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Computer simulation of time-dependent quantities for quantum systems is lim-
ited by the exponential scaling of exact methods with the number of degrees of
freedom. Indeed, while algorithms for classical atomic dynamics, such as molecular
dynamics based on empirical potentials, allow us to describe systems with thousands
of degrees of freedom for times of the order of several nanoseconds, quantum dynam-
ical simulations (in which atoms are usually represented through wave functions) are
limited to 5-10 atoms and to short times (of the order of the picoseconds at most).
On the other hand, the calculation of quantum time-dependent quantities is key in
many interesting problems and in particular to compute, via linear response the-
ory and time correlation functions, the system’s response to external perturbations.
That is why the development of approximate quantum dynamical methods is a very
active and challenging area of research in Theoretical Chemistry and Physics. One
of the main directions currently pursued is to adapt efficient techniques for clas-
sical simulations, based on molecular dynamics (MD) and/or Monte Carlo, to the
quantum case. A reasonable compromise among accuracy and computational cost is
realised by the so-called quasi-classical methods [1, 2, 3, 4, 5, 6] for computing time
correlation functions. In these methods, sampling of the exact quantum thermal
equilibrium density for the system is combined with generalised trajectories that
provide an approximation for quantum dynamics, usually valid only for short times.
The main goal of my thesis is to develop, test and apply approximate quasi-classical
methods for vibrational spectroscopy. The focus is, in particular on the so called
Phase Integration Method (PIM) [7, 8, 9]. In the first formulation of PIM the cor-
relation function, calculated via path integrals, was written as the average, with
respect to a probability density known analytically, of an observable containing a
phase factor. To obtain that result, we calculate the correlation function via path
integrals, combine a change of variable and a linearisation approximation for time
propagators which allows us to have the exact initial density with classical trajecto-
ries and a phase factor coming from the linearisation. This method was introduced
recently and it can be shown that it is the lowest order of a controlled approx-
imation that can, in principle, systematically improve, by including higher order
quantum corrections to classical dynamics, the calculation of quantum time corre-
lation functions. To tame the phase factor in PIM, which affects convergence for
high dimesional system, a cumulant expansion was introduced. The resulting form
of the correlation function does not have a phase factor but the probability density
becomes a quantity which can be estimated only numerically and which is affected
by statistical uncertainty. As a consequence, we use an original algorithm that
combines methods previously developed for sampling noisy distributions via Monte
Carlo schemes using Penalty [10] and Kennedy [11] methods [8, 12].
As other quasi-classical methods [1, 13], PIM is based on combining MD and MC
algorithms to compute averages of appropriate quantities, and has been applied to
obtain, for example, the dynamical quantum structure factor of a relatively high
dimensional model of a realistic condensed phase system (64 Ne atoms modelled via
the Aziz potential) [1, 12]. Comparison with experimental data shows that PIM
can capture non trivial quantum effects with an efficiency comparable to/or better
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than most of other approximate numerical schemes. In spite of these encouraging
results, progress must be made to further reduce the numerical cost of PIM based
calculations and to improve the flexibility and theoretical soundness of the method.
In particular, in this thesis, I focused on adapting and extending PIM to vibrational
spectroscopy (a direct probe of the atomic dynamics). This is interesting both from
a theoretical and an applicative point of view. The availability of a general and effi-
cient algorithm would in fact allow to study and characterize, in particular, systems
with hydrogen bonds which are known to be very sensitive to the quantum nature
of the dynamic and for which methods based on completely classical calculations
fail.
The thesis is organized as follows. Chapter 2 is devoted to a general description of
the path integral methods. This formalism is key for PIM and all other schemes con-
sidered in this work for comparison purposes, so the principle of the path integrals of
Feynman [14] is presented. Then, the current approximate methods based on path
integrals to compute quantum time correlation functions are explained. The two
most popular methods to calculate these quantities are Centroid Molecular Dynam-
ics (CMD) and Ring Polymer Molecular Dynamics (RPMD). The details of these
methods with their ad hoc approximations are presented. Finally, the principle of
quasi-classical methods, such as our method PIM, is detailed with the linearisation
approximation. Then two other quasi-classical methods are explained: the FK-LPI
method introduced by Poulsen et al. [1] based on the Feynman-Kleinert variational
principle [15] and the LGA method introduced by Liu and Miller which use a local
Gaussian approximation [13]. This will complete the review of the state-of-the-art
methods that are more closely related to this work and with whom we compare
directly PIM’s performance.
Chapter 3 illustrates how PIM can be adapted to the calculation of the Wigner
density. This is a key quantity for quasi-classical methods since it appears naturally
in the linearisation approximation. Unfortunetely, it is not possible to interpret it
directly as a probability density or to computre it directly from brut force for a gen-
eral system due to the presence of a phase factor. Approximate methods (FK-LPI
and LGA) have only ad hoc schemes to obtain Wigner density such as harmonic ap-
proximation (see LGA). What we do with PIM is better because ,as I will explain,
we have a consistent way to treat the phase factor in the Wigner density definition
and so we can in principle calculate to Wigner dentity for any system. The principle
of the PIM’s algorithm is also detailed and results are presented and compared to
other methods [16, 17].
Chapter 4 focuses on the adaptation of PIM for the infrared spectroscopy. We ex-
plained how and why we have to use the dipole-derivative Kubo autocorrelation
function to calculate Infrared spectra [9, 18]. The results obtained on models (OH
and CH4) will be compared to CMD, RPMD. OH spectra with an 3D shifted highly
anharmonic Morse potential is calculated and a comparison of this test is performed
with LGA [19]. This is an interesting model case because exact results are known
and classical simulations are far from this exact result. As a consequence it is the
perfect model (small size and physically interesting) for investigating the accuracy
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of PIM for Infrared spectra.
Chapter 5 presents the methodology used to calculate rate constants with PIM.
This is then applied to the chemical reaction rate for a linear model of the H+H2

reaction using an Eckart potential [20, 21, 22, 23]. Results are compared to classical
and fully quantum simulations [20, 22].



Chapter 2

State of the art

It is a curious historical fact that modern quantum mechanics began with two quite
different mathematical formulations: the differential equation of Schroedinger, and
the matrix algebra of Heisenberg. The two apparently dissimilar approaches, were
proved to be mathematically equivalent. [· · · ] a third formulation of non–relativistic
quantum theory [· · · ] was suggested by some of Dirac’s remarks concerning the
relation of classical action to quantum mechanics. A probability amplitude is
associated with an entire motion of a particle as a function of time, rather than
simply with a position of the particle at a particular time. This formulation is
mathematically equivalent to the more usual formulations. There are, therefore, no
fundamentally new results. However, there is a pleasure in recognizing old things
from a new point of view.

R.P.Feynman, Rev. Mod. Phys., 367, 20, 1948
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2.1 Formalism of path integrals

In 1948, Richard Phillip Feynman presented a new formulation of quantum mechan-
ics [14]. At that time this formulation was conceived more as a pleasant intellectual
exercise than as a truly practical new stream in quantum theory. Nevertheless, the
circumstances were bound to change in a short time. As computers hove in sight,
Feynman’s approach became applicable, at least for the calculation of time inde-
pendent statistical properties as we shall see in the following, and this paved the
way to a number of studies in Physics and Chemistry. The "strangeness" of quan-
tum mechanics is still present in Feynman’s formulation as it is in the Heisenberg
and Schrödinger pictures. To introduce Feynman’s representation, we can consider
a particle prepared in a state initially localized in x that evolves unobserved to a
point x′ . The wave packet of the initial sate evolves and spreads in time, causing
the state to become more and more delocalized spatially until it is measured at the
point x′ . The measurement is responsible for the collapse of the wave function in
x
′ and so the state is localized again. Feynman’s picture formulate this similar to a

classicle particle view in which the particle is evolving unobserved between x and x′ .
However there is a fundamental difference from the classical point of view. Indeed,
classically even if we do not observe the particle and therefore we do not know what
path it will take, we know that the particle is going to follow an unique definite
path. On the other hand in the Feynman point of view, the quantum nature of the
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particle makes it impossible to specify a path. Instead of following a unique path,
the particle goes between x and x′ using an infinity of paths.
In the following, we formalize this intuitive picture focusing on the path integral
representation of the canonical quantum density. This will be one of the key quanti-
ties in our calculation of spectra. Also the developments of the next section can be
generalized easily (via the so called Wick rotation [24]) to the path integral expres-
sion of the quantum real time propagator, the starting point of our approximation
to the dynamics.

2.1.1 Path integrals and the canonical density matrix

In this section, path integral will be illustrated on the canonical density matrix.
We will give a more precise mathematical formulation and for simplicity of the
demonstration we will focus on a single particle moving in one dimension. The
generalisation to three dimension and many particles can be done easily.
In the canonical ensemble a state is defined by the fixed quantities N (number of
particles), volume V , temperature T . The total energy of the system is denoted E.
The Hamiltonian of the single particle is:

Ĥ =
p̂2

2m
+ V (x̂) = K̂ + V̂ (2.1)

where V (x̂) is the potential, p̂ the momentum and m the mass of the particle.

The definition of the quantum density operator is:

ρ̂(β) =
1

Z(N,V, T )
e−βĤ (2.2)

where β = 1
kBT

and Z(N,V, T ) (denoted Z in the following) is the canonical parti-
tion function and has the following definition:

Z = Tr
[
e−βĤ

]
(2.3)

where Tr[] represents the trace of the operator inside the squares.
If we consider a coordinate space matrix elements of the density matrix ρ̂(β):

ρ(x, x
′
;β) =

1

Z
〈x′ |e−βĤ|x〉 (2.4)

We can notice that Ĥ is the sum of two operators K(p̂) and V (x̂) which do not
commute with each other. As a consequence:

e−β(K̂+V̂ ) 6= e−βK̂e−βV̂ (2.5)
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To avoid this problem we have to find a way to split kinetic and potential oper-
ators. We can do that in two steps. The first one is a "time" composition property:

e−βĤ =
[
e−

β
P
Ĥ
]P

(2.6)

The second is a Trotter decomposition and exploits the fact that if P is an integer
suffienciently high, we can write:

e−β(K̂+V̂ )/P ≈ e−βK̂/P e−βV̂ /P (2.7)

e−β(K̂+V̂ )/P ≈ e−βV̂ /2P e−βK̂/P e−βV̂ /2P (2.8)

The first expression is an approximation of the second order in 1/P and the
second one of the third order in 1/P .
Then we can use the Trotter theorem (1958) which allows us to express our density
operator as (considering only the second approximation but analogous with the first
one):

e−β(K̂+V̂ ) = lim
P→∞

[
e−βV̂ /2P e−βK̂/P e−βV̂ /2P

]P
(2.9)

The derivation of the Trotter theorem is technical and will not be shown in this
thesis. However, there are several conditions to satisfy. Our operators have to be
lower bounded and the operators T, V and T+V must be self-adjoint. In all cases
considered, these conditions are satisfied.
Coming back to our density matrix element and inserting the Trotter theorem, we
have:

ρ(x, x
′
;β) =

1

Z
lim
P→∞

〈x′ |
[
e−βV̂ /2P e−βK̂/P e−βV̂ /2P

]P
|x〉 (2.10)

In order to simplify the notation we can define an operator γ̂ as:

γ̂ = e−βV̂ /2P e−βK̂/P e−βV̂ /2P (2.11)

ρ(x, x
′
;β) =

1

Z
lim
P→∞

〈x′ |γ̂P |x〉 (2.12)

We then insert P − 1 times the identity operator between the P factors of γ̂. This
will introduce P − 1 integrations over coordinates label:

Î =

∫
dy |y〉〈y| (2.13)

ρ(x, x
′
;β) =

1

Z
lim
P→∞

∫
dx2 · · · dxP 〈x

′ |γ̂|xP 〉〈xP |γ̂|xP−1〉 · · · 〈x2|γ̂|x〉 (2.14)
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The advantage of using the Trotter theorem is that we have to evaluate P − 1

identical terms (only the index is different) simpler than the general one. V̂ is only
a function of the coordinates and as a consequence is diagonal in the coordinate
basis:

〈xk+1|γ̂|xk〉 = 〈xk+1|e−βV̂ /2P e−βK̂/P e−βV̂ /2P |xk〉

〈xk+1|γ̂|xk〉 = e−βV (xk+1)/2P 〈xk+1|e−βK̂/P |xk〉e−βV (xk)/2P (2.15)

Since K̂ is a momentum operator, the matrix element e−βK̂/P |xk〉 is slightly less
trivial to evaluate. We have to insert the identity operator but in the momentum
basis this time and use the fact that we known the form of 〈x|p〉:

Î =

∫
dp |p〉〈p| (2.16)

〈x|p〉 =
1√
2π~

ei
px
~ (2.17)

We insert the identity operator to obtain:

〈xk+1|e−βK̂/P |xk〉 =

∫
dp 〈xk+1|e−βK̂/P |p〉〈p|xk〉 (2.18)

The utility of introducing the identity in the momentum basis becomes clear because
now we have e−βK̂/P which is diagonal in the momentum basis and as a consequence
we have:

〈xk+1|e−βK̂/P |xk〉 =

∫
dp 〈xk+1|p〉〈p|xk〉e−βp

2/2mP (2.19)

〈xk+1|e−βK̂/P |xk〉 =
1

2π~

∫
dp eip(xk+1−xk)/~e−βp

2/2mP (2.20)

Then it is simply a Gaussian integral because we integrate p between −∞ and +∞.
Thus:

〈xk+1|e−βK̂/P |xk〉 =

(
mP

2πβ~2

)1/2

exp

[
− mP

2β~2
(xk+1 − xk)2

]
(2.21)

which leads us to:

〈xk+1|γ̂|xk〉 =

(
mP

2πβ~2

)1/2

e
− mP

2β~2 (xk+1−xk)2

e−
β

2P
(V (xk+1)+V (xk)) (2.22)
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Using the result above, we obtain for the density matrix:

ρ(x, x
′
;β) =

1

Z
lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx2 · · · dxP (2.23)

exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
2P

(V (xk+1) + V (xk))

]}
(2.24)

In equation 2.23, the endpoints of the paths are at x1 and xP+1 and are fixed at
the initiation and detection points so x and x

′ respectively. We can see that the
kinetic energy is now present in the form of a harmonic coupling between points
(x1, · · · , xP+1) of consecutive indexes. We are here in the limit P → ∞ of a dis-
cretized representation for the density matrix and the intermediate integrations over
x2 · · ·xP represent the sum over all the possible paths between x and x′ . For finite
P , which will be our case for simulations, the paths are lines between successive
points as it is shown in Figure 2.1. The probability to follow a path depends of the
value inside the exponential in the equation 2.23.
We can connect the canonical density matrix ρ̂ to the quantum time propagator Û .
Indeed, we have:

ρ̂(β) = Û(−iβ~) Û(t) = ρ̂(it/~) (2.25)

This equivalence allows us to have easily a formal expression of the real time propago-
tor using path integrals. We can also interpret obtain the density matrix as the time
propagator at an imaginary time t = −iβ~ and we can refer to the density matrix as
an imaginary time propagator. Using this correspondance, we have a path integral
expression for the coordinate-space matrix elements of the real time propagator:

U(x, x
′
; t) = lim

P→∞

(
mP

2iπt~

)P/2 ∫
dx2 · · · dxP (2.26)

exp

{
i

~

P∑
k=1

[
mP

2t
(xk+1 − xk)2 − t

2P
(V (xk+1) + V (xk))

]}
(2.27)

Following the steps to obtain the equation 2.23 which gives us the density
matrix elements we can derive the expression of the canonical partition function
which is necessary to calculate all the equilibrium properties in the canonical
ensemble. Indeed, we have the following expression for our partition function:

Z = Tr
[
exp(−βĤ)

]
(2.28)

Z =

∫
dx 〈x|e−βĤ|x〉 (2.29)
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We need only to evaluate the diagonal elements of the density matrix in order to
obtain the canonical partition function. As a consequence we only need to set
x1 = xP+1 = x in the equation 2.23 and then we integrate all these diagonal
elements.

Z = lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP

exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
2P

(V (xk+1) + V (xk))

]}

Z = lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP

exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.30)

with xP+1 = x1.
The integration over cyclic paths in equation 2.30 is illustrated in Figure 2.2. We can
notice that in the classical limit (T →∞), the harmonic spring constant connecting
neighbor points becomes infinite and as a consequence all the points collapse in one
point which corresponds to the classicle point particle. Thus, the high temperature
limit of the path integral formalism is equivalent to the classical limit.
Analytical evaluation of path integrals is only possible for free particle (V (x) = 0)
and quadratic potentials (V (x) = 1

2kx
2). However, the path integral picture is

applicable for quantum statistical mechanical calculations, even for large system
where wave function method are impossible to use due to the exponential scaling
with the number of degree of freedom of the numerical cost. In order to do that,
we use what we call the classical isomorphism of path integral which allows us to
use what we call Path Integral Molecular Dynamics (PIMD) or Path Integral Monte
Carlo (PIMC). Unfortunately, this simplification to discrete paths is not so easy
with the time propagator due to the complex exponentials (see equation 2.26). The
latter causes numerical calculations to oscillate widly as different paths are sampled
leading to a severe convergence problem known as the dynamical sign problem.
Thus, as we are going to see later in this chapter with the presentation of RPMD,
CMD and the linearization approximation, the calculation of dynamical properties
from path integrals remains one of the most challenging problem in computational
science.
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Figure 2.1: Possible paths in the path
sums of equation 2.23 using P = 5 slices.

x

x

βh̄/2 βh̄0

1

Figure 2.2: Possible paths in the discrete
path sums for the canonical function in
equation 2.30 using P = 5 slices.

2.1.2 Polymer isomorphism and PIMD

As mentioned before, in order to calculate, via computer simulation, time indepen-
dent equilibrium statistical properties using path integrals, we need to introduce the
idea of the "classical isomorphism" [25]. We are still considering for the moment a
single particle moving in one dimensional potential V (x̂). We recall the expression
of the discrete partition function (see equation 2.30), which is a good approximation
of the quantum canonical partition function if P is large enough:

ZP =

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP

exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.31)

with xP+1 = x1 and ZP denotes that we are at P large but finite.
Equation 2.31 is the classical configurational canonical partition function of a cyclic
polymer chain moving in the potential V (x) but at an effective temperature of PT
in phase space variables (x,p). The classical analogy can be made more complete
by introducing a set of momenta via a Gaussian integration. Then we recast the
P Gaussian prefactor as a set of Gaussian integrals over the variable p1, · · · , pP so
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that they look like momenta conjugate to x1, · · · , xP :√
mP

2πβ~2
=

1

2π~

∫
dpk e

− β
P

p2k
2m (2.32)

ZP =

(
1

2π~

)P ∫
dp1 · · · dpP

∫
dx1 · · · dxP

× exp

{
−

P∑
k=1

[
β

2mP
p2
k +

mP

2β~2
(xk+1 − xk)2 +

β

P
V (xk)

]}

=

(
1

2π~

)P ∫
dp1 · · · dpP

∫
dx1 · · · dxP

× exp

{
− β
P

P∑
k=1

[
1

2m
p2
k +

1

2
mω2

P (xk+1 − xk)2 + V (xk)

]}
(2.33)

with xP+1 = x1 and ωP = P
β~ which is called the chain frequency. In the exponential,

we have replaced the prefactor by Gaussian integrals. In these Gaussian integrals,
the physical mass is appearing. However, since the prefactor does not affect any
equilibrium averages we are free to choose the mass m as we like, so not necessarly
the physical mass of the system.
As explained before, once we write the partition function in this way, we make appear
the classical Hamiltonian of a cyclic chain polymer at an effective temperature of
PT , a chain frequency of ωP in the potential V (x):

HP =
P∑
k=1

[
1

2m
p2
k +

1

2
mω2

P (xk+1 − xk)2 + V (xk)

]
(2.34)

ZP (L, T ) =

(
1

2π~

)P ∫
dp1 · · · dpP

∫
dx1 · · · dxP e−

β
P
HP (2.35)

The identificaton of the partition function, in equation 2.32 with the one of a cyclic
polymer of P points, leads to the so called classical isomorphism. We are going to
exploit the isomorphism between the classical and approximate (because P is finite)
quantum partition function because it presents many numerical advantages. The
classical isomorphism is illustrated in Figure 2.3. Because the cyclic polymer looks
like a necklace, we call very often the P points "beads". The coils represent the fact
that neighbor beads are connected via spring characterized by ωP . According to the
classical isomorphism, we can use classicle techniques such as Molecular Dynamics
(MD) or Monte Carlo (MC) to compute approximate quantum properties.

This is not the only advantage of the polymer isomorphism. Indeed, this iso-
morphism is very useful to visualize and deal with quantum systems. Most of the
time the quantum reality goes against our natural intuition and path integrals via
the classical isomorphism can help us to visualize it. The idea is to replace one
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1

Figure 2.3: Intuitive picture of the classical isomorphism with P = 7.

quantum atom by a necklace of many classicle particles.
If we look closely to the equation 2.32, we notice that ωP = P

β~ . As a consequence,
ωP increases linearly (at P fixed) with the temperature which means that the springs
of the polymer become stiffer with the temperature and so at high temperature the
P beads are almost not moving relative to one another. In this case the polymer
evolution can be reduced to one point and we are in the classical limit.

This argument can be made more precise by considering the root mean square
radius of gyration ∆ of our ring polymer as:

∆2 =
1

P

P∑
k=1

〈x2
k〉f (2.36)

Where f will be defined in the equation 2.47 and corresponds to a probability density.
Focusing on a free particle (V (x) = 0), we obtain [26]:

∆ =
Λ(T )√

8π
(2.37)

with

Λ(T ) =

(
2π~2

mkT

)1/2

(2.38)
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High T Low T

1

Figure 2.4: Evolution of the ring polymer with the temperature.

Λ is the de Broglie thermal wave lenght. Thus the polymer collapses in one point
if we increase the temperature. On the contrary, at low temperature the polymer is
spreading more and more when the temperature decreases.
In the presence of a potential the spreading is limited by the potential itself. A poly-
mer ring within a real system simulation experiences two opposing forces. From one
side, the beads within an atom want to approach each other, since there are springs
connecting them but, on the other hand, there is an inter atomic potential attracting
beads from different atoms and spreading the necklaces. The thermal equilibrium
is reached when the mean value of these two forces balances. However, should the
number of beads per atom be not sufficiently high, the polymer would not spread as
much as required for the given conditions of mass, temperature and potential. The
results obtained in that situation would be biased towards the classical limit. But,
if we put a sufficient amount of beads the polymer would not spread out more than
necessary for the given conditions, since the length of the necklace is limited. Thus,
increasing the number of beads once the sufficient amount has been found would not
lead to better results. In equation 2.30, we said that the partition function becomes
exact using an infinite number of beads. However, our results will be exact, pro-
vided that a sufficient number of beads is taken, and we only have to worry about
the statistical error. From a physical point of view, a sufficient number of beads is
roughly reached when the root mean squared length of the springs is smaller than
the relevant length scale of the external potential. This translates into the following
relation [26, 27]:

P � β~2

mσ2
(2.39)



16 Chapter 2. State of the art

with P the number of beads, and σ the length scale of the potential. To a
first order, we can say that the number of beads required is inversely propor-
tional to the temperature. In practice, the value of P is determined by verifying
numerical convergence of an appropriate set of observables (the energy for example).

Up to now, we only presented the path integral formalism and the polymer
isomorphism for the special case of one particle in one dimension potential. If we
consider N particles in 3 dimensions with interaction between particles, we obtain
for the polymer Hamiltonian (following the same procedure as the one dimension
case) the following expression:

HP =

P∑
k=1

{
N∑
i=1

[
1

2mi
p

(k)2
i +

1

2
miω

2
P (r

(k+1)
i − r

(k)
i )2 + V (r

(k)
1 , · · · , r(k)

N )

]}
(2.40)

with the condition r
(P+1)
i = r

(1)
i . An important point to notice is that the potential

V (r
(k)
1 , · · · , r(k)

N ) only acts between beads of the same index k. The consequence is
that all beads with the same index interact with each other but do not interact with
the others. This behaviour is illustrated in Figure 2.5 for the case of two quantum
particles.

1

2

2

3
3

4
4

1

5

5

6

6

7

7

1

Figure 2.5: Interaction pattern between two quantum particles represented by a ring
polymer with P = 7.

This classical isomorphism is the basis of what we call the Path Integral Molecu-
lar Dynamics (PIMD) (or Path Integral Monte Carlo: PIMC) method. For example
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in PIMD, we let the polymer previously described evolving with the following New-
tonian equations (in a one dimensional case but the generalization is staigthforward):

ẋk =
∂HP
∂pk

ṗk = −∂HP
∂xk

(2.41)

ẋk =
pk
m

ṗk = −mP
2

β2~2
(2xk − xk+1 − xk−1)− ∂V

∂xk
(2.42)

where m is not necessarly the physical mass.
If the equations 2.41 are coupled to a thermostat (Nosé-Hoover for example), then
the dynamics will sample the canonical distribution. Therefore, these classical tra-
jectories are used as a sampling device to explore the configuration space of the ring
polymer and calculate the exact thermodynamic and structural properties of the
system in the limit of a sufficiently large number of beads.

2.1.3 Time-independent equilibrium properties in the canonical
ensemble from path integral formulation

Now that we know how to calculate the density matrix and the partition function, we
are able to derive the expressions for equilibrium properties in the canonical ensemble
via the path integral formalism. Furthermore, with the classical isomorphism and
PIMD (or PIMC) the methods used to compute these quantites are established.
The basic relation for the expectation value of an Hermitian operator, Â, in the
canonical ensemble is:

〈Â〉 =
1

Z
Tr
[
Â exp(−βĤ)

]
〈Â〉 =

1

Z

∫
dx 〈x|Âe−βĤ|x〉 (2.43)

In the following I will discuss operators with a form that will be interesting in the
calculations presented later in the thesis (see Chapters 3 and 4). The first and also
the simplest case to consider is the evaluation of an operator Â function of x̂ only.
In this case, Â is diagonal in the coordinate basis, Â(x̂)|x〉 = A(x)|x〉, and we can
express the expectation value of Â as:

〈Â〉 =
1

Z

∫
dx A(x)〈x|e−βĤ|x〉 (2.44)

we are here in a similar case as the partition function because we only need the
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diagonal elements of the density matrix and this leads to the following expresion:

〈Â〉 =
1

Z
lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP A(x1)

× exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.45)

with xP+1 = x1 = x.
The integral above can be rexpressed in a more convenient form observing that we
favor one particular position variable (x1). The fact to evaluate Â only in one point
makes the convergence slower. Due to the fact that in the case we are considering
the paths are cyclic, all the points x1 · · ·xP are equivalent. As a consequence, the
previous equation becomes:

〈Â〉 =
1

Z
lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP

[
1

P

P∑
k=1

A(xk)

]

× exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.46)

with xP+1 = x1.
This expression allows us to treat each point equally and minimizes the statistical
error on the evaluation of our expectation value. In order to obtain this quantity
numerically (and so with a finite P ), it is interesting to express the equation 2.46 as
the average value of Â over a probability density. To do so, we define f(x1, · · · , xP )

as:

f(x1, · · · , xP ) =
1

ZP

(
mP

2πβ~2

)P/2
× exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.47)

(2.48)

with xP+1 = x1.
ZP is the partition function for a finite P as mentioned in the equation 2.31. We
recover the fact that Z = limP→∞ZP . Furthermore, we can show easily that
f(x1, · · · , xP ) ≥ 0 for all x1, · · · , xP and that:∫

dx1 · · · dxP f(x1, · · · , xP ) = 1 (2.49)

so f(x1, · · · , xP ) satisfies the conditions of a probability density and we can define



2.1. Formalism of path integrals 19

a appropriate numerical estimator of Â as:

AP (x1, · · · , xP ) =
1

P

P∑
k=1

A(xk) (2.50)

Then we can define the expectation value of Â for a finite P as the average of the
numerical estimator according to the probability density f :

〈Â〉P =

∫
dx1 · · · dxP f(x1, · · · , xP )AP (x1, · · · , xP )

= 〈AP (x1, · · · , xP )〉f (2.51)

and where the limits P → ∞ is satisfied when numerical convergence with respect
to P is observed.

〈Â〉 = lim
P→∞

〈Â〉P (2.52)

From a numerical point a view, all we need is to evaluate AP (x1, · · · , xP ) if we are
able to sample correctly f . This is done using PIMD or PIMC as explained in the
previous section.
The second case to consider is Â a function of the momentum operator only: Â =

Â(p̂). In this situation, it is no longer possible to express Â in terms of diagonal
elements of the density matrix in the coordinate basis. We have to introduce an
identity operator between Â and exp(−βĤ) because we cannot evaluate simply 〈x|Â:

〈Â〉 =
1

Z

∫
dx 〈x|Âe−βĤ|x〉

=
1

Z

∫
dx dx

′ 〈x|Â|x′〉〈x′ |e−βĤ|x〉

=

∫
dx dx

′ 〈x|Â|x′〉ρ(x, x
′
;β) (2.53)

Then if we substitute the equation 2.23 with x1 = x and xP+1 = x
′ , in the previous

equation, we obtain the following path integral expression for the expectation value
of Â:

〈Â〉 =
1

Z
lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP+1 〈x1|Â|xP+1〉

× exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
2P

(V (xk+1) + V (xk))

]}
(2.54)

Then we can introduce the identity operator in the momentum basis to look at the
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matrix element 〈x1|Â|xP+1〉:

〈x1|Â|xP+1〉 =

∫
dp 〈x1|Â|p〉〈p|xP+1〉

=
1

2π~

∫
dp eip(x1−xP+1)/~A(p) (2.55)

and then we can introduce this result in the previous equation. Calculating expec-
tation value of momentum operators makes appear two problems. The first one is
that our paths are no longer cyclic (x1 6= xP+1) and in general sums over open
paths are more difficult to evaluate than sums over closed paths due more impor-
tant fluctuations in the endpoints. This leads us to the second problem which is the
phase factors in the previous equation. If the endpoints have large fluctuations it
could be difficult to make these phase factors converge. However, in certain cases it
possible to do the previous integration analytically. We can mention the momentum
distribution n(p), which is obtained by taking:

Â(p̂) = δ(p̂− p′ Î) (2.56)

where p′ is a number and Î the identity operator.
In this particular cases, we have:

〈x1|Â|xP+1〉 =
1

2π~
eip
′
(x1−xP+1)/~

This distribution can be mesured in neutron scattering experiments and by PIMD
algorithms [28].
Last but not least, we will focus on thermodynamic functions and more particularly
on the expectation value of the energy. These functions are special in the sense
that they are functions of both coordinate and momentum operators but can be
evaluated via cyclic path integrals. Indeed, we have:

E = 〈Ĥ〉 =

〈
p̂2

2m
+ V (x̂)

〉
(2.57)

We can see that E depends of both position and momentum operators but we can
avoid this problem via the thermodynamic relation:

E = − ∂

∂β
lnZ =

1

Z
∂Z
∂β

(2.58)

We only need cyclic paths to express Z which implies that it is the same to calculate
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E. Taking the derivative of equation 2.30 with respect to β, we obtain the following
expression for the energy:

E = lim
P→∞

1

ZP

(
mP

2πβ~2

)P/2 ∫
dx1 · · · dxP EP (x1, · · · , xP )

× exp

{
−1

~

P∑
k=1

[
mP

2β~
(xk+1 − xk)2 +

β~
P
V (xk)

]}
(2.59)

E = lim
P→∞

〈EP (x1, · · · , xP )〉f (2.60)

where EP (x1, · · · , xP ) is the numerical estimator of the energy and f the probability
density previously defined.

EP (x1, · · · , xP ) =
P

2β
−

P∑
k=1

mP

2β2~2
(xk+1 − xk)2 +

1

P

P∑
k=1

V (xk) (2.61)

EP (x1, · · · , xP ) is an estimator (called primitive estimator) of the energy for finite
P and so in the limit P → ∞ converges to the correct thermodynamic energy E.
However, from a numerical point of view we can notice that our estimator is linearly
dependent on P and as a consequence suffers from large fluctuations. So the energy
of highly quantum systems which require a large number of discretization are difficult
to converge with such an estimator. I will mention here but not demonstrate it the
virial theorem for path integrals:

〈
P

2β
−

P∑
k=1

mP

2β2~2
(xk+1 − xk)2

〉
ρ

=

〈
1

2P

P∑
k=1

xk
∂V

∂xk

〉
ρ

(2.62)

which leads to the definition of a new estimator of the energy, called the virial
estimator:

Evir(x1, · · · , xP ) =
1

P

P∑
k=1

[
V (xk) +

1

2
xk
∂V

∂xk

]
(2.63)

In this formulation of the energy estimator, the kinetic energy is eliminated and
this yields to an estimator with a much smaller variance and better convergence
behaviour.

In conclusion, even if there are some subtilities and difficulties, evaluating
time-independent equilibrium properties with path integrals formulation is a quite
simple task. I did not present in this section the technical numerical aspects of
path integrals to calculate these properties. Indeed the main aspects of it will be
presented later in this Chapter (during the presentation of RPMD and CMD) and
in Chapter 3 when I shall describe our method in detail.
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2.2 Dynamical properties from quantum correlation
functions

Real time quantum dynamics simulation of large molcular systems present a
challenge to theoretical physics and chemistry. Indeed, computer simulation of
time-dependent quantities for quantum systems is hindered by the exponential
scaling of exact methods with the number of degrees of freedom. However, access
to these quantities is crucial in many interesting problems and in particular to
compute, via linear response theory and time correlation functions, the response of
the system to external perturbations. The development of approximate quantum
dynamical schemes is therefore an active area of research. One of the main direc-
tions currently pursued is to adapt efficient techniques for classical simulations,
based on molecular dynamics (MD) and/or Monte Carlo, to the quantum case. A
reasonable compromise among accuracy and computational cost is realised by the
so-called quasi-classical methods for computing time correlation functions. In these
methods, sampling of the thermal equilibrium density for the system is combined
with generalised trajectories that provide an approximation for quantum dynamics
usually valid for short times.
In this section, we will present different quasi-classical methods, containing different
approximations. First, we will introduce the different forms of quantum correlation
functions which is possible to compute. These expressions are equivalent in the
sense that they can be related to one another analytically and therefore have the
same physical content. It is however useful to discuss them all since, depending of
the adopted approximation, some may be more advantageous from a computational
point of view. Then, we will introduce two of the most popular quasi-classical
methods, which, although not formally justified, have the advantage of converging
with a small number of trajectories: centroid and ring polymer molecular dynamics
(CMD and RPMD, respectively) [2, 29, 30, 31, 32, 33]. Finally, we will describe
three methods, which are part of the category of the linearized quasi-classical meth-
ods. The Feynman-Kleinert linearized path integral (FK-LPI) method introduced
by Poulsen and Rossky [1, 34, 35, 36, 37, 38], the linearized semi-classical initial
value representation (LSC-IVR) with the local Gaussian approximation (LGA)
describe by Liu and Miller [4, 13, 19, 39, 40, 41] and finally our method, the phase
integration method (PIM) introduced by Bonella and Ciccotti [7, 8, 9, 12, 17, 18].

Time correlation functions play a crucial role in relating macroscopic obser-
vations accessible in experiments to the microscopic dynamics of physical systems.
Although the statstical mechanics required to establish this link, in particular
linear response theory, is valid for classical and quantum systems, our ability to
perform calculations differs dramatically in the two situations as explained before.
Furthermore, for quantum systems, different definitions of correlation functions are
possible due to the fact in quantum statistical we deal with operators which do not
commute.
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The first and most common possibility is to evaluate the standard quantum
expression of the time correlation function:

CAB(t, β) =
1

Z
Tr
[
e−βĤÂ(0)B̂(t)

]
(2.64)

where β = 1
kBT

, Z is the canonical partition function (defined in the previous
section) and Â(0) and B̂(t) are Heisenberg-evolved quantum operators at time 0

and time t:

B̂(t) = eitĤ/~B̂e−itĤ/~ (2.65)

In the next sections, during the description of the different methods, we will explain
and show how the dynamical part is approximated.
In the equation 2.64, the correlation function is written in the standard way as the
thermal average of the operator product Â(0)B̂(t). However, this is not the only
possibility. A more symmetric alternative introduced by Kubo [42, 43, 44] is the
Kubo-transformed correlation function:

KAB(t, β) =
1

βZ

∫ β

0
dλ Tr

[
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

]
(2.66)

In the equation 2.66, the Boltzmann operator is averaged between Â(0) and B̂(t).
This differs from CAB because the operators Â and B̂ do not necessarly commute
with Ĥ. This form of the quantum correlation is the closest to the classical one and
as a consequence is well suited to the semi-classical approximations.
A last alternative form of the quantum time correlation function has been proposed
by Schofield in 1960 [45] originally for the neutron scattering. Schofield′s function,
also known as the symmetrized correlation function, is defined as:

GAB(t, β) =
1

Z
Tr
[
Âeit

∗
cĤ/~B̂e−itcĤ/~

]
(2.67)

where tc = t− i~β/2. In the equation 2.67, the Boltzmann and time operators are
equally distributed between the operators Â and B̂.
Schofield′s form of the correlation function shares some formal properties with clas-
sical correlation functions, it is for example a real function by construction. Thus
suggests that it could be a good starting point for describing semiclassical sys-
tems [21, 46, 47, 3, 48, 36].
These three different definitions of quantum correlation function are linked together
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via their Fourier transform. Indeed, we have:

C̃AB(ω) = eβ~ω/2G̃AB(ω)

C̃AB(ω) =
β~ω

1− eβ~ω
K̃AB(ω) (2.68)

G̃AB(ω) =
β~ω/2

sh (β~ω/2)
K̃AB(ω)

where the time Fourier transform is:

F̃ (ω) =

∫ +∞

−∞
dt e−iωtF (t) (2.69)

To obtain the relations in equation 2.68, we have to evaluate the traces in the
different definitions in the basis of energy eigenstates. As an example, we carry out
the calculation for the standard and the symmetrized correlation function. We have:

CAB(t, β) =
1

Z
Tr
[
e−βĤÂeitĤ/~B̂e−itĤ/~

]
(2.70)

=
1

Z
∑
n

〈n|e−βĤÂeitĤ/~B̂e−itĤ/~|n〉

=
1

Z
∑
n

e−βEn〈n|ÂeitĤ/~B̂|n〉e−itEn/~

where |n〉 is an eigenvector in the energy basis and En an eigenvalue in this basis,
so Ĥ|n〉 = En|n〉. Then it follows after inserting the identity operator in the energy
basis between the operators Â and B̂ (these operators are usually not diagonal in
this basis set):

CAB(t, β) =
1

Z
∑
n

∑
m

e−βEn〈n|Â|m〉eitEm/~〈m|B̂|n〉e−itEn/~ (2.71)

=
1

Z
∑
n

∑
m

AnmBmne
−βEneit(Em−En)/~

where Anm = 〈n|Â|m〉 and Bmn = 〈m|B̂|n〉.
If we proceed in the exact same way for the symmetrized correlation function we
obtain:

GAB(t, β) =
1

Z
∑
n

∑
m

AnmBmne
−β

2
(En+Em)eit(Em−En)/~ (2.72)

Then we take the Fourier transform of the equation 2.70 which leads us to:

C̃AB(ω) =
1

Z
∑
n

∑
m

AnmBmne
−βEnδ

(
ω − Em − En

~

)
(2.73)
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where we used: ∫ +∞

−∞
e−iωtdt eit(Em−En)/~ = δ

(
ω − Em − En

~

)
(2.74)

and for the Schofield′s form of the correlation function we have:

G̃AB(ω) =
1

Z
∑
n

∑
m

AnmBmne
−β

2
(En+Em)δ

(
ω − Em − En

~

)
(2.75)

=
1

Z
∑
n

∑
m

AnmBmne
−βEne−β~ω/2δ

(
ω − Em − En

~

)

It is now straightforward to see that the relation in the equation 2.68 is verified:

C̃AB(ω) = eβ~ω/2G̃AB(ω) (2.76)

2.3 Empirical quasi-classical methods: RPMD and
CMD

Now we know what we have to calculate but as explained before we cannot do it fully
quantum mechanically. As a consequence we have to perform approximations to cal-
culate these quantum correlation functions. We will present two of the most popular
path integral methods to compute quantum time correlation function: RPMD and
CMD. As we are going to see, these methods are not formally justified but are very
efficient numerically. Then, we will describe the linearization approximation and
different methods, including PIM, which are based on this approximation.

2.3.1 Outline of RPMD

In the section 2.1.2, we described the isomorphism between the path integral for-
malism and a ring polymer which is evolving under a classical Hamiltonian at a
temperature PT where P is the number of beads in our polymer. This isomorphism
is the basis of what we call the path integral molecular dynamics (PIMD) (or Path
Integral Monte Carlo: PIMC), as we have explained, via the following equations of
motions:

ẋk =
∂HP
∂pk

ṗk = −∂HP
∂xk

(2.77)

ẋk =
pk
m

ṗk = −mP
2

β2~2
(2xk − xk+1 − xk−1)− ∂V

∂xk

The idea (and approximation) of the Ring Polymer Molecular Dynamic (RPMD)
method, first introduced by Manolopoulos in 2004 [29, 30, 31], is to use these classical
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trajectories also to approximate Kubo-transformed quantum correlation functions
using the physical mass m of the system in the equations 2.77.
For the case in which the correlated operators Â and B̂ are local (functions of the
coordinate operator x̂ ), this RPMD approximation is simply:

KAB(t, β) =
1

βZ

∫ β

0
dλ Tr

[
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

]
(2.78)

KAB(t, β) ≈ 1

(2π~)PZP

∫
dPp

∫
dPx exp

(
− β
P
HP (x,p)

)
AP (x)BP (xt) (2.79)

where xt is the time evolved of x under the equations 2.77 and we keep the notations
previously introduced for the canonical partition function with a finite number of
beads P , ZP , and the ring polymer HamiltonianHP (x,p). We use also the simplified
notation

∫
dPp =

∫
dp1 · · · dpP and the same for x. Finally, the functions AP (x)

and BP (xt) are averaged over the beads of the ring-polymer necklace at times 0 and
t as it has already been explained for the determination of equilibrium properties:

AP (x) =
1

P

P∑
k=1

A(xk) (2.80)

BP (xt) =
1

P

P∑
k=1

B(xk(t)) (2.81)

The correlation function in equation 2.78 is just a classical correlation function in
the extended phase space of the P -bead imaginary-time path integral, and this is
the central feature of RPMD. A systematic derivation of the approximation in Equa-
tion 2.78 does not exist. However, the RPMD approximation can be motivated or
’partially’ justified by showing that it gives the correct quantum mechanical results
in various limiting cases.
First, in the high-temperature limit, the harmonic spring force constant mω2

P in
equation 2.34 becomes so large that the radius of gyration of the ring polymer
shrinks to zero as we have already shown. Under these circumstances, it suffices to
use just a single bead (P = 1), in which case the equation 2.78 is equivalent to the
classical correlation function.
Second, the ring-polymer correlation function in equation 2.78 coincides with the
exact Kubo-transformed quantum mechanical correlation function in equation 2.66
in the limit as t→ 0. To see this in detail, one can expand the correlation functions
in the two equations in Taylor series around t = 0. Only the even expansion coeffi-
cients survive in this case because the exact KAB(t) and its RPMD approximation
are both real and even functions of t. Comparison of the exact and approximate
expansion coefficients reveals that the RPMD approximation has a leading error of
O(t8) for the position autocorrelation function [24, 31, 49].
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Third, when the simple case of the harmonic oscillator (V (x) = 1
2mωx

2) is con-
siderated, it is possible to derive the equation 2.78 to show that it gives the exact
quantum mechanical results (with P → ∞) for correlation functions of the form
KAx(t) and KxB(t).
Last but not least when we consider the special case of Â as the unit operator, it is
possible to show that we are only calculating the equilibrium expectation value of
the operator B̂. The equation 2.78 becomes in this special case:

K1B(t, β) ≈ 1

(2π~)PZP

∫
dPpt

∫
dPxt exp

(
− β
P
HP (xt,pt)

)
BP (xt) (2.82)

due to the conservation of the Boltzmann factor (e−
β
P
HP (x,p) = e−

β
P
HP (xt,pt)) and

the phase space volume element (dPpdPx = dPptd
Pxt) in the classical ring polymer

dynamics.
Relabeling pt and xt as p and x, one sees that this is just the P -bead path integral
expression for 〈B〉. The RPMD approximation therefore becomes exact for Â = 1̂

in the limit as P → ∞. The last of these limiting cases is especially important for
applications of the RPMD model to condensed-phase systems because it confirms
that the classical dynamics of the ring polymers is at least consistent with the quan-
tum mechanical equilibrium distribution, as one would expect from the connection
between RPMD and PIMD. This implies that an RPMD simulation at a given NVT
thermodynamic state point will sample the correct initial quantum distribution.
For the moment only operators of postion have been discussed. However, we can eas-
ily show that for operators linear in momentum such as the velocity auto-correlation
function, we obtain the following expression within the RPMD approximation:

Kvv(t, β) ≈ 1

(2π~)PZP

∫
dPp

∫
dPx exp

(
− β
P
HP (x,p)

)
v̄v̄t (2.83)

where v̄ = 1
Pm

∑P
k=1 pk.

In both cases, when we deal with operators linear in position or momentum we only
have to evaluate their value for the centroid position at time 0 and time t.
The RPMD approximation gives quite good results in many cases but there is no
rigorous justification for the adoption of this dynamics (at least not for generic
potentials and observables), so results can have uncontrolled features.
The first one is encountered in infrared spectroscopy calculations due to resonance
with spurious frequencies. This phenomena will be illustrated in Chapter 4 on toy
model calculations. The occurence of this phenomena is quite simple to explain
after a normal mode transformation of the ring-polymer Hamiltonian. Indeed, if we
consider simply a one dimensional harmonic oscillator with a frequency ω (V (x) =
1
2mω

2x2), we obtain after a normal mode transformation (which will not be specified
but is explain in the following references [24, 49]):
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HP (x̃, p̃) =
P∑
k=1

[
1

2m
p̃2
k +

1

2
mω2

kx̃
2
k

]
(2.84)

where x̃, p̃ are the normal mode coordinates and where:

ωk =

√
ω2 +

(
2P

β~

)2

sin2((k − 1)π/P ) (2.85)

In RPMD, the centroid mode (k = 1) therefore oscillates at the harmonic frequency
ω, whereas the other normal modes oscillate at higher frequencies that depend on
the number of beads and on the temperature. These internal-mode oscillations are
unrelated to the dynamics of the physical potential; they are artificial oscillations
that arise from the structure of the extended phase space.
In many applications, the high-frequency oscillations of the ring polymer do not
matter, because they are well separated from the dynamics of physical interest.
However, problems do arise when using RPMD to calculate absorption spectra in
systems containing high-frequency physical vibrations, as illustrated in Chapter 4.
The lesson to be learned from this is that the spectral information produced by
RPMD is not to be trusted at frequencies above the first free ring-polymer excitation
frequency, ω2 = (2P/β)sin(π/P ) ≈ 2π/β , which corresponds to a wave number of
approximately 1.300cm−1 at 300 K.
This spurious frequency problem has other consequences.Indeed, a second important
limitation of RPMD is its poor performance for the correlation functions of nonlinear
operators [31]. Consider the calculation of correlation functions for the simple one
dimension harmonic oscillator. RPMD gives the exact quantum mechanical result
when one of the correlated operators is a linear function of position or momentum.
However, in the case of the nonlinear operator x̂2, for example, the exact quantum
Kubo-transformed autocorrelation function is:

Kx2x2 =

(
~

2mω

)2 [ 2

β~ω
coth

(
β~ω

2

)
cos(2ωt) + 2 coth2

(
β~ω

2

)
− 1

]
(2.86)

and the RPMD result is:

Kx2x2 =

(
1

βm

)2
[
P∑
k=1

1

ω4
k

(cos(2ωkt) + 1) +

P∑
k=1

P∑
l=1

1

ω2
kω

2
l

]
(2.87)

where ωk and ωl have the same definition has for the spurious frequency problem.
From these equations, we see that, although the RPMD autocorrelation function
does have a component (k = 1 which correspond to the centroid of the ring-polymer)
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that oscillates at the correct frequency (2ω), there are additional, spurious compo-
nents that arise from the internal modes of the ring polymer and contaminate the
time signal.
Many drawbacks of RPMD have been presented but do not limit the success of
RPMD. Indeed, as we can see in the review of Manolopoulos [31], RPMD has been
applied successfully to many applications such as quantum diffusion in liquid para-
hydrogen, liquid water, proton transfer in polar solvent, gas phase chemical rate
... From a computational point of view, RPMD is quite cheap because it’s only
a classical dynamic where we multiply the number of degrees of freedom by the
number of beads needed. Another advantage is that RPMD is purely Newtonian
and the convergences of the dynamical properties are achieved with few trajectories
due to the fact that the quantum density is preserved during the dynamic (and so
tricks such as Wiener-Khintchine can be used [50, 51]). Indeed, Witt et al. [52]
showed that in order to obtain a converged IR spectra you may need as few as 50
trajectories.

2.3.2 Outline of CMD

Another popular semi-classical method to approximate quantum time correlation
function is the Centroid Molecular Dynamic (CMD) method [2, 32, 33]. In order to
present in a synthetic way this method, we need to introduce the functional integrals
formalism.
If we consider that we are in the P → ∞ limit, we can construct a mathematical
picture of path integrals known as a functional integral. For simplification we in-
troduce a parameter ε = β~/P and as a consequence P →∞ implies ε→ 0. If we
rewrite the density matrix element in terms of ε we obtain:

ρ(x, x
′
;β) = lim

P→∞
ε→0

( m

2πε~

)P/2 1

ZP

∫
dx2 · · · dxP

× exp

{
− ε
~

P∑
k=1

[
m

2

(
xk+1 − xk

ε

)2

+
1

2
(V (xk+1) + V (xk))

]}
(2.88)

In the limit P → ∞ and ε → 0 the intervals between the points
x1, x2, · · · , xP , xP+1 become infinitively small while the number of points becomes
infinite. We need to introduce a continuous function x(s) satisfying x(0) = x and
x(β~) = x

′ via the following identification:

xk = x(s = (k − 1)ε) (2.89)

In this continuous limit, we can write:

lim
ε→0

(
xk+1 − xk

ε

)
=
dx

ds
(2.90)
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as a consequence we have:

lim
ε→0

ε
P∑
k=1

[
m

2

(
xk+1 − xk

ε

)2

+
1

2
(V (xk+1) + V (xk))

]
=

∫ β~

0
ds

[
m

2

(
dx

ds

)2

+ V (x(s))

]
(2.91)

and we can define:

S[x] =

∫ β~

0
ds

[
m

2

(
dx

ds

)2

+ V (x(s))

]
(2.92)

S[x] corresponds to the action (the integral of the Lagrangian) in imaginary time.
The density matrix is obtained by integration over all paths x(s) satisfying x(0) = x

and x(β~) = x
′ weighted by exp(−S[x]/~).

The points x1, · · · , xP+1 comprise all the points of the function x(s) in the limit P →
∞ with x1 = x and xP+1 = x

′ . Thus, the integration over x2, · · · , xP constitues
an integration over all possible function x(s) that satisfy the endpoints conditions
x(0) = x and x(β~) = x

′ . This type of integration is referred to as functional
integration and is mathematically a delicate object. Indeed, the measure is known
for imaginary time propagation, not for real time. Symbolically, it is written as
follows:

lim
P→∞
ε→0

( m

2πε~

)P/2 ∫
dx2 · · · dxP =

∫
Dx(s) (2.93)

ρ(x, x
′
;β) =

1

Z

∫ x(β~)=x
′

x(0)=x
Dx(s) exp [−S[x]/~] (2.94)

We can now express the canonical partition function in the functional integral for-
malism as:

Z(β) =

∫
dx

∫ x(β~)=x

x(0)=x
Dx(s) exp [−S[x]/~]

=

∮
Dx(s) exp [−S[x]/~] (2.95)

where
∮
Dx(s) indicates that the functional integral is taken over all the possible

paths with x(0) = x(β~).

After this brief introduction on functional integrals formalism, we can present the
Centroid Molecular Dynamics (CMD) introduced by J. Cao in 1993 [32]. This is
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a technique for computing real-time quantum correlation functions. The primary
object in this approach is the path centroid defined as:

xc =
1

P

P∑
k=1

xk

=
1

β~

∫ β~

0
x(s) (2.96)

the second equation is true when we are in the continuous limit so when P →∞.
Feynman and Kleinert introduced in 1986 [15] the centroid potential of mean force
and the idea of CMD is based on the notion that the time evolution of the centroid
on this potential of mean force can be used to calculate approximate quantum
dynamical properties of a system. In CMD, coming back to the simple case of one
particle in one dimension, the centroid is postulated (approximation without any
justification) to evolve in time according to the following equations of motion:

dxc
dt

=
pc
m

(2.97)

dpc
dt

= −dV0(xc)

dxc
= F0(xc) (2.98)

where m is the physical mass of the particle, pc is a momentum conjugate to xc and
V0(xc) is the centroid potential of mean force given by:

V0(xc) = − 1

β
ln

[(
2πβ~2

m

)1/2

ρc(xc)

]
(2.99)

ρc(xc) =

∮
Dx(s)δ(x0[x(s)]− xc)e−S[x(s)]/~ (2.100)

where x0[x(s)] = 1
β~
∫
ds x(s).

V0(xc) corresponds to the exact excess quantum free energy of the centroid and
ρc(xc) is the centroid density and we can make the link with the canonical partition
function:

Z(β) =

∫
dxc ρc(xc) (2.101)

In equation 2.100, S[x(s)] is the action in imaginary time defined previously and the
δ function restrict the functional integration to cyclic paths whose centroid position
is xc. The centroid force at xc is derived by spatial differentiation from the equation
2.100 and given by:
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F0(xc) = −

∮
Dx(s)δ(x0[x(s)]− xc)

[
1
β~
∫ β~

0 ds
′
V
′
(x(s

′
))
]
e−S[x(s)]/~∮

Dx(s)δ(x0[x(s)]− xc)e−S[x(s)]/~ (2.102)

Although formally exact within the CMD framework equations 2.100 and 2.102
require a full path integral calculation at each centroid configuration, which is
computationally very demanding. The technical way to alleviate this problem
will not be discussed (is done via a normal mode transformation and an adiabatic
approximation [32, 24]). In CMD, the centroid potential of mean force is generated
"on the fly". However, one important thing to notice at this stage from the equation
2.100 is that the centroid potential is dependent on the temperature which as we
will see later (see Chapter 4) is a source of problems in CMD.

The key assumption of CMD is that the Kubo-transformed quantum time
correlation function KAB(t, β) can be approximate by the centroid dynamic by
(considering Â and B̂ operators of position only):

KAB(t, β) =
1

Z(β)

∫
dxc dpcA(xc)B(xc(t)) exp

[
−β
(
p2
c

2m
+ V0(xc)

)]
(2.103)

where B(xc(t)) is evaluated using the time evolved centroid variables generated by
the equations 2.97. A similar definition holds for operators function of momentum.
CMD is exact in the classical limit and in the purely harmonic case. Away from
these limits, position autocorrelation function are accurate for short times up to
O(t6) [24, 31].
Furthermore, CMD is computationally quite cheap because we do the dynamic of
the centroid of the polymer only. The quantity expensive to compute is the centroid
force but as explained before there are ways to calculate it "on the fly" and so the
numerical cost can be controlled. Similar to RPMD, the convergence to calculate
dynamical properties is quickly achieved and, for example, for IR spectra of simple
molecules, 30 trajectories are enough to obtain a converged spectra [52]. CMD
has been applied successfully to many quantum calculations such as the quantum
diffusion liquid para-hydrogen, neutron scattering ... [49, 53, 54].
However, the method lacks a rigorous justification in the sense that there is no
formal demonstration that this is the correct dynamic for the quantum system. As
a consequence, it can produce unexpected and pathological results. For instance, as
we are going to explain in more details in Chapter 4, IR spectra computed from CMD
are not reliable due to unphysical features originating from the force calculations.

2.4 Linearized methods

As we have seen previously, two popular quasiclassical methods exists, which, al-
though not formally justified, have the advantage of converging with a small num-
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ber of trajectories: centroid and ring polymer molecular dynamics. However, these
methods have also the drawback to present intrinsinc limitations which are difficult
to predict and mitigate. An alternative family of approaches instead, develops ap-
proximate quantum methods starting from the exact formulations of the problem
and developing algorithms from controlled formal manipulations. In particular our
method (PIM for Phase Integration Method), which I will present in the next Chap-
ter, and the methods described in this section are part of the so called linearized
methods. To set the stage for PIM, I will present first the linearization approxima-
tion in general and then the Feynman Kleinert Linearized Path Integral (FK-LPI)
method introduced by Poulsen and Rossky in 2003 [1] and the Linearized Semi-
Classical Initial Value Representation (LSC-IVR) method using the Local Gaussian
Approximation (LGA) introduced by Liu and Miller [13, 20].

2.4.1 The Linearized Path Integral (LPI) representation of quan-
tum correlation functions

I will present here the linearized path integral approximation on the standard quan-
tum correlation function but the idea is stricly the same for the Schofield or the
Kubo correlation functions.
We first recall the equation 2.64, which corresponds to the definition of the standard
quantum correlation function:

CAB(t, β) =
1

Z
Tr
[
e−βĤÂeitĤ/~B̂e−itĤ/~

]
(2.104)

where β = 1
kBT

and Z is the canonical partition function. We introduce resolutions
of identity in the coordinate basis to isolate matrix elements of the different oper-
ators. Thus, we shall make appear in particular a forward (denoted with x+) real
time path and a backward (denoted with x−) real time path.

CAB(t, β) =
1

Z

∫
dx+

P+1dx
−
P+1

∫
dx+

0 dx
−
0 〈x

+
0 |e
−βĤÂ|x−0 〉

× 〈x−0 |e
itĤ/~|x−P+1〉〈x

−
P+1|B̂|x

+
P+1〉〈x

+
P+1|e

−itĤ/~|x+
0 〉 (2.105)

We are going to focus on only the real time evaluation for the moment because
the linearized approximation is done on this part. The imaginary time part
of the correlation function will be described just after the LPI approximation.
Within the different linearized methods, this part is more difficult to calculate and
makes the originality of each method previously cited (PIM, FK-LPI and LSC-IVR).

We insert P times (where we consider P suffienctly high to be in the limit
P → ∞) the resolution of identity in the coordinate basis to "resolve" the forward
path 〈x+

P+1|e−itĤ/~|x
+
0 〉 and the backward path 〈x−0 |eitĤ/~|x

−
P+1〉 as:
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〈x+
P+1|e

−itĤ/~|x+
0 〉〈x

−
0 |e

itĤ/~|x−P+1〉 =

∫
dx+

1 · · · dx
+
P

∫
dx−1 · · · dx

−
P

× 〈x+
P+1|e

−iεĤ/~|x+
P 〉 · · · 〈x

+
1 |e
−iεĤ/~|x+

0 〉〈x
−
0 |e

iεĤ/~|x−1 〉 · · · 〈x
−
P |e

iεĤ/~|x−P+1〉
(2.106)

where ε = t
P+1 .

Then we insert P + 1 times the resolution of identity in the momentum basis to
the forward and backward paths which allow us to obtain a hybrid coordinate-
momentum path integral representation of the real time propagators. If we detail
this step of the calculation on one term of the forward path we have:

〈x+
k+1|e

−iεĤ/~|x+
k 〉 ≈ 〈x

+
k+1|e

− iε~
p̂2

2m e−
iε
~ V̂ |x+

k 〉 (2.107)

= 〈x+
k+1|e

− iε~
p̂2

2m |x+
k 〉e
− iε~ V (x+

k )

=
1

2π~

∫
dp+

k+1 〈x
+
k+1|e

− iε~
p̂2

2m |p+
k+1〉〈p

+
k+1|x

+
k 〉e
− iε~ V (x+

k )

=
1

2π~

∫
dp+

k+1 e
i
~p

+
k+1(x+

k+1−x
+
k )e−

iε
~

(p+
k+1

)2

2m e−
iε
~ V (x+

k )

For the backward path we simply have:

〈x−k |e
iεĤ/~|x−k+1〉 =

(
〈x−k+1|e

−iεĤ/~|x−k 〉
)∗

(2.108)

=
1

2π~

∫
dp−k+1 e

− i
~p
−
k+1(x−k+1−x

−
k )e

iε
~

(p−
k+1

)2

2m e
iε
~ V (x−k )

If we regroup all the terms, we obtain:

〈x+
P+1|e

−itĤ/~|x+
0 〉〈x

−
0 |e

itĤ/~|x−P+1〉 =
1

(2π~)2(P+1)

∫
dx+

1 · · · dx
+
P

∫
dx−1 · · · dx

−
P

×
∫
dp+

1 · · · dp
+
P+1

∫
dp−1 · · · dp

−
P+1 exp

[
i

~

P∑
k=0

(
p+
k+1(x+

k+1 − x
+
k )− p−k+1(x−k+1 − x

−
k )
)]

× exp

[
− i
~
ε

P∑
k=0

(
(p+
k+1)2

2m
−

(p−k+1)2

2m

)]
exp

[
− i
~
ε

P∑
k=0

(
V (x+

k )− V (x−k )
)]

(2.109)

Then we proceed to a change of variables with a mean and a difference variable:
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x̄k =
x+
k + x−k

2
(2.110)

p̄k =
p+
k + p−k

2
(2.111)

∆xk = x+
k − x

−
k (2.112)

∆pk = p+
k − p

−
k (2.113)

For k = 0 to P . In the new variables (the Jacobian of this change is equal to 1), we
have the following relations:

(p+
k+1)2 − (p−k+1)2 = 2p̄k+1∆pk+1 (2.114)
P∑
k=0

(
p+
k+1(x+

k+1 − x
+
k )− p−k+1(x−k+1 − x

−
k )
)

(2.115)

= p̄P+1∆xP+1 − p̄1∆x0 −
P∑
k=1

∆xk(p̄k+1 − p̄k) +
P∑
k=0

∆pk+1(x̄k+1 − x̄k)

Substituting in equation 2.109:

〈x+
P+1|e

−itĤ/~|x+
0 〉〈x

−
0 |e

itĤ/~|x−P+1〉 =
1

(2π~)2(P+1)

∫
dx̄1 · · · dx̄P

∫
dp̄1 · · · dp̄P+1

× exp

[
i

~
(p̄P+1∆xP+1 − p̄1∆x0)

] ∫
d∆x1 · · · d∆xP exp

[
− i
~

P∑
k=1

∆xk(p̄k+1 − p̄k)

]

× exp

[
− i
~
ε

P∑
k=0

(
V (x̄k +

∆xk
2

)− V (x̄k −
∆xk

2
)

)]∫
d∆p1 · · · d∆pP+1

× exp

[
− i
~
ε

P∑
k=0

p̄k+1∆pk+1

m

]
exp

[
i

~

P∑
k=0

∆pk+1(x̄k+1 − x̄k)

]
(2.116)

Then knowing that:

∫ +∞

−∞
dx e−ix(a−b) = 2πδ(a− b) (2.117)

we can notice the following simplification:
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∫
d∆p1 · · · d∆pP+1 exp

[
− i
~
ε

P∑
k=0

p̄k+1∆pk+1

m

]
exp

[
i

~

P∑
k=0

∆pk+1(x̄k+1 − x̄k)

]

= (2π~)P+1
P∏
k=0

δ
(
ε
p̄k+1

m
− x̄k+1 + x̄k

)
(2.118)

Then we can explicit the linearization approximation simply by saying that we
consider the forward and backward paths very close to each other. The mathematical
consequence of this assumption is that we can do a Taylor expansion of the potential
around the mean variable in coordinates. This is fully justified if we are at short time
(and exact for harmonic potential). Indeed, the paths are closed (with operators
diagonal in positions or momenta) at the endpoints, i.e. at time 0 and time t. So,
if we are at a time t close to 0 we can assume that the paths remain close to each
other between the endpoints which is not the case anymore if t is far from 0. It is
also possible to show (see [7, 55] for more details) that this is equivalent to an ~
expansion of the potential around the mean path. We have:

V (x̄k +
∆xk

2
) = V (x̄k) +

∆xk
2
∇V (x̄k) (2.119)

V (x̄k −
∆xk

2
) = V (x̄k)−

∆xk
2
∇V (x̄k) (2.120)

V (x̄k +
∆xk

2
)− V (x̄k −

∆xk
2

) = ∆xk∇V (x̄k) (2.121)

In our path integral formalism, the truncated expansion has the consequence to
make appear delta function in the part of the path integrals where the potential is
involved:

∫
d∆x1 · · · d∆xP exp

[
− i
~

P∑
k=1

∆xk(p̄k+1 − p̄k)

]

× exp

[
− i
~
ε

P∑
k=0

(
V (x̄k +

∆xk
2

)− V (x̄k −
∆xk

2
)

)]

=

∫
d∆x1 · · · d∆xP exp

[
− i
~

P∑
k=1

∆xk(p̄k+1 − p̄k)

]

× exp

[
− i
~
ε

P∑
k=1

∆xk∇V (x̄k)

]
exp

[
− i
~
ε∆x0∇V (x̄0)

]
(2.122)

Then it is straightforward to apply the same operation as before:
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∫
d∆x1 · · · d∆xP exp

[
− i
~

P∑
k=1

∆xk(p̄k+1 − p̄k)

]
exp

[
− i
~
ε

P∑
k=1

∆xk∇V (x̄k)

]
exp

[
− i
~
ε∆x0∇V (x̄0)

]

= (2π~)P
P∏
k=1

δ (p̄k+1 − p̄k + ε∇V (x̄k)) (2.123)

We can now regroup the results above in the correlation function expression:

CAB(t, β) =
1

2π~Z

∫
dx̄0 · · · dx̄P+1

∫
dp̄1 · · · dp̄P+1

∫
d∆x0d∆xP+1

×
〈
x̄0 +

∆x0

2

∣∣∣∣ e−βĤÂ ∣∣∣∣x̄0 −
∆x0

2

〉〈
x̄P+1 −

∆xP+1

2

∣∣∣∣ B̂ ∣∣∣∣x̄P+1 +
∆xP+1

2

〉
(2.124)

× exp

[
i

~
(p̄P+1∆xP+1 − p̄1∆x0)

] P∏
k=1

δ (p̄k+1 − p̄k + ε∇V (x̄k))

P∏
k=0

δ
(
ε
p̄k+1

m
− x̄k+1 + x̄k

)

Note that above we have dropped the term exp
[
− i

~ε∆x0∇V (x̄0)
]
. In the limit

P →∞ this amounts to neglecting one term in an infinite sum and does not affect
the result appreciably.
The variables x̄1 · · · x̄P+1 can now, one by one, be integrated out as follows. For
some value of x̄0 and p̄1, the delta function δ

(
ε p̄1

m − x̄1 + x̄0

)
fixes the value of x̄1.

Then the delta function δ (p̄2 − p̄1 + ε∇V (x̄1)) determines the value of p̄2 and so
on. In this manner all the variables are integrated out. More importantly, they
are, in addition, seen to fullfill, to first order in ε, the classical equations of motion
where ε is the time step. Thus, the value of x̄P+1 = xt and p̄P+1 are simply equal
to the classically propagated value of x̄0 = x0 and p̄1 = p0. We can rewrite the
remaining ∆ variable as ∆xP+1 = ∆xt and we arrive at the linearized path integral
representation of correlation functions:

CAB(t, β) =
1

2π~Z

∫
dx0dp0

∫
d∆x0d∆xt exp

[
i

~
(pt∆xt − p0∆x0)

]
×
〈
x0 +

∆x0

2

∣∣∣∣ e−βĤÂ ∣∣∣∣x0 −
∆x0

2

〉〈
xt −

∆xt
2

∣∣∣∣ B̂ ∣∣∣∣x̄t +
∆xt

2

〉
(2.125)

which can be written in a more compact way if we use the Wigner transform [56] of
a generic operator Ô:

OW (x, p) =

∫
d∆eip∆/~

〈
x− ∆

2

∣∣∣∣ Ô ∣∣∣∣x+
∆

2

〉
(2.126)

so:
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CAB(t, β) =
1

2π~Z

∫
dx0dp0

[
e−βĤÂ

]
W

(x0, p0)BW (xt, pt) (2.127)

This representation of quantum correlation function is exact for harmonic systems,
in the high temperature limit and in the short time limit [1, 55].
The general implementation of the equation 2.127 can be described as follows. The
LPI-CF is evaluated by first sampling x0 and p0 from the Wigner transform of
e−βĤÂ followed by classical propagation up to a time t. The Wigner transform of
B̂ is then evaluated with the phase-space arguments (xt, pt ). This is repeated for
a sufficiently large set of sampled initial conditions and the final result obtained
as the mean value over all the trajectories. By using the LPI approximation, we
have arrived at a simple path integral expression which does not suffer from any
sign problem connected to the real time dynamics of the system. However, there
is still an oscillatory phase or sign problem connected to the Wigner transform of
the Boltzmann operator, which is essentially a many-dimensional Fourier transform.
Ways to deal with this problem are the subject of the next sections.

2.4.2 The FK-LPI method

This method was first introduced Poulsen and Rossky in 2003 [1] and is based on the
calculation of the Wigner transform of the Boltzmann operator via the Feynman-
Kleinert method [15]. Then, this Wigner transform is utilized with the LPI represen-
tation of correlation functions described in the previous section. As a consequence,
we will present briefly in this section the way used to calculate the Wigner transform
of the Boltzmann operator used by Poulsen and Rossky [1, 34, 35, 36].
As we can see in the equation 2.127, we need to evaluate the Wigner transform of
e−βĤÂ, which is not, in general, possible. To circumvent this problem Poulsen and
Rossky used a method of representing the density operator in a semi-harmonic form
which can be Wigner transformed analytically. The approach is built on combining
two distinct theories: the first is the variational harmonic frequency representation
of path integrals as developed by Feynman and Kleinert [15]. The second is the cen-
troid constrained quasi density operator (QDO) formalism of Jang and Voth [33].
We start by focusing on the Wigner transform of e−βĤ alone. If we use the hy-
brid coordinate-momentum path integral representation and the functional integral
formalism, we have [1]:

exp
[
−βĤ

]
=

∫
dxdx

′ |x′〉ρ(x, x
′
;β)〈x| (2.128)

ρ(x, x
′
;β) =

∫ x(β~)=x
′

x(0)=x
Dx(s)Dp(s) exp [−S[x, p]/~] (2.129)

S[x, p] =

∫ β~

0
ds

(
T (p(s)) + V (x(s))− ip(s)dx

ds

)
(2.130)
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where T (p(s)) = p(s)2

2m .
Then, we can introduce in the Boltzmann operator a constraint over the centroid of
the path and the momentum centroid (xc = 1

β~
∫ β~

0 ds x(s) and a similar definition
for pc):

exp
[
−βĤ

]
=

∫
dxcdpc (2.131)

×

[∫
dxdx

′
∫ x(β~)=x

′

x(0)=x
Dx(s)Dp(s) δ(x̄− xc)δ(p̄− pc) exp

(
−S[x, p]

~

)
|x′〉〈x|

]

where x̄ and p̄ denote specific values of the path centroids.
The quantity inside the square bracket represent the part of the Boltzmann operator
where the centroid paths are constrained to xc and pc. Based on the idea of Feynman
and Kleinert [15], for these specific value, the action S[x, p] is localized around xc
and pc and therefore, a local harmonic approximation is reasonable. We transform
transform S[x, p] into a harmonic form using the following approximation of the
potential: 1

2mΩ2(xc)(x(s) − xc)2 + L1(xc) for V (x(s)). So the action has now the
following form:

S[x, p] =

∫ β~

0
ds

(
T (p(s)) +

1

2
mΩ2(xc)(x(s)− xc)2 + L1(xc)− ip(s)

dx

ds

)
(2.132)

The optimal frequency Ω(xc) and potential L1(xc) were derived by Feynman and
Kleinert [15], based on a variational approximation to the partition function. This
derivation will not be specified here but all we need to know is that these quantities
are optimized iteratively via a variational approach.
We can now obtaine an approximate expression for the thermal propagator:

exp
[
−βĤ

]
=

∫
dxcdpc

∫
dxdx

′
∫ x(β~)=x

′

x(0)=x
Dx(s)Dp(s) |x′〉〈x|δ(x̄− xc)δ(p̄− pc)

× exp

(
−1

~

∫ β~

0
ds

(
T (p(s)) +

1

2
mΩ2(xc)(x(s)− xc)2 + L1(xc)− ip(s)

dx

ds

))
(2.133)

Then, we can define the Feynman-Kleinert approximation to the centroid density
as:
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ρFK(xc, pc) = Tr

[∫
dxdx

′
∫ x(β~)=x

′

x(0)=x
Dx(s)Dp(s) |x′〉〈x|δ(x̄− xc)δ(p̄− pc)

× exp

(
−1

~

∫ β~

0
ds

(
T (p(s)) +

1

2
mΩ2(xc)(x(s)− xc)2 + L1(xc)− ip(s)

dx

ds

))]
(2.134)

The power of this approximation appears now in the sense that due to the fact that
the path integral contains a harmonic action, it can be explicitly evaluated, yielding
(not detailed here, see [1, 15] for more details) to:

ρFK(xc, pc) =
1

2π~
exp

[
−β
(
p2
c

2m
+W1(xc)

)]
(2.135)

Where the definition of the so-called centroid potential is:

W1(xc) = L1(xc) +
1

β
ln

[
sinh

(~
2βΩ(xc)

)
~
2βΩ(xc)

]
(2.136)

The Feynman-Kleinert approximation to canonical partition function is there-
fore:

ZFK =

∫
dxcdpc ρFK(xc, pc) (2.137)

We can also define the FK (Feynman-Kleinert) quasi-density operator (QDO) [33]:

δ̂FK(xc, pc) =
1

ρFK(xc, pc)

∫
dxdx

′
∫ x(β~)=x

′

x(0)=x
Dx(s)Dp(s) |x′〉〈x|δ(x̄− xc)δ(p̄− pc)

× exp

(
−1

~

∫ β~

0
ds

(
T (p(s)) +

1

2
mΩ2(xc)(x(s)− xc)2 + L1(xc)− ip(s)

dx

ds

))
(2.138)

By construction δ̂FK(xc, pc) is of unit trace, which allows us to write compactly:

exp
[
−βĤ

]
=

∫
dxcdpcδ̂FK(xc, pc)ρFK(xc, pc)

The interest of this approximation stems from the fact that we are not able to per-
form the Wigner transform of the full density operator but we can do it analytically
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on the QDO. An explicit formula of this QDO has been provided by Jang and Voth
[33]

δ̂FK(xc, pc) =

∫
dxdx

′ mΩ(xc)

π~α
|x′〉〈x| exp

(
−mΩ(xc)α

4~
(x
′ − x)2

)

× exp

 ipc
~

(x
′ − x)− mΩ(xc)

~α

(
x+ x

′

2
− xc

)2
 (2.139)

where α is defined as:

α = coth

(
Ω(xc)~β

2

)
− 2

Ω(xc)~β
(2.140)

and α takes values between zero and unity. We can now perform analytically the
Wigner transform of δ̂FK(xc, pc):

[δ̂FK(xc, pc)]W (x, p) =
2

α
exp

[
−mΩ(xc)

α~
(x− xc)2 − 1

mΩ(xc)α~
(p− pc)2

]
(2.141)

For large temperature, α→ 0 so x and p will be fixed at xc and pc. In that case, all
the samplings stay in ρFK(xc, pc). As ρFK(xc, pc) tends to the classical phase space
density in the high temperature limit, one obtains the classical density function. At
the other extreme, when T → 0, the xc and pc values sampled from ρFK(xc, pc) will
lie in the harmonic minimum, and all quantum fluctuations are determined from
equation 2.141 with α = 1.
From equation 2.141, the Wigner transform of the Boltzmann operator can be writ-
ten as: [

exp
[
−βĤ

]]
W

(x, p) =

∫
dxcdpc ρFK(xc, pc)

2

α

× exp

[
−mΩ(xc)

α~
(x− xc)2 − 1

mΩ(xc)α~
(p− pc)2

]
(2.142)

This is the key result of the FK-LPI method. From it, the Wigner transforms of
operators of the general form exp

[
−βĤ

]
Â are readily analytically evaluated if Â

is sufficiently simple. For example, if we consider the position operator Â = x̂, we
have:

[
exp

[
−βĤ

]
x̂
]
W

(x, p) =

∫
dxcdpc ρFK(xc, pc)

2

α

[
x+ i

p− pc
mΩ(xc)α

]
× exp

[
−mΩ(xc)

α~
(x− xc)2 − 1

mΩ(xc)α~
(p− pc)2

]
(2.143)
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And finally, if we want to calculate the position autocorrelation function, we obtain
from the equations 2.127 and 2.143:

CFK−LPIxx (t) =

∫
dxcdpc ρFK(xc, pc)

∫
dx0dp0

2

α

[
x0 + i

p0 − pc
mΩ(xc)α

]
xt

× exp

[
−mΩ(xc)

α~
(x− xc)2 − 1

mΩ(xc)α~
(p− pc)2

]
(2.144)

The practical computational procedure for calculating correlation function using
the FK-LPI method then goes as follows. First position and momentum centroids
are sampled from ρFK(xc, pc) . After that, x0 and p0 are sampled from equation
2.142. These are then propagated classically and the Wigner transform BW (xt, pt)

is constructed.
The FK-LPI method has been applied for example on the calculations of linear and
nonlinear correlation functions in Helium liquid [1, 37], liquid Neon [35] or liquid
para-hydrogen [38].

2.4.3 The Linearized Semiclassical Initial Value Representation
(LSC-IVR) method with a Local Gaussian Approximation
(LGA)

The LSC-IVR [21, 57, 22] approximation is stricly equivalent to the LPI approxi-
mation detailed before. The originality of the method develop by Liu and Miller
is to combine this approximation with the Local Gaussian Approximation (LGA)
[13, 20] for sampling the Wigner density. As a consequence, I will insist here on the
Local Gaussian Approximation and why it is a good method to compute Wigner
densities.
I remind the here the LSC-IVR approximation (or LPI) result for the standard
quantum correlation function in the multidimensional case:

CAB(t, β) =
(2π~)−N

Z

∫
dx0dp0

[
e−βĤÂ

[
W

(x0,p0)BW (xt,pt) (2.145)

where the Wigner transform has been defined in the equation 2.126, N is the
number of degrees of freedom and x0 = (x

(1)
0 , · · · , x(N)

0 ) (idem for p0).

Calculation of the Wigner function for operator B̂ in equation 2.127 is usu-
ally straightforward; in fact, B̂ is often a function only of coordinates or only of
momenta, in which case its Wigner functions is simply the classical function itself.
However, as shown in the previous section, calculating the Wigner transform of
e−βĤÂ is far from being trivial. Nonetheless, this is necessary in order to obtain
the distribution of initial conditions of coordinates x0 and momenta p0 for the real
time trajectories. Usually, local harmonic approximations of the potential (such
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as the Local Harmonic Approximation (LHA) of Shi and Geva [5], the FK-LPI of
Poulsen and Rossky [1], ...) are adapted and give good results to many quantum
simulations. These methods, however, fail when the imaginary local frequency
and temperature are such that β~|ω| ≥ π and so are not reliable for problems
dominated by potential barriers at low temperature.
The LGA for the momentum distribution attemps to remedy this problem by
modifying the LHA of Shi and Geva [5]. First a factorization of the diagonal matrix
element of the Boltzmann operator (which can be evaluated accurately by path
integral techniques) is performed in the Wigner function (or density) W (x, p):

W (x, p) =
1

2π~Z

∫
d∆x

〈
x− ∆x

2

∣∣∣∣ e−βĤ ∣∣∣∣x+
∆x

2

〉
eip∆x/~ (2.146)

W (x, p) =
1

2π~Z
〈x|e−βĤ|x〉

∫
d∆x

〈
x− ∆x

2

∣∣ e−βĤ ∣∣x+ ∆x
2

〉
〈x|e−βĤ|x〉

eip∆x/~ (2.147)

and then the LHA [5] is done for the ratio of off-diagonal elements to diagonal matrix
elements: 〈

x− ∆x
2

∣∣ e−βĤ ∣∣x+ ∆x
2

〉
〈x|e−βĤ|x〉

≈ exp
[
−mω

4~
coth(β~ω/2)∆x2

]
(2.148)

where ω is the local frequency so:

ω =

√
1

m

d2V

dx2
(2.149)

It is quite obvious in this expression that if the curvature of our potential is negative,
the local frequency will be imaginary. This the case of problems dominated by
barrier potentials such as the 1D problem of Eckart barrier [21, 20].
This approximation is exact for harmonic systems. The LHA of equation 2.148
makes the Fourier transform of the equation 2.146 analytical and gives us for the
Wigner distribution function within the LHA:

W (x, p) =
1

2π~Z
〈x|e−βĤ|x〉

(
β

2πmQ(u)

)1/2

exp

[
−β p2

2mQ(u)

]
(2.150)

where u = β~ω is a dimensionless parameter and :

Q(u) =
u/2

tanh[u/2]
(2.151)

is the so-called quantum correction factor.
In the high temperature limit, β → 0, the classical limit, ~→ 0, and the free particle
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limit, ω → 0, the parameter u → 0 and, as a consequence, the quantum correction
factor Q(u) → 1. In these limits, the equation 2.150 gives the classical momentum
distribution as expected.
In the region where the local frequency ω is imaginary, the parameter u becomes
imaginary and u = iui where ui = β�|ω|. Thus:

Q(u) = Q(iui) =
ui/2

tan[ui/2]
(2.152)

! !

Figure 2.6: Quantum correction factor Q(u). Imaginary frequencies i|ω| are shown
as −|ω| on the negative axis. Solid line: LHA and dashed line: LGA. The imaginary
frequency for ui = β�|ω| ≥ π is where the LHA’s Q(u) becomes negative.

Figure 2.6 shows this quantum correction factor Q(u) as the solid line for both
real and imaginary frequencies (on the positive and negative u axes, respectively),
and one sees the breakdown of the LHA in the imaginary frequency regime when
ui ≥ π. One simple ad hoc procedure to deal with the regime ui ≥ π is to set
Q(u) = 0 in this domain which also means that the momentum p = 0 since the
momentum distribution in equation 2.150 becomes an infinitely sharp Gaussian,
i.e., a delta function. However, momentum distribution even at low temperature
are not delta functions so this suggests that the quantum correction factor shown
in figure 2.6 should decrease smoothly to 0 as ui becomes greater that π as shown
by the dashed curve in figure 2.6. The Local Gaussian Approximation defines one
way to enforce this smooth approach to zero and constitutes the difference between
LHA and LGA. There are obviously many ad hoc choices one can make to modify
the quantum correction factor in the imaginary frequency regime . One reasonable
requirement is that it should agree with the harmonic result in equation 2.152 for
small u so:



2.4. Linearized methods 45

Q(u) ≈ 1 +
u2

12
+O(u4) (2.153)

for u real and imaginary. The form that Liu and Miller [20] found to be both simple
and to obey the previous equation is the following:

Q(u) =


u/2

tanh(u/2)
for real u

1

Q(ui)
=

tanh(ui/2)

ui/2
for imaginary u (u = iui)

(2.154)

which is plotted as the dashed line in figure 2.6. The utility of this ad hoc post
treatment of the LHA arises at low temperature for problems dominated by imagi-
nary frequencies.
Once we perform the LGA on the Wigner transform of the Boltzmann operator (or
Wigner density), we can obtain an expression for quantum time correlation func-
tions. Indeed, due to the LGA we can express analytically the Wigner transform of
e−βĤÂ as:

(
e−βĤÂ

)
W

= (2π~)〈x0|e−βĤ|x0〉
(

β

2πmQ(u)

)1/2

exp

[
−β p2

0

2mQ(u)

]
fA(x0, p0)

(2.155)

where

fA(x0, p0) =

∫
d∆x

〈x0−∆x
2 |e−βĤÂ|x0+ ∆x

2 〉
〈x0|e−βĤ|x0〉

eip∆x/~∫
d∆x

〈x0−∆x
2 |e−βĤ|x0+ ∆x

2 〉
〈x0|e−βĤ|x0〉

eip∆x/~
(2.156)

fA(x0, p0) can be calculated anatically if Â is simple enough. For example, if Â = x̂

fA(x0, p0) as the following expression:

fA(x0, p0) = x0 +
iβ~

2mQ(u)
p0 (2.157)

where Q(u) is the quantum correction factor previously defined.
Finally, the explicit form of the LSC-IVR correlation function with the LGA in one
dimension is given by:

CAB(t) =

∫
dx0
〈x0|e−βĤ|x0〉

Z

∫
dp0

(
β

2πmQ(u)

)1/2

exp

[
−β p2

0

2mQ(u)

]
fA(x0, p0)B(xt, pt)

(2.158)
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We can summarize the procedure to calculate the LSC-IVR correlation function
with the LGA as follows:

1. Use path integral Monte Carlo (PIMC) or path integral molecular dynamics

(PIMD) to calculate 〈x0|e−βĤ|x0〉
Z .

2. At specific intervals in the PIMC (or time steps in the PIMD), randomly select
one path integral bead as the initial configuration x0 for the real time dynamics
and calculate the local frequency.

3. The LGA gives the Gaussian distribution for the momentum
(

β
2πmQ(u)

)1/2

exp
[
−β p2

0
2mQ(u)

]
which is used to sample initial momentum p0 for real time

trajectories.

4. Run real time classical trajectories from phase space points (x0, p0) and es-
timate the property fA(x0, p0)B(xt(x0, p0), pt(x0, p0)) for the corresponding
time correlation function.

5. Repeat steps 2–4 and sum the property fA(x0, p0)B(xt(x0, p0), pt(x0, p0)) for
all real time classical trajectories until a converged result is obtained.
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2.5 Conclusion

To sum up this Chapter, we have described the path integral formalism and see
how it could be apply to the calculation of time-independent equilibrium properties.
Furthermore, the power of this formalism, conceptual and numerical, has been intro-
duced via the classical isomorphism which allows us to describe a quantum particle
as a "necklace" of classical particles.
In a second part, we introduced the different approximations used currently to com-
pute quantum time correlation functions. We first presented RPMD and CMD which
are two popular methods to calculate quantum correlation functions. The popular-
ity of these methods comes from the fact that they are numerically cheap and can
be applied successfully on many problems. However, for both methods, there is no
formal justification for the approximate dynamics and so they present limitations
which are difficult to predict. An alternative family of approaches instead, develops
approximate quantum methods starting from the exact formulations of the prob-
lem and developing algorithms from controlled formal manipulations. These are the
methods based on the LPI representation of quantum correlation function. We first
introduced the FK-LPI [1], this method is built on combining two distinct theories:
the first is the variational harmonic frequency representation of path integrals as
developed by Feynman and Kleinert [15]. The second is the centroid constrained
quasi density operator (QDO) formalism of Jang and Voth [33]. Then we presented
the LSC-IVR with the LGA introduced by Liu and Miller [20]. The LGA can be
seen as a patch to the LHA [5] to treat correctly local imaginary frequencies. The
LSC-IVR or LPI representation of quantum correlation function can treat both lin-
ear and nonlinear operators in a consistent way, can be applied to nonequilibrium as
well as the above equilibrium correlation functions, and can also be used to describe
electronically nonadiabatic dynamics, i.e., processes involving transitions between
several potential energy surfaces [7, 8, 12, 9, 18, 1, 34, 35, 36, 13, 39, 40, 20, 41, 19].
These merits of LPI representation fo correlation function make it a versatile tool
to study a variety of quantum mechanical effects in chemical dynamics of large
molecular systems.
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3.1 Wigner densities via the phase integration method
(PIM)

In 1932, Wigner introduced his representation of quantum operators to formulate
quantum statistical mechanics in a language with important analogies with the
classical case. Indeed, in Wigner’s representation, the average of a quantum operator
Â, defined as we have seen in Chapter 2 as Tr[ρ̂Â], where ρ̂ is the density operator of
the system, can be identically rewritten as an integral over momenta and coordinates
variables, thus:

〈Â〉 = Tr[ρ̂Â] =

∫
dqdp Aw(q, p)W (q, p) (3.1)

where we recall the definition of the Wigner transform of the operator Â:

Aw(q, p) =

∫
d∆

〈
q − ∆

2

∣∣∣∣ Â ∣∣∣∣q +
∆

2

〉
e
i
~p∆ (3.2)

In the equation 3.1, we also introduced the key quantity in this framework: the
Wigner transform of the density operator W (q, p), which has been already defined
in the previous Chapter (see equation 2.146). We recall here the definition:

W (q, p) =
1

2π~Z

∫
d∆rνe

i
~p∆rν

〈
q − ∆rν

2

∣∣∣∣ e−βĤ ∣∣∣∣q +
∆rν

2

〉
(3.3)



3.1. Wigner densities via the phase integration method (PIM) 51

where Z is the partition function and Ĥ = P̂ 2/2m + V (q̂) the Hamiltonian of
the system, which we will assume composed of distinguishable particles of mass
m. The subscript on the displacement variable, ∆rν , has been introduced for fu-
ture convenience. (One dimensional notation will be used for simplicity here and
in the following.) Unfortunately, W (q, p) is a real but not necessarily positive def-
inite function. This prevents its direct interpretation as a probability density and
compromises, to a large extent, the conceptual usefulness of the analogy between
Wigner’s formulation and classical statistical mechanics. Furthermore, while the
Wigner transform of common operators (functions of either coordinate or momenta
of the system) can be easily computed analytically, there is no analytical expression
forW (q, p) for systems subject to generic potentials. As discussed in Chapter 2, the
Wigner density is also extremely difficult to obtain via numerical methods mainly
due to the phase factor in its definition. In contrast, Feynman’s path integral for-
malism [14] provides a representation for average values that, thanks to the so called
classical isomorphism, is straightforwardly amenable to efficient classical simulation
methods [58]. This is indeed the reason why path integrals have emerged as the tool
of choice for computing quantum time independent averages.

In the past two decades, however, the interest in Wigner’s formalism has been
renewed in the context of developing methods for computing quantum time corre-
lation functions. Exact algorithms to solve this problem scale exponentially with
the number of degrees of freedom and cannot be used for realistic applications.
Thus, considerable efforts are currently devoted to develop computationally afford-
able approximations as we have explained in Chapter 2. Many of these are based on
the idea to combine sampling of the exact quantum thermal density with classical
trajectories. In particular, the so called linearisation schemes [2, 59, 4, 5, 1, 6] intro-
duced previously rely on sampling the Wigner transform of the thermal density (or,
more precisely, the Wigner transform of the density times an operator) to obtain a
set of initial conditions that are then evolved classically. The approximate correla-
tion function is computed by averaging, over the different trajectories, appropriate
observables. Although linearisation methods fail in highly quantum conditions (for
example when coherence dominates the dynamics), they have been shown to provide
surprisingly good results for condensed phase systems [34, 35, 36, 13, 20]. In fact,
these methods derive from an approximation to the full quantum evolution which
is valid for short times (the LPI approximation described in the previous chapter).
In the condensed phase, where the decay time of correlations can occur on even
shorter time scales, linearised methods can indeed prove effective. Unfortunately, as
we have seen in the previous Chapter, even when the approximation on the dynam-
ics is reliable, linearised calculations are non trivial, due to the difficulty to compute
the Wigner transform of the density to sample initial conditions. Different schemes
have been proposed to overcome this problem, as discussed already in Chapter 2.
Shi and Geva, for example, introduced a sampling scheme based on a local harmonic
approximation (LHA) of the potential that is often used for multidimensional sys-
tems [5], which was later modified – via an ansatz to treat imaginary frequencies
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– by Liu and Miller [20] via the LGA. Poulsen et al. [1] combined the variational
harmonic frequency path integral representation of Feynman and Kleinert [15] with
the centroid quasi density formalism developed by Jang and Voth [33] to obtain an
approximate form of the Wigner density which can be computed via a relatively
simple iterative scheme. Alternative approaches compute the Wigner function by
solving Bloch’s equation in phase space space by propagating in imaginary time
Gaussian phase space packets, starting from the classical Boltzmann distribution
(i.e. the high temperature limit of the Wigner density). This is the so called Gaus-
sian phase space packet (GPSP) approach recently proposed by Marinica et al. [60].
More recently, the quantum thermal bath method (QTB), proposed independently
by Dammak et al. [61] and Ceriotti et al. [62] and in which a generalized Langevin
equation with colored noise tuned to satisfy the fluctuation dissipation theorem is
used to thermalize the system, was suggested as an alternative method to generate
the Wigner density [16]. Although the methods just mentioned have proved success-
ful on given applications, they all introduce approximations that are often difficult
to control both from a theoretical and numerical point of view.

To make progress, we introduce and investigate a new sampling scheme for
the Wigner density, based on a non standard Monte Carlo method recently de-
veloped within the framework of time dependent quantum correlation function cal-
culations [8, 12]. To that end, we first rewrite the off diagonal density matrix in
Eq. 3.3 in a convenient path integral representation, and then employ a cumulant
expansion to control the phase factor. The path integral representation adopted and
the cumulant expansion are the key, original, features of our approach. We then test
the sampling scheme on a set of model problems of increasing complexity, and we will
show that it captures highly non classical effects, most notably quantum correlation
among positions and momenta (or even momenta of different degrees of freedom) of
the system. At variance with alternative schemes, the approach only contains nu-
merical approximations that can be systematically checked and improved upon. In
particular, the method relies on the convergence of the cumulant expansion. We will
show that, for the most physically meaningful examples considered, truncating this
expansion at second order suffices to reproduce benchmark results. However, the
convergence of the cumulant expansion (at infinite order) implies that the Wigner
density for the system is positive. Thus, since it is known that this property does
not always hold, there will be situations in which the cumulant expansion does not
converge. We then also consider a variation on the approach which substitutes cu-
mulants with an expansion of the density with respect to a convenient reference
probability [63]. This procedure is the analogous, in Fourier space, to the so-called
Edgeworth expansion [63] of the density, which can account for negative values of
the Wigner function and is known to have different, and often better, asymptotic
properties with respect to simple cumulants. In the following we shall refer to it as
an Edgeworth expansion.

The Chapter is organised as follows. In the Method section we express the
Wigner density in a form suitable for direct, even though non standard, Monte
Carlo sampling. We then introduce the expansion with respect to the reference
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probability and show how to write an appropriate estimator for the expression of
the Wigner density. Then I will described in a more detailed way how the algorithm
of the non-standard Monte Carlo scheme works [7, 8]. In the section Results, we
compare the Wigner density obtained for the set of models we have chosen (rang-
ing from a simple harmonic oscillator to a model system for a bound proton in an
A-H-B system) with reference quantum results and with some of the alternative
approximate methods mentioned above.

3.1.1 The PIM expression for the thermal Wigner density

Let us begin by inserting a resolution of the identity in the coordinate basis to
rewrite equation 3.3 as:

W (q, p) =
1

2π~Z

∫
d∆rν

∫
dr0 e

i
~p∆rν

〈
q − ∆rν

2

∣∣∣∣ e−β2 Ĥ ∣∣∣∣r0

〉〈
r0

∣∣∣∣e−β2 Ĥ ∣∣∣∣q +
∆rν

2

〉
(3.4)

In the exact same way as we described in the previous Chapter, the matrix elements
in the expression above can be represented in path integral form, via a symmetric
Trotter break up. In fact, repeating the steps that lead to the expression of an
off-diagonal element of the density matrix, we obtain:

〈
q − ∆rν

2

∣∣∣∣ e−β2 Ĥ ∣∣∣∣r0

〉
= Cν

∫
dy1 · · · dyν−1 exp

[
− 1

2σ2

ν−1∑
λ=0

(yλ+1 − yλ)2

]

× exp

[
−
δβ
2
V (yν)

]
exp

[
−
δβ
2
V (y0)

]
exp

[
−δβ

ν−1∑
λ=1

V (yλ)

]
(3.5)

and similarly we have:

〈
r0

∣∣∣∣e−β2 Ĥ ∣∣∣∣q +
∆rν

2

〉
= Cν

∫
dx1 · · · dxν−1 exp

[
− 1

2σ2

ν−1∑
λ=0

(xλ+1 − xλ)2

]

× exp

[
−
δβ
2
V (xν)

]
exp

[
−
δβ
2
V (x0)

]
exp

[
−δβ

ν−1∑
λ=1

V (xλ)

]
(3.6)

where δβ = β/2ν, σ2 = ~2δβ/m, Cν =
(
mν
πβ~2

)ν/2
, and with boundary conditions

y0 = x0 = r0, yν = q + ∆rν/2 and yν = q −∆rν/2. For equations 3.5 and 3.6, the
expression above becomes exact in the limit ν →∞ (ν here is the number of beads,
previously denoted as P ). We then introduce the change of variables:

rλ =
xλ + yλ

2
(3.7)

∆rλ = xλ − yλ (3.8)
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note that λ = 0, · · · , ν and with the definition above, rν = q and ∆r0 = 0. In
the new variables, equation 3.4 becomes:

W (q, p) =
C2
ν

2π~Z

∫
dr0 · · · drν−1

∫
d∆r1 · · · d∆rν e

i
~p∆rν

{
exp

[
− 1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2

]

× exp

[
−
σ2
p

2

ν−1∑
λ=0

(∆rλ+1 −∆rλ)2

]
exp

[
−
δβ
2

[V (rν +
∆rν

2
) + V (rν −

∆rν
2

)]

]

× exp

[
−δβ

ν−1∑
λ=1

[V (rλ +
∆rλ

2
) + V (rλ −

∆rλ
2

)]

]
exp [−δβV (r0)]

}
(3.9)

or

W (q, p) =
C2
ν

2π~Z

∫
dr

∫
d∆r e

i
~p∆rνW(r,∆r, q) (3.10)

where (in the first equation) we set σ2
r = ~δβ/2m, σ2

p = m/2δβ~, and (in the second)
we introduced the notation ∆r = {∆r1, ...,∆rν}, r = {r0, ..., rν−1}. We also defined
W(r,∆r, q) as the product of exponentials in the curly bracket on lines one,two and
three of the equation 3.9. To set the stage for the Monte Carlo scheme we intend
to apply, it is convenient to express the Wigner density as an expectation value. To
that end, we begin by using the identity:

W (q∗, p∗) =

∫
dqdp W (q, p)δ(q − q∗)δ(p− p∗) (3.11)

=
C2
ν

2π~Z

∫
dqdp

∫
dr

∫
d∆r e

i
~p∆rνW(r,∆r, q)δ(q − q∗)δ(p− p∗)

Introducing the δ functions in the expression above is not strictly necessary and
most of the considerations that follow could be modified to avoid it. However, writ-
ing the Wigner density as in equation 3.11 allows us to proceed in complete analogy
with previous work done with PIM [8, 12] to first introduce the cumulant expan-
sion mentioned before and detailed below, and then to construct the Monte Carlo
algorithm. This simplifies somewhat the discussion and, perhaps more importantly,
makes it possible to rely on the performance of the sampling algorithm introduced
in those references when discussing the scaling properties of the method. To set
the stage for our developments, note that W(r,∆r, q) is a positive definite quantity
which, barring a normalization factor N , can be interpreted as the joint probability
density for all coordinate variables {r,∆r, q}. (At this stage, it is in particular the
inclusion of q in the set of variables that simplifies manipulations.) Let us indicate
this density as:

ρ(r,∆r) =W(r,∆r)/N (3.12)



3.1. Wigner densities via the phase integration method (PIM) 55

with a supplementary simplification due to the fact that q = rν , we have now
r = {r0, ..., rν} .
or, more explicitely:

ρ(r,∆r) =
1

N
exp

[
− 1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2

]
exp

[
−
σ2
p

2

ν−1∑
λ=0

(∆rλ+1 −∆rλ)2

]
exp [−δβV (r0)]

× exp

[
−
δβ
2

[V (rν +
∆rν

2
) + V (rν −

∆rν
2

)]

]
exp

[
−δβ

ν−1∑
λ=1

[V (rλ +
∆rλ

2
) + V (rλ −

∆rλ
2

)]

]
(3.13)

We can express the density above in terms of marginal ρm(r) and conditional
ρc(∆r|r) probabilities defined as::

ρm(r) =

∫
d∆r ρ(r,∆r) (3.14)

=
1

N
exp

[
− 1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2

]
exp [−δβV (r0)]

∫
d∆r exp

[
−
σ2
p

2

ν−1∑
λ=0

(∆rλ+1 −∆rλ)2

]

× exp

[
−
δβ
2

[V (rν +
∆rν

2
) + V (rν −

∆rν
2

)]

]
exp

[
−δβ

ν−1∑
λ=1

[V (rλ +
∆rλ

2
) + V (rλ −

∆rλ
2

)]

]

and:

ρc(∆r|r) =
ρ(r,∆r)

ρm(r)
(3.15)

=
e−

σ2
p
2

∑ν−1
λ=0(∆rλ+1−∆rλ)2

e−
δβ
2

[V (rν+ ∆rν
2

)+V (rν−∆rν
2

)]e−δβ
∑ν−1
λ=1[V (rλ+

∆rλ
2

)+V (rλ−
∆rλ

2
)]∫

d∆r e−
σ2
p
2

∑ν−1
λ=0(∆rλ+1−∆rλ)2

e−
δβ
2

[V (rν+ ∆rν
2

)+V (rν−∆rν
2

)]e−δβ
∑ν−1
λ=1[V (rλ+

∆rλ
2

)+V (rλ−
∆rλ

2
)]

Using these notations we can rewrite our Wigner density as:

W (q∗, p∗) =
NC2

ν

2π~Z

∫
dp

∫
dr ρm(r)

[∫
d∆r e

i
~p∆rνρc(∆r|r)

]
δ(rν − q∗)δ(p− p∗)

(3.16)

Let us now consider more in detail the term in square brackets in the expression
above. Its logarithm is, by definition, the generating function of the random variable
∆rν with respect to ρc(∆r|r) [8]. The integral over the ∆r variables can then be
formally expressed as:

∫
d∆r e

i
~p∆rνρc(∆r|r) = e−E(p,r) (3.17)
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with

E(p, r) = −
∞∑
n=1

(−ip/~)n

n!
〈∆rnν 〉cρc(∆r|r) (3.18)

where 〈∆rnν 〉cρc(∆r|r) is the nth cumulant. Since, as it can be seen from the defi-
nition of ρ(r,∆r), ρc(∆r|r) = ρc(−∆r|r), only even order terms in equation 3.18
are non zero. Thus, when the cumulant series converges, E(p, r) is a real function
and the exponential in equation 3.17 is positive definite. This implies, see equation
3.19 below, that also the Wigner density is positive definite. It is however known
that there are systems (e.g. double well potential at low temperature) that have
a non positive definite Wigner density. For such systems, the writing above fails
because the cumulant series does not converge and our method cannot be applied.
Importantly however, this convergence can always be tested numerically (an ana-
lytical assessment of the convergence of the cumulant series, on the other hand, is
non trivial for generic potentials) ensuring control of the suitability and accuracy
of the method. In the following subsection we discuss an alternative scheme that is
applicable also for non positive definite Wigner densities. Substituting the cumulant
form of the ∆r integral in equation 3.16, we obtain:

W (q∗, p∗) =
NC2

ν

2π~Z

∫
dp

∫
dr ρm(r)e−E(p,r)δ(rν − q∗)δ(p− p∗) (3.19)

By reverse engineering the steps in equations 3.9-3.17 it is not difficult to see that:

NC2
ν

2π~Z

∫
dp

∫
dr ρm(r)e−E(p,r) = 1 (3.20)

thus:

W (q∗, p∗) = 〈δ(q − q∗)δ(p− p∗)〉P (3.21)

where the average is over the following quantity:

P(r, p) =
NC2

ν

2π~Z
ρm(r)e−E(p,r) (3.22)

P(r, p) =
ρm(r)e−E(p,r)∫

dp
∫
dr ρm(r)e−E(p,r)

(3.23)

Due to the fact that E(p, r) is a real function and the exponential in equation 3.17
is positive definite, P(r, p) fulfills all the conditions to be defined as a probability
density.
We will see in the next section how to deal with such a probability density from an
algorithmic point of view.
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Equation 3.19 can be most effectively read as the definition of an histogram
and calculated by generating a set of values of (rν , p) distributed according to
the probability density introduced above. This probability density is, however,
unusual since it contains two factors (ρm(r) and e−E(p,r)) that are, in general, not
known analytically. This poses a problem for the numerical sampling of P for
example via the standard Monte Carlo schemes such as the standard Metropolis
scheme [64]. Indeed, in the Metropolis algorithm, the probability density needs to
be known analytically in order to sample it. Notably, in general this probability
density does not factor in a term depending only on coordinates and one depending
only on momenta indicating that, in contrast to the classical distribution but
also to other available approximate approaches, our expression of the Wigner
density can account for correlation among these degrees of freedom. Perhaps even
more strikingly compared to the classical case, since for more than one degree of
freedom the cumulant expansion allows for coupling among different momenta, this
distribution can also manifest correlation among the momenta. We shall see in the
Results section that these features can be physically relevant.

3.1.2 Edgeworth expansion for the Wigner density

The manipulations presented above give, by construction, a positive definite Wigner
density. While this is usually not considered a serious problem for most realistic
applications (and indeed, essentially all existing approximation schemes have the
same limitation), it is interesting to explore alternative representations that can
reproduce also negative features of the Wigner density if they exist. To that end,
let us consider again the integral over ∆r at the left hand side of equation 3.17.
It is the characteristic function of the conditional probability ρc(∆r|r). We have
previously introduced a cumulant expansion of this quantity, which, for all practical
purposes, will be truncated in the following at second order thus approximating this
integral by a Gaussian in p, with an r dependent variance (covariance matrix in the
multidimensional case). By taking this Gaussian as a reference it is then possible
to trivially rewrite the integral as:

∫
d∆r e

i
~p∆rνρc(∆r|r) = e−

κ2
2
p2

~2

∫
d∆r e

κ2
2
p2

~2 e
i
~p∆rνρc(∆r|r), (3.24)

with κ2 = κ2(r) = 〈∆r2
ν〉cρc(∆r|r), the second order cumulant (κ2(r) = 〈∆r2

ν〉ρc(∆r|r)

because 〈∆rν〉ρc(∆r|r) = 0 due to the fact that ρc(∆r|r) is even in ∆rν). Using the
expansion [63]:

e
κ2
2
p2

~2 e
i
~p∆rν =

+∞∑
n=0

Hn

(
∆rν√
κ2

)
κ
n/2
2

n!

(
ip

~

)n
, (3.25)

(above Hn(x) is the nth Hermite polynomial, and we omitted the dependence of κ2
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on the coordinates to simplify the notation), we obtain:∫
d∆r e

i
~p∆rνρc(∆r|r) = e−

κ2
2
p2

~2

+∞∑
n=0

Cn
n!

(
ip

~

)n
(3.26)

with:

Cn =

∫
d∆r Hn

(
∆rν√
κ2

)
κ
n/2
2 ρc(∆r|r) (3.27)

Using the symmetry of the conditional probability ρc, all odd terms in the series at
the right hand side of equation 3.26 are equal to zero. By the choice of κ2, truncation
at n = 2 is identical to the truncation at second order in the cumulant expansion
considered in the previous subsection, since C2 = 0. The next term in the series
gives, recalling that H4(x) = x4 − 6x2 + 3:

∫
d∆r e

i
~p∆rνρc(∆r|r) = e−

κ2
2
p2

~2

(
1 +

C4

4!

(
ip

~

)4
)

(3.28)

with:

C4 =

∫
d∆r H4

(
∆rν√
κ2

)
κ2

2 ρc(∆r|r) (3.29)

=

∫
d∆r

(
∆r4

ν

κ2
2

− 6
∆r2

ν

κ2
+ 3

)
κ2

2 ρc(∆r|r)

=

∫
d∆r ∆r4

ν ρc(∆|r)− 3κ2
2

the fourth order cumulant of ρc.
Thus, truncating the expansion at the fourth power in p, we can approximate the
Wigner distribution as:

W (q∗, p∗) =
NC2

ν

2π~Z

∫
dp

∫
dr ρm(r)e−κ2(r) p

2

2~2

(
1 +

C4

4!

(
ip

~

)4
)
δ(rν − q∗)δ(p− p∗)

(3.30)

Since the Wigner distribution is normalized, the following condition should be en-
sured:

NC2
ν

2π~Z

∫
dp

∫
dr ρm(r)e−κ2(r) p

2

2~2

(
1 +

C4

4!

(
ip

~

)4
)

= 1 (3.31)

This condition is enforced by estimating the Wigner distribution as the ratio of
expectation values:

W (q∗, p∗) =

〈(
1 + C4

4!

(
ip
~

)4
)
δ(rν − q∗)δ(p− p∗)

〉
P2(p,r)〈(

1 + c4
4!

(
ip
~

)4
)〉
P2(p,r)

(3.32)
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where the sampling is performed on the probability distribution:

P2(r, p) =
ρm(r)e−κ2(r) p

2

2~2∫
dp
∫
dr ρm(r)e−κ2(r) p

2

2~2

(3.33)

The sampling is thus performed on the same distribution as for the original PIM
method (see previous subsection) when truncating at the second order in the cumu-
lant expansion. The correction is here included in the estimator, not in the sampling,
the more so since the correction term can take negative values and therefore so can
our estimator of the Wigner function. The changes in the sign of the estimator may
add extra noise in the evaluation of the Wigner distribution but it will be shown
in the next section that this noise can be controlled in many cases using the same
number of samplings as for the original PIM. When this is not the case, the correc-
tion still provides qualitative information on the existence of negative parts in the
Wigner density.
It should be noted that the expansion of the characteristic function proposed here
is equivalent by Fourier transform to the Gram-Charlier A-series of the conditional
probability ρc(∆r|r) or, after reordering of the terms, to the Edgeworth expansion
of this conditional probability, the two being identical for a symmetric distribution
when truncating at the fourth order [63]. Because of better convergence prop-
erties [63], the Edgeworth expansion would probably be more suitable would one
want to extend the expansion to higher order terms. Indeed, it has been shown, that
the Edgeworth expansion is a true asymptotic series so that the error is, at least in
principle, under control after truncation both when it converges and when it does
not [63, 65, 66]. In the following, we will refer to equation 3.32 as an "Edegworth
correction" to PIM.

3.2 Structure of the PIM algorithm

Sampling P(r, p) (or P2(r, p)) is non trivial since both ρm(r) and e−E(p,r) can only
be estimated numerically. Given their expressions, we will show that however, they
can be calculated as an average with an associated variance. Due to this standard
Monte Carlo methods, which rely on the analytical knowledge of the density, cannot
be directly applied. We are going to describe how to circumvent this problem by
combining two schemes for sampling "noisy" probability densities like the one in
equation 3.22. These methods are the penalty [10] and Kennedy [67] Monte Carlo
algorithms. Both schemes use two main steps: (1) appropriate, unbiased, numerical
estimators of the probability densities are defined to generate trial values for the
random variables; (2) the trial values are accepted or rejected based on a generalized
acceptance criterion which, on average, corrects for the effect of the noise.
For convenience in the description of the algorithm, we introduce the following
notations:
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e−Vr(r) = exp

[
− 1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2

]
(3.34)

e−V∆(∆r) = exp

[
−
σ2
p

2

ν−1∑
λ=0

(∆rλ+1 −∆rλ)2

]
(3.35)

e−δβ V̄ (r,∆r) = exp [−δβV (r0)] e−
δβ
2

[V (rν+ ∆rν
2

)+V (rν−∆rν
2

)]e−δβ
∑ν−1
λ=1[V (rλ+

∆rλ
2

)+V (rλ−
∆rλ

2
)]

(3.36)

which allow us to rewrite the marginal (ρm(r)), the conditional (ρc(∆r|r)) and the
noisy probability density in a more synthetic way as:

ρm(r) =

∫
d∆r ρ(r,∆r) (3.37)

=
1

N
e−Vr(r)

∫
d∆r e−δβ V̄ (r,∆r) (3.38)

=
1

N
e−Vr(r)ρ

′
m(r) (3.39)

ρc(∆r|r) =
ρ(r,∆r)

ρm(r)
(3.40)

=
e−V∆(∆r)e−δβ V̄ (r,∆r)∫

d∆r e−V∆(∆r)e−δβ V̄ (r,∆r)
(3.41)

P(r, p) =
e−Vr(r)ρ

′
m(r)e−E(p,r)∫

dp
∫
dr e−Vr(r)ρ′m(r)e−E(p,r)

(3.42)

As stated before, our goal is to sample numerically P (note that p and r in this prob-
ability density are not independent and have to be treated together in the sampling).
We use a Monte Carlo scheme in which the probability to generate a new state of the
system (by changing momenta or coordinates of a particle) and accept/reject this
new state is generalized to statisfy the detailed balance even in the presence of sig-
nificant noise in the estimates of ρ′m(r) and E(r, p). I will present first the important
steps of the algorithm and the two different noisy Monte Carlo schemes (Penalty
and Kennedy methods) and then show how we calculate the different estimators
that we need for our algorithm.

3.2.1 Structure of the algorithm

The first step of the algorithm is to choose if we move the momentum or coordinates.
Let us consider that we move the momentum. In this case, we choose p′ = p+δp , δp
being an uniform random vector centered at zero (the magnitude of the displacement
is chosen so as to optimize the acceptance). With this prescription, keeping into
account that the r variables are not being updated, detailed balance takes the form:
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P(r, p)T p(p→ p
′
)P pacc(p→ p

′
) = P(r, p

′
)T p(p

′ → p)P pacc(p
′ → p) (3.43)

where P pacc is the acceptance probability of the displacement and T p the, uniform,
transition probability.

We can manipulate the previous equation by simplifying all the terms which
depend exclusively of r in P(r, p) and using the fact that, for uniform displacement,
we have T p(p→ p

′
) = T p(p

′ → p) = 1
∆ if |p′ − p| < ∆

2 . Thus equation 3.43 becomes

e−E(p,r)P pacc(p→ p
′
) = e−E(p

′
,r)P pacc(p

′ → p) (3.44)

This detailed balance is similar to the one considered by Ceperly et al. [10]when
they introduce the penalty method. This is in fact a generalized Monte Carlo for
sampling a density given by the exponential of a function known with a statistical
error (in our case E(p, r)). In this case the procedure is the following, if we have a
probability density P(s) of this form:

P(s) ∝ e−L(s) with L(s) estimated (3.45)

Then we perform the calculation of the difference of the exponent at the current,
s, and proposed,s′ , state N times (as L(s) is estimated the result will be different
each time we calculate this quantity) and take the average and the variance of this
quantity. Thus, we compute

δi(s, s
′
) = Li(s

′
)− Li(s) (3.46)

D(s, s
′
) =

1

N

N∑
i=1

δi(s, s
′
) (3.47)

χ2(s, s
′
) =

1

N(N − 1)

N∑
i=1

(D(s, s
′
)− δi(s, s

′
))2 (3.48)

where i = 1, · · · , N .
According to Ceperly et al. [10], asymptotic sampling of P(s) is achieved by using
an acceptance probability of following form:

a(s→ s
′
) = min

[
1, exp(−D(s, s

′
)− uχ2)

]
(3.49)
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with

uχ2 =
χ2

2
+

χ4

4N + 1
+

χ6

3(N + 1)(N + 3)
+ · · · (3.50)

This acceptance test differs from the standard Metropolis rule for the presence of
uχ2 and is valid when χ2

4 ≤ 1: in the limit of an infinitively precise estimate of the
difference uχ2 → 0 we are in the case of the Metropolis algorithm, when it is non 0,
uχ2 corrects, on average, for the effect of the noise.

In our situation, we have:

P(r, p) ∝ e−E(r,p) with E(r, p) estimated (3.51)

In order to implement the penalty method, we need a numerical estimator,
∆Ep(p, p

′
; r), of the difference E(r, p

′
) − E(r, p) to be used in equation 3.51. This

quantity will be discussed in the section 3.2.2.
We now move to see what is required instead to sample a coordinate change in our
Monte Carlo. In this case, indicating with T r(r → r

′
) and Ar(r → r

′
) the prob-

ability to generate and accept a new configuration for the system (respectively),
detailed balance becomes:

P(r, p)T r(r→ r
′
)Ar(r→ r

′
) = P(r

′
, p)T r(r

′ → r)Ar(r
′ → r) (3.52)

Using the explicit form of P and simplifying we have:

e−Vr(r)e−E(r,p)ρ
′
m(r)T r(r→ r

′
)Ar(r→ r

′
) =

e−Vr(r
′
)e−E(r

′
,p)ρ

′
m(r

′
)T r(r

′ → r)Ar(r
′ → r) (3.53)

As for the p displacement, we have a probability density which is known within some
numerical estimates. Nevertheless, the numerical complexity of the calculation of P
is increasing in this case. Indeed, we have:

P(r, p) ∝ ρ′m(r)e−E(r,p) with E(r, p) and ρ
′
m(r) estimated (3.54)

Given the non exponential form of the probability in detailed balance, we cannot
simply apply the Penalty method previously described but we have to combine this
method with another method introduced by Kennedy et al. [11] who adapted Monte
Carlo procedure for the following case:
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P(s) ∝ f(s)e−L(s) with f(s) estimated and L(s) known analytically (3.55)

Kennedy et al. showed that choosing the transition probability as:

T (s→ s
′
) ∝ e−L(s

′
) (3.56)

Detailed balance is simplified to:

f(s)A(s→ s
′
) = f(s

′
)A(s

′ → s) (3.57)

This can be satisfied by defining the acceptance probability as:

A(s→ s
′
) =

{
c U(s→ s

′
) if ”s > s

′
”

c if ”s ≤ s′”
(3.58)

where U(s→ s
′
) is a numerical estimate of f(s

′
)

f(s) .

Note that equation 3.58 depends on the ratio f(s
′
)

f(s) and a specific ordering criterion
s > s

′(its particular form will be specified for our case) and guarantees that detailed
balance is satisfied even in the presence of noise with a parameter to adjust the
acceptance probability between 0 and 1. Indeed, c < 1 is a constant that ensures
A(s→ s

′
) ∈ [0, 1].

In our case the Kennedy method is implemented defining:

T r(r→ r
′
) ∝ e−Vr(r

′
)e−E(r

′
,p) (3.59)

And the detailed balance is satisfied if the acceptance probability is of the following
form and indicating the ordering criteria as ”r > r

′
” and ”r ≤ r

′
”:

Ar(r→ r
′
) =

{
c U(r→ r

′
) if ”r > r

′
”

c if ”r ≤ r
′
”

(3.60)

In the equation 3.60, U(r → r
′
) is an unbiased estimator of the ratio ρ

′
m(r
′
)

ρ′m(r)
. Nu-

merical tests have shown that, for our calculations, we can set c = 0.9 (c is choosen
in a way that we do not have often, around 1% maximum, Ar(r → r

′
) > 1). The

optimal choice of the ordering criteria, ”r > r
′
” and ”r ≤ r

′
” ", depends on the

problem, here we adopted ”r > r
′
” equivalent to e−δβV(r,∆r=0) > e−δβV(r

′
,∆r=0).

When introducing the Kennedy procedure, I specified that e−L(s) is assumed to be
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known analytically. This is postulated in the original method to allow sampling of
the transition probability either analitycally or via standard Monte Carlo. In our
case, the condition is not met because e−E(r,p) is only known numerically. We can
however solve this problem by using first the Penalty method to generate configu-
rations according to T r(r → r

′
) ∝ e−Vr(r

′
)e−E(r

′
,p). These configurations are thus

generated using a Monte Carlo with transition probability t(r→ r
′
) and acceptance

probability a(r→ r
′
):

e−Vr(r)e−E(r,p)t(r→ r
′
)a(r→ r

′
) = e−Vr(r

′
)e−E(r

′
,p)t(r

′ → r)a(r
′ → r) (3.61)

t(r→ r
′
) ∝ e−Vr(r

′
) (3.62)

e−E(r,p)a(r→ r
′
) = e−E(r

′
,p)a(r

′ → r) (3.63)

a(r→ r
′
) = min

[
1, exp(−∆Er(r

′
, r; p)− uχ2

r
)
]

(3.64)

where ∆Er(r
′
, r; p) is a unbiased numerical estimate of E(r, p)−E(r

′
, p) and uχ2

r
is

defined in analogy with equations 3.49 and 3.50.
Here we have t(r → r

′
) ∝ e−Vr(r

′
) which means that we have to sample our tran-

sition probability along a spring chain in the r variables and so we have to use a
Gaussian sampling and the staging variables [25]. I present the technical aspects of
that in the Appendix B.
In figure 3.1, the scheme of our Monte Carlo moves is summarized. In the next
subsection we define the different numerical estimators ∆Er(r

′
, r; p), U(r→ r

′
) and

∆Ep(p, p
′
; r) required by the algorithm.

3.2.2 Definition and evaluation of the numerical estimators

As it will become clear from equations 3.69, 3.72 and 3.75, in order to compute the
unbiased numerical estimators ∆Er(r

′
, r; p), U(r→ r

′
) and ∆Ep(p, p

′
; r), we need an

auxiliary Monte Carlo procedure on the ∆r variables over the conditional ρc(∆r|r).
In this procedure we satisfy the detailed balance when:

ρc(∆r|r)T (∆r→ ∆r
′
)A(∆r→ ∆r

′
) = ρc(∆r

′ |r)T (∆r
′ → ∆r)A(∆r

′ → ∆r)

(3.65)

e−V∆(∆r)e−δβ V̄ (r,∆r)T (∆r→ ∆r
′
)A(∆r→ ∆r

′
) =

e−V∆(∆r
′
)e−δβ V̄ (r,∆r

′
)T (∆r

′ → ∆r)A(∆r
′ → ∆r) (3.66)

We generate the new configuration according to T (∆r → ∆r
′
) ∝ e−V∆(∆r

′
). This

can be done with the staging algorithm [25] (see Appendix B). The detailed balance
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Figure 3.1: Schematic representation of the Monte Carlo moves in the algorithm
(for the multidimensional algorithm but it is identical for the 1D case): the penalty
scheme for momenta moves and the combined penalty+Kennedy scheme for coordi-
nate moves are represented on the left and right of the diagram, respectively. The
numerical estimators which require auxiliary Monte Carlo on the ∆r variables are
doubly underlined.
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can be now simplified to:

e−δβ V̄ (r,∆r)A(∆r→ ∆r
′
) = e−δβ V̄ (r,∆r

′
)A(∆r

′ → ∆r) (3.67)

In this case, we can use the standard Metropolis algorithm and we have an accep-
tance probability with the following expression:

A(∆r→ ∆r
′
) = min

[
1, e

−δβ
(
V̄ (r,∆r

′
)−V̄ (r,∆r)

)]
(3.68)

The need of this auxiliary Monte Carlo becomes clear if we look at the definition
of U(r→ r

′
). Indeed, U(r→ r

′
) is defined as the ratio of the marginal probabilities:

ρ
′
m(r

′
)

ρ′m(r)
=

∫
d∆re−V∆(∆r)e−δβV̄(r

′
,∆r)∫

d∆re−V∆(∆r)e−δβV̄(r,∆r)

ρ
′
m(r

′
)

ρ′m(r)
=

∫
d∆re−V∆(∆r)e−δβV̄(r,∆r)

[
e
−δβ

(
V̄(r

′
,∆r)−V̄(r,∆r)

)]
∫
d∆re−V∆(∆r)e−δβV̄(r,∆r)

ρ
′
m(r

′
)

ρ′m(r)
=

〈
e
−δβ

(
V̄(r

′
,∆r)−V̄(r,∆r)

)〉
ρc(∆r|r)

(3.69)

This quantity is sampled via the auxiliary Monte Carlo which allows us to calculate
our unbiased estimator U(r→ r

′
) as:

U(r→ r
′
) =

1

N

N∑
k=1

e
−δβ

(
V̄(r

′
,∆rk)−V̄(r,∆rk)

)
(3.70)

where k = 1, · · · , N and N is the number of Monte Carlo step used to sample ∆r

according to ρc(∆r|r).

Let us now consider ∆Ep(p, p
′
; r) = E(r, p

′
) − E(r, p). Since in all calcula-

tions discuss in the following it was sufficient to consider a second order cumulant
expansion, we shall limit the discussion of the estimator to this case. Up to second
order we have:

E(r, p) ≈ 1

2
C2(r)p2 (3.71)

with

C2(r) = 〈(∆rν)2〉ρc(∆r|r) (3.72)
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The auxiliary Monte Carlo is required to compute C2(r) because it is a mean value
over ρc(∆r|r). Indeed:

C2(r) =
1

N

N∑
k=1

(∆rν,k)
2 (3.73)

and

∆Ep(p
′
, p; r) =

1

2
C2(r)(p

′2 − p2) (3.74)

where N is still the number of Monte Carlo steps used to sample ∆r.
It remains to specify the last estimator that we need for our algorithm,
∆Er(r

′
, r; p) = E(r

′
, p)− E(r, p). From its definition, this is given by:

∆Er(r
′
, r; p) =

1

2
p2(C2(r

′
)− C2(r)) (3.75)

where C2(r
′
) and C2(r) are sampled from two different independant averages over

the probability densities ρc(∆r|r′) and ρc(∆r|r) respectively. Nevertheless, if we
proceed in this way the final variance is the sum of the two independent variances.
This may severely reduce the acceptance probability in other cases. However, to
avoid this issue, we can define an alternative estimator which will be presented in
the Appendix A for the multidimensional calculations. Indeed, this is not an issue
for all the calculations presented in this Chapter due to the fact that models for
which we compute Wigner densities in the following are 1D and 2D model cases.
Nonetheless, rigorously for 2D model case, we have to refer to the multidimensional
notations introduce in the Appendix A. This conclude our remarks on the algorithm
section.
In the following, we will quantify the numerical cost of our tests by considering the
total number of samplings computed as NT = NM ×N , where NM is the number of
Monte Carlo steps in the main cycle, i.e. the number of generated samples for (r, p).
Convergence was obtained using NM of the order of 5 × 106 steps for 1D systems
and 10× 106 steps for 2D systems. N , the number of steps in the auxiliary Monte
Carlo, was set to 500 steps except when noted otherwise.

In all cases we have performed convergence tests on the number of beads, ν in
equations 3.34. Depending on the potential and the temperature, convergence was
achieved with ν equal to 16 beads (or slices) at 800 K, 33 beads at 300 K, and ν in
the range 64 to 133 beads at 100 K. Sampling of the r and ∆r was performed using
staging variables, setting the Monte Carlo parameters such that the acceptance ratio
is about 40%.
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3.3 Results

In this section we compare the Wigner density computed with PIM and with
PIM+Edgeworth correction to benchmark results and to the results of calculations
performed with alternative approximate schemes. With PIM, assuming that
the cumulant expansion converges, the only approximation we introduce is the
truncation of the series in equation 3.18 at second order. Similarly, in calculations
with Edgeworth, a truncation of the series in equation 3.26 to order 4 is enforced,
so we use equation 3.32 as estimator of the Wigner density.
To obtain benchmarks, for one dimensional problems, we employed the Numerov
method [68] to solve the one-dimensional time-independent Schrödinger equation.
The calculated eigenfunctions and eigenenergies were then used to compute the
density matrix and its Wigner transform on a two dimensional regular grid. For
systems with two degrees of freedom, the eigenfunctions and eigenenergies were
obtained using a numerically complete (256 basis set elements) expansion on the
2D harmonic oscillator eigenfunctions and a Gauss-Hermite quadrature to evaluate
the necessary integrals. Also in this case the density matrix was then computed on
a regular grid and its Wigner transform obtained using a fast-Fourier transform
procedure.

3.3.1 Harmonic oscillator

We begin by testing the PIM algorithm on a simple one dimensional harmonic
oscillator of the form V (q) = 1

2mω
2q2, with m = 1 amu and ω = 3000 cm−1. For

this system, the method is exact (including truncation of the cumulant expansion)
so the calculations we present are intended as a test of the algorithm. The exact
expression for the Wigner density

Wex(q, p) =
tanh(f)

π~
e−tanh(f)[mω~ q2+ 1

mω~p
2] (3.76)

is also available for this system (f = 1
2β~ω) and will be used for comparisons.

We first try the method at the relatively high temperature T=1000 K. This is still
not the classical limit for this oscillator, but at this temperature convergence of our
estimators with respect to the number of beads is not hard simplifying equilibration
and sampling. Indeed, we find that ν = 16 beads is enough to converge the result.
In Figure 3.2, we show on the left/right panel the results for the Wigner density
integrated over momenta/coordinate, so, for example,

Wp(p) =

∫
dq W (q, p) (3.77)

(in the following, we shall refer to these integrated Wigner transforms as "marginal"
densities). In the figure, the solid black curve is the exact result, while the solid
green curve is the result of our calculation with NT ≈ 2×109 Monte Carlo steps. We
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also report, as the dashed black curve, the Boltzmann distributions of coordinates
and momenta to show that we are far from the classical regime. As it should be, we
are in excellent agreement with the exact results. The same quality of agreement
is obtained, with the same number of Monte Carlo steps, at the considerably lower
temperature T=100 K, as shown in Figure 3.3. In the figure, where the dashed curve
is the classical result as before and the solid black curve is the exact result, we show
convergence our estimator with the number of beads. Interestingly, Wq(q) seems
to converge faster than Wp(p), requiring about half the number of beads. More in
detail, for Wq(q) we obtain results very close to the exact result indifferently with
64, 133 or 256 beads (number of beads for polymer in r so the total number of
beads in the r and ∆r variables is 2×64, 2×133 and 2×256). Nevertheless, results
for Wp(p) show that we need to use 133 beads to have a result that matches the
exact one, while 64 beads give a Wp(p) that is slightly too narrow.
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Figure 3.2: (left) Integrated Wigner function Wq(q) for a harmonic oscillator at T
= 1000 K, computed exactly (plain line in black) and with PIM for different beads
values. (right) Same for the integrated Wigner function Wp(p).
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Figure 3.3: (left) Integrated Wigner function Wq(q) for a harmonic oscillator at T
= 100 K, computed exactly (plain line in black) and with PIM for different beads
values. (right) Same for the integrated Wigner function Wp(p).
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3.3.2 Morse potential

The next one dimensional system that we consider is the (anharmonic) Morse po-
tential

V (q) = D ×
[
e−2αq − 2e−αq

]
+Dζ(q) (3.78)

with D = 20 Kcal mol−1, α = 2.5 Å−1, ζ(q) = 1 (q ≤ 2.5 Å), ζ(q) = e10×(q−2.5) (q >
2.5 Å). This potential is a simple model for a bound proton with an additional term
introduced to prevent dissociation. With the chosen parameters, the anharmonicity
of the potential is quite strong and our method is no longer exact. We begin by
considering a high temperature case in which the system is essentially in the classical
limit. Figure 3.4 shows a comparison among our results (blue curve) and reference
calculations (black curve). The two curves are superimposed for both "marginal"
Wigner densities. We also show in red the results obtained with the QTB method.
The Wp(p) and Wq(q) computed with QTB show a small, but visible, shift with
respect to the exact results suggesting possible inaccuracies of the method also close
to the classical limit. The problem with QTB becomes even more apparent if we
consider the results shown in Figure 3.5, which refer to the same potential but at
the lower temperature T=100 K. In this highly non classical case (see black dashed
curve, Boltzmann distribution for the system), we find that the marginals computed
via QTB, red curves in both panels, are close but appreciably different from the
exact result, black curve. In particular, the shift in the position of the maximum
of the coordinate distribution is now clearly visible. On the other hand, results
obtained with PIM are closer to the exact ones both when the standard cumulant
approximation is used (blue curve) and when the Edgeworth correction is included.
Indeed, this correction is essentially irrelevant for the coordinate Wigner density,
while it improves slightly the shape of the momentum distribution on the tails. The
most striking improvement introduced by our method can, however, be appreciated
considering the results shown in Figure 3.6 where we report the Wigner density
computed as a function of the momenta for three different, fixed, values of the
coordinates: q = 0.1 Å (data in green), q = 0.0 Å (data in red), q = −0.1 Å (data
in black). In this figure, for each value of the coordinate, dashed lines indicate
reference results while solid lines (of the same color) are the corresponding PIM
results. Results for QTB are shown as filled squares. The reference results show a
clear dependence between the p and q variables in the density. This dependence is
captured by PIM, which is quite close to the exact result in all cases, but completely
missed by QTB which displays a factorized form for the probability in coordinate and
momenta. As mentioned in the previous section, we do not make this assumption
and correlation, if it exists, is maintained at least approximately via the use of the
cumulant expansion. This is the first example in which such correlation is significant.

3.3.3 Proton transfer model

We now test PIM on the following generic potential for symmetric/asymmetric A-
H-B hydrogen bonds introduced by Marinica et al. [60]. Its form is a mixture of the
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Figure 3.4: (left) Integrated Wigner function Wq(q) for a Morse potential at T =
3000 K, computed exactly (plain line in black), with PIM (blue curve), and QTB
(red curve). The insets zooms in the region near the maximum. (right) Same for
the integrated Wigner function Wp(p).
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Figure 3.5: (left) IntegratedWigner functionWq(q) for a Morse potential at T = 100
K, computed exactly (plain line in black), with PIM (blue curve), PIM+Edgeworth
(orange curve), and QTB (red curve). (right) Same for the integrated Wigner func-
tion Wp(p).
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Figure 3.6: Cuts of the Wigner function Wc(p; q) for a Morse potential at T = 100
K for different values of q.

H-bond potential introduced by Lippicott and Schroeder [69, 70] and the double-
Morse model of Matsushita and Matsubara [71] :

V (q,Q) = D
[
e−2α(Q2 +q−d) − 2e−α(Q2 +q−d) + 1

]
+Dξ2

[
e
−2α

ξ (Q2 −q−d) − 2e
−α
ξ (Q2 −q−d)

]
+Ae−BQ − C

Q6
(3.79)

The parameters in the potential are taken from Ref. [60]: D = 60 kcal mol−1, α =

2.52 Å−1, d = 0.95 Å, A = 2.32×105 kcal mol−1, B = 3.15 Å−1 and C = 2.31×104

kcal mol−1 Å6, irrespective of the symmetric/asymmetric nature of the molecule.
Within this model, q represents the distance of the proton from the center of the
A-B bond and Q is the A-B distance. For ξ = 1, the proton potential is symmetric
and the parameters chosen for the Morse potentials result in a potential without
barrier for Q less than 2.45 Å and a proton frequency of 3750 cm−1 at infinite O-O
distances. The other parameters are adjusted to have an equilibrium O-O distance
of 2.4 Å, an energy of formation of 35 kcal.mol−1, and a O-O force constant of
320 kcal.mol−1.Å−2, as for a H5O+

2 dimer. Such parameters are typical of O-H+-O
proton transfer system. In Figure 3.8, left panel, we show the 2d contour plot of
the potential (top part) and the shape of the potential energy for the transferring
proton at a set of relevant values of the A-B distance (bottom part). In the bottom
part of the figure, we see that at the equilibrium distance Q = 2.45 Å (red curve)
the potential resembles a quartic interaction with no barrier to proton transfer,
while at larger distances, e.g. Q = 2.75 Å (green curve), a barrier to proton
transfer appears. At shorter distances the symmetric configuration, q = 0 Å, is a
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narrow minimum with quadratic character. A different situation can be represented
by setting ξ = 0.707, all other parameters unchanged. In this case, the potential
mimics an asymmetric O-H-N hydrogen bond with an equilibrium O-N distance of
Q = 2.75 Å. The right panel of Figure 3.8 displays the contour plot (upper part
of the figure) and the potential energy for the proton for fixed values of the A-B
distance (lower part of the figure). It can be seen that in this model localisation of
the proton on the oxygen site is favoured by about 15 kcal/mol. This simple two
dimensional model of strong hydrogen bonds is highly anharmonic and manifests
non trivial quantum effects as will be shown below.

Figure 3.7: Schematic representation of double Morse potential on a generic A-H-B
configuration. Q represents the A-B distance and q the distance of the hydrogen
from the center of the A-B bond.

Let us consider first the symmetric case (ξ = 1) at fixed value of Q. Simulations
were performed at 300 K with ν = 33 beads for two different values of Q. In the fol-
lowing we compare results obtained with PIM with reference quantum calculations,
and results obtained with the QTB and GPSP methods [16]. Classical Boltzmann
distributions will also be shown for comparison.
Figure 3.9 shows results for Q=2.45 Å. For the coordinate marginal distribution,
QTB and GPSP are quite far from the reference. The QTB curve, in particular, has
the same shape as the classical one with a rather flat distribution near the maxi-
mum which overemphasises the contribution of the flat region around the minimum
in the almost quartic potential. In contrast, the curves obtained via PIM with the
standard cumulant expansion (blue curve) and the Edgeworth correction (orange
curve) are very close to the reference result and capture correctly the influence of
the confining walls. The differences are less striking for the momentum distribution.
However, in this case too, PIM is more accurate than the alternatives, and it can be
observed that including the Edgeworth correction slightly improves agreement with
exact results, especially on the tails.

For Q = 2.75 Å, tunnelling effects make an important contribution to proton
transfer as can be seen from the much higher probability to find the proton at the
top of the potential energy barrier in the reference calculation (solid black curve)
as compared to the classical Boltzmann distribution in Figure 3.10. PIM is able to
recover this tunnelling effect and performs better than QTB, which overestimates
tunnelling, and GPSP, which underestimates it. It is interesting to observe that
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Figure 3.8: (left) Symmetric double Morse potential (ξ = 1) for different values
of Q. (right) Asymmetric double Morse potential (ξ = 0.707) for different values
of Q. The top panels show contour plots of the potentials as a function of the two
coordinates. The horizontal lines on these plots correspond to the values of Q that
were fixed in the calculations discussed in the text. The shape of the potential’s
cuts corresponding to those values of Q are shown in the bottom part of the Figure.
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Figure 3.9: (left) Integrated Wigner function Wq(q) for a double Morse potential
with Q=2.45 Å at T = 300 K (equilibrium distance), computed exactly (plain line
in black) and with the different approximate schemes discussed in the text. (right)
Same for the integrated Wigner function Wp(p).

truncating the cumulant expansion at second order in PIM is a reasonably good ap-
proximation even when tunnelling plays a significant role and in regions of negative
curvature such as those at the top of the barrier. Indeed, including the Edgeworth
correction has a small effect on the PIM results, slightly improving agreement in the
barrier region but essentially confirming convergence of the cumulant expansion.
The effect of the correction is again more relevant on the momentum distribution
function for the proton, Figure 3.10 (right), where it slightly improves agreement
with the maximum and the tails of the distribution. In this case too, however, the
main features of the overall distribution are captured quite well already by the second
order cumulant expansion. This quality of agreement between the two calculations
is a reliable numerical convergence test on the cumulant expansion.
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Figure 3.10: (left) Integrated Wigner function Wq(q) for a double Morse potential
with Q=2.75 Å at T = 300 K. (right) Same for the integrated Wigner function
Wp(p).
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At this value of Q, we also performed calculations at the higher temperature
T=800 K. As expected, Figure 3.11 shows even better agreement between PIM and
Edgeworth results and the reference quantum calculations, with the disappearance of
the small discrepancy in the tunnelling region that could be observed in Figure 3.10.

The impact of temperature on the performance of our method can be better
appreciated from Figure 3.12 where we show the contour lines of the two dimen-
sional Wigner density for this potential at T=300 K (left panel) and T= 800
K (right panel). At both temperatures, the classical (blue curve) and reference
quantum results (black curves) are very different, indicating that, even at the
higher temperature, the system is quite far from the classical limit. The exact
densities show two main traits. The first is the "bow tie" feature extending from
q ≈ −0.45 Å to q ≈ 0.45 Å , typical of the double well structure of the potential
at this value of Q (see also the lower left panel of Figure 3.8). At T=300 K, our
method fails to completely capture the deep tunnelling connecting the lobes of the
distributions in the left and right potential wells, but the penetration in the barrier
region is quite accurately captured. At the higher temperature, the agreement
becomes very good and for these lobes the reference, PIM and PIM+Edgeworth
results are essentially indistinguishable. The second characteristic feature of this
double well potential are the contour lines that develop along the p axis. These are
in fact negative regions of the Wigner density and, as expected, they are missed
by the PIM calculations. On the other hand, the Edgeworth corrected results do
reveal the presence of these regions. At the lowest temperature, this is reflected
in the presence of some density in the qualitatively correct regions of the plot. At
the highest temperature, however, the accuracy of the Edgeworth results improves
considerably and both the shape and the location of the negative signal are better
resolved in the region considered here. This can be further checked on Figure 3.13
where a cut at q = 0 along the Wigner distribution is shown. It can be seen that,
even at this temperature, an oscillation is present due to tunnelling. The fourth
order Edgeworth correction is able to reproduce both the position and depth of
this oscillation, within the noise level. Around p = 0.09 g.mol−1.Å.fs−1, the exact
Wigner distribution is again slightly positive; this can not be catched at fourth
order correction and a higher degree of polynomial would be needed. This is
however minimal at this temperature. It can be seen also, that the Edgeworth
corection leads to a improvement of the Wigner distribution along this cut on the
main peak height and width, and not just in the tails of the Wigner distribution.

As a final test, we investigated the full two dimensional problem both for the
symmetric and asymmetric model of the hydrogen bond of Eq. 3.79 at the rather
low temperature, T = 100 K. In Figure 3.14 we show the two dimensional marginal
Wigner densities for the coordinates (left) and momenta (right) of the symmetric
system. Quantum fluctuations significantly broaden the distributions compared to
the Boltzmann case (the blue curves in the figure) and zero point energy shifts the
equilibrium O-O bond length to larger distances. Both features are quantitatively
reproduced by PIM and in this case too the Edgeworth correction plays a more
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Figure 3.11: (left) Integrated Wigner function Wq(q) for a double Morse potential
with Q=2.75 Å at T = 800 K. (right) Same for the integrated Wigner function
Wp(p).
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Figure 3.12: W (q, p) computed for Q = 2.75 Å for the double Morse potential.
On the left panel T=300 K, on the right T=800 K. In both panels, blue curves
show the classical distribution for the system, black curves report the reference
quantum results, red curves report the PIM calculations, while results obtained
with PIM+Edgeworth are shown in orange.
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significant role on the momenta distribution where it provides a result essentially
indistinguishable from the exact. The effect of this correction can be appreciated
more in detail by looking at the proton’s marginal Wigner densities in Figure 3.15
where the improvement on the maximum and the tails of the momentum distribution
is visible, while the coordinate distribution is already in perfect agreement with exact
results when the second order cumulant expansion is used. The same can be seen
on the heavier degree of freedom, Figure 3.16, where, however, a small shift of the
coordinate distribution with respect to the exact result appears. It is also interesting
to consider the marginal joint distributions for the coordinates and momenta of the
light and heavy degree of freedom separately, see Figure 3.17 left and right panel,
respectively. By construction, the Boltzmann densities show no correlation, while
the Wigner densities do for both degrees of freedom. In particular, the momentum
distribution for the light degree of freedom broadens when the coordinate deviates
from the q = 0 Å equilibrium position. In this case too, the Edgeworth correction
slightly improves the accuracy in regions of lower probability. More strikingly, for
larger values of the momentum, the exact result shows negative parts of the marginal
Wigner density for the light degree of freedom visible (these are the symmetric
features for |p| > 0.1 g/mol. Å/fs in Figure 3.18). As in the previous example, the
Edgeworth correction captures at least in part their presence and correctly identifies
the onset of the negative regions of the Wigner density. However, this correction is
not sufficient to fully account for the depth and the extent of the negative region so
the overall shape of the contour level differs from the exact result. Also, in this low
probability region, the numerical noise associated to the estimator of the Wigner
density becomes quite large. This behaviour is more apparent in Figure 3.19 where
we show a cut of the surface for q = 0 Å. The localisation and scale of the negative
contributions (which are about two order of magnitudes smaller than the intensity
of the main peak) can be appreciated from the inset, which also shows that the
Edgeworth correction does produce a (very noisy with our statistics) negative signal
in the correct location.

Let us now consider the asymmetric model (ξ = 0.707. In Figure 3.20 we show
on the left the two dimensional marginal coordinate Wigner density. While the main
quantum effect is broadening of the distribution as in the symmetric case, here the
most striking difference with respect to the classical calculation is the larger cross
correlation between the heavy and light degree of freedom reflected in the different
orientation of the axis of the classical and quantum "ellipsoids". As the O-N distance
decreases, the potential energy surface for the proton becomes more anharmonic and
the quantum distribution is shifted to the right with respect to the minimum of the
potential where the classical density remains more localized. This is similar to what
we observed for the Morse potential calculations discussed above. PIM is once
again able to account for this effect, giving a very reasonable agreement with the
exact calculation. The difference between classical and quantum correlations among
the two degrees of freedom in this system is even more striking if we consider the
momenta. The right panel of Figure 3.20 shows the two dimensional momentum
Wigner density. Both quantum and PIM curves exhibit a clear correlation between
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Figure 3.14: Two dimensional probability distributions functions Wq,Q(q,Q) (left)
and Wp,P (p, P ) (right) of the symmetric model of proton transfer at T = 100 K.
Red: exact, black: PIM, orange: PIM with Edgeworth correction and blue: clas-
sical Boltzmann distribution. For Wq,Q(q,Q) the contour levels are separated by
5 Å−2 for the quantum distribution functions and 25 Å−2 for the Boltzmann dis-
tributions. For Wp,P (p, P ), the levels are separated by 10 mol.g−1.Å−2.fs for the
quantum distributions and 50 mol.g−1.Å−2.fs for the Boltzmann distribution.
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Figure 3.15: (left) Integrated Wigner function Wq(q) for a symmetric 2D model
of proton transfer at T = 100 K, computed exactly (black), with PIM (red) and
PIM with Edgeworth correction (orange). The Boltzmann distribution is shown in
dashed line. (right) Same for the integrated Wigner function Wp(p).
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PIM with Edgeworth correction (orange). The Boltzmann distribution is shown in
dashed line. (right) Same for the integrated Wigner function WP (P).
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Figure 3.17: Partial Wigner distribution functions for the light and heavy degrees of
freedom for the 2D symmetric model of proton transfer at T = 100 K. Red: exact,
black: PIM, orange: PIM with Edgeworth correction and blue: classical Boltzmann
distribution. (left) light degree of freedom, q. (right) heavy degree of freedom, Q.
The levels are separated by 10 mol.g−1.Å−2.fs for the quantum distributions and
50 mol.g−1.Å−2.fs for the Boltzmann distribution.
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Figure 3.18: Larger view of the partial Wigner distribution functions for the light
degrees of freedom for the 2D symmetric model of proton transfer at T = 100 K.
Red: exact, black: PIM and orange: PIM with Edgeworth correction. The levels
are separated by 10 mol.g−1.Å−2.fs.
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these momenta, with correlation coefficient equal to 0.34 in the PIM calculation
and 0.27 in the reference calculation. Given the almost quantitative agreement
of the contour lines shown in the plot, this difference in the calculated correlation
coefficients must arise from regions of low probability where noise is more important.
Aside from the existence of correlation between the momenta, the plot has some
rather counterintuitive features. In particular, the sign of the correlation coefficient:
classically the shape of the potential, see Figure 3.8, would suggest that as the O-N
distance increases (positive velocity), the proton is displaced to the left moving as if it
were bound to the oxygen (negative velocity) resulting in a negative correlation. This
classical reasoning would then suggest that the correlation between momenta follows
the shape of the two dimensional potential well (red part in Figure 3.8). However,
a positive correlation is observed. This can be explained as follows: along the
longest axis of the two dimensional potential well, the confinment is less than in the
orthogonal direction such that Heisenberg inequality leads to a smaller momentum
along the longest axis and a large momentum along the shortest axis of the potential
well, hence the shape observed for the momentum correlation. The quantum nature
of this effect is underlined also by the comparison with the Boltzmann distribution
which, by construction, shows no correlation. PIM results, although noisier than
in the symmetric case, are in remarkable agreement with the quantum curves. The
second order cumulant matrix thus faithfully preserves the correlation between the
momenta for this system. As observed for the symmetric case, the Edgeworth
correction does not change significantly the results but (as in the two dimensional
momentum Wigner density) noise on the tails can become significant. To complete
the comparison we show also the individual degree of freedom Wigner densities in
Figure 3.21. The overall agreement with exact results remains very good for both
degrees of freedom, even if there is a slight decrease in accuracy compared to the
symmetric case.
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Figure 3.20: Two dimensional probability distributions functions Wq,Q(q,Q) (left)
and Wp,P (p, P ) (right) of the asymmetric model of proton transfer at T = 100 K.
Red: exact, black: PIM, orange: PIM with Edgeworth correction and blue: clas-
sical Boltzmann distribution. For Wq,Q(q,Q) the contour levels are separated by
5 Å−2 for the quantum distribution functions and 25 Å−2 for the Boltzmann dis-
tributions. For Wp,P (p, P ), the levels are separated by 10 mol.g−1.Å−2.fs for the
quantum distributions and 100 mol.g−1.Å−2.fs for the Boltzmann distribution.
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Figure 3.21: Partial Wigner distribution functions for the light and heavy degrees
of freedom for the 2D asymmetric model of proton transfer at T = 100 K. Red:
exact, black: PIM, orange: PIM with Edgeworth correction and blue: classical
Boltzmann distribution. (left) light degree of freedom, q. The levels are separated
by 10 mol.g−1.Å−2.fs for the quantum distributions and 100 mol.g−1.Å−2.fs for
the Boltzmann distribution. (right) heavy degree of freedom, Q. The levels are
separated by 10 mol.g−1.Å−2.fs for the quantum distributions and 20 mol.g−1.Å−2.fs
for the Boltzmann distribution.
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3.4 Conclusions

In this Chapter, we presented the Phase Integration Method (PIM) for the calcula-
tion of the Wigner density. As we have seen in Chapter 2, the Wigner density is a
key quantity for methods based on the LPI representation of quantum correlation
function. We showed that, using a second order cumulant expansion we can mitigate
the effects of the phase factor present in the definition of the Wigner density. We
also explored the possibility to obtain negative contributions to the Wigner density
by modifying our sampling scheme so as to include the first non trivial term of the
Edgeworth series.
We then introduced the algorithm used in PIM to compute the Wigner density.
Indeed, the probability density, which has to be sampled from PIM in order to cal-
culate the Wigner function, is not known analytically. Due to this standard Monte
Carlo methods (such as the Metropolis scheme), which rely on the analytical knowl-
edge of the density, cannot be directly applied. We described how to deal with
this problem by combining two schemes for sampling "noisy" probability densities.
These methods are the penalty [10] and Kennedy [67] Monte Carlo algorithms.
Finally, we applied PIM to calculations of the thermal Wigner density for a set of
increasingly challenging low dimensional systems. PIM is able to capture quantum
correlation effects among the different degrees of freedom (coordinate-momenta and
momenta-momenta). Essentially all other available approaches (presented in this
Chapter so QTB and GPSP) assume a factorized form of the momenta and co-
ordinates reminiscent of the Boltzmann density. We have shown on a model for
asymmetric A-H-B hydrogen bonds that this assumption can be violated in physi-
cally significant situations. The Edgeworth corrected approach is interesting since
it allows to capture (at least in part) negative features of the Wigner density, a
challenging if not impossible task for all alternative schemes. In this case, the effort
necessary to capture the main (positive) features of the Wigner density is similar to
that of a standard PIM calculation but the situation is more delicate for the nega-
tive parts of the density. These are usually much smaller than the main features, so
the convergence of their Monte Carlo estimate is more problematic simply due to a
worse signal to noise ratio.
As a final comment, the applicability of the method discussed in this work depends
on the convergence of the cumulant or Edgeworth series expansions employed. The
convergence of these expansions can always be checked numerically thus ensuring
control first of the validity and then of the accuracy of a given calculation. For low
dimensional systems, this can be done by comparing the probability density (or an
exhaustive set of marginal probabilities) obtained with truncation of the series at
successive orders. For high dimensional systems, the convergence of average values
of functions of the coordinate and momenta can be used as a test (as we will see in
next Chapter).



Chapter 4

Application of PIM to the
Infrared spectroscopy



88 Chapter 4. Application of PIM to the Infrared spectroscopy

Contents
4.1 Symmetrised correlation function for Infrared spectroscopy 88

4.2 Kubo correlation functions for Infrared spectroscopy . . . . 93

4.2.1 Operators linear in positions . . . . . . . . . . . . . . . . . . 94

4.2.2 Operators linear in momentum . . . . . . . . . . . . . . . . . 105

4.2.3 Application to the Infrared spectroscopy . . . . . . . . . . . . 112

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

In Chapter 3, we have shown that PIM was a suitable method to compute
Wigner densities. As we have explained in Chapter 2, this quantity plays a key role
for methods based on a LPI representation of the quantum correlation function. It
allows us to know if we have the correct set up of initial conditions before propagating
them by classical dynamics. In this Chapter, we are interested in adapting PIM to
the calculation of quantum time correlation function for computing infrared spectra.
The Chapter is organised as follows. We first express the symmetrised correlation
function for operators linear in postions. We then show, by direct comparison on a
simple harmonic oscillator calculation with the Kubo correlation function, why the
symmetrized one is not the most adapted correlation function for the calculation of
infrared spectra. The next step will be then to describe the derivation to calculate
the Kubo dipole-derivative correlation function for a point charge model of the
dipole. Finally, in the Results section, we will compare our results, on relevant
model calculations, to methods such as RPMD, CMD or LGA.

4.1 Symmetrised correlation function for Infrared spec-
troscopy

Let us begin by recalling the key aspects of the PIM method for calculating linearized
quantum time-correlation functions. In its original formulation [12], PIM starts from
the symmetrised (or Schofield) [45] form of the quantum time correlation function
of operators Â and B̂, which is given by (see equation 2.67):

GAB(t;β) =
1

Z
Tr
{
Âe

i
~ Ĥt

∗
c B̂e−

i
~ Ĥtc

}
(4.1)

where Ĥ is the Hamiltonian, tc = t − iβ~
2 and Z = Tr

{
e−βĤ

}
is the partition

function with β = 1
kBT

, kB being the Bolzmann constant and T the temperature of
the system. In Chapter 2, we showed that this function can be related in Fourier
space to alternative quantum expressions of time correlation functions (see equations
2.68). In particular:

C̃AB(ω;β) = e
β~ω

2 G̃AB(ω;β) (4.2)
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where C̃AB(ω;β) is the Fourier transform of the standard quantum correlation func-
tion (see equation 2.64). Furthermore,

K̃AB(ω;β) =
sinh

(
β~ω

2

)
β~ω

G̃AB(ω;β) (4.3)

where K̃AB(ω;β) is the Fourier transform of the Kubo form of the time correlation
function (see equation 2.66).
The relationships above ensure that physical observables, usually written in terms
of the Fourier transform of the standard or Kubo correlation, can be obtained by
computing the appropriate symmetrised correlation, taking a Fourier transform, and
then multiplying by the appropriate factor. This is indeed the route employed before
my work in calculations based on the PIM quasi-classical approximation [7, 8, 12].
The linearized PIM form of equation 4.1 is obtained as follows. We introduce reso-
lutions of identity in the coordinate basis to isolate matrix elements of the different
operators in the equation 4.1 in the same manner as we did in the equations 2.105.

GAB(t, β) =
1

Z

∫
dr̃+

0 dr̃
−
0

∫
dr+

0 dr
−
0 〈r

+
0 |Â|r

−
0 〉

× 〈r−0 |e
it∗cĤ/~ |̃r−0 〉〈r̃

−
0 |B̂ |̃r

+
0 〉〈r̃

+
0 |e
−itcĤ/~|r+

0 〉 (4.4)

where, if Na is the number of atoms, r+
0 = (r

+(1)
0 , · · · , r+(3Na)

0 ). With this notation,
the upper index in the variables indicates a particular degree of freedom. Usually
the operators Â and B̂ are straightforward to evaluate so the non trivial part in the
previous equation is the product of complex time propagators:

K(r−0 , r
+
0 , r̃

−
0 , r̃

+
0 ) = 〈r−0 |e

it∗cĤ/~ |̃r−0 〉〈r̃
+
0 |e
−itcĤ/~|r+

0 〉 (4.5)

Inserting two more resolutions of the identity a thermal and a dynamical part can
be isolated as follows:

K(r−0 , r
+
0 , r̃

−
0 , r̃

+
0 ) =

∫
dr+
ν dr

−
ν 〈r−0 |e

−β
2
Ĥ|r−ν 〉〈r−ν |e−itĤ/~ |̃r−0 〉〈r̃

+
0 |e

itĤ/~|r+
ν 〉〈r+

ν |e−
β
2
Ĥ|r+

0 〉

(4.6)

The thermal part is calculated in the same way as we did for the Wigner density in
Chapter 3 and the dynamical part derivation follows the steps described in Chapter
2 for the LPI approximation. Using the notation defined in the previous equation
and writing the forward and backward path integrals in terms of mean and difference
variables ( r0 = (r−0 + r+

0 )/2 and ∆r0 = r+
0 − r−0 for example), we end up with the

following linearized expression:
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〈rν −
∆rν

2
|e−itĤ/~ |̃r0 −

∆r̃0

2
〉〈r̃0 +

∆r̃0

2
|eitĤ/~|rν +

∆rν
2
〉 ≈

∫
dpdpte

i
~pt∆r̃0e−

i
~p∆rνU(rν ,p, r

t,pt)

(4.7)

where:

U(rν ,p, r
t,pt) =

n∏
l=1

δ

(
pl+1 − pl

δt
−∇V (rν+l−1)

) n+1∏
l=1

δ

(
rν+l − rν+l−1

δt
− pl
m

)
(4.8)

where δt = t/(n+1), l = 1, · · · , n+1 and rν+n+1 = r̃0 = rt. We have also simplified
the notation with p1 = p and pn+1 = pt. The δ functions above collapse the mean
path to a classical trajectory from phase space points (rν ,p) to (rt,pt). Combining
the thermal and dynamical calculations, we can show [8] that for operators Â and
B̂ linear in positions the PIM symmetrised correlation function is simply:

GAB(t;β) =

〈
e−

i
~p∆rνA(r0)B(rν(t))

〉
ρ〈

e−
i
~p∆rν

〉
ρ

(4.9)

where ρ is identical (with multidimensional notations) to the probability density
defined in equation 3.13. In the expression 4.9 a phase factor is still present. As we
did for the Wigner density in the previous Chapter, we use a cumulant expansion to
tame this phase factor. The steps of the derivation are identical to those in Chapter
2 and we finally obtain:

GAB(t;β) = 〈A(r0)B(rν(t))〉P (4.10)

where P is the same probability density as in the equation 3.22 in a multidimensional
point of view. Using the notations r = (r

(1)
i , · · · , r(3Na)

i ) (for i between 0 and ν)
and p = (p(1), · · · , p(3Na)), we have:

P(r, p) =
ρm(r)e−E(p,r)∫

dp
∫
dr ρm(r)e−E(p,r)

(4.11)

We present, in the Appendix A, the modification of the algorithm for the multidi-
mensional case using the notations introduced above. As we can see in that Ap-
pendix, the structure of the algorithm to determine the initial conditions remains
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the same. The modifications occur on the evaluation of the estimators.
We can see on Figure 4.1, the schematic sketch to compute correlation functions
from PIM simulations. Indeed, compare to Chapter 3, we have to incorporate the
dynamics in our algorithm. We perform a total of NMC Monte Carlo steps to sample
initial conditions and Ntraj classical dynamics runs so we have NMC/Ntraj Monte
Carlo steps between two trajectories.

PIM sampling

Average
Correlation function

NVE runs

1

Figure 4.1: Schematic representation of our algorithm for the calculation of correla-
tion functions. It requires NMC Monte Carlo steps to sample initial conditions and
Ntraj classical dynamics runs. Then an average is done to obtain our correlation
function.

I present more in detail, in the Figure 4.2, the scheme of a single trajectory in
the linearized path integral representation in PIM. For operators linear in positions,
the symmetrized correlation function is obtained by taking the value over the first
beads in the polymer in r for the time 0 quantity and then propagated classically
the system with (rν , p) as initial conditions. The sampling of the polymers in r

and ∆r is done by the Monte Carlo algorithm presented in Chapter 3. It is also
important to notice that the system is evolved classically only from the last bead
of the polymer, the other beads have no interest from the dynamical point of view
(but essential for the sampling).

Let us now consider more in detail the case of IR spectra. The experimental
IR spectrum is given by the product of the absorption coefficient α(ω) and
the refractive index n(ω) of the medium [72]. Using Fermi’s Golden Rule, this
quantity can be directly related to the Fourier transform of the symmetrised dipole
autocorrelation function, see Appendix C:

n(ω)α(ω) =
4πω

3c~
sinh

(
β~ω

2

)
G̃µµ(ω;β) (4.12)

For simple applications, we consider that we have a point charge model for our
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dipole and so:

µ̂ =

Na∑
i=1

qir̂
(i) (4.13)

where qi is the charge of the atom i, this leads to:

Gµµ(t;β) = 〈µ(r0).µ(rν(t))〉P (4.14)

From equations 4.12 and 4.14, we can see two problems for the calculation of IR
spectrum using the symmetrized PIM correlation function. The first one, discussed
in detail in the next section, is the fact that we calculate a correlation between the
first beads (A(r0)) for t = 0 and the last bead (B(rν(t))) at time t. As we are going
to see later, it requires a much higher statistic to converge the calculation in this
case than in a case where we have a correlation between the last bead at time 0 and
time t.
The second problem is more serious. Indeed, for IR calculations the prefactor sinh

in the absorption coefficient in the symmetric case (see equation 4.12) is really hard
to handle numerically. To see this, imagine a situation where we have to obtain two

Figure 4.2: Schematic representation of the polymers in r and ∆r used to represent
the thermal propagators in our method and of the time propagation. The interac-
tions between the thermal polymers are indicated in dashed lines and the red line
represents the classical dynamic evolved from the initial conditions (rν , p).
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vibrational peaks with the same intensities at 1000 cm−1 and 3000 cm−1 (similar to
water). These frequencies are the typical frequencies in IR calculations. The ratio
for the prefactor for these two frequencies is equal to:

r =
ω2 sinh

(
β~ω2

2

)
ω1 sinh

(
β~ω1

2

) (4.15)

where ω1 = 1000 cm−1 and ω2 = 3000 cm−1.
At high temperature the problem is not very important but at 300 K, we ob-
tain r ≈ 370 and this get even worse when we decrease the temperature with
r ≈ 5.3×106 at 100 K. The statistic needed to converge the calculation of Gµµ(t;β)

in this case is unreachable due to the fact that we have to multiply the Fourier
transform of Gµµ by the sinh prefactor. So at low temperature, we can only obtain
the positions of the peaks but not their intensities [9].

From the equations 2.68, the easiest version to compute seems to be the
Kubo correlation function. Indeed, in this case, the IR spectra can be obtained
from the dipole autocorrelation function and the dipole-derivative autocorrelation
function, via:

n(ω)α(ω) =
ω2βπ

3cV ε0
K̃µµ(ω;β) (4.16)

n(ω)α(ω) =
βπ

3cV ε0
K̃µ̇µ̇(ω;β) (4.17)

In the dipole autocorrelation function Kµµ(t;β) we only have to handle an ω2 pref-
actor and, even better, there is no frequency dependent prefactor if we are able to
calculate Kµ̇µ̇(t;β).
In the next section, we will present how we can calculate PIM Kubo correlation
functions which depend linearly of positions or momentum and how we can apply
these to Infrared spectroscopy.

4.2 Kubo correlation functions for Infrared spectroscopy

We will derive in this section the PIM version of the Kubo correlation functions.
The first case will be for operators linear in positions (it is possible to do it for more
general position operators but we will not use it). Indeed, this particular case will
show us how the computational cost associated to the Kubo expression is reduced
compared to the symmetrised case on the most simple test case: the position auto-
correlation function of a 1D harmonic oscillator.
Linear operators in the position, as we can see on the equations 4.16, are relevant
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for IR spectra and are appropriate for the isolated molecules considered here. Appli-
cation of the methods to bulk systems in periodic boundary conditions is, however,
simpler starting from the dipole-derivation expression in equation 4.17. I will then
discuss how we can calculate Kubo correlation functions with operators linear in
momentum.

4.2.1 Operators linear in positions

4.2.1.1 Derivation of position autocorrelation function

To simplify the notation and the demonstration, I will present the calculation of the
position autocorrelation function. Then the generalisation to any operators linear
in position is straightforward.
Let us consider the Kubo position autocorrelation function:

Krr(t) =
1

βZ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ r̂e−λĤ r̂(t)

]
(4.18)

(4.19)

with

r̂(t) = eitĤ/~r̂e−itĤ/~ (4.20)

To set the stage for the derivation, we begin by identically rewriting the expression
above in a more convenient form. This is done by first using the change of variable
λ̃ = λ− β/2 to obtain:

Krr(t;β) =
1

βZ

∫ β/2

−β/2
dλ̃ Tr

[
e−(β/2−λ̃)Ĥ r̂ e−(β/2+λ̃)Ĥ r̂(t)

]
(4.21)

and then reorganising the integral above as follows

Krr(t;β) =
1

βZ

∫ β/2

0
dλ̃ Tr

[
e−(β/2−λ̃)Ĥ r̂e−(β/2+λ̃)Ĥ r̂(t)

]
+

1

βZ

∫ 0

−β/2
dλ̃ Tr

[
e−(β/2−λ̃)Ĥ r̂e−(β/2+λ̃)Ĥ r̂(t)

]
=

1

βZ

∫ β/2

0
dλ Tr

[
r̂(t)e−(β/2−λ)Ĥ r̂e−(β/2+λ)Ĥ

]
+

1

βZ

∫ β/2

0
dλ Tr

[
r̂(t)e−(β/2+λ)Ĥ r̂e−(β/2−λ)Ĥ

]
≡ 1

βZ

∫ β/2

0
dλ Aλ +

1

βZ

∫ β/2

0
dλ Bλ (4.22)
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To go from the first to the second equality, we used the invariance under cyclic
permutation of the trace to move the time evolved coordinate to the left of the
product under trace and made the change of variable λ = −λ̃ in the second integral.
The third equality defines Aλ and Bλ so, for example,

Aλ = Tr
[
r̂(t)

(
e−(β/2−λ)Ĥ r̂e−λĤ

)
e−β/2Ĥ

]
(4.23)

We are now ready to start the manipulations that will lead to the PIM expression
of the correlation function. The strategy that we shall follow is to obtain an exact,
computable, expression for the thermal part of Aλ and Bλ and then approximate
the time evolution of the momentum operator on the left of the expression via clas-
sical trajectories. This second step corresponds to the linearisation approximation
described in the Chapter 2 [7, 1, 4] and it is completed following the same steps
described in equations 2.105 to 2.127 (and the same as we did for the symmetrized
correlation function in this Chapter). We shall instead focus on the treatment of the
thermal contributions since this is where the difference between the Kubo and the
standard linearisation for the symmetrised form of the correlation function plays
a significant role. Furthermore, since the operations to be performed on Aλ and
Bλ are completely analogous, we shall limit ourselves to discuss them in detail for
Aλ. To proceed, let us introduce a coordinate representation for eq.(4.23) by insert-
ing resolutions of the identity to conveniently isolate matrix elements of operators.
Thus,

Aλ =

∫
dr+
ν dr

−
0 dr

−
λ dr

−
ν 〈r+

ν | r̂(t) |r−ν 〉
(
〈r−ν | e−(β/2−λ)Ĥ |r−λ 〉

× 〈r−λ | r̂ |r
−
λ 〉〈r

−
λ | e

−λĤ |r−0 〉
)
〈r−0 | e

−β/2Ĥ |r+
ν 〉 (4.24)

For further convenience, we can identically rewrite this as:

Aλ =

∫
dr+
ν dr

+
0 dr

−
0 dr

−
λ dr

−
ν 〈r+

ν | r̂(t) |r−ν 〉
(
〈r−ν | e−(β/2−λ)Ĥ |r−λ 〉

× 〈r−λ | r̂ |r
−
λ 〉〈r

−
λ | e

−λĤ |r−0 〉
)
〈r−0 | Î |r

+
0 〉〈r

+
0 | e

−β/2Ĥ |r+
ν 〉 (4.25)

where Î is the identity operator.
Since we consider an operator which depends only on the position, we can simplify
the previous equation:

Aλ =

∫
dr+
ν dr

+
0 dr

−
0 dr

−
λ dr

−
ν 〈r+

ν | r̂(t) |r−ν 〉〈r−ν | e−(β/2)Ĥ |r−0 〉 r
−
λ δ(r

+
0 − r−0 )〈r+

0 | e
−β/2Ĥ |r+

ν 〉

(4.26)
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Similarly, we have the following expression for Bλ:

Bλ =

∫
dr+
ν dr

+
λ dr

+
0 dr

−
0 dr

−
ν 〈r+

ν | r̂(t) |r−ν 〉〈r−ν | e−(β/2)Ĥ |r−0 〉 r
+
λ δ(r

+
0 − r−0 )〈r+

0 | e
−β/2Ĥ |r+

ν 〉

(4.27)

Given the structure of Aλ and Bλ, we can write

Cλ = Aλ +Bλ

=

∫
dr+
ν dr

+
0 dr

−
0 dr

−
λ dr

−
ν 〈r+

ν | r̂(t) |r−ν 〉〈r−ν | e−(β/2)Ĥ |r−0 〉 (r+
λ + r−λ ) δ(r+

0 − r−0 )〈r+
0 | e

−β/2Ĥ |r+
ν 〉

(4.28)

Following exactly the same steps described in Chapter 3, the matrix elements
〈r+

0 |e−β/2Ĥ |r+
ν 〉 and 〈r−ν |e−(β/2)Ĥ |r−0 〉 can be represented in path integral form, via

a symmetric Trotter break up. In this way, we obtain an identical result as for the
Wigner density:

〈r−ν | e−(β/2)Ĥ |r−0 〉〈r
+
0 | e

−β/2Ĥ |r+
ν 〉 = C2

ν

∫
dr+
ν−1 · · · dr

+
1 dr

−
ν−1 · · · dr

−
1

× exp

[
− m

2~2δβ

ν∑
α=1

(
(r+
α − r+

α−1)2 + (r−α − r−α−1)2
)]

exp

[
−
δβ
2

(
V (r+

ν ) + V (r−ν )
)]

× exp

[
−
δβ
2

(
V (r+

0 ) + V (r−0 )
)]

exp

[
−δβ

ν−1∑
α=1

(
V (r+

α ) + V (r−α )
)]

(4.29)

where I kept the notation from the previous Chapter so δβ = β/2ν, σ2 = ~2δβ/m,

Cν =
(
mν
πβ~2

)ν/2
and the expression above becomes exact in the limit ν →∞. Note

that, to simplify the notation, we consider only particles withe same mass m. In the
case where the mass are different, we have to associate the mass and the coordinates
of each particle.
Proceeding in analogy with the developments in the Phase Integration Method
for the symmetrised form of the correlation function and, in general, linearization
schemes (see [1, 13] for example), we now introduce semisum and difference paths
by performing the following change of variables [7, 12, 17]:

rj =
r+
j + r−j

2
(4.30)

∆rj = r+
j − r−j (4.31)

where j = 0, · · · , ν.
Then the expression of Cλ becomes:
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Cλ = C2
ν

∫
drν · · · dr0

∫
d∆r1d∆rν

〈
rν +

∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
2rλ

× exp

[
− 1

2σ2
r

ν∑
α=1

(rα − rα−1)2

]
exp

[
−
σ2
p

2

ν∑
α=1

(∆rα −∆rα−1)2

]

× exp

[
−
δβ
2

(
rν +

∆rν
2

) + V (rν −
∆rν

2
)

)]
exp

[
−
δβ
2

(
V (r0 +

∆r0

2
) + V (r0 −

∆r0

2
)

)]
× exp

[
−δβ

ν−1∑
α=1

(
V (rα +

∆rα
2

) + V (rα −
∆rα

2
)

)]
(4.32)

with σ2
r = ~δβ/2m and σ2

p = m/2~δβ , and ∆r0 = 0 by definition. The relatively
simple expression for Cλ depends crucially on the fact that we are considering the
position operator and is preserved for operators linear in the coordinates. This
results, in particular, in the absence of terms in ∆rλ outside of the exponential which
will prove convenient in the following (see equation 4.34). The complications arising
from operators non linear in the coordinates are illustrated in the next Chapter.
Substituting the equation above in the expression for the Kubo transform of the
time correlation function, we then obtain (using the equations 3.34 to simplify the
notation):

Krr(t;β) =
C2
ν

βZ

∫ β
2

0
dλ Cλ

=
C2
ν

βZ

∫ β
2

0
dλ

∫
d∆r

∫
dr

〈
rν +

∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
2rλe

−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r)

(4.33)

This expression can be further simplified by evaluating the integral over λ. This can
be done by discretising the integral consistently with the discretization of the path
(i.e. using a discretization step ∆λ = δβ = β

2ν ), as follows :

Krr(t;β) =
1

βZ

∫ β
2

0
dλ Cλ ≈ ∆λ

βZ

ν∑
j=0

Cj (4.34)

This leads to:
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Krr(t;β) ≈ C2
ν∆λ

βZ

ν∑
j=0

∫
d∆r

∫
dr

〈
rν +

∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
× 2rj e

−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r) (4.35)

≈ C2
ν

νZ

ν∑
j=0

∫
d∆r

∫
dr

〈
rν +

∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
× rj e

−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r)

where we used the expression of ∆λ to simplify the prefactor multiplying the inte-
gral.
The expression that we have obtained for the Kubo correlation function has the nice
property that the thermal propagators are now explicit functions of a finite set of
variables. However, the real time propagation in the matrix element〈

rν + ∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
is still fully quantum and that makes the result incal-

culable. If we use as described in the Chapter 2 the linearisation approximation,
however, we can write this matrix element as:

〈
rν +

∆rν
2

∣∣∣∣ r̂(t)

∣∣∣∣rν − ∆rν
2

〉
≈
∫

dp rν(t)e−
i
~p.∆rν (4.36)

where rν(t) is the coordinate computed at time t along a classical trajectory with
initial conditions (rν ,p). Using this result the quasi classical expression for the
Kubo transform of the correlation function is obtained as:

Krr(t;β) ≈ C2
ν

νZ

ν∑
j=0

∫
d∆r

∫
dr

∫
dp rν(t)e−

i
~p.∆rν rj e

−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r)

(4.37)

The next steps of the calculation are similar in a multidimensional case to the
calculation of the Wigner density. We did not specified them for the symmetrized
correlation function in order to simplify the discussion in this section. To be clear
and have a complete demonstration in the multidimensional case, we specify these
steps in the following.
All factors in the integrand above are now explicit and calculable. However, the
presence of the phase factor e−

i
~p.∆rν , which can cause very rapid oscillations in the

integrand, hinders a brute force evaluation of this quantity. To obtain an expression
more suitable for numerical purposes, it is convenient to manipulate further the
quasi classical expression of the Kubo correlation function. We are going to proceed
in the same way as we did for the Wigner density or the symmetrized correlation
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function, so we now introduce the joint probability density for the semisum and
difference variables:

ρ̃(r,∆r) =
C2
ν

Z
e−V∆(∆r)e−δβ V̄ (r,∆r)e−Vr(r) (4.38)

and observe that this quantity can be expressed as ρ̃(r,∆r) = ρm(r)ρc(∆r|r) where
the marginal and conditional probabilities ρm(r) and ρc(∆r|r) are given by:

ρm(r) =

∫
d∆r ρ̃(r,∆r) =

C2
ν

Z
e−Vr(r)

∫
d∆r e−V∆(∆r)e−δβ V̄ (r,∆r) (4.39)

and

ρc(∆r|r) =
e−V∆(∆r)e−δβ V̄ (r,∆r)∫
d∆r e−V∆(∆r)e−δβ V̄ (r,∆r)

(4.40)

It is quite easy to show that we have also:

Z = C2
ν

∫
d∆r

∫
dr

∫
dp ρ̃(r,∆r)e−

i
~p.∆rν (4.41)

With this notation, the quasi classical Kubo correlation can be written as:

Krr(t;β) =
C2
ν

νZ

ν∑
j=0

∫
d∆r

∫
dr

∫
dp ρm(r)ρc(∆r|r)e−

i
~p.∆rν rj rν(t) (4.42)

Krr(t;β) =
C2
ν

νZ

ν∑
j=0

∫
dr

∫
dp ρm(r)

[∫
d∆rρc(∆r|r)e−

i
~p.∆rν

]
rj rν(t) (4.43)

In the second line of the equation above, we have reorganised the expression so as to
isolate, on the far right of the expression, the integrals over the ∆r variables. These
integrals can be recognised as the generating function for the cumulant moments for
∆rν on the conditional probability density ρc(∆r|r) (similar for the Wigner density
and symmetrized correlation function) [8, 12]. Thus,∫

d∆rρc(∆r|r)e−
i
~p.∆rν = e−E(r,p) (4.44)

where (in the multidimensional situation):

E(r,p) =

+∞∑
|ne|≥2

(−1)
|ne|

2
−1

ne!~|ne|
pneCne(r) (4.45)

with |n| =
∑3Na

i=1 ni, n! = n1!...n3Na !, and ne = {n if |n| even}, pn = pn1
1 ×

...× pn3Na
3Na

. Cne(r) are the cumulant moments of the random variables ∆rν so:

Cne(r) = Cn1...n3Na
(r) =

〈(
∆r(1)

ν

)n1

...
(

∆r(3Na)
ν

)n3Na
〉c
ρc(∆r|r)

(4.46)
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where the superscript c indicates a cumulant moment (see Appendix A).
Substituting eq.(4.44) in eq.(4.43) we obtain:

Krr(t;β) =
1

ν

ν∑
j=0

∫
dr
∫
dp ρm(r)e−E(r,p) rj rν(t)∫
dr
∫
dp ρm(r)e−E(r,p)

(4.47)

As we have seen in Chapter 3, E(r,p) is a real quantity. We can then define a
new probability density which the multidimensional identical to the one defined in
equation 4.11 for the symmetrized correlation function:

P(r,p) =
ρm(r)e−E(p,r)∫

dp
∫
dr ρm(r)e−E(p,r)

(4.48)

and interpret the expression for the Kubo transform of the correlation function as
the following expectation value:

Krr(t;β) =
1

ν

ν∑
j=0

〈rj rν(t)〉P (4.49)

We present, in the Figure 4.2, the scheme of the linearized path integral represen-
tation in PIM. For operators linear in positions, the Kubo correlation function is
obtained by taking the mean value over all the beads in the polymer in r for the
time 0 quantity and then propagating classically the system with (rν , p) as initial
conditions.

4.2.1.2 Application to the 1D harmonic oscillator

We are going to test the PIM algorithm for the position autocorrelation functions
(symmetrised and Kubo) on a 1D harmonic oscillator (V (x) = 1

2mω
2
0x

2) and com-
pare it to the exact result. For this system, PIM results must coincide with the exact
one due to the fact that in this particular case we do not do any approximation (lin-
earization being exact for quadratic potentials). Comparison of the symmetrised
and Kubo correlation functions obtained via PIM will allow us to understand why
the use of the Kubo version is recommanded for IR calculations.
The exact symmetric position autocorrelation function for a 1D harmonic oscillator
is:

Gxx(t) =
~

2mω0 sinh(β~ω0/2)
cos(ω0t) (4.50)

(4.51)

The dynamics, in this case, being exact, we are going to focus in particular at value
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at time 0.

Gxx(0) =
~

4mω0 sinh(β~ω0/2)
(4.52)

with ω0 the frequency of the harmonic oscillator.
The PIM version (the one that we compute) of the symmetrized position autocor-
relation function is simply (see equation 4.10):

GPIMxx (t) = 〈x0xν(t)〉P (4.53)

The exact Kubo position autocorrelation function is:

Kxx(t) =
kBT

mω2
0

cos(ω0t) (4.54)

Kxx(0) =
kBT

mω2
0

(4.55)

The PIM version of the Kubo correlation is as detailed before:

KPIM
xx (t) =

1

ν

ν∑
i=0

〈xixν(t)〉P (4.56)

It would be convenient to express the exact Kubo correlation function as a sum over
all the beads in order to have a direct comparison of all the 〈xixν(0)〉 to an exact
result. We will not demonstrate in detail the following result but sketch the proof.
First, we recall some basic results of the 1D harmonic oscillator:

Ĥ = ~ω0(â†â+
1

2
) (4.57)

x̂ =

(
~

2mω0

)1/2

(â† + â) (4.58)

Ĥ|n〉 = ~ω0(n+
1

2
) (4.59)

x̂|n〉 =

(
~

2mω0

)1/2 [√
n|n− 1〉+

√
n+ 1|n+ 1〉

]
(4.60)

with â† the creation operator, â the annihilation operator and |n〉 the basis of
eigenstates of the harmonic oscillator.
Then calculating the trace in the Kubo position autocorrelation function in the basis
of the harmonic oscillator, we can show that:

Tr
[
e−(β−λ)Ĥ x̂e−λĤ x̂(0)

]
=

~ cosh
(

(β2 − λ)~ω0

)
mω0

e−β~ω0

(1− e−β~ω0)2
(4.61)
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and knowing that for the harmonic oscillator the partition function as the following
analytical result:

Z =
1

2 sinh
(
β~ω0

2

) (4.62)

We end up with the following expression (integration over λ):

Kxx(0) =
~

βmω0 sinh
(
β~ω0

2

) ∫ β/2

0
dλ cosh (λ~ω0) (4.63)

=
~

2mω0 sinh
(
β~ω0

2

) (1

ν

ν∑
i=0

cosh

(
β~ω0

2ν
i

))

As a consequence, PIM has to satisfy the following relation for each bead:

〈xixν(0)〉 =
~

2mω0 sinh
(
β~ω0

2

) cosh

(
β~ω0

2ν
i

)
(4.64)

We can notice that we recover 〈x0xν(0)〉 = ~
2mω0 sinh

(
β~ω0

2

) . This is interesting

because by taking only the value on the first bead we find the PIM result of the
symmetrized correlation function.
To test this property, we performed calculations at different temperatures and fixing
the value of ω0 to be in the IR range for typical molecules. In particular, we chose
ω0 = 0.01 ua (ω0 ≈ 2000 cm−1) and performed the calculations at the temperatures
1000 and 300 K. We did these simulations with a high statistic using 105 main Monte
Carlo steps and 500 auxiliary Monte Carlo steps so a total of 5× 107 Monte Carlo
moves (very high for such a simple model). The convergence with the number of
beads has been systematically checked.
In Figure 4.3, we can see that at 1000 K only 8 beads are enough to obtain a
converged result. Furthermore, we can notice that the PIM calculations are very
close to the exact result for all the beads. However, we also observe that 〈x0xν(0)〉
(so the symmetrized correlation function) and 〈xνxν(0)〉 show small discrepencies.
This is highlighted in the table 4.1. The error on these two values are almost equal
but the value of 〈x0xν(0)〉 is 2.5 times smaller than 〈xνxν(0)〉. So the relative error
on this value is in proportion more important. Finally, if we look at the integration
over all the beads in order to haveKxx(0), we notice that the PIM result is very close
to the exact one and so the error on the exact value is mitigated by the integration.
This justifies the fact that it is more convenient to calculate the Kubo correlation
function instead of the symmetrised one.

The impact of averaging over the beads is even more striking if we look at the
results at 300 K. Indeed, as we can see in the Figure 4.4, the convergence for the
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Figure 4.3: Comparison of the Kubo PIM position autocorrelation function at 1000
K using 8 beads (red curve) and the exact result (black curve) at the same temper-
ature.

PIM exact
〈x0xν(0)〉 = Gxx(0) 1.13× 10−2 ± 5.10−4 1.18× 10−2

〈xνxν(0)〉 2.96× 10−2 ± 5.10−4 2.99× 10−2

Kxx(0) 1.73× 10−2 ± 5.10−4 1.74× 10−2

Table 4.1: Comparison of 〈x0xν(0)〉 which correspond to the symmetrized correlation
function at time 0, 〈xνxν(0)〉 and Kxx(0) between the PIM results and the exact
ones for the 1D harmonic oscillator at 1000 K.
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PIM 32 beads PIM 64 beads exact
〈x0xν(0)〉 = Gxx(0) 5.51× 10−4 ± 3.10−4 4.58× 10−4 ± 2.10−4 2.84× 10−4

〈xνxν(0)〉 2.60× 10−3 ± 3.10−4 2.78× 10−3 ± 2.10−4 2.74× 10−3

Kxx(0) 5.17× 10−3 ± 3.10−4 5.35× 10−2 ± 2.10−4 5.22× 10−3

Table 4.2: Comparison of 〈x0xν(0)〉 which correspond to the symmetrized correlation
function at time 0, 〈xνxν(0)〉 and Kxx(0) between the PIM results (32 and 64 beads)
and the exact ones for the 1D harmonic oscillator at 300 K.

small values of the bead index i is very hard to obtain due to the fact that these
values are close to 0. Furthermore, we can see that if we want to have all beads (for
high i) converged we need to use 64 beads. However, as we can see in table 4.2, if
we want only to have a good value for Kxx(0) 32 beads are enough even though the
error is more important than with 64 beads. The most important thing is that if
we look at the value of 〈x0xν(0)〉 (which is the simmetrised correlation function),
the relative error between the PIM results and the exact one are very important.
Indeed, we have a factor 2 if we use 32 beads and a factor 1.5 with 64 beads. For
the Kubo correlation function (integration over all the beads), the relative error is
much smaller (less that 5%).
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Figure 4.4: Comparison of the Kubo PIM position autocorrelation function at 300
K using 32 beads (green curve) or 64 beads (red curve) and the exact result (black
curve) at the same temperature.

The analysis performed in this section then demonstrates and rationalizes the
numerical advantages of the Kubo over the symmetrized PIM expression of cor-
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relation functions depending linearly on the coordinates. The same benefits hold
for operators depending on the momentum, as we shall illustrate in the following
subsection.

4.2.2 Operators linear in momentum

In this section, we focus on obtaining the PIM approximation for the Kubo
transform of the momentum autocorrelation function. As discussed at the end of
the previous subsection, this is motivated by the specific application that we intend
to pursue, i.e. computing infra red spectra. The relevant observable for these
calculations, in fact, is the dipole derivative time correlation function which, for
simple expressions of the dipole, can be related to the momenta time correlation
function. The performance of the Kubo PIM algorithm will be demonstrated by
applying it to obtain the spectra for two interesting model systems: the OH and
CH4 molecules. The anharmonic potentials adopted in these calculations have been
used as benchmarks for other approximate schemes and have proved surprisingly
challenging for some of them [52, 9, 18, 19]. Thus, in spite of the relatively low
number of degrees of freedom, these systems represent a non trivial test set for our
method.

As mentioned in Section 4.1, the experimental IR spectrum is given by the
product of the absorption coefficient α(ω) and the refractive index n(ω) of the
medium. This quantity can be directly related to the Fourier transform of the
Kubo dipole-derivative autocorrelation function [41], K̃µ̇µ̇(ω;β), via the relation
(see equation 4.17):

n(ω)α(ω) =
2βπ

3c
K̃µ̇µ̇(ω;β) (4.65)

For systems in the gas phase, n(ω) ≈ 1. In the following, we are going to consider
simple models for which a point charge description is adequate, so the dipole of the
system can be written as µ̂ =

∑Na
i=1 qir̂i, where Na is the number of atoms and qi the

charge of atom i. The dipole-derivative operator will then be a linear combination
of the momenta of the particles:

̂̇µ =

Na∑
i=1

qi
mi
p̂i (4.66)

To simplify the notation, in this section we shall focus on obtaining the PIM ex-
pression for the momentum autocorrelation function of a system of many particles
of equal mass. The generalization of this result to the dipole derivative case in then
straightforward.
Let us then consider:

Kpp(t;β) =
1

βZ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ p̂e−λĤ p̂(t)

]
(4.67)
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To set the stage for the derivation, we proceed as we did for the position autocor-
relation function. We begin by retracing the steps in equations 4.21 and 4.22 to
obtain:

Kpp(t;β) ≡ 1

βZ

∫ β/2

0
dλ Aλ +

1

βZ

∫ β/2

0
dλ Bλ (4.68)

Where now Aλ, for example, is defined as:

Aλ = Tr
[
p̂(t)

(
e−(β/2−λ)Ĥ p̂e−λĤ

)
e−β/2Ĥ

]
(4.69)

The presence of the momentum operator between the thermal propagators intro-
duces important differences with respect to the previous case (position operator).
To discuss them, let us begin by identically rewriting Aλ as:

Aλ =

∫
dr+
ν dr

−
0 dr

′−
λ dr

−
λ dr

−
ν 〈r+

ν | p̂(t) |r−ν 〉
(
〈r−ν | e−(β/2−λ)Ĥ |r′−λ 〉

× 〈r′−λ | p̂ |r
−
λ 〉〈r

−
λ | e

−λĤ |r−0 〉
)
〈r−0 | e

−β/2Ĥ |r+
ν 〉 (4.70)

where, as usual, the boldface notation indicates 3Na dimensional vectors, so, for
example r+

ν =
(
r

+(1)
ν , · · · , r+(3Na)

ν

)
. The structure of the integrand above is shown

in Figure 4.5 and can be read as a sequence of propagations in imaginary time
(i.e. evaluation of matrix elements of operators of the form e−αĤ , with α real and
positive) and evaluation of matrix elements of p̂. Starting from the bottom right
corner of the triangle in Figure 4.5 and moving counterclockwise, we see in fact
that computing the integrand requires to first obtain the matrix element of e−β/2Ĥ ,
which amounts to computing the probability amplitude for the system to evolve
from |r+

ν 〉 to |r−0 〉 in an imaginary time equal to β/2. This is followed by two new
legs of propagation in imaginary time, from |r−0 〉 to |r

−
λ 〉 in a time λ, and from |r′−λ 〉

to |r−ν 〉 in a time β/2−λ. These legs are interrupted by the evaluation of the matrix
element of p̂ between | r−λ 〉 and | r

′−
λ 〉.

The momentum operator being local in the coordinate representation:

〈r′−λ | p̂ |r
−
λ 〉 = i~δ(r

′−
λ − r−λ )

∂

∂r
′−
λ

, (4.71)

however, the presence of this matrix element does not introduce a discontinuity
in the propagation on the left side of the triangle in Figure 4.5 so that the total
length of propagation in imaginary time along this side is also β/2. This property
will prove advantageous in the following (see in particular the change of variables in
eq.(4.74) that requires equal number of beads along the two thermal paths). The last
operation to be performed in the integrand is the evaluation of the matrix element
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Figure 4.5: Schematic representation of the sequence of propagations in imaginary
time and evaluation of the matrix elements for the Kubo transformed momentum
time correlation function. In blue segments of imaginary time propagation; note
that the two sides of the triangle have equal total length, β/2 in imaginary time.
The imaginary time evolution on the right is direct, while the one on the left is
obtained, starting from the top vertex, as the composition of segments of length
λ and β/2 − λ. The evaluation of the matrix element of the momentum operator
between rλ− and r

′λ
− , the red segment, interrupts the evolution on the left, but does

not change the total time. The real time evolution necessary to evaluate the matrix
element of p̂(t) is indicated as the green horizontal line.
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of the (real) time evolved momentum operator between positions | r−ν 〉 and | r+
ν 〉,

represented in the figure as the green segment.
Let us focus first on obtaining a more convenient representation for the propagations
and the evaluation of the matrix element shown in the blue and red segments of
Figure 4.5. The first step is to introduce a path integral representation of the
matrix elements of the imaginary time propagators to rewrite [14, 73]:

Aλ =

∫
dr+

1 · · · dr
−
ν

∫
dr−0 · · · dr

−
λ dr

′−
λ · · · dr

−
ν 〈r+

ν | p̂(t) |r−ν 〉
(
e
− m

2~2δβ

∑ν
α=λ+1(r−α−r−α−1)2

× e−δβ
∑ν
α=λ+1 V (r−α−1)〈r−λ | p̂ |r

′−
λ 〉e

− m
2~2δβ

(r
′−
λ −r−λ−1)2

e
− m

2~2δβ

∑λ−1
α=1(r−α−r−α−1)2

e−δβ
∑λ
α=+1 V (r−α−1)

)
× e
− m

2~2δβ

∑ν
α=1(r+

α−r+
α−1)2

e−δβ
∑ν
α=1 V (r+

α−1) (4.72)

with the boundary condition r+
0 = r−0 , and where as always δβ = β

2ν with ν the
number of beads. In the second line, we have isolated the dependence of the in-

tegrand on r
′−
λ (the Gaussian term e

− m
2~2δβ

(r
′−
λ −r−

(λ−1)
)2

) to prepare the next step,
which is to evaluate the matrix element of the momentum operator in parenthesis.
This is done by substituting eq.(4.71) in the integrand above, taking the derivative

of e
− m

2~2δβ
(r
′−
λ −r−

(λ−1)
)2

with respect to r
′−
λ , and then using the δ(r

′−
λ −r−λ ) to perform

the integral over r
′−
λ . Reorganising the terms in the exponents in parenthesis, these

operations result in the following form for Aλ:

Aλ =

∫
dr+

1 · · · dr
−
ν

∫
dr−0 · · · dr

−
λ · · · dr

−
ν 〈r+

ν | p̂(t) |r−ν 〉
(
e
− m

2~2δβ

∑ν
α=1(r−α−r−α−1)2

× e−δβ
∑ν−1
α=1 V (r−α )e−

δβ
2

(V (r−0 )+V (r−ν ))

[
− im
~δβ

]
(r−λ − r−λ−1)

)
× e
− m

2~2δβ

∑ν
α=1(r+

α−r+
α−1)2

e−δβ
∑ν−1
α=1 V (r+

α )e−
δβ
2
V (r+

ν ) (4.73)

Proceeding in analogy with the developments in the Phase Integration Method for
the position autocorrelation function, we now introduce semisum and difference
paths by performing the following change of variables according to equation 4.30:

r0 = r−0 (4.74)

rj =
r+
j + r−j

2

∆rj = r+
j − r−j

for j = 1, ..., ν. In these new variables, Aλ can be identically rewritten as (using the
notation in equation 3.34):
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Aλ =

[
− im
~δβ

] ∫
d∆r1 · · · d∆rν

∫
dr0 · · · drν〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r)

(
(rλ − rλ−1)− 1

2
(∆rλ −∆rλ−1)

)
(4.75)

with r = (r0 · · · rν) and ∆r = (∆r1 · · ·∆rν).
The same set of operations leading to eq.(4.75) can be performed on the term Bλ =

Tr
[
p̂(t)e−(β/2+λ)Ĥ p̂e−(β/2−λ)Ĥ

]
in eq.(4.68) to obtain:

Bλ =

[
im

~δβ

] ∫
d∆r1 · · · d∆rν

∫
dr0 · · · drν〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r)

(
(rλ − rλ−1) +

1

2
(∆rλ −∆rλ−1)

)
(4.76)

So that

Aλ +Bλ =

(
im

~δβ

)∫
d∆r

∫
dr〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r) (∆rλ −∆rλ−1) (4.77)

Substituting the equation above in the expression for the Kubo transform of the
time correlation function, last line of equation (4.68), we then obtain:

Kpp(t;β) =
1

βZ

∫ β
2

0
dλ (Aλ +Bλ)

=

(
im

~δβ

)
1

βZ

∫ β
2

0
dλ

∫
d∆r

∫
dr〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r) (∆rλ −∆rλ−1) (4.78)

It is interesting to compare the equations 4.33 and 4.78, to note that the change of
observable (coordinate vs momentum) has a big influence in the expression. Indeed,
in 4.33, we do not have any more ∆ variables in the result contrary to 4.78. As we
shall see later this case is less straightforward than the coordinate case. However,
as with the coordinate PIM Kubo, this expression can be further simplified by
evaluating the integral over λ. Using again the discretization step ∆λ = δβ = β

2ν ,
we obtain:

Kpp(t;β) ≈
(
im

~δβ

)
∆λ

βZ

ν∑
j=1

∫
d∆r

∫
dr〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r) (∆rj −∆rj−1) . (4.79)
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Observing that the exponents in the integrand are invariant with respect to the value
of λ and that

∑ν
j=1 (∆rj −∆rj−1) = ∆rν (we used ∆r0 = 0), the Kubo correlation

function can be written as:

Kpp(t;β) ≈ 1

2νZ

(
im

~δβ

)∫
d∆r

∫
dr〈rν +

∆rν
2
| p̂(t) |rν −

∆rν
2
〉

× e−δβ V̄ (r,∆r)e−Vr(r) e−V∆(∆r) ∆rν (4.80)

As we did previously, we are going to use the linearisation approximation (see [7, 8]
and Chapter 2 for detailed derivation) to simplify the time evolution in the previous
equation to get:

〈rν +
∆rν

2
| p̂(t) |rν −

∆rν
2
〉 ≈

∫
dp p(t)e−

i
~p.∆rν (4.81)

where p(t) is the momentum computed at time t along a classical trajectory with
initial conditions (rν ,p). Using this result the quasi classical expression for the
Kubo transform of the correlation function is obtained as:

Kpp(t;β) =
1

2νZ

(
im

~δβ

)∫
d∆r

∫
dr

∫
dp p(t)e−

i
~p.∆rν

× e−V∆(∆r) e−δβ V̄ (r,∆r)e−Vr(r) ∆rν (4.82)

All factors in the integrand above are now explicit and calculable. However, as
discussed previously, the presence of the phase factor e−

i
~p.∆rν , which can cause very

rapid oscillations in the integrand, hinders a brute force evaluation of this quantity.
To obtain an expression more suitable for numerical purposes and an expression
amenable, with relatively minor modifications, to the algorithm employed in our
previous work, it is convenient to manipulate further the quasi classical expression
of the Kubo correlation function. Let us begin by observing that the factors ∆rν
and e−

i
~p.∆rν in the integrand can be recombined as:

∆rνe
− i

~p.∆rν = i~
∂

∂p
e−

i
~p.∆rν (4.83)

so that:

Kpp(t;β) =
1

2νZ

(
−m
δβ

)∫
d∆r

∫
dr

∫
dp p(t)

[
∂

∂p
e−

i
~p.∆rν

]
e−V∆(∆r) e−δβ V̄ (r,∆r)e−Vr(r)

(4.84)
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The same marginal and conditional probabilities defined in equations 4.39 and 4.40
allow us to write:

Kpp(t;β) =
1

2νZ

(
−m
δβ

)∫
d∆r

∫
dr

∫
dp p(t)

[
∂

∂p
e−

i
~p.∆rν

]
ρm(r)ρc(∆r|r)

=
1

2νZ

(
−m
δβ

)∫
dr

∫
dp p(t)ρm(r)

[ ∂
∂p

∫
d∆rρc(∆r|r)e−

i
~p.∆rν

]
(4.85)

Once again the integrand in the square parenthesis can be reorganized as the gen-
erating function of the cumulants see equations 4.44 and 4.45.We can then express
our correlation function as:

Kpp(t;β) =
1

2νZ

(
−m
δβ

)∫
dr

∫
dp p(t)ρm(r)

[ ∂
∂p

e−E(r,p)
]

(4.86)

=
1

2νZ

(
m

δβ

)∫
dr

∫
dp p(t)ρm(r)e−E(r,p)∂E(r,p)

∂p
(4.87)

The equation above shows that we can once more interpret our PIM correlation
function as an exprectation value over the probability density P(r,p) defined in
equation 4.11. The fact that we are considering a momentum correlation function,
however, generate a more complex, non intuitive, form for the average:

Kpp(t;β) =

(
m

2νδβ

)
〈p(t) · ∂E(r,p)

∂p
〉P(r,p) (4.88)

Kpp(t;β) =

(
m

β

)
〈p(t) · ∂E(r,p)

∂p
〉P(r,p) (4.89)

The expectation value above can be computed via a the algorithm that has been
described in detail in Chapter 3 and Appendix A.1

I present in detail in the Appendix D an alternative demonstration to obtain the
result in the equation above. Furthermore, as we can see in the Appendix D, we
can write formally:

Kpp(0;β) =

Na∑
i=1

〈(
mi

β

)
pi(0) · ∂E(r,p)

∂pi

〉
P

(4.90)

and
Na∑
i=1

〈(
1

β

)
pi(0) · ∂E(r,p)

∂pi

〉
P

=
3

2
NakBT (4.91)

1In actual calculations, the cumulant expansion in eq.(3.17) is truncated at the order 2. Nu-
merical evidence shows that this ensures convergence of the series.
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where Na is the number of atom and mi the mass of the atom i. This relationship
provides a formal connection between the PIM Kubo momentum autocorrelation
function at time 0 and the temperature of our system. For all our simulations,
we calculate Kpp(0;β) and compare it to 3

2NakBT to check the convergence of
our results with respect to the number of beads ν and truncation of the cumulant
series.

To conclude this section, note that although we have derived our result for
the position and momentum autocorrelation function, the method can be applied
to any operator that can be expressed (or approximated) as a linear combination
of powers of the coordinates or momenta. The path integral representation of the
thermal propagators can in fact be repeated as long as the matrix element measured
at imaginary time λ (the red segment in Figure 4.5) is local in the coordinate
representation. This implies that the derivation of equation (4.88) can be repeated
and the specific form of the operator affects only the form of the observable to be
averaged. While this procedure is not difficult, the new form of the observable,
which in the general case may depend on all rλ and ∆rλ, can complicate the
numerical scheme and future work will focus on developing appropriate algorithms.

4.2.3 Application to the Infrared spectroscopy

In this section, we test the PIM approximation of the Kubo transform by computing
three interesting benchmark infrared spectra. We will compare our results with exact
ones (when available) but also with those of alternative quasi-classical schemes to
asses relative accuracy and computational efficiency. To that end we have chosen
two non harmonic model systems for which numerically exact (and experimental)
results exist. These systems have also been adopted as non trivial test cases for
alternative quasi classical methods such as RPMD and CMD. In all the calculations
reported in this work, we have used the Eckart procedure [74, 52, 9] (see Appendix
E) to remove the effects of rigid translations and rotations on the system. For the
first and second systems, OH− and a CH4 molecules with quadratic type potentials
for the bonds and angles (due to the presence of a non zero equilibrium distance,
these potentials are not harmonic in Cartesian coordinates), results will be compare
to the CMD and RPMD ones. We will see how and why these two methods fail
even for simple systems. Then we will consider an OH molecule but with a strongly
anharmonic Morse potential. The results for this molecule are going to be compared
with spectra obtained via the LGA method.

4.2.3.1 OH− molecule

In the calculation considered here, the OH− molecule is described via the potential

V1(r) =
1

2
kb(r − req)2 (4.92)



4.2. Kubo correlation functions for Infrared spectroscopy 113

where r = |rO − rH | and the values of the parameters, equal to those in [52], are
listed in Table 4.3. Formal point charges equal to qH = +1 and qO = −2 were
assigned to the respective nuclear positions to compute the dipole of the molecule.
With a non neutral molecule, the definition of the dipole depends on the origin of
the reference system. We then employed the usual convention of placing the origin
in the center of mass of the molecule.

Type req(Å) kb(Ha/bohr2)
O-H 1.00 0.49536
C-H 1.09 0.30345
Type θeq(deg) ka(Ha/deg2)
H-C-H 107.8 3.1068×10−5

Table 4.3: Equilibrium structures and force constants for the O-H stretches and for
the C-H stretches and the H-C-H angles in the OH− and CH4 model potentials.

• CMD and RMPD results

Due to the presence of a non zero equilibrium distance, the potential in 4.92 is
not harmonic in Cartesian coordinates (in which all calculations discussed in the
following will be performed). As a consequence, the prescriptions for CMD, RPMD
and PIM are no longer exact and the potential is a non trivial test for these, and
our, methods. Let us begin by summarizing the results obtained in [52] which are
shown, for several temperatures, in left (CMD results) and right panels (RPMD
results) of Figure 4.7. The CMD spectra were computed at T=300 K (black curve),
T=200 K (red curve), and T=100 K (blue curve). In the figure, the classical result
at 300 K is also reported in green for comparison. The shape and location of the
peaks show some striking features: as the temperature decreases, the peak shifts
to lower frequencies, it broadens and the intensity diminishes. A discrepancy with
respect to the classical limit is noticeable even at the highest temperature where
the two calculations should converge to the same result. The exact spectrum, on
the other hand, consists of a single peak at the physical frequency

√
kb/µ ≈ 3730

cm−1 (µ is the reduced mass of the molecule) independent of the temperature. The
difference between the CMD and exact results has been explained as follows [52]. As
mentioned in Chapter 2, in this method classical time evolution is imposed on the
centroid to compute dynamical properties. The evolution is governed by an effective
potential defined as

Ueff (xc) = − 1

β
ln ρc(xc) (4.93)

where ρc(xc) ≡
∫
dx1...dxP δ

([
1
P

∑P
i=1 xi

]
− xc

)
e−βU(x1,...,xP ) is the centroid den-

sity. This effective potential depends on the temperature and for OH− it becomes
strongly anharmonic when the temperature is lowered, with a shift of the minimum
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towards shorter distances. Therefore, the dynamics of the centroids is effectively
a classical (Newtonian) dynamics in the effective potential Ueff (xc). The conse-
quences of this behavior have been analyzed by Witt et al. [52] and they show
that the quality of CMD results depends on the centroid’s displacement, which be-
comes larger the more curved in space the ring polymer is (which is the case when
we decrease the temperature). This phenomenon is referred to as the “curvature
problem”. In terms of dynamics, the curvature problem means that the Ueff (xc)

becomes skewed towards the interaction center, leading to different (and artificial)
dynamics. Indeed, the shape of the effective potential in Figure 4.6 clearly explains
the unphysical features of the CMD spectra. Let us now consider the spectra cal-
culated via RPMD recalling first that in this scheme each bead in the path integral
representation of the system becomes a classical dynamical variable moving on the
potential U(x1, ..., xP ) = 1

2mω
2
P

∑P
i=1(xi+1−xi)2 + 1

P

∑P
i=1 V (xi) as we described in

the section on RPMD in the Chapter 2. The first term in this potential represents a
harmonic chain connecting the beads in the ring polymer. A normal mode analysis
(see Chapter 2) shows [52] that the chain frequencies depend on the temperature
and vary in the range ωm = 2π/β~ and ωM = 2P/β~. The value of ωm for tem-
peratures of typical experimental interest places it in the low to intermediate IR
frequency range which means that spectra calculated from evolution on the effective
potential will include peaks due to these (unphysical) modes in addition to those
due to the physical potential. The presence of these spurious peaks is evident in the
right panel of Figure 4.7 where we reproduce from [52] the results at three different
temperatures and in different resonance conditions among the chain mode frequen-
cies and the physical frequency. In the top panel of the figure, we show results for
the relatively high temperature T=350 K in a case where the physical and chain
frequencies are off-resonance (in all panels of the figure, the dashed lines indicate
the values of the chain frequencies). As expected, in addition to the physical peak
at approximately 3730 cm−1, another (lower intensity) peak is visible at about 2700
cm−1, which is one of the chain frequencies with this set up. The agreement among
RPMD and exact results worsens if one of the chain frequencies happens to coincide
with the physical frequency. This is shown in the middle and bottom panels of
the figure where the temperatures (T=109.2 K and T=436.5 K, respectively) were
tuned so as to produce resonance. In both cases (one more quantum, the other in
what should be the classical limit for the system) the spectra show several artifacts.
At low temperature, the spurious peaks of low intensity originating from the chain
mode are visible (this is the same phenomenon as in the upper panel of the figure),
but in addition the physical peak at 3700 cm−1 is split in two. This splitting is
amplified at the highest temperature (bottom panel), where there is also a broad-
eninig of the two features. On the other hand, at high temperature the intensity of
the spurious peaks becomes essentially negligible on the scale of the intensity of the
physical peak.

• PIM results

We performed calculations of the spectra with our method at three of the tem-
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Figure 4.6: Effective potential for the OH− molecule computed via CMD. T=300
K (black curves), T=200 K (red curve, left panel only), T=100 K (blue curve) and
we can see the anharmonicity of the effective potential when the temperature is
decreasing.

peratures where either CMD or RPMD showed problems. These temperatures were
chosen as T=300 K, T=100 K (to explore the range in which the red shift of the CMD
peaks was evident) and T = 436 K, one of the resonant temperatures for RPMD. In
all calculations the protocol followed was the same. First, convergence of the initial
condition sampling with respect to ν, the number of beads in our path integral rep-
resentation of the thermal quantum density, was established. In order to do this, we
computed relevant observables (the Kubo kinetic energy and the zero time value of
our correlation function) for increasing number of beads and verified convergence of
the mean value (see below) by comparing with standard path integral estimates of
the same quantity 2. The number of beads necessary to converge was ν(100) = 64,
ν(300) = ν(436) = 32 (the number in parenthesis indicates the temperature of the
calculation). The Eckart transformation was applied to this set of variables, and
classical trajectories propagated from the transformed (rν , p)i where i is the number
of the trajectory. In all cases 5000 trajectories were enough to converge our spectra.
The classical propagation was 10 ps long, as in the CMD and RPMD simulations,
and was performed with a standard velocity Verlet algorithm, with forces obtained
from the physical potential, with a time step dt=0.1 fs. The Fourier transform of
the correlation function along each trajectory was computed and the final result
was obtained by averaging these Fourier transforms. The spectra computed with

2Testing against an independent calculation is necessary since, our probability density is ob-
tained in part via a cumulant expansion truncated at second order. This truncation can only be
validated via comparison to an independent calculation except when analytical results such as 4.91
are available.
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Figure 4.7: IR spectra for the OH− molecule computed via CMD, left panel , and
RPMD, right panel. Results are shown for several different temperatures. In left
panel, T=300 K (black curves), T=200 K (red curve, left panel only), T=100 K
(blue curve); the classical result is shown in green for comparison. The number of
beads, P , employed in the different temperature ranges is indicated in the inset.
In right panel, T=350 K (top panel), T=109.2 K (middle panel), and T=436.5 K
(bottom panel). The dashed lines indicate the chain frequencies.
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Figure 4.8: IR spectra of the 3D harmonic potential for the OH− molecule. Com-
parison of the Kubo-transformed PIM spectra at 100 (green curve),300 (red curve)
and 436 K (black curve) spectrum.

this procedure are shown in Figure 4.8. In accordance with theoretical expectations,
our spectra are all at the same - physical - frequency and, for this feature, there
are no noticeable differences with the varying temperature. Indeed, the spectra are
completely superimposed in the Figure 4.8. This is to be expected since none of the
pathologies listed above for CMD or RPMD affects our calculations. In particular,
since the positions and momenta of only one of the beads are propagated and the
dynamics happens on the physical potential, none of the spurious features induced
by the effective centroid potential or the harmonic part of the effective potential
in RPMD can arise. In our calculations there is a computational overhead which
arises from the auxiliary Montecarlo necessary to sample the noisy probability. In
this case, we required a number of auxiliary Montecarlo steps equal to Naux = 250

to generate each initial condition. This means, in particular, that we required 250
calls to the potential function to generate each initial condition. Some computa-
tional overhead with respect to the declared number of trajectories is present also
in the CMD and RPMD simulations, since in both cases initial conditions were ob-
tained from uncorrelated phase space points collected along a thermostatted NVT
trajectory for the system. It should also be pointed out that, for this model, also
a purely classical calculation can determine the location of the peak in this system
which is considered purely to test the algorithms.
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4.2.3.2 CH4 harmonic molecule

The next system that we consider is a point charge model for methane, with

V (r, θ) =
∑
bonds

1

2
kb(|r| − req)2 +

∑
angles

1

2
ka(θ − θeq)2 (4.94)

where kb=0.30345 hartree/bohr2 and req=1.09 for the C-H bond, ka=3.1068×10−5

hartree/degree2 and θeq=107.8 degree for the H-C-H angle. These parameters have
been chosen to reproduce the main features of the experimental IR spectrum, when
the charges of qH=1.0e for the hydrogen and qC=-4.0e for the carbon are used.

• CMD and RMPD results

Results for CMD and RPMD are shown in Figure 4.9, left panel and right panel,
respectively. The CMD spectra show again a shifting and broadening with decreas-
ing temperature (the origin of this effect is the same as in the previous case). This
effect is more pronounced for the high frequency peak due to the stretching modes,
which red shifts by more than 200 cm−1 as the temperature goes from T=300 K (top
panel) to T=100 K (bottom panel) [52]. Also RPMD manifests several problems. In
the top part of right panel , Witt et al. in [52] show the power spectrum computed
from the velocity autocorrelation function to identify both the IR active and inactive
modes. Of course, the latter should not appear in the IR spectra computed from
the dipole autocorrelation function and shown – for two different temperatures with
different resonance conditions with the chain modes – in the lower panels. Contrary
to this (correct) expectation, however both the middle and bottom panels show a
resonance around 2700 cm−1 in correspondence with the highest IR inactive peak
of the top panel. This is a new pathology with respect to the ones found for OH−.
Furthermore, the stretching peak visible at 3000 cm−1 in the top panel splits and
there is a spurious signal to its right (according to the analysis in [52], this signal
originates from a combination band involving one of the chain frequencies and the
slowest stretching mode).

• PIM results

In the following, we show that the main features of the CH4 spectrum can
be reproduced using PIM adapted to the Kubo expression for the dipole derivative
which is, in fact, again free from the problems apparent in CMD and RPMD. To that
end, we performed calculations at two different temperatures, T=300 K (with ν = 64

in the path integral representation of the thermal propagators) and T=100 K (with
ν = 128). At these temperatures, the system is quite far from the classical limit.
25000 classical trajectories of duration 10 ps were used to converge the spectrum at
both temperatures. The results are shown in Figure 4.10 as the red and blue curves
respectively. In the figure we also report the classical spectrum, black dashed line, to
show the discrepancies with respect to the quasi classical calculations. We find that
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Figure 4.9: In left panel, IR spectra for CH4 molecule obtained with CMD (with only
the streching vibration); in right panel the result calculated using RPMD. Results
are shown for several different temperatures. For centroid MD, as indicated in the
insets, T goes from 300 K to T=100 K (lower panel). As for the RPMD we show the
spectrum for T=400 K (as explained in ref. [52] from where the figure is reproduced,
this spectrum is calculated via the velocity autocorrelation function to identify IR
inactive modes, see that reference for discussion), in the middle T=136.5 K, at the
bottom T=273 K.



120 Chapter 4. Application of PIM to the Infrared spectroscopy

PIM Classical Exp.
bending 1204 1195 1304

deformation 1600 1550
overtone of deformation 2600 2585 2601

combination band 2900 2826
stretch 3005 2995 3020

Table 4.4: Peak positions of the IR active modes in the spectrum of CH4 as obtained
with PIM and exact calculations, compared to experimental results from ref. [75].
Units are cm−1.

the position and the shape of the main peaks is stable with respect to variations of
the temperature. As reported in Table 4.4, experimentally the IR spectrum of CH4

shows two main features: a peak resulting from the bending mode of the molecule
at about 1300 cm−1 and a second peak due to stretching at about 3020 cm−1. For
the main features of the spectrum, the PIM method, along with the parametrization
of the empirical force field, gives results in good agreement with the experiment, see
first column in the table. The high frequency stretching peak calculated via PIM is
shifted by only 15 cm−1 with respect to the experiment. The peak corresponding to
the bending is less accurate, with a shift of about 100 cm−1, but the agreement is still
satisfactory. The experimental spectrum [75] also shows a smaller feature centred at
1550 cm−1. This has been assigned as a combination band between an IR inactive
deformation mode of the molecule and the bending centred around 1200 cm−1. PIM
is able to qualitatively capture also this rather subtle effect (the experiment shows
one broad band, while our spectrum has a double band structure). As shown in
the inset in Figure 4.10, the calculated spectrum at T=300 K also shows two low
intensity features at about 2600 cm−1 and 2900 cm−1 (red curves in the inset).
Similar peaks are present also in the experimental spectrum and have been assigned
to an overtone of the bending mode centred around 1300 cm−1 and to a combination
band due to the modes at 1500 cm−1 and 1300 cm−1, respectively. In contrast, the
classical calculation at the same temperature (black curve) barely shows signal at
1500 cm−1, the peak around 2600 cm−1 is shifted and less intense compared to the
PIM result, and there is essentially no signal at 2900 cm−1. It seems then that the
PIM method is able to capture these non-harmonic effects.

4.2.3.3 OH Morse molecule

The last system, that we consider for our comparison with alternative schemes, is a
point charge model for the OH molecule. The potential is a shifted Morse given by

V (r) = De

[
1− e−α(|r|−req)

]2
(4.95)

where De=116.09 kcal.mol−1, α=2.287 −1 and req=0.9419 . |r| is the O-H distance
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Figure 4.10: IR spectra of the 3D harmonic potential for the CH4 molecule. Com-
parison of the Kubo-transformed PIM spectra at 100 and 300 K and the classical
spectrum at 300 K. The inset shows a zoom of the region between 1500 and 3000
cm−1.
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and the masses are mH=1837 a.u (atomic units) and mO = 16 × 1823 a.u. The
charges assigned to the atoms are qH=1.1128e for the hydrogen and qO=-1.1128e
for the oxygen. This model has been proposed by Liu and Miller [13] as a standard
benchmark for testing the accuracy of quasi classical methods. These authors used
it, in particular, to test the so called LSC-IVR with LGA method. As discussed
in Chapter 2, this is a scheme in which propagation of classical trajectories is
combined with an approximate, ad hoc, method for approximate sampling of initial
conditions from the Wigner transform of the thermal density [56] (see Chapter 2).
In their paper [19], they provide numerically exact results for the IR spectrum. We
shall also use that reference for comparison with LSC-IVR, a state-of-the-art quasi
classical approach.
We performed calculations of the PIM Kubo IR spectrum significantly varying
the temperature to verify the efficiency and accuracy of our result in different
conditions. We begin by showing, in Figure 4.11, the result obtained at T=4800K.
This calculation was performed as a consistency check: at this high temperature,
the system is classical and indeed the results of a classical and PIM evaluation of
the spectrum, the black and red curves respectively, are in excellent agreement.
We now move away from the classical regime by lowering the temperature. In
Figure 4.12, we show PIM spectra at T=800K (red curve), T=300K (green
curve), and T=100K (blue curve). The number of beads used in the path integral
representation of the thermal propagators, see eq.(4.72), is ν = 32 at T=800K,
ν = 64 at T=300K, and ν = 128 at T=100K. All calculations were converged by
propagating 50000 classical trajectories of duration 10 ps. The number of auxiliary
Monte Carlo steps was Naux=200. The convergence of the simulations has been
checked with the number of beads and according to the equipartition of the energy
(see equation 4.91). The inset of Figure 4.11 displays the error bars on the PIM
spectrum determined from a block average with 5 blocks of 10000 trajectories each.
The position of the maximum of these spectra was estimated by direct inspection
with an error approximately equal to 5 cm−1, as inferred from the spectrum error
bars.

The classical calculation is also reported as the black dashed curve. The re-
sults show that at these temperatures, the system is well in the non classical
regime. The PIM spectra are essentially identical within noise and reproduce the
quantum stability of the position of the maximum at the different temperatures. A
comparison between PIM, classical, exact and LSC-IVR results is given in Table 4.5
where we present data for the position of the maximum of the IR peak at the two
lowest temperatures. The first observation is that the classical calculation results
in a considerable blue shift (about 160 cm−1) of the peak. The classical frequency
is in fact quite close to that corresponding to an harmonic approximation of the
minimum of the Morse, which gives ωe=3886.56 cm−1. This result can be explained,
by observing that the classical sampling of the initial conditions does not account
for thermal quantum effects such as zero point energy. Consequently, the system
has a very low energy and is confined to explore only the bottom of the Morse well
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where the harmonic approximation applies. The table also shows that PIM and
LSC-IVR give very similar results, with a peak position of about ωqc = 3782 cm−1

in closer agreement with the exact result, ωex ≈ 3700 cm−1. This improvement is a
direct consequence of the more accurate sampling of the quantum thermal density
which allows to explore, at least in part, the anharmonic region of the potential.
The residual blue shift of the peak compared to the exact result (about 80 cm−1)
can be explained via the failure of the classical approximation to reproduce the
long time behaviour of the quantum time correlation function. To verify this, Liu
and Miller suggested to analyse the shift of the position of the peak as a function
of the maximum time in which the correlation function is computed. They found
that better agreement with the quantum result could be found for LSC-IVR if only
the first few periods of the time correlation function were used to fit an oscillating
function to use in the evaluation of the mean frequency. They argued that this
was due to the fact that the classical approximation of the propagation becomes
exact for short times. To compare with their result, we then computed the position
of the spectrum at T=300K as a function of the number of periods included in
the fit of the time correlation function. The results are summarised in table 4.6
and, in agreement with the observation of Liu and Miller [19], we also find that a
very good peak position can be obtained by evaluating the mean frequency via the
fitting of an oscillating function to the short time dynamics. With only two periods
we obtain essentially the correct quantum peak position, while an increasing blue
shift is observed for longer calculations. This is in contrast with the classical
simulation in which the frequency is completely stable (and incorrect) as a function
of periods included in the fitting procedure. Thus, this section shows that there
is essentially perfect agreement between our results and those of the LSC-IVR
method, confirming that, within the limits of the quasi classical treatment, PIM is
a reliable tool for computing IR spectra.

Let us conclude with some comments on the numerical cost of the method.
The calculations discussed above require essentially the same effort necessary to
converge LSC-IVR. Indeed, the results presented here were obtained by propagating
N=50,000 trajectories, which is the same ensemble size used in ref. [13]. In our
runs, we have imposed rather strict convergence criteria for the (numerically exact)
sampling of the initial condition, leading to a relatively large number of steps,
Naux=200, in the auxiliary Monte Carlo calculations related to the sampling of
noisy probabilities. This overhead is however of the same order of, if not smaller
than, the one necessary to decorrelate successive initial conditions using the Liu
Miller sampling. Furthermore, the standard PIM approach (i.e. PIM calculations
based on the symmetrised form of the quantum time correlation function) was
recently applied to compute the dynamic structure factor for a realistic model of
a condensed phase system in the quasi classical regime [12]. This calculation, in
which the semiempirical Aziz potential was employed to simulate the dynamics of
64 Neon atoms, showed that PIM results match, both in accuracy and efficiency,
those obtained with the Feynman-Kleinert linearised method proposed by Poulsen
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Figure 4.11: IR spectra of the 3D Morse potential for the OH molecule. Comparison
of the Kubo-transformed PIM spectra at 4800 K and the classical spectrum at the
same temperature.

and Rossky [1] and were in very good agreement with available experimental data.
This comparison is relevant for two reasons. Firstly, the method by Poulsen and
Rossky is the closest to PIM in terms of rigour and formal properties (for example,
it is in principle able to capture quantum correlations among the momenta of
the particles). Secondly, the initial condition sampling used in the standard and
Kubo version of the PIM method is identical. Therefore, the good scaling of
standard PIM with number of degrees of freedom observed for the Neon calculation
will be preserved by the Kubo variation. As a final consideration, note that
the computational cost of PIM is essentially dominated by the initial condition
sampling. The time evolution of the system is in fact completely classical and
involves only one of the beads introduced in the path integral representation of the
thermal density. This implies, in particular, that the effort necessary to increase the
length of the (real) time for which the correlation is computed is identical to that
of a classical molecular dynamics calculation. The considerations above suggest
that the scaling of the cost of our algorithm with number of degrees of freedom will
be similar to that of other linearised approaches.



4.2. Kubo correlation functions for Infrared spectroscopy 125

2500 3000 3500 4000

Frequency [cm
-1

]

In
te

n
si

ty
 [

u
.a

]

Class 300 K
PIM 100 K
Exact frequency

PIM 300 K
PIM 800 K

3600 3900

PIM 300 K
PIM +/- error

Figure 4.12: IR spectra of the 3D Morse potential for the OH molecule. Comparison
of the Kubo-transformed PIM spectra at 100, 300 and 800 K and the classical
spectrum at 300 K. The structure towards the maximum of the position for the
spectrum at T=100 K is most likely due to some residual noise. The black solid
line is the exact numerical result reported in Table 1. The inset shows a zoom in
the region from 3400 cm−1 to 4000 cm−1 of the PIM spectrum at 300 K, green
curve. The curves in black are the plus and minus one σ standard deviation of this
spectrum obtained from a block average (see text).

T (K) PIM LSC-IVR Classical Exact
300 3783 3782 3864 3700.55
100 3794 3783 3878

Table 4.5: Peak positions of the O-H streaching mode in cm−1 estimated with
different methods. The Exact result is a numerically converged exact calculation.

Nbr of periods PIM Frequency (cm−1) Class. Frequency (cm−1)
2 3703 3857
4 3715 3858
6 3726 3858
all 3783 3864

Table 4.6: Peak positions of the O-H streaching mode estimated using different
number of periods of the correlation function at 300 K, for the PIM and classical
simulations. The numerically exact peak position for this model is 3700 cm−1.
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4.3 Conclusions

In this Chapter, we started by the derivation of the PIM symmetrized position au-
tocorrelation function and showed why this function is not numerically adapted to
the calculation of IR spectra. Then we extended the Phase Integration Method to
compute the quasi classical approximation of the Kubo expression for the position
autocorrelation function. This extension improves on the original formulation of
the approach because it allows to access directly experimental quantities, often ex-
pressed in terms of the Fourier transform of the Kubo representation. In contrast, in
the original approach, the method approximated the symmetrised form of the corre-
lation function. To connect with experiments, it was then necessary to multiply the
result by exponential factors often difficult to control numerically. In addition, on
the calculation of the position autocorrelation function of a 1D harmonic oscillator,
we have seen that at identical numerical cost the Kubo correlation function was
converged contrary to the symmetrized one.
Finally, we specialised the derivation to the case of operator linear in the momenta
and coordinates and investigated the numerical performance of the approach in cal-
culating the infra red spectrum of interesting benchmark systems. Comparison of
our results with LSC-IVR show that, as for the original approach, "Kubo PIM" is
as accurate as state-of-the-art quasi classical methods for low dimensional models.
The calculation of the OH− and CH4 spectra confirms not only that our approach
does not suffer from the pathologies of popular schemes such as centroid and ring
polymer molecular dynamics, but also that it can treat systems with a larger num-
ber of degrees of freedom reliably. The numerical cost of our calculations is very
similar to that of alternative methods. Furthermore,the derivation presented here
can be extended to the rather general case of operators that can be expressed (or
approximated) as linear combinations of powers of coordinates or momenta. Future
investigations will focus on using this observation to compute other observables of
interest as we are going to see in the next Chapter.
As a final technical point, to perform more efficiently the simulations just discussed
and pave the way for higher dimensional calculations, during my PhD I developed
and tested a parallel (using MPI) version of the PIM code. The first step is to
communicate the input to all the processors. Then if we have to perform 50000

trajectories, we will run on the 96 processors (for example), 50000/96 trajectories
on each one. Finally, they will communicate their results to do the final average.
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Studying chemical reactions requires knowledge of the various rate constants
that are involved in a reaction mechanism. A classical description can be adequate
providing that the mechanism involves heavy atoms exchanges (or transfer) and/or
that the reaction temperatures are high enough. In such cases, simple classical
simulations can be reliable for computing the rate constants, using the transition-
state theory (TST) [76] for example.
However, for systems expected to show a more quantum behaviour – encountered
at lower temperatures and for light particles exchanges, such as electrons or protons
–, classical simulation, which does not take into account the quantum nature of
the phenomena (such as tunnelling effect or zero point energy), is inadequate. The
derivation of a transition-state theory is in this case much more complicated (see
[23] for the derivation a quantum TST), and the numerical experiments required to
investigate the rate constants values are more difficult.
In this Chapter, we describe a scheme to calculate rate constants with PIM. The
theoretical frame for this development – the model of the thermal rate constant
and the expression obtained via PIM will be presented, and some preliminary test
results will be discussed.

5.1 General expression for chemical rate constant

The calculation of thermal rate constants, k(T ), for chemical reactions remains one
of the central tasks of theoretical chemistry. The simplest thermodynamic model
for a bimolecular chemical reaction would be crossing an energetic barrier (with
the potential V (x) tending to zero as x ± ∞), separating the configuration space
in two limit domains : the reactant side, for x → −∞ (on the left side of the
barrier), and the product side, for x → +∞ (on the other side). The framework
for our study requires a quantum treatment of the particles – the crossing of the
barrier can hence also occur via tunnelling effect, for example. Let us call Ψp the
scattering wavefunction – composed of an incident, a reflected and a transmitted
component – defined such that Ψp(x → +∞) ∼ φp(x)T (E), where φp is a free-
particle wavefunction with momentum p and E its associated energy. The general
probability for a scattering wave function to cross the barrier is then calculated
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using basic quantum mechanics as a transmission probability T (E). On the reactant
side, the rate constant corresponds to the states, initially present on the reactant
side of the energetic surface, pondered by their probability of crossing the barrier.
The exact quantum mechanical expression for the thermal rate coefficient of this
“reaction” is [77]:

k(T ) =
1

2π~Qr(T )

∫ ∞
0

dE e−βEN(E) (5.1)

Here Qr(T ) is the reactant partition function per unit length (it would become the
partition function per unit volume for a reaction in three-dimensional space), which
is given by statistical mechanics as:

Qr(T ) =
1

Λ(T )
=

(
m

2πβ~2

)1/2

(5.2)

and N(E) is the “cumulative reaction probability” [21] which in the present case of
a one dimensional barrier transmission problem is simply the barrier transmission
probability, N(E) = |T (E)|2, so we obtain:

k(T ) =
1

2π~Qr(T )

∫ ∞
0

dE e−βE |T (E)|2 (5.3)

One can show that from this expression, we can derive a rate constant formula
which involves quantum correlation function. Indeed, Miller et al. [21, 77] provide
an extremely elegant (and entirely rigorous) way to calculate the rate coefficient in
equation 5.1 using flux-side correlation function. They show that the cumulative
reaction probability N(E) can be calculated from the steady-state flux through any
point (or “dividing surface”) x = s as:

N(E) = 2π~
(
m

p

)〈
Ψp|F̂ |Ψp

〉
(5.4)

where F̂ is the flux operator for a dividing surface s defined as:

F̂ (s) =
1

2m
[p̂ δ(x̂− s) + δ(x̂− s) p̂] (5.5)

After some algebra [21, 77], we end up with the following flux-side correlation func-
tion expression for the rate constant:
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k(T ) =
1

Qr(T )
lim
t→∞

Tr
[
e−βĤ/2F̂ (s)e−βĤ/2e−iĤt/~h(x̂− s)eiĤt/~

]
(5.6)

=
1

Qr(T )
lim
t→∞

Tr
[
e−βĤ/2F̂ (s)e−βĤ/2ĥ(x̂− s, t)

]

where ĥ(s) is the Heaviside operator and ĥ(x̂−s, t) ≡ e−iĤt/~h(x̂−s)eiĤt/~. The flux
operator characterises the probability to go from the reactant side to the product
side at t = 0 and the side operator allows to know if we are in the reactant or the
product side. Formally, we have:

ĥ(x̂− s, t) =

{
1 if x > s

0 if x ≤ s
(5.7)

To simplify the notation, we denote ĥ(x̂ − s, t) as ĥ(t). It is also possible to de-
rive expressions with the side-side correlation function or the flux-flux correlation
function of the chemical rate constant [21, 77]:

k(T ) =
1

Qr(T )

∫ ∞
0

Tr
[
e−βĤ/2F̂ e−βĤ/2F̂ (t)

]
(5.8)

=
1

Qr(T )
lim
t→∞

d

dt
Tr
[
e−βĤ/2ĥe−βĤ/2(1− ĥ(t))

]

These two expressions are more difficult to handle numerically, due to the integration
and the derivation, and thus, the flux-side is the most commonly used to calculate
rate constants.
Two important things have to be noticed. The first one is that formally the rate
constant has to be evaluated from a symmetrised correlation function (it has been
shown [29] that the standard and the Kubo correlation functions could also be used).
The second point is that our observables will be quite hard to compute. Indeed, F̂ is
an observable of momenta and coordinates and in addition non linear in coordinates.
Furthermore, as we can see in the definition of the flux (see equation 5.5), we have
to deal with δ-functions centered on the dividing surface (which for our 1D potential
will be the top of the barrier). Then the probability for our system to be localized
at this energetic maximum is extremely low. To extract a non-zero value for our
correlation function, the simulations performed should therefore be very long to hope
to crossings of the barrier, and inefficient from a numerical point of view. Moreover,
for general multidimensional case defining the dividing surface is non-trivial. In the
next Section, we will see how we can compute rate constants via the PIM procedure.
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5.2 PIM Flux-side correlation function

For more convenience, we express the rate constant as:

k(T ) = lim
t→∞

Tr
[
e−βĤ/2F̂ (s)e−βĤ/2ĥ(t)

]
Q(s)

× Q(s)

Qr(T )
(5.9)

where Q(s) is the partition function with the particle constrained at the dividing
surface and thus, is defined as:

Q(s) =

∫
dx δ(x− s)

〈
x|e−βĤ |x

〉
(5.10)

As we are going to see in the following, the numerical evaluation of
Tr
[
e−βĤ/2F̂ (s)e−βĤ/2ĥ(t)

]
Q(s) is simply the flux-side symmetrised correlation function with

a constraint. The term Q(s)
Qr(T ) is , as we will see in the next Section, a free energy

term.
We will present here how we can calculate this flux-side correlation function using
PIM. We pose:

Cfs(t) =
1

Q(s)
Tr
[
e−βĤ/2F̂ (s)e−βĤ/2ĥ(t)

]
(5.11)

=
1

Q(s)
Tr
[
F̂ (s)e−βĤ/2ĥ(t)e−βĤ/2

]
where we used the cyclic permutation property of the trace.
In analogy to what we did for the Kubo correlation functions, we introduce a coor-
dinate representation by inserting resolutions of the identity to conveniently isolate
matrix elements of operators. Thus:

Cfs(t) =
1

Q(s)

∫
dx−0 dx

+
0 dx

−
ν dx

+
ν

〈
x+

0 |F̂ (s)|x−0
〉

×
〈
x−0 |e

−βĤ/2|x−ν
〉〈

x−ν |ĥ(t)|x+
ν

〉〈
x+
ν |e−βĤ/2|x+

0

〉
(5.12)

The first step is to introduce a path integral representation of the matrix elements
of the imaginary time propagators to rewrite (as we did for the Kubo correlation
function):

〈
x−0 |e

−βĤ/2|x−ν
〉〈

x+
ν |e−βĤ/2|x+

0

〉
=

∫
dx−1 · · · dx

−
ν−1

∫
dx+

1 · · · dx
+
ν−1

× e
− m

2~2δβ

∑ν
α=1(x−α−x−α−1)2

e
− m

2~2δβ

∑ν
α=1(x+

α−x+
α−1)2

e−δβ
∑ν
α=1 V (x−α )e−δβ

∑ν
α=1 V (x+

α )

(5.13)
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Then we decompose the flux operator in two terms (see equation 5.5).

Cfs(t) =
1

Q(s)

∫
dx−0 · · · dx

−
ν

∫
dx+

0 · · · dx
+
ν

1

2m

〈
x+

0 |p̂ δ(x̂− s) + δ(x̂− s) p̂|x−0
〉

×
〈
x−ν |ĥ(t)|x+

ν

〉
e
− m

2~2δβ

∑ν
α=1(x−α−x−α−1)2

e
− m

2~2δβ

∑ν
α=1(x+

α−x+
α−1)2

e−δβ
∑ν
α=1 V (x−α )e−δβ

∑ν
α=1 V (x+

α )

(5.14)

Considering, to isolate the relevant steps of the calculation, only the terms of the
imaginary time propagators which depend of x−0 and x+

0 (note that F̂ is evaluated
between thiese two coordinates), we have:

A =

∫
dx−0 dx

+
0

〈
x+

0 |p̂ δ(x̂− s)|x
−
0

〉
e
− m

2~2δβ
(x−1 −x

−
0 )2

e
− m

2~2δβ
(x+

1 −x
+
0 )2

(5.15)

B =

∫
dx−0 dx

+
0

〈
x+

0 |δ(x̂− s) p̂|x
−
0

〉
e
− m

2~2δβ
(x−1 −x

−
0 )2

e
− m

2~2δβ
(x+

1 −x
+
0 )2

(5.16)

We recall that the momentum operator is local in the coordinate representation:

〈x+
0 | p̂ |x

−
0 〉 = i~ δ(x+

0 − x
−
0 )

∂

∂x+
0

= −i~ δ(x+
0 − x

−
0 )

∂

∂x−0
(5.17)

Given 5.17 we can express A in the coordinate basis:

A =

∫
dx−0 e

− m
2~2δβ

(x−1 −x
−
0 )2

δ(x−0 − s)
∫
dx+

0 (i~)δ(x+
0 − x

−
0 )

∂

∂x+
0

e
− m

2~2δβ
(x+

1 −x
+
0 )2

=

(
im

δβ~

)∫
dx−0 dx

+
0 e
− m

2~2δβ
(x−1 −x

−
0 )2

e
− m

2~2δβ
(x+

1 −x
+
0 )2

δ(x−0 − s)δ(x
+
0 − x

−
0 )
(
x+

1 − x
+
0

)
(5.18)

Similarly we obtain the following result for B:

B =

(
−im
δβ~

)∫
dx−0 dx

+
0 e
− m

2~2δβ
(x−1 −x

−
0 )2

e
− m

2~2δβ
(x+

1 −x
+
0 )2

δ(x+
0 − s)δ(x

+
0 − x

−
0 )
(
x−1 − x

−
0

)
(5.19)

Then if we include the rest of the thermal paths and the prefactor 1/2m coming
from the flux operator (see equation 5.5), we obtain for our symmetrised flux-side
correlation function:
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Cfs(t) =

(
i

2δβ~

)
1

Q(s)

∫
dx−0 · · · dx

−
ν dx

+
0 · · · dx

+
ν

〈
x−ν |ĥ(t)|x+

ν

〉
δ(x+

0 − s)δ(x
+
0 − x

−
0 )

×
(
x+

1 − x
−
1

)
e
− m

2~2δβ

∑ν
α=1(x−α−x−α−1)2

e
− m

2~2δβ

∑ν
α=1(x+

α−x+
α−1)2

e−δβ
∑ν
α=1 V (x−α )e−δβ

∑ν
α=1 V (x+

α )

(5.20)

where we used the fact that x+
0 = x−0 to simplify the equation.

The next step has been presented many times and corresponds to the change of
variables according to the equations 4.30. Using the simplified notations introduced
in the equations 3.34, we can write:

Cfs(t) =

(
i

2δβ~

)
1

Q(s)

∫
dxd∆x

〈
xν −

∆xν
2

∣∣∣∣ĥ(t)

∣∣∣∣xν +
∆xν

2

〉
δ(x0 − s)

×∆x1 e
−Vx(x)e−V∆(∆x)e−δβ V̄ (x,∆x) (5.21)

where x = (x0, · · · , xν) and ∆x = (∆x1, · · · ,∆xν).
Then we proceed as we did for the Kubo correlation functions. We use the lineari-
sation approximation which allows us to express our correlation function as:

Cfs(t) =

(
i

2δβ~

)
1

Q(s)

∫
dxd∆xdp h(t) δ(x0 − s)∆x1 e

−Vx(x)e−V∆(∆x)e−δβ V̄ (x,∆x)e−
i
~p∆xν

(5.22)

Then using the equations 3.13, we can express our correlation function as:

Cfs(t) =

(
i

2δβ~

)∫
dxdp h(t) δ(x0 − s)ρm(x;x0 = s)

[∫
d∆x ∆x1 ρc(∆x|x;x0 = s)e−

i
~p∆xν

]
(5.23)

In this case, the cumulant expansion, previously introduced in Chapters 3 and 4,
cannot be done in a straightforward way due to the fact that we have now ∆x1

in the observable. We have to use a mathematical trick to express our correlation
function in a more computable way. First, we define N as:

N =

∫
d∆x ∆x1 ρc(∆x|x;x0 = s)e−

i
~p∆xν

≡
〈

∆x1 e
− i

~p∆xν
〉
ρc(∆x|x;x0=s)

(5.24)

We can then introduce a variable ε and write N formally as:
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N =

{
d

dε

〈
eε∆x1− i

~p∆xν
〉
ρc(∆x|x;x0=s)

}
ε=0

(5.25)

Then we do a joint cumulant expansion of the two independant variables ∆x1 and
∆xν , which leads us to:

N =

{
d

dε
exp

[ ∞∑
n1=0

∞∑
n2=0

εn1

n1!

(−ip)n2

~n2n2!
〈(∆x1)n1(∆xν)n2〉cρc(x0=s)

]}
ε=0

(5.26)

with (n1, n2) 6= (0, 0).
In the following we consider a cumulant expansion of order 2. The first thing to
notice is that all the terms in ε with n1 > 1 will be equal to zero because we take
the derivative in ε = 0 (the derivative of N in this case will be proportional to
εn1−1). Given that ρc is even in ∆x, we can observe that (n1, n2) = (0, 1) and
(n1, n2) = (1, 0) give a 0 contribution. So the only couples of (n1, n2) giving non
zero term are (n1, n2) = (0, 2) and (n1, n2) = (1, 1) leading us to:

N ≈
{
d

dε
exp

[
− iεp

~
〈∆x1∆xν〉ρc −

p2

2~2

〈
(∆xν)2

〉
ρc

]}
ε=0

≡
{(
− ip

~

)
〈∆x1∆xν〉ρc exp

[
− iεp

~
〈∆x1∆xν〉ρc −

p2

2~2

〈
(∆xν)2

〉
ρc

]}
ε=0

≡
(
− ip

~

)
〈∆x1∆xν〉ρc e

−E(x,p) (5.27)

where ≈ indicates the truncation to the second order of the cumulant expansion.
After this treatment of the phase, we can now express our flux-side correlation
function as:

Cfs(t) =

(
1

2δβ~2

)∫
dxdp h(t) δ(x0 − s)ρm(x;x0 = s)p 〈∆x1∆xν〉ρc e

−E(x,p)

Cfs(t) =

(
ν

β~2

)〈
p 〈∆x1∆xν〉ρc δ(x0 − s) h(t)

〉
P(x,p;x0=s)

(5.28)

At this point it is necessary to discuss this expression. The first thing to notice is
that in our simulation we have to constrain the first bead of our polymer. Then our
result includes a correlation on the ∆ variables between the second beads (denoted
with the label 1) and the last one (label ν). As discussed for the Kubo position
autocorrelation function in Chapter 4, the convergence for the average of x0xν is
numerically difficult. We then expect difficulties with the observable in the equation
5.28. The relevence of this problem will be discussed in the following.
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5.3 Free energy calculations

The second ratio involved in our calculations of rate constants is Q(s)/Qr(T ). We
shall give this expression a more physical meaning.
Firstly, and following the definition already used, we can rewrite the two partition
functions as configuration integrals :

Q(s)

Qr(T )
=

∫∞
−∞ dx δ(x− s)〈x|e

−βĤ |x〉∫∞
−∞ dx δ(x− xr)〈x|e−βĤ |x〉

(5.29)

where xr designs the "reactant position", that is, when x → ∞ and we constrain
ourselves in this reactant position. This expression corresponds, by definition, to
the exponential of a free-energy difference. To say it otherwise, if we note A the
free-energy, then:

A = −kBT ln(P ) (5.30)

where P designs a probability. We can hence rewrite as

Q(s)

Qr
= exp [−β(A(s)−A(xr))] (5.31)

With expression (5.31), we have transformed our problem to a free-energy profile
calculation. Our goal is thus to express and compute the free-energy for our
restrained (with one bead fixed) system.

I will describe the procedure used to calculate the free energy profile without
enter in the detail since it is fairly standard. Indeed, for the simple 1D model that
we are looking at, we simply use an Umbrella sampling method [78] combined with
a standard Weighted Histogram Analysis Method (WHAM) [79].
In our path integral calculation method, the way to compute free energy using
Umbrella sampling is the following: we add to the physical potential an harmonic
potential (Vumb = 1

2k(xi − xmin)2) on a chosen bead i (i is not relevant because in
this case paths are cyclic) with a value for the harmonic spring k sufficiently high
to keep the bead around the minimum of the harmonic potential. We perform this
harmonic restraint for different value of xmin in order to scan the physical potential.
For every value of xmin, we calculate the histogram of xi in this biased potential.
Then we unbiase the histograms using the WHAM procedure which gives us our
free energy profile. As we are going to see in the next section, if we have a potential
with an energetic barrier, around the barrier we have to increase the value of k in
the biased potential in order to be able to restrain xi around xmin.

5.4 Results

In our model 1D system, the chemical reaction is modelled by a single particle
crossing an energetic barrier (the particle was given the mass of a hydrogen atom).
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The barrier chosen is the symmetric Eckart barrier, whose analytical form is

V (q) =
V0

cosh(q/a0)2
. (5.32)

with parameters V0 = 0.425 eV, a = 0.734 bohr and m = 1061 a.u chosen to mimic
the H+H2 reaction.
This model was quite extensively studied by Miller and co-workers, which gives us
numerous references to compare our results with (see [57, 22, 20]). We choose the
diving surface to be on the top of the barrier so s = 0 a.u.

5.4.1 Free energy profiles

Free-energy profiles were computed using a 51-points grid between q =

−4 and q = 4 atomic units for xmin in the biased potential. Then
we unbiased these 51 histograms using the WHAM code of Grossfield (see
http://membrane.urmc.rochester.edu/content/wham). As output from this code,
we obtain our free energy profile. In figure 5.1, we can see that at high temperature
the free energy profile is close to the Eckart potential. However, already at 1000 K,
the maximum of the free energy profile is below the top of the Eckart barrier. This
behaviour becomes more and more important when we decrease the temperature
and the free energy profiles become more different from the Eckart potential. This
is due to the fact that at low temperature the tunneling effect becomes more im-
portant and lower the free energy. We can see this effect quantitatively in the table
5.1, where the maximum of the energy profile for different temperature is compared
to the value of the Eckart potential at the top of the barrier.

Temperature (K) A(s) (a.u.)
eckart 0.01562
1000 0.0143
750 0.0137
500 0.0124
400 0.0122
300 0.0097

Table 5.1: Value of the free energy for different temperatures and of the Eckart
potential at the top of the barrier so for s = 0.

5.4.2 Rate constants

Combining the free energy profiles with the PIM calculation of the flux-side corre-
lation function (see equation 5.28), we have access to the rate constant.
Figure 5.2 compares the performance of the PIM method to the quantum and clas-
sical results. The classical values were calculated through the usual transition-state
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Figure 5.1: Free energy profile for an Eckart potential for different temperatures :
1000 K (blue curve), 500 K (red curve) and 300 K (orange curve). These free energy
profiles are compare to the Eckart potential (black curve).

theory [76] (which in this case is the "true" classical results because no recrossing
are possible), via

k(T ) =

√
kBT

2πm
e−β∆E‡0 (5.33)

where E‡0 represents the height of the energetic barrier. The quantum (exact calcu-
lations) values were taken from [57].

At first, we point out the excellent agreement between our results and the quan-
tum reference for temperatures above 300 K. Our objective of computing rate con-
stants using the PIM method is therefore successful in this temperature range, and
with very good precision up to 400 K. Nonetheless, at 300 K and at 200 K, we
overestimate the exact results as we shown in more detail in table 5.2.

A possible explanation of the failure of PIM is based on the observations of the
distributions of ∆x1 as we can see in Figures 5.3, 5.4. At low temperature, two
maxima for the distribution of ∆x1 when the first bead is fixed are visible which
is not the case at high temperature where this distribution seems to be Gaussian.
Furthermore, if we look at the histogram of the value of 〈∆x1∆xν〉 (see Figure 5.5),
we have a maximum for a value close to 0 (0.005) but we have also a local maximum
around 0.3 (so 〈∆x1∆xν〉 of the second maximum approximatively 70 times higher
than the first one) at 300 K and only one maximum at 1000 K. The distribution
at low temperature is more complicated to converge due to the presence of the
two maxima. Failure to obtain this convergence leads to overestimating the rate
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Figure 5.2: Arrhenius plot : rate constants calculated using classical simulation
(red curve), using a fully quantum code (black curve), and using the PIM flux-side
correlation function (gree curve), as a function of 1000/T with T in Kelvins.

T (K) kquant (s−1) kclass (s−1) kPIM (s−1)
3000 9.921× 1012 9.539× 1012 9.820× 1012

2000 3.697× 1012 3.423× 1012 3.610× 1012

1000 2.672× 1011 2.056× 1011 2.430× 1011

500 2.830× 109 1.048× 109 2.818× 109

400 3.869× 108 7.962× 107 3.429× 108

300 2.278× 107 1.131× 106 5.886× 107

200 5.413× 105 2.506× 102 5.778× 106

Table 5.2: Value of the rate constant in s−1 for the symmetric Eckart barrier at
different temperatures.
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constant.
The numerical cost for the calculations of our correlation function is the following.
At high temperature (above 300 K in our case), we need 100000 trajectories of at
least 10 fs to obtain the plateau of the correlation function which correspond for us
to the limit t → ∞, as we can see on figure 5.6. Nevertheless, the difficult task in
this calculation is the evaluation of 〈∆x1∆xν〉. As a consequence we have to use for
each main Monte Carlo step, 5000 auxiliary Monte Carlo steps. Due to the problem
of convergence at low temperature, even if we use 60000 auxiliary Monte Carlo steps
(which is huge for such a simple system), the result seems to be not fully converged.
These observations lead us to two possible situations. The first one is that the
configuration where we have two maxima is very hard to handle numerically and
we need to increase even more the statistics. The second one is more fundamental
and corresponds to the fact that the ∆x distributions are far from being Gaussian.
Indeed, in this case, the truncation of the cumulant expansion at the order 2 can be
inadequate for such calculations.
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Figure 5.3: Distributions of ∆x1 with the first bead fixed at 300 K.
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Figure 5.4: Distributions of ∆x1 with the first bead fixed at 1000 K.

Figure 5.5: Histograms of 〈∆x1∆xν〉 at two different temperatures: 300 K on the
left and 1000 K on the right.
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Figure 5.6: Cfs(t) at 1000 K using PIM. The time is in fs.

5.5 Conclusion

In this Chapter, we have seen a rigourous derivation of the PIM symmetrised flux-
side correlation function in order to calculate rate constants. We applied PIM to the
symmetric Eckart barrier with parameters which allow us to do a comparison with
classical and fully quantum simmulation (and which is a model to the linear H+H2

reaction). The results are in very good agreement with the exact reference until a
temperature of 300 K. Below this temperature we overestimate the rate constant.
Our first impression is that it comes from numerical problems at low temperatures.
Indeed, as we can see on Figures 5.3 and 5.5, we have to converge a quantity which
is very sensitive numerically and far from being Gaussian (binodal distribution). In
this case, the cumulant expansion at the order 2 might be not enough.
We first tried to increase the statistic but this didn’t give us more reliable results
and the numerical cost was too high for such a system. The first possibility is to go
the next order in the cumulant expansion, so the order 4. However, an Edgeworth
expansion (see Chapter 3) is numerically harder in this case because we cannot
include it so easily as we did for the Wigner distribution and in the case of the
rate constant the effect of Edgeworth is mitigate between the difference of two
terms. The other possibility is to include directly in the sampling the order 4 of
the cumulant expansion but this is very hard to handle from a numerical point of
view. Given the difficulties, future work will focus on using the Kubo form of the
flux side correlation function to compute the rate constants to see if the numerical
advantages demonstrated by it for IR spectra transfer also to this case.
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Conclusion
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The starting point of the work discussed in this thesis is the path integral for-
malism. This was introduced in 1948 by Richard Feynman and it gives us a different
formal way to look at quantum mechanics. The increasing power of computer made
this formal idea applicable for the calculation of quantum properties. From a nu-
merical point of view, the path integral formalism allows immediately to compute
time-independent equilibrium properties. The calculation is done using the path
integral molecular dynamics or Monte Carlo (PIMD or PIMC) methods based on
the so-called classical isomorphism discussed in Section 2.1.2. Path integrals are
not directly effective for real time propagation due to the dynamical sign problem.
Due to their intuitive appeal, however, several path integral based methods have
been developed to provide approximate information at a reasonable numerical cost.
In Section 2.3, we first presented the Ring Polymer Molecular Dynamics (RPMD)
and the Centroid Molecular Dynamics (CMD), two popular methods to calculate
quantum correlation functions. However there is no formal justification for the
approximate dynamics in these methods and so they present limitations which are
difficult to predict. An alternative family of approaches, the so-called quasi-classical
methods, are based on the Linearized Path Integral (LPI) representation of quantum
correlation function. These schemes, discussed in Section 2.4, start from a path in-
tegral representation of the correlation function and approximate the quantum time
evolution via classical trajectories, while preserving a fully quantum treatment for
the thermal density. The methods introduced in Section 2.4, FK-LPI and LSC-IVR
with a Local Gaussian Approximation (LGA), differ in the way in which the ther-
mal density is represented. These state of the art methods are more closely related
to the one developed in this thesis (Phase Integration Method) and introduced to
compare them directly with PIM’s performance.
As we explained in Chapter 2, the Wigner density is a key quantity for the quasi-
classical methods to obtain a set of initial conditions that are then evolved classically.
In Chapter 3, we presented how this quantity can be calculated via PIM. The key
step in PIM is the cumulant expansion to mitigate the effects of the phase factor
present in the definition of the Wigner density. Sampling the probability density
resulting from this step is non trivial since it can only be estimated numerically.
We have described how to circumvent this problem by combining two schemes for
sampling "noisy" probability densities. These methods are the penalty [10] and
Kennedy [67] Monte Carlo algorithms. Using a second order cumulant expansion,
PIM is consistently able to reproduce the results of numerically converged reference
quantum calculations even very far from the classical regime. We also explored the
possibility to obtain negative contributions to the Wigner density by modifying our
sampling scheme so as to include the first non-trivial term of the Edgeworth series.
Our tests show that this method does provide improvements over current alterna-
tives, most notably the presence of detectable signal in regions of negative Wigner
density. Moreover, PIM is able to capture quantum correlation effects among the
different degrees of freedom (coordinate-momenta and momenta-momenta). This
is an improvement compare to the other approaches presented (QTB for example)
which assume a factorized form of the momenta and coordinates reminiscent of the
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Boltzmann density. In particular, we have shown on a Morse potential and on a
model for asymmetric A-H-B hydrogen bonds that this assumption can be violated
in physically significant situations.
In Chapter 4, we developed, tested and applied PIM for vibrational spectroscopy.
As other quasi-classical methods [1, 13], PIM is based on combining MD and MC
algorithms to compute quantum correlation functions. We first showed, on the very
simple example of the position autocorrelation function of an harmonic oscillator,
why it is more suitable for infrared spectra calculations to compute the Kubo corre-
lation function instead of the symmetrized one. Then, we specialised the derivation
to the case of operators linear in the momenta and investigated the numerical perfor-
mance of the approach in calculating the infrared spectrum of interesting benchmark
systems. Comparison of our results with LSC-IVR showed that, as for the original
approach, ”Kubo PIM” is as accurate and numerically efficient as state-of-the-art
quasi classical methods for low dimensional models. Furthermore, the calculation of
the OH and CH4 spectra confirms not only that our approach does not suffers from
the pathologies of popular schemes such as centroid and ring polymer molecular
dynamics, but also that it can treat systems with a larger number of degrees of free-
dom reliably. The derivation presented here can be extended to the rather general
case of operators such as the dipole-derivative correlation function but with a non
linear dipole operator. Future investigations will focus on using this observation to
compute other spectra of interest such as those for the water dimer [80] or CH+

5

[81, 82] with accurate potentials fitted on ab initio surfaces.
In Chapter 5, we presented the methodology used to calculate rate constants with
PIM. In this case, we have to calculate the symmetrized flux-side correlation func-
tion in which the operators are non linear in both coordinates and momenta. The
characteristics of these operators have an influence on the way the cumulant expan-
sion must be implemented. In order to compute rate constants, we have to separate
the calculation in two parts. One part is a free energy calculation using an Umbrella
sampling and the second is the calculation of the symmetrized flux-side correlation
function using a constraint on a bead. We applied the algorithm to the chemical
reaction rate for a linear model of the H+H2 reaction using an Eckart potential, a
known benchmark for such calculations. Results have been compared to classical
and fully quantum simulations [20]. We successfully obtain the correct results on a
broad range of temperature with accuracy similar to the LGA results which is the
reference for quasi-classical methods on this system. We are, however, not able to
reproduce the correct rate constants at low temperature (below 300K) even if PIM
represents a definite improvement compared to purely classical calculations. In or-
der to circumvent this limitation, future work will explore computing rate constants
from the Kubo flux-side correlation function rather than the symmetrized one.





Appendix A

Modification of the algorithm for
the multidimensional case

In the Chapter 3, we presented results for very low dimensional systems (1D or
2D). In this Appendix, we are going to look at how we have to adapt the algorithm
presented in Chapter 3 for the multidimensional case.
The first difference is that before choosing if we move the coordinates or the mo-
menta, we decide which atom we are going to move as we can see on the figure 3.1.
In fact the main difference is not in the structure of the algorithm but in the defi-
nition of the numerical estimators needed during the Monte Carlo moves to sample
the density in the equation 4.11 (which is simply the mutidimensional version of
the probability density written in the equation 3.22). Indeed, these changes are
introduced to limit the numerical cost [12]. In multidimensional notation, the esti-
mators are indicated as ∆Er(r

′
, r; p) (see equation 3.75), U(r → r

′
) (see equation

3.69) and ∆Ep(p,p
′
; r) (see equation 3.74). Here boldface indicates Na dimen-

sional vectors, where Na is the number of atoms in the system, of vector compo-
nents (ri = rix, r

i
y, r

i
z) for example (i = 1, · · · , Na). The definition of the estimator

U(r → r
′
) remains the same in multidimensional case. The first change with the

method describes in Chapter 3 is in the evaluation of the cumulant C2(r). The
definition becomes (truncating the cumulant expansion at the order 2):

E(p, r) =
1

2

3Na∑
i,j=1

Cij(r)pipj (A.1)

where

Cij(r) = C0...0,1,0...0,1,0...0(r) (A.2)

Cij(r) =
〈

∆r(i)
ν ∆r(j)

ν

〉
ρc(∆r|r)

(A.3)

because 〈∆r(k)
ν 〉 = 0 for k = 1, · · · , 3Na.

If we move the momentum of the atom l (p = (p(1), · · · , p(l), · · · , p(Na)) and p
′

=

(p(1), · · · , p(l)′ , · · · , p(Na))), ∆Ep(p,p
′
; r) becomes:
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case

∆Ep(p
′
,p; r) = Ep(p

′
, r)− Ep(p, r) (A.4)

=
1

2

3(l−1)+3∑
i=3(l−1)+1

Cii(r)
(

(p(i)′)2 − (p(i))2
)

+

3(l−1)+3∑
i=3(l−1)+1

3Na∑
j=i+1

Cij(r)
(
p(i)′ − p(i)

)
p(j)

We separate in the previous equation the terms involving the atom that is moved
from the others. This allows us to not take into account many terms which simplify
analytically to zero. Cij (which corresponds to an estimator of the cumulant) is
equal to:

Cij(r) =
1

N

N∑
α=1

∆r(i)
ν,α∆r(j)

ν,α (A.5)

with ∆r
(i,j)
ν,α sampled from the conditional probability density ρc(∆r|r) with the

auxiliary Monte Carlo described in the Chapter 3. N is the number of auxiliary
Monte Carlo moves.
If we move the coordinates of the atom l (r = (r(1), · · · , r(l), · · · , r(Na)) and r

′
=

(r(1), · · · , r(l)′ , · · · , r(Na)), noticing that r(l) = (r
(l)
0 , · · · , r(l)

ν )), we formally have:

∆Er(r
′
, r; p) = Er(r

′
,p)− Er(r,p) (A.6)

=
1

2

3Na∑
i,j=1

pipj

[
Cij(r

′
)− Cij(r)

]

As explained in Chapter 3, the simplest way to proceed is to compute directly Cij(r
′
)

and Cij(r) via two different independent averages (over the conditional probabilities
ρc(∆r|r′) and ρc(∆r|r)). Nevertheless, if we proceed in this way the final variance
is the sum of the two independent variances. This quantity is in general quite large
and this severely reduces the acceptance probability. This was not a problem for
the calculations described in Chapter 3 due to the low dimensionality of the systems
studied. However, for the calculations of infrared spectra performed in Chapter 4,
it becomes an issue due to the larger dimensionality of the systems. To avoid this
issue, we can define an alternative estimator [12]. To see how, let us start from the
definition:

∆Er(r
′
, r; p) =

1

2

3Na∑
i,j=1

pipj

[〈
∆r(i)

ν ∆r(j)
ν

〉
ρc(∆r|r′ )

−
〈

∆r(i)
ν ∆r(j)

ν

〉
ρc(∆r|r)

]
(A.7)

The trick in our development is to express
〈

∆r
(i)
ν ∆r

(j)
ν

〉
ρc(∆r|r)

as a mean quantity

over ρc(∆r|r′) instead of ρc(∆r|r):
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〈
∆r(i)

ν ∆r(j)
ν

〉
ρc(∆r|r)

=
ρ
′
m(r

′
)

ρ′m(r)

〈
ρ
′
m(r)

ρ′m(r′)
∆r(i)

ν ∆r(j)
ν

〉
ρc(∆r|r)

(A.8)

(A.9)

The ratio of the marginals can turn be written as an expectation value:

ρ
′
m(r)

ρ′m(r′)
=

〈
e
−δβ

(
V̄(r,∆r)−V̄(r

′
,∆r)

)〉
ρc(∆r|r′ )

(A.10)

=

∫
d∆r e−V∆(∆r)e−δβV̄(r

′
,∆r)e

−δβ
(
V̄(r,∆r)−V̄(r

′
,∆r)

)
∫
d∆r e−V∆(∆r)e−δβV̄(r′ ,∆r)

We can use the result above to express the equation A.10 as:

〈
∆r(i)

ν ∆r(j)
ν

〉
ρc(∆r|r)

=
ρ
′
m(r

′
)

ρ′m(r)

×

∫
d∆x

[∫
d∆r e−V∆(∆r)e−δβV̄(r

′
,∆r)e

−δβ
(
V̄(r,∆r)−V̄(r

′
,∆r)

)]
e−V∆(∆x)e−δβV̄(r,∆x)∆x

(i)
ν ∆x

(j)
ν[∫

d∆r e−V∆(∆r)e−δβV̄(r′ ,∆r)
] [∫

d∆x e−V∆(∆x)e−δβV̄(r,∆x)
]
(A.11)

Furthermore, ∆x and ∆r are interchangable integration variables so:

〈
∆r(i)

ν ∆r(j)
ν

〉
ρc(∆r|r)

=
ρ
′
m(r

′
)

ρ′m(r)

×

∫
d∆r

[∫
d∆x e−V∆(∆x)e−δβV̄(r

′
,∆x)e

−δβ
(
V̄(r,∆x)−V̄(r

′
,∆x)

)
∆x

(i)
ν ∆x

(j)
ν

]
e−V∆(∆r)e−δβV̄(r,∆r)[∫

d∆r e−V∆(∆r)e−δβV̄(r′ ,∆r)
] [∫

d∆x e−V∆(∆x)e−δβV̄(r,∆x)
]
(A.12)

=
ρ
′
m(r

′
)

ρ′m(r)

∫
d∆r e−V∆(∆r)e−δβV̄(r

′
,∆r)e

−δβ
(
V̄(r,∆r)−V̄(r

′
,∆r)

)
∆r

(i)
ν ∆r

(j)
ν∫

d∆r e−V∆(∆r)e−δβV̄(r
′
,∆r)

(A.13)

=

〈
ρ
′
m(r

′
)

ρ′m(r)
∆r(i)

ν ∆r(j)
ν e
−δβ

(
V̄(r,∆r)−V̄(r

′
,∆r)

)〉
ρc(∆r|r′ )

(A.14)

So our estimator can be written as:

∆Er(r
′
, r; p) =

1

2

3Na∑
i,j=1

pipj

〈
∆r(i)

ν ∆r(j)
ν

[
1− ρ

′
m(r

′
)

ρ′m(r)
e
−δβ

(
V̄(r,∆r)−V̄(r

′
,∆r)

)]〉
ρc(∆r|r′ )
(A.15)
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case

Now if we go back to the expression for the numerical estimator of equation A.7
(where we move only the coordinates of the particle l), we can write it as:

∆Er(r
′
, r; p) =

1

2

3(l−1)+3∑
i=3(l−1)+1

p2
i Dii(r, r

′
) +

3(l−1)+3∑
i=3(l−1)+1

3Na∑
j=i+1

pipj Dij(r, r
′
) (A.16)

with

Dij(r, r
′
) =

1

N

N∑
α=1

∆r(i)
ν,α∆r(j)

ν,α

[
1− ρ

′
m(r

′
)

ρ′m(r)
e
−δβ

(
V̄(r,∆rα)−V̄(r

′
,∆rα)

)]
(A.17)

Although the expression of the new estimator is more complicated, it requires aver-
aging over one distribution instead of two and this leads to a smaller variance than
the direct one. Even though the algorithm works almost in the same way as for the
1D case, we can see that the multidimensional case is more technical.



Appendix B

Monte Carlo sampling of the
polymer chains

B.1 Staging variables

In the Chapter 3, we needed to sample movements according to the equations 3.61
for the r and 3.65 for the ∆r displacements respectively. I recall here the relevantl
quantities in the equations 3.61 and 3.65:

t(r→ r
′
) ∝ e−Vr(r) = exp

[
− 1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2

]
(B.1)

T (∆r→ ∆r
′
) ∝ e−V∆(∆r) = exp

[
−
σ2
p

2

ν−1∑
λ=0

(∆rλ+1 −∆rλ)2

]
(B.2)

To improve efficiency in the sampling of these Gaussian densities, we can use staging
variables [25, 24, 27]. In staging a collective move of ν − 1 beads belonging to a
fixed ends segment of the polymer. The anchors (first and last beads that are not
moved) are choosen randomly.
I will show an example of the staging variables on the r variables but the procedure
remains the same for the ∆r variables. Define the end point for a segment of lenght
ν as:

rν = r0 + σr
√
ν y (B.3)

Then we can introduce the staging variables, denoted by u = (u0, · · · , uν), based
on these two endpoints:

u0 = r0 (B.4)

uν = rν (B.5)

uk = rk −
krk+1 − r0

k + 1
k = 1, · · · , ν − 1 (B.6)

which gives us in the inverse definition:
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rk = uk +
k

k + 1
rk+1 +

1

k + 1
r0 k = 1, · · · , ν − 1 (B.7)

Then we can apply this transformation to our transition probability and:

1

2σ2
r

ν−1∑
λ=0

(rλ+1 − rλ)2 =
1

2σ2
r

(
ν−1∑
λ=1

k + 1

k
u2
k +

1

ν
(rν − r0)2

)
(B.8)

In this way we have decoupled the beads of the polymer chain. As a consequence,
we can sample rk by using a simple Gaussian sampling on uk with a variance of
σr

√
k
k+1 and then use the inverse relation to obtain the new rk.

rk → uk
Gaussian−−−−−→
sampling

u
′
k → r

′
k

The Gaussian variables can be sampled via the Box-Muller method [83].
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Infrared spectroscopy

C.1 Absorption coefficient from the Fermi Golden rule

Ĥ is the Hamiltonian of the system without any perturbation :

Ĥ|a〉 = Ea|a〉 (C.1)

A time dependent perturbation of the following form is imposed:

Ĥ′ = V̂ cos(ωt) (C.2)

We suppose that the perturbation Vif = 〈f |V̂ |i〉 doesn’t have any diagonal elements.
Where f and i represent the final and initial states of the transition. The transition
rate is given by the Fermi golden rule:

Wfi =
π

2~
|〈f |V̂ |i〉|2 (δ(Ef − Ei + ~ω) + δ(Ef − Ei − ~ω)) (C.3)

where Ef and Ei are the energy of the final and the initial state of the transition.
Then, we can express the time derivative adsorption energy of this transition ac-
cording to the following expression:(

dE

dt

)
ads

=
∑
i,f

ρi(Ef − Ei)Wfi (C.4)

where ρi is the probability to be in the state i. This probability follows a Boltzmann
distribution and we have: ρf = ρie

−β(Ef−Ei).
Using the definition of delta functions, we obtain that:(

dE

dt

)
ads

=
π

2
ω
∑
i,f

ρi|〈f |V̂ |i〉|2 (δ(Ef − Ei + ~ω) + δ(Ef − Ei − ~ω)) (C.5)

We can use the fact that the matrix elements are symmetric in (i, f) and so it is
possible to switch the indices in the second term:(

dE

dt

)
ads

=
π

2
ω
∑
i,f

(ρi − ρf ) |〈f |V̂ |i〉|2δ(Ef − Ei − ~ω) (C.6)
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We use again the delta function and the fact that we have a Boltzmann distribution:(
dE

dt

)
ads

=
π

2
ω
(

1− e−β~ω
)∑

i,f

ρi|〈f |V̂ |i〉|2δ(Ef − Ei − ~ω) (C.7)

Now if we replace the delta function by its integral representation, the absorption
energy becomes:(

dE

dt

)
ads

=
1

4~
ω
(

1− e−β~ω
)∫ ∞
−∞

dt e−iωt
∑
i,f

ρi〈i|V̂ |f〉eitEf/~〈f |V̂ |i〉e−itEi/~

(C.8)

In the Heisenberg representation : V̂ (t) = eitE/~V̂ e−itE/~ and 〈a|V̂ (t)|b〉 =

eitEa/~〈a|V̂ |b〉e−itEb/~ which allows us to write the absorption energy as:(
dE

dt

)
ads

=
1

4~
ω
(

1− e−β~ω
)∫ ∞
−∞

dte−iωt
∑
i,f

ρi〈i|V̂ |f〉〈f |V̂ (t)|i〉 (C.9)

(
dE

dt

)
ads

=
1

4~
ω
(

1− e−β~ω
)∫ ∞
−∞

dte−iωt
∑
i

ρi〈i|V̂ V̂ (t)|i〉 (C.10)

where
∑

i ρi〈i|V̂ V̂ (t)|i〉 corresponds to the standard quantum correlation function
(see equation 2.64):(

dE

dt

)
ads

=
1

4~
ω
(

1− e−β~ω
)∫ ∞
−∞

dt e−iωtCV V (t) (C.11)

Now if we consider that our perturbation is an electric field of the following form:

E(t) = E0 cos(ωt)~ε (C.12)

where ε represents the direction of the electric field and M the electric dipole is
defined as follows in a point charge model:

M̂(t) =
∑
i

qir̂i(t) (C.13)

This leads us using the mechanics describe before to the following expression:(
dE

dt

)
ads

=
1

4~
ω
(

1− e−β~ω
)∫ ∞
−∞

dt E2
0e
−iωtC~εM~εM(t) (C.14)

If the absorbing system is isotropic, the polarization of the electric field is irrelevant
and so:

C~εM~εM(t) =
1

3
CMM(t) (C.15)
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and: (
dE

dt

)
ads

=
E2

0ω

12~

(
1− e−β~ω

)∫ ∞
−∞

dt e−iωtCMM(t) (C.16)

We can then introduce the spectral density as:

Istand(ω) =
1

2π

∫ ∞
−∞

dt e−iωtCMM(t) (C.17)

Istand(ω) means that it is the spectral density calculated from the Fourier transform
of the "standard" quantum correlation function.
The definition of the Poynting vector ~S is:

S =
cn(ω)

8π
E2

0 (C.18)

Finally we obtain α the absorption coefficient via the relations:

α(ω) =

(
dE
dt

)
ads

S
(C.19)

α(ω) =
4π2ω

3c~n(ω)

(
1− e−β~ω

)
Istand(ω) (C.20)

We can also make the connection with the different definitions of quantum time
correlation function with IK(ω) and Isym(ω) the Fourier transform of the Kubo
correlation function and the symmetrized one respectively for the electric dipole.

α(ω) =
8π2ω

3c~n(ω)
sinh

(
β~ω

2

)
Isym(ω) (C.21)

α(ω) =
4π2β

3cn(ω)
ω2IK(ω) (C.22)





Appendix D

Alternative demonstration for the
Kubo momentum autocorrelation

function

D.1 Notations of Kubo

In the next section, we will present an alternative demonstration for the momen-
tum autocorrelation function obtained via PIM. However, in order to be clear and
rigourous, we will introduce few notations. They come from the formalism of Kubo
which has been introduced in his paper on the fluctuation-dissipation theorem [42]
and more particularly when he presents the linear response theory.

The first notation is the Kubo correlation function:

KXY (t;β) = 〈X ; Y 〉 =
1

β

∫ β

0
dλ Tr

[
ρ̂eλĤX̂e−λĤŶ (t)

]
(D.1)

where ρ̂ = e−βĤ

Z , β = 1
kBT

and Z is the canonical partition function.

Then the notation of the time derivative expression of an quantum operator
X̂ is defined as follows:

Ẋ = (X,H) =
1

i~
(X̂Ĥ − ĤX̂) =

1

i~
[X;H] (D.2)

Finally from the linear response developped by Kubo using these notations [42], we
have the following relation:

〈(X(0) , Y (t))〉 = β
〈
Ẋ(0) ; Y (t)

〉
(D.3)

D.2 Momentum autocorrelation function

Using the previous notations, the relation D.3 and the linearisation approximation
presented in Chapter 2, we can demonstrate the expresion obtained in equation 4.88.
Let us defined our momentum autocorrelation function:
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autocorrelation function

Kpp(t;β) =

Ndof∑
i=1

〈pi(0) ; pi(t)〉 (D.4)

Kpp(t;β) =

Ndof∑
i=1

mi

β
β 〈ṙi(0) ; pi(t)〉 (D.5)

where Ndof is the number of degrees of freedom of our system.
Using the equation D.3, we obtain:

Kpp(t;β) =

Ndof∑
i=1

mi

β
〈(ri(0) , pi(t))〉 (D.6)

Kpp(t;β) =

Ndof∑
i=1

mi

i~β
〈[ri(0) ; pi(t)]〉 (D.7)

Then we can express 〈[ri(0) ; pi(t)]〉 in a more convenient way:

〈[ri(0) ; pi(t)]〉 = Tr [ρ[ri(0) ; pi(t)]] (D.8)

〈[ri(0) ; pi(t)]〉 = Tr [[ρ ; ri(0)]pi(t)] (D.9)

We used the permutation properties of the trace to go from the first equality to the
second one.
Then we will skip the details but using the linearisation approximation introduced
in Chapter 2, we end up with the following expression:

〈[ri(0) ; pi(t)]〉 =

∫
drν dp [ρ; r(i)

ν (0)]W p
(i)(t) (D.10)

where theW means Wigner transform and we have r(i)
ν (0) = ri(0) and p(i)(t) = pi(t)

to have a correspondance with the notation used to present PIM.
We can explicit [ρ; r

(i)
ν (0)]W . Indeed, we have:

[ρ; r(i)
ν (0)]W = (ρr(i)

ν (0))W − (r(i)
ν (0)ρ)W (D.11)

where

(AB)W = AW e
i~
2

ΛBW (D.12)



D.2. Momentum autocorrelation function 159

with Λ representing the Poisson bracket operator.
Here we only need to go to the order one because we have an operator linear in
position only.
So:

(ρr(i)
ν (0))W = ρW r

(i)
ν (0) +

i~
2

[
∂ρW

∂r
(i)
ν

∂r
(i)
ν (0)

∂p(i)
− ∂ρW
∂p(i)

∂r
(i)
ν (0)

∂r
(i)
ν

]
(D.13)

(ρr(i)
ν (0))W = ρW r

(i)
ν (0)− i~

2

∂ρW
∂p(i)

(D.14)

(r(i)
ν (0)ρ)W = ρW r

(i)
ν (0) +

i~
2

∂ρW
∂p(i)

(D.15)

And we finally obtain:

[ρ; r(i)
ν (0)]W = −i~∂ρW

∂p(i)
(D.16)

where the PIM ρW is nothing else that the Wigner density that we have derived in
Chapter 3 [17]. So according to the equation 3.21, we have:

ρW = W (q∗, p∗) = 〈δ(q − q∗)δ(p− p∗)〉P (D.17)

P(r, p) =
ρm(r)e−E(p,r)∫

dp
∫
dr ρm(r)e−E(p,r)

(D.18)

The delta functions can be integrated out and in this case the PIM Wigner density
can be expressed as:

ρW (rν ,p) =

∫
dr0 · · · drν−1 ρm(r)e−E(p,r)∫
dp
∫
dr ρm(r)e−E(p,r)

(D.19)

If we combine equations D.6 and D.16, we obtain the following relation for momen-
tum autocorrlation function:

Kpp(t;β) = −
Ndof∑
i=1

mi

β

∫
drν dp

∂ρW
∂p(i)

p(i)(t) (D.20)

Then we only need to take the derivation of ρW along p(i) which gives us:

Kpp(t;β) =

Ndof∑
i=1

mi

β

〈
∂E(r,p)

∂p(i)
p(i)(t)

〉
P

(D.21)

The same expression as the one in the equation 4.88 is recovered and a direct con-
nexion with the equipartition of the energy is possible via this derivation.
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autocorrelation function

D.3 Equipartition of the energy

From equation D.21, we can obtain very simply K pp
m
:

1

2
K pp

m
(t;β) =

Ndof∑
i=1

〈
p(i)(0)p(i)(t)

2mi

〉
(D.22)

To make the connection with the equipartition of the energy, we only need to have
the time t = 0. Then:

1

2
K pp

m
(0;β) =

Ndof∑
i=1

〈
((p(i))2(0)

2mi

〉
(D.23)

1

2
K pp

m
(0;β) =

Ndof∑
i=1

1

2β

〈
∂E(r,p)

∂p(i)
p(i)(0)

〉
P

(D.24)

If we come back to the equation D.6, we have:

Ndof∑
i=1

〈
((p(i))2(0)

2mi

〉
=

Ndof∑
i=1

1

2i~β
〈[ri(0) ; pi(0)]〉 (D.25)

[ri(0) ; pi(0)] = i~ (D.26)
Ndof∑
i=1

〈
((p(i))2(0)

2mi

〉
=

1

2
NdofkBT (D.27)

which making the connexion with the PIM expression [17, 18] gives us:

1

2
K pp

m
(0;β) =

Ndof∑
i=1

1

2β

〈
∂E(r,p)

∂p(i)
p(i)(0)

〉
P

=
1

2
NdofkBT (D.28)

The fact that from a time-independent quantity, we have access with PIM to the
equipartition energy is very important because this will allow us to check the con-
vergence of our simulation.
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Eckart transformation

We have used the Eckart procedure [74] to remove the effects of rigid translations
and rotations on the system for our IR sepctra calculations. Power spectra obtained
from MD simulations of finite molecular systems are dominated by the very broad
zero frequency peak arising from the global translation and rotation of the molecule.
To isolate the relevant vibrational modes, the contribution of these modes must be
eliminated from the signal. This is done via the so-called Eckhart transformation.
In this scheme, commonly applied in single trajectories calculations, the coordinate
system is changed so as to employ a reference frame in which the total linear and
angular momentum are zero. In our method, in which more than one trajectory is
needed to compute the approximate correlation function, this change in coordinates
is applied – after sampling of the initial conditions – to each member of the ensemble.
The overall transformation is performed in two steps: first a change in variables to
the centre of mass system is considered, and then the momenta are transformed to
obtain zero total angular momentum. To describe these steps, let us introduce the
following notation. The initial coordinates and momentum of atom i in the molecule
are indicated as r

(i)
ν and p(i). The vectors after the first and second transformation

are denoted with a single and double prime, respectively. Let us begin by going to
the reference frame of the centre of mass:

r
′(i)
ν = r(i)

ν −
∑Na

j=1mjr
(j)
ν

Mtot
(E.1)

p
′(i) = p(i) −

∑Na
j=1mjp

(j)

Mtot
(E.2)

where Na is the number of atoms in the molecule, mj the mass of the atom j and
Mtot =

∑Na
j=1mj the total mass of the molecule. In this reference system, the total

angular momentum (in general non-zero) is:

L =

Na∑
i=1

r
′(i)
ν × p

′(i) (E.3)

To obtain zero angular momentum, we perform the so-called rotation correction to
the momenta:
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p
′′(i) = p

′(i) − ω ×mir
′(i)
ν (E.4)

In the above expression, the angular velocity ω is unknown and is determined by
imposing the condition:

L
′

=

Na∑
i=1

r
′(i)
ν × p

′′(i) = 0 (E.5)

L
′ is the new total angular momentum. Substituting equation E.4 in equation

E.5 and using the properties of the vector product, the condition of zero angular
momentum can be recast as:

L
′

= L− Iω (E.6)

where I =
∑

i=1Nami

(
|r
′(i)
ν |2 − r

′(i)
ν .(r

′(i)
ν )T

)
is the tensor of inertia of the

molecule. The equation E.6 can now be solved for ω to obtain:

ω = I−1L (E.7)

giving us the last ingredient to perform the Eckhart transformation.
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