

considered good candidates for the support of sustained firing (Elliott and Elliott, 1993;

Wu et al., 2002). Below we will give a brief overview of the Nav channels found in the

brain.

Nav1.1 channels are mostly expressed in inhibitory cells (Gong et al., 1999; Lorincz

and Nusser, 2008; Ogiwara et al., 2007; Tian et al., 2014; Trimmer and Rhodes, 2004).

They were also detected in the pyramidal cells of the hippocampus but only at extremely

low levels (Ogiwara et al., 2007). During development Nav1.1 channels mostly cluster at

the axon initial segment but in the adulthood, the density of Nav1.1 drops dramatically

(even up to 50%) (Gong et al., 1999). In mature animal Nav1.1 channels are expressed

in the proximal part of the axon initial segment (AIS) (Leterrier, 2015; Lorincz and

Nusser, 2008; Ogiwara et al., 2007; Tian et al., 2014; Van Wart et al., 2007) and in the

somatodendritic compartment (Beckh et al., 1989; Gong et al., 1999; Ogiwara et al., 2007;

Westenbroek et al., 1989, 1992). The possible roles they could play include integration of

synaptic impulses (Yu and Catterall, 2003), initiating action potentials, and sustaining

high-frequency firing of fast-spiking interneurons (Catterall et al., 2005a; Ogiwara et al.,

2007).
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dend soma axon AIS NoR terminals

Nav1.1 yes 1−6 yes 1−6 some 1,4,7 rare 5,8−10 rare 8

Nav1.2 rare, prox-
imal 1,2

rare, pyra-
midal cells
2

yes
1−4,6,8,11−14

proximal
7−9,15

some, only
human 7

yes 2,3,8,12

Nav1.3 only hu-
man 3,4,6

human
3,4,6,11,14

rarely in
rodent
1,13,16

some, only
human
3,4,6

Nav1.6 rare(∗)
3,4,6,17

some 3,4,6 some, only
rodent 4,6

distal AIS,
pyrami-
dal cells
3,5,7−9,15,18

yes 3,6−8

∗ only in those pyramidal cells where AIS originates from apical dendrite

1 Beckh et al. (1989) 7 Tian et al. (2014) 13 Westenbroek et al. (1992)

2 Gong et al. (1999) 8 Debanne et al. (2011) 14 Yu and Catterall (2003)

3 Trimmer and Rhodes (2004) 9 Lorincz and Nusser (2008) 15 Hu et al. (2009)

4 Vacher et al. (2008) 10 Ogiwara et al. (2007) 16 Shah et al. (2001)

5 Van Wart et al. (2007) 11 Catterall et al. (2005a) 17 Lorincz and Nusser (2010)

6 Whitaker et al. (2001a) 12 Westenbroek et al. (1989) 18 Royeck et al. (2008)

Table 2.2: Subcellular localisation of selected Nav channels in the mammalian brain; blue
color indicates major localisation. ‘axon’ denotes non-myelinated axons, AIS: axon initial
segment, NoR: nodes of Ranvier.
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In humans, the loss of the gene encoding Nav1.1 is associated with a severe epileptic

disorder because inhibitory cells (parvalbumin-positive) lacking Nav1.1 have problems to

generate spike output (Ogiwara et al., 2007).
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Figure 2.2: Distribution of Nav1.2 and Nav1.6 channels in the proximal part of the axon
of the layer 5 pyramidal neurons. Adapted from Fig 1 from (Hu et al., 2009).

Nav1.2 channels are very closely related to Nav1.1 channels (by their amino acid

sequence) and, together with Nav1.3 and Nav1.7, they form a close family of sodium

channels (Goldin et al., 2000). Nav1.2 channel expression is high in the development stage

and remains high throughout adulthood (Gong et al., 1999). The density of Nav1.2 in

cortical pyramidal neurons reaches its peak in the proximal axon initial segment (around

10-20 µm from the soma) (Hu et al., 2009; Lorincz and Nusser, 2008). In CA1 pyramidal

cells it is expressed mostly in the axon while it is not expressed in the postsynaptic

dendritic compartment. (Lorincz and Nusser, 2010).

Having a higher activation threshold than neighbouring Nav1.6 (Fig 2.2), Nav1.2 is

responsible for the propagation of the action potential to the soma and for repetitive

firing (Hu et al., 2009; Catterall et al., 2005a; Yu and Catterall, 2003).

Nav1.3 channels are highly expressed during development stage while in adult rodents

they almost disappear. However this is not the case in humans, where the high density

of these channels is retained in the adult brain (Whitaker et al., 2001a; Trimmer and

Rhodes, 2004). Because of their localisation in the cell body (Beckh et al., 1989; Shah

et al., 2001; Westenbroek et al., 1992), Nav1.3 channels might be responsible for the

integration of synaptic inputs (Yu and Catterall, 2003).

The Nav1.5 channel family is closely related to Nav1.8 and Nav1.9 (Goldin et al.,

2000). It is mainly found in the heart, but recently various groups also reported a

slightly different form of these channels to be expressed in the mammalian brain. Nav1.5

channels (as Nav1.8 and Nav1.9) are resistant to TTX (Donahue et al., 2000; Hartmann

10 Chapter 2. Introduction to action potential



et al., 1999; Ren et al., 2012; Wu et al., 2002). Functionally, Nav1.5 channels are believed

to regulate excitability and rhythmic firing in the brain (Hartmann et al., 1999) and

might be involved in the generation and propagation of action potentials (Catterall et al.,

2005a). Nav1.5 is also a possible candidate whose defects might cause inherited epilepsy

(Hartmann et al., 1999).

Nav1.6 channels replace Nav1.2 channels during development in the maturing nodes

of Ranvier (NoR) (Boiko et al., 2001; Kaplan et al., 2001). Nav1.6 channels have the

highest NoR density in the adult brain, which is almost twice as high as in the axon

initial segment (AIS) (Lorincz and Nusser, 2010). At the level of AIS, Nav1.6 channels

are expressed in the distal part (around 30-50 µm from the soma, Fig 2.2) (Hu et al., 2009;

Lorincz and Nusser, 2008; Royeck et al., 2008) where their density increases 40 times in

the first ten µm of AIS. In the dendrites, the density of Nav1.6 becomes lower as the

distance from the soma increases (Lorincz and Nusser, 2010).

In most neurons localization of Nav1.6 channels in the AIS coincides with the initiation

zone for action potential (Hu et al., 2009), a phenomenon for which Nav1.6 channels are

believed to be responsible (Royeck et al., 2008). In mice lacking Nav1.6, Nav1.2 are

sufficient for action potential (AP) initiation in the axon, although the threshold for

the AP initiation is higher (Royeck et al., 2008). Higher threshold for AP is due to

Nav1.6 channels having a lower threshold for activation (by around 15 mV) than the

more proximal Nav1.2 channels (Hu et al., 2009; Royeck et al., 2008; Rush et al., 2005).

Nav1.6 channels have also been associated with rapid burst firing (Raman et al., 1997;

Royeck et al., 2008). In small dorsal root ganglia neurons Nav1.6 channels produce a large

persistent current, much larger than the persistent current produced by Nav1.2 channels

in the same cells (Rush et al., 2005).

Nav1.7 channels are expressed mainly in the cell bodies of neurons in some areas of

the mammalian brain (Morinville et al., 2007). To our knowledge their role in the brain

with regards to action potentials has not been shown to date, however in peripheral

neurons they are responsible for action potential initiation and transmission (Catterall

et al., 2005a).

Nav1.9 is TTX-resistant. It is expressed in the brains of humans (in multiple regions)

(Jeong et al., 2000) and of other mammals (dorsal cochlear nucleus) (Yan et al., 2015).

Its subcellular localisation and function in the brain to the best of our knowledge remains

unknown. Overall, Nav1.9, along with Nav1.7 and Nav1.8 channels play a key role in the

perception of pain (Huang et al., 2014; Yu and Catterall, 2003).
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Figure 2.3: Simplified overview of family of potassium channels and their sub-cellular lo-
calization. Sub-cellular localisation is true only for certain neuron types and might differ
for others. This diagram is therefore only meant as general overview. Intracellular chan-
nels are meant as nonreceptor plasma membrane ion channels which carry intracellular
transmission. Adapted from Trimmer (2015).

2.2.2.2 Potassium channels

Potassium channels are the most variable among ion channels. In mammals they comprise

more than 80 genes (Fig 2.3). They are formed from one or more (usually four) α subunits

and variable number of additional subunits (Jan and Jan, 2012; Lujan, 2010; Trimmer,

2015).

Potassium channels have been studied more thoroughly than Nav channels and there

are multiple reviews describing them in detail (Gutman et al., 2005; Jan and Jan, 2012;

Lujan, 2010; Trimmer, 2015; Vacher et al., 2008). Here, we will focus on the voltage-

sensitive potassium channels (Kv) found in the adult mammalian brain.

The main role of potassium channels is to repolarize the membrane after action po-

tentials and to limit the excitability of the neuron (Debanne et al., 2011). Once the

membrane is sufficiently depolarized, Kv channels open rapidly (< 1 ms) to let potassium

(K+) flow out of the cell (Lujan, 2010). The equilibrium potential of K+ is around -70 to

-90 mV (Table 2.1) (Dayan and Abbott, 2001).

There are many different Kv channels (as shown in Fig 2.3) but Kv1 – Kv4 have

the widest expression pattern in the brain (Gutman et al., 2005; Trimmer and Rhodes,
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2004). Kv5, Kv6, Kv8 and Kv9 are electrically silent voltage-gate K+ subunits: When they

are expressed on their own they do not show any function, but when co-expressed with

other Kv channels, they modulate their activity, forming channels with unique biophysical

properties (Bocksteins, 2016).

The Kv1 channel family consists of three subunits which are most abundantly found

in the brain: Kv1.1, Kv1.2 and Kv1.4 (Rhodes et al., 1997). They regulate spike duration

in the axon (Kole et al., 2007; Shu et al., 2007b). Kv1.1-Kv1.2 are delayed rectifiers,

which means that they activate slowly or they activate at high voltages to repolarize the

cell. Kv1.4 is an A-type channel, meaning that they inactivate quickly and can generate

transient current (Gutman et al., 2005; Jerng et al., 2004; Lujan, 2010). This type of

channel is found in the axon and nerve terminals (Cooper et al., 1998; Trimmer and

Rhodes, 2004; Vacher et al., 2008; Wang et al., 1993, 1994). Kv1.1-Kv1.2 can be found

in the distal axon initial segment (they tend to be located more distally than Nav1.6

channels) where they determine some of the properties of the action potentials and repo-

larize the axon initial segment (AIS) after an action potential (Debanne et al., 2011; Kole

et al., 2007; Rowan et al., 2014). Furthermore, Kv1 channels prevent atypical transmitter

release at presynaptic sites by reducing nerve terminal excitability (Ishikawa et al., 2003).

Kv1.1 and Kv1.2 channels are responsible for maintaining membrane potential by modu-

lating electrical excitability in neurons (also in muscle), whereas Kv1.4 is responsible for

afterhypolarization (Gutman et al., 2005). Malfunction of Kv1.1 channels is believed to

be causative of episodic ataxia (severe dis-coordination) syndrome type 1 (Browne et al.,

1994; Gutman et al., 2005)

The channels of the Kv2 family are widely expressed in the brain. They are a delayed

rectifier type of channels and are responsible for maintaining membrane potential and

modulating electrical excitability in the dendrites (Du et al., 1998; Gutman et al., 2005;

Murakoshi and Trimmer, 1999). Channels from this group are mostly located at the

soma and along the dendrites but not in the axon (Du et al., 1998; Trimmer and Rhodes,

2004).

In chronic hypoxic pulmonary hypertension (increased blood pressure in arteries and

veins disease) Kv2.1 expression is reduced (Archer et al., 1998; Gutman et al., 2005).

The Kv3 channel family consists of the Kv3.1, Kv3.2, Kv3.3 and Kv3.4 subunits which

are mostly expressed in the brain, although Kv3.4 is more abundant in the skeletal mus-

cles. They localize to the dendrites and to the axon (Lujan, 2010; Trimmer and Rhodes,

2004). Kv3.1 and Kv3.2 are delayed rectifiers, while Kv3.3 and Kv3.4 are A-type potas-

sium channels (Gutman et al., 2005; Rudy et al., 1999). Kv3 channels show a higher

activation threshold than other Kv channels and they have fast kinetics, being steeply

voltage-dependent, which leads to spikes with narrower width and high firing frequen-
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dend soma axon AIS NoR terminals

Kv1.1 yes 1,2 yes 2 yes 1,3,4 yes 4−7 yes 8 yes 2,4,8

Kv1.2 yes 2 yes 2 yes 1,3−5,9 yes 4−6 yes 8,9 yes 2,4,8

Kv1.3 yes 1,5 yes 4

Kv1.4 yes 1,10,11 excitatory
cells 4,10,11

Kv2.1 proximal
1,7,12

yes 1,7 yes 4

Kv2.2 yes 1,7 yes 1,7 yes 5 yes 4,7

Kv3.1 yes 1,7 yes 1,7 yes 1,7 yes 4,13 yes 7

Kv3.2 yes 1,7 yes 1 yes 4

Kv3.3 yes 7 yes 7 yes 1,5 yes 4,7

Kv3.4 yes 1,5,7 yes 4,7

Kv4.1∗ yes 1,7 yes 1,7

Kv4.2 yes 1,7,12 yes 1

Kv4.3 yes 1,4 yes 1

Kv7.2 yes 1,5 yes 4,5,14 yes 14

Kv7.3 yes 1 yes 1 yes 1,5 4,5,14 yes 14

Kv7.5 yes 1 yes 1

∗ Kv4.1 is expressed in very low levels in mammalian brain 7

1 Vacher et al. (2008) 6 Lorincz and Nusser (2008) 11 Jerng et al. (2004)

2 Wang et al. (1994) 7 Trimmer and Rhodes (2004) 12 Lai and Jan (2006)

3 Boiko et al. (2001) 8 Wang et al. (1993) 13 Devaux et al. (2003)

4 Trimmer (2015) 9 Van Wart et al. (2007) 14 Cooper (2011)

5 Debanne et al. (2011) 10 Cooper et al. (1998)

Table 2.3: Subcellular localisation of selected Kv channels in the mammalian brain; blue
color indicates major localisation. axon: non-myelinated axons, AIS: axon initial segment,
NoR: nodes of Ranvier. The cellular and subcellular localization of members of Kv

subfamilies Kv5, Kv6, and Kv8-Kv12 is not as well characterized as that of the members
of the Kv1-Kv4 and Kv7/KCNQ subfamily (Vacher et al., 2008).
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cies (Bean, 2007; Constantinopole et al., 2009; Massengill et al., 1997; Rudy et al., 1999).

They also play important role in the regulation of action potential duration in presynaptic

terminals (Gutman et al., 2005; Ishikawa et al., 2003)

The Kv4 channel family has three subunits: Kv4.1, Kv4.2 and Kv4.3 which are dis-

tributed in the brain, where they are mostly expressed in the dendrites (Serôdio and

Rudy, 1998; Trimmer and Rhodes, 2004). Expression of the Kv4.1 channel is overall very

low. The Kv4 channels have transient current (A-type) (Gutman et al., 2005; Serôdio and

Rudy, 1998) and in the CA1 region of the hippocampus are responsible for dampening

back-propagating action potentials (Gutman et al., 2005).

The Kv5 family consists of only one subunit: Kv5.1 (Lujan, 2010). It does not have

function on its own, but rather has modulatory actions on the gating properties of both

Kv2.1 and Kv2.2 channels (Gutman et al., 2005).

The Kv6 family consists of Kv6.1-Kv6.4 subunits which are expressed in the human

brain (Ottschytsch et al., 2002). Their localization within the cell has not yet been

determined (Lujan, 2010). As it is the case for Kv5, these channels also do not have an

independent function. When they are expressed alone they are unable to produce any

current (Ottschytsch et al., 2002), but when they are coexpressed with Kv2 channels,

especially Kv2.1, they exhibit modulatory properties. The Kv2 channels are able to

modulate (suppress) currents generated by Kv2.1 and Kv2.2 by increasing their time

constant of activation and thus slowing down their inactivation (Gutman et al., 2005;

Post et al., 1996).

The Kv7 family composed of five subunits: Kv7.1-Kv7.5 (also known as KCNQ1-5).

Aside from Kv7.1 which is mostly found in the heart, these channels are mostly localized

along the axon but they can also be found in the soma, dendrites and synaptic terminals

(Gutman et al., 2005). Kv7.2 and Kv7.3 are present in high density in the axon initial

segment and in the nodes of Ranvier, where they interact with ankyrin G (Devaux et al.,

2004; Lai and Jan, 2006). KCNQ2 and KCNQ3 are responsible for generating M-current,

which is activated at subthreshold potentials (Lai and Jan, 2006) and is known to be

important for rising the threshold necessary for action potential initiation. These channels

are unique as they have an “open” state at resting potentials of the membrane (Brown

and Adams, 1980) and are delayed-rectifier type of channels (Gutman et al., 2005; Lai and

Jan, 2006). In the hippocampus they regulate action potential firing in pyramidal cells

by controlling resting potential and threshold for action potential generation (Debanne

et al., 2011; Shah et al., 2008; Yue and Yaari, 2006). Mutations in the Kv7 channels can

lead to diseases such as epilepsy and myokymia (Devaux et al., 2004; Lai and Jan, 2006;

Lujan, 2010).

The Kv8 family of channels consists of two subunits: Kv8.1 and Kv8.2, but only Kv8.1
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is expressed in the brain where it is preferentially found in excitatory cells (Hugnot et al.,

1996). It is another modifier-type channel which does not have a function on its own.

When coexpressed with Kv2.1 or Kv2.2 it can modulate their kinetics and shift the half-

inactivation potential to more polarized levels; Its activity impacts membrane potential

and action potential frequency (Gutman et al., 2005). Mutations in this channel can

cause severe epilepsy (Jorge et al., 2011).

The Kv9 family includes the Kv9.1, Kv9.2 and Kv9.3 subunits which are all present

in the mammalian brain, although Kv9.3 is also expressed in other tissues (Lujan, 2010).

They are modifier-type channels acting on Kv2.1 and Kv2.2 channels by enhancing their

single-channel conductance (Gutman et al., 2005).

The Kv10 family has two subunits: Kv10.1 and Kv10.2. Both are expressed in the

mammalian brain (Lujan, 2010). Kv10.1 is a delayed-rectifier while Kv10.2 is an outward-

rectifying channel, meaning that it passes current more easily in the outward direction.

The Kv11 family is composed of the Kv11.1, Kv11.2 and Kv11.3 subunits present in

the mammalian brain (Lujan, 2010; Shepard and Trudeau, 2008). They are inwardly-

rectifying channels which pass current more easily in inward direction (Gutman et al.,

2005). Kv11.1 (encoded by ether á-go-go gene) is normally expressed nearly through-

out the brain (specifically hippocampus, neocortex, hypothalamus, thalamus, amygdala,

substantia nigra, red nucleus and cerebellum), where it is associated with schizophrenia

(Atalar et al., 2010), and in the heart, where it plays a role in cardiac arrhythmias (Wang

et al., 2011). It has been also found to be expressed in several somatic cancer cell lines

(such as cervix cancer in humans) where it has been reported to play a role in cancer

progression (Farias et al., 2004; Wu et al., 2012).

The Kv12 family of channels consist of Kv12.1, Kv12.2 and Kv12.3 which are all

present in the mammalian brain (Clancy et al., 2009). Kv12.1 and Kv12.3 are slowly-

activating and deactivating potassium channels whereas Kv12.2 inactivate quickly (Enge-

land et al., 1998; Shi et al., 1998). It has been reported that under-expression of Kv12.2

can lead to epilepsy (Zhang et al., 2010).

2.2.2.3 Other voltage gated channels

Sodium and potassium voltage-gated channels seem to be most crucial for action potential

generation as they are responsible for the rising and falling phases respectively. However,

other channels may influence the crossing of the threshold for action potential initia-

tion by modulating voltage level, and thus may alter the shape of the action potential.

Notably voltage-sensitive calcium channels (Cav) can regulate firing properties such

as the timing and threshold of action potential, as well as burst-firing (Debanne et al.,

2011). They are also responsible for dendritic calcium signalling resulting from back-
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dend soma axon AIS NoR terminals

Cav1.2 yes 1,2 yes 1,2

Cav1.3 proximal
1,2

yes 1,2

Cav2.1 some 2,3 some 2,3 yes 2,3 yes 1

Cav2.2 some 1,2 some 1,2 yes 1,3

Cav2.3 yes 1−3 yes 1−3 some 1,3

Cav3.1 yes 1−3 yes 1−3

Cav3.2 proximal 1 yes 1

Cav3.3 yes 1 yes 1 yes 3

1 Catterall et al. (2005b) 2 Vacher et al. (2008) 3 Trimmer and Rhodes (2004)

Table 2.4: Subcellular localisation of selected Cav channels in the mammalian brain;
blue color indicates major localisation. Axon: non-myelinated axons, AIS: axon initial
segment, NoR: nodes of Ranvier.

propagating action potentials, synaptic plasticity, and activity-dependent modulation of

gene transcription in the mammalian brain (Vacher et al., 2008; Yu and Catterall, 2004).

There are ten different Cav channels present in mammals. Of those, Cav1.2, Cav1.3,

Cav2.1 – Cav2.3, Cav3.1 – Cav3.3 are expressed in the brain (subcellular localisation,

Table 2.4) (Catterall et al., 2005b; Vacher et al., 2008). Calcium channels can enable

‘calcium spikes’ (also called Ca2+ action potentials) which depend on calcium (Ca2+)

rather than on Na+ ions (Fig 2.9 B) (Fatt and Ginsborg, 1958; Hille et al., 2001).

The drive for calcium to enter the cell is much stronger than that for sodium (Table

2.1), with around 3 mM Ca+ concentration in the extracellular medium and only around

150 nM inside the cell, leading to a reversal potential of calcium (ECa) as high as approx-

imately 140 mV. However, calcium channels usually require very strong depolarization

to be activated (Catterall et al., 2005b) and they open slowly (Hille et al., 2001) (there

are also low-voltage calcium channels which follow different behavior which we do not

discuss here (Zhang et al., 2013)). The channel opening leads to calcium flowing into the

cell during the falling phase of the action potential.

Surprisingly, blocking calcium channels often leads to the broadening of action poten-

tial (Faber and Sah, 2002; Sah, 1996; Shao et al., 1999); This is because calcium binds to

calcium-activated potassium channels, which then trigger a larger outflux of potas-

sium than the initial influx of calcium (Bean, 2007). There are three distinct types of

calcium-activated potassium channels: (1) BK channels have large single-channel con-
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ductances and in addition to calcium, they require membrane depolarization to open.

(2) SK channels have small conductances and they are voltage insensitive. Finally,

(3) IK channels have an intermediate single-channel conductances, are voltage insensitive

and are sparsely distributed in the brain (Sah and Louise Faber, 2002).

Another voltage-gated channel type are the HCN channels (Hyperpolarization-

activated cyclic nucleotide-gated channels) which are sometimes called ‘pacemaker chan-

nels’ due to their function in modulating the rhythmic activity in many cell types like the

sinoatrial node cells in the heart or the relay cells in the thalamus. They generate so-called

h-current (Ih) because of their dependence on hyperpolarization (sometimes also named

‘funny’, If in cardiac tissue or ‘queer’, Iq in the hippocampus (Lüthi and McCormick,

1998)). HCN channels activate slowly with hyperpolarization (around -70 to -50 mV),

slowly depolarize the cell and close at positive potential values; They do not inactivate.

These channels pass inward current of mixed ions such as Na+ and K+ (Hille et al.,

2001). In the CA1 pyramidal neurons of the hippocampus, their density increases along

the somato-dendritic axis, with largest densities being furthest from the soma. This dis-

tribution shapes the time course of excitatory postsynaptic potentials and makes their

summation location-independent (Magee, 1998).

In addition to voltage-gated potassium channels there are also specific pumps such as

Na+–K+ pump, the Ca2+ pump, Na+–Ca2+ exchanger, Cl−–HC03-exchanger and many

others (Hille et al., 2001).

A large variation of channel expression and currents produced, as well as their variable

distribution within different neuronal segments and across brain regions (Nusser, 2012)

makes general assumptions of ionic currents flowing through a neuron difficult. Thus,

an important step in a given study is the selection of the applicable currents; In the

models described in the next chapters, only passive, sodium and potassium channels are

discussed. This work focuses on the action potential initiation, and how action potential

may impact further activity in the network, therefore sub-threshold activity of the cell is

not considered important.

2.2.3 Energy efficiency

The use of electro-chemical gradients alone is not sufficient for brain function. The supply

of energy is crucial for this organ and when subjected to lower levels of energy, the brain

is prone to anoxia or ischemia (Ames et al., 1995). The brain, just as any other organ,

needs a constant external supply of energy in the form of oxygen and glucose, which are

transported in the blood. Notably, increase in the supply of blood into the brain is widely

used for verifying the level of brain activity. This organ uses 20% of the energy consumed

by the whole-body even though it accounts for only 2% of the body’ weight (Attwell and
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Laughlin, 2001). Still, with the activity of 120 billion neurons (Herculano-Houzel, 2009) it

needs to use its resources efficiently. The initiation and propagation of action potentials

are considerably taxing to brain metabolism (Alle et al., 2009) since they require as

much as 20–47% of the total energy consumed by the brain (Attwell and Laughlin, 2001;

Howarth et al., 2012). To minimize the ‘cost’ of single action potentials, the contributing

currents of sodium and potassium (responsible for rising and falling phase of the action

potential respectively) should overlap as little as possible (Carter and Bean, 2009).

In the popular Hodgin-Huxley model (Hodgkin and Huxley, 1952) (explained in more

detail in Section 2.2.1) action potentials are not very energy-efficient because the sodium

channels remain open for some time during the falling phase of the action potential

(Fohlmeister, 2009). In mammals, action potentials are reported to be more efficient but

this varies largely depending on cell types (Carter and Bean, 2009) and the estimations are

subject to controversy (Lennie, 2003; Attwell and Laughlin, 2001; Attwell and Iadecola,

2002).

Neurons which have myelinated axons have a much smaller capacitance and use less

metabolic energy to maintain the gradient of sodium and potassium because those ions

only flow at the nodes of Ranvier (NoR). In unmyelinated axons, such as the mossy fibers

of hippocampus, consumption of energy is minimal because the overlap of flux from Na+

and K+ channels is minimized (Alle et al., 2009).

To increase its efficiency, the brain should limit the excessive expenditure of energy

which does not lead to the desired result. Therefore, if considering the brain as an

information-processing device and action potentials as messages, each of the action po-

tentials should spend minimal energy and provide a maximum of information. It is

debated whether the brain works this way or not. Nonetheless, the way action potentials

are initiated (which we talk more about in the Chapter 3) is more energy-efficient than

originally thought (Brette, 2013) and single action potentials may have a larger impact

on the network information than believed (Chapter 5).

2.3 Role of different neuronal segments

The soma, axon and dendritic tree are all distinct parts of neuron which have different

molecular identity and it is possible to express one of the molecular components to prop-

erly identify neuronal segment of interest (Fig 2.4 B). However, exact morphology differs

depending on the brain area and the cell type (e.g. Fig 2.6).

The activity of neurons is most frequently recorded at the soma, which is the largest

segment of the neuron and the easiest to access with the electrode. However, in most

neurons, the action potential is not initiated at the soma but in the tiny axon initial
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A B

Figure 2.4: Neuronal segments. A. Graphics of the neuron showing different neu-
ronal segments. B. Molecular identification of dendrites, axon initial segment (AIS) and
nonmyelinated axons. Adapted from Leterrier (2015).

segment located in the axon 15 - 40 µm away from the soma (Fig 2.4). In rare cases,

action potential initiation may even take place away from the axon initial segment (such

as at the apical and basal dendrites, soma, axon hillock, and nodes of Ranvier) (Colbert

and Johnston, 1996; Debanne et al., 2011; Mainen et al., 1995; Milojkovic et al., 2005;

Stuart et al., 1997a,b). After initiation, the action potential propagates through the axon

to reach the pre-synaptic terminals and it develops in the soma (process which we will

explain in more detail in Chapter 3) and then backpropagates further into the dendrites

where it may act on synaptic plasticity (Gong et al., 1999; Stuart et al., 1997b).

In the following sections we will discuss the process of action potential initiation and

propagation within different neuronal segments.

2.3.1 Soma

The soma (cell body) of a neuron contains the cell nucleus. Most of the proteins are

produced at this site and are later distributed throughout the whole cell. The soma gives

rise to the dendritic tree and to the axon (although the axon may also originate from one

of the dendrites) (Thome et al., 2014).

Along with the dendrites, the soma is the main neural segment which receives synaptic

inputs from other cells (Squire et al., 2012). Although, the action potential in mammalian

neurons is most frequently initiated at the axon initial segment, in some cases it is ini-

tiated at other sites: In the subpopulation of interneurons in the mammalian olfactory

bulb, which do not have axon initial segment, action potentials are believed to initiate

elsewhere, possibly in the soma (Chand et al., 2015). In these neurons, somatic record-

ings reveal a largely different shape of action potential (Fig 2.5, blue) when compared

to neighbouring interneurons, where the action potential is known to be initiated in the

axon initial segment (Fig 2.5, green).

In most of the mammalian neuron recordings, the somatic action potential is preceded
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by a small depolarisation originating from the axonal spike, which invades the soma

causing action potentials with bi-phasic phase plots and sharp onset (kink) (Coombs et al.,

1957; Naundorf et al., 2006; Shu et al., 2007a). Those bi-phasic phase plots with a sharp

onset at the initiation are characteristic of action potentials initiated at the axon initial

segment. The first ‘phase’ corresponds to the current coming from the axon, while the

second corresponds to the current flowing through the somatic sodium channels (Coombs

et al., 1957). Although action potentials initiated in the AIS have a smooth initiation,

in the soma this onset appears sharper; This is because the resistance between the large

soma and the thin axon causes the voltage to rise much faster at AIS (a process which

is explained in detail in Chapter 3). If the action potential was initiated in the soma,

the gradual change of voltage would not allow for a fast enough opening of a sufficient

number of sodium channels to cause the sharp rise of potential, as it was observed in many

experiments (Figure 2.5B as compared to A). The rapid onset of action potentials make

the single-compartment models with a sharp threshold (like integrate-and-fire model)

better at reproducing the firing patterns of neurons with an axon initial segment initiation

than single-compartment models, based on detailed channel kinetics (such as Hodgkin-

Huxley model) (Brette, 2015).

2.3.2 Axon

Usually, the axon has its origin at the soma (Fig. 2.4) but it may also originate from the

basal or (less frequently) apical dendrite, which strengthens its sensitivity to the inputs

from this particular dendrite (Lorincz and Nusser, 2010; Thome et al., 2014). Like all

morphological features of mamalian cells, the axon owes its formation and some of its

function to a cytoskeleton made out of actin and microtubule (Kevenaar and Hoogenraad,

2015).

It consists of a wider axon hillock where dynein regulator NDEL1 forms a barrier, only

allowing selected proteins and mitochondria to pass through (Kuijpers et al., 2016; Muth

and Caplan, 2003). Due to this, axons have a distinct composition from other neuronal

segments. When proteins, which are produced at the soma pass the barrier, their delivery

is still a challenge because axons can extend for more than a meter (Debanne et al., 2011).

Following the hillock we find an axon initial segment and the main cylindrical axon

which might be myelinated. The distal part of the AIS is not necessarily adjacent to

myelin (Baranauskas et al., 2013). Myelin sheaths originate from Schwann cells or oligo-

dendrocytes (in peripheral and central nervous system respectively) (Debanne et al.,

2011). Myelin protects the axon and ensures electric insulation, enabling signal to tra-

verse quickly and efficiently (100 m/s in large myelinated axons as opposite to 0.1 m/s

in unmyelinated axons (Debanne et al., 2011)). Between the stretches of myelin there
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are Nodes of Ranvier (NoR), where we can find a high density of sodium channels where

the action potentials are reinforced. In some neurons (such as Purkijne cells) the first

NoR may first act as an initiation area for the action potential (Clark et al., 2005). The

axonal arbor branch ramifies to connect with several thousands (30,000 – 60,000 in the

hippocampal CA3 pyramidal cell) of target cells via multiple terminals (boutons) (Major

et al., 1994; Li et al., 1994; Ishizuka et al., 1990). The shape of axonal arbors might differ

largely: Pyramidal cells in the hippocampus tend to have axons stretching far from the

cell body whereas axonal trees of interneurons in the hippocampus and in the cortex tend

to remain closer to the cell body, and are highly branched (e.g. Fig 2.6) (Debanne et al.,

2011; Gulyas et al., 1993; Thomson and Destexhe, 1999).

Interestingly, a cut axon from cultured hippocampal neurons can be regenerated at

its original position but only if the axon initial segment remains connected (i.e. site of

the cut is more than 35µm from the soma). Otherwise, it will regenerate from one of the

dendrites (Gomis-Rüth et al., 2008).

Axons are not simply meant for propagation of the signal: Branch points are consid-

ered to be frequency filters, but there are more sophisticated ways in which axons do the

A

B

Figure 2.5: Action potential shape depends on the initiation location. Action
potentials recorded from the interneurons in the mammalian olfactory bulb. A. The
initiation of the action potential took place away from axon initial segment. Action
potential (i) does not display a sharp onset which is even better visible in the phase plot
(ii) which in monophasic. B. Initiation was distal from the soma and took place in the
axon initial segment. Onset of the action potential is sharp (i) and the phase plot (ii) is
biphasic. Adapted from Chand et al. (2015).
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Figure 2.6: Morphology of the hippocampal cells with axons (blue) and dendrites
(red). Hippocampal layers are indicated: lacunosum-moleculare (S.L-M), lucidum (S.L),
radiatum (S.R); pyramidale (S.P) and oriens (S.O). (A) CA3 pyramidal cell extends
its axon (note it is only partial reconstruction of the axon) far from the cell body.
Adapted from Ishizuka et al. (1995), published as cell c12866 on neuromorpho.org),
whereas (B) CA1 basket cell forms dense axonic tree in the proximity of the cell body.
Adapted from Thomson and Destexhe (1999).
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computation, for instance, by reflecting the impulse (Goldstein and Rall, 1974). They

can also fail to conduct the action potential so that the selected signals are unable to

reach other cells (Wall, 1995; Debanne et al., 1997; Meeks and Mennerick, 2004; Soleng

et al., 2003).

It is also believed that axons are able to transmit both analog and digital signals by

integrating subthreshold synaptic potentials and, depending on the activity, by increasing

the width of action potentials (Cooper et al., 1998; Debanne et al., 2011).

For a long time the axon was inaccessible to record from because of its small diameter

(between 0.08 and 0.4 µm, unmyelinated axon) (Berbel and Innocenti, 1988; Debanne

et al., 2011). Recently, some groups have reported patch-clamp recordings either from

the axon directly or from the enlarged end of the axon that forms as a response to injury

of the axon (called ‘bleb’, 3–6µm in diameter) (Atherton et al., 2008; Clark et al., 2005;

Kole et al., 2007; Mathy et al., 2009; Meeks et al., 2005; Schmidt-Hieber et al., 2008; Shu

et al., 2007a, 2006). Voltage-sensitive dyes (Foust et al., 2010; Palmer and Stuart, 2006;

Palmer et al., 2010) and sodium imaging (Bender and Trussell, 2009; Fleidervish et al.,

2010; Kole et al., 2008) are among other techniques which enable activity monitoring in

the axon. The advances in these techniques allowed researchers to precisely identify the

location of action potentials initiation and propagation.

It is also possible for two axons to communicate either through ephaptic connections,

which allow them to synchronize the signal (Barr and Plonsey, 1992; Katz and Schmitt,

1940), chemical synapses (Chandelier cells contact selectively axon initial segment) (Inan

and Anderson, 2014) or through gap junctions (also called electrical synapses) allowing

for even tighter synchrony (Debanne et al., 2011).

2.3.3 Axon initial segment

In most mammalian neurons the action potential initiates in the distal part of the axon

initial segment (AIS) which is located ∼15–40 µm from the soma (Fig 2.4) (Baranauskas

et al., 2013; Colbert and Pan, 2002; Foust et al., 2010; Hu et al., 2009; Kole and Stuart,

2012; Khaliq and Raman, 2006; Mainen et al., 1995; Meeks and Mennerick, 2007; Palmer

and Stuart, 2006; Shu et al., 2007a; Stuart et al., 1997b,a). But why does it take place

there and not in the soma which receives direct input from the synapses and from the

dendrites?

Until recently electrophysiologists and researchers performing immunostaining were

trying to determine if it could be due to the higher density of sodium channels in the

axon initial segment, as compared to the soma. Electrophysiologists claimed that the

density is equal (Colbert and Johnston, 1996; Colbert and Pan, 2002), while theoretical

(Mainen et al., 1995; Meeks and Mennerick, 2007; Moore et al., 1983; Rapp et al., 1996)
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and immunostaining studies (Boiko et al., 2003; Catterall, 1981; Meeks and Mennerick,

2007; Inda et al., 2006; Wollner and Catterall, 1986) have shown a higher density in the

distal part of the axon initial segment. Recently, Kole and colleagues resolved the issue by

demonstrating that channel density might be underestimated as a result of tight channel

anchoring to the intracellular cytoskeleton (Kole et al., 2008) and that the density of

sodium channels is indeed higher in the AIS than in the soma. However, the overall

density of sodium channels remains constant throughout the AIS (Hu et al., 2009).

Indeed, the AIS has the highest density of sodium channels (both transient and persis-

tent) (Astman et al., 2006; Inda et al., 2006; Kole et al., 2008). Some groups report, that

in the AIS sodium channels activate twice as fast than in the soma (Schmidt-Hieber and

Bischofberger, 2010) and that it has tendency to generate persistent Na+ current (Astman

et al., 2006; Fleidervish et al., 2010). The AIS is built out of Ankyrin G which directs

sodium (Barry et al., 2014; Garrido et al., 2015; Zhou et al., 1998), Kv1.2 (Sánchez-Ponce

et al., 2012) and Kv7 (KCNQ) (Pan et al., 2006) channels to concentrate in the AIS.

Most of the mammalian pyramidal neurons have two types of sodium channels present

in the AIS: Nav1.6 channels, which are located distally and have lower threshold for ac-

tivation than the other type, the Nav1.2 channels, which are located more proximally.

Sodium channel threshold is up to 15 mV higher in the soma than in AIS (Colbert and

Pan, 2002; Hu et al., 2009). However, exact localisation of the different types of channels

varies between cell types (e.g. localisation of four types of voltage-gated channels in AIS

in different types of neurons, Fig 2.7). When the action potential initiates the influx of

Na+, current is the highest in the middle of the AIS and not at its distal end, where

the initiation takes place (influx is up to 4 times lower at the initiation site than at the

central location of AIS) (Baranauskas et al., 2013).

Furthermore, the small axon initial segment is electrically isolated from the soma and

so less current is required to depolarize it. The current density is higher at this level,

which allows the AIS to overcome their electric load (Mainen et al., 1995; Moore et al.,

1983).

When the action potential is initiated in the axon initial segment, the current flows

into the initial segment, then axially towards the somatodendritic compartment where it

leaves the cell. The dipole then forms (we explain this process in detail in the Chapter

3).

During high frequency firing, the AIS is the most reliable to follow initiating full

action potentials without attenuation (Clark et al., 2009; Debanne et al., 2011; Shu et al.,

2007a). However, the function of the axon initial segment is not solely the initiation

of action potentials. Together with the axon hillock it is responsible for the molecular

separation between the rest of the axon and the somato-dendritic compartment (Leterrier
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and Dargent, 2014; Leterrier, 2015; Rasband, 2010).

The AIS might have a different location depending on the cell type (Fried et al., 2009;

Kuba et al., 2006). Its size and site might influence processing of the different frequency

signalling. Some high-frequency processing neurons have short (∼10 µm) and distal AIS

(∼45 µm from the soma) while low-frequency processing neurons have longer (∼25 µm)

and more proximal AIS (∼10 µm from the soma) (Gulledge and Bravo, 2016; Kuba et al.,

2006).

Surprisingly, despite its highly structured appearance, neuron might alter the size

or exact site of the AIS, which is known to change as a response to elevated activity.

In dissociated hippocampal cultures, excitatory neurons subjected to increased activity

during long time periods (in scale of days) can shift their AIS away from the soma,

leading to a decrease of excitability (Grubb and Burrone, 2010; Evans et al., 2013; Muir

and Kittler, 2014). Dentate granule cells are able to quickly shorten their AIS, within

3 hrs, which dampens the excitability in multiple-spike firing (a process which can be

neutralized by the modulation of Nav channel properties) (Evans et al., 2015). On the

other hand, in inhibitory olfactory bulb dopaminergic cells, elevated activity causes the

opposite effect: a proximal shift and lengthening of AIS (Chand et al., 2015). These

plasticity processes are reversible.

Depending on the cell type (e.g. cortical pyramidal neurons) the axon initial segment

can be selectively contacted by chandelier (axo-axonic) interneurons (Kosaka, 1980; Fish

et al., 2013; Howard et al., 2005). Chandelier cells are fast spiking GABA-ergic cells.

Interestingly, they can have inhibitory or excitatory influence depending on the potential

of postsynaptic cells (although most frequently they remain inhibitory). Depolarizing

pyramidal cells to levels of reversal potential of GABA and beyond is sufficient to induce

inhibitory and below - excitatory effect of the axo-axonic cell (Inan and Anderson, 2014;

Khirug et al., 2008; Szabadics et al., 2006; Woodruff et al., 2009, 2011).

Figure 2.7: Localization of Nav1.1, Nav1.2, Kv1.1 and Kv1.2 in axon initial segment of
different neuron types. Adapted from Trimmer (2015).
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However, the importance of the AIS comes with risks as the axon initial segment is

considered a ‘hot spot’ for various diseases such as inherited epilepsies (Wimmer et al.,

2010) as well as neurological and psychiatric disorders (Buffington and Rasband, 2011).

2.3.4 Synapse

Axonal arbors are covered with multiple boutons of different size, which may form

synapses with other neurons. When an action potential arrives at the synapse, voltage

gated Cav channels open, causing neurotransmitter release. It then binds to a receptor

of the target cells which leads to the opening of channels and to flow of current, inducing

signal propagation. If different amount of transmitter is released, the signal received by

the postsynaptic cell might change (Hille et al., 2001). Action potentials in the same

neuron might display different amplitudes and width, for example during burst firing

(Fig 2.8) (Williams and Stuart, 1999). As it traverses through the axon, the signal might

also change; Earlier-mentioned branching points, synapses (especially of chandelier cells

connecting AIS (Kosaka, 1980; Fish et al., 2013; Howard et al., 2005), availability of

channels and ionsare all factors that might impact the shape of the signal arriving at

the terminals. Geiger and colleagues have shown that in repetitive stimulation, action

potentials became broader in the axon terminal while they do not change in appearance

in the soma (broadening is due to inactivation of Kv1 family channels located in the

terminal). A broader action potential enables more calcium influx and might double the

amplitude of the excitatory postsynaptic current (EPSC) in the connecting cell (Geiger

and Jonas, 2000).

100 pA

30 mV

10 ms

Figure 2.8: Extracellular and intracellular recordings from the bursting layer 5 pyramidal
cell. Adapted from Williams and Stuart (1999).
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2.3.5 Dendrite

The dendritic tree originates from the soma and might vary widely depending on the cell

type and brain area (e.g. Fig 2.6). Its major functions include gathering and propagating

synaptic inputs to the soma and backpropagating the action potential.

Synapses most commonly contact dendrites (although they can also contact soma

or axon). When the action potential passes to the postsynaptic site it takes the form of

postsynaptic potential. The dendrite forwards this signal, along with many other synaptic

inputs, to the soma, performing computation on the way (which depend on the branching,

state of the channels and received inputs) (Magee, 1998; Losonczy et al., 2008; Tran-Van-

Minh et al., 2015). If the threshold is reached and action potential is initiated, it may

backpropagate to the dendrites, which is essential for synaptic plasticity (backpropagating

action potential causes Ca2+ channels to open which in spines induces some form of

synaptic plasticity) (Stuart et al., 1997b). However, sometimes action potentials fail to

backpropagete to the somatodenritic compartment (Williams and Stuart, 1999).

Furthermore, calcium and/or sodium action potentials might also be initiated in the

dendrite (example of calcium mediated action potentials initiated in the dendrites is

shown in the Fig 2.9) (Golding and Spruston, 1998; Milojkovic et al., 2005; Mainen and

Sejnowski, 1996; Regehr et al., 1993; Schiller et al., 1997; Stuart et al., 1997a), but might

also be initiated in the axon initial segment and then actively propagate to the dendrite

(Stuart and Sakmann, 1994; Stuart et al., 1997b).

Figure 2.9: Bursts of action potentials backpropagating to the dendrite. In the furthest
end of the dendrite, independent calcium action potentials are forming. Adapted from
Llinás and Sugimori (1980).
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2.3.6 Impact of morphology on the firing pattern

Neurons have varied morphologies. The most notable dendritic and axonal trees can

have completely different appearance (e.g. Fig 2.6) with single (unipolar) or multiple

(multipolar) processes extending from the soma (Ramon y Cajal, 1888). Additionally,

soma size and shape also varies from cell to cell. For instance, the round cell bodies of

interneurons tend to be smaller than those of pyramidal cells, whose somatic trans-section

appears more triangular.

Because many types of neurons keep their firing properties even when the cell is

dissociated from the network, the different firing patterns seem to be independent from

the network activity (Chan et al., 2004; Do and Bean, 2003; Puopolo et al., 2007; Raman

et al., 1997).

Given this, it would be surprising if the morphology of the neuron did not have an

impact on the action potential. Indeed, Mainen and Sejnowski showed in their computa-

tional study that merely changing the morphology of a cell, while maintaining the ionic

channel distribution was enough to trigger different types of firing patterns (Fig 2.9)

(Mainen and Sejnowski, 1996).

Interestingly, it seems that morphology also impacts the location of the axon initial

segment (AIS). Smaller neurons (such as dentate granule cells) tend to have an interme-

diate length of AIS, which is closer to the soma than in larger neurons (such as pyramidal

cells), which have longer AIS (Gulledge and Bravo, 2016).

2.4 Kink at the initiation, experiments vs models

Action potentials are very distinct events where the membrane potential largely increases

above the baseline level then falls back to its original value shortly after. The inflow of

Na+ ions is responsible for the rising, and the outflow of K+ ions, largely for the falling

phase of the action potential (the inactivation of sodium channels is also important).

Surprisingly, the onset of the action potential in the soma is much sharper than we

could expect from the Nav channel voltage-dependent opening, with its given voltage

change (Angelino and Brenner, 2007; Brette, 2015). But what else, could impact action

potential generation so strongly?

First, the initiation usually does not take place in the soma but in much smaller axon

initial segment (AIS). Action potentials recorded from the AIS have a smoother onset,

although most of the recordings have been done from the ‘bleb’ which forms when the

axon is injured by cutting. Because of its nature, recordings from this site have been

criticized (Öz et al., 2015). However, direct recordings from the AIS are of a similar,

smooth appearance (Fig 2.10) (Kole et al., 2008; Palmer and Stuart, 2006; Shu et al.,
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2007a; Stuart et al., 1997a). Recordings from the soma of the APs initiated either at the

soma or in the dendrites (Fig 2.5) (Shu et al., 2007a) also reveal a smooth onset.

10  m V

l

2 nA

1 ms

2 nA

-75mV -76mV

Soma

A B

Whole-cell 
AIS, 45 µm

Figure 2.10: Action potential recorded in the soma and AIS. A. Action potential
recorded in the soma with sharp onset. B. Action potential recorded in axon initial
segment (AIS) 45 µm away from soma reveals smooth onset. Adapted from Kole et al.
(2008).

Before we go on to describe three hypotheses explaining the kink in the somatic spike,

we will shortly discuss the significance of this phenomenon. It may seem that it is just

a simple alternation in the shape of the action potential, but even minor modifications

of the mechanism of action potential generation can qualitatively affect the neuronal

encoding. Faster and more efficient initiation means that a neuron could fire at higher

frequencies (Köndgen et al., 2008; Tchumatchenko et al., 2011). Interestingly, the firing

frequencies observed experimentally (up to 200–300 Hz) could not be predicted by the

isopotential HH model (Ilin et al., 2013; Fourcaud-trocme et al., 2003).

The action potential initiation in the AIS might be more energy efficient (Coopera-

tivity and Critical Resistive Coupling Hypotheses propose mechanisms which take less

metabolic cost than standard isopotential HH type models); When the action potential

becomes an all-or-none event, as in the cooperativity or critical resistive coupling models,

energy is conserved. This way, there is no unnecessary inflow of sodium, which would

need to be reversed by energy-consuming ion pumps (Attwell and Laughlin, 2001).

2.4.1 Cooperativity Hypothesis

Naundorf and colleagues (Naundorf et al., 2006) proposed that the kink in somatic action

potentials appears due to cooperativity between sodium channels. They claimed that the

sharp onset of action potentials indicates that many sodium channels open simultaneously
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– something which was shown to happen in other body parts and with other channels

(Dekker and Yellen, 2006; Dixon et al., 2012; Marx et al., 1998; Molina et al., 2006;

Undrovinas et al., 1992).

The cooperativity hypothesis was strongly criticised soon after (Naundorf et al., 2007;

Yu et al., 2008), with one of the main arguments being that the model proposed by

Naundorf and colleagues consisted only of a soma, and therefore lacked the axon initial

segment where most of the action potentials are initiated.

The group responded to the criticism publishing several papers in support for their

hypothesis (Baranauskas et al., 2010; Huang et al., 2012; Ilin et al., 2013; Öz et al., 2015).

They proposed that cooperativity may still exist in the axon initial segment, leading to

an action potential with a sharp onset in the soma (Öz et al., 2015). This hypothesis did

not receive much support for several of reasons. Notably, recordings from the axon initial

segment do not show a kink at the initiation of the action potential (Fig 2.10) (Kole

et al., 2008). Moreover, experimental studies were unable to detect sodium cooperativity

in the AIS (Hu et al., 2009).

2.4.2 Backpropagation Hypothesis

As a response to the Cooperativity Hypothesis, the McCormick group proposed a Back-

propagation Hypothesis as a potential explanation for the kink (Naundorf et al., 2007;

Yu et al., 2008). Here, the action potential follows standard Hodgkin-Huxley type model

and the initiation of the action potential with a smooth onset is located at the AIS. As

the action potential travels towards the soma, it sharpens with each further opening of

sodium channels. When the AP reaches the soma it shows the kink. This explanation

provides a simple account for the kink, which is unfortunately not completely correct

(as we will argue in Chapter 3). The main flaw of this hypothesis is that the distance

between the AIS and the soma is not long enough to account for the kink, as distance

required would be ∼2 mm, as shown in the paper, opposite to the 30–50 µm of actual

biological distance from the soma to the AIS.

2.4.3 Critical Resistive Coupling Hypothesis

Finally, in 2013, Brette proposed the Critical Resistive Coupling (initially called Com-

partmentalization) Hypothesis (Brette, 2013). The Critical Resistive Coupling Hypoth-

esis explains the kink based on two requirements: the distal initiation, and the large

size difference between the soma and the axon initial segment, leading to a current sink

formation in the soma. When the action potential is initiated in the AIS, a single current

loop forms between the AIS and the soma (instead of small propagating current loops as
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in the Backpropagation Hypothesis). Although the mechanism is very different, this hy-

pothesis is mathematically very similar to the cooperativity hypothesis; In the Chapter 3,

we will argue that this hypothesis indeed explains the kink correctly.

2.5 Signature of a single cell activity in the extracel-

lular potential

The field potential is composed of the activity of multiple neurons, proximal and distal

to the recording electrode (Katzner et al., 2009). It is believed to reflect transmembrane

currents (Einevoll et al., 2013). To model this field, a dipole approximation is frequently

used (Buzsáki et al., 2012).

The action potential (AP) of a single neuron is such a large signal that it can be

detected in the extracellular medium, in the scale of microvolts (Henze et al., 2000).

However, the extracellular field represents a much wider composition of signals related

to other processes concomitant to, but not involved in the generation of the original AP,

such as synaptic integration or network activity (Teleńczuk and Destexhe, 2013). An

AP recorded at various sites around the cell might appear different, and an AP in the

extracellular medium might show the action potential peak slightly sooner than in the

soma (as we predict in the simulation described in Chapter 3).

In addition to the extracellular signature of AP, synaptic activity triggered by a single

cell can also be recorded extracellularly. Spikes of thalamocortical neurons arriving at

cortical synapses generate a unitary excitatory synaptic field in the cortex (Swadlow et al.,

2002). Similarly, single hippocampal interneurons, such as basket cells, generate a local

unitary inhibitory field (Bazelot et al., 2010; Glickfeld et al., 2009). Interestingly, in these

studies there is no record of excitatory postsynaptic potential (ePSP) in the extracellular

field being generated by single pyramidal cells in the hippocampus. Others have argued

that ePSPs are the main determinant of the LFP (Reimann et al., 2013) (but see Haider

et al. (2015); Telenczuk et al. (2016)). Why then would we only see inhibitory PSP in

the hippocampus?

The difference in the extracellular field evoked by interneurons and pyramidal neurons

could be due to the distribution of their synaptic terminals. While most of the synapses

of inhibitory cells are clustered proximally to the cell body of the hippocampal basket cell,

and are most likely to contact the cell bodies of other neurons (which in the hippocampus

are in the same layer), the synpases of pyramidal neurons are more widely distributed in

space (Megias et al., 2001). Also, pyramidal cells tend to make contacts in all the layers,

which will have signals more likely to cancel each other out in the extracellular medium

32 Chapter 2. Introduction to action potential



(Buzsáki et al., 2012).

Field potentials are relatively easy to record and they are often routinely used to

measure neuronal population activities and to infer brain states (Cui et al., 2016; Destexhe

et al., 1999).

2.6 Bursts of action potentials

Until now we only explained the process of the action potential (AP) initiation and

propagation in different neuronal parts and the AP signature in the extracellular medium.

However, a single AP is often directly followed by multiple other APs, forming a burst.

Bursts of action potentials may play a different role than single APs and are worth

mentioning. For instance, during the burst, interaction between soma and dendrite can

be more complex. Multiple studies have showed that slow, calcium spikes or other active

depolarizing events may take place in the dendrite and provide for the long depolarization

driving the burst of action potentials in the soma (Helmchen et al., 1999; Kim and

Connors, 1993; Larkum and Zhu, 2002; Larkum et al., 2001; Stuart et al., 1997a).

The soma is not always able to follow the burst initiated in the axon initial segment

appropriately, thus bursts are easier to identify in the axon (Mathy et al., 2009). In

the AIS, APs display a minimal decrease in amplitude during bursts (Shu et al., 2007a;

Williams and Stuart, 1999).

In the hippocampus, when sodium channels are partly blocked, the amplitude of the

first AP is not affected. This might suggest that there is an excess of sodium channels in

the cell if only one action potential is fired. However, the next action potentials and the

overall maximal discharge frequency will be affected by this change (Fig 2.11) (Madeja,

2000).

Firing patterns vary between different types of neurons. Since the distribution of ionic

channels with divergent properties are particular for each cell type, it is more probable

that the firing patterns stem from the properties of these different channels. Surprisingly,

Mainen and colleagues (Mainen and Sejnowski, 1996) showed in their computational

study that different morphologies of neurons are sufficient to produce variability of firing

patterns (example, Fig 2.12).

2.7 Activity of single cell within population

A single cell can discharge a single action potential or bursts of action potentials to pro-

vide an input of information to other cells. But does the action of a single neuron really

matter in the jungle of other cells and their activity? Some studies argue against this
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Figure 2.11: Effects of TTX on recovery after activation of the action potential.
Recordings of pairs of action potentials at different concentration of TTX (no TTX on the
left, 10 nmol/l TTX on the right). The amplitude of the first action potential is hardly
affected, whereas amplitude of the second action potential changes with increasing TTX
concentration (arrow) (I, amplitude 0.5 nA, duration 2ms, interpuse interval is 10 ms.
Dissociated CA1 hippocampus neurons of guinea pig. Adapted from Madeja (2000).

(Shadlen and Newsome, 1998) hypothesizing that it is rather the overall activity which

makes an impact (so-called rate-coding). At this time, multiple studies have showed that

a single action potential can have an impact on the overall network activity. For instance,

stimulation of a single motor cortical neuron can evoke whisker movement (Brecht et al.,

2004), and action potentials in a single somatosensory cortical neuron might induce be-

haviorally reportable effects (Houweling and Brecht, 2008). Also, single GABAergic cell

might have an impact on population events in developing hippocampus (Bonifazi et al.,

2009).

Furthermore, bursts of action potentials of a single cell can trigger a switch between

brain states (slow wave and rapid-eye-movement sleep, and inversely) (Li et al., 2009).

Finally, a single action potential in pyramidal neurons of the hippocampus can trig-

ger the Sharp Wave Ripple (SPW-R) network activity (which we will discuss further in

Chapter 5) (Bazelot et al., 2016).

2.8 Sharp Waves as example of network activity

In certain brain states neurons synchronize their activity, which can be recorded as differ-

ent types of patterns in the extracellular medium and by electroencephalography (EEG)

recordings. In the hippocampus there are two types of oscillations which can be found in
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Figure 2.12: Two neurons with very different morphology but with the same channel
compositions produce different firing patterns. Adapted from Mainen and Sejnowski
(1996).

the healthy brain: First is the gamma wave (40–100 Hz), modulated by the slower theta

wave (4–10 Hz) as recorded in vivo when the animal is awake (Fig 2.13 A). They are be-

lieved to be responsible for memory acquisition. Second, Sharp Wave-ripples (SPW-Rs)

recorded during quiet immobility or during slow wave sleep are believed to be responsible

for the consolidation of memory (Fig 2.13 A-B) (Buzsáki, 1996).

SPWs can be recorded in vivo and in vitro in the extracellular medium, and as input

current to the recorded cell. These recordings are of 1–3 Hz with 100–200 Hz ripple

oscillation imposed on the them.

It is still unclear how synchrony between multiple cells is achieved so quickly - when

synaptic connections are blocked and much faster than synaptic activity would allow

(Draguhn et al., 1998). Some studies conclude that this can be due to the electrical

coupling through gap junctions (Traub et al., 2002) while others show the importance of

excitatory (Maier et al., 2011) or inhibitory (Ho et al., 2009) recurrent circuits.

In Chapter 5, we will discuss an important milestone in understanding the mechanism
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Figure 2.13: Normal and pathological oscillations recorded in the hippocampus.
A. Recording of the hippocampus activity from the rat while it is exploring (left) shows
theta activity. As soon as the rat changes its behaviour to awake immobility the field
recordings follow to show slower but of higher amplitude Sharp Waves (adapted from
Buzsáki (1996)). B. Sharp waves filtered to 100-400 Hz show very fast oscillatory pattern
called ‘ripples’ (adapted from Buzsáki et al. (1992)). C. Epileptic discharges recorded
from the CA3 area of the hippocampus (note the difference in scale from A and B) and
simultaneous recording from mossy cell showing burst firing (Scharfman et al., 2001)
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of the SPW-Rs, namely, that they can be triggered by the single action potential of a

single pyramidal cell. It takes less than 5 ms (time needed for the synaptic transmission)

after firing of the stimulated cell before the SPW-R is recorded extracellularly. In some

cases only single inhibitory postsynaptic potential is generated as a response, whereas in

others, the whole SPW-R can be recorded by multiple electrodes. Why this is the case,

remains unclear.

Chandelier cells are an interesting type cells in the hippocampus. These inhibitory

cells are normally silent, they fire more frequently if the overall cortical activity increases

to suppress excessive excitation (Zhu et al., 2004). Between Sharp Waves the activity

of the hippocampus is rather low and the decreased activity of chandelier cells could

contribute to the generation of Sharp Waves (Klausberger et al., 2003; Viney et al.,

2013).

2.9 Malfunction of action potential

What does it mean that an action potential has malfunctioned? Firstly, an action po-

tential may not be generated at all in the condition when it should have been generated.

This is the case in inhibitory neurons during epileptic seizures, which fail to generate

enough action potentials and hence fail to provide sufficient inhibition to the network.

But otherwise, these action potentials which are indeed generated appear normal in their

shape and propagation.

Next, the sodium or potassium channels, which are crucial for the generation and

functionality of action potentials may fail to function correctly. Indeed, ion channels are

prone to genetic changes or over/sub-expression. This may also lead to different diseases,

for example epilepsy (Nav1.1, Nav1.5, Kv8, Kv12) or episodic ataxia syndrome (Kv1),

A seemingly normal generation of action potentials is also recorded in the Charcot-

Marie-Tooth disease, however they fail to propagate properly throughout the cell to reach

synaptic connections.

Finally, it is the dysfunction of the brain itself (such as a stroke) which might alter

the normal generation of action potentials.

2.9.1 Epilepsy

The hippocampus is a brain area prone to epilepsy. One of the factors might be the

synchrony between excitatory cells, which can be easily achieved owing to the recurrent

excitation found in this area (as described in details in Appendix A). Although both

physiological sharp wave ripples and pathological epileptic discharges can be recorded
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consequently in the same slices in vitro (Fig 2.13 C, note the difference in scale from A

and B), the networks generating these events are very different. The overall firing rate is

much higher in the epileptiform events while some of the inhibitory cells have completely

stop firing (Karlocai et al., 2014).

Epilepsy is a disease with many subtypes which can be caused by different internal

malfunction of sodium channels (Gastaldi et al., 1998; Meisler et al., 2010; Ogiwara

et al., 2007; Papale et al., 2009; Whitaker et al., 2001b) or potassium channels (Villa and

Combi, 2016) or even external states (e.g. head injuries) (Berkovic et al., 2006; Garga and

Lowenstein, 2006). It is also surprisingly common, affecting up to 1% of the population

(Bell and Sander, 2001).

Although, our understanding of the epilepsies has largely increased in recent years,

we still lack the full picture of the ongoing processes and an understanding of the trig-

gering conditions. Interestingly, some patients report that they can anticipate upcoming

seizures, leading to the conclusion that in some types of epilepsy there might be an ongo-

ing process and not a single triggering event (Schulze-Bonhage et al., 2006). But whatever

the underlying cause is, it leads to excitatory cells producing an excessive number of ac-

tion potentials, while some of the inhibitory cells stop firing, leading to lack of sufficient

inhibition.

2.9.2 Stroke

Action potential (AP) generation might be altered after brain damage such as in stroke.

A stroke causes a rapid and irreversible shortening of the cytoskeleton in the axon initial

segment (AIS) in some neurons, which mostly leads to decreased expression of Nav1.6

channels, while it lengthens the AIS of other neurons, which exhibited initially short and

immature AIS. This in turn, affects neuronal excitability (Hinman et al., 2012; Schafer

et al., 2009). Hypothetically, damage to the AIS might increase the threshold for AP

generation, suppress both AP backpropagation and spike timing-dependent plasticity

(Stoler and Fleidervish, 2016). This in turn, could possibly explain the circuit dysfunction

and neurological deficits in stroke and could potentially lead to other nervous system

diseases (Leterrier, 2015).

2.9.3 Alzheimer’s disease

Alzheimer’s disease is common among the elderly and it leads to cognitive decline. Muta-

tions in amyloid precursor protein are associated with Alzheimer disease. These changes

cause increased expression of the Nav1.6 channels at the cell surface (Liu et al., 2015) and

decreased expression of Nav1.1 channels in the parvalbumin cells (Verret et al., 2012),
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leading to the dysfunction of the spiking activity of inhibitory cells, and possibly increas-

ing synchrony between excitatory cells (Palop and Mucke, 2010).

2.9.4 Other Disease

There are multiple other known diseases which lead to the dysfunction of action po-

tentials. One example is multiple sclerosis, where abnormal expression of ionic Nav1.2

or Nav1.6 channels leads to an aberrant action potential generation and propagation.

In this disease, myelin degenerates, causing an impaired conduction of action potentials

(Waxman, 2006).

Charcot-Marie-Tooth is an inherited disease which also causes decreased myelination.

Action potentials cannot propagate efficiently, which in turn causes degeneration of the

peripheral nerves (Suter and Scherer, 2003).

Finally, multiple diseases called collectively named “channelopathies” (e.g. episodic

ataxia) are caused by the dysfunction of one of more ion channels and often lead to the

malfunction of action potential (Kullmann, 2002).

2.9. Malfunction of action potential 39



Bibliography

Alle, H., Roth, A., and Geiger, J. R. P. (2009). Energy-Efficient Action Potentials in Hippocampal Mossy

Fibers. Science, 49(September):1405–1408.

Ames, A., Maynard, K. I., and Kaplan, S. (1995). Protection against CNS ischemia by temporary

interruption of function-related processes of neurons. Journal of cerebral blood flow and metabolism :

official journal of the International Society of Cerebral Blood Flow and Metabolism, 15(3):433–439.

Angelino, E. and Brenner, M. P. (2007). Excitability Constraints on Voltage Gated Sodium Channels.

PLoS Computational Biology, 3(9):1751–1760.

Archer, S. L., Souil, E., Dinh-Xuan, a. T., Schremmer, B., Mercier, J. C., El Yaagoubi, a., Nguyen-Huu,

L., Reeve, H. L., and Hampl, V. (1998). Molecular identification of the role of voltage-gated K+

channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane

potential in rat pulmonary artery myocytes. The Journal of clinical investigation, 101(11):2319–2330.

Astman, N., Gutnick, M. J., and Fleidervish, I. A. (2006). Persistent Sodium Current in Layer 5

Neocortical Neurons Is Primarily Generated in the Proximal Axon. The Journal of Neuroscience,

26(13):3465–3473.

Atalar, F., Acuner, T. T., Cine, N., Oncu, F., Yesilbursa, D., Ozbek, U., and Turkcan, S. (2010). Two

four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2,

Kv11.1) is related to schizophrenia: a case control study. Behavioral and brain functions, 6:27.

Atherton, J. F., Wokosin, D. L., Ramanathan, S., and Bevan, M. D. (2008). Autonomous initiation and

propagation of action potentials in neurons of the subthalamic nucleus. The Journal of physiology,

586(Pt 23):5679–700.

Attwell, D. and Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in

Neurosciences, 25(12):621–625.

Attwell, D. and Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain.

Journal of cerebral blood flow and metabolism, 21(10):1133–1145.

40 Bibliography



Baranauskas, G., David, Y., and Fleidervish, I. A. (2013). Spatial mismatch between the Na+ flux and

spike initiation in axon initial segment. Proceedings of the National Academy of Sciences, 110(10):4051–

6.

Baranauskas, G., Mukovskiy, A., Wolf, F., and Volgushev, M. (2010). The determinants of the onset

dynamics of action potentials in a computational model. Neuroscience, 167(4):1070–1090.

Barr, R. C. and Plonsey, R. (1992). Electrophysiological interaction through the interstitial space between

adjacent unmyelinated parallel fibers. Biophysical journal, 61(5):1164–1175.

Barry, J., Gu, Y., Jukkola, P., O’Neill, B., Gu, H., Mohler, P., Rajamani, K. T., and Gu, C. (2014).

Ankyrin-G Directly Binds to Kinesin-1 to Transport Voltage-Gated Na+ Channels into Axons. De-

velopmental Cell, 28(2):117–131.
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Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.

Nature, 421(February):844–848.

Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., and Stuart, G. J. (2008).

Action potential generation requires a high sodium channel density in the axon initial segment. Nature

neuroscience, 11(2):178–86.

Kole, M. H. P., Letzkus, J. J., and Stuart, G. J. (2007). Axon Initial Segment Kv1 Channels Control

Axonal Action Potential Waveform and Synaptic Efficacy. Neuron, 55(4):633–647.

Kole, M. H. P. and Stuart, G. J. (2012). Signal Processing in the Axon Initial Segment. Neuron,

73(2):235–247.
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CHAPTER 3

The basis of sharp spike onset in standard biophysical models

In this chapter, we present the work which has been done under the supervision of Romain

Brette and in the collaboration with Bertrand Fontaine. At the moment of writing this

thesis, it is under the peer-revision in the PLOS Computational Biology and it has been

published in bioRxiv (Teleńczuk et al., 2016).

3.1 Abstract

In most vertebrate neurons, spikes initiate in the axonal initial segment (AIS). When

recorded in the soma, they have a surprisingly sharp onset, as if sodium (Na) channels

opened abruptly. The main view stipulates that spikes initiate in a conventional manner

at the distal end of the AIS, then progressively sharpen as they backpropagate to the

soma. We examined the biophysical models used to substantiate this view, and we found

that spikes do not initiate through a local axonal current loop that propagates along

the axon, but through a global current loop encompassing the AIS and soma, which

forms an electrical dipole. Therefore, the phenomenon is not adequately modeled as the

backpropagation of an electrical wave along the axon, since the wavelength would be

as large as the entire system. Instead, in these models, we found that spike initiation

rather follows the critical resistive coupling model proposed recently, where the Na current

entering the AIS is matched by the axial resistive current flowing to the soma. Besides

demonstrating it by examining the balance of currents at spike initiation, we show that

the observed increase in spike sharpness along the axon is artifactual and disappears

when an appropriate measure of rapidness is used; instead, somatic onset rapidness can

be predicted from spike shape at initiation site. Finally, we reproduce the phenomenon

in a two-compartment model, showing that it does not rely on propagation. In these

61



models, the sharp onset of somatic spikes is therefore not an artifact of observing spikes

at the incorrect location, but rather the signature that spikes are initiated through a

global soma-AIS current loop forming an electrical dipole.

3.2 Author summary

In most vertebrate neurons, spikes are initiated in the axonal initial segment, next to

the soma. When recorded at the soma, action potentials appear to suddenly rise as if

all sodium channels opened at once. This has been previously attributed to the back-

propagation of spikes from the initial segment to the soma. Here we demonstrate with

biophysical models that backpropagation does not contribute to the sharpness of spike

onset. Instead, we show that the phenomenon is due to the resistive coupling between

the large somatodendritic compartment and the small axonal compartment, a geometrical

discontinuity that leads to an abrupt variation in voltage.

3.3 Introduction

In most vertebrate neurons, action potentials are generated by the opening of sodium

(Na) channels in the axon initial segment (AIS) (Debanne et al., 2011). According to

the standard textbook account, spikes initiate through the interplay between two local

transmembrane currents, when the inward Na current exceeds the outward leak current,

carried mostly by potassium (K) (Fig. 3.1A). Because macroscopically Na channels open

gradually with depolarization (Boltzmann slope factor: ka 6 mV (Kole et al., 2008)),

spike onset appears smooth in standard isopotential neuron models (Fig. 3.1B, top left).

In contrast, the onset of spikes recorded at the soma of cortical neurons appears very

sharp: in a voltage trace, spikes appear to suddenly rise from resting potential (Naundorf

et al., 2006) (Fig. 3.1B, bottom, human cortical pyramidal neuron from Testa-Silva et al.

(2014)), as if all Na channels opened at once.

It has been proposed that Na channels in the AIS cooperate, so that they actually

open all at once instead of gradually as a function of local voltage (Naundorf et al., 2006;

Öz et al., 2015). However, this phenomenon has not been observed in the AIS (see Dis-

cussion). In addition, detailed multicompartmental models with standard biophysics can

exhibit sharp somatic spikes (McCormick et al., 2007; Yu et al., 2008), when Na channel

density is high enough (Baranauskas et al., 2010). According to the backpropagation

hypothesis, this phenomenon is due to the progressive sharpening of spike onset between

the axonal initiation site and the soma, partly due to the Na channels placed between the

two sites (Fig. 3.1C; Yu et al. (2008)). In this view, spike initiation follows the standard
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account: a spike initiates at a distal point of the AIS through a local current loop, and

the electrical wave progressively propagates along the axon towards the soma, while its

shape becomes sharper. In this view, the somatic kink does not bear any significance for

excitability, since it only appears after spike initiation. This point is disputed because

input-output properties and other features of excitability do not empirically match the

predictions of standard accounts of spike initiation (Brette, 2015; Ilin et al., 2013).

A theoretical study proposed a different view, which we will call critical resistive cou-

pling (Brette, 2013). The soma acts as a current sink for the initiation site because of

the size difference and the short distance between the two sites. It follows that the Na

current at spike initiation is not opposed by local transmembrane currents (the leak cur-

rent), but by the resistive axial current flowing to the soma (Fig. 3.1D). Consequently,

spikes initiate through a global current loop that encloses the AIS and soma, rather than

a local axonal current loop: Na current through the AIS, resistive current between soma

and AIS, capacitive current through the soma, and resistive current in the extracellular

space to close the loop. Thus the soma and AIS form an electrical dipole at spike initi-

ation, and it is therefore not appropriate to speak of wave propagation (the wavelength

would enclose both the soma and AIS). When the product of axial resistance and Na

conductance is greater than a critical value, Na channels open as a discontinuous func-

tion of somatic voltage, with consequences not only on somatic spike shape but also on

input-output properties of neurons (Brette, 2015). This explanation attributes no role to

active backpropagation or to the somatodendritic capacitance, beyond the requirement

that the capacitance must be large enough for the soma to act as a current sink. Which

of the critical resistive coupling and backpropagation hypotheses applies has not been

determined in detailed biophysical models.

We therefore examined multicompartmental models of spike initiation, including mod-

els that were previously used to substantiate the backpropagation hypothesis, to deter-

mine which of the critical resistive coupling and backpropagation hypotheses actually

applies. We found that: 1) the soma and AIS form an electrical dipole at spike initiation;

2) Na channels open as a discontinuous function of somatic voltage; 3) at spike initiation,

the main current opposing the Na current is the axial resistive current; 4) excitability

increases with intracellular resistivity; 5) active backpropagation is neither sufficient nor

necessary for sharp spike initiation; 6) provided the somatodendritic compartment is large

enough, its size has no quantitative impact on somatic onset rapidness; 7) the apparent

sharpening of spikes as they backpropagate to the soma is an artifact of the measure of

rapidness; in contrast, somatic onset rapidness can be predicted from spike shape at the

initiation site. Finally, we show that the phenomenon can be reproduced by a model with

only two resistively coupled compartments and standard channel properties. We conclude
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that in standard biophysical models, the biophysical basis of sharp somatic spikes is not

backpropagation but critical resistive coupling, where spikes initiate through a global cur-

rent loop encompassing the soma and AIS, rather than local current loops propagating

towards the soma. This implies that in these models the sharpness of spike initiation is

not an artifact, but a feature of normal (i.e., not ectopic) spike initiation through the

soma-AIS dipole.

3.4 Results

3.4.1 Intracellular and extracellular features of sharp spike ini-

tiation in multicompartmental models

We examined two multicompartmental Hodgkin-Huxley models that display somatic

spikes with sharp onset (Yu et al. (2008); see Methods): one with an idealized morphol-

ogy consisting of a uniform cylindrical axon (diameter 1 µm, length 50 µm) and a larger

cylindrical soma (Fig. 3.2, left column), and one with the reconstructed morphology of a

cortical pyramidal cell (Fig. 3.2, middle column). Action potentials are initiated in the

axon, which has a high density of Na channels (8000 pS/µm2), and regenerated in the

soma, which has a lower density of Na channels (800 pS/µm2). In both models, voltage

traces show a distinct ‘kink’ at the onset of somatic spikes (Fig. 3.2A, top, orange), which

appears also when somatic Na channels are blocked (dotted orange). This kink is not

present in the axonal spike (blue). Phase plots of dV/dt versus membrane potential V are

biphasic (Fig. 3.2A, bottom), with a first component corresponding to the axonal Na

current and a second component due to the somatic Na current. The sharpness of spike

onset appears as a steep slope at threshold in the phase plots, called ‘initial phase slope’

or ‘onset rapidness’ (Na channels in the soma: 52.5 ms−1 and 52 ms−1 in the simple and

detailed model, respectively; no Na channels in the soma: 55.6 ms−1 and 54 ms−1; com-

pare with Fig. 3.1 B: 5.6 ms−1; see Methods). We also examined spike initiation in the

same way in another multicompartmental model of rat cortical pyramidal cell, where the

models of Na and K currents were fitted to patch-clamp measurements in those neurons,

separately in soma and AIS (Hallermann et al., 2012). The same qualitative features

were observed (Fig. 3.2, right column).

3.4.2 Extracellular field at spike initiation

We then examined the extracellular field at spike initiation in the simple model (Fig. 3.3

and Movie S1). At the very beginning of the spike (Fig. 3.3A), the current injected at
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Hodgkin-Huxley model produces
spikes with smooth onset (left),
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tom: cortical neurons have so-
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(2014). C. Backpropagation hy-
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the soma is seen to exit the soma and part of it enters the distal end of the AIS. At the

peak of the distal axonal spike (Fig. 3.3B), which corresponds to the knee of the somatic

spike, the electrical field clearly shows that the soma and AIS form an electrical dipole,

with current entering the AIS, flowing to the soma, exiting at the soma and returning

through the extracellular space. During repolarization (Fig. 3.3C), the soma-AIS dipole

is inverted, with current flowing intracellularly from soma to AIS, and extracellularly

from AIS to soma.

It is important to notice that even though the intracellular spike appears at the soma

after a substantial delay following the axonal spike (Fig. 3.3D), the electrical dipole forms

very quickly over the entire system (Fig. 3.3E). This discrepancy is due to the fact that

the soma has a large capacitance and therefore a large charging time. Thus, the delay

between the axonal and somatic spikes is better understood as a charging time (as an

electrode charging a cell) rather than a propagation time.

The formation of the soma-AIS dipole at spike initiation manifests itself as negative

extracellular potential near the AIS (current entering the AIS) and positive extracellular

potential near the soma (current leaving the soma), as seen in Fig. 3.3E. Near the soma,

this is followed by a negative peak corresponding to the somatic spike, and a smaller

positive peak corresponding to the repolarization. Near the AIS, the negative peak is

followed by a positive potential corresponding to the somatic spike (inversion of the

dipole) and the axonal repolarization. Fig. 3.3F-G show extracellular recordings next to

the soma and AIS, recorded experimentally in two different neurons. There are clearly

quantitative differences with Fig. 3.3E, which depend both on the particular model and

the position of the extracellular electrodes, but the same extracellular features of a dipole

are seen. However, the precise temporal relationship between the extracellular waveforms

of the two sites would be necessary to draw firm conclusions.

3.4.3 Currents at spike initiation

The sharpness of spike initiation is not only seen in the initial shape of action potentials.

It also appears in voltage-clamp (Fig. 3.4). In the same 3 models used in Fig. 3.2, we

recorded currents in somatic voltage-clamp, with an ideal configuration (access resistance

Rs = 0.1 MΩ), varying the command potential from 1 mV below spike threshold to 5 mV

above it (Fig. 3.3A). This type of recording can be challenging in practice because the

pipette resistance introduces artifacts when passing large currents (see Discussion), but

this was not the case in these simulations. We notice that recorded currents do not

increase gradually with voltage, as when recording an isopotential patch of membrane,

but instead have all-or-none characteristics: there is no current 1 mV below threshold

(black), and a very large current (10-20 nA) just above threshold (red). Current amplitude
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varies little, but latency decreases when command potential is increased. We can see that

this current mirrors the membrane potential in the distal AIS, where a spike is produced

(Fig. 3.4A, bottom). Thus these currents recorded in somatic voltage-clamp correspond

to axial currents coming from the AIS.

Plotting the peak current as a function of command potential shows that the peak

current increases discontinuously when the voltage command exceeds a threshold value

(Fig. 3.4B, top), which is close to the voltage at spike onset measured in current-clamp

(-60 mV, -58.2 mV and -62.2 mV in voltage-clamp vs. -59.7 mV, -56 mV and -65.3 mV

in current-clamp, when dV/dt = 5 mV/ms).

Blocking the somatic Na channels has no effect on this discontinuity (dotted orange).

This discontinuity in the current-voltage relationship corresponds to a discontinuity in

the proportion of open Na channels in the initiation site (distal end of the axon) as a

function of somatic voltage (Fig. 3.4B, bottom), even though the activation curve of

Na channels is smooth: effectively, Na channels open simultaneously as a function of

somatic (but not axonal) voltage.

At first sight, it might seem trivial that a spike is produced when the somatic voltage

exceeds a threshold. Yet, this is not the case in case in isopotential models, spatially ex-

tended models with somatic initiation (Koch et al., 1995), or axonal models (Jack et al.,

1975), where a charge or a voltage threshold may apply depending on cases. A volt-

age threshold is a defining feature of integrate-and-fire models and a property of models

with distal axonal initiation (Brette, 2015), but only when the axial resistance between

soma and axonal initiation site is large enough (hence the name critical resistive cou-

pling) (Brette, 2013). Therefore, the phenomenon of sharp initiation is not only about

spike shape, but also about the way the axonal current changes with somatic voltage.

Specifically, a very small change in somatic voltage can produce a very large change in

axonal current. This phenomenon is the basic feature of the critical resistive coupling

model (Brette, 2013), which also predicts the inverse relation between latency and dis-

tance to threshold characteristic of a saddle-node bifurcation. It can be reproduced by a

two-compartment model (Milescu et al. (2010), Fig. 3.3A).

Empirically, this phenomenon has been observed in motoneurons (Barrett and Crill,

1980), cortical pyramidal cells and inferior olivary neurons (Milescu et al., 2010). An

example is shown on Fig. 3.4C in a raphé neuron (from (Milescu et al., 2010)). Peak

current shows a discontinuity when command potential is increased (right, red), except

when axonal Na channels are inactivated with a prepulse (black). Note that the somatic

contribution to the current (depolarized range) is smaller than in our simulations because

TTX was applied to reduce the current so as to ensure proper voltage control. Fig. 3.4D

shows similar data, but obtained with a two-electrode voltage-clamp and no TTX in a
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cat motoneuron (Barrett and Crill, 1980).

We then examined the balance of currents near threshold at the axonal initiation

site (Fig. 3.5). In all three models, the main current opposing the Na current (red)

is the axial current flowing to the soma (black), while the K current (green) becomes

significant only near the peak of the axonal spike. In this figure, transmembrane currents

are summed over the AIS membrane, and the axial current is measured at the soma-axon

junction. Thus, at spike initiation, the initial dynamics of the spike is determined by

the interaction between the axial and Na current, rather than between the K (mainly

leak) and Na current. This reflects the fact that current flows intracellularly between the

two poles of the soma-AIS dipole (Fig. 3.3). If follows in particular that axial resistance

rather than membrane resistance should determine excitability.

3.4.4 Excitability increases with intracellular resistivity

A consequence of this unconventional balance of currents is that the axial resistance be-

tween the soma and initiation site has a direct and possibly counter-intuitive impact on

excitability: if axial resistance is increased, the neuron should become more excitable, de-

spite the fact that the electrotonic distance of the initiation site increases. Axial resistance

is proportional to the resistivity Ri of the intracellular medium. We therefore tested this

prediction by manipulating the intracellular resistivity Ri in the model (Fig. 3.6A). When

Ri is increased to 250 Ω.cm (orange) compared to 150 Ω.cm originally (green), spikes are

initiated at a lower voltage. Conversely, when Ri is decreased to 30 Ω.cm, spikes are

initiated at a higher voltage (light blue). When Ri is decreased further to 1 Ω.cm, the

kink at spike onset disappears (dark blue). In all these cases except when Ri = 1 Ω.cm

where the cell is essentially isopotential, spikes initiate in the axon.

The same effect is seen in somatic voltage-clamp (Fig.3.6B): the discontinuity in cur-

rent is seen at increasingly higher voltages as resistivity decreases. These curves also

demonstrate another feature of resistive coupling: as resistivity decreases, the peak cur-

rent increases. This occurs because the resistive current is inversely proportional to re-

sistance, by Ohms law. Thus, as resistivity increases, the neuron becomes less excitable

(higher threshold) but the axon transmits a larger current at initiation.

Finally, when intracellular resistivity is decreased further (Fig. 3.6B, dark blue),

the phenomenon disappears, as predicted by the critical resistive coupling hypothesis:

axonal current and proportion of open Na channels vary gradually with somatic voltage.

In summary, excitability depends on the resistance between soma and AIS, and not only

on local membrane properties of the initiation site.
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3.4.5 Sharp spike initiation requires a large enough somatoden-

dritic compartment

A requirement of critical resistive coupling is that the soma effectively clamps the voltage

at the beginning of the axon at spike initiation, which can occur if the somatodendritic

compartment is large enough (Brette, 2013). We therefore show how spike initiation is

affected by changing soma size in the simple model (Fig. 3.7). As was previously noted

(Yu et al., 2008), the kink at spike onset entirely disappears when the soma has the same

diameter as the axon (Fig. 3.7A, left; phase slope at 20 mV/ms: 5 ms−1) and only appears

when the soma is large enough (Fig. 3.7A, middle and right; phase slope at 20 mV/ms:

12 and 31 ms−1; maximum phase slope of first component: 50 and 42 ms−1), or when a
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Figure 3.6: Impact of intracellular resistivity Ri on excitability. A. Spikes are
triggered by a slow current ramp, for different values of Ri between 1 Ω.cm and 250 Ω.cm
(green: original value). The neuron is more excitable for larger values of Ri. B. Current
vs. somatic voltage in somatic voltage-clamp (as in Fig. 3.2B) and fraction of open Na
channels vs. somatic voltage, for different values of Ri.
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dendrite is added (Yu et al., 2008). Yet in all cases, when the soma is voltage-clamped,

both the Na current and the proportion of open Na channels change abruptly when the

somatic voltage exceeds a threshold (Fig. 3.7). This phenomenon is not explained by

backpropagation.

Why does the discontinuity in somatic voltage-clamp result in sharp spike onsets when

the soma is large but not when it is small? On Fig. 3.7C, we show the voltage along the

axon at different moments of the spike upstroke, when somatic voltage is -58, -54, -40 and

30 mV (corresponding to the colored disks on Fig. 3.7A). In the case of the uniform axon

(left), the neuron is essentially isopotential: the entire axon is depolarized synchronously.

The situation is different when the soma is large (middle and right): at spike initiation,

the soma almost clamps the proximal end of the axon while the voltage at the distal end

rises with the Na influx. That is, the somatic current-clamp configuration corresponds,

from the viewpoint of the axon, to a voltage-clamp of the start of the axon at the time

scale of spike initiation. Thus the current discontinuity seen in somatic voltage-clamp

(Fig. 3.7B) also appears in current-clamp near spike initiation, resulting in the sharp

onset of spikes (Fig. 3.7A). Accordingly, the axial current is the main current opposing

the Na current at the initiation site, meaning that the soma is a current sink for the

initiation site, which is not the case with the uniform axon, where the axial current is

small (Fig. 3.7D).

3.4.6 Backpropagation does not sharpen spikes

Next, we show that the spike does not actually sharpen as it travels to the soma, and

furthermore onset rapidness does not depend on somatodendritic capacitance, once the

basic phenomenon is present. The sharp somatic spike onset is not a sharpened axonal

spike onset, but rather reflects the maximum rapidness of the axonal spike, observed at

a higher voltage.

We first make a methodological point. The standard way of measuring onset rapidness

is to calculate the slope of the phase plot (dV/dt vs. V) at an arbitrary value of dV/dt

(typically 5–20 mV/ms). In real somatic recordings, the phase plot is approximately

linear over a wide enough range of dV/dt values, so that the exact choice is not critical

(Baranauskas et al., 2010) (see Fig. 2F therein), all the more than it generally corresponds

to only a few data points. However, in models where morphological parameters are varied

over several orders of magnitude, this choice of dV/dt can be important. Fig. 3.8A (left)

shows the phase plot of a spike in the simple model, for a somatic area of 3,000 µ2 (grey)

and 10,000 µ (orange). It appears that the phase plot is linear around different values

of dV/dt in the two cases (25 mV/ms and 60 mV/ms). When measured in the linear

region of the phase plot, phase slope is similar in the two cases (40 and 50 ms−1). But
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when measured at the same value of dV/dt, phase slope can be very different in the

two cases: at 20 mV/ms, it is about 3 times larger with the larger soma than with the

smaller soma (Fig. 3.8A, right). This is artifactual because the measurements are done

in different parts of the spike. Therefore, we defined onset rapidness as the phase slope

in the linear part of the phase plot, which corresponds to the maximum phase slope of

the first component of the phase plot.

To isolate the contribution to onset rapidness due to the axonal current, in the follow-

ing analysis we removed somatic Na channels from the models. As is shown on Fig. 3.8B

for a somatic area of 10,000 µm2 (left), the presence of somatic Na channels makes a

small but significant difference in onset rapidness (39 ms−1 with and 53 ms−1 without).

Fig. 3.8B (right) shows the axonal spike at the distal initiation site (dark blue) and

at different places along the axon (light blue), when somatic Na channels are removed.

It appears that the maximum dV/dt decreases approximately linearly as it travels to

the soma, which can be directly explained by a resistive effect. In the critical resistive

coupling hypothesis, the soma is driven at spike initiation by an axonal current that is

essentially resistive, so that somatic onset rapidness should be determined by properties

of the axonal spike at the initiation site. Specifically, somatic onset rapidness should

equal the slope of a tangent to the axonal phase plot passing through spike threshold (see

Methods), a value of the same magnitude as the maximum phase slope. As is shown on

Fig. 3.8B (red), this theoretical prediction is satisfied in this model (50 ms−1 vs. 53 ms−1).

In addition, the theory predicts that the same should hold at all axonal points between

initiation site and soma, which is also approximately the case here (the red line is also

almost tangent to all light blue curves). Thus, spikes do not sharpen as they travel to

the soma; rather, the maximum phase slope is reached at lower and lower voltages.

This theoretical prediction matches somatic onset rapidness when somatic area is

varied over several orders of magnitude (Fig. 3.8C, left). In fact, it can be seen that, as

soon as somatic area is larger than a few hundred µm2, somatic onset rapidness (orange)

does not depend much on somatic area. For comparison, Fig. 3.8C (right) shows the

change in total somatic capacitance over the same variation in somatic area. It may

appear so only when onset rapidness is measured at a fixed value of dV/dt (grey), for

the reasons explained above, as also observed by Eyal et al. (2014) in a model with a

dendrite of varying size. Note that the high values of onset rapidness for small soma are

somewhat artifactual because they correspond to a case when the somatic phase plot is

monophasic and maximum onset rapidness is reached at very high voltages (Fig. 3.7, left

column).

We examined the simultaneous recordings of a spike in the soma and AIS bleb shown

in Yu et al. (2008) so as to test the theoretical prediction. Fig. 3.8D shows the digitized
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phase plots of the spike measured at the two sites. In the soma (orange), onset rapidness

was about 25 ms−1. In the AIS (blue), the phase plot was nearly linear in the rising

phase, with a slope of 23 ms−1 (note the different vertical scale). This match supports

the resistive coupling hypothesis.

Thus, neither active backpropagation nor capacitive effects of the somatodendritic

compartment sharpen spikes. Rather, the same value of maximum rapidness is reached

at a lower voltage in the soma than in the axon. In fact, not only are spikes not sharpened

by propagation, but their maximum slope (dV/dt) is in fact scaled down as they approach

the soma (Fig. 3.8B, right), in agreement with the resistive coupling theory and with

direct axonal measurements (Kole et al. 2008; Fig. 5 therein).

3.4.7 Active backpropagation is not necessary for sharp spike

initiation

We have seen that active backpropagation is not sufficient for sharp spike initiation.

We next show that it is also not necessary (Fig. 3.9), both in the simple model (left

column) and the morphologically detailed model (right column). We move all axonal Na

channels to the same compartment, thereby suppressing active backpropagation. The

exact result depends on the location of that compartment, in agreement with theoretical

predictions (Brette, 2013), but in all cases, phase plots are biphasic, with initial onset

rapidness between 46 and 71 ms−1 for the simple model and between 56 and 76 ms−1

for the detailed model (Fig. 3.9A). In detail, the voltage at spike onset decreases with

increasing distance of the Na channels, and so does the maximum dV/dt in the first

component of the phase plot. These features appear more clearly in somatic voltage-clamp

(Fig. 3.9B). In all cases, Na channels open as a step function of somatic voltage. The spike

threshold, corresponding to the discontinuity point in the current-voltage relationship,

decreases when Na channels are placed further away, and peak axonal Na current also

decreases with increasing distance. Thus the neuron is more excitable when Na channels

are placed further away, but the axonal current transmitted to the soma is smaller. These

two features are predicted by critical resistive coupling because the resistive axo-somatic

current is smaller when Na channels are further away, so that a smaller Na current is

required to trigger a spike, and a smaller resistive current is transmitted to the soma

(Brette, 2013). Despite these quantitative variations with the distance of the initiation

site, the sharpness of spike initiation is unaffected by the exact distance: except when Na

channels are very close to the soma, somatic onset rapidness is essentially independent of

Na channel distance, around 70 ms−1 (Fig. 3.9C). This value is also close (in fact slightly

higher) to the value obtained when Na channels are distributed across the AIS (about
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50 ms−1). Therefore active backpropagation is not necessary to produce sharp spikes,

and in fact does not contribute in making spikes sharper.

3.4.8 Sharp somatic onset is reproduced by a model with two

resistively coupled compartments

Finally, we designed a minimal two-compartment model that displays these features

(Fig. 3.10A). The model included only Na and K channels with voluntarily highly sim-

plified kinetics, with single gates and voltage-independent time constants, so as to show

that the phenomenon is due to critical resistive coupling and not to specificities of chan-

nel kinetics (equilibrium values of gating variables shown in Fig. 3.10A). The maximum

somatic Na conductance determines the threshold for spike regeneration in the soma

(second component of the phase plots) (Platkiewicz and Brette, 2010); it was set at

gNasoma = 800 nS. For a somatic area of 2000 µm2 (corresponding to a 30 µm by 20 µm

cylinder), this value corresponds to a conductance density of 400 pS/µm2. The soma-

todendritic compartment is connected to the AIS compartment by a resistance Ra. As

shown in Fig. 3.9, this value determines the maximum dV/dt in the first component of

the somatic phase plot (by Ohms law, it is inversely proportional to Ra), and we chose

Ra = 4.5 MΩ. This value corresponds to the onset of the AIS, close to the soma (rather

than the distal initiation site), that is, the closest location where we expect to see a full

spike at spike initiation. Finally, spike threshold is determined by the product gNaaxon.Ra

(Brette, 2013), and we chose gNaaxon = 1200 nS accordingly. For an AIS area of 50 µm2,

this corresponds to a conductance density of about 7500 pS/µm2. Again, this value

should be considered as an effective value and an overestimation of true conductance

density, because distal channels have a greater impact on spike threshold and therefore

require less conductance (Ra is greater at the distal end).

With these parameter values, which are all within reasonable physiological ranges,

we can see on Fig. 3.10B that the model exhibits sharp somatic spikes (onset rapidness:

17 ms−1) and a biphasic somatic phase plot, while in the AIS (Fig. 3.10C) spikes are

smooth. The model also has a discontinuous current-voltage relationship measured in

somatic voltage-clamp (Fig. 3.10D, left), as experimentally observed (Milescu et al.,

2010). Finally, despite the order of magnitude difference between somatic and axonal

Na conductance densities, total Na influxes in the AIS and in the soma are comparable

(50% larger in AIS; Fig. 3.10D, right), as experimentally observed (Fleidervish et al.,

2010). This occurs because the total conductances over each of the two compartments

are in fact comparable. In detail, spike shape is not identical to measurements and this

is expected given the simplicity of the model, but all features of sharp spike initiation are
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present even though the transmission of the axonal spike to the soma is purely resistive.
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3.5 Discussion

By examining multicompartmental Hodgkin-Huxley models of spike initiation that re-

produce the sharp onset of somatic spikes, we have found that active backpropagation
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and capacitive currents have no role in this phenomenon. Previous studies proposed that

active channels between the initiation site and the soma increase spike onset rapidness.

We have shown that entirely suppressing those currents has no effect on somatic onset

rapidness. It has also been proposed that spike onset rapidness is further increased by the

capacitance of the somatodendritic compartment (Eyal et al., 2014; Yu et al., 2008). We

have shown that the increased somatic onset rapidness with larger capacitances observed

in models is an artifact resulting from measuring phase slope at a fixed arbitrary value

of dV/dt. When defined as the phase slope in the linear part of the phase plot, somatic

onset rapidness does not change when capacitance is increased beyond a critical value.

Finally, somatic onset rapidness can be directly predicted from spike shape at the distal

initiation site (as maximum phase slope). Therefore, the sharpness of somatic spike onset

in these models does not result from the properties of spike propagation, but rather of

spike initiation.

The biophysical models examined in this study were precisely those used in a previous

study to support the backpropagation hypothesis (Yu et al., 2008), as well as an inde-

pendent biophysical model, more tightly constrained by experimental data (Hallermann

et al., 2012). Thus, no known biophysical model currently supports the backpropagation

account of spike initiation sharpness. Instead, our analysis supports a biophysical expla-

nation based on resistive coupling between the soma and the initiation site, where the

soma effectively clamps the voltage at the start of the axon at spike initiation. According

to this account, and as we have shown in these models, the main current opposing the

Na current at spike initiation is not the transmembrane K current (i.e., mostly the leak),

but the axial resistive current between the soma and initiation site. As a result, spikes

initiate by the soma and AIS forming an electrical dipole, with current flowing between

the two poles and charging the soma. Therefore, the phenomenon is not well modeled by

the propagation of an electrical wave, with a dipole travelling from AIS to soma, since the

size of the dipole (wavelength) is the entire distance to be travelled. The observed delay

between axonal and somatic spikes is thus better understood as a charging time than a

propagation delay. One implication is that spike initiation is not a local axonal event,

and therefore its characteristics are determined by the properties of the soma-AIS sys-

tem, in particular its geometry. Specifically, the sharpness of spike initiation arises from

the geometrical heterogeneity of that system. It could be opposed that small neurons

would then been expected to display smooth spike initiation. For example, cerebellar

granule cells have a capacitance of just 3–4 pF (Diwakar et al., 2009) (corresponding

to about 300 µm2 of membrane). However, these cells also have very thin axons, with

a diameter of about 0.2–0.3 µm (Perge et al., 2012; Wyatt et al., 2005), and therefore

the somatodendritic area is still relatively large in comparison. Figure 3.11 shows indeed
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Figure 3.11: Sharpness of spike
initiation in a small simulated
neuron (axon diameter: 0.3
µm). A. Action potential in the
axon (blue) and distal AIS (orange;
dotted: with no somatic Na chan-
nels). B. Corresponding phase plot
of the action potential, showing on-
set rapidness greater than 50 ms−1

(inset).

that with this geometry, the model still displays sharp spike initiation. Experimentally,

hippocampal dentate granule cells, another type of granule cell, have a distinct kink at

spike onset (Schmidt-Hieber et al., 2008).

In a simplified two-compartment model representing the soma-AIS dipole, it was pre-

viously shown that spikes are initiated abruptly if the product of axial resistance and

maximum Na conductance exceeds a critical value (Brette, 2013). Phenomenologically

(but not biophysically), the corresponding model is mathematically quasi-equivalent to

the cooperative gating model of spike initiation (Naundorf et al., 2006) and therefore

shares all its functional properties. A major common feature between these two mod-

els, supported by our analysis of the biophysical models and by experiments (Milescu

et al., 2010), is that peak axonal current varies abruptly with somatic voltage, while cur-

rent latency is inversely related to the difference between somatic voltage and threshold.

A specific feature of the resistive model, also observed in the biophysically detailed mod-

els, is that increasing axial resistance, and therefore reducing axial currents, makes the

neuron more excitable. This feature has been previously suggested to underlie structural
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tuning of the AIS (Kuba, 2012).

As we have mentioned, an alternative hypothesis is that Na channels in the AIS

cooperate, so that they effectively open all at once when the axonal voltage exceeds

a threshold (Naundorf et al., 2006). Cooperative activation has been demonstrated in

calcium (Marx et al., 2001, 1998), potassium (Molina et al., 2006) and HCN channels

(Dekker and Yellen, 2006), and in pharmacologically altered Na channels of cardiac my-

ocytes (Undrovinas et al., 1992). It should appear in AIS phase plots as a very large

increase in dV/dt at spike initiation (Öz et al., 2015), with a biphasic phase plot if only

part of the channels (e.g. the Nav1.6 subtype) cooperate (Huang et al., 2012). However,

phase plots of spikes recorded in axonal blebs near the AIS are monophasic, with a grad-

ual increase with voltage as expected with non-cooperative channels (McCormick et al.,

2007; Yu et al., 2008). In isolated blebs, TTX has no effect on half-activation voltage of

Na channels, whereas cooperativity predicts an increase (Hu et al., 2009). It has been op-

posed that cooperativity may depend on the intact cytoskeleton of the AIS, which might

be disrupted in axonal blebs (Naundorf et al., 2007), but the axonal bleb recordings were

performed simultaneously with somatic recordings, which did exhibit a distinct kink at

spike onset. Finally, voltage traces recorded in whole cell patch clamp in intact axons

appear very similar to axonal bleb recordings and show no sign of cooperativity, with a

smooth spike onset at the AIS (Kole and Stuart, 2008). We conclude that at this date

there is no evidence of cooperativity of Na channels in the AIS.

The cooperativity hypothesis was also motivated by the observation of input-output

properties of cortical neurons that are not well accounted for by the standard account

of spike initiation (Brette, 2015), in particular the fact that cortical neurons can trans-

mit very high input frequencies (Ilin et al., 2013). The backpropagation account only

addresses somatic spike shape, but not spike initiation per se. The critical resistive cou-

pling model addresses both aspects because it is mathematically almost equivalent to the

cooperativity model, although it has a different biophysical basis (axial resistance in the

resistive model corresponds to channel coupling in the cooperativity model) and makes

different predictions in the axonal initiation site.

We now discuss experimental evidence regarding the critical resistive coupling hypoth-

esis, starting with the notion that the somatodendritic compartment is a current sink for

the initiation site. First, the initiation site is very close to the soma, as previously noted,

and axonal diameter is small compared to the soma, especially if the conductance load of

the dendritic tree is considered (Hay et al., 2013). Thus, biophysical theory predicts that

the soma is a current sink for the initiation site (Brette, 2013), i.e., that most Na cur-

rent entering the AIS flows to the soma, producing a voltage gradient between the two

sites. This prediction is backed up by several lines of evidence. First, there is generally
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no voltage gradient across the two sites between spikes, but this gradient rises to about

7 mV near spike initiation due to the opening of Na channels (Kole and Stuart, 2008),

a value close to the theoretical prediction of ka (Boltzmann slope factor of Na channel

activation) (Brette, 2013). Second, axonal outside-out patch-clamp recordings show that

there is little K current flowing during the rising phase of the AIS spike (Hallermann

et al., 2012). Third, Na imaging experiments show that the peak of Na influx during a

spike occurs at an axonal position closer to the soma than the initiation site (Baranauskas

et al., 2013). This is indeed expected if most Na current flows to the soma, because volt-

age then increases monotonously with distance from the soma (spatial gradient of voltage

is proportional to axial current), so that spikes are initiated at the distal end of the AIS

even though Na channel density may be lower.

Thus, there is convincing experimental evidence that the soma acts as a current sink

for the initiation site, with most Na current flowing directly to the soma. Evidence that

the product of axial resistance and Na conductance is large enough to produce an abrupt

opening of Na channels is most directly provided by somatic voltage-clamp experiments,

which show a discontinuity in the measured current-voltage relationship (Barrett and

Crill, 1980; Milescu et al., 2010), although a finer resolution in the voltage commands

would be desirable (voltage resolution is generally 5 mV). In practice, somatic voltage-

clamp recordings are complicated by the fact that currents can be very large, and the

precision of voltage clamping is limited to the product of current and uncompensated

series resistance. Electrode artifacts could produce a discontinuity in observed current-

voltage relationships when there is actually none. This cannot be the case in the data

of (Barrett and Crill, 1980), since they used different electrodes for current passing and

voltage measurement (two-electrode voltage-clamp). This was also not the case in Milescu

et al. (2010) because continuous currents of the same magnitude were observed when

axonal channels were inactivated with a prepulse. In that study, currents were reduced

by applying a small dose of TTX. Indirect evidence about the discontinuous opening of

Na channels, including somatic spike onset and input-output properties, is reviewed in

Brette (2015). Finally, the comparison of somatic onset rapidness and axonal phase slope

also matches theoretical predictions (Fig. 3.5D), although more experimental recordings

would be required to test these predictions.

To test the critical resistive coupling theory more directly, one would need to ma-

nipulate the axial resistance between soma and initiation site. The neuron should be

more excitable when axial resistance is increased, but the current transmitted to the

soma should decrease. If the resistance were decreased very substantially, spike initiation

should become smooth instead of sharp. We list here several experimental possibilities,

chemical and mechanical, although none is particularly easy to perform. Intracellular
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resistivity could be changed by manipulating the ionic composition of the intracellular

medium. This is difficult because it must be compensated by corresponding changes in

the extracellular medium to preserve osmotic equilibrium, without disturbing reversal

potentials, but the extracellular and intracellular media cannot be modified simultane-

ously. In a similar way, extracellular resistance could be manipulated: although typically

neglected in models, it has the effect of increasing the total axial resistance. For example,

Hodgkin demonstrated that conduction velocity decreased when the axon was immersed

in oil, which reduces the water volume around the axon to a thin layer (Hodgkin and Hux-

ley, 1939). A similar experiment could be done to test changes in excitability. Another

idea is to use osmotic pressure to change the diameter of the axon, thereby changing total

axial resistance. However, it is possible that the dense cytoskeleton of the AIS provides

rigidity so that changes in shape might be limited to the soma. Finally, pinching the

base of the axon with two glass pipettes would increase axial resistance, and it has been

done with dendrites (Bekkers and Häusser, 2007). All of these experimental ideas are

challenging, but not impossible in principle.

In conclusion, biophysical modeling and experimental evidence support the notion

that, in neurons with an AIS, normal spike initiation results from the interplay between

the Na current and the resistive axial current flowing between the AIS and soma, rather

than between local transmembrane Na and K (leak) currents as in somatic and ectopic

initiation (in an axon far from the soma). This means that the mechanism of spike

initiation is not local to the axon, but rather occurs through the formation of a resis-

tively coupled soma-AIS dipole. This situation occurs because of the large variation in

geometry and biophysical properties over a small spatial scale. Accordingly, at least in

the biophysical models that we have examined, the kink at somatic spike onset results

from strong coupling of the soma-AIS system, rather than from an artifact of somatic

recording.

3.6 Materials and methods

3.6.1 Detailed neuron models

We used two spatially extended neuron models described in Yu et al. (2008), a simple

model of a cylindrical soma and a cylindrical 50 µm long axon (diameter 1 µm) avail-

able on ModelDB (Hines et al., 2004) and a morphologically detailed model based on a

reconstruction of a cortical pyramidal cell (personal communication of Prof. Yuguo Yu).

We also used a multicompartmental model of a pyramidal cell described in Hallermann

et al. (2012), also available on ModelDB. These models were implemented in Neuron
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7.4 (Hines and Carnevale, 1997) with time step 1 µs and analyzed in Python. In Fig.

3.3, the extracellular field was computed with the standard line source method (Einevoll

et al., 2013; Holt and Koch, 1999), with extracellular conductivity σ = 0.3 S.m−1, and

simulated with the NeuronEAP Python library (Telenczuk and Telenczuk, 2016).

3.6.1.1 Morphology

The simple model consists of an axon modeled as a cylinder of length 50 µm and diameter

1 µm, and a soma modeled as a cylinder of variable length and diameter (the bleb and

dendrite were not included unless stated otherwise). In Fig. 3.2 and 3.6, the soma has

diameter 20 µm and length 30 µm. In Fig. 3.4 and 3.5, soma size was varied with equal

length and diameter. In one case (Fig. 3.4C-D), we kept the dendrite of length 3000 µm

and diameter 5 µm (60 segments). The first morphologically detailed model (Yu et al.,

2008) is based on a reconstructed layer 5 cortical pyramidal cell. The axon consists of a

10 µm long axon hillock, with diameter tapering from 4.8 µm to 1.2 µm, connected to an

initial segment of diameter 1.2 µm and length 40 µm, followed by a 500 µm myelinated

axon with 5 nodes of Ranvier separated by 100 µm. The second morphologically detailed

model (Hallermann et al., 2012) is also based on a reconstructed layer 5 cortical pyramidal

cell, and we used the model as described in that reference.

3.6.1.2 Channel properties

Passive properties were set as in Yu et al. (2008): specific membrane capacitance

Cm = 0.75 pS/µm2, intracellular resistivity Ri = 150 Ω.cm, specific membrane resis-

tance Rm = 30,000 Ω.cm2, leak reversal potential EL = -70 mV, membrane time constant

τ = 22.5 ms. In the simple model, Na conductance densities were 8000 pS/µm2 in the

axon, 0 or 800 pS/µm2 in the soma and 20 pS/µm2 in the dendrite. In the morpho-

logically detailed model, Na conductance densities were 8000 pS/µm2 in the hillock and

in the axon initial segment, 800 pS/µm2 in the soma and 100 pS/µm2 in dendrites. In

the simple model, we only included Na and potassium channels; in the morphologically

detailed model, we used all the channels present in the original model. Detailed channel

kinetics and properties of other channels are described in Yu et al. (2008)

In Fig. 3.9 we moved all channels involved in spike generation (Na and potassium) to a

single compartment while maintaining the same total conductance. As the initial segment

consists of 10 compartments, this corresponds to multiplying conductance densities by

10 in the target compartment and setting them to 0 in all other compartments.
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3.6.2 Two-compartment model

The two-compartment model represents the soma and the axon initiation site, coupled

by axial resistance Ra = 4.5 MΩ. Capacitances are Cs = 250 pF for the soma, in the

range of values measured in layer 5 pyramidal neurons of rats (Arsiero et al., 2007), and

Ca = 5 pF for the axon. The axonal value was chosen empirically, as in reality axon

impedance is highly frequency-dependent. Leak conductance is 12 nS (corresponding to

a 20 ms membrane time constant) and leak reversal potential is -80 mV.

For ionic channels, we deliberately used the simplest possible models so as to show

that the sharpness of spikes does not result from subtle aspects of their detailed properties

(Fig. 3.10A). Na channel activation is modeled with first-order kinetics, half-activation

-25 mV, Boltzmann slope 6 mV, time constant 100 µs (voltage-independent). Na channel

inactivation is considered independent with time constant 0.5 ms, half-inactivation voltage

-35 mV, Boltzmann slope 6 mV. K channels are also modeled with first-order kinetics,

half-activation -15 mV, Boltzmann slope 4 mV, time constant 2 ms. Total Na conductance

is 800 nS in the soma and 1200 nS in the axon; total K conductance is 2200 nS in the

soma and 1200 nS in the axon.

The model was simulated with the Brian simulator 2.0 (Stimberg et al., 2014).

3.6.3 Analysis

3.6.3.1 Voltage-clamp

In voltage-clamp measurements, the soma was clamped to a holding potential and the

current was measured and corrected for the leak current with the P/n protocol, as in

Bezanilla and Armstrong (1977); Milescu et al. (2010). The peak current is shown as a

function of holding potential.

3.6.3.2 Phase slope

The standard way of measuring onset rapidness is to calculate the slope of the phase

plot (dV/dt vs V) at a certain value of dV/dt (typically 5-20 mV/ms). In real somatic

recordings, the phase plot is approximately linear over a wide enough range of dV/dt

values, so that the exact choice is not critical (Baranauskas et al., 2010) (see Fig. 2F

therein). However, in models where morphological parameters are varied over several or-

ders of magnitude, the phase plot can be linear around different values of dV/dt (Fig. 3.8).

Therefore, we defined onset rapidness as the phase slope in the linear part of the phase

plot, which corresponds to the maximum phase slope. When the spike is regenerated at

the soma (somatic Na channels), there are two local maxima and we choose the smaller

88 Chapter 3. The basis of sharp spike onset in standard biophysical models



one (closer to spike onset).

3.6.4 Theoretical prediction of onset rapidness

From the resistive coupling hypothesis, we can derive a theoretical prediction about so-

matic onset rapidness. We first assume that the major somatic current at spike initiation

is the axonal current, so that the membrane equation reads:

C
dV

dt
= I

where C is membrane capacitance. Phase slope is then:

d2V
dt2
/dV

dt
=
dI

dt
/I

The resistive coupling hypothesis postulates that the axonal current is a resistive

current:

I =
Va − V
Ra

where Va is axonal voltage and Ra is axial resistance between the two sites. It follows

that:

somatic phase slope =
dVa
dt

/(Va − V )

Assuming further that the axonal spike develops before the somatic spike, we consider

that V is close to spike threshold. Onset rapidness is defined as the maximum phase

slope (for the first component), as discussed above, and therefore should correspond to

the maximum value of the formula above. Graphically, this maximum corresponds to the

slope of a tangent to the axonal phase slope, starting from threshold (Fig. 3.8B, right).

This value is in fact close to the maximum axonal phase slope. A simplified theoretical

prediction is thus that somatic onset rapidness (or initial phase slope) approximately

equals maximum axonal phase slope.
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Teleńczuk, M., Fontaine, B., and Brette, R. (2016). The basis of sharp spike onset in standard biophysical

models. bioRxiv.

Testa-Silva, G., Verhoog, M. B., Linaro, D., De Kock, C. P. J., Baayen, J. C., Meredith, R. M., De

Zeeuw, C. I., Giugliano, M., and Mansvelder, H. D. (2014). High bandwidth synaptic communication

and frequency tracking in human neocortex. PLoS biology, 12(11):1–13.

Undrovinas, A. I., Fleidervish, I. a., and Makielski, J. C. (1992). Inward sodium current at resting

potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine.

Circulation research, 71(5):1231–1241.

Wyatt, K. D., Tanapat, P., and Wang, S. S. H. (2005). Speed limits in the cerebellum: Constraints from

myelinated and unmyelinated parallel fibers. European Journal of Neuroscience, 21(8):2285–2290.

Yu, Y., Shu, Y., and McCormick, D. A. (2008). Cortical action potential backpropagation explains spike

threshold variability and rapid-onset kinetics. The Journal of neuroscience, 28(29):7260–72.

Bibliography 93



94 Bibliography



CHAPTER 4

Local field potential generated by neurons with different

localisation of axon initial segment

Here, we present unpublished results based on ongoing work of Maria Teleńczuk,

Bartosz Teleńczuk and Romain Brette. In the previous chapter, we showed a simulation

of the local field potential during action potentials. In the following section, we would like

to explore the impact of the location of axon initial segment (AIS) on this field. Different

neurons tend to have an AIS of different length and situated at different distances from

the soma (Fried et al., 2009; Kuba et al., 2006). Furthermore, the AIS is plastic and its

length and position can change as a result of elevated activity (Chand et al., 2015; Evans

et al., 2013; Grubb and Burrone, 2010; Muir and Kittler, 2014) or as a consequence of a

diseased state such as a stroke (Hinman et al., 2013; Schafer et al., 2009). We investigated

whether the difference in position might be reflected in extracellular recordings of the

action potential (AP). This might be of importance because in extracellular recordings,

the amplitude and shape of the action potential often changes (for example in a burst,

action potentials tend to decrease in amplitude and increase in duration) (Williams and

Stuart, 1999), but the reasons are not always understood.

We will investigate whether the AP amplitude might be modulated by the shift in

the AIS position, which could occur due to plastic changes in a time scale of hours

(Evans et al., 2015) to days (Grubb and Burrone, 2010; Evans et al., 2013; Muir and

Kittler, 2014). We compare the amplitude of the extracellular AP generated by models

considering different AIS positions. Below we explain our results based on the calculations

of extracellular potentials around electrical models of neurons. We have calculated the

extracellular potential of a dipole in the near field and its far-field approximations and
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compared it with field generated by a soma-axon calculated numerically using linear

source approximation (LSA). We found that the AP amplitude varies in the near field

with the position of AIS. We conclude that far-field dipole approximation is not sufficient

to explain the field potential around the soma and the AIS. Although the differences

between action potentials initiated at different distances from the soma should be visible

experimentally, the exact location might be difficult to determine from the extracellular

action potential without additional information, such as how far the electrode was placed

from the soma. We might however be able to monitor the change of the AIS position

over time in a single neuron by looking at the change in AP amplitude.

4.1 Results

4.1.1 Soma-axon model

In the simple neuron model consisting of a soma and an axon we shifted the Na+ and

K+ channels in the axon to a single chosen location (5-µm-long segment of the axon)

which we will here call the axon initial segment (AIS), as it is where the action potential

(AP) initiates. We then calculated the electric potential at different locations of the

extracellular space to see if the shift of AIS is reflected extracellularly.

First, we recorded extracellular potential at various locations in the vertical axis

from the soma (Fig. 4.1). Indeed, the location of the AIS has a pronounced effect on

the amplitude of the extracellular action potential (Fig. 4.1B). At 20 µm from soma

(Fig. 4.1Ca), the extracellular potential initiated by the model with the AIS closest to

soma (0 µm, blue trace) has the smallest amplitude (measured from peak to valley) when

compared with the other models with different AIS positions (7.8 µV as compared to

10 µV and 9.3 µV for the models with AIS located 20 µm, green trace, and 45 µm,

orange trace, from the soma). Since the extracellular potential decays proportionally

with distance from the soma, in distant recordings the AIS location showed less influence

on the extracellular AP amplitude than in the recordings done close to the cell. However,

for all recordings points > 20 µm from the soma the extracellular potential is highest

when the AIS is most distal from the soma and decreases when the AIS is moved closer

to soma (Fig. 4.1Cc).

In addition to the amplitude, the shape of the action potential recorded extracellularly

also changes proportionally with distance between soma and AIS (Figs. 4.1C and 4.2B,

inset), while the intracellular waveforms remain similar (Fig. 4.2A, insets).

To study the effect of the AIS position on the extracellular action potential width,

we calculated the extracellular potential generated by models with the AIS placed at ten
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Figure 4.1: Extracellular potential calculated from the soma-axon model with the AIS at
three different positions: 0 µm from the soma (blue), 20 µm from the soma (green) and
45 µm from the soma (orange). A. Each dot represents the location of the measurement
vertically from the soma. Black circles correspond to the locations of recordings shown
in C. Schematics shows the cell body (left) and the axon (grey) with the AIS at different
locations (color-coded). B. Double logarithmic plot of the peak-to-peak amplitude of the
extracellular potential vs the distance of the recording site from the soma. Color lines
correspond to different positions of the AIS (see color code in A). C. Example traces of
extracellular fields recorded at different distances from the soma-axon axis (panels a-c,
recording positions correspond to black circles in A) and different AIS positions (color
lines). The traces are aligned such that 1 ms represents the peak of the action potential
in the soma.
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recorded intracellularly in the AIS (top inset) and the soma (bottom). B. Action potential
width measured at half amplitude as a function of the AIS position for two different
recording locations (close: 30 µm from soma, far: 100 µm from soma). Inset: Examples
of extracellular AP waveshapes for 3 different locations of AIS (recorded 40 µm above
the soma, cf. Figure 4.1C).

different positions from the end of the soma, up to 45 µm distally. We observed that the

extracellular action potentials become gradually wider with increasing distance between

the soma and the AIS (Fig. 4.2B). The functional form of this dependence changes only

slightly with the location of the recording site (Fig. 4.2B, dashed vs. solid line).

This dependence of the amplitude and width of extracellular action potential on the

AIS position could be due to two factors: (1) the distance of the measuring electrode from

the extracellular potential generators, current sinks and sources, and (2) the change of

magnitude and time course of these currents due to a change in AIS position. To isolate

these two factors, we recorded the extracellular potential along a vertical axis passing

through the middle point between the centers of the soma and AIS; this means that the

horizontal position of the recording site changed when we moved the AIS along the axon.

In this case the distances from the recording electrode to the current sink (AIS) and to the

current source (soma) would remain equal independently of the position of the AIS. Even

with this approach (Fig. 4.3) we found differences between the extracellular potential

amplitude from neuron models with an AIS at different positions. The differences were

even larger when compared to the former situation: the recordings performed in proximity

to the axon (20 µm away, Fig. 4.3C, top) showed amplitudes of 7.9 µV, 2.6 µV and 3.8 µV,

with distances of 0 µm, 20 µm and 45 µm, respectively between the AIS and the soma.

The amplitude of the action potential was the highest for all probed distances of
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recording electrodes from the axon, when the AIS was closest to the soma (Fig. 4.3C,

blue trace in all panels). Note that for all distances above 100 µm the change of the field

with increasing AIS distance from the soma is reversed when compared to the recording

over the soma, meaning that at a fixed position of the recording electrode, the action

potential amplitude decreases with the increasing distance of the AIS (Fig. 4.3B).

Importantly, for two AIS locations (0 and 20 µm from soma) the extracellular action

potentials recorded at the midpoint between the soma and the AIS are of opposite polarity

compared to the recordings over the soma (compare blue/green traces in Figure 4.1C

with same traces in Figure 4.3C). To find the exact position of this polarity reversal we

calculated the difference between the peak and through amplitude of the extracellular

AP recorded at different sites along a horizontal line parallel to the soma-AIS axis (Fig.

4.4). We found that the position at which the potential changes its polarity moves with

the AIS location. However, the exact position of the polarity reversal did not always

coincide with the midpoint between the soma and the AIS centers (Fig. 4.4, triangles).

4.1.2 Far-field dipole approximation

In a resistive, homogeneous medium the contribution of a single current source of intensity

I (current monopole) to the extracellular potential is given by:

Vmon =
1

4πσ

I

r
(4.1)

where σ is the conductance of extracellular medium and r is the distance between the

location of the recording electrode and the monopole.

A current dipole consists of two point-like sources of currents of equal intensities,

but opposite directions (current sink and source) separated by a fixed distance. We can

calculate its field by the superposition of two monopoles:

Vdip = Vmon+ + Vmon− =
I

4πσ

(
1

r+
− 1

r−

)
(4.2)

where r− and r+ are the distances of the recording site from the current sink and source,

respectively.

When the distance between the two monopoles is small compared to the distance

between the recording electrode and the midpoint between the two sources (far field), we

can approximate this formula by:

Vdip ≈
1

4πσ

Id

r2
cos(θ) (4.3)

where θ is the angle between dipole axis (vector connecting source and sink) and position
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Figure 4.3: Extracellular AP measured along the midline between soma and AIS. A. The
recording site lays in the middle between centers of soma and AIS. Colors correspond
to the AIS position in the axon: 0 µm (blue), 20 µm (green) and 45 µm from the soma
(orange). The three vertical lines represent different midline positions for each of the
AIS positions. B. The absolute peak-to-peak amplitude of the extracellular potential
(on a log-scale) vs distance of the recording site from the soma-AIS midpoint. There is
a large difference very close to the neuron which decays with the distance. C. Sample
traces recorded at three locations (represented in A by the rectangles) for each of the AIS
position. Note different voltage scales. For more details see caption of Figure 4.1.
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Figure 4.4: Profile of extracellular potential along soma and axon. Extracellular potential
associated with an action potential was calculated along a horizontal line 40 µm above
the axon and extending from the proximal end of the soma towards the distal end of the
axon for three different positions of AIS (see top drawing for a model schematics, scale
on the x-axis is given relative to the distal end of the soma). For each recording and AIS
position, we calculated the amplitude of the highest peak minus the amplitude of deepest
through (shown on y-axis) in a short window (0.3 ms wide). The triangles on the x-axis
show the midpoint between the centers of soma and AIS for each of the models. The
vertical dotted line marks the position of soma’s center.
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Figure 4.5: Dipole model consisting of a current sink (red) and a current source (blue)
seperated by d. Point of measurement represents a possible recording location. For the
far-field approximation to hold, the distance between the sink and source should be much
smaller than the distance to the recording point. See text for more detail.

vector (vector connecting the center of the dipole and the recording position), d is the

distance between sink and source and r is the distance between the location of recording

to dipole center (Fig. 4.5).

To investigate the effect of the AIS position on the current intensity I, we measured

the axial current during the action potential for varying positions of the AIS. We found

that the amplitude of the axial current decreased with the inverse of the distance between

the AIS and the soma (Fig. 4.6A). Indeed, the same figure (Fig. 4.6B) shows that it is

possible to fit a straight line of slope a = −1 through the points representing the logarithm

of the maximum axial current versus the logarithm of the soma-AIS distance. This linear

relation confirms that the amplitude of the axial current is inversely proportional to

the distance between the soma and the AIS, I ∼ 1/d. Since the far-field model of the

extracellular potential predicts that the potential increases with the distance between

source and sink, this trend should compensate for the drop of current magnitude shown

in Figure 4.6. Therefore, the far-field approximation of the dipole model would predict

no difference in the amplitude of the extracellular potential due to the AIS position.

Taken together, the dependence of the extracellular action potential amplitude on the

AIS positions presented in Figures 4.3 and 4.6 can arise only in the close neighbourhood

of the neuron (its near field).

4.1.3 Dipole model – near field

To study the effect of the soma-AIS distance on their near-field potential, we constructed

an electrical model of the axon consisting of a pair of current source and sink, representing

the soma and the AIS, respectively (Fig. 4.7). We set the dipole moment Q = Id to the

value obtained from the simulation of the soma-axon model (Fig. 4.6) and varied the
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separation between the current source and sink modifying the current intensity I, so that

the dipole moment is conserved. The extracellular field was then calculated as an exact

superposition of contributions from the two current monopoles (source and sink, equation

(4.2). We found that this simplified model could capture the dependence between the

AIS position and the extracellular field observed in the soma-axon model (compare Figure

4.1B and 4.7B). In particular, the extracellular potential was largest when the AIS was

at the most distant point from the soma (soma/AIS separation of 45 µm).

These results show that the dependence of the extracellular potential on the AIS

position are only noticeable in the immediate neighbourhood of the neuron (near field). If

the distance of the recording electrode from the neuron is much larger than the separation

between the current source and sink (far field), as it is the case in EEG recordings, the

equation (4.3) offers a good approximation of the total field. As discussed above, this

equation predicts that in the far field the amplitude of the extracellular action potential is

not affected by the AIS position. Indeed, using the exact dipole calculation, we find that

the absolute differences in the extracellular field for different AIS positions diminish when

recording away from the neuron. However, in logarithmic scale the differences remain

constant for distances above 200 µm from the axon (Fig. 4.1B and 4.7B) meaning that

4.1. Results 103



the ratios between the respective amplitudes of extracellular fields remain constant (as a

consequence of the relation: log(V1/V2) =const= log(V1)− log(V2)).

We conclude that the amplitude of the extracellular action potential recorded close

to the neuron depends on the position of the AIS.

4.1.4 Two cylinder model

One deviation of the simulated extracellular potential from the dipole model is that the

field at the axis going through the middle between the centers of the AIS and the soma

is not zero (Fig. 4.3). Both the dipole model and its far-field approximation predict that

the field between the current sink and source should be exactly zero (cf. Fig. 4.7C),

which can be observed when we set r+ = r− in the equation (4.2) or θ = π in the

equation (4.3). Therefore we built another model, which could account for these results.

The main contribution of this model is based on the fact that the soma and the AIS are

spatially-extended compartments (cylinders) and their sizes are not equal – the soma and

the AIS have the same dimensions as in our soma-axon model (soma: 30 × 20µm, AIS:

5× 1µm, Fig. 4.8 A).

For the potential calculated along a vertical axis above the soma the results are similar

to the ones obtained using the dipole model (compare Figures 4.7B and 4.8B). However,

when we calculated the potential above the midpoint between the centers of the two

cylinders, we found that the potential was larger than 0, but that it decreased rapidly

with diminishing distances from the axon (Fig. 4.8C). Due to the asymmetry of the

cylinder sizes the potential crossed the zero value proximally to soma (Fig. 4.8D) and not

at the center between the compartments, as predicted by the dipole models (Fig. 4.7C).

Interestingly, the offset between the zero-crossing and the center becomes smaller with

decreasing distance from the axon and an increasing separation between the soma and

the AIS, which explains the sudden drop of the potential at very short distances and

when positioning the AIS at a large distance, as shown in Figure 4.8C (orange and green

curves).

Similarly to the soma-axon model we also observed a reversal in the relation between

the extracellular AP amplitude and the AIS distance from the soma when the recording

was shifted from above the soma to the midpoint between the AIS and the soma centers.

For recordings above the soma (20 µm and more), the extracellular potential increased

with separation between the soma and the AIS (Fig. 4.1B and 4.8B), whereas it decreased

when recorded above the midpoint (Fig. 4.3B and 4.8C).
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Figure 4.7: Dipole model of AIS and soma. A. Somatic and AIS compartments are
modeled by a pair of point current source and sink (here represented as circles). Distance
between the source and sink is varied (2 µm, 20 µm, 45 µm, color lines in B and C),
but the dipole moment remains constant Q = 70 nA·µm. B. The change of extracellular
potential along a line above the soma perpendicular to the dipole’s axis for three different
separations between soma and AIS (line B in panel (A)). C. Extracellular potential along
a line parallel to the dipole’s axis at the distance of 20 µm from the axon (line C in panel
(A)). In both directions the potential depends on the distance between the AIS and soma
(color lines).
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Figure 4.8: Two cylinder model of the AIS/soma dipole. A. Schematics of the two
cylinder model with soma (cylinder on the left) and AIS (smaller cylinder on the right).
The dipole moment is equal to 70 nA·µm and the current is calculated as I = Q/d
where d is the distance between the centers of cylinders. The vertical and horizontal
lines show the axis of measurement of extracellular potential shown in panels (B-D). B.
Extracellular potential measured for three different AIS separations (color lines) above
the soma center. C. Extracellular potential along a vertical axis in the middle between
soma and AIS centers. In both cases the potential is sensitive to the separation between
the cylinders, but the relation is reversed (increase in potential with increasing soma/AIS
separation in B, and decrease in potential in C). D. Extracellular potentials measured
along a horizontal axis 40 µm from the axon. Zero crossing is shifted towards soma with
respect to the midpoint between soma and AIS centers (shown with triangles). The shift
is largest for AIS directly attached to the the soma (blue curve). Note that potential in
C was reversed in sign.
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4.2 Discussion

Using linear source approximation (LSA) and Neuron simulations (soma-axon model) we

have shown that the extracellular action potential can be recorded at different locations

close to the spiking neuron and that its amplitude varies with the distance between the

soma and the action potential initiation site.

We argued that at large distances compared to the separation between the soma

and the AIS, the dipole contribution to the extracellular field does not depend on the

separation between the AIS and the soma (far-field approximation). However, simulations

of the near-field extracellular field using LSA reveal the dependence of the extracellular

action potential on the localisation of the AIS. We demonstrated that this dependence

can be reproduced in simple models consisting of two monopoles or two cylinders (with

sizes matched to the dimensions of the soma and the AIS). Furthermore, we found that

for a cylindrical soma and AIS, the position of reversal of the extracellular AP polarity

along the soma and axon axis can be offset with respect to the midpoint between their

centers. This phenomenon occurs due to the asymmetric field generated by cylinders and

might disappear if we considered a spherical soma instead.

Our results provide an important insight into the understanding of extracellular ac-

tion potentials. It is known that the shape and the amplitude of the extracellular action

potentials vary depending on the location of the recordings (Gold et al., 2006). Also,

different types of neurons display extracellular action potentials of different width, such

as excitatory cells, which tend to have broader extracellular action potentials when com-

pared with interneurons (Barthó et al., 2004; McCormick et al., 1985), although there are

exceptions (Vigneswaran et al., 2011). To separate action potentials of multiple neurons

recorded extracellularly, it is common to use the waveform features of an extracellular

action potential, such as the half-widths of the positive and negative peaks, the inter-

val between them and the difference of their amplitudes (Lewicki, 1998; Einevoll et al.,

2012). In addition, these and other waveform features sometimes allow the identification

of neurons of different types (Peyrache et al., 2012; Dehghani et al., 2016). However, the

significance of such features and their biophysical underpinnings are not completely un-

derstood. Numerical simulations of extracellular field around reconstructed morphology

of CA1 pyramidal neurons showed that the width of the extracellular action potential

increases proportionally with the distance between the soma and the recording electrode

(Gold et al., 2006). In addition, in this study the shape and amplitude of the extracellular

potential was strongly affected by the channel densities in the dendrites and in the axon

initial segment. In our work we show that the extracellular features of action potentials

depend also on the exact location of the their initiation site.
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At the population level, the contribution of neurons to the local field potential (LFP)

depends critically on the presence of voltage-dependent channels and neuronal morphol-

ogy. For example, during the up state the LFP contains larger contributions from the

active potassium and sodium currents than from synaptic currents (Reimann et al., 2013);

similarly active conductances in the dendrites were shown to have major impact on the

spectrum of the field potential (Ness et al., 2016). The structure of the dendritic tree

has also been identified as a plausible factor influencing the LFP signals (Lindén et al.,

2010). Results in the present work suggest that the biophysics of the axon and the site

of the action potential initiation may also be an important factor determining the am-

plitude and spectrum of the extracellular potential. The effects of the AIS position on

LFP generated from a network of multi-compartmental model neurons is an interesting

outlook of the present work.

Finally, our results show that it should be possible, and of great interest, to follow

experimentally the dynamic change of the AIS position by means of extracellular record-

ings.

4.3 Methods

4.3.1 Soma-axon model

We used a simple neuron consisting of a soma (20 x 30 µm, 6 segments) and an axon

(1 x 50 µm, 10 segments). Adapted from Yu et al. (2008). Figures 4.1 (top left) and 4.3

(top left) show the sample schematics of the shape of the neuron. The simulation was

controlled from Python using the Neuron-Python interface (Hines et al., 2009).

4.3.2 Linear Source Approximation

To estimate the extracellular potential, we used the Linear Source Approximation (LSA)

method, which calculates the summed potential generated by currents originating from

line sources with known sizes and positions. This method is known to be more precise

than approximating the currents by point sink and sources (Holt, 1997; Wilson and Bower,

1992). We then applied the LSA estimation to cylinders obtained from the segmentation

by Neuron simulator (in total 16 cylinders, see above) (Hines and Carnevale, 1997).

The field was calculated using the LSA implementation of NeuronEAP Python library

(Telenczuk and Telenczuk, 2016) which uses Linear Source Approximation to calculate

the field generated by a neuron simulated in Neuron simulator. In all calculations we

used an extracellular conductivity of 0.3 Sm−1.
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In Figures 4.1 and 4.3 we removed the baseline by calculating an average potential in

a window of 2 to 1 ms before the peak of the action potential. This baseline shift arises

because of the current injected in the soma, which effectively creates a monopole moment

in the extracellular potential.

4.3.3 Two cylinders model

To study the effect of the soma and AIS sizes on the action potential we modelled them

by two cylinders of 30 µm (length) × 20 µm (diameter) and 5 µm × 1 µm, respectively.

To calculate the extracellular potential we added the total contribution of each cylinder

to the extracellular field given by the formula:

Vcylinder =
imR

2σ
log

∣∣∣∣∣∣
√
h2 + r2 − h√

(h+ L)2 + r2 − h+ L

∣∣∣∣∣∣ (4.4)

where im is the current per membrane surface, σ is the extracellular conductance, R and

L are the cylinder radius and length, r is the radial distance from the cylinder, h is the

longitudinal distance from one of cylinder’s ends.

The current density was chosen such that the total current of the AIS and the soma

are of the same magnitude (but of opposite signs).
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CHAPTER 5

Single CA3 pyramidal cells trigger sharp waves in vitro by exciting

interneurones

This paper was born thanks to the collaboration between Michaël Bazelot, Richard

Miles and Maria Teleńczuk. It has been published in the Journal of Physiology in year

2016 (Bazelot et al., 2016).

5.1 Abstract

Sharp waves (SPWs) are a hippocampal population activity that has been linked to neu-

ronal representations. We show that SPWs in the CA3 region of rat hippocampal slices

can be triggered by the firing of single pyramidal cells. Single action potentials in almost

one-third of pyramidal cells initiated SPWs at latencies of 2–5 ms with probabilities of

0.07–0.76. Initiating pyramidal cells evoked field IPSPs (fIPSPs) at similar latencies

when SPWs were not initiated. Similar spatial profiles for fIPSPs and middle compo-

nents of SPWs suggested that SPW fields reflect repeated fIPSPs. Multiple extracellular

records showed that the initiated SPWs tended to start near the stimulated pyramidal

cell, whereas spontaneous SPWs could emerge at multiple sites. Single pyramidal cells

could initiate two to six field IPSPs with distinct amplitude distributions, typically pre-

ceeded by a short-duration extracellular action potential. Comparison of these initiated

fields with spontaneously occurring inhibitory field motifs allowed us to identify firing in

different interneurones during the spread of SPWs. Propagation away from an initiating

pyramidal cell was typically associated with the recruitment of interneurones and field

IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by
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single cells were less variable than spontaneous events, suggesting that more stereotyped

neuronal ensembles were activated, although neither the spatial profiles of fields, nor the

identities of interneurone firing were identical for initiated events. The effects of single

pyramidal cell on network events are thus mediated by different sequences of interneurone

firing.

5.2 Introduction

Single mammalian pyramidal cells are not considered to have major effects on the cortical

networks to which they belong (Shadlen and Newsome, 1998). Even so, single pyramidal

cells of layers 5 and 6 of the motor cortex can induce or affect whisker movements (Brecht

et al., 2004), whereas stimulation of single layer 5 somatosensory pyramidal cells modifies

behavioural responses during a detection task (Houweling and Brecht, 2007). Single

neurones can also modify the collective activities of cortical neuronal populations. In the

somatosensory or visual cortex, single cells can induce transitions between cortical up and

down states (Cheng-yu et al., 2009). The firing of a single GABAergic inhibitory cell can

alter the timing of population events in the immature hippocampus (Bonifazi et al., 2009),

whereas some pyramidal cells entrain or initiate epileptiform population events in the

adult hippocampus (de la Prida et al., 2006; Miles and Wong, 1983). Sharp waves (SPWs)

are hippocampal EEG events with a duration of 30–60 ms (Buzsáki et al., 1983; O’keefe

and Nadel, 1978) that occur during behaviours including awake immobility and slow wave

sleep. Buzsaki et al. (Buzsaki et al., 1992) showed that SPWs are accompanied by high

frequency interneurone firing. They are initiated in CA3, spread into the CA1 region of

the hippocampus, and pyramidal cell and GABAergic interneurones fire during SPWs of

both regions (Csicsvari et al., 2000; Klausberger et al., 2003). SPWs are suggested to

involve various forms of replay of previous sequences of spike discharge and so they have

been associated with the consolidation of neuronal representations (Ji and Wilson, 2007;

Girardeau et al., 2009; Jadhav et al., 2012). SPW-like events occur spontaneously in vitro

(Kubota et al., 2003) and the mechanisms responsible for their generation have mostly

been examined in slices. These mechanisms remain controversial and may differ for SPWs

of the CA3 and CA1 regions. SPWs have been ascribed to electrotonic junctions between

pyramidal cells (Draguhn et al., 1998; Bähner et al., 2011) or to interactions within

recurrent circuits (Ellender et al., 2010) with predominant excitatory (Maier et al., 2011)

or inhibitory synaptic signals (Ho et al., 2009; Aivar et al., 2014). Data on how single

neurones affect the timing or initiation of SPWs could help discriminate between these

possible mechanisms. Ellender et al.(Ellender et al., 2010) showed that stimulation of

single interneurones increased the probability of SPW occurrence in slices with long (∼1 s)
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latencies, whereas stimulation of single pyramidal cells had no effect. In the present

study, we show, in vitro, that firing in single CA3 pyramidal cells could initiate SPW

with latencies of 2 – 6 ms. This latency is similar to that between pyramidal cell firing

and the discharge of post-synaptic interneurones (Miles, 1990; Csicsvari et al., 1998).

Extracellular records suggested that repeated firing of the same or different interneurones

contributed to SPWs. SPWs induced by single cells were more stereotyped than SPWs

that occurred spontaneously without stimulation. However, the identities and the timing

of interneurone firing varied between successive initiated SPWs.

5.3 Methods

5.3.1 Slice preparation

Hippocampal slices were prepared from rats, aged 7–10 weeks and weighing 150–300 g,

in accordance with EC Directive 08/120/EC and local INSERM guidelines. Protocols

were approved by the Comit e d’Ethique Darwin, Ministère de l’Enseignement Supérieur

et de la Recherche; Paris. Twenty-two animals were used to obtain the data reported in

the present study. Rats were anaesthetized I.P. with ketamine (80 mg kg−1) and xylazine

(12 mg kg−1 ) and perfused intracardially with a solution containing (in mM) 62 NaCl,

26 NaHCO3, 1 KCl, 10 MgCl2, 1 CaCl2, 122 sucrose and 10 D-glucose and equilibrated

with 5% CO in 95% O2 at 3− 5 ◦C. Both hippocampi were dissected free and transverse

slices (thickness 500 µm) were cut with a vibratome (HM650V; Microm International

GmbH, Walldorf, Germany) from their ventral portion. Slices were transferred to an

interface recording chamber, where they were equilibrated with 5% CO2 in 95% O2, heated

to 35 − 37 ◦C and perfused with a solution containing (in mM) 124 NaCl, 26 NaHCO3,

3–5 KCl, 2 MgCl2, 2 CaCl2 and 10 glucose.

5.3.2 Drugs

In some experiments, GABAA receptor mediated signalling was suppressed by picro-

toxin (100 µM). We also used the µ-opioid receptor agonist (D-Ala2, N-MePhe4, Gly-ol)-

enkephalin (20 µM ; DAMGO), which is suggested to hyperpolarize perisomatic targeting

interneurones and reduce release from inhibitory terminals (Svoboda et al., 1999; Gulyás

et al., 2010). Drugs were obtained from Tocris Neuramin (Bristol, UK) or Ascent Scien-

tific (Cambridge, UK).
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5.3.3 Recordings

Intracellular records were made with glass electrodes filled with 4 M KAc (resistance

50–80 MΩ. Signals were amplified with an Axoclamp 2B amplifier (Molecular Devices,

Sunnyvale, CA, USA) operated in current-clamp mode. Intracellular records from neu-

rons with over-shooting action potentials, an input resistance larger than 20 M and a

time constant longer than 10 ms were retained. Extracellular records were made with

arrays of eight to 12 nichrome electrodes (diameter 50 µm) positioned to contact slices

from above (Bazelot et al., 2010). In some experiments, linear arrays with a separation

of ∼100 µm between electrodes were placed along the CA3 pyramidal cell somatoden-

dritic axis, orthogonal to the stratum pyramidale, In other experiments, curved arrays

of separation ∼200 µm between electrodes were used to record from sites along the CA3

stratum pyramidale. Signals were amplified and filtered (pass-band 0.1 Hz to 20 kHz)

with a 16 channel amplifier (Dr F. Dubois; Dipsi, Châtillon, France). Intracellular and

extracellular voltage signals were digitized using a 12 bit, 16 channel analog-to-digital con-

verter (Digidata 1200A; Molecular Devices) and visualized on a PC (Axoscope; Molecular

Devices).

5.3.4 Signal analysis

Intracellular and multiple (8–12) extracellular records were analysed with

laboratory-written routines (Matlab, MathWorks Inc., Natick, MA, USA; Python,

https://www.python.org). The amplitude of SPWs and unitary inhibitory synaptic

fields (fIPSPs) was measured at their peak on any recording site. Extracellular spikes

were detected from signals filtered above 600 Hz using a threshold of 5∗ the SD of

baseline fluctuations. Field IPSPs (fIPSPs) were detected from low pass-filtered (80 Hz)

signals as single positive-going waves of amplitude exceeding 5 SDs. SPWs were detected

(Fig. 5.1) from low pass-filtered (80 Hz) signals obtained from eight sites of the CA3

stratum pyramidale. An amplitude threshold was adjusted to detect events similar to

user-identified SPWs defined as fields generated at three or more sites, with at least

three waves (Fig. 5.1 A). Wave components of SPWs (Fig. 5.1B) were detected from

zero-crossings of the second derivative of voltage in low-pass filtered records (80 Hz).

Spikes associated with SPWs (Fig. 5.1B) were detected from high-pass filtered traces

(600 Hz). The start of an SPW was defined as the shortest latency spikes and/or

waves across all recording sites in the stratum pyramidale (Fig. 5.1C). Sequential wave

components of SPWs were defined from their start and peak, as well as the timing of

firing, in comparisons of records from all sites in the CA3 stratum pyramidale. An

index of the spatial coherence of SPWs, their similarity at different recording sites, was
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Figure 5.1: Detection and measurement of SPWs. A, SPWs (red triangles) were
recorded extracellularly from the CA3 stratum pyramidale with eight electrodes, E1–E8
separated by ∼200 µm in a curved array. SPWs were defined as events recorded from
at least three electrodes, comprising three or more waves, and exceeding a user-defined
amplitude threshold. B, multi-unit and wave components of SPW fields. Upper trace,
SPW field (band pass filtered, 1–80 Hz); lower trace, unit activity (high-pass filtered,
600 Hz). Blue triangles indicate the start of six detected waves and red vertical lines
indicate 10 detected spikes. C, SPW recorded by eight extracellular electrodes (E1–E8)
from the CA3 stratum pyramidale. The onset of the SPW was detected on electrodes
E1–E3 (red dotted line). Seven waves were detected (blue dotted lines). The first, fifth
and seventh waves were recorded by some (but not all) electrodes. An index of spatial
coherence was used to define the spatial variability of SPWs: (summed number of waves
detected from all sites)/(the number of recording sites ∗ number of waves). The index
has a value of 1 for an SPW where each wave is detected at each site. For this event, it
was 0.77 = (3 + 8 + 8 + 8 + 3 + 8 + 5)/(8 ∗ 7).
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derived as: (summed number of waves detected from all sites)/(the number of recording

sites ∗ number of waves). Spontaneously occurring and induced fIPSPs and associated

spikes were sorted by unsupervised clustering of extracellular signals (n = 8) recorded

from the stratum pyramidale. Events with overlaps of spikes or fIPSPs were excluded.

Traces were measured at multiple time points chosen to provide a good discrimination

of extracellular spikes and fIPSPs. The time points, with respect to the peak of the

largest extracellular spike, were typically at -1.0, -0.5, -0.1, 0 (spike peak), 0.1 and

2.0 ms. Subtracting values for each trace from the value at -1.0 ms gave five parameters

per trace and with eight channels a string of 40 numbers. Strings were analysed using

k-mean clustering procedures as described previously (Bazelot et al., 2010). Reliability

of the clustering was confirmed by visual matching of the form of spikes and fIPSPs at

all recording sites on sets of eight traces aligned to the peak of the largest extracellular

spike. Current source densities were estimated from eight to 12 extracellular records

made along the CA3 pyramidal cell somatodendritic axis as described previously (Bazelot

et al., 2010) using the approximation of Nicholson and Freeman (1975). Initiated and

spontaneous SPWs were selected from all events detected in records with a duration of

10–45 min. SPWs occurring with latencies < 5 ms after a pyramidal cell action potential

induced by current injection were classed as evoked events. Other SPWs were considered

to occur spontaneously. The initiation of spontaneous and evoked SPWs was compared

for events aligned at their start, defined from both waves and unit spikes. Extracellular

firing at SPW initiation was compared for all spikes detected from all electrodes within

1 ms of the start of the SPW. A cumulative sum procedure was used to compare the

variability of spontaneous and single-cell initiated SPWs. A running sum was made

from each point, of root-mean-square differences between the voltage trajectory of each

event on each electrode, and the mean event from that electrode for all spontaneous or

initiated SPWs. Cumulative variability from all electrodes was then added to derive

summed values for spontaneous and initiated events. The significance of differences was

explored using a bootstrap test, which compared sums of the squared differences from

the means of either spontaneous or triggered events with values derived identically from

1000 randomized groups. The amplitude of fIPSPs and SPWs were compared using the

peak amplitude detected at any site.

5.3.5 Statistical analysis

Values are reported as the mean ± SD. Statistical analyses were conducted using Students

t test in SigmaStat, version 3.0 (Systat Software Inc., Chicago, IL, USA). P < 0.05 was

considered statistically significant.
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Figure 5.2: Single CA3 pyramidal cells trigger SPWs. A, traces are CA3 pyra-
midal cell membrane potential, injected current and local field potential (LFP). Blue
circles indicate spontaneously occurring SPWs at intervals of 1.5–3.0 s. Current pulses
(50 pA, duration 200 ms, interval 1000 ms) were injected to induce single pyramidal cell
action potentials almost half-way along the traces. Red circles indicate six of 10 action
potentials followed at short latency by a SPW. Overall, 172 of 626 spikes induced in this
pyramidal cell were followed by a SPW at a latency shorter than 5 ms. In total, 99 spikes
elicited no response, 128 spikes evoked a single fIPSP and 227 spikes elicited events in-
termediate between a single fIPSP and an SPW. B, three SPWs initiated by pyramidal
cell firing. Intracellular potential, field (red) and multi-unit firing (blue, 0.5–5 kHz band-
pass filtered). C, interval distribution between the intracellular action potential and the
start of detected SPWs (n = 10 experiments, 1145 SPWs, mean ± SD of probabilities).
D, normalized probability distribution of latencies from single pyramidal action poten-
tials to extracellular spikes associated with the next SPW (mean ± SD of probabilities,
n = 1726 action potentials from 10 pyramidal cells). E–G, SPWs, fIPSPs and unit firing.
E, overlay of 20 SPWs (blue) initiated by single pyramidal cell action potentials (upper
trace) and preceeded by an extracellular spike (yellow arrow). F, overlay of 20 fIPSPs
(red), initiated by single pyramidal cell spikes (upper trace) and preceeded by an extra-
cellular spike (yellow arrow). Traces of (E) and (F) triggered on the extracellular spike.
G, plot of width against amplitude for spikes preceding fIPSPs (red) and SPWs (blue).
The inset shows overlays of extracellular spikes preceeding SPWs (n = 20, blue) and
fIPSPs (n = 20, red).
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5.4 Results

5.4.1 Single pyramidal cells initiate SPWs and field IPSPs

We observed action potentials in some CA3 pyramidal cells affected the timing of SPWs

(Fig. 5.2). Pyramidal cells were made to fire single action potentials by current injection

at intervals of 1–5 s. In 10 of 30 CA3b–c pyramidal cells tested, SPWs followed action

potentials with latencies of ≤5 ms (Fig. 2A–C) and a probability of 0.07–0.76 (from

250 or more trials). The probability of SPW occurrence by chance was estimated to

be in the range 0.002–0.012, as a result of dividing the latency of 5 ms by the mean

interval between SPWs for each slice (de la Prida et al., 2006). The mean delay from

the pyramidal cell spike to the first wave of the SPW was 2.7 ± 0.5 ms (20% of peak;

n = 10) (Fig. 5.2B and C). Initiated SPWs were accompanied by an increase in multi-

unit activity. The duration and pattern of this firing is shown in Fig. 5.2D, which plots

all the extracellular spikes from SPWs initiated by single pyramidal cells (n = 10 cells;

38–252 SPWs per cell). A delay of 2–3 ms is similar to that between pyramidal cell firing

and discharge of a post-synaptic interneurone (Miles, 1990; Csicsvari et al., 1998). Field

IPSPs are an extracellular sign of the activation of all the inhibitory synapses established

by a single interneurone (Glickfeld et al., 2009; Bazelot et al., 2010). We found the same

pyramidal cells induced either SPWs (Fig. 5.2E) or fIPSPs (Fig. 5.2F) with similar

latency. Both fIPSPs and SPWs could be preceded by an extracellular action potential

typically of short duration (0.3–0.6 ms; n = 10) as associated with interneurone firing

(Henze et al., 2000). The probability of inducing a fIPSP was 0.08–0.42 (n = 10 cells;

250 or more trials). The observation that a single pyramidal cell could initiate either a

fIPSP or a SPW suggested that the same circuits might be involved. Similar latencies

(Fig. 5.2E and F) and spike shapes (Fig. 5.2G) suggest that the same extracellular unit

may have fired when a single pyramidal cell initiated a fIPSP or a SPW.

5.4.2 fIPSPs from perisomatic interneurones are repeated in

SPW fields

We therefore examined the role of interneurones and inhibitory synaptic circuits in SPW

generation. Most recorded pyramidal cells were inhibited both during spontaneous SPWs

and those that they initiated (24 of 30 neurons) (Figs 5.2B and 5.3A). Three were depolar-

ized and three others received mixed excitatory–inhibitory synaptic events (not shown).

Inhibitory events occurring during a SPW were correlated in time and in amplitude

with fields recorded from the stratum pyramidale. By contrast, all (n = 4) fast-spiking

interneurones recorded close to the stratum pyramidale received depolarizing events cor-
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Figure 5.3: Synaptic events corresponding to SPWs and fIPSPs. Correlates of
SPWs in pyramidal cells (red) (A) and in interneurones (blue) (B) showing the aver-
aged local field and intracellular membrane potential with overlays of 20 traces (grey).
C, overlaid field and pyramidal cell membrane potentials for a fIPSP and for SPWs of
up to four waves; same records as in (A). D, field potentials (average of 30) induced by
single and multiple action potentials in an interneurone. E, peak SPW field amplitude
plotted against membrane potential changes in interneurones (blue, n = 4, r2 = 0.22)
and pyramidal cells (red, n = 16, r2 = 0.96). F, hyperpolarizing change in pyramidal
cell membrane potential (n = 16) plotted against the amplitude of fields associated with
events from single fIPSPs (blue) to eight to 10 wave SPWs (red). G, spatial coherence
for fIPSPs (blue) through to eight to 10 wave SPWs (red) plotted against field potential
amplitude (all events from 10 slices).

5.4. Results 121



related with successive waves of SPWs (Fig. 5.3B). There was a continuum between sin-

gle inhibitory events and multicomponent SPWs in field records and intracellular traces

from pyramidal cells. Each wave of a SPW field was similar in form to a fIPSP of time

to peak 2–5 ms (Glickfeld et al., 2009; Bazelot et al., 2010). Typically, three to 10 waves

were repeated at intervals of 4–10 ms. Figure 5.3C shows a superimposition of field and

pyramidal cell membrane potential records for an isolated fIPSP and SPWs of up to

four waves. Figure 5.3D shows that, although one interneurone action potential evoked a

fIPSP, repeated firing elicited field events similar to those at the start of a SPW. Relation-

ships between peak field amplitude and the amplitude of depolarizations in interneurones

(n = 4) or hyperpolarizations in pyramidal cells (n = 8) are summarized in Fig. 5.3E

(n = 300 − 800 events at resting potential). Peak SPW field amplitude and membrane

hyperpolarizations in pyramidal cells increased together with the number of waves in a

SPW (Fig. 5.3F). Figure 5.3G shows how the spatial coherence of SPWs (see Methods)

recorded from multiple electrodes also co-varied with field amplitude and the number of

waves. These data suggest that a continuum exists between fIPSPs consisting of a single

wave and SPWs of up to eight to 10 waves. We next attempted to compare the identity

of inhibitory synapses contributing to fIPSPs and to SPWs using current source density

analysis. Fields were recorded with multiple electrodes (n = 12) from sites along the

somatodendritic axis of CA3 pyramidal cells (n = 5 slices).

Comparisons of the spatial profiles of fIPSPs (Fig. 5.4A) and an intermediate wave

of SPWs (Fig. 5.4B) revealed a current source in the stratum pyramidale. These data

suggest that pyramidal cells initiating SPWs also excite interneurones (Csicsvari et al.,

1998). Repeated firing in the same or different interneurones is associated with succeeding

waves of the SPW field. Confirmation that interneurones are involved in SPW generation

was obtained by showing that SPWs were suppressed by the GABA A receptor antagonist

picrotoxin (20 µM ; n = 5, data not shown). The opiate DAMGO, which hyperpolarizes

and reduces transmitter release from perisomatic interneurones (Svoboda et al., 1999;

Gulyás et al., 2010), also suppressed SPWs (20 µM , n = 4) (Fig. 5.4 C and D). Together

with the current profile data (Fig. 5.4 A and B), these data suggest that interneurons

forming perisomatic synapses contribute to SPW fields. Pyramidal cell initiation of SPWs

involves the excitation of one or several perisomatic interneurones.

5.4.3 Excitation of interneurons by single pyramidal cells

We estimated the number and spatial distribution of interneurones discharged by sin-

gle pyramidal cells by making multiple extracellular records of fIPSPs from sites along

the CA3 stratum pyramidale with eight electrodes separated by ∼200 µm (Fig. 5.5). In-

hibitory fields were typically recorded from three to six of these electrodes (Fig. 5.5 A–D),
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Figure 5.4: Evidence for activation of perisomatic inhibitory synapses during
SPWs Comparison of CSD profiles for a fIPSP (A) and an intermediate wave of a SPW
(B) recorded with 12 electrodes (E1–E12, separation ∼100 µm) placed along the CA3
pyramidal cell somatodendritic axis (inset). A current source (red) was apparent near
the stratum pyramidale for both fIPSPs (n = 200) and SPWs (n = 200). C and D,
DAMGO (20 µM) suppressed both SPWs and fIPSPs. Traces are the LFP (upper) and
fIPSP frequency (red, lower). D, field and pyramidal cell potentials during DAMGO
application as indicated by red arrows (1–3).
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Figure 5.5: Single pyramidal cells induce firing in multiple interneurones. A to
D, single action potentials of the same CA3 pyramidal cell initiated four spatially distinct
combinations of an extracellular spike followed by a field IPSP. Overlays of six traces for
pyramidal cell potential and extracellular potentials at eight sites in the stratum pyra-
midale (inset, E1–E8, electrode separation 200 µm). All sets of traces are aligned on the
largest extracellular spike. Spikes were detected at three to six sites and fIPSPs were
recorded by three to seven electrodes. In total, 436 action potentials of this pyrami-
dal cell triggered 90 fIPSPs, 130 events intermediate between fIPSPs and SPWs, and
178 SPWs, and 38 spikes elicited no response. A, the largest spike amplitude was ∼55 V
on E3 (13 of 90 initiated fIPSPs). B, the largest spike was ∼25 V on E4 (18 of 90 fIPSPs).
C, the largest spike was ∼40 µV on E6 (43 of 90 fIPSPs). D, the largest spike amplitude
was ∼55 µV on E8, (16 of 90 fIPSPs). E, distance between the initiating pyramidal cell
and the site of the maximal extracellular spike (n = 31 spikes of amplitude > 20 µV;
duration < 0.6 ms, initiated by 10 pyramidal cells). F, enlarged extracellular spikes
from (A), detected over distances of 4–800 µm, suggest that interneurone axonal action
potentials may propagate at ∼1 mm ms−1 (blue dotted lines aligned to spike peaks).
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which is consistent with the dimensions of axonal arbors of perisomatically-terminating

inhibitory cells in this region (Gulyás et al., 2010). fIPSPs were often preceded, at two

to four recording sites, by a short-duration extracellular spike (Figs 5.2 E and F and

5.5A-D). These two features, a local spike, presumably generated by an interneurone,

and a more widespread fIPSP of distinct amplitude distribution across different sites,

could define multiple, spatially different inhibitory field motifs. Pyramidal cells that ini-

tiated SPWs also activated multiple distinct fIPSP motifs. Overlays of traces selected

after clustering and template matching show (Fig. 5.5A-D) that a single pyramidal cell

initiated distinct fIPSPs with maximal amplitude at different recording sites preceded by

a short-duration extracellular spike. Nine of 10 single pyramidal cells that initiated SPWs

(Fig. 5.2) initiated at least two (2–6) spatially distinct fIPSP motifs. The other initi-

ating cell evoked fIPSPs, although no extracellular spike was reliably detected. Plotting

distances between stimulated pyramidal cells (n = 10) and all detected spikes (31 spikes

of amplitude larger than 20 µV) revealed a distribution clustered around the initiating

neurone (Fig. 5.5E). Extracellular spikes preceding fIPSPs were typically recorded on

several electrodes (Fig. 5.5F). This is unexpected because the amplitude of extracellular

spikes generated by pyramidal cells decays to undetectable levels at distances of ∼100 µm

(Cohen and Miles, 2000; Henze et al., 2000). The extracellular spike shown in Fig. 5.5F,

propagated at ∼1 mm ms−1 , which is similar to the speed of action potential conduction

in interneurone axons (Hu and Jonas, 2014).

5.4.4 Comparison of spontaneous SPWs and SPWs initiated by

single cells

If pyramidal cells tend to discharge nearby interneurones, then evoked SPWs might also

be initiated at sites clustered around a stimulated pyramidal cell. We examined this by

comparing initiation sites for initiated and spontaneously occurring SPW field potentials

in the stratum pyramidale. The initial wave of initiated SPW fields always began close

to the initiating cell (Fig. 5.6A and C). By contrast, spontaneous SPWs were typically

initiated at multiple sites in CA3 (Fig. 5.6B and C). Thus, although SPWs appear to be

initiated via the firing of interneurones near the stimulated pyramidal cell, spontaneous

SPWs may depend on similar processes at multiple, distinct sites. We compared several

characteristics of spontaneous SPWs and those initiated by single pyramidal cells. The

duration of SPWs was measured as the delay between the start of the first and the

last detected fIPSP. For initiated events, the mean duration was 23.8 ± 5.3 ms and, for

spontaneous events, it was 21.6 ± 4.0 ms (paired t test, P = 0.15, n = 1233 initiated

and 1233 spontaneous events from 10 different slices). The mean number of waves or
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Figure 5.6: Differences between initiated and spontaneous SPW fields. The
site of initiation for evoked SPWs (red triangles) (A) varied less than that of sponta-
neous SPWs (blue triangles) (B). Overlay (grey) and averages of 100 initiated (red) and
100 spontaneous SPWs recorded over the same period from electrodes E1–E8 in the CA3
stratum pyramidale. SPWs were aligned at their initiation site defined from spikes and
field. The stimulated pyramidal cell was situated between E6 and E7. C, the spatial
distribution of extracellular unit activity at the start of initiated SPWs (red) was more
restricted than that preceding spontaneous events (blue). Data from 10 slices, with dis-
tance 0 µm corresponding to the extracellular electrode closest to the initiating cell.
D, cumulative variability of SPW fields was less for initiated than spontaneous events
(P = 0.016, bootstrap). Above: overlays of 50 evoked SPWs (grey, mean shown in red)
and 50 spontaneous SPWs (grey, mean in blue). E, time course of cumulative variability
for initiated (red, n = 10 slices) and spontaneous SPWs (blue; n = 10), with mean ± SE
(bold lines). A lower variability at initiation was maintained through SPW time course.
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fIPSPs was counted across eight recording sites, with events simultaneous at multiple

sites counted as one event. There were 6.7 ± 1.4 waves for initiated events and 6.3 ±
1.2 waves for spontaneous events (paired t test, P = 0.29, n = 2466). The mean interval

between fIPSPs, from all electrodes, was 6.7 ± 1.4 for initiated events and 7.1 ± 1.0

for spontaneous events (paired t test, P = 0.17, n = 2466). On the basis of these

criteria, initiated events did not differ from spontaneously occurring SPWs. Finally, we

investigated whether later phases of initiated SPW fields followed a more stereotyped

time course than spontaneous SPW fields (Fig. 5.6D). As an index of field variability,

we used a cumulative sum of root-mean-square differences between each field potential

and the mean field from each electrode (see Methods). Identical numbers of initiated

and spontaneous SPWs from the same time period for each recording were analysed

(n = 10). This index of cumulative field variability was always lower near the start of

initiated SPWs, as expected, because the initiation site tended to be more stereotyped.

Figure 5.6D and E shows that the lower variability for initiated SPWs was maintained

throughout their time course. If SPW fields in the stratum pyramidale largely reflect

fIPSPs, then the set of interneurones firing during evoked SPWs may be more stereotyped

than those active during spontaneous SPWs.

5.4.5 Patterns of SPW spread and the activity of identified in-

terneurons

We attempted to identify interneurones that fired during SPWs from the involvement

of distinct spike and fIPSP motifs in SPW fields. We searched for spatially distinct

events involving large extracellular spikes (> 20 µV) as shown in Fig. 5.5. In seven of

10 records, we could distinguish (1) a motif triggered by a pyramidal cell that initiated

SPWs and (2) a second inhibitory motif not evoked by that pyramidal cell. Figure 5.7A

shows an example where the initiated motif consisted of a maximal spike on electrode E3

and a fIPSP on electrodes E1–E6. By contrast, the inhibitory motif shown in Fig. 5.5B,

consisting of a maximal spike on electrode E6 and a fIPSP on electrodes E3–E8, was

not initiated by the recorded pyramidal cell. Both extracellular units (Fig. 5.7A and C)

appeared to participate in initiated SPWs (Fig. 5.7C–E). Isolated motifs and those

embedded in SPWs were compared on the basis of spike amplitude and shape, as well

as on the amplitude and form of fIPSPs recorded from all electrodes. In this way, the

initiated motif of Fig. 5.7A appeared to be involved in 81 of 118 (69%) and the non-

initiated fIPSP motif of Fig. 5.7B in 37 of 118 (31%) of triggered SPWs. FIPSP motifs

triggered by initiating pyramidal cells were detected in SPWs with probabilities of 38–

82% (n = 7). Identified fIPSP motifs that were not elicited by pyramidal cell firing were
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Figure 5.7: Field inhibitory motifs during SPWs. A, pyramidal cell spikes induce
a presumed interneurone spike (red, maximum on electrode E3) and associated fIPSP.
In total, 377 pyramidal cell action potentials initiated 130 single fIPSPs and 118 SPWs.
Traces aligned on the extracellular spike. B, a spatially distinct interneurone spike (blue,
maximum on E6) and fIPSP was never initiated by pyramidal cell firing. A and B, pyra-
midal cell and eight extracellular records from the stratum pyramidale. C, spike and
fIPSP motifs were evident during SPWs initiated by the stimulated pyramidal cell. One
interneurone spike (red, E3; A) occurs at ∼2 ms and the other (blue, E6; B) at ∼10 ms
after pyramidal cell firing in this example. Another putative interneurone spike of am-
plitude > 20 µV (black, maximum on E4) occurs at a latency of ∼5 ms. D, amplitude
plotted against width of spikes initiated by the pyramidal cell and recorded by electrode
E3 before fIPSPs (red) or SPWs (black). Examples are overlain in the inset (fIPSPs,
n = 20, red; SPWs, n = 20, black). E, amplitude plotted against width for spikes not
directly initiated by the pyramidal cell and recorded on electrode E6 before fIPSPs (blue)
or SPWs (black). Overlaid examples in the insets (fIPSPs, n = 20, blue; SPWs, n = 20,
black).
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detected with probability of 16–62% (n = 7). These data suggest that, as SPWs spread,

previously silent interneurons were recruited at longer latencies than directly excited

interneurones. The occurrence and the timing of firing in identified interneurones during

SPWs initiated by the same pyramidal cell varied between trials (Fig. 5.6).

5.5 Discussion

Single identified neurones of invertebrates and fish can initiate motor behaviours (Ikeda

and Wiersma, 1964; Getting and Dekin, 1985; Eaton et al., 1977). Single mammalian

pyramidal cells can affect movement (Brecht et al., 2004), sensory perception (Houweling

and Brecht, 2007), volition (Fried et al., 2011), entrain or initiate population activities

(Miles and Wong, 1983; de la Prida et al., 2006; Bonifazi et al., 2009), and alter EEG

activities between patterns associated with different brain states (Cheng-yu et al., 2009).

These effects depend on the identity and numbers of neurones driven to discharge by

firing in the single initiating cell (Kwan and Dan, 2012). Data are reported in the present

study showing that ∼30% of CA3 pyramidal cells triggered SPW-like events in vitro. We

further show that these pyramidal cells evoked firing at similar latencies in several (2–

6) perisomatic interneurones. Comparison of inhibitory fields and SPW fields suggested

that, during a SPW, different interneurones fire repeatedly at intervals of 3–8 ms.

5.5.1 Advantages of an in vitro study

The work in the present study was facilitated by employing an in vitro approach. Ac-

curate placement of linear electrode arrays orthogonal to the CA3 stratum pyramidale

permitted field profile analyses of current profiles associated with SPWs and fIPSPs.

Curved arrays placed along the stratum pyramidale allowed us to discriminate between

the firing of different interneurones and the fIPSPs that they generated, revealing distinct

fIPSP motifs. SPW-like fields in vitro have a form and duration similar to those recorded

in the intact animal. Equally, single pyramidal cells discharge post-synaptic interneu-

rones at comparable latencies and probabilities in vivo (Csicsvari et al., 1998), as well

as in slices kept in an interface chamber (Miles, 1990). Inhibitory field motifs consisting

of an interneurone spike followed mono-synaptically by a spatially extended fIPSP have

not yet been detected in vivo, possibly as a result of higher levels of background field

fluctuations. Lower levels of fluctuation in fields in slices may have facilitated attempts to

follow the firing of specific interneurones during SPWs. We used a clustering approach to

sort inhibitory motifs identified by measurements of spike and inhibitory field waveforms,

followed by visual comparison of aligned traces. To validate this approach, multiple field
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records from stratum pyramidale could be compared with responses to single action po-

tentials of intracellularly recorded, anatomically identified interneurons (Bazelot et al.,

2010). This would provide data on the variability and spatial distribution of extracel-

lular spikes and inhibitory fields initiated by an identified interneuron and also permit

comparison with other extracellularly recorded motifs. Population activities involving

interneurones may be detected more easily when slices are maintained at a liquid–gas in-

terface or when precautions are taken to enhance oxygenation of submerged slices (Hajos

et al., 2009). The amplitude of field IPSPs recorded from slices in interface chambers is

several times larger than similar events recorded from submerged slices (Glickfeld et al.,

2009; Bazelot et al., 2010). These factors may have contributed to the data reported by

Ellender et al. (Ellender et al., 2010) suggesting that single pyramidal cell firing does not

influence SPWs in submerged slices.

5.5.2 Initiating pyramidal cells excite perisomatic interneu-

rones

Evidence suggesting that SPW initiation involves pyramidal cell excitation of interneu-

rones (Figs 5.5 and 5.7) is based on the latency of initiated events and signs of interneurone

firing at the start of SPWs (Hájos et al., 2013; Sasaki et al., 2014; Schlingloff et al., 2014).

The intervals between pyramidal cell firing and SPW initiation are comparable to the de-

lays between pyramidal cell firing and spikes discharged by a post-synaptic interneurone.

By contrast, transmission of firing between mono-synaptically coupled pyramidal cells

requires multiple pre-synaptic action potentials and occurs at latencies of 10–15 ms or

more (Miles and Wong, 1987; Kwan and Dan, 2012; Ikegaya et al., 2013). Extracellular

spikes detected at SPW initiation possessed characteristics of interneurone spikes (Henze

et al., 2000). When SPWs were not triggered, these spikes could be followed by unitary

extracellular inhibitory fields (Glickfeld et al., 2009; Bazelot et al., 2010). Recorded from

the stratum pyramidale, SPW fields apparently correspond to repeated, summed fIPSPs

at intervals of 3–8 ms, as first suggested by Buzsaki et al.(Buzsaki et al., 1992). Our

comparison of current sources for fIPSPs and SPWs, as well as the suppression of SPWs

by the opiate DAMGO, suggests that the interneurones involved synapse with pyramidal

cells at perisynaptic sites as inferred from studies performed in vitro (Hájos et al., 2013;

Aivar et al., 2014) and in vivo (Klausberger et al., 2003).

5.5.3 Continuation, spread and cellular components of SPWs

Although our data suggest that interneurone firing, which may be induced by pyrami-

dal cells, should precede SPWs, they do not clarify the mechanisms ensuring repeated
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firing of the same or different interneurones as SPWs continue. Records from interneu-

rones (Fig. 5.3B) show repeated, fast depolarizations aligned with each wave of a SPW.

Possibly, these events reflect excitatory synaptic inputs from pyramidal cells. However,

few pyramidal cells fired during SPW-like events and the second EPSP in interneurones

appears to occur too soon (at 5–10 ms after SPW initiation) for it to depend on synap-

tically induced firing in pyramidal cells recruited by the initiating cell. Figure 5.5 shows

that single initiating pyramidal cells can induce firing in multiple interneurones. Firing is

probabilistic. Not all innervated interneurones fire in response to the same pyramidal cell

action potential, and we found no evidence for a delayed firing by different interneurones

that could sculpt successive waves of a SPW (Sasaki et al., 2014). Possibly, interactions

between interneurones (Fukuda and Kosaka, 2000) ensure that SPWs continue after their

initiation. If so, such interactions should be able to generate the repeated depolariza-

tions recorded from interneurones during a SPW (Fig. 5.3B). Alternatively repeated

events emerging from supralinear dendritic electrogenesis may ensure that SPWs con-

tinue (Memmesheimer, 2010). Records with electrodes placed along the CA3 stratum

pyramidale demonstrate how SPW-like events spread in a slice. SPWs are known to

propagate from CA3 into the CA1 region (Csicsvari et al., 2000; Maier et al., 2003) and

macroscopic array records show that some SPWs are spatially restricted in the intact

animal, whereas others spread longitudinally throughout the CA3 region (Patel et al.,

2013). At the smaller scale of a transverse slice, our data suggest that previously silent,

distant interneurones fire as later waves of a SPW field spread to new sites. Because

these interneurones are not excited by the initiating pyramidal cell (Fig. 5.7),they must

be recruited in another way. Their activity generates a spatially distinct fIPSP and so

underlies, in part, propagation of the SWP field. Field potentials of SPWs initiated by

single pyramidal cells are more stereotyped than those associated with spontaneous SPWs

(Fig. 5.6A and D). However, even if only some participating neurones were recognized,

our data show variation with respect to the occurrence and identity of directly triggered

interneurone firing and those of interneurones indirectly recruited during the later stages

of SPWs (Figs 5.2, 5.5 and 5.7). Presumably, more complex mechanisms control the ap-

parently precise time sequences of pyramidal cell firing replay during SPWs in the intact

animal (Lee and Wilson, 2002; Diba and Buzsáki, 2007; Stark et al., 2014). In summary,

the results of the present study reveal a continuum between single fIPSPs and SPWs.

Both events were triggered by some (∼30%) recorded pyramidal cells. Latencies were

consistent with those for the transmission of firing at synapses that excite interneurones.

Multiple extracellular records allow us to separate spatially distinct spikes of interneu-

rones and the resulting inhibitory fields. In this way, pyramidal cells that initiate SPWs

were shown to excite several interneurones. The identification of different interneurones
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and the fields that they produced revealed (1) fluctuations in the composition of SPWs

initiated by the same pyramidal cell and (2) the recruitment of previously silent inhibitory

cells as SPWs spread through the CA3 region.
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CHAPTER 6

Conclusions

The action potential (AP) is a signal generated in the nerve cell used for the transmission

of messages. This short (compared to other changes in potential in the cell) but relatively

large rise in potential is easy to record intra– and extracellularly with the technologies

available at the present time. Multiple analytical and computational models efficiently

reproduce the general shape of the action potential (e.g. Hodgkin and Huxley (1952) and

Mainen and Sejnowski (1996)).

The present work aims to investigate the generation of the action potential, and its

impact on the extracellular field and on the local network. Our study reveals that the

action potential is a complex event whose intra– and extracellular characteristics depend

on the type, density and location of active ion channels. Furthermore, the location of the

axon initial segment has an impact on the extracellular field. Finally, we suggest that

single action potentials might play a significant role in the triggering of network activity.

The generation of action potentials depends on multiple variables such as density and

location of ion channels, as well as on the morphology of the cell; We explored some of

these factors. Most importantly, we contribute to the long-standing debate on the origin

of the ‘kink’ of the action potentials recorded in the soma of mammalian neurons and on

the initiation process of the action potential in those cells (Chapter 3). Furthermore, we

highlighted the importance of the exact location of the initiation site, which is affected

by the localisation of active ion channels, in the study of the shape of extracellular action

potential recordings (Chapter 4). Finally we have shown that single action potentials

of the pyramidal cells in the hippocampus can trigger network events that involve the

activity of many interneurons (Chapter 5).

In the following sections we will discuss how these findings relate to the broader

questions regarding the axon and action potential physiology, namely: Is each action
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potential a unique signature of the activity or rather an all-or-none event? What is the

role of the axon in neural coding?

6.1 Uniqueness of Action Potential

The action potential is a well described signal with a particular shape, defined mostly

by the activation of sodium and potassium channels. Surprisingly, even within one cell

type along different development stages, a neuron might display action potentials of var-

ious shapes and firing patterns; changes reflecting the development stage and properties

of ionic channels (Dufour et al., 2014). The location of active ion channels might also

have an impact on the action potential. In our study we show that the location of the

ion channels forming the axon initial segment plays a role in the action potential initi-

ation (Chapter 3) as well as in the amplitude and shape of action potentials recorded

extracellularly (Chapter 4). Even with the same active ion channel composition, neurons

of variable morphologies are found to produce different firing patterns (Mainen and Se-

jnowski, 1996). All of these underlying differences act on the action potential, each of

which is unique in its initiation, propagation and impact on the extracellular field.

Does it mean that each of the action potentials should be considered and studied sep-

arately and only in its own unique environment given by the cell structure and channel

distribution? Some studies argue that single action potentials are not very significant

in the context of the population activity and that only the total number of APs in the

population matters; This hypothesis is called rate coding (Softky and Koch, 1993). As

an argument for rate coding, London and colleagues proposed that the timing of single

action potentials responding to the signal received from its presynaptic connections is

offset by noise and so does not carry information in a busy in vivo environment (London

et al., 2010). However, even in in vitro preparations we noticed a high variability in the

shape of the network activity (Sharp-Wave ripple) triggered by action potentials of the

same pyramidal cell (Chapter 5). These responses were nevertheless more uniform than

spontaneous Sharp-Wave ripple activity. Furthermore, it was clear that the first cell trig-

gered by the action potential of the pyramidal cell was not always the same from one time

to the next. This could potentially depend on the excitable state of the pyramidal cell,

the current stage of its postsynaptic connections, or it could reflect the plasticity state

of the synapses; perhaps eventually leading to rather complex information being trans-

mitted by single action potential to other cells. Strikingly, some studies showed that the

information content of single action potentials is higher than simple binary information.

They suggest that not only is the action potential transmitted to post-synaptic targets,

but that the presynaptic membrane potential also influences AP amplitude (Clark and
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Hausser, 2006; Debanne et al., 2013). From an evolutionary perspective, what could be

the purpose for the brain to shape neurons with different types and densities of active ion

channels if they all eventually led to the same - initiation and propagation of the action

potential carrying binary information?

If a single action potential carries significant information, to which extent does its

timing matter? The hypothesis that brain information is encoded in the precise timing of

AP from individual neurons is termed temporal coding. Multiple studies have shown that

such temporal data may contain a significant amount of information about the stimuli

(Panzeri et al., 2001). This view treats the neurons as information channels (Bialek

et al., 1991). However, other researchers dismiss the idea on epistemological grounds and

suggest that the real question regards the causal role of a single AP on the neural activity.

From this point of view it only seems justifiable to consider a spike-timing based model

(Brette, 2015). The results of our experiments in hippocampal slices described above

appear to be consistent with this hypothesis.

In this study, we do not solve the ongoing debate between spike– and rate–based

approaches as neural coding question, but we do show that single action potentials are

unique in their initiation, which is also reflected extracellularly, and that they may be

significant enough to trigger events in the scale of the network.

6.2 Role of the axon in neuronal coding

With ever-advancing techniques it is now possible to measure the electric potential even

from structures as thin as the mammalian axon (Kole et al., 2007). However, even with

multiple available possibilities to studying AP, it is not always straightforward to answer

some of the fundamental questions regarding the axon’s role in coding. We know that the

axonal tree plays an important role in information transmission between the nerve cells

and that the type and distribution of ionic channels in the axon may lead to differences,

such as in the number of generated single action potentials or bursts, in the plasticity of

the synaptic connections or that it can cause axonal transmission delays.

Aspects as fundamental as the plasticity of the location and the length of the axon ini-

tial segment have been revealed only recently (Grubb and Burrone, 2010). We show that

location of the axon initial segment is significant for the ’kink’ in the soma (Chapter 3).

This sharpness has consequences in the energy efficiency of AP initiation and for neurons

to respond faster to changes in its inputs (Brette, 2013). Our work also highlights the dif-

ferences in the extracellular potentials which are influenced by the shift in the axon initial

segment (Chapter 4). However, besides the visible effects of the location of axon initial

segment within the axon, an answer to the crucial question of how this plasticity affects
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the message received by other cells remains elusive (although Grubb and Burrone (2010)

hypothesize that together with synaptic homeostatic scaling it could help the neuron to

stabilize its excitability and maximize its information processing capabilities).

In the present work we put major emphasis on the active ion channels expressed in the

axon initial segment. However, after its initiation, action potential propagates along the

axonal tree, which might vary in its morphology, number and distribution of synapses,

and whether or not it is myelinated. The location and purpose of each part of the axon

seems to be well designed to efficiently carry its function. For instance, the dynamics

of sodium and potassium channels in axons is optimized to provide maximum energy

efficiency (Alle et al., 2009). The axon may act on the signal by failing, delaying or

succeeding to propagate the action potential (Goldstein and Rall, 1974). Furthermore,

the shape of the action potential might be altered within the axon before it reaches the

synapses. Depending on the frequency of stimulation, action potentials might vary in

duration when they arrive at the hippocampal mossy fiber boutons, leading to a different

signal transmission to the postsynaptic cell (Geiger and Jonas, 2000).

Furthermore, the axon may also be involved in the synchronisation of neurons at a

precision unattainable by chemical synapse connections. This, for example might be the

case in the Sharp-Wave ripple complexes. In the Chapter 5 we show that Sharp-Wave

ripple rests on the activity of multiple of interneurons firing in tight synchrony, but it is not

understood how they manage to synchronize quickly enough to form such large network

events (Bazelot et al., 2016). Recurrent connections in the hippocampus are believed to

have some responsibility in the perpetration of Sharp-Waves (Chapter A), however they

could not fully explain the presence of this phenomenon. Multiple hypotheses propose

different solutions. For instance, gap junctions between the axons could potentially help

to quickly synchronize cells (Traub and Bibbig, 2000), although some studies argue that

Sharp-Waves persist (although with reduced strength) even when the genes responsible

for the formation of gap junctions are silenced (Pais et al., 2011).

On another note, gap junctions between two axons are an interesting alternative

to chemical synapses for the generation of different events. Draguhn and colleagues

show that gap junctions might be necessary for fast synchronisations in the hippocampus

(Draguhn et al., 1998), and in the fly, gap junctions between visual interneurons are

proposed to be responsible for encoding quickly-varying visual information (Cuntz et al.,

2007).

In summary, in spite of the fact that the Hodgkin-Huxley model is over 60 years

old, and that action potentials and axons are some of the most investigated topics in

biophysics, there are still many unexplored aspects of their physiology. We hope that this

work advances our knowledge about the action potential at network, cell and ionic levels.
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APPENDIX A

Recurrent synapses and circuits in the CA3 region of the

hippocampus: an associative network

This chapter is the revision written together by Caroline Le Duigou, Jean Simon-

net, Desdemona Fricker, Richard Miles and Maria Teleńczuk. It has been published in

Frontiers in Cellular Neuroscience in 2014 (Le Duigou et al., 2014).

A.1 Abstract

In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and

interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to

form an associative network. These connections were first drawn by Cajal and Lorente de

No. Their physiological properties were explored to understand epileptiform discharges

generated in the region. Synapses between pairs of pyramidal cells involve one or few

release sites and are weaker than connections made by mossy fibers on CA3 pyramidal

cells. Synapses with interneurons are rather effective, as needed to control unchecked

excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to

the genesis of sharp waves in the CA3 region and to population oscillations at theta and

gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a

lower connectivity spread over a larger area than in primary sensory cortices. This sparse,

but wide-ranging connectivity serves the functions of an associative network, including

acquisition of neuronal representations as activity in groups of CA3 cells and completion

involving the recall from partial cues of these ensemble firing patterns.
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A.2 Recurrent excitatory synapses between CA3

cells: emergence

Recurrent connections between CA3 cells in the hippocampus can be seen in early draw-

ings of Golgi stained neurons. Schaffer (1892) and Ramn y Cajal (1899) drew pyramidal

cell processes that ramify extensively in the CA3 region as well as projecting into CA1

(Schaffer, 1892; Ramón y Cajal, 1899). Later, but still before cellular physiology, Lorente

de N (1934) drew axonal terminals of a CA3 cell contacting mid-apical dendrites of a

nearby pyramidal cell and a basket cell ((Lorente de Nó, 1934), Figure A.1). So a ba-

sis for recurrent excitation existed before synaptic operations were fully accepted. The

absence of this detail did not impede speculation. Recurrent connections between cells

of the same region were linked to feedback in chains of connected neurons. Lorente de

No (1938) and later Hebb (1949) proposed they might generate reverberating neuronal

discharges as an immediate electrical memory (Lorente de Nó, 1934; Hebb, 1949).

Figure A.1: CA3 pyramidal cell axon and targets. A. Reconstruction of a CA3 pyra-
midal cell dendrites, in black, and partial reconstruction of the axon, in red. Adapted
from a cell filled by Ishizuka et al. ((Ishizuka et al., 1995), published as cell c12866 on
neuromorpho.org). The CA3, CA1, and dentate gyrus (DG) regions are indicated as are
the layers lacunosum-moleculare (s. l-m.), radiatum (s. r.), lucidum (s.l.), pyramidale
(s.p.), and oriens (s.o.). B. Drawing of putative axo-dendritic connexions between pyra-
midal cells (Py. 1 and 2) and interneurons with somata in different layers (B.c., Str.
o.c., Str. r.c., Str. l.c., Str. m.c.). The axon of Py. 2 may contact the dendrites of Py.
1, in red, and the interneuron of stratum oriens, in blue. The axon of Py. 1 is drawn
contacting the basket cell, in blue (drawing adapted from Lorente de Nó (1934).
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Intracellular electrophysiology began for the hippocampus with the work of Spencer

and Kandel. Initial results dampened the excitation somewhat. They showed that stim-

ulating CA3 cell axons induced dominant inhibitory actions mediated by pyramidal cell

excitation of interneurons (Spencer and Kandel, 1961). However recurrent actions were

soon linked to reverberation and epileptic synchrony (Kandel and Spencer, 1961). This

link was later strengthened by work on epileptiform synchrony induced by penicillin an

early antagonist of inhibitory synaptic actions (Lebovitz et al., 1971). Explicitly com-

bining computer simulations and in vitro physiology, Traub and Wong (1982) and Wong

and Traub (1983) showed how recurrent excitatory synapses might underly delayed all-

or-nothing population bursts induced by disinhibition (Traub and Wong, 1982; Wong and

Traub, 1983) . Physiological support for recurrent synaptic actions came from records of

synaptic interactions between CA3 pyramidal cells in slices (Miles and Wong, 1986). Re-

current synapses together with the modeling work could explain the unexpected finding

that stimulating a single cell could initiate interictal-like bursts of much larger neuronal

populations (Miles and Wong, 1983).

A.3 Axonal distributions of CA3 pyramidal cells

Axons of single CA3 pyramidal cells of the rat (Figure A.1) and guinea-pig have been

traced from neurons filled with biocytin or horseradish peroxidase (Ishizuka et al., 1990;

Sik et al., 1993; Li et al., 1994; Wittner et al., 2007; Wittner and Miles, 2007). Before pro-

jecting out of the region, axons ramify in stratum oriens and radiatum of CA3 contacting

apical and basilar dendrites of other pyramidal cells as well as interneurons. Typically

they divide into 5–10 collaterals projecting in different directions but rarely returning

towards their parent neuron. Longitudinal projections of single axons (Lorente de Nó,

1934) can extend for ˜70% of the dorso-ventral extent of rodent hippocampus (Sik et al.,

1993; Li et al., 1994). A significant proportion of synapses made by a CA3 pyramidal cell

may contact other CA3 cells. The Li et al. (1994) estimated 30–70%. Other connections

are made onto CA1 neurons, while there is also a strong commissural projection (Li et al.,

1994).

The total axonal length of well-filled CA3 pyramidal cell arbors is estimated as 150–300

mm in the rat with about 30% of the ramification within CA3 (Ishizuka et al., 1990; Li

et al., 1994). Terminals are present along all of this distance and a single pyramidal cell

is estimated to form 30,000 to 60,000 terminals. Terminals have been thought to target

pyramidal cells and interneurons with a frequency similar to the presence of these neuronal

types. Recent data suggest some interneuron subtypes may be selectively innervated

(Wittner et al., 2007). Intra-regional differences exist: CA3b pyramidal cells tend to
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innervate targets in stratum oriens and radiatum about equally, while CA3a pyramidal

cell axons target stratum oriens targets more than those in stratum radiatum (Wittner

and Miles, 2007).

A.4 CA3 pyramidal cell axon physiology

Axon collaterals of CA3 pyramidal cells are un-myelinated. They include Schaffer col-

laterals that project to CA1 as well as those that ramify within the CA3 region. Action

potentials are initiated at ˜30–40 µm from the soma, where sodium (Na) channel den-

sity reaches a peak according to physiology and immunostaining (Meeks and Mennerick,

2007). In regions beyond the action potential initiation site, recurrent axons of CA3

pyramidal cells conduct at velocities of 0.2–0.4 mm/ms (Soleng et al., 2003b; Meeks and

Mennerick, 2007).

The Na channels expressed by CA3 recurrent collaterals seem likely to be Nav1.2 and

Nav1.6 (Royeck et al., 2008; Debanne et al., 2011). These axons express multiple voltage-

gated potassium (K) channels including Kv1.1, Kv1.2, and Kv1.4 (Lorincz and Nusser,

2008), ID (Saviane et al., 2003), the M–channel (Kv7/KCNQ (Vervaeke et al., 2006)),

and the hyperpolarization activated h–current (Soleng et al., 2003a). This diversity of

channel expression provides multiple means to modulate action potential shape and so

control transmitter release (Bischofberger et al., 2006). Action potential modulation

by axonal K-channels may become a total suppression of transmission when an IA-like

K-current is fully activated (Debanne et al., 1997; Kopysova and Debanne, 1998).

A.5 CA3 pyramidal cell terminals: numbers, form,

contents, channels and release

Varicosities are formed at distances of 2–5 µm all along CA3 recurrent axons. They often

have an ovoid form of diameter ˜0.4 µm compared to an axonal diameter of ˜0.2 µm (Sik

et al., 1993; Li et al., 1994; Wittner and Miles, 2007)). Electron microscopy (EM; Figure

A.2) indicates they possess attributes of pre-synaptic boutons with active zones and

synaptic vesicles and they face densities at post-synaptic sites ((Schikorski and Stevens,

1997; Shepherd and Harris, 1998; Holderith et al., 2012)). While varicosities may contain

up to three to four active sites, typically they have just one. Synaptic vesicles in recurrent

terminals have diameters of 20–40 nm. A terminal may contain up to 800 vesicles with a

mean number of 150–270 vesicles.

A small proportion of vesicles are so close (˜5 nm) to pre-synaptic membrane that
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Figure A.2: Anatomy and Ca handling at recurrent synapses between CA3
pyramidal cells. A. Electron microscopy of a recurrent terminal, b2, apposed to a CA3
pyramidal cell dendritic spine, s2. B. Three-dimensional reconstruction of the contact.
The area of the active zone [arrows in (A)] was 0.10 µm2. C. Double immuno-staining
of SDS-digested freeze fracture replica of a recurrent synapse. The smaller gold particles
label Cav2.1 molecules (pre) and the larger gold particles recognize a pan-AMPA antibody
(post). D. Pre-synaptic Ca transients, measured as changes in fluorescent intensity, for
25 axon terminals of a CA3 pyramidal cell. E. Post-synaptic Ca transients, in response to
two pre-synaptic stimuli. Note the occurrence of failures in both post-synaptic responses
but their absence from pre-synaptic signals (adapted with permission from Holderith
et al. (2012)).

they are considered to be docked or available for release. The number of docked vesicles

is estimated at 1–15 per terminal (Schikorski and Stevens, 1997; Shepherd and Harris,

1998; Holderith et al., 2012). Vesicles in terminals of CA3 pyramidal cell axons express

the transporters, VGLUT1 and 2, and so presumably contain glutamate (Herzog et al.,

2006). EM studies on CA3 axon terminals have not revealed a distinct population of

large dense-core vesicles, which might contain peptides or other co-transmitters. About

half of recurrent terminals contain one mitochondrion (Shepherd and Harris, 1998) and

smooth endoplasmic reticulum is typically present: both organelles contribute to calcium

(Ca) homeostasis (Sheng and Cai, 2012).

Ca entry into presynaptic terminals triggers transmitter release. CA3 axonal termi-

nals express multiple Ca channel subtypes including Cav2.1, Cav2.2, Cav2.3 (Holderith
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et al., 2012), as do the mossy fiber terminals that also terminate on CA3 pyramidal cells

(Li et al., 2007). Freeze-fracture replica gold immuno-labeling (Figure A.2) suggests a

single terminal expresses several tens of Cav2.1 channels (Holderith et al., 2012). This is

more, but not many more, than estimates of the number of Ca–channels needed to trig-

ger release from hippocampal inhibitory terminals (Bucurenciu et al., 2010). Possibly, an

elevated Na channel density in terminals enhances Ca entry by boosting depolarization

due to axonal spikes (Engel and Jonas, 2005). Certainly, recurrent terminals express

various types of K channel which control transmitter release by limiting terminal depo-

larization. They may include the delayed rectifier type channels Kv1.1 and Kv1.2, the

fast-inactivating A–type channel Kv1.4 (Debanne et al., 1997; Kopysova and Debanne,

1998; Lorincz and Nusser, 2008; Palani et al., 2010) as well as K–channels sensitive to both

Ca and voltage (Saviane et al., 2003; Raffaelli et al., 2004) and the muscarine sensitive

M-channel Kv7/KCNQ (Vervaeke et al., 2006).

Ca changes induced in local recurrent terminals by pyramidal cell firing have been

resolved by imaging (Holderith et al., 2012; Sasaki et al., 2012). A single action potential

induces a Ca signal of rise time less than 1 ms that decays over several 10 s of ms

(Figure A.2). Ca entry occurs without failure even if it varies between trials at the same

terminal and Ca elevations at neighboring terminals are poorly correlated. For a given

terminal, the mean amplitude of Ca-signals is better correlated with the area of the active

zone than terminal volume (Holderith et al., 2012).

CA3 axon terminals express receptors for transmitters which modulate Ca entry or

later steps in release processes (FigureA.2). Receptors for the metabotropic glutamate

receptor, mGluR7, expressed at active zones facing interneurons but not principal cells

(Shigemoto et al., 1996) specifically control the excitation of inhibitory cells (Scanziani

et al., 1998). The kainate receptor GluK1, reduces release by effects on both Ca entry and

on G-protein mediated stages in transmitter release (Salmen et al., 2012). In contrast,

presynaptic NMDA receptors enhance Ca entry and facilitate release at some synapses

made by CA3 collaterals (McGuinness et al., 2010).

A.6 Pre- meets post: synapses made by CA3 pyra-

midal cells with other CA3 cells

When a single spike induces Ca entry into a CA3 axon terminal, one, or none, or several

vesicles of the excitatory transmitter glutamate are liberated. Release fails, when Ca

enters a terminal but no transmitter is liberated, as shown by imaging Ca-entry (Fig-

ure A.2) via post-synaptic glutamate receptors (Koester and Johnston, 2005; Holderith
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et al., 2012). Multi-vesicular release following a single action potential is most convinc-

ingly demonstrated when two distinct post-synaptic events can be resolved in time, as at

some inhibitory synapses in the cerebellum (Auger et al., 1998). Analysis of variations in

synaptic events over a range of liberation probabilities supports multi-vesicular liberation

(Conti and Lisman, 2003; Christie and Jahr, 2006).

Glutamate, released from a pre-synaptic terminal, binds to post-synaptic receptors.

The number of receptors per site has been estimated with physiological, imaging, and

anatomical techniques. Post-synaptic sites facing terminals of CA3 pyramidal cell axons

in young animals, all express NMDA (N-methyl-D-aspartate) receptors (Takumi et al.,

1999). Glutamate uncaging onto post-synaptic sites activates 3–10 NMDA receptors

(Nimchinsky et al., 2004). Semi-quantitative immunostaining studies and imaging agree

that about 30% of post-synaptic sites possess no AMPA ( α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid) receptors (Nusser et al., 1998; Takumi et al., 1999; Nimchinsky

et al., 2004). At synapses where AMPA receptors are expressed, about 10 of them (Fig-

ure A.2) are estimated to be activated after a single pre-synaptic spike in acute slices

(Nimchinsky et al., 2004), 40–150 in culture (Matsuzaki et al., 2001). AMPA receptors

are present at recurrent synapses with most types of interneuron (Nusser et al., 1998).

NMDA receptors are less frequently expressed at synapses with interneurons and may be

absent at contacts with fast-spiking, parvalbumin containing cells (Nyiri et al., 2003).

There are two other important differences between synapses made with interneurons

and with pyramidal cells. First, recurrent contacts tend to innervate pyramidal cell spines,

while those with most types of inhibitory cell innervate dendritic shafts (Gulyás et al.,

1993). Second, the AMPA receptor isoforms involved are different. AMPA receptor com-

plexes at synapses formed with interneurons do not include the GluR2 subunit (Bochet

et al., 1994; Geiger et al., 1995), resulting in faster kinetics (Miles, 1990), Ca-permeability,

and a block by endogenous intraneuronal polyamines (Isaac et al., 2007).

A.7 Pre- meets post in dual records

Double records from pre- and post-synaptic neurones at recurrent synapses between CA3

cells were first made to prove their existence directly. They remain the most persuasive

means to examine how one neuron influences another. They have permitted definition

of the number of synaptic contacts involved in a unitary connection and assessment of

variability and changes in synaptic efficacy (Debanne et al., 2008).

Records from pairs of CA3 pyramidal cells in acute slices (Figure A.3) suggest one

pyramidal cell excites 2–3% of possible pyramidal cell targets in a slice (Miles and Wong,

1986, 1987b). Odds are more favorable in organotypic slices. Connectivities are 30–60%
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(Debanne et al., 1995; Pavlidis and Madison, 1999). The number of release sites involved

in a connection may also be higher in organotypic cultures. One to three contacts have

been validated by EM for synapses between pyramidal cells and interneurons recorded

and filled with biocytin in slices. In contrast, light microscopy suggests 14–19 putative

contacts may be involved in connections between CA3 pyramidal cells in organotypic

culture (Pavlidis and Madison, 1999).

Figure A.3: Unitary effects of recurrent excitatory synapses. A. Average of EPSPs
initiated in a CA3 pyramidal cell by single action potentials in a pre-synaptic pyramidal
cell B. average of EPSPs elicited in a fast-spiking CA3 interneuron by action potentials
in a pyramidal cell [an unpublished data Miles and Wong (B) adapted from Miles (1990)].

The mean amplitude of synaptic potentials is about 1 mV at connections between

pyramidal cells in acute slices (Miles and Wong, 1986) and in culture (Debanne et al.,

1995). EPSPs induced in fast-spiking interneurons (Figure A.3) are larger and faster than

those initiated in pyramidal cells. Unitary synaptic current amplitude at connections

made in culture can vary in the range 10–200 pA with an average near 30 pA (Pavlidis

and Madison, 1999; Sasaki et al., 2012). In records from both acute slices and culture,

events initiated successively at the same connection vary in amplitude. Transmission can

fail, more often at connections with smaller averaged events. However pre-synaptic Ca

entry never fails, even though it varies between successive action potentials (Holderith

et al., 2012; Sasaki et al., 2012) and Ca signals are higher at terminals with a higher

release probability (Koester and Johnston, 2005).

Synaptic events initiated sequentially at the same site vary in amplitude. This vari-

ability may have both pre- and post-synaptic components (Silver et al., 2003; Biró et al.,

2005). Clear data on post-synaptic variability, is facilitated at connections with a single

identified release site. At such a synapse, the variability in size of post-synaptic events

was estimated at 20–50% (Gulyás et al., 1993). This variability might emerge from differ-

ences in the number of transmitter molecules released or in the activation of post-synaptic

receptors.

The properties of recurrent synapses differ quite markedly from those of mossy fiber

inputs, the other major source of excitation of CA3 pyramidal cells. A mossy fiber may
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make 10–20 connections with different CA3 pyramidal cells (Claiborne et al., 1986). A

recurrent collateral makes several thousand contacts with a much larger target population.

Mossy fiber boutons contact proximal apical dendrites of CA3 pyramidal cells and have

a diameter of 4–8 µm. Each bouton may include 20–30 active zones, whereas a recurrent

synapse may make one to three terminals on a post-synaptic cell. Finally mossy fibers

contact apical dendrites near the CA3 soma, while recurrent synapses terminate at more

distant dendritic sites resulting in smaller, slower somatic synaptic events. A mossy fiber

input from one dentate granule cell can induce CA3 pyramidal cell firing and can so be

termed a detonator synapse (Henze et al., 2002), whereas multiple spikes are needed to

induce firing at recurrent synapses (Miles and Wong, 1987a).

A.8 Short-term and long-term synaptic plasticity in

double recordings

Records from pre- and post-synaptic cells at recurrent synapses have offered novel insights

into activity dependent changes in synaptic strength over times lasting from milliseconds

to hours.

Short-term plasticity (milliseconds to seconds) results from at least two functionally

opposing processes. First, a single spike may facilitate transmission when the same

synapse is activated again (Del Castillo and Katz, 1954). An enhanced release probability

over several tens of milliseconds is ascribed to a residual elevation of intra-terminal Ca

(Holderith et al., 2012; Sasaki et al., 2012). Second, and inversely, depression may result

if few vesicles are available for release (Schikorski and Stevens, 1997; Shepherd and Harris,

1998). If they are replaced slowly (Stevens and Tsujimoto, 1995; Staley et al., 1998) the

probability of a second release may be reduced by depletion. Both processes occur at

connections between CA3 pyramidal cells (Debanne et al., 1996; Pavlidis and Madison,

1999). When a first spike induces a large event, a second synaptic response tends to be

smaller due to depletion. Inversely a second EPSP tends to be larger after a small first

event due to the residual Ca enhancement of release probability. Reflecting the underlying

mechanisms, facilitation is maximal at 20–70 ms and terminates at about 500 ms, while

depression can take several seconds to recover completely.

Long-term plasticity (minutes to hours) at different synapses varies in mechanisms of

induction and expression. One of the most studied forms, long-term synaptic potentiation

at Schaffer collateral synapses made by CA3 pyramidal cells with CA1 cells, is induced

via the activation of NMDA receptors and expressed as the post-synaptic recruitment

of AMPA receptors (Kerchner and Nicoll, 2008). Long-term changes in synaptic efficacy
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seem to depend on similar mechanisms at recurrent synapses between CA3 pyramidal

cells. Paired records from coupled CA3 cells have revealed some unitary details of this

synaptic plasticity. The same connection can be potentiated or depotentiated (Debanne

et al., 1998) by different temporal patterns of paired pre- and post-synaptic firing. About

20% of unitary interactions depend exclusively on NMDA receptors before potentiation

(Montgomery et al., 2001), while both AMPA and NMDA receptors are activated after

potentiation. Weak connections potentiate to a larger degree than initially strong connec-

tions (Debanne et al., 1999; Montgomery et al., 2001). Finally some connections between

CA3 pyramidal cells do not seem to potentiate at all (Debanne et al., 1999; Montgomery

and Madison, 2002).

A.9 Transmission of recurrent excitatory signals on

the membrane of a post-synaptic cell

Activation of membrane currents intrinsic to a post-synaptic cell by recurrent EPSPs

affects how they sum, spread and eventually initiate firing. Initial evidence came from a

prolongation of the decay of unitary EPSPs induced by pyramidal cell depolarization at

subthreshold membrane potentials (Miles and Wong, 1986). In contrast unitary EPSPs

initiated in fast-spiking inhibitory cells were not prolonged at depolarised subthreshold

potentials (Miles, 1990). Work combining somatic records and synaptic stimuli with cell-

attached records from dendrites, showed the activation of both inward currents, probably

persistent Na channels, low-threshold Ca channels (Magee and Johnston, 1995), and

outward currents, both inactivating and persistent (Hoffman et al., 1997). These currents

have been more precisely described for EPSPs initiated by Schaffer collaterals (Lipowsky

et al., 1996; Andreasen and Lambert, 1999; Perez-Rosello et al., 2011), as has evidence

for a dendritic expression of the I–h current (Magee, 1999).

Distinct currents have been associated with specific effects on EPSP shape, summa-

tion, and spread. Na-channel activation near the peak of an EPSP tends to increase

amplitude, while Ca-channels activated during the decay phase act to prolong EPSPs.

The striking increase in dendritic expression of the I–h channel with distance from the

soma (Lörincz et al., 2002) tends to equalize EPSPs impinging at proximal and distal

sites (Magee, 1999). Dendritically expressed inactivating K-channels have been linked

to less-than-linear summation of paired EPSPs impinging on different dendrites (Urban

and Barrionuevo, 1998). Dual records from the soma and apical dendrites of CA3 pyra-

midal cells disclose two distinct regions of dendritic excitability (Kim et al., 2012). Fast

Na-spikes are more easily initiated at distant sites corresponding to zones of recurrent
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synaptic inputs, while excitability of more proximal dendritic sites is lower.

The role of intrinsic currents in shaping interneuron EPSPs may be quite different to

that in pyramidal cells. Simulated EPSPs induce purely inward currents in pyramidal

cells but rather induce inward-outward current sequences in interneurons (Fricker and

Miles, 2000). So, while, EPSPs in pyramidal cells are prolonged, EPSPs in interneurons

may decay more rapidly due to the activation of an outward current at subthreshold

potentials.

Synaptic inputs to a neuron are significant to surrounding cells when they initiate

firing. Summed EPSPs initiated by repetitive firing of a single CA3 pyramidal cell some-

times induce cause a post-synaptic pyramidal cell to fire (Miles and Wong, 1986). Spike-

to-spike latencies are 10–15 ms, consistent with a role for recurrent excitatory synapses

in the genesis of delayed (50–100 ms) population bursts (Traub and Wong, 1982; de la

Prida et al., 2006). Recent work suggests spike-to-spike transmission may be limited to

a few strong connections (Ikegaya et al., 2013).

Pyramidal cells induce interneuron firing more effectively and at shorter latencies

of 1–3 ms (Miles, 1990; Csicsvari et al., 1998; Cohen and Miles, 2000). Interneuron

EPSPs are larger and faster than recurrent EPSPs in pyramidal cells, and interneuron

firing threshold is lower (Figure A.4). When interneurons are excited to fire, pyramidal

cells may trigger di-synaptic IPSPs (Figure A.4) with high probability and considerable

divergence (Miles, 1990; Csicsvari et al., 1998; Bazelot et al., 2010). While EPSP boosting

mechanisms in interneuron dendrites are not clear, it is surprising that EPSPs induced

from a single site (Gulyás et al., 1993) can induce firing. Even so, EPSP-spike coupling

at single release site excitatory synapses with some cerebellar interneurons (Carter and

Regehr, 2002) is also sufficiently strong that EPSPs control the timing of interneuron

firing.

A.10 Recurrent excitatory contributions to popula-

tion activities in the CA3 region

Recurrent synapses transmit excitation from CA3 pyramidal cells to other pyramidal

cells and to interneurons. They play a key role in operations and functions of the CA3

region, including the generation of physiological and pathological synchronous population

activities.
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Figure A.4: Recurrent inhibitory circuits in the CA3 region. A. Post-synaptic
responses of a fast-spiking interneuron to single pre-synaptic action potentials in a CA3
pyramidal cell. Responses include a failure of transmission, an EPSP and an EPSP
that initiates interneuron firing. B. Di-synaptic inhibitory interactions between two CA3
pyramidal cells. Single action potentials in one cell induce IPSPs at variable latencies
consistent with that of firing in (A), as well as some failures. Di-synaptic IPSPs were sup-
pressed by the glutamate receptor blocker CNQX. C. A single pyramidal cell can initiate
multiple di-synaptic IPSPs via firing in distinct interneurons. Records from a pyramidal
cell (intra) and extracellular records from eight sites in st. pyramidale (extra 1–8, the
diagram shows st. pyramidale in red and electrode sites in green). Field IPSPs were
detected on electrodes 1–6 (C1), 2–7 (C2), 6–8 (C3), 1–7 (C4), and 2–6 (C5) repeatably
following single action potentials (traces are aligned on six overlapping field IPSPs for
each trace). Field IPSPs are preceded by extracellular action potentials of short duration
on electrodes 2–3 (C1), 6 (C2), 7–8 (C3), 6–7 (C4), and 5–6 (C5). The pyramidal cell
may have initiated five distinct di-synaptic inhibitory interactions in these slice records
(see Bazelot et al. (2010)).
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A.11 Interictal epileptiform rhythm

A key finding linking recurrent excitation to epileptiform activity was that stimulating

any afferent pathway induced epileptiform firing in CA3 (Ayala et al., 1973). Population

bursts occurred with a variable delay of 20–100 ms after the afferent response. (Traub

and Wong, 1982) suggested that during the delay recurrent synaptic interactions within

the CA3 population generate a population synchrony. Synchrony induced in disinhibited

slices is complete in that all neurons tend to fire together with a field potential deco-

rated with high frequency oscillations (Jefferys et al., 2012). Traub and Wong suggested

recurrent circuits should possess two properties to generate such an event. Recurrent

contacts should be divergent and one cell could cause more than one target neuron to

fire. These points were verified with the demonstration that some single pyramidal cells

could induce or entrain inter-ictal-like events (Miles and Wong, 1983, 1986, 1987a; de la

Prida et al., 2006). Disynaptic feedback inhibition via CA3 pyramidal cell excitation of

feedback interneurons, was shown to prevent the spread of firing by recurrent excitatory

pathways (Miles and Wong, 1986, 1987a,b).

Recurrent synaptic function controls several features of the epileptiform activity in-

duced by disinhibition. The duration of the population burst (20–80 ms) has been shown

to result from transmitter depletion (Staley et al., 1998). The delay from one burst to

the next (1–10 s) depends on the time for docked vesicles to be replenished (Staley et al.,

1998, 2001). Procedures that induce persistent synaptic changes have persistent effects

on the strength and frequency of network burst firing (Bains et al., 1999; Behrens et al.,

2005).

Cellular properties also affect disinhibition induced synchrony by controlling trans-

mission in chains of connected neurons. In slices, population bursts tend to be initiated

in the CA3a region, where cellular excitability and recurrent connectivity are high (Wit-

tner and Miles, 2007). In CA3a, spontaneous events are preceded by a field potential of

duration about 50 ms (Wittner and Miles, 2007) during which excitatory synaptic events

occur with increasing frequency. This delay is similar to that between single cell firing

and a population event (Miles and Wong, 1983; de la Prida et al., 2006). Modeling work

suggested that during this time activity in the pyramidal cell population increases in non-

linear fashion (Traub and Wong, 1982). An epileptiform burst occurs when population

activity exceeds a threshold frequency (de la Prida et al., 2006).
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A.12 Sharp-wave rhythm

Sharp waves (O’keefe and Nadel, 1978; Buzsaki et al., 1992) are field potentials of duration

100–150 ms, corresponding to a partial neuronal synchrony during behaviors including

immobility and slow wave sleep. They are initiated in the CA3 region (Csicsvari et al.,

2000) and have been associated with the consolidation of acquired events (Girardeau

et al., 2009; Jadhav et al., 2012) represented as firing in specific groups of neurons.

Both recurrent excitatory interactions and the actions of specific interneurons have

been implicated in the genesis of sharp waves (Buzsaki et al., 1992; Csicsvari et al., 2000).

Sharp wave fields are enhanced by inducing long-term changes at recurrent synapses

(Behrens et al., 2005). And yet, sharp waves are not identical with epileptiform events

and do not depend on recurrent excitation alone (Liotta et al., 2011). Repetitive firing

of peri-somatic interneurons may be a crucial element in sharp wave generation (Buzsaki

et al., 1992; Klausberger et al., 2003). Gap-junctions have also been associated with sharp-

waves, with the observation of spikelets in pyramidal cells and a blockade by gap-junction

antagonists (Draguhn et al., 1998). However sharp waves persist, at reduced strength,

in animals where the gap junction protein connexin 36 is genetically deleted (Pais et al.,

2003). Possibly then, recurrent excitation of both pyramidal cells and interneurons (Hájos

et al., 2013) may suffice to generate sharp waves.

A.13 Theta and gamma rhythms

In contrast to sharp waves, theta fields (4–12 Hz) are generated when spatial memory rep-

resentations are first acquired during movements (Vanderwolf, 1969; O’keefe and Nadel,

1978). Place-cells fire with theta oscillations and theta waves are also detected in rapid

eye movement sleep.

Theta oscillations probably depend on signals generated outside the CA3 region. Sig-

nals from the septum may provide a sustained cholinergic excitation as well as glutamater-

gic (Huh et al., 2010) and inhibitory signals which selectively targeting hippocampal in-

terneurons to disinhibit pyramidal cells (Freund and Antal, 1988; Toth et al., 1997; King

et al., 1998). Synaptic connections within the CA3 region probably reinforce the rhythm

via reciprocal interactions between pyramidal cells and some, probably peri-somatic, in-

terneurons (Soltesz and Deschenes, 1993).

Gamma oscillations at 30–70 Hz may be superimposed on theta rhythmicity (Bragin

et al., 1995; Csicsvari et al., 2003; Hasselmo, 2005). They are suggested to bind, or

coordinate, activity of spatially dispersed neurons due to a single stimulus (Gray et al.,

1989). In contrast to theta, gamma oscillations are generated within the CA3 region.
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Reciprocal synaptic interactions between peri-somatic inhibitory cells and CA3 pyramidal

cells via recurrent synapses are suggested to contribute both in vivo (Csicsvari et al.,

2003) and in slice models of gamma induced by cholinergic agonists (Oren et al., 2006) or

kainate (Fisahn, 2005). Gap junctions that transmit excitation between CA3 pyramidal

cell axons may be another crucial factor in gamma generation (Traub and Bibbig, 2000;

Traub et al., 2003).

A.14 Comparison of recurrent connectivity in CA3

and other cortical regions

The hippocampal treatment of events, memories or representations may depend in part

on the associative nature of the recurrent excitatory network between CA3 pyramidal

cells. How do recurrent circuits in CA3 compare to those in other associative or sensory

cortical regions?

The spatial extent of excitatory terminals seems to differ for recurrent synapses in

associative, allocortical regions, such as CA3 and the olfactory cortex, and in six-layered

primary sensory neocortex. CA3 pyramidal cell axons project longitudinally through

most of the hippocampus (Lorente de Nó, 1934; Li et al., 1994). Local axons diffusely

cover most of the olfactory cortex (Haberly, 2001; Franks et al., 2011; Poo and Isaacson,

2011). Connectivity within a six-layered cortex is certainly more complex, but overall may

be more restrained in space. For instance, axons of layer IV pyramidal cells from sensory

cortices tend to ramify locally within modules such as a single somatosensory barrel

(Petersen and Sakmann, 2000; Feldmeyer, 2012). Superficial or deep layer pyramidal cells

of primary visual or somatosensory cortex make longer range but often patchy projections

terminating in regions occupied by cell groups of similar function (Gilbert and Wiesel,

1989; Holmgren et al., 2003; Ko et al., 2011; Feldmeyer, 2012).

The density of excitatory connections between pyramidal cells may be somewhat

higher in sensory cortical modules than in associative allocortex such as CA3 or piriform

cortex. Paired records from acute slices gave a value of 0.02–0.03 for the probability of

a connection between two CA3 pyramidal cells (Miles and Wong, 1986) and recurrent

connectivity in piriform cortex is estimated at 0.002–0.01 (Franks et al., 2011; Hagiwara

et al., 2012). Estimates of connectivity are somewhat higher from paired records in slices

of sensory cortex. The probability of connection between cells in different cortical layers

ranges from 0.1 to 0.3 (0.2–0.3 in layer 4 of barrel cortex, (Lefort et al., 2009; Feldmeyer,

2012); 0.1 in layer 2/3 of neocortex, (Holmgren et al., 2003); 0.1 in layer 5 neocortex,

(Markram et al., 1997).
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An alternative way to define connectivity could be to measure the spatial distribution

of terminals formed by the axon of a single cell. Terminals of some pyramidal cells in

sensory cortex (Petersen and Sakmann, 2000) seem likely to show a more focal topology

than those of the CA3 region (Ishizuka et al., 1990; Li et al., 1994). Data from paired

records in slices indicates a lower local connectivity in CA3 than in sensory cortex. Lower

values for recurrent connectivity may be a design feature to ensure sparse representations

in an associative region.

Recurrent excitatory synapses may contact cortical interneurons selectively in both

associative and sensory cortices. Paired records suggest connectivity from pyramidal

cells to fast-spiking interneurons is higher than onto pyramidal cells (0.5–0.7 in neocortex

layer 2, (Holmgren et al., 2003); in barrel cortex layer 2 ˜0.6, (Avermann et al., 2012);

0.2 in piriform cortex layer 3, (Stokes and Isaacson, 2010). A higher connectivity as well

as stronger signaling at single connections with GABAergic interneurons (Helmstaedter

et al., 2008) protects against excessive synchrony, maintains stable population firing and

sharpens signaling by imposing a sparse coding.

The strength of afferent and recurrent synapses may differ in both associative and

sensory cortices. Mossy fiber synapses with CA3 pyramidal cells have more release sites

(Claiborne et al., 1986) and stronger actions (Henze et al., 2002). Synapses from olfac-

tory bulb onto piriform cortex cells are both stronger and less numerous that recurrent

synapses (Franks et al., 2011; Poo and Isaacson, 2011). In barrel cortex however, recur-

rent connections between layer 4 pyramidal cells seem to be stronger (Feldmeyer et al.,

1999; Feldmeyer, 2012) than thalamic synapses which excite the same cells (Bruno and

Sakmann, 2006).

Thus recurrent networks of associative cortical regions have a wider spatial extent and

a lower probability of connection between pyramidal cells than those in sensory cortices.

A.15 The CA3 recurrent system as an associative

network

Associative synaptic networks have been linked to the processes of completion and recall

of stored information (Figure A.5). McNaughton and Morris (1987) noted that similar

hypotheses have often been discovered (McNaughton and Morris, 1987). What do they

assume? And how might they be tested?

Such hypotheses suppose that information, or a representation, or an event, or a

memory, has a distributed existence as the correlated, or synchronous, discharge of a

group of neurons (Hebb, 1949; Marr et al., 1991). Different informations presumably
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Figure A.5: Recurrent excitatory networks. A. Possible schema of connectivity and oper-
ations in a recurrent neuronal network. Some neurons are connected in the nave network.
Coupled firing in a subset of neurons during an event reinforces synapses between them.
Reinforcement persists during quiescence, until partial activation recalls or completes fir-
ing of the neuronal subset associated with the original event. B. Sequential firing of 13
pyramidal place cells as an animal passes through a space (horizontal axis is distance).
Reactivation of sequential firing of these cells as C. forward replay or D. backward replay
(adapted with permission from Diba and Buzsáki (2007).

involve different groups, raising the question of how representations are constrained to be

neuronally orthogonal (Marr et al., 1991; Rolls et al., 1998). They suppose that a way

exists to associate or strengthen synaptic relations within such a group or ensemble of

synchronously active neurons. It might correspond to the persistent synaptic potentiation

which occurs when pre- and post-synaptic cells fire together (Hebb, 1949; Bliss and Lømo,

1973). They suppose that a full representation of an event can be recalled from some of its

elements (Gardner-Medwin, 1976; McNaughton and Morris, 1987). The CA3 recurrent

network where activity in some single cells can trigger population activities (Miles and

Wong, 1983; Fujisawa et al., 2006) might be capable of operations similar to a cued recall

(Figure A.5). The spatially widespread but lower connectivity of associative recurrent

networks may favor this form of information storage.

Improved techniques to record and manipulate activity in large groups of neurons be-

gin to suggest distributed ensembles may contribute to storage and recall. Using tetrodes

to separate firing in 50–100 single units, Wilson and McNaughton (1994) showed that

CA1 place-sensitive neurons that fired together during a spatial behavior, discharged syn-

chronously again during the following episode of sleep (Wilson and McNaughton, 1994).

Correlated firing in cell pairs was increased as animals learned a task and maintained
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during replay. A specific role for recurrent synapses was established by genetically delet-

ing NMDA receptor expression at recurrent synapses of CA3 pyramidal cells (Nakazawa

et al., 2002, 2003). With the basis for persistent changes abolished, recall of spatial

memories from partial cues was suppressed. Optical stimulation has recently been used

to re-activate neurons associated with a representation (Liu et al., 2012). An ensemble

of granule cells active during fear conditioning was labeled with a construction including

c-fos which also induced expression of a light-sensitive opsin. Re-activating the sparse

granule cell ensemble optically later, induced a fear response in a different context.

These data point to distinct neuronal operations associated with acquisition and re-

call. A two-stage memory system has often been postulated (James, 1890; Buzsáki, 1989).

The two stages may occur during distinct brain and behavioral states. External repre-

sentations, especially those associated with space (O’keefe and Nadel, 1978) and possibly

also time (Huxter et al., 2003; Kraus et al., 2013) are acquired during theta activity. In

contrast, recall or consolidation is linked with sharp-waves generated in CA3 (Buzsáki,

1989). Switching between these opposing behaviors might be achieved with distinct mod-

ulatory transmitters (Hasselmo et al., 1995) or, perhaps more economically, by external

control of specific interneurons (Viney et al., 2013).

Acquisition and replay of ensemble activity were first described during theta and sharp

waves respectively (Wilson and McNaughton, 1994). Several variants of the exact replay

of neuronal firing sequences have now been distinguished most often in CA1 during sleep

(Lee and Wilson, 2002; Matsumoto et al., 2013) and the awake state (Foster and Wilson,

2006; Diba and Buzsáki, 2007). Firing replay during sharp waves is increasingly linked

to the consolidation of a memory or representation by transfer from the hippocampus

to a more permanent storage in cortex (Rasch and Born, 2007; Nakashiba et al., 2009;

ONeill et al., 2010). During sharp waves of slow-wave sleep, similar firing sequences are

detected in hippocampus and cortex (Ji and Wilson, 2007) and suppressing sharp waves

during sleep interferes with consolidation (Girardeau et al., 2009).

The data on these forms of replay raises questions for future work. It needs to be

re-examined in CA3. Many, but not all (Diba and Buzsáki, 2007), papers report data

from CA1 with the caveat that the activity is likely to have originated in CA3. How is the

apparent precision in firing maintained during the translation from CA3 to CA1? How is

an appropriate sequence initiated in CA3? What neuronal and synaptic mechanisms can

explain how a specific sharp wave is chosen, define the inhibitory and pyramidal cells that

fire during it, and permit reversal of this sequence? Better techniques to define cellular

and synaptic physiology in context of data on the activity of large numbers of neurons

(Matsumoto et al., 2013) will be needed for the next steps to uncover the role of recurrent

synapses and the functions of the CA3 region.
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