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Abstract

One of the fundamental tasks underlying much of computer vision
is the detection, tracking and recognition of visual features. It is an
inherently difficult and challenging problem, and despite the advances
in computational power, pixel resolution, and frame rates, even the
state-of-the-art methods fall far short of the robustness, reliability and
energy consumption of biological vision systems.

Silicon retinas, such as the Dynamic Vision Sensor (DVS) and Asyn-
chronous Time-based Imaging Sensor (ATIS), attempt to replicate
some of the benefits of biological retinas and provide a vastly different
paradigm in which to sense and process the visual world. Tasks such
as tracking and object recognition still require the identification and
matching of local visual features, but the detection, extraction and
recognition of features requires a fundamentally different approach,
and the methods that are commonly applied to conventional imaging
are not directly applicable.

This thesis explores methods to detect features in the spatio-temporal
information from event-based vision sensors. The nature of features in
such data is explored, and methods to determine and detect features
are demonstrated. A framework for detecting, tracking, recognising
and classifying features is developed and validated using real-world
data and event-based variations of existing computer vision datasets
and benchmarks.

The results presented in this thesis demonstrate the potential and effi-
cacy of event-based systems. This work provides an in-depth analysis
of different event-based methods for object recognition and classifi-
cation and introduces two feature-based methods. Two learning sys-
tems, one event-based and the other iterative, were used to explore the
nature and classification ability of these methods. The results demon-
strate the viability of event-based classification and the importance
and role of motion in event-based feature detection.
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Executive Summary

The importance of computer vision in modern technology is continuously increas-
ing, both in terms of usage and the demands placed upon it. The field is also ex-
periencing unprecedented levels of interest and growth, spurred on by large-scale
investment in future technologies such as self-driving vehicles, autonomous drones
and household robotics. The underlying technologies and hardware requirements
for these applications have also experienced rapid growth, often eclipsing the ca-
pabilities of current state-of-the-art algorithms and processing techniques. The
tasks in computer vision are inherently difficult and challenging problems, and
despite the advances in computational power, pixel resolution, and frame rates,
even the most sophisticated methods fall far short of the robustness, reliability
and energy consumption of biological vision systems.

Silicon retinas, such as the Dynamic Vision Sensor (DVS) and the Asyn-
chronous Time-based Imaging Sensor (ATIS), attempt to replicate some of the
benefits of biological retinas and provide a vastly different paradigm in which to
sense and process the visual world. Tasks such as tracking and object recognition
still require the identification and matching of local visual features, but the de-
tection, extraction and recognition of features requires a fundamentally different
approach, and the methods that are commonly applied to conventional imaging
are not directly applicable.

The work in this thesis explores methods to detect features in the spatio-
temporal information produced by event-based vision sensors and then utilises
these features to perform recognition and classification tasks. This work explores
the nature of detecting features in event-based data and presents two feature
detection methods inspired by concepts and methodologies employed by highly
successful conventional computer vision algorithms such as the Scale Invariant
Feature Transform (SIFT) and Histograms of Gradients (HOG).

The first feature detector makes use of spatio-temporal gradients to extract
features from the event-stream. Applying circular statistics to the orientation
data allows for efficient noise removal and feature detection using mixtures models
of circular distributions.

The second feature detector operates on surfaces of time, created from the
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Executive Summary

incoming event-based visual data. Feature extraction makes use of a modified
and event-based corner detection approach to identify features of interest, and
the use of descriptors allows for invariance to specific affine transformations.

This thesis introduces two new neuromorphic datasets, N-MNIST and N-
Caltech101, created from existing and well-established computer vision datasets
and intended to address the lack of consistent and well-adopted benchmarks in
the neuromorphic community. Based on the MNIST dataset and the Caltech101
datasets, these datasets maintain the structure and methodology of the originals,
allowing for comparison and contrast to existing conventional computer vision
systems. This thesis provides a thorough analysis of these two datasets and
includes benchmarks based on statistical classifiers as a baseline for classifier
performance.

The Online PseudoInverse Update Method (OPIUM) and the Synaptic Kernel
Inverse Method (SKIM) form the basis of the learning systems used in this work,
and the results achieved validate their use in both event-based vision systems and
on large neuromorphic datasets.

Additionally, this work makes use of SKIM networks applied to the largest
datasets to date, implementing the largest hidden layer sizes and simultaneously
training the largest number of output neurons. The success of the classifiers built
using these SKIM networks validates both the underlying SKIM algorithm and
its applicability to event-based tasks such as those presented in this work. The
further work on optimisation of the SKIM network for parallel GPU implemen-
tation serves as a first-step toward the faster hardware-based implementations
required for real-time operation of such systems.

The work in this thesis deals with the classification of objects from the event-
based output of a silicon retina and explores two approaches to performing such
classification; one operating on the event-streams directly, and the other making
use of extracted features from the event-based data.

Exploring the nature of performing classification on event-based data directly,
this work characterises the performance of these systems and achieved accuracies
up to 92.87% on the N-MNIST dataset and 11.14% on the N-Caltech101 dataset.
A study into training patterns and output determination methods is also pre-
sented, along with means and methods for handling non-uniform image sizes.

This thesis also investigates the effects of both spatial and temporal down-
sampling on event-based vision data, and found that it produces improved clas-
sification accuracy. For a given network containing 1000 hidden layer neurons,
the spatially downsampled systems achieved a best-case accuracy of 89.38% on
N-MNIST as opposed to 81.03% with no downsampling at the same hidden layer
size. On the N-Caltech101 dataset, the downsampled system achieved a best case
accuracy of 18.25%, compared to 7.43% achieved with no downsampling.

The classification systems based on feature detection introduce an additional
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layer to the network, which converts the input from a 2D space defined by the
silicon retina, to a feature space defined by the feature detectors. These clas-
sification networks address a number of issues relating to network size and the
handling of non-uniform image sizes, and produced the best classification results
on the N-MNIST dataset, achieving 91.6%± 1.69% with orientation features and
an ELM network, and 94.71%±0.36% with the time surface features and a SKIM
network.

Given the performances of the classification systems presented, this work
serves to validate the two neuromorphic datasets introduced and provides a range
of benchmark accuracies for them. The results also demonstrate the viability of
event-based object classification and proves that it can be accomplished in an
event-based manner. The work also validates the applicability of SKIM to event-
based data, and specifically its applicability to classification on event-based vision
data.

Finally, the improved results achieved using the feature detectors and the
downsampling indicate the importance of both the temporal and spatial informa-
tion in the event-streams from a silicon retina, and serve to further demonstrate
the benefits to using such devices.
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Chapter 1

Introduction

1.1 Motivation

Computer vision is becoming an increasingly important and active field of study
and technologies arising from its applications are finding widespread adoption in
both consumer and industrial products which require sophisticated visual systems
in order to safely and successfully interact with the world around them.

One of the fundamental tasks underlying much of computer vision is the de-
tection, tracking and recognition of visual features. It is an inherently difficult
and challenging problem, and despite the advances in computational power, pixel
resolution, and frame rates, even the state-of-the-art methods fall far short of the
robustness, reliability and energy consumption of biological vision systems.

Silicon retinas, such as the Dynamic Vision Sensor (DVS) and the Asyn-
chronous Time-based Imaging Sensor (ATIS), attempt to replicate some of the
benefits of biological retinas and provide a vastly different paradigm in which to
sense and process the visual world. Tasks such as tracking and object recognition
still require the identification and matching of local visual features, but the de-
tection, extraction and recognition of features requires a fundamentally different
approach, and the methods that are commonly applied to conventional imaging
are not directly applicable.

As a result, there exists a need for the development of new algorithms and
paradigms in which to handle and process event-based image data. These al-
gorithms and systems also require characterisation and comparison to existing
approaches to visual sensing using conventional cameras in order to verify the in-
formation encoded into the spatio-temporal information produced by these event-
based devices.
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1.2 Aims

This thesis seeks to explore methods to detect features in the spatio-temporal
information from event-based vision sensors, and then to utilise these features to
perform recognition and classification tasks.

This work will explore the nature of detecting features in event-based data,
and present methods to determine and detect features in manner that preserves
the event-based nature of the data. Making use of concepts often employed
in conventional computer vision, this work investigates the adaption of these
methods to an event-based paradigm.

A framework for detecting, recognising and classifying features will be devel-
oped to showcase and demonstrate the efficacy and efficiency of these detectors
and to validate their performance using both real-world and simulated data. Ad-
ditionally, two new spiking neuromorphic datasets, based on existing computer
vision datasets, will be introduced and characterised to allow for comparisons to
conventional computer vision systems.

1.3 Main Contributions of this Work

The main contributions of this thesis are the development of novel feature detec-
tion, classification and recognition algorithms for event-based visual tasks. These
algorithms and systems operate in an event-based manner, and perform learning
and computation in a similar fashion where possible.

Each section in this thesis contains a detailed discussion of the specific con-
tributions made.

1.4 Relevant Publications

Parts of this work have already been published, or are currently under review. A
list of these works can be found below:

• Synthesis of neural networks for spatio-temporal spike pattern
recognition and processing
J. Tapson, G. Cohen, S. Afshar, K. Stiefel, Y. Buskila, R. Wang, T. Hamil-
ton, and A. van Schaik
Frontiers in Neuroscience, vol. 7, 2013.

I assisted in the development of the SKIM algorithm, contributing to the
writing, the testing and in the production of the results for the paper.
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• ELM solutions for event-based systems
J. Tapson, G. Cohen, and A. van Schaik
Neurocomputing, vol. 149, pp. 435-442, Feb. 2015.

I produced results for the paper and wrote the implementation of the algo-
rithms used.

• Converting Static Image Datasets to Spiking Neuromorphic Datasets
Using Saccades
G. Orchard, A. Jayawant, G. Cohen, and N. Thakor,
arXiv preprint arXiv:1507.07629 (2015).

I produced the statistics and the classification results for the all the methods
in the paper (with the exception of the HFirst results).

• Learning Motion Selective Receptive Fields In Spiking Neurons
G. Orchard, G. Cohen, N. Thakor, and J. Tapson
IEEE Transactions on Neural Networks and Learning Systems (under re-
view)

I implemented and produced the results for the SKIM networks used in
this paper

• A Memristor-based Hardware Implementation of Synaptic Ker-
nels for Dendritic Computation
J. Burger, G. Cohen, C. Teuscher, and J. Tapson
ELM2014 Conference, Singapore.

I contributed the SKIM portion of this paper and integrated the memrister
models into it.

1.5 Structure of this Thesis

This thesis is structured as follows:

• Chapter 2 presents a detailed literature review covering feature detection in
conventional computer vision, the classification systems used in this thesis,
and the silicon retina devices used in this work.

• Chapter 3 introduces two feature detectors for use with event-based visual
data.
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• Chapter 4 explores object recognition and classification using event-based
visual data, and showcases two datasets created specifically for benchmark-
ing neuromorphic spike-based systems.

• Chapter 5 extends the object recognition framework introduced in Chapter
3 through the use of the feature detectors to convert the classification task
from a 2D spatial classification task to one in a feature-space.

• Chapter 6 provides the conclusions to the work performed in this thesis,
and includes a discussion of potential future work.

Appendix A contains a detailed statistical analysis of the N-MNIST and N-
Caltech101 datasets. Appendix B describes the optimisation techniques used for
the classification systems in this thesis, which allowed for the depth and breadth of
the experiments conducted. Appendix C presented additional figures and tables
included as supplementary material.
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Chapter 2

Literature Review

2.1 Introduction to Computer Vision

The field of computer vision is currently experiencing an unprecedented level of
interest and growth, spurred on by large-scale investments in future technologies
such as self-driving vehicles, autonomous drones, household robotics, and even
the prolific growth of mobile phones and the cameras within them. The under-
lying technologies and hardware requirements for these applications have also
experienced rapid growth, and have often eclipsed the capabilities of the current
state-of-the-art algorithms and processing techniques. Computer vision therefore
lies at the crux of a large swath of future technologies, and has the potential to
offer solutions to these problems. It is a field made additionally complicated by
the dramatic range of applicable contexts and platforms, ranging from low-power
mobile devices, to high-precision and life-critical robotic surgery techniques.

One of the fundamental tasks underlying much of computer vision is the de-
tection and tracking of visual features. It is inherently a difficult and challenging
problem, and despite the advances in computational power, pixel resolution, and
frame rates, even the state-of-the-art methods fall far short of the robustness,
reliability and energy consumption of biological vision systems.

At the heart of any visual system lies a device that captures information from
the 3D scene and encodes it into a representation fit for further processing, and
from which further actions can be taken. In the majority of cases in computer
vision, this device is a camera that creates a 2D representation of a 3D scene. It
is this transformation, and the loss of information that arises from it, that causes
much of the difficulty in visual feature detection and tracking. Other features that
complicate the problem include noise, motion (both of objects in the scene and
the camera itself), occlusions and illumination changes. The ability to exhibit
the appropriate degree of invariance to these issues is a core requirement of both
a feature detection system, and a feature tracking system.
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The majority of the research into computer vision focuses on using a single
camera. Multiple cameras can alleviate some of the issues regarding camera pose
and viewpoint issues, but there are also new classes of imaging devices emerging
that make use of other methods to create representations of the world around
them. These include depth sensors, infrared sensors, and a class of biologically-
inspired neuromorphic vision devices often referred to as Dynamic Vision Sensors
(DVS).

This review chapter serves to provide the background and context for the
work presented in the following chapters. It begins with a discussion of the field
of neuromorphic imaging devices which generate event-based visual data and
describes the nature of these devices and the means used to represent output
data. Finally, the section provides a detailed description of the specific device
used in this thesis.

The work in this thesis draws heavily on the existing body of knowledge
encompassing the field of computer vision for conventional imaging devices. The
field of feature detection on images is well-established and has produced a number
of algorithms and techniques that enjoy widespread use, both in research and
industry. The second part of this literature review provides a summary of the field
of feature detection in computer vision and highlights the important algorithms
which form the basis for much of the work in this thesis.

The learning and recognition of features is an important task, and an area
in which this work makes a large contribution. The last section of this litera-
ture review introduces a class of learning algorithms which form the basis of the
recognition systems presented in this work.

2.2 Neuromorphic Imaging Devices

The process by which information is processed in neuro-biological systems is
vastly different from the mechanisms used by modern computers and devices.
Whereas computers use high-speed clock rates, synchronous logic and precisely
matched hardware, neuro-biological systems make use of slow signals, inhomo-
geneous components and make use of noise as a feature in their design. These
biological systems outperform even the most sophisticated hardware at a myriad
of real-world tasks, whilst consuming only a fraction of the power.

Conventional cameras output visual information in the form of frames at a
constant rate. These frames include highly redundant information, as every pixel
produces a value for every frame at a fixed frame rate and global exposure time
for all pixels. Biological retinas, by contrast, exhibit a far more efficient encoding
mechanism, and transmit only relevant information in an asynchronous manner,
which leads to far greater information encoding and much lower energy require-
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ments [7].

2.2.1 Neuromorphic Engineering

Neuromorphic engineering is the term given to the study and development of
electronic systems that attempt to replicate and mimic the structure, function
and organisation of these neuro-biological systems. Electronic implementations of
neural circuits began with the construction of perceptrons in 1958 [8], but it was
the combination of the rise of Very Large-Scale Integration (VLSI) and a focus
on utilising the non-linear characteristics of transistors that lead to development
of the concept of neuromorphic engineering by Carver Mead [9].

Recently, the term neuromorphic has come to refer to a wider range of systems
that attempt to model the behaviour of neural systems in analogue, digital and
mixed-signal systems [10]. The most successful of these systems have focused
on emulating a single sensory transduction, for such senses as vision, sound and
tactile information. These include the development of silicon cochleas, visual
motion sensors and silicon retinas. It is the latter that forms the basis of the
motivation for this thesis.

2.2.2 Address Event Representation (AER)

Of paramount importance to any information processing system is the mechanism
by which information is transmitted and received. This is of particular relevance
in attempting to model elements of neuro-biological systems, as they boast a
degree of point-to-point connectivity that is not feasible to implement directly
with current technologies. Neuromorphic systems are often spike-based, and make
use of a spike-based hardware technique known as Address-Event Representation
(AER).

AER has become the standard neuromorphic interfacing protocol, specifically
for multi-chip neuromorphic systems [11] but also in terms of intra-chip commu-
nication in mixed-signal devices, and has proved to be a successful and powerful
protocol for simulating large point-to-point connectivity, in which sparse events
need to be communicated from multiple sources over a narrow channel [12]. A
handshaking protocol allows multiple devices to share a common communication
bus, and static timing between events is statistically preserved, due to the asyn-
chronous nature of the event generation and the random order in which events
occur [13].

Figure 2.1 shows a simple AER implementation, in which an arbiter on the
transmitting device assigns a unique address to each of its neurons, and when
a neuron spikes, an event is generated that contains its unique address and any
additional information required. The AER protocol then transmits this spike
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Figure 2.1: Inter-device communication using Address Event Represen-
tation (AER). The neurons in Device 1 are assigned a unique address by the
arbiter, and when they spike, an event is sent serially down the AER data bus
that connects the two devices together. A decoder on the second device recon-
structs the spike and makes it available to the target neurons. This figure has
been adapted from [1].

serially over a communication bus to a receiver, which decodes the event and
selects the appropriate destination. Multiplexing and arbitration only occur when
the spike rate of the chip exceeds the transmission capacity of the communication
link.

AER has been widely adopted for use in silicon retinas [1, 14, 15, 16, 17],
neural processors [18, 19, 20, 21] and in silicon cochleas [22, 23, 24, 25, 26, 27].

2.2.3 Silicon Retinas

Although the first electronic models of the retina were developed in the 1970’s [28],
it was the integrated silicon retina by Mahowald and Mead [29] that represented
the first viable imaging device. This was followed by a more biologically realistic
implementation from Boahen’s group in 2004 [30, 31], which performed better but
suffered from large variability in pixel response. An implementation by Ruedi et
al. solved a number of issues involving transistor mismatch and poor dynamic
range found in previous retinas [32].

There have been a number of other silicon retinas developed. These include a
number of retinas that compute and output spatial contrast [14, 33, 34], temporal
intensity retinas [35], temporal difference retinas [36, 37], centre of mass detec-
tors for multiple objects [38], a prototype microbolometer [39] and the motion
detection system for the Logitech trackball products [40].

The two most relevant devices to this thesis are two of the most recent Tem-
poral Difference (TD) devices, namely the Dynamic Vision Sensor (DVS) [41] and
the Asynchronous Time-based Imaging Sensor (ATIS) [2] .
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AER is a natural fit for the data arising from silicon retinas, as the address
encode the physical (x, y) location of the pixel, and optionally can include some
information regarding the illumination falling onto it. Inter-spike intervals and
spatial relationships between spike times encode the information about the scene.

In a Temporal Difference (TD) device, each pixel only outputs data in re-
sponse to a change of illumination [42]. Given a static scene, these pixels will not
produce any output and therefore the data-rate from the device is dependent on
the activity in the scene. Each pixel emits an AER event containing the physical
location of the pixel in the array, and generally a single bit of information to
indicate whether the illumination on the pixel increased or decreased.

The following notation is commonly used to represent an event emitted by a
TD pixel:

e = [x.y, t, p]T (2.1)

In which the event e indicates that the pixel located at u = [x, y]T on the
camera sensor generated a change event in response to an illumination change at
time t, with the direction of the change in illumination encoded as p ∈ [−1, 1], in
which p = 1 is conventionally referred to as an ON event, representing an increase
in illumination, and p = −1 correspondingly representing an OFF event in which
a decrease in illumination occurred.

The output of a TD sensor represents a spatio-temporal image of the changes
in illumination in a scene. The temporal resolution is limited by the rate at
which events can be read from the physical hardware (usually on the order of
microseconds). Unlike conventional cameras, there is no concept of frames, as
the data arrives entirely asynchronously.

A second class of devices, known as Exposure Measurement (EM) devices,
measure the absolute pixel illumination intensity. Applying the same asyn-
chronous approach to these devices allows each pixel to integrate independently,
which greatly improves the dynamic range of the sensor [43], as the minimum
integration time is set by the transmission rate of the arbiter, and the maximum
integration time is subject only to effects of noise and dark current.

The exposure measurement pixels also operate in a spike-based manner by
encoding the relative illumination intensity in the inter-spike interval of two se-
quential events from the same pixel. The exposure measurement circuit operates
using two thresholds applied to the change of illumination on the given pixel.
When triggered, the EM circuit begins integrating its photocurrent, emitting a
spike when reaching the lower threshold, and a second spike when encountering
the upper threshold. This results in an inter-spike time between the two events
that is proportional to the illumination falling on the pixel itself.

The major work and contributions of this thesis are in the development of
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a feature detection, tracking and recognition framework for use with spatio-
temporal data derived from a TD sensor.

2.2.4 Asynchronous Time-based Imaging Device (ATIS)

The data and the datasets used in this work make use of a specific DVS sensor
known as the Asynchronous Time-based Imaging Device (ATIS), which contains
both a TD and EM circuit for every pixel. Other imaging devices, such as the
Dynamic and Active-Pixel Vision (DAVIS) camera [44], offer similar capabilities,
but were not used in this work.

The ATIS is a CMOS dynamic vision and image sensor developed by the Aus-
trian Institute of Technology (AIT) and draws inspiration from the data-driven
nature of biological vision systems [45]. Unlike conventional camera methodolo-
gies, which rely on artificially created timing signals that are independent of the
source of the visual information [41], biological retinas do not produce frames
or pixel values but rather encode visual information in the form of sparse and
asynchronous spiking output.

The ATIS sensor offers a QVGA resolution with a 304 × 240 array of au-
tonomously operating pixels, which combine an asynchronous level-crossing de-
tector (TD) and an exposure measurement circuit (EM). These pixels do not
output voltages or currents, but rather encode their output in the form of asyn-
chronous spikes in the address-event representation (AER) [46].

Figure 2.2 shows the structure and function of an individual pixel and nature
of their asynchronous event outputs. The change detection circuit outputs events
in response to a change in illumination of a certain magnitude, and is also capable
of triggering the exposure measurement circuit, which then generates two events
with the absolute instantaneous pixel illumination encoded as the inter-spike
timing between them.

This ability to couple the TD and EM circuits results in EM readings gen-
erated only in response to changes in the scene, providing a form of hardware
level compression which allows for highly efficient video encoding. This is most
significant in slowly-changing scenes, where the majority of the illumination on
each pixel remains constant.

In addition, the combination of change events from the TD and the two spikes
emanating from the exposure measurement circuitry can be combined to produce
a quicker gray-scale image approximation by using the inter-spike times between
the TD event and the first EM measurement [47]. This can then be later updated
using the final EM spike to produce a more accurate result.

As each pixel operates autonomously, there is no need for a global exposure
rate and therefore each pixel is able to optimise its integration time independently.
This results in a sensor with high dynamic range and improved signal-to-noise
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Figure 2.2: Functional diagram of an ATIS pixel [2]. Each pixel in the ATIS
camera contains both a change detector circuit (CD) and an exposure measure-
ment circuit (EM). The CD circuitry generates events in response to a change
in illumination of a certain magnitude (specified by an externally configurable
threshold). The CD circuitry can also be configured to trigger the EM circuitry,
which encodes the absolute light intensity on the pixel in the inter-spike interval
between two spikes. Each pixel operates asynchronously, eliminating the need for
a global shutter and is capable of individually encoding change events and events
containing illumination information. These events are generated and transmitted
asynchronously from each pixel in the sensor.

ratio. The asynchronous nature of the change detection also yields almost ideal
temporal redundancy suppression and results in sparse encoding of the visual
information in the scene.

The output of these cameras is a spatio-temporal pattern with the location
of the pixel generating the event contributing the spatial information (u from
Equation (2.1)), and the time (t) at which the pixel generated the event providing
the temporal information. The temporal resolution is limited only by the speed
at which the sensor can produce events (typically on the order of microseconds
[2]).

It is important to note that the ATIS is characterised as supporting a maxi-
mum event rate of 30 million events per second [48], yielding a theoretical time
resolution of 33 ns. This value represents the smallest possible time measurable
between two events and is generally not sustainable. In practise, it is not always
possible to read events at the speed at which they occur, and the action of the
arbiter may result in events being read in a different order to the order in which
they occurred. Temporal event accuracy is generally on the order of microseconds
[49], and for that reason, most ATIS hardware limits the temporal resolution to
microseconds.
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Figure 2.3: Example output from the ATIS sensor showing the TD out-
put (left) and the EM output (right) for a typical outdoor scene [3].
The scene represents a person walking away from the camera, with the back-
ground remaining static. The TD image on the left was constructed by buffering
all events over a fixed time period and displaying a black or white dot for pixels
which have recently experienced an increase or decrease in intensity respectively.
The EM image on the right shows the absolute pixel intensity, which receives
pixel value updates whenever the TD circuit detects a change.

An example of the output of the ATIS camera is shown in Figure 2.3. It shows
both the output of the TD circuitry (left), and the EM circuitry (right). For the
purposes of representation, the TD events generated have been collected over a
period of time to form the image shown for the TD output, whereas the EM
output consists of absolute intensity levels which have been iteratively updated
as the TD events trigger the EM module to obtain measurement of illumination.

It is important to note that the notion of frames is absent from the acquisition
process. Data is generated in response to activity in the scene. Frames can be
reconstructed, when needed, by buffering the events generated over a given period
of time. As a result, the potential frame-rates that can be generated are limited
only by the temporal resolution of the ATIS chip itself.

The ATIS camera used in this work consists of an ATIS chip connected to an
Opal Kelly XEM-6010 FPGA board. The FPGA interacts with an AER arbiter
on the ATIS chip to extract visual events as they occur, and the FPGA applies
a time-stamp to them. This preserves the timing between events before they are
buffered and transmitted to a PC. Varying levels of processing can be performed
on the FPGA itself, such as preliminary noise filtering.
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2.3 Feature Detection

Feature detection is the process of identifying and describing sections of an image
representation for the purposes of identification, tracking or classification. When
dealing with conventional cameras, these image representations are frames of
illumination intensity, either given as monochrome or colour. Feature detection,
in the context of event-based cameras, creates a new representation of the scene,
one in which the encoding of information includes a temporal component not
present in conventional image representations.

For the purposes of this section, and the rest of this work, feature detection
refers to the process of identifying features. Once a feature is detected, an ap-
propriate means of capturing the properties of the feature is required, and this
feature representation is referred to as the feature descriptor. Often, the calcu-
lation of the descriptor yields a level or degree of invariance toward one or more
affine or photometric factors, which can complicate feature detection.

The tasks of feature detection and feature tracking are inherently linked. A
good description of a feature is required in order to track or classify it, and often,
what constitutes a good feature is one that tracks or classifies well. The quality of
a feature is therefore a direct factor in the quality of the tracking and classification
of a given system.

The most desirable property of a feature is its ability to be uniquely dis-
tinguished in feature space [50], with the choice of feature, and the means of
describing it, being of paramount importance. There exist a large number of fea-
ture detectors and descriptors that are often specialised to tackle specific tasks
or situations as different image features capture different properties of the image.
The correct choice of feature is highly dependent on the scene, the context and
the system in which it is used.

The development of feature detectors and feature descriptors is an active
field of research, and there exist a number of powerful and efficient methods to
detect and describe visual features in conventional images. This section explores
the most important ideas and methods used in conventional feature detection,
and which form the basis of much of the work on event-based vision detection
presented in this thesis.

Features that are based on spatial gradients have seemingly provided some of
the most robust and widely-used feature descriptors to date. Gradient features
can be divided into two major categories; those that extract shapes and contours
from gradient information, and those that exploit a statistical representation of
the underlying gradients. Both types of methods are described below.

Human detection in images has been one of the driving forces behind the use
of gradient features in computer vision. This is due primarily to the widespread
need for a reliable means of human detection in autonomous vehicles, surveillance
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systems and robotic systems. There are also well established and labelled datasets
available, allowing performance metrics to be easily calculated.

The feature detection methods described in this section represent the most
successful and widely-used methods in computer vision with conventional cam-
eras. As a result, these methods operate on static frames, and not event-based
data. Much of the work presented in this thesis represents the implementations
of similar feature detection methods to the event-based data streams from the
silicon retina introduced in Section 2.2.3.

2.3.1 Shape-based and Contour-based Features

Template, shape and contour matching techniques attempt to identify, detect
and classify objects and features through unique edges and silhouettes. These
techniques operate either at a global level, which might attempt to identify a
human silhouette through matching a full body template, or at a local level, in
which a human form may be detected by identifying a number of sub-parts to
make up the whole. Global methods have the advantage of easily being able to
detect multiple objects in one scene, but lack the robustness to occlusions and
cluttered scenes that part-based methods can offer.

These gradient-based techniques have been applied in numerous different and
varied scenarios, often combining multiple techniques or methods. For example,
Garvrila tackled the problem of identifying pedestrians from a moving vehicle
through the use of hierarchical template matching using a Chamfer detector to
find proper contours [51]. Lin et al. also used a hierarchical approach to hu-
man segmentation, but combined a global template and local parts approach,
and additionally formulated the task as a Bayesian Maximum Posteriori (MAP)
optimisation problem [52].

Another interesting example is the work of Ferrari et al., who tackled the
problem of object detection in cluttered environments by extracting edges and
fitting contours, and using a map of their interconnects to perform detection
[53]. Elements of this technique led to work of Anvaripour and Ebrahimnezhad,
who constructed exact object boundaries for object detection, using boundary
fragment extraction and using Gaussian Mixture Models (GMM) [54]. Wu and
Nevatia extended the concept further by introduced edgelet features, which are
short segments of a line or curve and used these in a joint-likelihood model, also
formulated as a Maximum Posteriori probability (MAP) problem [55].

These approaches which make use of shapes or contours are particularly in-
teresting in the context of event-based vision. Silicon retinas, such as the ATIS,
perform an operation similar in nature to edge extraction for scenes with mo-
tion, ego-motion or photometric changes, but performs the computation at the
hardware level and asynchronously. This creates the possibility of applying and
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extending these techniques into an event-based paradigm.

2.3.2 Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) is perhaps one of the most well-
known and widely-used feature detection methods. SIFT is a cascaded filter
chain, which includes a scale-invariant detector and a rotationally invariant de-
scriptor [56], and has proved to be effective and efficient across a wide variety of
applications.

The SIFT detector belongs to a class of feature detectors that look for regions
within an image that exhibit the properties of a good features - namely one that
is either useful for recognition, classification or tracking purposes. The Moravec
corner detector represents one of the first attempts to detect such points through
identifying points of local maximum or minimum intensity changes. The Harris
Corner Detector [57] solved some of the issues surrounding sensitivity to noise
and edges that afflicted the Moravec detector.

The Harris Corner Detector proved to be a better means of identifying points
of interest within an image, but lacked the ability to handle changes in scale
or viewpoint. SIFT tackles this problem directly through the use of scale-space
theory, and more specifically linear scale-space representation [58], allowing it to
detect features across a wide range of scales. The SIFT detector approximates
the scale-space through a technique known as Difference-of-Gaussians (DoG), and
uses a 2×2 Hessian matrix of image gradients about each point in order to remove
edge responses.

The SIFT detector identifies a set of keypoints for a given image, and then
calculates a descriptor for each one. The descriptor needs to provide a consis-
tent and reliable means of recognising the same feature in a different image or
location, and the SIFT descriptor provides a rotationally-invariant and partially
illumination-invariant descriptor calculated through the use of local orientation
histograms, which are re-aligned to the dominant orientation.

The success of SIFT has led to numerous improvements and modifications to
the algorithm. Sukthankar made use of Principle Component Analysis (PCA) in
order to reduce the size of the SIFT descriptors [59], Abdel-Hakim and Farag cre-
ated a colour invariant version called CSIFT [60], and Scovanner et. al extended
SIFT to handle 3D features [61].

SIFT has also given rise to a whole class of similar feature detection meth-
ods based on similar principles. These include the Speeded Up Robust Features
(SURF), which makes use of a fast Hessian detector based on a discretised Gaus-
sian filter [62], an efficient binary-based descriptor called Binary Robust Inde-
pendent Elementary Features (BRIEF) [63], a rotationally invariant version of
BRIEF called ORB [64] and a descriptor based on Weber’s Law called WLD [65].
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The methods of detecting points of interest first described by Moravec, and
then later refined by the Harris Corner Detector and SIFT, are used in the devel-
opment of similar techniques for detecting features on event-based time surfaces
in Section 3.3.

2.3.3 Histograms of Oriented Gradients (HOG)

Another important feature detection method also makes use of histograms of
orientations, and applies it a recognition task. Dalal and Trigs introduced the
Histograms of Oriented Gradients (HOG) method, which makes use of dense and
overlapping grids of local and normalised histograms of orientations as an input
to a pedestrian recognition system [66].

These histograms of oriented gradients are the same as those used in SIFT,
and the HOG approach showcases the power and simplicity of just using those
histograms as opposed to the entire cascading filtering chain. An important point
raised by Dalal and Triggs is that the distribution of edge directions in a region
containing an object provides a good characterisation of its appearance [67].

Dalal found that the simplest methods of calculating the orientation gradients
produced better results. The best performing method made use of the simple
intermediate difference gradient formula as follows:

∂F

∂x
=
F (x+ 1, y)− F (x− 1, y)

2
(2.2)

∂F

∂y
=
F (x, y + 1)− F (x, y − 1)

2
(2.3)

Using methods of calculating the spatial gradient that made use of larger
areas tended to decrease performance, as did performing any smoothing prior to
computing gradients. The HOG descriptor normalises the local histograms, as it
proved to be essential to achieving good performance in their recognition tasks.

The paper introducing the HOG descriptor also explored the nature of the
spatial binning for the histograms. SIFT made use of the full range of orientations
[0, 360◦), but the HOG method chose to discard the sign of the gradient and use
a range of [0, 180◦), as the use of the full range caused a decrease in performance.
The authors do note that the use of the signed orientations did serve to improve
accuracy when dealing with non-human objects.

These results are particularly important as they formed the basis for the
design and configuration of the feature detectors based on temporal orientations
in Section 3.4.
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2.4 Neuromorphic Approaches

The recent advances made in artificial visual sensing have occurred primarily in
three areas. The first relates to the development of silicon retinae hardware,
and more specifically the development of applications and algorithms designed
specifically to work with them.

The second area in which there has been significant research in recent years
is the creation of large-scale neuromorphic hardware platforms. These systems
represent viable hardware on which event-based and spike-based algorithms can
be implemented.

The third area of research involves the development of spike-based learning
methods and systems. These including algorithms and techniques for learning
spatio-temporal patterns, and software frameworks for implementing spike-based
computation.

This section presents a short summary of the recent advancements in these
three areas.

2.4.1 Event-Based Visual Algorithms

Event-based cameras, such as the ATIS and DVS devices, have been the subject
of active research for a number of years, and a number of algorithms and applica-
tions have emerged that make use of the event-based paradigm offered by these
devices. This section describes some of the recent vision-specific algorithms and
applications relevant to the work presented in this thesis.

Working with the data directly, silicon retinae have been used in a number
of hardware systems making use of the unique nature of the event-based output.
These include visuo-motor control in a humanoid robot [68], a pole-balancing
robot using an embedded DVS camera [69], a robot goalie system [70], and as a
device for fall detection in the elderly [71].

The event-based nature of these cameras also allows for an interesting ap-
proach to stereo vision processing, as temporal coincidence can be used to match
events from different cameras. An event-based approach to epipolar geometry
was proposed by Bensosman et al. [72], and developed into full 3D reconstruc-
tion techniques for the DVS camera [73, 74] and for the ATIS camera [75].

Techniques for calculating local optical flow in an event-based manner have
also been proposed [76, 77] and for motion estimation [78]. The devices have also
found applications in micro-particle tracking [79] and in providing stable haptic
feedback in micro-robotics [80]

Two algorithms of particular relevance to this work are the part-driven shape
tracking by Valeiras et al. [81] and the multi-kernel tracking system by Lagorce
et al. [82]. Both algorithms are event-based systems capable of operating in real-
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time on the output from an ATIS device, and both embody a similar approach
to event-based visual processing as adopted in this work. Haeng et al. [83]
implemented a similar real-time gesture interface using a pair of DVS cameras.

Another work of particular importance is that of Kim et al. [84] in which a
DVS camera was used to provide simultaneous localisation and mosaicking. The
system produced excellent results, but the camera motion was limited to pure
rotation. This work represents an important step toward the implementation of
an event-based simultaneous localisation and mapping algorithm.

Perhaps the most closely related work is that of Lagorce et al. [85], who
introduced a framework for detecting spatio-temporal features in event-based
data using recurrent neural networks and a winner-take-all architecture. Trained
and tested on similar digits to the work presented in this thesis and operating in
an unsupervised manner, the approach presented in this work represent a parallel
and promising approach to the event-based visual processing tasks.

2.4.2 Neuromorphic Hardware Systems

There have been a number of significant advances in the design and development
of large-scale biology-inspired spiking neural hardware platforms. These hardware
devices compute in a power efficient manner inspired by neurons in the brain and
can be used to process the captured visual signals from neuromorphic devices
such as silicon retinae.

SpiNNaker [86] is one such system, and comprises specially designed pro-
cessing and communication hardware developed to simulate large populations
of spiking neurons in a massively parallel manner, and at relatively low power
compared to existing systems for simulation. A number of systems have been
developed for the SpiNNaker hardware, including a framework for plasticity [87]
and an implementation of Deep Belief Networks [88].

Another such system is Neurogrid [89], which augments the purely digital
approach of SpiNNaker with the use of mixed signal hardware for neuron simu-
lation. Implementing systems up to a million neurons and eight billion synapses,
the system proved to be power efficient, consuming just 941 pJ per synaptic
activation.

The TrueNorth processor from IBM [90] is a commercial device and is capable
of implementing one million neurons and 256 million synapses in real time. It is
also reported to consume less than 100 mW under normal operating conditions.
The TrueNorth system comprises custom-built hardware and an extensive soft-
ware development framework with which to develop applications for the system.

Another class of hardware implementations make use of the concept of poly-
chronous networks, first introduced by Izhikevich [91]. Wang et al. [92] produced
a large-scale hardware implementations of such networks on an FPGA. Such net-
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works are also capable of learning specific spike-timing and are also applicable
for use in an event-based vision system.

The work done by Basu et al. on hardware implementations of the Extreme
Learning Machine (ELM) using silicon spiking neurons [93] is of particular rele-
vance to this work, as many of the algorithms make use of classifiers similar in
structure, and the work represents a promising hardware platform on which to
implement the algorithms and feature detectors presented in this work.

2.4.3 Spiking Neural Networks

In addition to the hardware implementations, the development of algorithms and
neural networks that operate on spikes have also received much attention. One
such network is the Tempotron [94], which is capable of exploiting information
in the spatio-temporal arrangement of spike patterns rather than the mean firing
rate. The DELTRON, which is based on a similar learning rule to the Tempotron,
represents a viable hardware implementation using FPGAs. In both these net-
works, the weights for the network are incrementally learnt.

The Synaptic Kernel Inverse Method (SKIM) represents an alternative method
in which the network weights are synthesised rather than iteratively calculated.
This makes it very useful in characterising and contrasting the other components
and extractors used in a visual recognition system. As the SKIM algorithm is
used throughout this work, it is covered in more detail in Section 2.5.3.

Additional methods exist for the recognition of the inter-spike timing in spatio-
temporal patterns. Masquelier and Thorpe demonstrated the sensitivity of Spike
Timing Dependent Plasticity (STDP) to recognising spatio-temporal patterns
[95]. Other methods include the Remotely Supervised Method (ReSuMe) [96]
and SPAN [97].

The development of multi-layer deep learning approaches also present exciting
opportunities for neuromorphic applications. O’Connor et al. provided a Deep
Belief Network capable of performing sensor fusion on both audio and visual
information. [98]. Carrasco et al. provided a means of processing event-based
visual information using a cascade of convolution processors [5], further validating
the efficacy of the deep learning approach. Neftci et al. proposed an event-based
implementation of a Restricted Boltzmann Machines suitable for such deep belief
systems [99], with the work of Pedroni et al. further expanding on a neuromorphic
implementation.

In parallel to the growth of hardware implementations, a similar increase in
the number of available and viable software frameworks has also emerged. These
include the Neural Engineering Framework (NEF) [100], Brian [101], PyNCS [102]
and PyNN [103].
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Figure 2.4: Structure of a typical 3-Layer LSHDI Network. The inputs
are projected through a set of random weights to a larger hidden layer of neurons,
each implementing a non-linear activation function. The outputs of these neurons
are linearly weighted and summed for each output neuron.

2.5 Linear Solutions to Higher Dimensional In-

terlayers (LSHDI)

The term Linear Solutions to Higher Dimensional Interlayers (LSHDI) [4] refers
to a class of neural networks that resemble a three-layer perceptron, except that
they possess a large number of hidden layer nodes. The input weights, which
are often random, project the input into a higher dimensional space with the
intention of spreading out the inputs and allowing for the fitting of a hyperplane
for either regression or classification tasks, resulting in the need to compute only
linear output weights for each output neuron.

Examples of these techniques include the Neural Engineering Framework (NEF)
[100] and the Extreme Learning Machine [104] . Using the analytical approach
has the advantages of requiring no parameters and of producing an optimal least
squares solution in a single step.

2.5.1 Structure of an LSHDI Network

The structure of a typical LSHDI network closely resembles a standard three-
layer perceptron, as shown in Figure 2.4. These networks consist of an input
layer, a large hidden layer and then an output layer, all of which can vary in size
according to the nature and requirements of the task.

LSHDI networks typically possess a larger hidden layer than most standard
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perceptron implementations, and it is often set as a multiple of the number of
input layer neurons used, with this multiple referred to as the fan-out factor. As
mentioned before, a large hidden layer size is often used and a fan-out of 10 is
common in ELM systems [105].

Another common property of an LSHDI network is that fixed weights project
the input to the hidden layer wi,j, and are not altered or changed during the
training. This greatly simplifies the calculation of the analytical solution, as only
the output weights β require calculation. It is common to use random values
for the input layer weights, as is the case for ELM implementations [104]. The
random hidden layer weights serve to project the input into the higher dimensional
space of the hidden layer, in a process similar to the kernel trick used in the
majority of kernel methods. Each hidden layer neuron implements a non-linear
activation function, such as a sigmoid.

For a given ELM network presented with a set of inputs xl ∈ Rn×1, the output
ym representing the output value at output neuron m is determined as follows:

ym =
M∑
j=1

βmj g

( L∑
i=1

wi,jxl

)
(2.4)

In which wi,j represents the random input weight from the input layer to the
hidden layer and g represents a non-linear function implemented at each hidden
layer neuron. The outputs from each hidden layer neuron project to the output
neurons through the output layer weights β. The values for β can be determined
using a number of different methods, including back-propagation, but LSHDI
networks take an analytical approach to determining these weights through the
Moore-Penrose pseudoinverse.

Given N training sample (xi,yi) such that the inputs xi[xi1, xi2, ..., xin]T ∈
Rn, and the outputs yi = [yi1, yi2, ..., yim]T ∈ Rm, the equations for N using
Equation (2.4) can be represented using the following compact notation:

Hβ = Y (2.5)

In which β contains the output weights, T is the input pattern set and H
represents the outputs from the hidden layer as follows:

H(w1, w2, ..., wn, x1, x2, ...xn) =


g(w1 · x1) g(w1 · x2) · · · g(w1 · xn)
g(w2 · x1) g(w2 · x2) · · · g(w2 · xn)

...
...

. . .
...

g(wl · x1) g(wl · x1) · · · g(wl · xn)

 (2.6)

The definition of the H matrix given by Huang [106] differs as it includes a
bias term b = [b1, b2, ..., bN ]T which is added after the input weight summation
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for each hidden layer neuron. Huang et al. [107] demonstrated that if the random
weights (and the bias term if used) remain constant, then training the network is
equivalent to finding the least-squares solution β̂ to the linear system presented
in Equation (2.5), and can be calculated as follows using the Moore-Penrose
Generalised Inverse:

β̂ = H†Y (2.7)

Where H† is the Moore-Penrose generalised inverse of H. Calculating this
inverse becomes a limiting factor in the application of LSHDI techniques, as it is
a large and memory intensive operation. The scale of the inverse also grows with
the number of training samples, thereby placing a limit on that as well.

2.5.2 The Online Pseudoinverse Update Method

The Online Pseudoinverse Update Method (OPIUM) [105] is an incremental
method for solving the pseudoinverse for the type of LSHDI systems detailed
in the previous section. Whereas the addition of a new training item requires the
complete retraining of a conventional ELM system, the OPIUM method allows
for online updates. In addition, the ability to iteratively update the network
allows for the handling of non-stationary data.

The OPIUM method tackles the problem of calculating the Moore-Penrose
pseudoinverse H† by making use of Greville’s algorithm for iteratively calculating
the psuedoinverse [108].

The OPIUM method provides a means to update an LSHDI network for data
from a process sampled k times, with a new set of input and output data, labelled
xk and yk respectively. From xk, the hidden layer activations hk can be calculated.
Thus, two vectors can be formed as follows:

Hk = [Hk−1hk] (2.8)

Yk = [Yk−1yk] (2.9)

The OPIUM method requires the calculation of the inverse of the correlation
matrix of the hidden layer activations, denoted as θk ∈ RL×L, and which, under
certain conditions discussed in [105], can be updated using the following rule:

θk = θk−1 − θk−1hkb
T
k (2.10)

Where bk is calculated as follows:

bk =
θk−1hk

1 + hTk θk−1hk
(2.11)
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The linear output weights, denoted by β also make use of bk for its update
equation, which is shown below:

βk = βk−1 + (yk − βk−1hk)b
T
k (2.12)

The two update equations form the basis of the mechanism for iterative learn-
ing, and require calculating for each new and incoming input/output pair. Each
step requires only the new data, the previous output weights βk−1, and the inverse
correlation matrix θk−1.

As the OPIUM method is inherently an iterative method, it is important
that the initial conditions for β and θk be set appropriately. The initial values
suggested in [105] suggest that β0 = 0n×L and θ0 = 1

ε2
IL×L.

The nature of these initial conditions and the effects in the under-determined
region are explored in Section 6.5.

2.5.3 The Synaptic Kernel Inverse Method

The Synaptic Kernel Inverse Method (SKIM), proposed and outlined in [4], is
a neural synthesis technique which produces networks of neurons and synapses
that are capable of implementing arbitrary functions on spike-based inputs. The
network generally contains a single input neuron for each input, and a single
neuron for each desired output. The conventional fan-out to a higher dimensional
space, present in most Linear Solutions to Higher Dimensional Interlayer (LSHDI)
network systems [4] and usually implemented through a hidden layer of neurons,
is replaced with multiple synaptic connections, which are shared between output
neurons.

SKIM differs from other LSHDI systems, such as the Extreme Learning Ma-
chine (ELM), in that it is specifically designed to learn spike-dependent signals.
It therefore bears a closer resemblance to synthesis methods such as the Neural
Engineering Framework (NEF), which is also capable of spike-based input-output
relationships [100]. SKIM differs from the Neural Engineering Framework in that
it does not rely on rate-encoded signals, and rather relies on both the spatial and
temporal information in the incoming spike-trains.

SKIM is based on a biologically plausible network structure modelled on the
synaptic connections between neurons. An overview of the SKIM network is
shown in Figure 2.5. In the SKIM, input neurons are considered analogous to
pre-synaptic neurons and input event streams are projected to a layer of synapses
through a set of random weights. Each weight is representative of a specific
dendritic branch leading towards a synapse. These synapses implement non-
linear responses to the received current from the pre-synpatic dendritic branches
through the use of non-linear kernels, such as exponentials or decaying-alpha
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Figure 2.5: Topology of the Synaptic Kernel Inverse Method (SKIM)
[4] . Each input layer neuron (left) will be an input from a separate pixel. At
initialisation, the static random weights and synaptic kernels are randomly as-
signed and they remain fixed throughout the learning process. During learning,
the output weights in the linear part of the system are solved to minimise the
error between the system output and the desired output.
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functions. It is these kernel functions that provide the SKIM with the ability to
respond to temporal information in the input as they convert discrete incoming
spikes into a continuous value.

The outputs of these synapses proceed down the post-synaptic dendritic branches,
which connect to the soma of the output neurons. The dendritic branches sum
the currents from the synapses at the soma of the output neuron, causing it to
fire if the soma potential exceeds a specified threshold. It is the properties of
these post-synaptic dendritic branches which are analytically calculated in the
SKIM method as they are analogous to the linear output weights in other similar
systems.
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Chapter 3

Event-Based Feature Detection

3.1 Introduction

The ability to reliably detect and extract distinct and robust local features in a
visual scene is a fundamental building block in a wide range of computer vision
problems. Much of the work in the field has focused on the detection and matching
of features in 2D images, and has been used for such tasks as object recognition
[56], image stitching [109] and scene classification [110]. These techniques have
also been applied to find stable features in video streams [111], and have been
used in off-line tasks such as feature detection and video analysis [112], and for
more demanding on-line tasks such as camera localisation and visual mapping
[113].

Event-based cameras provide a vastly different paradigm in which to sense
and process the visual world. Tasks such as tracking and object recognition still
require the identification and matching of local visual features, but the detection
and extraction of features requires a fundamentally different approach, and the
methods that are commonly applied to conventional imaging are not directly
applicable to event-based data.

This section introduces a number of methods for detecting and extracting
features from the spatio-temporal data generated from an event-based camera.

3.2 Contributions

The field of event-based vision is relatively new when compared to its conventional
counterpart, and therefore there is little existing work on the subject of event-
based feature detection. This section introduces a number of new techniques and
makes the following contributions, as it:
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• Explores the use of time surfaces and descriptors based on time surfaces for
use in feature tracking and recognition problems.

• Introduces a new type of feature based on orientations of spatio-temporal
gradients, and outlines a method to select good features based on a mixture
model of von Mises distributions.

• Applies the principles of circular statistics and uniformity to create a new
class of noise filter for event-based data.

3.3 Feature Detection using Surfaces of Time

This section describes a method of detecting features on surfaces derived from the
spatio-temporal information produced from the event-based cameras introduced
in Section 2.2.4. This section discusses different methods of creating these surfaces
from the event-streams, the means to detect features of interest and the methods
to calculate unique and robust descriptors from these features.

Figure 3.1 shows an overview of the process used to generate a spatio-temporal
time surface and feature for a given event. An event source, such as an ATIS cam-
era, generates a stream of events which include both a temporal and spatial com-
ponent. These events update a spatio-temporal surface, as shown in Figure 3.1
(c) and discussed in depth in Section 3.3.1.

From this time surface, an area around the given event is extracted and consid-
ered as a potential feature through a method detailed in Section 3.3.2, and from
which an appropriate descriptor is calculated. The process of calculating descrip-
tors and the transformations to which it can be made invariant are described in
Section 3.3.3.

3.3.1 Surfaces of Time

In the context of computer vision, a local feature is generally defined as an im-
age patch that exhibits one or more properties that differentiates itself from its
immediate neighbourhood [114]. Implicit in this definition is the assumption of
a conventional imaging system where the entire frame of pixel information is
already available.

The data obtained from an event-based camera includes a temporal compo-
nent, and the definition of a local feature in the context of event-based feature
detection may better be defined as an identifiable spatio-temporal pattern repre-
senting an aspect of the visual scene, distinct in the local spatial and temporal
context, and robust to geometric and temporal transformations.
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Surface potential

Surface potential

X (spatial)
y (spatial)

Figure 3.1: Construction of a spatio-temporal time surface and features
from the event-based data. The time surface encodes the temporal infor-
mation from the sensor into the magnitude of the surface as each event arrives.
The ATIS sensor shown in (a) and attached to a rig with fiducial markers for
3D tracking, generates a stream of events (b) as the camera is moved across a
static scene. When an event occurs, such as event e from the pixel (x0, y0) at
time t0, the value of the surface at that point is changed to reflect the polarity
p → {−1, 1}. This value then decays exponentially as t increases, yielding the
spatio-temporal surface shown in (c). The intensity of the colour on the surface
encodes the time elapsed since the arrival of the last event from that pixel. A
spatio-temporal feature consists of a w × w window centred on the event e, as
shown in (d). An example of the decaying exponentials in the feature that gen-
erate the time surface at t = t0 is shown in (e). The spatio-temporal feature can
also be represented as a surface, as shown in (f).
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Any method of detecting features or patterns in spatio-temporal data requires
some form of memory through which previous events are considered when updat-
ing or calculating features. This is of particular importance in event-based pro-
cessing, where updates occur on the arrival of new data as opposed to occurring
at regular intervals. The irregular nature of the data rate makes implementa-
tions that directly buffer event information difficult, and therefore motivates the
need for functions that are capable of mapping the event-based data onto a time-
dependent surface.

Defining a feature in the context of a spatio-temporal pattern requires some
additional definitions relating to the processing of event-based visual data. A
visual event from the ATIS camera can be mathematically defined as a vector
with four components:

e(u, t) = [u, t, p]T (3.1)

Where u = (x, y)T is the 2D spatial coordinate of the event on the silicon
retina, t is the absolute time at which the event occurred and p ∈ {−1, 1} encodes
the polarity of the event. Motion or change of illumination in the scene will cause
the pixels in the ATIS camera to generate a stream of vectors, each corresponding
to a relative luminance change in the scene.

We can then define the function Σe to map a time t to each 2D spatial coor-
dinate u:

Σe : R2 → R
u : t = Σe(u) (3.2)

And a similar function Pe to map the polarity to each spatial coordinate:

Pe : R→ {−1, 1}
u : p = Pe(u) (3.3)

As time is inherently a monotonically increasing function, the function Σe

defined in (3.2) describes a monotonically increasing surface. Making use of this
surface does not yield much benefit, as it is just another representation of the
temporal component from each event. Applying a function to this surface gen-
erates other surfaces from which more descriptive features that better represent
the underlying visual scene can be extracted. Surfaces derived from Σe will be
referred to as Ωe, and three such surfaces are discussed below.

One candidate surface, the linear-decaying time surface Λe(u, t), is defined
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below:

Λe(u, t) =

{
Pe(u).

(
1 + Σe(u)−t

τ

)
, Σe(u)− t >= τ

0, Σe(u)− t < τ
(3.4)

The above equation utilises the two functions defined in equations (3.2) and
(3.3) to create a linear decay for each event based on a time-constant defined
by the variable τ in the equation. The τ parameter defines the duration over
which an event will have an effect on the surface and therefore is responsible for
implementing the required memory aspect needed for spatio-temporal pattern
identification. The actual value for τ is highly dependent on the application and
nature of the scene and will be specified whenever such a surface is used.

A second candidate surface extends the concept of the linear decaying surface
by implementing an exponential decay rather than a linear decay. The exponen-
tially decaying time surface Γe(u, t) is defined as follows:

Γe(u, t) =

{
Pe(u).e(Σe(u)−t

τ ), Σe(u) <= t

0, Σe(u) > t
(3.5)

As with the previous surface, the τ constant in the equation determines the
duration over which events have impact on the scene. Figure 3.1 illustrates the
exponential time surface and the manner in which the surface is calculated from
incoming events. It also shows how a snapshot of the decaying exponential acti-
vations from previous events contributes to the surface at time t. The length of
the decay for each event is set by the tau parameter.

A third surface further extends the exponentially decaying time surface by
incorporating the residual value of the previous decaying exponential into the
update for each event. This accumulating temporal surface Φe(u, t) is defined as
follows:

Φe(u, t) =

{
(Φe(u, τe) + Pe(u)).e(Σe(u)−t

τ ), Σe(u) <= t

0, Σe(u) > t
(3.6)

Where τe is the time of the arrival of the last event from any pixel. Whereas
the ranges of both the linear surface Λe and the exponential surface Γe(u, t)
are limited to [−1, 1] as Σe <= t, the range of the accumulating surface Φe is
unbounded.

Figure 3.2 illustrates the nature of an update to a single pixel for each type of
surface. If a pixel receives another event whilst the corresponding value for that
pixel on either the linear or exponential surfaces is still decaying, the value on
the time surface will revert to either +1 or −1 depending on the polarity of the
new event, discarding the previous value. The inclusion of the residual from the
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Figure 3.2: Linear, Exponential and Accumulating Surfaces of Time. Il-
lustration of the updates for a single pixel on the linear surface Λe (top), the
exponentially-decaying surface Γe (middle) and the accumulating exponential
time surface Φe (bottom).

34



3. Event-Based Feature Detection

σ = 1

50 100 150 200

50

100

150

200

250

300

σ = 2

20 40 60 80 100 120

20

40

60

80

100

120

140

σ = 4

10 20 30 40 50 60

10

20

30

40

50

60

70

σ = 8

5 10 15 20 25 30

5

10

15

20

25

30

35

σ = 16

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

Figure 3.3: Exponential Time surfaces generated at five different spatial
resolutions. Five different surfaces of varying scales are shown. These were gen-
erated by calculating the accumulating time surface described in equation (3.6)
and making use of the scale mapping in equation (3.7) with five different σ values
as shown in the above figure. The five surfaces are all updated in an event-based
fashion for each incoming event.

previous event for that pixel on the accumulating surface increases the range of
the surface beyond the [−1,+1] and allows for staggered and partial updates of
the surface.

The accumulating nature of this surface opens up the possibility of calculating
surfaces with lower spatial resolutions on the arrival of each event in an efficient
manner. Given a scale factor of σ, event e = (x, y, t, p) can be mapped to the
lower spatial surface as follows:

u′ = [
x

σ
,
y

σ
] (3.7)

p′ =
||p||
σ2

(3.8)

The contribution of a given event to a lower spatial resolution is weighted by
the scale factor. A pixel in a lower spatial resolution therefore corresponds to
the averaged mean of the pixels mapped to it on the higher spatial surfaces. The
accumulating surface is required here as the value on the lower resolution surface
would otherwise only represent the contribution from the last event to arrive, and
not the history of all events in the past.

Each spatial surface is updated for each incoming event, and each surface can
be updated in parallel. Figure 3.3 shows five different spatial resolutions for a
given stream of events. These surfaces can be used to provide a level of spatial
invariance in a similar fashion to the pyramid of difference-of-Gaussians used in
the SIFT approach in Section 2.3.2.
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3.3.2 Feature Detection on Time Surfaces

The techniques used by conventional feature detection algorithms do not translate
well to the realm of event-based data. Usually, these detectors operate on an
entire image at once, applying a filter or multiple filtering steps to entire frames
of pixels and then searching the resulting space for candidate points. When
dealing with event-based data, such an approach is not possible as algorithms
need to operate iteratively on received data as it arrives in order to benefit from
its event-based nature.

An event-based approach also introduces the challenge of detecting desirable
features in spatio-temporal data, and the challenge of not only detecting where
interest points occur, but also when they occur. The use of a temporal surface
reduces the problem down to a two dimensional representation and it would be
possible to generate frames at regular intervals from these surfaces and then to
apply conventional feature detection techniques, but this would discard the high
temporal resolution and data-redundancy offered by the sensor.

Therefore, feature detectors that operate in an event-based manner only have
access to past events and need to operate in an efficient manner. It is not feasible
to search or calculate across the entire image resolution for each incoming event,
and therefore it is desirable to limit the information to spatially local areas around
the event. Therefore, we can define a spatio-temporal feature on a time surface
Ωe of size w × w pixels centred on position u = (x, y)T and occurring at time t
as follows:1

Ie(x, y, t) = {Ωe(x+ i, y + j, t) | |i, j| < w} (3.9)

Borrowing from conventional feature detection in computer vision, these fea-
ture detectors make use of the principles behind the corner and edge detectors
from the Harris Corner detector [57]. Harris and Stephens based their work on
the Moravec corner detector [115], which operated by examining a local window
about each pixel and determining the average changes in intensity that would
result from small shifts in the window in both the x and y directions. Given a re-
gion of approximately uniform intensity, a small shift will produce a small change
in the average intensity, an edge will produce a small change in the direction of
the edge, but a large change in the direction parallel to the edge, and finally, a
corner or region of interest, will produce a large change in all directions.

Mathematically, this method makes use of the weighted sum of squared dif-
ference (SSD) between an image patch I(u, v) and the same sized patch shifted

1This definition makes the assumption that the imaging device makes use of pixels aligned
to a rectangular grid, and all the work in this thesis makes use of devices that contain such
arrangements of pixels. Other pixel configurations, such as a hexagonal arrangement of pixels,
would require a different feature definition.
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by a small factor (x, y). The weighted SSD between I(u, v) and I(u+ x, v+ y) is
given as follows:

S(x, y) =
∑
u

∑
v

w(u, v)(I(u+ x, y + v)− I(u, v))2 (3.10)

In which the weighting function w(u, v) alters the sensitivity to noise, and a
Gaussian weighting function is commonly used. The term I(u+ x, v + y) can be
approximated using a first-order Taylor expansion as follows:

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (3.11)

In which Ix and Iy are the partial derivatives of I. Using this definition,
Equation (3.10) can be re-written as:

S(x, y) ≈
∑
u

∑
v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)2 (3.12)

Or, written in matrix form:

S(x, y) ≈
[
x y

]
A

[
x
y

]
(3.13)

In which, A is a structural tensor as follows:

A =
∑
u

∑
v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
=

[
〈I2
x〉 〈IxIy〉

〈IxIy〉 〈I2
y 〉

]
(3.14)

The angle brackets denote the result of applying the weighting function to the
region and calculating the average value. This A matrix is a 2D Hessian matrix
which is often referred to as a Harris matrix [56]. Examining the magnitudes
of the eigenvalues of this A matrix, yields insight into the nature of the point
in terms of quality as a feature. A desirable feature would exhibit two large
eigenvalues, indicating sensitivity to shifts in both directions.

However, the calculation of eigenvalues is a computationally expensive oper-
ation which involves a square root operation, and Harris and Stephens proposed
the following corner metric based on the trace and determinant of A:

R = λ1λ2 − κ(λ1 + λ2) =
∣∣A∣∣− κTr(A)2 (3.15)

In which λ1 and λ2 are the two eigenvalues of A and κ is a tunable parameter
that adjusts the sensitivity of the corner detector (with a value ranging from 0.04
to 0.2 often used). This method is applied to every pixel in the image in the
fashion of a filter, and a point is considered to be an interest point if the value is
greater than the surrounding pixels (usually the neighbouring 8 pixels).
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Shi and Tomasi proposed another means of ranking corners by calculating
the eigenvalues of A and comparing them to a specified threshold [116]. They
found that if the smaller eigenvalue exceeded a specified noise threshold, then A is
generally well-conditioned and the region can be considered a good feature. Both
the Harris Corner Detector and the Shi and Tomasi detector require a threshold
or a constant which needs to be empirically determined, but there exist other
measures which avoid the need for a tunable parameter. The first such method
is the harmonic mean of the eigenvalues as follows:

R =

∣∣A∣∣
Tr(A) + ε

=
I2
xI

2
y − I2

xy

I2
x + I2

y + ε
(3.16)

Where ε is a small positive constant to prevent division by zero problems.
It is important to note that these corner detectors operate on traditional im-

ages. Adapting these methods to an event-based approach requires that they op-
erate on the time surfaces instead. The process of converting the spatio-temporal
pattern to a time surface yields a 2D spatial surface containing real-valued inte-
gers representing the inter-spike times around the current event. Whereas these
methods detect corners in conventional images, these same techniques identify
similar structures on the time-surface. These structures are spatio-temporal cor-
ners, resulting from a specific combination of contours in the visual scene.

Figure 3.1 shows how a spatio-temporal feature Ie is extracted from the time
surface about an incoming event. It is on this surface that the corner detection
methods are applied. Unlike the usual case in conventional computer vision, the
algorithm is evaluated iteratively for each incoming event and not applied glob-
ally across the whole image surface (as the time surface is continuously evolving
with each incoming event). The corner metric is calculated for the point on the
time surface corresponding to the current event (i.e. it makes use of a window
centred on u = (x, y)T from the current event e). The same corner metric is also
calculated for all eight neighbouring points on the time surface, and a feature is
only considered if it represents either a local maximum or local minimum in its
local spatial neighbourhood. This removes the need for an explicit threshold.

3.3.3 Time Surface Descriptors

Identifying a candidate feature of interest on the time surface represents only half
of the problem involved in robustly detecting a feature. The second half of the
problem involves finding a representative manner in which to describe the feature
to allow for future matching and re-detection. This involves the calculation of a
descriptor from the given feature.

An important aspect of a descriptor is that it provides a quantitative means
of comparing two features, often yielding a metric indicating their relative simi-
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larity. Carefully choosing an encoding method from feature to descriptor, and an
appropriate means of quantitatively comparing two features, can yield a feature
detection system that displays invariance to a variety of different transformations
(such as affine transformation, photometric transformation, and in the case of
event-based visual data, changes in optical flow velocities).

The simplest descriptor for a given feature I ∈ Rm×n on a time surface Ωe is
to simply transform the 2D region into a one dimensional vector as follows:

d = vec(I) = [I1,1...Im,1, I1,2...Im,2, I1,n...Im,n]T (3.17)

Making use of such a descriptor is paramount to simple template matching,
but provides no invariance to any transformations. One particular issue with this
descriptor is its sensitivity to the magnitude of the values within I, which makes
direct comparison of vectors sensitive to noise and outliers.

Achieving a level of invariance to the magnitude of I is possible by normalising
the descriptor as follows:

d =
vec(I)

||vec(I)||
(3.18)

In terms of event-based data, the magnitude of the values contained in I are
an encoding of the last spike times for events in the spatial neighbourhood of the
last event. Therefore, the relative difference between pixels in I is a measure of
velocity (either of objects within the scene, or of the camera itself). It is even
possible to calculate local optical flow about an event given just the linear time
surface Λe [77].

It is also possible to sort the values in the descriptor, which yields a bag-of-
words approach to feature detection in which the presence of certain magnitudes
within the feature itself becomes the feature.

Borrowing from the SIFT approach, a histogram of orientations for the given
image patch can be calculated, and then re-oriented about the most significant
orientation to yield rotational invariance.

Figure 3.4 shows three different descriptors calculated for a given region on
the time surface. The figure shows how the descriptors change under rotation,
mirroring and skewing operations and when noise is applied to the image patch.
The figure shows that the orientation descriptor displays the best invariance to
the rotation, skewing and noise transformations.

Unfortunately, this method is by far the slowest as it requires far more calcula-
tions than the other two descriptors and needs to be calculated for each incoming
event. This highlights one of the important issues regarding feature detection,
which is the trade-off between computational cost and required invariance of the
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Figure 3.4: The effect of transformations and noise on the normalised,
sorted and orientation descriptors applied to event-based data. Three
different descriptors are shown for four different features. The first row shows
the original feature and their resulting descriptors for each method. The second
row shows the results for a rotated version of the initial feature, with descriptor
from the original feature shown as a dotted line. The third line shows the initial
feature corrupted by noise and the fourth shows a completely different feature.
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descriptor. Unlike feature detection in conventional computer vision, the algo-
rithm does not have access to the full frame of data and therefore cannot optimise
the search for points of interest in the same manner.

Instead, each event must be considered as a potential feature as it arrives.
Furthermore, these calculations must occur when events arrive, and this often
places a hard limit on the computational time available in order to guarantee
some degree of runtime performance.

One facet that is not often discussed is that there is not always a need for
invariance to all types of transforms. For example, rotational invariance may
not always be required, as the orientation of a feature may be important to the
classification or tracking task. Additionally, the high temporal resolution of the
camera translates to a fast update rate and therefore there are often only small
changes in features from detection to detection.

3.4 Feature Detection using Orientated Histograms

This section introduces a method of detecting features based on the use of ori-
ented histograms of time. As with the other methods presented in the previous
section, the structure and implementation of this method is designed to be event-
based. Leveraging the success of histograms of orientated gradients (HOG) in
conventional computer vision [66], the same principles are applied to the tempo-
ral information provided by the ATIS camera.

Unlike the traditional applications of histograms of orientations which calcu-
late orientations from image derivatives, these orientations are calculated from
the spatio-temporal gradients derived from the ATIS camera. For each incoming
event, the last spike time is recorded and the spatial neighbourhood around the
current event is used to calculate the gradients used to form the orientations.

Figure 3.5 shows how the last spike times for the current event (shown as a
green circle) are used to construct an image of time around the current pixel. A
threshold is used to prevent events that occurred far in the past from exerting
a strong dominance over the orientations by excluding them from use in further
calculations. A threshold value of 50ms was found to be a good parameter for
the given ATIS hardware used. Additionally, during initialisation, all pixels have
their last spike time set to an arbitrarily high number to indicate that they have
never fired.

The temporal derivatives, dx(x, y) and dy(x, y), were calculated using a 3× 3
Sobel operator, operating over a feature size of 8 × 8 pixels around each event.
The temporal gradient magnitudes m(x, y) and the orientations θ(x, y) were then
calculated from these temporal derivatives using the following equations:
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Figure 3.5: Diagram showing how the spatio-temporal image of time is
created for the 1D case. The ordered list of spike events is retrieved from
the camera (a), which in the case of the ATIS device, contains an additional y-
dimension. The relative time difference in the spike times from the most recent
event to the surrounding events defines the image of time for the arriving event
(b). These relative spike timings are then stored (c) and are used to calculate the
temporal orientations about the event. Only the vertical dimension is shown in
this diagram for the sake of clarity, but when performed on data from the ATIS
camera, horizontal and vertical orientations are considered, yielding a full matrix
of values, rather than a single vector. This is shown in (c) as the greyed boxes.
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m(x, y) =
√
dx(x, y)2 + dy(x, y)2 (3.19)

θ(x, y) = arctan
dy(x, y)

dx(x, y)
(3.20)

Every valid pixel in the neighbourhood produces an orientation and a mag-
nitude, and as no two events can occur at exactly the same time-step1, a small
difference is always present between two events. This always generates an orien-
tation albeit with a small magnitude for pixels that have fired in close proximity.
Although these magnitudes of orientation are not used in generating the his-
togram representation of each feature, they are still calculated and used to reject
weak orientations.

When a neighbouring pixel has not generated an event in a reasonable amount
of time (defined by the threshold mentioned above), the process to calculate the
orientations ignores the value, resulting in the total number of orientations pro-
duced by a feature having an upper bound equal to the size of the neighbourhood
used.

It should also be noted that the chosen method of calculating the orientations
used the arctan function and all the resulting orientations were then shifted into
the range [0, 2π). The result of this process is a set of orientation angles present
in the spatio-temporal neighbourhood around the incoming event.

As orientations are intrinsically angles, and as there is a need to make infer-
ences on the distributions that give rise to them, a special sub-branch of statistics,
known as circular statistics, is required in order to properly draw statistical in-
ferences from the data. Circular statistics are required for two purposes in this
method. The first task is as a test of uniformity in order to reject features arising
from noise, and the second is in the process of detecting and characterising good
features.

It is important to make the distinction between the notion of temporal gra-
dients and spatio-temporal gradients. As time is monotonically increasing, the
temporal gradient for the latest event will always be negative, as every event
prior to it inherently occurred at a previous point in time. For the orienta-
tions discussed in this section, the temporal difference dictates the magnitude of
the orientations, but the spatial alignment of pixels determines the orientation.
Therefore, the polarity of all magnitudes is constant. The polarity depends on
the reference chosen for the temporal values. Referencing all temporal values to

1The ATIS device used in this work applies a time-stamp to each incoming event using an
internal clock which also controls the acquisition system. As a result, two events that occur
close together will be read out sequentially, and will receive different time-stamps. Thus, when
using the full resolution of the timing signal, no two events can occupy the same time-stamp.
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the latest event yields a negative polarity, whilst referencing it to the start of the
timing for the sequence produces a positive polarity. In either event, the polarity
is constant due to the monotonic nature of time.

3.4.1 Introduction to Circular Statistics

The orientations extracted to create the histograms used in this section belong
to a special class of data known as circular or directional data. Circular data
occurs frequently, and extends beyond angles into many other types of periodic
data throughout engineering, and across other such diverse fields as neuroscience
[117], oceanography [118], psychology [119] and even sleep research [120].

All circular data has an underlying periodicity, which can map to angles in the
range of [0◦, 360◦). In the case of angles, which are perhaps the simplest example
of circular data, there is no distinction between 0◦ and 360◦ and all other angles
that are greater than 360◦ or smaller than 0, are simply mapped back into that
range through the following equation:

θ = θk mod 360◦ ∈ [0◦, 360◦) (3.21)

The same occurs when examining other types of circular data, such as days
of the year, in which Day 1 occurs after Day 3651. In a general sense, there is no
concept of high or low values in circular data. There is also no inherent concept of
zero, as the data can be mapped to a unit circle, and the choice of any particular
point of reference is entirely arbitrary.

This complicates the process of using conventional statistical methods to de-
scribe the data or to draw inferences from it. Generally, linear statistics are not
applicable and the notion of the arithmetic mean provides a straightforward ex-
ample of this point. Given a set of angles, such as θ = [15◦, 45◦, 315◦], calculating
the arithmetic mean would yield an angle of θ̄ = 125◦. Figure 3.6a shows these
three angles and the resulting arithmetic mean, and demonstrates how it fails to
capture the true mean direction represented by the angles.

In reality, the arithmetic mean does provide an estimate of the ‘centre’ of the
distribution of the data as it does in linear statistics, but it is heavily biased by
the choice of a zero reference and the conventions of direction and rotation in the
data [122]. Although there may be times when the arithmetic mean of angles is
appropriate, there is a need for a more intuitive means of describing the mean of
a circular data.

A common approach to this problem is to project the angles onto a unit
circle [123] by treating the angles as the orientation component of a set of polar

1Assuming that it is not a leap year. In practise, leap years are often handled by inserting
an artificial day at the end of February. An example and proof of robustness is found in [121].
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Figure 3.6: Diagram showing the differences between the arithmetic and
circular means for three angles 15◦, 45◦ and 315◦. The diagram presented
highlights the difficulty in applying conventional statistical measures to circular
data. Although the calculation of the arithmetic mean shown in (a) is valid, it is
heavily biased by the choice of a zero reference and conventions and rotation in the
data. The resulting value does not capture the true mean direction represented
by the angles. A common solution to this project is to project the angles onto a
unit circle and take the mean angle of the resulting vectors as shown in (b). This
value better represents the concept of a mean direction for circular data.
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coordinates with unit magnitude as follows:

ri =

(
cosθi
sinθi

)
(3.22)

For the sake of clarity, the angles extracted from histograms will be referred
to as orientations instead of angles. Given a set of orientations θ = θ1, θ2...θn, the
above equation transforms these points into unit vectors r = r1, r2...rn. Taking
the average of this vector yields the mean resultant vector r̄:

r̄ =
1

N

n∑
i=1

ri (3.23)

The angle of this vector represents the mean direction for the data. This value
better represents the concept of the mean direction for angular data, and provides
a good analogue for the arithmetic mean. For this reason, it is often referred to
as the circular mean. The following equation provides a method to calculate the
circular mean direction directly from the sample orientations:

θ̄ = arctan(

∑n
j=1 cosθj

n
,

∑n
j=1 sinθj

n
) (3.24)

When applied to the example given above, the circular mean defined in Equa-
tion (3.24) yields θ̄ ≈ 6.21◦. As Figure 3.6 (b) shows, this value better represents
the concept of a mean direction for angular data and it represents the mean
direction about which the given orientations are clustered.

The magnitude of the resulting vector r̄ also plays an important role in circular
statistics, as it provides a measure of the concentration of the angles about the
mean direction. The following formula calculates the resultant vector length ‖R‖
directly from the sample orientations:

‖R‖ =

√
(
∑n

j=1 cos θj)2 + (
∑n

j=1 sin θj)2

n
(3.25)

The circular variance, which describes the concentration about the mean di-
rection, and is defined as follows:

V = 1− ‖R‖ (3.26)

As ‖R‖ is the magnitude of the mean direction, the variance is bound to the
interval [0, 1], and a value close to 0 indicates that the orientations all point in
same direction, and correspondingly, a value close to 1 indicates that the points
are spread evenly about the unit circle. It is important to note that this does not
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necessarily imply that the points are uniformly spread, but rather that they are
not clustered about a single direction.

Armed with descriptive statistics similar to the mean and variance for de-
scribing a sample of circular data, it becomes possible to explore the analogous
distributions used to describe circular data. The most common circular distri-
bution is the von Mises distribution, which closely resembles the Normal distri-
bution. Both are unimodal and symmetrical distributions, and the von Mises
distribution possesses a similar shape to the Normal distribution over the range
of [−180◦, 180◦].

Whereas a normal distribution x can be fully described by x ∼ N(µ, σ) where
µ is the mean and σ is the standard deviation, a von Mises distribution y can be
fully described by y ∼ VM(θ̄, κ), where θ̄ is the mean direction (from Equation
(3.24)) and κ is the concentration parameter.

The probability density function for a von Mises distribution is given by [124]:

p(θ, θ̄, κ) =
1

2πI0(κ)
eκ cos(θ−θ̄) (3.27)

Where I0 is the modified Bessel function of order zero. The subject of using
a Maximum-Likelihood approach to finding the parameters of a von Mises distri-
bution presents a number of complexities, especially involving the estimation of
the concentration parameter κ [125]. Although there exist a number of different
approximations for computing κ, these are often computationally costly. As the
feature detection step runs frequently, a less accurate approximation was chosen
as its simplicity makes it fast to compute. More accurate approximations were
introduced by Banerjee et al. [126] and further refined by Sra [125]. For the pur-
poses of this work, the κ value can be determined from ‖R‖ using the following
approximation [127]:

κ∗ =


2‖R‖+ ‖R‖3 + 5‖R‖5

6
‖R‖ < 0.53

−0.4 + 1.39‖R‖+ 0.43
1−‖R‖ 0.53 ≤ ‖R‖ < 0.85

1
3‖R‖−4‖R‖2+‖R‖3 ‖R‖ ≥ 0.85

(3.28)

This estimate κ∗ requires a correction to remove an inherent bias for samples
containing 15 or fewer orientations as follows [124]:

κ̂ =

{
max(κ∗ − 2

nκ∗
, 0) κ∗ < 2

(n−1)3κ∗

n(n2+1)
κ∗ ≥ 2

(3.29)
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Therefore, for a given set of n orientations, κ can be approximated as follows:

κ ≈

{
κ̂ n ≤ 15

κ∗ n > 15
(3.30)

The von Mises distribution becomes a uniform circular distribution when κ =
0. It is also worth noting that there is also a wrapped Normal distribution, which
is also suitable for circular data, although this method is not commonly used as
it makes drawing inferences more complicated [120].

The von Mises distribution and its derivatives are used throughout this work
as the uniform distribution forms the basis of the circular noise filter presented
in Section 3.4.3, and Section 3.4.4 uses mixture models of von Mises distributions
to select good spatio-temporal features.

3.4.2 Mixture Models of Circular Distributions

Given a set of orientations, it is useful to be able to identify and separate the data
into a set of underlying distributions. In linear statistics, this can be performed
using mixture of models that rely on the Expectation-Maximisation (EM) algo-
rithm. Typically used with Gaussian distributions, these techniques are capable
of iteratively deriving the properties of the underlying distributions for a set of
data. Usually, however, the nature and number of underlying distributions is
required beforehand.

In the context of this work, there arises a need to attempt to find and identify
underlying distributions making up the set of orientations about each incoming
event. Applying a technique similar to Gaussian Mixture Models (GMM) allows
the identification and rejection of unimodal distributions, and furthermore allows
for features exhibiting bimodal distributions to be identified and characterised.

Unfortunately, Gaussian Mixture Models cannot be directly applied to sets
of circular data. Figure 3.7 shows the results of applying a GMM to a bi-modal
distribution of angles. The two distributions shown were generated by creating
two normal distributions of angles over the range [−720◦, 720◦) with random
means and standard deviations. The angles were then mapped back to the range
[0, 360◦) using the periodic nature of circular data shown in Equation (3.21).
The figure shows how the GMM is unable to handle the distribution that wraps
around the mean. The method failed to converge, and was stopped after 1000
iterations.

To alleviate this problem, this work makes use of a mixture model adapted
specifically for circular data, and structured around the von Mises distribution.
Although not as commonly used as Gaussian Mixture Models, there have been
a number of applications of similar principles to circular data. Mixture models

48



3. Event-Based Feature Detection

GMM X1
GMM X2
Real X1
Real X2

GMM X1
GMM X2
Real X1
Real X2

GMM X1
GMM X2
Real X1
Real X2

GMM X1
GMM X2
Real X1
Real X2

Angles (radians)

Circular Mixture Model with k = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angles (radians)
-pi -pi/2 0 pi/2 pi

Gaussian Mixture Model with k = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.20.2

-pi -pi/2 0 pi/2 pi

(a) (b)

Figure 3.7: Comparison of the fits provided by a Gaussian Mixture
Model and a Circular Mixture Model for a bimodal set of orientations
(k = 2). (a) The result of applying a standard Gaussian Mixture Model to cir-
cular data showing how the GMM is unable to handle the circular distribution.
The two underlying distributions used to create the data are shown using the
black dotted lines, and the distributions identified through the GMM algorithm
are shown in red and blue. The GMM failed to converge and was terminated af-
ter 1000 iterations. (b) The results of the Circular Mixture Model applied to the
same data. The algorithm converged after 61 iterations and successfully identified
the underlying distributions.
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using wrapped normal distributions have been implemented by Agiomyrgiannakis
and Stylianou [128, 129] for use in analysing phase data for speech recognition,
whereas Mooney et al. [120] and Banerjee et al. [130] explored the use of mixture
models based on von Mises distributions. The method implemented in this work
is based on the methods outlined in the latter publications.

The circular mixture models make use of the same expectation maximisation
steps as performed in finding standard Gaussian Mixture Models, except that
the underlying distribution fitted is a von Mises distribution, and therefore the
defining characteristics of each distribution change from mean and variance to
mean direction and concentration. Figure 3.7 shows the result of the applying
the circular mixture model to the same distributions as used for the Gaussian
Mixture Model. Unlike the GMM, the circular mixture model was able to fit
both distributions successfully after 61 iterations.

3.4.3 Noise Filtering through Circular Statistics

The statistical properties of circular data allow for an interesting class of filters
that remove noise through examining the nature of the temporal orientations
surrounding the event. These noise filters operate by selectively filtering events
based on the concentration and uniformity of the temporal orientations.

Consider the example provided in Figure 3.8, in which a single noise spike
occurs in a region which has received no other events recently, but has had events
occur within the 50 ms window set by the threshold as shown in (a). Calculating
the orientations surrounding this single spike results in a set of strong temporal
orientations in all the cardinal and inter-cardinal directions around the noise
event (as none of the surrounding pixels have received a spike) as illustrated in
(b). The orientations for the patch around the event form the histogram shown in
(c). The number of bins used in the histogram controls the inaccuracies resulting
from timing inaccuracies and jitter, but the orientations form distinctive peaks
at the cardinal and inter-cardinal angles.

Projecting these angles onto a unit circle, as shown in (d), it becomes clear
that there is no dominant mean direction for this set of angles, resulting in a
mean direction vector with a length close to zero. As shown in Equation (3.26),
this results in a high variance, indicative of a poor fitting mean direction.

Setting a minimum threshold on the magnitude of the mean direction vector,
and filtering out events which produce small resultant vectors produces a quick
method for eliminating stochastic noise events. Additionally, when using large
features, this method also discards any events that have multiple non-overlapping
noise spikes, as these also produce orientations on the cardinal and inter-cardinal
directions and increase only the number of orientations on each direction, instead
of the spread.
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Figure 3.8: Diagram showing how noise filtering is performed using cir-
cular statistics. When a noise spike occurs in region in which no events have
occurred recently (a), it generates strong temporal orientations in all directions
around the event (b). When a histogram is constructed from these events, peaks
form at the cardinal and inter-cardinal directions (c). These orientations are uni-
formly distributed around a circle (d), and therefore can be rejected using a test
for uniformity.

Unfortunately, setting this threshold too high can cause the filter to discard
useful events as well as useful features may also exhibit a non-modal spread and
therefore generate a mean direction vector with a small magnitude. Making use
of a test for uniformity serves to alleviate this problem.

Uniformity in the case of circular statistics refers to the situation in which
probability of any angle is equally likely [131]. The probability density function
for a uniform distribution is simply:

p(a) =
1

360
(3.31)

There exists a range of test for uniformity, and each has its own specific
characteristics and applications. The Rayleigh test [127] tests the magnitude of
the mean direction vector against a suitable value for a uniform distribution, and
is best suited for unimodal data. Rao’s spacing test [132] examines the spacing
between successive samples, with the assumption that the spacing should be 360

N
,

where N is the number of samples.
The Modified Kuiper’s test and the Watson test [133] are two other methods

that test for uniformity against any alternative. Finally, the Omnibus test [134] is
a test that works well for multi-modal distributions, and can operate on as little
as 8 samples. These tests assume as a null hypothesis that the distribution is
uniformly distributed, and generate probabilities for rejecting it. These tests can
filter events by setting a significance level at which to reject sets of orientations
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as being uniformly distributed and therefore likely spurious noise. Implementing
the Rayleigh test has the advantage of directly checking the ‖R‖ length, checking
it against a statistically derived value as opposed to a static threshold. However,
it performs best when the underlying data is unimodal.

The Omnibus testing method also produces good results at rejecting noise
spikes, and places less emphasis on the true nature of the distribution. It is
important to note that all of these tests require at least 8 angles in order to
produce meaningful results. Therefore, any event that generates fewer than 8
orientations is automatically discarded.

These methods provide an advantage of the conventional filtering techniques
for event-based data, in that the statistical approach does not require a scene-
specific threshold. As the magnitude of the orientations is not considered, the
nature of these tests is theoretically capable of displaying invariance to event-rate.

3.4.4 Feature Selection using Mixture Models

As every event generates a set of orientations, it is beneficial to select only events
that represent features encoding relevant and repeatable information. This fea-
ture selection step, and the prior noise filtering step, are important to the system
as they remove spurious sets of orientations. This is of particular importance in
later sections where a temporal downsampling step calculates the average orien-
tation response for each 1 ms time-step, and is sensitive to the number of spurious
events. Features, such as those generated by edges, perform poorly in recognition
as they will match at multiple points along the length of the edge. Detecting and
removing these features can be accomplished using the Circular Mixture Models
(CMM) presented above.

A feature containing an edge will present a unimodal distribution of orienta-
tions, as most of the orientations will be perpendicular to the edge itself. There-
fore, attempting to fit a bi-modal distribution to the data will fail, or will produce
two distributions with mean directions that are close together.

A CMM based on the von Mises Mixture Model technique described in Sec-
tion 3.4.2, runs on each set of orientations and attempts to fit a bi-modal distri-
bution to the data. It produces two sets of parameters (a mean direction θ, and a
concentration parameter κ) for each distribution, and a mixing factor indicating
the proportion of the orientations fitted to each distribution.

Features are discarded if the mixing factor is skewed toward one distribution
(70% or more of the points belonging to one of the distributions) as this is a
strong indication of a unimodal fit. The distance between the two means is also
checked, and features are discarded if the mean directions are not separated by
at least 30◦.
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3.5 Discussion

The feature detection methods presented in this chapter demonstrate two viable
means of detecting features in the event-based vision data from a silicon retina
such as the ATIS camera. These methods operate in an event-based manner, and
highlight a number of the issues surrounding the development of such detectors.
These two methods extend the core principles of widely-used computer vision
techniques such as HOG and SIFT to an event-based paradigm in which the
identification of features occurs in an online manner as data arrives.

The issue of speed and complexity of the algorithms is an important point in
the development of such event-based systems. One of the advantages of event-
based cameras is the high temporal resolution, and the ability to receive events as
they occur, instead of at a fixed frame rate. For real-time operation, this requires
either fast algorithms or ones that allow for a large degree of parallelisation in
order to cope with the rate at which the sensors produce events.

As there is little in the way of existing work in this field, this thesis focuses
more on the concepts of feature detection than on efficient and parallel imple-
mentations. The algorithms presented often favour speed over accuracy (as in the
use of a quick but inaccurate estimation of κ in Section 3.4.2 and in the choice
and implementation of descriptors in Section 3.3.3). The implementation of these
methods can benefit from pipelining techniques, hardware implementations and
algorithmic optimisation, but are presented here in their simplest form as they
constitute the basis of the work presented in the succeeding chapters.
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Chapter 4

Event-Based Object
Classification

4.1 Introduction

Object classification is one of the primary tasks required by most computer vision
systems and is the process of robustly identifying or classifying objects based on
visual characteristics or metrics. In order to be robust, an object classification
algorithm should be able to reliably classify or recognise under a wide range of
affine transformations, photometric changes and cluttered scenes.

This chapter explores a means of performing robust object classification on
event-based data streams and thoroughly examines and characterises the perfor-
mance. This chapter also introduces two new datasets, created from established
computer vision datasets using the ATIS cameras described in Section 2.2.4.
Both the datasets themselves, and the methods introduced are compared to their
counterparts in conventional computer vision in order to provide a deeper under-
standing and means to compare and interpret the results.

This work primarily makes use of a single classifier based on the Synaptic
Kernel Adaptation Method (SKIM). Although it is possible to use other spike-
based learning methods in place of it, the SKIM network provides a number of
important features which make it particularly well suited to the applications used
in this section.

The SKIM method relies upon a pseudo-inverse update step which also under-
pins the OPIUM method for iterative ELM solutions. This allows for the imple-
mentation of parallel and conceptually similar ELM-based classification systems
that operate on the equivalent conventional computer vision datasets, providing
additional means of comparing and contrasting the performance obtained in the
event-based paradigm.
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The SKIM network also does not require training iterations, and produces an
analytical and deterministic solution given the same network configuration. The
SKIM network itself is also capable of acting as a feature detector when applied to
the event-based input and spatial and temporally downsampled representations.

This section focuses primarily on the development and exploration of event-
based visual processing techniques and is not intended to fully explore the realm
of spike-based computation or machine learning. A single class of classification
system was chosen and characterised, and the use of a single and consistent
classification system allows for the drawing of comparisons between the system
and techniques introduced.

Although it is possible that other classification and learning algorithms may
achieve better performance in the classification tasks, this work focuses on the
methodology, algorithms and processing of event-based visual data rather than
on achieving the highest possible accuracy on the available datasets.

The results and discussion presented in this work are intended to provide
validation of the event-based processing paradigm, and serve as a guideline to
the development of future hardware and algorithmic systems.

A common problem with learning and recognition systems is the amount of
time taken to train such networks. Often this problem results from having to sim-
ulate the parallel nature of the system, which reduces the problem to a sequential
state and drastically increases the computational time required. In order to ad-
dress this issue, these algorithms were optimised and adapted for use on parallel
architectures such as computing clusters and GPUs.

The successes of these adaptations have dramatically reduced the time taken
to train each network, and have enabled a far greater range of experiments to be
completed, allowing for a richer and more complete understanding of the field.

4.2 Contributions

This section makes the following contributions to the existing body of knowledge:

• It introduces and explains two new datasets for use in event-based com-
puter vision problems. These datasets are the largest and most consistent
spiking neuromorphic datasets to date, and allow for comparisons between
conventional computer vision and the event-based techniques presented in
this work.

• It derives and demonstrates a mechanism for performing classification on
event-based data for binary and multi-class problems. Using the two new
datasets and a consistent and well-characterised classifier, this section val-

55



4. Event-Based Feature Recognition

idates the information encoded in spatio-temporal patterns and serves to
validate the event-based processing paradigm for visual data.

• It demonstrates and explores methods to accelerate the algorithms under-
lying the learning component and evaluates their practical and theoreti-
cal performances. These include a discussion of different training patterns,
spatio-temporal pattern conversion processes and iterative approaches needed
for handling large datasets.

• It provides an in-depth investigation into the effects of both temporal and
spatial downsampling on the classification accuracies for both event-based
and conventional recognition problems. It also explores the nature of down-
sampling as a form of feature detection.

This section also builds upon and extends the ideas and contributions pre-
sented in previous chapters.

4.3 Spiking Neuromorphic Datasets

As computer vision and machine learning are active and well-established fields of
research, each possesses a number of important datasets, benchmarks and figures
of merit, which serve as a readily accessible and comparative means of presenting
and comparing the performance of algorithms and systems. Benchmarks and
challenges are also important in spurring interest and development, especially in
the field of computer vision.

High quality and widely-used datasets provide a qualitative means of com-
paring and evaluating different algorithms by providing a known and established
problem to provide metrics that are fair, and that exist within an well understood
context.

Importantly, and of particular relevance with regard to event-based vision, the
existence of datasets also provides access to data for researchers who lack access
to proprietary, custom or expensive physical equipment. The existence of high-
quality and reliable datasets thereby serve to extend the range and accessibility
of this research field.

The Neuromorphic Engineering community readily acknowledges the shortage
of good datasets, and can attribute this to the rarity and limited availability of
neuromorphic sensors, the lack of a defined and consistent data format, varying
outputs from device to device, and difficulty in providing comparable metrics.

In considering a dataset, it is important that it be large and present a problem
of sufficient difficulty. The number of training and testing samples is a metric of
relative importance, but the difficulty requirement can be qualified as ensuring
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(a) (b)

Figure 4.1: Examples of the digits in the MNIST Dataset. (a) An example
of the digits within the MNIST dataset showing 40 randomly selected digits from
the training set. (b) The 40 most commonly miscategorised errors from the testing
set.

that the state-of-the-art algorithms are not readily capable of achieving close to
100% accuracy. A good dataset should provide room for improvement over the
current state-of-the-art techniques in order to foster growth and interest in the
area.

This section introduces two new spike-based neuromorphic datasets, created
from existing computer vision datasets that enjoy widespread use and adoption.

4.3.1 MNIST and Caltech101 Datasets

Instead of creating new datasets from scratch, the spike-based datasets were
created from existing computer vision datasets that are among the standard set
of benchmarks used by computer vision systems. The datasets chosen were the
MNIST dataset [135] and the Caltech101 dataset [136].

Although current computer vision algorithms are capable of achieving good
performance against these benchmarks, they were instrumental in the drive to
develop the field, and the hope is that having similar datasets for event-based
paradigms may have a similar effect on the Neuromorphic computation commu-
nity.

In the realm of machine learning, the MNIST dataset has emerged as the de-
facto means of testing and qualifying the performance of a classification system.
This is due, in part, to the small dataset size (in terms of physical storage), the
intuitive nature of the data, and the ease with which it can be accessed and used.

Unfortunately, the MNIST dataset is not a particularly difficult classifica-
tion task, which has resulted in accuracies rates approaching 100%, leading to a
competitive field in which improvements of a fraction of a percent are sought.

The MNIST dataset is actually a subset of the NIST Special Database 19
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Figure 4.2: Examples of some object images from the Caltech101
dataset. The Caltech101 dataset contains 101 different object classes, with each
class having a variable number of images. In addition, the images are of varying
sizes. The five images presented here show an example of the variety in pose,
aspect ratio and framing found in the Caltech101 dataset.

[137], which contains both digits and letters represented as 128 × 128 binary
images. To generate the MNIST dataset, the NIST digits were downsampled to
28 × 28 pixels, with an anti-aliasing step in the downsampling algorithm which
produces grey-scale levels from the original binary information [135]. Examples
of the digits in the MNIST dataset are show in Figure 4.1.

The Caltech 101 dataset provides a far more challenging dataset than MNIST.
It contains images of varying sizes and belonging to 101 object classes, with
an additional background class. Whereas the MNIST dataset contains centred,
scaled and isolated digits for classification, the Caltech101 dataset contains a
far richer set of objects within environments and requires algorithms that are
translation and scale invariant. Figure 4.2 shows examples of the images in the
Caltech101 dataset.

4.3.2 Existing Neuromorphic Datasets

There have been a number of neuromorphic datasets produced over the past five
years, and these can be segmented into two categories; new datasets and converted
datasets. New datasets have been created from scratch, explicitly for testing
a neuromorphic recognition system, whereas converted datasets utilise existing
conventional datasets and reproduce them to form a neuromorphic representation
or output. The new datasets presented in later sections are both of the converted
dataset type.

Linares-Barranco [5] created a novel dataset created by flicking through a
deck of cards and recording the pips on each card with a DVS sensor. The nature
of the data acquisition is particularly well suited to event-based vision sensors,
as it showcases the speed of the devices, and would not easily be matched using
conventional camera equipment. The dataset comprised ten presentations of each
category of pip, resulting in a total of 40 samples.

Orchard et al. [6] produced an original dataset consisting of digits and upper-
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(a) (b)

Figure 4.3: Examples of the configurations used to generate Neuromor-
phic Datasets. (a) Flicking through a deck of cards to generate the pips dataset
[5]. (b) An example of the data captured from the DVS sensor. (c) The rotat-
ing barrel with letters and digits used to generate the 36 character recognition
dataset used by Orchard et al. [6]

case letter and digits (36 in total). To create the data, digits and characters were
printed onto the surface of a cylinder, which was then rotated at 40 rpm and
recorded using a DVS camera. Two recordings were produced for each character.

These datasets tend to contain a small number of training and testing se-
quences, primarily due to the time taken to acquire data, the limited availability
of appropriate hardware, and the prototype-nature of some of the equipment.

Another approach to creating datasets is through simulation of event-based
hardware. Other AER simulation tools have been developed, and some include
the ability to encode 2D image information (or video frames) into an event-
based format. Dominguez-Morales et al. [138] thoroughly explored the conversion
of video frames to spikes on a variety of CPU architectures. The underlying
assumption being that the intensity of the pixel is the information to be encoded
into the synthetic spike output for that pixel. Other efforts, by López-Torres et
al. [139], extended this work to GPUs demonstrating the computational benefits,
but did not attempt any classification tasks.

A notable and relevant example is the work of Carrasco et al. [140], as they
created an AER simulation tool that included the ability to convert 2D images
into events and were able to achieve a recognition accuracy of 91% against the
MNIST dataset.

Finally, the MNIST-DVS dataset [141] is perhaps the most directly compara-
ble dataset as it consists of MNIST digits recorded from a monitor with a DVS
sensor. The images were scaled to three different levels and the images were
moved across the monitor. This resulted in an effect visible in the FFT spec-
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trum resulting from the monitor refresh rate, and serves to highlights the issues
surrounding the use of sensors with high temporal resolution. As the researchers
explored different scales, only a subset (10,000) of the available MNIST sam-
ples were converted, complicating the process of direct comparisons to computer
vision algorithms.

4.3.3 Conversion Methodology

As mentioned above, a conversion approach was taken to create the datasets used
in this work. Both the MNIST and the Caltech101 datasets were converted using
the same process, and under the same conditions. It was decided that capturing
the data using an ATIS camera would be the best method, as the data would then
include noise and artifacts present in a real-world application. No noise filtering
was performed at any stage during the production of the dataset.

The choice of conversion methodology for the datasets is an important con-
sideration as it can impose structure onto the underlying data. The conversion
of existing datasets requires a strategy to project the static images such that the
ATIS camera can detect them. This can be achieved through motion of the cam-
era, by moving the images on a screen or by changing the illumination through
flashing the images on a display.

The conversion approach adopted for the creation of these datasets moved the
camera in a fixed saccade motion, bearing resemblance to the retinal movements
observed in primate and human experiments [142]. This method was chosen over
moving the digit on a screen, primarily as an alternative to the existing MNIST-
DVS dataset which was generated in that manner [143]. Flashing the image
on the screen is another viable option but was not used due to concerns over
maintaining a consistent illumination environment over the course of the data
acquisition.

As these datasets represent the first use of this conversion method, a fixed
saccade pattern was chosen to mitigate any issues relating to the characteristics
of the motors used in the pan/tilt equipment. The fixed saccades do impose a
structure on the output data and this is explored in this work. The use of random
saccades, more closely resembling the random micro-saccades of the eyes, is the
next logical step for future work on these datasets.

In the case of the datasets presented here, recordings were produced by dis-
playing each image on an LCD monitor, and in order to avoid spurious noise
events, the image remained stationary for the entire duration of the recording.
Instead, the camera moved to create events. As the image on the LCD screen is
inherently planar, all points can be considered to have the same depth relative
to the camera. Translating the camera produces an effect that bears little resem-
blance to a similar translation across an actual 3D scene. To mitigate this issue,
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(a) (b)

Figure 4.4: The configuration used to capture the N-MNIST and N-
Caltech101 datasets. (a) The ATIS camera mounted on a custom-built
Pan/Tilt mount. (b) A top-down view of the configuration showing the rela-
tive placement of the camera and the monitor.

pure rotation about the origin of the camera was chosen, as it is not dependent
on scene depth.

After the images were projected onto the LCD screen, a short delay was
inserted in order to prevent any issues relating to transitions between images,
flickering or refresh rates. The camera, an ATIS device as detailed in Section 2.2.4,
was mounted on the pan-tilt platform shown in Figure 4.4, enabling it to move
precisely through two degrees of freedom. The motors and the imaging chip itself
were controlled through a single FPGA, enabling accurate capturing and time-
stamping of both the visual data and the motor commands issued to the pan-tilt
mount.

Figure 4.5 shows the motions of the camera. Inspired by the notion of sac-
cades, the camera trajectory traces an isosceles triangle, which starts at the top-
left of the digit. In the first saccade motion, the camera pans so that its field of
view moves downward and to the right until it reaches a point just beneath the
projected digit and in line with the vertical centre of the digit. The camera then
proceeds from this centreline to the top right point of the digit in an upward and
right motion, forming the second saccade. The third saccade motion translates
solely horizontally until the initial point is reached.

The commands were sent to the motors to initiate each saccade at 100 ms
intervals. The timing of each saccade and the angles through which the camera
moves are given in Table 4.1. In addition, markers were inserted into the event-
stream to signify the start of each of the three movements, allowing accurate
extraction of any of the motions.
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Saccade 1 Saccade 2

Saccade 3

34 pixels

28 pixels
(MNIST digit width)

Figure 4.5: Diagram showing the three saccade-inspired motions across
each digit used in creating the spiking neuromorphic datasets. Each
MNIST digit was sized so that it occupies a 28 × 28 pixel region on the ATIS
sensor, and three saccade motions starting in the top-left and moving in triangular
motion across each digit. Due to the motion, the resulting digits sequences span
a 34 × 34 pixel region to ensure that the full digit remains in view during the
entire saccade motion.

When converting the MNIST digits, the distance between the camera and the
LCD screen was calibrated such that each digit occupied a 28 × 28 pixel region
on the ATIS sensor. In order to accomplish this, the projected image had to be
scaled up to 56× 56 pixels on the LCD. The digits were scaled up using a linear
bitmap scaling.

Each of the training and testing digits were converted to an event-stream using
the above procedure. Although each digit was calibrated such that it occupies
28×28 pixels, the movement of the camera necessitates that the actual size of each
recording be larger so that the entire digit remains in focus for the entire duration
of the motion. Therefore, each digit sequence was centred and cropped 1 to spatial
resolution of 34×34 pixels around its centre. The events were timestamped using
the full resolution of the ATIS camera (1 MHz clock) and no on-board noise
filtering was applied at any point during the acquisition process.

Both the full training set (60,000 samples) and the full testing set (10,000
samples) were converted to an event-based format using the same image index
as used in the MNIST dataset. This not only preserves the testing and training
split, but allows direct comparison of elements to the original MNIST dataset.
As this is a neuromorphic version of the MNIST dataset, it will be referred to as
the N-MNIST dataset.

1These effects are achieved on the event data by truncating the range of the spatial coordi-
nates (centering) and then removing any constant offset in the x and y range (cropping)
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Table 4.1: Saccade motor timings and speeds for the conversion process.
The positions are given in degrees due to the rotational motion of the camera.
Similarly, the speeds quoted are specified in units of degrees per second.

Start End Speed

Start Time x y x y x y

Image Change 0 ms -0.5 0.5 -0.5 0.5 0 0
Wait 0 ms -0.5 0.5 -0.5 0.5 0 0
Saccade 1 100 ms -0.5 0.5 0 -0.5 10 20
Saccade 2 200 ms 0 -0.5 0.5 0.5 10 20
Saccade 3 300 ms 0.5 0.5 -0.5 0.5 20 0

The images in the Caltech101 dataset were processed in a similar manner,
but differed as the image sizes are much larger, are not consistent (and often
have different aspect ratios). To compensate for this, each image was resized to
fit within the width requirements of the ATIS sensor whilst still maintaining the
original aspect ratio. In a similar vein to MNIST, this new event-based dataset
is referred to as the N-Caltech101 dataset.

A more complete discussion of the dataset, the configuration used and the
software procedure used in generating these datasets can be found in [144] and
the associated appendices.

4.3.4 Conclusions

The two neuromorphic datasets presented in this section are used throughout
this work to investigate and characterise the event-based feature detectors and
visual processing techniques introduced in this work. As the two datasets are
derived from existing datasets that enjoy widespread use in both the fields of ma-
chine learning and computer vision, it is possible to draw parallels and contrasts
between the new techniques and similar methods or tasks in those established
fields.

The N-MNIST dataset represents the easier of the two classification tasks and
the large number of training and testing patterns allows for in-depth character-
isation of the techniques presented. The data and nature of the classification
task are also intuitive and the original MNIST dataset benefits from extensive
research and study.

The N-Caltech101 dataset poses a more challenging classification task, and is
used to further explore the manner in which the event-based techniques handle
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complications such as non-uniform image sizes, objects with backgrounds, fewer
training samples and a higher number of object classes. As it also has a counter-
part in conventional computer vision, it allows for similar comparison to existing
techniques such as HMAX [136] and the neuromorphic derivative HFirst [6].

As the focus of this work is the development of feature detection and classi-
fication techniques for event-based visual data, the use of reliable and consistent
datasets is of paramount importance to understanding and comparing the tech-
niques presented. These datasets serve to fill that requirement and when coupled
with a well-characterised classifier, provide the essential basis on which event-
based techniques can be analysed.

4.4 Object Classification using the N-MNIST

Dataset

This section examines a number of different approaches to performing recognition
and classification tasks on the N-MNIST dataset. The approaches primarily
make use of the SKIM algorithm introduced in Section 2.5.3 as the mechanism of
learning and recall, as it is specifically designed to learn spatio-temporal patterns.

This section serves to characterise both the nature and performance of the
SKIM algorithm and includes an investigation into the nature of the distribution
of errors when using SKIM as a classifier. The SKIM classifier serves as the means
of evaluating the performance of the feature detectors and techniques presented in
this thesis, but could be substituted with any other classification system capable
of learning spatio-temporal patterns.

In terms of the MNIST datasets and all its derivatives, recognition and clas-
sification represent the same task. The lack of clutter or background in the
images, and the lack of non-character sequences negate the need for a separate
class recognition task (as required by the nature of the N-Caltech101 dataset pre-
sented in Section 4.5.4). Instead, all experiments treat the problem as a 10-class
recognition task.

The diagram in Figure 4.6 shows the structure of the classification system
used in this section. Each training and testing sequence consists of a stream of
events in an AER format and a label indicating the encoded digit. The first
stage of processing converts this data into a spatio-temporal pattern for use with
the SKIM algorithm. The methodology section below discusses in detail the
conversion of the event stream into a spatio-temporal pattern. When training,
the digit label also requires encoding into a spatio-temporal pattern and the
nature of this encoding and the different training patterns used are presented
and discussed in Section 4.4.5.
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Figure 4.6: Overview of the classification system used for the N-MNIST
classification task. The classification system presented retrieving training and
testing samples from the dataset and encodes them into a spatio-temporal pattern
for use in the SKIM network. The process for encoding the AER data into a
spatiotemporal pattern is described in Section 4.4.1. The label for the dataset is
also encoded using the training methods described in Section 4.4.5. The SKIM
network produces a spatio-temporal pattern as an output, which is used either
for output determination during recall operations or is compared to the training
signal and used to update the SKIM network during training.

The SKIM network itself receives the spatio-temporal input patterns, and a
supervisory signal when training. An error determination step calculates the error
from the supplied training pattern and the output from the SKIM network. The
error signal is then used to perform the update to the SKIM network. The same
output from the SKIM network is also used to determine the final classification
for the sequence, and the nature of the determining the winning class is discussed
in Section 4.4.4.

4.4.1 Classification Methodology

Applying the SKIM algorithm to a classification task with the scale of the N-
MNIST dataset requires a number of modifications to the underlying SKIM algo-
rithm and a complete software framework. The framework needs to manage the
state, implement the neural layers, collate the outputs and manage the training
and testing regime.

Prior works have explored the theoretical performance of SKIM networks using
pre-determined patterns with varying levels of noise and jitter. The authors
applied the technique to the Mus Silica dataset in the original SKIM paper [145]
and then later applied the SKIM to a real-world separation problem [146]. Others
have used the algorithm to determine angle and direction in biological motion
estimation [144], and in gait detection [147].

The application of SKIM to the N-MNIST dataset requires networks with an
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order of magnitude more input neurons and hidden layer neurons than previous
applications. In addition, the majority of the applications to date have formulated
their outputs as binary classification tasks, whereas the N-MNIST is inherently
a 10-class problem.

The training methods used for the prior SKIM implementations have, to date,
created a single pattern consisting of all the training data, accompanied by a
supervisory learning pattern of equal duration. The input pattern is a spatio-
temporal pattern representing spikes arriving at the input nodes of the SKIM
network, and the supervisory pattern contains the desired output spikes from the
output neurons.

When dealing with the N-MNIST dataset, the direct application of the above
method is not feasible. Instead, the system trains each pattern in a stand-alone
fashion, preserving the random weights, configuration of the hidden layer nodes,
inverse correlation matrix and linear output weights between training sequences.
This allows the network to train on any number of training samples as it is no
longer bound by the available memory.

Although the SKIM network handles event-based data, software implemen-
tations usually make use of discretised time steps to simplify processing as the
outputs of the hidden layer nodes must be evaluated continuously1 in order to
calculate the soma potentials on each output neuron, and evaluate whether or
not they output a spike.

If implemented in hardware, it would be possible to design a truly event-based
implementation of SKIM that operates on continuous time. A system of this
nature is of particular interest when combined with the ATIS hardware, which
natively outputs event-based data. In the case of the N-MNIST dataset, the ATIS
camera applies timestamps with a resolution of 1 µs during the encoding of the
pixel data into the AER stream (see Section 2.2.2). Tightly coupling a hardware
implementation of SKIM with the hardware of the ATIS sensor could remove the
need to internally timestamp incoming events, and allow the system to operate
on the spikes as they arrive.

Regarding the internal timestamping, it is possible to reduce the temporal
resolution of each event from the order of microseconds to milliseconds without
a significant loss of events. This is due to the slow movement of the camera
relative to the rate at which events are time-stamped. In addition, the camera
biases were not configured for high-speed acquisition but rather to reduce noise
and maximise the balance between ON and OFF events. This is an important
step as it allows the SKIM algorithm to simulate millisecond time-steps, instead

1It is possible to alter the design of the SKIM network such that the firing of output
neurons can be analytically determined. This can be accomplished by using only decaying
kernel functions in the hidden layer and forcing the linear output weights to be positive.
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Figure 4.7: Timing and Event Raster for a Digit 0 from the NMNIST
Dataset. Each sequence in the training and testing set contains three equal
duration saccades. The plots shown are frame rendered by accumulating events
over a period of 5ms.

of microsecond ones, which dramatically increases the speed of computation.
Each training and testing sequence in the dataset consists of a stream of

AER events and a label indicating the digit class to which it belongs. Figure 4.7
shows an example sequence from the N-MNIST training set, showing the three
distinct saccades. Events were accumulated over 5 ms periods to generate the
frames shown in the figure. These plots represent a raster plot of the raw events
generated in each time-step, without any filtering or overlap between frames.

As mentioned in Section 2.2.3, the AER events generated from the ATIS
camera have the following form:

e = [x, y, t, p]T (4.1)

In which u = (x, y) denotes the spatial location of the pixel generating the
event, t contains the value of the FPGA timer at the moment at which the FPGA
receives the event from the sensor and p ∈ [−1, 1] denotes the polarity, indicating
whether it was an ON event or an OFF event. The SKIM network cannot operate
on the event stream directly, and a conversion to a fully specified spatio-temporal
pattern in which rows ascribe input channels and columns denote time-steps is
necessary. We can denote such a spatio-temporal pattern as I such that I(c, δt)
denotes the dendritic current on channel c at the time step denoted by δt.

The spatial information contained in u = (x, y)T is inherently lost when ap-
plied to the SKIM network as the all-to-all connectivity and their random weights
discard the spatial location of channels. Therefore, any transformation that con-
sistently maps R2 → R is a suitable candidate for the conversion of spatial loca-
tions to input channels for SKIM. This only hold true if there is no interaction
between input channels. Operations such as spatial downsampling can invalidate
this condition depending on the implementation. When downsampling, the order
of channels becomes significant as it dictates to which pixel (and then subsequent
channel) the information from a region of pixels aggregates. All the experiments
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performed on the N-MNIST dataset made use of a simple matrix flattening op-
eration shown in Equation (4.2).

c = (34× b y
β
c) + bx

β
c (4.2)

In the above equation, the constant value β represents the spatial downsam-
pling factor applied to the pattern and bnc operation represents the floor function
applied to n. The downsampling factor operates on both the x and the y coordi-
nates, effectively reducing the number of channels by a factor of β2. The value of
34 derives from the pixel dimensions of the N-MNIST digits (see the discussion
on conversion methodology in Section 4.3.3). Downsampling the temporal in-
formation is far simpler as t is a monotonously increasing single-valued variable,
requiring only a division and flooring operation to quantise it into the appropriate
time step as shown in Equation (4.3).

δt = b t
α
c (4.3)

Therefore, for each incoming event e, the update to the spatio-temporal input
pattern for SKIM is as follows:

I(c, δt) = I(c, δt) + p (4.4)

The above equation demonstrates that the effects of multiple events accumu-
late when mapped to the same channel and time-step, and that their polarity
dictates the nature of their contribution. It is also important to remember that
the value of t is always monotonically increasing, allowing the iterative construc-
tion of the spatio-temporal pattern, and allowing processing to begin for a time
step once the time value for the next event exceeds it.

The output of a SKIM network is a continuous value for each output class
representing the soma potential at the output neuron. In the original SKIM
implementation by Tapson et al. [145], the application of a set threshold to this
value converted the continuous value into a binary spike, allowing the creation
of an output spatio-temporal pattern. The nature of this output spatio-temporal
pattern retains the same temporal resolution, namely the same number of equally
sized time-steps, with the rows changed to represent the output of each output
neuron.

As the training update in a SKIM network requires a measure of error between
the network output and the desired output, it follows that the format for the
learning sequence must adhere to the same format as the network output. We
can therefore define the output pattern O such that O(n, δt) represents the real-
valued potential at output neuron n at time δt. Therefore, for every δt, the input
pattern I contains the instantaneous input values for all c channels, and the
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training pattern O contains all the desired output values for each output neuron
n.

The analysis of the N-MNIST dataset presented in Section 6.5 shows that a
pattern length of 316 ms is sufficient to encode every pattern in both the training
and testing set. Appending an additional 45 ms onto the pattern allows the last
events to have an effect on the learning system, resulting in a total pattern length
of 360 ms. It is within this additional 45 ms that both the training and recall
occur.

4.4.2 Digit Classification using SKIM

This section introduces and explores the initial applications of SKIM to the N-
MNIST dataset, and in a similar manner to the statistical classifiers from the
previous section, attempts to set benchmark accuracies for the dataset. As a re-
sult, the underlying methodology requires the performing of the minimum number
of alterations to the underlying data. In the proceeding experiments, each train-
ing sequence includes all three saccades and the data was not subjected to any
noise filtering. The training used the full spatial resolution, and 1 ms time-steps.

Figure 4.8 shows a plot of the accuracy as function of the number of training
presentations for networks of varying numbers of hidden layer nodes. Each line
represents the results of testing the given configuration against the test dataset
at regular intervals during the training process.

The testing phase occurred separately from the learning process, and the
results were never included in the training or in any update mechanism. The
plot displays only the first 10,000 training samples as the network performance
stabilises and remains constant after that point. Intermediate tests used 1000
testing samples randomly drawn from the total testing sample set, and the final
tests at 10,000 utilised the entire testing set. Both training and testing orders
were always random.

It is interesting to note that a network trained with only 10 hidden layer neu-
rons achieves a performance of approximately 26.36% at 10,000 training samples,
which is almost exactly the performance of 26.52% yielded by the simple event-
based classifier presented in Section 6.5. This suggests that the network requires
only 10 hidden layer neurons to learn and respond to the event lengths.

The figure also demonstrates the quick convergence of the network, with the
accuracy stabilising after fewer than 2000 presentations in almost every case,
and often much earlier. There were no problems resulting from over-fitting, and
the accuracy remained constant through the full 60,0000 training presentations.
This is significant, given the iterative nature of the training process and proves
the viability of using the system in an online manner.

Figure 4.8 demonstrates a selection of the full range of hidden layer sizes tested
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Figure 4.8: Training accuracy over the first 10,000 training samples for
N-MNIST using SKIM for increasing numbers of hidden layer neurons.
Each configuration of hidden layer neurons was trained sequentially through a
randomly shuffled training sequence, and tested against the testing dataset at
increments of 1000 training samples. Each test was performed independently of
the training, and no learning took place during the testing phase. Also shown
on the graph are the accuracies due to chance and the accuracy based solely on
mean number of events. The final results shown on the right represent the full
training accuracy tested against the full 10,000 training samples whilst interme-
diate points on the curve were calculated over a randomly drawn subset of 2000
testing samples.
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for this network configuration, and Table 4.2 presents the full classification results
for larger networks still. The amount of computational power and time required
to complete these tests were responsible for the granularity of 100 neurons in
the range of configurations. The scale of testing performed was made possible
through the use of a computing cluster and the GPU optimisation techniques
outlined in Section 6.5.

Table 4.2: Results for classification of N-MNIST with larger hidden layer
sizes. This table shows results for SKIM networks with large numbers of hidden
layer neurons and trained on the full 60,000 training samples. Due to the time
taken to train these large networks, only a single trial of each was performed.

Hidden Layer Size
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

81.03% 83.44% 85.6% 85.1% 86.6% 86.3% 88.6% 90.22% 91.56% 92.87%

Characterising the relationship between the number of hidden layer neurons
and the overall classification accuracy provides a useful metric for determining
the size of the network required to achieve a specific accuracy and yields insight
into how the learning mechanism scales with respect to network size. Figure 4.9
shows the results of such an analysis for the accuracy achieved after training on
10,000 training samples and tested against the full 10,000 testing set. The graph
shows results for the N-MNIST dataset, and the same analysis for an iteratively
trained ELM network making use of the OPIUM update method and trained using
the same 10,000 subset as the N-MNIST dataset. The MNIST results provide
an interesting comparison as both networks make use of the same underlying
algorithms and operate on the same dataset albeit in different forms.

Figure 4.9 also shows that the classification accuracy of the N-MNIST dataset
is always lower than the accuracy for the MNIST dataset. This occurs as the
MNIST dataset is the source for the N-MNIST dataset and the conversion process
only serves to add noise and artifacts to the data. Therefore, the N-MNIST results
should at best match the MNIST results. The conversion process is also lossy in
that it discards grey-scale information, and this serves to lower the accuracy.

The graphs show the actual classification accuracies as points, and an expo-
nential fit to the data with an accompanying 95% confidence interval. Immedi-
ately apparent from the figure is the similarity between the fits of the MNIST
and N-MNIST datasets. Both have the same shape, and appear to exhibit the
same relationship between hidden layer size and accuracy. The MNIST dataset
produces a more accurate result, but seems to have similar convergence profile to
the N-MNIST dataset.
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Figure 4.9: Accuracy of MNIST and N-MNIST as a function of Hidden
Layer Size. Both MNIST and the N-MNIST datasets were trained and tested
using an increasing number of hidden layer neurons. An ELM classifier was
used to learn the MNIST dataset, whilst SKIM was used to learn the N-MNIST
saccades. The same training and testing order was preserved, and the results
plotted were the results of testing against the entire testing dataset. Both results
show the actual test results, a fitted exponential approximation and the 95%
confidence interval.
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Table 4.3: Accuracy vs. Hidden Layer Size fitting parameters. This table
provides parameters for two different fitted curves to the results for the SKIM
network as a function of hidden layer size presented in Figure 4.9.

Fit Parameters Fit Accuracy

Method a b c d p-value RMSE

Logarithmic: 6.35± 0.58 305.2± 264.7 −2988± 3434 n/a 0.99 1.29
Exponential: 73.99± 1.81 6.8× 10−5 ± 1.9× 10−5 −58.2± 5.68 −0.02± 0.004 0.9849 1.706

The figure shows the exponential fit, and requires two exponential terms and
has the following form:

y = ae(bx) + ce(dx) (4.5)

Table 4.3 provides the full fit coefficients for the N-MNIST dataset and in-
cludes the values required for the 95% confidence interval. Information on the
quality of the fits is also provided. Unfortunately, unlike the range of these func-
tions, the true accuracy of any classification system is inherently asymptotic to a
theoretical maximum accuracy of 100%, and in reality, a value well below that.

These fits are therefore only accurate up to a certain point. The exponential
fit, for example, exceeds 100% after 22,362 hidden layer neurons, forming the
uppermost bound on the accuracy of the prediction. The result is still relevant,
as within the range of validity, using the lower bound of the confidence interval
provides a good estimate of the classification accuracy to expect, and proved
useful in checking and validating the results.

4.4.3 Error Analysis of the SKIM network Result

As the networks used in this section make use of either random weights or random
training orders, it is often important to conduct multiple trials of each experi-
ment to fully characterise the networks, systems and performance. The results
provided in this section are often given as either a mean accuracy, or a mean accu-
racy and standard deviation, as is common practise within the machine learning
community.

However, results presented in such a manner only fully characterise the error
distribution when the errors are normally distributed, and this is often an implied
assumption when stating results in such a fashion. This section seeks to explore
and characterise the nature of the errors arising from a typical SKIM experiment,
and to validate this assumption for a typical SKIM network. All the statistics
reported use either the standard t-test or the paired t-test as appropriate.
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Figure 4.10: Histograms of the distribution of errors and their CDFs
for the Gaussian and Exponential training patterns. The results were
calculated over 51 independent trials of each network. A comparison to the CDF
of a Standard Normal distribution is included, and the p-value for a one-sample
Kolmogorov-Smirnov test provided, demonstrating that both distributions are
normally distributed.

The network chosen to characterise was a standard SKIM implementation
with 1000 hidden layer neurons. A number of sections in this thesis, such as the
downsampling study presented in Section 4.6, make use of this network config-
uration when exploring other aspects of the feature recognition problem. This
network represents a good balance between accuracy and training time, making
it well suited to experiments that require multiple trials.

Testing included the two variations of this network, making use of the Gaus-
sian and Exponential training patterns introduced and discussed in Section 4.4.5
(which includes a discussion and comparison of the training patterns). The char-
acterisation involved 51 complete tests on each network, with only the random
weight matrix and training order varying from trial to trial.

The networks with the Gaussian and Exponential patterns received the same
random weights for each trial, and the Area method of the output determination
methods run on the same network output (see Section 4.4.4 for a discussion on
the output determination methods).

Figure 4.10 shows the distribution of accuracies for the Exponential and Gaus-
sian patterns for the 51 trials. A one-sample Kolmogorov-Smirnov test was used
to test the normality of the distributions [148], and the null hypothesis was re-
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tained for both the Gaussian pattern (p = 0.9347) and the Exponential pattern
(p = 0.9991).

Furthermore, applying the Lilliefor’s composite goodness-of-fit test of com-
posite normality [149] (which itself is a specialised version of the Kolmogorov-
Smirnov test) also retained the null hypothesis that the data is normally dis-
tributed (P > 0.5) for both patterns.

These results show that the output error are normally distributed, and there-
fore are sufficiently represented by the mean and standard deviation of the accu-
racies or error rates.

4.4.4 Output Determination in Multi-Class SKIM Prob-
lems

All prior work with the SKIM algorithm was always limited to training a sin-
gle output neuron and employed a threshold to generate output spikes from the
soma potential of output neurons. If trained with the same random weights and
hidden layer configuration, it is possible to independently train and then combine
multiple output neurons (and their associated thresholds) to implement a multi-
class classifier. As the outputs are already spikes, it is possible to use existing
spike-based techniques such as first-to-spike and a winner-take-all approaches to
selecting an output class. Unfortunately, due to the need for fine-tuning and de-
termining thresholds this approach does not scale well when dealing with datasets
such as N-MNIST, and there exists a need for a more robust and automated means
of output determination.

In practise, multi-class problems constructed from independently trained out-
put neurons suffer from the need for individual and specific thresholds for each
output class, or the use of a global threshold which is often sub-optimal, as the
ranges and characteristics of the output neurons may differ. This introduces
additional parameters into the classification methodology, which is difficult to
empirically determine given the size of the datasets and the time required to
train on them.

In response to this issue, the approaches detailed in this section all serve
to remove the need for fixed thresholds, and replace them with a comparison
between output neurons directly. For this approach to work, the outputs must
therefore be relative in magnitude, which requires the simultaneous training of
all the output classes. Although the OPIUM method underpinning SKIM does
include a normalisation step, the range of the linear weights can vary from class
to class when training individually, and prevents the direct comparison of output
class values. When training all outputs simultaneously with SKIM (underpinned
with OPIUM), the normalisation applies to all output weights, keeping them
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Figure 4.11: Diagram showing the four output determination methods
evaluated for use in multi-class SKIM problems. (a) An example SKIM
network with two simultaneously trained output neurons coding for two classes;
A and B. (b) Example outputs from the two output neurons during the period
in which the training spike occurs. In this example, the training utilised is the
Gaussian training spike shown in (c). Diagrams showing the manner of calculat-
ing the four output selection methods are presented in (d), and include a label
showing the theoretical winning class in each case. Note that for the Weighted
Sum and Weighted Area methods, the training spike is also shown.

relative in magnitude to one another.
This section proposes and investigates four approaches to determining the

output in a multi-class problem using SKIM, primarily applied to the N-MNIST
dataset and also applicable to the multi-class classification problems in the N-
Caltech101 dataset (see the 5-way classification problem and full classification
problem in Section 4.5.5). Each method utilises the real-valued output from each
of the output neurons during the section of the pattern in which the supervisory
learning signal is expected to be present. There is no thresholding, and the
methods operate on the real-valued outputs from the output neurons.

Figure 4.11 demonstrates the four methods used. The first approach is the
Max Method, and simply takes the output class that achieves the maximum value
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during the output period. This maximum does not necessary have to correspond
with the intended location of the maximum in the training signal, but simply
represents the maximum of any output class during the output phase. The second
approach calculates the area under each curve, and selects the output class with
the highest overall area. This is analogous to integrating the incoming values, and
picking the highest value. It is important to note that the output can be either
positive or negative, and any areas arising from portions of the curves below zero
are negative in value and require subtracting from the total positive area.

The third and fourth methods exploits knowledge about the training pattern,
and attempts to weight the outputs accordingly before applying the same tech-
niques used in the first two methods. This has no effect when using a square
training pulse, but has a significant effect when using a Gaussian or exponential
training sequence (as the flat pattern results in a uniform pattern as shown in Fig-
ure 4.13). The third method weights the outputs proportionally to the training
pattern, and then finds the maximum value. This method, dubbed the Weighted
Max method, places emphasis on the portions of the output range where a high
value is expected. The fourth method, referred to as the Weighted Area method,
weights the output values and then calculates the areas under the curve and
selects the highest output.

Figure 4.12 shows a comparison of the four output methods over a 61 trials
of a SKIM network consisting of 1000 hidden layer neurons and trained using a
Gaussian training pattern with a µ of 10 and a σ of 5. The network structure and
training order remained constant between each trial, with only the random input
layer weights differing from trail to trial. Each output determination method ran
on the same output for each trial, and calculated classification accuracy in terms
of percentage of digits correctly identified.

It is immediately and apparently clear from the figure that the Area method
produces the best result overall (p < 0.00). The performance of the other two
methods did not show any statistically dominance at the 5% significance level.

The superior performance of the Area Method over the Weighted Area method
is an interesting result, and shows that the learning mechanism makes use of the
whole training pattern, and not simply the maximum value. As this method con-
sistently produces the best results, all experiments henceforth report this result
unless otherwise specified.

4.4.5 Analysis of Training Patterns for SKIM

In theory, a SKIM network should require only an output spike as a supervisory
training pattern. In reality, a single spike (i.e. a pulse with a duration of a single
time step) does not produce an error signal with enough magnitude or duration
to allow rapid learning. It is possible to train with a short duration pulse, but it
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Figure 4.12: Comparison of the effects of the four different output deter-
mination methods on classification accuracy with a Gaussian training
pattern. The figure shows the distribution of classification accuracies over 61
trials of a SKIM network with 1000 hidden layer neurons. Each network made use
of the same random training order and hidden layer configuration, with only the
random weights varying from trial to trial. The network made use of a Gaussian
training pattern.
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Gaussian Pattern Exponential Pattern Flat Output Pattern

Figure 4.13: Diagram showing different training patterns used to train
the SKIM network. The three training patterns described and tested in Sec-
tion 4.4.5 are shown in this figure. The Flat Output pattern represents the log-
ical extension of a single output spike and includes two sharp discontinuities on
each end. The Gaussian pattern represents the opposite approach and contains
a smooth curve with no discontinuities and peaks in the centre of the pattern.
The Exponential pattern represents a combination of the two approaches, and
contains an initial discontinuity followed by a smooth and gradual decrease.

requires multiple presentations of each digit and does not reliably converge. In
place of a single spike, using a training pattern of a longer duration produces a
better result without the need for multiple presentations of the training sequence.
Having a pattern that spans multiple time-steps also allows the use of different
training patterns, which can have a significant impact on both the training itself
and the most appropriate method of determining the output class.

Figure 4.13 shows three different training patterns that produce good results
with the SKIM network. The flat output pattern is the logical extension of the
single output spike, but has two sharp discontinuities on each end. The Gaus-
sian pattern represents the opposite approach, and exhibits a smooth (although
discretised) curve which peaks during the middle of the output pattern. The
exponential pattern represents the combination of the two approaches, and main-
tains the initial discontinuity but gradually decreases so as to exhibit a smooth
return to zero.

To evaluate the performance of these training patterns, full tests against the
N-MNIST datasets were performed. Each network contained 1000 hidden layer
neurons, and made use of the full training set. Sixty trials of each experiment
were performed, and the average error rate and standard deviation reported.
These two properties are sufficient to characterise the classification accuracy as
this exact configuration exhibits normally distributed output weights, as shown
in Section 4.4.3.

The same random weights and hidden layer alpha functions were maintained
across all trials, with only the training pattern varied across the tests. The
classifiers all achieved accuracies in the range of 77%± 2.2%, which is consistent
with the results expected for a network with 1000 hidden layer neurons (see
Section 4.4.2). The experiments and tests (along with all others in this section)
make use of an output pattern of 10 time-steps in length.
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Figure 4.14: Classification error when using different training patterns
and output determination methods. Sixty trials for each pattern were con-
ducted and the mean training accuracy shown in terms of percentage correctly
identified. It is immediately clear from the figure that the Gaussian training pat-
tern produces the lowest classification accuracy across all output determination
methods. The Flat pattern produces the best results for all methods with the ex-
ception of the Max determination method. In that case, the Exponential pattern
produced the best results.

Figure 4.14 shows the results of the training the three training patterns for
the four output determination methods presented in Section 4.4.4. The graph
shows the mean error rate across all sixty trials for each training pattern. These
results indicate that the Flat training pattern produces the best results in every
case except for the Max determination method, and that the Gaussian method
produces the worst result in every case.

Figure 4.15 presents a further study into the effect of training pattern and
output determination methods. The figure shows the distribution of accuracies
for the exponential and the Gaussian training patterns over sixty independent
trials with a network configuration containing 1000 hidden layer neurons. The
random weights and training order varied between trials, but not between training
methods for each trial. Two output determination methods, the Area method
and the Max method were assessed, and the histograms for each overlaid for both
training patterns.

The histograms show an overall boost in accuracy when using the exponential
method, for both output determination methods. Table 4.4 shows the mean
accuracy and standard deviation resulting from the trial over sixty independent
tests for all three training patterns.

A difference was not observed in the performance of the area method under
different training patterns (p = 0.091), but the performance of the max method
greatly improved (p < 0.00). The standard deviation in the results did not vary
between the two output determination methods, and remained consistent with
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Figure 4.15: Histograms of accuracies showing the comparison between
the Gaussian and Exponential training patterns under the Max and
Area determination methods. The figure shows the histograms of accura-
cies obtained when using the Exponential and Gaussian patterns under the Max
and Area output determination methods. It serves to demonstrate the impor-
tant link between training method and output determination method. It is clear
that the Exponential training method is a better choice when using the Max out-
put determination method. This is of particular importance as the Max output
determination method represents the easiest method to implement in hardware.

Table 4.4: Mean accuracies and standard deviation for the comparison
between the Exponential, Flat and Gaussian training patterns. This
table presents a comparison of the different training patterns under both the
Area and Max output determination methods.

Gaussian Pattern Exponential Pattern Flat Pattern

Area Max Area Max Area Max

Mean 80.62% 79.32% 81.82% 82.73% 83.28% 82.04%
STD 0.42% 0.49% 0.45% 0.40% 0.45% 0.51%
Max 81.42% 80.33% 82.62% 83.67% 84.17% 83.16%
Min 79.41% 77.88% 81.12% 81.82% 82.36% 81.06%
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Training Pattern Recommended Output Method

Gaussian Pattern Area Method
Exponential Pattern Max Method
Flat Pattern Area or Max Method

Table 4.5: Recommended output determination methods for different
training patterns

the results found in Section 4.4.3.
Further investigation into these results shows that the initial discontinuity

present in the flat and exponential patterns is the primary source of the perfor-
mance improvement. The discontinuity produces a large and sudden spike in the
error signal for the update stage. The Gaussian method produces a smooth error
signal without any discontinuities, which has the effect of smoothing away the
maximum peak. For this reason, the Max method is least effective when used
with the Gaussian pattern.

Figure 4.15 also demonstrates an important link between training pattern and
output determination method, and suggests that the choice of training pattern
determines the optimal output determination method. The results show that
the Area method is the best choice when using a Gaussian training pattern, and
the Max method produces the best results when using an exponential training
pattern. This makes sense when considering that the area under the Gaussian
training pattern is larger, and thereby increases the total area under the output
curve during recall. In a similar fashion, the sharp discontinuity, and resulting
spike in the error signal, creates a more pronounced maximum value at the onset
of the output pattern.

The flat output pattern benefits from the same effects from the sharp ini-
tial discontinuity, and also from the sharp negative error in the training signal
resulting from the second discontinuity.

Table 4.5 summarises the recommended output determination method given
the different training patterns. For reference, all experiments make use of the
Gaussian pattern and the Area method unless otherwise specified.

One significant finding arising from the comparison of training patterns and
output determination methods is that the Max method produces the best results
when trained with an exponential pattern. This is important as the Max method
is perhaps the simplest way of determining outputs in a system as it requires only
a comparison operation.
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4.4.6 Conclusions

As the N-MNIST dataset is a new dataset, the results presented in this thesis
form the initial classification benchmarks. In an effort to provide a context in
which to interpret these results, the statistical classifiers detailed in Section 6.5
attempted to set a theoretical lower bound on performance. These measures
are important to understanding the nature of the classification problem, but
additional value is gained from applying existing and state-of-the-art spike-based
classification techniques to the classification problem. The comparison results
presented in this section represent an initial application of existing techniques
but have not benefited from any problem-specific optimisations or tuning beyond
those required to run the systems on the N-MNIST dataset, and it is expected
that better accuracies can be achieved.

As a point of comparison, the HFirst algorithm [6] was applied to the N-
MNIST dataset. HFirst is an implementation of the HMAX algorithm [136] that
makes use of spiking neurons and operates in an event-based manner. Table 4.6
contains the parameters used to configure the HFirst model.

Table 4.6: HFirst parameters for the N-MNIST Dataset. These param-
eters were used to generate the results of the HFirst model applied
to the N-Caltech101 and N-MNIST datasets. These same parameters
were used for both the hard and soft HFirst classifiers.

Layer Vthresh Il/Cm trefr Kernel Size Layer Size

S1 150 25 5 7× 7× 1 34× 34× 12
C1 1 0 5 4× 4× 1 9× 9× 12
S2 150 1 5 9× 9× 12 1× 1× 10
C2 1 0 5 1× 1× 1 1× 1× 10
Unit mV mV/ms ms synapses neurons

Ten S2 layer neurons were trained (one representing each output class) and
the synaptic weights for each were determined by collating and summing the
output spikes from the C1 layer. This process was performed independently for
each digit, and across the whole training set. Two classification methods were
presented in [6]; a hard and a soft classifier. The hard classifier picks the class that
generates the most output spikes during the sequence, whilst the soft classifier
makes use of a calculated percentage probability that represents the percentage
of total output spikes attributed to that class. If an output neuron produces no
output spikes, it is assigned an accuracy of 0%.

The hard classifier produced an accuracy of 71.15%, whilst the soft classifier
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produced a lower accuracy of 58.40%. These results are noticeably lower than
the accuracies achieved on the 36-character recognition task presented in [6].
It should be noted that the digits used in those experiments exhibited far less
variation between digits (see the description of the dataset in Section 4.3, and
the apparatus used to create them in Figure 4.3), which could account for the
lower accuracy. In addition, the optimisations of the HFirst model focused on
detecting small objects, and the method not received the same level of specific
optimisation and tuning yet.

This section provides the first steps toward an implementation of an event-
based classification system. In these examples, the SKIM classifier is used both
as a means of learning the spatio-temporal patterns and as a rudimentary fea-
ture detector. Due to the size and scale of the classification task posed by the
N-MNIST dataset, adaptations to the SKIM method were required and were
extensively characterised.

This is important as it allows for these methods to be applied to the feature
detectors introduced in this work, and also serves to guide future hardware im-
plementations. The finding that the Max output determination method works
best with the Exponential training pattern is of significance, especially if imple-
menting SKIM on existing hardware platforms such as NEF [100] and SpiNNaker
[86].

The focus of this work lies primarily on the feature detectors and processing
techniques required for event-based visual systems. Although a number of existing
spike-based learning techniques are suitable for the classification task, a single
network was chosen for all classification tasks to allow for comparison between
tests and results.

4.5 Object Classification on the N-Caltech101

Dataset

The testing results on the N-MNIST dataset show that the event-based processing
system is well suited to performing a classification task when provided with a
large dataset containing a roughly equal distribution of object classes. The SKIM
algorithm successfully generalised and produced good classification results when
trained on less than 5% of the total available training samples. Although this is
an impressive result, it still requires between 1500 and 2000 training presentations
(approximately 150 to 200 samples from each category) before the classification
accuracy begins to stabilise.

The N-Caltech101 problem poses an interesting challenge for the event-based
processing system. The structure of the dataset provides more categories with
fewer samples, has varying image sizes, and contains images of real-world objects
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Figure 4.16: Example of a sequence from the Airplanes object category
in the N-Caltech101 dataset. The above images represent frames created by
accumulating the events captured over 10 ms time periods. Black pixels represent
ON events generated by the ATIS sensor and white pixels indicate OFF events.
Grey regions indicate that no events were received.

that do not exhibit the same consistency between samples of the same class that
is present with the handwritten digits in the N-MNIST dataset.

The visual classification system, comprising the filter chain and the SKIM
classifier, is not well suited to handling these problems. It does no pre-processing
of the inputs and performs no explicit feature detection or extraction. This section
explores the use of a visual processing system similar to the one presented in the
previous section, and specifically adapted for tackling this dataset and the issues
surrounding the implementation of a larger and more complex classification task.

4.5.1 Classification Methodology

All the work performed on the N-Caltech101 dataset attempted to use as much
of the same processes and methodology as used in the classification of the N-
MNIST dataset detailed in Section 4.4.1. In fact, these experiments utilise the
same processing framework, with only minor modifications made to support the
differing nature of the input data and the larger number of output classes. The
same iterative SKIM method formed the underlying learning component, and
employed the same methods to convert the event streams into spatio-temporal
patterns. The majority of the alterations concern the handling and extraction
of sequences from the dataset, the generation of training and testing splits, and
the type of classification task required. This section proceeds to explore these
changes and considerations.

Figure 4.16 shows an example of a sequence from the Airplanes category of the
N-Caltech101 dataset. It shows the three saccades as rows, with frames generated
over discrete time-steps of 10 ms. The structure of the data, and the encoding as
AER events is identical to the sequences in the N-MNIST dataset, with the only
differences being the range of the x and y addresses.
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Processing the N-Caltech101 dataset poses a different problem to that of the
N-MNIST dataset, and requires special consideration. Whereas the splits between
testing and training data are explicitly defined for the M-NIST dataset, such an
explicit division does not exist for the N-Caltech101 dataset. Complicating the
task further is the varying number of training images in each category, and the
presence of a background class which contains no defined objects. There exist a
number of different training and testing regimes used by other researchers, and
using these methods allows comparison to their results.

The N-Caltech101 dataset lends itself to two separate tasks; an object recog-
nition task and an object classification task. In the object recognition task, the
goal is to discriminate between elements of the class and the background class.
It is inherently a binary problem in which each output class requires independent
testing. The object classification task is the more challenging task, in which the
output needs to be classified as one of the output classes. This section contains
a thorough discussion of the implementation of these two problems.

Common to both problems is an issue arising from training with the full
dataset, as it introduces a bias toward object classes with a higher number of
available sequences. Due to the order of magnitude difference between the lowest
and the highest number of objects per category, this can have a significant impact
on the results. When training a multi-class problem, restricting the number of
training items to that of the smallest category is the most commonly adopted
solution. This dramatically reduces the number of trainable items for most cat-
egories when performing a full 101 class classification for the object recognition
problem.

This then raises the issue of how to select the subsets used for training. A
subset is randomly drawn from each category, and trained in a random order.
Running multiple trials of the same experiment with different random subsets
reduces the effect of any bias from any particular subset. Ten trials of each
experiment were performed for all the experiments listed in this section, unless
otherwise stated, in line with other experiment methodologies that make use of
the Caltech101 dataset. The computational cost of each test became the primary
limiting factor in determining the number of trials to run.

It is also possible to make use of a leave-one-out cross-validation scheme for the
testing of the algorithm, which would maximise the number of available training
samples through testing every combination of subsets. The computational re-
quirements arising from the number of training and testing procedures make this
approach difficult to implement given the size of the SKIM network required.

Whereas the training is inherently limited to a subset of the dataset, the
testing in the object classification task can make use of the full testing set. This is
preferable, as having more available samples for testing yields a better indication
of the performance of the system. The results of the testing, however, require
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special handling due to the differing number of samples in each category.
It is also important to note that the background class should not be included

in the full classification problem. It contains no valid objects, and the training
mechanism in SKIM can produce random and erratic results if trained with it.
Including the background class can have a dramatic effect on the overall accuracy
of the system.

For the object recognition task, which is binary and therefore only considers
the background class and each object class independently, the number of train-
ing samples can be raised to include an equal number of samples from both the
background category and the object category. This increases the number of train-
ing sequences for certain object classes, but the differing number of samples per
category again requires special consideration.

Due to the varying number of images per category, a smaller subset of cat-
egories is often used instead [6]. The subset consists of the five categories con-
taining the largest number of images, and are the Airplanes, Motorbikes, Faces,
Cars and the Background category. All the experiments presented in this section
make use of either this five-way dataset or the full 101-way dataset.

4.5.2 Handling Non-Uniform Inputs

The varying image sizes pose a challenge to the implementation of an event-based
visual processing system that uses a SKIM network to classify the N-Caltech101
dataset. The challenge is primarily a practical one, relating to the mapping
of pixels to SKIM input channels. This problem does not exist when dealing
with the N-MNIST dataset as all the sequences have the same dimensions. The
conversion process outlined in Section 4.3.3, details the steps taken to preserve
this uniformity in the N-MNIST dataset. The choice to maintain aspect ratio
in the images of the Caltech101 dataset makes it impossible to follow the same
process. SKIM requires a fixed number of input channels, and the choice of
mapping strategy can have a dramatic effect on the classification system. This
same limitation is also present when using other classification systems, as the
majority of methods requires an input layer of fixed and known size.

The channel limitation in SKIM is a result of the random weights that connect
to the input layer to the hidden layer. This mapping effectively describes the
receptive field of each hidden layer neuron. In the original SKIM implementation,
this receptive field is a randomly weighted sample of the entire image space,
and needs to remain exactly the same during all phases of training and testing.
With differing image sizes, it becomes difficult to ensure that the mapping of
input channels to input weights remains consistent and logical. Making use of a
feature extraction layer between the input and the SKIM network can alleviate
this problem altogether by producing a new event-stream in feature space rather
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than 2D space.
There are two direct strategies for overcoming the difference in image sizes.

The first method is to simply crop each image to the dimensions of the smallest
image in the dataset. This is by far the simplest strategy to implement, and it has
the added advantage of negating any classifying power that the image size may
convey (see Figure 4). Unfortunately, the image sizes vary from (41× 51) pixels
to (223× 173) pixels, and cropping would thereby discard a significant portion of
most images. Regardless of the chosen strategy, it would be desirable to keep as
much of the information from each image as possible.

The second strategy takes the polar opposite approach and ensures that all
training sequences have the same number of channels as the largest image in
the sequence. This results in the majority of images having a large number
of empty channels, but has the advantage of not discarding any information.
The network does encode the size of the image, both directly through the sharp
contrast edges around the border of the original image, and indirectly through
the ratio of event spikes to total number of pixels. Under this methodology, each
sequence (corresponding to an image in Caltech101) requires centring within a
larger frame of (223×173) pixels, requiring SKIM to have 38, 579 input channels.

Adding additional empty channels to SKIM contributes nothing to the clas-
sifier; neither does it have any negative impact on classification results. Empty
channels produce no activation at any of the hidden layer neurons, and are there-
fore effectively invisible.

One of the interesting characteristics of the SKIM network is that the compu-
tational load does not increase exponentially with respect to the number of input
channels, as it does with the number of hidden layer neurons. Adding hidden
layer neurons requires an extra row and column in the inverse correlation ma-
trix θk, increasing the number of operations needed to perform the dot product
and update by an exponential factor. Increasing the number of input channels,
however, only results in a larger random weights matrix wi,j, also requiring an
additional row and column, but used only in a simple multiplication operation.
However, the reverse effect applies to the testing, where the penalty is higher
for additional input channels, and the number of hidden layer neurons is less
significant as the inverse correlation matrix is neither used, nor updated.

4.5.3 Revising the Binary Classification Problem with SKIM

The original implementation of SKIM primarily tackled binary problems - de-
tecting whether or not a specific spatio-temporal pattern is present in the input
pattern. The implementations used to perform recognition tasks on the N-MNIST
dataset employs SKIM in a slightly different manner, using it as a form of feature
extraction by training it on complex input patterns with a supervisory learn-
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ing signal. The N-MNIST task is a multi-class problem, rather than a binary
one, making the determination of the final output far easier as it becomes a rel-
ative comparison between output neurons as explored in Section 4.4.4, rather
than a binary decision on a single output. The object recognition task with the
N-Caltech101 dataset is inherently a binary problem.

The output of the original SKIM network is a spatio-temporal pattern con-
sisting of output spikes indicating the presence of the trained pattern. To convert
the real-valued and continuous outputs of the hidden layer neurons (multiplied
by the linear output weights) into a spike, the output neuron sums all the out-
puts from the hidden layer neurons and then emits a spike if the value crosses
an empirically determined threshold. This threshold is usually kept constant
throughout the entire training and testing regiment, and allows the adjustment
of the sensitivity of the network.

When training large systems, such as the datasets used in this section, the
process of empirically determining the threshold value becomes problematic, both
computationally and when comparing different runs and trials. This free param-
eter can be removed by recasting the binary problem as a two-class problem, in
which one output neuron codes for the presence of a signal, and the other codes
for the lack of one. The two outputs are simply compared, with an output spike
occurring if the response of the neuron coding for the presence of the pattern is
greater than that of the one coding for the lack of it. In terms of implementation,
both output neurons need only to produce an output after the presentation of
the pattern.

Two strategies are proposed for coding for the lack of an output, and depend
on the nature of the problem. Figure 4.17 shows a graphical representation of
these two methods. The first strategy (shown as Method 1 in Figure 4.17) applies
in situations where there is structure to both sequences in the binary problem.
Comparing two classes from N-Caltech101 dataset is an example of such a situa-
tion, as both object classes contain sequences with common features or structures
for the SKIM algorithm to learn. Under such a strategy, the output neuron cod-
ing for the lack of a signal does not continuously fire, but is only active during
the same phase as the one coding for the presence of one.

The second strategy (shown as Method 2 in Figure 4.17) applies more gener-
ally, and is applicable to situations where it is not guaranteed that both classes
contain data compatible with the learning mechanism employed by SKIM. The
binary object detection problem represents a good example of such a situation,
as there may not be any similarity between the images in the background class.
Under such a system, training an output to represent the lack of an object would
cause the algorithm to seek features where none may exist, and therefore to
become unstable. Training the output with a continuous signal of a lower magni-
tude that the positive threshold produces a superior result. This signal becomes
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Figure 4.17: Illustration of the two methods for performing automated
binary classification using SKIM without the need for explicit thresh-
olding. The two methods show how the binary problem can be recast as a
two-class problem. Two methods are presented, which cater for different types of
problems. Method 1 deals with cases where there are features in both conditions
of the binary problem, and Method 2 handles the case where the one condition
does not necessarily contain any separable information.
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a variable threshold calculated across every time-step of every training pattern.
The choice of training pattern for such a network is an important concern,

as the output neuron coding for the lack of the object is sensitive to the sharp
discontinuities found in the exponential and flat patterns (see Figure 4.13). For
this reason, it is best to use the Gaussian training pattern for output of the output
class coding for the lack of the object.

The secondary signal in the above configuration acts as a dynamic threshold,
calculated from the same signal as the one used for classification. It is a rela-
tive and pattern-specific measure of activity, but one that improves with each
presentation from the dataset.

As the binary task against the N-Caltech101 dataset involves separation from
the background class, only the more general method (Method 2) is applicable.
For this reason, it is the chosen method for all experiments performed in this
section.

4.5.4 Object Recognition with SKIM

Implementing the binary classification problem with the same five classes used
for the kNN approach in Section 6.5 using SKIM did not produce good results.
The tests made use of the same methodology and dataset splits as used with the
kNN classifiers, with equal number of samples drawn from each category and the
background class. The subsets chosen from the category and the base class are
always randomly selected from the full range of sequences available, and the order
in which the training and testing proceeds is also random from trial to trial and
from class to class.

Table 4.7 presents the results of the classification using varying numbers of
hidden layer nodes for the four classes. Note that the comparison is always
made to the background class and each result is the average computed across ten
trials (in accordance with the methodology used in [150]). It is clear from the
results that the classification accuracy is not far from chance (which would be
50%), thereby displaying little predictive power. Increasing the number of hidden
layer neurons to 3000 did serve to increase the performance to levels slightly
above chance, although the increase to 2000 hidden layer neurons paradoxically
produced an overall weaker result across most of the classes.

These results are surprising, given the ability of the kNN classifier to dis-
criminate with a far higher accuracy on the same problem and under the same
conditions. The output of the kNN classifier also appeared more stable, and fluc-
tuated less between trials. This may be due to the aggregating nature of the
statistics used in the kNN classifier, and the difficulty in capturing the same sta-
tistical information given the nature of the SKIM algorithm and the large number
of input channels used. The slight increase that arises from increasing the num-
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Table 4.7: Binary classification results of the N-Caltech101 dataset with
SKIM. The results for the binary classification task were calculated over 15
trials of each experiment and involved the comparison of the four most populated
categories with the background class. As this is a binary classification task, the
accuracy due to chance is 50%.

Class 1000 Neurons 2000 Neurons 5000 Neurons

Airplanes 46.2%± 5.1% 45.1%± 3.0% 58.3%± 5.2%
Cars 43.9%± 4.7% 49.1%± 5.6% 62.3%± 6.6%
Faces 58.4%± 3.4% 51.7%± 1.0% 54.7%± 4.4%
Motorbikes 57.7%± 5.8% 41.9%± 2.8% 52.4%± 5.4%

ber of hidden layer neurons suggests that there may not be enough hidden layer
neurons to adequately separate the classes in a higher dimensional space.

Using SKIM in this manner forces the algorithm to act like a feature extractor,
and given the variability in input composition and size, the number of samples
available for training is perhaps the most likely explanation for the poor perfor-
mance. The largest of the five categories used in the above results contained only
428 sequences for training. Examining the convergence graphs for the N-MNIST
problem shown in Figure 4.8 shows that the networks appear to converge within
the first 2000 training samples for all hidden layer sizes. Unfortunately, the max-
imum available samples in any category falls well below this value, due to the
inherent design of the Caltech101 dataset.

Given that the N-MNIST dataset provides a far easier challenge due to the
consistent image size and the lack of background or clutter in the images, it
is likely that a SKIM network trained on more complicated data, such as the
sequences in the N-Caltech101 dataset, will require a higher number of training
samples before the accuracy will converge. It is also likely that the equations for
the number of hidden layer nodes will also change, primarily due to the increased
number of input channels.

4.5.5 5-Way Object Classification with SKIM

The object classification task on the N-Caltech101 dataset is a difficult problem.
Implementing such a task with a SKIM network presents additional challenges
due to the immense size of the problem, the data and the inputs. The size of the
problem also demands significant computational power, and a full classification
result can take in excess of 24 hours to complete, even with all the optimisations
outlined in Section 6.5. One of the major contributing factors is the number of
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input channels required to cater for patterns in the N-Caltech101 dataset. As
discussed in Section 4.5.2, the irregular sized images in the original Caltech101
dataset require 38,579 input channels in order to fully cater for all image sizes.
Compared to the 1,156 required to support the 34×34 patterns in the N-MNIST
dataset, this is an enormous increase which presents a difficult problem for op-
timisation as these input channels need interact with a similarly large matrix of
random weights. The essence of this operation is a large multiplication requiring
either sequential execution on the CPU, or to incur the penalties involved with
transferring the entire input pattern vector to the GPU for parallel execution.

There is also a ten-fold increase in output classes (101 for N-Caltech101 as
opposed to 10 for N-MNIST), which increases the complexity and computation
cost of the update process required during training. The impact of increasing the
number of output classes is less significant than it may appear, as it does not
affect the size of the inverse correlation matrix θk (defined solely by the number
of hidden layer neurons), and the update involving the most computationally in-
tensive operation in the algorithm (consuming approximately 78% of processing
time during training). Therefore, the number of output classes is not the factor
that contributes to the slower execution time and even the smaller 5-way clas-
sification problem suffers from the same training speeds per training sequence,
albeit with far fewer training elements available for training.

The 5-way classification problem provided the initial means for evaluating
the performance of SKIM against the N-Caltech101 dataset. The experiment
followed the structure of the initial 5-way classification tasks performed using the
kNN classifiers in Section 6.5. The testing regiment used the same classes as the
previous experiment, but trained in a different random order as there is no explicit
training order in the kNN classifiers. The overall accuracies shown represent the
averaged accuracy over ten trials of each experiment, but the confusion matrices
displayed show only the results of the last trial.

Figure 4.18 shows the confusion matrices and accuracies for the 5-way clas-
sification problem performed with 1000 and 5000 hidden layer neurons. It is
important to note the inclusion of the background class in these results, despite
the fact that training an output neuron for the background class with SKIM can
become unstable (see the discussion of training for non-features in Section 4.5.3).
The inclusion of the background class is solely to provide consistency with the
kNN classifier methodology (see Appendix A) and therefore allow for the com-
parison of the results.

The networks achieved a performance of 48.26% for the 1000 hidden layer
neuron configuration, and 59.66% for the 5000 hidden layer neuron configuration
across the ten trials performed. The confusion matrices show that the increase in
hidden layer neurons resulted in a more even spread of errors across the classes.
The confusion matrix from the 1000 hidden layer neuron configuration shows a
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Figure 4.18: Results and confusion matrices for the 5-way classifica-
tion performed using SKIM networks of 1000 and 5000 hidden layer
neurons. The confusion matrices for the 5-way N-Caltech101 classification task
demonstrate the effect of hidden layer size on classification accuracy. It is impor-
tant to note that the inclusion of the background class can cause instability in
the SKIM network due to the lack of consistent features, and was only included
to allow for comparison with the kNN classifiers explored in the Appendices.

bias toward the Airplanes and Background classes.
Increasing the number of hidden layer neurons improved the results slightly,

but also changed the distribution of errors. The network no longer favoured two
classes, but rather spread the results more evenly, achieving a more balanced
accuracy among the classes. The large increase in network size only produced a
small gain in accuracy, although given the nature of the problem and the lack of
suitability of the SKIM algorithm, it is still an interesting result.

In comparison the results achieved with the statistical classifiers presented in
Section 6.5, the SKIM results beat all but the classifier based on the Standard
Deviation of the y addresses, which achieved an accuracy of 64.82% on the same
task. For purposes of comparison, the classifiers based on the x and y sizes
(the performance of which exceeded that of all the others) were not included
as the pre-processing performed on each image seeks to negate that classification
advantage due to image size. As spatial information is discarded in the conversion
from event streams to input channels, it is possible that the information encoded
in the distribution of pixels in the Y-axis are no longer available to the SKIM
classifier.

To further investigate the performance, the background class was removed
from the classification problem. Figure 4.19 shows the confusion matrices and
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Figure 4.19: Classification results and confusion matrices for the 4-way
classification problem with SKIM. The confusion matrices presented here
show the effect of the hidden layer size on the 4-way classification task. In this
case, the background class was removed, resulting in an increase in classification
accuracy. Although the number of classes decreased, the classification accuracy
of the 1000 hidden layer neuron configuration in the 4-way task exceeded the
50.87% accuracy achieved using 5000 hidden layer neurons in the 5-way task.

accuracies for three SKIM networks, with 1000, 5000 and 10,000 hidden layer
neurons respectively. Results for a range of different hidden layer sizes are also
given in Table 4.8. The accuracy improved as the number of hidden layer neurons
increased, achieving an accuracy of 65.73% when trained with 10,000 hidden layer
neurons. Computational and memory limits prevented further experimentation.

Table 4.8: Results of the 4-way classification of the N-Caltech101
Dataset with SKIM. The results of the 4-way classification task (Airplanes,
Cars, Faces and Motorcycles) are presented along with the standard deviation
across 15 trials of each classification task.

Hidden Layer Size
1000 2000 3000 4000 5000 6000 7000 10000

Mean 58.87% 62.50% 58.07% 57.66% 65.32% 62.10% 57.66% 65.73%
STD 3.22% 4.78% 4.12% 2.03% 4.44% 5.01% 3.32% 1.89%

The 4-way classification task produced better results than the 5-way example,
at both hidden layer sizes. Figure 4.20 shows the accuracies for each class in both
the 4-class and 5-class problems for a network consisting of 5000 hidden layer
neurons. The 4-class classifier is superior in three out of the four classes, and by
a wide margin in the case of the Airplane and Motorbike classes.

Although the 4-way classification problem is essentially a subset of the 5-way
classification task, the addition of the output neuron coding for the background
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Figure 4.20: Comparison per class of the results from the 4-way and
the 5-way classification problems. This comparison demonstrates how the
inclusion of an additional class can impact the accuracy of a classification network.
Although the 4-way classification task is a subset of the 5-way classification task,
it is clear from the above figure that the 4-class classification system produces
superior classification results in three out of the four classes. The same number
of training samples was used per category to generate these results (57 samples).

class impacts the accuracy in two ways. Firstly, the addition of another class
affects the output determination aspect of the problem, allowing for potential
mis-classifications. This also affects the accuracy due to chance, which increases
from 20% in the 5-way problem, to 25% in the 4-way version.

A second manner by which the inclusion of an addition class can affect accu-
racy is through alterations to the training regiments, as it needs to include the
additional image sequences for the additional class. As all the output neurons
require training simultaneously, when one class is receiving a learning signal, the
other classes receive a suppressing signal to prevent their firing. These two factors
are responsible for the difference in performance shown in Figure 4.20.

4.5.6 101-Way Object Classification with SKIM

Applying the same classification methodology to the full classification problem
yielded the results shown in Table 4.9. Although these results represent low
accuracies, they remain well above chance (which is less than 1% accuracy) and
show an increase with the number of hidden layer neurons. These results show
promise given that the original HMAX algorithm achieved an accuracy of 44.6%±
1.14% [136] and a similar performance of 47.2% ± 1.0% was achieved with the
FPGA version of HMAX presented in [150]. Given that the design of the HMAX
algorithm focused on object recognition, the performance of the SKIM algorithm
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Table 4.9: Results of the full 101-way classification of the N-Caltech101
Dataset with SKIM. Note that due to the size of these datasets and the com-
putation involved, only a single run of these experiments were performed.

Hidden Layer Size
100 1000 2000 3000 4000 5000 10000

3.47% 7.43% 8.60% 8.98% 9.65% 9.65% 11.14%

on this task - with no explicit feature detection - is remarkable.
Figure 4.21 shows the confusion matrix for the full 101-class recognition task.

The network utilised 10,000 hidden layer neurons, and performed no spatial or
temporal downsampling. The N-Caltech101 dataset represents the first encoding
of the Caltech101 images into an event-based framework, and this work forms the
basis of a benchmark with which to compare future results.

The results shown in Table 4.9 show that the accuracy increases with the
size of the hidden layer. Unfortunately, networks with more than 10,000 hidden
layer neurons become too memory-intensive for simulation using current hardware
and limits further exploration in that direction. Instead, there are other areas
in which to improve the results. Spatial and temporal downsampling may yield
better accuracies, and placing a dedicated feature detection layer before the input
layer will allow the SKIM network to operate in a much smaller feature space,
than the spatial dimensions in which the above tests operate.

4.5.7 Conclusions

This section demonstrates the application of the event-based visual processing
system to the N-Caltech101 dataset. Building on the system presented in Sec-
tion 4.4 for use on the N-MNIST dataset, this section presents the adaptations
and modifications necessary to apply the filtering and classification system to the
N-Caltech101 dataset.

Although the HFirst model was successfully applied to the N-MNIST dataset,
the large image sizes prevented the use of the same implementation on the N-
Caltech101 database. The work presented in this section forms the current state-
of-the-art benchmarking result for the N-Caltech101 dataset, as presented in [144].

When compared to the results of the full 101-way classification performed
using the statistics-based kNN classifiers presented in Section 6.5, these results
demonstrate that the network is capable of learning and performing classification
on more than just the statistical properties of the sequences. Even the results with
only 100 neurons achieved an accuracy of 3.47%, which exceeds the performance
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Figure 4.21: Confusion matrix for the 101-way object classification task
using SKIM with 10000 hidden layer neurons. The network achieved an
accuracy of 11.14% accuracy, and trained with 15 randomly selected samples from
each category.
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of all but one of the statistical classifiers. The only statistical classifier to produce
a higher accuracy is the y size classifier, which achieved 4.32%, but makes use of
spatial information that is lost during the conversion to spatio-temporal patterns.

The use of a similar SKIM network to the ones used on the N-MNIST dataset
allow for an examination of how the visual processing system handles the more
challenging classification task posed by the N-Caltech101 dataset. This section
presents a technique for handling non-uniform image sizes which is applicable to
any spatio-temporal classification system requiring a fixed or known number of
input channels.

It is clear from the results that the proposed visual processing system is ca-
pable of achieving accuracies above both chance and the statistical classifiers for
the N-Caltech101 dataset. The N-Caltech101 dataset was created specifically to
test object recognition using only a few samples for each category, and that the
systems presented in this section are not optimised for such configurations.

4.6 Spatial and Temporal Downsampling in Event-

Based Visual Tasks

This section explores the effects of performing downsampling operations on the
input patterns prior to learning them with the event-based visual processing sys-
tem presented in the previous sections. It discusses the means and effects of
performing downsampling on the input data for the N-MNIST dataset, and per-
forms similar operations on the MNIST dataset as an analogue. In addition,
this section introduces a new dataset based on a rudimentary method of convert-
ing the MNIST dataset to a spike-based representation, and uses this to further
explore the nature of downsampling with the SKIM algorithm.

This section also investigates the nature of downsampling as a method of fea-
ture detection for event-based data. The action of downsampling, both spatially
and temporally, serves to aggregate information before it is presented to the clas-
sification system. As with the previous sections, the SKIM classifier is used in
order to allow comparisons with other results obtained in this thesis.

4.6.1 The SpikingMNIST Dataset

The N-MNIST dataset represents a conversion of the original MNIST dataset
into spikes through the use of a physical camera. This process introduces noise
through stochastic noise events, latency in the AER arbiter and through me-
chanical motion. The creation of the SpikingMNIST dataset intends to provide
an alternative means of converting the MNIST digits into a spatio-temporal for-
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Figure 4.22: Illustration of the encoding of intensity to delays used in
creating the SpikingMNIST dataset. Each pixel in the image is assigned
to a separate input channel and the intensity encoded using the mechanism il-
lustrated above. For each pixel, a spike is placed in its respective channel at a
time proportional to the grey-scale intensity of the pixel. Thus, the darker the
pixel, the later in the channel the spike will occur. As the input images in the
MNIST dataset use a single unsigned byte to encode intensity, the pattern length
is limited to 255 time-steps.

mat through a software process, thereby allowing for total control over the entire
conversion process.

A variety of techniques exist for the encoding of real-valued inputs into spike
trains or spatio-temporal patterns. The purpose of the SpikingMNIST dataset is
to make use of the most direct means of encoding the MNIST digits into spikes,
thereby introducing as little external noise into the system as possible. The
conversion makes use of a simple, deterministic and straightforward encoding
scheme over more realistic techniques such as probabilistic encoding and rate-
based encoding.

The SpikingMNIST dataset converts the MNIST digits to spikes by assigning
each pixel to an input channel and placing a spike in that channel at a time
proportional to the grey-scale intensity of the pixel in the image. Figure 4.22
provides an example of this intensity-to-delay conversion process. This results
in a sparse input pattern, as the original MNIST digits contain a number of
empty pixels, which in turn results in spikes occurring in the first time-step of
the pattern. It is important to include the spikes corresponding to an empty
pixel, as the lack of a grey-scale value is information relevant to the classification
of the digit. Leaving the spike out altogether results in an input channel with
no spikes at all, which has no effect on the SKIM network. These empty input
channels can be combined into a single channel, as having multiple identical
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channels contributes no new information for the system and has no effect when
using randomised input weights with all-to-all connectivity.

The original MNIST digits are (28×28) pixels in size, with each pixel contain-
ing a grey-scale value in the range [0, 255]. Encoding the intensity as time directly
results in a pattern of length 255 time steps (excluding the output pattern), and
784 input channels 1. The units of the time-steps remain entirely arbitrary, but
choosing millisecond resolution makes them consistent with the N-MNIST dataset
sequences.

In terms of implementation, the SpikingMNIST dataset converts the MNIST
data into a stream of AER events that are directly compatible with the processing
system used for the N-MNIST dataset. To ensure that the resulting dataset
is directly compatible with the N-MNIST processing chain, the SpikingMNIST
sequences make use of a spatial resolution of 34× 34 pixels instead of the 28× 28
from MNIST. The digits are centred in this larger spatial window. The conversion
process encodes the images as spatio-temporal sequences but does not simulate
the motion of the saccades used to create the N-MNIST dataset. The encoding as
AER events allows for the same filtering chain to be used and the same methods
for conversion into a spatio-temporal pattern that is compatible with the SKIM
network.

4.6.2 Downsampling Methodologies

This section investigates two forms of downsampling, temporal downsampling
and spatial downsampling, and considers the effects of downsampling on three
different datasets which all represent the MNIST digits in varying forms. Al-
though the application of these methods differ slightly in implementation, the
overall structure of the three experiments remains the same.

Each experiment sweeps across a range of spatial and temporal downsampling
parameters for each dataset. The relevant section for each dataset discusses the
nuances and limitations placed on the downsampling operations. One common
facet of these imitations is that these experiments only use integer steps when
sweeping parameters and additionally attempt to remain symmetrical wherever
possible.

The datasets all contain the full 60,000 training samples and each individual
experiment trained on the full complement of samples. In line with the previous
examples, each experiment used a random training order and random hidden
layer weights. Each dataset also contains the full testing set, and each experiment
tested all 10,000 sequences in a random order to generate the accuracies presented

1The 34 × 34 pixel sizes in the N-MNIST dataset arise from the need to leave space to
accommodate for the motion of the 28× 28 pixel digits. See Section 4.3.3 for more information
on the conversion process for N-MNIST.
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in the following sections. The testing set formed no part of the training and served
only as a means to evaluate and report performance.

The number of hidden layer neurons required a constant value for all tests,
as computation costs made it impractical to consider as a parameter over which
to sweep. Every network in this section made use of 1000 hidden layer neurons,
regardless of whether the underlying learning mechanism was SKIM or ELM.
This value represents a balance between computational time and accuracy, and
benefited from a thorough exploration in Section 4.4.3, which showed that the
statistical distribution of the errors were normal and benefited from a standard
deviation of σ < 0.5% with respect to classification accuracy.

Due to the number of tests required to fully explore the effects of downsam-
pling, it was not possible to run multiple trials of each experiment, and only a
single trial of each configuration was performed. As the nature of the distribu-
tions of errors has been explored, and as all tests are entirely independent of one
another, the overall trend relating to downsampling can be observed whereas the
importance of any single result is less significant.

It is likely that networks implementing larger hidden layer sizes will achieve
better accuracies, in a similar fashion to N-MNIST.

4.6.3 Downsampling on the N-MNIST Dataset

The advantages of downsampling on the N-MNIST dataset are numerous. Firstly,
it paradoxically produces an increase in accuracy for the networks of the same
hidden layer size. It also requires either fewer time-steps or input channels, both
which reduce computation time and similarly would reduce resource requirements
if implemented in hardware. The act of downsampling inherently reduces the
size of the input data, requiring less data to transmit. However, the event-based
nature of the system retains all the benefits of ATIS camera, especially the scene-
dependent data rate.

For the N-MNIST dataset, the downsampling occurs during the conversion
of event-based data (the AER stream) to the spatio-temporal data provided to
the input layer of the SKIM network, and is therefore an AER filter. The down-
sampling operates as an intermediate step, allowing it to generalise and operate
on any 2D event-based information. As Figure 4.23 shows, the SpikingMNIST
method takes advantage of this property by generating new event-based data
from the MNIST digits and then passing it through the same intermediate layer
as used for the N-MNIST data.

The downsampling operates on the events received in each training and testing
sequence and adjusts these values accordingly, before converting the event-based
data into a spatio-temporal pattern. This operation is just an AER transform
operating on events, and allows for a theoretical hardware or straightforward
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Figure 4.23: Diagram of the structure and function of the AER-based
downsampling filters Both downsampling filters represent AER transforma-
tions and operate on AER data and produce output in the AER format. The
spatial downsampling filter reduces the spatial resolution of the input data by
a fixed downsampling factor, resulting in an output stream that maintains the
temporal resolution of the input. The temporal downsampling filter reduces the
temporal resolution of the input stream, leaving the spatial resolution unchanged.
These filters can be cascaded to provide both spatial and temporal downsampling.

FPGA implementation. The spatial downsampling affects the mapping from x
and y addresses to input channels, and the temporal downsampling alters the
resolution and number of time-steps in the pattern.

The potential to implement in hardware, arising from using an AER filter
to perform the downsampling, allows for on-board processing within the ATIS
camera or acquisition device. This would have the added advantage of reducing
the data rate from the camera directly.

The conversion process from events to spatio-temporal patterns discussed in
Section 4.4.1 includes a discussion of the process for performing spatial and tem-
poral downsampling, with the equation for spatial downsampling given in Equa-
tion 4.2 and the temporal downsampling provided in Equation 4.3.

The information contained within each event is integer in nature. The time-
steps possess microsecond resolution encoded with a 32-bit integer value, the x
and y pixel addresses are integers within the range of the camera frame and the
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Table 4.10: Downsampling factors and the resulting pattern sizes. The
table shows the resulting sequence sizes based on the spatial downsampling factor
applied. Note that the sizes of the MNIST dataset are smaller as each original
image sequence is 28×28 as opposed to the 34×34 resulting from the conversion
process described in Section 4.3.3.

Spatial Downsampling Factor

Method 1 2 3 4 5 6 7 8

N-MNIST 34× 34 17× 17 12× 12 9× 9 7× 7 6× 6 5× 5 4× 4
Spiking MNIST 34× 34 17× 17 12× 12 9× 9 7× 7 6× 6 5× 5 4× 4
MNIST 28× 28 14× 14 10× 10 7× 7 6× 6 5× 5 4× 4 3× 3

polarity field of the event contains only a Boolean value indicating the event
type1. As the output of this downsampling AER filter must conform to the same
conventions as the input (allowing integration at any point in a filtering chain),
the output events must contain only integer values.

The range of permissible downsampling factors is therefore limited to integer
values. Furthermore, as discussed in the methodology in Section 4.6.2, the two
spatial dimensions are downsampled by the same factor as to maintain the original
aspect ratio. Temporal downsampling is also limited to integer downsampling
values, and a flooring operation handles any fractional time-steps. Table 4.10
shows the spatial downsampling factors and the resulting pattern sizes. For the
purposes of these experiments, these map directly to input channels. From the
table, it can be seen that the smallest networks resulted in only 16 channels (9
for MNIST), and further downsampling was not possible.

The choice of a 1 ms resolution for the network allows for the interpretation of
the temporal downsampling factor as the time resolution for the system. There-
fore, a temporal downsampling factor of 5 results in a network that makes use of
5 ms time-steps instead of 1 ms. It is important to note that events mapped to
the same time-step accumulate, as discussed in Section 4.4.1.

The parameters used for the downsampling also affect some parameters within
the SKIM network. The bulk of these concern the duration of the pattern, and
are simply scaled down by the same temporal factor. The maximum delays of the
alpha functions used for the hidden layer networks require scaling by the same
factor to ensure that the full range of the alpha functions fall within the duration
of the pattern. The duration of the output pattern, and the shape of the training

1The polarity field possesses the ability to confer other information, such as the orientation
of a filter, and therefore is usually stored as a full byte. Regardless of the mechanism conveyed
through the polarity field, it still remains integer in principle
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pattern remains fixed for all experiments.
Table 4.11 presents the results of a full downsampling sweep for the N-MNIST

dataset. The training used a Gaussian training pattern and the Area output
determination method (See Section 4.4.5 and Section 4.4.4 respectively). The
figure demonstrates that downsampling serves only to improve the results, with
the lowest accuracy of 80.04% achieved with no spatial or temporal downsampling.
In fact, this result is similar to that achieved under maximum downsampling,
achieved with a pattern of 4× 4 in size and under 40 ms in length.

Table 4.11: Results from spatial and temporal downsampling of the N-
MNIST dataset.

1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms

34× 34 80.04% 84.04% 84.23% 85.18% 85.06% 85.04% 85.33% 85.05%
17× 17 82.94% 85.77% 86.18% 85.88% 86.70% 87.11% 87.52% 87.08%
12× 12 85.43% 87.00% 87.43% 87.89% 88.56% 88.14% 88.26% 88.14%

9× 9 87.33% 88.09% 88.68% 89.09% 89.11% 89.08% 89.38% 89.00%
7× 7 88.64% 89.47% 88.59% 88.35% 87.93% 87.50% 87.28% 86.70%
6× 6 87.93% 89.03% 88.14% 87.63% 86.23% 86.28% 84.60% 84.76%
5× 5 87.45% 87.00% 87.03% 85.36% 84.82% 83.95% 83.05% 82.62%
4× 4 85.71% 86.78% 84.99% 84.21% 82.51% 81.95% 81.08% 80.73%

The mid-range values for the spatial and temporal downsampling factors pro-
duced the best overall results, both individually and when used together. A
pattern of 7 × 7 with a temporal resolution of 2 ms achieved the best overall
accuracy of 89.47%. The distribution of accuracies shows that downsampling
provides an advantage up until the point where the loss of information overcomes
the encoding efficiency of the network, and the accuracies decrease back to the
original accuracy under no downsampling.

These results are interesting, as the chosen spatial and temporal resolutions
are based on logical extensions from the parameters of the camera. The number
of input channels is derived directly from the number of pixels, and the temporal
resolution is set by the on-chip acquisition counter (1 MHz). These results show
that this encoding is not optimal for the N-MNIST dataset, as there is no ap-
parent information loss under downsampling. The full resolution patterns must
contain at least the same amount of information as the downsampled variants,
indicating that there exists an optimal level of spatio-temporal density for the
SKIM network.
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4.6.4 Downsampling on the SpikingMNIST Dataset

The SpikingMNIST dataset is intended to examine the performance of the AER
downsampling filter on an artificial spike pattern that is free of noise and is
therefore a clean encoding of the information into a format similar to that of the
N-MNIST dataset. The conversion from MNIST data into AER events is detailed
in Section 4.6.1.

The method of temporal downsampling for the SpikingMNIST datset is iden-
tical to that used for the N-MNIST dataset, and operates using the same linear
scaling as discussed in Section 4.4.1. Spatial downsampling requires a different
approach, and is not performed on the spatio-temporal pattern but rather on
the original input MNIST digit. In the N-MNIST dataset, reducing the range
of the x and y pixel addresses in the event stream performs the spatial scaling,
but has no analogue in terms of the static MNIST images. Instead, resizing the
images using a bi-cubic filter performs the conversion to a lower resolution, which
is then encoded in the same manner as before. This results in an event stream
with a smaller x and y range, and one that is comparable in nature to that of the
spatially downsampled N-MNIST sequences.

Table 4.12: Results from the spatial and temporal downsampling of the
SpikingMNIST dataset.

1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms

34× 34 46.25% 59.27% 61.80% 64.62% 67.34% 71.43% 74.01% 74.81%
17× 17 47.00% 79.88% 83.24% 83.11% 82.92% 83.92% 83.07% 82.75%
12× 12 44.03% 81.84% 84.40% 86.17% 86.62% 86.48% 86.12% 86.04%

9× 9 35.59% 80.37% 83.46% 85.56% 86.79% 86.89% 86.97% 87.21%
7× 7 35.15% 78.11% 82.82% 84.24% 85.34% 85.99% 85.71% 85.05%
6× 6 28.02% 77.62% 81.78% 82.30% 82.59% 82.40% 81.39% 80.49%
5× 5 29.00% 73.65% 77.74% 78.12% 78.40% 76.21% 74.98% 68.84%
4× 4 26.87% 73.64% 76.69% 77.72% 77.04% 75.99% 75.18% 69.26%

Table 4.12 presents the results from a sweep of the spatial and temporal down-
sampling factors for the SpikingMNIST dataset. The table highlights the way in
which the nature of the image resizing is of paramount importance to the effec-
tiveness of the SpikingMNIST dataset. The results for no spatial and temporal
downsampling are poor, with an accuracy below 50%. Performing spatial down-
sampling only results in poorer performance still, dropping to a low of 26.87%.
However, applying only temporal downsampling improves the results. This makes
sense, as applying a downsampling factor of 255 would result in a single time-step
containing a flattened and scaled version of the original MNIST digit, and the
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SKIM algorithm would operate in the exact same manner as the OPIUM method
used in the ELM approach in Section 4.6.5.

It is therefore the spatial downsampling that provides the interesting results,
as it constitutes a similar pattern to the digit sequences in N-MNIST dataset. The
spatial downsampling also demonstrates a similar pattern to the results obtained
on the N-MNIST dataset. As with the N-MNIST, the accuracy increases with
the degree of spatial downsampling, up until a point at which the information
loss becomes significant and the results begin to decrease. In this case, however,
the accuracy drops more steeply than in the case of N-MNIST under higher levels
of spatial downsampling, but this may be a result of the SpikingMNIST dataset
containing far fewer spikes than the N-MNIST dataset.

These experiments also yield insight into the nature of the SKIM algorithm
for such problems. As downsampling is a lossy process, the results containing
the full resolution pattern should be able to achieve the same accuracy bound
as any of the downsampled variants. In the case of SKIM, there appears to be
a spatio-temporal density at which the algorithm performs best. It is possible
that this density is determined by the effective fan-out defined by the relation of
the number of input channels to the size of the hidden layer network. In that
case, the spatial downsampling serves to effectively increase the fan-out, allowing
for better separation in the higher dimensional space created by the hidden layer
neurons. This effect provides the improvement in accuracy, until the amount of
information discarded in the downsampling process become significant and serves
to degrade the performance.

4.6.5 Downsampling on the MNIST Dataset

As both the N-MNIST and the SpikingMNIST datasets are derived from the
MNIST dataset, it is illustrative to perform analogous downsampling on the
MNIST dataset as it provides a theoretical accuracy maximum for the previous
systems. The MNIST dataset represents the original data, and any operations
performed on it can serve only to either discard information or to introduce noise.
As both the SpikingMNIST and N-MNIST methods make use of a SKIM imple-
mentation based on OPIUM, these experiments made use of an ELM classifier
built around the OPIUM method.

The downsampling process for the MNIST dataset is fundamentally different
from the other two datasets, as the data is not an event stream but rather a
static image composed of grey-scale values. Spatial downsampling can therefore
be performed directly on the pixels, and affects the grey-scale values. This is in
contrast to the spatial downsampling in the N-MNIST dataset, where the spatial
downsampling affects the range of x and y values, but is the same process used
to downsample the digits prior to conversion in the SpikingMNIST dataset. As
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with the SpikingMNIST dataset, a bicubic algorithm performs the image resizing.
As the MNIST digits are only 28 × 28 pixels in size, the spatial resolution for
the MNIST dataset differs from the 34× 34 pixels present in the N-MNIST and
SpikingMNIST datasets.

The MNIST dataset is static, and therefore has no temporal aspect to down-
sample. Instead, the range of intensity is scaled in an analogous fashion. This is
fundamentally the same operation as temporal downsampling on the SpikingM-
NIST dataset as the time values in that dataset encode the intensity. Therefore,
increasing the temporal downsampling factor effectively decreases the dynamic
range of the image. Although not technically temporal downsampling, this analo-
gous process of altering the intensity values of the MNIST dataset will be referred
to as temporal downsampling from this point onward.

Table 4.13: Results from the spatial and resolution downsampling of the
MNIST dataset.

256 128 85 64 51 42 36 32

28× 28 94.38% 94.32% 94.39% 94.32% 94.40% 94.36% 94.22% 92.23%
14× 14 93.65% 94.18% 94.26% 94.45% 94.28% 94.38% 92.68% 92.57%
10× 10 93.44% 94.28% 94.63% 94.77% 94.61% 94.50% 94.42% 94.27%

7× 7 77.61% 78.74% 79.98% 79.70% 80.31% 80.50% 80.03% 79.54%
6× 6 88.78% 89.83% 90.34% 90.35% 90.44% 90.46% 88.21% 90.26%
5× 5 80.82% 81.83% 82.79% 83.43% 83.90% 84.02% 83.08% 82.74%
4× 4 50.41% 52.63% 53.71% 53.71% 53.52% 53.68% 53.17% 53.00%
3× 3 74.98% 76.63% 77.18% 77.51% 77.48% 77.04% 76.73% 76.31%

Table 4.13 shows the results of then downsampling sweep performed on the
MNIST dataset. An OPIUM network consisting of 1000 hidden layer neurons was
used to perform the classification. The configuration of the network attempted
to remain as close to that used in SKIM as possible, and makes use of the same
sigmoid non-linearity and the same range for the random input weights. The
network was trained on all 60,000 training samples in a random order, and tested
on the full testing set.

The results show that spatial downsampling on the MNIST dataset produces
a far more pronounced effect than temporal downsampling. In fact, the tempo-
ral downsampling rarely caused a drop in performance, and often improved the
classification result under varying levels of spatial downsampling. This may be a
result of the quantisation resulting from the lower input range.

Immediately visible in the results are the poor performances at image sizes
of 7 × 7 and especially at 4 × 4, where the accuracy is only marginally above
50%. The results for the steps above and below each are in the order of 20%
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better, and even the 3×3 network outperforms the 4×4 network by almost 25%.
These poor results are caused by the choice of downsampling algorithm, as 28
is divisible by 4 and 7. This results in a direct mapping for the resizing, and
requires no inter-pixel interpolation. Therefore, pixel information is simply lost
instead of being transferred to neighbouring pixels as is the case for the other
parameters. The effect should also be present at the 14 × 14 spatial resolution,
but it is likely that the image contains enough redundancy to negate this effect.

4.6.6 Downsampling on the N-Caltech101 Dataset

Performing downsampling on the N-Caltech101 dataset requires a small deviation
in the methodology used for the N-MNIST dataset. The lack of defined splits
between training and testing datasets and the irregular number of images per
category necessitate the use of only a subset of the total training samples available.

Applying a similar downsampling approach to the N-Caltech101 dataset also
yields a performance increase, and additionally allows for a smaller set of input
channels to the SKIM network when downsampling spatially. Temporal down-
sampling reduces the number of discrete time-steps in the input pattern, greatly
reducing the number of updates required by the SKIM algorithm.

These reductions improve the speed at which the network learns and also
serves to reduce the memory requirements. The testing time also benefits from
the downsampling reductions, but receives only a modest gain in speed by com-
parison. The discussion in Section 6.5 describes the reasons for the asymmetrical
speed increases between training and testing.

The practical effects of the speed increase are more pronounced on the N-
Caltech101 dataset than similar experiments on the N-MNIST dataset due to the
larger scale of the problem posed by the N-Caltech101 dataset.

Table 4.14 presents the results of the downsampling as applied to the full
101-way classification task on N-Caltech101 dataset. Due to the number of ex-
periments performed, only one trial of each configuration was tested. Table 4.14
presents only a subset of the parameters tested for this dataset, and the full results
for the 101-way classification task can be found in Table 5 in the Appendices.

The same set of downsampling experiments were performed on the 5-way clas-
sification task, and displayed a similar pattern of results. The effect of spatial
downsampling also served to only worsen the classification performance, and the
best classification performance (81.05%) was achieved using no spatial downsam-
pling and the maximum level of temporal downsampling.

The results differ from those achieved on the N-MNIST dataset in that spatial
downsampling served only to produce worse results. Temporal downsampling, on
the other hand, produced a dramatic increase in accuracy, with the best result
(15.72%) achieved using the lowest spatial downsampling factor and the highest
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Table 4.14: Selected spatial and temporal downsampling results for
the 101-way classification problem on the N-Caltech101 dataset us-
ing SKIM. The table shows the classification accuracy achieved with a network
containing 1000 hidden layer neurons. The full set of results can be found in
Table 5 in the Appendixes

Temporal Downsamplng (millisecond resolution)

1ms 2ms 3ms 4ms 5ms 10ms 15ms 20ms

223× 173 6.37% 7.55% 9.10% 9.78% 9.59% 14.73% 16.03% 15.72%
111× 86 6.06% 7.18% 8.54% 8.66% 9.47% 12.44% 13.80% 14.97%
74× 57 7.05% 6.68% 8.35% 9.16% 9.53% 12.75% 14.85% 15.41%
55× 43 5.94% 7.74% 7.49% 8.23% 8.85% 11.94% 12.75% 15.66%
44× 34 5.75% 6.19% 7.49% 8.04% 7.98% 11.45% 11.57% 13.18%
37× 28 5.57% 6.62% 6.13% 8.17% 6.68% 13.12% 12.31% 13.80%
31× 24 5.14% 5.26% 6.99% 6.93% 6.99% 10.89% 12.69% 12.19%
27× 21 4.52% 5.20% 6.31% 6.74% 7.49% 9.59% 11.63% 12.19%
24× 19 6.93% 5.07% 6.06% 7.12% 7.05% 10.33% 10.77% 11.88%
22× 17 5.69% 5.32% 6.81% 6.81% 7.18% 9.65% 12.31% 12.25%
20× 15 5.69% 5.01% 5.57% 7.49% 7.98% 9.53% 11.32% 13.86%
18× 14 4.46% 4.70% 6.93% 5.69% 7.67% 9.72% 10.77% 12.69%

temporal one.
The degrading effect of spatial downsampling may be a result of the non-

uniform image sizes in the N-Caltech101 dataset. Whereas each image in the
N-MNIST dataset receives the same benefit from the spatial downsampling, it is
likely that only the differing image sizes results in an uneven spatial compression,
which makes separation by SKIM difficult.

As the accuracy due to temporal downsampling served only to increase as
the size of the time-steps were increased, a second set of experiments served to
explore the effects of further downsampling temporally.

Figure 4.24 shows the results of extending the temporal downsampling from
1 ms time-steps to 250 ms time-steps. The results show that there is a clear
range over which the method produces optimal results, with a peak accuracy of
18.25% achieved using at a time-step size of 25 ms. After that point, the results
gradually decrease until the size of the time-steps are approximately 100 ms after
which the accuracy settles on approximately 5%.

It is clear that temporal downsamping improves the results on the N-Caltech101
dataset, whereas spatial downsampling serves to only degrade the results. The
varying image sizes in the N-Caltech101, coupled with the far larger spatial resolu-
tion of each image may serve to explain the performance of spatial downsampling.
It is possible that the larger image sizes may require a greater level of downsam-
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Figure 4.24: Classification results from extended temporal downsam-
pling on the N-Caltech101 dataset. The results presented in Table 4.14
present temporal downsampling results up to 20 ms time-steps. This figure shows
the classification accuracy as the time-steps are increased up to 250 ms. The ac-
curacy peaks with a time-step resolution between 25 ms and 30 ms, achieving
accuracies up to 18.25%. Due to the length of time taken to perform each test,
only a single trial of each experiment could be performed.

111



4. Event-Based Feature Recognition

pling to achieve the same effect as found on the N-MNIST dataset, but that would
cause the smaller images in the dataset to reduce to impractical sizes.

4.6.7 Discussion

The importance of spatial downsampling in event-based visual processing is sub-
tle but important. The downsampling serves as a form of feature extraction,
encoding additional information into each spike in the spatio-temporal pattern.
Given the nature of the SKIM and OPIUM classifiers in which the inputs to both
are independent of one another, there is no importance or significance placed on
the order in which the network receives inputs.

The all-to-all connectivity between the input layer and the hidden layer masks
the originating channels, as the hidden layers only see an aggregated sum of all
input layer activity (albeit through different sets of random weights). Therefore,
the spatial structure of any input is inherently lost when the data arrives at the
hidden layer neurons.

Spatial downsampling serves to mitigate this effect somewhat by mapping
a region of the input to a single channel, effectively creating a small receptive
field for each input to the SKIM or ELM network and preserving and encoding
some of the spatial information within that region. The network still discards
the spatial relationships between the inputs, but each input now encodes a little
spatial information, and the larger the spatial downsampling, the more spatial
information is encoded.

This effect is plainly visible in the results from this section. The effect of
spatial downsampling improved the results on the N-MNIST dataset as visible
in Table 4.11, with the best accuracy achieved using a downsampling factor of
4. The accuracy then decreases as the downsampling increases, as the amount
of information lost due to the downsampling operation begins to outweigh the
benefits from the encoding of spatial information.

The same effects are visible with the SpikingMNIST dataset, in which the
same improvements appear when downsampling. The downsampling mechanism
used in the SpikingMNIST dataset differs in that it is applied to the image be-
fore the conversion to spikes, and makes use of a bicubic filter which results in
pixels that represent some aggregate statistic over their neighbouring regions.
In fact, the network achieved a low performance when no spatial or temporal
downsampling was applied.

The MNIST dataset provides additional insight into the downsampling effects.
The MNIST dataset is not spike-based, and therefore makes use of OPIUM to
implement an ELM classifier which also discards any relationship between in-
put channels. When examining the results presented in Table 4.13, it becomes
immediately clear that the networks making use of downsampling factors that
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are divisors of the image size produce poor performance. These are the 7 × 7
and the 4 × 4 resulting image sizes, which represent a downsampling factor of 4
and 7. When downsampling by these factors, the filters do not need to perform
any inter-pixel interpolation, resulting in a less effective encoding of the spatial
information.

The temporal downsampling also has an interesting effect on the classification
performance for both the N-MNIST and the N-Caltech101 datasets. Temporal
downsampling alone produces a boost in performance in both datasets, with a
far more pronounced effect on the N-Caltech101 dataset. It appears to become
less effective as the level of spatial downsampling is increased as well, which may
have to do with the loss of information eclipsing the performance gains.

The underlying question is why temporal downsampling should yield such a
positive increase in performance, and the answer may lie in the conversion process
used for the datasets themselves. As detailed in Section 4.3.3, the movement of
the camera led to the generation of spikes from ATIS camera, as a stationary
image would produce no output. Through the motion, the temporal information
actually encodes spatial information from static objects in the relative timings of
adjacent events, and the temporal downsampling allows the classifiers to access
this information.

Downsampling is therefore an important pre-processing technique in event-
based visual processing. It serves to help in mitigating the effects of input in-
dependence required by many classifiers (especially for LSHDI networks such as
SKIM and ELM). Spatial pooling can be thought of as a generalisation of the
concept of spatial downsampling to include overlapping regions, but still retains
the same underlying principle of mapping an input channel to a spatial structure
within the source data.
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Chapter 5

Object Classification in Feature
Space

5.1 Introduction

This section explores the use of feature detectors as a processing step in event-
based recognition tasks by converting the classification problem from 2D space
to a feature space defined by the feature detectors outlined in Section 3.1.

Implementing these feature detectors adds another processing layer to the vi-
sual processing systems implemented in the previous sections, moving the feature
detection from an implicit step in the classification or downsampling operations
to an explicit step based on the feature detectors presented earlier in this work.
Through the use of the same datasets and the same classification system, the
performance and results of this section are directly comparable those achieved in
Section 4.

The use of feature detectors allows for a number of interesting benefits to a
classification system. It allows the visual processing system to remain unaffected
by images of varying sizes and can also allow for varying levels of invariance
to rotations, translations and any other affine or photometric changes. It also
serves to reduce the size of the input channels, which has a marked effect on the
computational speed of the classification process.

This section explores the implementations of the feature detectors based on
the surface of time presented in Section 3.3.2, and the orientation-based feature
detectors discussed in Section 3.4, and presents insights into the nature of classi-
fying data in feature space.
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5.2 Contributions

The work in this section makes the following contributions:

• It presents and demonstrates a complete and modular classification system,
capable of extracting features from AER data and performing classification
in an event-based manner.

• It demonstrates the effectiveness of using orientations as features directly,
and provides insight into why the ELM produces a better result than the
SKIM network.

• It introduces an adaptive-based thresholding technique for clustering of fea-
tures extracted from time surfaces, and demonstrates the effectiveness of
such an approach.

• It validates the benefits of explicit feature detection in event-based systems.

5.3 Classification using Orientations as Features

The orientation feature detector, introduced in Section 3.4, calculates the spatio-
temporal orientations about each incoming event and provides a means of assess-
ing the viability of using the orientations as a feature. Applying this principle
to incoming events, opens up the possibility of classifying on the orientations
features rather than the spatial pixel locations as presented in Section 4.4 and
Section 4.5. Therefore, these classification algorithms operate in a feature-space
defined by the feature detectors, rather than the spatio-temporal space used in
previous sections.

Instead of a using a separate input channel for each pixel in the image se-
quence, the classifiers use a fixed number of input channels, with each channel
corresponding to orientation range. This approach has the important advantage
of being better suited to handling non-uniform image sizes, as the number of in-
puts to the SKIM network remains fixed regardless of the size of the input image
sequence.

5.3.1 Classification Methodology

Classifying based on orientations requires a more complicated system than those
used for the direct application of SKIM to the spiking datasets. The feature-space
classifiers include an explicit feature detection step and additional noise filtering.
The particular configuration presented in this section differs slightly from the
other methods presented in this chapter as it forgoes the usual spike-based input
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Figure 5.1: Diagram of the filtering chain used for classifying directly on
the orientation outputs using SKIM. The diagram shows the steps performed
for each event received from the camera, unless discarded by the noise filtering
step after which the processing for that event will cease. It is important to
note the polarity splitter, which allows the ON and OFF events to be handled
separately. Orientations are extracted from the data for each polarity and then
combined into a single AER stream. Temporal downsampling is applied to the
AER data prior to conversion to a spatio-temporal pattern for the SKIM network.

to SKIM and provides a continuous input instead. The system and configuration
still operates in an event-based manner, but replaces all binary spikes with integer
valued signals.

Therefore, the input more closely resembles a set of time-varying signals than a
true spike-based spatio-temporal pattern. The experiments in this section serve to
demonstrate the classifying power of orientation features and provide an example
of a viable event-based classification method.

Figure 5.1 shows the filtering chain used in the generation of orientation pat-
terns for the classification system. The dataset provides a stream of events in
AER format for each sequence in the dataset, which then pass through the cir-
cular noise filter described in Section 3.4.3. This filter removes events arising
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from spurious noise and events which generate poor orientation features. At this
point, a polarity filter divides the input into ON and OFF events for separate
processing, which results in orientations specific only to those classes of events.
Combined with the saccade motion, this serves to generate direction-specific fea-
tures during the three saccades, which would otherwise combine if the polarity
was not used in this fashion.

For each incoming event, an orientation extractor calculates the temporal
orientations about the event independently for each polarity. The orientation
extractor uses the method described in Section 3.4 and operates as an AER
filter, thereby also outputting AER events.

The results of the orientation extractors are two histograms of orientations,
one for ON events and another for OFF events, and each containing 40 bins
(with each bin representing a range of 9◦). These two histograms are combined
and encoded into the payload of a new AER event, which receives the timestamp
of the initiating event. This event contains a vector of 80 orientations. Each
orientation corresponds to a feature and an input channel to SKIM. The order of
these orientations in the vector does not impact the performance of the network
as the SKIM algorithm discards the ordering of the input channels.

As the filtering chain translates each incoming event from a coordinate space
into an orientation space, the amount of information per event increases but
retains the original 1 µs time resolution. As the SKIM algorithm operates at
discrete time-steps of 1 ms1, it requires a temporal downsampling step for the
incoming orientation events in order to operate.

A modified temporal downsampling filter (similar in structure to the one used
in the downsampling experiments in Section 4.6.2) performs the temporal scal-
ing by aggregating feature events over 1 ms intervals, and produces an event
containing the average of all the orientations received during the 1 ms period.

As the pattern presented to SKIM is no longer a spike-based spatio-temporal
pattern, it raises the question of whether the SKIM method is the most appro-
priate means of classifying this data. The output pattern from the filtering chain
presented in Figure 5.1 consists of a dense pattern of integer values, rather than
a sparse pattern of spikes. It is possible to interpret this output as a static image
for each sequence, one where each pixel codes for a specific average intensity of
an orientation range at a specific time during the pattern. Mapping this static
image onto an input layer of a standard ELM network creates a network struc-
ture similar to the one used to classify the MNIST dataset in Section 4.6.5. This
approach is explored in Section 5.3.3.

1SKIM can operate at any timescale, but is limited to millisecond resolution due to compu-
tational limits. Additionally, using a higher time resolution results in a far more sparse input
pattern, and the results of the temporal downsampling presented in Section 4.6 suggest that
this can have a negative impact on classification accuracy.
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Figure 5.2: Violin plot of the 4-way classification task on the N-
Caltech101 dataset using orientation features and SKIM for varying
hidden layer sizes. Twelve trials of each hidden layer size were performed, and
display the large variability in the results. As this is a 4-way classification task,
the accuracy due to chance is 25%.

Although this approach is perfectly viable, there are two advantages to using
a SKIM network over a direct ELM approach. The first concerns the size of the
hidden layer network for the ELM. Unlike the MNIST dataset, the orientation
patterns require a much larger input layer (25,280 vs. 784 for MNIST) and
therefore cannot sustain the large fan-outs typically required by ELM networks.
This is primarily due to memory constrains.

The second reason for the application of SKIM is the use of Alpha functions
in the hidden layer neurons, which allow interactions across the columns of the
spatio-temporal pattern. Such behaviour is not possible using a typical ELM
network as it treats each input independently.

5.3.2 Classification using the SKIM Network

Due to the nature of the classes in the N-Caltech101 dataset, the training and
testing splits cannot make use of all the available objects in each class. Sec-
tion 4.4.1 presents a discussion of the reasons for this limitation and the widely
used means for dividing the dataset. The results focused on the classification
of the five most popular categories (Airplanes, Faces, Cars, Motorbikes and the
Background class), as these classes contain the largest numbers of items per class.

Testing utilised networks of varying hidden layer sizes, but retained the same
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Table 5.1: Summary of the accuracies for the 4-way classification task
on the N-Caltech101 dataset across 10 different hidden layer sizes.

Hidden Layer Sizes

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Mean 40.9% 43.9% 46.3% 53.8% 57.7% 51.2% 55.3% 52.8% 54.5% 56.3%
Max 47.5% 56.6% 59.4% 66.8% 69.7% 72.5% 75.0% 71.7% 65.2% 67.2%
Min 34.8% 25.0% 32.0% 44.3% 45.9% 36.9% 41.8% 42.2% 45.1% 45.9%
STD 5% 8% 8% 6% 9% 11% 11% 9% 7% 7%

configuration of random weights. Alpha functions and delays varied as the hidden
layer size changed, but the maximum durations remained constant across all tests.
The operation of the filter chain is deterministic, and therefore was only executed
once with the intermediate results stored and presented to each network.

Figure 5.2 shows a summary of the results from the classification performed
on the 4-class classification task. The data shows the results from 12 independent
trials of each network configuration, with only the training order varying from
trial to trial. Although all the results are well above chance (25% for the 4-way
task), it is immediately apparent that the standard deviation is far greater than
found in other networks (see Section 4.4.3 for a detailed discussion of the nature
of the errors from a typical SKIM network).

The results, expanded in Table 5.1, show that the networks produced a strong
performance (achieving a maximum of 75% accuracy with 7000 hidden layer neu-
rons), and that there exists a positive relationship between the number of hidden
layer neurons and the mean accuracy. However, the same configuration of 7000
hidden layer neurons also produced a worst-case accuracy of just 41.8%, causing
that particular configuration to exhibit the highest overall standard deviation of
any configuration.

The results indicate that this particular configuration is particularly sensitive
to the subset of training and testing samples used, as is visible in the full set
of results for all trials presented in Figure 5.2. Each trial made use of the same
sequence of training objects, which produced vastly different results from con-
figuration to configuration, although there is visible upward trend as the hidden
layer size increases.

It is possible that the increased sensitivity is due to the density of the input
patterns, which are no longer sparse spike-based spatio-temporal patterns. It is
likely that the varying image sizes play a role in this configuration, as smaller im-
ages will produce fewer events than larger images, especially around the borders
of the image as it is inset in the larger frame (See Section 4.5.2 for a complete dis-
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cussion on the manner in which non-uniform images in the N-Caltech101 dataset).

5.3.3 Classification using an ELM Network

The design and methodology used to test the ELM classifier attempted to follow
those used in existing work performed on the Caltech101 dataset. In particular,
this work follows the same training and testing regiment used by Orchard et al.
[150], making use of the same five category and full classification tasks.

The first classification task involves the five largest categories in the N-Caltech101
dataset. These are the airplanes, cars, faces, motorbikes and background classes.
The large number of samples in each category allows for the largest possible train-
ing sets from the dataset, allowing the use of 250 samples from each category,
with the remaining images reserved for testing. Each trial randomly drew a dif-
ferent subset from each category, and trained the network in a random order. In
total, 30 trials of each experiment were performed.

Figure 5.3 shows a violin plot of the classification results for network config-
urations containing an increasing numbers of hidden layer neurons. The graph
shows the classification accuracy in terms of percentage of sequences correctly
identified. As there are five object categories and an equal number of each sam-
ple per category, the expected classification accuracy arising due to chance is
20%. For each hidden layer size, the violin plot shows a symmetrical plot of the
distribution of accuracies across the 30 trials for that specific configuration.

The results show that even a small network containing only 1000 hidden layer
neurons achieves a mean accuracy of 69.34% ± 2.84%, which is surprising given
that the network exhibits a fan-in factor of approximately 25.5. Table 5.2 shows
that as the number of hidden layer neurons increases, the mean accuracy also
increases whilst the standard deviations about the means decreases, yielding a
final accuracy of 91.6% ± 1.69%. At this network size, the fan-in factor reduces
to approximately 2.5. Memory constraints prevented the exploration of hidden
layer sizes beyond 10,000 hidden layer neurons.

The distribution of accuracies for each hidden layer size were checked for
normality using the Lilliefors test for normality [149], with only the network
containing 10,000 hidden layer nodes rejecting the null hypothesis that the data
are normally distributed at the 5% significance level.

Expanding the classification task from the five categories to the full 101 object
categories in the N-Caltech101 dataset has the effect of increasing the overall
number of training items, but reducing the number of samples drawn from each
category. This is due to certain categories possessing a small number of images
(as low as 30), which sets the maximum available for training and testing. As a
result, only fifteen samples of each category were available for training.

Figure 5.4 shows a violin plot of the classification accuracies achieved for the
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Violin Plot of N-Caltech101 5-way Classification Results

Figure 5.3: Violin plot of the classification accuracies for networks of
varying hidden layer sizes trained and tested against five categories of
the N-Caltech101 dataset (airplanes, cars, faces, motorbikes and the
background class). The violin plot shows the distribution of accuracies for
each hidden layer size (containing 30 trials of each). Crosses indicate the mean
accuracy and the green square indicates the median value.
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Figure 5.4: Violin plot of the classification accuracies for networks of
varying hidden layer sizes trained and tested against the full 101 cat-
egories in the N-Caltech101 dataset. The violin plot shows the distribution
of accuracies for each hidden layer size (containing 30 trials of each). Crosses
indicate the mean accuracy and the green square indicates the median value.
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full classification task. Due to the increased number of categories, the classi-
fication accuracies are much lower than those for the 5-way classification task.
However, the expected accuracy due to chance sits at less than 1%, and there-
fore the classification accuracies are still significant. All distributions were tested
for normality using the Lilliefors test at the 5% significance level, with the null
hypothesis being upheld for each configuration.

Paradoxically, the network with 1000 hidden layer nodes achieved a mean
accuracy of 3.72% ± 0.45%, outperforming the networks with 2000 and 3000
hidden layer neurons. As Table 5.2 shows, with the exception of the first three
configurations, the accuracy increased as the size of the hidden layer increased,
yielding an accuracy of 11.19%± 0.65% for the network with 10,000 hidden layer
neurons.

These results compare favourably to those achieved by Orchard et. al. [144]
for the full classification problem on the N-Caltech101 dataset, in which they
achieved best-case accuracy of 8.30% using the SKIM algorithm. It is important
to note that the SKIM network in that example makes use of only 2000 hidden
layer neurons and also relies on a method similar to OPIUM for learning. Al-
though these two networks use similar terminology, the nature of the hidden layer
in SKIM make use of kernel functions, and the method itself was designed specif-
ically for spatio-temporal patterns. It is therefore not possible to draw direct
comparisons between the numbers of hidden layer neurons used.

The performance on the N-Caltech101 dataset appears to be heavily impacted
by the low number of training samples available in each object category. As a
result, the algorithm performs far better on the 5-way task, in which there are
far more available samples, and also may explain the inconsistencies shown in the
accuracies of the first three networks in the full classification problem. In order
to explore this hypothesis, the same classifiers can be applied to the N-MNIST
dataset.

Unlike the N-Caltech101 datasets, the N-MNIST dataset has well-defined and
established splits between training and testing data. There are also ample training
and testing samples available across all ten output classes. As a result, it is
a suitable means of exploring the relationship between the number of training
samples and the final classification accuracy.

Applying the same classification methodology to the N-MNIST dataset pro-
duced the results shown in Table 5.2 and a violin plot of the results is shown
in Figure 5.5. The accuracies presented in the table represent the average clas-
sification accuracy across 30 trials against each configuration, and made use of
the full training and testing set. The N-MNIST task is a 10-class classification
problem, resulting in a 10% classification accuracy due to chance. Even with just
1000 hidden layer neurons, the network achieved a classification performance of
81.75%± 0.38%. All the distributions of accuracies underwent the Lilliefors test,
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Table 5.2: Summary of the classification accuracies, in terms of percent-
age of test digits correctly identified, obtained for the N-Caltech101
and N-MNIST datasets. The table shows the mean classification accuracy
and the standard deviation over 30 trials of each configuration.

5-Way N-Caltech101 101-Way N-Caltech101 N-MNIST

Hidden Layer Size Mean STD Mean STD Mean STD

1000 Neurons 69.34% 2.84% 3.72% 0.45% 81.75% 0.38%
2000 Neurons 80.00% 2.83% 1.96% 0.39% 86.80% 0.29%
3000 Neurons 85.03% 2.91% 3.33% 0.49% 88.79% 0.26%
4000 Neurons 87.05% 2.38% 5.51% 0.40% 89.97% 0.19%
5000 Neurons 88.69% 1.94% 6.67% 0.45% 90.69% 0.25%
6000 Neurons 89.07% 2.22% 8.10% 0.48% 91.25% 0.21%
7000 Neurons 90.03% 1.99% 9.00% 0.73% 91.54% 0.12%
8000 Neurons 90.75% 1.83% 9.85% 0.78% 91.85% 0.16%
9000 Neurons 91.49% 1.29% 10.48% 0.49% 92.10% 0.18%
10000 Neurons 91.60%* 1.69% 11.19% 0.65% 92.21% 0.18%
*Failed the Lilliforth test for normality at the 5% significance level.

with the null hypothesis for normality upheld in every case.
The results represent the best classification to date on the N-MNIST dataset.

In the original paper, the benchmark values achieved on the N-MNIST dataset
was 83.44% using a SKIM network containing 2000 hidden layer nodes. The
HFirst method [6] was also run on the dataset and achieved an accuracy of 71.15%
using the hard classifier. Typical ELM networks used to classify the original
MNIST dataset routinely achieve accuracies greater than 97.5% [105] with smaller
hidden layer networks (usually 7840 hidden layer neurons representing a fan-out
factor of 10), and these results achieved with the N-MNIST dataset show that
much of the separable information is retained across the conversion to an event-
based representation, and then into orientation features.

To further explore the performance as a function of the number of samples
trained, a network consisting of 1000 hidden layer neurons was trained on an
increasing number of subsets of the full N-MNIST dataset, and then tested on
the full testing set. The size of the training subsets varied from a single training
sequence up to 3000 training samples in steps of 50. Figure 5.6 shows a plot of
the classification accuracy against the size of the training sample. Ten trials of
each experiment were performed.

As expected, training with a single input sequence produced a classification
accuracy of 9.97% ± 0.21%, which is at the level of chance. The classification
accuracy then climbs up until a peak accuracy of 51.99%± 1.35% at 300 training
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Figure 5.5: Violin plot of the classification accuracies for networks of
varying hidden layer sizes trained and tested against the N-MNIST
dataset with 10 output categories. The violin plot shows the distribution
of accuracies for each hidden layer size (containing 30 trials of each). Crosses
indicate the mean accuracy and the green square indicates the median value.
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Figure 5.6: Effect of number of training samples on classification accu-
racy for the N-MNIST dataset. Ten trials of each experiment were conducted
at 50 sample increments, and are shown as dots. The mean accuracy for each
level is shown as the solid line.

samples. After this point, the accuracy paradoxically decreases, bottoming out
at just 26.49% ± 0.91% at 1000 training samples. After this point, the network
accuracy climbs steadily and continues up until levelling off at approximately 81%
for this network size. This classification accuracy is reached at approximately
12,000 training samples and remains constant for the rest of the 60,000 training
samples.

It is interesting to note that the lowest accuracy occurs when the number
of training samples is equal to the hidden layer size. At this point, there are
enough hidden layer neurons to learn each input sequence perfectly, which results
in no need for generalisation. The characteristic shape of the accuracy at low
numbers of training samples provides some insight into the unusual results for
the network with 1000 hidden layer neurons in the full 101-way classification task.
In that network, the 1000 neuron configuration outperformed the larger hidden
layer networks of 2000 and 3000 neurons. As there are 101 object categories with
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15 sequences per category, this results in 1515 training sequences, and therefore
the results shown in Figure 5.6 indicate that we can expect the lowest training
accuracy to occur with a network containing 1515 hidden layer neurons. The
network containing 1000 neurons sits above this turning point, whereas the 2000
and 3000 neuron networks sit on the portion of the curve that slowly rises up to
the higher accuracies shown for the 101-way classification in Table 5.2.

This result also sheds some light on the marginal improvements shown over ex-
isting methods for the full 101-way classification. It is likely that the low number
of training samples per category contributes to the small gains in improvement
over other methods. As demonstrated by the 5-way classification task, the infor-
mation contained in the orientation features used in this thesis provides a means
on which to separate and classify the data effectively, but the method requires a
larger number of samples to achieve a good classification performance.

5.3.4 Discussion

The results from both the SKIM and the ELM approaches provide interesting
insight into the applicability and suitability of the two approaches. The ELM
produced a far superior classification result over the SKIM network, but requires
access to the entire pattern and therefore cannot operate in an event-based man-
ner. The SKIM network, on the other hand, performed far worse in terms of
accuracy, but it is able to operate on information as it arrives, and therefore does
allow for a truly event-based approach.

The SKIM and ELM classifiers share a common methodology, and both op-
erate in an iterative and analytical manner. However, the two methods represent
differing paradigms in terms of their operation. The SKIM network is designed to
learn spatio-temporal information, whereas ELM networks are intended to learn
the relationship between input and output vectors and requires an explicit encod-
ing scheme for time-varying signals. The work in this section is limited to these
two classifiers, as their similarity allows for better comparison and investigation of
the underlying nature of the output generated by the feature detectors. Although
classification accuracy is the metric by which performance is compared, this sec-
tion focuses primarily on the characterisation of the feature detectors through a
real-world task rather than on achieving the highest possible classification per-
formance.

The results suggest that the ELM network is far better suited to the type
of pattern used in this section. The use of integer values in place of spikes,
and the density of information (as opposed to the relative sparsity of the spatio-
temporal patterns used in SKIM) resemble the inputs used by the ELM method
when used to learn the original MNIST dataset (as used in Section 4.6.5). In
fact, attempting to convert those intensity maps representing the digits into a
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Figure 5.7: Comparison of accuracies between the SKIM and ELM ap-
proach to using orientations as features on the N-Caltech101 dataset
for varying hidden layer sizes. The result presented here show the mean
accuracy as a percentage of digits classified correctly. The graph also shows the
standard deviations for both network types as error bars. The graph shows the
increased accuracy obtained with the ELM solution, and the lower variability it
possesses over the SKIM network.

spatio-temporal pattern as done for the SpikingMNIST dataset in Section 4.6.1
yielded results that were lower than the equivalent methods using the ELM and
the original MNIST digits.

Figure 5.7 provides a direct comparison of the SKIM and ELM approaches.
It shows the accuracy obtained (in percentage correctly classified) for the ELM
and SKIM networks over a range of hidden layer sizes. Twelve trials of each
network were independently trained and tested and the average accuracy reported
in the graph along with error bars indicating the standard deviation. The ELM
network outperforms the SKIM network in every network configuration, and also
produces a lower standard deviation. The ELM method also demonstrates a
positive correlation between hidden layer size and network accuracy, making it
consistent with the characteristic network performance presented in Figure 4.9.

The performance of the SKIM network did not display the same level of con-
sistency as the ELM network, and exhibited a larger standard deviation across
all trials. The network displays a higher sensitivity to training pattern order and
the random weights, as classification accuracy varied by over 20% from trials with
the same hidden layer size. Although this result may appear to indicate that the
SKIM network performs in an inferior manner to the ELM network, it is impor-
tant to note the event-based implementation and operating nature of SKIM may
be the leading cause.

Whereas the ELM has access retrospectively to the entire pattern, SKIM
makes use of the alpha functions in the hidden layer neurons to act as a form of
memory and to convey information from the time at which it occurs to the point
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during which output determination occurs. The nature of this encoding uses
randomly initialised alpha functions with random delays, and therefore can fail
to adequately or accurately capture all the information in the input pattern. It is
this process that suffers most from the randomness of the training patterns and
random hidden weights as they determine how the alpha functions map to the
input channels and the initial content presented to those hidden layer nodes. The
high density of the patterns used in this section also increases the information
loss arising from the nature of the SKIM algorithm, and further suggest that it
is better suited to sparse spatio-temporal patterns.

5.4 Object Classification using Time Surface Fea-

tures

The previous section demonstrated the classifying power present in the spatio-
temporal orientations described in Section 5.3. Although the results achieved
when using the orientations as features were promising, the implementation of
the system stretches the overall approach to event-based processing maintained
in this thesis. The replacement of a spatio-temporal pattern with real-valued
signals breaks the compatibility of such systems with a traditional AER system,
and therefore restricts the use of such an approach.

This section presents an alternative means of performing classification using
the surfaces of time from Section 3.3 in a manner more aligned with the ethos of
event-based systems. Unlike the previous section, the outputs of all components
are spikes, either as an AER stream or as a spatio-temporal pattern, and yet it
maintains the majority of the benefits of the previous approach, including the
reduced sensitivity to input image size and the fixed number of input channels
for the SKIM network.

5.4.1 Classification Methodology

The surface of time, introduced in Section 3.3, create a 2D representation of the
spatio-temporal patterns from the ATIS camera. These surfaces allow for the
application of conventional computer vision techniques such as corner and edge
detection to identify features of interest, and the descriptors calculated from them
can yield a degree of invariance to affine transformations.

This section introduces a method of converting incoming events to a fea-
ture space defined by a set of feature clusters on a time surface. An adaptive
thresholding algorithm, based on the method underpinning the Synaptic Kernel
Adaptation Network (SKAN) [151], provides an online method to determine these
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Figure 5.8: Structure of the time surfaces feature classification system
with online learning. The classification system for the time surface feature
detector also makes use of a polarity splitter to handle the ON and OFF events
separately. Time-surface features are then extracted from the incoming AER
stream and sent to the adaptive threshold clustering algorithm, which identifies
and learns features in an unsupervised manner. The output of the clustering
algorithm represents AER events in feature space and are then used for classifi-
cation.

features, and this section presents classification results using both a SKIM and
ELM network.

The orientation features introduced in Section 5.1 benefited from the circular
and therefore bounded nature of angles and made use of histograms with bins of a
fixed size in order to create features. The spatial coordinates are not bounded in
the same manner as angles, and therefore the same approach cannot be directly
applied. In order to replace the inputs to SKIM with a spatio-temporal pattern
as opposed to a real-valued signal, the nature of each input needs to shift from
representing a certain orientation range, to a more complex feature for which
a single spike at a specific time conveys information. The information must
exhibit strong separability in terms of the output classes. It is also desirable to
minimise the number of such features presented, yet maintaining enough so as to
successfully generalise to the whole dataset.

In this section, each input channel to the SKIM network corresponds to a
distinct feature on the surface of time, one that is derived from the incoming
data. An online clustering algorithm iteratively determines and refines these
features, allowing them to adapt to the nature of the incoming data.

Figure 5.8 shows the structure of the network used to perform classification in
a time-surface feature space. All the components operate on, and emit AER data,
allowing the network to run in an event-based manner. A noise filter based on the
feature detector described in Section 3.3.2 removes the spurious noise events, and
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any planar features from the input stream. The noise filter works particularly well
in this application, as events that correspond to regions of near-uniform intensity
often pose little use in the classification task. It is especially important to remove
the dominant noise spikes, as they will invariably train a feature, and produce
events representing only noise to the classification system.

As in the previous section, a separate processing stage exists for the two
different polarities. This assists in capturing the direction of movement, and is
particularly useful in the context of the N-Caltech101 dataset, in which there are
often edges parallel to the direction of the camera motion during the conversion
process. Clustering the histograms independently for each polarity also allows
for the inclusion of the polarity information into the generated features.

The filtered and separated events arrive at the online clustering component,
which accepts an AER stream of events and also outputs AER events. Sec-
tion 5.4.2 presents the specifics and details on the implementation of the adaptive
threshold clustering mechanism.

The Adaptive Threshold Clustering represents the point at which the network
shifts from a spatially orientated pattern to one in time-surface feature space. The
online clustering component receives AER events in the form of es = [x, y, t, p]T ,
where u = [x, y]T represents the spatial location of the pixel with reference to the
ATIS camera and obtained at time t. The output of the online clustering compo-
nent is in the form of eθ = [F, t]T where F ∈ [F0...FN , N < b] corresponds to the
feature (out of b features) matched to the current event and the time t represents
the time at which the original event occurred, and it remains unchanged from the
input.

Examining the nature of the output, which now only contains a feature number
F and a timestamp t, the benefits of operating in feature space become apparent
as this structure maps directly into the spatio-temporal patterns required by
SKIM. The conversion discards the spatial information contained in each AER
event (namely the x and y coordinate of the incoming event), and the range of the
outputs remains independent of the spatial size of the input sequence. This avoids
the problems surrounding non-uniform image sizes discussed in Section 4.5.2. The
number of feature clusters tracked is a variable parameter in this system, and
dictates the number of input channels to the SKIM or ELM network.

As the output preserves the temporal resolution of the input pattern, it can
pass through the same temporal downsampling filter presented in Section 4.6.3.
This reduces the resolution of each event to 1 ms time-steps.

The following sections examine aspects of this network configuration. The
process of comparing and clustering features using time surface features poses
certain challenges, and the following sections provide a discussion of these issues
and their solutions.

In terms of specific implementation, the network makes use of an exponential
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time surface (as introduced in Section 3.3.1) as the effect of the exponential
operation serves to suppress the effect of events occurring long in the past, and
thereby eliminates the need for an explicit threshold to discard old events. The
conversion from a 2D patch to a feature vector is equivalent to the calculation
of a descriptor presented in Section 3.3.3, with the normalised descriptor chosen,
as the classification system can make use of rotational information and therefore
the descriptor process needs to preserve that information.

5.4.2 Adaptive Threshold Clustering on the Time Sur-
faces

The problem of finding good prototype features on which to cluster is a difficult
task. An optimal set of features should be orthogonal and distinct given the
nature of the data presented. Optimal features are obtainable using techniques
such as Principle Component Analysis (PCA) but such methods generally require
knowledge of the entire dataset ahead of time, and therefore such an approach is
not often possible in an event-based paradigm.

An event-based system requires an online method of determining the optimal
prototypical features for the dataset, and the k-means clustering algorithm [152] is
perhaps the logical candidate for such an operation. Indeed, k-means clustering
allows for a pre-selected number of clusters to be iteratively computed on the
arrival of new data.

Unfortunately, the k-means clustering algorithm is not a perfect candidate
for clustering on event-based data. It is sensitive to the initial estimates for the
clusters [153], and the choice of initial estimates in a high dimensional space is
not a trivial problem.

The choice of update rule for k-means clustering is also a concern as there
are two main varieties tailored to handling different situations. The first update
rule weights each incoming sample by the total number of samples received. This
version allows for clusters that encompass a large dataset to be iteratively de-
termined without the loss of any information. Unfortunately, such an approach
places emphasis on the initial training sequences, and is poorly suited to a contin-
uous operation (as required by an event-based system) as each subsequent event
exerts less influence on the feature clusters.

The second update rule uses a fixed threshold by which to update the clusters.
This implements a system similar to a low-pass filter, and allows the clusters to
continuously evolve to match the incoming data, making it a better match for
an event-based system. However, the sensitivity to the initial choices for the
clustering remains a difficult problem to solve, especially as it is not possible to
predict the nature of the incoming data in an event-based system.
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This thesis introduces a means of performing the clustering online using a
method of clustering with an adaptive threshold for each cluster. Under this
setup, each cluster implements a unique threshold which determines a matching
area about the feature. This threshold is dynamic, and given i feature clusters,
the thresholds change based on two rules:

1. If an incoming feature matches the cluster, then decrease the threshold ti
for cluster i by a fixed amount ∆I.

2. If an incoming feature does not match any clusters, then increase all the
cluster thresholds by a fixed amount ∆E.

Internally, the system represents features and clusters as vectors, regardless
of their interpretation in the larger system (which in the case of this application
are 2D patches from time surfaces) and normalising the feature vectors ensures
that every feature represents a point on the unit sphere for the dimensionality of
the feature space.

Figure 5.9 shows an illustration of the adaptive thresholding as applied to
features containing only two dimensions. In practise, the number of dimensions
is far larger, and the features are normalised to fall on a unit hypersphere, rather
than the unit circle as shown in the figure. The figure depicts two existing clusters
i1 and i2, both of which have independent thresholds indicated by the spheres
surrounding them1.

All incoming features require normalising to ensure that they are comparable
to the normalised feature clusters. The system makes use of the normalised
descriptors described in Section 3.3.3, which already exhibit this property. These
normalised features are shown as the green vectors in Figure 5.9.

The distance to each feature is calculated using the cosine distance, and the
closest value within the range of the adaptive threshold is chosen as the matching
cluster. If successfully matched to a cluster, the feature is then assigned to it,
and the cluster is said to have emitted a spike. The feature is then used to update
the cluster itself using a fixed mixing rate η as follows:

in = (1− η)in + (η)v (5.1)

In which in denotes cluster n to which the incoming feature v is successfully
matched. As a point of reference, the mixing rate used to generate the clusters
in this work was set as η = 0.001.

1In reality, the normalisation ensures that features only fall on the unit circle in 2D, and
therefore the matching region is actually an arc on the unit circle rather than a sphere, but is
drawn in the figure as such for illustrative purposes.
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Figure 5.9: Diagram showing the adaptive threshold clustering in a 2D
space. The diagram above shows a simplified case of the adaptive threshold
clustering applied to features consisting of two dimensions. An existing configu-
ration with two normalised clusters is shown in (a) on the unit circle, and with
independently configured thresholds. If the next feature to arrive falls within the
threshold distance of an existing cluster, as shown in (b), then it is said to have
matched and is assigned to the that cluster. The threshold for that cluster is
then reduced as shown in (c). If the event does not match any existing clusters,
as in (e), the feature is discarded and the thresholds for all clusters are increased
as in (f).
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The threshold for that cluster is then decreased by ∆I as shown in Figure 5.9c.
If the feature does not match any existing clusters, as in Figure 5.9e, the feature
is discarded and the thresholds for all features is increased by ∆E.

The effect of this dynamic thresholding serves to ensure that the rate of firing
of for all clusters is roughly equal, as decreasing the threshold on matching serves
to damper and specialise each cluster. If the clusters are coding poorly for the
incoming data (if, for instance, they have become too specialised), then the global
threshold increase serves to expand the range of input features to which they will
respond.

This learning process is dynamic and responsive to the nature of the incoming
data, and relies on the abundance of events in the ATIS dataset. The clusters are
initialised to random points on the unit circle, and the learning can be disabled
by fixing the thresholds for each cluster. Once the system is no longer learning,
the thresholds give an indication of the specificity of the given feature, with a
large threshold indicating a more general feature. Often the feature exhibiting
the largest threshold is a noise spike and can be discarded. Due to the pre-
filtering performed using the feature detectors, this was not performed for the
classification systems presented in this section.

For the purposes of these experiments, the above method was used to gener-
ate clusters on the N-MNIST dataset. Only the training samples were used to
generate the clusters, and made use of a ∆I = 0.001 and a ∆E = 0.003 which
were derived empirically. Two cluster configurations were tested:

• 200 Clusters (100 for ON events, 100 for OFF events) with 11× 11 feature
patches

• 50 Clusters (25 for ON events, 25 for OFF events) with 5×5 feature patches

The number of clusters used depends greatly on the nature of the data and the
size of the feature patches. When using 100 clusters with the 5×5 patches, it was
observed that the majority of the features were not stable and were alternatively
coding for noise events and therefore contributed little benefit to the system.
25 clusters were found to represent a stable number of clusters and were used
instead.

Figure 5.10 shows the resulting 50 clusters of 5×5 image patches from the N-
MNIST dataset. These features represents the normalised clusters against which
the incoming features from the time surface are matched.

The features for the 200 cluster versions were also generated and can be found
in the Appendices. Figure 14 shows the 100 clusters generated for the ON events
in the MNIST training dataset, whilst Figure 15 shows the corresponding OFF
features.
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(a) (b)

Figure 5.10: 5 × 5 feature clusters learnt from the MNIST dataset for
ON events (a) and OFF events (b). Each feature represents a normalised
vector reshaped to match the size of the incoming feature patches. The ordering
of the features conveys no significance.
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5.4.3 Surface Feature Classification with ELM

In a similar fashion to the feature orientations explored in Section 5.3.3, an ELM
network was used to verify that the extracted features provide a suitable basis
for which to perform classification.

ELM networks do not operate on time-steps, and therefore the input sequences
from the N-MNIST dataset cannot be directly inputted into an ELM network.
The most direct approach requires the use of a separate input channel for each pat-
tern at each time-step, and when dealing with the original N-MNIST sequences,
the image size of 34× 34 pixels and the 316 time-steps results in a required input
size of 365,296 per digit. Networks with such large input layers are not practical
to implement.

The conversion to a feature domain as defined by a set of clusters, determined
using the adaptive thresholding method outlined in Section 5.4.2 reduces the size
of the input layer to one per cluster per time-step, and for a network contain-
ing 100 feature clusters, this results in an input pattern size of 31,600 which is
similar in size to those used in the ELM classifier for the classifiers operating in
feature space. Additionally, unlike the orientation ELM method presented in Sec-
tion 5.3.3, the patterns generated from these clusters are sparse by comparison.

The testing with the ELM classifier involved the two different set of feature
clusters introduced in Section 5.4.2, and the same conversion method was used
to convert the events streams into the feature spaces. The conversion also made
use of the same adaptive thresholds determined alongside the clusters.

Table 5.3 presents the results of the ELM classifier for the two different cluster
configurations. Eight different hidden layer sizes were tested, and ten trials of
each experiment performed. The results show that the 11 × 11 features outper-
form the 5 × 5 features at every tested hidden layer size, and by a significant
percentage, achieving an overall accuracy of 94% with 8000 hidden layer neurons.
This represents one of the highest accuracies achieved on the N-MNIST dataset
to date.

Figure 5.11 shows a direct comparison of the accuracies achieved using both
sets of feature clusters. As shown in Table 5.3, the standard deviations across all
configurations never exceeds 0.40%. These results exceed those achieved using the
same number of hidden layer neurons with the SKIM algorithm, with the 11×11
configuration outperforming the equivalent SKIM classifiers from Section 4.4.2
for each hidden layer network size.

The 11×11 configuration also outperformed the ELM classifiers based on ori-
entations introduced in Section 5.3.3, which achieved a best-case result of 91.6%
accuracy with a 10,000 hidden layer configuration, which the above classifier ex-
ceeded with only 4000 hidden layer neurons, and achieved an accuracy of 92.39%.

The reduction in the number of inputs to the ELM network serves to increase
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Table 5.3: Classification accuracy for ELM networks trained using the
features events generated from the 11 × 11 and 5 × 5 pixel clusters.
The classification accuracy is reported in terms of percentage of digits correctly
identified. The 11×11 configuration made use of 100 clusters per polarity, whilst
the 5× 5 clusters used only 25 per polarity. Ten trials of each configuration were
performed.

Hidden Layer 5× 5 Clusters 11× 11 Clusters

Mean σ Mean σ

1000 Neurons 71.76% 0.25% 84.93% 0.31%
2000 Neurons 78.58% 0.30% 89.56% 0.28%
3000 Neurons 81.24% 0.38% 91.45% 0.22%
4000 Neurons 83.00% 0.17% 92.39% 0.18%
5000 Neurons 84.01% 0.16% 92.87% 0.16%
6000 Neurons 84.85% 0.24% 93.30% 0.20%
7000 Neurons 85.17% 0.13% 94.06% 0.13%
8000 Neurons 85.64% 0.30% 94.00% 0.12%
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Figure 5.11: Comparison of the ELM results with 11×11 feature clusters
and 5× 5 feature clusters with an ELM network for increasing hidden
layer sizes. The figure shows a comparison between the 200 11×11 pixel features
and the 50 5× 5 pixel features when used to generate feature events for an ELM
classifier. Ten trials of each experiment were conducted, and a standard deviation
under 0.5% was achieved for each hidden layer size. It is clear from the above
graph that the 11× 11 configuration performed better in every case.
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(a) (b)

Figure 5.12: The 5×5 pixel random features generated for the ON events
(a), and the OFF events (b) used to generate feature events for the
N-MNIST dataset. The random features are initially generated, normalised
and then fixed. The use of random features such as these allows for efficient
hardware implementations which do not require explicit feature learning, and
can even exploit device mismatch to generate the random features.

the effective fan-out to the higher dimensional space, and each feature event
encodes more information than a single event from the raw N-MNIST sequences.
These two factors may be the contributing factor in the classification accuracies
achieved.

5.4.4 Classification using Random Feature Clusters

To validate that the clusters generated by the given method are providing a good
set of basis functions on which to generate feature events, it was necessary to run
a classification system that made use of entirely randomised clusters. The results
from these tests can serve as a benchmark for comparison, as they represent an
arbitrary conversion from the spatial coordinates to a feature space, whilst still
maintaining much of the timing information from the original system.

To test this configuration, 25 random clusters were generated for features of
size 5× 5, and are shown in Figure 5.12. These features comprised a randomised
vector of uniformly distributed random numbers, which was then normalised so
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Figure 5.13: Thresholds for the random features after learning on the
training set of the N-MNIST dataset. These graphs show the final threshold
values for the features provided in Figure 5.12 after training on the N-MNIST
dataset. The adaptive thresholds determined by the algorithm differ greatly
from the initialised value of 0.5 for both the ON and OFF clusters. It is these
determined thresholds that produce the strong classification performance of the
random clusters.

as to place it on the unit hypersphere. These clusters are identical to those used
to initialise the clusters before learning based on the N-MNIST dataset under the
adaptive thresholding technique described in Section 5.4.2.

For the first set of tests, the random feature clusters were initialised with a
fixed threshold value of 0.5 for each cluster. As the algorithm makes use of the
cosine distance as a metric to match features, the range is inherently limited to
[−π, π), and therefore any value within that is an appropriate threshold. The
threshold is therefore measured in radians, as it defines the range of angles over
which the cluster will match an incoming feature.

When attempting to match features to these clusters, the algorithm produced
hardly any features per input sequence, and the resulting classifier did not produce
any classification accuracy above chance.

Given that the random clusters with a fixed threshold failed to produce feature
events with any separability under the ELM classifier, the adaptive threshold-
ing mechanism was implemented without the update to the clusters from Equa-
tion (5.1). This fixes the clusters, and simply adjusts their thresholds according
to the input. In essence, the adaptive threshold seeks to ensure that the firing
rate of each cluster is roughly equal, by penalising clusters that match too often,
and expanding the threshold of clusters that do not.

Figure 5.13 shows the thresholds learnt through a single pass over the N-
MNIST dataset. These thresholds and clusters were then used to convert the
N-MNIST digits into feature events for classification, and then classified using
an ELM classifier. The classifier operated in the same manner as presented in
Section 5.4.3, except making use of the randomly generated features and their
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Table 5.4: Classification accuracies obtained with 5× 5 random clusters
and adaptive thresholding on the N-MNIST dataset using an ELM clas-
sifier. These results made use of the random clusters shown in Figure 5.12 and
the learnt adaptive thresholds from Figure 5.13. Ten trials of each configuration
were tested.

Hidden Layer Sizes

1000 2000 3000 4000 5000 6000 7000 8000

Mean 74.17% 80.90% 83.16% 84.95% 85.94% 86.99% 86.84% 87.23%
Max 74.64% 81.09% 83.56% 85.05% 86.32% 87.28% 86.98% 87.35%
Min 73.79% 80.67% 82.80% 84.82% 85.55% 86.70% 86.69% 87.11%
STD 0.35% 0.17% 0.31% 0.10% 0.38% 0.29% 0.14% 0.12%

Table 5.5: Classification accuracies obtained with 11×11 random clusters
and adaptive thresholding on the N-MNIST dataset using an ELM
classifier. Ten trials of each configuration were tested.

Hidden Layer Sizes

1000 2000 3000 4000 5000 6000 7000 8000

Mean 75.53% 83.03% 86.37% 87.92% 89.01% 89.74% 90.27% 90.50%
Max 75.79% 83.24% 86.81% 88.27% 89.34% 89.98% 90.75% 90.69%
Min 75.01% 82.56% 85.98% 87.72% 88.83% 89.30% 89.90% 90.38%
STD 0.28% 0.25% 0.28% 0.24% 0.17% 0.23% 0.27% 0.11%

associated thresholds.
Table 5.4 presents the results of the classification using the randomly-generated

feature clusters. Interestingly, these results actually outperform the 5×5 clusters
generated by the adaptive thresholding method, as shown in Figure 5.14. The
random clusters outperformed the trained clusters by no more than 3%, but con-
sistently, implying that the limited number of clusters is insufficient to cover the
feature space of the input data, and that the random features were better able
to cover the range of inputs in the higher dimensional input space.

The same methodology was then applied to the 11 × 11 clusters, with 100
clusters generated for each event polarity. Each cluster was randomly generated
and normalised in the same manner as the 5 × 5 clusters, with the thresholds
determined using the same iterative learning method. Figure 14 and Figure 15 in
the Appendices show the random clusters generated for the ON and OFF events
respectively.

Table 5.5 shows the classification results obtained using the 11 × 11 random
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Figure 5.14: Comparison of the classification accuracy between the
trained 5 × 5 features and the random 5 × 5 features. Each network
contained 50 clusters, evenly split between ON and OFF clusters. Ten trials of
each experiment were performed.

clusters. Eight hidden layer sizes were tested and ten trials of each experiment
were performed. The 11×11 features outperformed the 5×5 random features for
each hidden layer size, and achieved a maximum mean accuracy of 90.27% with
8000 hidden layer neurons.

Unlike the 5 × 5 random clusters, the 11 × 11 clusters did not outperform
their trained equivalents. As shown in Figure 5.15, the 11 × 11 trained clusters
outperformed the random clusters for each hidden layer configuration, with a
strikingly higher performance when using networks of smaller hidden layer sizes.

This result is interesting as it validates the use of the trained clusters, and
suggests that the 5 × 5 features do not encode enough specific information to
produce good separability for the ELM classifier. The 11 × 11 clusters allowed
for more clusters to be implemented (100 per polarity as opposed to 25), and
each cluster encodes more spatial information per event, which allows the ELM
classifier to achieve higher accuracies.

The performance of the random clusters provides additional insight into the
nature of the information encoding in this type of network, as it shows that much
of the information is contained within the temporal information, as the random
features perform well without the explicit spatial structures that the adaptive
clustering seeks to extract, and further upholds the theory that the motion of the
camera serves to encode the spatial information into the temporal aspect of the
spatio-temporal pattern.
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Figure 5.15: Comparison of the classification accuracy achieved with the
random clusters and trained clusters for varying hidden layer sizes.
The results for the two cluster configurations are presented for both the ran-
domly generated clusters and the clusters learnt using the adaptive thresholding
technique.

Table 5.6: Summary of the accuracies using SKIM for the MNIST
dataset using clustered features on the surface of time.

Hidden Layer Sizes

1000 2000 3000 4000 5000 6000 7000 8000

Mean 85.97% 90.47% 91.88% 92.75% 93.43% 93.73% 94.11% 94.25%
Max 86.82% 90.99% 92.34% 93.06% 93.66% 93.85% 94.66% 94.56%
Min 85.01% 89.95% 91.50% 92.39% 92.87% 93.58% 93.92% 93.97%
STD 0.69% 0.45% 0.34% 0.21% 0.25% 0.08% 0.24% 0.15%

5.4.5 Surface Feature Classification with SKIM

Combining the online clustering with the SKIM network creates a fully event-
based network from end-to-end. The network operates on each spike, updating
the clusters and learning in a feed-forward manner. The SKIM network is also
particularly well suited to the nature of the events produced by the adaptive
threshold clustering, as they are inherently sparse spatio-temporal patterns.

Where the ELM required the vectorisation of the resulting spatio-temporal
pattern in feature space, the SKIM network can operate on it directly, and there-
fore has only a single input channel for each feature cluster, allowing a far smaller
input layer than in any previous SKIM network presented in this work.

Table 5.6 shows the results from the SKIM classifier using the 11×11 clusters
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on the N-MNIST dataset. It is immediately clear that the SKIM network per-
forms exceeding well, and achieves the highest overall accuracy for the N-MNIST
dataset of any work presented in this thesis.

The SKIM network also outperforms the other networks and classifiers at all
hidden layer sizes, achieving an accuracy of 85.97% with only 1000 hidden layer
neurons, outperforming the best ELM result of 75.53% achieved with 1000 hidden
layer nodes and the 11×11 clusters. The SKIM implementation also outperforms
the ELM results achieved using the feature orientations in Section 5.3.3, with the
orientations-based classifier achieving 81.75% with 1000 hidden layer nodes.

5.4.6 Discussion

The results presented in this section demonstrate that features extracted from
the time surfaces introduced in Section 3.3 provide a good means to convert the
classification task from a spatial domain to a feature domain. In contrast to the
results obtained with the orientation features in Section 5.3, the entire system
presented in this section operates in an event-based paradigm, and retains the
sparse event-based representations generated by the ATIS camera.

Accordingly, the SKIM classifier also outperformed the ELM classifier. When
using the orientation features, which diverged somewhat from a fully event-based
methodology, the ELM classifier produced a better classification result. The
sparse spatio-temporal patterns generated by the feature detection and extraction
process outlined in this section are more consistent with the types of patterns for
which the SKIM classifier was designed. The resulting online system produced
better results with fewer neurons, and achieved the highest classification accuracy
to date with the N-MNIST dataset.

The adaptive threshold clustering approach presented in this section also il-
lustrated a number of interesting properties of event-based visual classification.
The performance of the networks with random clusters, although not on par with
the trained clusters for the 11 × 11 feature sizes, still produced good classifica-
tion results, comparable to those achieved using the raw event streams for digit
classification presented in Section 4.4.2.

The strong classification results achieved using random features leads to a
number of important directions for future research. Using random clusters re-
moves the need to explicitly learn features, reducing the complexity and compli-
cations for a hardware implementation. These features can be hard-coded and
fixed, removing the need to store or transmit their values. It is even possible to
make use of device heterogeneity to generate these clusters in hardware directly.

The use of random clusters also allows for the use of fixed clusters, which
greatly simplifies the hardware implementation of such a system, allowing the
use of the same clusters with multiple scenes. This also opens up other potential
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research avenues regarding the use of orthogonal random clusters and other types
of fixed clusters.

The random features also highlight the importance of camera motion in en-
coding spatial information into the temporal aspect of the event-based data. The
conversion to time surface features effectively discards much of the spatial infor-
mation in the event-stream. Each feature represents a specific spatial structure,
but the conversion to a spatio-temporal pattern only indicates the presence of
such a feature at a given time, rather than the specific spatial location of it.

The SKIM networks used to do the initial classification on the N-MNIST
dataset in Section 4.4.2 mapped pixels directly to inputs to the SKIM network,
and the delayed alpha functions allowed the effects of a spike on one input channel
to affect the system at a later point in time. The results achieved using that
framework relies on the spatial data which is no longer present in the feature
spaces introduced in this section.

The strong performance of the purely random clusters indicates the impor-
tance of this temporal information, as it shows that the structural information
attached to each cluster through training contributes only a small portion of the
classification accuracy. This result serves to provide further evidence of the im-
portance of both the spatial and temporal information in event-based vision, and
is consistent with the effects underlying the improvements in accuracy resulting
from the spatial downsampling presented in Section 4.6.
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Conclusions

6.1 Validation of the Neuromorphic Datasets

Good benchmarks are important as they serve to provide a means of comparing
and contrasting algorithms and serve to spur interest and further development in
the field of research surrounding them. The lack of consistent and well-adopted
benchmarks in the neuromorphic community complicates this process of compar-
ing and contrasting performances and figures of merit for algorithms and systems.
This thesis introduced two new neuromorphic datasets, created from existing and
well-established computer vision datasets and intended to address this shortfall.
These datasets, based on the MNIST dataset and the Caltech101 datasets, main-
tain the structure and methodology of the originals, allowing for comparison and
contrast to existing conventional computer vision systems.

This thesis includes a detailed analysis of these two datasets, in terms of the
conversion process and by providing a number of important benchmark results.
An initial set of statistical classifiers demonstrate a baseline classification accu-
racy, and the work in later chapters serves to set further accuracy benchmarks on
the datasets. This work also serves to demonstrate the viability and usefulness
of the two benchmark datasets in comparing, contrasting and characterising the
network performance of event-based classifiers. The ability to compare to con-
ventional computer vision approaches proved useful in the analysis of the results
as it provided an intuitive means of understanding of the input data, which often
is not easily accessible from the event-based output of the silicon retina.

The N-MNIST dataset, the neuromorphic conversion of the MNIST dataset,
retains all the benefits of the original dataset in terms of the large corpus of
available samples, the clear training and testing splits and the homogeneous and
centred digits in each class. The N-Caltech101 dataset, representing the con-
verted Caltech101 dataset, provides a more challenging classification task as does
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the conventional computer vision equivalent. The numerous and diverse set of
categories and the variety within create a far more difficult classification task
more reminiscent of a real-world task.

As demonstrated in this thesis, these two datasets together provide a powerful
means of characterising and evaluating feature detectors, AER filtering compo-
nents and full classification systems. Despite the noise and artifacts introduced
into the dataset information through the physical conversion process, the results
achieved on the datasets come close to those achieved with similar techniques in
conventional computer vision, especially in regard to the N-MNIST dataset.

6.2 Viability of Event-Based Object Classifica-

tion

The work in this thesis deals primarily with the classification of objects from the
event-based output of a silicon retina. This work explores two primary means
of performing such classification. Chapter 4 presents the first approach which
operates on the event-streams directly in order to perform classification, making
use of both the spatial and temporal information in the patterns directly.

Chapter 5 describes the second approach to classification on event-based visual
data, and makes use of extracted features from the event-based data in order to
perform classification. Chapter 3 explores two classes of such features, providing
a detailed description and analysis of the nature of these features, the means
of extraction in an event-based manner and methods to assess the quality and
usefulness of such features. A corollary to the detection of features of interest
is the removal of noise and features that do not contribute information to the
classification system, and the analysis of the feature detectors includes details
on their noise filtering abilities. This is particularly relevant as it is possible to
implement these systems as stand-alone noise filters for use in any event-based
visual processing system.

The results from both approaches demonstrates the viability of an event-
based classification system using silicon retinas and biologically-inspired learning
mechanisms. The event-based nature of the majority of the systems presented
in this work serves to maintain the data-driven ethos of event-based vision and
computation. Although no explicit hardware implementations were undertaken
in this work, it serves to verify the efficacy of such an approach and validates the
benefits of event-based systems.
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6.3 Applicability of SKIM and OPIUM to Event-

Based Classification

This work explores the use of the SKIM and OPIUM learning methods with both
event-based vision systems and large datasets. This work makes use of SKIM
networks applied to the largest datasets to date, implementing the largest hidden
layer sizes and simultaneously training the largest number of output neurons.
The success of the classifiers built using these SKIM networks validates both the
underlying SKIM algorithm and its applicability to event-based tasks such as
those presented in this work. The further work on optimisation of the SKIM
network for parallel GPU implementation serves as a first-step toward the faster
hardware-based implementations required for real-time operation of such systems.

A number of experiments in this thesis also made use of ELM networks trained
using the iterative OPIUM method, and made extensive use of the iterative nature
of the algorithm to handle event-based data. The increased cost per update
found in the OPIUM approach is offset by the ability to train and inspect the
system iteratively, and to respond in an event-based manner to newly arriving
information from the silicon retina. This work makes use of large three-layer
networks trained with OPIUM in both a fan-in and fan-out configuration, and
demonstrates the effectiveness of the method to large event-based techniques.

A further finding in this work is in the context in which to apply the OPIUM
and SKIM methods. The work on detection using features presented in Chapter 5
serves to highlight the applicability of the two networks. Although both feature
extraction methods operated on event-based data and produced spatio-temporal
patterns, the nature of the two patterns differ, as do the results obtained us-
ing the SKIM and OPIUM methods. The orientation features produced dense
spatio-temporal outputs on which the OPIUM-based ELM network produced a
far superior performance, whereas the spatio-temporal patterns produced by the
adaptive thresholding on the time surfaces were sparse by contrast, and resulted
in better performance from the SKIM network.

The SKIM network is therefore better suited to effectively learning sparse
spatio-temporal patterns, whereas the OPIUM-based ELM produces better re-
sults on denser spatio-temporal patterns. The SKIM method also performed
better when operating in feature-space, rather than on the spatial information
from the raw events from the silicon retina. This suggests that the SKIM method
works optimally with less input channels that encode more information.

Another important distinction highlighted in this work is that the SKIM
network operates in an event-based manner, whereas the OPIUM-based ELM
method requires the vectorisation of the entire output prior to classification. For
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this reason, the ELM networks were primarily used to validate the ability for
classification, rather than to provide a viable means of performing on-line clas-
sification. The SKIM networks implemented in this thesis provided an on-line
approach to both learning and recognition, with the final classification system
presented using the time-surface features performing both the extraction of tem-
plate features and the learning simultaneously in an event-based manner. As a
result, the best performing classifier in this thesis is also the one closest to the
fully event-based and iterative ethos of event-based vision and computation.

6.4 The Importance of Motion in Event-Based

Classification

The best classification results achieved in this thesis involved either the spatial
and temporal downsampling of the event-streams, or the extraction of features
at the expense of spatial information, with the former producing the best results
on the N-Caltech101 dataset and the latter producing the highest classification
accuracy on the N-MNIST dataset. Both these techniques serve to highlight the
importance of motion in the encoding of spatial information into the temporal
aspect of the event-based data.

The spatial and temporal downsampling on the two datasets produced an
increase in accuracy, with the spatial downsampling effectively creating small
receptive fields on the input sequences, thereby providing some additional spatial
information on each channel. The temporal downsampling also produced a boost
in accuracy, particularly on the N-Calteech101 dataset. A candidate explanation
for this increase in accuracy relates to the means by which the motion of the
camera encodes the spatial structure of the scene in the relative timing of spatially
adjacent events and the temporal downsampling aggregates this information for
the classifier. Bolstering this theory is the increased accuracy obtained using
the clustered features on the time surface, in which there is no direct spatial
information provided to the classifier.

The conversion process used to create the two datasets made use of a fixed
motion pattern for the camera, and the consistency of the motion across the
conversion of each element in the datasets serves to make the classification task
easier. It is likely that any consistent motion of the camera will result in a similar
ability to perform classification. It may also be possible to make use of different
random movements of the camera, especially if the nature of the movement is
available to the classification system.
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6.5 Future Work

The work presented in this thesis intends to provide a framework and investigation
into the applicability and efficacy of event-based classification and object recog-
nition using silicon retinas. The design of the methods placed more emphasis on
exploring the nature of the problem and potential solutions than on efficient and
hardware implementations. As the results of this work demonstrate the potential
of such systems, the practical and real-time implementation of the components
forms a portion of the future directions for this work. This work includes the im-
plementation of the feature detectors as on-board hardware for the ATIS camera,
FPGA and analogue implementations of the SKIM and OPIUM methods and use
of the hardware-optimised SKAN method instead of the real-valued variant used
in the adaptive threshold clustering.

An important future direction for this work is the extension of the principles
to the realm of tracking in event-based data. The high-speed and event-based na-
ture of the silicon retinas provides the optimal conditions for high-speed tracking,
and much of the feature detection and processing presented in this thesis applies
directly to the task of tracking, and can ultimately apply to the development of
a truly event-based Simultaneous Localisation and Mapping (SLAM) algorithm.
The two feature detectors presented in this work serve as candidate feature de-
tectors for a SLAM algorithm, along with the ability to automatically extract
relevant clusters using the adaptive thresholding technique. The classification
and recognition tasks, along with the invariance achievable using the descrip-
tors presented in this thesis, serve as potential building blocks in the recognition
portion of a SLAM implementation.
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Appendix A: Detailed Analysis of

N-MNIST and N-Caltech101

Analysis of the N-MNIST Dataset

The MNIST dataset contains a total of 70,000 presentations of the handwritten
digits in the range of 0 to 9. These are divided into a training set of 60,000 images,
and a further 10,000 images reserved for testing purposes. The N-MNIST contains
the same number of testing and training items, and preserves the distribution of
images between them. Numbering, ordering and labelling match those in the
MNIST dataset exactly.

As the nature of each training and testing item is no longer a static image,
but rather an event sequence from a physical device, the specific characteris-
tics relating to events of each sequence varies slightly. This is partially due to
slight variations in the motor timing and responses, but primarily due to the
nature of the digits and the event-based nature of the ATIS device. For a more
thorough overview of how these cameras work, please refer to Section 2.2.3 and
Section 2.2.4.

Figure 1 shows the characteristics of the sequences in the training and testing
datasets respectively. It can be seen that the structure of both the testing and
training set are similar. The pattern lengths are consistent between the testing
and training sets, and based on this data a fixed pattern length of 315 ms was
chosen to fully contain all digit sequences. A summary of the overall statistical
properties for the entire dataset is given in Table 1, shown separately for the
training and testing dataset.

Each digit consists of an AER recording from a 34× 34 pixel window centred
on the digit. As Figure 4.5 shows, this larger spatial resolution was required to
keep the full 28 × 28 pixel digit in the frame during the motion of the camera.
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Figure 1: Histograms showing the number of events and the duration
of the sequences for the training and testing datasets. The testing and
training histograms are overlaid to illustrate the similar nature of the testing and
training sets. There are 60,000 training samples, and 10,000 testing samples and
the same bin-widths were used for both the training and testing data.

Table 1: Statistical summary of the N-MNIST dataset. Results are shown
separately for the training set of 60,000 digits, and the testing set comprising
10,000 digits.

Training Set Testing Set

Statistic Mean σ Mean σ

Duration of Recording (ms): 306.5 2.898 306.2 3.05
Number of Events: 4171.89 1196.2 4203.6 1157.4
Number of ON Events 2083.69 573.59 2087.4 557.28
Number of OFF Events 2088.3 622.75 2116.19 600.4
x Addresses (pixels) 17.66 5.05 17.66 4.97
y Addresses (pixels) 18.1 6.38 18.11 6.36
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Figure 2: Average number of events per digit in the dataset (left), and
accuracy of classification per digit when attempting to classify using
the number of events alone. The classification method determined the digit
with the closest mean number of events to the current test sample. It is interesting
to note that digit 0 has the largest number of events, whilst digit 1 has the fewest.

The average length of each recording is 306 ms, and contains an average of 4172
events. However, the number of events varies from digit to digit. Figure 2 shows
the average number of events per digit on the right. It is interesting to note that
the digit 0 contains the largest number of spikes on average, whilst the digit 1
contains the fewest.

In order to explore the predictive power of the number of events in each
pattern, a simple classifier was constructed to classify each testing sequence based
on the digit with the closest mean to the current number of events for that training
sample. The results of this classifier are shown in Figure 2. Overall, the classifier
produced a recognition accuracy of just 26.25%, which is well above the chance
level of 10%.

Individual digit results are presented in Figure 2, where it can be seen that the
digits 0 and 1 displayed the highest recognition accuracy. This is to be expected,
considering that they occupy the two ends of the range of event numbers. This
result may be significant in explaining the tendencies of poor classifiers to favour
these two digits.

The above approach takes the simplest and most direct means of construct-
ing a classifier by examining the digit means. A more robust approach uses a
k-nearest neighbour (kNN) method to classify each digit. This has the disadvan-
tage of being computationally more costly during recall as it cannot be as readily
precomputed as in the digit means method above. A kNN approach was imple-
mented and tested for 9 different statistical properties calculated across the each
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individual training and testing sample. For each pattern, the following statistical
properties were used:

1. The total number of events in the pattern

2. The duration of the pattern in milliseconds

3. The number of ON events in the pattern

4. The number of OFF events in the pattern

5. The ratio of ON events to OFF events in the pattern

6. The mean x address calculated across all the events in the pattern

7. The mean y address calculated across all the events in the pattern

8. The standard deviation of the x addresses in the pattern

9. The standard deviation of the y addresses in the pattern

The values shown in Table 1 give the mean value and standard deviation
across each individual sequence in the training and testing sets. These same
parameters were calculated for each individual training sequence, and then used
as the source dataset for a kNN classifier. For each testing sequence, the same
statistics were then found, and the closest k neighbours extracted. Values of k
up to 1000 were tested, and the results stabilised with a k ≥ 10.

A vector containing the k neighbouring digits was then created, and the mode
extracted to serve as the final classification output. Due to the sheer size of the
training set, it is often possible to have multiple training sequences that are
exactly the same distance from the testing sample in question, resulting in a
tie. The classifier was tested with, and without including ties, will no significant
difference seen in performance.

Figure 3 shows the results of the kNN-classifier when applied to the 9 dif-
ferent statistics from the N-MNIST dataset. The classifiers based on duration
of sequence, and the means of duration and event coordinates (shown in grey in
the figure) yielded statistically insignificant classification results. As the original
MNIST digits were centred using their centre of mass within the 28 × 28 pixel
window, and as the N-MNIST dataset is based on a scaled and centred version
of those digits, it holds that the N-MNIST dataset exhibits this same property.
It is therefore to be expected that the mean x and y position should hold no
statistical value, as visible in Figure 3.

As the movements and timings were all controlled, the duration of the pattern
should ideally be equal for all sequences. Due to noise and real-world effects
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Figure 3: Classification Results for a kNN Classifier based on Statistical
Properties of the N-MNIST dataset. The resulting accuracy of the kNN
classifiers with a k = 10 for 9 statistical measures on the dataset. Statistically
insignificant results are shown in grey.

resulting from timing and accuracies in the hardware and acquisition process,
there is a small variation (as seen in Table 1) in the duration of each pattern.
The performance of the classifier based on the duration of the sequence, as shown
in Figure 3, demonstrates that this small offset contains no significant classifying
power.

The classifiers based on the number of events produced a classification accu-
racy well above the level of pure chance, and achieved similar performance when
applied to the number of ON and OFF events, in line with expectations as the
number of ON and OFF events in the dataset is well balanced.

Finally, the standard deviation of y produced the best classification result.
The standard deviation of the x values also performed well, but did not yield the
same level of performance. The overall standard deviation in y across the whole
dataset is larger than that of the x pixels, which arises from the fact that the
third saccade motion is a pure rotation, and therefore produces fewer events for
features that exhibit strong vertical gradients.

Analysis of the N-Caltech101 Dataset

The Caltech101 dataset, originally collated to provide an assortment of images to
test online object recognition algorithms [154], contains images of objects from
101 categories and a separate background class. Intended to provide a more
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challenging classification problem than the MNIST dataset, it contains far fewer
training samples per category and far more classes.

Unlike the MNIST dataset, there is no specific, logical or defined split between
testing and training data and, due to the complexity of the task, a number of
different methodologies to divide the dataset exists. Issues arise from the varying
number of image samples in each category, requiring either the use of only a
subset of the available images, or the post-classification adjustment of results to
reflect the imbalanced number of training samples per category.

The Caltech101 dataset images were converted using the same process used to
create the N-MNIST dataset (detailed further in Section 4.3.3). The same saccade
timings were used to generate the patterns, and the distance from the LCD
monitor determined for the N-MNIST dataset was maintained. To compensate
for the differing image sizes, each image was resized to fit within the frame of the
ATIS sensor whilst maintaining its aspect ratio. As before, no noise filtering was
performed either in hardware or software.

Table 2: Statistical Summary of the N-Caltech101 Dataset. The statistics
for the N-Caltech101 dataset are presented separately for the 101 object classes
and the background class as shown below. As the N-Caltech101 images are dif-
ferent sizes, the range of x and y addresses are also included in the statistics.

Object Categories Background Category

Statistic Mean σ Mean σ

Duration of Recording (ms) 300.16 4.60 300.92 5.26
Number of Events 115117 57968 140620 71924
Number of ON Events 56936 28039 69023 34577
Number of OFF Events 58180 30021 71597 37443
x Range (pixels) 198.53 43.079 189.96 45.11
y Range (pixels) 155.88 26.76 166.82 12.37
x Addresses (pixels) 100.72 57.784 95.83 57.78
y Addresses (pixels) 81.23 46.15 84.51 46.15

Table 2 shows a statistical summary of the N-Caltech101 dataset, with sep-
arate statistics for the object classes and the background class. As with the
N-MNIST dataset, the duration of each sequence is close to the expected du-
ration of the three 100 ms saccades. Unlike the MNIST dataset, the number
of events is far greater and exhibits a far greater variability. It is likely that
this difference is the result of the increased complexity and heterogeneity of the
real-world objects and scenes in the Caltech101 dataset.
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Despite the varying image sizes, in which the widths ranges from 41 pixels to
223 pixels and the heights from 55 pixels to 173 pixels, the mean x and y addresses
(analogous to the concept of the image centre of mass) are squarely within the
mean x and y ranges, indicating that the images are well centred within the
camera frame. The table also shows that, similarly to the N-MNIST dataset,
there is also a good balance between ON and OFF events on average. There is a
large variance around the mean for the number of events, which is indicative of
the wide range of image sizes, and the varying content of each image.

It is important to consider the nature of the sensor in the image conversion
process, especially with respect to real-world scenes. As each pixel operates inde-
pendently, and responds only to change in illumination, it is not always possible
to reliably correlate the image size to the number of events, as an image with
large areas of uniform intensity will generate fewer spikes. Section 2.2.3 contains
a full treatment of the nature of these imaging devices.

In a similar vein to the approach taken the with the N-MNIST dataset, statis-
tical measures were used to build a simple kNN classifier in order to determine a
base level for classification accuracy. As the images sizes vary for the Caltech101
dataset, two new statistics based on the x and y sizes of the images were also
included.

As an initial test, the binary classification task proposed by Serre et al. [136]
and more recently by Orchard et al. [150], was attempted as it provides bench-
marks by which the results can be compared.

For each category, the task is to determine if the object is present or not.
The background image class is included in the training to provide the non-object
training data. The classifier is trained on equal numbers of samples from the class
under test and the background image class, with the remaining images from both
sets used for testing. The results of each class were not weighted to reflect the
number of samples available for testing, and therefore the results for each class
should be considered independently.

Although the two papers mentioned above make use of six categories, only
four of these are contained in the Caltech101 dataset (airplanes, cars, faces and
motorbikes) and only those four were used in these experiments. Each category
was tested independently, and the results of the binary classification task are
shown in Figure 4.

The binary separation task is one of the least challenging classification tasks
for the Caltech101 dataset, and most algorithms achieve accuracies in the range
of 96% to 99%, and it is clear from Figure 4 that the statistical approach does
yield some predictive power. Performing a sweep through all k values in the
range of k ∈ [1, 1000] found that a value of k = 10 produced good results with a
reasonable computational load, and only a small increases in accuracy (±0.5%)
occurred with higher values of k, but at a higher computational cost. This value
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Figure 4: Results for kNN Classifiers based on statistical properties of
the N-MNIST dataset. The classifiers were trained with k = 10, which was
empirically found to produce marginally better results than any other value such
that k > 4. The four categories were tested independently from each other. As
this is a binary task, the probability due to chance is 50%.
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of k is also consistent with the value used in the statistical classifiers previously
for the N-MNIST dataset.

The number of events in each sequence proved to have less classification power
than it did against the N-MNIST dataset. The similarity between each sequence
within each class, and the stark contrasts between items of different classes in the
N-MNIST dataset (as highlighted by the blue and red bars shown in Figure 2)
may serve to explain the better result on N-MNIST.

It is immediately apparent that the two additional classifiers based on se-
quence size (x size and y size) provide the best results. This is a factor that needs
consideration when the using the data in a learning algorithm. The specifics of
the learning system, and the means by which data is inputted, are the primary
factors that dictate the handling of images of non-uniform size. As an example,
Serre et al [136] restricted the image width to 140 pixels and scaled the height
accordingly, but their implementation used a multi-layer network with pooling,
and the difference in size did not have an impact on their system or on its struc-
ture. When dealing with the N-Caltech101 dataset, this difference in image size
manifests as a change in the range of the x and y dimensions of the event stream
for each sequence.

Using the same subset of data in a full 5-way classification task, with the same
statistical measures, yields the results shown in Figure 5, which also shows the
full confusion matrices for all 11 classifiers and the overall classification accuracy
achieved. The 5-way classification task considers all the samples from the different
categories and labels them according to their class. The kNN classifiers for the
binary separation task made use of only two classes, whereas there are five classes
available in this experiment.

The dataset required division into an equal training and testing set, with half
the available samples from each category included in each. There is no inherent
training with a kNN classifier, but rather a calculation step which generates
the labelled data. The testing process performs the actual nearest neighbour
calculation, and allows for the varying of the number of neighbours (the k value)
during the testing. This also inherently allows for multiple and parallel testing,
allowing for the wide sweeps of k-values performed. As the entire process is
deterministic, there is no need to run multiple trials. The order of training and
testing also plays no role, and there are no effects arising from them.

The results in Figure 5 demonstrate a number of interesting properties of the
dataset. As expected, the classifier based on the duration of the sequences pro-
vided almost no classifying power as the duration is uniform across all samples.
In addition the classifier based on the ratio of ON to OFF events also produced
a result close to chance, which is in line with the balanced nature of the number
of ON and OFF events shown in Table 2. The classifiers based on the number
of events produced similar results for the number of ON events and the number
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Figure 5: Confusion matrices for the 5-category classification problem
using a kNN classifier trained with statistical information. For each
of the eleven statistical classifiers, the full 5-way confusion matrix is presented,
along with the overall accuracy achieved. The matrices are coloured to highlight
the distribution of classification results.
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of OFF events, but slightly better for the total number of events. The complex
nature of the objects and the dissimilarity between objects within a single cate-
gory may serve to explain why the number of events does not perform well as a
classification statistic.

The classifiers based on the mean and standard deviation of the x and y
addresses of the events in each sequence produced much better results than those
based on the number of events. These relate to the balance and distribution about
the centre of the image, and demonstratively possess some classification ability.
As mentioned in the discussion on conversion methodology in Section 4.3.3, the
conversion process attempted to maintain the aspect ratio of each sequence and
also ensured that each image was centred within the camera frame. It is important
to note that this centre is not necessarily the same as the centre of mass of the
image itself, but rather the central pixel of the sequence. It assumes that the
image is already centred within the input image during the conversion process.
It is likely that the object structure affects the distribution of pixels around the
central point, and the variability around it gives rise to the ability to classify with
the standard deviations about the means.

The results from the x and y size classifiers are also interesting. The almost
uniform response from the classifier based on the x size arises from the resizing
action of the conversion process, which limits the width of the image, and adjusts
the height accordingly to maintain a constant aspect ratio. The high accuracy
attained with the y size is indicative of this, and demonstrates that there is a lot
of information encoded in the aspect ratio of the image. This is likely due to the
shape of the objects having a direct impact on the framing of the images, and
therefore the aspect ratio.

The same statistical classification approach can also be applied to the full
101-way classification task. The number of images per category varies in the
N-Caltech101 dataset, and therefore only 30 images from each category could be
used in order to ensure equal numbers of images from each category. The same
eleven classifiers were used, and trained using the same methodology as in the
5-way classification task.

Figure 6 shows the results of the 101-way classification task using the eleven
statistical classifiers. The probability due to chance in this task is below 1%.
As before, the classifiers based on x and y size produced the highest accuracies,
but it is clear from the plots that this is only achieved by correctly identifying a
handful of categories and defaulting to a single class for the rest. The classifiers
based on the means achieved the second best results, with a more even spread
across the object classes.

These results are intended to serve as a benchmark representing the lowest
expected accuracy from any given classification technique.
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Figure 6: Classification accuracy and confusion matrices for the 101-way
classification tasks performed using the kNN classifier. The confusion
matrices for all 101 classes are shown with the colours indicating the relative
number of samples falling into that classification. In the case of the 101-way
classification task, the accuracy due to chance is less than 1%. These graphs
show that the statistical classifiers perform poorly and favour only a small subset
of the available classes. The graphs also lack the large values on the diagonal
corresponding to correct predictions which are present in later classifiers.
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Appendix B: Optimisation

Methods for LSHDI Networks

Introduction

This section introduces and describes the optimisation methods used throughout
this thesis. These methods were instrumental in allowing for the breadth and
depth of testing performed with regard to the SKIM and OPIUM methods. These
techniques enabled the exploration of large networks and provided the means to
perform multiple trials of experiments to produce statistically rigorous results.
The methods detailed in this section relate primarily to the optimisation of the
existing SKIM and OPIUM techniques outlined in [145] and [105] respectively.

There have been a number of different approaches used to improve the speed
and efficiency of the ELM algorithm. These have included recasting the problem
as a MapReduce problem [155] to allow for distributed processing, making use of
particle-swarm optimisation to optimally choose optimal input weights [156] and
a variety of methods making use of the GPU to accelerate the processing [157].
Whereas these methods focus on improving or accelerating the conventional ELM
approach, the techniques discussed in this section extend this work to the iterative
methods of determining the pseudo-inverse weights used in the OPIUM and SKIM
algorithms.

The iterative implementation can even benefit more directly from the in-
creased processing capabilities of a GPU than the conventional ELM algorithm,
as the iterative algorithm forgoes computational efficiency for the ability to it-
eratively train. This allows methods such as OPIUM to operate in an online
manner, relieving the need to wait until all data is present before processing. As
a result, each update requires a computationally expensive update step, each of
which can benefit directly from the GPU optimisation.
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Contributions

This section introduces the following contributions:

• Provides an adaptation of the OPIUM method for use on a GPU, character-
ising the performance gains and exploring the effect on memory utilisation
and classification accuracy.

• Extends the GPU approach to the SKIM method and demonstrates the
performance gains achieved using the GPU.

• Explores the nature of iterative solutions to the pseudo-inverse method for
over-defined systems, highlighting the potential pitfalls and optimisations
possible using the iterative algorithms discussed in this thesis.

OPIUM Optimisation with a GPU

The Graphical Processing Unit (GPU) has gained popularity over the past five
years, due to a sudden increase in the availability and accessibility of the tech-
nology. This has created an entire field of research focused on crafting, adapting
and reconstituting existing algorithms and systems to utilise this computational
paradigm. Although a wide range of problems can directly benefit from the sheer
parallelisation offered by a GPU, it is not always possible to optimise every solu-
tion. There have also been a number of cases in which the impressive performance
gains can be misleading, and biased toward the GPU solution [158]. Often, the
comparison systems used in those experiments makes use of old algorithms and
out-of-date code, and applying a similar amount of time and effort to optimising
these systems with a conventional CPU-based approach would yield a similar
performance boost.

The fundamental nature of a GPU differs from that of a conventional proces-
sor, and certain algorithms lend themselves particularly well to the slower clock
speed but immensely parallel nature of these devices. In these cases, the perfor-
mance boost attained through a GPU device can be orders of magnitude faster
than a standard CPU approach. Matrix manipulations are an example of a set of
operations where performing the calculations in a parallel and distributed manner
is trivial. SKIM and OPIUM both make use of an iterative approach to calculat-
ing the pseudo-inverse solution to a large ELM network and this iterative update
algorithm naturally lends itself to a GPU optimisation. These algorithms are
also computationally costly, and are often limited by computational time rather
than memory or storage limitations. Therefore, there is a strong need to find
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methods to speed up the calculation of these networks to allow for larger and
more intricate networks, and to move toward a real-time online learning system.

This section explores the benefits of utilising a GPU in OPIUM-based tech-
niques through a number of experiments designed to demonstrate the practical
and theoretical improvements that are achievable, followed by a discussion of the
problems and limitations of the such systems.

Implementation

At the core of the OPIUM method is an iterative update of the inverse correlation
matrix used to calculate to update the linear output weights on each iteration.
This allows for the method to handle any number of training samples, but at the
cost of increased processing per training sample (as the correlation matrix requires
an update for each sample, and is not updated in batch as would be the case when
using a non-iterative means of calculating the inverse correlation matrix). The
nature of this problem lends itself particularly well to optimisation on a GPU as
is evident when one examines the update equation for the pseudo-inverse of the
correlation matrix θk from [4] and introduced in Section 2.5.2:

θk = θk − θkakbTk (1)

When dealing with large systems of equations, the size of the vector θk in 1
can grow large in size (often having between 1 and 10 million elements), causing
the computational requirements for calculating the transpose with itself to grow
exponentially. Computing the dot product of two matrices or vectors is an oper-
ation that is particularly well suited to a parallel implementation, and it is this
equation that benefits from a significant speed boost from a GPU implementation.

However, a common problem that complicates the use of GPUs is the differ-
ing architectures in which the GPU and CPU operate. Beyond the fundamental
differences in computing organisation, each device also has its own separate phys-
ical memory. Utilising both the GPU and CPU in an algorithm requires careful
consideration of the costs involved in moving data between the two systems, es-
pecially as these transfers incur significant overhead. Often these overheads can
serve to nullify any increase gained in computational speed.

The structure of the OPIUM method, and all the deriving methods that fol-
low, can avoid the worst of these overhead issues when taking special considering
in calculating and applying the updates to the inverse correlation matrix. By
examining the implementation of the algorithm, it is clear that the inverse cor-
relation matrix θk is only used in two operations; the determination of the error
weighting for a new update of the linear output weights, and then a update to

184



Appendix B. Optimisation Methods for LSHDI Networks

itself based upon the resultant error. The salient point is that both of these oper-
ations can take place entirely within the architecture of the GPU device, and the
large θk matrix can remain entirely on the GPU, with only trivially small matri-
ces (the training input matrix, and the output weights matrix) needing transfer
back and forth from the CPU domain. All of the high intensity computation with
respect to the calculating of the pseudo-inverse can take place on the GPU with
no costly memory transfer overheads.

Results

When using OPIUM to iteratively solve the weights of an ELM system, the imple-
mentation of the update on the GPU yields a significant increase in performance.
The inverse correlation matrix θk is inherently the largest matrix in an OPIUM
implementation and grows exponentially in size with the number of hidden layer
neurons, which in turn grows with the size of the input when using a fixed fan-
out. The update of this matrix, as shown in (1), is the most computationally
intensive step in each training update (approximately 76% of the CPU time).

Therefore, moving this computation to the GPU should yield a boost in per-
formance, specifically in terms of computational speed. The GPU implementation
was compared to the original ELM implementation in order to characterise and
compare these performance gains. Recreating the network configuration used in
the OPIUM paper by van Schaik and Tapson [159] and making use of the same
datasets provided a means to place the results of these tests in context.

The tests made use of a GeForce GTX 650 GPU from NVIDIA, running in a
PC with an Intel Core i7-3820 CPU running at 3.6 GHz and containing 64 GB
of memory. This machine represents a high-end desktop workstation, making it
a suitable device on which to run the CPU comparison tests.

Both networks received the full set of 60,000 training samples in the same
random order. Both networks made use of the same sets of random hidden layer
weights, with no additional pre-processing performed on the input data with the
full resolution of 28 × 28 pixels used to form the 784 inputs for each training
sample.

Figure 7 shows the training and testing times for classifying the MNIST
dataset iteratively using the OPIUM method for the normal implementation and
the GPU-optimised variant. The training time represents the total time taken
to train the entire network, including all overheads and to mitigate any external
effects surrounding the implementation of these algorithms; both methods used
a common framework to load input data and process output results.

Both methods were written in Matlab with a focus on ensuring that the two
implementations were as similar as possible. The non-GPU code is entirely vec-
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Figure 7: Comparison of the Training and Testing Times of an ELM
Classification of the MNIST digits with and without GPU Acceler-
ation: The clear speed improvement in training times resulting from the GPU
optimisation is shown in (a), whereas (b) shows the more moderate improvements
in testing time when using the GPU acceleration. The graph in (b) shows how
the overhead from the GPU memory transfers negatively affect the testing times
for lower numbers of hidden layer neurons.

torised, and therefore is able to make use of all the optimisations provided by
Matlab, which also include multi-core optimisations. The methodology and de-
sign of the experiment was such as to minimise the difference between the two
implementations wherever possible..

The results show that the GPU optimised algorithm outperforms the standard
implementation in both training times and testing times. The difference in speed
becomes more apparent as the number of hidden layer neurons increases and the
size of the underlying correlation matrix accordingly. This is a direct result of
the benefits of the parallelised cores in the GPU.

The testing does not make use of the correlation matrix at all, as recall requires
no updates to the pseudo-inverse matrix. The testing can only make use of the
GPU optimisation during the projection of the inputs to the hidden layer through
the random input weights. This is not performed during training as it occupies
memory that would further reduce the number of supported hidden layer neurons.

Implementing the project on the GPU is possible as the random input weights
used by the ELM method are constant throughout all operations, and therefore
can be loaded into the memory of the GPU prior to all recall operations.

The testing results in Figure 7b show that the GPU is slower than the conven-
tional ELM method when the number of hidden layer neurons is small (typically
fewer than 1400 neurons). This is due to the additional overhead of transferring
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Figure 8: Effect of Differing Levels of Floating Point Precision on Ac-
curacy and Training Time For GPU Optimisation. The training times
(a) and testing times (b) for the same GPU optimisations running at single and
double precision, showing that using single precision yields a significant speed
advantage. The accuracy in terms of incorrect digits when classifying against
the MNIST dataset is shown in (c), and demonstrates that there is no loss of
accuracy associated with the lower float point precision.

data to and from the GPU memory. When the size of the hidden layer increases
beyond this point, the significance of this overhead diminishes.

The amount of memory available on the GPU devices became the limiting
factor in the testing of the above algorithm, in turn limiting the maximum number
of hidden layer neurons. On the GPU used for these tests, this resulted in a
maximum hidden layer size of 5550 hidden layer neurons when using the standard
Matlab double precision. Later testing on larger GPUs with more memory allowed
the size of this hidden layer to extend well past 12,000 hidden layer neurons.

Effect of Floating Point Precision on Accuracy

One potential means of overcoming the memory limit imposed by the GPU is
to reduce the precision of the calculations by using fewer bytes to store each
numerical value. In effect, this is analogous to changing the underlying type of
the matrix in Matlab from a double to a single. As it happens, GPU hardware is
more adept at performing calculations on single data types than larger ones such
as doubles. This results in a noticeable improvement in performance in addition
to the lower memory footprint. Figure 8 shows the results of training an ELM
classifier with varying hidden layer sizes for the same MNIST dataset used in the
previous examples.
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Each test made use of the same set of random weights for the single and double
precision experiments, and trained using the same random order of the full set of
training samples. Testing made use of the complete testing set, and the reported
time represents the total time taken to train the network including all overhead.
Figure 8c shows the error rate in terms of digits incorrectly classified.

The results in Figure 8c show that there is no significant difference in accuracy
between using single versus double precision. However, there is a clear improve-
ment in performance for both training and testing when using single precision.
The OPIUM method approximates the pseudo-inverse solution for the ELM sys-
tem, making the inverse correlation matrix the most susceptible point to a change
in floating point precision. The effective error rate of the system is a practical
means of measuring the effect of this change in precision, as it represents the
overall performance of the classification system.

The change in precision allows the GPU implementation to support a larger
number of hidden layer neurons. Given the same hardware as before, the same
device was able to implement a fan-out of 8, requiring 6272 hidden layer neurons.
This configuration achieved just 385 errors (96.16%).

Repeating these tests on a machine with a slower CPU but containing a far
more powerful NVIDIA Tesla S2050 GPU, was able to support a fan-out of 11
(8624 hidden layer neurons) at double precision and produced 357 errors (96.45%
accuracy). Dropping the floating point precision to single allowed for a network
with a fan-out of 17 (13,328 neurons) and produced only 292 errors (97.08%
accuracy).

SKIM Optimisation with a GPU

Although the SKIM method can make use of any gradient-descent algorithm in
order to determine the linear output weights, the methods used in this work make
use of the OPIUM method as a means to perform optimisations in an iterative
fashion. It therefore lends itself well to benefit from a GPU implementation as it
relies on the same underlying pseudo-inverse update.

In fact, the nature of the SKIM algorithm makes heavy use of OPIUM as
it performs an update on every time step of the input pattern. Therefore, even
a short pattern requires multiple pseudo-inverse calculations and throughout all
the training (inter- and intra-pattern), the associated inverse correlation matrix
θk can remain in GPU memory.

In order to validate the performance improvements, tests were run using the
same methodology as applied to the standard ELM approach outlined in Section
6.5. SKIM differs from OPIUM in that it operates on spatio-temporal patterns
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Figure 9: Comparison between the GPU SKIM implementation and
the Normal SKIM Implementations for varying hidden layer sizes. The
training time to train all ten trials is shown in (a) and shows a dramatic improve-
ment for the GPU implementation. The average across time for all ten trials is
shown in (b) and represents just the training time itself without any overhead.
It is clear from both plots that the GPU implementation greatly outperforms the
standard implementation.

as opposed to static inputs, and therefore cannot make use of the MNIST dataset
for characterisation. In place of the MNIST data set, the experiments made use
of the N-MNIST dataset from Section 4.3.

The testing made use of the full 60,000 training samples, and the same frame-
work implemented both the normal SKIM algorithm and the GPU-optimised
SKIM version. Only the internal OPIUM update method differed between the
two SKIM implementations.

For each test, ten randomly selected digits were selected from the training
samples and converted into a spatio-temporal pattern consisting of 360 time steps
and 1156 channels. Both systems were trained independently of one another, with
each test including the initialisation of all matrices and objects and the time taken
to remove any matrices from memory (both on the CPU and the GPU).

Figure 9 shows the difference in training and testing times between the two
methods for a variety of hidden layer sizes. Figure 9a shows the overall training
time, which measures the total time taken to complete all ten trials, including
all overheads such as initialising the dataset and all necessary variables. The
time taken for each update to the SKIM network (one for each time step) was
also recorded, and the average of those taken and displayed in Figure 9b. This
measurement therefore captures the time taken to perform just the update step,
excluding the overheads of transferring to and from the GPU.
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Figure 10: Illustration of the under-determined and over-determined
region of an LSHDI network of 1000 hidden layer neurons and the
performance characteristic for an MNIST classifier trained on varying
numbers of training samples.

Iterative Solutions to Under-Determined Prob-

lems

The OPIUM method provides a means of iteratively training an LSHDI network
such as ELM through an iterative means of calculating and updating the Moore-
Penrose pseudoinverse. It is this ability to iteratively train such a network that
gives it the power to tackle problems of any number of training samples without
placing an increasing demand on available memory on the computing device.

When an iteratively trained system is initialised, it has not received any train-
ing samples on which to train and the matrices need to be initialised to logical
values. The work in this thesis has so far initialised the output weights β = 0
and the inverse correlation matrix θk = 0.

If the network contains L hidden layer neurons, this equates to solving a
system with L unknowns with the pseudoinverse. As a result, when iteratively
training an LSHDI system from the start, the entire system is under-determined
until the number of training samples l is equal to L. As a result, the system of
equations underpinning the network will have infinitely many solutions (as there
will always be at least one free parameter).

Figure 10 illustrates the three regions in which an LSHDI network operates.
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Once l = L, the network is fully determined, and the network will have an exact
solution if one exists. Once l > L, the network becomes over-determined and the
network shifts from an exact solution to a generalisation to minimise least-squares
error. This is the usual configuration in which an ELM network operates.

In most classification tasks, the under-determined region is of little signifi-
cance, as the number of training samples greatly exceeds the number of hidden
layer neurons. MNIST, for example, contains 60,000 training samples, which
would require the same number of hidden layer neurons for it to remain in the
under-determined state after training.

The N-Caltech101 dataset, used extensively in this thesis, poses a different
problem. Although it contains many thousands of images in total, when select-
ing subsets for training on the 101-way classification problem, only 1515 images
are available for training. As networks in this thesis range in size from 100
hidden layer neurons to over 10,000 in size, the potential to operate in the under-
determined region becomes a distinct possibility.

Figure 10 also shows the performance of a classifier consisting of 1000 hidden
layer neurons and trained with varying numbers of training samples. The results
shown were generated using the OPIUM method, but an ELM network calcu-
lating the pseudoinverse directly generates the same results. What is interesting
and immediately apparent is that that the network performance reaches a local
minimum around the point at which the network is fully determined. Before that
peak, there is a local maximum accuracy achieved once the network has been
trained on approximately 350 training samples.

This effect is also visible when using other datasets, such as the orientation
features generated in Section 5.3.3 and is shown again in Figure 5.6. The same
effect may also play a role in the performance on the N-Caltech101 dataset as
visible in Figure 5.4, where the results for a network of 1000 hidden layer neurons
outperforms those for a network of 2000 and 3000 neurons.

Interestingly, this effect disappears when the LSHDI network is initialised
using random output weights instead of zero, as shown in Figure 11. In this case,
the initial rise in accuracy disappears, and the values slowly climb instead. This
may be a result of an incorrect error output during the initial training patterns,
causing the iterative solution to deviate from the true pseudoinverse value until
the system becomes fully determined.

This result highlights an important aspect of designing and tuning an LSHDI
network, as having a larger number of hidden layer neurons is not always advan-
tageous when dealing with a small training set. Understanding the nature of the
results during the under-determined region can shed insight into the performance
of vastly under-determined systems and can serve to explain some of the erratic
results obtained.

It is therefore possible that the results achieved on the full 101-way classifica-
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Figure 11: Effect of initial output weights on classifier performance on
the MNIST dataset with iterative training. The graph shows the results
of training an iteratively trained network with 1000 hidden layer neurons on
varying number of training inputs from the MNIST dataset using both randomly
initialised output weights and output weights initialised to zero. Note that these
results show the mean accuracy achieved over 10 trials of each number of training
samples.
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tion on the N-Caltech101 datasets as reported in Section 4.5.6, and which made
use of large hidden layer sizes, are operating in this under-determined region
and therefore could potentially achieve much better performances with a larger
number of training samples.
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Appendix C: Additional Tables

and Figures

This appendix contains additional tables and figures that either supplement the
work presented in the above chapters, or were too large to include within the
chapters themselves.
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Table 3: ATIS Bias configuration values for the N-MNIST and N-
Caltech101 recordings. The following biases were chosen for the ATIS camera
device when performing the conversion process described in Section 4.3.3. The
biases were empirically chosen to provide a balanced number of ON and OFF
events.

Bias Value

APSvrefL 3050mV
APSvrefH 3150mV
APSbiasOut 750mV
APSbiasHyst 620mV
CtrlbiasLP 620mV
APSbiasTail 700mV
CtrlbiasLBBuff 950mV
TDbiasCas 2000mV
CtrlbiasDelTD 400mV
TDbiasDiffOff 620mV
CtrlbiasSeqDelAPS 320mV
TDbiasDiffOn 780mV
CtrlbiasDelAPS 350mV
TDbiasInv 880mV
biasSendReqPdY 850mV
TDbiasFo 2950mV
biasSendReqPdX 1150mV
TDbiasDiff 700mV
CtrlbiasGB 1050mV
TDbiasBulk 2680mV
TDbiasReqPuY 810mV
TDbiasRefr 2900mV
TDbiasReqPuX 1240mV
TDbiasPR 3150mV
APSbiasReqPuY 1100mV
APSbiasReqPuX 820mV
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Figure 12: The 100 ON Clusters for the N-MNIST dataset for 11 × 11
pixel features generated by the Adaptive Threshold Clustering. The
resulting 100 feature clusters after training on all 60,000 training digits in the
N-MNIST dataset. The order conveys no particular significance.
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Figure 13: The 100 OFF Clusters for the N-MNIST dataset for 11 × 11
pixel features generated by the Adaptive Threshold Clustering. The
resulting 100 feature clusters after training on all 60,000 training digits in the
N-MNIST dataset. The order conveys no particular significance.
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Figure 14: The 100 random ON Clusters for the N-MNIST dataset for
11× 11 pixel clusters. These feature clusters are normalised, and the adaptive
thresholding technique was used to determine the individual thresholds for each
cluster.
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Figure 15: The 100 random OFF Clusters for the N-MNIST dataset for
11× 11 pixel clusters. These feature clusters are normalised, and the adaptive
thresholding technique was used to determine the individual thresholds for each
cluster.
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