
HAL Id: tel-01426029
https://theses.hal.science/tel-01426029

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formally Founded Framework for Dynamic Software
Architectures

Everton Ranielly de Sousa Cavalcante

To cite this version:
Everton Ranielly de Sousa Cavalcante. A Formally Founded Framework for Dynamic Software Ar-
chitectures. Software Engineering [cs.SE]. Université de Bretagne Sud; Universidade federal do Rio
Grande do Norte (Natal, Brésil), 2016. English. �NNT : 2016LORIS403�. �tel-01426029�

https://theses.hal.science/tel-01426029
https://hal.archives-ouvertes.fr

THESE / UNIVERSITE BRETAGNE SUD
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITE BRETAGNE SUD

Mention: STIC

Ecole doctorale: SICMA

Présentée par

Everton Ranielly DE SOUSA CAVALCANTE

Préparée à l’unité mixte de recherche 6074

Institut de Recherche en Informatique et Systèmes Aléatoires

Université Bretagne Sud

Un framework formel
pour les architectures

logicielles dynamiques

Thèse soutenue le 10 juin 2016, devant le jury composé de :

M. Paulo Roberto FREIRE CUNHA

Professeur, Université Fédérale de Pernambuco, Recife, Brésil / Président

M. Khalil DRIRA

Directeur de Recherches CNRS, LAAS-CNRS, Toulouse, France / Rapporteur

Mme. Elisa Yumi NAKAGAWA

Maître de Conférénces, HDR, Université de São Paulo, São Carlos, Brésil / Rapporteur

M. Gibeon Soares AQUINO JUNIOR

Maître de Conférénces, Université Fédérale du Rio Grande do Norte, Natal, Brésil /

Examinateur

M. Jair CAVALCANTI LEITE

Professeur, Université Fédérale du Rio Grande do Norte, Natal, Brésil / Examinateur

M. Carlos Enrique CUESTA QUINTERO

Maître de Conférénces, HDR, Université Rey Juan Carlos, Madrid, Espagne /

Examinateur

Mme. Thais VASCONCELOS BATISTA

Maître de Conférénces, HDR, Université Fédérale du Rio Grande do Norte, Natal,

Brésil / Directrice de thèse

M. Flavio OQUENDO

Professeur des Universités, IRISA - Université Bretagne Sud, Vannes, France /

Directeur de thèse

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

A Formally Founded Framework for
Dynamic Software Architectures

Everton Ranielly de Sousa Cavalcante

Doctoral dissertation submitted in partial fulfillment of the
requirements for the degrees of Doutor em Ciência da Computação and

Docteur en Informatique under the joint supervision agreement between the
Universidade Federal do Rio Grande do Norte (UFRN), Brazil, and

Université Bretagne Sud (UBS), France.

Supervisors

Prof. Dr. Thais Vasconcelos Batista
Universidade Federal do Rio Grande do Norte, Natal, Brazil

Prof. Dr. Flavio Oquendo
IRISA-UMR CNRS/Université Bretagne Sud, Vannes, France

June 2016

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Acknowledgments

Saying “thanks” is to admit that there was a moment at which someone was needed, is
to acknowledge that a man can never achieve the gift of being self-sufficient. None and nothing
grows alone: a supportive look, a word of encouragement, a gesture of understanding, an
attitude of love is always necessary. It may hard to say this in words, but I would like to say
“thanks” to several people who have contributed in some way, directly or not, to allow me to
write these words. It is still being possible that there are other people who could be cited here,
but unfortunately they were not for malfunction of my memory. To those ones, my sincere and
humble apologies.

I praise God, the Author of life, for one more opportunity given and for the achievements
in the midst of adversity. I am grateful to him for giving me perseverance, strength, and courage
to dream and keep fighting for my goals, for making me who I am today, and for concretizing
what seemed far away or even impossible to my limited eyes.

I thank my parents, Maria Gorete and José Cavalcante (in memory), for the effort under
difficulties that had to be overcome to provide me with a good education, for the principles and
values that do not pass and undoubtedly are elements that I will carry with me for the rest of
my existence. They have taught me how to live life with dignity and honesty and made me see
that the road goes beyond what you can see.

From the bottom of my heart, I thank to my supervisors, Professors Thais Vasconcelos
Batista (UFRN, Brazil) and Flavio Oquendo (IRISA/Université Bretagne Sud, France), for
everything. Life was very generous in allowing me to work not only with two professionals of
excellence, but with unique human beings. In general, the route during PhD is significantly
hard, but I can say that this time incredibly was a happy journey for me. This is undoubtedly
resulted from dedication, attention, and partnership in the trio that we formed, directly
reflecting into the quality of this work. They have always allowed me to be free and provided
means of maturing my ideas, always pointing out the correct direction. In every step given, I
did it with more confidence because I knew that I had their support. Namely:

To Thais: Our greatest desire in life is to find someone to make us the best that
we can. I have no doubt that she was the most important person of my academic
life so far, to the point that I do not know what else can be expected from a
supervisor. I absolutely had more than I expected or even deserved, because I had
her friendship, availability, advices, patience, trust, and many opportunities
offered. I am very grateful to Thais for her professional example that inspires me
every day and mainly for being a human being with a huge heart. Anything that
I say here will be still few to thank her. For these and other many reasons is that
this PhD thesis is dedicated to her.

To Flavio: I can proudly say today that I was supervised by one of the most world-

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

renowned researchers in Software Architecture. I am very grateful to Flavio since
his positive answer to the invitation to be my supervisor, for closely following the
conduction of this work, and mainly for receiving me with open arms in Vannes,
France, during the almost two years spent there during PhD, more than six
thousand kilometers from my homeland. I have grown very much as a scientist
and this owes to his example of wisdom, deep knowledge, commitment, and vision,
a standard that I will always seek to follow.

I thank Professors Jair Cavalcanti Leite, Gibeon Aquino Junior (UFRN, Brazil), Paulo
Cunha (UFPE, Brazil), Elisa Yumi Nakagawa (USP, Brazil), Khalil Drira (Université Fédérale
de Toulouse-Midi-Pyrénées, France), and Carlos Cuesta (Universidad Rey Juan Carlos, Spain)
who have kindly volunteered their time and accepted the invitation to participate in the
examination committee for evaluating this PhD thesis. It was a great honor having a number
of researchers of excellence willing to give their contribution to this work.

I thank professors Flavia Coimbra Delicato and Paulo de Figueiredo Pires (UFRJ,
Brazil), who have participated in the examination committee of my PhD qualification. The final
result of this work has important contributions from them and for which I am very grateful.

I thank the friends who are either close or far, the ones who I see almost every day, the
ones who I “see” only through Internet. Unfortunately, I will not be able to cite the names of
all of them, for both available space and the risk or injustice of forgetting someone, but please
receive here my words of gratitude. Nonetheless, I would like to mention Gustavo Alves and
Everton Lima, who have always been close, could share several moments with me, and offered
their precious friendship and support, fundamental elements to this journey. Thank you very
much.

I thank the researchers from the ArchWare group – Equipe de Recherche sur les
Architectures Logicielles from IRISA/Université Bretagne Sud for receiving me when I was in
Vannes, France, and with whom I could deepen my knowledge on software architectures. In
particular, special thanks to Jean Quilbeuf, who has directly participated and contributed to
this work, for his constant availability and patience to solve my doubts regarding statistical
model checking in software architectures. “Merci beaucoup”.

I thank the colleagues and friends from ICMC-USP (São Carlos, Brazil), who which I
had the pleasure of meeting when I was in Vannes and establish fruitful partnership, specially
Lucas Oliveira, Milena Guessi, and Professor Elisa Yumi Nakagawa. From this group, I still
need to express my words of gratitude to Marcelo Gonçalves, not only for the partnership in
the several works that we have conducted together, but mainly for the special person that he is.

Finally, I thank the institutions that have encouraged the execution of this project and
provided the essential financial support to the development of this work: to the Brazilian
National Agency of Petroleum, Natural Gas and Biofuels (ANP), through the Program for
Human Resources in Geology, Geophysics and Information Technology in Oil and Gas (PRH-
22); to the Brazilian Funding Authority for Studies and Projects (FINEP); to the Brazilian

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Ministry of Science, Technology, Innovations and Communications (MCTIC); to the Brazilian
National Council for Scientific and Technological Development (CNPq); and to the Brazilian
Coordination for the Improvement of Higher Education Personnel (CAPES).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Agradecimentos

Dizer “obrigado” é admitir que houve um momento em que se precisou de alguém, é
reconhecer que o homem jamais poderá lograr para si o dom de ser autossuficiente. Ninguém e
nada cresce sozinho: sempre é preciso um olhar de apoio, uma palavra de incentivo, um gesto
de compreensão, uma atitude de amor. Talvez seja difícil dizer isto em forma de palavras, mas
gostaria de dizer “obrigado” a diversas pessoas que, de alguma forma, contribuíram diretamente
ou não para que eu pudesse estar escrevendo estas palavras. É possível ainda que haja outras
pessoas que poderiam ser citadas aqui, mas, por disfunção da minha memória, infelizmente não
o foram. A estes desde já peço sinceras e humildes desculpas.

Agradeço a Deus, o Autor da Vida, por mais esta oportunidade concedida e pelas
conquistas alcançadas em meio às adversidades. A Ele sou grato por me dar perseverança, força
e coragem para sonhar e seguir lutando pelos meus objetivos, por me fazer quem sou hoje, e por
concretizar aquilo que parecia longínquo ou até mesmo impossível aos meus olhos limitados.

Agradeço aos meus pais, Maria Gorete e José Cavalcante (in memoriam), pelo esforço
sob dificuldades que tiveram de ser ultrapassadas para proporcionar uma boa formação, pelos
ensinamentos e valores que não passam e que, sem dúvida, são elementos que levarei comigo
pelo resto da minha existência. Eles me ensinaram como viver a vida com dignidade e
honestidade e me fizeram ver que a estrada vai além do que se vê.

Agradeço do fundo do coração aos meus orientadores, os Professores Thais Vasconcelos
Batista (UFRN, Brasil) e Flavio Oquendo (IRISA/Université Bretagne Sud, França), por
absolutamente tudo. A vida foi muito generosa ao me permitir trabalhar não apenas com dois
profissionais de excelência, mas sobretudo com seres humanos ímpares. Em geral, o percurso
durante o Doutorado é significantemente árduo, porém posso dizer que esse período para mim
foi uma feliz jornada, incrivelmente. Isso sem dúvida é resultado da dedicação, atenção e
trabalho em parceria no trio que formamos, o que se refletiu diretamente na qualidade deste
trabalho. Eles sempre me permitiram ter liberdade e proporcionaram meios para amadurecer
minhas ideias, indicando-me sempre o direcionamento correto. Cada passo que pude dar, o fiz
com mais confiança por saber que tinha o apoio deles. Nominalmente:

À Thais. Nosso maior desejo na vida é encontrar alguém que nos faça fazer o
melhor que pudermos. Não tenho dúvidas que ela foi a pessoa mais importante da
minha vida acadêmica até aqui, a ponto que eu não sei o que mais se pode esperar
de um orientador. Eu sem dúvida tive muito mais do que eu esperava ou mesmo
merecia, pois pude ter sua amizade, disponibilidade, conselhos, paciência,
confiança e diversas oportunidades proporcionadas. À Thais sou muito grato pelo
exemplo de profissional que me inspira a cada dia e principalmente pelo ser
humano de coração enorme que ela é. Qualquer coisa que eu disser aqui ainda será
muito pouco para agradecê-la. Por essas e outras diversas razões que esta tese de
Doutorado é dedicada a ela.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Ao Flavio: Posso hoje dizer com muito orgulho que pude ser orientando de um
dos pesquisadores mais renomados da área de Arquitetura de Software no mundo.
Sou muito grato ao Flavio desde sua resposta positiva ao convite para ser meu
orientador, por acompanhar de perto a condução deste trabalho e principalmente
por me receber de braços abertos em Vannes, França, durante os quase dois anos
que lá passei durante o Doutorado, a mais de seis mil quilômetros de distância da
minha terra natal. Cresci bastante como cientista e isso se deve muito ao seu
exemplo de sabedoria, profundo conhecimento, comprometimento e visão, um
padrão que sempre procurarei seguir.

Agradeço aos Professores Jair Cavalcanti Leite, Gibeon Aquino Junior (UFRN, Brasil),
Paulo Cunha (UFPE, Brasil), Elisa Yumi Nakagawa (USP, Brasil), Khalil Drira (Université
Fédérale de Toulouse-Midi-Pyrénées, França) e Carlos Cuesta (Universidad Rey Juan Carlos,
Espanha) que gentilmente dispuseram do seu tempo e aceitaram o convite para participarem do
comitê examinador para avaliação desta tese de Doutorado. Foi uma grande honra para mim ter
tido um conjunto de pesquisadores de excelência dispostos a dar sua contribuição a este trabalho.

Agradeço aos professores Flavia Coimbra Delicato e Paulo de Figueiredo Pires (UFRJ,
Brasil), que participaram do comitê examinador da minha Qualificação de Doutorado. O
resultado final deste trabalho possui importantes contribuições deles e pelas quais sou muito
grato.

Agradeço aos amigos de perto e de longe, aos que vejo quase todos os dias, aos que vejo
eventualmente, e aos que “vejo” apenas pela Internet. Infelizmente não vou poder citar o nome
de todos, tanto pelo espaço disponível quanto pelo risco ou injustiça de esquecer de alguém, mas
recebam aqui as minhas palavras de gratidão. Ainda assim, gostaria de mencionar os nomes de
Gustavo Alves e Everton Lima, que sempre estiveram por perto, puderam compartilhar comigo
diversos momentos e me ofereceram de sua preciosa amizade e apoio, fundamentais nesta
trajetória. Muito obrigado.

Agradeço aos pesquisadores do grupo ArchWare – Equipe de Recherche sur les
Architectures Logicielles do IRISA/Université Bretagne Sud por me receberem no período em
que estive em Vannes, França, e com os quais pude aprofundar meus conhecimentos sobre
arquiteturas de software. Em particular, agradecimentos especiais ao Jean Quilbeuf, que teve
participação e contribuição direta neste trabalho, pela sua constante disponibilidade e paciência
em sanar minhas dúvidas com relação a statistical model checking em arquiteturas de software.
“Merci beaucoup”.

Agradeço aos colegas e amigos do ICMC-USP (São Carlos, Brasil), os quais tive o prazer
de conhecer no período em que estive em Vannes e estabelecer profícuas parcerias, especialmente
Lucas Oliveira, Milena Guessi e Professora Elisa Yumi Nakagawa. Desse grupo, ainda
necessito expressar minhas palavras de gratidão ao Marcelo Gonçalves, não só pela parceria em
diversos trabalhos que conduzimos juntos, mas principalmente pela pessoa especial que é.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Por fim, agradeço às instituições que incentivaram a execução deste projeto e forneceram
o apoio financeiro fundamental para o desenvolvimento deste trabalho: à Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis (ANP), por meio do Programa de Formação em
Recursos Humanos em Geologia, Geofísica e Informática no Setor de Petróleo e Gás (PRH-22);
à Financiadora de Estudos e Projetos (FINEP); ao Ministério da Ciência, Tecnologia, Inovações
e Comunicações (MCTIC) da República Federativa do Brasil; ao Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), e; à Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

This work was developed with financial support from the following institutions:

− Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP)
through the Program for Human Resources in Geology, Geophysics and
Information Technology in Oil & Gas (PRH-22)

− Brazilian Funding Authority for Studies and Projects (FINEP)

− Brazilian Ministry of Science, Technology, Innovations and Communications
(MCTIC)

− Brazilian National Council for Scientific and Technological Development
(CNPq)

− Brazilian Coordination for the Improvement of Higher Education Personnel
(CAPES)

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Success is born from the will, determination, and persistence to
accomplish a goal. Even though not reaching the target,

the one who seeks and overcomes obstacles
will do at least outstanding things.

José de Alencar, Brazilian writer (1829-1877)

O sucesso nasce do querer, da determinação e da
persistência em se chegar a um objetivo.

Mesmo não atingindo o alvo, quem busca e vence obstáculos,
no mínimo fará coisas admiráveis.

José de Alencar, escritor brasileiro (1829-1877)

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

A Formally Founded Framework for
Dynamic Software Architectures

Author: Everton Ranielly de Sousa Cavalcante

Supervisors: Prof. Dr. Thais Vasconcelos Batista and Prof. Dr. Flavio Oquendo

ABSTRACT
Software architectures play a significant role in the development of software-intensive
systems in order to allow satisfying both functional and non-functional requirements. In
particular, dynamic software architectures have emerged to address characteristics of the
contemporary systems that operate on dynamic environments and consequently subjected
to changes at runtime. Architecture description languages (ADLs) are used to represent
software architectures, producing models that can be used at design time and/or runtime.
However, most existing ADLs have limitations in several facets: (i) they are focused on
structural, topological aspects of the architecture; (ii) they do not provide an adequate
support for representing behavioral aspects of the architecture; (iii) they do not allow
describing advanced aspects regarding the dynamics of the architecture; (iv) they are
limited with respect to the automated verification of architectural properties and
constraints; and (v) they are disconnected from the implementation level, thus entailing
inconsistencies between architecture and implementation. In order to tackle these
problems, this thesis proposes formally founded framework for dynamic software
architectures. Such a framework comprises: (i) π-ADL, a formal language for describing
software architectures under both structural and behavioral viewpoints; (ii) the
specification of programmed dynamic reconfiguration operations; (iii) the automated
generation of source code from architecture descriptions; and (iv) an approach based on
statistical model checking (SMC) to formally express and verify properties in dynamic
software architectures. The main contributions brought by the proposed framework are
fourfold. First, the π-ADL language was endowed with architectural-level primitives for
describing programmed dynamic reconfigurations. Second, architecture descriptions in π-
ADL are translated towards implementation source code in the Go programming
language, thereby contributing to minimize architectural drifts. Third, a novel logic, called
DynBLTL, is used to formally express properties in dynamic software architectures.
Fourth, a toolchain relying on SMC was built to automate the verification of architectural
properties while striving to reduce effort, computational resources, and time for
performing such a task. In this work, two wireless sensor network-based systems are used
to validate the framework elements.

Keywords: Software architectures, Architecture description languages, Dynamic
reconfiguration, Formal verification, Temporal logic, Statistical model checking.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Um Framework Formal para
Arquiteturas de Software Dinâmicas

Autor: Everton Ranielly de Sousa Cavalcante

Orientadores: Prof.ª Dra. Thais Vasconcelos Batista e Prof. Dr. Flavio Oquendo

RESUMO
Arquiteturas de software exercem um papel significativo no desenvolvimento de sistemas
intensivos de software a fim de permitir satisfazer tanto requisitos funcionais quanto não-
funcionais. Em particular, arquiteturas de software dinâmicas têm surgido para endereçar
características dos sistemas contemporâneos que operam em ambientes dinâmicos e
consequentemente sujeitos a mudanças em tempo de execução. Linguagens de descrição
arquitetural (ADLs) são utilizadas para representar arquiteturas de software, produzindo
modelos que podem ser utilizados tanto em tempo de projeto quanto em tempo de
execução. Contudo, a maioria das ADLs existentes possui limitações em diversos aspectos:
(i) possui enfoque em aspectos estruturais, topológicos da arquitetura; (ii) não provê um
suporte adequado à representação de aspectos comportamentais da arquitetura; (iii) não
permite descrever aspectos avançados relativos à dinâmica da arquitetura; (iv) é limitada
com relação à verificação de propriedades arquiteturais e restrições, e; (v) é desconectada
do nível de implementação, resultando em inconsistências entre arquitetura e
implementação. No intuito de endereçar esses problemas, esta tese propõe um framework

formal para arquiteturas de software dinâmicas. Tal framework envolve: (i) π-ADL, uma
linguagem formal para descrever arquiteturas de software sob as perspectivas estrutural e
comportamental; (ii) a especificação de operações de reconfiguração dinâmica
programada; (iii) a geração automática de código fonte a partir de descrições arquiteturais,
e; (iv) uma abordagem baseada em verificação estatística (SMC) para expressar e verificar
formalmente propriedades em arquiteturas de software dinâmicas. As principais
contribuições trazidas pelo framework proposto são quatro. Primeiro, a linguagem π-ADL
passou a ser dotada de primitivas de nível arquitetural para descrever reconfigurações
dinâmicas programadas. Segundo, descrições arquiteturais em π-ADL são traduzidas para
código fonte de implementação na linguagem de programação Go, contribuindo assim
para minimizar desvios arquiteturais. Terceiro, uma nova lógica chamada DynBLTL é
utilizada para expressar formalmente propriedades em arquiteturas de software
dinâmicas. Quarto, um ferramental baseado em SMC foi construído para automatizar
verificação de propriedades arquiteturais enquanto busca reduzir esforço, recursos
computacionais e tempo para realizar essa tarefa. Neste trabalho, dois sistemas baseados
em redes de sensores sem fio são utilizados para validar os elementos do framework.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Palavras-chave: Arquiteturas de software, Linguagens de descrição arquitetural,
Reconfiguração dinâmica, Verificação formal, Lógica temporal, Verificação estatística.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Un Framework Formel pour les
Architectures Logicielles Dynamiques

Auteur : Everton Ranielly de Sousa Cavalcante

Directeurs de thèse : Dr Thais Vasconcelos Batista (MCF-HDR) and Pr Flavio Oquendo

RESUME
Les architectures logicielles ont un rôle important dans le développement de systèmes à
logiciel prépondérant afin de permettre la satisfaction tant des exigences fonctionnelles
que des exigences extra-fonctionnelles. En particulier, les architectures logicielles
dynamiques ont émergé pour faire face aux caractéristiques des systèmes contemporains
qui opèrent dans des environnements dynamiques et par conséquent susceptibles de
changer en temps d’exécution. Les langages de description architecturale (ADLs) sont
utilisés pour représenter les architectures logicielles en produisant des modèles qui
peuvent être utilisés pendant la conception ainsi que l’exécution. Cependant, la plupart
des ADLs existants sont limités sur plusieurs facettes : (i) ils ne décrivent que les aspects
structurels, topologiques de l’architecture ; (ii) ils ne fournissent pas un support adéquat
pour représenter les aspects comportementaux de l’architecture ; (iii) ils ne permettent pas
de décrire des aspects avancés de la dynamique de l’architecture ; (iv) ils sont limités en
ce qui concerne la vérification automatisée des propriétés et des contraintes
architecturales ; et (v) ils sont déconnectés du niveau d’implémentation et entraînent
souvent des incohérences entre l’architecture et l’implémentation. Pour faire face à ces
problèmes, cette thèse propose un framework formel pour les architectures logicielles
dynamiques. Ce framework comprend : (i) π-ADL, un langage formel pour décrire des
architectures logicielles dynamiques sous les perspectives structurelles et
comportementales ; (ii) la spécification des opérations de reconfiguration dynamique
programmée ; (iii) la génération automatique de code source à partir des descriptions
architecturales ; et (iv) une approche basée sur la vérification statistique pour exprimer et
vérifier formellement des propriétés des architectures logicielles dynamiques. Les
contributions principales apportées par le framework proposé sont quatre. Premièrement,
le langage π-ADL a été doté de primitives de niveau architectural pour décrire des
reconfigurations dynamiques programmées. Deuxièmement, les descriptions
architecturales dans π-ADL sont transformées vers le code source d’implémentation dans
le langage de programmation Go, en contribuant à minimiser les dérives architecturales.
Troisièmement, une nouvelle logique appelée DynBLTL est utilisée pour exprimer
formellement des propriétés dans les architectures logicielles dynamiques.
Quatrièmement, un outil basé sur SMC a été développé pour automatiser la vérification
des propriétés architecturales en cherchant à réduire l’effort, les ressources
computationnelles, et le temps pour réaliser cette tâche. Dans ce travail, deux systèmes

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

basés sur réseaux de capteurs sans fil sont utilisés pour valider les éléments du framework.

Mots-clés : Architectures logicielles, Langages de description architecturale,
Reconfiguration dynamique, Vérification formelle, Logique temporelle, Vérification
statistique.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

List of Figures

Figure 1 – Taxonomic dimensions to characterize dynamic reconfiguration approaches
for software architectures ... 36

Figure 2 – Working schema of the SMC technique .. 46

Figure 3 – Deployment layout of the flood monitoring system in a flood-prone area in
downtown São Carlos, Brazil (adapted from [70]) ... 50

Figure 4 – Flood monitoring system scenario ... 51

Figure 5 – Deployment of wireless sensors in a pipeline network 53

Figure 6 – Detection of leaks in pipelines by measuring flow debits 54

Figure 7 – Generic architecture for WSN-based monitoring ... 54

Figure 8 – Main architectural concepts of the π-ADL language 59

Figure 9 – Layered type system of π-ADL ... 60

Figure 10 – Life cycle for active software architectures (adapted from [88]) 70

Figure 11 – Illustration of the exogenous approach for the dynamic reconfiguration of
a simple client-server architecture. A primary server is replaced by a secondary one in
case of unavailability of the former... 72

Figure 12 – Result of the endogenous approach for the dynamic reconfiguration of a
simple client-server architecture. An auxiliary virtual machine is created and attached
to the primary server in case of overloading. .. 73

Figure 13 – π-ADL description of the Sensor component ... 74

Figure 14 – π-ADL description of the Gateway component ... 75

Figure 15 – π-ADL description of the ZigBee connector ... 76

Figure 16 – π-ADL description of the WSNFloodMonitoring architecture 76

Figure 17 – Partial π-ADL description of the WSNFloodMonitoringEvol evolved
architecture for realizing a reconfiguration aimed to replace a sensor mote due to low
battery level by means of an exogenous approach. .. 77

Figure 18 – Partial π-ADL description for realizing a reconfiguration aimed to increase
accuracy and avoid false positives by means of an endogenous approach. 79

Figure 19 – Screenshot of the Eclipse-based π-ADL textual editor 91

Figure 20 – Elements for generating Go source code from π-ADL architecture
descriptions... 92

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Figure 21 – Description of the Sensor component in π-ADL (left) and corresponding
implementation in Go (right) ... 94

Figure 22 – Description of the Gateway component in π-ADL (left) and corresponding
implementation in Go (right) ... 95

Figure 23 – Description of the ZigBee connector in π-ADL (left) and corresponding
implementation in Go (right) ... 96

Figure 24 – Description of the WSNFloodMonitoring architecture in π-ADL (left) and
corresponding implementation in Go (right) .. 97

Figure 25 – Excerpt of Go source code generated from the π-ADL description of the
WSNFloodMonitoringEvol evolved architecture, following an exogenous approach ... 98

Figure 26 – Excerpt of Go source code generated from the π-ADL description of the
Gateway component, following an endogenous approach .. 99

Figure 27 – Illustration of an execution trace for a simple client-server system 106

Figure 28 – Working schema of the scheduler to support the stochastic execution of a
π-ADL architectural model .. 116

Figure 29 – Overview of the developed SMC-based toolchain for verifying properties
expressed in DynBLTL regarding dynamic software architectures described in π-ADL
 .. 118

Figure 30 – Effect of the precision variation in the analysis of three properties upon
analysis time (measured in seconds) .. 121

Figure 31 – Effect of the precision variation in the analysis of three properties upon
RAM consumption (in megabytes) ... 121

Figure 32 – Main constituents of the proposed framework and correlation to goals and
associated research questions .. 124

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

List of Tables

Table 1 – Base types defined in π-ADLFO–BV .. 60

Table 2 – Constructed types defined in π-ADLFO–CV .. 61

Table 3 – Collection types defined in π-ADLFO–CT .. 61

Table 4 – Process constructs defined in π-calculus ... 63

Table 5 – Behavior constructs defined in π-ADL .. 63

Table 6 – Comparative analysis of existing ADLs considering some taxonomic
dimensions for characterizing dynamic reconfiguration approaches in software
architectures ... 83

Table 7 – Summary of correspondences between the main architecture-level elements
of π-ADL and implementation-level elements of Go ... 85

Table 8 – Summary of the mappings from data types defined in π-ADL
to types in Go ... 88

Table 9 – Summary of the mappings from behavior constructs defined in π-ADL
to Go .. 89

Table 10 – Summary of actions on a state graph g = (V, E) ... 107

Table 11 – Descriptive statistics for execution time of the analysis (in seconds) 119

Table 12 – Descriptive statistics for RAM consumption (in megabytes) 120

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

List of Acronyms

AADL Architecture Analysis and Design Language

ADL Architecture description language

ANP Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

AST Abstract syntax tree

BLTL Bounded linear temporal logic

C2SADEL C2 Software Architecture Description and Evolution Language

CDN Cognitive Dimensions of Notations

CCS Calculus of Communicating Systems

CIL Common Intermediate Language

CNRS Centre National de la Recherche Scientifique

CSP Communicating Sequential Processes

DSL Domain-specific language

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

FSP Finite State Processes

IEC International Electronical Commission

IEEE Institute of Electrical and Electronic Engineers

INRIA Institut National de Recherche en Informatique et en Automatique

IRISA Institut de Recherche en Informatique et Systèmes Aléatoires

ISO International Organization for Standardization

LTL Linear temporal logics

M2T Model-to-Text

MWE Modeling Workflow Engine

PoN Physics of Notations

SMC Statistical model checking

UBS Université Bretagne Sud

UFRN Universidade Federal do Rio Grande do Norte

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

UML Unified Modeling Language

UMR Unité Mixte de Recherche

WSN Wireless sensor network

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

List of Symbols

General symbols

π Lowercased pi, sixteenth letter of the Greek alphabet

∨ Disjunction logical connective (or)

∧ Conjunction logical connective (and)

¬ Negation logical connective (not)

∃ Existential quantifier (exists) ∄ Negation of the existential quantifier (not exists)

≡ Equivalence (is equivalent to) ≝ Definition (defined as)

Statistical model checking

M Executable model of a system

ϕ, ψ Property (formula)

ω Simulation

σ Execution trace

p Probability value

θ Threshold ⊨ Satisfaction (e.g., Α ⊨ Β is read as Α satisfies Β) ⊭ Non-satisfaction (e.g., Α ⊭ Β is read as Α does not satisfy Β)

B Random variable following a Bernoulli probability distribution

Pr Probability function

H, K Hypotheses

α, β Confidence bounds for hypotheses

ε Precision

p’ Estimation for probability

δ Probability value for estimation

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Process algebras

P, Q Processes

a.P Sequential composition
(read as executing an action a and sequentially behaving as P)

c(x).P Input prefixing action
(read as reading a value x from a channel c and sequentially behaving as P)

c̅(x).P Output prefixing action
(read as writing a value x in a channel c and sequentially behaving as P)

τ Unobservable action

P | Q Parallel composition of processes P and Q

P + Q Non-deterministic choice between processes P and Q

0 Inert process

State graphs for execution traces

g State graph

V Finite set of nodes

E Finite set of edges

Val Set of possible values to be exchanged between two nodes

v Node in a state graph

e Edge in a state graph

v::c Connection of a node

C Finite set of connections of a node

id Unique identifier of a node

T Type of a node

Temporal logics

t Time instant ℱ Finally (or eventually) temporal operator � Globally (or always) temporal operator � Until temporal operator � Next temporal operator

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

EBNF meta-symbols

A → B Definition of production rule (read as A is defined as B)

A | B Alternative choice between elements A and B

[X] Element X is optional in the production rule

X∗ Zero or multiple occurrences of element X in the production rule

X+ One or multiple occurrences of element in the production rule

A&B Any occurrence order of elements A and B in the production rule

m…n Range between characters m and n

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Table of Contents

1 INTRODUCTION ... 26

1.1 Problem statement... 27

1.1.1 Enhancing the representation of dynamic software architectures 27

1.1.2 Software architectures and their implementation:
Two disconnected worlds .. 29

1.1.3 Analyzing software architectures: A challenging activity 31

1.2 Goals and research questions ... 32

1.3 Contributions ... 33

1.4 Outline ... 35

2 BACKGROUND .. 36

2.1 Characterizing dynamic software architectures .. 36

2.2 The Go programming language ... 37

2.2.1 Fundamentals .. 38

2.2.2 Control statements .. 40

2.2.3 Arrays and slices ... 41

2.2.4 Interfaces... 41

2.2.5 Concurrency support .. 42

2.3 Statistical model checking ... 44

3 RUNNING APPLICATIONS:

WIRELESS SENSOR NETWORK-BASED SYSTEMS .. 48

3.1 A flood monitoring system .. 48

3.2 Monitoring oil and gas pipelines ... 51

3.3 An architecture for WSN-based monitoring systems... 54

3.4 The dynamic scenario of WSNs.. 55

4 THE π-ADL ARCHITECTURE DESCRIPTION LANGUAGE 57

4.1 Architectural abstractions .. 58

4.2 Type system .. 59

4.2.1 Base types ... 60

4.2.2 Constructed types ... 60

4.2.3 Collection types ... 61

4.3 Behavior constructs ... 62

4.4 Specifying architectural elements in π-ADL .. 65

4.4.1 Specifying behavior of components and connectors 65

4.4.2 Statements .. 67

4.4.3 Specifying architectural configurations ... 68

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

4.5 Dynamic software architectures in π-ADL ... 69

4.6 Describing the flood monitoring system in π-ADL.. 73

4.6.1 Architectural elements .. 73

4.6.2 Exogenous reconfiguration: Low battery of a sensor node 77

4.6.3 Endogenous reconfiguration: Avoiding false positives 78

4.7 Related work: Languages for describing dynamic software architectures 80

5 ARCHITECTURE-BASED CODE GENERATION... 84

5.1 Correspondences between π-ADL and Go ... 85

5.2 Code generation procedure ... 89

5.2.1 π-ADL textual editor ... 90

5.2.2 Code generation procedure ... 92

5.3 Generating code for the flood monitoring system ... 93

5.3.1 Architectural elements .. 94

5.3.2 Exogenous reconfiguration .. 97

5.3.3 Endogenous reconfiguration ... 99

5.4 Related work: Supporting the implementation of software architectures 100

6 VERIFYING DYNAMIC SOFTWARE ARCHITECTURES 103

6.1 Representing traces of dynamic software architectures 104

6.2 Expressing properties about dynamic software architectures 107

6.2.1 Underlying formalisms for expressing properties 107

6.2.2 A novel logic and notation for expressing properties in
dynamic software architectures .. 109

6.2.2.1 DynBLTL elements.. 110

6.2.2.2 Example .. 113

6.3 Statistical model checking of π-ADL architectural models 115

6.3.1 Stochastic execution of π-ADL architecture descriptions 115

6.3.2 An SMC-based toolchain to simulate and verify dynamic software
architectures... 117

6.3.3 Quantitative evaluation .. 118

6.4 Related work: Formal specification and verification of architectural

properties in dynamic systems ... 121

7 CONCLUSION .. 123

7.1 Revisiting the proposal and its contributions ... 124

7.2 Future work .. 126

7.2.1 Short-term work .. 126

7.2.2 Long-term work ... 126

REFERENCES .. 128

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

APPENDIX A – π-ADL GRAMMAR .. 142

A.1 Grammar notation .. 142

A.2 π-ADL production rules .. 144

A.3 References .. 149

APPENDIX B – THE π-ADL TEXTUAL EDITOR .. 150

B.1 Preliminaries.. 150

B.2 The Xtext-based π-ADL textual editor .. 151

B.2.1 The π-ADL grammar .. 151

B.2.2 Automatic generation of the π-ADL infrastructure 153

B.2.3 Validations ... 154

B.2.4 Interpreting expressions .. 156

B.2.5 Features of the π-ADL textual editor ... 157

B.3 References .. 158

APPENDIX C – DYNBLTL NOTATION ... 159

C.1 Grammar notation .. 159

C.2 DynBLTL production rules .. 160

C.3 References .. 161

APPENDIX D – LIST OF PUBLICATIONS .. 162

D.1 Publications resulted from this work .. 162

D.2 Correlated publications .. 162

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

26

1 Introduction
The increasing complexity of software development and the demand for quality

have called for systematic approaches to engineer software systems. Due to its
inherently laborious nature, software development has been a quest for more powerful
design abstractions to help engineers and developers to build even larger, more
complex systems and to reason about their structure, behavior, and properties [1].
Nowadays, software systems with these characteristics are the norm rather than the
exception and hence they need coarser-grained abstractions to tame their complexity
while guiding the construction effort.

In this context, software architectures have emerged as the backbone of any
successful software-intensive system, thereby contributing to the achievement of both
business goals and quality requirements as well as being manageable, meaningful
abstractions of the system under development [2, 3, 4]. The ISO/IEC/IEEE 42010
International Standard [5] defines software architecture as the fundamental conception
of a system in terms of its constituent elements and their relationships with each other
and the environment, as well as the principles guiding the system design and
evolution. Applied throughout the software life cycle, good architectural practice has
the potential of (i) increasing the understandability of the system and the development
process used to create it, (ii) ensuring the satisfaction of requirements, and (iii)
reducing the overall cost of the software development process [6]. Therefore, a
software architecture can be used as a relevant artifact in activities such as
requirements specification, system design and analysis, successive model refinements
towards implementation, reuse, maintenance, and runtime adaptation [7]. It also
captures and preserves designers’ intentions about system structure and behavior
thereby providing a defense against design decay as a system ages [8].

The literature traditionally distinguishes two main types of software
architectures according to their evolution upon changes in their environment, namely
static and dynamic software architectures [9, 10, 11]. The architecture of a software
system is said to be static if it is not subjected to changes during runtime. On the other
side of the spectrum, dynamic software architectures are those that encompass
evolution rules for a software system and its elements during runtime. The latter case
is of particular importance for this work as dynamism is an important concern for
contemporary systems, which often operate on environments that are dynamic,
subjected to changes. Moreover, support for dynamism is important mainly in the case
of certain safety- and mission-critical systems, such as air traffic control, energy,
disaster management, environmental monitoring, and health systems. Systems in
these scenarios are required to maintain a high level of availability, so that stopping

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

27

them is not an option due to financial costs, physical damages, or even threats to life
and safety of people.

Considering dynamicity and dependability concerns while conceiving the
architecture of a software-intensive system has grown in importance due to the
complexity of emerging applications, mainly in critical domains such as the
aforementioned ones. In this context, software architectures can document and allow
reasoning about changes that might occur during the system execution and provide a
basis for the evolution of the system [12, 13]. Software architectures should also allow
for a flexible, extensible creation, interconnection, and/or removal of constituent
elements and connections or even a whole rearrangement of such elements with
minimal or no disruption. Nevertheless, these concerns are often handled late in the
development process, thus making a system without an adaptable architecture
degenerate sooner than a system based on an architecture that takes changes into
account.

1.1 Problem statement

1.1.1 Enhancing the representation of dynamic software architectures

The representation of software architectures is one of the main activities of an
architecture-driven software development process as it allows anticipating important
decisions regarding the system design. This activity results in architecture descriptions,
the set of artifacts expressing a software architecture and making it tangible [5], even
though such a representation lies at a high abstraction level. Architecture descriptions
play an essential role as the main means of communication among stakeholders, e.g.,
architects, developers, etc. At the same time, the precise communication of this artifact
is one of the most complex and expensive tasks in software architecture design. As
stated by Lago et al. [14], a badly specified architecture design causes design and
implementation flaws in a software system and can create misunderstanding.

Several studies in the literature rely on architecture descriptions to support the
documentation, maintenance, evaluation, and evolution of software architectures. In
this context, architecture description languages (ADLs) have become well-accepted
means for systematically representing and analyzing software architectures, thereby
producing models that can be used at design time and/or runtime [15, 16]. According
to the ISO/IEC/IEEE 42010 International Standard [5], an ADL is any form of
expression used to support the representation of a software architecture. ADLs
emerged since the 1990s mainly resulting from the research devoted to the problem of
providing more precise ways to characterize the structure and behavior of software
architectures as well as to derive properties on these structures [7]. However, the last
twenty years of research on ADLs have witnessed a proliferation of languages due to

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

28

a series of reasons, in particular (i) the lack of a common agreement on which
architectural aspects shall be documented by these languages, (ii) the
misunderstanding of merits and limitations of existing notations, (iii) the variety of
stakeholder concerns to be considered, and (iv) the trade-off between formality and
understandability [17, 18]. Indeed, Malavolta et al. [18] state that an ideal, general-
purpose ADL is not likely to exist and hence ADLs must be able to focus on what is
needed by the stakeholders involved in the architecting process.

Classically, ADLs have been classified into three broad categories: (i) formal, i.e.,
typically textual notations with precise (often mathematically-based) syntax and
semantics that support automated architectural analysis; (ii) semi-formal, i.e., notations
with well-defined syntax, but lack of complete semantics; and (iii) informal, i.e., ad-hoc
box-and-lines diagrams that cannot be formally analyzed and limit the usefulness of
the architecture description [2, 16]. The selection of an appropriate formalism level is
one of the most important tasks when creating architecture descriptions as this
decision should be aligned with their expected uses, such as documentation or
evaluation. In a recent survey about the use of ADLs in industry, Malavolta et al. [18]
observed that, from practitioners’ point of view, these languages should support the
definition of functional and non-functional properties, formal semantics for improving
precision and allowing automated analysis, and both graphical and textual
representations for easing the communication among stakeholders and users of
architecture descriptions. Additionally, Medvidovic and Taylor [17] highlight that an
important source of discord is the level of support that an ADL should provide to
developers. On the one hand, it can be argued that the primary role of architecture
descriptions is to support understanding and communication about a software system,
thus requiring ADLs to have a simple, understandable syntax and well-understood
(but not necessarily formally defined) semantics. On the other hand, the tendency has
been to endow ADLs with a more formal syntax and semantics, powerful analysis
tools, code synthesis mechanisms, etc. Even though researchers have generally
adopted one of these extremes, it is acknowledged that both are important and should
be reflected in an ADL [14].

Regardless the diversity of existing ADLs, the description of software
architectures is commonly characterized by two viewpoints, namely the structural and
behavioral viewpoints. The structural viewpoint is concerned with the structure of the
system in terms of three main building blocks: (i) components, units of computation
representing functional elements of the system; (ii) connectors, which represent the
interconnections among components supporting their interactions; and (iii)
architectural configurations determining the way in which components and connectors
can be interwoven forming the software architecture itself [17]. Relevant features
characterizing components and connectors typically encompass interfaces defining the

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

29

interaction points between these elements and the environment, high-level models of
their behavior, and constraints limiting their usage. In turn, the behavioral viewpoint
is related to the internal operation (actions) of components and connections as well as
the interaction among these elements.

A proper description of dynamic software architectures using ADLs faces two
main problems. First, most existing ADLs focus only on the structural viewpoint by
providing means of describing topological aspects of the software architecture, as it is
the case of well-known languages such as xADL [19] and Acme [20]. On the other
hand, few ADLs (such as Wright [21] and Darwin [22]) support the representation of
behavioral aspects of the system. The second issue is that ADLs for describing dynamic
software architectures must provide elements and mechanisms for specifying the
changes to be performed over the architecture as well as realizing these changes at
runtime [17]. However, the literature reports few ADLs supporting an expressive
description of dynamic aspects of software architectures. Examples of these languages
are Darwin [22], Dynamic Wright [23], and RAPIDE [24].

Therefore, the first problem addressed in this work can be stated as follows:

Problem I:

Most existing ADLs are not able to properly describe dynamic software architectures at
both structural and behavioral viewpoints as well as the changes that can be performed
over the architecture and its constituent elements.

1.1.2 Software architectures and their implementation:
Two disconnected worlds

In their well-known book about the Software Architecture discipline, Taylor et
al. [11] introduce the notions of prescriptive and descriptive architectures. A prescriptive
architecture is an as-intended, as-conceived architecture for a software system
comprising the design decisions made by the architects in order to reflect their intent.
Such a prescriptive architecture does not need to exist in any tangible form, but it can
be captured by a notation such as an ADL. Nonetheless, documenting the prescriptive
architecture of a software system is not enough. It needs to be realized with a set of
artifacts that may include further refinements of architectural design decisions
towards their implementations in a programming language. This set of artifacts
embodying and realizing design decisions is referred to as a descriptive architecture, the
as-implemented architecture showing how the system has actually been built.

During the lifespan of a software system, a large number of prescriptive and
descriptive architectures can be created. Each corresponding pair of such architectures
represents the system’s software architecture at a given time in terms of design
decisions and the artifacts realizing them. As explained by Taylor et al. [11], these

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

30

architectures would always be identical in an ideal scenario, i.e., the descriptive
architecture would be a perfect realization of the prescriptive architecture. However,
this rarely happens in practice. When evolving a software system, its descriptive
architecture is often directly modified while its prescriptive architecture should have
been ideally modified first. Such a problematic divergence between the prescriptive
and descriptive architectures of a software system has been referred to as architectural
drift, as introduced by Perry and Wolf [25] in the early 1990s. An architectural drift is
a form of architectural degradation characterized by the introduction of design
decisions orthogonally to a system’s prescriptive architecture, that is, they are not
included in, encompassed by, or implied by the prescriptive architecture, even though
not violating it [11]. Such a drift results from direct changes to the artifacts realizing
the software architecture, e.g., changing the implementation of the architecture
without accounting for the impact relative to its original conception. Possible reasons
for this problem are developers’ sloppiness (i.e., they merely do not want to modify
the prescriptive architecture after modifying the descriptive architecture), perception
of short deadlines, need or desire for code optimizations, etc.

Considering ADLs as notations able to describe prescriptive architectures,
architectural drifts may arise due to the gap often observed between architecture
descriptions and their respective implementations. As software architectures are
typically defined independently from implementation, the decoupling between these
levels leads to inconsistencies between the architecture and its corresponding
implementation, mainly as the architecture evolves. Consequently, even if a system is
built in conformance to the previously defined architecture, its implementation may
become inconsistent with respect to such an original architecture along the time. Not
providing a way of avoiding architectural drifts and inconsistencies between
architecture description and their implementations will ultimately lose all advantages
of designing an appropriate architecture. These inconsistencies may also lead to
increased maintenance time and cost as the original design aims have been lost [26].

The discrepancies between architecture descriptions and implementation may
become worse due to the emergence of new-generation programming languages,
which aim at making use of concurrency, distribution, and multicore computer
architectures. Existing mainstream programming languages such as C++ and Java do
not well support these features and hence increase the required complexity for
constructing large-scale and dynamic software systems, which are becoming typical in
several application domains. In addition, the main problem in this new context is that
most ADLs available in the literature do not properly capture these new features of
modern programming languages, thereby making the bridge between architecture
description and implementation harder to build.

The second problem addressed in this work can be summarized as:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

31

Problem II:

There is a significant gap between architecture descriptions and their corresponding
implementation, mainly in the new context of evolving software architectures and
contemporary programming languages.

1.1.3 Analyzing software architectures: A challenging activity

One of the major challenges in the design of software-intensive systems consists
in verifying the correctness of their software architectures, i.e., if the envisioned
architecture is able to fully realize the established requirements. Ensuring correctness
and other relevant system properties becomes more important mainly when evolving
these systems since such a verification needs to be performed before, during, and after
evolution. In this context, software architectures play an essential role since they
represent an early blueprint for the system construction, deployment, execution, and
evolution, thereby fostering an early analysis of a system and contributing to reduce
the cost of software maintenance. Such an architectural analysis refers to the activity of
discovering important system properties using architectural models [11].

Architecture descriptions should not cover only structure and behavior of a
software architecture, but also the required and desired architectural properties, in
particular the ones related to consistency and correctness [27]. For instance, after
describing a software architecture, a software architect might want to verify if it is
complete, consistent, and correct with respect to architectural properties. The
requirements to be verified are typically concerned with the relationship between the
system behavior (e.g., receiving or sending a particular value) and an architectural
property, such as checking if a component is connected to or disconnected from
another component. For illustrative purposes, consider a sensor-based system in
which sensors measure values from the environment and transmit it to a base station,
possibly via other sensors. A requirement of interest in this context would be that a
sensor signaling a low battery level (a behavioral property) gets disconnected from the
other sensors (an architectural property).

Due to the critical nature of many complex software systems, rigorous
architectural models (such as formal architecture descriptions) are quite desirable as
means of better supporting automated architectural analysis. Despite the inherent
difficulty of pursuing formal methods [28], the main advantage of a formal verification
is to precisely determine if a software system can satisfy properties related to user
requirements. Additionally, automated verification provides an efficient method to
check the correctness of architectural design. As reported by Zhang et al. [29], one of
the most used techniques for analyzing software architectures is model checking, an
exhaustive, automatic verification technique whose general goal is to verify if an
architectural specification satisfies architectural properties [30]. It takes as inputs a

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

32

representation of the system (e.g., an architecture description) and a set of property
specifications expressed in some notation. The model checker returns true, if the
properties are satisfied, or false with the case in which a given property is violated.
The input model of the system is usually expressed as a finite state machine, i.e., a
directed graph consisting of vertices and edges. A vertex represents a state with a set
of held atomic propositions (properties) whereas an edge represents a possible
execution that changes the system’s state. If the input model is finite, the model
checking problem is reduced to a graph search [11].

Despite its wide and successful use, model checking faces a critical challenge
with respect to scalability. Holzmann [31] remarks that no currently available
traditional model checking approach is exempted from the state space explosion
problem, that is, the exponential growth of the state space. This problem is exacerbated
in the contemporary dynamic software systems for two main reasons, namely (i) the
non-determinism of their behavior caused by concurrency and (ii) the unpredictable
environmental conditions in which they operate. In spite of the existence of a number
of techniques aimed at reducing the state space, such a problem remains intractable
for some software systems, thereby making the use of traditional model checking
techniques a prohibitive choice in terms of execution time and computational
resources. As a consequence, software architects have to trade-off the risks of possibly
undiscovered problems related to the violation of architectural properties against the
practical limitations of applying a model checking technique on a very large
architectural model [11].

Finally, the third problem addressed in this work can be described as:

Problem III:

Traditional techniques for formally verifying properties in dynamic software
architectures are not scalable, computationally efficient.

1.2 Goals and research questions
Aiming to tackle the problems elicited in Section 1.1, the main general goal of

this work is to propose a formally founded framework1 to support dynamic software
architectures. This general goal will be achieved through the satisfaction of the

1 In this work, the definition for framework follows the statements found in the ISO/IEC/IEEE 42010
International Standard [5]: An architecture framework establishes a common practice for creating,
interpreting, analyzing and using architecture descriptions within a particular domain of application or
stakeholder community. Uses of architecture frameworks include, but are not limited to: create architecture
descriptions; developing architecture modeling tools and architecting methods; and establishing processes to
facilitate communication, commitments and interoperation across multiple projects and/or organizations.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

33

following sub-goals:

G1: To use a formal ADL for describing dynamic software architectures under
both structural and behavioral viewpoints as well as specifying dynamic
reconfiguration operations.

G2: To fill the existing gap between the description of dynamic software
architectures using ADLs and their respective implementation.

G3: To propose an efficient approach for verifying properties in dynamic
software architectures.

In order to achieve the general goal and its sub-goals, the following research
questions (RQs) need to be answered:

RQ1. How to describe dynamic software architectures while fostering their

rigorous analysis with respect to both functional and non-functional properties?

The aim of this RQ is to investigate the use of a formal ADL and how it can be
expressive for describing both structure and behavior dynamic software architectures
while paving the way for formally verifying architecture descriptions.

RQ2. How it is possible to minimize the risk of architectural drifts in dynamic

software architectures? This RQ aims at investigating how architecture-based code
generation can contribute to fill the existing gap between architecture descriptions and
their respective implementation, thereby minimizing the risk of architectural drifts.
The main premise here is to automatically generate implementation source code from
architecture description expressed in an ADL as means of tackling the gap between
these levels and maintaining them consistent with each other. Moreover, executing the
code resulting from such an architecture-to-implementation mapping can be a useful
way of fostering the validation of the specified architecture.

RQ3. How to reduce the required effort for verifying properties in dynamic

software architectures? Finally, this RQ aims to investigate how it is possible to reduce
effort, computational resources, and time for formally verifying properties in dynamic
software architectures. Being apart from traditional exhaustive approaches available
in the literature, the main concern is to achieve an efficient approach able to promote
better scalability and less consumption of computational resources, important
concerns to be considered when analyzing software architectures of complex critical
systems.

1.3 Contributions
The proposed framework comes up with four main contributions, each one

summarized in the following. In this work, each of these elements was validated using
two wireless sensor network-based systems.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

34

An ADL able to formally describe dynamic software architectures. The first
contribution brought by this work is the endowment of π-ADL [9], a formal language
to describe software architectures under both structural and behavioral viewpoints,
with architecture-level primitives for specifying programmed reconfiguration operations,
i.e., foreseen, pre-planned changes described at design time and triggered at runtime
by the system itself under a given condition or event [32]. In addition, two common
approaches for enacting programmed dynamic reconfiguration [33, 34] were
incorporated into π-ADL. The first approach is exogenous, in which it is possible to
control all elements of the software architecture and apply the changes on the whole
structure. In turn, the second approach is endogenous, in which the architectural
elements themselves are able to manage dynamic reconfiguration actions. This
culminates into an expressive language able to describe both structure and behavior
of a dynamic software architecture, as well as the reconfiguration operations that can
be applied over it at runtime [35].

An automated process to generate source code from architecture descriptions.

The second main contribution of the proposed framework is the mapping of
architecture descriptions in the π-ADL language to implementation source code in Go
[36], an easy, modern general-purpose programming language designed to address
the construction of scalable distributed systems as well as to handle multicore and
networked computer architectures, as required by contemporary systems. Go was
chosen to serve as implementation language because it relies on the same underlying
formalism of π-ADL, thus fostering a straightforward relationship between elements
of these languages. Such a mapping process resulted in an automated process for
generating source code from an architecture description [35, 37], thereby contributing
to minimize the risk of architectural drifts and allowing for the validation of the
architecture itself.

An architecturally-driven, computationally efficient approach and toolchain

for verifying properties in dynamic software architectures. The third contribution
regards the use of statistical model checking (SMC) to support the formal analysis of
dynamic architectures expressed in the π-ADL language [38]. SMC is a probabilistic,
simulation-based technique intended to verify, at a given confidence level, if a certain
property is satisfied during the execution of a system [39]. Unlike conventional formal
verification techniques (such as model checking), SMC does not suffer from the state
space explosion problem as it does not analyze the internal logic of the target system
[40]. In a nutshell, SMC executes a stochastic model of the system under verification
multiple times, so that the validity of the properties is probabilistically verified in each
of these simulations. To support the verification process, a toolchain was developed
upon a flexible, modular statistical model checker while striving to reduce effort,
computational resources, and time for performing such a task. As far as it is concerned,

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

35

this is the first work on the application of SMC to verify properties in dynamic software
architectures.

A novel logic and notation for formally expressing properties in dynamic

software architectures. SMC has been applied to verify bounded properties, i.e.,
properties that can be defined in terms of finite executions of the system under
verification. Besides a system model whose execution is probabilistic, stochastic, SMC
requires a language for expressing the properties to be verified. Expressing properties
regarding a dynamic software architecture needs to take into account architectural
elements that are created or removed at runtime, i.e., they may exist at a given instant
in time and no longer exist at another. As the existing notations available in the
literature are not able to cope with such a characteristic, the fourth contribution is
DynBLTL, a novel logic and notation aimed to express properties in dynamic software
architectures [41]. In particular, DynBLTL was designed to handle the absence of an
architectural element in a given bounded formula expressing a property.

1.4 Outline
The remainder of this doctoral dissertation is organized as follows. Chapter 2

establishes the background underlying this work. Chapter 3 briefly describes the two
wireless sensor network-based systems that will be used hereinafter, more specifically
in the presented examples. Chapter 4 introduces the π-ADL language, its formal
underpinnings and main elements, and how it can be used for describing dynamic
software architectures. Chapter 5 presents the approach for automatically generating
source code from architecture descriptions expressed in the π-ADL language as well
as the implementation intended to support such a process. Chapter 6 describes the
SMC-based approach to support the formal specification and automated verification
of properties in dynamic software architectures. Chapter 7 revisits the achieved
contributions and presents perspectives for future work.

Four appendices are also provided as additional material. Appendix A presents
the grammar specification for the π-ADL language. Appendix B details the tool
developed to support architectural description and architecture-based code
generation. Appendix C presents the grammar specification for the DynBLTL notation.
Finally, Appendix D contains a list of publications resulted from this work and other
correlated publications.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

36

2 Background
This chapter presents the conceptual foundations underlying this work. Section

2.1 provides a characterization about dynamic reconfiguration approaches for
software architectures often found in the literature. Section 2.2 gives an overview of
Go, the programming language used as target of the aforementioned architecture-
based code generation process. Finally, Section 2.3 presents some important concepts
related to statistical model checking, the technique used in this work for verifying
properties in dynamic software architectures.

2.1 Characterizing dynamic software architectures
Wermelinger [33] and Bradbury [42] provide relevant characterizations of

dynamic reconfiguration approaches for software architectures. Figure 1 illustrates the
main taxonomic dimensions presented by these authors and considered in this work.

Figure 1 – Taxonomic dimensions to characterize dynamic reconfiguration approaches for
software architectures

Source (or initiation). Dynamic reconfiguration of software architectures can
be either programmed or ad-hoc. In programmed (a.k.a. foreseen or proactive)
reconfigurations, changes are pre-planned, foreseen at design time and applied at
runtime under a given condition or event [32]. Therefore, the software architect
specifies when such changes will be realized and which operations must be realized. In
turn, ad-hoc (a.k.a. unforeseen or reactive) reconfiguration stands for changes that
occur at runtime without being previously planned. These changes typically come
from agents that are external to the architecture (e.g., the user) and they are applied
through an interface of the system with the environment in which it is deployed. It is
noteworthy that most of the works about dynamic software architectures addresses
programmed reconfiguration [43]. Both programmed and ad-hoc reconfigurations

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

37

have their advantages and drawbacks, thus making them complementary approaches
that shall be supported by architectural approaches. While programmed
reconfigurations can enable a system to be autonomically reconfigured in response to
certain conditions, ad-hoc reconfigurations can allow applying changes/updates
without necessarily foreseeing them in advance. Nevertheless, it is practically
impossible to predict all possible operations that might be required by a system to be
reconfigured. On the other hand, ad-hoc reconfigurations must be somewhat
constrained, carefully applied in order to avoid architectural erosion.

Operations. In spite of the several nomenclatures adopted in different works in
the literature, reconfiguration operations to be applied on the architectural elements
of a software system are essentially four [23, 32, 44]: (i) creation of instances of
architectural elements; (ii) removal of instances of architectural elements; (iii) attachment
of architectural elements; and (iv) detachment of architectural elements.

Management. The management of the reconfiguration process can be either
centralized with a special entity or distributed across architectural elements. The so-
called exogenous dynamism refers to the existence of a central entity (e.g., a configuration
manager) that has control over all architectural elements and it is responsible for
applying the reconfiguration actions on the architecture. In turn, the endogenous
dynamism stands for the decentralization of the dynamic reconfiguration process, in
which the architectural elements themselves are able to perform the reconfiguration
actions. The main disadvantage of the exogenous dynamism is the centralization of
the reconfiguration process, so that the entity responsible for it might become a
bottleneck at the implementation level and reduce the performance of the architecture
at runtime. In addition, reconfiguration actions associated to different architectural
elements may be tangled, each one requiring a specific set of operations that must be
described and performed independently from each other [34]. However, in the
endogenous approach, reconfiguration actions may also be tangled with the
functionality/behavior of architectural elements, thus hampering reuse and
maintainability. Moreover, the endogenous dynamism requires architectural elements
to have knowledge about each other, so that one could regard this as a violation of the
basic features of a component or a connector. Nevertheless, it is necessary to establish
some sort of trade-off between these dynamism approaches according to each specific
scenario and architecture.

2.2 The Go programming language
Go [36] is a new, evolving general-purpose programming language launched

as an internal project at Google, Inc. in 2007 and became open-source in November
2009. In 2012, Go was stably released as Go 1 by including a language specification
[45], standard libraries, and custom tools. At the time of writing, the language is

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

38

currently in version 1.6.2, released in April 2016. In the last years, Go has been used by
Google and a variety of commercial and noncommercial organizations and it is also
integrated into the Google Cloud Platform [46].

Go was designed to address the construction of new-generation large-scale
software systems, which are to be efficient, dynamic, and deployed on multicore and
networked computer architectures. In order to achieve these purposes, Go aims at
combining the lightweight, ease of use, and expressiveness of interpreted and
dynamically typed languages (e.g., JavaScript and Python) with the efficiency and
safety of traditional statically typed, compiled languages such as C and Java.
Moreover, it is possible to directly compile even a large Go program to native code in
few seconds, thereby fostering the development of large software systems. Go
maintains a resemblance with the C-syntax so as to be immediately familiar with a
majority of developers, but its syntax is greatly simplified and made more concise and
clean in comparison to C/C++.

For the sake of space, this section briefly reviews Go by presenting the essential
constructs of the language, in particular the elements used in the automated generation
of source code in Go from architecture descriptions expressed in π-ADL. More details
about the main elements of the language and its syntax can be found in the official
language specification [45] and recent books about it [47, 48, 49].

2.2.1 Fundamentals

A Go source file basically consists of three parts:

− package statement. Go code is arranged in packages, similar to both
libraries and header files in C. Every Go program must contain a main
package containing a main function, the entry point from which the
program always starts.

− import statements. This part specifies the packages that the current source
file uses and how they should be imported. Imported packages contain
types, variables, constants and functions.

− Declarations. The remainder of a Go code contains declarations of types,
variables, and functions.

Consider the following Go code:

package main
import “fmt”

func main() {

fmt.Println(“Hello, world!”)
}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

39

This program simply prints “Hello, world!” on the console. The import instruction
tells Go that the program needs (functions, or other elements, from) the fmt package,
which implements functionalities for formatted input/output. In the main function, the
Println function available at the fmt package is called to print the message (received
as argument) on the console. The program exits immediately and successfully when
the main function ends.

 A Go code can also contain functions, which typically appear out of the main
function2. Using the func keyword, a function can be declared taking zero or more
arguments and returning any number of values. The simplest function declaration has
the format:

with its body enclosed by braces. The execution of a function is stopped when the
closing brace is reached or when a return statement is encountered. Afterwards, the
execution of the program continues with the line following the call of the function.
Although main is a function, it is important to highlight that it must have no arguments
and no return values.

Variables contain data and can be of different types. In Go, variables are
declaring using the var keyword along with the variable name and type, at package or
function level. For example, the instruction

var a int

declares an integer variable named a and initialized with the default null value (in this
case, zero). It is important to note is that the type is written after the identifier of the
variable, contrary to almost any other programming language. A variable declaration
can include initializing values (one per variable), but the type can be omitted if the
initializer is present since the variable will take the type of the initializer. For instance,
the instruction

var a = 1

declares the variable as integer (type of the initializer) and with value 1. Inside a
function, the short assignment statement (:=) can be used instead of a var declaration
with explicit type. When declaring a variable without specifying an explicit type
(either by using a short assignment or a typical variable declaration), the variable’s
type is inferred from the value on the right hand side. As an example, the instruction

a := 1

2 Go also allows declaring closures, i.e., functions inside other functions (including the main function).

func functionName() {
// function body

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

40

declares a variable named a and with value 1. The type of a is int (integer), inferred
from the value on the right hand side of the short assignment statement.

2.2.2 Control statements
 Control statements in the Go language are mostly similar to those in C/C++
and Java, but they are slightly different. For example, control statements in Go do not
require parentheses and braces are mandatory even there is only one statement in the
body. As an example, the isGreater function below compares the values of two integers
received as arguments:

Testing different conditions and executing different statements in each case can

be done with the selection statement, which is useful mainly to avoid several if-else
statements. Compared to C/C++ or Java, this statement is more flexible in Go since
the cases to be tested do not need to be constant values, but they must be of the same
type or expressions evaluating to that type. In addition, more than one value can be
simultaneously tested in a case. Consider the following excerpt of a Go program:

The switch statement executes different tests based on the value of the variable num.
The cases are evaluated from top to bottom, automatically breaking when a case
succeeds. The default branch is optional and it is executed if the previous cases have
not succeeded.

Although having conditional (if-else) and selection (switch) statements, Go has
only one iterative construct, the for loop. The basic for loop has three elements,
separated by semicolons: (i) an init statement, which is executed before the first
iteration; (ii) a condition expression (Boolean), which is evaluated before each iteration
and determines when the loop should terminate; and (iii) a post statement, which is
executed after each iteration. Unlike other languages, there are no parentheses
surrounding these elements and braces are always required. Moreover, the init and

func isGreater(x, y int) bool {
if x > y {

return true
} else {

return false
}

}

num := 7
switch {

case num < 0:
fmt.Println(“Number is negative”)

case num >= 0 && num <= 10:
fmt.Println(“Number is between 0 and 10”)

default:
fmt.Println(“Number is greater than 10”)

}
}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

41

post statements are optional. In a for loop, the break and continue instructions can
alter the behavior of the loop. For example, consider the following Go program:

The body of the loop is repeated for a known number of times as counted by the
variable i. The loop starts with an initialization for i as a short assignment statement (i
:= 1), followed by a conditional check on the value of i (i <= 5) performed before each
iteration: when it is true, the iteration is done, otherwise the loop is stopped. Next, a
modification of i (i++) is performed after each iteration, at which point the condition is
checked again.

2.2.3 Arrays and slices
The array type notation is well-known in almost every programming language

as the basic workhorse in applications. The Go array is similar to those found
elsewhere, but it has a few peculiarities. Arrays in Go are not dynamic and are
somewhat inflexible in that they are a fixed-length sequence of elements of the same
type. The expression

var a [10]int

declares a variable a as an array of ten integers. The items contained into the array can
be accessed (and changed) through their index (the position), which starts from zero.

As an array’s length is part of its type, arrays cannot be resized. However, Go
provides a convenient way of handling dynamicity with arrays, the so-called slices. By
definition, a slice is a reference to a contiguous segment of an underlying array, thus
not requiring additional memory and being more efficient to use than arrays. Unlike
an array, the length of a slice can dynamically change during the execution of a
program. The expression

var a []int

declares a variable a as a slice to hold integer values.

2.2.4 Interfaces
Despite borrowing some concepts from the object-oriented programming

paradigm, Go is not a classic object-oriented language in the same sense of C++ and
Java because it does not have the notions of classes and inheritance. However, Go has
a concept of interfaces, which allow for polymorphism.

package main
import “fmt”

func main() {

for i := 1; i <= 5; i++ {
fmt.Printf(“This is the %d iteration\n”, i)

}
}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

42

Interfaces in Go are abstract representations of behavior and define sets of
method signatures, i.e., they are abstract and do not have a body. Therefore, any object
implements (or satisfies) an interface if it implements the methods of such an interface,
but no explicit annotation is required. This implicit relationship allows decoupling the
definition of an interface from its implementation. For illustrative purposes, consider
the following excerpt of a Go program:

In this example, the Shape interface represents a geometric shape and it is defined with
one method (area), which returns the area of such a geometric shape. Different
geometric shapes have different ways to calculate area, so that an implementation for
this method needs to be provided for each of them. In the example, the Rectangle and
Square struct types respectively represent a rectangle and a square: these types
implement the Shape interface as there are implementations for the area method defined
in such an interface. This is the Go’s version the well-known polymorphism concept
in the object-oriented programming paradigm.

A special type of interface is an empty interface, which has no methods. It is
declared as

type Any interface{}

so that any types implement it. In other words, such an interface may hold values of
any type. Empty interfaces are typically used to handle values whose type is not
known a priori, thereby being an analogy to a generic data type.

2.2.5 Concurrency support

One of the main features of Go is the lightweight support for concurrent
communication and execution through high-level operations, in contrast to the
considerable effort required to develop, maintain, and debug concurrent programs in

type Shape interface {
area() int

}

type Rectangle struct {

length, width int
}

type Square struct {

side int
}

func (r Rectangle) area() int {

return r.length * r.width
}

func (s Square) area() int {

return s.side * s.side
}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

43

mainstream languages such as C++ and Java. In this perspective, the solution provided
by Go is threefold. First, the high-level support for concurrency enables programmers
to easily develop concurrent programs. Second, concurrent processing is performed
by means of goroutines, lightweight processes (similar to threads, but lighter) that can
be created and automatically load-balanced across the available processors and cores,
thereby making Go a language suited to the contemporary multicore computer
architectures. Third, an automatic, efficient garbage collection relieves programmers
of the memory management typically required by concurrent programs.

Goroutines are the basic primitive for concurrency in Go. In essence, goroutines
are functions that can run simultaneously, i.e., concurrently. A goroutine is created by
prefixing any function call with the go keyword. In Go, goroutines communicate by
using typed channels. Channels are first-class objects used for sending and receiving
values of any type, including other channels. When a channel communication takes
place, the channels and their respective goroutines are synchronized at the moment of
the communication. Therefore, explicit locking and other low-level details are
abstracted away from programmers, thus simplifying the development of concurrent
programs3. In Go, channels are defined by using the chan keyword along with the type
of data that they can hold. Values can be sent to and received from channels using the
channel operator <-.

For illustrative purposes, imagine a cake making and packing factory
implemented in the following Go program in which makeCakeAndSend is a function
representing the cake making whereas receiveCakeAndPack is a function representing
the cake packing. Once launched simultaneously, these goroutines synchronize their
operations through the channel cs, received as argument in both functions. As cs is an
unbuffered channel (the default in Go), the makeCakeAndSend goroutine is blocked until
the receiveCakeAndPack goroutine has completely consumed the value sent through cs.

3 Go also provides low-level synchronization primitives (e.g., mutexes and condition variables) in the
sync package, which are similar to the ones found in other programming languages. However, the use
of channels is considered the most idiomatic (and recommended) way of synchronizing goroutines.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

44

2.3 Statistical model checking
As previously discussed in Section 1.1.3, the main drawback of traditional

model checking techniques for formally analyzing software architectures is the
exponential growth of the state space, the so-called state space explosion problem. Aiming
at overcoming this limitation, alternative techniques have been proposed in the last
years envisioning the reduction of the state space or even avoiding an entire
representation of it. One of these techniques is statistical model checking (SMC), a
probabilistic, simulation-based approach that consists of building a statistical model
of finite executions of the system under verification and deducing the probability of
satisfying a given property within confidence bounds [39].

SMC provides a number of advantages in comparison to traditional model
checking techniques. First (and perhaps the most important one), this technique does
not suffer from the state space explosion problem since it does not analyze the internal
logic of the system under verification, neither requires the entire representation of the
state space, thus making it a promising approach for verifying complex large-scale and
critical software systems [40]. Second, SMC requires only the system be able to be
simulated, so that it can be applied to larger classes of systems including black-box
and infinite-state systems. Third, the proliferation of parallel computer architectures
makes the production of multiple independent simulation runs relatively easier, thus
helping the verification of large-scale systems even though it is still necessary to make

package main
import (

“fmt”
“strconv”

)

var i int

func makeCakeAndSend(cs chan string) {

i = i+1
cakeName := “Strawberry cake #” + strconv.Itoa(i)
fmt.Println(“Making a cake and sending...”, cakeName)
cs <- cakeName // sends through channel

}

func receiveCakeAndPack(cs chan string) {

s := <-cs // receives through channel
fmt.Println(“Packing received cake:”, s)

}

func main() {

cs := make(chan string) // creates a channel to strings
for i := 0; i < 3; i++ { // make and pack three cakes

go makeCakeAndSend(cs) // launch cake making goroutine
go receiveCakeAndPack(cs) // launch cake packing goroutine

}
}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

45

the simulation procedure as efficient as possible [39]. Fourth, despite SMC provides
approximate results (as opposed to the exact results provided by traditional model
checking), it is compensated by less consumption of computational resources and a
better scalability. In some cases, knowing the result with less than 100% of confidence
is quite acceptable or even the unique available option [51]. Therefore, SMC allows
trading-off between verification accuracy and computational time by selecting
appropriate precision parameter values. For example, if the project time is limited, it
may be more valuable obtaining less precise verification in short time than more
precise verification results in much longer time.

Figure 2 illustrates a general schema on how the SMC technique works. A
statistical model checker basically consists of a simulator for running the system under
verification, a model checker for verifying properties, and a statistical analyzer
responsible for calculating probabilities and performing statistical tests. It receives
three inputs: (i) an executable stochastic model of the target system M; (ii) a formula ϕ
expressing a bounded property to be verified, i.e., a property that can be defined in terms
of finite executions of M; and (iii) user-defined precision parameters determining the
accuracy of the probability calculations. M is stochastic in the sense that the next state
is probabilistically chosen among the states that are reachable from the current one. As
a consequence, some executions of M might satisfy ϕ and others might not. The
simulator executes M and generates an execution trace σi, composed of a sequence of
states. Next, the model checker determines if σi satisfies ϕ and sends the result (either
success or failure) to the statistical analyzer, which in turn estimates the probability p
for M to satisfy ϕ. The simulator repeatedly generates other execution traces σi+1 until
the statistical analyzer determines that enough traces have been analyzed to produce
an estimation of p satisfying the precision parameters. It is important to highlight that
a higher accuracy of the answer provided by the model checker requires generating
more execution traces through simulations.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

46

Figure 2 – Working schema of the SMC technique

In essence, SMC answers two questions. The first one is qualitative: Is the

probability p for M to satisfy ϕ greater or equal than a certain threshold θ? The second
question is quantitative: What is the probability p for M to satisfy ϕ? [52]. In both cases,
producing an execution trace σi and checking if it satisfies ϕ (i.e., σi ⊨ ϕ) is modeled as
a random variable Bi following a Bernoulli distribution4 of parameter p [53]. The
possible values of Bi are either 0 (if σi ⊭ ϕ) or 1 (if σi ⊨ ϕ), with probability functions
Pr[Bi = 1] = p and Pr[Bi = 0] = 1 – p. Each variable Bi is associated with one simulation
of M and the main goal here is to evaluate p.

Qualitative approach. The main existing SMC approaches proposed to answer
the qualitative question [54, 55] rely on hypothesis testing as means of inferring if the
simulated execution traces provide statistical evidence on the satisfaction or violation
of a property [56]. In order to determine if p ≥ θ, two hypotheses can be considered,
namely (i) H: p ≥ θ and (ii) K: p < θ. The test is parameterized by two bounds, α and β.
The probability of accepting the hypothesis K when the hypothesis H holds is bounded
by α and the probability of accepting H when K holds is bounded by β. Such algorithms
sequentially perform simulations until either H or K can be returned with confidence
of α or β. Other sequential hypothesis testing algorithms are based on the Bayesian
approach [57].

Quantitative approach. In order to compute the probability p for M to satisfy ϕ,
Hérault et al. [58] and Laplante et al. [59] propose an estimation procedure based on
the Chernoff-Hoeffding bound [60], which provides a priori the minimum number of
simulations required to ensure the desired confidence level. Therefore, given a
precision ε, such a procedure computes an estimate p’ of p with confidence δ, thereby

4 In Statistics, the Bernoulli distribution with parameter p is the probability distribution of a random
variable B that takes value 1 with success probability of p (i.e., Pr[B = 1] = p) and the value 0 with failure
probability of 1 – p (i.e., Pr[B = 0] = 1 – p), 0 ≤ p ≤ 1 [53].

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

47

ensuring Pr(|p’ – p|) ≥ δ [51]. As defined by Hoeffding [60], δ is related to the number
of required simulations N by δ = 2e-2Nε2, resulting in N = �(ln 2 – ln δ)/2ε2�.

The quantitative approach is used when there is no known approximation of
the probability to evaluate, i.e., when one wants to obtain a first approximation. This
method is used when the goal of the analysis is to have a glimpse on how well the
model behavior. On the other hand, the quantitative approach determines whether the
probability is above a given threshold with a high confidence and in a minimal number
of simulations.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

48

3 Running applications:
Wireless sensor network-based systems

Wireless sensor networks (WSNs) are typically made up of multiple spatially-
distributed motes, tiny low-power hardware/software platforms equipped with an
embedded CPU, wireless networking capabilities, and simple sensors able to perform
measurements of physical phenomena, e.g., temperature, luminosity, humidity,
barometric pressure, vibration, acoustics, magnetic field, etc. [61]. These motes operate
in a collaborative way by extracting environmental data, which may undergo some
processing. Such sensor-collected data can also be transmitted to other sensors and/or
to other computationally-powerful nodes (often called sink nodes), which gather them
and make them available to end-users and applications.

The main concern for a WSN-based system is to observe the physical world to
obtain useful information from it, besides processing and making decisions upon the
collected information. Starting from such a premise, WSNs have been increasingly
used in several application domains, e.g., disaster management, environmental
monitoring, structure health, ambient assisted living, traffic control, surveillance, and
military intelligence [62]. In general, applying WSNs to these scenarios promote a
number of advantages in comparison to traditional, wired networking techniques,
especially in terms of (i) reduced cost, (ii) simplified deployment, (iii) capability of
monitoring hazardous or remote areas, and (iv) ability to adapt to changing
environmental conditions [63].

In this chapter, two WSN-based systems are presented to serve as running
applications throughout this work aiming at (i) illustrating how to describe a dynamic
software architecture using the π-ADL language, (ii) showing how to automatically
generate implementation source code in Go, and (iii) demonstrating how to specify
and verify properties of dynamic software architectures. Besides being interesting
examples with high real-world relevance, these systems were chosen because they are
inserted into the inherently dynamic scenario of WSNs, thus requiring their software
architectures to be also dynamic. Sections 3.1 and 3.2 respectively introduce a flood
monitoring system and a system to remotely monitor oil and gas pipelines, describing
their context, goals. Section 3.3 shows a general picture of a software architecture for
these systems. In turn, Section 3.4 discusses some dynamicity concerns to be
considered in these WSN-based systems.

3.1 A flood monitoring system
Floods are one of the major problems in many countries around the world. In

rainy seasons, this type of event can be quite devastating in both developed and

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

49

underdeveloped countries where urban centers are traversed by rivers as they may
cause material, human, and economic losses. Regardless of their magnitude, floods
represent a risk and must be detected. As an example of the potential damage caused
by floods in a large urban agglomeration, a 2002 report by the French Government
stated that, in a worst-case scenario, a flooding of the Seine river crossing Paris, France,
would cost about 10 billion euros, cut telephone service for a million of Parisians, and
leave 200,000 people without electricity and 80,000 people without gas [64]. More
recently, heavy rainfalls in October 2015 in Southern Brazil triggered flooding of rivers,
affecting more than 200,000 people from 229 municipalities in the states of Santa
Catarina and Rio Grande do Sul and forcing more than 12,000 people to be displaced
or be homeless [65].

Although it is possible to forecast rainfall or track the path of a storm with the
support of meteorological systems and satellite images, it is still necessary to monitor
the river water flow and level in order to allow for up-to-date and reasonable decisions
on the required actions according to the current conditions. It has been noticed that the
cost of damage incurred during a flood is correlated with two main factors, the depth
of the flooding (i.e., the water level) and the time in advance at which a warning is
given [66]. Therefore, a flood monitoring system can support monitoring urban rivers
and create alert messages to notify authorities and citizens about the risks of an
imminent flood. This type of system can also play an important role in terms of
obtaining more precise data and fostering effective predictions in a timely manner, as
well as it can improve warning times. Such features are important to ensure a better
planning of management activities towards reducing the possible damages caused by
the flood, e.g., the definition of evacuation plans, rearrangement of traffic in the
proximities of the flooded areas, and coordination of rescue actions [67]. With these
actions, the impact of a disaster can be alleviated.

A successful example of flood monitoring system is the one deployed to
monitor the Monjolinho river in São Carlos, Southeastern Brazil [63, 68], as illustrated
in Figure 3. By using a WSN, motes are spread in flood-prone areas near the river and
monitor the water level (centimeters of water), which is used as an indicator of floods.
In addition, a gateway station analyzes data measured by motes, makes such data
available, and can trigger alerts when a flood condition is detected. Indeed, WSNs have
been one of the widely used infrastructures to build a flood monitoring and warning
system because they make it easier to collect data and have a wide coverage area as a
result of communication capabilities of the sensor nodes [69].

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

50

Figure 3 – Deployment layout of the flood monitoring system in a flood-prone area in
downtown São Carlos, Brazil (adapted from [70])

Motes can use pressure and/or ultrasound sensors to respectively gauge the
depth and the average speed of the water flow, raw data that need to undergo some
processing in order to provide the height reached by the water level (centimeters of
water). As a sensor node is usually a resource-constrained device in terms of power
and networking capabilities, the gateway station responsible for receiving data may
be far from the sensor site and hence out of its network coverage area. In order to
overcome this limitation, sensed data can be transmitted in a multihop
communication, i.e., data sensed by some motes in their respective sites are
successively sent to neighbor sensors, which in turn forward such data to other
neighbor sensors until reaching the gateway station. The communication among these
elements can take place by using wireless network connections such as WiFi, ZigBee,
GPRS, Bluetooth, etc. Figure 4 illustrates this scenario.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

51

Figure 4 – Flood monitoring system scenario

3.2 Monitoring oil and gas pipelines
The oil and gas industry includes processes for exploring, extracting, refining,

transporting, and marketing oil products. Among these activities, the transportation
of oil, gas, and its derivatives is a high-costly sector in the production chain of the oil
industry and hence it offers a significant contribution to the success of activities in this
context. For this reason, oil and gas companies need to develop and adopt new
technologies towards improving operations in order to increase productivity.

Pipelines has been widely used as modal for transporting oil, gas, and its
derivatives along the last 40 years since they play a key role in the transportation of
oil, gas, and derivatives by linking production areas, harbors, refineries, and consumer
centers, which are significantly far from each other. In Brazil, the situation is not
different. According to a 2014 report from the Brazilian National Agency of Oil, Gas
and Biofuels (ANP), Brazil had 601 pipelines forming a network of 19,700 kilometers
long to distribute oil, derivatives, gas, and other products across the country [70].
Despite the high initial investment and inherent complexity, pipelines are the most
effective means of transporting large volumes over long distances (thus overcoming
the geographical limitations), besides reducing losses and providing a high reliability.
This whole conjuncture makes transporting products in pipelines an issue of high
importance from the economic point of view as the final price of these products largely
depends on the transportation costs.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

52

WSN features such as small size, wireless architecture, ease of deployment, and
ubiquitous nature makes such a technology quite attractive for transportation through
pipeline networks. WSNs are promising in this context especially due to (i) reduced
costs, (ii) hazardous, remote, inaccessible conditions of the areas traversed by the
pipelines, (iii) the difficulty and cost regarding the introduction of wired devices near
pipelines, and (iii) the difficulty and inefficiency of directly inspecting the state of each
pipeline using personnel in situ along its extension, which may extend to thousands of
kilometers [71, 72]. Recently, the WSN technology has been successfully applied to
pipeline monitoring, thereby bringing benefits in terms of cost, flexibility, and control
efficiency. For instance, WSNs promote unremittingly monitoring and/or estimation
of the pipeline status without manual intervention and work under severe conditions
[73, 74].

A pipeline monitoring system can make use of a WSN composed of sensor nodes
spread along the extension of a pipeline, as illustrated in Figure 5. Each of these sensors
is connected to each other via wireless links and they successively transmit the
gathered measures until reaching a base station, where such data are processed. As a
single type of sensor cannot capture all physical anomalies to which operational
pipelines are subjected, a WSN targeted to monitor pipelines can make use of several
sensing modalities, e.g., piezoelectric, acoustic, ultrasonic, thermal, optical, chemical,
magnetic, etc., each one providing a different information about the pipeline status.
Sensors for pipeline monitoring generally use steady-state or transient detection
methods [75]. The first one refers to detection methods that are used when the
parameters of operational pipelines (pressure, flow, anomaly, vibration) are expected
to remain unchanged over time except when an anomaly such as leakage or third-
party damage occurs. In such conditions, the sensor is only required to distinguish
between the normal operation characteristics and the occurrence of an anomaly using
pre-defined thresholds. On the other hand, the second one is useful for scenarios in
which the variables experienced by operational change rapidly and/or frequently over
time. When an anomaly (such as leakage or rupture) occurs, the implied change in
pressure or vibration propagates through the network and can be detected
hydraulically at other locations.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

53

Figure 5 – Deployment of wireless sensors in a pipeline network

One of the main aims of pipeline monitoring regards the detection of leaks in
the pipelines, which might have different causes, e.g., deformations caused by
earthquakes, collisions, corrosion, structural cracks, third-party intrusion, etc. In the
last decades, several disasters caused by leaks in oil pipelines led to devastating
environmental hazards, as well as severe material and financial damages. Leakage not
only wastes commodities and cuts profits, but it also brings law suits and raises
liability issues when it directly affects people’s lives and the environment. For this
reason, the development of leakage detection systems is critical in pipeline networks.

When a leak occurs, the most important issues are detecting it immediately and
executing preventive/corrective actions, e.g., triggering alarms, stop pumps,
automatic closing of valves, etc. However, the success of the detection depends on the
time at which the leakage is observed: the faster the leakage is detected, the smaller
are the losses and the environmental impact. As depicted in Figure 6, a simple, but
effective technique to detect leaks in pipelines can be simply is placing sensors to
observe the fluid flow at the extremities of some sections of the pipeline, i.e.,
longitudinal sections [73]. When a leak occurs within a longitudinal section, there is a
difference between the flow values observed at each side, while it should be constant.
By comparing the two values of flow, an alert can be triggered whenever the difference
between the flow measured is greater than a given threshold established for such a
longitudinal section. Another conventional way of detecting leaks is by using acoustic
sensors, which are able to pick up variations in sound pressure induced by the passing
fluid as it escapes from the pipeline under pressure, as well as it can indicate where
the leak is.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

54

Figure 6 – Detection of leaks in pipelines by measuring flow debits

3.3 An architecture for WSN-based monitoring systems
The WSN-based monitoring systems described in Section 3.1 and 3.2 are equally

composed of spread sensor motes that interact with each other via wireless links in a
multihop communication and send data to a gateway or base station. Due to these
similarities, it is possible to depict a generic architecture that might fit both systems.
Figure 7 illustrates a simplified picture of such a generic architecture, composed of
three sensor components (S1, S2 and S3), one gateway component (Gw), and three
wireless connectors linking these components (L1, L2 and L3). In this architecture, data
(water level in the flood monitoring system and fluid flow in the pipeline monitoring
system) are measured by sensors S1 and S2 and sent to sensor S3 by using the links L1
and L2. Sensor S3 receives these data and forwards them to the gateway Gw via the
link L3, with no additional processing. Both structure and behavior of these
architectural elements are detailed in the following.

Figure 7 – Generic architecture for WSN-based monitoring

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

55

Sensor component. Sensor components can (i) either receive raw data measured
by the physical sensors (and that might undergo some processing) via the sense input
or data from a neighbor sensor via the pass input and (ii) send data via the measure
output. The behavior of this component comprises the preprocessing of sensed raw
data (e.g., making a unit conversion). Moreover, data received via the pass input are
directly sent from this input to the measure output, not undergoing any processing.

Link connector. Link connectors receive data via the from input and send them
via the to output. Such connectors do not make any additional processing, thereby only
transmitting data from their input to output.

Gateway component. The Gateway component receives data from sensors via
the data input. The behavior of this component comprises functions to determine the
risk of flood or leakage. The calculation of the flood risk relies on the hazard index [76],
a measure that indicates the potential of flood based on the water level measures
gathered by the sensors. In turn, the leakage detection relies on the debit (difference)
between flow measures gathered by two neighbor sensors. When an imminent flood
or an anomaly in a pipeline is detected, alert messages are sent via the message output.

WSNMonitoring configuration. The WSNMonitoring configuration represents
the architecture itself and it comprises instances of the Sensor and Gateway components
(S1, S2, S3 and Gw), as well as instances of the Link connector (L1, L2 and L3). The
associations depicted in Figure 7 show how these architectural elements are connected
with each other.

3.4 The dynamic scenario of WSNs
 WSNs are typically inserted into highly dynamic, sometimes remote and/or
even hostile environments, thereby adaptation strategies to ensure the availability of
the network and gathered data. These networks should have an autonomous behavior
and be able to tolerate several types of failures, such as faulty nodes, low-level battery,
lack of coverage and connectivity, etc. General requirements that lead to a dynamic
reconfiguration of WSN-based systems are related to: (i) efficiency in the use of the
available resources aiming at extending the network lifetime, especially in terms of
power consumption and communication; (ii) resiliency of the system in case of
unavailability of motes during operation; (iii) precise, accurate measures; and (iv)
autonomous, proactive adaptation upon failures or unpredictable circumstances while
minimizing manual intervention and disruption. Interesting properties that a WSN
should have are self-configuration, i.e., the ability of reconfiguring and adapting the
networking and sensing behaviors of sensor nodes by dynamically changing
parameters according to the conditions and state of the network, and self-healing, in to
ensure reliability and correctness of the network especially upon failures [77].

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

56

Hughes et al. [78] discuss some interesting scenarios for dynamic adaptation in
WSNs, taking into account four important concerns, namely communication latency,
resilience, power consumption, and prediction accuracy. These scenarios are briefly
outlined in the following.

Adaptation due to power level of motes. In WSNs, power efficiency and
communication efficacy are often conflicting strategies. For example, WiFi has a better
performance and resilience, but it requires more power capabilities. In turn, ZigBee
(IEEE 802.15.4) requires lower power although it has reduced performance and
demands for short distances between sensor nodes. As these communication
infrastructures have quite different properties, it is sometimes desirable having motes
with both capabilities and able to switch between them according to the power level
of the motes and the current environmental conditions of the river.

Adaptation of the general behavior of the WSN. If an anomaly in the normal
operation of the monitored site is detected, then the frequency at which sensors send
measures needs to be dynamically increased in order to increase prediction accuracy,
even though this implies in a greater consumption of power and networking resources.
When the normal operation conditions are reestablished, such a frequency needs to be
reconfigured back to the previous operation conditions.

Adaptation to deal with mote failure. In order to minimize manual
intervention and foster system dependability, dealing with mote failure is an
important concern and requires the system to be capable of reconfiguring itself at
runtime by inserting/activating new sensing nodes in the network. When a sensor
node fails, its functions should be covered by neighboring nodes, if possible.
Moreover, a mote failure may also imply reconfiguring the WSN in terms of
communication strategy or even how the remaining motes are connected with each
other. Depending on the distances between motes, different networks can be used to
communicate, e.g., Bluetooth or WiFi for shorter distances and GPRS for longer
distances.

Adaptation to increase accuracy. Ensuring accuracy of predictions is an
important concern as a corrective procedure (e.g., evacuating a flood-prone area or
triggering personnel to fix leakage in pipelines) might be expense. For this reason, false
positives must be avoided as much as possible. A way of improving accuracy is using
other information sources and combine them with data gathered by the sensors. In a
flood monitoring system, a possible strategy is using image-based flow prediction, i.e.,
use digital cameras fixed in given sites or endowed in unmanned aerial vehicles (a.k.a.
UAVs or drones) in order to capture images of the river and estimate its current flow
rate. These images can be also processed and combined with data provided by sensor
motes to confirm whether a flood is imminent or not. In the case of pipeline
monitoring, multiple sensing modalities can be used to improve accuracy.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

57

4 The π-ADL architecture description language

Process algebras (or process calculi) refer to mathematical theories for formally
modeling concurrent systems and describing their communications/interactions and
synchronizations at a high abstraction level [79]. The basic elements of a process
algebra are a collection of processes, which represent the behavior of a system, and a set
of operators, which are used to manipulate and analyze such processes.

Regardless the variety of existing process algebras, all of them have several
common features, such as: (i) a concurrency model describing processes/systems; (ii) a
communication model specifying how such independent processes can communicate
and be synchronized with each other; and (iii) algebraic laws for process operators,
which allow manipulating processes and formally reasoning about them. Leading
examples of process algebras include Communicating Sequential Processes (CSP) [50]
and the Calculus of Communicating Systems (CCS) [80], both introduced about 30
years ago. More recent additions include π-calculus [81], a computationally complete
(Turing-complete5) process algebra able to provide a universal model of computation
[82].

Process algebras have played a relevant role as formal underpinnings for
describing software architectures. By making a correspondence with software
architectures and their formal specification, the concurrency model serves as a basis
for specifying components that coexist to compose the architecture of a software
system. In turn, the communication model serves as a basis for specifying connectors
representing the interactions between components (processes). Examples of
architecture description languages that take advantage of process algebras for
specifying behavior of software architectures are: (i) Wright [21, 23], which uses CSP;
(ii) Darwin [22], which uses finite state processes (FSP) [83] drawn from CCS; and (iii)
LEDA [84], which uses π-calculus and its operators as-are for specifying the behavior
of architectural elements.

Despite their expressiveness and maturity, process algebras typically do not
provide constructs for easily describing software architectures, thereby hampering
their adoption as notations for this activity in software development. Aldini et al. [85]
argue that the usability of process algebras for describing software architectures can
be enhanced by supporting a user-friendly component-oriented way for modeling

5 Arthur John Robin Gorell Milner (1934-2010), British computer scientist and the creator of π-calculus,
was awarded with the 1991 ACM A. M. Turing Award, one of the highest worldwide distinction prizes
in Computer Science: http://amturing.acm.org/award_winners/milner_1569367.cfm.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://amturing.acm.org/award_winners/milner_1569367.cfm

58

software systems with process algebras. Software architects can thereby reason in
terms of composable software units without worrying about technicalities of the
underlying formalism. In this perspective, adapting process algebras to the
architectural level can increase both the degree of usability of this type of formalism
and the degree of formality and analyzability of software architectures.

Aiming at providing a simple, but expressive notation for describing software
architectures while being well-founded theoretically, π-ADL [9] was proposed one
decade ago as a formal language intended to describe software architectures under
both structural and behavioral viewpoints, unlike most existing architecture
description languages. This language extends π-calculus (hence the name) by
providing formally founded constructs for architecture description while achieving
computational completeness and high expressiveness. As one of the contributions
resulting from this work, π-ADL was endowed with architectural-level primitives for
specifying programmed reconfiguration operations [32]. In addition, two common
approaches for enacting programmed dynamic reconfiguration [33, 34] were
incorporated into π-ADL. The first approach is exogenous, in which it is possible to
control all elements of the software architecture and apply the changes on the whole
structure. In turn, the second approach is endogenous, in which the architectural
elements themselves are able to manage dynamic reconfiguration actions. This
culminates in an expressive language able to describe both structure and behavior of
a dynamic software architecture, as well as the reconfiguration operations that can be
applied over it at runtime [35].

This chapter presents the π-ADL language and how it can be used to describe
dynamic software architectures. Section 4.1 introduces the main architectural
abstractions of π-ADL. Section 4.2 presents the type system defined in the language.
Section 4.3 presents the formally founded constructs used to represent the behavior of
architectural elements. Section 4.4 describes the approach proposed in this work for
specifying programmed reconfigurations of dynamic software architectures expressed
in π-ADL. In Section 4.5, the WSN-based architecture presented in Chapter 3 is used
as an illustrative example of how to describe dynamic software architectures in π-ADL.
Finally, Section 4.6 discusses some related work on languages for describing dynamic
software architectures.

4.1 Architectural abstractions
From the structural viewpoint, a software architecture is described in π-ADL in

terms of components, connectors, and their composition to form the system, i.e., the
architecture itself as a configuration of components and connectors. Components
represent the functional elements of the system whereas connectors manage
interactions among components. Components and connectors can be also composed

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

59

to construct composite elements, which may be themselves components or connectors.
From the behavioral viewpoint, both components and connectors comprise a behavior,
which expresses the interaction of an architectural element and its internal
computation and uses connections to connect and transmit values. In π-ADL,
architectures, components, and connectors are formally specified in terms of
abstractions over behaviors.

In π-calculus, interactions among concurrent processes take place through
communication channels for synchronizing such processes by sending and receiving
messages (values or names)6. Analogously, π-ADL provides connections, which are
abstractions representing communication channels between architectural elements. By
using typed connections, components and connectors can send (output connections) and
receive (input connections) any value of the existing types as well as connections
themselves. In order to attach a component to a connector, at least a connection of the
former must be attached to a connection of the latter. Such an attachment takes place
by means of a unification, so that attached connections can transport values,
connections or even architectural elements.

Figure 8 depicts the main architectural concepts of π-ADL. From a black-box
perspective, only connections of components/connectors and values passing through
connections are observable. From a white-box perspective, internal behaviors of such
elements are also observable.

Figure 8 – Main architectural concepts of the π-ADL language

4.2 Type system
π-ADL is formally defined by a transition and type system [9, 86]. As depicted

6 In spite of the same notions of communicating processes, the main feature that differentiates π-calculus
from previous process algebras such as CCS and CSP is name mobility, i.e., the ability of passing names
over channels. These names may refer to processes or even channels, so that it is possible to send
channels over other channels, for example.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

60

in Figure 9, the formal type system of π-ADL is structured upon two main layers:

− π-ADLB (base π-ADL), which provides the connection and behavior
constructs; and

− π-ADLFO (first-order π-ADL), which extends π-ADLB with base,
constructed, and collection data types, respectively represented by the π-
ADLFO–BV, π-ADLFO–CV, and π-ADLFO–CT sub-layers.

Figure 9 – Layered type system of π-ADL

Sections 4.2.1 to 4.2.3 present the atomic and composite data types defined in π-
ADLFO. The behavior constructs defined in π-ADLB are presented in Section 4.3.

4.2.1 Base types

The base value types are used to express atomic values. Table 1 shows the base
value types defined in the π-ADLFO–BV layer (see Figure 9).

Table 1 – Base types defined in π-ADLFO–BV

Type Syntactic representation Definition

Natural Natural Natural numbers (non-negative integers)
Integer Integer Integer numbers (signed)
Real Real Real numbers (floating-point)
Boolean Boolean Boolean logical values
String String Character strings

In addition to these atomic types, π-ADL defines a type called Any that works as
a generic type in the language. This type admits values of any type (base or constructed
ones), so that it can be seen as a union type with no constraint on the type of value that
it can hold.

4.2.2 Constructed types

The π-ADLFO–CV layer (see Figure 9) provides constructors for defining
composite types by using the base types from π-ADLFO–BV. Table 2 summarizes these
constructed value types, each one described as follows.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

61

Table 2 – Constructed types defined in π-ADLFO–CV

Type Syntactic representation Definition

Tuple tuple[T1, T2, …, Tn] Tuple (v1, v2, …, vn) in which each vi is of type Ti

View view[l1: T1, l2: T2, …, ln: Tn]
Labeled form of a tuple (v1, v2, …, vn) in which
each vi has a label li and is of type Ti

Tuple. Values of a tuple type tuple[T1, T2, …, Tn] are n-uples (v1, v2, …, vn) (n ≥
2) in which each value vi is of type Ti. For example, the declaration

t is tuple[Integer, String]

refers to the declaration of a tuple t associated to pairs in which the first value is an
integer value and the second one is a string value. The individual values within a tuple
can be projected into other variables by using an explicit projection. Therefore, for the
tuple t exemplified above, the instruction

project t as a : Integer, b : String

sequentially assigns values within t to the variables a and b, which respectively receive
an integer value and a string value.

View. A view can be understood as a labeled form of a tuple. Values of a view
type view[l1: T1, l2: T2, …, ln: Tn] are views (l1 : v1, l2 : v2, …, ln : vn) (n ≥ 2) in which each
value vi is labeled as li and is of type Ti. For example, the declaration

v is view[x : Integer, y : String]

refers to the declaration of a tuple v associated to pairs in which the first value (x) is an
integer value and the second one (y) is a string value. The individual values within a
view can be also projected into other variables by using the same explicit projection
instruction used for tuples.

4.2.3 Collection types

The π-ADLFO–CT layer (see Figure 9) provides constructors for defining
collection types by using base and constructed types from π-ADLFO–BV and π-ADLFO–

CV. Table 3 summarizes these collection value types, each one described as follows.

Table 3 – Collection types defined in π-ADLFO–CT

Type Syntactic representation Definition

Set set[T] Unordered collection of elements of type T
Sequence sequence[T] Ordered collection of elements of type T

Set. In π-ADL, a set is an unordered collection of elements of the same type T.
Values within a set type set[T] are values v1, v2, …, vn in which each value vi pertains

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

62

to such a set and is of type T. For example, the declaration

s is set[Integer]

refers to the declaration of a set s of integer values.

Sequence. In π-ADL, a sequence is an ordered collection of elements of the same
type T. Values within a sequence type sequence[T] are values v1, v2, …, vn in which
each value vi pertains to such a sequence and is of type T. For example, the declaration

q is sequence[Integer]

refers to the declaration of a sequence q of integer values.

 Elements can be added to both set and sequence collections by using the add
operator. For example, the instruction

q add 12

adds the value 12 to the sequence q of integer values. In case of adding elements to a
sequence, they are added at the end of the sequence to ensure element ordering. This
is not guaranteed for sets as they represent unordered collections of elements.

 π-ADL also provides the iterate construct for iterating over the elements of
sets and sequences. The iterate construct is of the form

in which collection refers to the name of the collection (set or sequence) to be iterated,
iterator is the variable used to iterate over the collection, accumulator is a variable
returned as result of the iteration, and initial_value is the initial value set to such an
accumulator. As an example, consider the following instructions:

This iterate construct counts the number of elements of the s and stores the result in
the accumulator variable count, initially set to zero. The variable i is used to iterate over
the elements of s.

4.3 Behavior constructs
Besides the connection abstraction, the π-ADLB layer provides behavior

iterate collection by iterator
from accumulator initially initial_value
accumulate {

// statements

}

iterate s by i
from count initially 0
accumulate {

count = count + i

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

63

constructs to represent the internal behavior of architectural elements, which make use
of connections to send and receive values (see Section 4.1). Behaviors defined in π-ADL
come from existing operators provided by π-calculus, in which channels (connections
in π-ADL) are used to transmit values between interacting processes, i.e., behaviors of
architectural elements.

Let P and Q independent processes, c a channel, and x a value or name. π-
calculus formally defines the set of process constructs summarized in Table 4.

Table 4 – Process constructs defined in π-calculus

Notation Process construct Definition

c(x).P Input prefixing action A process that waits to read x from c before
sequentially proceeding as P

c̅(x).P Output prefixing action
A process that waits to write x (previously accepted
in an input prefixing action) in c before sequentially
proceeding as P

τ.P Unobservable action A process executing an action that is not observable
from an external viewpoint

P | Q Parallel composition A process that runs P and Q concurrently

P + Q Non-deterministic choice
A process that behaves as either P or Q depending
on whether an action within P or an action within Q
is executed

0 Inert (nil) process A process that does nothing, i.e., it has no remaining
computation

Similarly to these basic π-calculus constructs, π-ADL provides the behavior
constructs defined in Table 5, each one described in the following.

Table 5 – Behavior constructs defined in π-ADL

Behavior construct Syntactic representation Definition

Input prefixing action via c send v Send value v via connection c

Output prefixing action via c receive s : T Receive value s of type T via
connection c

Unobservable action unobservable Unobservable internal action

Parallel composition compose B1 and B2 ... and Bn Execute behaviors B1, B2, …,
Bn in parallel

Non-deterministic choice choose B1 or B2 ... or Bn Choose to execute either
behavior B1 or B2, …, Bn

Inert (nil) process done Nothing to do

Prefixing actions. Behaviors run by performing prefixing actions. As shown in
Table 5, three types of prefixing actions are defined in π-ADL:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

64

− input prefixing action, which expresses the ability of receiving a value v
via a connection c;

− output prefixing action, which expresses the ability of sending a value v
via a connection c;

− unobservable action (a.k.a. silent prefixing action), which expresses an
internal action unobservable from an external viewpoint.

Composition behavior. A composition behavior expresses the ability of a
behavior to compose sub-behaviors in parallel, each one independently proceeding
from the others in a separate execution thread. These sub-behaviors can interact among
each other via shared connections, e.g., when a behavior sends a value to another
executing behavior via an attached connection. As an example, consider the following
instructions:

In this composition behavior, an integer value v is received via the input connection
and its increment is sent via the output connection, simultaneously to the sending of
the Boolean value true via the signal output connection. As another example, consider
the following instructions:

The sub-behaviors of this composition behavior interact with each other via the
connection x. The first one sends a value v that is received by the second sub-behavior
as the value y.

 Choice behavior. In π-ADL, a choice behavior expresses the ability of a behavior
to execute alternative sub-behaviors. When a given sub-behavior is enacted, the others
are no longer available, i.e., only one of the choice sub-behaviors is executed. As an
example, consider the following instructions:

compose {

via input receive v : Integer

via output send (v+1)

and

via signal send true

}

compose {

via x send v

and

via x receive y : Any

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

65

This choice behavior is expressed by two alternative options, (i) receiving an integer
value v via the input connection and then sending the increment of v via the output
connection, or (ii) receiving an integer value s via the alt connection and then assigning
it to a variable called db. It is worth mentioning that when more than one sub-behavior
is eligible to be executed at the same time, the selection criterion for choosing the block
to be executed is non-deterministic.

 Inert (nil) process. The behavior of an inert process (expressed by the done
keyword) represents the end of execution of a behavior, i.e., it does not execute any
further actions.

4.4 Specifying architectural elements in π-ADL
A software architecture is described in π-ADL in terms of abstractions

representing components, connectors, and their composition in order to form the
architecture of the system. This section briefly introduces the elements provided by π-
ADL for specifying behavior of these architectural abstractions. More details about the
syntax of architecture descriptions in π-ADL and its main elements can be found in [9,
87].

4.4.1 Specifying behavior of components and connectors

The specification of components and connectors is quite similar, except for the
keyword used to determine the type of the architectural element (component or
connector). These elements have an identifier as a unique name and they can
optionally take a list of parameters in the form name : type as input. Furthermore,
exactly one behavior must be mandatorily declared in order to specify the behavior of
an architectural element. Besides the behavior constructs introduced in Section 4.3, the
behavior of both components and connectors can comprise the following instructions.

Type declarations. In π-ADL, it is possible to declare data types within the
scope of a given architectural declaration. This type declaration is specified in the form

choose {

via input receive v : Integer

via output send (v+1)

or

via alt receive s : Integer

db = s

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

66

type s is T, in which s is an identifier7 defining an alias for the type and T is an existing
type (base, constructed or declared one). As an example, consider the following
instructions:

The two first instructions create the Latitude and Longitude types, both having a real
value as underlying type. In turn, the third instruction creates the GeoCoordinate type
as a tuple composed of values of the Latitude and Longitude types for representing a
geographic coordinate.

 Connection declarations. π-ADL allows declaring typed connections that
represent the communication channels used to transmit (send/receive) values. The
declaration of a connection within the scope of an architectural element is specified in
the form connection c is d(T), in which c is an identifier, d is the direction of the
connection, and T is an existing type (base, constructed or declared one). Two
directions are available for declaring a connection, namely in for input connections
and out for output connections. For example, the instructions

declare an input connection x for receiving string values and output connection y for
sending Boolean values.

Variable declarations and assignments. Local variables can be declared in the
form s is T, in which s is an identifier and T is an existing type (base, constructed or
declared one). For example, the instruction

declares a real variable named a.

 Protocol declarations. In π-ADL, protocols are used within the specification of
architectural elements in order to enforce the value types that must be transmitted via
connections (complying with their respective declarations) and the order in which the
sending/receiving operations must be performed. A protocol is declared as a set of
connection actions specifying the action to be performed by the connection (send or
receive) and the type of the values that will be transmitted via the connection.
Furthermore, protocol declarations can make use of multiplicity symbols to specify

7 Conventionally, alias names for types shall start with capital letters in order to differentiate them from
variable and function names.

type Latitude is Real

type Longitude is Real

type GeoCoordinate is tuple[Latitude, Longitude]

connection x is in(String)

connection y is out(Boolean)

a is Real

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

67

how many times the connection actions can be performed: an asterisk character (*) is
used to specify that a given action (or set of actions) is performed zero or more times
whereas the plus character (+) is used to specify that a given action (or set of action) is
performed one or more times, i.e., at least one. It is also possible to specify alternative
options by using the pipe character (|), so that A | B indicates that either action (or
group of actions) A or action (or group of actions) B can be performed. As an example,
consider the following protocol declaration:

This protocol enforces receiving an integer value via connection a or connection b and
then sending an integer value via connection c. The asterisk character after the
outermost parentheses specifies that all of these actions (receiving via a or b then
sending via c) can be performed multiple times. When declaring a protocol, specifying
the multiplicity of the actions (by using the asterisk or the plus characters) is
mandatory.

4.4.2 Statements

The specification of both components and connectors can also comprise a set of
statements, which are mainly used in behavior and function declarations. Such
instructions are briefly described in the following.

 Variable assignments. Assigning values to declared variables is done by using
the equal sign (=) after the identifier naming the variable.

 Function declarations and calls. Local functions within behaviors have an
identifier and can optionally take a list of parameters in the form name : type as input.
In addition, they can also specify a return type. As an example, the following
instruction

declares a function named increment, which receives an integer value as parameter and
returns an integer value. Declared functions can be called by making reference to its
respective identifier and providing the required parameters.

 Conditional statements. The if-then-else conditional statement provided by π-
ADL can be used within behaviors and function declarations. Upon the evaluation of
a specified Boolean expression, if the condition is true then a sequence of statements is
executed, otherwise the execution proceeds in the following branch, specified by

protocol is {

((via a receive Integer | via b receive Integer)

 via c send Integer)*

}

increment is function(v : Integer) : Integer {

// statements

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

68

optional else-if or else blocks. The basic structure of a conditional statement in π-ADL
is as follows:

 Condition-controlled loops. π-ADL provides a while statement as condition-
controlled loop that can be used within behavior and function declarations. Upon the
evaluation of a specified Boolean expression, a sequence of statements is repeatedly
executed until such a condition does not hold. The basic structure of a condition-
controlled loop in π-ADL is as follows:

Iteration loops. π-ADL provides a for statement as iteration loop that can be
used within behavior and function declarations. In this type of loop, a variable
identifier is used as iterator in conjunction with a Boolean stop condition and an
expression specifying how to advance to the next iteration. At each iteration, a set of
statements is repeatedly executed until the stop condition is achieved. The basic
structure of an iteration loop in π-ADL is as follows:

4.4.3 Specifying architectural configurations

The specification of the system architecture is declared with its respective
keyword (architecture), a unique identifier, and an optional list of parameters to be
taken as input, similarly to the declaration of components and connectors. The main
difference resides in the fact that it comprises two basic elements, namely a set of
element instances and a set of unifications. Element instances are contained within a
composition behavior (see Section 4.3) and are in the form i is E, in which i is the
instance identifier and E is the identifier of an architectural element (component or
connector)8. In turn, unifications are the means of passing values from an output

8 If an architectural element requires input parameters (according to its declaration as an abstraction),
the respective parameters must be provided when declaring an instance of such an element.

if expression then {

// statements

} else if expression then {

// statements

} else {

// statements

}

while expression do {

// statements

}

for (start; expression; step) do {

// statements

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

69

connection of an element to an input connection of another. These unifications are in
the form co::E1 unifies ci::E2, in which co is an output connection of the element E1
and ci is an input connection of the element E2. Therefore, values can be transmitted
from E1 to E2 (their behaviors) through such connections.

As an example, consider the following specification of a basic architecture for
the well-known pipe-filter architectural style, which comprises filter components for
transforming data and pipe connectors for transmitting such data from a filter to
another [11]:

This architecture is named PipeFilter and it is composed of three instances of
architectural elements, namely two instances of the Filter component (F1 and F2) and
one instance of the Pipe connector (P1), all of them not requiring input parameters. In
order to attach these architectural instances, two unifications take place:

(i) the outFilter output connection of the filter component F1 is bound to the
inPipe input connection of the pipe connector P1, thus representing a
message flow from F1 to P1; and

(ii) the outFilter output connection of the pipe connector P1 is bound to the
inFilter input connection of the filter component F2, thus representing a
message flow from P1 to F2.

4.5 Dynamic software architectures in π-ADL
The specification of dynamic software architectures in π-ADL is based on the

concept of active architectures [88]. Active software architectures are: (i) dynamic in the
sense that the structure and cardinality of the components and interactions are
changeable during execution; (ii) updatable in the sense that architectural elements can
be dynamically replaced; (iii) decomposable in the sense that an executing system can be
dismantled into its architectural elements; and (iv) evolvable in the sense that the
specification of components and interactions can be evolved at runtime. Figure 10
depicts the basic life cycle for an active architecture as envisioned in π-ADL. At the
initial stage Ⓐ, the architectural abstractions of the system are composed in order to
form its software architecture. At stage Ⓑ, the system is decomposed to yield its

architecture PipeFilter is abstraction() {

behavior is {

compose {

 F1 is Filter()

and P1 is Pipe()

and F2 is Filter()

} where {

F1::outFilter unifies P1::inPipe

P1::outPipe unifies F2::inFilter

}

}

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

70

individual architectural abstractions disconnected from each other. Next, such
individual architectural abstractions can be evolved at stage Ⓒ, e.g., in terms of creating
and/or removing elements. At last, the system architecture is (re)composed at stage Ⓓ
by composing a new configuration of architectural elements aiming to form the new
version of the architecture (stage Ⓔ). It is important to mention that the state of each
architectural abstraction (and respective data) must be conserved at each evolution
stage, thus maintaining consistency along the reconfiguration process.

Figure 10 – Life cycle for active software architectures (adapted from [88])

In the light of active architectures, dynamic software architectures can be
specified in π-ADL by using two main operations, namely composition (compose
operator) and decomposition (decompose operator). The former is used to compose the
architecture by (i) instantiating abstractions corresponding to architectural elements
and (ii) unifying connections to attach such elements and allow their synchronization
and communication. In turn, the latter is used to dismantle an architecture into a set of
behaviors corresponding to the previously composed architectural elements, now
detached from each other. Through decomposition, the executing system is broken
into its constituent elements, which can be changed and further recomposed to form
an evolved system. Even though the composition and decomposition operations
provided by π-ADL seem to be divergent from the usual reconfiguration actions
adopted in most works in literature [23, 32, 44], they allow specifying dynamic
software architectures in a comprehensive way while preserving the formal
foundations of the language upon the π-calculus process algebra. Therefore,
supporting these operations with a suitable underlying formalism fosters formal
verification of the specified software architectures as well as the enforcement of
structural, behavioral, and quality properties before, during, and after the
reconfiguration process itself.

As previously mentioned, this work is concerned with supporting
programmed, foreseen reconfiguration operations under both exogenous and
endogenous approaches for describing dynamism in software architectures. The

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

71

exogenous approach concerns having two coexisting architectures, namely the initial
architecture and the evolved architecture, the latter resulted from a reconfiguration
applied over the former upon a stimulus [89]. The evolved architecture describes the
reconfiguration actions to be performed over the initial architecture in order to
produce it. Both architectures are executed by a coordinating behavior, the external
entity that has control over all architectural abstractions. In turn, the endogenous
approach concerns specifying the reconfiguration actions within the behavior of the
architectural element(s) responsible for applying them. Reconfiguration actions in
both approaches may comprise instantiating new architectural elements, modifying
architectural elements or decomposing architecture configurations.

 In order to illustrate the exogenous and endogenous approaches considered in
π-ADL9, consider a simple client-server architecture initially composed of one client
and one server interacting through a link connector. Moreover, consider the two
following possible reconfigurations of such an architecture at runtime:

R1: The architecture can have two available servers, namely (i) a primary server
that is more desirable to use, but which may go down unexpectedly, and (ii)
a secondary server, which can replace the former in case of unavailability.
Therefore, the client can use the secondary server when the primary one is
unavailable.

R2: When the server is overloaded, it can allocate an auxiliary virtual machine
for load balancing, thus maximizing throughput.

To illustrate the exogenous reconfiguration process, consider two coexisting
architectures for the client-server architecture, namely (i) an initial architecture called
ClientServer and (ii) a new, evolved architecture called ClientServerEvol resulting from
reconfiguration operations applied on ClientServer. As depicted in Figure 11, the
ClientServer initial architecture is composed of one instance of the client component
(Cl) and one instance of the server component representing the primary server (PrSv),
which interact with each other through one instance of the link connector (lnk) (stage
Ⓐ). In order to perform reconfiguration R1, ClientServerEvol must describe the
decomposition of the architectural elements of ClientServer, detached from each other
(stage Ⓑ). Finally, ClientServerEvol must describe (i) the creation a new instance of the
server component to represent the secondary server, (ii) the composition of the
previously instantiated client component and link connector with the new server
component, and (iii) the unification of their connections in order to attach them. Upon

9 Examples textually describing both exogenous and endogenous reconfiguration approaches in π-ADL
are provided in Sections 4.6.2 and 4.6.3 with the WSN-based flood monitoring system.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

72

the execution of these operations, the ClientServerEvol evolved architecture is launched
by the controlling behavior (stage Ⓒ).

Figure 11 – Illustration of the exogenous approach for the dynamic reconfiguration of a simple
client-server architecture. A primary server is replaced by a secondary one in case of
unavailability of the former.

Figure 12 illustrates the result of reconfiguration R2 on the ClientServer
architecture. In this case, the server component (PrSv) representing the primary server
is responsible for performing the reconfiguration, so that the required operations must
be specified in its behavior. When the primary server is overloaded, it should create a
new instance of the link connector (lnk2) and an instance of the component
representing the auxiliary virtual machine for load balancing. After creating these
instances, they must be attached by unifying their respective connections. It is
important to mention that this case does not require decomposing the ClientServer
architecture since reconfiguration R2 does not comprise detaching architectural
elements, but only creating and attaching new ones.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

73

Figure 12 – Result of the endogenous approach for the dynamic reconfiguration of a simple
client-server architecture. An auxiliary virtual machine is created and attached to the primary
server in case of overloading.

4.6 Describing the flood monitoring system in π-ADL
In this section, the WSN-based flood monitoring system presented in Chapter 3

is used to exemplify how to describe dynamic software architectures in π-ADL. Section
4.6.1 presents partial descriptions of the architecture for this system, based on the one
previously depicted in Figure 7 (see Section 3.3). In turn, Sections 4.6.2 and 4.6.3
respectively present programmed reconfigurations on such an architecture
considering both exogenous and endogenous approaches (see Section 4.5).

4.6.1 Architectural elements

Sensor component. Figure 13 shows the specification of the Sensor component
in π-ADL. Two user-defined types are declared within this component, both relying
on the Real base type: (i) MV, which represents a raw value in millivolts measured by
the pressure sensor (line 2), and (ii) CmH2O, which represents a value in centimeters
of water (line 3). This component comprises three connections, namely: (i) sense, an
input connection used for receiving raw data measured by the pressure sensor (line 4);
(ii) pass, an input connection used for receiving data from a neighbor sensor (line 5);
and (iii) measure, an output connection used for sending data (line 6). The protocol of
this component (lines 7 to 10) enforces receiving either a value of the MV type via the
sense connection or a value of the CmH2O type via the pass connection, and then
sending a value of the CmH2O type via the measure connection, actions that are
performed sequentially and at multiple times. Next, the behavior of this component
encompasses the definition of the convertRawData function (line 12), which receives a
value of the MV type and converts it to a value of the CmH2O type. As the
implementation of the convertRawData function may change according to the sensor
specifications provided by the respective manufacturers, it is set as unobservable (line
13). Furthermore, such a behavior can proceed through two alternative, non-
deterministic options: (i) data received via the sense input connection are processed by
the convertRawData function and then sent via the measure output connection (lines 16

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

74

and 17); or (ii) data received via the pass input connection are directly sent via the
measure output connection (lines 21 and 22). After executing their respective
instructions, each sub-behavior self-recurses (i.e., it continues being executed), as
expressed by the behavior() call in lines 18 and 23.

Figure 13 – π-ADL description of the Sensor component

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

component Sensor is abstraction() {

type MV is Real

type CmH2O is Real

connection sense is in(MV)

connection pass is in(CmH2O)

connection measure is out(CmH2O)

protocol is {

((via sense receive MV | via pass receive CmH2O)

 via measure send CmH2O)*

}

behavior is {

convertRawData is function(measure : MV) : CmH2O {

unobservable

}

choose {

via sense receive d : MV

via measure send convertRawData(d)

behavior()

or

via pass receive m : CmH2O

via measure send m

behavior()

}

}

}

Gateway component. Figure 14 shows the specification of the Gateway

component in π-ADL. This component comprises two connections, namely (i) data, an
input connection used for receiving data collected by sensor nodes (line 3), and (ii)
alert, an output connection used for sending alert messages in case of risk of flood. The
protocol of this component (lines 5 to 8) enforces receiving a value of the CmH2O type
(declared in line 2) and sequentially sending a string value, actions performed at
multiple times. Next, the behavior of this component encompasses the definition of
two functions. The calculateHI function (line 10) calculates the hazard index based on
the water level measures given as input. In turn, the triggerAlert function (line 14) uses
the previously calculated hazard index to determine the severity of the flood risk [63]
and send a message accordingly. Therefore, data received via the data input connection
are provided as input to the triggerAlert function (line 28), which will analyze the
potential of flood risk according to the calculated hazard index (lines 17 to 25) and then

25:
26:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

75

send the corresponding message via the alert output connection (line 29). After
executing these instructions, the behavior continues being executed (line 30).

Figure 14 – π-ADL description of the Gateway component

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

component Gateway is abstraction() {

type CmH2O is Real

connection data is in(CmH2O)

connection alert is out(String)

protocol is {

(via data receive CmH2O

 via alert send String)*

}

behavior is {

calculateHI is function(data : CmH2O) : Real {

unobservable

}

triggerAlert is function(measure : CmH2O) : String {

hi is Real

hi = calculateHI(measure)

if (hi > 0.0 && hi < 0.5) then {

return “Low risk”

} else if (hi >= 0.5 && hi < 1.0) then {

return “Medium risk”

} else if (hi >= 1.0 && hi < 1.4) then {

return “High risk”

} else {

return “Very high risk”

}

}

via data receive d : CmH2O

via alert send triggerAlert(d)

behavior()

}

}

ZigBee connector. Figure 15 shows the specification of the ZigBee connector in
π-ADL, which represents a ZigBee wireless connection. As shown in lines 3 and 4, this
connector comprises an input connection (from) for receiving data and an output
connection for sending data (to). The protocol of this connector specifies receiving data
of the CmH2O type via the from connection and then sending string data via the to
connection at multiple times (lines 5 to 8). Furthermore, the behavior of this connector
encompasses an input prefixing action (line 10) for receiving data via the from
connection and an output prefixing action (line 11) for sending data via the output
connection. After executing these instructions, the behavior recurses (line 12).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

76

Figure 15 – π-ADL description of the ZigBee connector

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

connector ZigBee is abstraction() {

type CmH2O is Real

connection from is in(CmH2O)

connection to is out(CmH2O)

protocol is {

(via from receive CmH2O)

 via to send CmH2O)*

}

behavior is {

via from receive m : CmH2O

via to send m

behavior()

}

}

WSNFloodMonitoring architecture. Figure 16 shows the π-ADL specification of
the WSNFloodMonitoring architecture, based on the one previously depicted in Figure
7 (see Section 3.3). The behavior of this abstraction comprises the composition of three
instances of the sensor component (lines 4 to 6), three instances of the ZigBee connector
(lines 7 to 9), and one instance of the gateway component (line 10). The attachments of
these architectural elements take place through six unifications (lines 12 to 17) that
represent data flows from an architectural element to another. Therefore, such
unifications of connections allow transmitting data from sensors until reaching the
gateway by using the created links.

Figure 16 – π-ADL description of the WSNFloodMonitoring architecture

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

architecture WSNFloodMonitoring is abstraction() {

behavior is {

compose {

 S1 is Sensor()

and S2 is Sensor()

and S3 is Sensor()

and L1 is ZigBee()

and L2 is ZigBee()

and L3 is ZigBee()

and Gw is Gateway()

} where {

S1::measure unifies L1::from

S2::measure unifies L2::from

L1::to unifies S3::pass

L2::to unifies S3::pass

S3::measure unifies L3::from

L3::to unifies Gw::data

}

}

} 20:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

77

4.6.2 Exogenous reconfiguration: Low battery of a sensor node

For the sake of simplicity, consider the architecture of the flood monitoring
system shown in Figure 7 (see Section 3.3). In addition, consider a situation in which
the battery of sensor S3 is low, thus requiring the replacement of this mote by another
one. Despite this new mote is near to the other two ones, it is far from the gateway
station, so that it is not possible to use ZigBee as wireless connection. For this reason,
a GPRS wireless connection needs to be used as it is suitable for communications over
long distances.

To realize this reconfiguration by means of an exogenous approach, consider
the WSNFloodMonitoring architecture described in Figure 16 as the initial architecture.
Figure 17 shows a partial π-ADL description of the WSNFloodMonitoringEvol evolved
architecture, resulted from reconfiguration actions to be applied on the initial
architecture. First, WSNFloodMonitoring is decomposed into a sequence of seven
detached behaviors (abs), each one associated to the architectural elements previously
instantiated (line 5)10. In lines 6 to 16, the previous instances of the sensor and gateway
components and of the ZigBee connectors are composed with a new instance of the
sensor component (S4) and a new instance of the GPRS connector (Gprs1), which is
similar to the ZigBee connector described in Figure 15. Next, the connections of these
elements are unified to attach them (lines 14 to 21). The reconfiguration is triggered
when a value is sent via the connection lowb in the initial architecture (iarch), thereby
indicating that the battery level of the sensor is low (line 28). In this case, the
coordinating behavior performs an application to run WSNFloodMonitoringEvol (line
30), i.e., the evolved version of the initial architecture to realize the reconfiguration
itself.

Figure 17 – Partial π-ADL description of the WSNFloodMonitoringEvol evolved architecture for
realizing a reconfiguration aimed to replace a sensor mote due to low battery level by means
of an exogenous approach.

1:
2:
3:
4:
5:

architecture WSNFloodMonitoringEvol is

abstraction(lowb : connection[Boolean], iarch : Any) {

behavior is {

abs is sequence[Any]

abs = decompose iarch // decomposing the initial architecture (iarch)

compose {

10 The elements representing the architectural abstractions (behaviors) are assigned to the abs sequence
in the order in which they were previously declared. These elements can be directly accessed by using
integer indexes or the iterate construct.

6:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

78

7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

abs[0] is Sensor() // previous Sensor component instance (S1)

and abs[1] is Sensor() // previous Sensor component instance (S2)

and S4 is Sensor() // new Sensor component instance

and abs[3] is ZigBee() // previous ZigBee connector instance (Zb1)

and abs[4] is ZigBee() // previous ZigBee connector instance (Zb2)

and Gprs1 is GPRS() // new GPRS connector instance

and abs[6] is Gateway() // previous Gateway component instance (Gw)

} where {

abs[0]::measure unifies abs[3]::from

abs[1]::measure unifies abs[4]::from

abs[3]::to unifies S4::pass

abs[4]::to unifies S4::pass

S4::measure unifies Gprs1::from

Gprs1::to unifies abs[6]::data

}

}

}

behavior is {

connection lowb is in(Boolean)

iarch = WSNFloodMonitoring(lowb)

via lowb receive v : Boolean

if (v == true) then {

WSNFloodMonitoringEvol(iarch)

}

}

4.6.3 Endogenous reconfiguration: Avoiding false positives

Consider another situation in which a flood was detected based on data
collected by the motes. As an evacuation procedure might be expensive, it is necessary
to improve the accuracy of measures aiming at avoiding false positives. For this
purpose, drones endowed with digital cameras and WiFi networking capabilities can
be used to capture images from the river in order to estimate its flow rate. Captured
images can be sent to the gateway station, which will effectively process and combine
them with data provided by the motes spread along the river, thereby confirming
whether a flood is imminent or not.

Figure 18 shows a partial description in π-ADL realizing this reconfiguration
through an endogenous approach. Lines 1 from 8 show the specification of the UAV
component, which comprises the camera input connection for receiving images
captured by the embedded digital camera (line 3), and the output output connection
for sending the captured images (line 4). In turn, lines 10 to 17 show the specification
of the WiFi connector, similar to the ZigBee connector described in Figure 15. Lines 19
to 62 show a new specification for the Gateway component (previously described in
Figure 14), which now comprises an additional input connection for receiving images
(image, line 23) and a function for processing them (processImage, lines 33 to 35). To

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

79

apply the required changes for adding a drone component connected to the gateway
via WiFi, the gateway component first verifies if data provided by the sensor motes
indicate imminent risk of flood (line 44). If such a risk is classified as high or very high,
then the gateway component performs a composition behavior that creates an instance
of the UAV component (dr, line 46), creates an instance of the WiFi connector (wf, line
47), and attaches these new instances by unifying their respective connections (lines 49
and 50). It is worth mentioning that the initial architecture WSNFloodMonitoring
presented in Figure 7 does not need to be decomposed as the reconfiguration does not
require detaching architectural elements, but creating and attaching new ones.

Figure 18 – Partial π-ADL description for realizing a reconfiguration aimed to increase
accuracy and avoid false positives by means of an endogenous approach.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

component UAV is abstraction() {

type Image is Any

connection camera is in(Image)

connection output is out(Image)

behavior is {

 unobservable

}

}

connector WiFi is abstraction() {

type Image is Any

connection input is in(Image)

connection output is out(Image)

behavior is {

 unobservable

}

}

component Gateway is abstraction() {

type CmH2O is Real

type Image is Any

connection data is in(CmH2O)

connection image is in(Image)

connection alert is out(String)

protocol is {

((via data receive CmH2O | via image receive Image)

 via alert send String)*

}

behavior is {

calculateHI is function(data : CmH2O) : Real {

unobservable

}

processImage is function(i : Image) : Boolean {

unobservable

}

triggerAlert is function(measure : CmH2O) : String {

unobservable

}

38:
39:
40:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

80

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

via data receive d : CmH2O

risk is String

risk = triggerAlert(d)

if (risk == “High” || risk == “Very high”) then {

compose {

 dr is UAV()

and wf is WiFi()

} where {

dr::output unifies wf::input

wf::output unifies self::image

}

}

via image receive i : Image

if (processImage(i) == true) then {

via alert send “Flood risk confirmed”

} else {

via alert send risk

}

behavior()

}

}

4.7 Related work:
Languages for describing dynamic software architectures

Bradbury et al. [43] report that some ADLs have been proposed in the last 15
years for specifying dynamic software architectures aiming at allowing for their
automated, rigorous analysis. In particular, most works address programmed
dynamic reconfiguration by providing specific reconfiguration primitives at the
architectural level to describe when and how the system architecture shall be
reconfigured. This section briefly discusses some of these approaches.

One of the earliest ADLs addressing dynamic software architectures is Darwin
[22], a formal declarative language with an operational semantics based on FSP and
that allows hierarchically specifying distributed systems. Dynamic behavior is defined
in Darwin by means of lazy and direct instantiations: in the former, each component is
not instantiated until one of its services is requested; in the latter, components are
directly instantiated. However, Darwin only allows instantiating components, but not
removing them neither creating/destructing links.

Dynamic Wright [23] is a formal ADL that allows describing the behavior and
reconfiguration of a system by using a variant of CSP. However, CSP is able to specify
only static configurations, i.e., dynamic reconfigurations are not supported and have
to be simulated. By adopting an exogenous approach, Dynamic Wright provides a

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

81

configuror, a special component in the architecture responsible for centralizing all
reconfiguration operations since only it can modify the architecture. The supported
reconfiguration operations are new, del, attach, and detach, respectively used to create
and remove instances, and to link and unlink them.

LEDA [84] is another formal ADL based on π-calculus. It is structured upon: (i)
components, which represent system modules and can be either functional elements or
connectors; (ii) roles, which describe the observable behavior of components; and (iii)
attachments, which define connections among component instances. The approach
adopted in LEDA for dynamism is endogenous, decentralized, so that the
reconfiguration operations are described along with the behavior specification of
components. The main operations are (i) the instantiation of components (processes)
and (ii) dynamic attachments between them by using channel mobility capabilities
provided by π-calculus. However, there are no means of detaching and removing
components. In addition, the behavior of architectural elements is specified by directly
using the operators defined in π-calculus as-are, i.e., unlike π-ADL, LEDA does not
provide architectural abstractions over these constructs, thus making architecture
descriptions more difficult.

The Architecture Analysis and Design Language (AADL) [90] is a language
intended to describe both software and hardware architectures of distributed real-time
embedded systems. This language allows specifying reconfigurable systems by using
state machines that describe modes and mode transitions: modes represent particular
(state) configurations whereas transitions specify events that enable the system to be
reconfigured, i.e., changed from the current mode to another, so that modes and
transitions in AADL are programmed, statically defined. As AADL is used to specify
embedded systems at a low level (e.g., in terms of processors, platforms, etc.),
modeling reconfigurations in such a language is constrained to a specific system and
platform. Moreover, AADL lacks of a native formal semantics, thereby severely
limiting both unambiguous communication and the use of formal analysis techniques.

Plastik [91] is a framework for reconfiguration of component-based systems
that extends the well-known Acme/Armani ADLs [20, 92] to allow describing
dynamic reconfiguration operations. In terms of programmed reconfiguration, Plastik
introduces the on-do construct, a predicate-action element to specify reconfiguration
actions when the specified predicate is true. In addition to the typical operators for
creating, removing, and attaching architectural elements, two new explicit operators
are introduced, namely detach and remove, for respectively detaching and destroying
architectural elements. Finally, there is a construct for specifying dependencies
between architectural elements. Despite of its ease of use for specifying programmed
dynamic reconfiguration, the Acme/Armani/Plastik ensemble lacks of formal
underpinnings to allow further automated architectural analysis.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

82

To sum up, Table 6 shows a comparative analysis among the aforementioned
ADLs. Considering the taxonomic dimensions for characterizing dynamic
reconfiguration approaches discussed in Section 2.1, it is clearly possible to notice that
π-ADL is able to provide a comprehensive notation for describing dynamic software
architectures while paving the way for their formal verification.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

83

Table 6 – Comparative analysis of existing ADLs considering some taxonomic dimensions for characterizing dynamic reconfiguration approaches
in software architectures

ADL
Underlying
formalism

Description viewpoint Reconfiguration operations Reconfiguration management

Structural Behavioral Create Remove Attach Detach Exogenous Endogenous

Darwin [22] FSP    ○ × × × 
Dynamic
Wright [23] CSP-based  ○     × 

LEDA [84] π-calculus    ×  ×  ×
AADL [90] N/A   ○ ○ ○ ○  ×

Plastik [91] N/A  ×      ×
π-ADL π-calculus    ○  ○  

Key:
 = supported

○ = partially supported
× = not supported
N/A = not applicable
? = lack of evidences

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

84

5 Architecture-based code generation

Besides capturing important design decisions about a system at a high
abstraction level, software architectures can be used to derive the implementation of
such a system. Taylor et al. [17] point out that relating software architectures to
implementation is a mapping problem. A good, well-analyzed architectural design has
a limited value unless there is a clear, direct relationship between the architectural
level and artifacts at the implementation level [6]. In this context, choosing how to
create and maintain this mapping is critical in architecture-based software
development since the less complete or automated it is, the more opportunity for an
architectural drift exists. For this reason, it is highly desirable providing some sort of
mechanism that allows generating source code from architecture descriptions.
Manually converting an architectural model into a running application may result in
many problems in terms of consistency and traceability between the architecture and
its implementation [17]. Furthermore, maintaining traceability between architecture
and implementation helps system developers to easily understand architecture
designs and provides support for software quality control and maintenance [93].

Supporting code generation by translating architecture descriptions to a target
programming language is a research subject addressed in the literature since the dawn
of Software Architecture as a discipline in the 1990s [94, 95]. This concern has remained
relevant along the years mainly due to the concern of maintaining conceptual integrity
between the representation of a software architecture and its corresponding
implementation. Nonetheless, the existing gap between these two levels has been
sometimes neglected and became a more severe problem considering the inherent
dynamicity of many contemporary software systems. As previously highlighted, even
if a system is built in conformance to the defined prescriptive architecture, its
implementation has a significant probability of becoming inconsistent with respect to
the original architecture over time.

Aiming at tackling such an existing gap between architectural and
implementation levels while contributing to minimize the risk of architectural drifts
and allowing for the validation of the architecture itself, this chapter presents a process
to generate source code in the Go programming language [36] from architecture
descriptions expressed in the π-ADL, another contribution brought by this work [35,
37]. Section 5.1 defines the correspondences between the elements of π-ADL and Go.
Section 5.2 presents the automated process for generating source code from
architecture descriptions. Section 5.3 shows the generation of source code in Go from
the π-ADL architecture description of the flood monitoring system. Finally, Section 5.4
briefly discusses related work on the support for implementing software architectures.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

85

5.1 Correspondences between π-ADL and Go
As previously mentioned, Go was chosen to serve as target language for

generating implementation-level artifacts from architecture descriptions in π-ADL
because it is suitable for constructing scalable distributed systems and handling
multicore and networked computer architectures, as required by many contemporary
systems. The integration of π-ADL and Go is fostered mainly by their common basis
on the π-calculus process algebra [81] and the straightforward relationship between
elements of these languages, such as the use of connections in π-ADL and channels in
Go as means of communication and synchronization between concurrent processes.
This section defines the correspondences between the elements of these languages.

Table 7 summarizes the correspondences between the main architecture-level
elements of π-ADL and implementation-level elements of Go, each one described in
the following. Relationships regarding other elements such as statements and
expressions were omitted as they are practically identical in both languages and
therefore straightforward.

Table 7 – Summary of correspondences between the main architecture-level elements of π-
ADL and implementation-level elements of Go

π-ADL Go

Architectural abstraction
(component, connector, architecture) Function (goroutine)

Behavior of architectural abstraction Body of function (goroutine)

Connection Channel

Instantiation of architectural element Call to goroutine

Connection declaration Instantiation of channel map

Unification of connections Special-purpose function (goroutine)

Connection detachment Channel closure

Coordinating behavior Main function

Architectural abstractions and their behavior. Components, connectors, and
architectures are defined in π-ADL as abstractions over behaviors. In Go, these
elements are represented by functions called as goroutines (see Section 2.2), thereby
being equivalent to the notion of communicating processes in π-calculus. The signature
of such functions is defined by the respective name of the architectural abstraction and
the list of parameters that they require. In turn, the body of these functions comprises
the respective element behavior.

Connections. As introduced in Section 4.1, channels are among the main

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

86

elements of the π-calculus process algebra and they are used as means of
communication and synchronization among concurrent processes. In π-ADL,
connections are used for sending/receiving values between architectural abstractions
and their behaviors. Straightforwardly to π-calculus, typed channels in Go are used to
send and/or receive values between concurrent processes (goroutines to be
synchronized), so that connections in π-ADL are mapped to channels in Go. The type
of the values to be transmitted through a channel is the one specified in the connection
declaration.

Connection declarations. The set of connections comprised in the structure of
both components and connectors is represented in Go by <string, channel> maps11 of
channels. These maps use the names of the declared connections as keys and map such
keys to channel objects representing the connections themselves.

Instantiation of architectural elements. In Go, the instantiation of components
and connectors within an architecture encompasses two steps. The first one refers to
the creation of the maps of channels representing the set of connections comprised by
such architectural elements. The second one involves to launch the goroutines that
respectively represent these architectural elements within the function associated to
the architecture. In these goroutine calls, the map of channels representing the created
instance is provided as parameter to the goroutine. When performing reconfiguration
operations to create new components/connectors, it is necessary to make new calls to
the respective goroutines implementing them.

As an example, consider the aforementioned simple client-server architecture
composed of one client component and one server component connected through a
link connector. The creation of an instance of the client component (c) first
encompasses creating the map of channels that represents the set of connections
declared for this component. Next, this component is run by calling the Client
goroutine and providing the previously created map of channels as input parameter.

11 A map (a.k.a. associative array) is an unordered, non-sequential collection of pairs used to search for a
value through a key, which works as an index that allows accessing the value associated to it.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

87

component Client is abstraction() {

connection call is out(Integer)

behavior is {

 unobservable

}

}

architecture ClientServer is

abstraction() {

behavior is {

compose {

c is Client()

// other declared instances

} where {

// unification of connections

}

}

}

func Client(conn map[string]interface{}) {

// behavior implementation

}

func ClientServer() {

c := map[string] interface{}{

“call” : make(chan int64),

go Client(c)

}

Unification of connections. In π-ADL, a unification of connections allows
attaching an output connection of a component/connector to an input connection of
another component/connector, thereby enabling these elements to communicate and
exchange data. This process is implemented in Go by means of a special-purpose
function called unifies, which receives the connections to be unified as parameters.
Such a function basically reads the contents of the sending channel (output connection)
and writes them to the receiving channel (input connection).

Connection detachment. As described in Section 4.5, the execution of a
decomposition operation automatically removes the existing unifications between the
architectural elements previously composed. When mapping from π-ADL to Go,
removing these attachments is equivalent to closing the communication channels used
to synchronize the goroutines that represent architectural elements. In Go, closing an
unbuffered communication channel12 indicates that no more values will be transmitted
through it and leads to an immediate blockage of the goroutines that use such a
channel.

Coordinating behavior. To enable a system architecture to execute, a

12 In Go, communication is synchronous and unbuffered: a sending operation does not complete until there
is a receiver to accept the value. Therefore, send/receive operations block until the other side is ready.

func unifies(sender, receiver interface{}) {

if (sender != nil && receiver != nil) {

v, _ := reflect.ValueOf(sender).Recv() // reading from output connection

reflect.ValueOf(receiver).Send(v) // writing to input connection

}

}

}

// other declared instances

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

88

coordinating behavior performs an application (similar to a call) of the abstraction
corresponding to such an architecture. In Go, this behavior represented by the main
function, which is the first function called when a Go program is executed. Therefore,
the main function calls the goroutine that represents the architecture itself, which in
turn calls the goroutines associated to the instances of architectural elements
(components and connectors).

Base, constructed, and collection types. As presented in Section 4.2, π-ADL
provides three data types: (i) base types, which are used to express atomic values; (ii)
constructed types, composite types constructed upon base types; and (iii) collection types,
which are types representing collections based on base and/or constructed value
types. Table 8 summarizes the mappings from these types defined in π-ADL to data
types in Go.

Table 8 – Summary of the mappings from data types defined in π-ADL to types in Go

Type π-ADL
Go

Syntactic representation Semantics

Basic types

Natural uint64 Unsigned integer numbers
Integer int64 Signed integer numbers
Real float64 Floating-point numbers
Boolean bool Boolean logical values
String string Character strings

Constructed types
Tuple [n]interface{}

Empty interface array of size n
(n is the number of composing
types)

View map[string]interface{}
Map whose keys are the labels
for the view values

Collection types
Set map[T]bool Map with keys of type T of the

set

Sequence []T
Slice (dynamic array) with
elements of type T

π-ADL also provides a special base type named Any, which works as a generic
type in the language and admits values of any type (see Section 4.2.1). For similar
purposes, this type is mapped to empty interfaces (interface{}), which represent
means of generic typing in Go. As empty interfaces do not have defined methods, any
type is able to satisfy them.

Behavior constructs. Table 9 summarizes the mappings from behavior types
defined in π-ADL (see Section 4.3) to Go.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

89

Table 9 – Summary of the mappings from behavior constructs defined in π-ADL to Go

π-ADL behavior construct
Go

Syntax representation Semantics

Output prefixing action conn[“c”].(chan T) <- v Send value v of type T via
channel (connection) c

Input prefixing action v := <- conn[“c”].(chan T) Receive value s of type T
from channel (connection) c

Unobservable action // Empty block Empty block13

Non-deterministic choice

select {

case p1:

B1
case p2:

B2
case pn:

Bn
}

Selection of a block
(corresponding to a sub-
behavior Bi) to execute based
on receiving/sending
operations over channels pi

(prefixing actions)

Parallel composition
go func() {

B:
}()

Creation and invocation of a
goroutine for each sub-
behavior Bi

Inaction return Empty return

5.2 Code generation procedure
Taylor et al. [17] distinguish two main generative approaches in the relationship

between architectural models and implementation artifacts. One-way approaches
allow a software artifact to be generated from another, e.g., generating source code
from architectural models. In turn, round-trip approaches allow changes in the target
artifact to be automatically reflected-back in the source artifact. For example, in a one-
way approach, a component in an architectural model might result in the creation of a
new Java package containing class files. In a round-trip approach, the creation of a new
Java package might result in a new component in the architectural model as well.
Although round-trip approaches are preferable to one-way ones, they are generally
tricky to be correctly implemented, especially when architectural modeling and code
development tools are not well integrated (as it is often the case).

This section describes the process for producing source code in Go from
architecture descriptions in π-ADL by following a one-way generative approach.

13 The generated empty block can be filled with any instruction at the developer’s choice since a silent
prefixing action refers to details that are not observable at the architectural level.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

90

Section 5.2.1 first gives an overview of the tool developed to assist software architects
in architecture description using the π-ADL language. Next, Section 5.2.2 presents the
technical elements used to realize the mapping between π-ADL and Go defined in
Section 5.1 towards automatically generating source code.

5.2.1 π-ADL textual editor

One of the concerns regarding the usefulness of an ADL is directly related to
the tools that it provides for supporting the activities encompassed by an architecture-
driven software development approach, i.e., architectural description, analysis, code
generation, and evolution [17]. Tool support is especially vital for the successful use of
any ADL since architecture descriptions persist throughout the development lifecycle
and evolve along with the described software system, so that ADL tools play an
important role for creating, analyzing, and maintaining these documents over time.
Furthermore, a recent survey about ADLs in the industry context has revealed the
importance of ADL tools in this scenario, despite few description languages for
software architectures are supported by satisfactory tools [18]. Such a survey identified
some requirements for these tools, such as simplicity, intuitiveness, high degree of
usability, provisioning of comprehensive textual and graphical notations, meaningful
communication and documentation, and alignment of software architecture
descriptions with their respective implementation.

In the context of the ArchWare European Project in which the π-ADL language
was originally conceived, an open-source toolset was developed in order to support
formal description, analysis, refinement, code generation, and evolution of software
architectures [96, 97]. Altogether, these tools allow compiling architectural models into
their executable representations as well as the formal analysis and evolution of such
models. However, considering the evolutions in the π-ADL language along the years
and the requirements of new generation software systems (e.g., distribution, large-
scale, concurrency, and dynamicity), this work contributed with the development of a
completely new tool support for π-ADL. As a first step, a textual editor based on the
Eclipse platform [98] was developed for assisting architects to make architecture
descriptions using the π-ADL language and further automatically generate
implementation code in Go. A screenshot of the tool is shown in Figure 19.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

91

Figure 19 – Screenshot of the Eclipse-based π-ADL textual editor

The π-ADL textual editor was developed upon Xtext [99], a well-known open-
source, highly customizable framework for developing domain-specific languages
(DSLs). Xtext covers all aspects of a complete language infrastructure by parsing
textual models written in such a language and allows generating code from them in
another language. Furthermore, this infrastructure is fully integrated with the Eclipse
development environment and provides the π-ADL textual editor with useful features,
such as:

− syntax highlighting, a useful feature for distinguishing keywords from
identifiers;

− syntactic and semantic validation of architecture descriptions by showing
error and warning alerts, thereby enabling architects to early detect and
fix errors and potential problems;

− interpretation of expressions, which is useful for type checking purposes;
− auto formatting;
− content assist, which provides suggestions on how to complete a given

statement/expression based on the syntactic rules; and
− automatic build on save for automatically generating Go source code from

the architecture description in π-ADL (if they are correct according to the

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

92

syntactic and validation rules of the language) when it is saved in the
language editor.

5.2.2 Code generation procedure

Figure 20 depicts the technical elements related to the generation source code
in Go from architecture descriptions in π-ADL. From the π-ADL grammar specification
in the Extended Backus-Naur Form (EBNF) [100], Xtext automatically generates the π-
ADL infrastructure by running a script written in the Modeling Workflow (MWE2)
DSL. More specifically, this script (also automatically created by Xtext) is used to
derive a specification from the π-ADL grammar compatible with the ANTRL parser
generator [101], which is used for generating the parser of the language. When running
the script, Xtext generates a set of artifacts: (i) a Java implementation of a parser, which
is automatically generated by ANTRL and is responsible for the syntactic analysis of
the architecture textual description; (ii) a metamodel defining the abstract entities of the
language and the relationships among them; (iii) the entry point for a code generator,
which is used to generate code in Go from the architecture description in π-ADL; and
(iv) an Eclipse-based code editor for assisting the textual description of a software
architecture in π-ADL. In addition, Xtext creates an abstract syntax tree (AST) from the
input textual model for representing the structure of the parsed model as well as the
respective Java classes to persist such an AST.

Figure 20 – Elements for generating Go source code from π-ADL architecture descriptions

The code generator within the π-ADL textual editor is implemented by using
facilities provided by the Xtend programming language [102], a fully Java-
interoperable programming language featuring a more compact, easier to use syntax,
as well as advanced features such as type inference and lambda expressions. As the
AST model needs to be continuously traversed, Xtend provides useful mechanisms to

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

93

straightforwardly doing this while being easy to use and allowing for a better readable
code. Moreover, as Xtend programs are compiled to plain Java code, they can access
all of the libraries available in Java, thus allowing these languages to coexist
seamlessly.

Once the architecture description is checked as correct by the parser, it might
still have errors since its overall correctness cannot always be determined during the
parsing procedure. Besides performing such a syntactic analysis of the textual
architecture description against the rules defined in the π-ADL grammar, the code
generator makes use of some validators to semantically analyze a π-ADL architecture
description. In Xtext, validators are classes that contain methods (validation rules)
implementing additional constraint checks over the abstract elements of the current
model. These validation rules (also implemented in Xtext) are detailed in Appendix B.

In order to describe the behavior of components and connectors, a software
architect can make use of expressions that are similar to the ones used in programming
languages, e.g., logical, relational, equality, and arithmetic expressions. Determining
the data types handled by such expressions is important for ensuring that an
expression value sent via a connection is the one expected, i.e., its type is equal to the
type specified when declaring such a connection. However, type checking cannot be
performed during parsing and expressions are resolved at runtime, i.e., their value is
calculated while they are described. As Xtext is mainly concerned with syntactic
analysis and it does not support expression resolution, an interpreter and a validator

were developed in Xtend for handling expressions in π-ADL architecture descriptions.

Finally, the code generator itself uses extension methods and template expressions.
Extension methods implement how a given abstract element of the input π-ADL
architecture textual description (defined in the AST) can be translated to its
representation in the source code to be generated. These extension methods make use
of template expressions, which allow for more readable string concatenation and
proper formatting to write characters into the output Go source code. These
mechanisms provided by Xtend are used to translate the abstract elements defined in
the π-ADL grammar to their respective implementation in Go based on the
correspondences defined in Section 5.1.

5.3 Generating code for the flood monitoring system
This section illustrates how the π-ADL architecture description of the flood

monitoring system presented in Section 4.6 can be automatically translated to its
respective implementation in Go, including the programmed reconfiguration
operations performed at runtime. It is worth mentioning that Go has recently started
to be used as a support platform to some frameworks targeting sensors, such as
Patchwork [103], EMDB [104], and Gobot [105]. These frameworks have chosen Go for

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

94

implementation aiming at leveraging the benefits promoted by the language to the
device realm, in particular cross-platform building directly to native code,
performance, productivity, and easy application development. Nevertheless, Go
programs consume more memory than C/C++ code and compilation artifacts are
larger when compared to the ones produced by other languages, issues that may be
problematic in a very limited physical device.

5.3.1 Architectural elements

Sensor component. Figure 21 shows an excerpt of the Go code generated from
the π-ADL description of the Sensor component (see Figure 13). This component is
implemented in Go by the Sensor function, which receives a map of channels (conn)
representing its declared connections. The Sensor function also comprises the
declaration of a local function (closure) corresponding to the convertRawData function
specified in the component behavior. The select instruction is used for representing
the non-deterministic choice behavior in terms of selecting the sub-behavior to be
executed according to the order in which values are received through the channels
(connections). Therefore, the value to be written to the measure output connection can
be either the one received via the sense input channel (sensed data) or the one received
via the pass input channel (data from another sensor). The MV and CmH2O data types
declared within the component behavior are respectively translated to global type
declarations in the form type T U, in which T is an alias for the underlying type U.

Figure 21 – Description of the Sensor component in π-ADL (left) and corresponding
implementation in Go (right)

component Sensor is abstraction() {

type MV is Real

type CmH2O is Real

connection sense is in(MV)

connection pass is in(CmH2O)

connection measure is out(CmH2O)

protocol is {

((via sense receive MV |

 via pass receive CmH2O)

 via measure send CmH2O)*

}

behavior is {

convertRawData is

function(measure : MV) : CmH2O {

unobservable

}

choose {

via sense receive d : MV

via measure

send convertRawData(d)

behavior()

or

via pass receive m : CmH2O

type CmH2O float64

type MV float64

func Sensor(conn map[string]interface{}) {

var convertRawData func(measure MV) CmH2O

convertRawData = func(measure MV) CmH2O {

// Empty block

}

select {

case d : <- conn[“sense”].(chan MV) :

conn[“measure”].(chan CmH2O) <-

convertRawData(d)

Sensor(conn)

case m : <- conn[“pass”].(chan CmH2O) :

conn[“measure”].(chan CmH2O) <- m

Sensor(conn)

}

}

via measure send m

behavior()

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

95

}

}

}

Gateway component. Figure 22 shows an excerpt of the Go code generated
from the π-ADL description of the Gateway component (see Figure 14). This component
is implemented in Go by the Gateway function, which receives as parameter a map of
channels (conn) representing its declared connections. The Gateway function also
comprises the declaration of two local functions (closures) corresponding to the
calculateHI and triggerAlert functions specified in the component behavior. Note that
the statements implementing these functions are practically identical to the ones used
when describing this component in π-ADL.

Figure 22 – Description of the Gateway component in π-ADL (left) and corresponding
implementation in Go (right)

component Gateway is abstraction() {

type CmH2O is Real

connection data is in(CmH2O)

connection alert is out(String)

protocol is {

(via data receive CmH2O

 via alert send String)*

}

behavior is {

calculateHI is

function(data : CmH2O) : Real {

unobservable

}

triggerAlert is function

(measure : CmH2O) : String {

hi is Real

hi = calculateHI(measure)

if (hi > 0.0 && hi < 0.5)

then {

return “Low risk”

} else

if (hi >= 0.5 && hi < 1.0)

then {

return “Medium risk”

} else

if (hi >= 1.0 && hi < 1.4)

then {

return “High risk”

} else {

return “Very high risk”

}

}

via data receive d : CmH2O

via alert send triggerAlert(d)

behavior()

}

func Gateway(conn map[string]interface{}) {

var calculateHI func(data CmH2O) float64

calculateHI = func(data CmH2O) float64 {

// Empty block

}

var triggerAlert func(measure CmH2O) string

triggerAlert = func(measure CmH2O) string {

var hi float64

hi = calculateHI(measure)

if hi > 0.0 && hi < 0.5 {

return “Low risk”

} else if hi >= 0.5 && hi < 1.0 {

return “Medium risk”

} else if hi >= 1.0 && hi < 1.4 {

return “High risk”

} else {

return “Very high risk”

}
}

d := <- conn[“data”].(chan CmH2O)

conn[“measure”].(chan CmH2O) <- d

Gateway(conn)

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

96

}
ZigBee connector. Figure 23 shows an excerpt of the Go code generated from

the π-ADL description of the ZigBee connector (see Figure 15). This connector is
implemented in Go by the ZigBee function, which receives as parameter a map of
channels (conn) representing its declared connections. In the ZigBee function, the value
received via the from input channel is assigned to a variable (m) to be sent via the to
output channel.

Figure 23 – Description of the ZigBee connector in π-ADL (left) and corresponding
implementation in Go (right)

connector ZigBee is abstraction() {

type CmH2O is Real

connection from is in(CmH2O)

connection to is out(CmH2O)

protocol is {

(via from receive CmH2O

 via to send CmH2O)*

}

behavior is {

via from receive m : CmH2O

via to send m

behavior()

}

}

func ZigBee(conn map[string]interface{}) {

m := <- conn[“from”].(chan CmH2O)

conn[“to”].(chan CmH2O) <- m

ZigBee(conn)

}

WSNFloodMonitoring architecture. Figure 24 shows an excerpt of the Go code
generated from the π-ADL description of the WSNFloodMonitoring architecture (see
Figure 16), implemented by the WSNFloodMonitoring function. In this function, the
Sensor and Gateway components and the ZigBee connector are instantiated by (i)
creating the maps of channels corresponding to the instances of these architectural
elements and their declared connections and (ii) calling the goroutines that represent
such elements and their behavior. Next, these elements are attached by calling the
unifies goroutine with the channel objects representing the connections to be unified.
For example, the first call to the unifies goroutine unifies the measure output connection
of sensor S1 to the from input connection of the ZigBee connector L1

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

97

Figure 24 – Description of the WSNFloodMonitoring architecture in π-ADL (left) and
corresponding implementation in Go (right)

architecture WSNFloodMonitoring

is abstraction() {

behavior is {

compose {

 S1 is Sensor()

and S2 is Sensor()

and S3 is Sensor()

and L1 is ZigBee()

and L2 is ZigBee()

and L3 is ZigBee()

and Gw is Gateway()

} where {

S1::measure unifies L1::from

S2::measure unifies L2::from

L1::to unifies S3::pass

L2::to unifies S3::pass

S3::measure unifies L3::from

L3::to unifies Gw::data

}

}

}

func WSNFloodMonitoring() {

S1, S2, S3 := map[string]interface{}{

“sense” : make(chan MV),

“pass” : make(chan CmH2O),

“measure” : make(chan CmH2O),

}

L1, L2, L3 := map[string]interface{}{

“from” : make(chan CmH2O),

“to” : make(chan CmH2O),

}

Gw := map[string]interface{}{

“data” : make(chan CmH2O),

“alert”: make(chan string),

}

go Sensor(S1)

go Sensor(S2)

go Sensor(S3)

go ZigBee(L1)

go ZigBee(L2)

go ZigBee(L3)

go Gateway(Gw)

go unifies(S1[“measure”], L1[“from”])

go unifies(S2[“measure”], L2[“from”])

go unifies(L1[“to”], S3[“pass”])

go unifies(L2[“to”], S3[“pass”])

go unifies(S3[“measure”], L3[“from”])

go unifies(L3[“to”], Gw[“data”])

}

5.3.2 Exogenous reconfiguration

Consider the situation described in Section 4.6.2 in which the flood monitoring
system needs to be reconfigured due to the low battery level of a sensor. In this case,
the reconfiguration encompasses replacing such a node by another one and connecting
the latter by using a wireless connection. Realizing this reconfiguration by means of
an exogenous approach comprises WSNFloodMonitoringEvol, an evolved architecture
resulting from reconfiguration actions applied on the WSNFloodMonitoring initial
architecture (see Figure 16 and Figure 17).

Figure 25 shows an excerpt of the Go source code generated from the π-ADL
description of the evolved architecture, implemented by the WSNFloodMonitoringEvol
goroutine that receives the references to the elements instantiated within the
WSNFloodMonitoring initial architecture as parameters. These elements are returned
by the WSNFloodMonitoring goroutine through a slice containing the maps of channels
that represent the declared instances (iarch), which are copied to another slice named
abs (lines 2 to 4). As the sensor S3 and the ZigBee connector Zb3 instances are unused
in the evolved architecture, their respective channels are closed by calling the close

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

98

built-in function14 (lines 5 to 16). Next, the new instances of the sensor component and
the GPRS connector are created (lines 18 to 26) and provided as parameters to the
goroutines that implement them (lines 29 to 35). At last, the unifications attaching
the architectural elements take place as before by calling the unifies goroutine (lines
38 to 43).

Figure 25 – Excerpt of Go source code generated from the π-ADL description of the
WSNFloodMonitoringEvol evolved architecture, following an exogenous approach

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

func WSNFloodMonitoringEvol(iarch []map[string]interface{}) {

var abs []map[string]interface{} // decomposing initial architecture

abs = iarch

select { // closing channels (connections)

case <-abs[2][“sense”].(chan MV):

close(abs[2][“sense”].(chan CmH2O))

case <-abs[2][“pass”].(chan CmH2O):

close(abs[2][“pass”].(chan CmH2O))

case <-abs[2][“measure”].(chan CmH2O):

close(abs[2][“measure”].(chan CmH2O))

case <-abs[5][“from”].(chan CmH2O):

close(abs[5][“from”].(chan CmH2O))

case <-abs[5][“from”].(chan CmH2O):

close(abs[5][“to”].(chan CmH2O))

}

S4 := map[string]interface{}{ // instantiating new sensor component

“sense” : make(chan MV),

“pass” : make(chan CmH2O),

“measure” : make(chan CmH2O),

}

Gprs1 := map[string]interface{}{ // instantiating new GPRS connector

“from” : make(chan CmH2O),

“to” : make(chan CmH2O),

}

// relaunching architectural elements (goroutine calls)

go Sensor(abs[0]) // previous sensor component (S1)

go Sensor(abs[1]) // previous sensor component (S2)

go Sensor(S4) // new sensor component

go ZigBee(abs[3]) // previous ZigBee connector (Zb1)

go ZigBee(abs[4]) // previous ZigBee connector (Zb2)

go GPRS(Gprs1) // new GPRS connector

go Gateway(Gw) // previous gateway component (Gw)

// reunifying connections

go unifies(abs[0][“measure”], abs[3][“from”]) // from S1 to Zb1

go unifies(abs[1][“measure”], abs[4][“from”]) // from S2 to Zb2

go unifies(abs[3][“to”], S4[“pass”]) // from Zb1 to S4

go unifies(abs[4][“to”], S4[“pass”]) // from Zb2 to S4

14 For a channel c, the built-in function close(c) explicitly records that no more values will be sent on c.

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

41:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

99

42:
43:
44:

go unifies(S4[“measure”], Gprs1[“from”]) // from S4 to Gprs1

go unifies(Gprs1[“to”], abs[6][“data”]) // from Gprs1 to Gw

}

5.3.3 Endogenous reconfiguration

Consider the situation described in Section 4.6.3 in which the flood monitoring
system needs to be reconfigured in order to increase the accuracy of measures
provided by motes aiming at avoiding false positives. In this case, the reconfiguration
encompasses (i) allocating drones endowed with digital cameras and WiFi networking
capabilities to capture images from the river and (ii) sending them to the gateway
station for further processing. To realize this reconfiguration by means of an
endogenous approach, the gateway component can create an instance of a drone
component and link it by using a WiFi connector (see Figure 18).

Figure 26 shows an excerpt of the Go source code generated from the π-ADL
description of the Gateway component, the one responsible for performing the
reconfiguration actions. In case of high or very high risk given by the
triggerAlert function (line 19), the Gateway function creates dr and wf, the maps of
channels that respectively represent instances of the UAV component and the GPRS
connector (lines 21 to 28). Next, these elements are run by respectively calling the
UAV and GPRS goroutines, which receive the created maps as parameters (lines 30
and 31). At last, these new instances are attached to the existing elements by
calling the unifies goroutine (lines 33 and 34).

Figure 26 – Excerpt of Go source code generated from the π-ADL description of the Gateway
component, following an endogenous approach

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

func Gateway(conn map[string]interface{}) {

var calculateHI func(measure CmH2O) float64

calculateHI = func(measure CmH2O) float64 {

// implementation of the calculateHI function

}

var processImage func(i Image) bool

processImage = func(measure Image) bool {

// implementation of the processImage function

}

var triggerAlert func(measure CmH2O) string

triggerAlert = func(measure CmH2O) string {

// implementation of the triggerAlert function

}

d := <- conn[“data”].(chan CmH2O) 17:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

100

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

var risk string

risk = triggerAlert(d)

if risk == “High” || risk == “Very high” {

dr := map[string]interface{}{ // instantiating UAV component

“camera” : make(chan Image),

“output” : make(chan Image),

}

wf := map[string]interface{}{ // instantiating WiFi connector

“input” : make(chan Image),

“output” : make(chan Image),

}

go UAV(dr) // running UAV component

go WiFi(wf) // running WiFi connector

go unifies(dr[“output”], wf[“input”])

go unifies(wf[“output”], conn[“image”])

}

i := <- conn[“image”].(chan Image)

if processImage(i) == true {

conn[“alert”].(chan string) <- “Flood risk confirmed”

} else {

conn[“alert”].(chan string) <- risk

}

}

5.4 Related work:
Supporting the implementation of software architectures

In spite of the existence of ADLs for describing dynamic software architectures,
these languages lack of a proper integration between the architectural and
implementation levels. Furthermore, there is still no work on the integration of ADLs
with new generation programming languages towards tackling the gap between these
levels in the context of the construction of large-scale software systems with concurrent
and distributed elements. This section briefly discusses some existing work on the
integration of architecture descriptions with implementation and its limitations.

The Medvidovic et al.’s work [95] is one of the first works on the relationship
between architecture descriptions and implementation languages. The proposed
approach encompasses Dradel, an environment for modeling, analyzing, evolving,
and implementing architectures described in the C2 Software Architecture Description
and Evolution Language (C2SADEL), an extension of the C2 language designed to
support architecture-based evolution. A Java class is generated for each component
specified in C2SADEL and a method is generated for each component service,
commented with preconditions and postconditions. In addition, developers need to

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

101

provide an implementation for these application-specific methods.

ArchJava [106] is an extension to Java that tangles software architecture
specifications to implementation code in order to ensure traceability between
architecture and code (i.e., the conformation of the implementation with the specified
architecture) and to support the co-evolution of both architecture and implementation.
ArchJava adds new language constructs to Java for specifying components and
connections among them, while their behavior is implemented together the services
that they provide. In terms of dynamicity support, components can be dynamically
instantiated in a similar way to ordinary objects and connected at runtime. Despite the
freshness of the approach as an architectural solution, ArchJava is limited in that it is
more concrete than traditional ADLs due to its strong implementation basis.
Architectures specified in ArchJava cannot be subjected to formal reasoning because it
basically relies on an informal Java foundation, even though a formally well-founded
type system can be found for ArchJava component extensions [107]. Furthermore, the
generated Java implementations are to be executed on a single Java Virtual Machine,
a condition that hinders the use of multicore and networked computer architectures
for constructing large-scale, dynamic systems.

The MontiArcAutomaton language [108, 109] extends the MontiArc ADL [110]
targeting cyber-physical systems modeling. MontiArcAutomaton encompasses a
component/connector view to model the architectural structure and it uses automata
to describe behavior of components, comprising the representation of possible states
and transitions. To generate code from architecture descriptions in the Java and Python
languages, MontiArcAutomaton makes use of complex templates that directly access
the AST resulted from a compilation of the architecture description. Moreover, there
is no support for dynamicity.

π-ADL.NET Project [111] was proposed some years ago as the result of the
integration of π-ADL with the Microsoft® .NET Framework [112]. In π-ADL.NET,
formal architecture descriptions in π-ADL are compiled to the low-level Common
Intermediate Language (CIL) [113], resulting in a code able to access the existing
resources provided by the .NET platform. π-ADL.NET also supports runtime analysis
of the concrete software architecture by executing the architecture description, thus
seeking to preserve architectural integrity of the system at the implementation level.
Despite its intention of bringing a formally founded ADL to an implementation
platform, the main limitation of π-ADL.NET that makes it not suited for contemporary
software systems regards the lack of counterparts when performing mappings from π-
ADL to CIL or to the .NET platform. As an example, behaviors and abstractions in π-
ADL communicate through connections, but these elements have no corresponding
entities in CIL. For this reason, a .NET class was developed by hand to emulate π-ADL
connections, with requisite threading and synchronization functionality. In turn, π-

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

102

ADL connections are straightforwardly mapped to channels in Go, which are first-
class elements of the language and can be easily managed mainly when synchronizing
processes. Furthermore, π-ADL.NET also lacks of support for distribution, a feature
that is easily and natively supported by Go and typically required for contemporary
software.

In summary, it is possible to observe that the ensemble proposed in this work
as the result of the integration of the π-ADL and Go stands out due to a series of
important aspects. π-ADL and Go are not only formally founded languages, but they
also have the same underlying formalism, the π-calculus process algebra. Such a
common foundation allows for a straightforward mapping between elements of the
languages, thereby fostering the understanding of these relationships and easing their
implementation at the technological side. Finally, both π-ADL and Go languages are
suitable candidates for coping with requirements posed by contemporary software
systems at both architectural and implementation levels. On the one hand, π-ADL is a
formal, theoretically well-founded language for comprehensively describing dynamic
software architectures by encompassing both structural and behavioral viewpoints.
On the other hand, Go is an easy general-purpose language designed to address the
construction of scalable distributed systems and handle multicore and networked
computer architectures. Therefore, integrating π-ADL and Go can contribute to
minimize architectural drifts while bringing benefits to important activities such as
automatic generation of implementation code and automated analysis of software
architectures.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

103

6 Verifying dynamic software architectures
As previously discussed, the critical nature of many complex software systems

calls for formal, rigorous architecture descriptions as means of supporting automated
verification and enforcement of architectural properties and constraints. Model
checking has been one of most used techniques to automatically analyzing software
architectures with respect to the satisfactions of architectural properties [29, 30], even
though it leads to an explosion of the state space due to the exhaustive exploration of
all possible states of the system under verification. Such a state explosion problem
becomes more severe for verifying the contemporary software systems due to their
typical non-deterministic runtime behavior and the unpredictable conditions in which
they operate.

Formal verification techniques such as model checking require not only
significant execution time and computational resources, but also an unneglectable
effort from architects. This is one of the major reasons that often hinders the adoption
of formal-based techniques in software industry, as revealed in a recent survey in this
context [18]. Therefore, providing affordable, computationally efficient approaches for
rigorously verifying properties in dynamic software architectures is a major concern.

In order to cope with the aforementioned issues, this chapter presents the
work15 on the use of statistical model checking (SMC) to support the formal analysis of
dynamic software architectures described in the π-ADL language while striving to
reduce effort, computational resources, and time to perform this task [38]. Such an
approach requires a stochastic execution model of the system, in which the choice of
the next action to execute is done according to a probabilistic distribution. With a
stochastic system, a property to be verified might be satisfied by some executions and
not be satisfied by some others. In the proposed approach, a number of stochastic
simulations of that system is executed and the approximated probability of the system
to meet the property under verification is evaluated. It is worth mentioning that
requiring the system execution to be probabilistic is not a limitation because dynamic
software systems can be reasonably described by assigning probabilities for new
components to appear or for the existing components to fail and be disconnected, for
example. Moreover, probability distributions can be used to model input values.

Besides an executable probabilistic model of the system, the proposed SMC-
based approach requires a language for expressing properties to be verified and a

15 This work was conducted in collaboration with researchers from IRISA-UBS (Vannes, France) and
INRIA Rennes Bretagne Atlantique (Rennes, France).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

104

monitor for deciding them on finite traces. The particular nature of dynamic software
systems is hat architectural elements (components or connectors) may appear,
disappear, be connected or be disconnected at runtime. Therefore, expressing
behavioral and structural properties regarding a dynamic software architecture needs
to take into account architectural elements that are dynamically created and removed,
i.e., they may exist at a given instant in time and no longer exist at another. To cope
with these characteristics, this work also introduces DynBLTL, a novel logic and
notation aimed to express properties in dynamic software architectures [41]. DynBLTL
was designed to handle the absence of an architectural element in a given formula
expressing a property by means of the undefined value (U), which is returned when
reading values from components that are no longer in the system. DynBLTL and the
SMC-based approach itself were implemented as a plug-in for PLASMA [114, 115], a
flexible, modular statistical model checker.

The remainder of this chapter is structured as follows. Section 6.1 specifies how
to formalize execution traces of dynamic software architectures. Section 6.2 presents
how to formally express properties to be verified. Section 6.3 describes the toolchain
developed to support the verification of dynamic software architectures by using the
SMC approach. Finally, Section 6.4 briefly discusses related works.

6.1 Representing traces of dynamic software architectures
As discussed in Section 2.1, typical operations performed on dynamic software

architectures comprise creating, removing, attaching, and detaching components and
connectors. Exchanging values among such architectural elements can be considered
as one of the main indicators of behavior in a software architecture at runtime, so that
a value exchange can lead the system from a given state to another.

In the SMC-based approach proposed in this work, a state of a dynamic software
architecture is represented by a directed graph g = (V, E) comprising a set of finite
nodes V and a finite set of edges E. Each node v ∈ V represents an architectural element
(component or connector) of the system. In turn, each edge e ∈ E represents a
communication channel between two architectural elements and is labeled y the
values exchanged between the nodes. The set of all possible values is represented by
Val, which contains the undefined value U to represent the absence of a value. More
specifically:

− Each node v ∈ V is defined by a tuple (id, T, C) in which id is a globally
unique identifier for the architectural element, T is the declared type of
the architectural element, and C is a finite set representing its
connections. id(v) returns the identifier for node v, C(v) denotes the set of
connections of the node v, and v.c denotes a connection c ∈ C(v).

− Each edge e ∈ E connecting two nodes in the graph is labeled by the

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

105

values exchanged between them. These values are contained into Val, the
set of all possible values that can be exchanged between two nodes.
Formally, E ⊂ {(v1.c1, x, v2.c2) | x ∈ Val ∧ ⋀ vi ∈ V ∧2

i = 1 ci ∈ C(vi)}.

Given a state graph g, V(g) and E(g) respectively denote its sets of nodes and of edges.

The SMC technique relies on checking multiple execution traces resulted from
simulations of the system under verification against the specified properties.
Therefore, as a simulation ω results in a trace σ composed of a finite sequence of states,
ω can be defined as a sequence of state graphs gi (i ∈ ℕ). In the proposed approach, it
important to distinguish between untimed traces and timed traces. An untimed trace σut
is a simple sequence g0, g1, …, gn of states. In turn, a timed trace σ is a sequence ((t0, g0),
(t1, g1), …, (tn, gn)) of states with timestamps t, such that ∀i ti ∈ ℝ ∧ ti ≤ ti+1.

SMC allows verifying systems that are stochastic processes, in the mathematical
sense. Therefore, we require that traces are produced by a stochastic process, i.e., each
state in the trace is the restriction of a complete system state and the choice of next one
is governed by a probability distribution at each state. For verifying timed systems, the
system will eventually produce a state (ti, gi) with ti > M for any value M ∈ ℝ. In other
words, the time converges towards +∞ during the execution of the system.

As an example, consider a simple client-server architecture that dynamically
adapts to the demand. In such a system, clients may appear and interact with a server
by sending requests and receiving answers. It is assumed that each server can handle
a limited number of clients (two in the example). If all servers have reached that limit
and a new client appears, the systems spawns a new server to handle the new client.
Whenever the client has completed its interaction with the server, it disconnects and
disappears from the system. If a server has no client left, it is shut down and disappears
from the system. At last, if the overall utilization of the servers is low, one tries to shut
down some servers in order to save energy. This is done by reallocating clients so that
some severs become unused.

Figure 27 presents an illustration of an execution trace for a simple client-server
system, made up client and server instances. Initially, only one server is present in the
system, and a server has four connections (r1, r2, a1 and a2). At t = 5, three new clients
appear and two of them are directly connected to the server. At t = 6, a new server
spawns and connects to the third client, while the two first clients send their requests
(requests and answers are represented as numbers). At t = 7, the client C2 receives the
answer to its request while the client C3 sends a request to server S2. At t = 9, the client
C3 receives the answer to its request and the client C2 has disappeared. At t = 10, the
client C3 is relocated to server S1 and the server S2 is removed.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

106

Figure 27 – Illustration of an execution trace for a simple client-server system

Aiming at obtaining an execution trace from an architecture description in π-
ADL, the simulation emits explicit messages recording a set of actions on the state
graph, namely: (i) add, which refers to the creation of an instance of an architectural
element; (ii) link, which represents an unification of an output connection of a
component/connector with an input connection of another component/connector; (iii)
rdv, i.e., the sequential execution of a output prefixing action followed by an input
prefixing action; and (iv) decompose, which stands for the dismantling of the
architectural configuration. These actions and the respective conditions for their
validity are summarized in Table 10. Enacting an action leads to a transition from a

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

107

given state graph g = (V, E) to a state graph g’ = (V’, E’).

Table 10 – Summary of actions on a state graph g = (V, E)

Action
Correspondence to
architectural level

Description Condition

add(v)
Create an instance v
of an architectural
element

Add a node v to the
state graph

link(v1.c1, v2.c2)
Unify output
connection v1::c1 to
input connection v2::c1

Link connection c1 of
node v1 to connection c2
of node v2

vi ∈V ∧ ci ∈ vi

(i = 1, 2)

rdv(v1.c1, x, v2.c2)

Send value x via
connection v1::c1 and
receive x via
connection v2::c2

Exchange value x
between connection c1

of node v1 and
connection c2 of node v2

vi ∈V ∧ ci ∈ vi ∧
∃x ∈ Val.
(v1.c1, x, v2.c2) ∈ E

(i = 1, 2)

decompose()

Dismantle an
architecture into
composing
architectural elements

Decompose the
architecture ―

6.2 Expressing properties about dynamic software architectures
Mateescu and Oquendo [27] highlight that architecture descriptions using

ADLs should cover not only structure and behavior of a software architecture, but also
the required and desired architectural properties, in particular the ones related to
consistency and correctness. The notation for expressing such properties must hence
complement (or be part of) an ADL to specify and support verification of architecture-
related semantic properties. These properties can be (i) structural, e.g., cardinality of
architectural elements, interconnection topology, etc., or (ii) behavioral, e.g., safety,
liveness or fairness defined on actions of the system. As reported by Zhang et al. [29],
most existing notations allow specifying only properties about components and their
interfaces, types, and instances while few ones are expressive enough to specify
properties regarding all architectural elements and configurations [21, 23, 27].

6.2.1 Underlying formalisms for expressing properties

Most architectural properties to be verified by using model checking techniques
are temporal [29], i.e., they are qualified and can be reasoned upon a sequence of system
states along the time. Temporal properties typically verified in the context of software
architectures are safety and liveness: safety properties usually state that something (bad)
never happens while liveness properties state that something (good) will eventually happen
or keeps happening.

Zhang et al. [29] report that linear temporal logic (LTL) [116] has been often

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

108

used in the literature as underlying formalism for specifying temporal architectural
properties and verifying them through model checking. LTL extends classical Boolean
logic with temporal operators (a.k.a. modalities) that allow reasoning on the temporal
dimension of the execution of the system. In this perspective, LTL can be used to
express properties about the future of the execution (sequence of states), e.g., a
condition that will eventually true, a condition that will be true until another fact
becomes true, etc. LTL has been well studied along the years and it is known to be
useful for verifying and specifying concurrent systems [117].

As SMC relies on simulation, it verifies bounded properties, i.e., properties that
can be defined in terms of finite executions of the system under verification. While
LTL-based formulas aim at specifying the infinite behavior of the system, a time-
bounded form of LTL called BLTL considers finite sequences of execution states of the
system during a relative time interval [0, t]. The bounds are specified on temporal
operators, e.g., the always operator. In LTL, this operator states that a property must be
verified at each step of a (potentially infinite) trace, while in BLTL it has a bound and
a state that the property must hold until the bound is reached.

The basic syntax of BLTL is defined as follows:

ϕ = ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ℱ tϕ | �tϕ | ψ�tϕ | �ϕ | κ

where ∨, ∧ and ¬ are standard propositional logic operators and κ is a Boolean
constant or an atomic proposition constructed from numerical constants, state
variables, and relational operators. Four temporal operators are also defined:

(i) � is the next operator. �ϕ means that the formula ϕ will be true in the
next step.

(ii) ℱ is the finally or eventually operator, which is bounded by a relative time
interval [0, t]. ℱ tϕ means that the formula ϕ will be true at least once in
the time interval [0, t].

(iii) � is the globally or always operator, which is bounded by a relative time
interval [0, t]. �tϕ means that the formula ϕ will be true at all times in the
time interval [0, t].

(iv) � is the until operator, which is bounded by a relative time interval [0, t].
In the time interval [0, t], ψ�tϕ means that either the formula ϕ is initially
true or ψ will be true until ϕ is true at the current or a future time.

Combining these temporal operators creates complex properties with interleaved
notions of eventually (ℱ), always (�), and one thing after another (�).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

109

6.2.2 A novel logic and notation for expressing properties in dynamic
software architectures

A key characteristic of dynamic software systems is the impossibility of
foreseeing the exact set of architectural elements deployed at a given point of
execution. Furthermore, it is of particular interest verifying that new components
respect a particular behavior. Both LTL and BLTL are unable to handle this
characteristic as they would require knowing the set of components that will appear
prior to the execution and writing a dedicated formula for each of them. To tackle such
a limitation, this work comes up with DynBLTL as a novel logic and notation for
expressing linear temporal properties over traces of dynamic software architectures.
DynBLTL can express the required behavior of new components by having quantifiers
over the set of existing components. Aiming at specifying a behavior for the quantified
components, DynBLTL allows interleaving quantifiers and temporal operators. In
DynBLTL, all temporal operators are bounded, thereby making properties decidable on
finite traces.

DynBLTL is designed to handle the absence of an architectural element in a
given formula expressing a property. In practice, this means that a Boolean expression
can take three values, namely true, false or undefined (U). The undefined additional
value refers to the fact that an expression may not be evaluated at a given execution
state depending on the current runtime configuration of the system. This is necessary
for situations in which it is not possible to evaluate an expression at the considered
state, e.g., a statement about an architectural element that does not exist at that
moment. As an example, the expression c1.req > 3.2 cannot be evaluated if the
component c1 does not exist (as at t0 in Figure 27) or the connection c1.req is not
involved in a communication at that state (as at t1 in Figure 27).

DynBLTL is not typed, so that a property can be evaluated to any type, i.e.,
Boolean, integer, string or undefined. As SMC requires a Boolean value as the result
of the evaluation of a property on a trace, a syntactical constraint on properties is
added to enforce that the returned value is Boolean. For example, the until or isTrue
operators always return a Boolean value. Consequently, the root operator of a property
must be either until, isTrue or a Boolean combination of them.

The semantics of a property ϕ is a function [[ϕ]] that takes a trace σ as argument
and returns a value in Val. The semantics for a timed trace is defined as σ = ((t0, g0), (t1,
g1), …, (tn, gn)). If the system is untimed, only temporal operators whose bound is
expressed in steps can be evaluated. Assume that ϕ is a property in which all temporal
operators’ bounds are expressed in steps. Evaluating an untimed trace σut = (g0, g1, ...,
gn) falls back to evaluating a timed trace with the same states and arbitrary timestamps.
Indeed, timestamps are only relevant for temporal operators whose bound is

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

110

expressed in time units.

A property can be specified by a formula containing literals, identifiers referring
to nodes and connections in the state graph, operations and comparisons, predefined
functions, quantified expressions, and temporal operators. These elements are briefly
described in Section 6.2.2.1 along with some examples in Section 6.2.2.2 using the
WSN-based system depicted in Section 3.3. Appendix C shows the concrete syntax of
DynBLTL in the Extended Backus-Naur Form (EBNF).

6.2.2.1 DynBLTL elements

Literals and identifiers. As basic elements, a formula expressing a property can
contain (i) a literal, which can be a Boolean value, numerical value or a string, (ii) an
identifier representing a node of the state graph, or (iii) a connection of a node of the
state graph. The evaluation of these literals are as follows:

− if ϕ is a literal l, then [[ϕ]](σ) = [[l]](σ) = l, i.e., the formula is evaluated to
the respective value of l;

− if ϕ is an identifier idt representing a node, then [[ϕ]](σ) = [[idt]]((t0, g0),
(t1, g1), …, (tn, gn)) = true if there exists a node with that name at the
current state, i.e., if ∃v ∈ V(gi) . id(v) = idt; otherwise, the formula is
evaluated to U;

− if ϕ refers to a connection c of a node v of a state graph (v.c), then [[ϕ]](σ)
= [[v.c]]((t0, g0), (t1, g1), …, (tn, gn)) is evaluated to the only non-undefined
value labeling any edge of the graph state gi attached to the connection
v.c; otherwise, the formula is evaluated to U.

Operations and comparisons. Arithmetic operations as well as inequalities and
equalities are evaluated as usual or set as U if at least one argument is out of their
definition domain. DynBLTL supports the usual arithmetic operators (+, –, *, /) and
comparisons (<, <=, >, >=, =, !=). Note that both U != U and U = U are evaluated to U.

Usual Boolean operators are also supported. The not operator works as usual
on Boolean values and returns U with other values. The or operator returns true if at
least one of the operands is evaluated to true, false if both operands are evaluated to
false, and U otherwise. Note that it may return true even if one of the operands is U.
Other usual Boolean operators are obtained as follows:

ϕ1 and ϕ2 ≝ not (not ϕ1 or not ϕ2)
ϕ1 implies ϕ2 ≝ not ϕ1 or ϕ2

Functions. DynBLTL provides four predefined functions that can be used to
explore the architectural configuration, i.e., the nodes of a state graph:

− allOfType(T) returns a collection with all nodes of type T;

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

111

− areConnected(v1, v2) returns true if nodes v1 and v2 are connected by an
edge in the state graph false if v1 and v2 exist in the state graph, but they
are not connected by an edge, or U otherwise;

− areLinked(v1.c1, v2.c2) returns true if the connection c1 of node v1 and the
connection c2 of node v2 are connected by an edge in the state graph, false
if both v1.c1 and v2.c2 exist in the state graph, but they are not connected
by an edge, or U otherwise; and

− lastValue(v.c) returns the last non-undefined value of the connection c
of node v or U if its value was always undefined.

Quantified expressions. In DynBLTL, three types of quantified expressions can
be used to specify formulas expressing properties, namely the existential and universal
quantified expressions traditionally used in predicate logic, as well as an additional
quantifier for counting elements upon the satisfaction of a predicate. These quantified
expressions comprise an identifier r, a function f that returns a collection of elements,
and a formula ϕ with free occurrences of r. In the following, [[f]](σ) = e = {e1, …, en} and
ϕ[r ← ei] refers to the formula ϕ where each free occurrence of r is replaced by the
element ei. Quantifiers are defined as follows:

− exists r : f ϕ returns true if ϕ[r ← ei] is evaluated to true for at least one
element ei (1 ≤ i ≤ n) or to false if ϕ[r ← ei] is evaluated to false for all
elements ei, or to U otherwise;

− forall r : f ϕ returns true if ϕ[r ← ei] is evaluated to true for all elements
ei (1 ≤ i ≤ n) or to false if ϕ[r ← ei] is evaluated to false for at least one
element ei, or to U otherwise;

− count r : f ϕ returns how many elements ei ∈ e evaluate ϕ[r ← ei] to true.

Temporal operators. Similarly to traditional BLTL (see Section 6.2.1), DynBLTL
provides four temporal operators, namely in, until, eventually before, and always
during. These operators are bounded either by means of steps or time units. They are
defined as follows:

− The in operator evaluates its argument at a later point specified by the
bound. If the bound is expressed in b steps (b ∈ ℕ), the trace is translated
by that number of steps:

[[in b steps ϕ]]((t0, g0), …, (tn, gn)) = [[ϕ]]((tb, gb), …, (tn, gn))

If the bound is expressed in terms of b time units (b ∈ ℕ), the trace is
translated by the amount of time units provided as argument:

[[in b time units ϕ]]((t0, g0), …, (tn, gn)) = [[ϕ]]((tk, gk), …, (tn, gn))

where k = min({0 ≤ i ≤ n | ti – t0 > b)}.

− The until operator returns a Boolean value. An until expression is

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

112

evaluated to true if its right argument is evaluated to true within the
bound and if the left argument is evaluated to true or to U until the right
argument becomes true. Consider the following standard notations:

σ ⊨ ϕ ≡ [[σ]](σ) = true
σ ⊭ ϕ ≡ [[σ]](σ) = false16

If the bound is expressed in steps:

((t0, g0), …, (tn, gn)) ⊨ ϕ1 until b steps ϕ2 iff
∃0 ≤ i ≤ b . ((ti, gi), …, (tn, gn)) ⊨ ϕ2 ∧ ∀0 ≤ j ≤ i . ¬((tj, gj), …, (tn, gn)) ⊭ ϕ1

If the bound is express in time units:

((t0, g0), …, (tn, gn)) ⊨ ϕ1 until b time units ϕ2 iff
∃0 ≤ i ≤ n . (ti – t0 ≤ b) ∧ ((ti, gi), …, (tn, gn)) ⊨ ϕ2 ∧

∀0 ≤ j ≤ i . ¬((tj, gj), …, (tn, gn)) ⊭ ϕ1

− The eventually before operator can be defined by reusing the previous
definition of the until operator as:

eventually before b ϕ ≝ true until b ϕ

− The always during operator can be defined by reusing the previous
definition of the eventually before operator as:

always during b ϕ ≝ not eventually before b ϕ

Note that the value U is treated in a particular way when defining the until
operator. Indeed, when U appears on the left side of until, it is treated as true.
However, when it appears on the right side, it is treated as false. This choice was made
for the sake of intuitiveness. For example, the property

c1.req < 2 until 10 steps c2.req = 5

can return true, even if c1.req < 2 evaluates to U during the ten steps. Therefore,
evaluating to U on the left side of until does not invalidate the formula. However, if
c1.req < 2 evaluates to false before c2.req = 5, then the whole expression is evaluated
to false.

 The isTrue operator enforces the evaluation of a property to a Boolean value.
Formally:

[[isTrue ϕ]](σ) = σ ⊨ ϕ

This operator can be used to modify the behavior of the until operator. For example:

16 Note that if ϕ is not evaluated to a Boolean, then neither σ ⊨ ϕ nor σ ⊭ ϕ holds.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

113

(isTrue c2.req < 2) until 10 steps c2.req = 5

will evaluate to false if c2.req < 2 evaluates to U before c2.req evaluates to 5. Its dual
operator is defined as:

isNotFalse ϕ ≝ not isTrue not ϕ

6.2.2.2 Example

Consider the WSN-based system architecture depicted in Section 3.3. It is
possible to express some interesting properties about such an architecture. For
instance, one can ensure that all sensors must send data in less than three time units.
Assuming that a sensor successfully holds measured data if they are positive values,
such a statement can be expressed by the SendData(X) property, defined as:

In this property, receiving data either from the sense input connection (data gathered
by the sensor itself) or via the pass input connection (data received from a neighbor
sensor) implies that data need to be sent via the measure output connection in less than
three time units. As previously mentioned, the bound of X time units on the always
during operator is need to ensure that the property can be decided on a finite trace.
Therefore, the property checks only the first X time units of the execution trace.

An important property to be verified is the correctness of the architectural
model with respect to its main goal, i.e., warning upon the risk of flood (in the flood
monitoring system) or detection of leakage (in the pipeline monitoring system). In this
context, a false negative occurs when the system fails to make the expected prediction.
This can be expressed by the FalseNeg(X,Y,Z) property, defined as:

This property characterizes a false negative: the gateway component (Gw) predicts that
there is a low risk for an anomalous event (imminent flood or leakage), but data
received from sensors via the input connection data characterizes that such an event is
actually happening. The parameters of this formula are X, the time during which the
system is monitored, Y, the time during which the prediction of the gateway should
hold, and Z, the maximum threshold considered for normal conditions.

 Similarly, a false positive occurs when the system predicts an anomalous event
that does not actually occur. This can be expressed by the FalsePos(X,Y,Z) property,
defined as:

always during X time units {

forall s:allOfType(Sensor) {

isTrue (s.sense > 0 or s.pass > 0) implies

eventually before 3 time units s.measure > 0

}

}

eventually before X time units {

(Gw.alert = “low risk”) and (eventually before Y time units Gw.data > Z)

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

114

The system is said to be correct if there are no false negatives nor false positives for the
expected prediction anticipation (parameter Y).

 Note that these three formulas are actually BLTL formulas as they involve
simple predicates on the state. However, DynBLTL allows expressing properties about
the dynamic architecture of the system. For example, suppose that one wants to check
if a sensor is available, i.e., at least one sensor is connected to the gateway. More
precisely, it is required that there is a wireless link connecting a sensor to a gateway,
otherwise such a sensor needs to appear in less than Y time units. This can be expressed
by the SensorAvailable(X,Y) property, defined as:

The parameters of this formula are X, the time during which the system is monitored,
and Y, the maximum time at which the sensor must appear.

 Finally, suppose that one wants to check if a sensor is failing (i.e., its gathered
measures are negative values), then it should be removed from the system in a
reasonable amount of time. This disconnection is needed because a faulty sensor will
not pass incoming measures neither will gather correct values. The removal of a given
sensor component is characterized by the fact that it is not attached to a link connector.
As sensors may appear or disappear during execution, the temporal pattern needs to
be dynamically instantiated at each step for each existing sensor. This can be expressed
by the RemoveSensor(X,Y) property, defined as:

The parameters of this formula are X, the time during which the system is monitored,

eventually before X time units {

(Gw.alert = “anomaly detected”) and

(always during Y time units not Gw.data > Z)

}

always during X time units {

(not (exists l:allOfType(Link) areLinked(l.output, gw.data)

 and (exists s:allOfType(Sensor) areLinked(s.measure, l.from))))

implies eventually before Y time units {

exists l:allOfType(Link) areLinked(l.to, gw.data)

and (exists s:allOfType(Sensor) areLinked(s.measure, l.from))

}

}

always during X time units {

forall s:allOfType(Sensor) {

(isTrue s.measure < 0) implies

eventually before Y time units {

not exists l:allOfType(Link) areLinked(s.measure, l.from)

}

}

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

115

and Y, the maximum time at which the faulty sensor must appear as disconnected
within the system. The RemoveSensor(X, Y) property cannot be stated in BLTL since it
does not have a construct (such as the forall universal quantifier) for instantiating a
variable number of temporal sub-formulas, where the number depends on the current
state.

6.3 Statistical model checking of π-ADL architectural models
This section describes how to perform statistical model checking of π-ADL

architecture descriptions. As SMC is a stochastic technique, the executable model
representing the system needs to be stochastic, a feature that the π-ADL language does
not possess. For this reason, it was necessary to provide a way of producing a
stochastic executable model from π-ADL architecture descriptions, thus allowing for
property verification using SMC.

Section 6.3.1 describes how to make π-ADL architectural models stochastic
whereas Section 6.3.2 presents the developed SMC-based toolchain to verify properties
expressed in DynBLTL regarding dynamic software architectures described in π-ADL.
Finally, Section 6.3.3 reports the results of some experiments on the computational
effort for verifying properties regarding the WSN-based monitoring system described
in Chapter 3.

6.3.1 Stochastic execution of π-ADL architecture descriptions

In π-ADL, non-determinism occurs in two different ways. First, whenever
several actions are possible, any one of them can be executed as the next action, i.e.,
the choice of the next action to execute is non-deterministic. Second, some functions
can be declared as unobservable (see Section 4.3), thus meaning that its internal
operations are concealed at the architectural level. In this case, the value returned by
the function is also non-deterministic because it is not defined in the model. As a
stochastic process is required for performing SMC17 [118], the non-determinism of π-
ADL models are resolved by using probabilities. The following describes how to
proceed in the aforementioned cases.

Resolving non-determinism in the choice of the next action. The Go code from
a π-ADL architecture description encodes architectural element (component or
connector) as a concurrent goroutine. The communication between architectural
elements takes place via a channel. If several communications are possible, the Go
runtime chooses one of them to execute according to a FIFO (first-in, first out) policy.

17 It is worth mentioning that SMC also applies to non-stochastic systems [119].

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

116

Such a policy is not suitable for SMC since it is necessary to specify how the next action
is chosen.

To support the stochastic scheduling of actions, a scheduler was implemented
as a goroutine that controls all non-local actions, i.e., composition, decomposition or
communication. Whenever an architectural element needs to perform a non-local
action, it informs the scheduler and blocks until the scheduler responds. The scheduler
responds with the action executed (if the component submitted a choice between
several actions) and a return value, corresponding either to the reception side of a
communication or a decomposed architecture.

Figure 28 depicts the behavior of the scheduler. The scheduler waits until all
architectural components (components and connectors) have indicated their possible
actions. At this step, the scheduler builds a list of possible rendezvous by checking
which declared unifications have both sender and receiver ready to communicate. For
this purpose, the scheduler maintains a list of the active architectures and the
corresponding unifications. The possible communications are added to the list of
possible actions and the scheduler chooses one of them according to a probabilistic
choice function. The scheduler then executes the action and outputs its effect to the
statistical model checker. At last, the scheduler notifies the components and connectors
involved in the action.

Figure 28 – Working schema of the scheduler to support the stochastic execution of a π-ADL
architectural model

Resolving non-determinism in unobservable functions. Functions declared as
unobservable require an implementation to allow simulating the model. In practice,
this implementation is provided in form of a Go function whose return value can be
determined by a probability distribution. Such an implementation relies on the Go
libraries that implement usual probability distributions. In particular, such functions

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

117

can model inputs of the systems that have a known probabilistic value, i.e., input to a
component, time to the next failure of a component, etc.

6.3.2 An SMC-based toolchain to simulate and verify dynamic software
architectures

SMC techniques rely on the simulation of an executable model of the system
under verification against a set of formulas expressing bounded properties to be
verified (see Section 2.3). These elements are provided as inputs to a statistical model
checker, which basically consists of (i) a simulator for running the executable model of
the system under verification, (ii) a model checker for verifying properties, and (iii) a
statistical analyzer responsible for calculating probabilities and performing statistical
tests.

Among the SMC tools available in the literature, PLASMA [114, 115] is a
compact, flexible platform that enables users to create custom SMC plug-ins atop it.
PLASMA incorporates in-built compilers to create bytecode for execution on its own
stack-based machine, thereby contributing to increase the efficiency of the SMC
procedure. PLASMA also offers three alternative modes for SMC, namely a simple
Monte Carlo probabilistic algorithm [120], a Monte Carlo algorithm with Chernoff
confidence bounds [60], and sequential hypothesis testing [54].

One of the outstanding features of PLASMA is the ability of developing plug-
ins atop the platform, so that users can take advantage of the PLASMA environment
to create custom statistical model checkers. For instance, users who have developed
their own model description language can use it with PLASMA by providing a
simulator plug-in. Similarly, users can add custom languages for specifying properties
and use the available SMC algorithms through a checker plug-in. Besides its efficiency
and good performance results [115, 121], such a flexibility was one of the main reasons
motivating the choice of PLASMA to serve as basis to develop the toolchain for
specifying and verifying properties of dynamic software architectures described in π-
ADL. In addition, PLASMA has been applied to problems from different application
domains and it is also used by several European projects [122].

Figure 29 provides an overview of the developed SMC-based toolchain18 for
verifying properties of dynamic software architectures. The inputs for the process are
(i) an architecture description in π-ADL and (ii) a set of properties specified in
DynBLTL. By following the process described in Chapter 5, the architecture
description in the π-ADL language is translated towards generating source code in the

18 The developed toolchain is publicly available at http://plasma4pi-adl.gforge.inria.fr.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://plasma4pi-adl.gforge.inria.fr/

118

Go programming language, but augmented with the state transition actions
introduced in Section 6.1. Instrumenting the Go source code with these actions is
necessary in order to allow generating execution traces upon the compilation and
execution of such a code. These execution traces are provided as input to the simulator
plug-in, which makes use of the SMC algorithms originally implemented in PLASMA.

Figure 29 – Overview of the developed SMC-based toolchain for verifying properties
expressed in DynBLTL regarding dynamic software architectures described in π-ADL

As π-ADL architectural models do not have a stochastic execution, they are
linked to a stochastic scheduler parameterized by a probability distribution for
drawing the next action, as described in Section 6.3.1. Furthermore, existing
probability distribution Go libraries are used to model inputs of system models as user
functions. The program resulting from the compilation of the generated Go source
code emits messages referring to transitions from a given state to another in case of
addition, attachment, detachment, and value exchanges of architectural elements.

Two plug-ins were developed atop the PLASMA platform, namely (i) a
simulator plug-in that interprets execution traces produced by the generated Go
program and (ii) a checker plug-in that implements DynBLTL. With this toolchain, a
software architect is able to evaluate the probability of a π-ADL architectural model to
satisfy a given property specified in DynBLTL.

6.3.3 Quantitative evaluation

In this section, some experiments aiming to quantitatively evaluate the
efficiency of the proposed SMC-based approach to support the architectural analysis
activity are reported. Considering that the literature already reports that PLASMA and
its SMC algorithms outperform other existing approaches (c.f. [115, 121, 122]), the
experiments concerned assessing how efficient is such an approach and toolchain to
verify properties in dynamic software architectures. In the experiments,
computational effort in terms of execution time and RAM consumption were chosen

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

119

as metrics, which were used to observe the performance of the toolchain when varying
the precision of the verification. As PLASMA is executed upon a Java Virtual Machine,
20 runs were performed for each precision value in order to ensure a proper statistical
significance for the results. The experiments19 were conducted under GNU/Linux on
a computer equipped with a quad-core 3 GHz processor and 16 GB of RAM. Time and
RAM consumption measures were obtained by using the time utility from Linux.

The toolchain was evaluated with the FalsePositive, SensorAvailable, and
RemoveSensor properties described in Section 6.2.2.2 with predefined time units for the
temporal operators. These properties were evaluated using the Chernoff algorithm
[60] from PLASMA, which requires a precision and a confidence degree as parameters
and returns an approximation of the probability with an error below the precision
parameter, with the given confidence. A confidence of 95% and a precision ranging
from 0.1 to 0.02 were chosen. Using descriptive statistics [53], Table 11 and Table 12
show the minimum, maximum, average, and standard deviation values for the
execution time (in seconds) and RAM consumption (in megabytes).

Table 11 – Descriptive statistics for execution time of the analysis (in seconds)

Property Precision Minimum Maximum Average
Standard
deviation

FalsePositive(100, 3)

0.10 49.69 59.49 54.49 2.2730
0.05 182.19 199.80 192.50 4.8063
0.04 293.65 335.97 301.32 9.7782
0.03 512.89 563.13 528.36 13.8758
0.02 1138.11 1233.96 1175.72 25.7600

SensorAvailable(50, 2)

0.10 16.68 18.14 17.68 0.4253
0.05 58.30 62.67 59.58 1.0564
0.04 88.59 96.15 90.42 1.6064
0.03 153.80 159.89 156.16 1.5584
0.02 340.90 363.49 350.06 7.6525

RemoveSensor(100, 4)

0.10 38.29 42.85 41.40 1.1708
0.05 144.27 160.55 150.37 4.3215
0.04 222.78 235.86 229.54 3.3158
0.03 398.23 421.50 406.23 6.0654
0.02 883.93 968.54 910.49 22.1756

19 The complete instructions on how to reproduce the performed experiments are publicly available at
http://plasma4pi-adl.gforge.inria.fr/

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://plasma4pi-adl.gforge.inria.fr/

120

Table 12 – Descriptive statistics for RAM consumption (in megabytes)

Property Precision Minimum Maximum Average
Standard
deviation

FalsePositive(100, 3)

0.10 1747 1885 1791 38.0714
0.05 1721 1950 1812 61.4808
0.04 1724 1973 1842 73.5887
0.03 1706 2012 1858 85.3014
0.02 1721 2023 1870 71.1738

SensorAvailable(50, 2)

0.10 1367 1585 1493 60.6001
0.05 1531 1625 1583 34.7258
0.04 1514 1627 1574 33.2827
0.03 1511 1643 1579 35,7215
0.02 1546 1634 1573 25.8882

RemoveSensor(100, 4)

0.10 1670 1821 1740 37.4755
0.05 1749 1871 1799 33.1524
0.04 1747 1856 1801 31.9481
0.03 1726 1870 1815 41.5488
0.02 1732 1974 1842 78.1475

Figure 30 shows how the analysis time increases when the precision increases
(i.e., the error decreases). As highlighted in Section 2.3, a higher accuracy of the answer
provided by the statistical model checker requires generating more execution traces
through simulations, thereby increasing the analysis time. In case of rare events, i.e.,
properties that have a very low probability to happen, a better convergence can be
obtained by using dedicated methods [115]. The property regarding the sensor
availability evaluated over a window of 50 time units requires less time than the other
properties evaluated over a window of 100 time units because the analysis of each trace
is faster.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

121

Figure 30 – Effect of the precision variation in the analysis of three properties upon analysis
time (measured in seconds)

In Figure 31, it is possible to observe that the amount of RAM required to
perform the analyses are nearly constant, thus meaning that the precision has no
strong influence on the RAM consumption. This can be explained by the fact that SMC
only analyzes one trace at a time. Therefore, it is possible to conclude that the proposed
SMC-based approach and toolchain can be regarded as efficient with respect to both
execution time and RAM consumption.

Figure 31 – Effect of the precision variation in the analysis of three properties upon RAM
consumption (in megabytes)

6.4 Related work: Formal specification and verification of
architectural properties in dynamic systems

As far as it is concerned, this is the first work on the application of SMC to verify
properties in dynamic software architectures. Therefore, the brief discussion presented
in this section mainly concerns existing approaches on the specification of properties

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

122

in dynamic software systems, in contrast to the features exhibited by DynBLTL.

Traditional versions of temporal logics such as LTL and BLTL are expressed
over atomic predicates that evaluate properties to a Boolean value at every point
execution. However, a key characteristic of dynamic software systems is the
impossibility of foreseeing the exact set of architectural elements deployed at a given
point of execution. Such traditional formalisms do not allow reasoning about elements
that may appear, disappear, be connected or be disconnected during the execution of
the system for two main reasons. First, specifying a predicate for each property of each
element is not possible as the set of architectural elements may be unknown a priori.
Second, there is no canonical way of assigning a truth value to a property about an
element that does not exist at the considered point of execution. In addition, existing
approaches to tackle such issues typically focus on behavioral properties, but they do
not address structural properties [123]. On the other hand, some approaches assume
that architectures are static [124]. DynBLTL overcomes these limitations by being an
extension of BLTL able to cope with both structural and behavioral properties in
dynamic software architectures, as well as to handle the absence of architectural
elements by means of the undefined truth value (see Section 6.2.2).

The Bandera specification language allows model checking multithreaded Java
programs [125]. The dynamicity is handled by bounding the number of classes that
can be dynamically created to be able to statically build a representation of the state
space, but such an approach requires the user to annotate the Java code. Cho et al. [123]
also proposed a logic for dealing with dynamic systems based on freeze quantifiers. In
both cases, the logic cannot express architectural properties. The π-AAL language [27]
was developed to express properties about π-ADL models, but its semantics is not
suitable for performing SMC since properties are evaluated on each trace, not on the
computation tree.

An important part of the verification of dynamic systems deals with validation
of reconfiguration operations and hence several works have provided ways to specify
what a correct reconfiguration means. In the Mazzara and Bhattacharyya’s work [126],
several frameworks for describing and analyzing dynamic reconfiguration are
studied, but they do not handle logics similar to DynBLTL. The idea of interleaving
quantifiers and temporal logics is not new and has been used in LTL(MSO) [127], for
example, in which the number of constituents is constant throughout the execution
and therefore such a logic is not applicable to dynamic systems. Basso et al. [128]
express architectural properties with additional predicates encoding the state of the
architecture, but this logic does not allow interleaving quantifiers (over sets) and
temporal operators. Finally, Dormoy et al. [129] propose a logic where architectural
properties are used as predicate and expressed through quantifiers, but quantifiers
and temporal operators cannot be interleaved as DynBLTL allows for.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

123

7 Conclusion

Software systems have grown in size and complexity and are now an integrated
part of every aspect of the society, including finance, transportation, communication,
and health care. One of the most prominent ways of taming such a complexity is by
means of a software architecture, which provides manageable, meaningful system
abstractions and play a significant role in the achievement of both functional and
quality requirements. Indeed, software architectures are quite useful in system
development as they can be a cornerstone at both (i) design time, for verification and
validation purposes, and (ii) runtime, for guiding the system implementation and
contributing to avoid architectural erosion along the time.

Dynamicity is increasingly becoming an intrinsic property of the contemporary
systems, which operate on environments that are highly dynamic, subjected to a
number of changes. Therefore, software architectures for these systems need to be
dynamic to accommodate such changes, as well as to encompass evolution rules for a
software system and its elements during runtime. In a dynamic software architecture,
constituent elements may be created, interconnected or removed, or even may
undergo a whole rearrangement at runtime, ideally with minimum or no disruption.
For this reason, supporting dynamism is important mainly in the case of certain safety-
and mission-critical systems, such as traffic control, energy, disaster management,
environmental monitoring, and health systems.

Due to its importance, dynamism shall be taken into account at all activities of
the software architecture lifecycle. With respect to the architectural representation
activity, most of the existing ADLs are not able to properly describe dynamic software
architectures, either because they do not cover both structural or behavioral
viewpoints or because they do not allow specifying the changes that can be performed
over the architecture and its constituent elements. Another important issue in this
context is the significant gap between the description and the implementation of a
software architecture, a problem that becomes worse mainly as the architecture needs
to evolve.

Finally, a cumbersome issue in software architectures is the verification of
architectural properties and constraints. Formal techniques such as model checking,
albeit being able to precisely determine if a software system can satisfy properties
related to user and quality requirements, suffer from limitations regarding scalability
and required effort to perform such a task. As previously mentioned, this problem is
exacerbated in the contemporary dynamic software systems for two main reasons,
namely the non-determinism of their behavior caused by concurrency and the
unpredictable environmental conditions in which they operate. This makes the
traditional techniques used to verify properties in dynamic software architectures

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

124

unfeasible in terms of execution time and computational resources.

7.1 Revisiting the proposal and its contributions
In order to tackle the aforementioned problems, this work has proposed a

formally founded framework intended to support dynamic software architectures and
their representation, verification, and validation. These concerns are typically not
addressed together at the state of the art. Figure 32 depicts the main constituents of the
proposed framework (described in the previous chapters) and how they are related to
the goals and research questions established in this work. In essence, the framework
encompasses: (i) π-ADL, a formal language for describing software architectures under
both structural and behavioral viewpoints; (ii) the specification of programmed
dynamic reconfiguration operations; (iii) the automated generation of source code
from architecture descriptions; and (iv) an SMC-based approach to formally express
and verify properties in dynamic software architectures.

Figure 32 – Main constituents of the proposed framework and correlation to goals and
associated research questions

The main contributions of this work are fourfold: (i) an ADL able to describe
dynamic software architectures; (ii) an automated process to generate source code
from architecture descriptions; (iii) an architecturally-driven, computationally efficient
approach and toolchain to verify properties in dynamic software architectures; and
(iv) a novel logic and notation to formally express properties in dynamic software
architectures. Each one of these contributions is described in the following.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

125

An ADL able to formally describe dynamic software architectures. As
described in Chapter 4, the π-ADL language was endowed with architecture-level
primitives for specifying programmed reconfiguration operations. In addition, two
common approaches for enacting programmed dynamic reconfiguration were
incorporated into π-ADL. The first approach is exogenous, in which it is possible to
control all elements of the software architecture and apply the changes on the whole
structure. In turn, the second approach is endogenous, in which the architectural
elements themselves are able to manage dynamic reconfiguration actions. This has
culminated in an expressive language able to describe both structure and behavior of
a dynamic software architecture, as well as the reconfiguration operations that can be
applied over it at runtime [35].

An automated process to generate source code from architecture descriptions.

Chapter 5 presented the second main contribution of this work, the mapping of
architecture descriptions in the π-ADL to implementation source code in Go. Such a
mapping process resulted in an automated process for generating source code from an
architecture description [35, 37], thereby tackling the existing gap between
architectural and implementation levels, contributing to minimize the risk of
architectural drifts, and allowing for the validation of the architecture itself.

An architecturally-driven, computationally efficient approach and toolchain

for verifying properties in dynamic software architectures. The third contribution,
described in Chapter 6, regards the use of SMC to support the formal analysis of
dynamic architectures expressed in π-ADL. To support the verification process, a
toolchain was developed upon PLASMA, a flexible, modular statistical model checker,
striving to reduce effort, computational resources, and time for performing such a task.
As far as it is concerned, this is the first work on the application of SMC to verify
properties in dynamic software architectures.

A novel logic and notation for formally expressing properties in dynamic

software architecture. At last, the fourth contribution of this work, also introduced in
Chapter 6, is DynBLTL, a novel logic and notation intended to express properties in
dynamic software architectures [41]. Aiming at overcoming the inability of existing
notations available at the literature to deal with dynamicity concerns, DynBLTL was
designed to take into account architectural elements that are created or removed at
runtime, i.e., they may be present in the architecture at a given instant of time and be
absent at another. This is achieved by means of the undefined truth value (U), to which
a given formula expressing a property is evaluated when considering architectural
elements that do not exist in the system at the current state.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

126

7.2 Future work
In spite of the contributions of this work described in Section 7.1, there are many

other directions for ongoing and future work. Some of these directions described in
Sections 7.2.1 and 7.2.2 respectively as short-term and long-term work.

7.2.1 Short-term work

Improvements on the developed tools. In the scope of this work, two main
tools were developed, namely (i) the π-ADL textual editor (c.f. Section 5.2), intended
to assist software architects in architectural representation and code generation, and
(ii) the SMC-based toolchain to specify and verify properties in dynamic software
architectures (c.f. Section 6.3). These tools will be constantly updated and improved,
culminating in a development environment to assist software architects in activities
such as description of dynamic software architectures, automated generation of source
code, validation of software architectures by means of simulation, and verification of
architectural properties. Furthermore, it is highly desirable providing π-ADL with a
graphical notation that must be consistent and synchronized with the textual notation.

Use of model-transformation metrics within the process for generating Go

source code from π-ADL architecture descriptions. As the mapping from π-ADL to
Go can be viewed as a model-to-text (M2T) transformation (i.e., the generation of
textual artifacts from abstract models) [136], model transformation metrics available
in the literature can be used to perform a quantitative evaluation of the process for
generating Go source code from π-ADL architecture descriptions. A potential
candidate to be used in this evaluation is the set of metrics introduced in the Nguyen’s
work [137], which comprises Xtend-based M2T transformations.

7.2.2 Long-term work

Expansion of the SMC-based approach. An interesting investigation refers to
the expansion of the SMC-based approach proposed in this work towards the
specification and verification of properties in systems-of-systems (SoS), a class of
systems resulted from the interaction among other distributed, heterogeneous
independent systems (the so-called constituent systems) that cooperate to form a
larger and more complex system towards the accomplishment of global goals [138].
Each constituent system accomplishes its individual goals and can contribute to the
accomplishment of the global goals of the overarching SoS. However, the result of such
an interaction is said to be more than the sum of the constituents as it enables the SoS
to offer new functionalities that cannot be provided by any of these constituent
systems working alone. SoS software architectures are inherently dynamic, i.e., they
can be composed and reconfigured at runtime, as well as its concrete constituent
systems may be partially known or even unknown at design time [139]. Therefore, the

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

127

DynBLTL logic and notation seems to be promising in this context as it can be able to
cope with such a lack of prior knowledge about the constituent systems that compose
an SoS software architecture, besides the dynamic appearance/disappearance of
constituent systems within an SoS at runtime. In this work, π-ADL will be investigated
as the ADL for describing SoS architectures, targeting mainly acknowledged SoS.

Investigation on the use of models@runtime to support dynamic

reconfiguration of software architectures. Models@runtime can be defined as the
abstract representation of a system (including its structure and behavior) that exists in
tandem with such a system during its execution [140]. Such an approach has been
recently advocated as promising to support dynamic evolution of software systems
mainly in cases of unanticipated changes unforeseen at design time [141]. Therefore,
the intention is to investigate the applicability of models@runtime as means of
supporting the ad-hoc, unforeseen dynamic reconfiguration of a software architecture.
Models@runtime can also allow having traceable, manageable models representing
the elements of a software architecture at both design time and runtime. Furthermore,
the causal connection between the architectural and execution levels allows addressing
how reconfiguration actions specified at the former can be reflected into the latter (and
vice-versa) while maintaining consistency between them. In this work,
models@runtime will be investigated as a technology for implementing the formal
definition of π-ADL as a front-end for the translation from π-ADL to Go.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

128

References

[1] Anthony J. Lattanze. Architecting software intensive systems: A practitioner’s
guide. Boca Raton, FL, USA: Auerbach Publications/Taylor & Francis Group,
Inc., 2009.

[2] Len Bass, Paul Clements, Rick Kazman. Software architecture in practice – 3rd
edition. USA: Addison-Wesley, 2013.

[3] Mary Shaw, Paul Clements. The Golden Age of Software Architecture. IEEE
Software, vol. 23, no. 2, pp. 31–39, Mar./Apr. 2006.

[4] Anthony I. Wasserman. Toward a discipline of Software Engineering. IEEE
Software, vol. 13, no. 6, pp. 23–31, Nov. 1996.

[5] ISO/IEC/IEEE 42010:2011(E). ISO/IEC/IEEE International Standard for
Systems and Software Engineering – Architectural Description. Geneva,
Switzerland: ISO, 2011.

[6] John C. Georgas, Eric M. Dashofy, Richard N. Taylor. Architecture-centric
development: A different approach to Software Engineering. Crossroads
Magazine, vol. 12, no. 4, Aug. 2006.

[7] David Garlan. Formal modeling and analysis of software architecture:
Components, connectors, and events. In: Marco Bernardo, Paola Inverardi (eds.)
Formal methods for Software Architecture. Lecture Notes in Computer Science,
vol. 2804. Germany: Springer Berlin Heidelberg, 2003, pp. 1–24.

[8] Philippe Kruchten, Henk Obbink, Judith Stafford. The past, present, and future
for Software Architecture. IEEE Software, vol. 23, no. 2, pp. 22–30, Mar./Apr.
2006.

[9] Flavio Oquendo. π-ADL: An architecture description language based on the
higher-order typed π-calculus for specifying dynamic and mobile software
architectures. ACM SIGSOFT Software Engineering Notes, vol. 29, no. 3, pp. 1–
14, May 2004.

[10] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.
Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT’96), San Francisco, CA, USA. New York, NY, USA:
ACM, 1996, pp. 3–14.

[11] Richard N. Taylor, Nenad Medvidovic, Eric M. Dashofy. Software Architecture:
Foundations, theory, and practice. USA: John Wiley & Sons, Inc., 2010.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

129

[12] Olivier Barais, Anne Françoise Le Meur, Laurence Duchien, Julia Lawall.
Software architecture evolution. In: Tom Mens, Serge Demeyer (eds.) Software
evolution. Germany: Springer Berlin Heidelberg, 2008, pp. 233–262.

[13] Hongyu Pei Breivold, Ivica Crnkovic, Magnus Larsson. A systematic review of
software architecture evolution research. Information and Software
Technology, vol. 54, no. 1, pp. 16–40, Jan. 2012.

[14] Patricia Lago, Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, Anthony
Tang. The road ahead for architectural languages. IEEE Software, vol. 32, no. 1,
pp. 98–105, Jan./Feb. 2015.

[15] Paul Clements. A survey of architecture description languages. Proceedings of
the 8th International Workshop on Software Specification and Design
(IWSSD’96), Schloss Velen, Germany. USA: IEEE Computer Society, 1996, pp.
16–25.

[16] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Paulo Merson, Robert Nord, Judith Stafford. Document software
architectures: Views and beyond – 2nd edition. USA: Addison-Wesley, 2011.

[17] Nenad Medvidovic, Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions
on Software Engineering, vol. 26, no. 1, pp. 70–93, Jan. 2000.

[18] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, Anthony
Tang. What industry needs from architectural languages: A survey. IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp. 869–891, Jun. 2013.

[19] Eric M. Dashofy, André van der Hoek, Richard N. Taylor. A highly-extensible,
XML-based architecture description language. Proceedings of the 2001 Working
IEEE/IFIP Conference on Software Architecture (WICSA 2001), Amsterdam,
The Netherlands. Washington, DC, USA: IEEE Computer Society, 2001, pp. 103–
112.

[20] David Garlan, Robert Monroe, David Wile. Acme: An architecture description
interchange language. Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON’97), Toronto, ON,
Canada. USA: IBM Press, 1997, pp. 169–189.

[21] Robert J. Allen. A formal approach to software architecture. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1997.

[22] Jeff Magee, Naranker Dulay, Susan Eisenbach, Jeff Kramer. Specifying
distributed software architectures. In: Wilhelm Schäfer, Pere Botella (eds.)
Proceedings of the 5th European Software Engineering Conference (ESEC’95),

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

130

Sitges, Spain. Lecture Notes in Computer Science, vol. 989. United Kingdom:
Springer-Verlag London, 1995, pp. 137–153.

[23] Robert Allen, Rémi Douence, David Garlan. Specifying and analyzing dynamic
software architectures. In: Egidio Astesiano (ed.) Proceedings of the First
International Conference on Fundamental Approaches to Software Engineering
(FASE’98), Lisbon, Portugal. Lecture Notes in Computer Science, vol. 1382.
Germany: Springer Berlin Heidelberg, 1998, pp. 21–37.

[24] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. Specification and analysis of software architecture
using RAPIDE. IEEE Transactions on Software Engineering, vol. 21, no. 4, pp.
336–355, Apr. 1995.

[25] Dewayne E. Perry, Alexander L. Wolf. Foundations for the study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–
52, Oct. 1992.

[26] Jacek Rosik, Andrew Le Gear, Jim Buckley, Muhammad Ali Babar, Dave
Connolly. Assessing architectural drift in commercial software development: A
case study. Software: Practice and Experience, vol. 41, no. 1, pp. 63–86, Jan. 2011.

[27] Radu Mateescu, Flavio Oquendo. π-AAL: An architecture analysis language for
formally specifying and verifying structural and behavioural properties of
software architectures. ACM SIGSOFT Software Engineering Notes, vol. 31, no.
2, pp. 1–19, Mar. 2006.

[28] Dino Mandrioli. On the heroism of really pursuing formal methods.
Proceedings of the 3rd FME Workshop on Formal Methods in Software
Engineering (FormaliSE 2015), Florence, Italy. Washington, DC, USA: IEEE,
2015, pp. 1–5.

[29] Pengcheng Zhang, Henry Muccini, Bixin Li. A classification and comparison of
model checking software architecture techniques. Journal of Systems and
Software, vol. 83, no. 5, pp. 723–744, May 2010.

[30] Edmund M. Clarke, Jr., Orna Grumberg, Doron A. Peled. Model checking.
Cambridge, MA, USA: The MIT Press, 1999.

[31] Gerard J. Holzmann. The logic of bugs. Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering (SIGSOFT’02/FSE-10),
Charleston, SC, USA. New York, NY, USA: ACM, 2002, pp. 81–87.

[32] Markus Endler and J. Wei. Programming generic dynamic reconfigurations for
distributed applications. Proceedings of the 1992 International Workshop on
Configurable Distributed Systems. United Kingdom: IET, 1992, pp. 68–79.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

131

[33] Miguel Alexandre Wermelinger. Specification of software architecture
reconfiguration. PhD thesis, Universidade Nova de Lisboa, Lisbon, Portugal,
1999.

[34] Cristóbal Costa-Soria, Jennifer Pérez, Jose Ángel Carsí. Handling the dynamic
reconfiguration of software architectures using aspects. Proceedings of the 13th
European Conference on Software Maintenance and Reengineering (CSMR’09),
Kaiserslautern, Germany. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 263–266.

[35] Everton Cavalcante, Thais Batista, Flavio Oquendo. Supporting dynamic
software architectures: From architectural description to implementation.
Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2015), Montreal, QC, Canada. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 31–40.

[36] The Go programming language. Available at: https://golang.org/

[37] Everton Cavalcante, Flavio Oquendo, Thais Batista. Architecture-based code
generation: From π-ADL descriptions to implementations in the Go language.
In: Paris Avgeriou, Uwe Zdun (eds.) Proceedings of the 8th European
Conference on Software Architecture (ECSA 2014), Vienna, Austria. Lecture
Notes in Computer Science, vol. 8627. Switzerland: Springer International
Publishing, 2014, pp. 130–145.

[38] Everton Cavalcante, Jean Quilbeuf, Louis-Marie Traonouez, Flavio Oquendo,
Thais Batista, Axel Legay. Statistical model checking of dynamic software
architectures. In: Bedir Tekinerdogan, Uwe Zdun (eds.) Proceedings of the 10th
European Conference on Software Architecture (ECSA 2016), Copenhagen,
Denmark. Lecture Notes in Computer Science. Switzerland: Springer
International Publishing, 2016.

[39] Axel Legay, Benoît Delahaye, Saddek Bensalem. Statistical model checking: An
overview. In: Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus
Havelund, Insup Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, Nikolai
Tillman (eds.) Proceedings of the First International Conference on Runtime
Verification (RV 2010), San Julians, Malta. Lecture Notes in Computer Science,
vol. 6418. Germany: Springer Berlin Heidelberg, 2010, pp. 122–135.

[40] Youngjoo Kim, Okjoo Choi, Moonzoo Kim, Jongmoon Baik, Tai-Hyo Kim.
Validating software reliability early through statistical model checking. IEEE
Software, vol. 30, no. 3, pp. 35–41, May/Jun. 2013.

[41] Jean Quilbeuf, Everton Cavalcante, Louis-Marie Traonouez, Flavio Oquendo,
Thais Batista, Axel Legay. A logic for the statistical model checking of dynamic

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

https://golang.org/

132

software architectures. In: Tiziana Margaria, Bernhard Steffen (eds.)
Proceedings of the 7th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2016), Corfu, Greece.
Lecture Notes in Computer Science. Switzerland: Springer International
Publishing, 2016.

[42] Jeremy S. Bradbury. Organizing definitions and formalisms for dynamic
software architectures. Technical report, Queen’s University, Kingston, ON,
Canada, Mar. 2004.

[43] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, Michel Wermelinger. A
survey of self-management in dynamic software architecture specifications.
Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems
(WOSS’04), Newport Beach, CA, USA. New York, NY, USA: ACM, 2004, pp.
28–33.

[44] Nenad Medvidovic. ADLs and dynamic architecture changes. Joint Proceedings
of the Second International Software Architecture Workshop and the 1996
International Workshop on Multiple Perspectives in Software Development,
San Francisco, CA, USA. New York, NY, USA: ACM, 1996, pp. 24–27.

[45] The Go Programming Language Specification. Available at:
https://golang.org/ref/spec

[46] Google Cloud Platform. Available at: https://cloud.google.com/

[47] Ivo Balbaert. The way of Go: A thorough introduction to the Go programming
language. Bloomington, IN, USA: iUniverse, 2012.

[48] David Chisnall. The Go programming language phrasebook. Upper Saddle
River, NJ, USA: Addison-Wesley/Pearson Education, Inc., 2012.

[49] Mark Summerfield. Programming in Go: Creating applications for the 21st
Century. Upper Saddle River, NJ, USA: Addison-Wesley/Qtrac Ltd., 2012.

[50] C. A. R. Hoare. Communicating sequential processes. Upper Saddle River, NJ,
USA: Prentice-Hall, 1985.

[51] Axel Legay, Manesh Viswanathan. Statistical model checking: Challenges and
perspectives. International Journal on Software Tools for Technology Transfer,
vol. 17, no. 4, pp. 369–376, Aug. 2015.

[52] Håkan L. S. Younes, Marta Kwiatkowska, Gethin Norman, David Parker.
Numerical vs. statistical probabilistic model checking. International Journal on
Software Tools for Technology Transfer, vol. 8, no. 3, pp. 216–228, Jun. 2006.

[53] Mario Lefebvre. Applied Probability and Statistics. USA: Springer New York,
2006.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

https://golang.org/ref/spec
https://cloud.google.com/

133

[54] Håkan Lorens Samir Younes. Verification and planning for stochastic processes
with asynchronous events. Doctoral dissertation, Carnegie Mellon University,
Pittsburgh, PA, USA, 2004.

[55] Håkan L. S. Younes, Reid G. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In: Ed Brinksma, Kim Guldstrand
Larsen (eds.) Proceedings of the 14th International Conference on Computer
Aided Verification (CAV 2002), Copenhagen, Denmark. Lecture Notes in
Computer Science, vol. 2404. Germany: Springer Berlin Heidelberg, 2002, pp.
223–235.

[56] Koushik Sen, Manesh Viswanathan, Gul Agha. Statistical model checking of
black-box probabilistic systems. In: Rajeev Alur, Doron A. Peled (eds.)
Proceedings of the 16th International Conference on Computer Aided
Verification (CAV 2004), Boston, MA, USA. Lecture Notes in Computer Science,
vol. 3114. Germany: Springer Berlin Heidelberg, 2004, pp. 202–215.

[57] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay, André
Platzer, Paolo Zuliani. A Bayesian approach to model checking biological
systems. In: Pierpaolo Degano, Roberto Gorrieri (eds.) Proceedings of the 7th
International Conference on Computational Methods in Systems Biology
(CMSB 2009), Bologna, Italy. Lecture Notes in Computer Science, vol. 5688.
Germany: Springer Berlin Heidelberg, 2009, pp. 218–234.

[58] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, Sylvain Peyronnet.
Approximate probabilistic model checking. In: Bernhard Steffen, Giorgio Levi
(eds.) Proceedings of the 5th International Conference on Verification, Model
Checking, and Abstract Implementations (VMCAI 2004), Venice, Italy. Lecture
Notes in Computer Science, vol. 2937. Germany: Springer Berlin Heidelberg,
2004, pp. 73–84.

[59] Sophie Laplante, Richard Lassaigne, Frédéric Magniez, Sylvain Peyronnet,
Michel de Rougemont. Probabilistic abstraction for model checking: An
approach based on property testing. ACM Transactions on Computational
Logic, vol. 8, no. 4, Aug. 2007.

[60] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, vol. 58, no. 301, pp.
13–30, Mar. 1963.

[61] Vidyasagar Potdar, Atif Sharif, Elizabeth Chang. Wireless sensor networks: A
survey. Proceedings of the 2009 International Conference on Advanced
Information Networking and Application Workshops (WAINA’09), Bradford,
United Kingdom. USA: IEEE, 2009, pp. 636–641.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

134

[62] Jennifer Wick, Biswanath Mukherjee, Dipak Ghosal. Wireless sensor network
survey. Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[63] Danny Hughes, Jó Ueyama, Eduardo Mendiondo, Nelson Matthys, Wouter
Horré, Sam Michiels, Christophe Huygens, Wouter Joosen, Ka Lok Man, Sheng-
Uei Guan. A middleware platform to support river monitoring using wireless
sensor networks. Journal of the Brazilian Computer Society, vol. 17, no. 2, pp.
85–102, Jun. 2011.

[64] BBC News. Paris flood warning. Available at
http://news.bbc.co.uk/2/hi/science/nature/1782691.stm, Jan. 2002.

[65] FloodList. Brazil floods – Over 200,000 affected in Santa Catarina and Rio
Grande do Sul. Available at http://floodlist.com/america/brazil-floods-santa-
catarina-rio-grande-do-sul, Oct. 2015.

[66] David De Roure. Floodnet: A new flood warning system. Ingenia, vol. 23, pp.
50–51, Jun. 2005.

[67] Slobodan P. Simonovic. Decision support system for flood management in the
Red River Basin. Canadian Water Resources Journal, vol. 24, no. 3, pp. 203–223,
Jun. 2004.

[68] Jó Ueyama, Daniel Roy Hughes, Nelson Matthys, Wouter Horré, Wouter
Joosen, Christophe Huygens, and Sam Michiels. An event-based component
model for wireless sensor networks: A case study for river monitoring.
Proceedings of the 28th Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC 2010), Gramado, RS, Brazil. Porto Alegre, RS, Brazil:
SBC, 2010, pp. 997–1004.

[69] Danny Hughes, Klaas Thoelen, Wouter Horré, Nelson Matthys, Javier Del Cid,
Sam Michiels, Christophe Huygens, Wouter Joosen. LooCI: A loosely-coupled
component infrastructure for networked embedded systems. Proceedings of the
7th International Conference on Advances in Mobile Computing and
Multimedia (MoMM 2009), Kuala Lumpur, Malaysia. New York, NY, USA:
ACM, 2009, pp. 195–203.

[70] Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (Brazil). Anuário
Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis 2015 (in
Portuguese). Rio de Janeiro, RJ, Brazil: ANP, 2015. Publicly available at:
http://www.anp.gov.br/?dw=78135.

[71] Mohammad reza Akhondi, Alex Talevski, Simon Carlsen, Stig Peterson.
Applications of wireless sensor networks in the oil, gas and resources
industries. Proceedings of the 24th IEEE International Conference on Advanced

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://news.bbc.co.uk/2/hi/science/nature/1782691.stm
http://floodlist.com/america/brazil-floods-santa-catarina-rio-grande-do-sul
http://floodlist.com/america/brazil-floods-santa-catarina-rio-grande-do-sul
http://www.anp.gov.br/?dw=78135

135

Information Networking and Applications, Perth, WA, Australia. USA: IEEE,
2010, pp. 941–948.

[72] Petru Junie, Octav Dinu, Cristian Eremia, Dan Stefanoiu, Catalin Petrescu, Ioan
Savulescu. A WSN based monitoring system for oil and gas transportation
through pipelines. IFAC Proceedings Volumes, vol. 45, no. 6, pp. 1796–1801,
May 2012.

[73] Ivan Stoianov, Lama Nachman, Sam Madden, Timur Tokmouline. PIPENET: A
wireless sensor network for pipeline monitoring. Proceedings of the 6th
International Conference on Information Processing in Sensor Networks
(IPSN’07), Cambridge, MA, USA. New York, NY, USA: ACM, 2007, pp. 264–
273.

[74] Ilmad Jawar, Nader Mohamed, Khaleb Shuaib. A framework for pipeline
infrastructure monitoring using wireless sensor networks. Proceedings of the
2007 Wireless Telecommunications Symposium (WTS 2007), Pomona, CA, USA.
USA: IEEE, 2007, pp. 1–7.

[75] Gbenga Owojaiye, Yichuang Sun. Focal design issues affecting the deployment
of wireless sensor networks for pipeline monitoring. Ad Hoc Networks, vol. 11,
no. 3, pp. 1237–1253, May 2013.

[76] Flávio E. A. Horita, Maria C. Fava, Eduardo M. Mendiondo, Jairo Rotava,
Vladimir C. Souza, Jó Ueyama, João Porto de Albuquerque. AGORA-GeoDash:
A geosensor dashboard for real-time flood risk monitoring. In: Starr Roxanne
Hiltz, Mark S. Pfaff, Linda Plotnick, Patrick S. Shih (eds.) Proceedings of the
11th International Conference on Information Systems for Crisis Response and
Management (ISCRAM 2014), University Park, PA, USA. USA: The
Pennsylvania State University, 2014, pp. 309–318.

[77] Jesús M. T. Portocarrero, Flavia C. Delicato, Paulo F. Pires, Nadia Gámez, Lidia
Fuentes, David Ludovino, Paulo Ferreira. Autonomous wireless sensor
networks: A systematic literature review. Journal of Sensors, 2014.

[78] Danny Hughes, Phil Greenwood, Geoff Coulson, Gordon Blair. GridStix:
Supporting flood prediction using embedded hardware and next generation
grid middleware. Proceedings of the 2006 International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM’06), Niagara
Falls/Buffalo, NY, USA. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 621–626.

[79] Benjamin C. Pierce. Foundational calculi for programming languages. In: Allen
B. Tucker, editor. Handbook of Computer Science and Engineering. USA: CRC
Press, 1997, pp. 2190–2207.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

136

[80] Robin Milner. A calculus of communicating systems. Lecture Notes in
Computer Science, vol. 92. Germany: Springer Berlin Heidelberg, 1980.

[81] Robin Milner. Communicating and mobile systems: The π-calculus. New York,
NY, USA: Cambridge University Press, 1999.

[82] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, vol. 2, no. 2, pp. 119–141, Jun. 1992.

[83] Peter Michael Sewell. The algebra of finite state processes. PhD thesis,
University of Edimburgh, Edimburgh, Scotland, United Kingdom, 1995.

[84] Calos Canal, Ernesto Pimentel, José M. Troya. Specification and refinement of
dynamic software architectures. In: Patrick Donohoe (ed.) Proceedings of the
TC2 First Working IFIP Conference on Software Architecture (WICSA1), San
Antonio, TX, USA. IFIP Series, vol. 12. USA: Springer US, 1999, pp. 107–125.

[85] Alessandro Aldini, Marco Bernardo, Flavio Corradini. A process algebraic
approach to software architecture design. United Kingdom: Springer London,
2010.

[86] Flavio Oquendo, Ilham Alloui, Sorana Cîmpan, Herve Verjus. The ArchWare
ADL: Definition of the abstract syntax and formal semantics. Technical report,
The ArchWare Consortium, Dec. 2002.

[87] Flavio Oquendo. Tutorial on ArchWare ADL – Version 2 (π-ADL Tutorial).
Technical report, The ArchWare Consortium, Jun. 2005.

[88] Ron Morrison, Graham Kirby, Dharini Balasubramaniam, Kath Mickan, Flavio
Oquendo, Sorana Cîmpan, Brian Warboys, Bob Snowdon, R. Mark Greenwood.
Support for evolving software architectures in the ArchWare ADL. Proceedings
of the 4th Working IEEE/IFIP Conference on Software Architecture
(WICSA’04), Oslo, Norway. Washington, DC, USA: IEEE Computer Society,
2004, pp. 69–78.

[89] Brian Warboys, Bob Snowdon, R. Mark Greenwood, Wykeen Seet, Ian
Robertson, Ron Morrison, Dharini Balasubramaniam, Graham Kirby, Kath
Mickan. An active-architecture approach to COTS integration. IEEE Software,
vol. 22, no. 4, pp. 20–27, Jul. 2005.

[90] Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An
introduction to the SAE Architecture Analysis & Design Language. Upper
Saddle River, NJ, USA: Addison Wesley/Pearson Education, Inc., 2013.

[91] Thais Batista, Ackbar Joolia, Geoff Coulson. Managing dynamic reconfiguration
in component-based systems. In: Ron Morrison, Flavio Oquendo (eds.)
Proceedings of the 2nd European Workshop on Software Architecture (EWSA

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

137

2005), Pisa, Italy. Lecture Notes in Computer Science, vol. 3527. Germany:
Springer Berlin Heidelberg, 2005, pp. 1–17.

[92] Robert T. Monroe. Capturing software architecture design expertise with
Armani. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA,
Jan. 2001.

[93] Muhammad Atif Javed, Uwe Zdun. A systematic literature review of
traceability approaches between software architecture and source code.
Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE’14), London, England, United
Kingdom. New York, NY, USA: ACM, 2014.

[94] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Transactions on Software Engineering, vol. 21, no. 4, pp. 314–335,
Apr. 1995.

[95] Nenad Medvidovic, David S. Rosenblum, Richard N. Taylor. A language and
environment for architecture-based software development and evolution.
Proceedings of the 21st International Conference on Software Engineering
(ICSE’99), Los Angeles, CA, USA. New York, NY, USA: ACM, 1999, pp. 44–53.

[96] Flavio Oquendo, Brian Warboys, Ron Morrison, Régis Dindeleux, Ferdinando
Gallo, Hubert Garavel, Carmen Occhipinti. ArchWare: Architecting evolvable
software. In: Flavio Oquendo, Brian C. Warboys, Ron Morrison (eds.)
Proceedings of the First European Workshop on Software Architecture (EWSA
2004), St. Andrews, Scotland, United Kingdom. Lecture Notes in Computer
Science, vol. 3047. Germany: Springer Berlin Heidelberg, 2004, pp. 257–271.

[97] Flavio Oquendo. π-Method: A model-driven formal method for architecture-
centric software engineering. ACM SIGSOFT Software Engineering Notes, vol.
31, no. 3, pp. 1–13, May 2006.

[98] Eclipse Platform. Available at: http://www.eclipse.org/

[99] Xtext. Available at: https://eclipse.org/Xtext/

[100] ISO/IEC 14977:1996(E). ISO/IEC International Standard for Information
Technology – Syntactic metalanguage, Extended BNF. Geneva, Switzerland:
ISO/IEC, 1996.

[101] ANTRL. Available at: http://www.antlr.org/

[102] Xtend. Available at: https://www.eclipse.org/xtend/

[103] Patchwork Toolkit – Lightweight platform for the network of things. Available
at: https://blog.gopheracademy.com/advent-2014/patchwork/

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://www.eclipse.org/
https://eclipse.org/Xtext/
http://www.antlr.org/
https://www.eclipse.org/xtend/
https://blog.gopheracademy.com/advent-2014/patchwork/

138

[104] EMDB – Golang Embedded Programming Framework. Available at:
http://embd.kidoman.io/

[105] Gobot – Golang framework for robotics, physical computing, and the Internet
of Things. Available at: https://gobot.io/

[106] Jonathan Aldrich, Craig Chambers, David Notkin. ArchJava: Connecting
software architecture to implementation. Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), Orlando, FL, USA. New York,
NY, USA: ACM, 2002, pp. 187–197.

[107] Jonathan Aldrich, Craig Chambers, David Notkin. Architectural reasoning in
ArchJava. In: Boris Magnusson (ed.) Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP 2002), Malaga, Spain.
Lecture Notes in Computer Science, vol. 2374. Germany: Springer Berlin
Heidelberg, 2002, pp. 334–367.

[108] Jan Oliver Ringert, Bernhard Rump, Andreas Wortmann. From software
architecture structure and behavior modeling to implementations of cyber-
physical systems. In: Stefan Wagner, Horst Lichter (eds.) Proceedings of the 6.
Arbeitstagung Programmiersprachen (ATPS 2013), Aachen, Germany. Lecture
Notes in Informatics, vol. P-215. Bonn, Germany: Gesellschaft für Informatik,
2013, pp. 155–170.

[109] Jan Oliver Ringert, Bernhard Rumpe, Andreas Wortmann. Architecture and
behavior modeling of cyber-physical systems with MontiArchAutomaton.
Aachen, Germany: RWTH Aachen University, 2014.

[110] Arne Haber, Jan Oliver Ringert, Bernhard Rumpe. MontiArc: Architectural
modeling of interactive distributed and cyber-physical systems. Technical
report, RWTH Aachen University, Aachen, Germany, 2012.

[111] Zawar Qayyum. Realization of software architectures using a formal language:
Towards languages dedicated to formal development based on π-ADL. PhD
thesis, Université Bretagne Sud, Vannes, France, 2009 (original title in French:
Concrétisation des architectures logicielles à l’aide d’un langage formel : Vers les
langages dédiés au développement formel fondés sur π-ADL).

[112] Microsoft .NET. Available at: http://www.microsoft.com/net

[113] IEC/IEEE 23271:2012(E). ISO/IEC International Standard for Information
Technology – Common Language Infrastructure. Geneva, Switzerland:
ISO/IEC, 2012.

[114] PLASMA Lab. Available at: https://project.inria.fr/plasma-lab/

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://embd.kidoman.io/
https://gobot.io/
http://www.microsoft.com/net
https://project.inria.fr/plasma-lab/

139

[115] Cyrille Jegourel, Axel Legay, Sean Sedwards. A platform for high performance
statistical model checking – PLASMA. In: Cormac Flanagan, Barbara König
(eds.) Proceedings of the 18th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2012),
Tallinn, Estonia. Lecture Notes in Computer Science, vol. 7214. Germany:
Springer Berlin Heidelberg, 2012, pp. 498–503.

[116] Amir Pnueli. The temporal logics of programs. Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (SFCS’77), Providence, RI,
USA. Washington, DC, USA: IEEE Computer Society, 1977, pp. 46–57.

[117] Zohar Manna, Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. USA: Springer-Verlag New York, 1992.

[118] Koushik Sen, Mahesh Viswanathan, Gul Agha. On statistical model checking of
stochastic systems. In: Kousha Etessami, Sriram K. Rajamani (eds.) Proceedings
of the 17th International Conference on Computer Aided Verification (CAV
2005), Edinburgh, Scotland, United Kingdom. Lecture Notes in Computer
Science, vol. 3576. Germany: Springer Berlin Heidelberg, 2005, pp. 266–280.

[119] Radu Grosu, Scott A. Smolka. Monte Carlo model checking. In: Nicolas
Halbwachs, Lenore D. Zuck (eds.) Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2005), Edinburgh, Scotland, United Kingdom. Lecture Notes
in Computer Science, vol. 3440. Germany: Springer Berlin Heidelberg, 2005, pp.
271–286.

[120] George S. Fishman. Monte Carlo: Concepts, algorithms, and applications. USA:
Springer New York, 1996.

[121] Benoît Boyer, Kevin Corre, Axel Legay, Sean Sedwards. PLASMA-lab: A
flexible, distributable statistical model checking library. In: Kaustubh Joshi,
Markus Siegle, Mariëlle Stoelinga, Pedro R. D’Argenio (eds.) Proceedings of the
10th International Conference on Quantitative Evaluation of Systems (QEST
2013), Buenos Aires, Argentina. Lecture Notes in Computer Science, vol. 8054.
Germany: Springer Berlin Heidelberg, 2013, pp. 160–164.

[122] Axel Legay, Sean Sedwards. On statistical model checking with PLASMA.
Proceedings of the 2014 Theoretical Aspects of Software Engineering
Conference (TASE 2014), Changsha, China. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 139–145.

[123] S. M. Cho, H. H. Kim, S. D. Cha, D. H. Bae. Specification and validation of
dynamic systems using temporal logic. IEE Proceedings – Software, vol. 148,
no. 4, pp. 135–140, Aug. 2001.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

140

[124] Raluca Marinescu, Henrik Kaijser, Marius Mikučiois, Cristina Seceleanu,
Henrik Lönn, Alexandre David. Analyzing industrial architectural models by
simulation and model-checking. In: Cyrille Artho, Peter Csaba Ölveczky (eds.)
Proceedings of the Third International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS 2014), Luxembourg. Communications in
Computer and Information Science, vol. 476. Switzerland: Springer
International Publishing, 2014, pp. 189–205.

[125] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Robby. Expressing
checkable properties of dynamic systems: The Bandera specification language.
International Journal on Software Tools for Technology Transfer, vol. 4, no. 1,
pp. 34–56, Oct. 2002.

[126] Manuel Mazzara, Anirban Bhattacharyya. On modelling and analysis of
dynamic reconfiguration of dependable real-time systems. Proceedings of the
Third International Conference on Dependability (DEPEND 2010),
Venice/Mestre, Italy. Wilmington, DE, USA: IARIA, 2010, pp. 173–181.

[127] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, Julien d'Orso, Mayank
Saksena. Regular model checking for LTL(MSO). International Journal on
Software Tools for Technology Transfer, vol. 14, no. 2, pp. 223–241, Apr. 2012.

[128] Alessandro Basso, Alexander Boltov, Artie Basukoski, Vladimir Getov, Ludovic
Henrio, Mariusz Urbanski. Specification and verification of reconfiguration
protocols in grid component systems. Proceedings of the 3rd IEEE Conference
on Intelligent Systems (IS’06), London, United Kingdom. USA: IEEE, 2006, pp.
450–455.

[129] Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix. Using temporal logic for
dynamic reconfigurations of components. In: Luís Soares Barbosa, Markus
Lumpe (eds.) Proceedings of the 7th International Workshop on Formal Aspects
of Component Software (FACS 2010), Guimarães, Portugal. Lecture Notes in
Computer Science, vol. 6921. Germany: Springer Berlin Heidelberg, 2010, pp.
200–217.

[130] Alan Blackwell, Thomas Green. Notational systems – The Cognitive
Dimensions of Notations framework. In: John M. Caroll (ed.) HCI models,
theories, and frameworks. San Francisco, CA, USA: Morgan Kaufmann
Publishers/Elsevier Science, 2003, pp. 103–133.

[131] Daniel Moody. The “Physics” of notations: Toward a scientific basis for
constructing visual notations in Software Engineering. IEEE Transactions in
Software Engineering, vol. 35, no. 6, pp. 756–779, Nov. 2009.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

141

[132] Barbara Kitchenham, Lesley Pickard. Case studies for method and tool
evaluation. IEEE Software, vol. 12, no. 4, pp. 52–62, Jul. 1995.

[133] Per Runeson, Martin Höst, Austen Rainer, Björn Regnell. Case study research
in Software Engineering: Guidelines and examples. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2012.

[134] Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, Dag I. K. Sjøberg. A systematic
review of quasi-experiments in Software Engineering. Information and
Software Technology, vol. 51, no. 1, pp. 71–82, Jan. 2009.

[135] Claes Wohlim, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
Anders Wesslén. Experimentation in Software Engineering. Germany: Springer
Berlin Heidelberg, 2012.

[136] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, vol. 45, no. 3, pp. 621–645, Jul.
2006.

[137] Phu hong Nguyen. Quantitative analysis of model transformations. Master’s
Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2010.

[138] Mark W. Maier. Architecting principles for systems-of-systems. Systems
Engineering, vol. 1, no. 4, pp. 267–284, Feb. 1998.

[139] Everton Cavalcante. On the architecture-driven development of software-
intensive systems-of-systems. Proceedings of the 37th International Conference
on Software Engineering (ICSE 2015), Florence, Italy, vol. 2. Washington, DC,
USA: IEEE, 2015, pp. 899–902.

[140] Gordon Blair, Nelly Bencomo, Robert B. France. Models@run.time. Computer,
vol. 42, no. 10, pp. 22–27, Oct. 2009.

[141] Amel Bennaceur et al. Mechanisms for leveraging models at runtime in self-
adaptive software. In: Nelly Bencomo, Robert France, Betty H. C. Cheng, Uwe
Aßmann (eds.) Models@run.time: Foundations, applications, and roadmaps.
Lecture Notes in Computer Science, vol. 8378. Switzerland: Springer
International Publishing, 2014, pp. 19–46.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

142

Appendix A – π-ADL Grammar

This appendix describes the concrete textual syntax of the π-ADL language by
using the Extended Backus-Naur Form (EBNF) meta-language [1], a notation for
formally describing the context-free grammar of a language, i.e., its syntax. Section A.1
presents the notation elements used hereinafter whereas Section A.2 presents the
production rules forming the π-ADL grammar.

A.1 Grammar notation
The EBNF meta-language consists of terminal symbols, which are a sequence of

one or more characters forming an irreducible element of the language, and non-
terminal production rules governing how a particular syntactic element can be legally
formed in terms of terminal symbols. Syntactic elements have names that are used in
production rules and they are distinguished from names and reserved words
(keywords) in the language. Furthermore, the EBNF meta-language uses a set of meta-
symbols summarized in Table A-I.

Table A-I – EBNF meta-symbols

Meta-symbol Usage

Right arrow (→) Definition of production rule: A → B is read as A is defined as B

Pipe symbol (|) Alternative choice between elements in production rule

Brackets ([and]) Optional occurrence of element in production rule

Asterisk character (∗) Multiple occurrences of element in production rule

Plus character (+) At least one occurrence of element in production rule

Ampersand character (&)
Any occurrence order of elements in production rule:
A&B denotes that both AB and BA sequences of the elements
A and B are valid

Ellipses (…) Character range

Parentheses Element grouping

In the EBNF specification of the π-ADL grammar, reserved words and terminal
symbols of the language are expressed in a typewriter font whereas names of
production rules are typed in the italic form. It is important to highlight that names of
production rules and attributes in this specification seek to be representative and self-
explanatory.

As an example, consider the three following production rules:

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

143

The ArchitectureDescription rule refers to an architecture description composed of a set
of architectural elements (defined by the ArchitecturalElement rule), at least one
architecture (defined by the Architecture rule), and exactly one behavior declaration
(defined by the BehaviorDeclaration rule). An architectural element can be either a
component or a connector, respectively defined by the Component and Connector rules.
A component is declared by using the component keyword and it comprises an
identifier (represented by the Identifier rule). Optionally, a component can also take as
input a list of parameters, each one defined by the Parameter rule. Within the definition
of this architectural element (delimited by braces), one can have in sequence:

− declaration of zero or more types defined by the TypeDeclaration rule;
− declaration of zero or more connections defined by the

ConnectionDeclaration rule;
− declaration of zero or more variables defined in the VariableDeclaration

rule;
− optional declaration of a protocol defined by the ProtocolDeclaration rule;

and
− declaration of exactly one behavior defined by the BehaviorDeclaration

rule.

ArchitectureDescription →
ArchitecturalElement∗
Architecture+
BehaviorDeclaration

ArchitecturalElement → Component | Connector

Component →
component Identifier is abstraction([Parameter (, Parameter)∗]) {

TypeDeclaration∗
ConnectionDeclaration∗
VariableDeclaration∗
[ProtocolDeclaration]
BehaviorDeclaration

}

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

144

A.2 π-ADL production rules

ArchitectureDescription →
ArchitecturalElement∗
Architecture+
BehaviorDeclaration

ArchitecturalElement → Component | Connector

Component →
component Identifier is abstraction([Parameter∗ (, Parameter)∗]) {

TypeDeclaration∗
ConnectionDeclaration∗
VariableDeclaration∗
[ProtocolDeclaration]
BehaviorDeclaration

}

Connector →
connector Identifier is abstraction[Parameter∗ (, Parameter)∗]) {

TypeDeclaration∗
ConnectionDeclaration∗
VariableDeclaration∗
[ProtocolDeclaration]
BehaviorDeclaration

}

TypeDeclaration → type Identifier is ValueType

ConnectionDeclaration → connection Identifier is ConnectionMode (ValueType)

ConnectionMode → in | out

VariableDeclaration → Identifier is ValueType

ProtocolDeclaration →
protocol is {

(ProtocolAction∗ (| ProtocolAction)∗ ProtocolAction∗) (∗ | +)
}

ProtocolAction → (∗ via Identifier Action ValueType)∗

Action → send | receive

BehaviorDeclaration →

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

145

behavior is {

BehaviorClause∗
}

BehaviorClause →
 TypeDeclaration
| Prefix
| Choice
| Composition
| Decomposition
| Recurse
| IfThenElse
| Statement
| Inaction
| Iteration

Prefix → InputPrefix | OutputPrefix | SilentPrefix

InputPrefix → via Identifier receive Parameter

OutputPrefix → via Identifier send AbstractExpression

SilentPrefix → unobservable

Parameter → Identifier : ValueType

Choice →
choose {

BehaviorClause+
(or BehaviorClause+)+

}

Composition →
compose {

[(BehaviorClause | ElementInstantiation | ElementReference | VariableRef)+

(and (BehaviorClause | ElementInstantiation | ElementReference | VariableRef))∗]
} [UnificationClause]

UnificationClause →
where {

(UnificationElem)∗
}

UnificationElem → Unification | VariableRef

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

146

Decompostion → Identifier := decompose Identifier

Recurse → SelfRecurse

SelfRecurse → behavior([AbstractExpression (, AbstractExpression)*])

Inaction → done

Iteration →
iterate VariableRef by Identifier
[from Identifier initially InitialValue]
accumulate {

BehaviorClause∗
}

InitialValue → Composition | EmptyList | EmptyChoice | AbstractExpression

EmptyList → []ValueType

EmptyChoice → choose{}

Statement →
 VariableDeclaration
| ExplicitProjection
| Assignment
| FunctionDeclaration
| FunctionCall
| While
| For
| Return
| Unobservable

ExplicitProjection → project Identifier as Parameter (, Parameter)∗

Assignment → VariableAssignment | CollectionAddition

VariableAssignment → VariableRef = AbstractExpression

CollectionAddition → VariableRef add (AbstractExpression | Unification)

FunctionDeclaration →
Identifier is function([Parameter (, Parameter)∗]) [: ValueType] {

BehaviorClause∗
}

FunctionCall → Identifier([AbstractExpression (, AbstractExpression)∗])

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

147

Return → return AbstractExpression

IfThenElse →
if AbstractExpression then {

BehaviorClause∗
} ElseIf∗
[Else]

ElseIf →
else if AbstractExpression then {

BehaviorClause∗
}

Else →
else {

BehaviorClause∗
}

While →
while AbstractExpression do {

BehaviorClause∗
}

For →
for (VariableAssignment ; LogicalExpression ; VariableAssignment) do {

BehaviorClause∗
}

Unobservable → unobservable

Architecture →
architecture Identifier is abstraction([Parameter (, Parameter)∗]) {

TypeDeclaration∗
BehaviorDeclaration

}

ElementInstantiation → Identifier is FunctionCall

ElementReference → Identifier is AbstractExpression

Unification → ConnectionAccess unifies ConnectionAccess

ConnectionAccess → VariableRef :: Identifier

ValueType → BaseType | ConstructedType | Identifier

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

148

BaseType →
NaturalType | IntegerType | RealType | BooleanType | StringType | AnyType

NaturalType → Natural

IntegerType → Integer

RealType → Real

BooleanType → Boolean

StringType → String

AnyType → Any

ConstructedType → Tuple | View | Set | Sequence

Tuple → tuple[ValueType (, ValueType)∗]

View → view[LabeledType (, LabeledType)∗]

LabeledType → Identifier : ValueType

Set → set[ValueType]

Sequence → sequence[ValueType]

AbstractExpression → Expression | ConstructedValue

Expression → LogicalExpression

LogicalExpression → EqualityExpression (|| | &&) EqualityExpression

EqualityExpression → RelationalExpression (== | !=) RelationalExpression

RelationalExpression → ArithmeticExpression (>= | <= | > | <) ArithmeticExpression

ArithmeticExpression → Term (+ | –) Term

Term → Factor (∗ | / | mod) Factor

Factor → (Expression) | UnaryExpression | AtomicElement

UnaryExpression → !AtomicElement

AtomicElement → LiteralElement | VariableRef | FunctionCall

VariableRef → Identifier([AbstractExpression])∗

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

149

LiteralElement → IntegerLiteral | RealLiteral | StringLiteral | BooleanLiteral | SelfLiteral

IntegerLiteral → Number

RealLiteral → RealNumber

StringLiteral → String

BooleanLiteral → true | false

SelfLiteral → self

ConstructedValue → FunctionCall | TupleValue | ViewValue

TupleValue → tuple[AbstractExpression (, AbstractExpression)∗]

ViewValue → view[Identifier : AbstractExpression (, Identifier : AbstractExpression)∗]

Number → (0…9)+

RealNumber → Number.Number

Identifier → (a…z | A…Z | _) (a…z | A…Z | _ | 0…9)*

String → « any ASCII character »

A.3 References
[1] ISO/IEC 14977:1996(E). ISO/IEC International Standard for Information

Technology – Syntactic metalanguage, Extended BNF. Geneva, Switzerland:
ISO/IEC, 1996.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

150

Appendix B – The π-ADL textual editor

This appendix provides a description about the implementation of a textual
editor for the π-ADL language. Section B.1 concerns the main underlying technologies
used for developing the editor. In turn, Section B.2 presents the editor itself and its
main constituent elements.

B.1 Preliminaries
The choice of using a development environment based on the Eclipse platform

[1] to construct the new π-ADL tools was motivated by its widespread use for
developing software and good support in terms of open-source tools and frameworks.
Moreover, as Eclipse is based on the Java programming language, it takes advantage
of the portability capabilities provided by such a language, thereby allowing its use in
multiple operating systems and hardware platforms.

Among the most relevant Eclipse frameworks, the Eclipse Modeling
Framework (EMF) [2] is an open-source framework used for model-driven software
development and it has been the cornerstone of related technologies and other
frameworks. EMF provides facilities for generating code and building tools and
applications based on structured models. The typical workflow for these tasks by using
the EMF facilities encompasses the construction of the models, code generation and
customization, and the implementation of the application itself. Therefore, EMF can
be seen as the middle ground between abstract models and concrete programming
artifacts.

The (meta)model used for representing models in EMF is Ecore. In an Ecore
model, classes are model entities with attributes (each one with a name and a data type)
and relationships (references) among each other. From these elements, EMF allows
using instances of the classes defined in Ecore to describe a model of the system and
then generating its respective code. In this perspective, all frameworks, tools, and
applications built upon EMF have an underlying model based on the Ecore
(meta)model. In the last years, EMF has been the basis for the construction of several
tools and frameworks for developing software. Among them, Xtext [3] is a well-known
open-source, highly customizable framework for developing domain-specific
languages (DSLs). Xtext covers all aspects of a complete language structure by parsing
textual models written in such a language and allows generating code from it in
another language.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

151

B.2 The Xtext-based π-ADL textual editor

B.2.1 The π-ADL grammar

The main artifact used as input by Xtext for generating the π-ADL infrastructure
is a grammar specification in the Extended Backus-Naur Form (EBNF) [4]. This
grammar is a set of production rules (or simply rules) describing the form of the elements
that are valid according to the language syntax. When compiling this grammar
specification, Xtext generates the respective Ecore metamodel and a Java class
corresponding to each production rule.

Figure B-1 shows an excerpt of the π-ADL grammar that was specified based on
the π-ADL production rules described in Appendix A. Rules start with their respective
name followed by a colon and end with a semicolon. In Figure B-1, line 1 indicates that
the current grammar reuses an Xtext grammar with common terminal symbols
(org.eclipse.xtext.common.Terminals), such as identifiers (ID) and integer numbers.
The ArchitectureDescription rule (lines 5 to 9) corresponds to an architecture description
itself, which is composed of a set with zero or more architectural elements (represented
by the ArchitecturalElement rule), at least one architecture declaration (represented by
the Architecture rule), and exactly one behavior declaration referring to the controlling
behavior (represented by the BehaviorDeclaration rule). In turn, the ArchitecturalElement
rule (lines 11 to 13) define that an architectural element can be either a component or
a connector, respectively defined by the Component and Connection rules. The syntax of
the specification of a component is defined by the Component rule (lines 15 to 23): it is
declared by using the component keyword and comprises the name attribute, which is
represented by the terminal ID defined in the Xtext terminals grammar. Optionally, a
component can also take a list of parameters as input, each one defined by the
Parameter rule and separated by commas (line 17). Within the definition of the
architectural element (delimited by braces), one can have in sequence:

− declaration of zero or more types defined by the TypeDeclaration rule
(line 18);

− declaration of zero or more connections defined by the
ConnectionDeclaration rule (line 19);

− optional declaration of a protocol defined by the ProtocolDeclaration rule
(line 20); and

− declaration of exactly one behavior defined by the BehaviorDeclaration
rule (line 21).

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

152

Figure B-1 – Excerpt of the π-ADL grammar specified in the Xtext framework

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

grammar fr.irisa.archware.PiADL with org.eclipse.xtext.common.Terminals

generate piADL ‘‘http://www.irisa.fr/archware/PiADL’’

ArchitectureDescription:

archElements+=ArchitecturalElement*

archs=Architecture+

cbehavior=BehaviorDeclaration

;

ArchitecturalElement:

Component | Connector

;

Component:

‘component’ name=ID ‘is’ ‘abstraction’

‘(’ (parameters+=Parameter (‘,’ parameters+=Parameter)*)? ‘)’ ‘{’

typeDecl+=TypeDeclaration*

connections+=ConnectionDeclaration*

protDecl=ProtocolDeclaration?

Behavior=BehaviorDeclaration

‘}’

;

Figure B-2 shows a Class Diagram in the Unified Modeling Language (UML)
representing part of the π-ADL metamodel rooted upon the ArchitectureDescription
class. Despite it is possible to generate an Ecore-based language metamodel from its
grammar specification, some developers do not regard this practice as a good one since
metamodels are at a higher abstraction level than the concrete syntax model.
Nonetheless, it was opted for starting from the π-ADL grammar specification and then
generating its corresponding metamodel since such a specification was almost
complete from previous versions of the language.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

153

Figure B-2 – UML Class Diagram representing part of the part of the π-ADL metamodel

B.2.2 Automatic generation of the π-ADL infrastructure

In order to automatically generate the π-ADL language infrastructure, Xtext
uses a script written in the Modeling Workflow Engine (MWE2) DSL to configure the
generation of its artifacts. This script (also automatically created by Xtext) is used by
the framework to derive a specification from the π-ADL grammar compatible with the
ANTRL parser generator [5], which is used for generating the parser of the language.
As depicted in Figure B-3, Xtext generates the following artifacts upon running the
script: (i) a Java implementation of a parser, which is automatically generated by
ANTRL and is responsible for the syntactic analysis of the textual description; (ii) an
Ecore-based metamodel defining the abstract entities of the language and the
relationships among them; (iii) a class for implementing the Go source code generator;
and (iv) an Eclipse-based code editor for assisting the textual description of a software
architecture in the π-ADL language. In addition, Xtext creates an abstract syntax tree
(AST) from the parsed π-ADL textual model and it generates the respective Java classes
to persist such an AST.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

154

Figure B-3 – Artifacts generated by Xtext from the π-ADL grammar specification

Although the Java programming language can be used for customizing the
generated artifacts, Xtext fosters the use of Xtend [6], a fully Java-interoperable
programming language featuring a more compact, easier to use syntax, as well as
advanced features such as type inference and lambda expressions. As the AST model
needs to be continuously traversed, Xtend provides useful mechanisms for
straightforwardly doing this while being easy to use and allowing for a better readable
code. Moreover, as Xtend programs are compiled to plain Java code, they can access
all of the libraries available in Java, thus allowing these languages to coexist
seamlessly.

B.2.3 Validations

Once an architecture description is checked as correct by the parser, it might
still have errors as its overall correctness cannot always be determined during the
parsing procedure, thereby requiring a semantic analysis to be performed on the model.
For this purpose, the Xtext framework provides means of constructing validators, i.e.,
classes that contain methods (validation rules) implementing additional constraint
checks over the abstract elements of the current model. Despite Xtext provides some
default validators (e.g., for checking that two entities have the same name), it also
enables developers to implement custom validators by extending the base validation
classes that come with the framework.

Xtext performs validation by invoking each Xtend method annotated with the
@Check directive and passing all instances that have a compatible runtime type to each
method. In the body of such methods, the semantic checks are implemented for the
element passed as parameter. If a semantic check fails, trigger warning or error

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

155

messages appear in the textual editor while making the architecture description. Table
B-I summarizes the main error/warning conditions checked by the implemented
validation methods.

Table B-I – Error/warning conditions checked by the implemented validation methods

Target element Warning error/condition Severity

Architecture description Duplicate names of components, connectors, and
architectures within the architecture description Error

Architectural element Architectural element has no declared connections Warning

Architectural element Architectural element has no specified protocol Warning

Architectural element
Inconsistencies between connection declaration
and protocol specification (e.g., in terms of data
types and/or directions)

Error

Architectural element Protocol has undeclared connection Error

Architectural element Behavior of architectural element is empty Warning

Type declaration Name of the declared type starts lower cased Warning

Architectural element
Inconsistencies between a prefix within a behavior
and a connection declaration (e.g., in terms of data
types and/or directions)

Error

Variable assignment Target variable within assignment is undeclared Error

Explicit projection Tuple to be projected is undeclared Error

Function call Function call refers to an undeclared function Error

Function declaration Function is declared with return type and there is
no return statement in its body Warning

Connector Connector behavior is unobservable Warning

Choice behavior Alternative branch in a choice behavior contains no
recursion or inaction instruction Error

Architecture Duplicate names of architectural element instances Error

Architecture Instance refers to an undeclared architectural
element Error

Architecture Absence of unifications between architectural
elements Error

Architecture Connection elements in unification are both
component or connector instances Error

Architecture Unification is not from an output connection to an
input connection Error

Architecture Unification does not comprise input/output
connections of the same type Error

Architecture Unification refers to an undeclared connection Error

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

156

B.2.4 Interpreting expressions

In order to describe the behavior of components and connectors, a software
architect can make use of expressions that are similar to the ones used in programming
languages, e.g., logical, relational, equality, and arithmetic expressions. Determining
the data types handled by such expressions is important for ensuring that an
expression value sent via a connection is the one expected, i.e., its type is equal to the
type specified when declaring such a connection. However, type checking cannot be
performed during parsing (thus requiring a semantic analysis) and expressions are
resolved at runtime, i.e., their value is calculated while they are described. As Xtext is
mainly concerned with syntactic analysis and it does not support expression
resolution, an interpreter and a validator were developed in Xtend for handling
expressions in π-ADL architecture descriptions.

As the first step, a type provider implemented as an Xtend class was developed
aiming to provide the type of a given expression. This class contains a set of typeOf
methods that return the type of a given expression received as input. Four basic
situations are possible when determining the type of an expression:

(i) When the type of the expression does not depend upon the types of its sub-
expressions. Negation, logical, equality, and relational expressions will
always return a Boolean value whereas atomic values have their types
directly determined by their literals.

(ii) When the type of expression depends upon the operation and its operands. In
this case, other situations are possible:

− the division operation will always return a real value, regardless
the operands;

− the multiplication, modulus, and minus operations will return a
real value if one of the operands is a real value or an integer value
otherwise;

− the sum operation will return a string value if one of the operands
is a string value, a real value if one of the operands is a real value,
or an integer value otherwise.

(iii) When the expression is an assignment expression. The type of the expression
is determined by the declared type of the variable to which the value will
be assigned.

(iv) When the expression is a function call. The type of the expression is
determined by the return type specified when declaring the function.

The expression interpreter of π-ADL was implemented as another auxiliary
Xtend class. This interpreter contains a method called interpret that receives an
expression as input and determines its type by using the typeOf methods implemented

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

157

in the type provider class. After identifying the atomic values of the operands and
converting them to conventional Java primitive types, the interpretation method
performs the respective operations given by the operands, similarly to what is done
when evaluating an expression by using a typical programming language.

At last, the expression validator of π-ADL was implemented as another Xtend
class in order to perform the semantic type checking for expressions. The methods of
this class are annotated with the @Check directive and then called at runtime in
conjunction with the validation methods that check the conditions shown in Table B-
I. Table B-II summarizes the main error conditions checked by the implemented
expression validation methods. All of these methods trigger error messages when their
respective semantic checks fail.

Table B-II – Error conditions checked by the implemented expression validation methods

Target expression Error condition

Negation expression Operand is not a Boolean value

Logical expression Both operands are not Boolean values

Equality expression Both operands are not Boolean values

Relational expression Both operands are not of the same type or they are Boolean values
Multiplication,
division, and
modulus operations

Both operands are not numeric values

Minus operation Both operands are not numeric values

Sum operation Both operands are not neither numeric nor string values

Variable assignment The type of the value to be assigned is not equal to the type of the
variable (defined when declaring it)

Conditional prefix The type of the guard is not Boolean
Conditional
statement The type of the guard is not Boolean

While loop The type of the condition is not Boolean

For loop The type of the stop condition is not Boolean

B.2.5 Features of the π-ADL textual editor

These are some useful features provided by Xtext to the generated π-ADL
textual editor:

− error and warning alerts while describing the architecture, thus enabling
architects to early detect and fix errors and potential problems on the
architecture description as well as allowing for saving time and mental
effort to correct these errors;

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

158

− syntax highlighting, which allows for making distinction between
keywords of the language (reserved words) from identifiers allowed for
use;

− auto formatting, accessed with the Ctrl + Shift + F keyboard shortcut;
− content assist (accessed with the Ctrl + Space bar keyboard shortcut),

which provides suggestions on how to complete a given
statement/expression based on the syntactic rules; and

− automatic build on save, which allows automatically generating code from
the architecture description when it is saved in the language editor.

B.3 References
[1] Eclipse Platform. Available at: http://www.eclipse.org/

[2] Eclipse Modeling Project (EMF). Available at:
http://www.eclipse.org/modeling/emf/

[3] Xtext. Available at: https://eclipse.org/Xtext/

[4] ISO/IEC 14977:1996(E). ISO/IEC International Standard for Information
Technology – Syntactic metalanguage, Extended BNF. Geneva, Switzerland:
ISO/IEC, 1996.

[5] ANTLR. Available at: http://www.antlr.org/

[6] Xtend. Available at: https://www.eclipse.org/xtend/

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
https://eclipse.org/Xtext/
http://www.antlr.org/
https://www.eclipse.org/xtend/

159

Appendix C – DynBLTL notation

This appendix describes the concrete textual syntax of the DynBLTL notation
by using the Extended Backus-Naur Form (EBNF) meta-language [1], a notation for
formally describing the context-free grammar of a language, i.e., its syntax. Section A.1
presents the notation elements used hereinafter whereas Section A.2 presents the
production rules forming the DynBLTL grammar.

C.1 Grammar notation
The EBNF meta-language consists of terminal symbols, which are a sequence of

one or more characters forming an irreducible element of the language, and non-
terminal production rules governing how a particular syntactic element can be legally
formed in terms of terminal symbols. Syntactic elements have names that are used in
production rules and they are distinguished from names and reserved words
(keywords) in the language. Furthermore, the EBNF meta-language uses a set of meta-
symbols summarized in Table A-I.

Table A-I – EBNF meta-symbols

Meta-symbol Usage

Right arrow (→) Definition of production rule: A → B is read as A is defined as B

Pipe symbol (|) Alternative choice between elements in production rule

Brackets ([and]) Optional occurrence of element in production rule

Asterisk character (∗) Multiple occurrences of element in production rule

Plus character (+) At least one occurrence of element in production rule

Ellipses (…) Character range

Parentheses Element grouping

In the EBNF specification of the DynBLTL grammar, reserved words and
terminal symbols of the language are expressed in a typewriter font whereas names of
production rules are typed in the italic form. It is important to highlight that names of
production rules and attributes in this specification seek to be representative and self-
explanatory.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

160

C.2 DynBLTL production rules

Node → Identifier

Connection → Identifier.Identifier

Function → Identifier([Value (, Value)∗])

Value →
Value ArithmeticOperator Value | -Value | Connection | Function | Node | Literal

Predicate → Value ComparisonOperator Value | Value

ArithmeticOperator → + | - | / | *

ComparisonOperator → = | != | < | <= | > | >=

Bound → RealLiteral time units | IntegerLiteral steps

Property →
 exists Identifier : Function Property
| count Identifier : Function Property
| in Bound Property
| Property until Bound Property
| isTrue Property
| not Property
| Property and Property
| Property or Property
| Predicate

Literal → IntegerLiteral | RealLiteral | BooleanLiteral | StringLiteral

IntegerLiteral → Number

RealLiteral → RealNumber

BooleanLiteral → true | false

StringLiteral → String

Number → (0…9)+

RealNumber → Number.Number

Identifier → (a…z | A…Z | _) (a…z | A…Z | _ | 0…9)*

String → « any ASCII character »

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

161

C.3 References
[1] ISO/IEC 14977:1996(E). ISO/IEC International Standard for Information

Technology – Syntactic metalanguage, Extended BNF. Geneva, Switzerland:
ISO/IEC, 1996.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

162

Appendix D – List of Publications

D.1 Publications resulted from this work
Everton Cavalcante, Jean Quilbeuf, Louis-Marie Traonouez, Flavio Oquendo, Thais
Batista, Axel Legay. Statistical model checking of dynamic software architectures. In:
Bedir Tekinerdogan, Uwe Zdun (eds.) 10th European Conference on Software
Architecture (ECSA 2016), Copenhagen, Denmark. Lecture Notes in Computer
Science. Switzerland: Springer International Publishing, 2016 – CORE Classification
(2014)20: A

Jean Quilbeuf, Everton Cavalcante, Louis-Marie Traonouez, Flavio Oquendo, Thais
Batista, Axel Legay. A logic for the statistical model checking of dynamic software
architectures. In: Tiziana Margaria, Bernhard Steffen (eds.) Proceedings of the 7th
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2016), Corfu, Greece. Lecture Notes in Computer Science.
Switzerland: Springer International Publishing, 2016 – Stratum in Qualis-CC (2012)21:
B4

Everton Cavalcante, Thais Batista, Flavio Oquendo. Supporting dynamic software
architectures: From architectural description to implementation. Proceedings of the
12th Working IEEE/IFIP Conference on Software Architecture (WICSA 2015),
Montréal, QC, Canada. Washington, DC, USA: IEEE Computer Society, 2015, pp. 31–
40 – CORE Classification (2014): A

Everton Cavalcante, Flavio Oquendo, Thais Batista. Architecture-based code
generation: From π-ADL architecture descriptions to implementations in the Go
language. In: Paris Avgeriou, Uwe Zdun (eds.) Proceedings of the 8th European
Conference on Software Architecture (ECSA 2014), Vienna, Austria. Lecture Notes in
Computer Science, vol. 8627. Switzerland: Springer International Publishing, 2014, pp.
130–145 – CORE Classification (2014): A

D.2 Correlated publications
Eduardo Silva, Everton Cavalcante, Thais Batista, Flavio Oquendo. Bridging missions
and architecture in software-intensive systems-of-systems. Proceedings of the 21st
International Conference on Engineering of Complex Computer Systems (ICECCS

20 CORE Classification obtained from the CORE Conference Portal:
http://portal.core.edu.au/conf-ranks/

21 Qualis-CC Conference Rank retrieved from the Brazilian Coordination for the Improvement of
Higher Education Personnel (CAPES) portal: http://goo.gl/nE6olj

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://portal.core.edu.au/conf-ranks/
http://goo.gl/nE6olj

163

2016), Dubai, United Arab Emirates. Washington, DC, USA: IEEE Computer Society,
2016 – CORE Classification (2014): A; Stratum in Qualis-CC (2012): B1

Ana Luisa Medeiros, Everton Cavalcante, Thais Batista, Eduardo Silva. ArchSPL-
MDD: An ADL-based model-driven strategy for automatic variability management.
Proceedings of the IX Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS 2015), Belo Horizonte, MG, Brazil. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 120–129 – Stratum in Qualis-CC (2012): B4

Porfirio Gomes, Everton Cavalcante, Pedro Maia, Thais Batista, Kamilla Oliveira. A
systematic mapping on discovery and composition mechanisms for systems-of-
systems. Proceedings of the 41st Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2015), Funchal, Madeira, Portugal. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 191–198 – Stratum in Qualis-CC (2012): B1

Everton Cavalcante, Thais Batista, Nelly Bencomo, Pete Sawyer. Revisiting goal-
oriented models for self-aware systems-of-systems. Proceedings of the 12th IEEE
International Conference on Autonomic Computing (ICAC 2015), Grenoble, France.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 231–234 – Stratum in Qualis-
CC (2012): A2

Everton Cavalcante. On the architecture-driven development of software-intensive
systems-of-systems. Proceedings of the 37th International Conference on Software
Engineering (ICSE 2015), Florence, Italy, vol. 2. Washington, DC, USA: IEEE, 2015, pp.
899–902 – CORE Classification (2014): A*; Stratum in Qualis-CC (2012): A1

Milena Guessi, Everton Cavalcante, Lucas B. R. Oliveira. Characterizing architecture
description languages for software-intensive systems-of-systems. Proceedings of the
3rd International Workshop on Software Engineering for Systems-of-Systems (SESoS
2015), Florence, Italy. Washington, DC, USA: IEEE, 2015, pp. 12–18

Eduardo Silva, Thais Batista, Everton Cavalcante. A mission-oriented tool for system-
of-systems modeling. Proceedings of the 3rd International Workshop on Software
Engineering for Systems-of-Systems (SESoS 2015), Florence, Italy. Washington, DC,
USA: IEEE, 2015, pp. 31–36

Marcelo Benites Gonçalves, Everton Cavalcante, Thais Batista, Flavio Oquendo, Elisa
Yumi Nakagawa. Towards a conceptual model for software-intensive system-of-
systems. Proceedings of the 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2014), San Diego, CA, USA. Washington, DC, USA: IEEE, 2014, pp.
1605–1610 – CORE Classification (2014): B; Stratum in Qualis-CC (2012): B2

Pedro Maia, Everton Cavalcante, Porfirio Gomes, Thais Batista, Flavia C. Delicato,
Paulo F. Pires. On the development of systems-of-systems based on the Internet of
Things: A systematic mapping. In: 2nd International Workshop on Software

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

164

Engineering for Systems-of-Systems (SESoS 2014), Vienna, Austria. Proceedings of the
2014 European Conference on Software Architecture Workshops. New York, NY, USA:
ACM, 2014

Eduardo Silva, Everton Cavalcante, Thais Batista, Flavio Oquendo, Flavia C. Delicato,
Paulo F. Pires. On the characterization of missions of systems-of-systems. In: 2nd
International Workshop on Software Engineering for Systems-of-Systems (SESoS
2014), Vienna, Austria. Proceedings of the 2014 European Conference on Software
Architecture Workshops. New York, NY, USA: ACM, 2014

Jérémy Buisson, Everton Cavalcante, Fabien Dagnat, Elena Leroux, Sébastien
Martinez. Coqcots & Pycots: Non-stopping components for safe dynamic
reconfiguration. Proceedings of the 17th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE 2014), Marcq-en-Baroeul, France.
New York, NY, USA: ACM, 2014, pp. 85-90 – CORE Classification (2014): B; Stratum in
Qualis-CC (2012): B1

Everton Cavalcante, Ana Luisa Medeiros, Thais Batista. Describing cloud applications
architectures. Proceedings of the 7th European Conference on Software Architecture
(ECSA 2013), Montpellier, France. In: Khalil Drira (ed.) Lecture Notes in Computer
Science, vol. 7957. Germany: Springer Berlin Heidelberg, 2013, pp. 320–323 – CORE
Classification (2014): A

Eduardo Silva, Ana Luisa Medeiros, Everton Cavalcante, Thais Batista. A lightweight
language for software product lines architecture description. Proceedings of the 7th
European Conference on Software Architecture (ECSA 2013), Montpellier, France. In:
Khalil Drira (ed.) Lecture Notes in Computer Science, vol. 7957. Germany: Springer
Berlin Heidelberg, 2013, pp. 114–121 – CORE Classification (2014): A

Flavia C. Delicato, Paulo F. Pires, Thais Batista, Everton Cavalcante, Bruno Costa,
Thomaz Barros. Towards an IoT ecosystem. Proceedings of the First International
Workshop on Software Engineering for Systems-of-Systems (SESoS 2013), Montpellier,
France. New York, NY, USA: ACM, 2013, pp. 25–28.

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

	couverture-these-ubl
	PhD Thesis-Everton Cavalcante-Final
	1 Introduction
	1.1 Problem statement
	1.1.1 Enhancing the representation of dynamic software architectures
	1.1.2 Software architectures and their implementation: Two disconnected worlds
	1.1.3 Analyzing software architectures: A challenging activity

	1.2 Goals and research questions
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Characterizing dynamic software architectures
	2.2 The Go programming language
	2.2.1 Fundamentals
	2.2.2 Control statements
	2.2.3 Arrays and slices
	2.2.4 Interfaces
	2.2.5 Concurrency support

	2.3 Statistical model checking

	3 Running applications: Wireless sensor network-based systems
	3.1 A flood monitoring system
	3.2 Monitoring oil and gas pipelines
	3.3 An architecture for WSN-based monitoring systems
	3.4 The dynamic scenario of WSNs

	4 The (-ADL architecture description language
	4.1 Architectural abstractions
	4.2 Type system
	4.2.1 Base types
	4.2.2 Constructed types
	4.2.3 Collection types

	4.3 Behavior constructs
	4.4 Specifying architectural elements in (-ADL
	4.4.1 Specifying behavior of components and connectors
	4.4.2 Statements
	4.4.3 Specifying architectural configurations

	4.5 Dynamic software architectures in (-ADL
	4.6 Describing the flood monitoring system in (-ADL
	4.6.1 Architectural elements
	4.6.2 Exogenous reconfiguration: Low battery of a sensor node
	4.6.3 Endogenous reconfiguration: Avoiding false positives

	4.7 Related work: Languages for describing dynamic software architectures

	5 Architecture-based code generation
	5.1 Correspondences between (-ADL and Go
	5.2 Code generation procedure
	5.2.1 (-ADL textual editor
	5.2.2 Code generation procedure

	5.3 Generating code for the flood monitoring system
	5.3.1 Architectural elements
	5.3.2 Exogenous reconfiguration
	5.3.3 Endogenous reconfiguration

	5.4 Related work: Supporting the implementation of software architectures

	6 Verifying dynamic software architectures
	6.1 Representing traces of dynamic software architectures
	6.2 Expressing properties about dynamic software architectures
	6.2.1 Underlying formalisms for expressing properties
	6.2.2 A novel logic and notation for expressing properties in dynamic software architectures
	6.2.2.1 DynBLTL elements
	6.2.2.2 Example

	6.3 Statistical model checking of (-ADL architectural models
	6.3.1 Stochastic execution of (-ADL architecture descriptions
	6.3.2 An SMC-based toolchain to simulate and verify dynamic software architectures
	6.3.3 Quantitative evaluation

	6.4 Related work: Formal specification and verification of architectural properties in dynamic systems

	7 Conclusion
	7.1 Revisiting the proposal and its contributions
	7.2 Future work
	7.2.1 Short-term work
	7.2.2 Long-term work

	References
	Appendix A – (-ADL Grammar
	A.1 Grammar notation
	A.2 (-ADL production rules
	A.3 References

	Appendix B – The (-ADL textual editor
	B.1 Preliminaries
	B.2 The Xtext-based (-ADL textual editor
	B.2.1 The (-ADL grammar
	B.2.2 Automatic generation of the (-ADL infrastructure
	B.2.3 Validations
	B.2.4 Interpreting expressions
	B.2.5 Features of the (-ADL textual editor

	B.3 References

	Appendix C – DynBLTL notation
	C.1 Grammar notation
	C.2 DynBLTL production rules
	C.3 References

	Appendix D – List of Publications
	D.1 Publications resulted from this work
	D.2 Correlated publications

