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I N T R O D U C T I O N

In this thesis, we are interested in gathering and extending the knowledge acquired
for the past thirty years in the field of spintronics into one unifying theory. The goal
is to have the tools to describe systems made up of several layers of ferromagnetic
and non-ferromagnetic metals with any magnetization orientation or texture and
understand the electronic transport driven by a voltage bias and/or a temperature
gradient.

Valet-Fert’s equations [1] have been very successful in describing so-called collinear
systems, where the magnetizations of the various layers in the device lie all along
the same axis. In particular, it captures very well the giant magnetoresistance (GMR)
of such a system. However it fails at giving any information on systems where the
magnetizations are non-collinear.

The concept of spin-transfer torque (STT) introduced in 1996 by Berger [2] and
Slonczewski [3] addressed this issue by giving a description of the effect of a spin-
polarized current on a magnetization with a different orientation. This spin-polarized
current however was taken for granted, and not the result of the surrounding sys-
tem.

More recently, the discovery of spin-dependent thermoelectric effects [4, 5, 6],
raised the question whether obtaining the same effects (GMR and STT) is possible
and technically feasible.

Our theory regroups all these effects and provides a framework to answer those
questions. And because the more interesting systems are not easily studied on paper,
we brought our theory to the numerical realm by implementing a fast and easy-to-
use simulation framework based on it.

1 C O L L I N E A R S Y S T E M S : T H E VA L E T- F E R T T H E O R Y

The giant magnetoresistance was the first to be discovered in 1988 by Albert Fert
[7] and Peter Grünberg [8], which resulted in their Nobel Prize in 2007. This effect,
where a stack of ferromagnetic and non-ferromagnetic metal layers exhibits a differ-
ence of resistance according to its magnetic configuration, is of quantum origin and
requires the spin of the electrons to be taken into account and not only its charge.

xi



I N T R O D U C T I O N

This effect is at the heart of the very fast growing storage capacity in hard drive
disks in the past fifteen years.

The Valet-Fert theory was developed to describe such systems in a semi-classical
manner. The resulting equations are an Ohm-like equation (i) and a (non-)conservation
equation (ii) for each spin specie σ. The non-conservation is due to spin-flip, result-
ing from the spin-orbit interaction.

eρσ Jσ = −∂z µσ (i)

4ρ∗e∂z Jσ =
µσ − µ−σ

ℓ2
sf

(ii)

These equation link the spin current Jσ for the specie σ to its spin-resolved electro-
chemical potential µσ through the spin-dependent resistivity ρσ = 2ρ∗ (1 ± β ) of
the material. The length ℓsf is the characteristic length, corresponding to the mean
free path between two spin-flipping scattering events.

Although these equations were originally derived for a 1D system, it can easily
be extended to 3D without much more work. However, it is inherently 1D in spin
space. This has been the main limitation of this theory.

2 N O N - C O L L I N E A R S Y S T E M S : S L O N C Z E W S K I ’ S S P I N - T R A N S F E R T O R Q U E

In order to describe non-collinear systems, Berger [2] and Slonczewski [3] proposed
in 1996 the concept of spin-transfer torque. It explains how a spin current (polarized
for example with the z axis) arriving on a magnetization making an angle θ with the
z axis behaves. An effect called spin-filtering will make the spin current after the
layer polarized along the same direction, while the difference in magnetic moment
is deposited on the layer (given to its magnetization). This difference of magnetic
moment is what is called the spin-transfer torque.

This torque has very important consequences, most notably on the magnetic dy-
namics of the system. Without this term, the Landau-Lifshitz-Gilbert equation states
that the magnetization will precess around some axis (given by a combination of the
applied external magnetic field, the anisotropies and a few other factors), and relax
towards it because of the Gilbert damping. Because it is collinear to the damping
direction, the torque can either enhance it, or compensate it. This means that the
spin-transfer torque allows for switching the magnetic direction without relying on
an external magnetic field, but also if tuned properly exactly compensate the damp-
ing, and allow for a steady-state precession motion.

xii



3 N O V E L T H E R M O E L E C T R I C E F F E C T S

3 N O V E L T H E R M O E L E C T R I C E F F E C T S

Thermoelectricity is a topic that has been known for over a century, with the work
of Seebeck, Peltier, Thompson etc. Effects involving magnetic fields have also been
studied. However, the ones that are of particular interest to us have been theorized
for quite a while [4]. In the same way as the conductivity is spin-dependent in ferro-
magnets, the thermoelectric coefficients are too. We therefore take into consideration
the so-called spin-dependent Seebeck and spin-dependent Peltier effects. The main
point to study them is that they allow for the easy creation of pure spin currents
(spin transport without charge transport). For this reason, a hope arose that they
could be at the origin of a thermally induced spin-transfer torque. In the best of sce-
narios, nanoscale spintronics devices could be powered by harnessing a difference
of temperature in the surrounding environment.

4 T H I S T H E S I S ’ W O R K

We presented so far the various topics that were of interest to us. We now give
the work done during this thesis in order to bring together these topics, and what
resulted from that unification. There are four parts to this thesis, corresponding to
the last four parts of the manuscript, the first one being dedicated to providing the
necessary theoretical background.

4.1 Extending our semi-classical theory

The first task (Part B) was to continue developing the theory of spin and charge trans-
port that was already available [9]. We introduced in this theory the effect of the spin-
dependent thermoelectric effects, and finally obtained a theory describing electron
transport (charge spin and heat) in ferromagnetic metals. This theory is in particular
synthesized into six equations reminiscent of the Valet-Fert equations,and incorpo-
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I N T R O D U C T I O N

rating the spin-transfer torque as well as the thermoelectric effects (spin-dependent
and regular):

−ℓ∗∂αµc =jc
α − βjα · m +

ℓ∗

ℓH
s (sjc

α + ∆sjα · m) − ℓ∗

ℓH
sjq

α (iii)

−ℓ∗∂αµ =jα − βjc
αm +

ℓ∗

ℓH
∆s (sjc

αm + ∆sjα) − ℓ∗

ℓH
∆sjq

αm

+
ℓ∗

ℓ⊥
(m × jα) × m − ℓ∗

ℓL
(m × jα) (iv)

−ℓH∂αθ = − sjc
α − ∆sjα · m + jq

α (v)
∑

α

∂αjc
α =0 (vi)

∑

α

∂αjq
α =0 (vii)

∑

α

∂αjα = − ℓ∗

ℓ2
sf

µ − 1

ℓ⊥
(m × µ) × m +

1

ℓL
(m × µ) (viii)

We provide in Part B the original steps used to obtain the state of this theory before
this thesis started. We introduce first the fully quantum Landauer-Bütikker scatter-
ing theory, where all the conduction channels are described individually through
transmission and reflection probability amplitudes to enter the system from one
channel and spin state and exit in another. Then, by applying a Random Matrix The-
ory (RMT), we go to the semi-classical limit. The theory at this point is described
through a reduced 8 × 8 scattering matrix Ŝ where instead of describing all the chan-
nels, we now only have the probability to be transmitted and reflected from one spin
state to another. The only quantum features remaining are the spin description and
the Sharvin resistance at the leads.

A change of variable allowed us to prove the equivalence of this theory with the
Circuit Theory [10], by introducing currents and potentials. The Circuit Theory is
based on the concept of nodes where those currents and potentials are defined, con-
nected to each other (or to the leads) by links, containing the actual information on
the materials (the Ŝ in our case).

This was the state of the theory before this thesis. Our work consisted in taking
this theory to the continuous limit. Instead of having links describing a whole piece
of material, they described thin slices of material, easily parametrized by (for the
most part) measurable parameters, such as the spin-dependent mean free paths ℓ↑

and ℓ↑, the spin-flip length ℓsf , as well as a few others. By introducing some rota-

xiv



4 T H I S T H E S I S ’ W O R K

tion properties, the theory that was written so far only in the local magnetization
basis could be expressed for any magnetization orientation. Applying them and
separating the charge and spin part allowed us to obtain differential equations. For
simplicity those were first derived for unidimensional systems, and the extension to
3D followed naturally. Finally, the introduction of the thermoelectric effects was the
final step to obtain Eq. (iii) to Eq. (viii).

4.2 Transverse behavior

The main advantage our theory has over the Valet-Fert equations is that its takes
into account any magnetization orientation, and therefore includes the behavior
of spins transverse to the magnetization. In a bulk material, such a spin will pre-
cess around the magnetization axis, and be quickly absorbed by the magnetization.
These damped oscillations are parametrized by two lengths, the Larmor precession
length ℓL and the transverse penetration length ℓ⊥. These lengths can be extracted
from ab initio calculations of the mixing conductance (or transmission Tmx ). We use
the following relation for the mixing transmission of a bulk layer of thickness d:

Tmx(d) ≈ e−d/ℓ⊥+id/ℓL (ix)

Articles such as Ref [11, 12, 13, 14] provide such calculations, and we extracted the
values of ℓ⊥ and ℓL for the materials under consideration. We also provide the de-
sign of a device that can be used to measure these lengths, as well as simulations to
show expected results.

Then, we study the case of domain walls. It has been proven [15] that the torque
introduced by Slonczewski and Berger is insufficient to explain domain wall motion
under a voltage bias. When a current flows through a domain wall, it gets polarized
and deposits magnetic moment on the wall, and allows it to move along the direc-
tion of the current if the density is strong enough. However currents much lower
that predicted are enough to initiate the movement. The reason behind this is that
the torque actually has two components: the in-plane one predicted by Slonczewski
and Berger, and a smaller one, out-of-plane. Its destabilizing role is of major impor-
tance to describe accurately domain wall motion, and has been introduced in the
Landau-Lifshitz-Gilbert equation as a small dimensionless parameter β, the ratio of
the out-of-plane to the in-plane component of the torque. Although it was so far
purely phenomenological, we give in the limit of long (> 10 nm) domain walls an
analytical expression. What is even more interesting is that this micromagnetic pa-
rameter depends on transport properties, namely the transverse lengths ll and ℓ⊥,
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as well as the spin-flip length ℓsf and the mean free path ℓ∗. We therefore introduce
a bridge between the two community, and show that transport has a strong impact
on the magnetic dynamics.

Finally, in collaboration with van Wees et al. , we studied a device aiming at prob-
ing the mixing properties of a magnetic insulator, the YIG. We created a minimal
model and performed simulations to explain their experimental results[16].

4.3 Thermoelectric effects

The introduction of the thermoelectric effects in our theory gave us an additional
degree of freedom to generate a torque, for example. We investigate in particular
an effect called torque waviness, and prove it is much stronger under a temperature
gradient than a voltage bias.

Usually, the torque has always the same sign regardless of the angle between the
current polarization and the magnetization direction. However in some cases, the
torque may change sign once (see [17] for example). In such a case, the torque is
said to be wavy. Under a voltage bias, this effect occurs when the fixed layer is
weakly spin polarized compared to the free layer. Our theory allowed us to derive
a waviness condition, proving again this known result, and extending it to systems
subjected to any voltage and temperature gradient. With this result, we show that a
thermal torque can be very easily wavy, especially if the system is in (electrical) open
circuit. We explore numerically such a behavior for the torque in three cases: under
a voltage bias, and under a temperature gradient in both closed an open circuit.

Since there is a critical current density to initiate switching, there is also a critical
temperature difference. We use numerics again to estimate this temperature differ-
ence. With good materials, we show that only a few degrees may be enough.

4.4 A theory and a numerical simulation tool

Finally, in Part E we present the simulation tool we developed. It is written mainly
in Python, with the time-critical parts (the solver) in C++. It is made up of several
modules. One containing the physics (material parameters database) and the struc-
tures coming from the theory (the implementation of the Ŝ matrices for example).
One module gives powerful tools dedicated to the simulation of 1D systems (most
notably pillars and domain walls). Another module is dedicated to simulating sys-
tems with any dimensionality, including in particular their geometrical description,
as well as the iterative solver used to obtain the various observables. In this part, we
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go into details about the architecture of this tool, and give proofs that it is powerful,
fast and reliable.
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Summary of Part A

This thesis intends on describing the behavior of spintronics devices. But be-
fore doing that, what is spintronics ?

Spintronics is the field of physics aiming at exploiting the spin of the elec-
trons as well as its charge, using magnetic fields as well as electric fields. To
do so, spintronics systems usually involve ferromagnetic metals, such as iron,
cobalt, nickel and their alloys. A metal is ferromagnetic when the balance
of the kinetic energy and the Coulomb interaction favors having electrons at
higher energy levels, with the same spin.

The time-dependent properties of a spintronic devices often rely on its mag-
netic dynamics, described by the Landau-Lifshitz-Gilbert equation. In particu-
lar, the magnetization of one of the layers of a stack can be reversed, either by
applying an external magnetic field, or by flowing a polarized current through
it.

The resistance of a device including ferromagnets depend on the orientation
of their respective magnetization. This Nobel-awarded effect, called the giant
magnetoresistance is at the core of modern-day digital memory storage. The
Valet-Fert theory describes very well cases where all the magnetizations are
along the same axis.

A magnetization can be switched with an applied polarized current thanks
to a process called the spin-transfer torque. It corresponds to magnetic mo-
ment given to magnetization by the spin current. The study of this quantity
is at the heart of this thesis, and in particular its dependence with the orienta-
tion of the free magnetization with respect to the fixed direction imposed by
the others. Two types of dependence are under consideration: the normal one,
where the sign of the torque does not depend on the orientation of the layer’s
magnetization, and the wavy dependence, where the sign changes beyond
some critical angle.

Electron transport involves charge and spin, but is also the main source of
heat transport in metals, as indicated by the Wiedemann-Franz law. It has also
been well-known for more than a century that charge and heat can couple to
give the thermoelectric effects (notably the Peltier and Seebeck effects). More
recently, it has been discovered that heat and spin couple too to give spin-
dependent thermoelectric effects.
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Résumé de la Partie A

Cette thèse a pour but de décrire le comportement des circuits spintroniques.
Mais avant tout, qu’est-ce que la spintronique ?

La spintronique, ou éléctronique de spin, est le domaine de la physique
cherchant à exploiter le spin des électrons en plus de leur charge, en utilisant
des champs aussi bien magnétiques qu’électriques. Pour ce faire, la spintron-
ique a souvent recours aux métaux ferromagnétiques comme le fer, le cobalt,
le nickel et leurs alliages. Un métal est dit ferromagnétique lorsque l’équilibre
entre l’énergie cinétique et l’interaction Coulombienne favorise d’avoir des
électrons sur des orbitales de plus haute énergie, mais avec les mêmes spins.

L’évolution temporelle des systèmes spintroniques est souvent basée sur
la dynamique magnétique, décrite par l’équation de Landau-Lifshitz-Gilbert.
Plus spécifiquement, l’aimantation d’une des couches magnétiques peut être
inversée soit en applicant un champs magnétique externe, soit en faisant passer
un courant polarisé à travers.

La résistance d’un circuit mettant en jeu des métaux ferromagnétiques dépend
de l’orientation de leur aimantation respective. Cet effet primé aux Nobel, ap-
pelé magnétoresistance géante, est à la base des systèmes de stockage de don-
nées digitales modernes. La théorie de Valet-Fert décrit très bien les cas où
toutes les aimantations sont alignés selon le même axe.

Une aimantation peut être inversée grâce à un courant polarisé grâce à pro-
cessus appelé le torque par transfert de spin. Il correspond à un moment mag-
nétique donné à l’aimantation par le courant de spin. L’étude de cette quantité
est le coeur de cette thèse, et en particulier sa dépendance avec l’orientation
entre l’aimantation de la couche libre et celle des couches fixes. Deux types de
dépendances ont été rapportées : le cas normal, où le signe du torque est le
même quelque soit l’orientation de l’aimantation, et une dépendance appelée
“wavy”, où le sign du torque change au delà d’un certain angle critique.

Le transport électronique concerne la charge et le spin, mais est aussi le mé-
canisme principal de transport de chaleur dans les métaux, comme la loi de
Wiedemann-Franz le suggère. Cela fait aussi plus d’un siècle que l’on sait que
la chaleur et un courant peuvent être couplés à travers les effets thermoélec-
triques (particulièrement les effets Seebeck et Peltier). Plus récemment, il a été
découvert que la chaleur et le spin peuvent être aussi couplés à travers ce que
l’on appelle les effets thermoélectriques dépendant du spin.
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Although this thesis focuses on spin transport, a basic understanding of ferromag-
netism and of magnetic dynamics is needed to open the discussion and put our
results in their context. Indeed any reasonably realistic description of any spin-
tronics device must take into account some level of magnetism, like the notions of
(anti-)ferromagnetic coupling, the influence of the thickness of a layer on its coercive
field, and so on.

Part 1 will give a few clues about the origin of ferromagnetism, and the related
concepts such as domain and domain walls. Part 2 then introduces the equation
of micromagnetic dynamics, a description of its constituents, and what practical
consequences it yields.

I - 1 M A G N E T I S M I N S O L I D S TAT E P H Y S I C S

We introduce a few useful concepts. First we give an informal explanation about the
origin of ferromagnetism. We then introduce the concept of domains and domain
walls in magnetic materials, and we conclude by reviewing the most common source
of spin relaxation in metals, the spin-orbit coupling.

I - 1.1 Description of ferromagnetic metals

Materials (and metals in particular) can be classified by their response to an external
magnetic field. They can be either diamagnetic if they tend to cancel the external
field, or paramagnetic if their response is to add to the field. This can be determined
by evaluating (or measuring) the susceptibility χ of the material, where χ is defined
by:

χ =
∂M

∂H
= − 1

V

∂2F

∂H2
(1)
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In this equation, M is the magnetization density and F the magnetic Helmoltz free
energy defined by the statistical mechanical rule:

e−F /kBT =
∑

n

eEn(H)/kbT (2)

where En are the field dependent energies of the excited states of the system. If χ > 0,
the system is said to be paramagnetic, while if χ < 0 the system is diamagnetic.

Ferromagnetism is the special case where the material creates a magnetic field
without any external field needed. This phenomenon is the basis of all the usual per-
manent magnets. As all the other forms of magnetism, it is an inherently quantum
effect.

Several elements are needed to explain ferromagnetism. First let us consider a free
atom. In its filled shells, electrons of opposite spin pair up, generating no net mag-
netic moment. On the other hand, partially filled shells obey Hund’s rule, which
states that the total spin must be maximal (filling first with similar spins). Therefore
unfilled shells are a necessary condition for ferromagnetism. Another smaller con-
tribution to the total magnetic moment of the atom comes from the orbital moment.

In a solid, neighboring spins tend to pair up to minimize the kinetic energy while
respecting the Pauli principle. However, the total energy is a competition between
the kinetic energy, and the Coulomb interaction. In some cases, having some elec-
trons on higher energy levels (and with the same spin) minimizes the Coulomb in-
teraction by forcing them further apart. This is the so-called exchange interaction,
and it is a very short range (inter-atomic scale) high energy interaction. Thermal
fluctuations can compensate it, and the temperature at which this occurs, called the
Curie temperature, depends on the material. Iron’s is 1043 K, cobalt’s is 1400 K, and
nickel’s is 627 K, making this interaction’s energy around 0.1 eV.

I - 1.2 Long-range interactions in ferromagnets

As we saw, the exchange interaction is short-ranged, on the scale of a few atoms
only. But other types of interactions exist, such as the dipole interactions, or the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Those are long, and mid-range
respectively.

The dipole interaction (resulting from the dipole field created by the individual
moments. This tends to anti-align the moments. We go into more details in the next
section.

The RKKY interaction is responsible for the coupling between different magnetic
layers (either in contact, or separated by a thin non-magnetic spacer). Depending on

6
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the spacing between those layers, the coupling can be either ferromagnetic (magne-
tizations tend to align) or antiferromagnetic (magnetizations tend to be opposite)[18,
19, 20].

I - 1.3 Magnetic domains and domain walls

In macroscopic samples, the exchange interaction doesn’t hold over long distances,
so the dipole interaction becomes the main effect. Consequently, although locally
spins stay aligned, over longer distances domains with different orientations will
appear and because of the dipole interaction, they will tend to cancel each other. A
strong enough magnetic field could however reorient all the spins along the same
direction. But as soon as the external magnetic field is switched off, domains will
reform.

Actual domains are made of spins pointing mostly in the same direction. The
transition from a domain to the next occurs over a few to a hundred nanometers.
This transition zone is called a domain wall, and can be displaced as a result of an
external magnetic field, or a current. However, they are prone to get pinned by
defects, impurities etc.

There are two types of domain walls, depending on how the magnetization goes
from one orientation to the other. If the axis of rotation is within the plane of the
wall, it is called a Bloch wall, while if it goes out of plane, it is called a Néel wall,
after the discoverer of each type of wall.

Figure 1.: The two types of domain
walls, the Bloch wall with
the rotation axis in the
plane of the, and the Néel
wall with the rotation axis
out-of-plane.

The underlying crystal structure and the geometry are two sources of magnetic
anisotropy. This means that in most cases, the magnetization will have a favored
(easy) axis or plane. In particular, magnetization in thin films usually lies in the

7
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film’s plane. Anisotropy is the most important criterion of selection between each
type of domain wall.

I - 2 M A G N E T I C D Y N A M I C S

At the mesoscopic scale (longer than the atomic scale, but smaller than the exchange
length of around 3 nm), an effective description of the dynamics of the magneti-
zation is given by the Landau-Lifshitz-Gilbert equation. In the following sections,
we introduce the equation in its full form, then give a description of its constituent
terms, and finally give a few examples of application.

I - 2.1 Landau-Lifshitz-Gilbert equation

In magnetic systems, the magnetization possesses its own dynamics, in response
to an external magnetic field or as a result of electron transport (through the spin-
transfer torque). The (generalized) Landau-Lifshitz-Gilbert equation describes the
evolution of the magnetization unit vector m in response to a magnetic field and an
applied torque. This equation has many different forms, one of which:

ṁ = m ×
[

− γ0Heff + αṁ +
γ0

MsL
τ

(
m′ × m − βτ m′

) ]
(3)

The first term describes the precession of the magnetization around the local ef-
fective field Heff , which is the local field actually felt by the magnetization. We
will go into more details about this effective field after the overall description of the
equation.

The second term is the phenomenological Gilbert damping, a material-specific
constant. It makes a precessing magnetization relax over time to align it with its
precession axis.

The two last terms are the in-plane (resp. out-of-plane) components of the spin-
transfer torque. Those are out-of-equilibrium effects, resulting from the application
of a spin-polarized current1. γ0 is the gyromagnetic ratio, Ms is the saturation mag-
netization density, L the thickness of the magnetized layer (transverse to the current
direction) and m′ is the axis of the magnetization of the reference fixed layer. The
study of the spin-transfer torque is one of the main object of this thesis, we will

1 this polarization is usually the result of spin filtering by a ferromagnetic layer of an unpolarized
current, but other sources are possible
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therefore present it in more details in Chapter III. And although those terms are out-
of-equilibrium effects, the characteristic times of transport phenomena (the Fermi
velocity is about 106 m/s, over typical lengths of a hundred nanometers, giving typ-
ical times in the picosecond range) are much faster than typical magnetic dynamics
(generally in the range of the nanosecond[21]) This equation states that the in-plane
torque can either balance out, or increase the damping, whereas the (smaller in am-
plitude) out-of-plane torque has a destabilizing effect, particularly important when
describing domain wall motion. Descriptions of domain wall motion have only in-
cluded the in-plane torque for a long time (as reported in Ref[15] for example), and
predicted a critical torque (and therefore current density) for starting the motion 2
orders of magnitude stronger than what experiments suggested. We go into more
details about that in Section III - 5.

Figure 2.: Graphical representation of
the terms in the LLG equa-
tion. The magnetization
precesses around the effec-
tive field or the magnetiza-
tion of a fixed layer, the
damping brings the magne-
tization back towards the
axis of precession. The sign
of the torques depend on
the current. Particularly the
in-plane torque τ can either
oppose the damping, or in-
crease it.

I - 2.2 Effective field

Since it can be made up of several contributions, we give here a review of the most
important ones. Some of them may be sometimes dropped for simplicity, therefore
the composition of the effective field has to be specified for each calculation.

Heff = Hext + HK + Hexch + Hd (4)

9
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In this decomposition, Hext is the external applied field. HK is the field created
by the anisotropy (effect of the crystal lattice). In the case of uniaxial anisotropy
along the z axis:

HK = −KV mzez/Ms (5)

with K the anisotropy constant of the material, V the volume of the sample. Hexch

is the exchange field and results from the interaction of neighboring spins on each
other,

Hexch =
2A

µ0Ms
∇2m (6)

with A the exchange interaction constant of the material. Hd is the demagnetizing
(or dipolar) field, the effect of the field created by the magnetization on itself. This
field can be solved as an electrostatic problem. To understand that, let us start from
the Maxwell equations:

∇ × B = µ0j (7)
∇ · B = 0 (8)

Taking into account the magnetization can be done by considering small current
loops acting like dipoles, on top of the applied current: j = jM + japp. Additionally,
jM must have zero divergence (since it does not contribute to the total current).
Since ∇ · jM = 0, there is a vector field M such as jM = ∇ × M . By using the
definition µ0Hd = M − µ0M , we can rewrite Eq. (7) and Eq. (8) in terms of H . We
also set the applied current to zero (by linearity, then can be added later):

∇ × Hd = 0 (9)
∇ · Hd = −∇ · M (10)

Because H has zero curl, there is a scalar field φ such as ∇φ = Hd. Finally, we get
an equation:

∇2φ = −∇ · M (11)

This corresponds to an electrostatic problem, which are a very well known class of
problems, and easily solved.

10
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I - 2.3 Levels of description

The magnetization dynamics can be studied at two different levels: one can either
perform a full numerical simulation, trying to compute the local magnetization ev-
erywhere in the device. This is the most accurate, but also the most demanding in
terms of computational time and power. On the other hand, one can solve the equa-
tion assuming a constant magnetization all over the device. Since the magnetization
behaves in that case as if it was a giant unique spin, this approximation is called the
macrospin approximation. Using it has the strong advantage that it can usually be
solved by hand (cf. Section I - 2.6). Of course, both approaches can be combined, to
improve performance. Some areas (for example those corresponding to hard mag-
nets subject to a strong anisotropy) can be kept at the macrospin description, while
other areas (like free layers of soft magnets) will need a full analysis.

I - 2.4 Applications

One important use use of the LLG equation was to describe domain wall motion
under the application of a current. If a strong enough current is applied to a domain
wall, under the effect of the spin-transfer torque, it will move along the direction
of the current. This concept is currently investigated to create magnetic memories
where the information is stored in the position of a train of domain walls. The most
promising design is the so-called race-track memory [22].

Another system under investigation is the spin-torque oscillator. When the torque
compensate the damping, a steady-state precessional motion can occur. Such a sys-
tem can be used as a GHz frequency generator or detector. We go into more details
in Section I - 2.7

I - 2.5 Magnetization reversal

Although the hope is that this will change soon thanks to the use of magnetic mem-
ories based on the spin-transfer torque, information storage in magnetic devices has
relied so far on the use of external magnetic fields (at least for writing). Because of
the spatial extension of the field, downscaling is difficult. However, it has been an
easy way of orienting the magnetization of a ferromagnetic material. We give here a
short description of this phenomenon both for historical completeness, and because
it introduces a few important concepts in magnetism.
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We saw that the within a domain, individual dipoles in a ferromagnet tend to align
spontaneously in the same direction while on a larger scale, the dipole interaction
tend to align them in the opposite direction, hence forming various domains. When
a strong enough external field is applied, those domains align with it, and most of
them will stay in this direction indefinitely even when the field is switched off. The
material has become magnetized. If the field is then reduced from its maximum
value, because of the coercivity of the ferromagnet, the dependence of the magneti-
zation with the field will be different. The influence of the state of the magnetization
on its dependence with the applied field leads to what is called an hysteresis loop,
see Fig. 3.

The magnetization attained when an increase in the field does not increase the
value of the magnetization anymore is called the saturation magnetization. The
value of the remaining magnetization when the field is switched off is called the
remanent magnetization. And finally, the value of the field needed to cancel the
magnetization is called the coercive field. However, all those values exist for a posi-
tive and negative direction. Therefore, depending on the state the ferromagnet was
before switching, one of two equilibrium positions can be achieved.

I - 2.6 Current-induced magnetization reversal

Historically, to switch the direction a magnetization, the only way was to apply
a magnetic field to it. As we saw, this magnetic field had to be greater than the
saturation magnetization of the layer to be switched, but less that that of the other
layers, therefore inducing the need to pin the fixed layers in some way.

With the advent and the understanding of the spin-transfer torque, it became pos-
sible to switch a given layer by flowing a polarized current through it. Obtaining
a polarized current can be done by placing another magnetic layer before the layer
to switch. All this will be explained in greater details in Chapter III. Examples of
practical experiments using current-induced reversal (a.k.a. spin injection) as well as
a model for the calculation of the torque can be found for example here[23, 24].

Within the macrospin approximation, it is even possible to evaluate how much
torque (and therefore how much current) is needed to switch a layer using the LLG
equation. Let us consider a magnetized layer of length L, magnetization density Ms,
and with an uniaxial anisotropy field Bu. We neglect the Zeeman field.

Let us introduce the (spherical) local magnetization basis (LMB) (m, e1, e2), with
m doing an angle θ with the reference axis m′ = ez (aligned with the anisotropy axis,
in this instance). e1 is the orthogonal vector in the (ez, m) plane, and e2 = m × e1.
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Figure 3.: Hysteresis loop in magnetic switching. Reading start at the origin, and
follows the arrows. The points indicated on the plot are the remanent
magnetization mrs and the coercive field hc. Not indicated on this
plot is the saturation magnetization, which would be the asymptotic
value reached for very high fields. Retrieved from http://commons.

wikimedia.org/wiki/File:StonerWohlfarthMainLoop.svg#

mediaviewer/File:StonerWohlfarthMainLoop.svg

The second angle of these spherical coordinates will be noted ϕ. In this basis, we
have the identity:

ṁ = θ̇e1 + ϕ̇ sin θe2 (12)

We wrote the time derivative with a dot. The LLG equation reads:

ṁ = m ×
[

− γ0Bu cos θez + αṁ +
Jγ0h̄

eMsL
η(cos θ) sin θe2

]
(13)
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We replaced the torque τ with an expression(see Ref[25, 26] for instance) involving
the current density J :

τ =
h̄

e
Jη(m · ez) (14)

The term η(m · ez) is a shape factor for the torque. It has the following form, with
0 ≤ q < 1:

η(m · ez) =
a

1 + qm · ez
(15)

We now expand Eq. (13) onto the LMB, and obtain the following two equations:

θ̇ = −αϕ̇ sin θ − Jγ0h̄

eMsL
η(cos θ) sin θ (16)

ϕ̇ sin θ = αθ̇ + γ0Bu sin θ cos θ (17)

We then eliminate the angle ϕ and by substituting u = cos θ we obtain the closed
equation:

u̇ =
1 − u2

1 + α2

[
αγ0Buu +

Jγ0h̄

eMsL
η(u)

]
(18)

We obtain out of this that a criterion to destabilize a parallel (antiparallel) configura-
tion is:
∂τ

∂θ

∣∣∣∣
θ=0/π

= ±αBuMsL =
h̄

e
Jη(θ = 0/π) (19)

Obtaining the critical current density out of this expression depends on the actual
form of the torque, which can be obtained either by simulations, or by using expres-
sion Eq. (15) or another one obtained through another model.

I - 2.7 Spin-Torque Oscillator

Let us consider a Ffixed|N|Ffree trilayer, on which we apply a magnetic field strong
enough to tilt the magnetization of the free layer by an angle θ with the z axis, but
weak enough not to affect the fixed layer. As seen on Fig. 2, if tuned carefully, the
torque on the free layer can exactly compensate the damping. This means that
in such a device, the free magnetization would display a steady-state precession
around the fixed magnetization. Such a device is called a Spin-Torque Oscillator
(STO), and is a good candidate for nano- or micro-scale microwave sources [27, 28,
29]
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The Giant Magneto-Resistance (GMR) is an effect of paramount importance in spin-
tronics. It is the first discovered effect, and the very origin of the field, and is still
one of its most important features. In the last twenty years, it has impacted the
way we measure magnetic fields by providing cheap and small magnetic detectors.
In particular, it strongly impacted the data storage industry. Around 1990, the first
magnetoresistive drives appeared, and 1995 the first ones using GMR. Since then,
the areal density of hard drives increased by a factor 10 every 5 or 6 years, a much
higher rate as before.

Magnetoresistance is the fact that the resistance of a piece of ferromagnetic metal
depends on the orientation of an applied magnetic field. The reason behind that
dependence actually depends on the system. Mathematically, it is written as:

δRH =
R(0) − R(H)

R(0)
(20)

Other forms appear in the literature, for example involving resistivities rather than
resistance, or by normalizing by R(H) rather than R(0). Therefore, numbers should
be carefully examined to know what the result is really about.

We start our review of the giant magnetoresistance by giving an historical overview
of its origin until its award as a Nobel Prize. We then introduce in details the
Valet-Fert theory, which a simple and effective theory giving an accurate descrip-
tion of the effect. We use this theory in a toy device to obtain an expression for
its magnetization-dependent resistance. As a conclusion, we give an overview of
modern devices and materials.
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II - 1 H I S T O R Y O F A N O B E L P R I Z E

The first report of magnetoresistance is by William Thompson (Lord Kelvin) in 1851.
He discovered that a piece of iron subjected to a magnetic field exhibited a maximum
resistance if the current flowed parallel to the magnetic field, and minimum if it
was perpendicular. The same experiment in nickel confirmed the same result, only
with a higher amplitude. However, the highest value for the magnetoresistance
he ever obtained was of the order of 5%. This type of magnetoresistance is called
Anisotropic Magnetoresistance, and is due to the spin-orbit interaction inside the
ferromagnet.

In 1988, the groups of Albert Fert[7] in Université Paris-Sud, France and Peter
Grünberg[8] in Forschungszentrum Jülich, Germany, independently found that the
resistance of iron/chromium multilayers depended on the orientation of the applied
magnetic field. Owing to the very large GMR value (almost 50%) obtained by Fert’s
group, we will describe their experiment.

They created a stack of about 30 bcc Fe(001)/Cr(001) bilayers, of varying thick-
ness. The Fe magnetization was lying in-plane, with an antiferromagnetic coupling
between the Fe layers if the Cr layer is thinner than 30 Å. Keeping the system at
liquid helium temperature (4.2K), applying a magnetic field, and flowing a current
through the layers, they obtained various results. Firstly, regardless of this orien-
tation, they observed that the resistance was higher at zero field, and that above a
given value of the field HS , the resistance did not change anymore. Secondly, the
value of HS depends on the orientation of the field. It is higher when applied perpen-
dicular to the plane of growth, because it needs to overcome the shape anisotropy
of the layers, on top of the antiferromagnetic coupling.

These results opened the way to the study of more devices, and created a whole
new field, called spintronics (shorter form of spin electronics). Because the implica-
tions for the electronics industry were tremendous, a lot of money was invested into
this new field. The result was that in less than ten years, IBM released a GMR-based
hard drive, outperforming the AMR-based used at the time[30]. This is the fastest
any technology was brought from the lab to the market.

II - 2 T H E VA L E T- F E R T T H E O R Y

In the original experiment of Fert and Grünberg, the current was flowing parallel
to the plane of growth. This geometry, the easiest to grow, is called the Current In-
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II - 2 T H E VA L E T- F E R T T H E O R Y

Figure 4.: Ratio R(H)/R(H=0) for three superlattices at 4.2K. The current and field
are both along the [110] axis (in-plane). Taken from Ref[7]

Plane (CIP) geometry. The GMR in this geometry is of ballistic origin, and relies
mostly on the electrons (spin-dependent) mean free paths.

However, another geometry arose in 1991[31], where the current was perpendic-
ular to the growth plane. Although not as easy to manufacture as the CIP geome-
try, the physics behind the GMR in this geometry is simpler to explain, thanks to a
two-current model, and a (very simple) equivalent electrical circuit. This model is
summarized into a set of diffusion equations: the Valet-Fert (VF) equations[1].

Based on the linearized Boltzmann equation, these equations relate through a two-
current model the local spin current Jσ (with sigma representing the majority ↑ or
minority ↓ spin specie) to the spin-resolved electrochemical potential µσ. These equa-
tions, which are only applicable in the case of collinear magnetizations and in the
CPP geometry read:

eρσJσ = −∂zµσ (21)

4ρ∗e∂zJσ =
µσ − µ−σ

ℓ2
sf

(22)

The first equation is simply a generalization of Ohm’s law taking spin into ac-
count, with ρσ the resistivity of a given spin specie. The second equation, on the
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other hand, gives the (non-)conservation of the spin current, with a spin relaxation
length (also called spin-flip length) ℓsf giving the depth up to which a current re-
tains its polarization. In particular, a polarized current injected into a normal metal
will become completely unpolarized after a few ℓsf .
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(a) Parallel state
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(b) Antiparallel state

Figure 5.: Graph of the spin-resolved potentials (red for majority, blue for minority)
in a Py|Cu|Py trilayer. The difference between the majority and minority
potentials is known as the spin accumulation, visible mostly at interfaces.

II - 3 F I R S T E X A M P L E : G M R O F A M I N I M A L S P I N - VA LV E

We first give here an extremely simple picture of the calculation of the GMR in the
minimal spin-valve Fig. 7, within the Valet-Fert framework, when spin-flip is not ac-
counted for. In this case, the spin-valve reduces to the equivalent two-current circuit
given in Fig. 6: Thanks to the absence of spin-flip, this model simply assumes that
each spin channel can be considered as a parallel branch of a circuit. Each channel
therefore has a well defined resistance, made up of the resistance of the relevant
channel of each of the two layers in consideration. As the size of the boxes suggest,
the majority channel in the parallel state is much less resistive than the the minority
channel. However, in the antiparallel state, both channel have a similar resistance.
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�

(a) Parallel state

�

(b) Antiparallel state

Figure 6.: Two current model for a spin-valve without spin-flip. The size of the boxes
are proportional to the magnitude of the resistance of the spin channel.

This is the easiest visualization of the origin of GMR. In terms of equations, Kirch-
hoff’s laws simply give us:

RP =
(RA,↑ + RB,↑) (RA,↓ + RB,↓)

RA,↑ + RB,↑ + RA,↓ + RB,↓
(23)

RAP =
(RA,↑ + RB,↓) (RA,↑ + RB,↓)

RA,↑ + RB,↑ + RA,↓ + RB,↓
(24)

This leads to the following expression for the GMR:

δR =
RAP − RP

RP
=

(RA,↓ − RA,↑) (RB,↓ − RB,↑)

(RA,↑ + RB,↑) (RA,↓ + RB,↓)
(25)

If we write RX,↑(↓) = R∗
X ∓ ∆RX where X stands for A or B, this expression becomes:

δR =
∆RA∆RB

(R∗
A + R∗

B)
2 − (∆RA + ∆RB)2

(26)

This expression makes obvious that increasing the GMR means increasing the asym-
metry between the majority and minority channel, while keeping the overall resis-
tance as low as possible. Let us now take a look at a derivation including spin-flip.

II - 4 S E C O N D E X A M P L E : G M R O F A M O R E R E A L I S T I C S P I N - VA LV E

We now show a derivation in the Valet-Fert framework, to compute the GMR in a
spin-valve in the presence of spin-flip. This example, chosen for its pedagogical pur-
pose, is a slightly more general form of the one presented in Ref[1]. Let us consider
a system made of two ferromagnets brought together. We assume the material to be
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T H E G I A N T M A G N E T O - R E S I S TA N C E

the same, while their magnetization can have a different orientation. Because of this,
the notations for the spin species may be confusing. To make this matter as clear as
possible, we introduce two sets of indices for the spin: ± correspond to the sign of
the projection onto the z-axis, while ↑ (↓) describe the majority and minority spins.
These notations are consistent with those of Eq. (21) and Eq. (22). For the calculation
we are about to present, we will consider a case similar to the Fe|Cr|Fe trilayer orig-
inally measured, that is majority spins are antiparallel to the magnetization (↑= −,
↓= +). This distinction is of utmost importance when dealing with a system in the
antiparallel state, as we shall see momentarily. The system is naturally divided in a

� �

Figure 7.: Toy device for the calcu-
lation of GMR within the
Valet-Fert framework. The
left magnetization is fixed
in the up position, while the
right one can be pointing ei-
ther up or down.

left (L) and a right (R) part. We assume the left magnetization to be along the posi-
tive z-axis, and take this as our reference axis. The right part however can be either
in the parallel (P≡positive z-axis), or antiparallel (AP≡negative z-axis). Contrary to
Ref[1], we do not assume that the materials are semi-infinite, nor that they have the
same length. We will however recover those results in a final step, to prove that our
derivation is more general than the one presented in the seminal article. The reason
behind the choice of another system is threefold. First, although formally correct,
the original derivation assumes a current flowing in an infinitely long resistive sys-
tem, which we did not find pedagogically satisfying. Second, to define the GMR in
an infinite system, the ratio should be defined on equivalent resistivities, rather than
resistances.
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II - 4.1 Some useful notations

We introduce new notations for the potential, namely µc which is the usual electro-
chemical potential, ∆µ the spin accumulation (the antisymmetric part of the spin-
resolved potential) and µ̄ the symmetric part of the spin-resolved potential:

µ± = µ̄ ± ∆µ (27)

µc = 2ρ∗

(
µ+

ρ+
+

µ−

ρ−

)
(28)

Because these equations depend on the spin-dependent resistivity, they also de-
pend on the magnetic orientation. We have the following decomposition:

ρ↑(↓) = 2ρ∗(1 ± β) (29)

We introduced β, the spin-asymmetry of the material, defined as β = (ρ↓ − ρ↑)/(ρ↓ +
ρ↑).
There are two sets of boundary conditions. At the edges of the sample, we have:

µc(−ℓL) = eVb (30)
µc(+ℓR) = 0 (31)
∆µ(−ℓL) = 0 (32)
∆µ(+ℓR) = 0 (33)

And a the interface, we have:

J±(0
−) = J±(0

+) (34)
µ±(0

−) − µ±(0
+) = r±J±(0) (35)

Where r± is a spin-dependent interface resistance. It has the same structure as the
bulk resistivity r± = 2r∗(1 ± γ), where γ is the interface spin-asymmetry. However,
since this interface behaves essentially as a zero thickness bulk material, it does not
bring any new physics. For the sake of simplicity, we assume that r∗ = 0, making
the spin-resolved potential continuous at the interface.
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II - 4.2 Derivation example: the spin accumulation and spin currents in the antiparallel

state of spin-valve

We assume that the system is in its antiparallel state. With the relation between
majority/minority and the projection introduced before, we have:

ρL
± = 2ρ∗(1 ± β) (36)

ρR
± = 2ρ∗(1 ∓ β) (37)

With those definitions, we obtain for the spin-resolved potentials:

µL
± =

1 − β2

2
µc + β∆µ ± ∆µ (38)

µR
± =

1 − β2

2
µc − β∆µ ± ∆µ (39)

Eq. (21) and Eq. (22) give for each side:

∂2
z ∆µ =

1

ℓ2
sf

∆µ (40)

∂2
z µc = 0 (41)

Solving those equations gives:

∆µ = Aie
z/ℓsf + Bie

−z/ℓsf (42)
µc = Ciz + Di (43)

With i indicating the L or R side.
From Eq. (34), we find that J = J+ + J− is not only continuous, but also con-

stant through the whole system. This implies that CL = CR = C, with the relation
C = 2eρ∗J . However, DL Ó= DR. Similarly, one of the consequence of Eq. (35) is
that ∆µ(0−) = ∆µ(0+), that is the spin-accumulation is continuous at the interface.
Finally, we obtain from those interface conditions:

AL + BL = AR + BR (44)
AL − BL − AR + BR = βCℓsf (45)

We obtain also from the boundary conditions:

ALε−1
L + BLεL = 0 (46)

ARεR + BRε−1
R = 0 (47)
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with εL/R = eℓL/R/ℓsf .
A few steps of algebra give finally the following results:

∆µL =
1 − ε−2

R

ε2
L − ε−2

R

βeρ∗ℓsf J

(
ε2

Lez/ℓsf − e−z/ℓsf

)
(48)

∆µR =
1 − ε2

L

ε2
L − ε−2

R

βeρ∗ℓsf J

(
ε−2

R ez/ℓsf − e−z/ℓsf

)
(49)

JL
± =

1 ∓ β

2
J

(
1 ± β

1 ∓ β

1 − ε−2
R

ε2
L − ε−2

R

[
ε2

Lez/ℓsf + e−z/ℓsf

] )
(50)

JR
± =

1 ± β

2
J

(
1 ± β

1 ± β

1 − ε2
L

ε2
L − ε−2

R

[
ε−2

R ez/ℓsf + e−z/ℓsf

] )
(51)

J =
ε2

L − ε−2
R

2(1 − ε−2
R )(1 − ε2

L)βℓsf − (ε2
L − ε−2

R )(1 − β2)(ℓL + ℓR)

1 − β2

2ρ∗
Vb (52)

µL
c =

2(1 − ε−2
R )(1 − ε2

L)βℓsf − (1 − β2)(ε2
L − ε−2

L )(z + ℓR)

2(1 − ε−2
R )(1 − ε2

L)βℓsf − (1 − β2)(ε2
L − ε−2

L )(ℓL + ℓR)
eVb (53)

µR
c =

(1 − β2)(ε2
L − ε−2

L )(z − ℓR)

2(1 − ε−2
R )(1 − ε2

L)βℓsf − (1 − β2)(ε2
L − ε−2

L )(ℓL + ℓR)
eVb (54)

To recover the results in Ref[1], we take ℓL = ℓR → ∞, and we suppose that J is
the applied current in the system, without evaluating the (infinite) potential needed
for it. We obtain:

∆µL = βeρ∗ℓsf Jez/ℓsf (55)

∆µR = βeρ∗ℓsf Je−z/ℓsf (56)

JL
± =

1 ∓ β

2
J

(
1 ± β

1 ∓ β
ez/ℓsf

)
(57)

JR
± =

1 ± β

2
J

(
1 ± β

1 ± β
e−z/ℓsf

)
(58)

II - 5 M O D E R N G M R D E V I C E S

Modern devices are usually based on the spin-valve design. The basic concept of
a spin-valve consists in two ferromagnetic layers sandwiching a normal layer. Al-
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tough we deal exclusively in this thesis with all-metallic spin-valves, it is worth
noting that actually, replacing the normal layer by a thin oxyde layer through wich
the electron can tunnel gives even better results. Such a device is called a tunnel
junction, and is intensively studied[32, 33].

�
Figure 8.: Sketch of the working prin-

ciple of a spin-valve

In spin-valves, care is taken to be as close as the macrospin limit as possible, in
order to consider each layer to have “a” magnetization direction. By various means
(anisotropy, antiferromagnetic coupling with another magnetic layer, pinning, high
coercive field, etc...), one of the ferromagnetic layer is made to have its magnetiza-
tion fixed. By this, we mean that a much higher magnetic field is needed to change
the direction of this layer (called the fixed layer) than the other (the free layer).

Permalloy (an alloy of 80% Ni, 20% Fe, usually abbreviated Py) is the material of
choice for the free layer. It is an alloy of readily available metals in any lab, and has
the property to have both a strong magnetic susceptibility, as well as low coercive
field. It also has a strong spin asymmetry (reported values up to 0.76[34]).

Spin-valves are the simplest devices exhibit GMR, and are well-described by the
Valet-Fert theory. The GMR is taken in this case between the parallel and antiparallel
configurations for the magnetizations. Switching one of the magnetizations (that of
the free layer) is usually done by applied an appropriate magnetic field. However,
another route for switching exists. Using the concept of spin-transfer torque (that
will be introduced in Chapter III), it is possible to switch the free layer by subjecting
it to a polarized current. Such a current can be easily achieved in a spin valve, by
using the fixed layer as a polarizer. Therefore, applying a voltage to a spin-valve
and let the current flow is one way of switching from a magnetic configuration to
another.

The current density needed to switch a layer has been decreased over the years
thanks to cleaner samples, better choice of materials, and so on. The current refer-
ence value[35, 36, 37] for the current density is 107 A · cm−2.

The highest GMR ratio reported are about 220% for CIP-GMR[38].
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Metal ℓsf [nm]
Ag 30
Al 500
Au 30
Co 60
CoFe 12
Cr 6
Cu 500
Fe 60
Ni 21
Pt 14
Py (NiFe) 5.5
Ru 14
Ta 1.8

Table 1.: Values of the spin-flip length for usual magnetic and non-magnetic metals.
Values can vary quite a lot, depending on the measurement technique and
the temperature. These values are the one used in our simulations. More
details can be found in Ref[39]

II - 6 S P I N - O R B I T C O U P L I N G A N D S P I N - F L I P

The spin-orbit interaction, or spin-orbit coupling is an effect occurring when the spin
of an electron interacts with its motion, for example due to the magnetic field created
by a nucleus. A number of theories explain particular cases, such as the Rashba
effect, or the Dresselhaus effect. As a general rule of thumb, spin-orbit effects are
more prominent in heavy atoms, such as gold, platinum.

From a spintronics point of view, the spin-orbit interaction is the main source
of spin relaxation, and the origin of the finite spin-flip length (a.k.a. spin-diffusion
length). This length ℓsf , introduced in the Valet-Fert theory, corresponds to a mean
free path of the orientation of a spin. It can be noted that because of the loss of
translation symmetry, edges and interfaces can induce some more spin-orbit cou-
pling, leading to even more spin-flip.

Spin-flip is also one of the ingredients necessary for the existence of the out-of-
plane spin-transfer torque (which again will be introduced in Chapter III)[40]. This
specific component is of paramount importance to explain in any detail the motion
of domain walls subjected to an electrical current.
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III
S P I N - T R A N S F E R T O R Q U E

As we saw in the previous section, the Valet-Fert formalism describes well systems
in a collinear state (either parallel or antiparallel). In particular, it is sufficient to
compute (within the correct set of approximation) the value of the GMR. However,
this theory fails entirely to deal with non-collinear systems.

In collinear systems, we saw that the magnetization influences the spin polariza-
tion of the current, giving rise to the GMR. The opposite is also true, and the in-
fluence of the electron’s spin over the surrounding magnetization is what we call
the spin-transfer torque. It occurs whenever spin sources or sinks are present in the
system, therefore yielding a non-conservation of the spin current.

DEFINITION:
The spin-transfer torque (STT) is the non-conserved part of the spin current

that is given to (or taken from) the magnetization.

In part 1, we will give a slightly more in-depth overview of the torque, and how
it impacted the community. In part 2 we will see how it came to be discovered. In
part 3 we will consider a toy model to illustrate that it is a fundamental effect with
very few assumptions.

III - 1 O V E RV I E W A N D C O N S E Q U E N C E S I N S P I N T R O N I C S

In collinear systems, the only source of non-conservation are spin-flip processes.
And because they originate from the spin-orbit interaction, the lost spin is not given
to the magnetization, but to the lattice. However, in non-collinear systems, spin
currents are filtered when reaching a magnetic layer. If the magnetization and the
current polarization are not collinear, the transverse part is absorbed by the layer as
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a torque. In turn, if enough momentum is deposited onto the layer, its exerts an in-
fluence on the magnetization by modifying its direction. In multilayers, this means
switching the magnetization between a parallel and antiparallel state, or start a sus-
tained precessional motion. In domain walls, STT can start a motion of the position
of the wall. In that case, the critical current density is more difficult to evaluate, be-
cause the wall may be pinned by a defect in the lattice. The shape and nature of this
defect being extremely hard to include into any model, one has to perform very fine
numerical simulations to take it into account. A more common route is to get rid
(as much as possible) of the influence of this defect by heating the wall locally. This
extra amount of energy helps overcoming the Arrhenius-like potential barrier, and
put the wall into motion.

At first, the facts that STT vanishes in collinear states (no transverse part in the
spin current) and that it can switch magnetization between parallel and antiparallel
states seem impossible to reconcile. To start switching the magnetization, the torque
needs to be non-zero. What makes it all possible are thermal fluctuations. What we
consider as the magnetization axis is always an average position. Therefore, if the
torque is strong enough at angles close to its zero values, and if the fluctuations are
strong enough, switching can occur. This leads to the conclusion that higher temper-
atures help decreasing the critical current for switching. Additionally, higher tem-
peratures reduce the saturation magnetization, leaving fewer spins to be switched,
and therefore reducing the total momentum that needs to be transferred.

III - 2 H I S T O R Y O F S P I N - T R A N S F E R T O R Q U E

The question of non-longitudinal magnetic systems actually came up a long time
before the Valet-Fert theory, with the prediction in the late 1970s by Berger[41] that
spin torques should be able to move domain walls. However, because of the lack
of maturity in the fabrication of nanoscale devices at the time, and of the very high
current densities required, the concept of spin transfer remained largely ignored for
another twenty years.

In an article[42] in 1989 where he calculated the interlayer exchange coupling of
two ferromagnets separated by an insulating tunnel barrier, Slonczewski looked at
two cases which would later lead the way to a systematic study of spin transfer
torque. He first estimated the spin current flowing between two ferromagnetic elec-
trodes, with non-collinear magnetization (which is the source of the interlayer ex-
change coupling). Then, he made the same calculation while applying a bias voltage
on the junction.
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Then, Berger and Slonczewski published independently, and roughly at the same
time, an article[2, 3] predicting that it should be possible to switch the magnetiza-
tion of a layer in a multilayer nanopillar, at reasonable current densities. More pre-
cisely, Slonczewski showed that two types of magnetic excitations were possible,
depending on the applied field, and the device design. The first, a static excitation,
is simply switching from one magnetic configuration to another (for instance an-
tiparallel to parallel). The second is a dynamical state, where one magnetization
precesses steadily, see Section I - 2.7. STT was first experimentally observed around
2000 [43, 44, 45]

The main limiting factor against the excitation of either mode is the critical current
density. Advancing lithographic techniques and better material choices have made
it possible to reduce it, to the state-of-the-art values obtained nowadays. Values
around 107A·m−2 are reported for metallic multilayers[35, 36, 37], and can go down
by two orders of magnitude when dealing with tunnel junctions[46].

III - 3 T O R Q U E A N D S P I N F I LT E R I N G

The effect known as spin filtering is the fact that, due to different transmissions
and reflections for different spin orientation, a ferromagnet will allow more majority
spins to be transmitted, and more minority spins to be reflected.

III - 3.1 Spin filtering of an unpolarized current

An unpolarized charge current obtains a polarization if it encounters a ferromagnet
on its path. If we consider a ideal ferromagnet (t↑ = 1, t↓ = 0, r↑ = 0, r ↓= 1), it will
separate the spins in the unpolarized current, allowing the majority to pass through,
and reflecting the minority.

Fig. 9 gives an idea of how the transmitted current becomes polarized. However,
for simplicity, only half of the effect is shown here. Indeed, only the transmitted
part is shown polarized. It is important to note that the once unpolarized current
will become polarized because of the reflected minority spins.

A real ferromagnet will differ from an ideal one simply by not letting all the ma-
jority spins through, and reflecting some. Similarly, some minority spins may be
transmitted instead of being reflected.
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Figure 9.: A simple picture illustrat-
ing how a unpolarized cur-
rent (as many up and down
spins) becomes polarized
after going through a ferro-
magnet.

III - 3.2 Spin filtering of a polarized current

Now, assuming that a polarized current impacts a (still ideal for simplicity) ferro-
magnetic layer, with a magnetization that is not collinear to the polarization of the
current, we know that a torque is created, see Fig. 10.

Figure 10.: Drawing of filtering on
a polarized current, and
the resulting torque. The
current comes from the
left, becomes polarized by
transmission through the
magnet, and leaves some
momentum as spin trans-
fer torque.

Because spin currents do not arise naturally, one needs some of creating them.
The usual way to produce them is by using a second ferromagnetic layer to polarize
the incoming current, also thanks to the spin filtering effect. However, because of
the presence of a second ferromagnetic layer, multiple reflections and transmission
take place. And because the reflected spins have a strong component opposite to the
incoming ones, the net effect is to reduce the value of the torque one would find by
simply considering the case in Fig. 10.

Fig. 11 displays the effect the presence of a second layer has in the two cases cor-
responding of the two possible direction of the current. Let us consider the case
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when the (unpolarized) current comes from the left. The transmitted part is polar-
ized along mA (the magnetization of layer A), and the reflected part along −mA.
This transmitted part is then filtered by layer B, and separated into a transmitted
part polarized along mB , and reflected along −mB . The process iterates, by alter-
nating orientation. And although, the value of the torque is reduced, its orientation
remains the same as the leading order (first transmission/reflection).

���������	����	
�

(a) Current coming from the left
���������	����	
�

(b) Current coming from the right

Figure 11.: Drawing of how a current becomes polarized after passing through and
being reflected multiple times between two non-collinearly magnetized
ferromagnetic layers. Transmitted currents are on the same line, while
reflected are on the line directly below. Reading starts from the origin of
the current. Resulting torques are displayed on each layer.

Let us now examine how spin filtering works with a very simple quantum model.

III - 4 I L L U S T R AT I O N W I T H A T O Y M O D E L

Let us first set up some notation conventions. Bold symbols correspond to vectors
in spin space, and arrowed symbols correspond to vectors in real space. Let us now
consider a magnetic layer, with its magnetization pointing to the z-axis. Let us now
consider an incoming electron (þk = kþex), with its spin making an angle θ with the
z-axis, in the (x, z) plane. We describe the magnetic layer in the scattering formalism
with its transmission (resp. reflexion) spin-dependent coefficients t↑, t↓ (resp. r↑, r↓).
By doing so, we are free of any model to describe the ferromagnetic layer, and we
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simply assume that there is a spin-dependence of the properties of the layer. The
wave function describing this incoming electron is:

Ψin =
eikx

√
Ω

(
cos

θ

2
| ↑〉 + sin

θ

2
| ↓〉

)
(59)

This form may be found in any book of basic quantum mechanics, in the chapter
dealing with spin-1/2 systems. It is obtained for instance by applying the rotation
properties to the | ↑〉 state. Ω is a normalization factor.

The transmitted and reflected parts are, respectively:

Ψt =
eikx

√
Ω

(
t↑ cos

θ

2
| ↑〉 + t↓ sin

θ

2
| ↓〉

)
(60)

Ψr =
e−ikx

√
Ω

(
r↑ cos

θ

2
| ↑〉 + r↓ sin

θ

2
| ↓〉

)
(61)

If we write σ = (σx, σy, σz) the vector of the three Pauli matrices, and m the mass
of an electron, the spin current density operator is given by:

þJ =
h̄2

2m
Im

[
Ψσþ∇Ψ

∗
]

(62)

This leads to the following expressions for the various spin currents:

J in =
h̄2k

2mΩ
[sin θex + cos θez] (63)

J t =
h̄2k

2mΩ

[
Re (Tmx) sin θex + Im (Tmx) sin θey +

(
|t↑|2 cos2 θ − |t↓|2 sin2 θ

)
ez

]
(64)

Jr = − h̄2k

2mΩ

[
Re (Rmx) sin θex + Im (Rmx) sin θey +

(
|r↑|2 cos2 θ − |r↓|2 sin2 θ

)
ez

]

(65)

We introduced Tmx = t↑t∗
↓ and Rmx = r↑r∗

↓. By definition, the torque is the difference
of spin current on either side of the magnet. We note τ the torque areal density, and
we have τ = J in +Jr − J t. By using |t↑|2 + |r↑|2 = 1 and |t↓|2 + |r↑|2 = 1, we obtain:

τ =
h̄2k

2mΩ
sin θ

[
(1 − Re (Tmx + Rmx)) ex − Im (Tmx + Rmx) ey

]
ö (66)

We recover some important results from this expression. The torque vanishes for
θ = 0 and θ = π (collinear configurations), but also if t↑ = t↓ and r↑ = r↓ (no spin
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filtering). However, provided we are not in one of those cases, we can see that the
spin current is not conserved. The spin-transfer torque is a intrinsic consequence
of spin-filtering, regardless of the detailed properties of the material. Worth noting,
the torque does not have any component on the magnetization (here z axis). It is
therefore entirely orthogonal (transverse) to the magnetization. Although, nothing
prevents it to have components on both transverse axes x and y, the imaginary part
of the coefficients was assumed to be small, and people focused on the in-plane (x in
our case) torque, with good results. We will see in the next section that discrepancies
arose, and that accounting of the out-of-plane torque solved them.

III - 5 I N - P L A N E A N D O U T- O F - P L A N E T O R Q U E S

Other than dealing with multilayers, the results of Slonczewski and Berger opened
the possibility of influencing domain walls (more often than not in nanowires). How-
ever, although the micromagnetic simulations indeed showed that it was possible,
the predicted threshold current needed for starting the displacement was much
higher than what was experimentally measured.

The out-of-plane component was found[15, 47] to play an important role in do-
main wall motion, by destabilizing the wall, and thus reducing its threshold current.
From a theoretical point of view, the solution consisted of including the out-of-plane
torque in the LLG equation.

Originally, the in-plane torque was introduced as a term collinear to the damping.
Depending on the sign of the torque, it could either balance it out, or increase it fur-
ther. The out-of-plane was then introduced thanks to a single additional parameter
βτ = −τ2/τ1, where τ1 is the in-plane torque, and τ2 is out-of-plane. The minus sign
is to make it a positive value in most cases. In the end, this βτ is merely a scaling
factor for the torque, allowing simpler notations. It is also consistent with the first
additional term in the LLG equation, namely the Gilbert term, proportional to the
Gilbert damping coefficient α1.

III - 6 A N G U L A R D E P E N D E N C E O F T H E T O R Q U E

According to Eq. (66), the simple picture of the Slonczewski torque gives a sinusoidal
dependence of the torque with the angle that the polarization of the spin current

1 Please note that the subscript τ is not generally used in the literature, but it allows us to make a
clear distinction between the out-of-plane torque factor, and the spin asymmetry of a material, see
Section II - 2.
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does with the magnetization of the magnetic layer. Although The derivation lead-
ing to this result gives the main contribution, it neglects one major aspect of any
device. We assumed the existence of a spin-polarized current impacting a magnetic
layer. In any device, such a spin current is created by placing a second (polarizing)
magnetic layer before the one we want to act upon thanks to STT. And the presence
of this first layer may change everything, because of the multiple reflections between
the layers. In some extreme cases, those additional contributions may lead to a com-
pletely different angular dependence, where the torque vanishes for an intermediate
angle 0 < θ∗ < π. When this occurs, the torque is said to be “wavy”.

Such a wavy torque may lead to a steady-state precession, if the damping does
not compensate. Depending on the sign of the current, this angle becomes a stable
or unstable equilibrium position for the magnetization. Such a behavior has been
reported and studied[48, 49, 50, 51, 17], because of the possibilities it offers to create
spin-torque oscillators without the need of an external magnetic field.
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(a) Non-wavy torque
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(b) Wavy torque

Figure 12.: Example of the angular dependence of the torque (measured on
the second magnetic layer) in two difference stacks of the type
Cu10|F10|Cu10|Py10|Cu10, where F stands for Py (left plot) or Ni (right
plot). The indices correspond to the thickness of the layer in nm. On the
left plot, one can see the regular angular dependence of the torque with
the angle θ. However, on the right plot, this dependence is quite different,
with the presence of an angle θ∗ where the torque goes to zero. It is then
qualified as wavy, and θ∗ is the waviness angle.
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In Ref[17], Waintal et al. presented a geometric criterion to determine whether the
torque exerted on a magnetic layer is wavy or not. The system under consideration
is a N|FA|N|FB|N multilayer (N is a normal metal, F is a ferromagnet). This crite-
rion however works under some assumptions. First, mixing coefficients (describing
transverse behavior, see Section V - 3.2) need to be small, which is the case in metal-
lic systems. Second, the system must be thin enough so that spin-flip scattering can
be neglected. The consequences of the first condition is that the torque is orthogonal
to the magnetization of the relevant layer, while the second ensures that the spin
currents on the outer normal layers are collinear to the adjacent magnetization.

The construction works by drawing the spin currents, which are collinear to their
respective magnetization. Then, by applying the definition of the torque, we get the
following expressions:

þτtot = þJA − þJB (67)

þτA = þJA − þJN (68)

þτB = þJN − þJB (69)

In those expressions, þτtot is the total torque deposited on both magnetic layers, þτA

(resp. þτB) is the torque on layer A (resp. B), and þJA, þJB , þJN are the spin currents in
the normal layer respectively before layer A, after layer B, and between them. From
those definitions, we get that þτtot = þτA + þτB . Consequently, the total torque is found
by drawing the vector going from the tip of þJB to the tip of þJA. As for the individual
torque, they are found by drawing the orthogonal line to each spin current, and
finding their intersection. Fig. 13 shows this construction.

In Fig. 13, ‖ þJB‖ > ‖ þJA‖. The consequence of this is that þτB can change its sign
when θ changes. Stated in another way, this also means that there is an angle θ∗ for
which þτB = 0. To the contrary, if ‖ þJB‖ < ‖ þJA‖, it is obvious that the torque on layer
B will never go to zero.

To obtain stronger spin currents on layer B, an obvious condition is to have very
different materials making up each layer. As we shall prove mathematically in Sec-
tion X - 2, the main parameter to consider is the spin asymmetry of the material.
Within the same set of approximations, Ref[17] report a result that we obtained with
a slightly different derivation (see Eq. (306)):

cos θ∗ =
βA

βB

rB + 1

rB
(70)

Where rA and rB are the equivalent resistance (per unit area) of the relevant mag-
netic layer, the neighboring outer normal layer, as well as the interface. βA and βB
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(a) θ > θ∗ (b) θ < θ∗

Figure 13.: Geometric construction for waviness. The current þJA and þJB are repre-
sented by the thick arrows, the torques by the thin ones. The torque is
always orthogonal to the related current (within the relevant set of ap-
proximations, see text). The waviness angle θ∗ is the angle for which þτB

goes to zero.

are the equivalent spin asymmetry of the same group. The link between those quan-
tities and the material parameters of the constituents will be introduced formally in
Section VI - 5. Their consequence is simply that to obtain a wavy structure, layer B
must be as polarized and as resistive as possible, while layer A must be weakly po-
larized, and have a lower resistivity. Of course, these conditions have to be balanced
with the need to have a low critical current density. For instance, a thicker layer B
means a higher resistance, which is beneficial to waviness. However a thicker mag-
netic layer means a higher total spin, and therefore more momentum needed for
switching, which in the end translates to a higher critical current density.

We introduced in this section all the concepts and tools necessary to understand
the physics of the spin-transfer torque that will be discussed in our results.
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T H E R M O E L E C T R I C I T Y

In this section we will introduce some effects related to heat transport. In partic-
ular, we will describe the relevant thermoelectric effects for our consequent work.
Namely, we introduce the Seebeck and Peltier effects, which have been known for
over a century. Then, we will give their extension for ferromagnets, where the spin
of the electron has an influence. This leads the way to the spin-dependent Seebeck
and Peltier effects, discovered much more recently[4].

IV - 1 S E E B E C K A N D P E LT I E R E F F E C T

We first give an historical overview and description of the phenomena, then give
a description of their main application, and finally give a simple derivation of the
expression of the thermoelectric coefficients in the Landauer-Bütikker formalism, as
well as their consequences.

After reviewing the history of those effects, we give a short description of the
working principle of the main application of thermoelectricity as of yet, thermocou-
ples. Then, we present the hopes for the future of thermoelctric effects in terms of
energy production/gathering, and its main criterion, the figure of merit ZT.

IV - 1.1 History of discovery

The Seebeck effect describes the conversion of a temperature difference across a con-
ductor into electricity. In 1821, the German-Estonian physicist Thomas Johann See-
beck found that a loop consisting of two different materials, soldered together to
create two junctions, exerted an influence over a compass needle when one of the
junctions was heated. He thought that the difference of temperature induced a mag-
netization in the metals, and called this effect thermomagnetism. However, two
years before, Hans Christian Ørsted showed that an electrical current in a loop cre-
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ates a magnetic field. Much to Seebeck’s displeasure, he offered an explanation
of Seebeck’s discovery in terms of electrical currents. This interpretation, that we
now know to be true, was rapidly accepted by the community, and was more aptly
named the “thermoelectric effect”. The formula for the voltage ∆V created by a tem-
perature T0 + ∆T across one metal X , where T0 is the room temperature is given by:

∆VX =
∫ T0+∆T

T0

SX(T )dT (71)

The voltage across a junction between two materials A and B is:

∆V = ∆VA − ∆VB =
∫ T0+∆T

T0

(
SA(T ) − SB(T )

)
dT (72)

Figure 14.: Experimental setup used
by Seebeck. Two differ-
ent metals are soldered,
creating two junctions.
One of the junctions is
heated while the other one
stays at a lower temper-
ature. The needle in the
middle of the loop will
align in response to the
magnetic field induced
by the current flowing
in the loop. Retrieved
from http://www.

ling.fju.edu.tw/

hearing/historical%

20review1821.htm

The converse effect was discovered a few years later, in 1834, when Jean Charles
Athanase Peltier found out that flowing a current would heat or cool a thermoelec-
tric junction. In 1838, Heinrich Friedrich Emil Lenz showed that heat would be given
or removed depending on the sign of the current. The law giving the heat flux per
second is:

Q̇ = (ΠA − ΠB)IAB (73)
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with ΠA (ΠB), the Peltier coefficients, and IAB the current across the junction from
A to B.

IV - 1.2 Thermocouples

Nowadays, the Seebeck effect is used to create thermocouples. These devices allow
for the inexpensive measurement of temperature differences. Another advantage is
that it does not need any external source of energy. However, the accuracy is limited,
and precision beyond the °C is difficult to achieve[52].

A thermocouple works by creating a junction between two wires of dissimilar
conductors and applying heat to it. The other end of the wire is kept at room tem-
perature, and the voltage measured between the two ends of the wires gives the
temperature difference, knowing the Seebeck coefficients of the pair of materials.

�������

�������

	

����
������

������
������ Figure 15.: Working principle of a
thermocouple, with its
cold junction compensator.
Two different metals are
connected and heated
on one side. On the
other side, kept at room
temperature, a voltage
proportional to the tem-
perature difference builds
up. The cold junction com-
pensator allows for the
conversion from voltage
to temperature, taking
into account the influence
of the room temperature.

In practice, the Seebeck coefficients vary with temperature, and are tabulated at
0°C. Therefore, in order to make the conversion from voltage to temperature differ-
ence, a map between the current room temperature and the tabulated coefficients
needs to be provided. An integrated circuit called a cold junction compensator pro-
vides a voltage corresponding to the thermocouple voltage between 0°C and the
room temperature. Using this additional voltage, the temperature difference can be
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extracted. However, because this method matches the actual behavior of the ther-
mocouple to a tabulated curve, an error is introduced in the resulting temperature
measurement.

The simplicity of the device, as well as the large range of operating temperatures
(from -270°C up to almost 2000°C, depending on the materials[53]) still make ther-
mocouple popular ways of measuring temperature in science, industry, but also for
home and office thermostats and security devices.

IV - 1.3 Microscopic origin

In this section, we aim at providing a simple model to explain the origin of the
thermo effects, and an expression of the coefficients in terms of microscopic quanti-
ties.

Let us consider a piece of scattering material S connected to two reservoirs at
thermal equilibrium. Each reservoir has a given temperature θ = kBT and electro-
chemical potential µ.

S

Figure 16.: Cartoon of the scatterer
S with the two reservoirs
(grayed) and their respec-
tive potential and temper-
ature.

We use the Landauer formalism to describe the quasi-one dimensional transport
through the scatterer. We are interested in the electrical current I and the heat cur-
rent IQ.

An incoming electron at energy E contributes an amount dIinc to the current. For
a unidimensional conductor, this current is:

dIinc = evF
dn

dE
δE (74)

n is the density of state per unit length, therefore
dn

dE
δE is the number of states per

unit length, at energy E.

dn

dE
=

dn

dk

dk

dE
(75)
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We use the relation
dE

dk
=

1

h̄
vF , and periodic boundary conditions to evaluate

dn

dk
.

eiknL = 1 ⇒ kn =
2πn

L
, n ∈ N (76)

(negative n give electrons propagating in the other direction). This gives
dn

dk
=

1

2π
.

It is worth noticing that in (quasi-)1D systems, the energy does not depend on the
channel. Finally, we obtain:

dIinc =
e

h
dE (77)

Similarly, one state gives a contribution dIE =
1

h
EδE to the energy current.

To get the total current we need the probability to find and electron at the energy
E, given by the Fermi-Dirac function f(µ, θ, E) = 1/(1+ exp[−(E − µ)/θ]). Finally,
the total transmission of the scatterer is given by the contribution of each of its chan-
nels through T(E) = Tr(t†t), where t is its transmission matrix.

The transport through S is given, in the Landauer formalism, by:

I =
2e

h

∫
T(E)

[
f(µ1, θ1, E) − f(µ2, θ2, E)

]
dE (78)

IE =
2

h

∫
ET(E)

[
f(µ1, θ1, E) − f(µ2, θ2, E)

]
dE (79)

with I , the electrical current and IE the energy current through S. In order to get
the heat current, one has to use the thermodynamics identity dE = TdS + µdn. This
means that the heat current is the part of the energy current that is not proportional
to the electrochemical potential. Let us use the following change of variables:

θ = (θ1 + θ2)/2 (80)
δθ = θ1 − θ2 (81)
µ = (µ1 + µ2)/2 (82)

δµ = µ1 − µ2 (83)

Assuming low enough temperatures, we also use the Sommerfeld expansion, given
by:

f(µi, θi, E) = Θ(µi − E) − π2

6
θ2

i δ′(E − µi) (84)

In the limit of the linear response, we evaluate the contribution of a difference in
either potential or temperature on the two currents I and IE .
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A) µ1 = µ2, θ1 > θ2

By simply replacing 84 in 78, we get:

I = −π2

6

2e

h

∫
T(E)(θ2

1 − θ2
2)δ

′(E − µ)dE (85)

This gives after using the definition of the δ′ distribution:

I =
2e

h

π2

3

∂T

∂E
(µ)θδθ (86)

This means that a temperature gradient can give rise to a current if and only if the
transmission depends on energy. As for the energy current:

IE = − π2

6

2

h

∫
ET(E)(θ2

1 − θ2
2)δ

′(E − µ)dE (87)

=
2

h

π2

3




µ
∂T

∂E
(µ)

︸ ︷︷ ︸
∝ µdn

+T(µ)




θδθ (88)

From this expression, we finally extract the heat current, using the criterion men-
tioned at the beginning of this section:

IQ =
2

h

π2

3
T(µ)θδθ (89)

B) µ1 > µ2, θ1 = θ2

The same derivation as before, keeping only the lowest order of the Sommerfeld
expansion, gives as well the expressions for the current and energy current:

I =
2e

h
T(µ)δµ (90)

IE =
2

h
µT(µ)δµ +

2

h

π2

6
θ2

[
∂

∂E
(ET)

]µ1

µ2

=
2

h

(
T(µ) +

π2

6

∂2
T

∂E2
(µ)

)
µδµ +

2

h

π2

3
θ2 ∂T

∂E
(µ)δµ (91)

Once again ignoring terms proportional to µ, we obtain:

IQ =
2

h

π2

3
θ2 ∂T

∂E
(µ)δµ (92)

42



IV - 1 S E E B E C K A N D P E LT I E R E F F E C T

Finally, we can summarize the thermoelectric transport with:




I

IQ



=

2

h




eT(µ) e
π2

3
θ

∂T

∂E
(µ)

π2

3
θ2 ∂T

∂E
(µ)

π2

3
θT(µ)







δµ

δθ




(93)

Of course, we recover the well known result G =
2

h
e2
T. Because the conductance

depends on the length of the sample, we prefer expressing Eq. (93) in terms of local
current densities and conductivities. Simply noting that G = σΣ/L, where Σ is the
cross section and L is the length of the sample. We take the limit of small L and
easily relate the current densities to the local voltage and temperature gradients:

(
J

JQ

)
= −

(
σ σS

σΠ κ

) (
∂V

∂T

)
(94)

With this formulation, we obtain the microscopic expression of the macroscopic ther-
moelectric coefficients:

S =
π2

3

k2
B

e
T

∂ ln σ

∂E
(95)

Π = ST (96)

κ =
π2

3

(
kB

e

)2

σT (97)

Eq.(95) is the microscopic definition of the Seebeck coefficient, Eq.(96) illustrates one
of the Onsager reciprocal relations between the Seebeck and Peltier effects, and fi-
nally Eq.(97) is known as Wiedemann-Franz’ law. It is worth noting that during
the derivation, we assumed that heat was transported by electrons only, which is
the limit of validity of Wiedemann-Franz’ law. A more complete description of heat
transport would need to include the contribution of phonons, magnons, etc. In par-
ticular, this description is not enough to describe the spin Seebeck effect [54, 55, 56].
Similarly, some thermoelectric effects like the Nernst effect require a special treat-
ment, because of the influence of an external magnetic field.

Finally, we give in Table 2 a list of the Seebeck coefficient for various materials:
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material S [µV · K−1] s [kB/e]

Ag 1.4 0.0163
Al -1.7 -0.0197
Au 1.6 0.0186
Bi -69.3 -0.804
Cd 3.3 0.0383
Co -22 -0.232
Cu 1.9 0.022
Fe 13.7 0.159
Hg -5.7 -0.0661
K -15.1 -0.175
Mg -1.3 -0.0151
Mo 6.3 0.0731
Na -7.8 -0.0905
Ni -22.1 -0.256
Ni80Fe20 (Permalloy) -18 -0.232
Ni43Cu56.5Mn0.5 (Copel) -39.3 -0.456
Ni45Cu55 (Constantan) -39.3 -0.456
Ni80Cr20 (Nichrome) 16.7 0.193
Ni90Cr10 (Chromel) 22.7 0.263
Ni95Mg2Al2Si1 (Alumel) -18.6 -0.216
Pb -1.3 -0.0151
Pd -10.2 -0.118
Pt -5.7 -0.0661
Sb 41.7 0.484
Sn -1.5 -0.0174
W 2.3 0.0267
Zn 1.8 0.209

Table 2.: Values of the Seebeck coefficients for a variety of metals and common ther-
moelectric alloys. The coefficients are given both in SI units and in reduced
form, in values of kB/e = 8.617 · 10−5µV · K−1, and at room temperature.
Values are taken from [57], except for the values for Co and Ni80Fe20, which
are taken from [58]
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IV - 1.4 Figure of merit ZT

A review on thermoelectricity would not be complete without at least a word on
the much discussed figure of merit ZT . Thermoelectric effects are under of lot of
investigation for their potential to harness energy out of heat waste. For example,
only 30%[59] of the energy created by fuel combustion in a car engine is actually
put to use (vehicle mobility and accessories). Thermal solar energy is another path
where thermoelectrics would be of use. With this in mind, it seems highly relevant
for people to investigate new materials and systems to put all these sources of heat
to use.

We all know that thermoelectric systems have been so far highly inefficient to
produce energy. But what does this mean ? What makes a thermoelectric material a
good or bad candidate for energy production ? An ideal thermoelectric material has
the following properties:

• a high Seebeck coefficient, to convert heat into as much electricity as possible

• a high electrical conductivity, so that the electricity produced by the Seebeck
effect is not lost directly into the material

• a poor thermal conductivity, to maintain for as long as possible the tempera-
ture difference fueling the electricity production

When estimating the efficiency of a thermoelectric system[60], a ratio Z naturally
arises as a scaling parameter. Since this ratio as the dimension of the inverse of a
temperature, it is more convenient to use the dimensionless product ZT as reference,
or figure of merit, to describe the quality of the thermoelectric system. This number
has the following expression:

ZT =
σS2T

κ
=

σSΠ

κ
(98)

The maximum efficiency of this system is a function of ZT , and of the temperatures
of the hot (TH ) and of the cold (TC) sides. It has the following expression:

ηmax =

√
1 + ZT − 1√

1 + ZT + TC
TH

ηC (99)

with ηC = (TH − TC)/TH the Carnot efficiency. There is no theoretical limit to ZT ,
and the higher its value, the closer to the Carnot efficiency the system is. The highest
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Figure 17.: Thermoelectric efficiency
as a function of ZT. The
function eventually sat-
urates at the Carnot
efficiency ηC . It is linear
for small values of ZT , as
indicated by the tangent
at the origin (in red).

value reported to day is 2.6[61] at 923 K along the b direction of a SnSe single crystal.
Values of ZT > 3 are necessary to consider using thermoelectricity as a mean to
gather energy.

Figure 18.: Values of Z against T for common thermoelectric materials, taken from
[60]. The dashed line corresponds to ZT = 1.
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IV - 2 S P I N - D E P E N D E N T S E E B E C K E F F E C T

We introduce here the building block of most of the present work, namely spin-
dependent thermoelectric effects. Where the Seebeck effect is the voltage resulting
from a temperature gradient, the spin-dependent Seebeck effect induces spin accu-
mulation from the same input.

We start by giving an historical overview of the concept and its origin. We then
present an experimental setup designed to measure the value of the new coefficients.
We finish by giving an outlook as well as some state-of-the-art results that are yet to
be published.

IV - 2.1 Justification of the theory

Although the name of spin-dependent Seebeck (and Peltier) effect is recent[5, 6],
the basic concept was published almost twenty years earlier[4]. Although the idea
was not formulated in the current simpler form, Johnson and Silsbee already ex-
plained in 1987 there that an temperature gradient can induce a magnetization cur-
rent. Gravier et al. showed in 2006, using an extended version of the two-currents
model (simply called the “three-currents model”, to emphasize the analogy) that a
temperature gradient can induce a spin current1. Let us now present an informal,
but intuitive way of introducing these concepts.

In the simple two-currents model used to describe the longitudinal spintronics
effects, one uses the fact that the electrical conductivity (and resistivity) of a ferro-
magnetic metal depends on the spin species. Therefore, the quantities σ↑ and σ↓ are
introduced, and everything works as if the two spin channels were separate, or as if
two different materials in parallel were used (this holds as long as spin-flip processes
are ignored).

The microscopic definition of the electrical conductivity given by Eq. (93) indicates
that, through the transmission coefficient of the scatterer, the conductivity depends
on the density of states of the material. Since in ferromagnets this density of states
depends on spin, each spin species has its own conductivity.

The same equation indicates that the thermoelectric coefficients should also de-
pend on spin. However, while the conductivity depends on the density of states that
matters, the thermoelectric coefficients depend on its energy derivative, see Fig. 20

1 Of course both articles also mention the converse effect, where a certain potential related to the mag-
netization can create a heat current.
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for example. Assuming a similar conductivity matrix as Eq. (94), we include the spin
dependence, and obtain:




J↑

J↓

JQ


 =




σ↑ 0 σ↑S↑

0 σ↓ σ↓S↓

σ↑Π↑ σ↓Π↓ κ







∂µ↑/e

∂µ↓/e

−∂T


 (100)

Let us first clarify an important point. The exact same arguments we used to
justify the existence of a spin-dependence of the thermoelectric coefficients should
point at a spin-dependence of the thermal conductivity, and at the same time, at the
existence of one temperature per spin channel, the same way the chemical poten-
tial depends on the spin. Some experiments[62] do indicate the presence of a spin-
dependent temperature, tough in the conditions we consider (in particular the fact
that we describe diffusive systems), there is enough spin-conserving scattering like
electron-electron interaction, or electron-phonon interaction to provide thermaliza-
tion, and therefore consider only one temperature[63, 64, 62]. Very low temperatures
and very clean samples are needed to observe the effect of spin temperatures, and
measurements only show corrections to the main effect (10% of the applied temper-
ature gradient in Ref[62]).

The derivation in the previous section gave back one of the Onsager relations,
namely Π = STav. The same result can be obtained by using the methodology
described by Onsager. Moreover, the exact same calculation, but taking spin into ac-
count, gives us the spin-dependent equivalent Π↑ = S↑Tav and Π↓ = S↓Tav. There-
fore, from now on, we will abandon the notation involving the Peltier coefficients,
and focus solely on the Seebeck coefficients, keeping in mind how closely they are
related.

We introduce now some notations and writing conventions. First, we separate the
spin-dependent Seebeck coefficients into a spin-independent part S, and a purely
spin-related part ∆S, as:

S↑↓ = S∗ ± ∆S (101)

We also introduce so-called dimensionless Seebeck numbers s and ∆s, so that:

S =s
kB

e
(102)

∆S =∆s
kB

e
(103)
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One important thing to note is that S is not what is measured in a standard See-
beck experiment. This can be clearly seen in Eq. (100). Let us assume that a temper-
ature gradient is applied on a piece of ferromagnetic material. The charge current
therefore is:

Jc = J↑ + J↓ = −(σ↑S↑ + σ↓S↓)∂T (104)

we also know, from Eq. (94) that:

Jc = −σSc∂T (105)

Here we noted Sc the total “charge” Seebeck coefficient, to emphasize that it is not
the spin-independent part of S↑ and S↓. By identification, we find that:

Sc =
σ↑S↑ + σ↓S↓

σ↑ + σ↓
(106)

IV - 2.2 Experimental demonstration

Recently, some values for the spin-dependent Seebeck coefficients have been mea-
sured in metals. A group at Delft University prepared a device allowing them to
extract the value of the spin-dependent Seebeck coefficient of a ferromagnet[58].
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Figure 19.: Sketch of the device used
by van Wees et al. to mea-
sure the spin-dependent
Seebeck coefficient, as pub-
lished in Ref[58]

This twofold experiment is performed in a lock-in setup, where they inject a low
frequency (17 Hz) AC current I , and record the first and second harmonic of the
measured voltage on each of the probes.
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First, they perform a four-probes resistance measurement of the spin-valve as a
function of the applied magnetic field. This gives them a measure of the polarization
β of the ferromagnet.

Next, they perform a thermal spin injection measurement, where they flow a cur-
rent in the heating lines (noted “Joule heaters” on Fig. 19). Since heat comes from
Joule heating, it is proportional to I2. The Seebeck signal is therefore contained in
the second harmonic of the signal.

To extract the value of the spin-dependent thermoelectric coefficients, one needs
to know the temperature gradient over the sample. Since it is not possible to probe
it directly, van Wees et al. relied on a numerical simulation to estimate it. Knowing
the material parameters from measurement, or from the literature, they used a finite
elements model, with the spin polarization of the Seebeck coefficient as the only
fitting parameter, to extract its value from their measurements. They found a value
of ∆S = −4.5µV · K−1 for permalloy, and ∆S = −1.68µV · K−1 for cobalt.

IV - 2.3 Outlook

Because the Seebeck coefficients depend on the energy derivative of the transmis-
sion, it can have either sign, see Table 2. Furthermore, since the spin-dependent
Seebeck coefficients depend on the derivative of the transmission of the relevant
spin species, at least mathematically, nothing prevents S↑ and S↓ to be of opposite
signs. Nickel is a very good candidate for such property thanks to the peak in the
density of states of the minority electrons at the Fermi level, see Fig. 20. However,
no measurement or numerical prediction has been made so far for this material.

Some results came to our knowledge during the writing of this thesis, regarding a
material exhibiting several properties of utmost interest. The group of Kimura et al.

[66] measured the spin-dependent properties of the Heusler alloy Co45Fe52Al3 and
found two very interesting and original features. Their measurements indicate that
their material has S↑ = −35µV · K−1 and S↓ = 36µV · K−1. This gives an example
material of the property we expect in nickel, the opposite signs for the majority and
minority Seebeck coefficient. What is also striking in those values is their amplitude.
Published values in metals so far indicated low values for ∆s (0.044 for Py, 0.02 for
Co). This material has a reported value higher than 0.4. This is a factor of ten higher
than whatever else measured before. This is very reassuring for the future of spin
caloritronics, and in all-metallic systems in particular.
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Figure 20.: Spin-split density of states for Nickel, as published in [65]. The vertical
line at the zero abscissa corresponds to the Fermi level.

IV - 2.4 Spin Seebeck effect: a clash of vocabulary

Finally, it would be useful to clarify an important point of vocabulary that has, and
still leads to many confusions. What has been presented so far was the so-called spin-
dependent Seebeck effect. The term magnetoSeebeck effect can also be found in the
literature[67]. Another effect with an unfortunately close name has been reported,
the spin Seebeck effect.

This effect, is the observation of an electromotive force in a paramagnetic contact
to a ferromagnetic material (either conductive[55, 68], insulating[56], or (ferromag-
netic) semi-conducting[69]), in the presence of a temperature gradient. Two geome-
tries exist, called transverse and longitudinal. The direction of the respective vectors
differ depending on geometry, as can be seen on Fig. 21

As Fig. 21 suggests, the electromotive force is a result of the inverse spin Hall
effect, where the trajectories of spins up and down are bent in opposite directions,
thanks to the spin-orbit interaction. This indicates that a heavy metal as paramagnet
is preferable if one wants to measure a strong signal.

The reason of the creation of the spin current, in the first place, is currently thought
to be a thermal imbalance between the magnon temperature and the electron/phonon
temperature. For a more detailed review beyond the scope of this thesis, one can
read Ref[67] and included references.
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Figure 21.: Spin Seebeck geometries and orientation of the various vectors. Picture
adapted from [67]. JS is the spin current, EISHE the inverse spin Hall
effect electromotive force, M the magnetization.
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Summary of Part B

The first and main result of this thesis is the completion of a theory describing
electron transport in ferromagnetic systems. More specifically, we focused
on the the transport of charge, spin and heat by the electrons, in a diffusive
regime. The story of our theory is summarized in Fig. 22.

Our theory, the Continuous Random Matrix Theory (CRMT) is a semi-classical
description of electron transport in solid-state devices, originally based on the
Landauer-Büttiker scattering formalism. A coherent quantum system is de-
scribed by a scattering matrix S, made of the the probability amplitudes of
transmission and reflection of an electron in each channel.

Assuming a system with many channels and applying a random matrix the-
ory on this S matrix allowed us to get a semi-classical description, while retain-
ing some quantum features, such as the spin of the electron and the Sharvin
resistance (the resistance arising at the leads). At this point, a system is de-
scribed by a 8 × 8 Ŝ scattering matrix where the elements describe the proba-
bility of an electron to be transmitted or reflected in a given spin state.

By dividing a system into slices, each described by a Ŝ matrix, we proved
the equivalence of our theory with the generalized Circuit Theory[10]. Then,
by making those slices small, we obtained a continuous theory. Using an ap-
propriate scheme to describe rotations in spin space and a change of variables,
it was possible to transform our matrix equations into a set of drift-diffusion
differential equations. These equations, so far derived for a 1D conductor,
were then extended to properly describe systems of any dimensionality.

Finally, we extend those equations further by adding the effect of a tem-
perature gradient through heat transport, thermoelectric effects, and the more
recent spin-dependent thermoelectric effects.

In the end, we obtain a set of six equations. Three of them are conservation
(or continuity) equations for the charge, spin and heat currents. In particular,
spin currents are not conserved due to spin-flip scattering (spin given to the
lattice) and spin filtering (spin given to the surrounding magnetization). The
other three equations relate those currents to the charge and spin-resolved
potential as well to the temperature in an Ohm-like (or Fourier-like) fashion.
The charge and heat variables are scalar, while the spin current and potential
are vectors in spin space.
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Résumé de la Partie B

Le premier, mais aussi le plus important des résultats de cette thèse est la complétion
d’une théorie décrivant le transport électronique dans les systèmes ferromagnétiques.
Plus spécifiquement, nous nous sommes concentrés sur le transport de la charge, du
spin et de la chaleur par les électrons dans le régime diffusif. L’histoire de notre
théorie est résumée dans la Fig. 22.

Notre théorie, la Continuous Random Matrix Theory (CRMT) est une déscription
semi-classique du transport électronique dans les systèmes de matière condensée,
basée sur le formalisme de Landauer-Büttiker. Un système quantique cohérent est
décrit par une matrice de scattering S, composée des amplitudes de probabilité de
transmission et de réflexion d’un électron dans chaque canal.

Dans le cas d’un système avec de nombreux canaux, et en appliquant une théorie de
matrices aléatoires sur la matrice S, nous obtenons une description semie-classique
tout en conservant certaines propriétés quantiques, comme le spin et la résistance
de Sharvin (la résistance entre les réservoirs et le reste du système). A ce niveau,
un système est décrit par une matrice de scattering Ŝ de dimension 8 × 8 dont les
éléments décrivent les probabilités d’un électrons d’être transmis ou réfléchis dans
un état de spin donné.

En découpant un systèmes en tranches, chacune décrite par une matrice Ŝ, nous
avons prouvé l’équivalence de notre théorie avec la circuit theory généralisée[10]. En-
suite, en prenant la limite infinitésimale de la taille des tranches, nous obtenons une
théorie continue. En utilisant une technique adaptée pour décrire les rotations dans
l’espace des spins, et en utilisant un changement de variables, il a été possible de
transformer nos équations matricielles en une série d’équations différentielles de dif-
fusion. Ces équations, jusque là dérivée dans le cas d’un système 1D, ont ensuite été
étendues pour décrire convenablement des systèmes de n’importe quelle dimension.

Enfin, nous étendons encore plus loin ces équations en y ajoutant l’effet d’un gra-
dient de température à travers le transport de chaleur, les effets thermoélectriques, et
les effets thermoélectriques récemment découverts.

Au final, nous obtenons un ensemble de six équations. Trois d’entre elles sont des
équations de conservation (ou de continuité) pour les courants de charge, de spin et
de chaleur. En particulier, les courants de spin ne sont pas conservés à cause de l’effet
de spin-flip scattering (relaxation des spins en faveur du réseau) et du filtrage de spin
(le spin est donné à l’aimantation ambiante). Les trois autres équations relient ces
courant aux potentiels de charge et de spin, ainsi qu’à la température, le tout selon un
processus rappelant la loi d’Ohm (ou de Fourier). Les variables liées à la charge et à
la chaleur sont scalaires, alors que les courants et potentiels de spin sont des vecteurs
dans l’espace des spins.
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Figure 22.: Evolution and origin of the Continuous Random Matrix Theory, up to
the state presented in this manuscript, the Generalized Drift-Diffusion
Theory. A box corresponds to a milestone in the evolution of CRMT. Each
box represents a theory in its own right, and contains its name, as well as
its main variables. See text for details on each box, labeled (A)-(H)

The history of the Continuous Random Matrix Theory (CRMT)[70, 17] has known
many milestones, each one corresponding to a full-fledged theory of its own. We
sum up those theories in Fig. 22, each box corresponding to a given theory. In the
following summary, we indicate the correspondence with Fig. 22 by giving the name
of the relevant box.

The theory presented in this manuscript originates from the (fully quantum)
Landauer-Büttiker formalism, where the modes going out of a scatterer are linked
to the incoming ones through a scattering matrix S (box A). Each spin direction and
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each channel is individually described, and quantum effects such as weak localiza-
tion and universal conductance fluctuations are perfectly taken into account. The
validity of this theory also extends further than the field of spintronics, since it can
be used to describe involving superconductivity, quantum dots and so on[71].

By applying a form of the Random Matrix Theory (box B), one obtains a semi-
classical framework linking the incoming and outgoing spin states instead of the
wave function of each channel. The dimension of the variables are therefore reduced
from Nch to 4 (one for the charge, three for each spin direction). This link is made
through a 8 × 8 Ŝ matrix. Where a coefficient in the Landauer-Büttiker described the
transmission or reflexion probability amplitude from a channel to another, a coeffi-
cient in this Ŝ matrix only considers the incoming and outgoing spin state. Those
assumptions make some of the coefficients (corresponding to quantum coherences)
negligible.

By dividing the scatterer into smaller parts, each described by a Ŝ matrix, and by
operating a very simple change of variables, one can prove the equivalence of our
theory to the successful (generalized) Circuit Theory [10] (box C). As indicated in
Fig. 22, the Circuit Theory was originally derived from the Keldysh formalism. This
is in this step that the concepts of currents and potentials arise.

The natural next step was to make those slices small, consider the continuous
limit, and obtain (matrix) differential equations (box D). By matching those differ-
ential equations to the Valet-Fert theory, it was possible to parametrize the Ŝ matrix
with known and tabulated for the most part (the only exception being the mixing
parameters, describing the behavior of a spin transverse to the magnetization).

This thesis started at this point, and the next step was to expand the matrix equa-
tions into a set of differential equations linking observables (charge and spin cur-
rents and potentials), for any magnetic texture (box E). This was made possible by
choosing the right matrix basis and applying to them the rotation properties in spin
space.

So far, the equations had been derived for a 1D system. The next natural step
was to expand the equations to three-dimensional systems, and obtain the set of
equations describing the 3D drift-diffusion theory that was presented in Ref[72] (box

F).
Since our theory describes electron transport in metallic systems, and since elec-

trons are the main carriers of heat in a metal, it was only natural to extend the theory
to include heat transport, as well as thermoelectric effects (box G). The recent discov-
ery of spin-dependent thermoelectric effects gave an even stronger incentive, and
allowed us to model experiments relying on the spin-dependent Seebeck or Peltier
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effects. The end result, and also the latest state of the theory, is the set of equations
presented in Ref[73] (box H), describing the drift-diffusion transport of charge, spin
and heat in three-dimensional metallic systems.

The following chapters focus on each theory and give its most important features.
The first chapter focuses on the state of the theory before the work presented in this
thesis, while the second chapter is the work, and probably the most important result
of this thesis. Each section corresponds to a single theory, and is introduced with
a version of Fig. 22 where the relevant theory is highlighted. This can be seen as a
roadmap for the reader to know exactly where we stand.
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Figure 23.: First step in the history of CRMT: the scattering theory

In this section, we present Theory A in Fig. 23: the Landauer-Büttiker formalism,
or scattering formalism. CRMT is based on that theory, and is originally expressed
through a (fully quantum) scattering matrix S[70] for a coherent system.

V - 2.1 Description of the formalism

Considering a 1D system made of a scattering region connected to two leads, we
assume that the solutions Ψ±

n = ψn(y)e±iknx to the Schrödinger equation are known
outside of the scattering region. The wave function Ψ(x, y) on each side of the scat-
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terer can therefore be expressed as a linear combination of those solutions. In partic-
ular, we separate the two contributions (going left and going right) and write:

Ψ
±
L/R(x, y) =

∑

n

a±
n,L/Rψn(y)e

±iknx (107)

If we write Ψ
±
L/R the vector of the expansion coefficients a±

n,L/R, then Ψ
±
L and Ψ

±
R are

related through S, see Fig. 24. We give an expression for S in terms of two reflexion
(r and r′) and two transmission (t and t′) submatrices and show how it bridges the
wave functions:
(

Ψ
−
L

Ψ
+
R

)
=

(
r′ t

t′ r

)

︸ ︷︷ ︸
S

(
Ψ
+
L

Ψ
−
R

)
(108)

S

Figure 24.: Sketch of the wave func-
tions on each side of the
scatterer S

V - 2.2 Addition law for two scatterers in series

When two such conductors are in series, an electron can either be directly transmit-
ted, or be subject to multiple reflexions. For the transmission and reflexion, one
obtains the geometric series:

tAB =tBtA + tB

(
rAr′

B

)
tA + tB

(
rAr′

B

)2
tA + · · · (109)

rAB =rB + tBrAt′
B + tB

(
rAr′

B

)
rAt′

B + tB

(
rAr′

B

)2
rAt′

B + · · · (110)

The sum of these series gives the equivalent transmission and reflexion of the system
{A+B}:

tAB =tB
1

1 − rAr′
B

tA (111)

rAB =rB + tB
1

1 − rAr′
B

rAt′
B (112)
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If its transmission is t, the conductance of a system is given by:

g =
e2

h
T =

e2

h
Tr

[
tt†

]
(113)

This trace corresponds to the sum over all the eigenvalues of tt†, which is the prob-
ability transmission matrix. The quantity T is the sum over the probabilities of
being transmitted from one side of the system to the other. The similar quantity1

R = Tr
[
rr†

]
exists for reflexions.

V - 2.3 Semi-classical limit

Now, applying this formula to the system {A+B}, we are going to prove that under
some conditions the addition law on transmission and reflexion amplitudes holds
for probabilities. To prove that, we assume that the successive reflexions mix the
channels together. This means that an electron coming from one channel will exist
the system in another, ergodicly. To make the calculation easier, we will take the
case of only one spinless channel (scalar case). If we assume that the length of the
scattering region is long (kL ≫ 1), we can consider that it picks up a random phase.
If we write z = eiϕ this phase factor, we have:

tAB = tB
1

1 − |rAr′
B|z tA (114)

The conductance of the system, averaged over this random phase, is given by:

〈gAB〉 = e2

h
〈TAB〉 (115)

The value of 〈TAB〉 is then evaluated using an average over ϕ on the unit circle C .
Using dz = izdϕ, we get:

〈TAB〉 = 1

2iπ

∮

C

|tB|2 1

(1 − |rAr′
B|z)(1 − |rAr′

B|z∗)
|tA|2dz/z (116)

=
1

2iπ

∮

C

|tB|2 1

(1 − |rAr′
B|z)(z − |rAr′

B|) |tA|2dz (117)

This integral can be evaluated using the residue theorem. In this case, this reduces
to the residue of the main fraction evaluated at |rAr′

B|, the only pole inside the unit
circle. Fig. 25 gives a sketch of the positions of the poles. Finally, we obtain the

1 Not to be confused with R, the set of real numbers, of course.
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Figure 25.: Position of the poles of
the transmission probabil-
ity TAB . The pole inside
the unit circle C is the only
one relevant to the residue
theorem.

important result:

〈TAB〉 = TB
1

1 −RAR
′
B

TA (118)

We obtain the exact same addition law as Eq. (111), except we are dealing with
probabilities instead of amplitudes. This means that within the semi-classical limit,
transport can be described by a scattering-like formalism at the probability level
of description (and therefore getting rid of most of the purely quantum degrees of
freedom)

It can be proven by using the Random Matrix Theory, that this result holds for
multiple channels, and when including spins. The next section gives a review of
those results, in the more general case.

V - 3 R A N D O M M AT R I X A P P R O A C H

If one includes the spin and multiple channels, the transmission and reflexion ma-
trices have a dimension of 4Nch × 4Nch. By applying an extension of the Random
Matrix Theory (RMT) introduced in Ref[70], one can account for the mixing of the
channels and the loss of the coherence of the system, as we did in the previous sec-
tion by introducing a random phase and averaging over it.
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Figure 26.: Second step in the history of CRMT: the use of the random matrix theory
on the scattering matrix.

V - 3.1 Definition of the “hat” matrices

The result of this use of the RMT gives a theory with a structure very similar to the
scattering formalism. A conductor is described by 4 × 4 matrices (marked with a
hat) describing reflexion and transmission:

Ŝ =

(
r̂′ t̂

t̂′ r̂

)
(119)

where each submatrix is defined from the 4Nch × 4Nch matrices of the scattering
theory by:

t̂ση,σ′η′ =
1

Nch
TrNch

[
tσσ′t

†
ηη′

]
=

1

Nch
TrNch




t↑↑t
†
↑↑ t↑↑t

†
↑↓ t↑↓t

†
↑↑ t↑↓t

†
↑↓

t↑↑t
†
↓↑ t↑↑t

†
↓↓ t↑↓t

†
↓↑ t↑↓t

†
↓↓

t↓↑t
†
↑↑ t↓↑t

†
↑↓ t↓↓t

†
↑↑ t↓↓t

†
↑↓

t↓↑t
†
↓↑ t↓↑t

†
↓↓ t↓↓t

†
↓↑ t↓↓t

†
↓↓




(120)

with similar definitions for t̂′, r̂ and r̂′.
In this description, the coefficients in the matrices are highly inequivalent in terms

of their amplitude. The most important ones are the probabilities Tση = t̂ση,ση. Then
come the (complex) mixing coefficients on the diagonal Tmx = t̂σσ,−σ−σ, describing
the behavior of a spin transverse to the magnetization. The other coefficients involve
coherence between spin-flip and non-spin-flip processes and can be disregarded al-
together in the systems we consider. Finally, the matrices have the following struc-
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ture in the local magnetic basis (the basis where the projection axis is parallel to m),
given here for t̂:

t̂ =




T↑↑ 0 0 T↑↓

0 Tmx 0 0

0 0 T ∗
mx 0

T↓↑ 0 0 T↓↓




(121)

Tση is the probability for an incoming spin σ electron to be transmitted (reflected,
in the case of the reflexion matrices) as a spin η electron. As for the Tmx and Rmx

coefficients, the next section is dedicated to their meaning and origin.

V - 3.2 Mixing coefficients

Let us consider a spin-polarized conductor (with polarization along the z axis) with
a transmission coefficient tσ = |t|eiþkσ·þu (σ =↑ or ↓). We write þkσ = (kσ

⊥, kσ
‖ ), where

k⊥ is the component in the direction of propagation (in our case, orthogonal to the
magnetization) and k‖ the component collinear to the magnetization. We limit our-
selves to only two dimensions only to simplify the notations. In the general case, k‖

should have two components. We also decompose þu in the same basis, and write
þu = (x, y).

Figure 27.: Drawing of an incoming
transverse spin on a polar-
ized layer. The incoming
electron (from the left) is
polarized along the x axis.
To the right, it is trans-
mitted and its polarization
is modified, according the
the length of the path it
had in the layer.

Now let us consider an electron polarized along the x axis. Its spinor wave func-
tion is:

ψL =
1√
2

(
1

1

)
(122)
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After going through the conductor, the electron feels the influence of the polarized
layer, according to the length of its path inside it.

ψR =
|t|√

2


eiþk↑·þu

eiþk↓·þu


 (123)

The spin density is given (on the right side) by:

þη = ψ
†
RþσψR = |t|2




cos

[
(k↑

⊥ − k
↓
⊥)x + (k↑

‖ − k
↓
‖)y

]

sin

[
(k↑

⊥ − k
↓
⊥)x + (k↑

‖ − k
↓
‖)y

]

0




(124)

The spin density oscillates with respect to x, the distance of penetration. We note
the typical length of oscillation (precession) ℓL. The second component in the argu-
ment indicates that the amount of precession depends on the direction of incidence
of the electron into the ferromagnet. This means that two electrons with different
incidences will lose their coherence the deeper they propagate. At a given depth x,
the average over the directions of incidence will result in an exponentially decay-
ing spin density: the transverse component of the spin current is absorbed by the
surrounding magnetization. We note the typical length of absorption ℓ⊥.

Using the definition of Tmx, we get:

Tmx = 〈t↑t∗
↓〉 =

〈
ei(þk↑−þk↓)·þu

〉
≈ e

− L
ℓ⊥

+i L
ℓL (125)

where the average is made over all the incident angles. One of the results of this
thesis is providing a measuring scheme of those two length, see Section VII

V - 3.3 Properties of the Ŝ matrix

Most of the quantum effects (like universal conductance fluctuations, weak localiza-
tion, etc) disappear in this description. This semi-classical description only keeps
the spin, the Sharvin resistance, and mixing transmission and reflexion for trans-
verse spins.

In this description, the conductance is given by g = [T↑↑ + T↑↓ + T↓↑ + T↓↓] /RSh,
where RSh is the Sharvin resistance, defined as RSh = h/(e2Nch). It is the (quantum)
resistance of a perfectly transparent scatterer, arising at the leads.
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Figure 28.: Origin of the finite spin penetration length. A polarized current arrives
from the left with its polarization making a non-zero angle with the mag-
netization of the free magnetic layer. Upon arriving to the magnetic layer,
the individual spins start precessing. Due to their different incident direc-
tions, at a given distance from the interface, each spin will have traveled
a different length and therefore precessed a different angle. The superpo-
sition of the spins will therefore quickly lose its coherence, averaging to
the local magnetization direction. The distance over which the coherence
is lost is our transverse spin penetration length ℓ⊥.

Ref[70] gave the important result that once again, the same addition law still
holds.

t̂AB =t̂B
1

1 − r̂Ar̂′
B

t̂A (126)

r̂AB =r̂B + t̂B
1

1 − r̂Ar̂′
B

r̂At̂′
B (127)

In the spinless case, this can be recast to give the addition law for resistances. It
reads:

RAB = RA + RB − RSh (128)
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One can understand Eq. (128) as the usual addition law for resistances, but applied
on the intrinsic resistance defined as Rintr = R − RSh, as one can see by rewriting
Eq. (128):

RAB − RSh = RA − RSh + RB − RSh (129)

In the scattering theory, the variables exchanged between two scatterers were the
incoming and outgoing wave function coefficients. After going through the RMT
transformation, only length 4 vectors remain, storing the charge and spin degrees
of freedom. Those vectors, written P in

4 and P out
4 on each side of the conductor are

related through the Ŝ matrix as:
(

P out
4,L

P out
4,R

)
=

(
r̂′ t̂

t̂′ r̂

) (
P in

4,L

P in
4,R

)
(130)

Again, in the spinless case, this equation is equivalent to a master equation. The
algorithm of our solver is based on this fact and despite the presence of the spin
(and in particular transverse spins, resulting in the presence of complex numbers in
the matrix), it has always shown the convergence properties expected from a master
equation2

The basis for these vectors, the same as for the t̂ and r̂ matrices, corresponds to
the ↑, mx, mx∗ and ↓ projections. As before, the mixing mx coefficients are complex
numbers.

The next section is an interlude in the chronological scheme we followed so far,
and introduces how to change the basis of a Ŝ matrix. The practical application
for this is combining Ŝ matrices describing ferromagnetic materials with different
magnetization orientation.

V - 4 R O TAT I O N S O F Ŝ M AT R I C E S

We saw that it is possible to add several Ŝ matrices together to describe for example
several layers of the same or different materials. However all the results presented
so far assumed that the matrices we written in the basis aligned with the magnetiza-
tion. New and interesting effects arise when dealing with non-collinear magnetiza-
tions. Therefore, we present here the way to apply rotations to Ŝ matrices, in order
to be able to deal with arbitrary magnetization direction.

2 This is true as long as the coefficients in the matrix correspond to a material with properties respecting
the physics.
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V - 4.1 Rotations in spin space

Let us first define the rotation transforming a vector a into a vector b. This rotation

can be characterized by an angle ϕ and the winding axis, noted n =
a × b

||a × b|| .
Noting σ the Pauli vector σ = (σx, σy, σz), we define the following rotation matrix:

R = exp

(
−i

ϕ

2
σ · n

)
(131)

We have then the following identity, defining the rotation of the Pauli basis:

R (a · σ)R−1 = b · σ (132)

In particular, for a = ez and b = m (what will be the magnetization unit vector)
it gives: RσzR−1 = m · σ. This defines the rotation of the magnetization from the
reference axis z to any direction given by m.

Let us then introduce the matrix R̂ = R ⊗ R∗, where ⊗ is the Kronecker product.
As we can see from Eq. (120), the submatrices of Ŝ have the structure of a Kronecker
product, which is the reason why R̂ is the correct rotation matrix to transform them
from the local magnetization basis to a global basis. For any scattering submatrix
like t̂(ez) written for a magnetization along the z-axis:

ROTATION OF A SCATTERING SUBMATRIX:

t̂(m) = R̂t̂(ez)R̂
−1 (133)

V - 5 E Q U I VA L E N C E O F C R M T W I T H T H E C I R C U I T T H E O R Y

In this section, we go back to following the history of CRMT. Inspired by the general-
ized Circuit Theory[10] (and in order to prove its equivalence with this theory), the
concepts of nodes and links were introduced, and lead the way to the description
of three-dimensional systems. The idea is to discretize the system into small parts
connected to each other. The connexion between two nodes is made through a link,
where the material information is stored (as a Ŝ matrix). Allowing the possibility to
have multiple links connected to a given node is the cornerstone of the description
of multidimensional systems.
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Figure 29.: Third step in the history of CRMT: its equivalence to the circuit theory,
proven to a simple change of variables.

Let us apply these concepts to a 1D conductor, divided into N parts (we assume
them to be of same length, so that the Ŝ matrix is always the same, in order to
simplify the notations in the derivation). We will start from a formulation using the
CRMT concepts, and by using a change of variable show that it is equivalent to a
1D circuit theory problem. Since we consider a 1D problem, we can index the nodes
from 1 to N .

There are two (matrix) equations to consider:

• The node equation, ensuring current conservation and potential isotropy (we
will delve deeper into that later)

• The link equation, encoding the material properties

Because we deal with a 1D system, the node equation simply boils down to

P+
4,R[i] = P+

4,L[i + 1] (134)

P −
4,R[i] = P −

4,L[i + 1] (135)

where the index of the node is specified into the square brackets, to emphasize the
discreet nature of this system. We then use the following change of variables, in-
tended to make the bridge between CRMT and the Generalized Circuit Theory:

µ4 =
1

2

[
P −

4,L + P+
4,L

]
(136)

j4 =
1

2

[
P+

4,L − P −
4,L

]
(137)
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As the notations suggest, they correspond to potentials and currents[9], as we shall
see. Before going further, we will make the simple assumption from this point on
that the material is symmetric, in the sens that its reflexion and transmission proper-
ties do not depend on the direction (t̂ = t̂′ and r̂ = r̂′). For bulk metallic metals, this
assumption is of course always respected. A few lines of algebra allow us to rewrite
the link equation using that change of variable:

2
(
µ4[i] − µ4[i + 1]

)
= (✶+ r̂ − t̂)

(
µ4[i] − µ4[i + 1] + j4[i] + j4[i + 1]

)
(138)

2
(
j4[i + 1] − j4[i]

)
= (r̂ + t̂ − ✶)

(
µ4[i] + µ4[i + 1] + j4[i] − j4[i + 1]

)
(139)

Eq. (138) is reminiscent of a (discreet) Ohm law, while Eq. (139) is a conservation
equation. To see that more clearly, let us take the case of a normal metal. This
is equivalent to say that Eq. (138) and Eq. (139) become scalar, with the additional
property that t̂ + r̂ = 1. Because they are not needed anymore, we drop the subscript
4 in this derivation.Eq. (139) obviously become:

j[i] = j[i + 1] (140)

And similarly Eq. (138) becomes, taking the previous equation into account:

µ[i] − µ[i + 1] = 2

(
1 − 1

T

)
j[i] (141)

where T = T↑↑ + T↑↓ + T↓↑ + T↓↓. Setting j = eRShJ/23 where J is the actual (still
discreet) current density in A · m−2, and µ = eV , we obtain by using R = RSh/T:

V [i] − V [i + 1] = (R − RSh) J [i] (142)

which is exactly a discreet Ohm’s law taking the Sharvin resistance into account.

V - 5.1 Interface equations

Eq. (138) and Eq. (139) have been obtained by assuming t̂ = t̂′ and r̂ = r̂′. Their
form has also been chosen with the idea of going to the continuous limit. We now
backtrack a little bit to obtain more general equations to describe any interface. Let
us first rewrite Eq. (130) in the case of a normal-ferromagnetic interface:
(

P −
F

P+
N

)
=

(
r̂F t̂N

t̂F r̂N

) (
P+

F

P −
N

)
(143)

3 The factor 2 difference with Eq. (190) comes from the fact that T can be seen as containing both ↑ and
↓ spin channels.

72



V - 5 E Q U I VA L E N C E O F C R M T W I T H T H E C I R C U I T T H E O R Y

N (resp. F ) indicate the normal (resp. ferromagnetic) side of the interface. Using
the usual change of variable j = (P+ − P −)/2 and µ = (P+ + P −)/2 we obtain a
set of two equations of the form:
(

jN

jF

)
=

(
cNN cNF

−cF N −cF F

) (
µN

µF

)
(144)

We give the expression for the coefficients cij , obtained by applying the change of
variables on Eq. (143) and isolating the currents:

cNN =
[
✶+ r̂N − t̂F

(
✶+ r̂F

)−1
t̂N

]−1[
r̂N − ✶− t̂F

(
✶+ r̂F

)−1
t̂N

]
(145)

cNF =
[
✶+ r̂N − t̂F

(
✶+ r̂F

)−1
t̂N

]−1

2t̂F

(
1 + r̂F

)−1
(146)

cF N =
[
✶+ r̂F − t̂N

(
✶+ r̂N

)−1
t̂F

]−1

2t̂N

(
1 + r̂N

)−1
(147)

cF F =
[
✶+ r̂F − t̂N

(
✶+ r̂N

)−1
t̂F

]−1[
r̂F − ✶− t̂N

(
✶+ r̂N

)−1
t̂F

]
(148)

We take the same structure for t̂ and r̂ as in Eq. (121), to the exception that we
neglect any spin-flip. This assumption has the consequence that Rσσ = ✶ − Tσσ.
For the sake of readability, we will drop one of the two spin indices, since they
will always be the same. We also assume that the only source of “asymmetry” of
the interface comes from the mixing coefficients. The transmission and reflexion
matrices therefore are:

t̂a =




T↑ 0 0 0

0 T a
mx 0 0

0 0 T ∗,a
mx 0

0 0 0 T↓




(149)

r̂a =




1 − T↑ 0 0 0

0 Ra
mx 0 0

0 0 R∗,a
mx 0

0 0 0 1 − T↓




(150)

(151)

where a = N or F . This gives first for the longitudinal part (σ =↑ or ↓) of the current:

jN ,σ = jF ,σ =
1

4

Tσ

1 − Tσ

(
µF ,σ − µN ,σ

)
(152)
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One has to be careful here because the notations may be misleading. We take the
convention that the charge current is jc = j↑ + j↓ (the total current is the sum of the
current of each spin specie). However, our convention is that µc = (µ↑ + µ↓)/2. This
prevents any factor in the final equations. But it also means that µ↑ is twice the first
component of µ4. This accounts for the factor 1/4 instead of 1/2 in Eq. (152). For the
transverse part, we obtain:

jN ,mx = − ηN
mxµmx,N + σN

mx (µmx,F − µmx,N ) (153)

jF ,mx =ηF
mxµmx,F + σF

mx (µmx,F − µmx,N ) (154)
(155)

with ηN/F
mx and σN/F

mx :

σN/F
mx =

2T N/F
mx

(1 + RF
mx)(1 + RN

mx) − T N
mxT F

mx

(156)

ηN/F
mx =

(1 + RF /N
mx )(1 − RN/F

mx ) + (T F /N
mx − 2)T N/F

mx

(1 + RF
mx)(1 + RN

mx) − T N
mxT F

mx

(157)

These equations are valid for any material (bulk or interface) as long as spin-flip can
be neglected.

We now continue the derivation of the bulk equations. When all the steps are
introduced, we will apply them to interfaces. Next section will go to the limit where
L is very small, and show that this result still holds when including the spin.

V - 6 F R O M D I S C R E E T T O C O N T I N U O U S

In the previous section, the slices were of arbitrary length L. We now go to the
limit where L = dx, an infinitely small quantity. Since the links correspond now
to thin slices, we assume that, their Ŝ-matrix can be written using the following
parametrization[17]:

r̂ = Λrdx (158)
t̂ = ✶− Λtdx (159)
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Figure 30.: Fourth step in the history of CRMT: taking the circuit theory to the con-
tinuous limit by setting L = dx.

Substituting those expression into Eq. (138) and Eq. (139), we obtain:

2

(
j4(x + dx) − j4(x)

)
= (Λr − Λt) dx

(
µ4(x) + µ4(x + dx) + j4(x) − j4(x + dx)

)

(160)

2

(
µ4(x) − µ4(x + dx)

)
= (Λr + Λt) dx

(
µ4(x) − µ4(x + dx) + j4(x) + j4(x + dx)

)

(161)

Developing the variables to the first order in dx, we obtain continuous differential
equations in µ4 and j4:

−dµ4

dx
(x) = 2ΛΩj4(x) (162)

−dj4

dx
(x) = 2ΛΞµ4(x) (163)

Eq. (163) and Eq. (162) express now clearly the current conservation and the Ohm-
like behavior announced in the previous section. We used the change of parametriza-
tion Λt = ΛΩ + ΛΞ and Λr = ΛΩ − ΛΞ.
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In order to fit the Valet-Fert theory, we assume the following form for those matri-
ces:

ΛΩ =




Γ↑ 0 0 0

0 Γeff
mx 0 0

0 0 Γeff∗
mx 0

0 0 0 Γ↓




(164)

ΛΞ =




Γsf 0 0 −Γsf

0 Γτ 0 0

0 0 Γ∗
τ 0

−Γsf 0 0 Γsf




(165)

This form for the Λ matrices was already introduced in Ref[17]. However, some mi-
nor changes were introduced since then, in order for the same matrices to describe
both ferromagnetic and normal metals (simply setting the purely ferromagnetic com-
ponents to zero in the latter case). The various coefficients depend on the character-
istic lengths of the material. Namely, ℓ↑(↓) = 1/Γ↑(↓) is the mean free path for the
majority and minority electrons. We prefer to rewrite it using, in the Valet-Fert fash-
ion, the average mean free path ℓ∗ and β, the spin asymmetry of the material. This
gives Γ↑(↓) = (1 ∓ β)/2ℓ∗.

Γeff
mx = Γmx/2 + (Γ↑ + Γ↓)/2 describes the behavior of the spins transverse to the

local magnetization. The first part Γmx is of ballistic origin and depends on two char-
acteristic lengths: Γmx = 1/ℓ⊥ − i/ℓL. ℓ⊥, the transverse spin penetration length
describes of deep a transverse spin can penetrate into a ferromagnet before losing
its spin to the magnetization. See Section V - 3.2 for more information. ℓL, the Lar-
mor precession length, describes how much the same transverse spin will precess
around the axis of the local magnetization. The second part of Γeff

mx describes the
spin-independent transport of the electrons. In particular, this makes the transport
through a normal metal independent on the chosen matrix basis.

Γsf = ℓ∗/4ℓ2
sf describes spin-flip processes, and depends on the spin diffusion

length ℓsf .
Finally, Γτ = Γmx/2 + 2Γsf describes the non-conserved part of the transverse

spins, including the fact that transverse spins feel as much spin-flip as collinear
ones. Again, this makes the case of the normal metal independent of the basis of
representation.
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Figure 31.: Fifth step in the history of CRMT: going from matrix equations to differ-
ential equations

In this section, we show how to go from the µ4 and j4 vectors to the classical vari-
ables µc and µ, the charge and spin potentials (called spin accumulation in collinear
configurations), as well as jc and j the charge and spin currents. To do so, we first
present one basis of matrices adapted to our problem, and then explain how to apply
rotations in spin space.

VI - 1.1 Matrix basis

We first define a set of 4 × 4 matrices as follows:

Iij = σi ⊗ σ∗
j (166)
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with σ0 being the identity and the σi being the Pauli matrices.
We introduce now a basis for the 4-vectors used in our theory:

Σc =




1

0

0

1




Σ1 =




0

1

1

0




Σ2 =




0

−i

i

0




Σ3 =




1

0

0

−1




(167)

Any 4-vectors can be written on this basis, using the following convention:

p4 = pcΣc + p · Σ = pcΣc +
3∑

i=1

piΣi (168)

The index c represents the charge part, the bold symbol the 3-dimensional spin part.
The bridge between the 4-vectors and observable quantities is entirely contained in
that equation. This projection may seem trivial, but understanding it was the key
element to unlock the transition to the drift-diffusion theory.

By recalling the following identity of the Pauli matrices:

σiσj = δijσ0 + i
∑

k

εijkσk (169)

where εijk is the Levi-Civita symbol, we can now straightforwardly obtain the next
identities:

for i, j, k ∈ J1, 3K

Ii0Σc = I0iΣc = Σi (170)

IijΣc = δijΣc + i
3∑

l=1

εijlΣl (171)

I0iΣk = δkiΣc + i
3∑

l=1

εkilΣl (172)

Ii0Σk = δkiΣc − i
3∑

l=1

εkilΣl (173)

IijΣk = δikΣj + δjkΣi − δijΣk + iεikjΣc (174)

The matrices I03 and I30 in particular play an important role, however only through
their sum and difference. In order to simplify the notation, we therefore introduce
the matrices I‖ = (I30 + I03) /2, IL = (I30 − I03) /2 and I⊥ = (I00 − I33) /2. We also
introduce the rotation-invariant I2 =

∑
i Iii/2. Their expression are:
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I‖ =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1




(175)

I⊥ =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




(176)

IL =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(177)

I2 =




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1




(178)

The next section describes the effect of rotations on those matrices, in order to
obtain relations for any orientation of the magnetization.

VI - 1.2 Rotation properties

We now provide a few identities by applying the rotation introduced in Section V -
4.1 to the basis matrices we just introduced. First, we give the identities for the
rotation-invariant matrices:

[
R̂I00R̂−1

]
= I00 (179)

[
R̂I2R̂−1

]
= I2 (180)

As for the non rotation-invariant ones, their effect is best seen on a generic 4-vector
p4:

[
R̂I‖R̂−1

]
p4 = pcm · Σ + (m · p)Σc (181)

[
R̂ILR̂−1

]
p4 = i (m × p) · Σ (182)

[
R̂I⊥R̂−1

]
p4 = p⊥ · Σ

= [(m × p) × m] · Σ (183)

VI - 1.3 1D continuous equations

Let us finally write Eq. (163) and Eq. (162) as a linear combination of the matrices
matrices introduced in Section VI - 1.1:
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ΛΩ =
Γ↑ + Γ↓

2
I00 +

Γ↑ − Γ↓

2
I‖ +

1

2
Re (Γmx) I⊥ +

i

2
Im (Γmx) IL (184)

ΛΞ =Γsf (2I1 − I2) +
1

2
Re (Γmx) I⊥ +

i

2
Im (Γmx) IL (185)

The last step is now to apply a generic rotation to this equation, so that we can
write it for any magnetization direction m.

Finally, using Eq. (184) and Eq. (185) in Eq. (163) and Eq. (162), and applying the
rotation properties we just derived gives us a set of equations, the main result of box
(E) in Fig. 22, as well as the foundation of Ref[72]:

−ℓ∗
dµc

dx
= jc − βj · m (186)

−ℓ∗
dµ

dx
= j − βjcm +

ℓ∗

ℓ⊥
(m × j) × m − ℓ∗

ℓL
(m × j) (187)

djc
α

dx
= 0 (188)

dj

dx
= − ℓ∗

ℓ2
sf

µ − 1

ℓ⊥
(m × µ) × m +

1

ℓL
(m × µ) (189)

Now is a good time to make the link between the variables jc, j, µc, µ and the usual
observables. With Jc, J the charge and (vector) spin current density in units of
A · m−2 and J · m−2 respectively:

Jc =
4

eRSh
jc (190)

J =
2h̄

e2RSh
j (191)

Of course µc = eV where V is the local potential.

VI - 2 F R O M 1 D T O 3 D

Going from the 1D equations from the 3D can be done easily by formally replacing
the derivatives by a gradient in the Ohm-like equations Eq. (186) and Eq. (187)(or
simply ∂α, since each component is independent of the others), and by a divergence
in the conservation equations Eq. (188) and Eq. (189).
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Figure 32.: Sixth step in the history of CRMT: expanding the derivation to work for
a three-dimensional lattice of nodes and links.

Keeping that result in mind, we now give some clues about how to derive the 3D
equations. In the unidimensional system considered so far, the probabilities were
transmitted from one link (corresponding to a given S matrix) to the other. When
taking into account several dimensions, the need of a so-called node arises. The
probability vectors coming out of the links arrive at a node, and are dispatched back,
according to the node equation. In 1D, this node equation simply states that what
comes into the node gets out without any change. When more dimensions are in-
volved, the node equation enforces two facts. First, the local current conservation,
second the isotropy of the potential. Fig. 33 gives a 2D view of how a node (circle) is
connected to other nodes through links (squares). The subscripts in and out describe
whether the probability is coming in or going out of the link. + and − indicate the
direction of propagation, with respect to the indicated axis.

In order to express the node equation easily, we introduce as before the following
change of variables between P -vectors and currents and potentials:

jα
L =

1

2

(
P α+

out − P α−
in

)
(192)

jα
R =

1

2

(
P α+

in − P α−
out

)
(193)

The subscripts L and R indicate the side of the node at which the current is evaluated.
Current conservation reads:

∑

α∈{x,y,z}

jα
L − jα

R = 0 (194)
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Figure 33.: Sketch of the nodes (cir-
cle) and links (boxes) in
CRMT3D (in 2D for read-
ability).

The potential is given by, for any α:

µ =
1

2

(
P α+

in + P α−
out

)

=
1

2

(
P α−

in + P α+
out

)
(195)

This notation emphasizes the fact that the potential must be isotropic at a node. It
does not depend on alpha, nor does it depend on which side of the node is used.
By rewriting Eq. (194) and Eq. (195) in terms of the P vectors, we obtain the node
equation in three dimensions:



P x−
in

P x+
in

P
y−
in

P
y+
in

P z−
in

P z+
in




= N




P x−
out

P x+
out

P
y−
out

P
y+
out

P z−
out

P z+
out




, with N =




1 1 1

1 1 1

1 1 1


 ⊗


1

3

(
✶ ✶

✶ ✶

)
−

(
0 ✶

✶ 0

) 
 (196)

The 3 × 3 matrix full of ones corresponds to each dimension (for a 2D system, it
would only be 2 × 2, and in 1D, it would just be the scalar 1), and the effect they
have on each other. This effect is modeled by the term after the Kronecker product
⊗. This matrix is of size (2 × 4)× (2 × 4), where the (2 × 4) emphasizes it is twice the
size of the P vectors (four components: charge + three spin directions)1. The factor

1 To which one must add one component for heat, when including the thermoelectric effects described
in Section VI - 3
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1/3 is actually 1/d, where d is the dimension. It comes from the sum in the current
conservation equation.

This equation is important, in particular for the software we developed, which
is based directly on this equation, and the link equation. However, because of the
work we already did on the theory, it is easier to use Eq. (194) and Eq. (195) to obtain
our 3D equations.

As we did before, we consider the links to be small slices of material, and use
a first order expansion to obtain continuous equations. However, the 3D equiva-
lent of Eq. (160) and Eq. (161) involve terms of the form jα

R(α) − jα
L(α). They can be

removed by summing the equation over α, and using the current conservation equa-
tion. To keep the same notations, the definition of the Λ matrices must be slightly
altered to compensate for the additional dimensions. Using the definition for ΛΩ

and ΛΞ introduced in Section V - 6, we get for any dimension d:

Λ
d
t = ΛΩ +

1

d
ΛΞ (197)

Λ
d
r = ΛΩ − 1

d
ΛΞ (198)

Current conservation finally reads in its continuous form:
∑

α∈{x,y,z}

∂αjα(α) = ΛΞµ(α) (199)

Finally, applying the rotation properties on this new set of equations gives us the
3D partial differential equations, corresponding to box (f) in Fig. 22:

−ℓ∗∂αµc =jc
α − βjα · m (200)

−ℓ∗∂αµ =jα − βjc
αm

+
ℓ∗

ℓ⊥
(m × jα) × m − ℓ∗

ℓL
(m × jα) (201)

∑

α

∂αjc
α =0 (202)

∑

α

∂αjα = − ℓ∗

ℓ2
sf

µ − 1

ℓ⊥
(m × µ) × m +

1

ℓL
(m × µ) (203)

VI - 3 E X PA N D I N G T H E T H E O R Y T O I N C L U D E T H E R M O E L E C T R I C E F F E C T S

The derivation thus far has completely ignored the influence of temperature. This
both reflects the history of the theory, as well as answers a need for clarity. To include
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Figure 34.: Seventh and final step in the history of CRMT: including thermoelectric
effects.

thermoelectric effects, we simply extend the matrices and P -vectors to be of rank 5
instead of 4, and follow the same path we used to obtain Eq. (200) to Eq. (203).

We give to the new matrices the form:

Λ̃Ω =




Γ̃↑ 0 0 Γ̃↑↓ ΓS,↑

0 Γeff
mx 0 0 0

0 0 Γeff∗
mx 0 0

Γ̃↑↓ 0 0 Γ̃↓ ΓS,↓

ΓΠ,↑ 0 0 ΓΠ,↓ ΓH




(204)

Λ̃Ξ =




Γsf 0 0 −Γsf 0

0 Γτ 0 0 0

0 0 Γ∗
τ 0 0

−Γsf 0 0 Γsf 0

0 0 0 0 0




(205)

We assume that the thermoelectric effects do not affect current conservation, and
that of course the heat current is conserved. We also assume that the behavior of
transverse spins is not affected by temperature gradients. We also extend naturally
the variables µ4 and j4 to µ5 and j5, so that the first four rows are unchanged, and the
last corresponds to the temperature θ = kBT (last row of µ5) and the heat current jq

in units of energy. The conversion to the heat current Q in SI units, is made through:

Q =
4kBTav

e2RSh
jq (206)
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We assume that the new coefficients keep reflecting the diffusive transport of heat
by the electrons. We showed in Section IV that this includes heat diffusion, as well
as the Seebeck et Peltier effects. Although we did not prove it, we assume this also
includes the spin-dependent thermoelectric effects. Because we assume that the ther-
moelectric effects only affect the spin components longitudinal to the magnetization,
we will disregard the transverse effects to simplify the notations.

Ohm’s law for each of the majority and minority spins can be extended to include
the Seebeck effect. The contribution is the product of the Seebeck coefficient and
the conductivity (each for the relevant spin species) times the temperature gradient.
On the other hand, the heat current is the sum of the two Peltier contributions (for
majority and minority spins) and of the heat diffusion (Fourier’s law).

This is summarized into the following matrix equation found, for example, in
Ref[67, 74]:



J↑

J↓

JQ




=




σ↑ 0 σ↑S↓

0 σ↓ σ↓S↓

σ↑S↑Tav σ↓S↓Tav κ







∂αµ↑/e

∂αµ↓/e

−∂αT




(207)

We set the additional coefficients in ΛΩ so that they match the previous thermo-
electric diffusion equations. We first convert this equation to use the variables in
units of energy using Eq. (190), Eq. (191) and Eq. (206). Then, we invert the system,
so that we express potential and temperature gradients as functions of the currents,
in order to identify it with the non-transverse coefficients in:

∂αµ5 = Λ̃Ωj5 (208)

This identification yields:

Γ̃↑(↓) =
1 ∓ β

2ℓ∗
+

ΓH

2
(s ± ∆s)2 (209)

Γ̃↑↓ =
ΓH

2
(s2 − ∆s2) (210)

ΓS,↑(↓) = −ΓH(s ± ∆s) (211)

ΓΠ,↑(↓) = −ΓH

2
(s ± ∆s) (212)

ΓH =
1

2ℓH
(213)

85



T H E S TAT E O F T H E T H E O RY A F T E R T H I S T H E S I S

The tilded coefficients have a common property, they depend on the square of the
s and ∆s coefficients. This comes from the inversion of Eq. (207). For most metals
however, these values are fairly small, and can be neglected. In that limit, they
reduce to their expression in the purely electrical limit:

Γ̃↑(↓) =Γ↑(↓) (214)

Γ̃↑↓ =0 (215)

We also obtain the expression of ℓH =
ℓ∗

1 − β2

(
L − [s2 + 2βs∆s + ∆s2]

)
. Note that

all the terms inside the square brackets would also disappear in the limit of small
values of s and ∆s. ℓH is essentially the determinant of the matrix in Eq. (207).

Finally, we extend our matrix basis, and we give their rotation properties. First,
we define Ĩij , our new set of matrices. The first four rows and column is the matrix
Iij previously defined, while the remaining entries are set to zero. We add to that
collection the following matrices:

IH =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




(216)

I±
S =




0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ±1

0 0 0 0 0




(217)

I±
Π
=




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 ±1 0




(218)

Finally, we also extend our rotation matrices:

R̃ =

(
R̂ 0

0 1

)
(219)

86



VI - 3 E X PA N D I N G T H E T H E O R Y T O I N C L U D E T H E R M O E L E C T R I C E F F E C T S

Its block-diagonal form ensures that R̃−1 has the same structure. Eq. (179) to Eq. (183)
remain valid in their rank 5 form, and we add to the list of rotation properties some
rotation-invariant ones (related to the heat and charge transport only):
[
R̃IHR̃−1

]
p5 = pHΣH (220)

[
R̃I+S R̃−1

]
p5 = pHΣc (221)

[
R̃I+

Π
R̃−1

]
p5 = 2pcΣH (222)

and some that depend on rotations (they encode the spin-dependent part)
[
R̃I−

S R̃−1
]

p4 = pHm · Σ (223)
[
R̃I−

Π
R̃−1

]
p4 = 2p · m · ΣH (224)

With those last ingredients, we have presented all that is needed to derive the final
set of differential equations describing charge, spin and heat transport in the bulk of
three-dimensional metallic systems:

−ℓ∗∂αµc =jc
α − βjα · m +

ℓ∗

ℓH
s (sjc

α + ∆sjα · m) − ℓ∗

ℓH
sjq

α (225)

−ℓ∗∂αµ =jα − βjc
αm +

ℓ∗

ℓH
∆s (sjc

αm + ∆sjα) − ℓ∗

ℓH
∆sjq

αm

+
ℓ∗

ℓ⊥
(m × jα) × m − ℓ∗

ℓL
(m × jα) (226)

−ℓH∂αθ = − sjc
α − ∆sjα · m + jq

α (227)
∑

α

∂αjc
α =0 (228)

∑

α

∂αjq
α =0 (229)

∑

α

∂αjα = − ℓ∗

ℓ2
sf

µ − 1

ℓ⊥
(m × µ) × m +

1

ℓL
(m × µ) (230)

This set of equation is the current and final state of the theory derived during this
thesis
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VI - 4 3 D T H E R M O E L E C T R I C I N T E R F A C E E Q U AT I O N S A N D B O U N D A R Y C O N -
D I T I O N S AT T H E R E S E RV O I R S

A set of equations describing the properties of a bulk material cannot be complete
without two more elements: equations describing the interface between two materi-
als, and equations describing the interaction of the system with the outside world,
in other world boundary conditions. We present them here in their latest form, for
three-dimensional systems, and including effects from the temperature.

VI - 4.1 Interfaces

In Section V - 5.1 we gave a first expression for the matching conditions at a F |N
interface. Applying the techniques introduced for the bulk equations, we go one
step further on those interface equations. First, let us place ourselves in the case
where temperature is taken into account. Because the thermoelectric properties of
interfaces are very poorly known, we will neglect them altogether. If the need arises
one day, the derivation presented here can be easily extended to incorporate them.

If we write TH the transmission coefficient for the heat in t̂, we get:

jσ =
1

4

Tσ

1 − Tσ

(
µF ,σ − µN ,σ

)
(231)

jq =
1

2

TH

1 − TH

(
θF − θN

)
(232)

In the Valet-Fert theory, interfaces are parametrized by a surface resistance r∗
b and

a spin asymmetry γ. We introduce the parameter g∗ = RSh/4r∗
b (1 − γ2), nα the

component in the α direction of the normal pointing from the normal to the ferro-
magnetic side and εN = −εF = 1. We set the value of T↑/↓ so that it matches the
Valet-Fert condition:

T↑/↓ =
RSh

RSh + 2r∗
b (1 ∓ γ)

(233)

Using the notation ∆µ = µF − µN and ∆θ = θF − θN we give the final form of the
interface equations:
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∑

α

nαjc
α =g∗

[
∆µc + γ∆µ · m

]
(234)

∑

α

nαja
α =g∗

[
m · ∆µ + γ∆µc

]
m

+ Re (σa
mx) (m × ∆µ) × m − Im (σa

mx)m × ∆µ

+ εa

[
Re (ηa

mx) (m × µa) × m − Im (ηa
mx)m × µa

]
(235)

∑

α

nαjq
α =Lg∗∆θ (236)

To obtain the last equation, we rewrote Wiedemann-Franz law in terms of g∗, and
derived an expression for TH :

TH =
LRSh

LRSh + 2r∗
b (1 + γ2)

(237)

Let us finally discuss our design choice. The interfframedace described here, as
we said, is between a normal and a ferromagnetic material. It can of course describe
an interface between two normal materials, by setting the mixing coefficients to zero,
and by lifting the spin dependence of the coefficients. However, as presented here,
it cannot describe an interface between two ferromagnets with non-collinear magne-
tizations. This case should be rare anyway, except in oversimplified models. Indeed,
very few real devices involve neighboring ferromagnetic layers, because of the diffi-
culty to stay in the macrospin limit in that case. This is the reason why spacer layers
are usually placed between the two ferromagnets*

VI - 4.2 Boundary conditions at the reservoirs

In order to include the Sharvin resistance properly, the conditions at the reservoirs
are not as simple as imposing directly a value to the potential and temperature.

Assuming the applied voltage Vb and temperature ∆T , and using the normal nα,
pointing towards the system, they read:

89



T H E S TAT E O F T H E T H E O RY A F T E R T H I S T H E S I S

∑

α

nαjc
α + µc =eVb (238)

∑

α

nαjα + µ =0 (239)
∑

α

nαjq
α + θ =kB∆T (240)

The next and final section of this chapter introduces addition laws for material
properties, a very good tool to describe efficiently the complex stacks of materials in
actual devices.

VI - 5 E F F E C T I V E PA R A M E T E R S

This last section is actually a journey back to the basics of our theory. We started
by introducing the addition law for S and Ŝ matrices. We finish by giving the same
kind of addition laws directly for the material parameters.

In real systems, the layers of interest (namely the fixed and free magnetic layers)
are surrounded by many other layers, aiming at introducing magnetization pinning,
(anti-)ferromagnetic coupling, spin-flip, and so on. However, from a transport point
of view, these layers do not introduce any new feature. For a high level, qualitative
description of the system, disregarding them is not a problem, and is the simplest
solution. But as soon as a quantitative description is needed, the only solution seems
to be numerical simulation. We present here an intermediate solution, which also
gives the possibility of engineering the material parameters to suit the needs of the
experiment by choosing the correct materials.

Let us consider a number of layers of various materials in series. Those materials
can be normal or magnetic, up to the condition that the magnetization orientations
must all be the same. This stack of layers (and their respective interfaces) can be con-
sidered a single material, with equivalent parameters. To give a simple expression,
we assume a few things:

• we neglect spin-flip

• we ignore the transverse penetration length

• because thermoelectric coefficients are usually small, we keep them only at the
lowest order
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Material i in the stack is described by the following set of parameters: {ri, βi, Li, si, ∆si}.
They describe its reduced surface resistance, spin asymmetry, reduced Lorenz num-
ber (L = π2/3 by default), Seebeck number and spin-dependent Seebeck number.

parameter Bulk material Interface

r 2ρ∗L/RSh 2r∗
b /RSh

β β γ

s
e

kB
S 0

∆s
e

kB
∆S 0

Table 3.: Reduced parameters used in the effective parameters formula, with their
expression depending on whether they correspond to bulk or interface ma-
terials.

Table 3 describes the expression of the reduced parameters whether they are for
bulk or interface. In the case of bulk, L is the thickness of the layer. Since L does
not intrinsically depend on the type of material, it is not displayed in the table. With
those notations, the corresponding effective material is described by the set of pa-
rameters {r, β, L, s, ∆s}, with:

r =
∑

i

ri (241)

rβ =
∑

i

riβi (242)

r(1 − β
2
)/L =

∑

i

ri(1 − β2
i )/Li (243)

r(1 − β
2
)s/L =

∑

i

ri(1 − β2
i )si/Li (244)

r(1 − β
2
)∆s/L =

∑

i

ri(1 − β2
i )∆si/Li (245)

With those expression, one can either reduce the number of layers in an analytical
(or numerical) description while keeping the real properties of the ensemble. An-
other consequence of these equations is that one can also engineer new values for
the parameters with a limited number of different materials, by adjusting their re-
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spective thicknesses, choosing the proper normal spacers to benefit from interface
properties of interest, or reducing a parameter to the benefit of another.

For instance, we saw with Eq. (70) that for a spin-valve’s torque to display a wavy
behavior, having one layer much strongly polarized than the other is beneficial. The
ideal case would be to have for the fixed layer a ferromagnetic material with almost
β = 0. We can construct such a material by using for example a layer of 2.9 nm of
Co, followed by a layer of 1 nm of Ru. Using Eq. (242), Table 8 and Table 9, we find
that βCo2.9|Ru1

= 0.00006.
Those equations also underline the importance of the interface parameters, espe-

cially considering the small thicknesses of nowadays bulk layers (a few nanometers
usually).
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Summary of Part C

Our theory extends the well-known Valet-Fert theory by properly accounting
for the Sharvin resistance, and more importantly by describing non-collinear
systems (that is systems where the magnetizations are not all along the same
axis). In particular, in our bulk equations the transverse behavior depends
on two characteristic lengths: the transverse penetration length ℓ⊥ and the
Larmor precession length ℓL. Although those lengths have never, at the time
when this thesis was written, been measured, some ab initio calculations hinted
at very short lengths, a few nanometers. We extracted from the ab initio liter-
ature possible values for these lengths, and proposed a device aiming at mea-
suring them experimentally.

Going to another class of devices, we investigated transport in magnetic do-
main walls. Our focus went to long (> 20 nm) walls, since they have the prop-
erty that the spin accumulation follows the magnetization orientation adiabat-
ically. We investigated there the out-of-plane component of the spin-transfer
torque, which is poorly known. We found and proved that in such walls this
component of the torque is related to the in-plane component through the
aforementioned transverse transport properties. This means we can relate a
micromagnetic concept to the transport through the system.

Finally, we pushed our theory to its limits by considering the presence of a
magnetic insulator in a non-local spin-valve, and investigated how it reflected
transverse spins. This study was motivated by experiments by van Wees et al.

, and tried to account qualitatively for some of their results and in one occur-
rence explain their lack thereof. We propose a simple model describing the
interface, with simple parameters, and show that the various limits of this
model explain their findings. Our 3D simulation also gave indications on how
to obtain a stronger measured signal by optimizing the geometry of the device.
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Résumé de la Partie C

Notre théorie étend la célèbre théorie de Valet-Fert en incluant proprement
la résistance de Sharvin, et plu simportant encore, en permettant de décrire
des systèmes non-collinéaires (c’est à dire des systèmes où les aimantations
ne pointent pas toutes le long du même axe). En particulier, dans nos équa-
tions décrivant les matériaux massifs, le comportement transverse dépend de
deux longueurs caractéristiques : la longueur de pénétratino transverse ℓ⊥ et
la longueur de précession de Larmor ℓL. Bien que ces longueurs n’aient jamais,
à l’heure d’écriture de cette thèse, été mesurées, certains calculs ab initio ten-
dent à indiquer qu’elles sont très courtes, de l’ordre de quelques nanomètres.
Nous avons extrait de ces calculs des valeurs possibles pour ces longueurs,
and proposons un système servant à les mesurer de manière expérimentale.

Concernant une autre classe de systèmes, we avons étudié le transport dans
les murs de domaines magnétiques. Nous nous sommes concentrés sur les
murs longs (> 20 nm), car ils ont la capacité de laisser l’accumulation de
spin suivre l’aimantation de manière adiabatique. Nous y avons étudié la
composante hors-plan du torque de transfert de spin, qui est très mal con-
nue. Nous avons trouvé et prouvé que dans de tels murs cette composante du
torque est relié à sa composante dans le plan à travers les propriétés de trans-
port transverse mentionnées précédemment. Cela signifie que nous avons la
possibilité de relier un concept micromagnétique au transport dans le système.

Enfin, nous avons poussé notre théorie dans ses limites en considérant la
présence d’un isolant magnétique dans une valve de spin non-locale, et étudié
comment les spins transverses étaient réfléchis. Cette étude a été motivée par
des expériences de van Wees et al. , et a essayé de comprendre de manière qual-
itative certains de résultats, et dans un cas, leur absence. Nous proposons un
modèle simple décrivant l’interface, avec des paramètres simples, et montrons
que les différentes limites du modèle expliquent leurs résultats. Notre simula-
tion 3D a aussi indiqué comment obtenir un signal mesuré plus important en
optimisant la géométrie du système.
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Most of the original work in this thesis is related, in some way or another, with
the behavior of spins transverse to the surrounding magnetization. In this chapter
we focus only on the results involving solely voltage biases. Results based on the
presence of temperature gradients are treated in Part D.

Most of the work about spin currents arriving on a magnetic layer with non-
collinear magnetization and current polarization assumed the transverse part of the
spin current was absorbed at the interface with the ferromagnet. Although some
of it is indeed absorbed at the interface, in most cases some is transmitted, and ab-
sorbed by the bulk material. The assumption held as long as the layers were thick
enough, but the shrinking dimensions of nowadays devices makes it necessary to
address this question more precisely. We found that the characteristic thickness of
absorption is usually of the order of the nanometer. However, some materials (Ni for
instance) display a much lower absorption rate, along certain crystalline directions.
This means that the typical layer thicknesses are not enough to fully absorb trans-
verse spins. One consequence is that the deposited momentum by a spin current is
actually less than what the interface absorption assumption suggests. Therefore, a
magnetic layer could be more difficult to switch than anticipated.

Magnetic domain walls are a prime example of the need to investigate the behav-
ior of the spins transverse to the local magnetization in bulk materials. In micromag-
netism, the dynamics of domain walls can be properly discussed only when taking
the spin-transfer torque into account, and furthermore by considering its in-plane
as well as its out-of plane component. The latter is responsible for critical current
densities lower than what was expected when taking only the in-plane component
into account. Describing properly the torque (and its out-of-plane component in par-
ticular) is therefore critical to predict accurately domain wall dynamics. And since
the out-of-plane component plays such an important role, the rate of absorption of
transverse spins is important, but their rate of precession around the local magneti-
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zation becomes utterly important too, since it is directly related to how much of the
torque will point out-of-plane.

Finally, more and more experiments and devices are based on magnetic insulators.
Understanding the behavior of spins transverse to the insulator’s magnetization is
also important to ensure the device works as intended. How much of the spin cur-
rent is absorbed ? For the reflected part, how much was its polarization altered by
the reflexion ? Those are typical questions that needs answers to take experimental
devices to industrial prototypes.

In this part, we start focusing on the absorption and precession properties of bulk
ferromagnets. We extract their value from ab initio calculation, and explain how a
modified spin-valve can help measure them. Then we show a study of the spin-
transfer torque in domain walls, and give an expression of the ratio of its out-of-
plane to in-plane component (the so-called β factor in micromagnetism) in the case
of long walls. Finally, we give the result of a cooperation with van Wees’ group
in Gröningen University, where we studied the reflexion of spins transverse to the
magnetization of an insulator layer.

VII - 1 P E N E T R AT I O N A N D P R E C E S S I O N O F S P I N S T R A N S V E R S E T O T H E M A G -
N E T I Z AT I O N

The transverse part of our equations for bulk materials is parametrized with only
two lengths, but unlike the other parameters, they are not readily available in the
literature. We show however that they can be extracted from ab initio calculations
that are in the literature, and then give the example of a device that can be used to
measure those lengths.

VII - 1.1 Ab initio calculations

The quantities ℓ⊥ and ℓL, appearing in the transverse part of the transport equations
Eq. (226) and Eq. (230), are very poorly known as of now. The only hint we have
about their value is the fact that the interface approximation, stating that all the
transverse behavior happens only at interfaces, works very well for many systems.
This must mean that those lengths are short. Their ballistic origin also gives the
mean free path as an upper bound.

Although no direct measurement of the mixing conductance exists, there are how-
ever some ab initio calculations, typically in N|F|N trilayers. We are interested in
particular in graphs of the mixing conductance (or transmission) vs. the thickness
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of the ferromagnetic layer. The mixing transmission Tmx is a complex number (en-
coding the two transverse directions in its real and imaginary part), and up to tiny
corrections due to the multiple reflexions at the interfaces, the mixing transmission
for a N|F|N trilayer, with a ferromagnetic layer of thickness d is given by:

Tmx =
[
T int

mx

]2
exp

(
− d

ℓ⊥
+ i

d

ℓL

)
(246)

Knowing this, we expect the graphs of the mixing conductance to show dampened
oscillations, with pseudo-period of ℓL and dampening constant ℓ⊥.
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Figure 35.: (a) ab initio calculation of the mixing conductance of a Cu|Co|Cu trilayer,
for fcc Co in the (111) direction. (b) Fit of Fig. 35a using Eq. (246). The
x-axis has been converted into nanometers instead of monolayers, while
the y-axis has been converted to a transmission instead of a conductance.
The lattice constant used for conversion is a = 3.549 Å. The left inset is a
sketch of the simulated system, with length d indicated. The right inset
is a plot of the phase of Gmx and its linear fit with respect to d. Data and
relevant information are taken from [11].

Fig. 35a is a typical graph of an ab initio calculation of the mixing conductance
of a N|F|N trilayer. With such data, we fit Eq. (246), and extract the two lengths of
interest ℓL and ℓ⊥, as well as the mixing transmission for the interface (when the
transmission and not the conductance is plotted). This fit is displayed in Fig. 35b. In-
formation about interface properties are to be taken with caution, since they depend
heavily on how clean, how smooth and how sharp the interface actually is.

Since ℓL and ℓ⊥ are intrinsically ballistic effects, they depend, among other things,
on the crystalline direction under consideration. This can lead to huge differences,
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depending on the material, as can be seen on Table 4. The case of nickel is interesting
to more than one account. It is the reported material with the longer transverse pene-
tration length ℓ⊥, but also the one exhibiting the biggest dependence on crystallinity.
We will see in the next chapter that this deep penetration of transverse spins is bene-
ficial towards having a stronger out-of-plane torque in domain-walls (which in turn
helps reducing the critical current needed to start their motion).

Material Reference ℓL (nm) ℓ⊥ (nm) Interface T int
mx

Co(110) [14] 0.2 ± 0.05 3 ± 0.1 CuCo /
Co(111) [14] 0.2 ± 0.05 4 ± 0.1 CuCo /
Co(111) [11] 0.34 0.75 ± 0.02 CuCo 0.28-0.55i

Co(111) [12] 0.37 0.95 ± 0.05 CuCo /
Fe(001) [11] 0.30 1.2 ± 0.05 AuFe 0.57-0.18i

Ni(100) [13] 0.64 10 ± 0.1 CuNi /
Ni(111) [12] 0.72 4.6 ± 0.1 CuNi /
Py(100) [13] 1.42 0.9 ± 0.05 CuPy /
Py(111) [12] 0.7 1 ± 0.1 CuPy /

Table 4.: Values of ℓL and ℓ⊥ for various materials, and various crystalline directions,
extracted from ab initio calculations found in the literature.

VII - 1.2 Measurement setup

Here we present a simple experimental setup allowing the measurement of those
two lengths. It is a CPP-GMR measurement in a multilayer with a structure of the
type N|P‖|N|X⊥|N|A‖|N, as presented in the inset of Fig. 36. In essence, it is a regular
spin-valve where we inserted a third magnetic layer in the middle, with its magne-
tization orthogonal to the two other ones. N represents normal spacers, P the first
ferromagnetic layer, acting as a polarizer, X the (ferromagnetic) study layer, and A
the last ferromagnetic layer, acting as the analyzer. The subscript indicate that the
magnetization of the polarizer and analyzer must be along the same axis, while the
study layer (which transverse properties we want to investigate) should have a mag-
netization along an orthogonal axis. Depending on the nature of the study layer, this
can be implemented in two ways.

• if the study layer has a strong perpendicular anisotropy, take advantage of it,
and use analyzer and polarizer with planar anisotropy
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• if the study layer has a weak or no perpendicular anisotropy, make its mag-
netization lie in the plane of growth, and use materials with perpendicular
anisotropy for the polarizer and analyzer

Bulk materials with perpendicular anisotropy are rare, and rather exotic. How-
ever, as reported in Ref[75], a multilayer of (Cu0.4|Ni0.8)×3 displays perpendicular
anisotropy, and is made up of materials readily available and used by any labora-
tory able to create CPP-GMR devices. We used this configuration in the simulation
displayed in Fig. 36, as is suggested on the sketch in inset.

To understand the signal of the CPP-GMR obtained in this configuration, let us
assume that the ferromagnetic materials are perfectly polarized, and consider an
electron coming into that device. The polarizer imposes its direction onto the spin
of this electron, which then enters the X layer. There, feeling an orthogonal local
field (due to the magnetization), it starts precessing, until it reaches the analyzer
layer. If the X layer has a thickness d = (2k + 1)πℓL/2 (k an integer), the spin has
made a quarter of a rotation, and the spin is orthogonal to the magnetization of
the analyzer layer. Therefore, the conductance of the system is zero (assuming a
transverse spin is not transmitted). If d = kπℓL, the spin will be fully transmitted, as
it is collinear to the magnetization of the analyzer. The resulting conductance will
be either minimum or maximum depending on the parity of k and the state (parallel
or antiparallel) of the device. We summarize this in Table 5:

Parallel Antiparallel
k even max min
k odd min max

Table 5.: Conductance value for the transverse
lengths measurement, with a study
layer of thickness d = kπℓL, and for
the parallel or antiparallel state of the
device.

Additionally, on top of that oscillating pattern, one has to take into account that
less and less spins go all the way through, the thicker the study layer is. Finally, the
CPP-GMR in this geometry has the following form:

GMR(d) = A cos

(
d

ℓL
− δ

)
e−d/ℓ⊥ (247)

where A is some amplitude constant, and δ is a dephasing, depending on the phase
of the Tmx of the interfaces, among other things. Both are material dependent1.

1 They may even be sample dependent, since the randomness of the interfaces may affect their value
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Figure 36.: GMR signal for a spin-valve with transverse layer versus the thickness d

(nm) of this layer. Squares (circles) correspond to the simulation data
for Ni(100) (Co (111)), while the lines correspond to a numerical fit
with Eq. (247). The inset is a sketch of the device, with the multilayer
(Cu0.4|Ni0.8)×3 as polarizer and analyzer.

As the plot in Fig. 36 shows, the simulation and the theoretical formula agree per-
fectly. Although the GMR signal is weaker than usual values, it stays of the order of
a percent, which should be enough to extract relevant data, in clean enough samples.
It is our hope that such a simple device can be used to measure values of the spin
transverse lengths, and first confirm the ab initio predictions, and second provide a
corpus of values useful to predict the transverse behavior of devices.
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T O R Q U E S I N A D O M A I N WA L L

As introduced in Section III - 5, there are two components to the torque. And al-
though the in-plane torque is much stronger and has received most of the research
effort, the presence of the out-of-plane is needed to explain with any accuracy exper-
iments of domain wall motion.

VIII - 1 I N - P L A N E A N D O U T- O F - P L A N E T O R Q U E S

We now present a model to derive an expression for βτ , introduced in Section III - 5
in a domain wall. As a reminder, βτ = −τ2/τ1, where τ1 is the in-plane torque, and
τ2 is out-of-plane.

This derivation will hold two parts. The first will assume very little about the
magnetic texture, only that the magnetization is not constant, and that only the angle
between m and ez varies. The results from this first part can be applied to any
system. The second part will introduce some assumptions so as to give an analytical
expression for βτ .

We start from Eq. (200) to Eq. (203), in a 1D piece of bulk material. We use the
local magnetization basis (m, e1, e2) introduced in Section I - 2.6. If m varies con-
tinuously and smoothly in space (which we assume to be the case in domain walls),
e1 = ∂xm/|∂xm|. From this definition, it comes that e2 = m × e1. Expanding the
spin vectors in that basis, we get µ = µ‖m + µ1e1 + µ2e2 (and similarly for j).

We assume that only the angle θ between m and ez varies with space. That as-
sumption makes e2 constant. This is not a restriction, since in domain walls the
magnetization changes by varying only one angle (in our calculation we take the
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case of a Néel wall). We give the projections of Eq. (201) and Eq. (203) onto e1 and
e2:

−ℓ∗

(
θ̇µ‖ + ∂xµ1

)
=j1 +

ℓ∗

ℓ⊥
j1 +

ℓ∗

ℓL
j2 (248)

−ℓ∗∂xµ2 =j2 +
ℓ∗

ℓ⊥
j2 − ℓ∗

ℓL
j1 (249)

∂xj1 = − θ̇j‖ − ℓ∗

ℓ2
sf

µ1 − 1

ℓ⊥
µ1 − 1

ℓL
µ2 (250)

∂xj2 = − ℓ∗

ℓ2
sf

µ2 +
1

ℓ⊥
µ2 − 1

ℓL
µ1 (251)

with θ̇ = ∂xθ

We now introduce a new quantity µ̃ = µ1 + iµ2. Taking the derivative of the first
two equations, and inserting the last two, we obtain:

∂xxµ̃ + ∂x(θ̇µ‖) =

(
1

ℓ∗
+

1

ℓ⊥
− i

ℓL

) 



 ℓ∗

ℓ2
sf

+
1

ℓ⊥
− i

ℓL


 µ̃ + θ̇j‖


 (252)

This is the most general equation for the transverse part of the spin-resolve potential.
It clearly shows how the collinear part of the transport affects the transverse part.
However, this form is not easy to interpret because of the complex interdependence.
In the next section, we will restrict ourselves to the case of long domain walls, and
use that assumption to simplify this equation.

VIII - 2 βτ , A B R I D G E B E T W E E N T R A N S P O R T A N D M I C R O M A G N E T I S M

In the case of long domain walls (the so-called adiabatic limit), the spin accumula-
tion µ‖ follows the magnetization adiabatically[76].

Since ∂x ≈ 1/ℓW , with ℓW the length of the wall. Therefore, we keep only the
lowest order O

(
x/ℓW

)
in the derivatives with respect to x, Eq. (252) becomes:


 ℓ∗

ℓ2
sf

+
1

ℓ⊥
− i

ℓL


 µ̃ = − θ̇ j‖ (253)

As previously stated, the torque is the non-conserved part of the spin current
that is given to the magnetization. In our framework, this translates to: the non-
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conserved part of the spin current not due to spin-flip (this part being given to the
lattice). With that definition in a bulk material, according to Eq. (203), the torque is:

τ =
2h̄

e2RSh

(
1

ℓ⊥
(m × µ) × m − 1

ℓL
(m × µ)

)
(254)

Recalling the definition of βτ = −τ2/τ1, we easily obtain from Eq. (253) that:

βτ =
ℓLℓ∗

ℓ2
sf


1 +

ℓ∗ℓ2
L

ℓ⊥ℓ2
sf

+

(
ℓL

ℓ⊥

)2



−1

(255)

The first to note about this equation is that it relates βτ , which is essentially a mi-
cromagnetic quantity, to ℓ∗, ℓsf , ℓL and ℓ⊥, which are related to transport. This equa-
tion therefore creates a bridge between the two communities, and brings together
notions that were before completely separate.

The assumption behind Eq. (255) that the domain wall is long and that the di-
rection of the magnetization changes smoothly over space allows for that simple
expression in terms of transport characteristic lengths. In order to investigate the
strength of this assumption, we performed a series of simulations for varying wall
thicknesses, from very short (1 nm) to very long walls (100 nm), and from various
materials. We also investigated the influence of ℓL on the value of βτ for various
wall thicknesses. These investigations are reported in Fig. 37. For the purpose of the
simulation, we used a domain wall shape given by[9] tan[θ(x)/2] = exp(x/lw), and
took the value of βτ at the middle of the wall. For long walls, this should not make
any difference, as the absence of space dependence in Eq. (255) indicates.

More specifically, the numerical simulation was performed using the slightly dif-
ferent formula:

θ(x) = 2 arctan(exp((x − lsys/2)/lw)) (256)

The original formula assumes an infinite system, which is of course not possible
in any numerical simulation. Therefore, we have a system of length lsys ≫ lw, where
lw is the characteristic length of the wall. In practice, lsys = 10 × lw worked fairly
well. A factor of 10 means that at the edges of the system, the angle is less than 0.05π

away from ±π. A factor 20 would give a difference of 0.00003π. However, a twice
as long system means twice as much computing time. We found that lsys = 10 × lw
gave the best accuracy, while keeping computing time reasonable.

As both plots in Fig. 37 show, Eq. (255) works fairly well for domain walls longer
than 10 nm. However, strong deviations are expected for shorter walls.
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Figure 37.: βτ ratio in domain walls vs wall thickness lw, for Ni (∗), Py (×), and Co
(+). The horizontal dotted colored line indicates the adiabatic limit given
by Eq. (255). Inset: βτ vs ℓL in Py, for various wall thicknesses: lw = 2 nm
(▽), lw = 4 nm (△), and lw = 20 nm (©). The full line is the adiabatic
asymptotic value (lw → ∞). The vertical dotted line corresponds to the
expected value of ℓL = 0.7 for Py.

Two limits of Eq. (255) are of interest. In the case of weak spin-flip (i.e. long ℓsf ),
βτ ≈ ℓLℓ∗/ℓ2

sf , up to a prefactor of order unity. Zhang and Li [77] obtained a similar
expression, with βτ ≈ ℓL/ℓsf . In the case of very strong spin-flip (i.e. short ℓsf ),
β ≈ ℓ⊥/ℓL. We summarize in Table 6 the values of the adiabatic limit of βτ . This
table uses the values in Table 4 for ℓL and ℓ⊥.

The values of βτ in Table 6 are easily explained with the two limits given above. Co
and Fe are on the “weak spin-flip” side, and are average conductors (and therefore
do not have a high value for ℓ∗), hence their poor βτ . On the other hand, Ni and Py
are on the “strong spin-flip” side. Their lower conductivity and, in the case of Ni,
the high spin transverse penetration also helps.

Finally, we expect that very thin walls of materials with strong spin-orbit coupling
will give values of βτ close to unity.
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Material ℓ∗ (nm) ℓsf (nm) ℓL (nm) ℓ⊥ (nm) βτ

Co(110)

6.67 60

0.2 3 3.687 × 10−4

Co(111) 0.2 4 3.694 × 10−4

Co(111) 0.34 0.75 5.2 × 10−4

Co(111) 0.37 0.95 5.9 × 10−4

Fe(001) 6.25 60 0.3 1.2 4.9 × 10−4

Ni(100)
14.88 21

0.64 10 2.1 × 10−2

Ni(111) 0.72 4.6 2.4 × 10−2

Py(100)
1.72 5.5

1.42 0.9 2.2 × 10−2

Py(111) 0.7 1 2.6 × 10−2

Table 6.: Values of βτ , for the same materials, and using the same references as in
Table 4.
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IX
S P I N - VA LV E O N Y I G

In Section VII, we studied the effect of the mixing transmission, both at interfaces
and in bulk materials. In this section we set our interest on the mixing properties
of interfaces. In particular, we consider interfaces between a normal metal, and a
magnetic insulator. The Yttrium-Iron Garnet (YIG) is one example of such magnetic
insulators, and probably the most used in recent experiments.

Although our theory aims at describing metals, insulators can be dealt with as
boundary conditions. This is the approach we took in this case. In particular, we as-
sumed the insulator to be entirely modeled by its interface with the other materials.
With another magnetic material, it is taken entirely reflective. With the normal metal
(copper in our simulations), the interface is taken reflective for up and down spins
(to ensure current conservation), but only partly reflective for transverse spins. This
allows the YIG to act as a sink for transverse spins, which is its expected behavior. It
is worth noting that some of the physics is lost, such as the effect of magnons, which
are entirely ignored.

To summarized, this study, inspired by a collaboration with van Wees et al. , aims
at probing the mixing reflection coefficient Rmx of a Cu/YIG interface. The experi-
ment (and the simulated device) consists in a non-local spin-valve deposited on top
of a YIG substrate. The valve itself is made of Cu, and has two Py electrodes. We
first present the experimental results obtained at Groningen University. Then we go
into more details into the exact physical model we used to match their experiments.
Finally, we give the results of our simulations. This collaboration resulted in a joint
publication[16]

IX - 1 E X P E R I M E N TA L M E A S U R E M E N T S A N D R E S U LT S

The results obtained at Groningen University were obtained on a series of devices all
based on the same geometry. It consists of a non-local spin-valve on a YIG substrate.
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On this device, they measured the non-local magnetoresistance (to which we will
often refer as the signal), under various magnetic field orientations and intensities.

IX - 1.1 Description of the system

The device created by van Wees et al. is made of a substrate of YIG, on top of which
two ferromagnetic Py electrodes are grown. On top of these, a cross of Cu is de-
posited, so that it bridges the two electrodes, and also provides two normal elec-
trodes, giving a total of four contacts, see Fig. 38a. In order to probe the mixing
reflection of the YIG/Cu interface, the YIG magnetization is set to be along the z-
axis, while that of Py lie in-plane, along the x-axis. Although this magnetic setup is
the one which will be held as reference, we will present some results using magnetic
sweeps, where this setup will not be preserved. Fig. 38b and Fig. 38c give a view of
how the system looks like from the numerical end.

IX - 1.2 Non-local spin-valves

A regular spin-valve, is a two-terminal device where the charge current and the spin
current flow along the same path. This class of device is essentially 1D (the cross sec-
tion is not relevant to the physics). Non-local spin-valves on the other hand are at
least 2D systems. They have at least four terminals, and are usually made up of a
bar of a normal metal, with two orthogonal bars on top of it, made of a magnetic
metal, see Fig. 39. A current is made to flow between one normal end and one fer-
romagnetic bar (F1), while measuring the voltage between the other ferromagnetic
electrode (F2) and the other end of the normal bar. The diffusion of spins, coming
from F1 towards F2, creates a spin accumulation and therefore a voltage. The fact
that only pure spin currents (no charge current) arrive at F2 has two consequences.
The first is that the (non-local) resistance is lower, and the second is that the absence
of charge current removes a lot of the noise from the measurement. Overall, this con-
figuration allows for a much better signal-to-noise ratio, and is therefore preferred
to accurately measure a magnetoresistance, especially when the goal is to extract
material parameters.
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(a) SEM picture of one of the actual devices

(b) Top view of the simulated
non-local spin-valve

(c) Side view of the non-local spin-valve, taken in the middle of the sample.

Figure 38.: (a) SEM picture of the measured device. The distance between the
Py electrodes is 500 nm (green arrows show magnetization orientation).
Note that although they used Al where we simulated Cu for the normal
metal, this will not change the physics of the results. (b) Top and (c) side
views of the simulated device

IX - 1.3 Experimental measurements

In the actual device, the measured signal was the non-local magnetoresistance (GMR =
(V31(↑↑) − V31(↑↓))/V31(↑↑), with V31 as on Fig. 38b, and ↑↑ and ↑↓ indicating the
parallel and antiparallel states of the Py electrodes.). To that end, a current is in-
jected between one normal lead and the fixed ferromagnetic lead, while the voltage
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Figure 39.: Sketch of a generic non-
local spin valve. It usually
consists in four terminals.
The current flows between
one ferromagnetic elec-
trode (usually the fixed
one) and one of the normal
leads. The voltage is mea-
sured between the other
end of the normal bar and
the other ferromagnetic
electrode.

between the two other leads is measured. A magnetic sweep is performed, to switch
the magnetization of the second ferromagnetic lead from the parallel to antiparallel
configuration, and vice versa. The graph of the voltage vs field in such a measure-
ment displays a plateau on top of a flat dependence, corresponding of the switching
of each ferromagnetic lead. In that description, we assume that the magnetization
of the YIG is pinned enough not to change in the range of fields used to switch the
magnetization in the leads. The measurement is performed in a lock-in setup to
maximize accuracy.

This signal is measured for various values of the applied magnetic field. Depend-
ing on the orientation of the field, this means that the sweep will switch the orienta-
tion of the free Py electrode, or change the orientation of the YIG magnetization. This
leads to four configurations: the Py magnetizations being parallel and antiparallel,
with the YIG collinear or orthogonal with respect to the Py magnetization orienta-
tion.

In Table 7, we summarized the measurements performed on various sample ge-
ometries, in a first batch of measurements. Unfortunately, on sample II the orien-
tation of the YIG magnetization has no influence. The fact that the same geometry
deposited on a SiO2 substrate (sample III) yields a much higher GMR suggests that
the YIG|Cu interface is of bad quality. This feature was at the origin of the dirty
interface model we present.

Nevertheless, later measurements with better interfaces gave encouraging results.
In Fig. 41 we display those results, which are very similar to our simulations. They
were adapted from a preliminary draft of an article yet to be submitted.
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Figure 40.: Typical signature of the
non-local resistance, sub-
jected to a magnetic field
sweep. A background re-
sistance of 117 mΩ has
been substracted. The two
different levels correspond
to the parallel/antiparallel
configuration for the Py
electrodes (the orientation
of the YIG magnetization
does not vary)

����

�
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�

(a) (b)

Figure 41.: (a) Measurement of the dependence of the non-local resistance with the
YIG magnetization orientation. It clearly displays the cos(2α) depen-
dence obtained in our simulations. The solid line is a simulation of the
non-local resistance made for a mixing conductance of 1013Ω−1 · m−2. (b)
Dependence of the non-local resistance difference versus the YIG magne-
tization orientation. Rs=∆R31 in our notations, and δRs=∆R31(α=0) −
∆R31(α=90°)

Fig. 41a and Fig. 41b are clearly in agreement with our simulations (see Section IX -
3). The only point to be taken into account is that the angle α used by van Wees’
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Sample RP(mΩ) RAP(mΩ) ∆R(mΩ)

I with Lgap=50nm 118.7 120.5 1.8
II with Lgap=100nm 148.4 148.8 0.4
II with Lgap=200nm 121.2 121.4 0.2
III with Lgap=200nm on SiO2 105.3 106 0.7
II with Lgap=200nm and YIG
orthogonal to Py

121.2 121.4 0.2

Table 7.: Measured values of the non-local resistance with the Py magnetization par-
allel (subscript P) and antiparallel (subscript AP), on various devices. The
last line is the only one where the YIG magnetization is orthogonal to the
Py magnetization.

group is the complementary angle to our θY IG. They therefore see a peak in the non-
local GMR at α=90°, where we have it at θY IG=0. The result displayed in Fig. 41b
is simply another way of plotting Fig. 44. One simply has to keep in mind that
the higher Rmx, the lower Gr in Fig. 41b, because Gr is the real part of the mixing
conductance, which is proportional to the mixing transmission, and not reflection.

IX - 2 P H Y S I C A L M O D E L

The model we use (in terms of transmission and reflection matrices within the CRMT
framework) consists in several distinct parts. First, we want to probe the Cu/YIG
interface. To avoid any other contribution, we therefore used a perfect lossless re-
flective interface between Py and YIG.

As for the relevant interface, we first assumed it to be perfectly reflective for lon-
gitudinal spins (no spin-flip), and with a reflection coefficient Rmx for the transverse
part. Because the comparison with measurements showed that our simulation gave
overly optimistic results, we devised an effective “dirty” interface by adding in se-
ries what would be a bulk layer of resistive material, with some spin-flip. We present
those steps in the following sections.
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IX - 2 P H Y S I C A L M O D E L

IX - 2.1 Perfect interface model

As stated above, in this simplistic model, we only assume that transverse spins are
affected by some process, summarized in a reflection coefficient Rmx.

r̂ =




1 0 0 0

0 Rmx 0 0

0 0 R∗
mx 0

0 0 0 1




(257)

No spin-flip occurs, which makes the interpretation of the results extremely easy.
The one important trend is that the lower the value Rmx, the more spins transverse
to the YIG are absorbed, and the less they reach the second electrode, meaning less
GMR signal. On the other end, Rmx close to unity means that almost no absorption
takes place, giving the maximum possible GMR signal.

IX - 2.2 Dirty interface model

Because the results in the clean interface model were so different, we assumed that
the interface between YIG and Cu was not as clean as hoped. An interface has two
main ways of being “dirty”. The first is when the limit between the materials are
well defined, but rough. This leads to some additional specular reflections behaving
like a resistive layer before the interface. The second type of interface is when the
limit between the two materials is badly defined, where intermixing occurs. We
will use the term alloying in that case. If one of the two materials is made up of
heavy elements, chances are that some spin-flip will occur because of the additional
spin-orbit coupling induced by the impurities.

We assume that any real interface is a combination of the two mentioned before,
and we model it by placing an effective bulk layer in series before the interface.
This layer is parametrized by a reflection coefficient R (independent of the spin),
measuring the roughness of the interface, and a spin-flip reflection coefficient Rsf

measuring its degree of alloying between the YIG layer and the copper layer. Using
the law of addition of two scattering matrices in series (see Eq. (126) and Eq. (127)),
we find:

r̂ =




1 − Reff
sf /2 0 0 Reff

sf /2

0 Reff
mx 0 0

0 0 Reff∗
mx 0

Reff
sf /2 0 0 1 − Reff

sf /2




(258)
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Figure 42.: Non-local GMR signal in the YIG system vs Rmx. In the main plot, the
indicated value Rmx = 0.818 corresponds to the measured value. Top left
inset: value of the resistance in the parallel (blue) and antiparallel (red)
configuration versus Rmx. Top right inset: angular dependence of the the
resistance for several values of Rmx.

with:

Reff
sf =2Rsf +

R2
sf

R − Rsf − 1
(259)

Reff
mx =R − Rsf +

1 − R2

1 − (R − Rsf)Rmx
Rmx (260)

To respect the physics, the coefficients are limited in range, relative to each other.
R can be anywhere in the [0, 1] range. However, the condition 0 < Rsf < R is
important, since there cannot be more spin-flipping scattering events than the total
scattering events. Finally, Rmx can also be anywhere in the [0, 1] range.

An interface with R = 0 would have no roughness, and therefore allow all the
spins to “see” the YIG. On the other hand, R = 1 means that all the spins are re-
flected before feeling any influence from the YIG. Rsf = 0 means that no spin-flip
occurs, and therefore all the spins are conserved (until the next process takes place).
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IX - 3 S I M U L AT I O N S A N D N U M E R I C A L R E S U LT S

Cu

YIG

dirty

Figure 43.: The three processes occur-
ring at a YIG interface. R

describes spin-conserving
reflections, Rsf reflections
without spin memory. For
transverse spins (with re-
spect to the YIG mag-
netization), Rmx describes
the proportion that are re-
flected, the rest being sim-
ply absorbed.

Rsf = R corresponds to a completely “alloyed” interface, where all the scattering
event destroy the spin memory. Finally, Rmx simply describes the proportion of the
incoming transverse spins that are reflected, the rest being absorbed by the magne-
tization of the YIG. Its imaginary part (not investigated here) would describe how
much a transverse would precess.

IX - 3 S I M U L AT I O N S A N D N U M E R I C A L R E S U LT S

Since most of the material parameters are very difficult to measure independently,
the one used in our simulations probably differ quite a lot from reality. The lengths
and thicknesses may also be different from the measured samples. However, the
orders of magnitude are well respected. This means that the results presented here
do not aim at estimating Rmx from the experimental results, but rather show the
dependence of the signal with the various parameters, may them be geometrical, or
material-related.

IX - 3.1 Case of a perfect interface

Let us not consider any spin-flip or roughness at the Cu|YIG interface. In that case,
all the spin along the YIG magnetization are reflected, and the fraction |Rmx| of the
transverse spins are reflected, the rest being absorbed. In that limit, we obtained
Fig. 42 and Fig. 44. We used the suggested value Rmx = 0.818 (computed from the
mixing conductance provided with the experiments results) as a reference. The main
result is that the higher Rmx, the stronger the non-local resistance difference ∆R31 is
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in the case where the YIG magnetization is orthogonal to the Py (the transverse spins
are absorbed by the magnetization of the YIG). However the lower Rmx, the stronger
the dependence of ∆R31 is with respect of the orientation of the YIG. Indeed, in the
extreme case where all the spins are reflected, the orientation becomes irrelevant.
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Figure 44.: Main plot: dependence of the difference of the non-local resistance be-
tween the P and AP configuration, vs the angle of the YIG magnetization
with respect to the pinned-layer Py magnetization axis, for different val-
ues of Rmx. Inset: Dependence of the P and AP component vs the YIG
magnetization angle. θY IG = 0 corresponds to the YIG being orthogonal
to the Py, and θY IG = ±π/2 is when it lies in plane.

Fig. 42 shows that the stronger Rmx is, the more the resistance of the system de-
pends on the orientation of the magnetizations of the Py layers with respect to each
other. The figure shows that the dependence of this resistance with Rmx between
the parallel and antiparallel configurations of the Py layers is symmetric around
their average.

Fig. 44 shows that a higher value of Rmx means a lower signal ∆R31(θ=
π

2
) −

∆R31(θ=0), where θ is the angle of the YIG magnetization with the growth axis. As
stated before, a higher Rmx means less electrons depending on the YIG magnetiza-
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tion orientation. An important point to note is that Rmx was taken real in this study.
The influence of an imaginary part was not investigated, and may prove relevant.
This figure also shows that the graph of the resistance in the parallel and antipar-
allel (for the Py electrodes) cases are symmetric with respect to their average. This
means that the experiment can be carried out only in one of those configurations,
and still display signs of the influence of the YIG. However looking at the difference
has the advantage of providing a cleaner experimental signal.

IX - 3.2 Dirty interface

The lack of signal related to the YIG interface lead us to introduce the model for
a dirty interface. For the study, we could have looked at the effect of the effective
parameters, but we think that, although the model has no microscopic reality, the
non-effective parameters are a better measure of the "dirtiness" of the interface (both
its roughness and the amount of alloying between the copper and the YIG layers).
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Figure 45.: ∆R31 vs R for the collinear
case (black line) and for
the orthogonal case (red:
Rmx = 0.25, blue: Rmx =
0.8).

In Fig. 45, only one line is displayed for the parallel case (YIG and Py magneti-
zation collinear), because in that case no transverse spin arrive at the YIG interface.
They are all reflected back into the sample, which also explains why R has no effect.
However, if some spin-flip scattering occurs, the signal will decrease, as we can see
in Fig. 46 (symbols).

In the orthogonal case, since we saw that Reff
mx = R +

(1 − R)2

1 − RRmx
Rmx, we notice

that the mixing reflection is clamped at least at R. This explains the saturation for
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Figure 46.: ∆R31 vs Rsf/R for R =
0.25 (red curves) and R =
0.5 (blue curves). Since
Rsf < R, we use the nor-
malized parameter Rsf/R

to have the same scale.
The symbols correspond
to the collinear case, while
the full lines correspond to
the YIG and the Py layers
having orthogonal magne-
tizations.

small values of Rmx, and the the fact that the higher the value of R, the more the
behavior resembles that of the collinear case (no effect of the mixing). In the extreme
case where R = 1, the interface reflects back everything, and no mixing can be
felt. If some spin-flip is added, the signal is killed (all the more so R is high). In
order to respect the condition Rsf < R, we used a normalized coefficient Rsf/R to
have all the curves on the same scale. In the most extreme case R = Rsf = 1 (not
displayed here), we computed a value ∆R31 = 0.16. Of course, the signal has been
tremendously reduced compared to when there is no spin-flip. The non-zero value
can be understood by the fact that the copper layer short-circuits some of the current,
and some of the spins never reach the interface, regardless of its quality.

The trend displayed in Fig. 46 is enough to explain why no signal due to Rmx

was observed in sample II, and why the value of the GMR is so low compared to
our simulations. An alloyed interface would result in a lot of spin-flip, and high
resistivity, reducing the value of the GMR, and screening the sample for the YIG.
Also, some of the bulk and interface parameters might be over or underestimated,
leading to our optimistic results.

IX - 4 E F F E C T S O F T H E G E O M E T R Y

The shape of the sample will have a strong influence on the results. We analyzed the
effect of two lengths: the gap length, between the copper and the permalloy pads
(see Fig. 38b), and the thickness of copper. We find that ∆R31 decays exponentially
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Figure 47.: ∆R31 vs Lgap (as indicated
on Fig. 38b) for various val-
ues of Rmx.

with Lgap. The typical length of decay depends on the value of Rmx, and thus on the
quality of the interface. We write this dependence as:

∆R31 = ∆R0e−Lgap/λmx (261)
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Figure 48.: λmx vs the Cu thickness

The thickness of the copper will impact the values of ∆R0 and λmx. Because copper
has a much lower resistivity than permalloy, it will have a short-circuiting effect.
Therefore, the thicker the copper, the smaller a fraction of the current will be affected
by the Cu|YIG interface, and the longer λmx will be.

∆R0 has a less trivial dependence. There are two regimes, depending on if the
copper is thicker than the permalloy pads or not. If not, the dependence is roughly
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linear. If the Cu is thicker than the Py, there will be an overlap, and it will again
act as a short-circuit. A longer overlap means again a stronger short-circuiting effect
(not shown on the graphs).

∆
Ω

Figure 49.: ∆R0 vs the Cu thickness.
The full line is a linear re-
gression of the points be-
low Lz = 20nm. This
value corresponds to the
copper and the permalloy
pads being at the same
height.
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IX - 4 E F F E C T S O F T H E G E O M E T R Y

Summary of Part D

Because we wanted to study if it was possible to induce spin-transfer torque
through the thermoelectric effects, we extended our theory to include those
effects. In particular, we introduced the recently discovered spin-dependent
thermoelectric effects, relevant in ferromagnets. We studied the impact these
effects have on the spin-transfer torque in a spin-valve subjected both to a
temperature gradient and to a voltage bias. We consider in particular two
main cases: the electrically closed or open circuits. We found that whether
the electrical current was allowed (closed circuit) or not (open circuit) changes
quite a lot the behavior of the torque. The main result is that it is much easier
to design a system where the torque is wavy (see Section III - 6) in the open
circuit configuration.

We also prove that thermoelectric switching of a magnetic layer is indeed
possible, and give a study of the material parameters necessary to generate
that switching, as well as an estimate of how much of a temperature difference
is needed.

We then show that the out-of-plane (non-adiabatic) component of the torque
(see Eq. (255)) remains unchanged whether the torque is induced by a voltage
or a temperature gradient.

Finally, we show the result of simulations compared to experimental results
on a spin-dependent Seebeck measurement performed by van Wees’ group in
Groningen university.
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Résumé de la Partie D

Afin d’étudier la possibilité de générer un torque par transfert de spin grâce
aux effets thermoélectriques, nous avons étendu notre théorie afin d’y inclure
ces effets. Nous avons en particulier introduit les effets thermoélectriques
dépendant du spin, récemment découverts, et nécessaires dans le cas des
métaux ferromagnétiques. Nous avons étudié l’impact de ces effets sur le
torque par transfert de spin dans une valve de spin soumise à une tension
ainsi qu’à un gradient de température. Nous avons considéré en particulier
deux cas : un circuit électriquement fermé ou ouvert. Nous avons trouvé que
le fait de laisser circuler le courant électrique (circuit fermé) ou pas (circuit ou-
vert) changeait le comportement du torque. Notre résultat principal est qu’il
est beaucoup plus facile de créer un système où le torque est wavy (voir Sec-
tion III - 6) en circuit ouvert.

Nous avons aussi prouvé qu’inverser thermoélectriquement l’aimantantion
d’une couche magnétique est bien possible, et nous donnons une étude des
paramètres matériaux nécessaires à cette inversion, ainsi qu’une estimation
de la difference de température nécessaire.

Nous montrons ensuite que la composante hors-plan du torque (le torque
non-adiabatique, voir Eq. (255)) reste inchangée, que le torque résulte d’une
tension ou d’un gradient de température.

Enfin, nous montrons nos résultats de simulations comparées aux résul-
tats expérimentaux de mesure du coefficient de Seebeck dépendant du spin
obtenus par le groupe de van Wees à l’université de Groningen.
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Our everyday technology dissipates a lot of heat, may it come from the Joule effect,
mechanical friction, or any other source. So far, in almost all cases, this heat is noth-
ing but wasted. The thermoelectric effects have been the focus of the hope to convert
that waste into something useful. As far as producing reusable energy goes, the ma-
terials are not ready yet. Another, more medium term option exists though. Heat
could be used to power directly small devices. Including the conversion from heat to
electricity directly into the device helps reducing the conversion cost (since as of yet,
the thermoelectric materials are rather inefficient), and the hope is that nanoscale de-
vices could be powered even by today’s thermoelectric materials under reasonable
temperature gradients (a few to a few tens of Kelvin).

Spintronics devices usually rely on the possibility to change its magnetic config-
uration, either by switching the magnetization of a magnetic layer, or by inducing
some dynamical property such as a steady-state precession. The only ingredient
needed to power those effects is the presence of a polarized current. The usual way
of creating this polarized current is by placing a polarizing magnetic layer before
the one to be switched and by applying a voltage to the stack. However any source
of polarized current would work as well. In this part of the manuscript, we con-
sider applying a temperature gradient to spin-valves. That way, two sources of
polarized current are created at the same time. The strongest one (usually) is the
normal Seebeck effect inducing a charge current that gets polarized by the polariz-
ing layer. The result is very similar to applying an equivalent voltage. The second
source, usually weaker, is due to the spin-dependent Seebeck effect creating directly
a spin-polarized current.

In the following sections, we first describe the system and how it behaves in open
and closed-circuit conditions, by performing numerical simulations. Then, we de-
rive an expression of the torque when both a voltage and a temperature gradient are
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applied. We use this derivation as well as simulations to discuss the wavy nature
of the angular dependence of the torque, and how strong the temperature gradient
needs to be to initiate switching.

We also present a study proving that in-plane and out-of-plane components of the
spin-transfer torque have the same ratio, regardless of the driving force (voltage or
temperature gradient). More generally speaking, this means that the behavior of
transverse spins is not influenced by the presence of temperature gradients.

Finally, we present a comparison between experimental measurements of the po-
larization of the thermoelectric coefficients and numerical simulation we performed.
This served as validation of their results, and maybe provides improvements on the
device design, especially concerning how heat is brought to the system.

For our simulations, we take the material parameters obtained by various GMR
experiments (see Table 8 and Table 9). As for the thermoelectric coefficients (espe-
cially their spin-dependent part), we took the values reported by van Wees et al. in
Ref[58].

X - 1 D E S C R I P T I O N O F T H E S Y S T E M A N D I T S C O N F I G U R AT I O N S

A spin-valve is the most common system in spintronics, and can be used by applying
a voltage to it, but also by being subjected to a thermal gradient. The Seebeck effect
will induce a current and the same effects (namely the spin-transfer torque) will arise
as in the voltage case.

A spin-valve can be placed in two possible electrical configurations: in closed or
open circuit. In closed circuit, the electrical current is allowed to flow freely in the
system. On the other hand, in open circuit, the electrical current is prevented from
flowing (although the heat current does). However, although the charge current is
zero, pure spin currents may exist in the system. The spin-dependent Seebeck effect
is a prime example of source of such pure spin currents. This is the reason why we
will refer to this configuration as the “pure” configuration, and note it on plots and
sketches by the letter P. As for the closed circuit condition, the spin currents are the
superposition of these pure spin currents and a voltage-like component, resulting
from the conventional Seebeck effect creating a charge current that gets polarized by
the various magnetic layers. The presence of these two components led us to call it
the “mixed” configuration, that is noted M on the plots and sketches. Finally, when
simply applying a voltage, we call it the voltage configuration, and mark it with a V.
Those configurations are summarized in Fig. 50.
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Thanks to the linearity of our equations, the open-circuit condition jc = 0 is strictly
equivalent to an applied voltage canceling the current. Since our boundary condi-
tions are expressed through the applied voltages and temperatures, we chose the
latter description. We will see in the next section that this current-canceling voltage
arises naturally from the equations.

�

(a) Spin-valve with thermal
gradient in the closed-
circuit configuration

�

(b) Spin-valve with thermal
gradient in the open-
circuit configuration

�

�

(c) Spin-valve with no
thermal gradient but
subjected to a voltage

Figure 50.: The three configurations of a spin-valve subjected to a temperature gra-
dient and/or a voltage. The hot side is colored red, the cold side blue.
The letters M, P and V correspond to the mixed, pure and voltage case,
see text. The spin-valves are all presented in their parallel configuration.

X - 2 D E R I VAT I O N O F A N E X P R E S S I O N F O R T H E T O R Q U E

We now derive the expression of the torque on the rightmost layer in the spin-valve
FA|N|FB(ϕ) presented in Fig. 50 (ϕ is the angle the magnetization of layer B does
with that of layer A). A voltage and a temperature gradient are applied on the left
lead. We make the following simplifying assumptions:

i - we consider a 1D system: the spin-valve has no variation along the y and z

axes.

ii - spin-flip scattering is neglected

iii - transverse spins are absorbed directly at the ferro-normal interface

iv - the thermoelectric coefficients s and ∆s are only considered at first order

v - the normal spacer and the interfaces are taken perfectly transparent without
loss of generality (their properties are absorbed by the effective material A and
B, see Section VI - 5)
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We note that in the numerics presented in the text, condition (ii) and (iv) are re-
laxed which only leads to small corrections to the results.
Within this set of approximations, Eq. (225) to Eq. (230) become for each material:

−ℓ∗
dµc

dx
= jc − βj‖ − 1 − β2

L sjq (262)

−ℓ∗
dµ‖

dx
= j‖ − βjc − 1 − β2

L ∆sjq (263)

−ℓ∗
dθ

dx
= −1 − β2

L
(
sjc + ∆sj‖ − jq

)
(264)

and the conservation equations are:

djc

dx
= 0 (265)

djq

dx
= 0 (266)

dj‖

dx
= 0 (267)

with j‖ = j · m, µ‖ = µ · m.
The conservation equations imply that jc and jq are constant, and the absence of

spin-flip makes j‖ piecewise constant. As a consequence, , θ and µ‖ are piecewise
linear.

Once we have the effective Ohm law for the two materials - in the basis parallel
to their respective magnetization - we need to combine the two materials together.
This is done using Eq. (234) assuming vanishing mixing reflection (or equivalently a
mixing conductance equal to the Sharvin conductance). We introduce µ = (µx, 0, µz)
and j = (jx, 0, jz) the spin-resolved potential and spin current in the normal layer,
and µA (resp. µB) the value of the spin-resolved potential in the relevant magnetic
layer, infinitely close to the interface. The equation relating the two magnets reads,

µ · mA =µA · mA (268)
µ · mB =µB · mB (269)
j · mA =jA · mA (270)
j · mB =jB · mB (271)

for the longitudinal part and,

− [j − (j · mA)mA] = [µ − (µ · mA)mA] (272)
[j − (j · mB)mB ] = [µ − (µ · mB)mB ] (273)
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for the transverse part. Explicitly, they give:

µz = µA · mA (274)
µx sin ϕ + µz cos ϕ = µB · mB (275)
jz = jA · mA (276)
jx sin ϕ + jz cos ϕ = jB · mB (277)
jx = −µx (278)
jx cos ϕ − jz sin ϕ = µx cos ϕ − µz sin ϕ (279)

Which translates eventually by eliminating jx, µx, jz and µz to:

(µA − jA) · mA = cos ϕ (µB − jB) · mB (280)
(µB + jB) · mB = cos ϕ (µA + jA) · mA (281)

The last set of equations that we need are the boundary conditions at the reser-
voirs. They read:

jc + µL
c = eVb (282)

jc − µR
c = 0 (283)

j‖A + µL
‖ = 0 (284)

j‖B − µR
‖ = 0 (285)

jq + θL = kB∆T (286)

jq − θR = 0 (287)

with µL/R
c , µL/R

‖ , θL/R the value of the potential, spin-resolved potential and tem-
perature infinitely close to the left (L) and right (R) reservoir.
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Finally, after some algebra, and using the notations introduced in Section VI - 5 for
the effective parameters, we can obtain the expressions of the currents and potentials
given by equations Eqs.(288) to (295):

jc =FG [GY eVb + SkB∆T ] (288)

jq =FG [SeVb + KkB∆T ] (289)

j‖A =FγA [GY eVb + SkB∆T ] + FKδAkB∆T (290)

j‖B =FγB [GY eVb + SkB∆T ] + FKδBkB∆T (291)

µc =2rBF

( [
(1 +

1

2rB
)G − βBγB

]
[GY eVb + SkB∆T ]

− 1 − β2
B

LB
[sBG + ∆sBγB ]KkB∆T

)
(292)

µ‖A =F

[
βA

(
1 +

1

rB

)
− βB cos ϕ − γA

]
[GY eVb + SkB∆T ]

+ F

[
1 − β2

A

LA
∆sA

(
1 +

1

rB

)
− 1 − β2

B

LB
∆sB cos ϕ − δA

]
KkB∆T (293)

µ‖B = − F

[
βB

(
1 +

1

rA

)
− βA cos ϕ − γB

]
[GY eVb + SkB∆T ]

− F

[
1 − β2

B

LB
∆sB

(
1 +

1

rA

)
− 1 − β2

A

LA
∆sA cos ϕ − δB

]
KkB∆T (294)

θ =2rBF

[(
1 − β2

B

LB
+

1

2rB

)
(SeVb + KkB∆T ) − 1 − β2

B

LB
Y (sBG + ∆sBγB) eVb

]

(295)

with the following notations:

G =
1

2

(
sin2 ϕ +

1

rA
+

1

rB
+

1

rArB

)
(296)

Y =

(
1 − β2

B

LB
+

1

2rB

)
1

2rA
+

(
1 − β2

A

LA
+

1

2rA

)
1

2rB
(297)

γi =

(
1

2
sin2 ϕ +

1

2rj

)
βi +

1

2ri
βj cos ϕ (298)

δi =

(
1

2
sin2 ϕ +

1

2rj

)
1 − β2

i

Li
∆si +

1

2ri

1 − β2
j

Lj
∆sj cos ϕ (299)
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with (i, j) = (A, B) or (B, A)

K =
1

2

(
1

rA
+

1

rB
+

1

rArB

)
G − rBβBγB + rAβAγA

2rArB
(300)

S =
1

2rA

(
1 − β2

B

LB
sBG +

1 − β2
B

LB
∆sBγB

)
+

1

2rB

(
1 − β2

A

LA
sAG +

1 − β2
A

LA
∆sAγA

)

(301)

F =
1

2rA

1

2rB

1

KGY
(302)

The torque on layer B is defined in the local magnetization basis by:

τ =JN − JB =
2h̄

e2RSh

(
jxex + jzez − j‖B

)
=

2h̄

e2RSh
τe1 (303)

We remind that e1 is the in-plane normal vector orthogonal to the magnetization of
FB . We obtain:

τ = − 1

2
sin ϕ

(
µ‖A + j‖A

)

= − F

2
sin ϕ

{[
βA(1 +

1

rB
) − βB cos ϕ

]
(GY eVb + SkB∆T )

+

[
∆sA

LA
(1 − β2

A)(1 +
1

rB
) − ∆sB

LB
(1 − β2

B) cos ϕ

]
KkB∆T

}
(304)

To justify the approximation that spin-flip and the second-order thermoelectric
coefficients can be neglected, we performed a simulation including them and com-
pared to the analytical solution Eq. (304). The spin-valve under consideration is
Cu20|Co5|Cu2|Py5(ϕ)|Cu10 (indices are the thicknesses of the layers in nm), and a
sketch of this stack is provided in Fig. 51, along with the simulated and analytical
value of the torque:

We recover the usual feature that the spin-transfer torque is stronger in the antipar-
allel configuration than in the parallel configuration. As stated before, the mixed
(closed-circuit) configuration strongly resembles the voltage case. This is rather ob-
vious in Fig. 51: τV and τM have a very close angular dependence and seem almost
to differ by a scaling factor. τP however has a very different shape, hinting at its
different origin. An important point is to note that this is not a general truth, but
merely a trend. As Fig. 52 indicates, τV and τM may also have very different behav-
iors. What should be remembered is that τM is somewhat intermediate between τV
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Figure 51.: Spin-transfer torque obtained when applying a voltage (τV , bottom
curve), a temperature gradient (τM , top full curve), and a temperature
gradient in the open-circuit configuration (τP , top dashed curve), ver-
sus the magnetization angle ϕ of the Py layer with respect to that of the
Co layer. Symbols represent the simulations including spin-flip scatter-
ing, while lines correspond to the analytical calculation Eq. (304). Here
LCo = LP y = 5 nm. Inset: sketch of the spin valve.

and τP . How close it is to them strongly depends on the materials and system in
play.

Although the coefficients G, Y , S and K may depend on ϕ, they have the property
that their sign does not depend on this angle. We can therefore extract from Eq. (304)
an expression of the waviness angle, for any applied temperature gradient and/or
voltage:

cos ϕ∗ =
βA(1 +

1

rB
) (GY eVb + SkB∆T ) +

∆sA

LA
(1 − β2

A)(1 +
1

rB
)KkB∆T

βB (GY eVb + SkB∆T ) +
∆sB

LB
(1 − β2

B)KkB∆T

(305)
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With Eq. (305), we can recover a result presented in [17]: a criterion of waviness
for a voltage-induced torque. Setting ∆T to zero, we obtain:

cos θ∗ =
βA

βB

rB + 1

rB
(306)

This means that for the voltage-induced torque to be wavy, the layer must have
a stronger spin-polarization that the fixed layer. A high resistance also helps, but
there is a trade-off with the critical current: a thicker layer means more magnetic
dipoles to switch, and therefore a higher critical current density.

We summarize this formula by saying that for a torque to be wavy, the spin-valve
must be very asymmetric. We will see in the next section that this statement holds
when applying a temperature gradient, although the exact meaning differs quite a
bit.

X - 3 WAV I N E S S O F T H E T H E R M A L LY- I N D U C E D T O R Q U E

As the introduction suggests, the configuration of the spin-valve (open or closed
circuit) has a impact on its behavior. This is especially true when dealing with
the waviness state of the spin-valve. Eq. (288) provides the open-circuit condition:
GY eVb + SkB∆T = 0. This gives for the pure (open-circuit) and mixed (closed-
circuit) configurations the following waviness condition:

cos ϕM
∗ =

βAS +
∆sA

LA
(1 − β2

A)K

βBS +
∆sB

LB
(1 − β2

B)K

rB + 1

rB
(307)

cos ϕP
∗ =

1 − β2
A

1 − β2
B

LB

LA

∆sA

∆sB

rB + 1

rB
(308)

Although Eq. (307) does not provide a closed equation for cos ϕ∗, it is however
enough to determine the waviness state. Indeed, even if the value of ϕ∗ can only
be found by solving a third degree polynomial equation in cos ϕ∗, it is relatively
straightforward to evaluate if the absolute value of the right-hand side of Eq. (307)
is greater or lesser than 1.

Eq. (308) on the other hand provides a direct expression for cos ϕ∗. We can see
that a wavy torque can be obtained again by having very different material (an
asymmetric valve). Where in the case of voltage-induced torque the quantity that
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needed to be asymmetric was the polarization β, here we are interested in the quan-
tity (1 − β2)∆s/L. Therefore, the free layer should have a stronger spin-dependent
Seebeck coefficient than the fixed layer, but a smaller polarization. The part about
the reduced Lorenz number LB/LA is essentially irrelevant, because it stays usually
close to unity, in the Wiedemann-Franz limit.
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Figure 52.: Left: Waviness angle ϕ∗ of the pure thermal torque τP as a function of
LCo and LP y. The white cross indicates value LCo = LP y = 5 nm corre-
sponding to Fig. 51. The presence of a letter V, M or P in a given region
means that the angular dependence of the corresponding torkance τV , τM

or τP is wavy. NW indicates the region where none of them are wavy.

The spin-valve can be engineered to give either a wavy or a non-wavy behavior
for the torque on the free layer. The choice of materials of course if of major im-
portance, but the geometry itself plays an important role, even for a 1D system.
We illustrate this point in Fig. 52 by providing a “waviness phase diagram”1, as
a function of the thicknesses LCo and LPy of the ferromagnetic layers in the stack

1 By that, we simply want to indicate the domain of waviness for some couple of parameters, such as
here the thicknesses of the ferromagnetic layers.
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Cu40|CoLCo
|Cu2|PyLPy

(ϕ)|Cu10. We remind it gives in particular, for LPy = LCo = 5

nm the results presented in Fig. 51.
The results in Fig. 52 and Eq. (306) may seem at first to contradict each other. The

analytical result states that for the voltage-induced torque to be wavy, a lower polar-
ization on layer A is preferable. Therefore, a thinner cobalt layer should be benefi-
cial (because the copper layer in front of it will make the group less polarized). Our
phase diagram shows however that a thicker cobalt layer gives a more wavy torque.
The reason behind this is a rather common mistake wen dealing with our effective
parameters. The Co|Cu interface has a strong polarization γ = 0.77, whereas cobalt
has a polarization of β = 0.46. Increasing the cobalt thickness therefore lowers the
overall polarization of the group Cu + Cu|Co + Co.

As observed before, the waviness of the pure configuration is much easier to
achieve, and also reaches much higher values. In the limit of very thin cobalt lay-
ers, the pure waviness angle reaches almost π/2, whereas in the same range, the
voltage-induced waviness angle is five times lower.

Although this study presents the influence of the geometry on the waviness state,
it does not provide a study of the influence of the parameters on th state of wavi-
ness, neither does it indicate how strong the temperature gradient must be to start
switching.

Next section is dedicated to address those points, and more generally give clues
to answer the questions: is thermal switching possible ? and is a thermally-driven
STO without external magnetic field possible ?

X - 4 C R I T I C A L T E M P E R AT U R E F O R S W I T C H I N G

We saw in Section I - 2.6 the link between the critical current density and the slope
of the torque at ϕ = 0, and ϕ = π. We remind the result we obtained, linking the
torque slope to the magnetic parameters and to the critical current:

∂τ

∂θ

∣∣∣∣
θ=0/π

= ±αBuMsL =
h̄

e
Jη(θ = 0/π) (309)

Writing τ = τP ∆T and τ = τM ∆T the link between the torque and the applied tem-
perature difference, we get an expression for the critical temperature difference, that
is the temperature needed to start switching the free layer using a thermal torque, in
the pure or mixed case.

∆TP /M =
αBuMsL

∂τP /M /∂ϕ
≈ L

∂τP /M /∂ϕ
× 1.67 kJ · m−3rad−1 (310)
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To obtain the estimate we give as the last part of this equation, we used the results
from Ref[37]. They report the rather standard critical current density of Jcrit =
107 A · cm−2 for a Py24|Cu6|Py6(ϕ). Simulating this spin-valve gives us a critical
torque of the order of 10−5 J · m−2rad−1. We take that value as a reference to evalu-
ate how strong the temperature difference must be to start switching the free layer.
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Figure 53.: Dependence of ∆TP (left column) and ∆TM (right column) in a
Cu20|CoLCo

|Cu2|PyLPy
(ϕ)|Cu10 stack as a function of the layer thicknesses

LCo and LP y in the parallel ((a) and (b)) and antiparallel ((c) and (d)) con-
figurations. The blue cross indicates LCo = LP y = 5 nm, cf Fig. 51. The
background displays the waviness domains of Fig. 52.

Using that knowledge, we draw again Fig. 52, including the lines corresponding to
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some values for the critical temperature in the pure and mixed configuration, for a
parallel and an antiparallel configuration.

We took for the material parameters sCo = −0.25, sP y = −0.21, ∆sCo = −0.02

and ∆sCo = −0.044. Those are small values, which explain the high values for the
critical temperature gradient. In Fig. 54, we push the study further away by set-
ting sP y = 1.3 and letting the values of ∆sP y go as high as 0.5. Doing so makes
sense in our effective parameters approach, provided that we can find a material
with a strong enough ∆s. Although this goes beyond the scope of this thesis, mate-
rials such as semi-conductors, topological insulators or tunnel barriers can provide
spin-dependent Seebeck coefficients that high. A recent discovery by the group of
Kimura[66] even indicate that a CoFeAl alloy has a ∆s ≈ 0.4. It is worth noting
that the shape of the iso-∆TM/P depends only weakly on the material parameters.
The values however do depend a lot on those parameters, and in particular on the
spin-dependent Seebeck coefficient, as Fig. 54 indicates.
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Figure 54.: Dependence on ∆sB of the critical temperature. The full (dashed) line
corresponds to the parallel (antiparallel) configuration for LCo = 50 nm,
LP y = 2 nm and sP y = 1.3. Red symbols indicate the value of the wavi-
ness angle (right scale)

We see that although wavy stacks are more difficult to switch, the advent of novel
materials makes it viable, with temperature differences of only a few degrees. Ad-
ditionally, thanks to our parameter engineering, it is easy to create a fixed layer
with a spin-dependent Seebeck coefficient close to zero, making the whole stack ex-
tremely wavy, of course in the open-circuit case, but in the closed-circuit case too.
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This means that using those highly Seebeck-polarized materials, thermally-driven,
magnetic field-free STOs are possible to create.

Another point we can emphasize is that since higher temperature decrease the sat-
uration magnetization, and since the trend is to decrease the critical current density,
our estimate for the critical torque is rather conservative, making our results all the
more promising.
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XI
β τ I N A D O M A I N WA L L S U B J E C T E D T O A T E M P E R AT U R E
G R A D I E N T

In Section III - 5, we investigated the out-of-plane torque in a long domain wall. We
found an expression for the out-of-plane to in-plane torque ratio β τ involving the
transport lengths, in particular ℓ L and ℓ ⊥ . We also presented numerical simulations
of the value of β τ for domain walls not in the adiabatic limit.

For the sake of completeness, we investigate the same problem, in the case of
thermally induced torque. The main and only result is quite simple: the origin of
the torque does not affect how much of it is in-plane or out-of-plane.

XI - 1 L O N G WA L L S : T H E A D I A B AT I C L I M I T

To prove this, let us use the same derivation as in Section III - 5, using the same
notations (except that to avoid confusion, since θ is reserved for the temperature,
we write the angle (m, ez) = ϕ). Using the local magnetization basis (m, e1, e2),
projecting Eq. (225) to Eq. (227) onto it, and re-introducing µ̃ = µ1 + iµ2, we obtain:

∂xxµ̃ + ∂x(µ‖ϕ̇) =

(
1

ℓ∗
+

ℓ∗

ℓH
∆s2 +

1

ℓ⊥
− i

ℓL

)
×





 ℓ∗

ℓ2
sf

+
1

ℓ⊥
− i

ℓL


 µ̃ + j‖ϕ̇


 (311)

As before, in the adiabatic limit, the left hand side of this equation is negligible, and
what remains is:

 ℓ∗

ℓ2
sf

+
1

ℓ⊥
− i

ℓL


 µ̃ = −j‖ϕ̇ (312)

This equation is exactly the one obtained in the voltage-induced case, see Eq. (253).
This makes sense because in our equations, the thermoelectric coefficients have no
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influence on the transverse behavior. As a reminder, we obtain the following the
expression:

βτ =
ℓLℓ∗

ℓ2
sf


1 +

ℓ∗ℓ2
L

ℓ⊥ℓ2
sf

+

(
ℓL

ℓ⊥

)2

 (313)

Next, we show that this result is not a consequence of the adiabaticity of the wall,
but a more general feature.

XI - 2 S H O R T WA L L S

We performed a series of simulations in order to show that βτ is never influenced
by the fact that the torque is induced by a voltage or a temperature gradient. First,

� �� ���
�
����
��	


�

����

���

����

��


��
�

β
τ

β
τ
��


β
τ
��


β
τ
����������

� ��� ��

∆�

�

����

����
β
τ

� ��� ��

�

�

����

����

β
τ

Figure 55.: Value of βτ when applying a voltage (blue crosses) or a temperature dif-
ference (red circles) to a Py domain wall of length Lwall. The dashed line
is the theoretical value in the adiabatic limit. Insets: dependence of βτ

with s (top left) and ∆s (top right)

we go to shorter walls to rule out the effect of the adiabaticity. Then we vary the
thermoelectric parameters to prove that this result is not due to a specific set of
parameters, or the small values they have in metals. By linearity, proving this result
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in the voltage case and a closed-circuit configuration is enough to prove it also for
an open-circuit configuration. Fig. 55 summarizes these findings.

We think this short study is enough to prove the lack of influence of the driving
force (voltage or temperature) of the torque in our model on the out-of-plane torque.

143





XII
C O M PA R I N G S I M U L AT I O N S T O S P I N - D E P E N D E N T S E E B E C K
M E A S U R E M E N T S

Although the last part of this thesis was dedicated to applications of the spin
caloritronics, one of its main ingredients (namely the polarization of the Seebeck
coefficient) is poorly known, at the time of this thesis. A series of experiments by
van Wees et al. is dedicated to measuring this coefficient, and has provided at least
an estimate of its values for Py and Co.

We present first in this chapter their experimental setup. We then show the simula-
tion we performed in order to confirm their results. It is worth noting that an exact
match between their experiment and our simulation is impossible, because of the
great number of material parameters that may not be exactly the same (especially
those of the interfaces). The order of magnitude however is found to be very con-
sistent, and our simulations also show that their measurement apparatus is viable,
albeit subject to improvements.

XII - 1 D E S C R I P T I O N O F T H E E X P E R I M E N T

Ref [78] presents an experimental setup to measure the value of the polarization of
the Seebeck coefficient. The device they use is sketched in Fig. 57. It consists in a
F|N|F spin-valve, where F is either Co or Py. A gold strip sits on top of it, with
contacts at each end. The spin-valve sits on a piece of Pt, with three contacts. The
central contact is used to measure the voltage across the spin-valve, and the two
others are used for the thermoelectric part of the experiment. One is connected to
a so-called heat line, through a layer of aluminum oxide. The heat line is a strip of
platinum through which a low frequency ac current flows to generate heat thanks to
the Joule effect. The oxide prevents the current from going into the electrical part of
the device. The last contact is a thermocouple used to estimate the temperature in
the system.
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Figure 56.: Device used to measure
the spin polarization of the
Seebeck coefficient, as pre-
sented in Ref [78].

Their experiment consists in a GMR measurement performed in electrical open-
circuit. A low frequency AC current is used in the heat line as the source of heat in
the system. The heat line is separated from the rest of the system by a layer of Al2O3,
to ensure that this current does not enter the device. The spin valve area is therefore
under a gradient of temperature. The thermoelectric effects (spin-dependent and
conventional) will convert this temperature difference into a voltage, and a GMR can
be measured. The measurement is performed in a locked-in setup, and the second
harmonics is extracted. Indeed, this second harmonics is the one proportional to the
square of the current, and therefore to the Joule effect in the heat line, and the input
temperature.

This signal is then fitted to match simulations they performed. By estimating the
temperature difference on the spin-valve area only, they manage to link the value of
the GMR to the value of the polarization of the Seebeck coefficient in the ferromag-
net. Because of how this experiment is performed, our simulations can only stay at
the semi-quantitative level, at best. To be actually quantitative, we would need all
the material parameters involved, including those of the various interfaces. Since
the latter in particular were not provided (nor measured), a strong uncertainty re-
mains on the actual values of ∆s. Nevertheless, this study gives a proof of concept,
and a confirmation that their results are related to the spin-dependent thermoelectric
effects, as they claimed.
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XII - 2 S I M U L AT I O N S A N D C O M PA R I S O N

Fig. 57 displays two views of the simulated version of vanWees’ device. It is made
up of two leads used to measure the GMR in the central stack, and a lead used
only to inject heat into the system. This last lead is electrically insulated from the
rest of the system by a layer of Al2O3. Simulation-wise, this material is electrically
insulating, thermally transparent. Since this material is non-physical, its thickness
is therefore irrelevant, and is always one layer, regardless of the discretization step.

(a)

(b)

Figure 57.: Simulated version of the spin-dependent Seebeck measurement device.
Each cell is 20 nm wide. (a) is a side view, while (b) is a front view (or
rather a central cut) of the device.

First, we look at the temperature profile in the device. It becomes quickly apparent
that it could be improved, too much heat being lost in lead 0 (see on Fig. 57a). Since
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we want most of the gradient to occur on the spin-valve region, centering the heater
may be beneficial.

Figure 58.: Temperature profile in the
spin-dependent Seebeck
measurement (central cut,
front view). Hot regions
are red, cold ones are blue.

Now, in order to compare the measurements to the simulations, we extract the
magnetoresistance ∆R = RAP − RP , where AP stands for antiparallel and P for
parallel, the magnetic configuration of the spin-valve. ∆R is not strictly speaking
a resistance, since it is the voltage drop over the device (between lead 0 and 1) by
applied Kelvin (on lead 2). We then perform a series of simulations and plot ∆R for
varying values of ∆S for the ferromagnet. Those plots are given in Fig. 59, with val-
ues reported by van Wees’ group. The fact that Fig. 59a matches so well is probably
a stroke of luck. Although we tried to match their material coefficients as best as we
could, all of them were not reported. Also, some variation about the geometry is to
be expected between our simulation and their actual device. The first message to be
taken out of this simulation is that this device does provide a signal that is propor-
tional to the spin-dependent part of the Seebeck coefficient, but extracting it directly
is not possible, without relying on some kind of numerical model to estimate the
temperature gradient over either the spin-valve area (as they did), or the entire de-
vice (as we did). The second message is that the current technique is not as precise
as a direct measurement of a coefficient, but gives a good estimate of the order of
magnitude of the coefficient.
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Figure 59.: Signal ∆R vs spin-dependent Seebeck coefficient of the ferromagnet. (a)
is for Co, (b) for Py. The cross is the value reported by van Wees’ group
in Ref [78]
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Summary of Part E

Very soon during the process of deriving our theory, we understood its poten-
tial as a simulation tool using a rather original paradigm. The usual approach
to solve the diffusion equation is by using a finite elements (or difference) ap-
proach, and discretizing the partial differential equations. The knowledge ac-
quired during the derivation of our theory allowed us to implement an equiv-
alent scheme where the diffusion equation is a consequence, and not a starting
point.

We describe here the two parts of our software. CRMT1D deals only with
1D systems, and 1D devices can be built extremely fast (up to a logarithmic
dependence with the total length of the system). CRMT3D on the other hand
is designed to handle up to three-dimensional geometries of any shape. The
geometry is discretized on a cubic lattice (as in Section VI - 2) acting as the
nodes of our theory. The link equation, based on the Ŝ matrix, connects each
of this node, or cell. This results in an iterative solver, applying the equations
on each cell/links set, and repeating it until convergence is reached.

After describing how the software operates, we give the work flow through
a few detailed examples. We aim at proving in particular how user-friendly
our simulation tool is.

We conclude by giving some convergence graphs, as well as simulation ex-
ecution times with respect to the discretization step.
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Résumé de la Partie E

Très tôt durant le processus de dérivation de notre théorie, son potentiel
en tant qu’outil de simulation basé sur un paradigme novateur a été très
clair. L’approche classique est de résoudre l’équation de diffusion en utilisant
l’approche des éléments (ou différences) finies, et en discrétisant les équations
différentielles partielles. La compréhension acquise durant notre dérivation
nous a permis d’implémenter un algorithme équivalent où l’équation de dif-
fusion est une conséquence et non plus un point de départ.

Nous décrirons ici les deux parties de notre logiciel. CRMT1D s’occupe
exclusivement des systèmes 1D, et ces systèmes 1D peuvent être constru-
its extrêmement rapidement (jusqu’à une dépendence logarithmique en la
longueur totale du système). CRMT3D à l’inverse a été conçu pour gérer
des géométries quelconques, jusqu’à trois dimensions. La géométrie est dis-
crétisée selon un réseau cubique (comme dans Section VI - 2), correspondant
aux noeuds dans notre théorie. L’équation de lien, reposant sur la matrice Ŝ,
connecte chacun de ces noeuds, ou cellules. Le résultat est un solveur itératif,
appliquant les équations sur chaque ensemble cellule/liens, et recommençant
jusqu’à convergence.

Après avoir décrit comment notre logiciel fonctionne, nous donnons les dif-
férentes étapes d’une simulation à travers quelques exemples détaillés. Nous
essayons en particulier de prouver à quel point notre logiciel est intuitif et
facile d’utilisation.

Nous finissons par donner quelques graphes de convergence, ainsi que des
temps d’éxecution en fonction du niveau de discétisation.
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One of the main results of this thesis is a numerical implementation of CRMT3D, al-
lowing for reliable and fast simulations of charge, spin and heat transport in metallic
devices. This package is written in Python, to use its readability and ease to write,
while some parts are written in C++ to benefit from the speed of that language. The
bridge between the two is custom made through the use of the Python/C API. No
external automated wrapper has been used.

In the first section, we make the transition between the mathematical formulation
and the computer side. Then we give an overview of the framework (through an
object-oriented presentation). Finally, we go into more details and focus on the parts
of the code that received some heavy optimizations.

XIII - 1 D E S C R I P T I O N O F T H E B A S E A L G O R I T H M

The CRMT code is based on equations Eq. (130), as well as Eq. (194) and Eq. (195) (for
the probability conservation). They form respectively the link and node equation,
that will be solved for each cell (and each direction, for the links).

The solver goes through all the cells and applies the node equation, and the link
equations for each direction. These equation couple the outgoing (with respect to a
link) probabilities with the incoming probabilities. In matrix form, those equations
read:
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Figure 60.: Sketch of the nodes (cir-
cle) and links (boxes) in
CRMT3D (in 2D for read-
ability).

(
P α−

out

P α+
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)
=

(
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

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⊗
(

0 ✶

✶ 0

)
(315)

In Eq. (315), d stands for the number of dimensions of the system. The dimension of
✶ is the same as the P vectors (4 elements for charge and spin, and possibly one for
the heat if it is taken into account in the simulation).

Most of the programming work went into building the system. Once this is done,
solving it is extremely straightforward, since it consists only in applying repeatedly
the same two equations. Of course, knowing that, those operations had to be opti-
mized to apply them as fast as possible. For example, in the first version of the solver,
a profiling tool indicated that one complex multiplication took 16 CPU cycles, where
it should have taken only one (or two, depending on the CPU technology) in the best
case scenario. A simple rewriting using only float multiplications made it possible to
improve this value to less than 4 cycles, on average (measured on a processor where
it can be 2 cycles at best). Similarly, because N is made of real numbers only, it was
possible to drop one float multiplication and one addition. It may not seem much,
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but over thousands and thousands of application of the same function, it adds up to
make the whole solver quite efficient.

XIII - 2 A R C H I T E C T U R E O F T H E F R A M E W O R K

CRMT consists of four subpackages for computation, and two visualization sub-
packages.

We start briefly with the latter because they do not contain any physics, and we
will not give any details about them. All the illustrations present in this thesis (un-
less specified) have been made thanks to either one of those subpackages. The first
one is designed to produce 2D pictures of a slice of the geometry (ideal to represent
2D, or quasi-2D geometries). It also allows the display of any numerical field within
the geometry. It is based on the Cairo drawing library.

The second subpackage, written in C++ and OpenGL, gives a dynamic 3D view
of the geometry, ideal to visualize it under any angle. An extension to view scalar
and vector fields in 3D is currently under development.

The four remaining packages, containing the simulation tools, are the following:

• CRMT

• CRMT1D

• CRMT3D

• Tools

XIII - 2.1 Package CRMT

The package CRMT contains two modules S_builder and VFdatabase.
S_builder contains a class Smat, corresponding to Ŝ-matrices, as well as all

the functions necessary to fill the coefficients of the matrices with the correct value,
depending on the input material.
VFdatabase contains the Valet-Fert parameters of a variety of materials, and

their interfaces. It also permits the creation of custom materials.

XIII - 2.2 Package CRMT1D

Because the node equation becomes extremely simple in the 1D case, simply adding
in series the scattering matrices is enough to describe a 1D system. Taking advan-
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tage of that, the CRMT1D package gives a much more efficient way of simulating
devices. In particular, it contains two classes, the Pillar class describing multi-
layers, and the DomainWall class representing domain walls. Each of this class is a
subclass of the Device class, grouping the common functions and attributes needed
to compute currents, torques, etc... anywhere in the device.

Building a Pillar takes a time in O(ln(L)), where L is the total length of the sys-
tem, while a DomainWall takes O(L). The building step of a Device is the longest,
and many operations can be done without the need of rebuilding it completely (for
instance varying the angle of a free layer in a Pillar)
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(a) Creation time of a Pillar vs its length
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(b) Creation time of a DomainWall vs its
length

Figure 61.: Creation time (in seconds) of the CRMT1D systems versus length of the
system. Those plots exhibit clearly the logarithmic (for the Pillar) and
linear (for the DomainWall). The measurement method is discussed in
the text.

Fig. 61 shows clearly the estimated building time dependence with the length, for
the two types of systems. However, it also shows that building a DomainWall

required much longer.
To measure the execution time, we used the timeit module in Python, which

allows running a certain portion of code a great number of times, and returns how
much time the total operation took. For each length, the same Pillarwas built 1000
times, while a DomainWall build was repeated only 100 times (due to its longer
building time, this measurement was less prone to variations due to background
programs).
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To understand why creating a DomainWall takes so long, one must understand
how it is built. The whole length of the system is first divided into N sections. Those
sections are where the currents and potentials will be measured, and are a first coarse
level of discretization. However, there is a finer level of discretization, which is
the one used to build the system. Each section is further divided into small slices
(here they are 10−2 nm long) of constant magnetization. The matrix of the slices are
finally added together to create the matrix of the section. Building the slice takes a
logarithmic time with respect to its length (it is the same code used in the Pillar).
Therefore the thinner the slice, the less we benefit from this logarithmic time. A step
of 10−2 nm is probably an overkill for most purposes, but a too coarse step would
disrupt the continuity of the magnetization and lead to wrong results. As always,
one has to find the point where the level of description and the computation time
are both satisfying.

XIII - 2.3 Package CRMT3D

Although this package is perfectly able to describe 1D systems, its performances are
not comparable with what CRMT1D provides. However, it provides the capability to
create and deal with 2D and 3D structures, regardless of their shape (They do not
need to be rectangular, they can have holes, etc...). The geometry module provides
a Geometry class, which is basically an optimized numpy.ndarray. A Geometry

is made to contain instances of Atom, which are basic containers for a material name
and rotation angles if the material is magnetic. Because many cells will contain
the exact same Atom, the memory is optimized by internally storing an index to
an Atom instance. Since most devices (the only notable exception being devices
with magnetic texture) contain very few different materials and angles, it is usually
possible to store the information in 8 bits cells (up to 255 different materials, plus
the NONE_INDEX to store empty cells). The geometry package also contains an
Atom subclass called Lead, that contains a purely transparent material, and should
be used as leads for the system.

When the Geometry is created, it is fed into the System class from the
finalized_system package. This class will transform the Geometry into some-
thing that can be parsed into a solver. This is where the Ŝ-matrices for each link is
computed, and the variables of the problem, the Pin and Pout are initialized. In
this class, the (x, y, z) coordinates of a cell is translated into a single integer u. The
order by which the coordinates are read can be specified by the user to improve the
performance of the solver. This translation is used to ensure that the solver does as
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few checks as possible. In particular, empty cells (where no equation needs to be
applied) do not have an equivalent u value, and are therefore ignored naturally by
the solver.

Finally, the System can be parsed to one of the solvers present in the solver

package. Our software comes with two solvers. The first applies the node equation,
then the link equation to each cell, always in the same order and starts over until
convergence is reached. We refer to it as the direct solver.

The second, improved, solver can be understood as the direct solver applied twice,
first in the normal order, and a second time in the reverse order. These two opera-
tions are then iterated until convergence. This ensures for example that in simple
geometries (namely bars) the input information from a lead is transmitted to the
other lead in only one iteration, but also that some information comes back in the
same iteration. Applying the equations always in the same direction makes the first
backward information to come back in O(L/dl) steps, where L is the length be-
tween the two leads, and dl the discretization step. We refer to this second solver as
the sweeping solver.

The sweeping solver is the default behavior of the software (because of its im-
proved performance in almost every case), and is used by simply calling the func-
tion solve, although the direct solver can be achieved by providing another option
to this function. The number of iteration may be specified to this function, but the
default behavior is to automatically detect convergence by summing the incoming
and outgoing charge (and heat, when applicable) currents over the leads. When the
solver has reached convergence, this sum should be close to zero, up to some numer-
ical error. A relative error can be specified to the function, and the value of 10−6 is
usually more than enough. Lower values drastically improve the convergence time,
but lowers the precision. Also, a parameter N indicates how many iterations are ap-
plied before checking for convergence. Checking every step is of course detrimental
to the performance.

The last module in this package is the observables module, containing the
Observables class. It is only used to obtain currents, torques, and potentials any-
where in the system, with easy access.

XIII - 3 PA C K A G E T O O L S

This package contains everything making the use of the code and writing scripts
easier. It goes from data import/export function to useful mathematical functions.
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XIII - 4 S A M P L E C O D E

We give here how a typical simulation looks like, for a 1D geometry, then for a 3D
geometry. Note that a 1D geometry could very well be simulated through the use of
CRMT3D. CRMT1D is however faster and better suited.

XIII - 4.1 CRMT1D

First we give an example of usage of the Pillar class:

1 from CRMT.CRMT1D import P i l l a r , Layer
2 from math import pi
3 import numpy as np
4

5 P = P i l l a r ( [ Layer ( "Cu" , 1 0 ) ,
6 Layer ( " Py " , 2 0 , 0 ) ,
7 Layer ( "Cu" , 2 ) ,
8 Layer ( " Py " , 5 , 0 ) ,
9 Layer ( "Cu" , 1 0 ) ] )

10

11 for th in np . l i n s p a c e ( 0 , pi , 2 5 ) :
12 P . update_layer_angle ( 3 , th )
13 print P . torques ( layer_ index =3)

Code sample 1: Usage of the Pillar class in CRMT1D

We first import everything we need, then build the Pillar by providing it with a
list of Layer containing the material, its length, and the angle of the magnetization,
when applicable. The, in the loop, we update the third layer (Py) angle, and print
the torque applied on it. It is an easy to measure the angular dependence of a quan-
tity (here the toque), without having to rebuild the whole Pillar.

Next, and example for the DomainWall class:
In this example, we create the domain wall by providing it with a material (it is

made up of only one ferromagnetic material), a length, the number of sections, and
a dictionary pfkwargs containing information needed for the profile function (the
function (θ(x), ϕ(x))). The fields given here correspond the default profile function.
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1 from CRMT.CRMT1D import DomainWall
2 L=100
3 N = 20
4 DW = DomainWall ( m a t e r i a l=" Py " ,
5 length=L ,
6 pfkwargs ={ ’ length_wal l ’ : L/ 1 0 . , ’ length_system ’ : L } ,
7 N=N)
8

9 for i in xrange (N) :
10 print DW. c u r r e n t s ( i )
11 print DW. torques ( i )

Code sample 2: Usage of the DomainWall class in CRMT1D

Figure 62.: Geometry used in the sample code using CRMT3D

The values used here are the default, used if no dictionary pfkwargs is provided.
If another profile function is provided during the definition of the DomainWall,
the dictionary is used to provide additional variables to the function, other than x.
Finally in the loop, we print the currents (charge, spins) at each section, as well as
the torque (in plane and out-of-plane).

XIII - 4.2 CRMT3D

Here we give an example of use of the CRMT3D package, with a 2D system. At the
end of the script, we export the geometry as a picture. Here is the output:
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First, as usual in a Python script, we import everything that will be needed later
on.

1 from CRMT.CRMT3D. geometry import Geometry , Atom , Lead
2 from CRMT.CRMT3D. f ina l iz e d_ sys t em import System
3 from CRMT.CRMT3D. s o l v e r import solve
4 from CRMT.CRMT3D. observables import Observables
5 from CRMT. I l l u s t r a t o r . g e o m e t r y I l l u s t r a t o r import

G e o m e t r y I l l u s t r a t o r

Code sample 3: List of modules to import for a typical simulation using CRMT3D

Then, we create the geometry by first defining a few lengths, defining the dis-
cretization step, and finding out the number of cells needed for the geometry.

1 L_y = 4 .
2 L_F_x = 3 .
3 L_F_y = 2 .
4 dl = 1 .
5 matN = "Cu"
6 matF = " Py "
7

8 x_F = round ( L_F_x/dl )
9 y_F = round ( L_F_y/dl )

10 x = i n t ( round ( L_x/dl ) ) +2 #+1 lead on each s ide
11 y = i n t ( round ( L_y/dl ) )
12 z = 1
13

14 geometry = Geometry ( x , y , z )
15

16 geometry [ : , : , : ] = Atom(matN)
17 geometry [ : x_F +1 , −y_F : , : ] = Atom( matF , t h e t a = 0 . ) #+1 i s to

include the lead
18 geometry [ 0 , : , : ] = Lead ( lead =0 , V= 1 . )
19 geometry [ −1 , : , : ] = Lead ( lead =1 , V= 0 . )

Code sample 4: Creating and defining a geometry
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The next lines simply create the system from the geometry, and uses the solver. It
detects automatically the convergence, by checking that the current is conserved up
to the specified error. Current conservation is checked every N iterations.

1 sys = System ( geometry , dl=dl )
2 solve ( sys ,N=200 , e r r o r =1e−8)

Code sample 5: Creating the system and applying the solver

Finally, an instance of Observables is created to measure the charge current at
the leads (and display only the one corresponding to lead 0 in this case).

1 obs = Observables ( sys )
2 print obs . j c _ a t _ l e a d s ( ) [ 0 ]

Code sample 6: Basic use of the Observable class

The last two lines show how to create Fig. 62

1 I = G e o m e t r y I l l u s t r a t o r ( geometry )
2 I . draw (name=" basicCRMT3Dgeometry " , cut =( ’ z ’ , 0 ) )

Code sample 7: Basic use of the Illustrator class

This concludes the presentation of the work flow with the CRMT package. We
hopefully showed that it is a user-friendly, agile code. We now present its perfor-
mance on real examples.

XIII - 5 P E R F O R M A N C E

In order to give an estimate of how fast CRTM3D is, we perform a simulation while
varying a given parameter. Using the timeit module in python, we measure the
time taken by the solver only (it is the longest part of any simulation, by far). Those
simulations are performed on one core of an Intel ©Core ™2 Duo, running at 2.4
GHz.

The first measurement is the time needed to perform 1000 iterations for an increas-
ing number of cells. As Fig. 63 shows, the execution time is linear in the number
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Figure 63.: Execution time in seconds for 1000 iterations vs the length of the bar. The
transverse dimensions are 12 nm × 12 nm. The discretization step is 6
nm (black lines), 3 nm (red lines) and 2 nm (green lines). The results for
the direct solver is represented in full lines while those for the sweeping
solver are dashed. Inset: Execution time for the same simulation, for the
direct solver, for a 3 nm step, where the increased dimension is along the
y axis and not the x anymore. This illustrates that the execution time is
dependent only on the number of cells, and not their organization.

of cells, and is independent on how those cells are organized. We also see that the
sweeping solver takes roughly twice the time of the direct solver, which makes sense
since it corresponds to applying it twice, the second time iterating over the cells in
reverse order.

The second measurement shows the number of iterations needed (the time needed
is proportional to this value) to reach convergence (with a relative error of 10−6).
This results in a square dependence in the length of the system. On one hand, we
have the linear dependence mentioned simply for iterating over the cells, and on
the other hand another linear dependence corresponding to the dependence of the
convergence with the total length. The longer the distance between the two leads,
the more the effect of each iteration is “diluted”. Fig. 64 clearly shows this quadratic
dependence, and also exemplifies that the sweeping solver, while doing twice as
many operations, is much more efficient.

The main message to take from those examples is that a full simulation can be
performed in a matter of minutes, for the most demanding ones. This makes our
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Figure 64.: Number of iterations to reach convergence vs the length of the bar. The
transverse dimensions are 12 nm × 12 nm. The discretization step is 6 nm.
The results for the direct solver is represented in full lines while those for
the sweeping solver are dashed.

framework quite effective. The simple object architecture makes it easy to deploy
a full simulation in a few lines, where most of it is actually the description of the
geometry. Even better performances can be obtained by several techniques, such as
increasing the discretization step (the diffusive nature of the equations allows for
steps of several nanometers to be taken with barely any loss of precision), reducing
the convergence precision (does one actually need a precision up to six digits ?) or
skip one dimension altogether when the symmetry of the system allows it. The latter
can be taken even further for unidimensional geometries, which can be simulated
even more efficiently by using our 1D package.
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W H AT H A S B E E N D O N E

In this thesis, we investigated first the behavior of the spins transverse to their sur-
rounding magnetization, and their impact on the giant magneto-resistance and spin-
transfer torque. Then, we studied the feasibility of spin-valves (and more generally
spintronics devices) powered by a temperature gradient rather than a bias voltage,
through the dependence of the thermoelectric properties upon the spin species un-
der consideration in ferromagnetic materials.

The first topic of investigation resulted in a semi-classical theory akin to the Valet-
Fert theory, albeit including the non-collinear effects (our theory does reduce to the
Valet-Fert theory within the correct set of approximations). In particular, it describes
the fact that a spin transverse to its surrounding magnetization will precess around
it, and be eventually absorbed. Both processes happen over very short distances,
from a fraction to a few nanometers. These estimates come from an analysis we
made from ab initio calculation of the mixing conductance we found in the literature.
We proposed a experimental scheme capable of measuring those two lengths from
simple GMR measurements. We also presented how those two phenomena can be
related to the out-of-plane component of the spin-transfer torque in long (>10 nm)
magnetic domain walls (which is strongly related to their dynamics).

The second topic resulted in an extension of the theory derived in the first part, in
order to include the effects of the temperature (or rather the gradients thereof). To
do so extensively, and in the same way as with the spin-dependent conductivity in
ferromagnetic metals, we included the thermoelectric effects in our theory, as well as
their spin-dependent part. This theory (as well as experimental results on the value
of those spin-dependent thermoelectric coefficients) allowed us to predict that ther-
mally powering spintronics devices is indeed possible, with reasonable temperature
differences (down to a few degrees).

Our theory resulted also in a simulation tool, designed to be fast, easy to use, and
reliable. This tool has been the cornerstone of our work, and is behind most of our
numerical results.
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W H AT E L S E C A N B E E N D O N E

Future work can be done along a few directions. From a purely theoretical approach,
taking into account the spin temperature might give a better understanding of some
experiments where the assumption of thermalization fails. Another approach would
be to investigate the thermoelectric properties of magnetic interfaces, rather only
those of bulk materials. Taking those interfacial effects into account would be nec-
essary to predict more accurately the temperature difference needed to power the
device. Cleverly selecting materials and their interfaces may lead to even smaller
requirements. One device in particular would benefit from this kind of technology:
the nano-oscillators. Generating electromagnetic waves without the need of an ex-
ternal source of electricity would of course find applications in a lot of fields.

Finally, our simulation tool (and more generally our algorithm) is powerful enough
that it might become possible to couple it to a micromagnetic simulation suite, with-
out too much of a overhead. That would lead to two units computing the informa-
tion the other needs: our tool would provide to the micromagnetic side the value
of the torque (and in particular its usually poorly knonwn out-of-plane component),
while in exchange the micromagnetic side would give our tool the instantaneous
magnetization state of the system. This would result in a one-of-a-kind piece of
software with unmatched precision.
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All of our simulations were based on some given materials, which properties had to
be parametrized. We constituted a database of those parameters. In the Valet-Fert
theory, interfaces and bulk materials have very similar properties, which explains
why the parameter list is similar. Those parameters are, for a bulk material (see
Table 8 for the values):

• ρ∗ the resistivity of the material, expressed in Ω · nm

• β the spin asymmetry (or polarization), describing the relative difference of
resistivity between the majority and minority spin channels

• ℓsf the spin-flip length, expressed in nm, the characteristic length over which
the spin orientation is maintained

• ℓL the Larmor precession length, expressed in nm, the characteristic length de-
scribing the precession of a spin transverse to the surrounding magnetization.

• ℓ⊥ the transverse penetration length, expressed in nm, the characteristic length
describing how deep a spin transverse to the surrounding magnetization can
penetrate in the material

• s, the (reduced) Seebeck number, which is the non spin-dependent part of the
Seebeck coefficient expressed in units of kB/e

• ∆s the (reduced) spin-dependent Seebeck number, which is the spin-dependent
part of the Seebeck coefficient expressed in units of kB/e

For an interface, the list is shorter because we assume that no thermoelectric ef-
fects occur at interfaces. We also don’t give here values for the mixing (transverse)
properties of the interfaces, because they are highly dependent on the quality of the
interface, and should be adjusted accordingly in the simulations. The parameters
are (see Table 9 for the values):

• r∗
b the resistivity of the interface, expressed in Ω · nm2
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Name ρ∗ [Ω · nm] β ℓsf [nm] ℓL [nm] ℓ⊥ [nm] s ∆s

Al 5 0 500 - - -0.017 0
Co 75 0.46 60 0.34 1.0 -0.23 -0.02
Cu 5 0 500 - - 0.017 0
Fe 80 0.45 60 0.30 1.2 0.17 unknown
Py 291 0.76 5.5 0.8 1.7 -0.28 -0.44
Ag 17 0 30 - - 0.017 0
Au 20 0 30 - - 0.017 0
Cr 1250 0 6 - - 0
Pt 42 0 14 - - -0.06 0
Ni 34 0.14 21 1.25 6 unknown
Ru 100 0 14 - - unknown 0

Table 8.: Table of the material parameters used by default for the simulations. When
comparing to actual measurements, and if the material parameters were
available, those had the precedence. Some parameters (especially the spin-
dependent Seebeck coefficients) have not yet been measured, and therefore
no value are reported yet. The transverse lengths ℓL and ℓ⊥ are obviously
irrelevant for non-magnetic metals.

• γ the spin asymmetry (or polarization), describing the relative difference of
resistivity between the majority and minority spin channels (similar to the β of
a bulk material)
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Name r∗
b [fΩ · m2] γ

Ag|Co 0.56 0.85
Ag|Py 0.56 0.1
Au|Co 0.5 0.77
Au|Py 0.5 0.77
Cu|Au 0.5 0
Cu|Co 0.51 0.77
Cu|Cr 0.3 0
Cu|Fe 5.8 0.22
Cu|Ni 0.18 0.25
Cu|Pt 0.5 0
Cu|Py 0.5 0.7
Ru|Co 0.5 -0.2

Table 9.: Table of the material parameters of common interfaces used in the simula-
tions.
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Dans cette thèse, nous étudions le transport diffusif de la charge, du spin et de la chaleur
dans les structures métalliques incluant des métaux ferromagnétiques. En particulier,
nous nous sommes intéressés à la partie de ce transport dont la polarisation n’est pas
colinéaire à l’aimantation ambiante.

Par exemple un courant polarisé en spin arrivant sur une couche magnétique dont
l’aimantation pointe dans une autre direction verra sa partie transverse (i.e. non col-
inéaire à l’aimantation) précesser et être absorbée par l’aimantation sur une distance de
quelques nanomètres au plus. Nous présentons un état de l’art sur ces deux distances
caractéristiques, de précession et d’absorption transverse. Nous montrons aussi que ce
comportement a un impact majeur sur la dynamique, notamment des murs de domaines
magnétiques "longs" (plus de dix nanomètres).

Nous étudions aussi le torque de transfert de spin dans ces structures magnétiques.
Cette étude a porté sur deux aspects majeurs. Tout d’abord l’amplitude du torque, pour
savoir s’il est capable de démarrer une des dynamiques magnétiques connues : l’inversion
magnétique, ou la précession en état stationnaire. Ensuite, la dépendance du torque avec
l’angle relatif des aimantations : dans certains cas, une configuration non-colinéaire peut-
être stabilisée. Deux sources d’énergies ont été considérées, une différence de potentiel,
ou une différence de température (en incluant les effets thermoélectriques dépendant du
spin).

Toute cette étude est réalisée dans le cadre de notre théorie, la Continuous Random
Matrix Theory, que nous présentons dans son intégralité, de son origine avec la théorie
de scattering, jusqu’aux équations différentielles de diffusion, résultat majeur de cette
thèse, et enfin son implémentation en tant qu’outil numérique.

In this thesis we study the diffusive transport of the charge, spin and heat in metallic
structures involving ferromagnets. In particular, we focused on the part of the transport
which polarization is not collinear to the surrounding magnetization.

For example, a spin-polarized current arriving on a magnetic layer with a magneti-
zation pointing in another direction will have its transverse part (i.e. non-collinear to
the magnetization) precess and be absorbed by the magnetization, over a distance of
up to a few nanometers. We present a state-of-the-art collection of values for those two
characteristic lengths, of precession and transverse absorption. We also show that this
behavior as a tremendous impact over the dynamics, notably that of "long" magnetic
domain walls (over ten nanometers).

We also study the spin-transfer torque in those magnetic structures, and focus on two
major aspects. First the amplitude of the torque, to know if it is strong enough to start
one of the known dynamics: magnetic switching or steady-state precession. Second,
the dependence of the torque with the relative angle between the magnetizations: in
some cases, a non-collinear configuration may be stabilized. Two driving forces have
been considered, a voltage bias or a temperature difference (by including spin-dependent
thermoelectric effects).

This whole study is performed within the framework of our theory, the Continuous
Random Matrix Theory, that we present in its entirety, from its origin with the scattering
theory, to the diffusion differential equations, one of the main results of this thesis, and
eventually its implementation as a numerical tool.


