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Résumé en Français

Les processeurs embarqués sont soumis à des contraintes strictes de coût, consommation
électrique et performance. Afin de limiter leur coût et/ou leur consommation électrique, certain
processeurs ne disposent pas de support matériel pour l’arithmétique à virgule flottante.

D’autre part, les applications dans plusieurs domaines, tel que le traitement de signal et la
télécommunication, sont généralement spécifiées en utilisant l’arithmétique à virgule flottante,
pour des raisons de simplicité. Cette implémentation prototype est ensuite adaptée/optimisée
en fonction de l’architecture cible.

Porter de telles applications sur des processeurs embarqués sans support matériel pour
l’arithmétique à virgule flottante, nécessite une émulation logicielle, qui peut sévèrement dé-
grader les performances de l’application. Pour éviter cela, l’application est convertie pour utiliser
l’arithmétique à virgule fixe, qui a l’avantage d’être plus efficace à implémenter sur des unités de
calcul entier. Les deux representations, à virgule flottante et à virgule fixe sont illustrées dans la
fig. 1. La conversion de virgule flottante en virgule fixe est une procédure délicate qui implique

I F

i f

LSB

s

W
E1 M

s e m

LSB

partie entière partie fractionnelle 
exposant mantisse

virgule (implicite)

Nombre representé: sif * 2-F (-1)s * mantisse * 2exposant

Figure 1 – Comparaison des representations à virgule flottante (droite) et à virgule fixe (gauche).

des compromis subtils entre performance et précision de calcul. Elle permet, entre autre, de
réduire la taille des données au prix d’une dégradation de la précision de calcul. En effet, utiliser
des opérations à virgule fixe, tout en gardant la précision complète des résultats, nécessite une
augmentation considérable des tailles de mots des données. Par exemple, le résultat exact d’une
multiplication entre deux nombres de taille w, nécessite une taille de 2w. Cette augmentation de
la taille de mots peut dépasser la taille maximale supportée par le processeur cible, nécessitant
ainsi une émulation logicielle d’opérateurs de taille plus grande, qui peut aussi bien dégrader
la performance de l’application. Afin d’éviter cela, les tailles des données (et des résultats des
opérations) sont réduites en appliquant des quantifications, qui correspondent à éliminer les bits
de poids faibles. Ces opérations de quantification introduisent des erreurs de calcul, appelées

v
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erreurs de quantifications, qui se propagent dans le système et peut engendrer une erreur impor-
tante en sortie, dégradant ainsi la précision du résultat. En règle générale, plus la quantification
est grande (i.e. plus la taille des données est réduite), plus la précision est faible mais meilleur
est la performance. Il existe donc un compromis entre précision de calcule et performance.

Par ailleurs, la plupart des processeurs embarquées fournissent un support pour le calcul
vectoriel de type SIMD ("Single Instruction Multiple Data") afin d’améliorer la performance.
En effet, cela permet l’exécution d’une opération sur plusieurs données simultanément, réduisant
ainsi le temps d’exécution. Cependant, il est généralement nécessaire de transformer l’application
pour exploiter les unités de calcul vectoriel. Cette transformation de vectorisation est sensible
à la taille des données; plus leurs tailles diminuent, plus le taux de vectorisation augmente. Il
apparaît donc un autre compromis entre vectorisation et tailles de données.

En revanche, la vectorisation ne conduit toujours pas a une amélioration de performance,
elle peut même la dégrader ! En fait, afin d’appliquer une opération vectorielle, il faut d’abord
agréger ou compacter les données de chacun des opérandes pour former un vecteur, qui correspond
en générale à un registre SIMD. De même, il faut décompacter les données afin de les utiliser
séparément, comme le montre la fig. 2. Ces opérations de (dé)compactage peuvent engendrer

aN...a2a1 bN...b2b1

+

cN...c2c1

+

a1 b1

c1

+

a2 b2

c2

+

aN bN

cN

... Compacté

en Registre SIMD

compacter compacter

...

Vectorisation

décompacter

En mémoire     ...a1 a2 aN ...

cN...c2c1

Figure 2 – Illustration de la transformation de vectorisation remplacant N opérations scalaires
par une seule opération SIMD plus les opérations de (dé)compactage.

un surcoût important dans le cas où les données sont mal organisées en mémoire. Du coup,
afin d’améliorer efficacement la performance, la transformation de vectorisation doit prendre en
considération ce surcoût.

La conversion de virgule flottante en virgule fixe et la vectorisation sont deux transformations
délicates qui nécessitent un temps de développement très élevé. Pour remédier à ça et réduire les
délais de mise sur le marché des applications, une multitude de travaux ont ciblé l’automatisation
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(complète ou partielle) de ces transformations. Dans l’état de l’art, on trouve des méthodolo-
gies permettant la conversion de virgule flottante en virgule fixe, tel que [51, 26, 64, 85]. Ces
méthodologies comportent en générale trois parties principales :

— La détermination des tailles des parties entières. En se basant soit sur des simulations, ou
en utilisant des méthodes analytiques telle que l’arithmétique d’intervalles et l’arithmétique
affine.

— La détermination des tailles des mots. Cela fait en générale l’objet d’une optimisation
exploitant le compromis entre précision et performance, connue sous le nom "Word Length

Optimization" ou WLO (optimisation de taille de mots). Pour ce faire, des méthodes
permettant l’estimation de la précision de calcule et la performance, d’une implémentation
à virgule fixe, sont nécessaires. Plusieurs méthodes ont été proposées.

— La génération de code à virgule fixe [50].

D’autre part, on trouve également des méthodologies permettant l’exploitation des unités de
calcul SIMD, entre autre, les techniques d’extractions du parallélisme au niveau du bloque de
base, connues sous le nom "Superword Level Parallelism" ou SLP (Parallélisme au niveau du
super-mot) introduit en 2000 par Larsen et Amarasinghe [69]. Ces méthodes ont pour ob-
jectif de trouver des groupes d’opérations, dans un bloque de base, qui peuvent être replacer
par des opérations SIMD. Un tel groupe, appelée groupe SIMD, doit contenir des opérations,
indépendantes, du même type (addition, multiplication, . . . ) et traitant des données de même
taille. Le but des algorithmes d’extraction du SLP [69, 125, 78] est de trouver la « meilleure »
solution de groupage qui permet d’améliorer la performance en tenant en compte le surcoût lié
aux opérations de (dé)compactage.

Cependant, dans l’état de l’art, ces deux transformations sont considérées indépendamment,
pourtant elles sont fortement liées. En effet, WLO détermine la taille des données qui affectent
directement l’espace de recherche du SLP, et par conséquence la performance de la solution
trouvée. Si WLO n’est pas conscient des contraintes d’extraction du SLP et du surcoût associé,
il sera incapable d’estimer correctement l’impacte de ces décisions sur la performance finale de
l’application (après avoir appliquer la conversion en virgule fixe et l’extraction du SLP). Par con-
séquence, il sera incapable d’exploiter efficacement le compromis enter précision et performance.
Afin de mieux exploiter ce compromis, WLO doit prendre en considération SLP, alors que ce
dernier ne peut pas procéder sans avoir une connaissance sur les tailles des données. Ce problème
d’ordonnancement de phase est illustré par la fig. 3.

SLP WLO

SIMD 

Groups

Word-

lenghts

Figure 3 – Problème d’ordonnancement de phase entre WLO et SLP.
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Dans ce contexte, on propose dans un premier temps un algorithme amélioré pour l’extraction
du SLP. On se base sur un algorithme de l’état de l’art proposé en 2012 par Liu et al, on l’analyse
soigneusement pour déterminer ses faiblesses puis on propose des améliorations pour y remédier.
L’algorithme proposée est ensuite implémenté dans une plateforme de compilation source-à-
source, Generic Compiler Suite (Gecos)[38], ainsi que l’algorithme de référence, afin de valider
notre approche. Les résultats expérimentaux, extraits sur un ensemble de neuf applications de
tests et ciblant plusieurs processeurs embarqués, montrent une amélioration claire apportée par
notre algorithme.

Ensuite, on propose une nouvelle technique permettant l’application conjointe, de la conver-
sion de virgule flottante en virgule fixe et de l’extraction du SLP. Au contraire des méthodologies
de l’état de l’art, cette nouvelle technique permet de mieux exploiter le compromis entre la pré-
cision de calcul et la performance d’une application, ciblant des processeurs embarqués avec jeux
d’instructions SIMD sans support matérielle pour l’arithmétique à virgule flottante. Cette ap-
proche consiste à combiner un algorithme d’extraction du SLP conscient de la précision de calcul,
avec un algorithme de WLO conscient des opportunistes de groupage SLP et du surcoût associé.
Pour résoudre le problème d’ordonnancement de phases présenté précédemment, on a adapté
l’algorithme d‘extraction du SLP proposé, afin de relâcher les contraintes liées à la tailles des
données. De cette façon, l’extraction du SLP peut désormais démarrer sans avoir à attendre le
résultat du WLO. l’algorithme d‘extraction du SLP est également conscient de la contrainte sur
la précision de calcul, imposée par l’utilisateur. Cela permet d’éviter de sélectionner des groupes
SIMD qui sont pas réalisable sans violer la contrainte de précision. Les groupes SIMD choisis,
sont ensuite utilisés pour "guider" la sélection des tailles de mots par l’algorithme de WLO. La
fig. 4 illustre cette approche. On implémente cette approche dans Gecos sous forme d’un flot

Accuracy-aware

SLP extraction

SLP-aware

Scalings optimization

Fixed-point

Specification

(IWLs only)

SIMD

Groups

Fixed-point

Specification

(Complete)

Basic blocks

Accuracy Evaluation

Service

Processor 

Model

Accuracy

Constraint

SLP-aware

WLO

groups

WLs

Figure 4 – Illustration de l’approche proposée.

de compilation source-à-source complètement automatisé. Afin de montrer la validité de notre
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approche, on la compare contre une approche classique appliquant indépendamment, d’abord
la conversion de virgule flottante en virgule fixe, ensuite l’extraction du SLP, qu’on implémente
également dans Gecos. On teste les deux flots sur plusieurs processeurs embarquées. Les résul-
tats confirme l’efficacité de notre approche, dans l’exploitation du compromis entre performance
et précision.
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Figure 1.1 – CPU trend over the last 40 years. Published by K. Rupp at www.karlrupp.net/2015/
06/40-years-of-microprocessor-trend-data

1.1 Context and Motivations

Ever since the first transistor computers appeared in the late ’50s, manufacturing technologies
kept continuously improving, allowing a steady exponential growth of the transistor count that
can be integrated into a single die. This improvement rate was early observed by Gordon

Moore in the mid ’60s, when he predicted that the transistor density in an integrated circuit
would double every two years. This has later led to the famously known Moore’s law.

The transistor density growth, up to the early 2000s, was mostly invested in improving single
core CPU performance, as shown in the graph of fig. 1.1. This was essentially achieved by increas-
ing the core operational frequency, up to a point where the power density became too high for
the generated heat to be practically dissipated. Limited by this Power Wall, frequency increase
has stalled (mid 2000s) while the transistor density kept on increasing exponentially, causing
a shift in focus toward multi-core parallelism. Though, other forms of (intra-core) parallelism
have been exploited since the ’60s, including pipelining, superscalar execution and Single In-
struction Multiple Data (SIMD), which contribute to the continuous improvement of single-core
performance.

Unlike general purpose (mainstream) processors, embedded ones are subject to stricter design
constraints including performance, cost and power consumption. Indeed, they are destined to be

www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data
www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data
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used in a wide variety of domain-specific applications with, for instance, a limited power source.
In many application domains, such as signal processing and telecommunication, real numbers
computation is employed. Since exact real numbers are not practically possible to represent
in a processor, designers/developers resort to alternative, approximative representations of real
numbers, which should be accurate enough while satisfying performance, power consumption
and cost constraints of the targeted application. Among the most commonly used such repre-
sentations are floating-point and fixed-point. Floating-point representation has the advantage to
be very easy to use but it requires dedicated hardware support which increase the cost. On the
other hand, fixed-point is cheaper since it is based on integer arithmetic but it is more complex
to use, which increase the development time. So, the choice between these possibilities is mainly
a tradeoff between cost (and power consumption) and ease of programmability.

Many embedded processors nowadays, such the ARM cortex-A family, provide hardware sup-
port for floating-point arithmetic, however a good number of ultra low power embedded proces-
sors, such as ARM cortex-M0/1/3, TI TMS320 C64x and Recore XENTIUM, do not. This comes
at the cost of restraining programmability to the use of fixed-point arithmetic, while application
prototyping generally employs floating-point the for sake of simplicity. This means that imple-
menting the application on such processors requires either a software emulation of floating-point
arithmetic or a conversion of floating-point into fixed-point. While feasible, software emulation
of floating-point results in very poor performance. Alternatively, fixed-point implementation, if
specified carefully, can achieve much (1 to 2 order of magnitude) better performance. However,
this cannot always be done while keeping the same numerical accuracy, as it would require the
use of increasingly large word-lengths, which unless supported by the target processor would also
require software emulation, thus compromising performance. Instead, quantizations are applied
to limit word-length growth at the cost of introducing quantization errors which alter the com-
putation accuracy. This performance/accuracy tradeoff can be exploited during floating-point
to fixed-point conversion in a process known as Word Length Optimization (WLO).

When targeting a processor that can only operate on data with a fixed word-length (the
word-size, 32-bit in general), WLO does not make much sense. In fact, employing smaller data
sizes does not necessarily benefit the application performance. On the one hand, it may require
additional operations to perform data-type conversions, since all integer operations will eventually
be performed on operands converted to the native word-size anyway. But on the other hand,
it may reduce the memory footprint, which can improve performance. All in all, it is generally
better to use the native word-size when targeting such processors.

The story changes when targeting processors with support for SIMD operations. In this case,
smaller data word-lengths can be exploited to perform an operation on several (packed) data
simultaneously, using SIMD instructions. In principle at least, this helps reducing the number
of operations, thus ultimately improving performance. This can be exploited during WLO to
explore the performance/accuracy tradeoff. Most embedded processors, such as XENTIUM and
ARMv7, provide support for SIMD with various levels. However, taking advantage of SIMD
capabilities to improve performance is a challenging task.
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Automated methodologies for floating-point to fixed-point conversion and Simdization 1 are
essential to reduce development cost and cut down time-to-market. None of the existing work
tackles both transformations simultaneously, despite the strong relation between them. Typically,
the floating-point to fixed-point conversion is performed first and then Simdization is (optionally)
applied on the resulting fixed-point code.

In this thesis, we argue that considering both transformations independently yields less efficient
solutions. We propose a new methodology to combine WLO with Simdization.

1.2 ALMA Project

From a broader perspective, this thesis took place in the context of the European project
ALMA [2]. As we mentioned previously, applications in many domains, such as signal processing,
are prototyped or specified using floating-point arithmetic and without too much worry about
the target architecture characteristics, such as parallelism, for the sake of simplicity. More often
than not, the application prototyping is done using high-level numerical languages or frameworks
such as Matlab or Scilab. Once the specification is ready, the implementation phase aims at
providing an accurate and optimized implementation for the target architecture. In the case
of embedded multi-core processors with no hardware support for floating-point arithmetic, this
generally involves three main steps:

— Matlab (or Scilab) to C/C++ conversion.

— Floating-point to fixed-point conversion.

— Coarse and fine -grained Parallelization.

Each of these steps is time consuming and error prone, which greatly increases the development
time.

To address this problem, MathWorks provides an automatic C code generator, from a subset
of the Matlab language. However, the generated C code uses library calls to Matlab special
functions, for which the source code is not provided. This makes the code difficult to optimize
in a later stage. Besides, MathWorks tools are proprietary and open source alternatives, like
Scilab, do not provide a similar functionality. Hence, the main motivations behind the ALMA

project is to provide an alternative solution to this problem.

The ALMA project [2] aims at addressing the aforementioned problems by providing a com-
plete tool-chain targeting embedded multi-core systems. An overview of the proposed tool-chain
flow is depicted in fig. 1.2.

Starting from a Scilab code, the tool aims, in a first place, at automatically converting it
into an annotated C code. The latter then undergoes a multitude of optimizations, mainly
performing:

— Coarse-grain parallelization: to exploit the multi-core nature of the target processors.

1. Simdization is the process of converting scalar instructions in a program into equivalent SIMD instructions.
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Figure 1.2 – ALMA tool-chain flow diagram.

— Floating-point to fixed-point conversion: to avoid performance degradation due to floating-
point simulation.

— Simdization: to take advantage of the SIMD capabilities of the target processor cores.

The tool finally generates a parallel C code using a generic MPI (message passing interface),
SIMD and fixed-point Application Programming Interfaces (APIs).
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ALMA targeted two multi-core architectures from Recore Systems and Karlsruhe In-

stitute of Technology (KIT), based on the XENTIUM [104] and KAHRISMA [58] cores
respectively. None of which support floating-point arithmetic, but they provide subword SIMD
capabilities.

1.3 Timeline

In this section, we present a brief timeline of the work done during this thesis, in order to help
understanding the context, choices and contributions made during this work.

In the context of ALMA, we mainly had to:

— Implement a floating-point to fixed-point conversion, since both ALMA targets do not
provide hardware support for floating-point arithmetic 2.

— Implement an automatic Simdization, since compilers of ALMA targets do not perform
this transformation.

— Explore the performance/accuracy tradeoff using WLO and taking into account SIMD
opportunities.

So, we explored the state-of-the-art for floating-point to fixed-point conversion targeting embed-
ded processors (cf. chapter 2). We found that most approaches are similar in the way they
address the problem:

1. First, the Integer Word Lengths (IWLs) are determined based on dynamic range values,
which can be obtained using simulation or analytical methods.

2. Then, the word-lengths are specified, either by simply using a default word-length (generally
the native word-size e.g. 32-bit), or by performing a WLO under and accuracy constraint.

The different approaches differ in the way dynamic ranges are obtained and/or the WLO algo-
rithm and/or the accuracy estimation procedure.

Integrating such transformations into the target compilers is not a trivial task, but most im-
portantly it should be done for each different target to be supported by the flow. Instead, we
decided to implement this conversion at source code level using a source-to-source compiler flow.
For this matter, we used the source-to-source compilation framework, Generic Compiler Suite
(Gecos) [38], which already integrates a floating-point to fixed-point conversion tool, IDFix [3],
providing automatic dynamic range and analytical accuracy evaluation methods. Besides, this
choice is also motivated by the fact that Gecos/IDFix provides an extension mechanism allow-
ing for "simple" integration of different methods for range evaluation and accuracy estimation
without affecting our work. However, IDFix was initially designed for targeting High-Level
Synthesis (HLS) using C++ fixed-point libraries. Since not all embedded processor compilers
support C++ and in order to avoid the performance overhead introduced by using such libraries,
we implemented a fixed-point C code generator using native integer data-types and operations.

2. Besides, this is also the case for many embedded processors.
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Similarly, we decided to implement Simdization at source code level so that it can be easier
to extend in order to support other targets. We investigated the different ways of performing
Simdization. The existing techniques can be categorized into two groups:

— Loop-level vectorization.

— Basic-block level, also known as Superword Level Parallelism (SLP).

We decided to go with SLP, since it can exploit more opportunities than loop vectorization
without the need for "complex" dependency analysis and loop transformations. We investigated
the state-of-the-art of SLP extraction algorithms and we decided to implement the algorithm
proposed by Liu et al [78] in 2012. However, during the implementation we found many short-
comings, so we came up with an improved SLP extraction algorithm, that we present in chapter 4.
We implemented it in addition to the aforementioned algorithm by Liu et al, so that we can
compare them. We integrated the SLP extraction algorithms as well as a SIMD C code generator
into the same source-to-source compilation framework, Gecos.

At this point, we had at our disposal a complete source-to-source flow capable of automatically
generating a fixed-point SIMD C code for different embedded processors. With all that out of
the way, we started exploiting the interaction between WLO on the one side and SLP on the
other. In the literature, few existing floating-point to fixed-point conversion approaches target
embedded processors with SIMD capabilities. Existing work though, do not consider Simdiza-
tion while performing WLO; they simply assume that selecting narrower word-lengths would
eventually increase the SIMD opportunities, and improve performance consequently. However,
this assumption is very optimistic since the WLO in unaware of the SIMD opportunities and the
associated cost overhead, which can result in a very high performance degradation 3.

Using the source-to-source compilation flow we already implemented, we integrated a typ-
ical WLO strategy that aims essentially at reducing data word-lengths without considering
Simdization. In order to test how well such strategy can perform, we applied floating-point
to fixed-point conversion (using the aforementioned WLO strategy), followed by SLP extraction,
on some benchmarks for XENTIUM, KAHRISMA and two other embedded processors. The
results showed that such an approach is not very efficient for targeting SIMD processors; the
observed speedup due to Simdization varies inconsistently, supporting our hypothesis about the
fact that, simply minimizing word-lengths without taking into account the Simdization problem
would yield inefficient solutions.

In order to solve this problem, we propose a new SIMD-aware floating-point to fixed-point
conversion approach based on a joint WLO and SLP extraction algorithm. We also integrate
the proposed joint WLO and SLP algorithm to the source-to-source compilation flow in order
to test it validity compared to prior typical approach. Using our approach, we obtain more
efficient overall solutions; it enables a better exploitation of the performance/accuracy tradeoff
when targeting embedded processors.

3. mainly due to data packing/unpacking operations
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1.4 Contributions and Organization

More specifically the contributions of this work are the following ones:

— A new Intermediate Representation (IR) for SLP extraction (cf. chapter 4).

— A new SLP extraction algorithm (cf. chapter 4).

— A new approach for floating-point to fixed-point conversion considering, jointly, WLO and
SLP extraction (cf. chapter 5).

— A fully automated source-to-source compilation flow 4 for SLP extraction and floating-
point to fixed-point conversion, together with a fixed-point and SIMD C code generator
with support for several embedded processors.

In the remainder of this manuscript, we first present some contextual background on floating-
point and fixed-point representations and the conversion methodologies, in chapter 2. Then we
present existing techniques for exploiting SIMD parallelism, in chapter 3.

In chapter 4, we present a thorough analysis of the state-of-the-art of SLP extraction algorithms
and we propose a new enhanced algorithm. We implement the proposed algorithm as a source-to-
source compilation flow and we compare it against a state-of-the art SLP extraction algorithm.

In chapter 5, we investigate the interactions between floating-point to fixed-point conversion
and SLP extraction and we propose a new SLP-aware WLO algorithm. We implement it as
a source-to-source compilation flow and we compare it against a typical approach performing
floating-point conversion first, then SLP extraction.

4. using the compilation framework Gecos [38]
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2.1 Introduction

Real number computations are employed in many application domains, such as digital signal
processing. Exact representation for most real numbers, like π for instance, require unlimited
precision, thus it is impossible to represent them explicitly. However, they can be represented
with virtually unlimited precision using implicit representations instead, such as functions [17].
But such representations are generally not practical and require lots of computing labor. Besides,
for most applications, limited precision real arithmetic approximations are good enough. In the
following, we will consider two of the most commonly used real number approximations, namely
floating-point and fixed-point representations.

The goal of this chapter is mainly to explore existing solutions for floating-point to fixed-point
conversion. In sections 2.2 and 2.3 we introduce floating-point and fixed-point representations,
then we compare them in section 2.4. Finally, we discuss existing methodologies for floating-
point to fixed-point conversion in section 2.5 and we present some existing tools for automatic
conversion in section 2.6.

2.2 Floating-point Representation

Floating-point representation is an approximation of real numbers using a limited precision
mantissa (or significand), scaled by a variable factor specified by a limited precision exponent:

mantissa× baseexponent (2.1)

It is hence similar to scientific notation. The base is common to all numbers in a defined system,
so it is implicit and not represented in the number. In addition to the base, the precision and
format (interpretation) of the mantissa and the exponent define a floating-point representation.

Since multiple floating-point representations of a real number are possible, it is very hard to
maintain portability between different architectures. To overcome this problem, IEEE has defined
a standard representation for binary floating-point numbers. This standard, namely IEEE 754,
defines the format of floating-point numbers in base two. The floating-point approximation
FL(x) for a given real number x is represented as follows:

FL(x) = (−1)s × |mantissa| × 2exponent (2.2)

The mantissa is represented in sign-magnitude representation where the sign bit is s, as depicted
in fig. 2.1. The mantissa magnitude is normalized to the range [1, 2[. Only the fractional part is

E1 M

s e m

LSB

Figure 2.1 – Binary representation of floating-point numbers in IEEE 754 standard.
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stored in the number as m on M bits, as depicted in fig. 2.1, and the leading integer bit, set to
1, is implicit.

mantissa = (−1)s × (1.m) (2.3)

The exponent is a signed integer represented in excess (2E−1 − 1) representation. The biased
exponent is stored in the number as e on E bits. The true exponent value is obtained from e by
adding the bias 2E−1 − 1:

exponent = e− (2E−1 − 1) (2.4)

The exponent value ranges in [−(2E−1 − 1), 2E−1]. The minimal value, −(2E−1 − 1), indicates
an Underflow. In this case, the mantissa in not normalized (denormalized mode), the implicit
leading bit is 0 and the exponent value is set to −2E−1−2. The values ±0 are represented in this
mode with m = 0. Whereas, the exponent maximal value, 2E−1, represents two special cases:

— ±∞ for m = 0,

— NaN (Not A Number) for m 6= 0.

When the exponent value exceeds 2E−1 an Overflow occurs.

The IEEE 754 standard defines two main binary floating-point types, among others:

— 32-bit single precision for M = 23 and E = 8,

— 64-bit double precision for M = 52 and E = 11.

It also defines the operations on floating-point numbers, the exceptions and the different rounding
modes.

Floating-point Addition/Subtraction is performed through the following steps:

1. Align the operand exponents to the maximal one, which is set as the result exponent, by
right shifting the mantissa of the smallest exponent number by the difference of exponents.

2. Add/Sub aligned operand mantissas to obtain the result mantissa.

3. Normalize the result. If the mantissa magnitude is out of range [1/2, 1 − 2−M−1], shift it
into range and increment/decrease the result exponent accordingly.

4. Round the result mantissa and adjust the exponent if necessary.

Floating-point Multiplication/Division requires fewer steps:

1. Mul/Div operand mantissas to get the result mantissa and Add/Sub exponents to obtain
the result exponent.

2. Normalize the result.

3. Round the result.

In addition, all operators should check for overflow and other exceptions such as division by
zero.

The rounding step introduces a rounding error. Various rounding methods are possible such
as round to nearest even (default), toward 0 or toward ∞. Besides, operands alignment, for
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add/sub, may result in a precision loss due to the right shifting. Guard bits are generally added
to reduce these errors.

2.3 Fixed-point Representation

Fixed-point representation is an approximation of real numbers using a limited precision in-
teger, scaled by a fixed, implicit factor. For a given real number, x, a binary fixed-point
approximation, FX(x), is represented as follows:

FX(x) = sif × 2−F (2.5)

Where sif is a limited precision integer. It is the only information stored in the number using
two’s complement representation for signed numbers, as depicted in fig. 2.2. The Most Significant
Bit (MSB) of the integer, s, represents the sign in case of signed numbers. The integer (signed
or not) is interpreted as though it is multiplied by a scaling factor, 2−F , specified by F which
is referred to as the Fractional Word Length (FWL). F determines the position of the virtual
binary point in respect to to the Least Significant Bit (LSB). The remaining I MSBs are referred
to as the Integer Word Length (IWL). It can also be used to specify the position of the virtual
binary point in respect to to the MSB. All three parameters, W , F and I are related by the
following equation:

W = I + F (2.6)

I F

i f

Implicit Binary point
LSB

s

W

Figure 2.2 – Binary representation of a signed fixed-point number.

A fixed-point format is thus specified by at least two of the three parameters, I, F and W , in
addition to the signedness. We will use the notation <W, I, F> to refer to a fixed-point format,
though we may skip one of the three parameters for brevity. In this case, the skipped parameter
will be replaced by a ’_’ and can be simply obtained using eq. (2.6). In the case of signed
numbers, the sign bit is accounted for in I.

Fixed-point Arithmetic

Fixed-point arithmetic is essentially integer arithmetic with proper handling of scaling factors.
Let us consider two signed fixed-point numbers, f1 and f2, represented by the integers x1 and
x2 with respective formats, <W1, I1, F1> and <W2, I2, F2>.

For addition (and subtraction), the operands must first be aligned to the same scaling factor,
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before applying the corresponding integer operation.

f1+f2 = x1×2−F1 +x1×2−F2 = ((x1×2F−F1)+(x2×2F−F2))×2−F , F = max(F1, F2) (2.7)

To avoid precision loss, the operand with the smallest FWL is left shifted by |F1 − F2|, so that
they both align to max(F1, F2). The operand word-length must also be increased by the same
amount to avoid any potential overflow. Once the scaling factors are aligned, the underlying
integers can be added/subtracted to obtain the result. This step may require sign extension.
The format of the fixed-point result in this case is <_,max(I1, I2) + 1,max(F1, F2)>

For multiplication, the underlying integer operand can be multiplied directly without aligning.
The format of the fixed-point result is <W1 +W2, I1 + I2, F1 + F2>.

f1 × f2 = (x1 × 2−F1)× (x1 × 2−F2) = (x1 × x2)× 2−(F1+F2) (2.8)

Fixed-point
operation

Integer operations Exact result format

f1 + f2 Align to max(F1, F2) x1 + x2 <_,max(I1, I2) + 1,max(F1, F2)>
f1 − f2 Align to max(F1, F2); x1 − x2 <_,max(I1, I2) + 1,max(F1, F2)>
f1 × f2 x1 × x2 <W1 +W2, I1 + I2, F1 + F2>

Table 2.1 – Exact fixed-point operations.

As can be seen in table 2.1, exact computations over fixed-point numbers require an eventual
growth of the underlying integer word-lengths, specially in case of multiplication where the
exact result requires W1 +W2 bits. Implementing such operations, when targeting a processor
with predefined word-lengths, generally requires some sort of software emulation to support
wider word-lengths, thus degrading performance. As a consequence, the fixed-point numbers are
quantized to make them fit the target processor supported word-lengths.

Quantization

To convert a fixed-point number from a format <W,_, F> to <W −k,_, F −k>, with k > 0,
the k LSBs of the underlying integer should be eliminated by rounding the value of the number.
This conversion is referred to as quantization.

Different rounding modes can be used, such as round toward zero (a.k.a. truncation) or round
to the nearest value. Regardless of the rounding mode, the k LSBs are lost, resulting in potential
precision loss. The error introduced due to quantization, known as quantization error (or noise),
propagates in the computation system and may result in significant error at the system output.

Overflow and Saturation

The range of representable numbers by a signed fixed-point format <W,_, F> is:

range = [−2W−1, 2W−1 − 1]× 2−F = [−2W−1−F , 2W−1−F − 2−F ] (2.9)
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This corresponds to the range of the underlying integer format (on W bits) scaled by a factor
determined by the value of F .

An overflow occurs when a value goes out of range. In this case, the underlying integer value
cannot fit on W bits. Consequently, the value of the underlying integer is wrapped around and
the MSBs are lost, thus introducing a very large error. This overflow behavior (or mode) is
known as wrap around.

However, the introduced error can be reduced by clipping to the maximal (or minimal) repre-
sentable value on overflow. This overflow mode is known as saturation.

2.4 Floating-point vs. Fixed-point

In this section, we compare floating-point and fixed-point representations based on different
criteria, including range, precision, implementation cost and ease of use.

Range and Precision

The precision of a fixed-point representation <W,_, F> is determined by the scaling factor
or the unit-in-last-position (ulp). It is a constant given by:

ulp = 2−F (2.10)

In a IEEE floating-point representation, the mantissa magnitude can represent a set of 2M

different floating-point numbers in the range [2exp, 2exp+1 − 2exp−M ], for a given exponent value
exp ∈ [−(2E−1 − 2), 2E−1 − 1] (in normalized mode). The unit-in-last-position (or precision) is
variable depending on the exponent value:

ulp = 2exp−M (2.11)

So all the numbers with same exponent have the same precision but numbers with higher expo-
nent values are represented with lower precision as depicted in fig. 2.3. The range of representable
floating-point positive numbers (normalized) is:

range = [2−(2E−1−2), 22
E−1

− 22
E−1−1−M ] (2.12)

Therefore, floating-point representation has the advantage to cover a much wider dynamic
range but with adaptive precision, whereas fixed-point representation has a constant precision
but covers a much narrower dynamic range.

Implementation

Hardware implementation of floating-point operators is expensive since it has to handle operands
alignment, normalization, rounding and check for exceptions. This is mainly due to the fact that
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Figure 2.3 – IEEE single-precision floating-point numbers precision vs. range.

the alignment requires a right shifter and the normalization requires a left/right shifter for up to
M positions. Implementing these shifters is a trade-off between execution speed and cost. For
example shift registers are cheap to implement but require a variable number of cycles depending
on the shifting amount. Barrel shifters on the other hand can perform any shift in constant time
but are expensive. Generally multi-level barrel shifters are used.

On the other hand, since fixed-point essentially uses integer arithmetic, no special hardware
implementation is required to support it.

For this reason, many embedded processors do not provide support for floating-point arith-
metic, for the sake of reducing cost and/or power consumption; they only provide integer compu-
tation data-path. In order to perform real number computations on such processors, two options
are possible: either emulating floating-point, or implementing fixed-point arithmetic using the
integer data-path.

Floating-point arithmetic emulation has a great impact on performance since a single floating-
point operation often requires tens of integer arithmetic, shift and branch operations to perform
alignment, normalization and rounding as mentioned earlier. Also representing floating-point
data requires either more memory, in case mantissas and exponents are stored separately, or
extra computations to encode/decode them if they are stored on the same word. This overhead
can be even greater depending on the accuracy of the emulation and its compatibility with IEEE
754; a full compliant simulation requires checking and handling of exceptions.

On the other hand, fixed-point arithmetic can be emulated much faster when limited to use the
integer data types natively supported by the target. In this case most fixed-point operations can
be computed directly using the corresponding integer operator with additional shift operations
when scalings are needed (assuming truncation is used as quantization, and no saturation).
However, since this method is limited to the precision of the native data-types, quantization
should be applied to keep intermediate operation results fit. This procedure is tedious, error
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prone and hard to debug since the programmer must keep track of the (implicit) fixed-point
formats, for every variable and intermediate operation result, and perform necessary scalings
accordingly.

Alternatively, using full-fledged fixed-point libraries, such as Systemc, can seamlessly emulate
any fixed-point format with precisions higher than the native data types and can emulate oper-
ations with no precision loss. These libraries also support various quantization and saturation
modes. But this is at the cost of much slower simulation speeds, by a factor of 20 to 400 as
reported by Keding et al [50].

Therefore the only viable option when seeking tight performance and power consumption goals
is to use native data types to represent fixed-point numbers and perform quantizations to keep
data fit. To enhance the performance and precision of this approach, some specialized processors
provide fixed-point specific enhancements such as:

— Pre-scaling of the input operands and/or post-scaling of the result.

— Extended precision operators and registers.

— Hardware support for saturation and rounding.

Programmability

Most programming languages, like C/C++, provide native seamless support for standard
floating-point data-types and operations but not for fixed-point; this is one of the reasons why
most applications are developed using floating-point.

Floating-point is simpler to use, since the hardware does all the hard work providing an
intuitive and straightforward interface. However, it can be very tricky in some cases. Floating-
point immediate numbers are generally expressed in base 10 for the sake of simplicity. More often
than not, these numbers cannot be exactly represented by the floating-point system being used
(generally base 2), causing unintuitive behavior. For instance, comparing the result of operation
0.1× 10 against 1 gives an unexpected result; both numbers are not equal as it might look like.
Indeed, 0.1 is exactly representable in base 10 but not in base 2. In fact, C standard does not
specify what base is used to represent floating-point data types, but in general it is base 2.

Conclusion

The characteristics of floating-point and fixed-point representations are summarized in ta-
ble 2.2. Due to the high implementation cost of floating-point, fixed-point representation is
often preferred in the context of ultra low power embedded applications. However, the devel-
opment time is higher. Thus, automated floating-point to fixed-point conversion methodologies
are required to cut down the time-to-market.
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Representation Range Precision Cost Programmability Development Time

Floating-point very wide variable high easy low
Fixed-point limited constant low difficult high

Table 2.2 – Floating-point vs. Fixed-point.

2.5 Floating-point to Fixed-point Conversion Methodologies

As discussed earlier, floating-point is not suitable when targeting low power embedded proces-
sors, and fixed-point is preferably used instead. Therefore, when applications are designed using
floating-point, a floating-point to fixed-point conversion is required.

This conversion aims at attributing a fixed-point format to each floating-point data, and at
replacing floating-point operations with fixed-point operations along with proper handling of
scalings. This conversion may introduce computation errors due the overflows and/or quanti-
zations. The conversion process must be aware of these errors and be able to estimate their
effects in order to make sure that the computation accuracy remains within an "acceptable"
limit specified by the developer, according to the application tolerance.

Overflows generally induce large errors. However, they can be prevented by evaluating the dy-
namic value range of each variable and intermediate result and deducing, for each, the minimum
IWL required to represent its value range. In this way overflows are mostly avoided. Alterna-
tively, overflows can be allowed for cases with low occurrence probability to allow the use of
smaller word-lengths. In this case saturation can be used to clip any overflow to the maximal
(or minimal) value. In this case the induced errors should be analyzed since they may have a
great impact on the computation accuracy.

In contrast, quantization errors are relatively small, but they can get amplified when prop-
agated in the computation system and may result in a significant error at the system output.
Therefore, it is very important to evaluate their effect on the computation accuracy and to make
sure the latter stays within the specified limit.

Floating-point to fixed-point conversion generally involves three steps:

1. IWL determination of each variable and operation intermediate result in the system.

2. Word-length determination, to complement IWL determination in order to fully specify
the fixed-point formats. This generally makes the subject of an optimization, called Word
Length Optimization (WLO).

3. Fixed-point code generation.

In the following, we discuss each of these steps.

2.5.1 Integer Word Length Determination

The IWL of a variable is determined based on its dynamic value range. The aim is to specify the
binary point position in the fixed-point formats in such a way to avoid overflows. The dynamic
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range can be obtained either using simulation-based methods [64] or analytical methods.

Simulation-based Methods

The floating-point code is instrumented to collect statistics on floating-point variables and
operation results using simulations with representative input samples. The collected statistics
are used to determine the dynamic ranges of the corresponding floating-point variables, which is
then used to determine their IWL.

Simulation-based methods have the advantage to find tight ranges and therefore do not allocate
unnecessary bits for the integer part. However, they do not guarantee the absence of overflows
since the measured range depends on the tested input samples. thus, a large and representa-
tive input samples must be used to obtain accurate enough estimations of the dynamic range.
Regardless, overflows may still occur and in this case saturation can be used to limit overflow
errors.

Analytical Methods

Alternatively, analytical methods can be used to derive the dynamic range of each variable
and intermediate result, in a given system. Range propagation can be achieved using interval
arithmetic or affine arithmetic for instance. In this case the input ranges are propagated through
operations by a applying a correspondent propagation rule.

For example, using interval arithmetic we can deduce the range of variable y, at the output of
the system depicted in fig. 2.4, given the range of inputs a, b and c. Let a ∈ [am, aM ], b ∈ [bm, bM ]

and c ∈ [cm, cM ]. The intermediate result of the multiplication is then t ∈ [tm, tM ], with:

tm = min(am × bm, aM × bM , am × bM , aM × bm) (2.13)

tM = max(am × bm, aM × bM , am × bM , aM × bm) (2.14)

Finally, y ∈ [tm + cm, tM + cM ].

*

+

a b

c

y

Figure 2.4 – Range propagation example.

Analytical methods have the advantage to be generally faster than simulation and results in
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a certain range that ensures the absence of overflows. However, the obtained ranges may be
over-estimated resulting in unnecessary bits being allocated for the integer parts.

2.5.2 Word Length Optimization

The aim of this step is to select the word-length of each variable and operation in the system.
The FWLs are implicitly specified during this step following eq. (2.6), which directly affects the
computation accuracy and performance. The word-length exploration space is generally specified
depending on the target architecture. In the context of High-Level Synthesis (HLS) [65] targeting
FPGA for instance, a wide range of custom word-lengths can be considered. However, when
targeting an off-the-shelf processor, word-lengths are generally restricted to the ones natively
supported (e.g. 8, 16 or 32 bits) by the processor. In order to explore this solution space for each
variable/operation, a WLO algorithm [140, 85, 91] is generally used. It aims at selecting the best
performance solution while maintaining accuracy within an "acceptable" limit. Therefore, this
requires methodologies to evaluate the accuracy and the cost of a given fixed-point solution.

Cost Estimation

When targeting embedded processors, the goal is generally to optimize the execution time
(although energy consumption could be also considered). Execution time can be estimated by
running the application and collecting timing measurements. To do so, the fixed-point code
implementing the solution to be tested should be generated, compiled and run on the target
processor with representative input data samples. This has the advantage to give a precise
estimation of the execution time. However, this method greatly increases the WLO time, since
this needs to be done for each tested solution.

Alternatively, an estimation of the execution time can be obtained using static analysis or
heuristic based on a cost model of the target architecture. Typically, a relative cost is associated
to each operation type and size. In general, these methods do not lead to an accurate estimation
of the execution time. However, it is often sufficient for comparing the cost between two different
solutions.

Accuracy Evaluation

Accuracy evaluation aims at quantifying or measuring the accuracy of a given fixed-point
solution. Many metrics can be used for this matter, such as Bit Error Rate (BER), generally
used in communication applications, or Signal-to-Quantization-Noise Ratio (SQNR) often used
in image/signal processing applications.

Simulation-based methods [128, 51, 65, 113] can be used for accuracy evaluation. They mainly
consist of simulating the fixed-point system, with representative input samples, and comparing
it against a baseline floating-point specification. The results are compared to find errors and
compute the accuracy value. Such methods suffer from scalability issues, since the simulation
time may be very high, specially in the context of design space exploration in which each tested
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fixed-point solution should be simulated with enough input samples to evaluate its accuracy. This
results in impractically long optimization times. On the other hand however, these methods have
the advantage to be simple and applicable with no restrictions on the underlying computation
system.

In order to cut-down the accuracy evaluation time, analytical methods [89, 87, 81, 83, 22, 109],
aim at computing a closed-form generic expression, representing the fixed-point system accuracy,
as a function of the number of bits assigned to different variables and operations in the system.
Once this expression is generated, it can then be used to quickly evaluate the accuracy of any
fixed-point solution for the system, by simply plugging-in the correspondent values of number
of bits, making it more suitable for design space exploration. However, analytical methods are
restricted to some particular systems, mainly Linear Time-Invariant (LTI) and non-recursive
non-LTI systems.

For an LTI system, Menard and Sentieys [89] proposed a method to automatically compute
the quantization noise power expression based on a computation of the transfer function of the
system, represented by its Signal Flow Graph (SFG). This is then used to determine the SQNR.

Menard et al [87] later extended this method to cover non-LTI non-recursive systems using
only one floating-point simulation to determine statistical parameters of noise sources and signal.
These techniques evaluate the first moments (mean and variance) of the quantization noise
sources and propagate it in the system to the output. To do so, the system is represented by its
SFG, which can be constructed from the corresponding C code, but this requires flattening of all
the control structures. For large systems, this make the computation of the analytical accuracy
evaluation expression slow.

To solve this problem, Deest et al proposed an alternative, more scalable, representation [30]
of the system based on the polyhedral model.

Shi and Brodersen proposed an alternative method [121] using a model of the quantization
noise based on perturbation theory. This method uses simulations to compute the value of some
parameters needed to obtain the analytical expression of the output noise power.

Alternative methods [81, 137] use affine arithmetic to represent the quantization noise in order
to compute an analytical expression of the accuracy.

2.5.3 Fixed-point Code Generation

As discussed earlier, fixed-point can be simulated using C++ libraries such as Systemc and
Algorithmic C Datatypes [1]. This solution has the advantage to seamlessly represent arbitrary-
precision fixed-point formats and supports different overflow and quantization modes. However,
it introduces a significant performance overhead as shown by Keding et al [50].

As mentioned earlier in section 2.4, the best performance option, when targeting embedded
processor, is to limit fixed-point word-lengths to the natively supported ones. In this case, the
fixed-point code can be generated using only native integer data-types to represent fixed-point
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data. Fixed-point operations are directly performed using integer operations; however, scaling
operations should be carefully added to reflect the fixed-point quantizations. This option is much
more tedious and error prone to implement. Using automatic code generation to produce such
code can alleviate this problem.

Scalings are implemented using shift operations. This can therefore severely impact the perfor-
mance depending on the support provided by the target processor. For this reason, floating-point
to fixed-point conversion methodologies should minimize the cost of scaling operations. Kum

et al proposed a scaling optimization algorithm [64] that minimizes a scaling cost function using
integer linear programming, taking into account whether or not the target processor has a barrel
shifter. Menard et al proposed a method[85] to reduce the impact of scaling operations on
the execution time. This optimization, performed under accuracy constraint, aims at moving
the scaling operations whenever possible: when a scaling operation is brought outside a loop
structure, for instance, its impact on the execution time is greatly reduced.

2.6 Automatic Conversion Tools

In order to reduce time-to-market, automatic or semi-automatic tools are crucial in order to
explore the fixed-point design space while obeying to strict time-to-market constraints.

Many simulation-based semi-automatic conversion tools are commercially available like Matlab

Fixed-point converter and Synopsys System Studio. Such simulation-based tools suffer from
high conversion latency, which limits the design space exploration, but it has a wide code cover-
age.

Alternatively, analytical-based conversion tools suffer from very restricted code coverage. For
this reason they are generally limited to research tools like IDFix [3]. Nevertheless, given a com-
patible system, they allow for faster conversion and hence more efficient design space exploration.

2.6.1 Matlab Fixed-point Converter

Matlab is widely used for many domain specific applications design like signal processing. In
Matlab, fixed-point programming is supported; fixed-point data types can be created via the
Matlab fi function.

Besides explicit fixed-point programming, Matlab provides a semi-automatic simulation-
based tool to assist the conversion of floating-point Matlab programs to fixed-point. This
tool is referred to by MathWorks as Fixed-point Converter. This tool mainly functions as
follows:

— It takes as inputs a floating-point Matlab function in addition to a testing Matlab script
that calls the function and provides simulation input samples.

— The first step consists in instrumenting the input floating-point code, which is then run via
the testing script to collect statistics about floating-point variables and operations. These
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statistics mainly include the dynamic maximal, minimal and mean values.

— The simulation dynamic range is then used to infer the IWL for each variable. The user can
specify an additional safety margin to the simulation range in order to minimize overflow
occurrences. Alternatively, he can specify a static range for each, or some, variables which
are used instead of the simulation ranges.

— The user can then either specify a default word-length (or FWL) which will be used to
infer the FWLs (or word-lengths). Alternatively, he can manually specify the fixed-point
format for each or some variables.

— The operations intermediate result formats are inferred based on a user-defined default
behavior for each operation type. It indicates whether the operation should keep full-
precision or perform quantization. In the latter case it specifies what quantization mode is
to be used.

— Finally, the fixed-point Matlab code is generated to reflect the selected fixed-point speci-
fication, using fi function to create fixed-point types and specify default behaviors.

— The tool also provides a way to automatically instrument and simulate the resulting fixed-
point code in order to compare it against the original floating-point version to verify its
accuracy. This eases the fixed-point design space exploration.

Since Matlab code is not suitable to run on embedded processors, the developer must port
the generated Matlab code to C/C++ in general. This process is time consuming and error
prone. However, Matlab also provides a tool to automate this task for a subset of Matlab

syntax. But this has several disadvantages:

— The generated C code uses library calls to Matlab special functions, for which the source
code is not provided. This make the code difficult to optimize in a later stage.

— These tools are proprietary, and alternative open source languages like Scilab does not
provide similar functionalities.

The ALMA [2] project, presented earlier in section 1.2, aimed at addressing these limitations
by providing a complete tool-flow starting from Scilab code down to C code with coarse- and
fine- grained optimizations and parallelism extraction. In this context, a contribution of the work
of this thesis was to provide floating-point to fixed-point conversion, along with Simdization, to
efficiently target embedded processors with no hardware floating-point support.

2.6.2 IDFix

IDFix is a research tool for automatic floating-point to fixed-point conversion using analytical
methods, originally designed to target HLS. It is developed by the Cairn/Irisa team and is
integrated in the source-to-source compilation framework, Generic Compiler Suite (Gecos).

IDFix flow diagram is depicted in fig. 2.5. It takes as input an annotated floating-point C
code, an accuracy constraint and a model of the target architecture. It comprises several stages
that are described below.
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Figure 2.5 – IDFix flow diagram.

A Font-End parses the input floating-point C code and generate an Intermediate Represen-
tation (IR), which is basically a control and data flow graph (CDFG).

The input C code must satisfy several constraints, mainly:

— All control structures, such as loop bounds, must be statically evaluable.

— The system input variables must be annotated with a pragma annotation specifying their
dynamic values range (#pragma DYMANIC[min,max]).

— The system outputs must be marked with a pragma annotation (#pragma OUTPUT).

— All variables used to represent a delay line 1 should be marked with a pragma annotation
(#pragma DELAY).

1. a variable used to store previous values of a signal, often implemented using a circular buffer. For example,
X represents a delay of the signal represented by sample in the following C code snippet: int X[N]; X[0] =

sample; ... for(int i=N-1; i>0; i- -) X[i] = X[i-1];
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All control structures in the CDFG are then flattened, and loops are fully unrolled. The flattened
CDFG is used to generate a SFG representing the computation system, which is later used to
propagate dynamic range information and to compute the accuracy expression.

Dynamic Range Evaluation The user-specified input dynamic ranges are propagated in the
SFG, using interval arithmetic, to infer the dynamic range of each variable and intermediate
result (nodes). The dynamic range information is then used to determine, for each node, the
minimum IWL such that no overflows can occur.

Accuracy Expression Generation The analytical accuracy expression of the system is gen-
erated as function of all node FWLs and their associated quantization modes. This is based on
quantization error modeling and analytical SQNR evaluation presented in [89, 87], which only
support LTI systems (and non-recursive non-LTI systems). The generated accuracy expression
is later used to evaluate the accuracy for a given fixed-point solution during WLO.

Word Length Optimization IDFix provides several WLO algorithms to explore the perfor-
mance/accuracy tradeoff. It uses a modular and extensible design to allow for simple implemen-
tation of additional WLO algorithms.

The word-length solution space is constrained by the operators supported by the target archi-
tecture, described using a simple model, which specifies:

— For each supported operation type (add, mul, ...), the supported operators that can perform
it. An operator is simply represented by the word-lengths of the operands on which it can
operate. For example ADD[32 32 32], represents an operator capable of adding two 32-bit
operands to produce a 32-bit result.

— For each operator, a static cost representing either its execution time, its area, or its energy
consumption.

A WLO aims at finding the best solution, according to a specified criteria, while maintaining
the system accuracy within an "acceptable" limit, provided by the user. It uses the analytical
accuracy expression, generated earlier, to evaluate the accuracy of a tested fixed-point solution.

Cost Estimation based on the specified cost criteria (execution time, area, or energy con-
sumption), the cost of a given fixed-point solution is automatically estimated by adding the cost
of the operators assigned to each operation in the system. The operator cost is retrieved from
the architecture model.

Back-End generates a fixed-point C++ code, corresponding to the fixed-point specification re-
sulting from the WLO, using either Systemc or Algorithmic C Datatypes C++ libraries targeting
HLS tools like Catapult C. The fixed-point code is simply obtained by changing the data-types
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of all floating-point variable to the corresponding fixed-point class. Operations, scalings, satura-
tions and quantizations are seamlessly handled by the underlying C++ library using operators
overloading.

2.7 Conclusion

In this chapter, we have presented and compared floating-point and fixed-point representations.
We have also discussed existing methodologies for floating-point to fixed-point conversion.

In summary, we have observed that:

— Many embedded processors do not provide hardware support for floating-point arithmetic.

— Floating-point software-emulation greatly degrades performance.

— Fixed-point is more suitable in this case; it provides a better performance at the cost of
degrading computation accuracy.

— C++ fixed-point libraries are seamless to use, but they can introduce an overhead. Best
performance can be achieved using only native integer data-type word-lengths.

— Floating-point to fixed-point conversion can exploit this performance/accuracy tradeoff
through WLO.

— Automated conversion mainly requires a method for evaluating dynamic ranges and for
evaluating the accuracy of a given fixed-point implementation.

— Simulation based methods are very slow, which make them not suitable for design space
exploration.

Based on these conclusions, we decided to implement automatic floating-point to fixed-point
conversion, in the context of the ALMA project, at source code level producing a fixed-point C
code using only native integer data-types. We decided to use IDFix, since it already provides
a framework for analytical accuracy evaluation and dynamic range evaluation. In addition, it is
already integrated into a source-to-source compilation framework, namely Gecos.

Later on, in chapter 5, we will present the source-to-source compilation flow that we imple-
mented for floating-point to fixed-point based on IDFix. We will use this flow in conjunction with
an automatic Simdization flow, which we will present in chapter 4, to explore the interaction
between floating-point to fixed-point conversion and Simdization and their impact on perfor-
mance/accuracy when targeting embedded processors. But first, in chapter 3, we will discuss
another important performance-impacting factor when targeting embedded processors, namely
Single Instruction Multiple Data (SIMD).
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3.1 Introduction

In the previous chapter we presented the floating-point and fixed-point representations of real
numbers. We discussed their impact on performance and accuracy, in the context of embedded
processors. We concluded that fixed-point is more suitable for many embedded processors, spe-
cially in the context of the ALMA project. So, we explored existing methodologies for converting
floating-point applications into fixed-point. In this context (as explained in section 1.3), another
important performance-impacting factor is Single Instruction Multiple Data (SIMD), which we
will discuss throughout this chapter.

Ever since the first transistor computer, manufacturing technologies continue to push minia-
turization to its limit allowing more and more transistors to fit into a single die [116]. A big
share of this growth has been invested in providing parallelism at various levels. In 1966, Flynn

distinguished four classes of architectures according to the form and the grain of parallelism
they provide. SIMD is one of them. It is the class of architectures capable of executing the
same operation on several data simultaneously, thus providing a form of Data Level Parallelism
(DLP). Figure 3.1 shows an illustration of a SIMD addition in contrast to its equivalent scalar
operations. The SIMD operation performs the addition of all N data elements simultaneously,
whereas N scalar additions are needed to perform the same operation.

N Scalar Operations

aN...a2a1 bN...b2b1

+

cN...c2c1

1 SIMD Operation 

+

a1 b1

c1

+

a2 b2

c2

+

aN bN

cN

...

Figure 3.1 – Illustration of an SIMD addition operation in contrast to scalar addition operation.

Earliest form of SIMD architectures appeared in vector processors, used in supercomputers like
the TI ASC and Cray-1 [115] in the 1970s. These supercomputers mainly targeted computation-
intense scientific applications. With the increasing interest in multimedia applications for general
public, SIMD architectures found their way into mainstream desktop processors, in mid 1990s,
as an economical yet effective way to boost performance for such data parallel applications [72,
15]. These newer SIMD architectures are commonly known as Multimedia extensions or SIMD
extensions.

The lack of native support for SIMD operations in common programming languages, in ad-
dition to the irregularities between different Multimedia Instruction Sets (MISs), made it very
challenging to take full advantage of parallelism provided by Multimedia extensions. Program-
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mers had to explicit SIMD parallelism in the application code, which is tedious and error prone.
The natural cure to this problem is to rely on compilers to automatically extract and generate
SIMD code.

Alternative solutions, such as supporting SIMD parallelism in programming languages, has
been also investigated in order to efficiently leverage Multimedia extensions. However, a huge
base of legacy applications, coded with sequential (scalar) languages like C and Fortran (prior
to Fortran90), has already been established. This fact makes such solutions less attractive.

In this chapter, we present the characteristics of some SIMD instruction sets, as well as the
different techniques of exploiting them. In section 3.2, we present an overview of the evolution
of SIMD instruction sets. We then discuss the different ways of exploiting them in section 3.3.

3.2 SIMD Instruction Sets

In this section we present an overview of the evolution of most common SIMD instruction sets.
In section 3.2.1, we briefly describe conventional vector processor architectures. We then present
the evolution of Multimedia extensions in section 3.2.2.

3.2.1 Conventional Vector Processors

Vector processors are among the first models of SIMD architectures. Development of such
processors started in the 1960s. They were mainly used in supercomputers, like the Texas

Instruments (TI) Advanced Scientific Computer (ASC) and Cray-1 [115], targeting compute-
intensive scientific applications. These processors support the execution of scalar and vector
instructions. They have the ability to perform the same operation on several, say N , data
elements, called vectors, by issuing a single vector instruction compared to N scalar instructions.
Using vector instructions requires less instruction bandwidth, reduces loop control operations
and reduces code size compared to scalar instructions.

Earlier vector processors, such as CDC’s 1 STAR-100 and TI’s ASC, used a memory-to-memory
architecture. In such architectures, functional units operate on data directly from memory and
write the results back to memory. The high latency associated with memory accesses is a limiting
factor of such architectures.

Since Cray-1, this limitation is overcome by employing register-to-register architectures. The
operands are first loaded to vector registers, on which vector instructions are applied. When
needed, the results are stored back to memory. In order to do so, several vector registers are
added, in addition to scalar registers. A vector memory access unit handles the transfer of data
between the memory and vector registers, while functional units operates on registers.

In contrast to memory-to-memory architectures, the vector length is limited by the vector
registers size (generally of several Kbits). Though, it can be changed dynamically through a

1. Control Data Corporation
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Vector Length Register. Furthermore, vector masking allows the conditional execution of a
vector instruction on certain elements of the vector operands.

Such architectures generally use one or more pipelined functional units (FU). A vector instruc-
tion is fetched and decoded once and then executed on all vector elements sequentially, though
in case of multiple FUs, multiple vector elements are processed in parallel. Also, thanks to vec-
tor chaining (also called bypassing) a vector instruction can start executing as soon as the first
elements of its vector operand - resulting from a previous vector instruction - are ready instead
of waiting for the previous instruction to finish processing the entire vector.

Besides, these architectures have no restrictions on vector memory accesses. Scatter/gather
accesses are supported and the accessed data is not required to be aligned on the vector size.

All these features, allow vector processors to have a seamless, complete and efficient support
for vector operations.

3.2.2 Multimedia extensions

Despite their advantages, vector processors were very expensive 2 and not as efficient execut-
ing scalar instructions compared to conventional microprocessors, which was a limiting factor
(Amdahl’s law).

For these reasons, vector processors lost interest in the 1990s. Few years later, due to the
increasing popularity of multimedia applications, another form of SIMD instruction sets, known
as Multimedia extensions or small-scale SIMD, found its way to mainstream (general-purpose)
and embedded processors. The main goal of these extensions was to provide a performance boost
when targeting multimedia applications, by supporting a MIS, with little cost overhead.

Contrary to conventional vector processors, Multimedia extensions are based on a partitioned
data-path that simultaneously operates on all vector elements. The vector representation in
Multimedia extensions is different than in vector processors:

— Vector size is fixed and generally small (between 32 and 256 bits).

— Multiple vector element sizes are supported (generally 8, 16 and 32-bit).

— Vector elements must be packed into a register. Some Multimedia extensions use dedicated
SIMD registers while others make use of the same scalar registers.

This means that for smaller element sizes, more elements can be processed simultaneously.
Though, the number of cycles required to execute a SIMD instruction on a Multimedia ex-
tension is the same regardless of the number of elements and their size (generally the same as
its scalar counterpart). This is generally not the case for conventional vector processors, where
the maximum number of vector elements does not change with element size (the elements are
not packed) and the number of cycles required to execute a vector instruction vary according to
the number of elements. Consequently, when targeting Multimedia extensions the program must
handles data packing and unpacking.

2. A Cray-1 supercomputer was sold for few million dollars.
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Besides, the main difference between vector processors and Multimedia extensions is in the
memory unit. Unlike vector processors, most Multimedia extensions do not support scatter/-
gather memory accesses and require data to be contiguous and aligned to the vector size, in
order to be directly loaded into a vector register. Otherwise, multiple memory accesses have to
be performed and data have to be rearranged in vector registers. Multimedia extensions pro-
vide data permutation operations to allow the reordering of vector elements in registers. This,
furthermore complicates the programming of Multimedia extensions.

MISs are designed to suit multimedia application needs. Since multimedia application domains
are numerous and sometimes have different requirements, various MISs have been introduced
by processor manufacturers with differences in vector size, supported element data-types and
supported SIMD operations. Choosing among these criteria is generally a tradeoff between the
coverage of the targeted application domain(s), the desired performance enhancement and the
associated cost overhead.

Multimedia extensions have been constantly evolving ever since they were introduced. The
vector size tends to increase with time, from 32-bit to 512-bit nowadays, and is expected to
continue growing. Supported data-types are generally common powers of 2, starting from 8-
bit for integers, in addition to single, double and, recently, half precision floating-point. The
SIMD instructions set, also become richer with time by including more specialized instructions,
composite instructions and/or horizontal SIMD instructions. All this led to many irregularities
and variations between different MISs, which make them even harder to program.

All in all, Multimedia extensions generally suffer from various shortcomings that the program-
mer should handle:

— Vector elements packing and unpacking.

— Data permutations to handle unsupported memory operations (scatter/gather and align-
ment).

— Variations between different MISs.

In the remainder of this section we present an overview of the evolution of Multimedia ex-
tensions. We distinguish two main categories, Subword Multimedia extensions and Superword

Multimedia extensions.

3.2.2.1 Subword Multimedia extensions

First Multimedia extensions were achieved by partitioning the existing scalar data-path, usu-
ally of 32-bit or 64-bit wide, into several smaller parts. This gives the processor the ability to
operate on registers as a whole (in case of scalar instructions) or as aggregates of several, usually
8, 16 or 32-bit wide, independent subwords. In such architectures, the registers used by both
scalar and SIMD instructions are thus the same.

The data-path is partitioned by introducing logic to handle propagation across subword bound-
aries. The same functional unit can be configured, by the instruction, to execute an operation
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Figure 3.2 – Illustration of Sub-word Level Parallelism (SWP) addition operator capable of exe-
cuting 32-bit scalar addition (when propagate is 1) or 2x16-bit SIMD additions (when propagate
is 0).

between the entire words held in operand registers or between subwords independently. For in-
stance, let us consider the unsigned addition operator in fig. 3.2. It can either perform the scalar
32-bit operation 0x18001 + 0x28000 to get 0x40001 as result, or the 2x16-bit SIMD operations
0x1 + 0x2 and 0x8001 + 0x8000 resulting in 0x3 and 0x1 respectively. Note that in the later
case, the carry from the first addition is not propagated to the second one, the content of the
destination register is 0x30001.

The Instruction Set Architecture (ISA) is extended by adding a MIS. It generally provides
SIMD instructions for basic arithmetic operations (add, mul, ...) supporting different subword
data-types. In addition, it also provides SIMD instructions for data packing, unpacking and
permutation.

Such architectures provide small scale SIMD support, known as SWP, for very a modest cost
overhead. For instance, MAX-1, the first such MIS proposed by Hawlett-Packard (HP) in
1994, provided real-time MPEG video decompression and occupied only 0.2 percent [72] of the
PA-7100LC processor [57] die area. MAX-2 that was introduced 2 years later occupied even less
than 0.1 percent [72] of the PA-8000 processor [66] die area.

Soft SIMD To a certain extent, SWP can be exploited by software with no special hardware
support, using but scalar instructions, this is known as Soft SIMD [37, 61].

Just like subword Multimedia extensions, this technique allows the execution of an operation
on multiple subwords, packed into scalar registers, simultaneously. However, it can do this
without any special hardware support by using only the existing scalar data-path. This basically
consists of virtually partitioning the scalar data-path to perform SIMD operations by introducing
separation bits between subwords in order to isolate them.

Figure 3.3a shows an example of a soft SIMD operation performing four 7-bit integer additions.
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(a) Soft SIMD operation performing four 7-
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Operands are packed into 32-bit registers, each
separated by one separation bit.

*

=

8 bits

 Separation bits

64

8

8 bits

0100000000000000a00000000

0000100000000000b00000000

0000000000000010LSBsMSBs

512a*b

(b) Soft SIMD operation performing two 8-bit
multiplications using scalar integer 32-bit mul-
tiplier. Operands are packed into 32-bit regis-
ters, each separated by eight separation bits.

Figure 3.3 – Illustration of some soft SIMD operations.

The operands of these additions are packed into 32-bit scalar registers with one separation bit
between each two subwords. The potential overflow of one addition is caught by the separation
bit on its Most Significant Bit (MSB) side, this way the result of one addition cannot pollute
the result of the other. Since the addition of two 7-bit operands requires at most 8-bit to hold
the result, only one separation bit is enough to avoid interferences. In case of multiplication,
however, more separation bits are needed, as illustrated in the example of fig. 3.3b.

Soft SIMD requires careful management of separation bits in order to avoid subword operation
interferences. This greatly limits the efficiency of such approach, especially in the case of chained
operations, where the number of required separation bits rapidly grow. The more separation bits
are needed the less subwords can be packed together. Nevertheless, soft SIMD can still be useful
in some cases, especially when handling very small data sizes or irregular data-types (e.g. 10-bit)
that are generally not supported by the hardware.

3.2.2.2 Superword Multimedia extensions

Later Multimedia extensions are based on special hardware extensions dedicated to support
SIMD instructions. Similar to subword extensions, they are based on partitioned data-path.
However this data-path is dedicated to SIMD and is generally separated from the scalar data-
path. These extension units use special SIMD registers that are wider than the machine’s native
word size (hence the name superword). In contrast to subword, superword Multimedia extensions
are more costly but offer higher vectorization factors. Also, since registers are not shared with the
regular scalar data-path, register transfer instructions are generally added to move data between
regular and SIMD registers.

One of the first such Multimedia extensions is Intel Matrix Math eXtension (MMX) [98] that
equipped Pentium processors in 1997 providing support for 64-bit integer SIMD instructions
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capable of operating on eight 8-bit, four 16-bit or two 32-bit packed data.

Ever since, most processor manufacturers continuously enhance and extend these MISs. SSE
and later SSE2, 3 and 4 were successively proposed by Intel to support wider SIMD vector size,
more subword data-types and/or more SIMD operations. As of today, Intel AVX-512 provides
512-bit SIMD support for all powers of 2 integer data-types starting from 8-bit, as well as single
and double precision floating-point data-types.

Nowadays, superword Multimedia extensions are found in most general-purpose processors.
They tend to have the same features as conventional vector processors by supporting wider
vector sizes and less restricted memory accesses.

In low power embedded processors, it is more frequent to find support for SWP due to their
near-zero cost and power consumption overhead. This is the case of many low power Very Long
Instruction Word (VLIW) architectures such as Recore Systems Xentium[104], TI TMS320
C64x and STMicroelectronics ST240, as well as ARMv7 processors except those equipped with
the NEON SIMD extension providing 128-bit SIMD support. In the context of this thesis, we
mainly target this kind of architectures.

3.3 Exploiting Multimedia extensions

As mentioned in the previous section, the potential of SIMD architectures was recognized very
early. Hardware support for SIMD has been provided through different architectures. Nowadays
almost all processors, both general-purpose and embedded, provide a certain form of SIMD
support through Multimedia extensions. In this section we discuss the different ways of exploiting
the potential of these extensions to improve performance.

Since the hardware does not automatically make use of Multimedia extensions, the software
must explicitly invoke SIMD instructions. However, most applications are generally coded in a
scalar fashion 3. Therefore, in order to make use of Multimedia extensions, a scalar code must be
transformed to explicitly use SIMD instructions. We refer to this transformation as Simdization.

Simdization mainly requires two steps:

— First, exposing and uncovering SIMD parallelism in the scalar code. This generally requires
code analysis and transformations, such as dependences analysis and loop transformations,
to help exposing and enhancing SIMD parallelism.

— Converting groups of independent scalar instructions into equivalent SIMD instructions.
This requires proper handling of data packing and unpacking taking into account memory
access constraints.

In the following, we present the different ways of applying Simdization. We first discuss manual
Simdization techniques, then we present various automatic Simdization methodologies.

3. using scalar instructions only. We will refer to this as scalar or sequential code.
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3.3.1 Manual Simdization

When seeking maximal performance, hand-written optimized code is still the best bet. This is
a difficult task, however. The programmer must have good knowledge of the target ISA, but also
should have some skills in program transformations in order to efficiently expose and leverage
parallelism provided by Multimedia extensions. This task is known to be tedious and error prone.
Manual SIMD programming can be performed at various abstraction levels:

Inline Assembly

Inline assembly code can be used from within C/C++ code to explicitly invoke SIMD instruc-
tions. This is however very tedious and error prone. Furthermore, it is not portable since it is
architecture-dependent. However, it allows fine-tuning to achieve best performance.

Intrinsics

Most SIMD processors provide a set of compiler-known intrinsics to invoke SIMD instructions.
This allows a very similar expressibility as inline assembly programming, but has the advantage to
be simpler, since it provides a function-like Application Programming Interface (API). However,
it still mostly architecture-dependent and lacks portability.

SIMD Libraries

Another alternative consists of using pre-optimized libraries that implement certain function-
alities using highly optimized SIMD code. This solution is very easy to use and more portable,
but it is limited to few functionalities. It generally allows to achieve good performance, how-
ever, since the compiler is not aware of the optimized functions code, it cannot perform certain
(inter-procedural) analysis and optimizations.

SIMD Programming Languages

Many high-level programming languages, with native support for vector operations, have been
proposed as a mean to ease the use of SIMD hardware. Fortran 8x, later known as Fortran
90, C* [111] are early examples of such languages, which were introduced in the 80s to simplify
programming vector processors. More recent languages, like Cilk Plus and SIMD directives of
Openmp, are more suitable for targeting Multimedia extensions.

Although SIMD programming languages provide a clean, efficient and portable way to target
Multimedia extensions, they still require additional effort to figure out parallelism and express
it correctly when designing the application, but most importantly they are of no use for already
existing software. One solution to overcome this limitation consists in using source-to-source
compilers to convert legacy (scalar) code to a SIMD language. An example of this approach is
the Fortran-to-Fortran8x compiler [10].
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3.3.2 Automatic Simdization Methodologies

As mentioned previously, manual Simdization is generally tedious, hard to maintain and lacks
portability. SIMD programming languages can simplify these problems, but they are helpless for
legacy software. The ultimate solution consists in relying on compilers to automatically detect
and expose SIMD opportunities and efficiently generate SIMD code.

We can distinguish two main methodologies of automatic Simdization which emerged in har-
mony with the evolution of SIMD hardware architectures. The first, rather known as Loop

Vectorization, was first introduced to target vector processors. It has later been adapted to tar-
get Multimedia extensions (mid 90s). And the second, basic-block level Simdization, appeared
in 2000s as an alternative efficient way to target Multimedia extensions.

3.3.2.1 Loop Vectorization

Loop vectorization is a Simdization code transformation targeting loop nests. It aims at
exploiting vector parallelism, a subset of loop-level parallelism. It basically consists of converting
a "vectorizable" scalar loop into equivalent loop with vector instructions. A vectorizable loop is
a loop that does not carry dependencies between its iterations (i.e. its body instruction instances
can be executed in parallel) and that has a number of iterations equal to the vector size. Such
loops are rarely present in a code, thus loop transformations allowing to exhibit them constitute
a key part of loop vectorization techniques.

An auto-vectorizing compiler relies on instance-wise dependency analysis and loop transfor-
mations, such as loop interchange, fission, fusion, shifting, skewing and strip-mining to name a
few, in order to detect and expose vectorizable loops.

Figure 3.4 illustrates a simple example of loop vectorization. The loop in the original code
(fig. 3.4a) is dependence-free, but it has N iterations which may be different from the vector
size V . Applying loop peeling and strip-mining in this case allows to expose a vectorizable loop
(fig. 3.4b), which can be then replaced by equivalent vector code (fig. 3.4c).

First attempts of auto-vectorizing compilers were targeting vector processors, like Cray-1’s
Fortran compiler (CFT). The quality of such compilers is greatly limited by their ability to
perform precise dependence analysis and advanced loop transformations. Padua and Wolfe

highlight the importance of data dependence analysis in automatic loop parallelization compil-
ers [96]. Nobayashi and Eoyang published a study [92] comparing auto-vectorizing compilers
targeting conventional vector processors in 1989 and outlined the importance of loop transfor-
mations to expose vectorizable loops.

In this context, the polyhedral model is well fitted to provide such services. Indeed, the
polyhedral model offers an instance-wise abstract representation of some compatible loop nests,
known as Static Control Parts (SCoPs) or ACL (Affine Control Loop) 4. This mathematical

4. Basically a loop nest in which all loop bounds, conditionals and array subscripts are affine functions of the
surrounding loop iterators and parameters.
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for (i = 0; i < N ; ++i)

Y[i] = X[i] + C[i];

(a) Original code

//V: the vector size

for (ii = 0; ii < ⌊N/V ⌋*V; ii += V)

for(i = ii; i < ii+V; i++) //vectorizable

Y[i] = X[i] + C[i];

for (; ii < N; ++ii)

Y[i] = X[i] + C[i];

(b) After applying peeling and strip-mining

for (ii = 0; ii < ⌊N/V ⌋*V; ii += V)

//this is later replaced by SIMD instructions

Y[ii:ii+V-1] = X[ii:ii+V-1] + C[ii:ii+V-1];

for (; ii < N; ++ii)

Y[i] = X[i] + C[i];

(c) After applying vectorization. [min : max] represents a vector access to
contiguous array elements starting at offset min till offset max included.

Figure 3.4 – Example of Vectorization.

representation is used to derive a precise instance-wise and array element-wise dependence anal-
ysis [32], based on which the space of valid loop transformations (also known as schedules) can
be explored. A loop transformation corresponds to a mathematical relation that reschedules
the loop instances. It is valid if it does not violate any dependency [33, 34]. With the advance
of polyhedral model techniques and tools, such as Pluto[19] and ISL [139], auto-vectorizing
transformations become more robust, and easier to implement [60].

Most compilers nowadays, such as GNU GCC and LLVM, provide support for polyhedral
transformations and automatic loop vectorization.

Adapting Loop Vectorization to Multimedia extensions

When Multimedia extensions emerged, due to their resemblance to vector processors, the trend
was to adapt loop vectorization techniques in order to automatically generate SIMD code target-
ing Multimedia extensions. Indeed, the same loop analysis and transformations can be employed
to expose vectorizable loops, which are then transformed into equivalent SIMD instructions from
the target MIS.

However, unlike vector processors, MISs are irregular and vary significantly between different
extensions. But most importantly, they do not provide a complete support for vector operations,
especially memory accesses. This makes the conversion of vectorizable loops into SIMD code more
complex as compared to vector processors, for which this conversion is straightforward. Fisher

and Dietz discussed this problem and proposed to complement hardware SIMD instructions with
software emulated ones [37] (soft SIMD) in order to have better support for vector operations.

On the other hand, vectors are represented differently in Multimedia extensions. Unlike vector
processors, vector elements must be packed in SIMD registers in order to be processed by SIMD
instructions. Thus, the compiler must be able to handle data packing and unpacking, in order
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to load vector elements from memory and pack them into SIMD registers, and unpack elements
to store them back into memory. This step is particularly sensitive especially in case of complex
memory accesses (scatter/gather or unaligned accesses). Since most Multimedia extensions only
support aligned 5 unit-stride 6 vector memory accesses, an important overhead is associated with
the packing/unpacking operations, which are required in the case of complex memory accesses.
Figure 3.5 illustrates an example of vector memory load for such Multimedia extensions. In case
of unaligned (left) or non unit-stride memory access (right), additional operations are needed
in order to pack vector elements into a register. This further complicates the task of auto

X[i]

VLD VLD

PCK

Memory

Registers

......

Alignment 

boundaries

VLD

......

X[i]

VLD VLD

PCK

......

Figure 3.5 – Illustration of vector memory load from an aligned stride-1 reference (middle) versus
unaligned stride-1 (left) and aligned stride-2 (right), in case of a Multimedia extension with no
support for unaligned accesses and with vector size of 2.

vectorization. Additional code analysis and transformations are required in order to produce
efficient SIMD code, such as memory reference alignment and pointer analysis [114, 101], handling
of unaligned memory accesses [31, 141], data layout transformations [48, 44] and more advanced
loop transformations [35, 60].

3.3.2.2 Basic-Block Level Simdization

Due to the complexity of loop vectorization techniques when targeting Multimedia extensions
as discussed above, a new concept of Simdization emerged in the 2000s. It consists in exploiting
SIMD parallelism at the basic-block level rather than loop-level.

In 2000, Leupers proposed a basic-block level Simdization technique [74]. It is performed at
instruction selection stage in two main steps. First, the Data Flow Graph (DFG) representing
a basic block is partitioned into Data Flow Trees (DFT), each of which is covered using tree
pattern matching. Multiple alternative covers are permitted including sub-SIMD covers which
represent a sub-operation (or element) in a SIMD instruction. The second step then uses integer
linear programming to determine the best cover for the DFG while aiming at minimizing the

5. Access to memory at address aligned to the SIMD registers size.
6. Access to contiguous elements in memory (stride = 1).
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implementation cost. Tree covers can be merged to form SIMD covers. This technique mainly
lacks scalability with respect to the basic block size and SIMD data-path size. Also, this method
does not consider data transfer, which often prevent the exploitation of SIMD instructions.

Tanaka et al proposed an extension [131] to the aforementioned work, taking data transfer
operations into account.

Larsen and Amarasinghe proposed a new method for exploiting SIMD at the basic-block
level, they referred to it as Superword Level Parallelism (SLP) [69]. They define SLP as a new
type of parallelism, distinguishing it from conventional vector parallelism. SLP aims at finding in
a basic block, similar independent statements that can be packed together and replaced by SIMD
instructions. Thus, in contrast to loop vectorization, SLP does not have to deal with loop carried
dependencies or employ sophisticated loop transformations to uncover parallelism. Hence, it is
simpler to apply. Although they are not necessary, loop transformations can still be used to
convert loop-level parallelism into SLP (using unroll-and-jam or register level tiling [49, 108] for
example).

In fact, SLP is a superset of vector parallelism. The latter can only pack instances of the
same statement in a vectorizable loop (inter-loop instances parallelism), whereas SLP can pack
different statements in a basic block, which can be part of a loop body (intra-loop parallelism).
SLP is, hence, able to exploit a finer level of parallelism, since loop-level parallelism is easily
amenable to intra-loop parallelism by mean of loop transformations such as loop unrolling. This
allows SLP to find more and/or better opportunities when targeting Multimedia extensions.

Note that SLP extraction techniques are applicable to Subword Multimedia extensions as well,
since subword parallelism is actually a special case of SLP.

To illustrate SLP let us consider the example in fig. 3.6, targeting a 64-bit wide Multimedia
extension supporting 32-bit integer data type as vector elements. The loop in the original code
(fig. 3.6a) does not carry any dependency, thus all its iterations can be executed in parallel. The
loop is partially unrolled by a factor of 2 (fig. 3.6b).

Using SLP, we can either:

— Pack statements S0 and S1 in the loop body as illustrated in fig. 3.6c.

— Or pack consecutive instances of each statement separately, after applying loop unrolling
by a factor 2, as illustrated in fig. 3.6d.

The first solution is likely to give better performance than the second one since it requires less
packing/unpacking operations (assuming vector memory accesses are aligned).

Using loop vectorization, only the second solution is possible.

As mentioned earlier, when targeting Multimedia extensions, the compiler must deal with data
packing/unpacking and memory access alignment, which can represent a significant overhead
hindering the Simdization benefits. This is not different in case of SLP. In fact, this is the main
challenge for SLP extraction algorithms, which attempt to address it by adopting heuristics
promoting the packing of statements that lead to less packing/unpacking overhead. The state-
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for (i = 0; i < N ; i++) {

S0: Y[2i] = X[2i] + A[i];

S1: Y[2i+1] = X[2i+1] + B[i];

}

(a) Original code.

for (i = 0; i < N ; i+=2) {

//i

S0: Y[2i] = X[2i] + A[i];

S1: Y[2i+1] = X[2i+1] + B[i];

//i+1

S0: Y[2i+2] = X[2i+2] + A[i+1];

S1: Y[2i+3] = X[2i+3] + B[i+1];

}

(b) 2x unroll.

for (i = 0; i < N ; i+=2) {

S0S1: Y[2i:2i+1] = X[2i:2i+1] + <A[i],B[i]>; //i

S0S1: Y[2i+2:2i+3] = X[2i+2:2i+3] + <A[i+1],B[i+1]>; //i+1

}

(c) Packing S0i and S1i together. Note that the unrolling is not necessary
in this case

for (i = 0; i < N ; i+=2) {

S0: <Y[2i],Y[2i+2]> = <X[2i],X[2i+2]> + A[i:i+1]; // <i,i+1>

S1: <Y[2i+1],Y[2i+3]> = <X[2i+1],X[2i+3]> + B[i:i+1]; // <i,i+1>

}

(d) Packing two consecutive instances of S0 (S0i and S0i+1) and S1.

Figure 3.6 – Example illustrating the difference between loop vectorization and SLP. [min : max]
represents a vector memory access to consecutive array elements starting at offset min till offset
max included. < a, b > represents a packing/unpacking operation.

of-the-art of SLP is discussed later in chapter 4.

3.4 Conclusion

In this chapter we have presented the characteristics of some SIMD instruction sets and we
have discussed the existing techniques for exploiting them.

In summary, we can observe that:

— Most embedded processors provide SIMD capabilities, mainly as subword Multimedia ex-
tensions.

— Simdization can be performed either at loop-level using loop vectorization techniques, or
at the basic-block level using SLP extraction techniques.

— SLP can exploit more parallelism than loop vectorization. The latter can be amenable to
SLP using simple loop transformations.

— SLP extraction is simpler since is it does not require advanced loop dependencies analysis
and transformations to uncover parallelism.
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Based, on these conclusions, we decided to implement SLP extraction to perform Simdization
in the context of the ALMA project.

In the next chapter, we discuss the state-of-the-art of SLP and we propose an enhanced SLP
extraction algorithm, which we then implement as a source-to-source transformation along with
a SIMD C code generator, and compare it against a state-of-the-art algorithm.
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4.1 Introduction

In the context of the ALMA project, as presented in sections 1.2 and 1.3, we needed to imple-
ment an automatic Simdization in order to exploit the Single Instruction Multiple Data (SIMD)
capabilities of the targeted embedded processors, namely XENTIUM [104] provided by Recore

Systems and KAHRISMA [58] provided by Karlsruhe Institute of Technology (KIT).
In fact, both embedded processors provide support for integer subword SIMD operations. They
support 2x16-bit operations, in addition KAHRISMA supports 4x8-bit operations. However,
none of the back-end compilers provided for each target implements a automatic Simdization
optimization. Instead, they provide a set of intrinsics to access SIMD instructions. This is also
the case of many other embedded processors, such as ST240 [4].

As we discussed in the previous chapter, performing Simdization manually using intrinsics
is a tedious, error prone and time consuming task. Therefore, one of the goals of the ALMA

project is to automate this transformation. This can be achieved by integrating an automatic
Simdization transformation into the back-end compiler of each one of the target processors.
However, this is not a practical solution since it should be done for each new target processor to
be supported. In order to avoid this, we decided to implement Simdization at source code level
using a source-to-source compilation flow capable of generating a C code with SIMD intrinsics.
In the previous chapter, we discussed different methodologies for performing Simdization, mainly
loop vectorization and Superword Level Parallelism (SLP). We decided to use SLP since it does
not require advanced loop dependencies analysis and transformations, in addition it can exploit
more parallelism.

SLP concept was first defined and presented by Larsen and Amarasinghe in 2000 [69].
In the same work they also presented an algorithm allowing to extract SLP in a given basic-
block. In the remainder of this chapter we will refer to this algorithm as original SLP. The
statements grouping strategy used in original SLP aims at reducing data packing/unpacking
cost. However, it is based on a local heuristic ignoring some packing possibilities. A more detailed
analysis of original SLP is presented later on in section 4.2.1. Several work [124, 125, 36, 46]
aimed at enhancing original SLP, we present some of them in section 4.2.2.

Recently a new SLP extraction algorithm was introduced by Liu et al in 2012 [78] to address
the shortcoming of original SLP. Unlike original SLP, the statements grouping strategy they
propose is based on a global estimation of the data packing/unpacking cost, taking into account
all (size-two) packing possibilities in the basic-block. We will refer to this method as holistic

SLP and we will discuss it thoroughly later on in section 4.3.

Based on the advantage of holistic SLP over original SLP 1, we decided to go with holistic

SLP for implementing Simdization in the ALMA flow. However, after a thorough analysis of the
holistic SLP algorithm we discovered several shortcomings. In section 4.3.2, we present an
elaborate explanation of these shortcomings. In short, we noticed that holistic SLP yields

1. experimental results presented in [78], shows a performance improvement as high as 15% over original

SLP



Related work 47

poor performance without applying data layout transformation, mainly due to the grouping
candidate benefit estimation method they use. In fact, data layout transformations are not
always applicable (the method they propose is only applicable in the context of the polyhedral
model), and they increase the memory footprint (due to arrays replication). This is not suitable
when targeting embedded platforms with limited memory resources, such is the case in the
context of ALMA. Furthermore, the Intermediate Representation (IR) they propose in order to
represent SLP grouping solutions, is bulky and does not provide necessary information for rapid
estimation of the amount of reuse between different statement grouping candidates.

In section 4.4, we propose several improvements to solve these problems. More specifically, we
propose:

— A new IR for SLP extraction capturing grouping opportunities with conflicts and superword
reuse information. It is more expressive and compact compared to holistic SLP.

— A new grouping candidate benefit estimation together with a new group selection method,
allowing to achieve up to 40% performance improvement compared to holistic SLP with-
out the need for data layout transformations.

Finally, in section 4.5 we present the implementation and some experimental results comparing
our proposed SLP extraction algorithm against holistic SLP on a set of nine benchmarks
targeting four different embedded processors.

4.2 Related work

In this section we discuss the state-of-the-art of SLP algorithms. We start by presenting
original SLP, we highlight its shortcomings and then we present an overview of the work im-
proving them.

S1: v1 = a + b;

S2: v2 = c + d;

S3: v3 = e + v2;

S4: v4 = v3 - b;

S5: v5 = v1 - d;

S1 S2

S3

S4

S5

Figure 4.1 – Example C code snippet (left) and its statements dependence graph (right).

Définition 4.1 (Statement) A statement is a root instruction in a basic block. It contains one
or more operations. Two statements are isomorphic if they both contain the same operations in
the same order.

Example 1 S1, S2, ..., S5 in the C code example of fig. 4.1 are all statements. S1, S2 and S3
are isomorphic statements, and so are S4 and S5. Statement S3 depends on S2.
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Définition 4.2 (Superword Statement) A superword statement is a list of isomorphic inde-
pendent statements that can be implemented using one or more SIMD instructions. Superword
statement’s operands are superwords (or vectors).

4.2.1 Original SLP

Original SLP algorithm aims at extracting SIMD parallelism at basic block level. Given a
list of a basic block’s statements, it aims to combine several isomorphic, independent statements
into superword statements. This is known as statements packing or grouping. The superword
statements are then implemented using SIMD instructions.

Statements packing is a combinatorial optimization problem. Using exhaustive search is often
not realistically feasible. Therefore, original SLP, and all other SLP extraction algorithms for
this matter, use a heuristic to find a satisfying solution within a reasonable time.

The heuristic employed by original SLP exploits two observations:

— Accesses to aligned contiguous memory references is efficiently implemented in Multimedia
extensions. N individual memory access operations can be performed using one SIMD
access which transfers packed data directly to/from a SIMD register with no need for
additional packing/unpacking or shuffling operations. This roughly saves N − 1 memory
accesses along with their address calculation operations.

— No packing/unpacking or shuffling operation is needed when a SIMD instruction’s operand
has been produced by another SIMD instruction since it is already packed in a SIMD
register (assuming enough registers are available).

This heuristic consists of starting by packing statements that contain contiguous memory ac-
cesses. And then find additional statement packs by following the def-use and use-def chains of
the already formed ones. At first, only groups of two statements are packed together (to reduce
the search space) and then multiple groups are merged to obtain larger superword statements to
better utilize the SIMD data-path.
This imposes that each superword statement contains either a vector access to contiguous region
in memory or/and reuses superwords resulting from other superword statements directly, which
minimizes the need for overhead packing/unpacking and permutation operations. But still, some
packed statements might have an important overhead that can degrade performance. To avoid
such cases, a cost model is used during statements packing process. It estimates the speedup of
each potential packed statements and discards those with negative effects. This estimation takes
into account the necessary packing/unpacking operations as well as reuses of already existing
superwords. It is also used to select between conflicting statements packing possibilities.

This heuristic aims at minimizing the overhead of packing/unpacking operations by maximizing
superwords reuse, starting from and/or leading to, in-memory packed and aligned superwords.
Statement packs are selected based on their superword reuse with previously decided statement
packs, leading to a local optimization that is strongly affected by the previously made packing
decisions. Furthermore, it completely ignores statement packing possibilities which are not in a
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superword reuse chain coming from, or leading to, an in-memory packed superword.

This main shortcoming has been identified and addressed by Liu et al who recently proposed
an alternative SLP statements packing heuristic [78] based on a global, or holistic, superword
reuse estimation. This work is thoroughly discussed later in section 4.3.

4.2.2 Original SLP Extensions and Enhancements

Shin et al introduced superword-level locality [124, 122], a technique allowing the use of SIMD
register file as a compiler-controlled local memory. They propose superword replacement transfor-
mation, which substitutes vector memory accesses to arrays by accesses to superword temporaries
allocated in SIMD registers. In addition, they employ unroll-and-jam loop transformation to en-
hance locality and shorten superword reuse distance, along with index set splitting to increase
the amount of aligned memory accesses.

Besides, they also proposed an extension of original SLP allowing it to be applied beyond
simple basic block, in the presence of control flow structures [125, 122]. To do so, they per-
form if-conversion prior to extracting SLP in order to convert control structures into predicated
instructions. After superword packing, they restore control structures to be able to target Mul-
timedia extensions with no support for predication.

Kudriavtsev and Kogge [63] proposed an alternative packing strategy to extract SLP.
Unlike original SLP, it allows the exploration of superword reordering to efficiently generate
and optimize permutation operations. It borrows from the work of Leupers [74] the fact of
leveraging tree pattern matching to find covers for data flow trees – obtained by partitioning the
basic block’s Data Flow Graph (DFG) – and then find a cover for the entire DFG using SIMD
instructions.
They start by grouping contiguous memory accesses to form SIMD groups 2, then they find
further SIMD groups by traversing the DFG starting from memory operations appearing in SIMD
groups. Then, in the DFG, they replace the nodes of each SIMD group by a node representing
the group. Finally they try to find an order, for the elements of each SIMD group, that minimizes
the cost. For doing so, they use order propagation starting from memory access SIMD groups,
which have a fixed order, to obtain the set of possible permutations per SIMD group, then they
use Integer Linear Programming to find the best ordering assignment per group.

Ren et al proposed a standalone algorithm to optimize data permutations [107] in a given basic
block that can be used in complement to other Simdization transformations. First it converts
all permutations in a source code into a generic representation. Then it tries to optimize the
permutations inside each basic block before regenerating the corresponding target-dependent
permutation instructions.

2. A SIMD group is a set of operations that can be implemented with a SIMD instruction.
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4.3 Holistic SLP

The statements packing heuristic employed by original SLP aims at maximizing superword
reuse by following def/use and use/def chains starting from, or leading to, in-memory packed
superwords. However, it does not consider statement packing options unless they are in a super-
word reuse chain seeded by one or more unit-stride (and aligned) memory accesses pack. Also, it
does not consider superword permutations (or shuffling). In fact, it only qualifies as superword
reuse, superwords containing the same elements in the same order. This ignores the possibil-
ity of employing shuffling operations to reuse a superword containing the same elements but in
a different order. Shuffling operations are generally much less costly then packing/unpacking
operations.

This results in a local optimization since statement packs are selected based on their superword
reuse with already formed statement packs only, and not across the whole basic block.

To address this shortcoming, Liu et al proposed an alternative statement packing heuristic [78]
based on a global, or holistic, estimation of superword reuse across the entire basic block. We
refer to it as holistic SLP.

In section 4.3.1 we present the holistic SLP extraction algorithm, we then analyze it and
discuss several shortcomings in section 4.3.2, that we try to address in section 4.4.
But, first we start by giving several related definitions:

Définition 4.3 (SIMD Group Candidate) A SIMD group candidate is an unordered pair
(pair set) of isomorphic and independent statements, yielding superwords compatible with the
SIMD data-path size. All elements in a superword must have the same size, that need to be
supported by the target SIMD Instruction Set Architecture (ISA), and the total size should not
exceed the SIMD vector size.

Définition 4.4 (Variable Pack) A Variable Pack (VP) is an unordered pair (pair set) of
operands from same position of both statements in a SIMD group candidate. Two VPs are
equivalent if they contain the same elements (regardless of their order). We use the symbol ≡ to
mark equivalence.

Définition 4.5 (Candidate Conflict) Two candidates are considered in conflict if, they either
share a common statement or there exist a cyclic dependency between them. We refer to the first
case as common statement conflict and to the second as cyclic dependency conflict.
We distinguish two types of cyclic dependency conflict:

— Direct: occurs between two candidates only.

— Indirect: occurs between more than two candidates.

Example 2 Consider the example of fig. 4.1 with 32-bit data-types and targeting a 64-bit wide
SIMD data-path.
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S1: v1 = a + b;

S2: v2 = c + d;

S3: v3 = e + v2;

S4: v4 = v3 - b;

S5: v5 = v1 - d;

S1 S2

S3

S4

S5

Figure 4.2 – Recall example of fig. 4.1.

— {S1, S2} is a SIMD group candidate, and so are {S1, S3} and {S4, S5}. {S2, S3} is not a
candidate, though S2 and S3 are isomorphic.

— The VPs of the candidate {S1, S3} are {v1, v3}, {a, e} and {b, v2}. VPs {v1, v3} from
candidate {S1, S3}, denoted {v1, v3}{S1,S3}, and {v3, v1} from {S4, S5} are equivalent i.e.
{v1, v3}{S1,S3} ≡ {v3, v1}{S4,S5}.

— Candidates {S1, S2} and {S1, S3} have a common statement conflict.
Figure 4.7 shows an indirect cyclic dependency conflict case.

4.3.1 Overview

Holistic SLP extraction algorithm overview is depicted in fig. 4.3. It consists of several steps
that we illustrate in this subsection based on its presentation by Liu et al in [78].

In a nutshell, holistic SLP aims at finding as much statement packs (or groups) as possi-
ble while maximizing superword reuse throughout the entire basic block. Exploiting the fact
that, increasing superword reuse reduces the need for data packing/unpacking operations, which
generally introduce an important overhead that might eclipse the potential benefit of SLP and
degrade performance. To do so, it considers all statement grouping candidates available in the
basic block (step 2), among them, it then selects the ones that are more likely to bring the most
superword reuse and discard those conflicting with them (step 3).
Since considering all possible statement packing combinations, with different sizes and different
statements order, yields a very high number of possibilities, holistic SLP, in fact, only considers
statement groups of size two and ignores the order of statements inside a group. Such statements
group is referred to as SIMD group candidate (definition 4.3) and represents two statement packs
possibilities.
In order to extend the statement groups size beyond two and fully utilize the target SIMD data-
path, the selected SIMD groups at step 3 are integrated in the basic block before starting a new
iteration, as shown in step 4.
The order of statements inside each selected group is then specified, at step 5, with the objec-
tive of maximizing the direct superword reuse and hence minimizing the need for permutation
operations.
At last, holistic SLP optionally applies a data layout transformation (step 7) to optimize su-
perwords placement in memory, when possible, in order to minimize the overhead associated
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Figure 4.3 – Holistic SLP algorithm flow diagram.

with accessing them.

Step 1: SIMD Group Candidates and Conflicts Identification

This step aims at constructing the set of all possible SIMD group candidates as well as the
set of all conflicts between them. SIMD group candidate and conflict definitions are given by
definition 4.3 and definition 4.5 respectively.

Step 2: Intermediate Representation (IR) Construction

To capture all the information required by the algorithm, an intermediate representation is
build. This representation consists of two undirected graphs:

— Statement Grouping Graph (SGG): It is a weighted undirected graph. Its nodes are the
set of all statements present in at least one candidate. An edge represents a possible SIMD
group candidate; so that two nodes are connected by an undirected weighted edge if they
belong to the same candidate. The weight of each edge represents the benefit, described
later on, associated with the selection of the corresponding candidate. All edge weights are
computed in the next step.
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— Variable Pack Conflict Graph (VPCG): This graph captures VP reuses and conflicts across
all candidates. It is used to ease the computation of VP reuse benefit of each candidate as
we will explain in the next step.
VPCG is an unweighted undirected graph. Its nodes are the variable packs (VPs), as de-
fined by definition 4.4, from each SIMD group candidate. In order to distinguish equivalent
VPs belonging to two different candidates, each VP node is tagged by the candidate to
which it belongs. Two VP nodes are connected by an undirected edge in VPCG if their
corresponding candidates conflict with each other.

Example 3 In the ongoing example of fig. 4.1:
The set of SIMD group candidates is:

C = {c1 = {S1, S2}, c2 = {S1, S3}, c3 = {S4, S5}} (4.1)

There is only one conflict, a common statement conflict in fact, between the candidates. The
conflicts set is:

{{c1, c2}}

The corresponding VPCG and SGG are shown in fig. 4.4b and fig. 4.4c respectively.

S1: v1 = a + b;

S2: v2 = c + d;

S3: v3 = e + v2;

S4: v4 = v3 - b;

S5: v5 = v1 - d;

S1 S2

S3

S4

S5

(a) Recall of example in fig. 4.1.

{v3,v1}
{S4,S5}

{b,d}
{S4,S5}

{v4,v5}
{S4,S5}

{a,e}
{S1,S3}

{b,v2}
{S1,S3}

{v1,v3}
{S1,S3}

{a,c}
{S1,S2}

{b,d}
{S1,S2}

{v1,v2}
{S1,S2}

(b) Corresponding VPCG. Equivalent VP
nodes are highlighted with same color.

1/3 1/3

S4 1/3

S3

S1

S2

S5

(c) Corresponding SGG. The edge weights
computation is described in Step 3.

Figure 4.4 – VPCG and SGG of the example in fig. 4.1.

Step 3: SIMD Group Candidate

The SGG constructed in step 2 represents all the possible SIMD group candidates, not all of
which can coexist together since some conflict with others. The aim of this step is to select the
most profitable (in term of VP reuse) conflict-free subset of candidates.
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The selection procedure employed by holistic SLP, illustrated in fig. 4.3b, is based on a
global (holistic) estimation of the amount of VP reuse each SIMD group candidate can bring to
the entire basic block. It operates as follow:

— First, for each of the remaining group candidates (edges in SGG), VP reuse across the
entire basic block is estimated assuming the candidate at hand get selected. This VP reuse
estimation is attributed as weight to the corresponding edge in SGG. The method used for
estimating VP reuse is presented later on.

— Then, the candidate whose selection brings the maximum VP reuse, that is the edge in
SGG with highest weight, is selected to be part of the solution. In case multiple candidates
yield the same highest VP reuse, only one of them is selected randomly.

— Finally, both SGG and VPCG are updated before starting the next selection iteration until
no more candidates remain (SGG has no edges anymore). SGG is updated by removing
both nodes belonging to the selected group candidate as well as all nodes/edges connected
to any of them 3. Similarly, VPCG is updated by removing all nodes belonging to the
selected group candidate as well as all nodes/edges connected to any of them.

Variable Pack Reuse Estimation

The SIMD group selection process is iterative. In order to decide which candidate should
be selected at a given iteration, all remaining candidates are evaluated. For each of them, the
average VP reuse among the entire basic block is estimated. The aim is to find the candidate
that, if selected, is more likely to bring the highest VP reuse across the whole basic block.
Since the actual VP reuse across the basic block cannot be computed before the selection process
is completed and the final grouping solution is obtained, the authors of holistic SLP propose
a heuristic to estimate this reuse. The intuition is to consider the context in which the tested
candidate, c, get selected. In this context, the actual VP reuse among already selected groups can
be computed, but this does not include the potential contribution of the remaining candidates
(from which, some would be selected in the next selection iterations to become part of the final
solution). In order to estimate the potential contribution of these candidates, a greedy heuristic
is employed. It aims at finding a conflict free subset of the remaining candidates which have
reuses with c. This is achieved by considering all VPs, from the remaining candidates, that are
equivalent 4 to any of c’s VPs. These VPs may be conflicting with each other, which means
they cannot coexist in any possible grouping solution. Therefore, these conflicts are solved by,
iteratively, eliminating the VP which has the most conflicts, until no conflicts remain. The
number of remaining VPs represent an estimation of the amount of reuse of c’s VPs by future
selected candidate in case c get selected.
All in all, VP reuse among already established part of the grouping solution as well as remaining
group candidates are considered, making this approach more holistic that original SLP.

To formally define the benefit evaluation of an SIMD group candidate, let:

3. SGG nodes connected to any of both nodes of the selected candidate are part of conflicting candidates.
4. Two VPs are equivalent if they contain the same elements (see definition 4.4). Equivalent VPs indicate a

reuse.



Holistic SLP 55

— G be the set of already selected groups.

— C be the set of remaining candidates.

To estimate the benefit associated with c ∈ C, denoted V PR(c), c is assumed to be selected. So:

— G′ = G ∪ {c} is the set of selected groups.

— C ′ = C \ ({c} ∪ conf(c)) is the set of remaining group candidates, if c get selected. Where
conf(c) is the set of candidates in C conflicting with c.

V PR(c), as described in holistic SLP [78], is computed as follows:

V PR(c) =
|V (G′)| − |P (G′)|+ |R(c)|

|P (G′)|
(4.2)

The definition of V , P and R is provided below, intuitively:

— |P (G′)| represents the number of packing/unpacking operations required by all groups in
G′.

— |V (G′)| − |P (G′)| represents the actual number of VP reuses between the selected groups
in G′.

— |R(c)| is the estimation of reuses of c’s VPs by the remaining candidates (in C ′).

Where:

— V is a function that, given a set, S, of SIMD group candidates, returns the set of all
their VPs, each candidate’s VPs are distinguished from others by tagging them with the
candidate to which they belong so that, equivalent 5 VPs from distinct candidates are
distinguishable.

V (S) =
⋃

c∈S

{vc, v ∈ c} (4.3)

Where vc is the variable pack v of the candidate c, tagged by c. So that, vc1 ≡ vc2 ≡ v but
vc1 6= vc2 i.e. {vc1} ∪ {vc2} = {vc1, vc2} (assuming c1 6= c2).

— P is a function that, given a set, S, of SIMD group candidates, returns the set of VPs of
all group candidates in S. Note that in contrast to V , the returned VPs are not tagged so
that, equivalent VPs from different candidates are not distinguishable i.e. {v from c1} ∪

{v from c2} = {v}}

P (S) =
⋃

c∈S

{v ∈ c} (4.4)

— R(c) is a conflict-free subset of, the set of VPs of candidates in C ′ which are equivalent to
(i.e. reuses) any of c’s VPs. In holistic SLP, R(c) is obtained by:

1. First, constructing an auxiliary graph (as they refer to it in holistic SLP), associated
with c, denoted AG(c). It is a subgraph of VPCG, built by extracting all nodes (and
all edges connected to them) equivalent to, but not connected to those of c. AG(c)

nodes are therefore, all the tagged VPs from C ′ that are equivalent to any VP from
c.

5. Two VPs are equivalent (denoted by ≡) if they contain the same elements (definition 4.4).
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2. And then eliminating all conflicts (edges) in AG(c), by iteratively discarding a node
with highest degree, that is a VP node which has the highest number of conflicts,
until all conflicts are eliminated yielding R(c).

Example 4 To illustrate this step, let’s consider the ongoing example of fig. 4.1.

S1: v1 = a + b;

S2: v2 = c + d;

S3: v3 = e + v2;

S4: v4 = v3 - b;

S5: v5 = v1 - d;

(a) Recall of example of fig. 4.1.

{v3,v1}
{S4,S5}

{b,d}
{S4,S5}

{v4,v5}
{S4,S5}

{a,e}
{S1,S3}

{b,v2}
{S1,S3}

{v1,v3}
{S1,S3}

{a,c}
{S1,S2}

{b,d}
{S1,S2}

{v1,v2}
{S1,S2}

(b) Recall VPCG at first iteration.

{v1,v3}
{S1,S3}

{b,d}
{S1,S2}

Figure 4.5 – AG({S4, S5}) at the first selection iteration of the example of fig. 4.1.

At the first selection iteration:

— G = ∅ and C = {c1 = {S1, S2}, c2 = {S1, S3}, c3 = {S4, S5}}

— VPCG is shown in fig. 4.4b.

— In order to compute V PR(c3):

— Extract AG(c3) from VPCG. AG(c3) is depicted in fig. 4.5.

— Eliminate conflicts(edges) from AG(c3): iteratively remove one node with highest de-
gree. Both nodes in AG(c3) have degree of one, so removing any of them will do.
Therefore, the number of remaining nodes ES = |AG(c3).V| = 1.

— V (G′) = V ({c3}) = {{v4, v5}c3, {v3, v1}c3, {b, d}c3}. Thus, |V (G′)| = 3.

— P (G′) = P ({c3}) = {{v4, v5}, {v3, v1}, {b, d}}. Thus, |P (G′)| = 3.

— Hence, V PR(c3) =
1 + 3− 3

3
= 1/3.

— Similarly, V PR(c1) = 1/3 and V PR(c2) = 1/3. The edges of SGG are weighted by the
corresponding V PR as shown in fig. 4.4c.

— Since all candidates have same weight, one of them is selected randomly. Let’s assume it’s
c3 that got selected.

— The updated VPCG and SGG are represented in fig. 4.6.

At the second selection iteration:

— G = {c3} and C = {c1, c2}

— In order to compute V PR(c1):

— AG(c1) is empty ⇒ ES = 0.

— V (G′) = V ({c3, c1}) = {{v4, v5}c3, {v3, v1}c3, {b, d}c3 {v1, v2}c1, {a, c}c1, {b, d}c1} ⇒
|V (G′)| = 6.
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{a,e}
{S1,S3}

{b,v2}
{S1,S3}

{v1,v3}
{S1,S3}

{a,c}
{S1,S2}

{b,d}
{S1,S2}

{v1,v2}
{S1,S2}

(a) Updated VPCG.

1/5 1/5

S3

S1

S2

(b) Updated SGG.

Figure 4.6 – Updated VPCG (left) and SGG (right) after the selection of {S4, S5} of the example
of fig. 4.1.

— P (G′) = P ({c3, c1}) = {{v4, v5}, {v3, v1}, {b, d}, {v1, v2}, {a, c}} ⇒ |P (G′)| = 5.

— Therefore V PR(c1) =
0 + 6− 5

5
= 1/5.

— Similarly, V PR(c2) = 1/5.

— Again, both candidates have same weight, so one of them is selected randomly. Let’s assume
it’s c2.

— SGG is then updated by removing c2’s nodes, S1 and S3, but also all nodes connected to
them i.e S2.

— No more candidates are left, thus the selection procedure is done.

Thus, the final set of selected groups is {c3, c1}.

Step 4: Groups Extension

This step aims at overcoming the size limitation, of only two statements per group, imposed
by the first step. This allows the algorithm to efficiently target SIMD with wider data-path size.

Once SIMD group selection is done, if there is any group that can be extended, the basic block
is updated by replacing each selected group’s statements by a single new statement with new
variables to represent its VPs (superwords), then the algorithm starts over at step 1 until no
further grouping extension is possible.

Step 5: SIMD Groups Ordering

At this level, each selected SIMD group is a set of two or more, isomorphic independent,
statements from the original basic block. The order of statements inside a group is not defined
yet. So far, it has been assumed that, if two groups have an equivalent VP, it counts as a
superword reuse regardless of the order of statements inside each group. In fact, this is not always
true and a superword permutation/shuffling may be required in order for this reuse to happen.
The cost overhead of these permutation operations may hinder the benefit of Simdization.
Hence, the aim of this step is to order statements inside each group in such a way that the
number of necessary permutations is minimized. The ordered groups are then implemented as
superword statements in the basic block.
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Step 6: Speedup Estimation

At this level, the necessary SIMD instructions to implement the superword statements obtained
from previous step, specially packing/unpacking and permutations, can now be accurately de-
termined. A speedup estimation of the transformed basic block is performed and compared to
that of the original scalar basic block. In case this indicates a performance degradation, the
superword transformation is discarded and the basic block is left unchanged. The aim of this
step is to make sure the generated superword solution will most likely perform better than the
scalar one. However, this tightly depends on the cost model used for the target architecture.

Step 7: Data Layout Transformation

It is important to note that holistic SLP does not impose any constraints on packing array
references. Consequently, the group selection step is likely to produce superwords with accesses
to non-contiguous memory locations. Such superwords require costly packing operations which
hinder the Simdization benefits, as illustrated in fig. 3.5.

To overcome this problem, holistic SLP optionally applies a data layout transformation to
optimize superwords placement in memory, when possible, so that to minimize the overhead
associated with accessing them.
The aim of this transformation is to minimize the cost of required packing/unpacking operations
by trying to place the superword elements in contiguous (and aligned) memory locations, so they
can be accessed using vector memory access operations without additional shuffling/insert/ex-
tract operations, as was shown in fig. 3.5.

This optimization targets two kind of superwords:

— Scalar superwords whose elements are all scalar variables.

— Array reference superwords whose elements are all array elements.

Scalar superwords are relatively simple to optimize. All is needed is to assign the superword
elements consecutive memory locations. However, when two scalar superwords have elements in
common and requires conflicting memory layouts, only one of them can be optimized.
The method employed in holistic SLP consists of optimizing the most reused scalar superword
first and skipping all other conflicting superwords.

Optimizing array reference superwords, on the other hand, is more complex. In general, an
element of such superword is a reference to a variable location in an array, usually determined
by the surrounding loop iterators.

Holistic SLP leverages the polyhedral model and array replication to map elements of an
array reference superword to contiguous memory locations in the transformed data layout. This
transformation is only applicable to Static Control Parts (SCoPs) for superwords whose elements
refer to the same, read-only, array.
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4.3.2 Shortcomings

The holistic SLP algorithm, presented earlier in section 4.3.1 has several shortcomings. In
this section we present and illustrate some of them. Later on, we propose some improvements
to address them and further enhance the holistic SLP algorithm’s efficiency.

4.3.2.1 Cyclic Dependencies

The group selection algorithm employed by holistic SLP as described in [78] does not con-
sider cyclic dependency conflicts between SIMD group candidates. Thus, the obtained grouping
solution is not guaranteed to be cyclic dependency free and might thus be illegal.
In fact, only common statement conflicts are considered when building the VPCG and SGG.
That means none of them is carrying any information about cyclic dependency conflicts.
Actually, the described SGG model (see section 4.3.1) only carries information about common
statement conflicts. A SGG node with degree higher than one represents a common statement
between multiple ( = degree of node) group candidates. Cyclic dependency conflicts, however,
are not represented in this SGG model.
On the other hand, when SGG and VPCG are updated after the selection of a new SIMD group,
only nodes representing the selected group and those connected to them are removed (see sec-
tion 4.3.1). This only includes nodes representing candidates in common-statement-conflict with
the selected candidate. In other words, nodes representing candidates in cyclic dependency con-
flict with the selected one remains in SGG and VPCG and may be selected in later iterations,
thus, potentially introducing a cyclic dependency between the selected groups. Since the algo-
rithm does not check for such cycles, the resulting grouping solution is not guaranteed to be legal
and a valid schedule may not exist unless some selected groups are discarded!

Regardless, if we assume the lake of management of cyclic dependency conflicts in the algorithm
they give is just for simplification (even though this was not stated). Then, given that no check
for cycles is performed during group selection, the only way the final grouping solution will be
guaranteed to be legal is by:

— Detecting all possible cyclic dependency conflicts before starting the selection process.

— And, represent all these conflicts in VPCG and SGG.

This solution is over conservative and prevent the selection of some candidates otherwise possible.
For instance, in the aforementioned example of fig. 4.7a, if all cyclic dependency conflicts are
considered, then the conflicts set is {{c1, c2}, {c1, c3}, {c2, c3}}. In this case only one candidate
can be selected. However, if any two candidates are selected the solution would still be valid.

Example 5 The example in fig. 4.7a illustrates this problem.
At the first selection iteration:

— The set of SIMD group candidates is {c1 = {S1, S4}, c2 = {S2, S5}, c3 = {S3, S6}}.

— The set of common statement conflicts is empty.
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S1: v1 = a + b;

S2: v2 = c * d;

S3: v3 = e / f;

S4: v4 = v3 + g;

S5: v5 = v1 * h;

S6: v6 = v2 / i;

(a) Example C code.

S1 S2 S3

S4S5 S6

(b) Statements dependence
graph.

S1

S2

S3

S4

S5

S6

0

0

0

(c) SGG at first iteration shows
no conflicts.

{v2,v5}
{S2,S5}

{v3,v6}
{S3,S6}

{v1,v4}
{S1,S4}

{c,v1}
{S2,S5}

{e,v2}
{S3,S6}

{a,v3}
{S1,S4}

{d,h}
{S2,S5}

{f,i}
{S3,S6}

{b,g}
{S1,S4}

(d) VPCG at first iteration shows no conflicts.

C3

C2

C1

S1

S2

S3

S4

S5

S6

(e) Statements packing and dependencies show
cyclic dependency between c1, c2 and c3.

Figure 4.7 – Example illustrating holistic SLP algorithm. It shows that VPCG and SGG do
not represent cyclic dependency conflicts. The grouping solution is {c1, c2, c3} which is not legal
due to cyclic dependency between c1, c2 and c3.

— The corresponding VPCG and SGG are depicted in fig. 4.7d and fig. 4.7c, respectively.
They show no conflicts between candidates.

— All candidates have same weight, so either of them can be selected (randomly). Let’s assume
it’s c1 that get selected.

— SGG is updated accordingly: nodes S1 and S4 (and the edge connecting them) are removed.

— VPCG is updated by removing all nodes belonging to c1, namely: {v1, v4}c1 , {a, v3}c1 and
{b, g}c1.

At the second selection iteration:

— The set of remaining SIMD group candidates is {c2, c3}.

— Still no conflicts represented!

— Either c2 or c3 get selected (V PR(c2) = V PR(c3) = 0).

— VPCG and SGG are updated accordingly.

At the third selection iteration:

— Only one candidate is left and it get selected.

The final grouping solution is, therefore, {c1, c2, c3}. This solution is not legal due to the cyclic
dependency between c1, c2 and c3 as can be seen in the data dependence graph in fig. 4.7e.

4.3.2.2 Group Selection Process

Holistic SLP employs VP reuse estimation, detailed in section 4.3.1, to evaluate the benefit
associated with the selection of a SIMD group candidate. This estimation is a key element since
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it is the driver of the grouping decisions leading to the statements packing solution.
When this estimation is not accurate or precise enough, it can misleads the group selection
process to make the “wrong” choice resulting in a less efficient solution.

The method used by holistic SLP suffers from two main shortcomings. It accounts for invalid
VP reuse and it considers the same cost for all VP types.

Invalid VP Reuse

The holistic SLP algorithm considers a reuse between two VPs when they are equivalent 6

regardless of the type of dependency between them. In other words, if there exists an anti-
dependency 7 or an output dependency 8 between two VPs, a reuse is accounted for. However, in
such a case there is no actual reuse between them. This may result in a misleading estimation
that prevents the algorithm from selecting the "best" group.

This problem can be easily fixed by eliminating anti- and output dependencies in the basic
block prior to applying SLP extraction.

Example 6 An example of such a case is illustrated in fig. 4.8. In this example the set of
candidates is

C = {c1 = {S1, S2}, c2 = {S1, S3}, c3 = {S4, S5}} (4.5)

c1 conflicts with c2. The corresponding initial VPCG and SGG are represented in fig. 4.8b and

S1: v1 = v3;

S2: v2 = v5;

S3: v5 = v6;

S4: v3 = v7 + v1;

S5: v5 = v2 + v5;

(a) example C code.

{v1,v2}
{S1,S2}

{v3,v5}
{S1,S2}

{v1,v5}
{S1,S3}

{v3,v6}
{S1,S3}

{v1,v5}
{S4,S5}

{v3,v5}
{S4,S5}

{v7,v2}
{S4,S5}

(b) VPCG at first iteration.

S5

S2

S1

S4

S3

1/3

1/2 1/2

(c) SGG at first iteration.

{v3,v5}
{S1,S2}

{v1,v5}
{S1,S3}

(d) Auxiliary graph for candidate {S4, S5} be-
fore conflicts elimination.

Figure 4.8 – Example showing how fake dependencies affect holistic SLP VP reuse estimation.

fig. 4.8c respectively. Following the VP reuse estimation method described by holistic SLP, a
reuse is accounted for between c1 and c3 on the VP {v3, v5} even though it is an anti-dependency.
Consequently:

6. contain the same elements (see definition 4.4)
7. Write-after-Read dependency.
8. Write-after-Write dependency
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— V PR(c1) = V PR(c2) = 1/2

— V PR(c3) = 1/3; VP {v3, v5} is reused once by c1 and {v1, v5} is also reused once by c2,
but they both conflict with each other as shown in AG(c3) depicted in fig. 4.8d, thus only
one reuse is considered.

Since c1 and c2 both have the maximum V PR value, one of them is selected randomly. If c1
is selected, the final grouping solution would be {c1, c3}. In this solution there is no actual VP
reuse since {v3, v5} used by c1 is not reused by c3 but written to. In other words, a packing is
needed to form {v3, v5} in order to be used by c1 and also an unpacking is needed to write the
result of c3 to {v3, v5} (unless {v3, v5} is contiguous (and aligned) in memory).

However, if the anti-dependency on {v3, v5} was not considered as a reuse, V PR(c1) would
be 0 and the final solution would become {c2, c3} in which there is an actual reuse of {v1, v5}
between c2 and c3 (the packed value written to {v1, v5} by c2 can be directly reused by c3).

Same Cost for all VP Types

In holistic SLP, when forming SIMD group candidates, VPs are consequently obtained as
the set of variables from the same position of the statements inside a group candidate. Holistic
SLP does not impose any additional constraint on forming VPs, which can thus contain any
variable whether it is a scalar or an array reference. In particular, VPs can contain references
to different arrays and/or references to non-contiguous elements of the same array. Such VPs
induce a high packing/unpacking cost.

During group selection, holistic SLP ignores the cost difference between different VP types
when computing the VP reuse estimation associated with a candidate. In fact, only the number
of VPs is used, thus assuming a unique cost regardless of the VP type. This may lead the group
selection to select SIMD groups with many array reference superwords referring to different
arrays or to non-contiguous array elements, completely ignoring the high packing/unpacking
cost associated with implementing them.

To counter this problem, holistic SLP relies on data layout transformation to hopefully
optimize the memory layout of such superwords and avoid the need for packing/unpacking oper-
ations. However, the data layout transformation, employed by holistic SLP, for array reference
superwords suffers from many shortcomings:

— It is very restrictive; it can only be applied in the context of SCoPs for array reference
superwords referring to the same array, that should be read-only.

— It may introduce significant additional memory requirements. Up to an array replication
per array reference superword, in fact. When targeting embedded platforms, memory
resources are generally very limited. In particular, the data cache or local scratchpad
memory.

— It may also introduce execution time overhead to initialize the array replications with the
transformed data layout from the original layout, which is generally performed at runtime.
But also due to the increasing cache (or local memory) pressure.

All in all, completely ignoring packing/unpacking cost associated with array reference superwords
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during group selection, and relying solely on data layout transformation to hopefully optimize
superwords placement in memory and eliminate the packing/unpacking cost overhead is not a
good strategy given the limitations and drawbacks of data layout transformations.

This problem can be solved by using a more accurate candidate benefit estimation method,
taking into account the cost difference of various VP types. Alternatively, we propose to consider
array access operations to contiguous elements of the same array as SIMD group candidates,
rather than VPs, to make them part of the SLP solution space. We will discuss this solution
later in section 4.4.2.

Example 7 To illustrate this case, let’s consider the example of fig. 4.9 assuming a maximum
vector size of two.

At the first iteration, only two candidates are available: c1 = {S1, S2} and c2 = {S1, S3}.
Since they have no VP reuse, V PR(c1) = V PR(c2) = 0. Therefore, either c1 or c2 is selected
randomly.
If c1 is selected then the {a, b} and {A[i], B[i]} should be packed into SIMD vectors and the result
should be unpacked to store it in {x, y}. {a, b} and {x, y} are scalar superwords and can be
optimized by data layout transformation. However, {A[i], B[i]} cannot since it contains accesses
to different arrays. Therefore a packing operation is required in this case.
However, if c2 is selected no packing operations are required to pack {A[i], A[i + 1]} (assuming
alignment).

In this case, c2 is more likely to be better than c1 however holistic SLP cannot distinguish
them and considers them as equally beneficial.

S1: x = a + A[i];

S2: y = b + B[i];

S3: z = y + A[i+1];

(a) C code snippet.

S1

S2 S3

00

(b) SGG at first iteration.

Figure 4.9 – Example illustrating holistic SLP candidate benefit estimation.

Only consider the VPs of the candidate at hand

The candidate benefit estimation method used by holistic SLP only considers the amount
of reuses of the VPs of the candidate at hand, say c, by the remaining candidates (in addition
to already selected groups) – as shown in eq. (4.2). In other words, it does not consider the
potential benefit of the remaining candidates, which have no reuse of c’s VPs.

This has a great impact specially during the first group selection iteration, since no groups
have been yet selected. In this case:

G′ = {c} (4.6)
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and consequently, eq. (4.2) becomes:

V PR(c) =
|V ({c})| − |P ({c})|+ |R(c)|

|P ({c})|
=
|R(c)|

|P ({c})|
(4.7)

This means that the only contribution to the benefit evaluation of c in this case, is the estimation
of the number of reuses of VPs of c (only) by the remaining candidates. This generally leads to
situations where many candidates are estimated to have the same (maximum) benefit. In such
cases the group selection process is unable to decide which candidate is better and will randomly
select one of them, like in the examples 5 and 6 for instance.

In section 4.4.2, we show through experimental results, that this problem greatly impacts the
performance of the SLP solution and we then propose a solution.

4.4 Proposed Holistic SLP Algorithm Enhancements

To recall the context of this work, the aim is to provide an efficient source-to-source Simdiza-
tion transformation to target embedded processors in the context of the ALMA project, mainly
XENTIUM and KAHRISMA. However, in order to better illustrate the advantage of our ap-
proach, we also considered two other embedded processors, namely, ST240 [4] and VEX [5]. All
four target compilers cannot perform Simdization, therefore we implement a source-to-source
transformation to convert a sequential C code into one with SIMD intrinsics of the target pro-
cessor.

In order to do that, we first present several enhancements to the holistic SLP algorithm
proposed by Liu et al, holistic SLP [78], thoroughly discussed in section 4.3. In this section, we
address the issues of cyclic dependency conflicts and invalid VP reuse, described in sections 4.3.2.1
and 4.3.2.2. But more importantly, we:

— Define a more efficient and compact IR. We refer to it as Pack Flow and Conflict Graph
(PFCG).

— Propose an alternative candidate benefit estimation and group selection method.

— Implement the proposed SLP extraction method and compare it against holistic SLP for
a set of benchmarks on three different embedded processors.

The overview of the modified holistic SLP extraction algorithm is depicted in fig. 4.10. It is
similar to the one used by holistic SLP, the main difference lies in the candidates identification
and IR construction as well as the group selection process.
First we obtain the DFG of the input basic block, then we identify isomorphic operations as
well as contiguous accesses to same arrays. Next we build the PFCG, that captures both,
the candidate conflicts and the VP flow information. We present the PFCG in section 4.4.1.
Like holistic SLP, we only consider SIMD group candidates of size two and we iteratively
extends the selected ones when possible. However, the group selection process is based on a new
candidate estimation method, that we later present in section 4.4.2. After selecting a new group,
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we update the PFCG by eliminating all conflicting candidates and we eliminate any possible
cyclic dependencies. Finally, the selected groups order is specified in such a way to minimize
permutations. We can then, optionally, estimate the speedup of the obtained solution and prune
it accordingly to make sure it performs better than the original scalar code, but in this work we
only focus on the group selection process.

Isomorphic operations 
Identification

Contiguous Array 
Accesses Identification

DFG Construction

PFCG Construction

Candidates Benefit Estimation

First Stage Selection

Basic Block

Second Stage Selection

Update PFCG &
Eliminate cyclic dependencies

DFG

Selected Candidate

PFCG

Candidates Left ?

Groups Ordering

Extendable ?

Y

Update Y

Target

Model

➢ SIMD vector size

➢ Supported operations

➢ Supported elements 

data-types

Figure 4.10 – SLP extraction framework overview.

4.4.1 Pack Flow and Conflict Graph (PFCG)

The IR used by holistic SLP, namely SGG and VPCG, holds necessary information for the
SLP extraction process. SGG provides statement compatibility (group-ability) i.e. group candi-
dates, as well as candidate common statement conflicts information. Whereas VPCG provides,
VPs per candidate information, in addition to VP conflicts.
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This information is partly redundant with SGG, since VPs of a candidate is an atomic property
of the candidate, so that all VPs of a candidate c conflict with all VPs of another candidate
in conflict with c. This redundancy is unnecessary. Note that VPCG does not explicitly hold
information about VP reuse. Comparing VPCG nodes is necessary in order to identify equivalent
VPs and account for reuse.
All in all, holistic SLP IR has several disadvantages:

— SGG cannot represent cyclic dependency conflicts (see section 4.3.2.1).

— Conflicts information is, unnecessarily, redundant between SGG and VPCG.

— VP reuse information is not captured explicitly in VPCG.

To address these disadvantages, we define a new IR, that we refer to as PFCG. It is a combi-
nation of a VP Flow Graph, similar to a DFG, and a Candidate Conflict Graph.

Définition 4.6 (PFCG) PFCG is a mixed graph (P ∪ C,X,F ) where:

— P ∪ C is the set of nodes. C is the set of SIMD group candidate nodes. P is the set of
input variable pack nodes, which are not in C. Note that in this representation, a SIMD
group candidate node also represents a VP; its output VP.

— X is a set of undirected edges representing conflicts between SIMD group candidate nodes.
It includes all common statement conflicts as well as direct cyclic dependency conflicts 9.
Note that we only consider direct cyclic dependency conflicts when building the PFCG,
indirect ones are dealt with during group selection step (see section 4.4.2).

— F is a set of directed edges representing VP flow between nodes.

The PFCG is constructed from the basic-block’s DFG as depicted by the procedure BuildPFCG

in algorithm 2 (in section 4.4.4). We use DFG form of the basic block, to increase the potential
of finding SLP at a finer level. We also eliminate anti- and output dependencies that might
otherwise affect VP reuse estimation as illustrated in section 4.3.2.2.

The advantages of using the PFCG are its ability to represent VP flow information, which
eases the detection of VP reuse – for a given candidate, we only need to check its neighbors on
flow edges to detect its VP reuses – and its ability to represent cyclic dependency conflicts while
being more compact than VPCG and SGG.

Example 8 Figure 4.11 shows the PFCG of the example of fig. 4.1 (recalled). Note the difference
with VPCG and SGG, of the same example, depicted in figs. 4.4b and 4.4c, respectively. Using the
PFCG we can easily detect, for instance, that the VP {b, d} is used by both candidates {S1, S2}
and {S4, S5}. Also it is more compact than the VPCG and SGG.

4.4.2 Group Selection Procedure

We propose an alternative group selection heuristic to the one employed by holistic SLP in
order to address the shortcomings illustrated in section 4.3.2.2.

9. Direct cyclic dependency occurs between two candidates only. Indirect cycle occurs between more than two
candidates.
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S1: v1 = a + b;

S2: v2 = c + d;

S3: v3 = e + v2;

S4: v4 = v3 - b;

S5: v5 = v1 - d;

(a) Recall example of fig. 4.1.

{add_2, add_0}

{sub_3, sub_4}

{e, a} {add_1, b}{d, b}

{add_1, add_0}

{c, a}

(b) Corresponding PFCG at the first iteration.

a

add_0

b

sub_3

sub_4v1

c

add_1

d

add_2v2

e

v3

v4

v5

(c) Corresponding DFG.

Figure 4.11 – DFG and PFCG of the example in fig. 4.1. Rectangular nodes in the PFCG
represent pack nodes, whereas elliptic shaped ones represent candidate nodes. Undirected edges
represent conflicts between candidates and directed edges represent VP Flow. Highlighted nodes
(with orange) indicate a reuse.

Unlike holistic SLP, we consider array access operations to contiguous elements of the same
array as SIMD group candidates, rather than VPs, when building the PFCG. This will distinguish
such VPs and make them part of the SLP solution space. This way the group selection procedure
can decide to select such candidate based on its benefit estimation instead of being implicitly
selected due to the selection of a candidate that uses/defines it.

Furthermore, we use a two-stages selection procedure based on a new candidate benefit es-
timation method that we present in section 4.4.2.1. In the first stage, we select the set of all
candidates with the highest VP reuse-to-cost ratio. Among them, we select one with highest
reuse-to-conflict ratio in the second stage.

The pseudo code of the group selection procedure is listed in algorithm 1. Each remaining
candidate in the PFCG is evaluated using the candidate benefit estimation method. The one
estimated as the most beneficial is selected, the PFCG is updated accordingly and the potential
cyclic dependency conflicts are eliminated before starting a new iteration until all conflicts in the
PFCG are resolved.

4.4.2.1 Candidate Benefit Estimation

The candidate benefit estimation method used by holistic SLP only considers the first neigh-
bors of the candidate being evaluated, say c, in the PFCG. In fact, holistic SLP only considers
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the reuses of c’s VPs by the remaining candidates in addition to reuses of already selected groups,
as shown in eq. (4.2). In other words, the potential benefit of the remaining candidates which
have no reuse of c’s VPs (i.e. which are not direct neighbors of c in the PFCG) is not considered.

This problem generally leads to situations where many candidates have the same maximum
benefit. In such case the holistic SLP algorithm is not able to decide which candidate is better
and will randomly select one of them. For instance, example 6 illustrates this case. This is
specially frequent during the first iteration where no groups have been selected yet. In this case
the only contribution to the benefit evaluation is the estimation of the number of reuses of VPs
of c by the remaining candidates, as shown in eq. (4.7).

To illustrate the impact of this problem, we applied holistic SLP repeatedly (ten times) on
each benchmark 10. Every time multiple candidates can be selected (i.e. have the same maximum
benefit), only one of them is selected randomly,as specified by holistic SLP.

For each benchmark, after applying Simdization using holistic SLP, we report the execution
time improvement of the generated SIMD code over the original (sequential) code. We repeat
this ten times, on three embedded processors, namely XENTIUM, KAHRISMA and ST240 11.
The graphics of fig. 4.12 plot the execution time improvement obtained for each time the test
is run. This results show a significant variation of the execution time improvement for most
benchmarks, when using holistic SLP, across different runs. For instance, the generated SIMD
code, obtained by applying holistic SLP on the infinite impulse response filter benchmark (iir),
for ST240, can perform up to 23% better or as low as 2% worst than the original (sequential) code
version, all depending on the SIMD group candidates being randomly selected each time multiple
ones are judged equally beneficial by the candidate benefit estimation method of holistic SLP.
This indicates that the holistic SLP candidate benefit estimation method is not precise enough
and often lead to situations where the group selection process cannot decide which candidate is
better and thus select randomly. This random selection often lead to a poor SLP solution as
shown by the results in fig. 4.12.

In order to address this issue, we propose to consider more than the first neighbors of the
candidate being evaluated, say c, in the PFCG. This allows to get a more global picture of the
effect of selecting c. In addition, we also use a two-stage selection procedure to further reduce
the cases where multiple candidates have same benefit estimation. First, we select the set of all
candidates with the highest VP reuse-to-cost ratio, among which we then select one with highest
reuse-to-conflict ratio in the second stage.

The pseudo code of the proposed candidate benefit estimation is listed in algorithm 5. Given a
candidate c, we first extract a subgraph, sub(c,N), from the PFCG containing c and its neighbors
up to N levels. We then eliminate all conflicts in sub(c,N) by iteratively removing a candidate
with highest conflict-degree-to-flow-degree 12 ratio. The resulting subgraph not only represents

10. the benchmarks are described in section 4.5.3)
11. the target processors are described in section 4.5.2
12. Conflict degree of a candidate is the number of conflicting edges connected to it in sub(c,N). Its Flow

degree is the number of flow edges connected to it (it is an indication of the amount of VP reuse of the candidate).
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Figure 4.12 – Execution time improvement, over the sequential version, of various benchmarks
obtained by applying holistic SLP for ten times.

the reuses of c’s VPs but also those of some other non-conflicting candidates. Once the subgraph
extracted, we compute the ratio of, the number of VP reuses of all candidates in the subgraph,
to the estimated packing/unpacking cost.

To evaluate the proposed method, we run the same test as before but using our proposed
method for SLP extraction (for N = 3) instead of holistic SLP. The results, reported in
fig. 4.13, show much less variation in the execution time improvement for all benchmarks, sug-
gesting that our method achieves a more precise candidate benefit estimation and is less prone
to the random selection factor.

Example 9 Back to example 7 (recalled in fig. 4.14).

Using our proposed SLP extraction method, the set of candidates is:

{c1 = {add_1, add_2}, c2 = {add_1, add_3}, c3 = {A[i], A[i+ 1]}} (4.8)

Note that {A[i], A[i+ 1]} is considered as a candidate, unlike holistic SLP. The corresponding
PFCG is depicted in fig. 4.15. The benefit estimation of the candidates is computed following the
method listed in algorithm 3. For c1, the neighborhood graph only contains c1, therefore:
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Figure 4.13 – Execution time improvement, over the sequential version, of various benchmarks
after applying the proposed SLP extraction for ten times.

— NR = 1. There is no reuse.

— Npack = 2. Estimated number of required packs is 2; {b, a}, {B[i], A[i]} and {add_2, add_1}.

— Nunpack = 1. Estimated number of required unpacks is 1 since c1 has no successors.

— Thus the benefit of c1 is
1 +NR

1 +Npack +Nunpack

= 2/4

For c2 and c3 the neighborhood graph contains both c2 and c3. Thus, the benefit estimation for
c2 is (1 + 2)/(1 + 1 + 1) = 3/3 and is the same for c3. In this case either c2 or c3 is selected at
the first iteration, then the other will be selected in the next iteration. Hence, the final grouping
solution is {c2, c3}.

In contrast, when using holistic SLP c3 is not considered as candidate and c1 and c2 are
estimated to have the same benefit as illustrated in example 7. Therefore, the final grouping
solution could be {c1} or {c2} (randomly). {c2} – equivalent to the solution {c2, c3} obtained by
using our proposed method – would more likely perform better than {c1}.
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S1: x = a + A[i];

S2: y = b + B[i];

S3: z = y + A[i+1];

(a) C code snippet.

a

add_1

x

b

add_2

add_3 y

z

A[i] B[i]

A[i+1]

(b) Corresponding DFG.

Figure 4.14 – Recall the example of fig. 4.9.

{add_1, add_3}
3/3

{a, add_2}
{A[i], A[i+1]}

3/3

{add_2, add_1}
2/4

{b, a} {B[i], A[i]}

Figure 4.15 – PFCG of the example in fig. 4.14 at the first iteration using prop-2.

4.4.2.2 Update PFCG

After selecting of a new SIMD group, g, we update the PFCG following the procedure Up-

datePFCG listed in algorithm 7. First, we move the node representing g in the PFCG from the
candidates set to the selected groups set. Then, we eliminate all candidates in the PFCG that
conflicts with g, that is all nodes connect to g by a conflict edge. When eliminating a candidate,
c, we make sure to keep the PFCG consistent. So:

— If c has flow successors, we convert it into a VP node, i.e. it is not a group candidate
anymore, and we remove all its incoming flow edges. If the source of the removed incoming
flow edge is a VP node that is only connected to c then we remove it as well.

— Otherwise, we first handle the incoming flow edges of c similarly, before removing it.

4.4.2.3 Cyclic Dependency Conflicts Elimination

Since we do not consider all cyclic dependency conflicts, namely indirect ones, when building
the PFCG, we eliminate such conflicts after updating the PFCG due to the selection of a new
SIMD group. For each of the remaining candidates we check whether it may introduce a cyclic
dependency, with previously selected SIMD groups, if it get selected. If so, we eliminate it from
the PFCG in order to guarantee the final grouping solution to be cyclic dependency free. The
pseudo-code of the cyclic dependency conflicts elimination procedure is listed in algorithm 8.
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4.4.3 Algorithm complexity

Problem size

The IR construction time, whether for the VPCG used by holistic SLP, or the PFCG in
our proposed algorithm, is roughly quadratic with respect to the number of group candidates.
However, the IR is constructed only once before starting the group selection procedure.

Our proposed IR (PFCG) is more compact than the one used by holistic SLP (VPCG +
SGG). If C is the set of SIMD group candidates then:

— The number of nodes in the PFCG is equal to the number of candidates (|C|) plus the
number of input VPs which are not in C (cf. definition 4.6), i.e.:

NPFCG = |C|+
∑

c∈C

|{v ∈ Vin(c) : v /∈ C}| (4.9)

— The number of nodes in the VPCG equals the sum of VPs in each candidate:

NV PCG =
∑

c∈C

|V ({c})| =
∑

c∈C

(1 + |Vin(c)|) = |C|+
∑

c∈C

|Vin(c)| (4.10)

Where Vin(c) is a function that returns the set of input VPs for the candidate c. A candidate
has only one output VP, therefore, the number of VPs for c is |V ({c})| = 1 + |Vin(c)|

13.

{v ∈ Vin(c) : v /∈ C} ⊂ Vin(c) =⇒ NV PCG ≥ NPFCG (4.11)

Candidate benefit estimation

In order to estimate the benefit of a candidate c, holistic SLP requires to build an auxiliary

graph for c, AG(c) (see section 4.3.1). The time for building AG(c) from the VPCG (the method
used by holistic SLP) is linear with respect to the number of nodes in the VPCG.

On the other hand, our candidate benefit estimation method requires to build a sub-PFCG
(sub(c)) obtained by extracting the distance-N neighborhood of c on the Pack flow edges in the
PFCG. The building time of sub(c) is roughly constant with respect to the PFCG size, specially
since very small values of N (≤ 3) are sufficient, as shown in the results of fig. 4.16. The test
setup, benchmarks and target processors are presented later on in section 4.5.

Group selection

The group selection procedure (assuming no group size extension is performed) is roughly
the same for our approach and that of holistic SLP. However, due to the difference in the
complexity of candidate benefit estimation, the group selection of holistic SLP is:

O(|C| × |V (C)|) ≈ O(|C|2) (4.12)

13. the function V is defined in eq. (4.3)
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Figure 4.16 – Execution time improvement of the SIMD code obtained by applying our proposed
SLP extraction method, compared to the original (sequential) code, for different values of N
considered for constructing the distance-N neighborhood of a candidate (sub-PFCG) in the
PFCG. The targeted processor is KAHRISMA.

Where C is the set of SIMD group candidates and |V (C)| is the number of nodes in the VPCG.
On the other hand, the complexity of our approach is roughly O(|C|).

The group selection time of our approach varies, roughly, linearly with respect to the number
of candidates, whereas that of holistic SLP varies quadratically. The experimental results
presented in section 4.5.5.2 (figs. 4.21 and 4.22a) shows the same behavior.

4.4.3.1 Controlling PFCG Size

When building the PFCG, we consider each pair of isomorphic operations in the DFG for
finding SIMD group candidates, as shown in algorithm 2. With larger basic blocks, the size
of the PFCG (number of candidates) grows quadratically. In fact, for a set of K isomorphic
operations, we can obtain up to

f(K) = (K − 1)×K/2 (4.13)
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candidates.

In order to reduce the PFCG size, and consequently cut down the groups selection time, we
decompose each set of isomorphic operations into batches of limited size, and we only search for
candidates inside each batch separately. In this case, for a set of K isomorphic operations and a
batch size S, we can obtain up to:

(K/S)× f(S) + f(K%S) ≈
K × S

2
(4.14)

candidates. Hence, the number of candidates roughly increases linearly with the increase of the
batch size.

The batch size allows to control the PFCG size and consequently the group selection time, at
the cost of degrading the grouping solution performance. This is illustrated in the experimental
results in section 4.5.5.2.

This concept is similar to basic-block splitting. But, in order to increase the potential of
finding relevant candidates inside each batch, we first sort the set of isomorphic operations in
topological order. This way independent operations are more likely to end up in the same batch.

4.4.4 Pseudo-code

In this section, we simply list the pseudo-code of PFCG construction and group selection
procedures that we discussed earlier, for the sake of keeping them closer to each other.

Algorithm 1 Group Selection Procedure

1: // Input: Pack Flow and Conflict Graph pfcg
2: // Output: Set of selected groups.
3: procedure GroupSelection(pfcg)
4: while pfcg.C 6= ∅ do
5: for each candidate c ∈ pfcg.C do
6: BenefitEstimation(c, pfcg)
7: end for
8: best← Select(pfcg).
9: UpdatePFCG(best, pfcg) // mark best as selected and Update pfcg

10: EliminateCycles(pfcg)
11: end while
12: return pfcg.S
13: end procedure
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Algorithm 2 Building PFCG

1: // Input: Data Flow Graph dfg. It is a Directed Acyclic Graph (DAG)
2: // Output: Pack Flow and Conflict Graph pfcg
3: procedure BuildPFCG(dfg)
4: pfcg.C ← ∅ // Set of SIMD group candidate nodes
5: pfcg.P ← ∅ // Set of input Pack nodes
6: pfcg.F ← ∅ // Set of pack flow edges
7: pfcg.X ← ∅ // Set of candidate conflict edges
8: pfcg.S ← ∅ // Set of Selected candidates
9: for each pair (o1, o2) of isomorphic operations or contiguous array accesses in dfg do

10: // Operations batching is omitted
11: if o1 and o2 are independent and have compatible data-types then
12: c← {o1, o2}
13: pfcg.C ← pfcg.C ∪ {c}
14: // connect c’s flow successors
15: if ∃ p ∈ pfcg.P : p ≡ c then
16: pfcg.P ← pfcg.P \ {p}
17: substitute (p, x) by (c, x), ∀(p, x) ∈ pfcg.F
18: end if
19: // connect c’s flow predecessors
20: // dfg.preds(n) is the set of predecessors of node n in the dfg
21: for each v1i, v2i : v1i ∈ dfg.preds(o1) and v2i ∈ dfg.preds(o2) do
22: if ∃ v ∈ pfcg.C : v ≡ {v1i, v2i} then
23: pfcg.F ← pfcg.F ∪ {(v, c)}
24: else if ∃ v ∈ pfcg.P : v ≡ {v1i, v2i} then
25: pfcg.F ← pfcg.F ∪ {(v, c)}
26: else
27: pfcg.P ← pfcg.P ∪ {{v1i, v2i}}
28: pfcg.F ← pfcg.F ∪ {({v1i, v2i}, c)}
29: end if
30: end for
31: // connect c’s conflicts
32: pfcg.X ← pfcg.X ∪{{c, c′} : c′ ∈ pfcg.C and (c′ ∩ c 6= ∅ or c′, c introduce a cyclic

dependency) }
33: end if
34: end for
35: return pfcg
36: end procedure
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Algorithm 3 Estimate the benefit associated with selection of a candidate

1: // Inputs: A candidate c and the pack flow and conflict graph pfcg
2: // Output: Set the benefit of candidate c
3: procedure BenefitEstimation(c, pfcg)
4: sub← ExtractSubPfcg(c, pfcg)
5: EliminateSubConflicts(c, sub) // sub is now conflict-free
6: ComputeBenefit(c, sub, pfcg)
7: end procedure

1: // N is a positive integer parameter
2: // Output: distance-N pack flow neighborhood of c in pfcg
3: procedure ExtractSubPfcg(c, pfcg)
4: sub.V ← {x ∈ pfcg.C ∪ pfcg.S : distance(x, c) <= N, {x, c} /∈ pfcg.X}, where:
5: distance(x, c) is the distance between nodes c and x in respect to Pack Flow edges.
6: sub.X ← {{x, y} ∈ pfcg.X : x, y ∈ sub.V} // Set of conflict edges
7: sub.F ← {(x, y) ∈ pfcg.F : x, y ∈ sub.V} // Set of pack flow edges
8: return sub
9: end procedure

Algorithm 4 Eliminate Conflicts in sub

1: procedure EliminateSubConflicts(c, sub)
2: // Iteratively eliminate the candidate with highest conflict-to-reuse ratio
3: while sub.X 6= ∅ do

4: x← node ∈ sub.V \ {c} with highest
conflict degree

1 + flow degree
5: sub.V ← sub.V \ {x}
6: sub.X ← sub.X \ {{x, y} ∈ sub.X}
7: sub.F ← sub.F \ {(x, y), (z, x) ∈ sub.F}
8: end while
9: end procedure

Algorithm 5 Compute Candidate Benefit.

1: procedure ComputeBenefit(c, sub, pfcg)
2: NR ← |sub.V| // Estimated number of VP reuse in sub
3: // Estimated number of additionally required packings.
4: Npack ← |{x ∈ pfcg.C \ sub.V : ∃(x, y) ∈ pfcg.F, y ∈ sub.V \ pfcg.S}|
5: // Estimated number of additionally required unpackings.
6: Nunpack ← |{x ∈ sub.V \ pfcg.S, x is not a Store candidate : ∄y ∈ sub.V ∪ pfcg.S :

(x, y) ∈ sub.pfcg}|
7: c.reuse← NR

8: c.benefit←
1 +NR

1 +Npack +Nunpack

9: c.conflict← |{{x, y} ∈ pfcg.X : (x ∈ sub.V)⊕ (y ∈ sub.V)}|
10: end procedure
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Algorithm 6 Select the ‘best’ candidate in the PFCG

1: procedure Select(pfcg)
2: // First Stage: Set of candidates with maximun benefit estimation
3: bestSet← {c ∈ pfcg.C : c.benefit = max}
4: // Second Stage:

5: best← c ∈ bestSet with maximum
c.reuse

c.conflict
6: return best
7: end procedure

Algorithm 7 Updating PFCG after selecting a new group

1: procedure UpdatePFCG(c, pfcg)
2: // Mark c as selected
3: pfcg.S ← pfcg.S ∪ {c}
4: pfcg.C ← pfcg.C \ {c}
5: // Eliminate candidates conflicting with c
6: for each {x, c} ∈ pfcg.X do // x conflicts with c
7: EliminateCandidate(pfcg, x)
8: end for
9: end procedure

1: procedure EliminateCandidate(pfcg, x)
2: for each (p, x) ∈ pfcg.F do // p is a predecessor of x
3: pfcg.F ← pfcg.F \ {(p, x)} // disconnect p from x
4: if p ∈ pfcg.P and ∄(p, s) ∈ pfcg.F then
5: pfcg.P ← pfcg.P \ {p} // p is a pack node with no other successors
6: end if
7: end for
8: if ∃(x, y) ∈ pfcg.F then // if x has successors
9: pfcg.P ← pfcg.P ∪ {x} // convert x into a pack node

10: end if
11: pfcg.C ← pfcg.C \ {x}
12: pfcg.X ← pfcg.X \ {{x, y} ∈ pfcg.X}
13: end procedure

Algorithm 8 Eliminate cyclic dependency conflicts

1: procedure CycleElimination(pfcg)
2: for each c ∈ pfcg.C do
3: if pfcg.S ∪ {c} have a dependency cycle then
4: EliminateCandiate(pfcg, c)
5: end if
6: end for
7: end procedure
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4.5 Experimental Setup and Results

In this section, we present the implementation of the proposed SLP extraction framework
in section 4.5.1. We then present the test setup, benchmarks and target architectures in sec-
tion 4.5.4, section 4.5.3 and section 4.5.2 respectively. Finally we present the experimental results
in section 4.5.5.

4.5.1 Implementation

We implemented the proposed PFCG model along with the enhanced holistic SLP extrac-
tion framework, presented in section 4.4, as a source-to-source transformations in the Generic
Compiler Suite (Gecos). The corresponding pseudo-code is listed in section 4.4.4.
We also implemented the original holistic SLP extraction framework as described in sec-
tion 4.3.1 and based on its presentation [78] by Liu et al.

Gecos [47] is an open source, model-driven, eclipse-based compiler framework developed in
the CAIRN/INRIA research team. It is mainly targeted towards, but not limited to, source-
to-source transformations for embedded platforms and hardware generation using High-Level
Synthesis (HLS).

The proposed holistic SLP flow implementation is illustrated in fig. 4.17.
The Gecos C front-end, based on the C/C++ CDT front-end, parses the input C code and
generates the equivalent Gecos IR (CDFG).
Multiple pre-optimizations can be performed at this level, such as constant propagation, array
scalarization, loop unrolling as well as polyhedral loop analysis and transformations, such as
register level tiling.

The basic blocks annotated for SLP extraction, either manually using pragma annotations
or based on previous transformation, are then converted to DFG representation, on which we
apply SLP extraction. Note that in this implementation, we only support basic arithmetic SIMD
operations such as additions, multiplications and shifts in addition to vector memory accesses.
SLP extraction determine the set of decided SIMD groups, which are then used to vectorize the
DFG to SIMD form reflecting the SLP grouping.
The vectorized DFG is then converted back to CDFG introducing SIMD instructions and data-
types. At this level, the SIMD instructions and data-types are generic and target-independent.
However, the main characteristics of the target architecture were considered during SLP extrac-
tion, such as the SIMD vector size, the supported SIMD operations and the vector elements
data-types.
Post-optimizations can be performed at this level, such as superword promotion ([124]).

Finally, the SIMD C code generation converts the Gecos IR into a C code with SIMD macros
implementing the SIMD data-types and operations. The implementation of these generic macros
is target-dependent and is generated as a .h file by Gecos. It defines the corresponding SIMD
types and operations using the target’s compiler SIMD intrinsics when available. This makes the
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Figure 4.17 – SLP Extraction Framework implementation in Gecos.

framework easily expendable to support additional targets.

4.5.2 Target processors

We target three different embedded architectures, XENTIUM, ST240 and KAHRISMA.

4.5.2.1 XENTIUM

XENTIUM is a low energy consumption 32-bit (with 40-bit extension support) 12-issues wide
Very Long Instruction Word (VLIW) Digital Signal Processor (DSP) core from Recore Sys-

tems [104]. It has ten functional units, six of which can perform integer arithmetic and logic
operations, two can perform multiply operations and two can perform load/store operations.
XENTIUM also supports 2x16-bit SIMD operations. In this work, we only consider add, sub,
mul, shifts and data manipulation SIMD instructions. It has four 8 32-bit and one 16 32-bit
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register files, each of which has two read and two write ports.
An LLVM based compiler and a cycle-accurate simulator for the XENTIUM core are provided
by Recore Systems.

4.5.2.2 KAHRISMA

KAHRISMA (KArlsruhe’s Hypermorphic Reconfigurable-Instruction-Set Multi-grained-Array)
is a heterogeneous dynamically reconfigurable multi-core research architecture [58], developed by
KIT.
In this work we use its 2-issue width single VLIW core configuration.
KAHRISMA core provides support for 4x8-bit and 2x16-bit SIMD integer arithmetic operations
including addition, subtraction, multiplication and shifts as well as data manipulation opera-
tions.
An LLVM based compiler and a cycle-approximate simulator [127] for this core configuration are
provided by KIT.

4.5.2.3 ST240

ST240 [4] is a 4-issues wide VLIW media processor from the ST200 family of STMicroelec-
tronics. It has four integer units, 2 multiplication units, 1 branch unit and 1 load/store unit. It
has a general purpose register file of 64 32-bit registers with 8 read and 4 write ports. ST240
also supports 2x16-bit SIMD operations.In this work, we only consider add, sub, mul, shifts and
data manipulation SIMD instructions.
A compiler based on GNU GCC and Open64 as well as a cycle-accurate simulator for the ST240
core are provided STMicroelectronics.

4.5.2.4 VEX

VLIW EXample (VEX) is a configurable compilation-simulation system targeting a wide class
of VLIW architectures [5]. It is developed by Hawlett-Packard (HP). The interesting point
about the VEX toolchain is that it is highly configurable. The configuration parameters includes:
the number of clusters, the number of ways, functional units and registers per cluster as well as
the latency associated with various operations in addition to the memory hierarchy parameters.
But also the possibility to extend its instruction set to include new instructions.

We use this possibility to extend the default instruction set by implementing a 4x8-bit and
2x16-bit integer arithmetic SIMD instruction set. In this model, the SIMD registers are common
with the scalar registers. In this work, we use the default configuration, with one cluster and 4
issues. We refer to it as VEX-4.
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4.5.3 Benchmarks

We use several signal and image processing benchmarks for testing the proposed SLP extraction
framework. They are listed in table 4.1 and the breakdown of the operations in the considered
basic blocks is reported in table 4.2.

Each benchmark function is pre-optimized to expose SLP by applying either loop unrolling or
register level tiling. And the kernel basic blocks are pragma annotated to be considered for SLP
extraction.
The main function of each benchmark allocates and initializes the required data, it then resets
the statistics counters before launching the benchmark function. Finally, it stops the statistics
counters before generated the output.

Benchmark Info Pre-optimizations

fir 128-tap FIR Filter partial 4x unrolled
iir 64 IIR Filer partial 4x unrolled
fft4 size 4 Fast Fourier Transform fully unrolled
image2d 2D 3x3 linear image filter 2x2 register level tiling
gauss vertical followed by horizontal filter 2x2 register level tiling
mm 2D Matrix Multiplication 2x2x2 register level tiling
dog Difference of Gaussian (2D stencil) 2x2x2 register tiling
jacobi2d 2D stencil from polybench-c-4.1 2x2x2 register tiling
seidel2d 2D stencil from polybench-c-4.1 2x2x2 register tiling

Table 4.1 – Test Benchmarks.

Benchmark add sub mul Total Load Store CAA

fir 4 0 4 8 8 0 6
iir 0 4 8 12 16 0 12
image2d 0 9 0 9 18 0 12
mm 8 0 8 16 12 4 8
gauss 16 0 24 40 14 8 12
fft4 12 12 16 40 48 16 128
dog 32 0 48 80 37 16 44
jacobi2d 64 0 0 64 51 16 69
seidel2d 64 0 0 64 47 8 80

Table 4.2 – Number of operations and memory accesses in benchmarks. CAA represents the
number of contiguous array access candidates.

4.5.4 Tests Setup

In order to compare the proposed SLP extraction method against holistic SLP, we employ
the test setup illustrated in fig. 4.18.
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Figure 4.18 – Test procedure diagram.

For each benchmark, we generate three SIMD versions:

— hslp: obtained by applying holistic SLP extraction.

— prop: obtained by applying our proposed SLP extraction method.

We then compile all the SIMD versions, as well as the original (scalar) version – to which
we refer by orig – using the target processor’s with the optimization flag (-O3). We consider
multiple embedded architectures presented in section 4.5.2.

Finally, we simulate each version on the target processor’s simulator, using the same input data
samples, and we extract the number of cycles required for executing the benchmark function.

4.5.5 Results

4.5.5.1 Proposed SLP extraction vs. Holistic SLP

In order to compare the proposed SLP extraction method (prop) against holistic SLP (hslp),
we apply both SLP extraction flows ten times each (to capture the impact of the random selection
factor in the group selection procedure discussed in section 4.4.2.1). And that is for all the
benchmarks with 16-bit integer data-types. We report the average execution time improvement
for hslp, and prop over orig (across the ten runs), in the histograms of figs. 4.19a, 4.19b,
4.20a and 4.20b for the targets XENTIUM, KAHRISMA, St240 and VEX-4 respectively. The
minimum and maximum execution time improvement values over the ten runs are also reported
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in the histograms.
The execution time improvement of each SIMD version, v, over the original version (orig) is
computed as follows:

Improvement(v) = 100 ∗
cycles(orig)− cycles(v)

cycles(orig)
(4.15)

Note that for prop, we did not apply batching for PFCG construction (cf. section 4.4.3.1),
and we used distance-3 neighborhood for candidate benefit estimation (cf. section 4.4.2.1).

Results on all targets show a consistent trend of prop performing better than hslp for all
benchmarks.
For fir, both versions perform the same on all targets and are not affected by the random
selection factor, simply because this benchmark is very simple and both methods always find
the best possible grouping solution. Though on ST240 the scalar performs better than the both
SIMD versions.
For iir, image2d, gauss and jacobi2d, prop consistently performs better on all targets with
near zero variation across different runs. Whereas hslp performance varies significantly between
runs, but on average it still performs better than the scalar version. This is because hslp

candidate benefit estimation is unable to distinguish between candidates leading to a random
group selection.
For fft4, both SIMD version performs good compared to the scalar version on all targets and
across all runs. Though, prop still performs better. Note that hslp performance does not vary
across runs. This is because of the operations scheme of fft4, which despite of hslp being
sometimes unable of distinguishing between candidates, it still end up with the same grouping
solution, mainly due to the high number of contiguous array accesses as shown in table 4.2.
For mm, hslp performs very poorly, it degrades performance compared to the scalar version on
all targets (up to 20% worst) and varies very significantly between runs. On the other hand,
prop consistently performs significantly better than the original version on all targets (up to 30%

better).
For dog and seidel2d, the results vary across targets. prop results in significant performance
improvement on XENTIUM for dog (40%), slight improvement on KAHRISMA (10%) and slight
degradation on ST240 (3%). Whereas hslp often results in performance degradation.

All in all, these results point towards two main conclusions:

— prop performs better on all benchmarks and almost always lead to performance improve-
ment over the scalar version on all three targets. Also it has very slight variations across
different runs. This indicates that the candidate estimation and group selection method is
precise and accurate enough.

— On the other hand, hslp performance varies significantly across runs, on all targets, and
often lead to performance degradation compared to the scalar version. This indicates that
the hslp candidate benefit estimation and group selection method is not accurate/precise
enough.
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Figure 4.19 – Execution time improvement of the SIMD code obtained by prop vs. hslp, over
orig. The test is repeated 10 times for each benchmark. A bar represent the mean value and a
line segment represents the minimum and maximum values of the execution time improvement.
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Figure 4.20 – Execution time improvement of the SIMD code obtained by prop vs. hslp, over
orig. The test is repeated 10 times for each benchmark. A bar represent the mean value and a
line segment represents the minimum and maximum values of the execution time improvement.
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4.5.5.2 Simdization Time vs. Performance

In order to evaluate the PFCG size control strategy presented earlier in section 4.4.3.1, we
apply both prop and hslp on the jacobi2d benchmark for different batch size values and we
measure the time it takes for group selection to finish. We refer to this as Simdization time.
It includes PFCG construction and groups selection. We then generate, compile and simulate
the generated SIMD code for each approach and report the execution time improvement (i.e.
performance improvement) compared to the original (sequential) version, orig.

The Simdization time and performance improvement variations in respect to the batch size,
for the benchmark jacobi2d running on KAHRISMA, are reported in figs. 4.21 and 4.22a for
prop and hslp, respectively.

The Simdization time increases, roughly, linearly for prop and quadratically for hslp, with the
increase of the batch size value and consequently with the number of candidates 14. This results
are in sync with the complexity analysis of prop and hslp, discussed earlier in section 4.4.3.

Besides, for prop the performance improvement increases logarithmically with the batch size,
while Simdization time increases linearly. This means that selecting smaller batch sizes, down
to a certain threshold (about 20 for jacobi2d), yields more Simdization time savings than
performance penalties.

All in all, this results show that smaller operation batch sizes can effectively be used to shorten
the Simdization time, which varies linearly. This does of course affect the performance but with
a lesser degree, as can be clearly seen for jacobi2d. As a rule of thumb, the batch size value
should be higher than half the size of the largest isomorphic operations set.

Note that the source-to-source compilation flow was implemented with no regard for the per-
formance (Simdization time). It is implemented in Java and integrated to Gecos which is an
eclipse application that heavily relies on the Eclipse Modeling Framework (EMF). Therefore,
the absolute values of the Simdization time are not very representative and can be reduced by
using an optimized implementation, but the main point here is the trending of these values with
respect to the batch size.

14. The number of candidates roughly increases linearly with the increase of the batch size, as shown in
section 4.4.3.1.
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4.6 Conclusion

In this chapter, we presented the state-of-the-art of SLP, we throughly discussed holistic

SLP, a SLP extraction algorithm proposed by Liu et al in 2012 [78], and shed light on some of
its shortcomings. We then proposed several modifications to overcome them and improve its
efficiency. More specifically:

— We proposed a new more compact and more efficient IR for SLP extraction, the PFCG.

— We proposed an alternative SIMD group selection and candidate benefit estimation method
based on PFCG.

— We implemented and compared the propose solution against holistic SLP on several
embedded processors using a set of signal and image processing benchmarks.

Experimental results showed a significant performance improvement of the obtained SLP solu-
tion, by using our proposed method compared to holistic SLP, without the need for data layout
transformations. The proposed PFCG helps to speedup the candidate benefit estimation and
consequently reduces the complexity of the group selection algorithm. In addition, the proposed
operation batching method can effectively be used to reduce the size of the PFCG; the latter
varies linearly with the value of the batch size. This helps reducing the group selection time,
while still achieving good SLP solutions.

By this point, we have at our disposal a complete source-to-source flow capable of automatically
generating a SIMD C code for different embedded processors. In the next chapter, we discuss the
interaction between floating-point to fixed-point conversion and SLP extraction. We show that,
existing approaches considering both transformations independently, yields less efficient solutions.
We argue that considering SLP extraction in conjunction with Word Length Optimization (WLO)
helps achieving better results. So, we propose a new SLP-aware WLO algorithm, which we
integrate into the source-to-source compilation flow that we implemented.

Limitations

In this work we ignore the alignment constraint during group selection, we assume that all
contiguous array reference superwords are aligned. When such superword is not actually aligned
it induces a cost penalty, especially if the target does not support unaligned memory accesses.
However, this cost penalty is generally not as high as in the case where the data are not contigu-
ous, as previously illustrated in fig. 3.5. Indeed, a contiguous but unaligned data can be packed
into a SIMD register by the mean of two vector loads followed by a permutation operation (as-
suming the target does not support unaligned accesses), whereas packing non-contiguous data
may require as many loads as the number of elements in addition to several packing/permutation
operations in order to pack all elements into one SIMD register (assuming the target does not
support scatter/gather memory accesses).

The alignment problem can also be dealt with using post-optimization of the memory layout
(such as array padding) and/or using loop transformation (and register shuffling like in [31]). In
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anyway, this is worth considering in a future work.

In addition, in this work we only consider "simple" integer arithmetic SIMD operations (add,
mul,...). We also use a very basic instruction selection procedure for SIMD code generation.
However, many embedded processors (DSPs), such as XENTIUM and ST240, provide multiple
"complex" SIMD operations, such as muladd and addsubb. Considering such SIMD operations
during the Simdization would provide more alternatives to improve performance. This could
be considered in the SLP extraction phase, during SIMD group candidates identification. Al-
ternatively, a more complex SIMD instruction selection can be also used. This is also worth
considering.

Besides, the performance of SLP solutions can be improved by considering inter basic-block
(and inter-procedural) analysis to reduce packing/unpacking overhead by reusing superwords
across basic blocks.

Finally, in this work we only targeted embedded processors with subword SIMD support. It
would be interesting to see how the proposed SLP extraction method performs when targeting
processors with wider SIMD data-path, such as the NEON extension for ARM processors.
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5.1 Introduction

Unlike general purpose processors, embedded processors must satisfy increasing need for com-
putation power while complying to strict design constraints such as cost, performance and power
consumption. Even though, many embedded processors, such as ARM cortex-A, provide hard-
ware support for floating-point arithmetic, a good number of ultra low power embedded pro-
cessors, such as ARM cortex-M0/1/3, TI TMS320C64x and Recore XENTIUM [104] do not, in
order to reduce die area (cost) and/or minimize power consumption. This comes for the cost
of restraining programmability to the use of fixed-point arithmetic, while application prototyp-
ing in many domains, such as signal processing and telecommunication applications, employs
floating-point representation.
Although floating-point can be soft-emulated on such processors, it drastically degrades per-
formance (up to 45x as reported in section 5.5.6). Instead, fixed-point implementations are
preferably used. Hence, floating-point to fixed-point conversion is a crucial step for an efficient
implementation when targeting such processors.

On the other hand, most embedded processors nowadays provide support for (subword) Single
Instruction Multiple Data (SIMD) as a mean to improve performance for little cost overhead. In
order to make efficient use of such processors, the software should also exploit SIMD opportuni-
ties.
As discussed previously, floating-point to fixed-point conversion (see chapter 2) and Simdization
(see chapter 3) are tedious, error prone and time consuming transformations. Therefore, auto-
mated methodologies and tools are necessary in order to cut down applications time-to-market
and consequently development cost.

Floating-point conversion consists of attributing a fixed-point format for each floating-point
data and operation’s intermediate result. The fixed-point format should specify the word-length
in addition to the binary-point position.
Keeping full operations precision, in a fixed-point implementation, requires large word-lengths
which, unless supported by the target processor, would also require costly software emulation,
yielding a poor performance. Rather, quantizations are applied to limit word-lengths growth
and consequently improving performance, for the cost of degrading the application’s quality
by introducing errors. Overflow errors, while significant, can be easily avoided by employing
a conservative approach for Integer Word Length (IWL) determination. Quantization errors,
however, propagate throughout the system, get amplified and can lead to significant error on
the output. To avoid that, the conversion process must account for these errors and carefully
select fixed-point formats that keep the computation’s accuracy within an ”acceptable” limit
while maximizing performance.

This performance/accuracy trade-off has been identified and exploited when targeting cus-
tomizable architectures, in the context of HLS [65] for instance, where the designer has more
flexibility in customizing word-lengths supported by the architecture.
This is not the case when targeting processors with fixed data-path size. Employing smaller data
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sizes – in the absence of SIMD – does not really benefit the application’s performance. On one
hand, it may require additional operations to perform data-type conversions, since all integer
operations are performed on operands with the native word-size anyway (type promotion). But
on the other hand, it may reduce the memory footprint which can improve performance. For
example, in the C code snippet of fig. 5.1, the addition’s operands are generally promoted, by
the compiler, to int before performing the operation and the result is then converted back to
char.
So all in all, it does not make much sense to use smaller word-lengths in this context.

char a,b,c;

...

c = a + b;

Figure 5.1 – C code snippet.

However, since most embedded processors nowadays provide support for SIMD, using smaller
data word-lengths can be exploited by SIMD instructions to perform an operation on several
packed data simultaneously, thus ultimately improving performance.

Intuitively, in this context using narrower word-lengths should normally translate to better
performance on one side, due to the increased vectorization factor, but lower quality on the other
side due to the reduced data precision. Previous work [85] followed this intuition when applying
floating-to-fixed-point conversion. They aim at minimizing word-lengths without taking into
account Superword Level Parallelism (SLP), which can be applied, independently, later on.

However, this intuition is unrealistically optimistic since, selecting narrower word-lengths dur-
ing Word Length Optimization (WLO) does not necessarily result in performance improvement
after applying SLP extraction, mainly because WLO is unaware of SLP grouping possibilities
and the associated overhead.

In this chapter, we address these problems by jointly considering SLP extraction and WLO.
More specifically:

— We propose a new SLP-aware WLO algorithm. To the best of our knowledge this is the
first work to jointly consider both, WLO and SLP extraction.

— We implement it as a fully automated source-to-source compilation flow with a customizable
and extensible fixed-point/SIMD back-end supporting multiple target architectures.

— We test our approach on several embedded processors against some signal processing ap-
plications.

The chapter is organized as follows:
First, we illustrate the aforementioned problems and discuss the related work in section 5.2. Then
we present our proposed joint WLO and SLP extraction approach in section 5.3. In section 5.4,
we present the fully-automated, floating-to-fixed-point conversion and SLP extraction source-to-
source compilation flow. Finally, we present the experimental setup and results in section 5.5.
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5.2 Motivations and Related Work

In many application domains, such as signal processing, floating-point arithmetic is used for
rapid prototyping. When targeting embedded SIMD processors with no floating-point support,
a floating-point to fixed-point conversion step is crucial to achieve good performance, by:

— Eliminating the need for software floating-point emulation which drastically impact per-
formance.

— Reducing data sizes and consequently reducing the memory footprint, which may also
improve performance.

— Enabling the exploitation of SIMD capabilities which can further improve performance.

The down side is mainly the complexity of fixed-point implementation.

In this context, floating-point conversion can be either applied manually or using automated
tools as discussed in chapter 2.
Manual conversion is very tedious, error prone and time consuming, which limits the ability to
explore the fixed-point design space, and generally pushes toward using uniform word-length
fixed-point representations using the target’s native word size. This often leaves no room for
Simdization when targeting subword Multimedia extensions and limits SIMD opportunities when
targeting superword Multimedia extensions (see section 3.2.2).

On the other hand, automatic floating-point to fixed-point conversion allows for better and
faster exploration of the fixed-point design space, but existing methodologies and tools, at best,
only exploit the fact that SIMD processors can operate on different data word-lengths and as-
sumes that selecting smaller word-lengths yields better performance without considering the
effective consequences of such choices on Simdization and ultimately on performance.

Cilio and Corporaal [26] presented an approach for automatic conversion of floating-point C
code into fixed-point C code targeting embedded processors. The IWLs of some variables are
specified by the user via pragma annotations. This information is propagated to determine the
IWLs of the remaining variables. The proper scaling operations are then automatically inserted.
Kum et al.[64] proposed a similar method except they used simulation to determine IWLs. Also,
they proposed a scaling optimization algorithm that minimizes a scaling cost function, taking into
account whether or not the target processor has a barrel shifter, using integer linear programming
or simulated annealing.
Both of these approaches, only use the target’s native word-length and no WLO is performed.
Therefore, they are unable to take advantage of the SIMD capabilities of a processor.

In fact, during WLO the goal is to minimize a certain cost function – generally representing
the performance (execution time) – as much as possible while keeping the accuracy within an
acceptable limit. The quality of the cost evaluation or its ability to properly distinguish between
two fixed-point solutions is crucial, since it is the main driver of the WLO decisions (along with
the accuracy constraint).
A straightforward way to evaluate the cost associated with a fixed-point solution, while consid-
ering Simdization, could be obtained using simulation. The tested fixed-point solution needs
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to be implemented, compiled (with applying Simdization) and run on the target processor, or
simulated, with representative data samples in order to obtain a performance estimation. While
accurate, this method is extremely slow, rendering it unpractical for design space exploration.
Alternatively, the tested fixed-point solution could be only compiled and then the execution
time can be estimated using a cost model. Again, this method is very slow and unpractical, spe-
cially if optimizations such as Simdization are to be applied during compilation for each tested
fixed-point solution.

Following the same logic, Menard et al proposed a simpler and less aggressive method [85]. It
consists of considering all supported instructions, including SIMD, that can implement a given
operation in the system. The goal of their proposed WLO is to select, for each operation, the
instruction (associated to a word-length) which minimizes the overall execution time, subject to
an accuracy constraint. The execution time is estimated using a simple model. The execution
time associated with an instruction is provided by the processor’s model. In case a SIMD
instruction is selected to implement an operation, its execution time is simply divided by the
maximum number, say N , of operations that can be executed in parallel by this instruction.
For example, when targeting a 32-bit processor with all instructions having an execution time
of 1. If a 32-bit (scalar) instruction is selected to implement an operation, then the operation’s
execution time is 1. However, in case a 16-bit SIMD instruction is selected then its execution
time is 1/2.
This implies two main assumptions:

— First, it assumes that when an SIMD instruction is selected to implement a (scalar) oper-
ation, N similar operations will ultimately be executed in parallel –if Simdization is later
applied– by the same instruction, without actually knowing whether or not this is possible.
Hence, the operation’s execution time is estimated as 1/N th of the instruction’s execution
time provided by the model.

— Second, it assumes that no overhead is associated with a SIMD instruction. In another
word, it completely ignores the overhead associated with the required data packing/un-
packing operations.

These assumptions are very optimistic and unrealistic.

Example 10 To illustrate this, let’s consider the dummy example of fig. 5.2. For the sake of
illustration, let’s assume that WLO decides to attribute the following word-lengths:

— 16-bit for A[], x, operations 1 and 3

— 32-bit for y and operation 2

Assuming a 32-bit target processor with 2x16-bit SIMD support.
If we consider applying loop vectorization after floating-point to fixed-point conversion. The for
loop cannot be vectorized since it caries a dependency on A.

Also, if we consider applying SLP extraction on the loop’s body, whose Data Flow Graph (DFG)
is depicted in fig. 5.2. No SIMD group candidates are available because 1 and 2 have different
word-lengths, and 1 and 3 have a dependency.
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float A[N], x, y;

...

for(int i=1; i<N-1; i++)

A[i+1] = (A[i] + x) + (A[i-1] + y);

(a) C code snippet.

+1 +2

+3

A[i] A[i-1]

A[i+1]

x y

(b) Loop’s body DFG.

Figure 5.2 – Motivating example.

So, in both cases the assumptions made by WLO are wrong since Simdization of any of the
operations is not possible.

However, if WLO would have selected operations 1 and 2 to be 16-bit, SLP extraction would
be able to pack them together into a SIMD group. But again, the overhead associated with
packing/unpacking operation could be very high.

The bottom line is that, unless WLO is aware of the Simdization opportunities and the associ-
ated cost, it has no way of predicting the impact of the decisions it takes on SIMD exploitation,
and consequently on performance.
In this work, we propose to jointly consider Simdization and WLO as a solution to this problem.
We focus on SLP extraction as Simdization method and we present a SLP-aware WLO algorithm.

5.3 Joint WLO and SLP extraction

Applying WLO without taking into account SLP extraction constraints will most likely yield
inefficient solutions. This is because WLO decisions directly dictate the search space of SLP
extraction. It may prevent, otherwise possible, SIMD grouping candidates by selecting, for
instance, different word-lengths for operations that can be, otherwise, grouped together 1.

Besides, it is very important to note that WLO is performed under accuracy constraint. In
other words, only a limited accuracy-degradation budget can be used to try to improve perfor-
mance as much as possible. In this context, one of the main factors impacting performance
is how well SIMD capabilities are being exploited. It is not wise for the WLO to spend the
accuracy-degradation budget on optimizing operations that cannot be efficiently exploited by
SLP to improve performance. If WLO is unaware of SIMD grouping possibilities and their as-
sociated overhead, it will blindly optimize word-lengths of operations that may not end-up in
a SIMD group, either due to dependencies or conflicts with other groups. Even worse, it may
optimize operations which lead to a SLP solution with a high packing/unpacking overhead.

Moreover, the order in which the operations are to be optimized is crucial. For instance, in the
example 10, we know that only operations 1 and 2 can be grouped together. If we optimize first

1. Recall that all operations in a SIMD group must have the same word-length.
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the word-length of 1 to make it "fit" in a SIMD instruction and then optimize 3, the accuracy-
degradation budget may run out before getting the chance to optimize 2, so that it can be
grouped with 1 in the same SIMD instruction. To avoid this, 2 should be preferably optimized
before 3. This is not possible unless SLP opportunities (and their associated cost) are known to
the WLO process.

Besides, the scaling operations, required to correctly implement a fixed-point specification
using integer arithmetic operators, have a major impact on performance. Therefore scalings are
also taken into account.

In order to address these problems, we propose an approach to jointly perform floating-point
to fixed-point conversion and SLP extraction. We couple an accuracy-aware SLP extraction with
a SLP-aware WLO algorithm. We also propose an SLP-aware scalings optimization algorithm.
In the remainder of this section we present these algorithms.

5.3.1 Overview and Intuition

Since any decision of WLO can directly affect SLP, as shown previously, we use SLP extraction
to guide it through. The aim is to let WLO focus on optimizing operations that belong to SIMD
groups which are selected by the SLP extraction algorithm as the "best" SLP solution, taking
into account the data packing/unpacking overhead.

The problem is that SLP extraction requires to know the operations data-types and word-
lengths to construct the set of group candidates. Recall that all operations in a SIMD group
candidate must have the same word-length, which have to be supported by the target SIMD
Instruction Set Architecture (ISA), and that the overall size should not exceed the SIMD vector
size. However, before WLO is performed the word-lengths of operations are not known yet!
Thus, SLP extraction depends on WLO which requires SLP solution to guide it in order to find
an efficient solution.

SLP WLO

SIMD 

Groups

Word-

lenghts

Figure 5.3 – WLO/SLP phase ordering problem.

To solve this phase ordering problem, we break the cycle by loosing the aforementioned word-
length constraints on SIMD group candidates. This means we no longer impose that two opera-
tions must have the same word-length to form a group candidate. This way SLP extraction will
have the "freedom" to select which candidate is most beneficial to become a SIMD group. Once
SLP extraction makes it decision, the selected group is provided to WLO which sets the word-
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length of all it’s operations in such a way that the group becomes valid and implementable on
the target processor (i.e. that the previously loosen constraints become enforced). The diagram
of fig. 5.4 depicts the functional overview of the proposed approach.

Accuracy-aware

SLP extraction

SLP-aware

Scalings optimization

Fixed-point

Specification

(IWLs only)

SIMD

Groups

Fixed-point

Specification

(Complete)

Basic blocks

Accuracy Evaluation

Service

Processor 

Model

Accuracy

Constraint

SLP-aware

WLO

groups

WLs

Figure 5.4 – Overview of the joint WLO and SLP extraction approach

Both, SLP extraction and WLO, require some knowledge about the target processor. In fact,
SLP extraction is limited to the SIMD operations supported by the target and to the size of
its SIMD data-path. For instance, if the target does not support SIMD division, then division
operations will not be considered during group candidates extraction. Also, the size of a group
cannot exceed the maximum size supported by the target, and its elements data-type/size must
be supported by the target as well. For instance, only groups of two 16-bit elements are allowed
when targeting a processor supporting only 2x16-bit SIMD. Similarly, we limit WLO to the word-
lengths natively supported by the target processor, for two reasons. First, to avoid "expensive"
software emulations and second, to limit the fixed-point solution space. The drawback is that it
may not be always possible to find a valid solution which respects very tight accuracy constraints.

Therefore, both transformations are provided with a model of the target processor containing
all necessary information. This model is presented in section 5.3.2.

5.3.2 Processor Model

A processor’s model provides necessary information about the characteristics of the operations
it can perform, which are needed for both SLP extraction and WLO. In this work, we model a
processor by the following:

— O: the set of supported operators.

— V : the SIMD registers size.
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Définition 5.1 (Operator) An operator is specified by:

— T : the type of operation it can perform (add, sub, mul, shr, ...).

— WS: the word-lengths of all its input operands (in0, in1, ...) and output (out). For a binary
operator:

WS = (in0.W, in1.W, out.W ) (5.1)

— N : the number of operations it can perform simultaneously (≥ 1).

— PM : the precision mode which determines whether the operator keeps full precision, Least
Significant Bits (LSBs) only (case of typical integer operators) or Most Significant Bits
(MSBs) only (case of fixed-point operators).

— QM : the quantification mode (truncation, rounding).

— OM : the overflow mode (wrap-around, saturation). This is not important in this work
since we do no not allow overflows.

— S: the amount of pre/post-scaling for each input/output operand (0 if none, > 0 if right
shift, < 0 if left shift).

— SIMD intrinsics for code generation.

This model allows the representation of a wide variety of operators. It can represent scalar
(N = 1) and SIMD (N ≥ 1) operators. It can also represent generic integer as well as fixed-point
specific operators thanks to PM,QM,OM and S parameters.

The models of the processors targeted in this work are presented in appendix A.

Multiplication Operators

For multiplication operators, the precision mode PM complements the information specified
by the operand word-lengths to determine what operation is performed by the operator.

For a full-precision operator (op), the output’s word-length (out.W ) must be at least as wide
a the sum of both input word-lengths:

op.out.W ≥ op.in0.W + op.in1.W (5.2)

In this case no quantization is applied by the operator and the full precision is preserved. In
embedded processors, this usually corresponds to operators of size (w,w, 2w), where the output
is generally stored in a pair of registers; one containing the MSBs and the other containing the
LSBs of the result. In the case of a SIMD operator, the results of the N operations performed
in parallel might be organized in different ways in the output SIMD registers. For instance, the
2x16-bit multiplication instruction of XENTIUM returns the full-precision 32-bit result of each
operation in a separate register. In case the output is used by another SIMD instruction, the
LSBs (or MSBs) of both result registers must first be packed together into one register. An
additional packing instruction is required in this case.

To avoid the word-length growth, integer multiplication operators generally only keep the
LSBs of the result. It’s up to the developer to deal with potential overflows. Assuming no
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overflows, the LSBs of the result correspond to the exact result of the multiplication and the
MSBs can be simply discarded. This is not the case when using such operator to implement
a fixed-point multiplication. In fact, the result of the multiplication of two signed fixed-point
numbers, a and b, with respective formats, < W1, I1, F1 > and < W2, I2, F2 >, c = a ∗ b is of
format < W1+W2, I1+ I2, F1+F2 > (see section 2.3). Using a keep-LSBs (w,w,w) operator to
implement such operation means that the MSBs which generally represent the integer part are
discarded. The result in this case would be meaningless as illustrated in fig. 5.5. To avoid this,

2.5 in <8,3,5>

-5.25 in <8,4,4>

00001010

00110101

x

Full-precision:   -13.125 in <16,7,9>00111010 0 0 0 00111

keep-LSBs:  meaningless !00000011

keep-MSBs:  -13.5 in <8,7,1>  (Err = 0.375)10100111(>> 8)

Figure 5.5 – Fixed-point multiplication example.

the operand formats must satisfy the following constraints:

— I3 must be wide enough to contain the values range of the multiplication’s result (i.e. no
overflow).

— F1 + F2 ≤ F3

The first condition is enforced during IWL determination (see section 5.4.2). The second con-
dition can be enforced during WLO, by reducing the Fractional Word Lengths (FWLs) on the
inputs so that their sum (F1 + F2) "fits" in the available bits for the output’s FWL, which can
be determined based of the operators output word-length value (W3) and the IWL (I3), as such
F3 = W3− I3.

In fact, when a keep-LSBs (w,w,w) operator is selected to implement this multiplication, the
maximum number of bits available for the FWL of:

— a is AF1 = w − I1

— b is AF2 = w − I2

— c is AF3 = w − I3

In order to be able to correctly use this operator, the FWL of the output must not exceed AF3

(i.e. F3 <= AF3). To get the maximum available precision we set F3 = AF3. This constraint
must be satisfied, otherwise the result would be meaningless as shown above in the example of
fig. 5.5. In this example actually, w = 8, I3 = 7 so AF3 = 8− 7 = 1, however, F3 = F1 + F2 = 9

thus F3 > AF3 !
To enforce this constraint, the FWLs of the inputs (F1 and F2) must be reduced so that their
sum become at least equal to F3 (i.e. reduced by a total of e = (AF1 + AF2) − AF3 bits. The
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"extra" e bits can be entirely reduced from F1 or F2 or some from each. Thus, multiple solutions
are possible here (they can be considered during WLO).

Reducing the FWL can be achieved by increasing the IWL by the same amount, since the
FWL is implicitly determined from the values of the word-length and the IWL. For the example
of fig. 5.5, F3 = AF3 = 1 and e = (5+4)−1 = 8. A possible solution is to remove 4 bits from the
F1 and 4 bits from F2, as illustrated in fig. 5.6. In this case the result of the keep-LSB operator
is correct.

2.5 in <8,7,1>

-6 in <8,8,0>

10100000

01011111

x

Full-precision:   -15 in <16,15,1>01111111 0 0 1 01111

keep-LSBs:  meaningless !01000111

keep-MSBs:  -13.5 in <8,7,1>  (Err = 0.375)10100111(>> 8)

-5.25 in <8,4,4>00110101

2.5 in <8,3,5>00001010

>> 4

>> 4

Figure 5.6 – Fixed-point multiplication example.

Alternatively, we can restrict the word-length of the input operands of a keep-LSBs (w,w,w)

multiplication operator to w/2, thus emulating a full-precision (w/2, w/2, w) operator. This
solution is less flexible as it does not allow to assign more precision for the operands that needs
it the most (e.g. (w/3, 2w/3, w)). However, it simplifies the exploration of the solution space
because, unlike the first solution, it does not require to modify the IWLs during WLO. Therefore,
IWLs, and consequently the scaling operations, can be determined before and remain fix during
WLO.

Add/Sub Operators

As discussed previously in section 2.3, performing full-precision fixed-point add/sub operations
requires the operands to be aligned to their maximum FWL. This may require increasing the
operands word-length, and consequently the size of the operator, specified by WS. To avoid this,
we limit the fixed-point formats of the operands in such a way to ensure that the underlying
integer operation can be performed on the selected operator. We do so by aligning the operands
to the minimum (instead of maximum) FWL; the operand with the highest FWL is right shifted
by |F1 − F2|. In this case, up to |F1 − F2| precision bits can be lost, but no overflow can be
introduced, hence no word-lengths increase is required.

5.3.3 SLP-aware WLO algorithm

In this section we present the proposed SLP-aware WLO algorithm. We start by defining the
solution space in section 5.3.3.1, and we present the algorithm in section 5.3.3.2. The latter relies
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on an accuracy-aware SLP extraction algorithm, which we will present later on in section 5.3.4

5.3.3.1 Solution space definition

A fixed-point computation system is represented by a fixed-point specification. This specifica-
tion is defined below:

Définition 5.2 (Fixed-point Specification) The fixed-point specification of a system is a di-
rected graph where a node represents either a data (definition 5.4) or an operation (definition 5.5).
A fixed-point format is associated to each data node and operation’s operand.
A scaling amount (definition 5.6) is associated to each edge, representing a dependency between
two nodes.
For instance, fig. 5.7 illustrates the representation of a fixed-point specification containing one
operation node and three data nodes.

Définition 5.3 (Fixed-point Format) A fixed-point format (see section 2.3) is specified by at
least two of the following three parameters:

— Integer word-length: I (including sign bit for signed numbers)

— Fractional word-length: F

— Total word-length: W = I + F

Définition 5.4 (Data Node) A data node represents either a program variable, constant or
an implicit operation’s intermediate result. It may have multiple inputs and/or multiple outputs.
All elements of an array variable are represented with the same data node. Only one fixed-point
format is associated to a data node.

Définition 5.5 (Operation Node) An operation node represents an operation in the DFG. It
has one data node as output and may have several data nodes as inputs. The output, and each
input, have each an associated fixed-point format, which may be different from the format of the
predecessor/successor data node as depicted in fig. 5.7.

Définition 5.6 (Scaling) To each edge is associated a scaling amount, computed based its pre-
decessor (pred) and successor (succ) fixed-point formats:

amount = pred.F − succ.F (5.3)

If the scaling amount is zero, no scaling operation is required, otherwise, a right or left shift is
necessary if the amount is respectively positive or negative.
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op

d3
<id3, fd3>

d0<id0, fd0> d1 <id1, fd1>

in0<iin0, fin0> in1 <iin1, fin1>

out <iout, fout>

>> (fd0-fin0) >> (fd1-fin1)

>> (fout-fd3)

Figure 5.7 – Representation of an operation node (op) and its predecessors/successor data nodes
(dx) in a fixed-point specification. < ix, fx > represents a fixed-point format with ix representing
the IWL and fx the FWL. Elliptical nodes represent scaling operations; a negative amount
corresponds to a left shift by the absolute value.

Each fixed-point format (definition 5.3) is specified by the values of its word-length (W )
and IWL (I). We assume that the IWLs are pre-specified before starting WLO. The IWLs
determination is presented later on in section 5.4.2.

The set of all possible word-length values, that each fixed-point format can take, is constrained
by the target processor. In fact, an operation node in the fixed-point specification can be im-
plemented using any operator, among the set of all supported operators of the target that can
implement the correspondent operation type (add, mul, ...). Operators of the same type (T )
generally corresponds to different word-lengths on which the operation can be performed on. For
instance, when targeting ST240, providing 32-bit (scalar) and 2x16-bit SIMD add operators (see
table A.2), an add operation node in the fixed-point specification, can be implemented using
either operators. Therefore, the set of possible word-length values for the operation’s operands
is limited to {16, 32}, in this case. Even though this limitation can be lifted, by soft-emulating
different precision operators for instance, we restrict word-lengths to those natively supported by
the target processor. Not only to limit the solution space’s size, but also to avoid the overhead
associated with software emulations of the unsupported operators. In other words, we ensure
that the required operators, needed to implement the fixed-point solution produced by WLO,
are natively supported by the target processor.

The solution space of WLO, constructed based on the target processor’s model, associates
a set of possible operators for each operation in the fixed-point specification. Consequently, it
associates a set of possible word-length values for each fixed-point format, in the fixed-point
specification.
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Algorithm 9 SLP-aware WLO algorithm pseudo-code
1: // Input: sorted list (by priority) of basic blocks for SLP extraction, BBs
2: // Input: fixed-point specification with IWLs pre-determined, SPEC
3: // Input: accuracy constraint, A
4: // Output: set of selected SIMD groups, G. determine word-lengths in SPEC
5: procedure SLP-WLO(BBs, SPEC,A)
6: for each fixed-point format f in SPEC do
7: f.W ← maximum possible word-length (in the solution space)
8: end for
9: for b in BBs do // visit in priority order (see section 5.4.4)

10: G← ∅
11: while not done do
12: pfcg ← BuildPFCG(b, SPEC,A) // see algorithm 11
13: Selected← GroupSelection(pfcg, spec, A) // see algorithm 12
14: if Selected = ∅ then
15: done
16: end if
17: Update b and prepare it for next iteration
18: G← G \ {e1, e2 : {e1, e2} ∈ pfcg.S}
19: G← G ∪ pfcg.S
20: end while
21: ScalOptim(G,SPEC,A)
22: end for
23: return G,SPEC
24: end procedure

5.3.3.2 Algorithm

The fixed-point specification representing the solution space along with the accuracy constraint
are taken as inputs. The IWLs of all nodes in the fixed-point specification are assumed to be pre-
determined. This step is detailed later on in section 5.4.2. The accuracy constraint, specified by
the user, represents the maximum allowed noise power of the quantization error at the system’s
output.

The pseudo-code of the SLP-aware WLO algorithm is listed in algorithm 9.

Step 1: We start by selecting the highest precision solution available in the solution space.
We do so by setting the word-length of each fixed-point format to the maximum value, in the
associated set of possible word-lengths present in the solution space (lines 6-8). This solution
generally corresponds to the case where minimum SLP is available, but on the other hand, it
represents the highest precision fixed-point specification, that can be obtained using natively
supported operators (word-lengths).
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Step 2: Next, we process each basic block to be considered for SLP extraction, starting by the
higher priority ones. Priority here depends on the contribution of the basic block to the overall
execution time; a higher priority is attributed to the one that occupies more of the execution
time. This is to ensure that the accuracy-degradation budget is wisely spent on optimizing
most performance-impacting basic blocks first. The selection and sorting of basic blocks to be
considered for SLP extraction is performed beforehand. We discuss this step in section 5.4.4.

For each basic block we iteratively apply the accuracy-aware SLP extraction (lines 11-20). At
each iteration, we build the Pack Flow and Conflict Graph (PFCG) (line 12), representing the
SLP solution space, and then we use the SLP extraction procedure to obtain the set of selected
SIMD groups (line 13).

For SLP extraction we adapt the algorithm that we proposed earlier in chapter 4 to the
accuracy constrained context of this work. This accuracy-aware SLP extraction algorithm is
detailed in section 5.3.4. In a nutshell, when building the PFCG we drop the data-size constraints
and we make sure that each SIMD group candidate can be selected without violating the accuracy
constraint. Whenever a new SIMD group is selected, all the operation nodes (in the fixed-point
specification) it contains are assigned the same operator (from the target model), which is capable
of implementing the overall SIMD operation with the highest possible precision. Let:

— spec = (nodes, edges) be a fixed-point specification.

— g = {e1, e2, ..., en} be a selected SIMD group, ei is an element in g, it represents an (scalar)
operation node: ei ∈ spec.nodes. All elements in g have the same operation type, t, by
definition (see definition 5.7).

— O = (o1, o2, ..., ok) the list of all operators, of type t, available in the target processor
model. The list is ordered by increasing precision, as such precision(oi) ≤ precision(oi+1).

Initially (in step 1), all operation nodes in spec are assigned the highest precision operator of the
corresponding type. For ei nodes, this correspond to the operator ok. Now when g is selected,
the operator oj ∈ O is assigned for all nodes ei (i ∈ [1, n]), such that:















j ∈ [1, k]

oj .N ≥ n

j ≥ x, ∀x ∈ [1, k] : ox.N ≥ n

(5.4)

In other words, oj is the highest precision operator that can implement g. This corresponds to
the procedure SetMaxWL, whose pseudo-code is listed in 10. In the remainder of this chapter,
we will assume that this action is performed whenever we say a group is selected.

Example 11 To illustrate this, let’s consider the KAHRISMA processor’s model (see table A.3)
which supports 1x32-bit (o3), 2x16-bit (o2) and 4x8-bit (o1) add operators. In this case, if a
SIMD group of two add operations, {e1, e2} is selected, then the operator o2 is assigned for both
e1 and e2.

The elements of each selected group are then replaced by a new operation (representing the
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Algorithm 10 Set the word-length of a SIMD group to the maximum possible
1: // Input: fixed-point specification, SPEC
2: // Input: a SIMD group, c
3: procedure SetMaxWL(c, SPEC)
4: o← highest precision operator that can implement c // as defined in eq. (5.4)
5: for operation node e ∈ c (e ∈ SPEC.nodes) do
6: assign Operator o to e in SPEC // this sets the word-lengths of the fixed-point

formats of e’s operands according to o.WS.
7: end for
8: end procedure

group) in the basic block (line 17) in order to prepare for the next SLP extraction iteration, which
allows the extension of the groups size when possible, otherwise the processing of the basic block
is completed and we move to the next one (lines 14-16).

Step 3: The global set of selected groups (G) is updated after each iteration (lines 18-19). It
is used to optimize scaling operations (line 21). The scaling optimization algorithm is presented
in section 5.3.5.

As an output we obtain a complete fixed-point specification for the system, along with the set
of selected SIMD groups. These information are finally used to generate fixed-point and SIMD
C code, as presented in section 5.4.5.

5.3.4 Accuracy-aware SLP extraction algorithm

For SLP extraction we adapt the algorithm that we proposed earlier in chapter 4 to the
accuracy constrained context of this work.

Building PFCG

First, we adapt the PFCG 2 construction procedure. The corresponding pseudo-code is listed
in algorithm 11.

When constructing the PFCG of a given basic block, we identify the set of SIMD group
candidates (C) as well as the conflicts (X) between them. Recall that, a group candidate (defini-
tion 4.3) is a pair of isomorphic and independent operations with same size yielding superwords
that does not exceed the SIMD data-path size. And, that two groups are in conflict (defini-
tion 4.5) if they contain the same operation or if they cause a cyclic dependency.

However, in the context of this work, the word-lengths are not known at this level. Therefore,
we loose all size constraints (line 6) when identifying group candidates. A candidate is thus
defined as specified by Definition 5.7 .

2. PFCG is the Intermediate Representation (IR) we proposed in order to represent the SLP extraction solution
space. See section 4.4.1.
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Définition 5.7 (SIMD group candidate) In this accuracy-constrained context, a SIMD group
candidate is a pair of independent operations of the same type (add, sub, mul, ...). No constraints
are imposed on the word-lengths.

Algorithm 11 Adapt Building PFCG (algorithm 2)

1: // Input: Data Flow Graph dfg. It is a Directed Acyclic Graph (DAG)
2: // Output: Pack Flow and Conflict Graph pfcg
3: // EvalAcc(SPEC): evaluates the accuracy of the current fixed-point specification
4: procedure BuildPFCG(dfg, SPEC,A)
5: for each pair (o1, o2) of isomorphic operations or contiguous accesses to same array in

dfg do
6: if o1 and o2 are independent then
7: c← {o1, o2}
8: // make sure c is valid
9: SetMaxWl(c, SPEC)

10: if EvalAcc(SPEC) violates A then
11: skip c
12: end if
13: revert WL of c
14: pfcg.C ← pfcg.C ∪ {c}
15: // ... connecting c’s flow edges is omitted; same as algorithm 2
16: // connect c’s conflicts
17: pfcg.X ← pfcg.X ∪{{c, c′} : c′ ∈ pfcg.C and (c′ ∩ c 6= ∅ or c′, c introduce a cyclic

dependency) }
18: SetMaxWl(c, SPEC); SetMaxWl(c′, SPEC);
19: if EvalAcc(SPEC) violates A then
20: pfcg.X ← pfcg.X ∪ {{c, c′}}
21: end if
22: revert WL of c, c′

23: end if
24: end for
25: return pfcg
26: end procedure

Furthermore, in this accuracy constrained context, some candidates in C may not be valid.
This is the case of a candidate c, that if selected 3 while all other candidates are not selected, the
accuracy constraint is violated. In this case, c can never be implemented, using an available SIMD
operator, without violating the accuracy constraint. Hence, we eliminate all invalid candidates
in C (lines 8-13).

Besides, X does not represent all the conflicts in this context. In fact, two candidates are
in conflict if: when both are selected while all other candidates are not selected, the accuracy

3. Recall that when a group is selected, the word-length of all the operation nodes it contains is set as specified
earlier by eq. (5.4).
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constraint is violated. In this case both candidates cannot coexist without violating the accuracy
constraint, hence they are considered in conflict (lines 34-38). We refer to this type of conflicts
as accuracy conflict.

SIMD Group Selection

After the PFCG is properly built, the group selection estimates the benefit associated with
each remaining candidate and then iteratively selects the most beneficial one, g. This procedure
is the same as presented earlier in section 4.4.2. the pseudo code is recalled in algorithm 12.

Algorithm 12 Recall Group Selection Procedure from algorithm 1
1: // Input: pfcg, is the PFCG.
2: // Input: SPEC, is the fixed-point specification.
3: // Output: Set of selected groups.
4: procedure GroupSelection(pfcg, SPEC)
5: while pfcg.C 6= ∅ do
6: for each candidate c ∈ pfcg.C do
7: BenefitEstimation(c, pfcg, SPEC)
8: end for
9: best← Select(pfcg).

10: UpdatePFCG(best, pfcg) // mark best as selected and Update pfcg
11: EliminateCycles(pfcg)
12: end while
13: return pfcg.S
14: end procedure
15:

16: // Output: Set the benefit of candidate c
17: procedure BenefitEstimation(c, pfcg, SPEC)
18: sub← ExtractSubPfcg(c, pfcg) // see algorithm 3
19: EliminateSubConflicts(c, sub, SPEC) // see algorithm 13
20: ComputeBenefit(c, sub, pfcg)
21: end procedure

However, the candidate benefit estimation method is modified to adapt to the accuracy-
constraint context of this work.

First, after extracting the sub PFCG graph of a give candidate c, sub(c,N) (representing the
distance-N pack flow neighborhood of c), we make sure the remaining candidates in sub(c,N)

can all coexist without violating the Accuracy constraint. The pseudo-code of this procedure is
listed in algorithm 13.

Then, we also modify the computation of the benefit associated with the selection of c in order
to take into account its impact of the accuracy. The pseudo-code of the modified candidate
benefit estimation is listed in algorithm 14. We measure the deferential of accuracy, deltaAcc,
before and after (temporarily) selecting all remaining candidates in sub(c,N) (lines 10-17).

Finally, we modify the "best" candidate selection procedure. The corresponding pseudo-code
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Algorithm 13 Eliminate Conflicts in sub

1: // Input: c, a SIMD group candidate.
2: // Input: sub, a subgraph of the PFCG; it is the distance-N pack flow neighborhood of c.
3: // Input: SPEC, the fixed-point specification.
4: procedure EliminateSubConflicts(c, sub, SPEC,A)
5: apply conflict elimination as in algorithm 4
6: // Make sure the remaining candidates can all coexist without violating the Accuracy

constraint.
7: for n ∈ sub.V do
8: SPEC.save(n)
9: SetMaxWl(n, SPEC)

10: end for
11: while EvalAcc(SPEC) violates A do

12: x← node ∈ sub.V \ {c} with highest
deltaACC

1 + flow degree
13: sub.V ← sub.V \ {x} // set of nodes
14: sub.X ← sub.X \ {{x, y} ∈ sub.X, ∀y} // set of conflict edges
15: sub.F ← sub.F \ {(x, y), (z, x) ∈ sub.F, ∀y, z} // set of pack flow edges
16: end while
17: end procedure

is listed in algorithm 15. In the first stage (line 3), we select the set of all candidates which have
the maximum value of benefit (Pack reuse-to-cost ration), among them we select (line 5) the
candidate inducing the minimum accuracy degradation (deltaAcc).

When a candidate is selected, the PFCG is updated normally, by eliminating all conflicting
candidates (see section 4.4.2.2). Additionally, the word-length of all its elements is specified as
explained earlier in eq. (5.4).

5.3.5 SLP-aware Scalings Optimization

Another major impact on the performance of a fixed-point implementation is the cost of scaling
operations. Their impact depends on how well the target processor supports shifting operations.
For example, a barrel shifter can generally perform a shift operation of any amount in constant
time. Whereas shift registers require a variable time depending on the shifting amount.

In the context of SLP an additional critical factor is the fact that scaling operations may break
some superword (vector) reuse chains and hence require the introduction of packing/unpacking
operations. Thus, severely impacting the performance, not only due to the scalings cost but
also to the additionally introduced packing/unpacking overhead. This is, in fact, because most
embedded processors only support SIMD shifting instructions by the same amount of all the
vector elements Therefore in case two elements of the same vector have to be shifted by different
amounts, they need to be unpacked first, shifted independently and then repacked, before being
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Algorithm 14 Compute Candidate Benefit.
1: procedure ComputeBenefit(c, sub, pfcg)
2: NR ← |sub.V|
3: // Estimated number of additional required packings.
4: Npack ← |{x ∈ pfcg.C \ sub.V : ∃(x, y) ∈ pfcg.F, y ∈ sub.V \ pfcg.S}|
5: // Estimated number of additional required unpackings.
6: Nunpack ← |{x ∈ sub.V \ pfcg.S, x is not a Store candidate : ∄y ∈ sub.V ∪ pfcg.S :

(x, y) ∈ sub.pfcg}|
7: c.reuse← NR

8: c.conflict← |{{x, y} ∈ pfcg.X : x ∈ sub.V}|

9: c.benefit←
1 +NR

1 +Npack +Nunpack

10: SPEC.save
11: acco ← EvalAcc(SPEC)
12: for x ∈ sub.V do
13: SetMaxWl(x,SPEC)
14: end for
15: acc1 ← EvalAcc(SPEC)
16: SPEC.revert
17: c.deltaAcc← acc1 − acc0
18: end procedure

Algorithm 15 Select the ‘best’ candidate in the PFCG
1: procedure Select(pfcg)
2: // First Stage: Set of candidates with maximum benefit estimation
3: bestSet← {c ∈ pfcg.C : c.benefit = max}
4: // Second Stage:
5: best← c ∈ bestSet with minimum c.deltaAcc value
6: return best
7: end procedure

able to be used by an SIMD instruction 4.

Example 12 For instance, in the example of figure 5.8, operations 1 and 2 are in a group. The
scaling amounts associated to the output superword, used by group {3, 4}, are f1−f3 and f2−f4,
where fx is the FWL of operation x.

4. In case masking operations are supported, packing/unpacking are not required but multiple SIMD instruc-
tions would still be needed to perform such operations. Though masking operations are rarely supported.
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Algorithm 16 SLP-aware Scaling optimization pseudo-code

1: // Input: G, the set of selected SIMD groups.
2: // Input: SPEC, fixed-point specification.
3: // Input: A, the accuracy constraint.
4: procedure ScalOptim(G,SPEC,A)
5: for each superword reuse (g1, g2): g1, g2 ∈ G do
6: S ← g1.elements.FWL− g2.elements.FWL // list of required scaling amounts
7: if all amounts in S are equal then
8: skip
9: else if all amounts are positive (i.e. right shifts are required) then

10: m← max(S)
11: SPEC.save g1
12: for e ∈ g1 do
13: reduce FWL of e by (m− S[e])
14: end for
15: if EvalAcc(SPEC) violates A then
16: SPEC.revert g1
17: end if
18: end if
19: end for
20: end procedure

+1 +2
<i1,f1> <i2,f2>

+3 +4
<i3,f3> <i4,f4>

f1-f3 = f2-f4

>>(f1-f3)

+1 +2

+1 +2

f1-f3 ≠  f2-f4

PACK

UNPACK

>>(f2-f4)>>(f1-f3)

+1 +2

+1 +2

Figure 5.8 – Scaling example. fx represents the FWL.

When the amount is zero it indicates that no scaling is required. If it is positive a right shift is
required. In case f1−f3 6= f2−f4, the scaling amounts are different, thus the shifting operations
cannot be grouped and therefore packing/unpacking operations are required.

In this work, we address this problem by proposing an SLP-aware, accuracy-aware scaling
optimization algorithm, which is listed in algorithm 16. The goal is to try to make all elements
of an SIMD group scalable by the same amount, so that the scaling operations can be grouped
together and implemented using an SIMD instruction without the need for packing/unpacking.

To avoid this case, we reduce the FWLs while keeping word-lengths intact (by increasing the
corresponding IWLs) so that the scaling amounts of all elements in a group become equal. By
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reducing the FWLs, the accuracy of the fixed-point specification may degrades, therefore this
optimization is performed as long as the accuracy constraint is not violated.

Additionally, if the accuracy constraint allows it, we can try to eliminate scaling operations
altogether, by reducing FWLs of all elements in a group so that their corresponding scaling
amounts become zero.

5.4 Source-to-source Compilation Flow

We implemented the proposed, joint floating-point to fixed-point conversion and SLP extrac-
tion approach, as a fully automated source-to-source transformation in the compiler framework,
GeCoS[47]. In section 5.4.1, we present an overview of this source-to-source flow. We then
present the IWL determination, accuracy evaluation and basic-blocks selection procedures in
sections 5.4.2 to 5.4.4. Finally we present the fixed-point and SIMD C code generator in sec-
tion 5.4.5.

5.4.1 Flow Overview

The source-to-source flow diagram is depicted in figure 5.9. Starting from an annotated
floating-point C code, we first construct the correspondent IR, which is then analyzed to de-
termine the set of basic blocks to be considered for SLP extraction (see section 5.4.4), as well as
to construct the fixed-point specification (see definition 5.2).

Then, the dynamic range of each node in the fixed-point specification is determined using
IDFix [3], a floating-to-fixed-point conversion framework integrated to Generic Compiler Suite
(Gecos). This information is later used to specify the IWLs (see section 5.4.2) of all formats in
the fixed-point specification.

Besides, we also use IDFix in order to evaluate the accuracy of a given fixed-point specification
solution. To do so, the analytical expression of the system’s output noise power is generated as a
function of the fixed-point specification (see section 5.4.3). This is used during WLO as a metric
to evaluate the fixed-point specification’s accuracy and compare it against the user specified
constraint.

The half-specified (IWLs only) fixed-point specification along with the model describing the
target processor (see section 5.3.2) are used to determine the search space for WLO, as explained
earlier in section 5.3.3.1. The proposed joint WLO and SLP extraction algorithm is used to
obtain a fully specified fixed-point specification and the set of SIMD groups that yields the
"best" performance while satisfying the accuracy constraint.

These information are finally used by the back-end to convert the original floating-point C
code into fixed-point using native integer C data-types with explicit scaling operations in order
to match the fixed-point specification. Furthermore, it implements the SIMD groups using an
abstract C macros Application Programming Interface (API) and generates the corresponding
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Figure 5.9 – SLP-aware WLO source-to-source compilation flow diagram.
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API’s implementation for the specified target processor, using its corresponding SIMD intrinsics.
The implementation of the back-end is presented later in section 5.4.5.

5.4.2 Integer Word Length determination

The integer word-lengths of each data node d in the fixed-point specification is first determined
based on its dynamic range, in such a way to avoid overflows:

d.DIWL = max(nbBits(MIN), nbBits(MAX)) + Sign (5.5)

Where:

— [MIN,MAX] is the values range interval of data d.

— nbBits(n) =















⌊log2(n)⌋+ 1, (n > 0)

⌈log2(|n|)⌉, (n < 0)

0, (n = 0)

— Sign =

{

1, (MIN < 0)

0, (MIN ≥ 0)

So, we set the IWL of each data to its DIWL and from now on, when modifying the IWL, we
make sure that it never goes below DIWL:

d.I ≥ d.DIWL (5.6)

In other words, d.DIWL is the minimum possible value for d.I.

The dynamic range intervals are obtained using interval arithmetic (see section 2.5.1) to prop-
agate the user-specified ranges for all the inputs of the system. This method is already imple-
mented in IDFix (see section 2.6.2). For doing so, each variable, in the input C code, representing
an input of the system must be annotated by a pragma specifying the MIN and MAX values.

Then, we specify the IWLs of the inputs (in0 and in1) and output (out) fixed-point formats of
each operation, based on its predecessors (d0 and d1) and successor (d3) data nodes, as illustrated
in fig. 5.7. For an add (or sub) operation:

— m = max(d0.I, d2.I, d3.I)

— in0.I = in1.I = out.I = m

For a mul operation:

— in0.I = p0.I

— in1.I = p1.I

— in2.I = in0.I + in1.I
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5.4.3 Accuracy evaluation

In order to evaluate the accuracy of a given fixed-point specification solution during WLO,
we use the analytical accuracy evaluation method that is already implemented in IDFix (see
section 2.6.2). Currently, this method only supports Linear Time-Invariant (LTI) and non-
recursive non-LTI systems. Besides, the C code must satisfy various constraints, as mentioned
in section 2.6.2, mainly. The code is later flattened by IDFix in order to construct the Signal
Flow Graph (SFG). Thus, this method is currently not suitable for large applications.

Even though, accuracy evaluation is an essential part of this flow, it is however completely inde-
pendent and orthogonal to the proposed SLP-aware WLO algorithm. Therefore, any alternative
method can be seamlessly used instead. The same applies for dynamic range evaluation.

5.4.4 Select and sort Basic-blocks for SLP

In this accuracy constrained context, the order in which basic blocks are optimized is impor-
tant. It is better to use the accuracy-degradation budget on fully optimizing a more performance-
impacting basic block before moving to another one. This way we ensure that all potential su-
perword reuses, in a basic block, are being exploited as much as the accuracy constraint allows it.
Therefore, we assign a priority to each basic-block to be considered for SLP extraction. Priority
here depends on the contribution of the basic block to the overall execution time; a higher pri-
ority is attributed to the one that occupies more of the execution time. This can be determined
automatically based on profiling or static analysis, for instance. However, in this work we use
pragma annotations to specify the set of basic blocks to be considered for SLP extraction and to
determine their associated priority.

Since this step is completely separated from the proposed joint WLO and SLP extraction
algorithm, an automated approach can easily replace the one currently used.

5.4.5 Fixed-point/SIMD Code Generation

First, we adapted the C++ code generator that was already implemented in IDFix (see
section 2.6.2). It can generate Algorithmic C Datatypes or Systemc C++ code. This in fact
already existed in IDFix, however it was only converting the data-type of floating-point variables
into the corresponding fixed-point format specified by the fixed-point specification. The existing
generator did not modify operations and relied on the C++ fixed-point library to perform scalings
when needed. This can actually be a problem, since the implementation of the fixed-point
operations in such libraries usually keep full precision by automatically increasing the word-
lengths when needed (for example in Algorithmic C Datatypes, the operands of and add/sub
are aligned to the maximum FWLs, and their word-length are extended), unless the result in
explicitly casted or assigned to a variable. This means, that all operations whose results are
not directly assigned to a variable, are implemented using full precision. Thus the generated
code may not correspond exactly to the fixed-point specification. This is very important when
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targeting a processor, since it may require simulation of full-precision operators, thus degrading
the performance. Therefore we added support for proper operation scaling (casting) to reflect
the exact specification.

On the other hand, we also implemented a configurable fixed-point C code generator. We did
that for two reasons, first to avoid the unnecessary overhead inducing by using such libraries.
Second, in order to target processors which do not have C++ compilers, such as VEX. The code
generator can generate fixed-point C code using only native integer data-types and operations
with proper scaling using shift and cast operations. Alternatively, it can generate code using a
generic macros API, to represent fixed-point data-types and operations. This API can then be
implemented for the target architecture. This helps make the code more readable. It currently
only support truncation as rounding mode and does not support saturation.

For SIMD C code generation, we use the same code generator presented earlier in section 4.5.1.

5.5 Experimental evaluation and Results

In this section, we present the experimental evaluation process we used to test the validity
of our proposed approach, performing joint SLP extraction and float-to-fixed-point conversion,
compared to a classical approach, applying both transformations independently.

5.5.1 Experimental Setup

To represent our approach, we use the source-to-source compilation flow, presented earlier in
section 5.4. We will refer to it as WLO+SLP.

The goal is to test how efficient WLO+SLP is in exploiting the accuracy/performance tradeoff,
compared to a classical approach performing, first, float-to-fixed-point conversion, and then SLP
extraction independently. To represent the latter approach, we implement a similar source-
to-source compilation flow. This flow is presented below in section 5.5.2, we refer to it by
WLO-then-SLP.

The experimental setup is illustrated in figure 5.10. Starting from the original floating-point
(single-precision) version, called float, of a benchmark’s C code, we apply both WLO-then-SLP

and WLO+SLP, for a given accuracy constraint value. WLO+SLP generates one fixed-point SIMD C
code. Whereas, WLO-then-SLP first generates a fixed-point C code (without SIMD), and then it
generates the fixed-point SIMD C code (after applying SLP extraction). All four C code versions,
are then compiled (with -O3) and simulated on the target processor’s simulator, using the same
floating-point input data. The floating-point input data is pre-converted to the corresponding
fixed-point formats, for all versions except float. The number of cycles spent executing the
benchmark function is finally reported for each version. The data allocation, initialization and
conversion are not included.

We run this procedure for each benchmark, on different target processors and for different
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Figure 5.10 – Test setup

values of the accuracy constraint. The benchmarks we use are presented in section 5.5.3, and
the targeted processors are presented in section 5.5.4.

5.5.2 WLO-then-SLP source-to-source flow

The source-to-source compilation flow implemented to represent WLO-then-SLP approach, is
depicted in fig. 5.11. Unlike our approach, it first performs float-to-fixed-point conversion, and
then SLP extraction independently.

We implement it in Gecos and we also use the framework, IDFix, to perform float-to-fixed-
point conversion. For WLO we used the Tabu search algorithm presented by Nguyen et al [91].
To estimate the cost of a given fixed-point specification, a relative execution time is associated
to each operation depending on its attributed operator’s precision (word-length). This is very
similar to the approach proposed by Menard et al [85]. For instance, when targeting ST240,
which provides the possibility to implement an operation using either 32-bit or 2x16-bit operators,
then the corresponding cost for the 32-bit operator is set as the double of that of 16-bit.

Once the word-lengths have been determined, the fixed-point specification is used to convert
the IR from floating-point to fixed-point. This is used to perform SLP extraction using the
algorithm we presented earlier in section 4.4.

Finally, we use the same back-end to generate both fixed-point and SIMD C code versions for
the target processor.

Contrary to our approach, WLO-then-SLP performs WLO independently from SLP extraction
i.e. without considering the impact of word-length selection on SLP opportunities and the
associated overhead due to data packing/unpacking. Instead, it simply assumes that selecting
narrower word-lengths is always better for SLP.
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Figure 5.11 – WLO-then-SLP source-to-source compilation flow diagram.

5.5.3 Benchmarks

A 64-tap FIR, a 10th order IIR filters and a 3x3 image convolution (CONV) are used as
benchmarks. The single-precision floating-point C code of each benchmark respects all the
constraints of IDFix, discussed in section 2.6.2. It is annotated with pragmas, mainly in order to
specify the dynamic range interval of the inputs and to determine the basic block to be considered
for SLP extraction.

The benchmarks description is summarized in table 5.1. The innermost loop in FIR and IIR

App Description
FIR 64-tap FIR filter, samples size 1x1024
IIR 10th order IIR filter, samples size 1x1024
CONV 3x3 image convolution, sample image size 32x32

Table 5.1 – Benchmarks

is partially unrolled by a factor of four to expose SLP, whereas the convolution kernel (3x3),
CONV, is fully unrolled. The input samples, of size 1024 for FIR and IIR and 32x32 for CONV,
are normalized to [0, 1].
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The main application used to invoke a benchmark function, allocates and initializes the nec-
essary variable. Then it starts the execution cycles counter, depending on the target processor,
just before invoking the benchmark function. It stops the counter right after the function returns
and then it writes the output into a file.

5.5.4 Target Processors

In the context of the ALMA project, we target two embedded processors, XENTIUM and
KAHRISMA. In addition, we also consider two other processors, ST240 and VEX, in order to
test the validity of our approach. None of these target compilers provide automatic Simdization
support.

XENTIUM [104] is a low energy consumption 32-bit 12-issue wide Very Long Instruction Word
(VLIW) DSP core from Recore Systems. It has ten functional units, six of which can perform
integer arithmetic and logic operations, two can perform multiply operations and two can perform
load/store operations. XENTIUM supports 2x16-bit SIMD operations. It has four 8 32-bit and
one 16 32-bit register files, each of which has two read and two write ports. The model we use
to represent XENTIUM is provided in table A.1.

KAHRISMA [58] is a heterogeneous, dynamically reconfigurable, multi-core research architec-
ture developed by the Karlsruhe Institute of Technology (KIT). In this work we use its
2-issue width single Very Long Instruction Word (VLIW) core configuration. It provides support
for 4x8-bit and 2x16-bit SIMD integer arithmetic operations. The model we use to represent
XENTIUM is provided in table A.3.

ST240 [4] is a 4-issue wide VLIW media processor from the ST200 family of STMicroelectron-
ics. It has four integer units, 2 multiplication units, 1 branch unit and 1 load/store unit along
with a general purpose register file of 64 32-bit registers with 8 read and 4 write ports. ST240
also supports 2x16-bit SIMD operations. The model we use to represent ST240 is provided in ta-
ble A.2. Besides, ST240 provides hardware support for single-precision floating-point operations
but without SIMD support.

VEX [5] is a parameterizable and extensible VLIW architecture model. We use it in two
configurations; VEX-1 and VEX-4 with an issue width of 1 and 4 respectively. Since VEX
does not provide support for SIMD, we implemented a 16-bit and 8-bit SIMD instruction set
extension for supporting integer arithmetic, shift and data manipulation operations, using the
provided extension mechanism. The model we use to represent VEX is provided in table A.4.

The main characteristics of these processors are summarized in table 5.2.

5.5.5 Results

In this section we report the experimental results. First, we compare the execution time of
fixed-point SIMD C code obtained by our source-to-source flow, against the original floating-
point version. Then, we compare the performance of the solution obtained by our approach
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Processor single-float 1x32-bit int 2x16-bit int 4x8-bit int

XENTIUM × X X ×

ST240 X X X ×

VEX × X X X

KAHRISMA × X X X

Table 5.2 – Target processors supported operations.
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Figure 5.12 – Speedup of SIMD code version obtained by WLO+SLP flow, over the original float
version, for different accuracy constraints expressed in dB (higher values (to the left) are less
accurate)

(WLO+SLP) against a typical approach (WLO-then-SLP).
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5.5.6 Floating-point vs. Fixed-point

In order to compare the performance of the fixed-point implementation (with SIMD) against
floating-point, we run the fixed-point SIMD code obtained by WLO+SLP as well as the original
single-precision floating-point code (float) on both XENTIUM and ST240, for different accuracy
constraints. The execution time speedup of the fixed-point SIMD (simd) over float is computed
as:

speedup = nb Cycles(float) / nb Cycles(simd)

The graphics of figure 5.12 plot the obtained speedup on both XENTIUM and ST240, for different
accuracy constraints. The latter represents the maximum tolerable quantization noise power at
the system output, specified in dB; smaller values represent tighter accuracy constraints (i.e.
more accurate).

On XENTIUM, a speedup by a factor of 15 to 45 is achieved. This results are as expected, since
this processor does not have a hardware support for floating-point arithmetic. Thus, floating-
point support is provided by software emulation.

On ST240, even though it has hardware support for floating-point, a speedup up to 1.4x is
obtained. It is mainly due to the exploitation of SIMD capabilities.

5.5.7 WLO+SLP vs. WLO-then-SLP

In order to compare the performance of our approach (WLO+SLP), performing SLP extraction
and float-to-fixed-point jointly, against a typical approach (WLO-then-SLP), we run the test
setup presented earlier, for all benchmarks, on each target processor and for different values of
the accuracy constraint. For each test we compare the execution time speedup of the fixed-point
SIMD version obtained by WLO+SLP against the one obtained by WLO-then-SLP. The speedup
is computed against the fixed-point version (without SIMD) obtained by WLO-then-SLP, called
fixed, as follows:

speedup = nb Cycles(fixed) / nb Cycles(simd)

The results are reported in the graphics of figure 5.13.

The overall results clearly show the advantage of our approach across all benchmarks on all
processors.

For FIR, we can see our approach trading accuracy for performance improvement. It manages
to efficiently exploit SIMD to achieve performance improvement (up to 1.6x on KAHRISMA
and 1.3x on XENTIUM), whereas WLO-then-SLP mostly result in performance degradation after
applying SLP extraction, illustrating the fact that WLO in this case is blindly optimizing without
considering the impact of SLP on performance.
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Figure 5.13 – Speedup (higher is better) comparison between SIMD versions of WLO-then-SLP

and WLO+SLP vs. accuracy constraint expressed in dB (higher values(to the left) are less accurate).
The baseline is the execution time of the (non SIMD fixed-point version of WLO-then-SLP.
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The few points where our approach yields performance degradation, for FIR on XENTIUM
at -65 db for instance, are due to a reduction in the execution time of the baseline fixed-point
version, where the Tabu WLO algorithm manages to find a better fixed-point solution, since at
this high accuracy constraint not many SLP opportunities are available.

Similarly for IIR, our approach yields consistently better performance improvement on all tar-
get processors, up to 2x on XENTIUM, 1.6x on KAHRISMA and 1.4x on ST240. WLO-then-SLP
still mostly result in performance degradation after applying SLP extraction.

For CONV, on XENTIUM and KAHRISMA, a slight slowdown is observed between -25 dB
and -40 dB. In this case, the selected SLP solution has a high packing/unpacking cost compared
to the performance gain it achieves, thus inducing a performance degradation. However, a
performance estimation of the SLP grouping solution can be used to discard such solutions,
when a performance degradation is detected.

Besides, by comparing the results on VEX-1 and VEX-4 5 we can notice the impact of instruc-
tion level parallelism (ILP). On VEX-4, with higher ILP capabilities, the speedup due to SIMD
is less important than on VEX-1.

5.6 Conclusion

In this work we discussed the interaction between floating-point to fixed-point conversion and
SLP extraction. We argued that considering both transformations jointly can yield more efficient
SIMD solutions compared to a approach where the floating-point to fixed-point conversion is ap-
plied first, followed by SLP extraction So, we propose a new SLP-aware WLO algorithm capable
of efficiently exploit the performance/accuracy tradeoff when targeting embedded processors.

We implemented the proposed, joint floating-point to fixed-point conversion and SLP extrac-
tion approach, as a source-to-source compilation flow in Gecos. We also implement a typical
approach in order to test the validity of our approach. For this, we tested both approaches on
several embedded processors. The experimental results show the advantage of our approach in
exploiting the performance/accuracy tradeoff compared to a typical approach. A speedup by a
factor higher than 1.5 is achieved on XENTIUM and KAHRISMA for an IIR benchmark.

In summary, we concluded that:

— Fixed-point is more suitable when targeting embedded processors with no hard-float sup-
port: a speedup by a factor of up to 45 is observed on XENTIUM.

— Even on processors with floating-point support, using fixed-point in combination with
SIMD can achieve better performance: a speedup by a factor of up to 1.4 is observed on
ST240.

— Using SIMD does not always improve performance, especially if the WLO is not aware of
the SIMD opportunities and their associated cost overhead.

5. VEX-1 and VEX-4 only differ in the issue-width; the former has only 1 and the latter has 4.
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— Jointly performing WLO and SLP extraction helps achieving more efficient solutions, com-
pared to the typical approach.

Limitations

The source-to-source compilation flow, we implemented in this work, is currently limited by the
analytical accuracy evaluation procedure, which imposes many constraints on the input C code
(as explained earlier in section 2.6.2). These constraints limit the coverage of the flow to "simple"
applications. However, This limitation can be alleviated by using less constrained accuracy
evaluation techniques such as simulation-based or simulation-analytical mixed approaches, for
instance.

On the other hand, the proposed source-to-source compilation flow does not integrate common
optimizations, such as constant propagation. In fact, the WLO and SLP extraction are performed
on the original code without such pre-optimizations. Therefore, the generated C code, which uses
SIMD intrinsics, seams to be preventing the target compiler from being as efficient in optimizing
this code compared to the original C code with no SIMD intrinsics. This makes it very hard to
fairly compare the performance between the generated SIMD code and the original one. This can
be addressed either by integrating such optimization to the source-to-source flow and applying
them prior to the WLO and SLP extraction.



Chapter 6

Conclusion

In this manuscript, we discussed the impact of two important code transformations when
targeting low power embedded processors, namely, floating-point to fixed-point conversion and
Superword Level Parallelism (SLP) extraction. This work was inducted in the context of the
ALMA project, which aimed at providing a complete toolflow to target embedded multi-core
architectures, starting from Scilab or Matlab down to parallel C code. Among other opti-
mizations, floating-point to fixed-point conversion and Simdization are performed to improve
performance of an application when targeting embedded processors. Especially, since ALMA

target processors do not provide support for floating-point arithmetic.

Despite the fact that many embedded processors provide hardware support for floating-point
arithmetic, a good number of ultra low power embedded processors, such as ARM cortex-M0/1/3,
Texas Instruments (TI) TMS320 C64x and Recore Systems’s XENTIUM, do not. This
makes floating-point to fixed-point conversion a crucial optimization when targeting such pro-
cessors. Specially when most application prototyping employs floating-point arithmetic. The
results shown in chapter 5, reinforces this fact, since they show a speedup of up to 45x when
converting floating-point to fixed-point in the case the target processor does not have hardware
support for floating-point arithmetic. On the other hand, most of such embedded processors
provide support for vector operations through subword Single Instruction Multiple Data (SIMD)
instructions. These SIMD capabilities can be efficiently exploited using SLP extraction method-
ologies.

In chapter 4, we discussed the state-of-the-art of SLP extraction algorithms. We then proposed
a new Intermediate Representation (IR), called Pack Flow and Conflict Graph (PFCG), for SLP
extraction together with an improved SIMD group selection method, which we implemented
as a source-to-source compilation flow. Experimental results showed a significant performance
improvement (up to 50%) of the obtained SLP solution, by using our proposed method compared
to a state-of-the-art SLP extraction algorithm (which we also implemented as a source-to-source
compilation flow), without the need for data layout transformations. The proposed IR helps to
speedup the SIMD group candidate benefit estimation and consequently reduces the complexity
of the SIMD group selection algorithm. In addition, we proposed a way to control the size of
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the PFCG by splitting the operations into batches. Experimental results showed that this can
be used to reduce the group selection time, while still achieving good SLP solutions.

By this point, we have at our disposal a complete source-to-source flow capable of automatically
generating a SIMD C code for different embedded processors. In the next chapter, we discuss the
interaction between floating-point to fixed-point conversion and SLP extraction. We show that,
existing approaches considering both transformations independently, yields less efficient solutions.
We argue that considering SLP extraction in conjunction with Word Length Optimization (WLO)
helps achieving better results. So, we propose a new SLP-aware WLO algorithm, which we
integrate into the source-to-source compilation flow that we implemented.

However, exploiting SLP in a floating-point application, when targeting embedded processors
with no support for floating-point, is not possible. In this case no SLP is available since the
target does not provide a floating-point SIMD instruction set. In this case, in addition to
its aforementioned positive impact on performance, floating-point to fixed-point conversion can
additionally "unlock" SLP opportunities. In fact, during the WLO step in floating-point to
fixed-point conversion, smaller data word-lengths can be selected for the cost of degrading the
computation accuracy. But, selecting smaller word-lengths can increase the amount of potential
SLP opportunities.

In chapter 5, we showed that existing methods use this observation to improve performance
using SIMD. However, they do not consider Simdization during WLO. In other words, they
perform floating-point to fixed-point conversion first, and later they can independently perform
Simdization. In chapter 5, we show that such methodologies are not efficient in exploiting SLP
opportunities. We argued that WLO and SLP extraction are inter-dependent, thus they should
be applied jointly to achieve better results. So, we proposed a new methodology for joint WLO
and SLP extraction and we implemented it in our source-to-source compilation flow. To demon-
strate the validity of our approach we also implemented a compilation flow performing a typical
approach, that converts floating-point to fixed-point first, and then apply SLP extraction inde-
pendently. Experimental results comparing both approaches on a variety of embedded processors,
showed that our methodology can achieve more efficient SIMD solutions.

Perspectives

In the work presented in chapter 4, we ignore the memory alignment constraints during SIMD
group selection; we assume that all contiguous array reference superwords are aligned. When
such superword is not actually aligned, it induces a cost penalty, especially if the target does
not support unaligned memory accesses. This problem can be addressed by integrating a mem-
ory access alignment analysis to the compilation flow, based on which we can then modify the
SIMD candidate benefit estimation to take the alignment cost overhead into account. Besides,
optimization of the memory layout, such as array padding combined with some loop transfor-
mations, such as loop peeling, register level tiling with index set splitting, can also be used to
reduce the amount of unaligned memory accesses. This is worth considering in a future work
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to improve the performance of the proposed source-to-source flow. Also, the performance of
SLP solutions can be improved by considering inter basic-block and inter-procedural analysis to
reduce packing/unpacking overhead by capturing superwords reuse across basic blocks.

In addition, in this work we use a very basic SIMD instruction selection method and we only
consider "simple" SIMD operations (add, sub, mul,...). However, many embedded processors
(Digital Signal Processors (DSPs)), such as XENTIUM and ST240, provide multiple "complex"
SIMD operations, such as muladd. Considering such SIMD operations can help achieving better
performance. This could be considered during SLP extraction phase, by allowing the construction
of "complex" SIMD group candidates to represent the aforementioned operations. Alternatively,
this can be performed after SLP extraction by using a more complex SIMD instruction selection
capable of detecting such operations patterns.

In this work, we mainly targeted embedded processors with subword SIMD support. We
believe that such limited SIMD support would continue to be used in ultra low power embedded
processors, since it comes for almost no extra cost, by simply partitioning the existing data-
path. However, with the advances of computer architectures and manufacturing technologies,
superword SIMD extensions, would be supported by more embedded processors. These extensions
support wider SIMD vector sizes, which is expected to keep increasing. For instance, some
ARM processors support 128-bit SIMD operations via the NEON extension. Therefore, it would
be interesting to see how the proposed SLP extraction method performs when targeting such
processors with wider SIMD data-path.

Besides, ARM processors, for instance, also support half-precision floating-point SIMD. In
this context, a performance/accuracy exploration for different floating-point precisions can be
achieved using a similar approach as the one we proposed in chapter 5. In fact, our approach can
be easily adapted to perform joint SLP extraction and floating-point precision selection, under
accuracy constraint. This would require a floating-point implementation accuracy evaluation;
simulation-based methods can be used as a straightforward solution to provide this service.
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Appendix A

Target Processor Models

In this appendix we present the models we use in this thesis work to represent the target
processors. The model is defined in section 5.3.2.

A.1 XENTIUM

The model we use to represent the XENTIUM processor in summarized in table A.1.

T WS N PM QM OM S

add (32, 32, 32) 1 LSB Trunc Wrap (0, 0, 0)
add (32, 32, 32) 1 LSB Trunc SAT (0, 0, 0)
add (16, 16, 16) 2 LSB Trunc Wrap (0, 0, 0)
add (16, 16, 16) 2 MSB Trunc Wrap (0, 0, 1)
add (16, 16, 16) 2 MSB Round Wrap (0, 0, 1)

sub (32, 32, 32) 1 LSB Trunc Wrap (0, 0, 0)
sub (32, 32, 32) 1 LSB Trunc SAT (0, 0, 0)
sub (16, 16, 16) 2 LSB Trunc Wrap (0, 0, 0)
sub (16, 16, 16) 2 MSB Trunc Wrap (0, 0, 1)

mul (32, 32, 64) 1 FULL - - (0, 0, 0)
mul (16, 16, 32) 2 FULL - - (0, 0, 0)

Table A.1 – XENTIUM Model.

A.2 ST240

The model we use to represent the ST240 processor in summarized in table A.2.
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T WS N PM QM OM S

add (32,32,32) 1 LSB Trunc Wrap (0,0,0)
add (16,16,16) 2 LSB Trunc Wrap (0,0,0)

sub (32,32,32) 1 LSB Trunc Wrap (0,0,0)
sub (16,16,16) 2 LSB Trunc Wrap (0,0,0)

mul (32,32,32) 1 LSB Trunc Wrap (0,0,0)
mul (16,16,16) 2 LSB Trunc Wrap (0,0,0)

Table A.2 – ST240 Model.

A.3 KAHRISMA

The model we use to represent the KAHRISMA processor in summarized in table A.3.

T WS N PM QM OM S

add (32,32,32) 1 LSB Trunc Wrap (0,0,0)
add (16,16,16) 2 LSB Trunc Wrap (0,0,0)
add (8,8,8) 4 LSB Trunc Wrap (0,0,0)

sub (32,32,32) 1 LSB Trunc Wrap (0,0,0)
sub (16,16,16) 2 LSB Trunc Wrap (0,0,0)
sub (8,8,8) 4 LSB Trunc Wrap (0,0,0)

mul (32,32,32) 1 LSB Trunc Wrap (0,0,0)
mul (16,16,16) 2 LSB Trunc Wrap (0,0,0)
mul (8,8,8) 4 LSB Trunc Wrap (0,0,0)

Table A.3 – KAHRISMA Model.

A.4 VEX

The model we use to represent the VEX processor in summarized in table A.4. We implement
the SIMD instruction set as an extension to the Instruction Set Architecture (ISA).
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T WS N PM QM OM S

add (32,32,32) 1 LSB Trunc Wrap (0,0,0)
add (16,16,16) 2 LSB Trunc Wrap (0,0,0)
add (8,8,8) 4 LSB Trunc Wrap (0,0,0)

sub (32,32,32) 1 LSB Trunc Wrap (0,0,0)
sub (16,16,16) 2 LSB Trunc Wrap (0,0,0)
sub (8,8,8) 4 LSB Trunc Wrap (0,0,0)

mul (32,32,32) 1 LSB Trunc Wrap (0,0,0)
mul (16,16,16) 2 LSB Trunc Wrap (0,0,0)
mul (8,8,8) 4 LSB Trunc Wrap (0,0,0)

Table A.4 – VEX Model.
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Résumé

Afin de limiter leur coût et/ou leur consommation électrique,

certains processeurs embarqués sacrifient le support matériel

de l’arithmétique à virgule flottante. Pourtant, pour des rai-

sons de simplicité, les applications sont généralement spéci-

fiées en utilisant l’arithmétique à virgule flottante.

Porter ces applications sur des processeurs embarqués de ce

genre nécessite une émulation logicielle de l’arithmétique à

virgule flottante, qui peut sévèrement dégrader la perfor-

mance. Pour éviter cela, l’application est convertie pour uti-

liser l’arithmétique à virgule fixe, qui a l’avantage d’être plus

efficace à implémenter sur des unités de calcul entier. La

conversion de virgule flottante en virgule fixe est une procé-

dure délicate qui implique des compromis subtils entre per-

formance et précision de calcul. Elle permet, entre autre, de

réduire la taille des données pour le coût de dégrader la pré-

cision de calcul.

Par ailleurs, la plupart de ces processeurs fournissent un sup-

port pour le calcul vectoriel de type SIMD (Single Instruction

Multiple Data) afin d’améliorer la performance. En effet, cela

permet l’exécution d’une opération sur plusieurs données en

parallèle, réduisant ainsi le temps d’exécution. Cependant, il

est généralement nécessaire de transformer l’application pour

exploiter les unités de calcul vectoriel. Cette transformation

de vectorisation est sensible à la taille des données ; plus leurs

tailles diminuent, plus le taux de vectorisation augmente. Il

apparaît donc un compromis entre vectorisation et précision

de calcul.

Plusieurs travaux ont proposé des méthodologies permettant,

d’une part la conversion automatique de virgule flottante

en virgule fixe, et d’autre part la vectorisation automatique.

Dans l’état de l’art, ces deux transformations sont considé-

rées indépendamment, pourtant elles sont fortement liées.

Dans ce contexte, nous étudions la relation entre ces deux

transformations, dans le but d’exploiter efficacement le com-

promis entre performance et précision de calcul. Ainsi, nous

proposons d’abord un algorithme amélioré pour l’extraction

de parallélisme SLP (Superword Level Parallelism ; une tech-

nique de vectorisation). Puis, nous proposons une nouvelle

méthodologie permettant l’application conjointe de la conver-

sion de virgule flottante en virgule fixe et de l’exploitation du

SLP. Enfin, nous implémentons cette approche sous forme

d’un flot de compilation source-à-source complètement auto-

matisé, afin de valider ces travaux. Les résultats montrent

l’efficacité de cette approche, dans l’exploitation du compro-

mis entre performance et précision, vis-à-vis d’une approche

classique considérant ces deux transformations indépendam-

ment.

Abstract

In order to cut-down their cost and/or their power consump-

tion, many embedded processors do not provide hardware

support for floating-point arithmetic. However, applications

in many domains, such as signal processing, are generally

specified using floating-point arithmetic for the sake of sim-

plicity.

Porting these applications on such embedded processors

requires a software emulation of floating-point arithmetic,

which can greatly degrade performance. To avoid this, the

application is converted to use fixed-point arithmetic instead.

Floating-point to fixed-point conversion involves a subtle tra-

deoff between performance and precision ; it enables the use

of narrower data word lengths at the cost of degrading the

computation accuracy.

Besides, most embedded processors provide support for

SIMD (Single Instruction Multiple Data) as a mean to im-

prove performance. In fact, this allows the execution of one

operation on multiple data in parallel, thus ultimately re-

ducing the execution time. However, the application should

usually be transformed in order to take advantage of the

SIMD instruction set. This transformation, known as Simdi-

zation, is affected by the data word lengths ; narrower word-

lengths enable a higher SIMD parallelism rate. Hence the

tradeoff between precision and Simdization.

Many existing work aimed at providing/improving methodo-

logies for automatic floating-point to fixed-point conversion

on the one side, and Simdization on the other. In the state-of-

the-art, both transformations are considered separately even

though they are strongly related.

In this context, we study the interactions between these

transformations in order to better exploit the performan-

ce/accuracy tradeoff. First, we propose an improved SLP (Su-

perword Level Parallelism) extraction (an Simdization tech-

nique) algorithm. Then, we propose a new methodology to

jointly perform floating-point to fixed-point conversion and

SLP extraction. Finally, we implement this work as a fully

automated source-to-source compiler flow. Experimental re-

sults, targeting four different embedded processors, show the

validity of our approach in efficiently exploiting the perfor-

mance/accuracy tradeoff compared to a typical approach,

which considers both transformations independently.
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