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Success is born from the will, determination, and persistence to 
accomplish a goal. Even though not reaching the target, 

the one who seeks and overcomes obstacles 
will do at least outstanding things. 

José de Alencar, Brazilian writer (1829-1877) 
 
 
 

O sucesso nasce do querer, da determinação e da  
persistência em se chegar a um objetivo.  

Mesmo não atingindo o alvo, quem busca e vence obstáculos,  
no mínimo fará coisas admiráveis. 

José de Alencar, escritor brasileiro (1829-1877) 
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ABSTRACT 
Software architectures play a significant role in the development of software-intensive 
systems in order to allow satisfying both functional and non-functional requirements. In 
particular, dynamic software architectures have emerged to address characteristics of the 
contemporary systems that operate on dynamic environments and consequently subjected 
to changes at runtime. Architecture description languages (ADLs) are used to represent 
software architectures, producing models that can be used at design time and/or runtime. 
However, most existing ADLs have limitations in several facets: (i) they are focused on 
structural, topological aspects of the architecture; (ii) they do not provide an adequate 
support for representing behavioral aspects of the architecture; (iii) they do not allow 
describing advanced aspects regarding the dynamics of the architecture; (iv) they are 
limited with respect to the automated verification of architectural properties and 
constraints; and (v) they are disconnected from the implementation level, thus entailing 
inconsistencies between architecture and implementation. In order to tackle these 
problems, this thesis proposes formally founded framework for dynamic software 
architectures. Such a framework comprises: (i) π-ADL, a formal language for describing 
software architectures under both structural and behavioral viewpoints; (ii) the 
specification of programmed dynamic reconfiguration operations; (iii) the automated 
generation of source code from architecture descriptions; and (iv) an approach based on 
statistical model checking (SMC) to formally express and verify properties in dynamic 
software architectures. The main contributions brought by the proposed framework are 
fourfold. First, the π-ADL language was endowed with architectural-level primitives for 
describing programmed dynamic reconfigurations. Second, architecture descriptions in π-
ADL are translated towards implementation source code in the Go programming 
language, thereby contributing to minimize architectural drifts. Third, a novel logic, called 
DynBLTL, is used to formally express properties in dynamic software architectures. 
Fourth, a toolchain relying on SMC was built to automate the verification of architectural 
properties while striving to reduce effort, computational resources, and time for 
performing such a task. In this work, two wireless sensor network-based systems are used 
to validate the framework elements. 
 
Keywords: Software architectures, Architecture description languages, Dynamic 
reconfiguration, Formal verification, Temporal logic, Statistical model checking. 
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RESUMO 
Arquiteturas de software exercem um papel significativo no desenvolvimento de sistemas 
intensivos de software a fim de permitir satisfazer tanto requisitos funcionais quanto não-
funcionais. Em particular, arquiteturas de software dinâmicas têm surgido para endereçar 
características dos sistemas contemporâneos que operam em ambientes dinâmicos e 
consequentemente sujeitos a mudanças em tempo de execução. Linguagens de descrição 
arquitetural (ADLs) são utilizadas para representar arquiteturas de software, produzindo 
modelos que podem ser utilizados tanto em tempo de projeto quanto em tempo de 
execução. Contudo, a maioria das ADLs existentes possui limitações em diversos aspectos: 
(i) possui enfoque em aspectos estruturais, topológicos da arquitetura; (ii) não provê um 
suporte adequado à representação de aspectos comportamentais da arquitetura; (iii) não 
permite descrever aspectos avançados relativos à dinâmica da arquitetura; (iv) é limitada 
com relação à verificação de propriedades arquiteturais e restrições, e; (v) é desconectada 
do nível de implementação, resultando em inconsistências entre arquitetura e 
implementação. No intuito de endereçar esses problemas, esta tese propõe um framework 

formal para arquiteturas de software dinâmicas. Tal framework envolve: (i) π-ADL, uma 
linguagem formal para descrever arquiteturas de software sob as perspectivas estrutural e 
comportamental; (ii) a especificação de operações de reconfiguração dinâmica 
programada; (iii) a geração automática de código fonte a partir de descrições arquiteturais, 
e; (iv) uma abordagem baseada em verificação estatística (SMC) para expressar e verificar 
formalmente propriedades em arquiteturas de software dinâmicas. As principais 
contribuições trazidas pelo framework proposto são quatro. Primeiro, a linguagem π-ADL 
passou a ser dotada de primitivas de nível arquitetural para descrever reconfigurações 
dinâmicas programadas. Segundo, descrições arquiteturais em π-ADL são traduzidas para 
código fonte de implementação na linguagem de programação Go, contribuindo assim 
para minimizar desvios arquiteturais. Terceiro, uma nova lógica chamada DynBLTL é 
utilizada para expressar formalmente propriedades em arquiteturas de software 
dinâmicas. Quarto, um ferramental baseado em SMC foi construído para automatizar 
verificação de propriedades arquiteturais enquanto busca reduzir esforço, recursos 
computacionais e tempo para realizar essa tarefa. Neste trabalho, dois sistemas baseados 
em redes de sensores sem fio são utilizados para validar os elementos do framework. 
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Reconfiguração dinâmica, Verificação formal, Lógica temporal, Verificação estatística. 
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RESUME 
Les architectures logicielles ont un rôle important dans le développement de systèmes à 
logiciel prépondérant afin de permettre la satisfaction tant des exigences fonctionnelles 
que des exigences extra-fonctionnelles. En particulier, les architectures logicielles 
dynamiques ont émergé pour faire face aux caractéristiques des systèmes contemporains 
qui opèrent dans des environnements dynamiques et par conséquent susceptibles de 
changer en temps d’exécution. Les langages de description architecturale (ADLs) sont 
utilisés pour représenter les architectures logicielles en produisant des modèles qui 
peuvent être utilisés pendant la conception ainsi que l’exécution. Cependant, la plupart 
des ADLs existants sont limités sur plusieurs facettes : (i) ils ne décrivent que les aspects 
structurels, topologiques de l’architecture ; (ii) ils ne fournissent pas un support adéquat 
pour représenter les aspects comportementaux de l’architecture ; (iii) ils ne permettent pas 
de décrire des aspects avancés de la dynamique de l’architecture ; (iv) ils sont limités en 
ce qui concerne la vérification automatisée des propriétés et des contraintes 
architecturales ; et (v) ils sont déconnectés du niveau d’implémentation et entraînent 
souvent des incohérences entre l’architecture et l’implémentation. Pour faire face à ces 
problèmes, cette thèse propose un framework formel pour les architectures logicielles 
dynamiques. Ce framework comprend : (i) π-ADL, un langage formel pour décrire des 
architectures logicielles dynamiques sous les perspectives structurelles et 
comportementales ; (ii) la spécification des opérations de reconfiguration dynamique 
programmée ; (iii) la génération automatique de code source à partir des descriptions 
architecturales ; et (iv) une approche basée sur la vérification statistique pour exprimer et 
vérifier formellement des propriétés des architectures logicielles dynamiques. Les 
contributions principales apportées par le framework proposé sont quatre. Premièrement, 
le langage π-ADL a été doté de primitives de niveau architectural pour décrire des 
reconfigurations dynamiques programmées. Deuxièmement, les descriptions 
architecturales dans π-ADL sont transformées vers le code source d’implémentation dans 
le langage de programmation Go, en contribuant à minimiser les dérives architecturales. 
Troisièmement, une nouvelle logique appelée DynBLTL est utilisée pour exprimer 
formellement des propriétés dans les architectures logicielles dynamiques. 
Quatrièmement, un outil basé sur SMC a été développé pour automatiser la vérification 
des propriétés architecturales en cherchant à réduire l’effort, les ressources 
computationnelles, et le temps pour réaliser cette tâche. Dans ce travail, deux systèmes 
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basés sur réseaux de capteurs sans fil sont utilisés pour valider les éléments du framework. 
 
Mots-clés : Architectures logicielles, Langages de description architecturale, 
Reconfiguration dynamique, Vérification formelle, Logique temporelle, Vérification 
statistique.  
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1 Introduction 
The increasing complexity of software development and the demand for quality 

have called for systematic approaches to engineer software systems. Due to its 
inherently laborious nature, software development has been a quest for more powerful 
design abstractions to help engineers and developers to build even larger, more 
complex systems and to reason about their structure, behavior, and properties [1]. 
Nowadays, software systems with these characteristics are the norm rather than the 
exception and hence they need coarser-grained abstractions to tame their complexity 
while guiding the construction effort. 

In this context, software architectures have emerged as the backbone of any 
successful software-intensive system, thereby contributing to the achievement of both 
business goals and quality requirements as well as being manageable, meaningful 
abstractions of the system under development [2, 3, 4]. The ISO/IEC/IEEE 42010 
International Standard [5] defines software architecture as the fundamental conception 
of a system in terms of its constituent elements and their relationships with each other 
and the environment, as well as the principles guiding the system design and 
evolution. Applied throughout the software life cycle, good architectural practice has 
the potential of (i) increasing the understandability of the system and the development 
process used to create it, (ii) ensuring the satisfaction of requirements, and (iii) 
reducing the overall cost of the software development process [6]. Therefore, a 
software architecture can be used as a relevant artifact in activities such as 
requirements specification, system design and analysis, successive model refinements 
towards implementation, reuse, maintenance, and runtime adaptation [7]. It also 
captures and preserves designers’ intentions about system structure and behavior 
thereby providing a defense against design decay as a system ages [8]. 

The literature traditionally distinguishes two main types of software 
architectures according to their evolution upon changes in their environment, namely 
static and dynamic software architectures [9, 10, 11]. The architecture of a software 
system is said to be static if it is not subjected to changes during runtime. On the other 
side of the spectrum, dynamic software architectures are those that encompass 
evolution rules for a software system and its elements during runtime. The latter case 
is of particular importance for this work as dynamism is an important concern for 
contemporary systems, which often operate on environments that are dynamic, 
subjected to changes. Moreover, support for dynamism is important mainly in the case 
of certain safety- and mission-critical systems, such as air traffic control, energy, 
disaster management, environmental monitoring, and health systems. Systems in 
these scenarios are required to maintain a high level of availability, so that stopping 
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them is not an option due to financial costs, physical damages, or even threats to life 
and safety of people. 

Considering dynamicity and dependability concerns while conceiving the 
architecture of a software-intensive system has grown in importance due to the 
complexity of emerging applications, mainly in critical domains such as the 
aforementioned ones. In this context, software architectures can document and allow 
reasoning about changes that might occur during the system execution and provide a 
basis for the evolution of the system [12, 13]. Software architectures should also allow 
for a flexible, extensible creation, interconnection, and/or removal of constituent 
elements and connections or even a whole rearrangement of such elements with 
minimal or no disruption. Nevertheless, these concerns are often handled late in the 
development process, thus making a system without an adaptable architecture 
degenerate sooner than a system based on an architecture that takes changes into 
account. 

1.1 Problem statement 

1.1.1 Enhancing the representation of dynamic software architectures 

The representation of software architectures is one of the main activities of an 
architecture-driven software development process as it allows anticipating important 
decisions regarding the system design. This activity results in architecture descriptions, 
the set of artifacts expressing a software architecture and making it tangible [5], even 
though such a representation lies at a high abstraction level. Architecture descriptions 
play an essential role as the main means of communication among stakeholders, e.g., 
architects, developers, etc. At the same time, the precise communication of this artifact 
is one of the most complex and expensive tasks in software architecture design. As 
stated by Lago et al. [14], a badly specified architecture design causes design and 
implementation flaws in a software system and can create misunderstanding. 

Several studies in the literature rely on architecture descriptions to support the 
documentation, maintenance, evaluation, and evolution of software architectures. In 
this context, architecture description languages (ADLs) have become well-accepted 
means for systematically representing and analyzing software architectures, thereby 
producing models that can be used at design time and/or runtime [15, 16]. According 
to the ISO/IEC/IEEE 42010 International Standard [5], an ADL is any form of 
expression used to support the representation of a software architecture. ADLs 
emerged since the 1990s mainly resulting from the research devoted to the problem of 
providing more precise ways to characterize the structure and behavior of software 
architectures as well as to derive properties on these structures [7]. However, the last 
twenty years of research on ADLs have witnessed a proliferation of languages due to 

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016



28 

 

a series of reasons, in particular (i) the lack of a common agreement on which 
architectural aspects shall be documented by these languages, (ii) the 
misunderstanding of merits and limitations of existing notations, (iii) the variety of 
stakeholder concerns to be considered, and (iv) the trade-off between formality and 
understandability [17, 18]. Indeed, Malavolta et al. [18] state that an ideal, general-
purpose ADL is not likely to exist and hence ADLs must be able to focus on what is 
needed by the stakeholders involved in the architecting process. 

Classically, ADLs have been classified into three broad categories: (i) formal, i.e., 
typically textual notations with precise (often mathematically-based) syntax and 
semantics that support automated architectural analysis; (ii) semi-formal, i.e., notations 
with well-defined syntax, but lack of complete semantics; and (iii) informal, i.e., ad-hoc 
box-and-lines diagrams that cannot be formally analyzed and limit the usefulness of 
the architecture description [2, 16]. The selection of an appropriate formalism level is 
one of the most important tasks when creating architecture descriptions as this 
decision should be aligned with their expected uses, such as documentation or 
evaluation. In a recent survey about the use of ADLs in industry, Malavolta et al. [18] 
observed that, from practitioners’ point of view, these languages should support the 
definition of functional and non-functional properties, formal semantics for improving 
precision and allowing automated analysis, and both graphical and textual 
representations for easing the communication among stakeholders and users of 
architecture descriptions. Additionally, Medvidovic and Taylor [17] highlight that an 
important source of discord is the level of support that an ADL should provide to 
developers. On the one hand, it can be argued that the primary role of architecture 
descriptions is to support understanding and communication about a software system, 
thus requiring ADLs to have a simple, understandable syntax and well-understood 
(but not necessarily formally defined) semantics. On the other hand, the tendency has 
been to endow ADLs with a more formal syntax and semantics, powerful analysis 
tools, code synthesis mechanisms, etc. Even though researchers have generally 
adopted one of these extremes, it is acknowledged that both are important and should 
be reflected in an ADL [14]. 

Regardless the diversity of existing ADLs, the description of software 
architectures is commonly characterized by two viewpoints, namely the structural and 
behavioral viewpoints. The structural viewpoint is concerned with the structure of the 
system in terms of three main building blocks: (i) components, units of computation 
representing functional elements of the system; (ii) connectors, which represent the 
interconnections among components supporting their interactions; and (iii) 
architectural configurations determining the way in which components and connectors 
can be interwoven forming the software architecture itself [17]. Relevant features 
characterizing components and connectors typically encompass interfaces defining the 
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interaction points between these elements and the environment, high-level models of 
their behavior, and constraints limiting their usage. In turn, the behavioral viewpoint 
is related to the internal operation (actions) of components and connections as well as 
the interaction among these elements. 

A proper description of dynamic software architectures using ADLs faces two 
main problems. First, most existing ADLs focus only on the structural viewpoint by 
providing means of describing topological aspects of the software architecture, as it is 
the case of well-known languages such as xADL [19] and Acme [20]. On the other 
hand, few ADLs (such as Wright [21] and Darwin [22]) support the representation of 
behavioral aspects of the system. The second issue is that ADLs for describing dynamic 
software architectures must provide elements and mechanisms for specifying the 
changes to be performed over the architecture as well as realizing these changes at 
runtime [17]. However, the literature reports few ADLs supporting an expressive 
description of dynamic aspects of software architectures. Examples of these languages 
are Darwin [22], Dynamic Wright [23], and RAPIDE [24]. 

Therefore, the first problem addressed in this work can be stated as follows: 

Problem I: 

Most existing ADLs are not able to properly describe dynamic software architectures at 
both structural and behavioral viewpoints as well as the changes that can be performed 
over the architecture and its constituent elements. 

1.1.2 Software architectures and their implementation: 
Two disconnected worlds 

In their well-known book about the Software Architecture discipline, Taylor et 
al. [11] introduce the notions of prescriptive and descriptive architectures. A prescriptive 
architecture is an as-intended, as-conceived architecture for a software system 
comprising the design decisions made by the architects in order to reflect their intent. 
Such a prescriptive architecture does not need to exist in any tangible form, but it can 
be captured by a notation such as an ADL. Nonetheless, documenting the prescriptive 
architecture of a software system is not enough. It needs to be realized with a set of 
artifacts that may include further refinements of architectural design decisions 
towards their implementations in a programming language. This set of artifacts 
embodying and realizing design decisions is referred to as a descriptive architecture, the 
as-implemented architecture showing how the system has actually been built. 

During the lifespan of a software system, a large number of prescriptive and 
descriptive architectures can be created. Each corresponding pair of such architectures 
represents the system’s software architecture at a given time in terms of design 
decisions and the artifacts realizing them. As explained by Taylor et al. [11], these 
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architectures would always be identical in an ideal scenario, i.e., the descriptive 
architecture would be a perfect realization of the prescriptive architecture. However, 
this rarely happens in practice. When evolving a software system, its descriptive 
architecture is often directly modified while its prescriptive architecture should have 
been ideally modified first. Such a problematic divergence between the prescriptive 
and descriptive architectures of a software system has been referred to as architectural 
drift, as introduced by Perry and Wolf [25] in the early 1990s. An architectural drift is 
a form of architectural degradation characterized by the introduction of design 
decisions orthogonally to a system’s prescriptive architecture, that is, they are not 
included in, encompassed by, or implied by the prescriptive architecture, even though 
not violating it [11]. Such a drift results from direct changes to the artifacts realizing 
the software architecture, e.g., changing the implementation of the architecture 
without accounting for the impact relative to its original conception. Possible reasons 
for this problem are developers’ sloppiness (i.e., they merely do not want to modify 
the prescriptive architecture after modifying the descriptive architecture), perception 
of short deadlines, need or desire for code optimizations, etc. 

Considering ADLs as notations able to describe prescriptive architectures, 
architectural drifts may arise due to the gap often observed between architecture 
descriptions and their respective implementations. As software architectures are 
typically defined independently from implementation, the decoupling between these 
levels leads to inconsistencies between the architecture and its corresponding 
implementation, mainly as the architecture evolves. Consequently, even if a system is 
built in conformance to the previously defined architecture, its implementation may 
become inconsistent with respect to such an original architecture along the time. Not 
providing a way of avoiding architectural drifts and inconsistencies between 
architecture description and their implementations will ultimately lose all advantages 
of designing an appropriate architecture. These inconsistencies may also lead to 
increased maintenance time and cost as the original design aims have been lost [26]. 

The discrepancies between architecture descriptions and implementation may 
become worse due to the emergence of new-generation programming languages, 
which aim at making use of concurrency, distribution, and multicore computer 
architectures. Existing mainstream programming languages such as C++ and Java do 
not well support these features and hence increase the required complexity for 
constructing large-scale and dynamic software systems, which are becoming typical in 
several application domains. In addition, the main problem in this new context is that 
most ADLs available in the literature do not properly capture these new features of 
modern programming languages, thereby making the bridge between architecture 
description and implementation harder to build. 

The second problem addressed in this work can be summarized as: 
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Problem II: 

There is a significant gap between architecture descriptions and their corresponding 
implementation, mainly in the new context of evolving software architectures and 
contemporary programming languages. 

1.1.3 Analyzing software architectures: A challenging activity 

One of the major challenges in the design of software-intensive systems consists 
in verifying the correctness of their software architectures, i.e., if the envisioned 
architecture is able to fully realize the established requirements. Ensuring correctness 
and other relevant system properties becomes more important mainly when evolving 
these systems since such a verification needs to be performed before, during, and after 
evolution. In this context, software architectures play an essential role since they 
represent an early blueprint for the system construction, deployment, execution, and 
evolution, thereby fostering an early analysis of a system and contributing to reduce 
the cost of software maintenance. Such an architectural analysis refers to the activity of 
discovering important system properties using architectural models [11]. 

Architecture descriptions should not cover only structure and behavior of a 
software architecture, but also the required and desired architectural properties, in 
particular the ones related to consistency and correctness [27]. For instance, after 
describing a software architecture, a software architect might want to verify if it is 
complete, consistent, and correct with respect to architectural properties. The 
requirements to be verified are typically concerned with the relationship between the 
system behavior (e.g., receiving or sending a particular value) and an architectural 
property, such as checking if a component is connected to or disconnected from 
another component. For illustrative purposes, consider a sensor-based system in 
which sensors measure values from the environment and transmit it to a base station, 
possibly via other sensors. A requirement of interest in this context would be that a 
sensor signaling a low battery level (a behavioral property) gets disconnected from the 
other sensors (an architectural property). 

Due to the critical nature of many complex software systems, rigorous 
architectural models (such as formal architecture descriptions) are quite desirable as 
means of better supporting automated architectural analysis. Despite the inherent 
difficulty of pursuing formal methods [28], the main advantage of a formal verification 
is to precisely determine if a software system can satisfy properties related to user 
requirements. Additionally, automated verification provides an efficient method to 
check the correctness of architectural design. As reported by Zhang et al. [29], one of 
the most used techniques for analyzing software architectures is model checking, an 
exhaustive, automatic verification technique whose general goal is to verify if an 
architectural specification satisfies architectural properties [30]. It takes as inputs a 
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representation of the system (e.g., an architecture description) and a set of property 
specifications expressed in some notation. The model checker returns true, if the 
properties are satisfied, or false with the case in which a given property is violated. 
The input model of the system is usually expressed as a finite state machine, i.e., a 
directed graph consisting of vertices and edges. A vertex represents a state with a set 
of held atomic propositions (properties) whereas an edge represents a possible 
execution that changes the system’s state. If the input model is finite, the model 
checking problem is reduced to a graph search [11]. 

Despite its wide and successful use, model checking faces a critical challenge 
with respect to scalability. Holzmann [31] remarks that no currently available 
traditional model checking approach is exempted from the state space explosion 
problem, that is, the exponential growth of the state space. This problem is exacerbated 
in the contemporary dynamic software systems for two main reasons, namely (i) the 
non-determinism of their behavior caused by concurrency and (ii) the unpredictable 
environmental conditions in which they operate. In spite of the existence of a number 
of techniques aimed at reducing the state space, such a problem remains intractable 
for some software systems, thereby making the use of traditional model checking 
techniques a prohibitive choice in terms of execution time and computational 
resources. As a consequence, software architects have to trade-off the risks of possibly 
undiscovered problems related to the violation of architectural properties against the 
practical limitations of applying a model checking technique on a very large 
architectural model [11]. 

Finally, the third problem addressed in this work can be described as: 

Problem III: 

Traditional techniques for formally verifying properties in dynamic software 
architectures are not scalable, computationally efficient. 

1.2 Goals and research questions 
Aiming to tackle the problems elicited in Section 1.1, the main general goal of 

this work is to propose a formally founded framework1 to support dynamic software 
architectures. This general goal will be achieved through the satisfaction of the 

                                                 
 

1 In this work, the definition for framework follows the statements found in the ISO/IEC/IEEE 42010 
International Standard [5]: An architecture framework establishes a common practice for creating, 
interpreting, analyzing and using architecture descriptions within a particular domain of application or 
stakeholder community. Uses of architecture frameworks include, but are not limited to: create architecture 
descriptions; developing architecture modeling tools and architecting methods; and establishing processes to 
facilitate communication, commitments and interoperation across multiple projects and/or organizations. 
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following sub-goals: 

G1: To use a formal ADL for describing dynamic software architectures under 
both structural and behavioral viewpoints as well as specifying dynamic 
reconfiguration operations. 

G2: To fill the existing gap between the description of dynamic software 
architectures using ADLs and their respective implementation. 

G3: To propose an efficient approach for verifying properties in dynamic 
software architectures. 

In order to achieve the general goal and its sub-goals, the following research 
questions (RQs) need to be answered: 

RQ1. How to describe dynamic software architectures while fostering their 

rigorous analysis with respect to both functional and non-functional properties? 

The aim of this RQ is to investigate the use of a formal ADL and how it can be 
expressive for describing both structure and behavior dynamic software architectures 
while paving the way for formally verifying architecture descriptions. 

RQ2. How it is possible to minimize the risk of architectural drifts in dynamic 

software architectures? This RQ aims at investigating how architecture-based code 
generation can contribute to fill the existing gap between architecture descriptions and 
their respective implementation, thereby minimizing the risk of architectural drifts. 
The main premise here is to automatically generate implementation source code from 
architecture description expressed in an ADL as means of tackling the gap between 
these levels and maintaining them consistent with each other. Moreover, executing the 
code resulting from such an architecture-to-implementation mapping can be a useful 
way of fostering the validation of the specified architecture. 

RQ3. How to reduce the required effort for verifying properties in dynamic 

software architectures? Finally, this RQ aims to investigate how it is possible to reduce 
effort, computational resources, and time for formally verifying properties in dynamic 
software architectures. Being apart from traditional exhaustive approaches available 
in the literature, the main concern is to achieve an efficient approach able to promote 
better scalability and less consumption of computational resources, important 
concerns to be considered when analyzing software architectures of complex critical 
systems. 

1.3 Contributions 
The proposed framework comes up with four main contributions, each one 

summarized in the following. In this work, each of these elements was validated using 
two wireless sensor network-based systems. 
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An ADL able to formally describe dynamic software architectures. The first 
contribution brought by this work is the endowment of π-ADL [9], a formal language 
to describe software architectures under both structural and behavioral viewpoints, 
with architecture-level primitives for specifying programmed reconfiguration operations, 
i.e., foreseen, pre-planned changes described at design time and triggered at runtime 
by the system itself under a given condition or event [32]. In addition, two common 
approaches for enacting programmed dynamic reconfiguration [33, 34] were 
incorporated into π-ADL. The first approach is exogenous, in which it is possible to 
control all elements of the software architecture and apply the changes on the whole 
structure. In turn, the second approach is endogenous, in which the architectural 
elements themselves are able to manage dynamic reconfiguration actions. This 
culminates into an expressive language able to describe both structure and behavior 
of a dynamic software architecture, as well as the reconfiguration operations that can 
be applied over it at runtime [35]. 

An automated process to generate source code from architecture descriptions. 

The second main contribution of the proposed framework is the mapping of 
architecture descriptions in the π-ADL language to implementation source code in Go 
[36], an easy, modern general-purpose programming language designed to address 
the construction of scalable distributed systems as well as to handle multicore and 
networked computer architectures, as required by contemporary systems. Go was 
chosen to serve as implementation language because it relies on the same underlying 
formalism of π-ADL, thus fostering a straightforward relationship between elements 
of these languages. Such a mapping process resulted in an automated process for 
generating source code from an architecture description [35, 37], thereby contributing 
to minimize the risk of architectural drifts and allowing for the validation of the 
architecture itself. 

An architecturally-driven, computationally efficient approach and toolchain 

for verifying properties in dynamic software architectures. The third contribution 
regards the use of statistical model checking (SMC) to support the formal analysis of 
dynamic architectures expressed in the π-ADL language [38]. SMC is a probabilistic, 
simulation-based technique intended to verify, at a given confidence level, if a certain 
property is satisfied during the execution of a system [39]. Unlike conventional formal 
verification techniques (such as model checking), SMC does not suffer from the state 
space explosion problem as it does not analyze the internal logic of the target system 
[40]. In a nutshell, SMC executes a stochastic model of the system under verification 
multiple times, so that the validity of the properties is probabilistically verified in each 
of these simulations. To support the verification process, a toolchain was developed 
upon a flexible, modular statistical model checker while striving to reduce effort, 
computational resources, and time for performing such a task. As far as it is concerned, 
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this is the first work on the application of SMC to verify properties in dynamic software 
architectures. 

A novel logic and notation for formally expressing properties in dynamic 

software architectures. SMC has been applied to verify bounded properties, i.e., 
properties that can be defined in terms of finite executions of the system under 
verification. Besides a system model whose execution is probabilistic, stochastic, SMC 
requires a language for expressing the properties to be verified. Expressing properties 
regarding a dynamic software architecture needs to take into account architectural 
elements that are created or removed at runtime, i.e., they may exist at a given instant 
in time and no longer exist at another. As the existing notations available in the 
literature are not able to cope with such a characteristic, the fourth contribution is 
DynBLTL, a novel logic and notation aimed to express properties in dynamic software 
architectures [41]. In particular, DynBLTL was designed to handle the absence of an 
architectural element in a given bounded formula expressing a property. 

1.4 Outline 
The remainder of this doctoral dissertation is organized as follows. Chapter 2 

establishes the background underlying this work. Chapter 3 briefly describes the two 
wireless sensor network-based systems that will be used hereinafter, more specifically 
in the presented examples. Chapter 4 introduces the π-ADL language, its formal 
underpinnings and main elements, and how it can be used for describing dynamic 
software architectures. Chapter 5 presents the approach for automatically generating 
source code from architecture descriptions expressed in the π-ADL language as well 
as the implementation intended to support such a process. Chapter 6 describes the 
SMC-based approach to support the formal specification and automated verification 
of properties in dynamic software architectures. Chapter 7 revisits the achieved 
contributions and presents perspectives for future work.  

Four appendices are also provided as additional material. Appendix A presents 
the grammar specification for the π-ADL language. Appendix B details the tool 
developed to support architectural description and architecture-based code 
generation. Appendix C presents the grammar specification for the DynBLTL notation. 
Finally, Appendix D contains a list of publications resulted from this work and other 
correlated publications. 
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2 Background 
This chapter presents the conceptual foundations underlying this work. Section 

2.1 provides a characterization about dynamic reconfiguration approaches for 
software architectures often found in the literature. Section 2.2 gives an overview of 
Go, the programming language used as target of the aforementioned architecture-
based code generation process. Finally, Section 2.3 presents some important concepts 
related to statistical model checking, the technique used in this work for verifying 
properties in dynamic software architectures. 

2.1 Characterizing dynamic software architectures 
Wermelinger [33] and Bradbury [42] provide relevant characterizations of 

dynamic reconfiguration approaches for software architectures. Figure 1 illustrates the 
main taxonomic dimensions presented by these authors and considered in this work. 

Figure 1 – Taxonomic dimensions to characterize dynamic reconfiguration approaches for 
software architectures 

 

Source (or initiation). Dynamic reconfiguration of software architectures can 
be either programmed or ad-hoc. In programmed (a.k.a. foreseen or proactive) 
reconfigurations, changes are pre-planned, foreseen at design time and applied at 
runtime under a given condition or event [32]. Therefore, the software architect 
specifies when such changes will be realized and which operations must be realized. In 
turn, ad-hoc (a.k.a. unforeseen or reactive) reconfiguration stands for changes that 
occur at runtime without being previously planned. These changes typically come 
from agents that are external to the architecture (e.g., the user) and they are applied 
through an interface of the system with the environment in which it is deployed. It is 
noteworthy that most of the works about dynamic software architectures addresses 
programmed reconfiguration [43]. Both programmed and ad-hoc reconfigurations 
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have their advantages and drawbacks, thus making them complementary approaches 
that shall be supported by architectural approaches. While programmed 
reconfigurations can enable a system to be autonomically reconfigured in response to 
certain conditions, ad-hoc reconfigurations can allow applying changes/updates 
without necessarily foreseeing them in advance. Nevertheless, it is practically 
impossible to predict all possible operations that might be required by a system to be 
reconfigured. On the other hand, ad-hoc reconfigurations must be somewhat 
constrained, carefully applied in order to avoid architectural erosion. 

Operations. In spite of the several nomenclatures adopted in different works in 
the literature, reconfiguration operations to be applied on the architectural elements 
of a software system are essentially four [23, 32, 44]: (i) creation of instances of 
architectural elements; (ii) removal of instances of architectural elements; (iii) attachment 
of architectural elements; and (iv) detachment of architectural elements. 

Management. The management of the reconfiguration process can be either 
centralized with a special entity or distributed across architectural elements. The so-
called exogenous dynamism refers to the existence of a central entity (e.g., a configuration 
manager) that has control over all architectural elements and it is responsible for 
applying the reconfiguration actions on the architecture. In turn, the endogenous 
dynamism stands for the decentralization of the dynamic reconfiguration process, in 
which the architectural elements themselves are able to perform the reconfiguration 
actions. The main disadvantage of the exogenous dynamism is the centralization of 
the reconfiguration process, so that the entity responsible for it might become a 
bottleneck at the implementation level and reduce the performance of the architecture 
at runtime. In addition, reconfiguration actions associated to different architectural 
elements may be tangled, each one requiring a specific set of operations that must be 
described and performed independently from each other [34]. However, in the 
endogenous approach, reconfiguration actions may also be tangled with the 
functionality/behavior of architectural elements, thus hampering reuse and 
maintainability. Moreover, the endogenous dynamism requires architectural elements 
to have knowledge about each other, so that one could regard this as a violation of the 
basic features of a component or a connector. Nevertheless, it is necessary to establish 
some sort of trade-off between these dynamism approaches according to each specific 
scenario and architecture. 

2.2 The Go programming language 
Go [36] is a new, evolving general-purpose programming language launched 

as an internal project at Google, Inc. in 2007 and became open-source in November 
2009. In 2012, Go was stably released as Go 1 by including a language specification 
[45], standard libraries, and custom tools. At the time of writing, the language is 
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currently in version 1.6.2, released in April 2016. In the last years, Go has been used by 
Google and a variety of commercial and noncommercial organizations and it is also 
integrated into the Google Cloud Platform [46]. 

Go was designed to address the construction of new-generation large-scale 
software systems, which are to be efficient, dynamic, and deployed on multicore and 
networked computer architectures. In order to achieve these purposes, Go aims at 
combining the lightweight, ease of use, and expressiveness of interpreted and 
dynamically typed languages (e.g., JavaScript and Python) with the efficiency and 
safety of traditional statically typed, compiled languages such as C and Java. 
Moreover, it is possible to directly compile even a large Go program to native code in 
few seconds, thereby fostering the development of large software systems. Go 
maintains a resemblance with the C-syntax so as to be immediately familiar with a 
majority of developers, but its syntax is greatly simplified and made more concise and 
clean in comparison to C/C++. 

For the sake of space, this section briefly reviews Go by presenting the essential 
constructs of the language, in particular the elements used in the automated generation 
of source code in Go from architecture descriptions expressed in π-ADL. More details 
about the main elements of the language and its syntax can be found in the official 
language specification [45] and recent books about it [47, 48, 49]. 

2.2.1 Fundamentals 

A Go source file basically consists of three parts: 

− package statement. Go code is arranged in packages, similar to both 
libraries and header files in C. Every Go program must contain a main 
package containing a main function, the entry point from which the 
program always starts. 

− import statements. This part specifies the packages that the current source 
file uses and how they should be imported. Imported packages contain 
types, variables, constants and functions. 

− Declarations. The remainder of a Go code contains declarations of types, 
variables, and functions. 

Consider the following Go code: 

 

package main 
import “fmt” 
 
func main() { 

fmt.Println(“Hello, world!”) 
} 
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This program simply prints “Hello, world!” on the console. The import instruction 
tells Go that the program needs (functions, or other elements, from) the fmt package, 
which implements functionalities for formatted input/output. In the main function, the 
Println function available at the fmt package is called to print the message (received 
as argument) on the console. The program exits immediately and successfully when 
the main function ends. 

 A Go code can also contain functions, which typically appear out of the main 
function2. Using the func keyword, a function can be declared taking zero or more 
arguments and returning any number of values. The simplest function declaration has 
the format: 

 
with its body enclosed by braces. The execution of a function is stopped when the 
closing brace is reached or when a return statement is encountered. Afterwards, the 
execution of the program continues with the line following the call of the function. 
Although main is a function, it is important to highlight that it must have no arguments 
and no return values. 

Variables contain data and can be of different types. In Go, variables are 
declaring using the var keyword along with the variable name and type, at package or 
function level. For example, the instruction 

var a int 

declares an integer variable named a and initialized with the default null value (in this 
case, zero). It is important to note is that the type is written after the identifier of the 
variable, contrary to almost any other programming language. A variable declaration 
can include initializing values (one per variable), but the type can be omitted if the 
initializer is present since the variable will take the type of the initializer. For instance, 
the instruction 

var a = 1 

declares the variable as integer (type of the initializer) and with value 1. Inside a 
function, the short assignment statement (:=) can be used instead of a var declaration 
with explicit type. When declaring a variable without specifying an explicit type 
(either by using a short assignment or a typical variable declaration), the variable’s 
type is inferred from the value on the right hand side. As an example, the instruction 

a := 1 

                                                 
 

2 Go also allows declaring closures, i.e., functions inside other functions (including the main function). 

func functionName() { 
// function body 

} 
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declares a variable named a and with value 1. The type of a is int (integer), inferred 
from the value on the right hand side of the short assignment statement. 

2.2.2 Control statements 
 Control statements in the Go language are mostly similar to those in C/C++ 
and Java, but they are slightly different. For example, control statements in Go do not 
require parentheses and braces are mandatory even there is only one statement in the 
body. As an example, the isGreater function below compares the values of two integers 
received as arguments: 

 
Testing different conditions and executing different statements in each case can 

be done with the selection statement, which is useful mainly to avoid several if-else 
statements. Compared to C/C++ or Java, this statement is more flexible in Go since 
the cases to be tested do not need to be constant values, but they must be of the same 
type or expressions evaluating to that type. In addition, more than one value can be 
simultaneously tested in a case. Consider the following excerpt of a Go program: 

 
The switch statement executes different tests based on the value of the variable num. 
The cases are evaluated from top to bottom, automatically breaking when a case 
succeeds. The default branch is optional and it is executed if the previous cases have 
not succeeded. 

Although having conditional (if-else) and selection (switch) statements, Go has 
only one iterative construct, the for loop. The basic for loop has three elements, 
separated by semicolons: (i) an init statement, which is executed before the first 
iteration; (ii) a condition expression (Boolean), which is evaluated before each iteration 
and determines when the loop should terminate; and (iii) a post statement, which is 
executed after each iteration. Unlike other languages, there are no parentheses 
surrounding these elements and braces are always required. Moreover, the init and 

func isGreater(x, y int) bool { 
if x > y { 

return true 
} else { 

return false 
} 

} 

num := 7 
switch { 

case num < 0: 
fmt.Println(“Number is negative”) 

case num >= 0 && num <= 10: 
fmt.Println(“Number is between 0 and 10”) 

default: 
fmt.Println(“Number is greater than 10”) 

} 
} 
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post statements are optional. In a for loop, the break and continue instructions can 
alter the behavior of the loop. For example, consider the following Go program: 

 
The body of the loop is repeated for a known number of times as counted by the 
variable i. The loop starts with an initialization for i as a short assignment statement (i 
:= 1), followed by a conditional check on the value of i (i <= 5) performed before each 
iteration: when it is true, the iteration is done, otherwise the loop is stopped. Next, a 
modification of i (i++) is performed after each iteration, at which point the condition is 
checked again. 

2.2.3 Arrays and slices 
The array type notation is well-known in almost every programming language 

as the basic workhorse in applications. The Go array is similar to those found 
elsewhere, but it has a few peculiarities. Arrays in Go are not dynamic and are 
somewhat inflexible in that they are a fixed-length sequence of elements of the same 
type. The expression 

var a [10]int 

declares a variable a as an array of ten integers. The items contained into the array can 
be accessed (and changed) through their index (the position), which starts from zero. 

As an array’s length is part of its type, arrays cannot be resized. However, Go 
provides a convenient way of handling dynamicity with arrays, the so-called slices. By 
definition, a slice is a reference to a contiguous segment of an underlying array, thus 
not requiring additional memory and being more efficient to use than arrays. Unlike 
an array, the length of a slice can dynamically change during the execution of a 
program. The expression 

var a []int 

declares a variable a as a slice to hold integer values. 

2.2.4 Interfaces 
Despite borrowing some concepts from the object-oriented programming 

paradigm, Go is not a classic object-oriented language in the same sense of C++ and 
Java because it does not have the notions of classes and inheritance. However, Go has 
a concept of interfaces, which allow for polymorphism. 

package main 
import “fmt” 
 
func main() { 

for i := 1; i <= 5; i++ { 
fmt.Printf(“This is the %d iteration\n”, i) 

} 
} 
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Interfaces in Go are abstract representations of behavior and define sets of 
method signatures, i.e., they are abstract and do not have a body. Therefore, any object 
implements (or satisfies) an interface if it implements the methods of such an interface, 
but no explicit annotation is required. This implicit relationship allows decoupling the 
definition of an interface from its implementation. For illustrative purposes, consider 
the following excerpt of a Go program: 

 
In this example, the Shape interface represents a geometric shape and it is defined with 
one method (area), which returns the area of such a geometric shape. Different 
geometric shapes have different ways to calculate area, so that an implementation for 
this method needs to be provided for each of them. In the example, the Rectangle and 
Square struct types respectively represent a rectangle and a square: these types 
implement the Shape interface as there are implementations for the area method defined 
in such an interface. This is the Go’s version the well-known polymorphism concept 
in the object-oriented programming paradigm. 

A special type of interface is an empty interface, which has no methods. It is 
declared as 

type Any interface{} 

so that any types implement it. In other words, such an interface may hold values of 
any type. Empty interfaces are typically used to handle values whose type is not 
known a priori, thereby being an analogy to a generic data type. 

2.2.5 Concurrency support 

One of the main features of Go is the lightweight support for concurrent 
communication and execution through high-level operations, in contrast to the 
considerable effort required to develop, maintain, and debug concurrent programs in 

type Shape interface { 
area() int 

} 
 
type Rectangle struct { 

length, width int 
} 
 
type Square struct { 

side int 
} 
 
func (r Rectangle) area() int { 

return r.length * r.width 
} 
 
func (s Square) area() int { 

return s.side * s.side 
} 
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mainstream languages such as C++ and Java. In this perspective, the solution provided 
by Go is threefold. First, the high-level support for concurrency enables programmers 
to easily develop concurrent programs. Second, concurrent processing is performed 
by means of goroutines, lightweight processes (similar to threads, but lighter) that can 
be created and automatically load-balanced across the available processors and cores, 
thereby making Go a language suited to the contemporary multicore computer 
architectures. Third, an automatic, efficient garbage collection relieves programmers 
of the memory management typically required by concurrent programs.  

Goroutines are the basic primitive for concurrency in Go. In essence, goroutines 
are functions that can run simultaneously, i.e., concurrently. A goroutine is created by 
prefixing any function call with the go keyword. In Go, goroutines communicate by 
using typed channels. Channels are first-class objects used for sending and receiving 
values of any type, including other channels. When a channel communication takes 
place, the channels and their respective goroutines are synchronized at the moment of 
the communication. Therefore, explicit locking and other low-level details are 
abstracted away from programmers, thus simplifying the development of concurrent 
programs3. In Go, channels are defined by using the chan keyword along with the type 
of data that they can hold. Values can be sent to and received from channels using the 
channel operator <-. 

For illustrative purposes, imagine a cake making and packing factory 
implemented in the following Go program in which makeCakeAndSend is a function 
representing the cake making whereas receiveCakeAndPack is a function representing 
the cake packing. Once launched simultaneously, these goroutines synchronize their 
operations through the channel cs, received as argument in both functions. As cs is an 
unbuffered channel (the default in Go), the makeCakeAndSend goroutine is blocked until 
the receiveCakeAndPack goroutine has completely consumed the value sent through cs.  

                                                 
 

3 Go also provides low-level synchronization primitives (e.g., mutexes and condition variables) in the 
sync package, which are similar to the ones found in other programming languages. However, the use 
of channels is considered the most idiomatic (and recommended) way of synchronizing goroutines.  
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2.3 Statistical model checking 
As previously discussed in Section 1.1.3, the main drawback of traditional 

model checking techniques for formally analyzing software architectures is the 
exponential growth of the state space, the so-called state space explosion problem. Aiming 
at overcoming this limitation, alternative techniques have been proposed in the last 
years envisioning the reduction of the state space or even avoiding an entire 
representation of it. One of these techniques is statistical model checking (SMC), a 
probabilistic, simulation-based approach that consists of building a statistical model 
of finite executions of the system under verification and deducing the probability of 
satisfying a given property within confidence bounds [39]. 

SMC provides a number of advantages in comparison to traditional model 
checking techniques. First (and perhaps the most important one), this technique does 
not suffer from the state space explosion problem since it does not analyze the internal 
logic of the system under verification, neither requires the entire representation of the 
state space, thus making it a promising approach for verifying complex large-scale and 
critical software systems [40]. Second, SMC requires only the system be able to be 
simulated, so that it can be applied to larger classes of systems including black-box 
and infinite-state systems. Third, the proliferation of parallel computer architectures 
makes the production of multiple independent simulation runs relatively easier, thus 
helping the verification of large-scale systems even though it is still necessary to make 

package main 
import ( 

“fmt” 
“strconv” 

) 
 
var i int 
 
func makeCakeAndSend(cs chan string) { 

i = i+1 
cakeName := “Strawberry cake #” + strconv.Itoa(i) 
fmt.Println(“Making a cake and sending...”, cakeName) 
cs <- cakeName          // sends through channel 

} 
 
func receiveCakeAndPack(cs chan string) { 

s := <-cs    // receives through channel 
fmt.Println(“Packing received cake:”, s) 

} 
 
func main() { 

cs := make(chan string)  // creates a channel to strings 
for i := 0; i < 3; i++ {  // make and pack three cakes 

go makeCakeAndSend(cs)  // launch cake making goroutine 
go receiveCakeAndPack(cs) // launch cake packing goroutine 

} 
} 
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the simulation procedure as efficient as possible [39]. Fourth, despite SMC provides 
approximate results (as opposed to the exact results provided by traditional model 
checking), it is compensated by less consumption of computational resources and a 
better scalability. In some cases, knowing the result with less than 100% of confidence 
is quite acceptable or even the unique available option [51]. Therefore, SMC allows 
trading-off between verification accuracy and computational time by selecting 
appropriate precision parameter values. For example, if the project time is limited, it 
may be more valuable obtaining less precise verification in short time than more 
precise verification results in much longer time. 

Figure 2 illustrates a general schema on how the SMC technique works. A 
statistical model checker basically consists of a simulator for running the system under 
verification, a model checker for verifying properties, and a statistical analyzer 
responsible for calculating probabilities and performing statistical tests. It receives 
three inputs: (i) an executable stochastic model of the target system M; (ii) a formula ϕ 
expressing a bounded property to be verified, i.e., a property that can be defined in terms 
of finite executions of M; and (iii) user-defined precision parameters determining the 
accuracy of the probability calculations. M is stochastic in the sense that the next state 
is probabilistically chosen among the states that are reachable from the current one. As 
a consequence, some executions of M might satisfy ϕ and others might not. The 
simulator executes M and generates an execution trace σi, composed of a sequence of 
states. Next, the model checker determines if σi satisfies ϕ and sends the result (either 
success or failure) to the statistical analyzer, which in turn estimates the probability p 
for M to satisfy ϕ. The simulator repeatedly generates other execution traces σi+1 until 
the statistical analyzer determines that enough traces have been analyzed to produce 
an estimation of p satisfying the precision parameters. It is important to highlight that 
a higher accuracy of the answer provided by the model checker requires generating 
more execution traces through simulations. 
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Figure 2 – Working schema of the SMC technique 

 

In essence, SMC answers two questions. The first one is qualitative: Is the 

probability p for M to satisfy ϕ greater or equal than a certain threshold θ? The second 
question is quantitative: What is the probability p for M to satisfy ϕ? [52]. In both cases, 
producing an execution trace σi and checking if it satisfies ϕ (i.e., σi ⊨ ϕ) is modeled as 
a random variable Bi following a Bernoulli distribution4 of parameter p [53]. The 
possible values of Bi are either 0 (if σi ⊭ ϕ) or 1 (if σi ⊨ ϕ), with probability functions 
Pr[Bi = 1] = p and Pr[Bi = 0] = 1 – p. Each variable Bi is associated with one simulation 
of M and the main goal here is to evaluate p. 

Qualitative approach. The main existing SMC approaches proposed to answer 
the qualitative question [54, 55] rely on hypothesis testing as means of inferring if the 
simulated execution traces provide statistical evidence on the satisfaction or violation 
of a property [56]. In order to determine if p ≥ θ, two hypotheses can be considered, 
namely (i) H: p ≥ θ and (ii) K: p < θ. The test is parameterized by two bounds, α and β. 
The probability of accepting the hypothesis K when the hypothesis H holds is bounded 
by α and the probability of accepting H when K holds is bounded by β. Such algorithms 
sequentially perform simulations until either H or K can be returned with confidence 
of α or β. Other sequential hypothesis testing algorithms are based on the Bayesian 
approach [57]. 

Quantitative approach. In order to compute the probability p for M to satisfy ϕ, 
Hérault et al. [58] and Laplante et al. [59] propose an estimation procedure based on 
the Chernoff-Hoeffding bound [60], which provides a priori the minimum number of 
simulations required to ensure the desired confidence level. Therefore, given a 
precision ε, such a procedure computes an estimate p’ of p with confidence δ, thereby 

                                                 
 

4 In Statistics, the Bernoulli distribution with parameter p is the probability distribution of a random 
variable B that takes value 1 with success probability of p (i.e., Pr[B = 1] = p) and the value 0 with failure 
probability of 1 – p (i.e., Pr[B = 0] = 1 – p), 0 ≤ p ≤ 1 [53]. 
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ensuring Pr(|p’ – p|) ≥ δ [51]. As defined by Hoeffding [60], δ is related to the number 
of required simulations N by δ = 2e-2Nε2, resulting in N = �( ln 2 – ln δ)/2ε2�. 

The quantitative approach is used when there is no known approximation of 
the probability to evaluate, i.e., when one wants to obtain a first approximation. This 
method is used when the goal of the analysis is to have a glimpse on how well the 
model behavior. On the other hand, the quantitative approach determines whether the 
probability is above a given threshold with a high confidence and in a minimal number 
of simulations. 
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3 Running applications: 
Wireless sensor network-based systems 

Wireless sensor networks (WSNs) are typically made up of multiple spatially-
distributed motes, tiny low-power hardware/software platforms equipped with an 
embedded CPU, wireless networking capabilities, and simple sensors able to perform 
measurements of physical phenomena, e.g., temperature, luminosity, humidity, 
barometric pressure, vibration, acoustics, magnetic field, etc. [61]. These motes operate 
in a collaborative way by extracting environmental data, which may undergo some 
processing. Such sensor-collected data can also be transmitted to other sensors and/or 
to other computationally-powerful nodes (often called sink nodes), which gather them 
and make them available to end-users and applications. 

The main concern for a WSN-based system is to observe the physical world to 
obtain useful information from it, besides processing and making decisions upon the 
collected information. Starting from such a premise, WSNs have been increasingly 
used in several application domains, e.g., disaster management, environmental 
monitoring, structure health, ambient assisted living, traffic control, surveillance, and 
military intelligence [62]. In general, applying WSNs to these scenarios promote a 
number of advantages in comparison to traditional, wired networking techniques, 
especially in terms of (i) reduced cost, (ii) simplified deployment, (iii) capability of 
monitoring hazardous or remote areas, and (iv) ability to adapt to changing 
environmental conditions [63]. 

In this chapter, two WSN-based systems are presented to serve as running 
applications throughout this work aiming at (i) illustrating how to describe a dynamic 
software architecture using the π-ADL language, (ii) showing how to automatically 
generate implementation source code in Go, and (iii) demonstrating how to specify 
and verify properties of dynamic software architectures. Besides being interesting 
examples with high real-world relevance, these systems were chosen because they are 
inserted into the inherently dynamic scenario of WSNs, thus requiring their software 
architectures to be also dynamic. Sections 3.1 and 3.2 respectively introduce a flood 
monitoring system and a system to remotely monitor oil and gas pipelines, describing 
their context, goals. Section 3.3 shows a general picture of a software architecture for 
these systems. In turn, Section 3.4 discusses some dynamicity concerns to be 
considered in these WSN-based systems. 

3.1 A flood monitoring system 
Floods are one of the major problems in many countries around the world. In 

rainy seasons, this type of event can be quite devastating in both developed and 
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underdeveloped countries where urban centers are traversed by rivers as they may 
cause material, human, and economic losses. Regardless of their magnitude, floods 
represent a risk and must be detected. As an example of the potential damage caused 
by floods in a large urban agglomeration, a 2002 report by the French Government 
stated that, in a worst-case scenario, a flooding of the Seine river crossing Paris, France, 
would cost about 10 billion euros, cut telephone service for a million of Parisians, and 
leave 200,000 people without electricity and 80,000 people without gas [64]. More 
recently, heavy rainfalls in October 2015 in Southern Brazil triggered flooding of rivers, 
affecting more than 200,000 people from 229 municipalities in the states of Santa 
Catarina and Rio Grande do Sul and forcing more than 12,000 people to be displaced 
or be homeless [65]. 

Although it is possible to forecast rainfall or track the path of a storm with the 
support of meteorological systems and satellite images, it is still necessary to monitor 
the river water flow and level in order to allow for up-to-date and reasonable decisions 
on the required actions according to the current conditions. It has been noticed that the 
cost of damage incurred during a flood is correlated with two main factors, the depth 
of the flooding (i.e., the water level) and the time in advance at which a warning is 
given [66]. Therefore, a flood monitoring system can support monitoring urban rivers 
and create alert messages to notify authorities and citizens about the risks of an 
imminent flood. This type of system can also play an important role in terms of 
obtaining more precise data and fostering effective predictions in a timely manner, as 
well as it can improve warning times. Such features are important to ensure a better 
planning of management activities towards reducing the possible damages caused by 
the flood, e.g., the definition of evacuation plans, rearrangement of traffic in the 
proximities of the flooded areas, and coordination of rescue actions [67]. With these 
actions, the impact of a disaster can be alleviated. 

A successful example of flood monitoring system is the one deployed to 
monitor the Monjolinho river in São Carlos, Southeastern Brazil [63, 68], as illustrated 
in Figure 3. By using a WSN, motes are spread in flood-prone areas near the river and 
monitor the water level (centimeters of water), which is used as an indicator of floods. 
In addition, a gateway station analyzes data measured by motes, makes such data 
available, and can trigger alerts when a flood condition is detected. Indeed, WSNs have 
been one of the widely used infrastructures to build a flood monitoring and warning 
system because they make it easier to collect data and have a wide coverage area as a 
result of communication capabilities of the sensor nodes [69]. 
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Figure 3 – Deployment layout of the flood monitoring system in a flood-prone area in 
downtown São Carlos, Brazil (adapted from [70]) 

 

Motes can use pressure and/or ultrasound sensors to respectively gauge the 
depth and the average speed of the water flow, raw data that need to undergo some 
processing in order to provide the height reached by the water level (centimeters of 
water). As a sensor node is usually a resource-constrained device in terms of power 
and networking capabilities, the gateway station responsible for receiving data may 
be far from the sensor site and hence out of its network coverage area. In order to 
overcome this limitation, sensed data can be transmitted in a multihop 
communication, i.e., data sensed by some motes in their respective sites are 
successively sent to neighbor sensors, which in turn forward such data to other 
neighbor sensors until reaching the gateway station. The communication among these 
elements can take place by using wireless network connections such as WiFi, ZigBee, 
GPRS, Bluetooth, etc. Figure 4 illustrates this scenario. 
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Figure 4 – Flood monitoring system scenario 

 

3.2 Monitoring oil and gas pipelines 
The oil and gas industry includes processes for exploring, extracting, refining, 

transporting, and marketing oil products. Among these activities, the transportation 
of oil, gas, and its derivatives is a high-costly sector in the production chain of the oil 
industry and hence it offers a significant contribution to the success of activities in this 
context. For this reason, oil and gas companies need to develop and adopt new 
technologies towards improving operations in order to increase productivity. 

Pipelines has been widely used as modal for transporting oil, gas, and its 
derivatives along the last 40 years since they play a key role in the transportation of 
oil, gas, and derivatives by linking production areas, harbors, refineries, and consumer 
centers, which are significantly far from each other. In Brazil, the situation is not 
different. According to a 2014 report from the Brazilian National Agency of Oil, Gas 
and Biofuels (ANP), Brazil had 601 pipelines forming a network of 19,700 kilometers 
long to distribute oil, derivatives, gas, and other products across the country [70]. 
Despite the high initial investment and inherent complexity, pipelines are the most 
effective means of transporting large volumes over long distances (thus overcoming 
the geographical limitations), besides reducing losses and providing a high reliability. 
This whole conjuncture makes transporting products in pipelines an issue of high 
importance from the economic point of view as the final price of these products largely 
depends on the transportation costs. 
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WSN features such as small size, wireless architecture, ease of deployment, and 
ubiquitous nature makes such a technology quite attractive for transportation through 
pipeline networks. WSNs are promising in this context especially due to (i) reduced 
costs, (ii) hazardous, remote, inaccessible conditions of the areas traversed by the 
pipelines, (iii) the difficulty and cost regarding the introduction of wired devices near 
pipelines, and (iii) the difficulty and inefficiency of directly inspecting the state of each 
pipeline using personnel in situ along its extension, which may extend to thousands of 
kilometers [71, 72]. Recently, the WSN technology has been successfully applied to 
pipeline monitoring, thereby bringing benefits in terms of cost, flexibility, and control 
efficiency. For instance, WSNs promote unremittingly monitoring and/or estimation 
of the pipeline status without manual intervention and work under severe conditions 
[73, 74]. 

A pipeline monitoring system can make use of a WSN composed of sensor nodes 
spread along the extension of a pipeline, as illustrated in Figure 5. Each of these sensors 
is connected to each other via wireless links and they successively transmit the 
gathered measures until reaching a base station, where such data are processed. As a 
single type of sensor cannot capture all physical anomalies to which operational 
pipelines are subjected, a WSN targeted to monitor pipelines can make use of several 
sensing modalities, e.g., piezoelectric, acoustic, ultrasonic, thermal, optical, chemical, 
magnetic, etc., each one providing a different information about the pipeline status. 
Sensors for pipeline monitoring generally use steady-state or transient detection 
methods [75]. The first one refers to detection methods that are used when the 
parameters of operational pipelines (pressure, flow, anomaly, vibration) are expected 
to remain unchanged over time except when an anomaly such as leakage or third-
party damage occurs. In such conditions, the sensor is only required to distinguish 
between the normal operation characteristics and the occurrence of an anomaly using 
pre-defined thresholds. On the other hand, the second one is useful for scenarios in 
which the variables experienced by operational change rapidly and/or frequently over 
time. When an anomaly (such as leakage or rupture) occurs, the implied change in 
pressure or vibration propagates through the network and can be detected 
hydraulically at other locations. 
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Figure 5 – Deployment of wireless sensors in a pipeline network 

 

One of the main aims of pipeline monitoring regards the detection of leaks in 
the pipelines, which might have different causes, e.g., deformations caused by 
earthquakes, collisions, corrosion, structural cracks, third-party intrusion, etc. In the 
last decades, several disasters caused by leaks in oil pipelines led to devastating 
environmental hazards, as well as severe material and financial damages. Leakage not 
only wastes commodities and cuts profits, but it also brings law suits and raises 
liability issues when it directly affects people’s lives and the environment. For this 
reason, the development of leakage detection systems is critical in pipeline networks. 

When a leak occurs, the most important issues are detecting it immediately and 
executing preventive/corrective actions, e.g., triggering alarms, stop pumps, 
automatic closing of valves, etc. However, the success of the detection depends on the 
time at which the leakage is observed: the faster the leakage is detected, the smaller 
are the losses and the environmental impact. As depicted in Figure 6, a simple, but 
effective technique to detect leaks in pipelines can be simply is placing sensors to 
observe the fluid flow at the extremities of some sections of the pipeline, i.e., 
longitudinal sections [73]. When a leak occurs within a longitudinal section, there is a 
difference between the flow values observed at each side, while it should be constant. 
By comparing the two values of flow, an alert can be triggered whenever the difference 
between the flow measured is greater than a given threshold established for such a 
longitudinal section. Another conventional way of detecting leaks is by using acoustic 
sensors, which are able to pick up variations in sound pressure induced by the passing 
fluid as it escapes from the pipeline under pressure, as well as it can indicate where 
the leak is. 
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Figure 6 – Detection of leaks in pipelines by measuring flow debits 

 

3.3 An architecture for WSN-based monitoring systems 
The WSN-based monitoring systems described in Section 3.1 and 3.2 are equally 

composed of spread sensor motes that interact with each other via wireless links in a 
multihop communication and send data to a gateway or base station. Due to these 
similarities, it is possible to depict a generic architecture that might fit both systems. 
Figure 7 illustrates a simplified picture of such a generic architecture, composed of 
three sensor components (S1, S2 and S3), one gateway component (Gw), and three 
wireless connectors linking these components (L1, L2 and L3). In this architecture, data 
(water level in the flood monitoring system and fluid flow in the pipeline monitoring 
system) are measured by sensors S1 and S2 and sent to sensor S3 by using the links L1 
and L2. Sensor S3 receives these data and forwards them to the gateway Gw via the 
link L3, with no additional processing. Both structure and behavior of these 
architectural elements are detailed in the following. 

Figure 7 – Generic architecture for WSN-based monitoring 
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Sensor component. Sensor components can (i) either receive raw data measured 
by the physical sensors (and that might undergo some processing) via the sense input 
or data from a neighbor sensor via the pass input and (ii) send data via the measure 
output. The behavior of this component comprises the preprocessing of sensed raw 
data (e.g., making a unit conversion). Moreover, data received via the pass input are 
directly sent from this input to the measure output, not undergoing any processing. 

Link connector. Link connectors receive data via the from input and send them 
via the to output. Such connectors do not make any additional processing, thereby only 
transmitting data from their input to output. 

Gateway component. The Gateway component receives data from sensors via 
the data input. The behavior of this component comprises functions to determine the 
risk of flood or leakage. The calculation of the flood risk relies on the hazard index [76], 
a measure that indicates the potential of flood based on the water level measures 
gathered by the sensors. In turn, the leakage detection relies on the debit (difference) 
between flow measures gathered by two neighbor sensors. When an imminent flood 
or an anomaly in a pipeline is detected, alert messages are sent via the message output. 

WSNMonitoring configuration. The WSNMonitoring configuration represents 
the architecture itself and it comprises instances of the Sensor and Gateway components 
(S1, S2, S3 and Gw), as well as instances of the Link connector (L1, L2 and L3). The 
associations depicted in Figure 7 show how these architectural elements are connected 
with each other. 

3.4 The dynamic scenario of WSNs 
 WSNs are typically inserted into highly dynamic, sometimes remote and/or 
even hostile environments, thereby adaptation strategies to ensure the availability of 
the network and gathered data. These networks should have an autonomous behavior 
and be able to tolerate several types of failures, such as faulty nodes, low-level battery, 
lack of coverage and connectivity, etc. General requirements that lead to a dynamic 
reconfiguration of WSN-based systems are related to: (i) efficiency in the use of the 
available resources aiming at extending the network lifetime, especially in terms of 
power consumption and communication; (ii) resiliency of the system in case of 
unavailability of motes during operation; (iii) precise, accurate measures; and (iv) 
autonomous, proactive adaptation upon failures or unpredictable circumstances while 
minimizing manual intervention and disruption. Interesting properties that a WSN 
should have are self-configuration, i.e., the ability of reconfiguring and adapting the 
networking and sensing behaviors of sensor nodes by dynamically changing 
parameters according to the conditions and state of the network, and self-healing, in to 
ensure reliability and correctness of the network especially upon failures [77]. 
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Hughes et al. [78] discuss some interesting scenarios for dynamic adaptation in 
WSNs, taking into account four important concerns, namely communication latency, 
resilience, power consumption, and prediction accuracy. These scenarios are briefly 
outlined in the following. 

Adaptation due to power level of motes. In WSNs, power efficiency and 
communication efficacy are often conflicting strategies. For example, WiFi has a better 
performance and resilience, but it requires more power capabilities. In turn, ZigBee 
(IEEE 802.15.4) requires lower power although it has reduced performance and 
demands for short distances between sensor nodes. As these communication 
infrastructures have quite different properties, it is sometimes desirable having motes 
with both capabilities and able to switch between them according to the power level 
of the motes and the current environmental conditions of the river. 

Adaptation of the general behavior of the WSN. If an anomaly in the normal 
operation of the monitored site is detected, then the frequency at which sensors send 
measures needs to be dynamically increased in order to increase prediction accuracy, 
even though this implies in a greater consumption of power and networking resources. 
When the normal operation conditions are reestablished, such a frequency needs to be 
reconfigured back to the previous operation conditions. 

Adaptation to deal with mote failure. In order to minimize manual 
intervention and foster system dependability, dealing with mote failure is an 
important concern and requires the system to be capable of reconfiguring itself at 
runtime by inserting/activating new sensing nodes in the network. When a sensor 
node fails, its functions should be covered by neighboring nodes, if possible. 
Moreover, a mote failure may also imply reconfiguring the WSN in terms of 
communication strategy or even how the remaining motes are connected with each 
other. Depending on the distances between motes, different networks can be used to 
communicate, e.g., Bluetooth or WiFi for shorter distances and GPRS for longer 
distances. 

Adaptation to increase accuracy. Ensuring accuracy of predictions is an 
important concern as a corrective procedure (e.g., evacuating a flood-prone area or 
triggering personnel to fix leakage in pipelines) might be expense. For this reason, false 
positives must be avoided as much as possible. A way of improving accuracy is using 
other information sources and combine them with data gathered by the sensors. In a 
flood monitoring system, a possible strategy is using image-based flow prediction, i.e., 
use digital cameras fixed in given sites or endowed in unmanned aerial vehicles (a.k.a. 
UAVs or drones) in order to capture images of the river and estimate its current flow 
rate. These images can be also processed and combined with data provided by sensor 
motes to confirm whether a flood is imminent or not. In the case of pipeline 
monitoring, multiple sensing modalities can be used to improve accuracy. 
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4 The π-ADL architecture description language 

Process algebras (or process calculi) refer to mathematical theories for formally 
modeling concurrent systems and describing their communications/interactions and 
synchronizations at a high abstraction level [79]. The basic elements of a process 
algebra are a collection of processes, which represent the behavior of a system, and a set 
of operators, which are used to manipulate and analyze such processes.  

Regardless the variety of existing process algebras, all of them have several 
common features, such as: (i) a concurrency model describing processes/systems; (ii) a 
communication model specifying how such independent processes can communicate 
and be synchronized with each other; and (iii) algebraic laws for process operators, 
which allow manipulating processes and formally reasoning about them. Leading 
examples of process algebras include Communicating Sequential Processes (CSP) [50] 
and the Calculus of Communicating Systems (CCS) [80], both introduced about 30 
years ago. More recent additions include π-calculus [81], a computationally complete 
(Turing-complete5) process algebra able to provide a universal model of computation 
[82].  

Process algebras have played a relevant role as formal underpinnings for 
describing software architectures. By making a correspondence with software 
architectures and their formal specification, the concurrency model serves as a basis 
for specifying components that coexist to compose the architecture of a software 
system. In turn, the communication model serves as a basis for specifying connectors 
representing the interactions between components (processes). Examples of 
architecture description languages that take advantage of process algebras for 
specifying behavior of software architectures are: (i) Wright [21, 23], which uses CSP; 
(ii) Darwin [22], which uses finite state processes (FSP) [83] drawn from CCS; and (iii) 
LEDA [84], which uses π-calculus and its operators as-are for specifying the behavior 
of architectural elements. 

Despite their expressiveness and maturity, process algebras typically do not 
provide constructs for easily describing software architectures, thereby hampering 
their adoption as notations for this activity in software development. Aldini et al. [85] 
argue that the usability of process algebras for describing software architectures can 
be enhanced by supporting a user-friendly component-oriented way for modeling 

                                                 
 

5 Arthur John Robin Gorell Milner (1934-2010), British computer scientist and the creator of π-calculus, 
was awarded with the 1991 ACM A. M. Turing Award, one of the highest worldwide distinction prizes 
in Computer Science: http://amturing.acm.org/award_winners/milner_1569367.cfm. 

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016

http://amturing.acm.org/award_winners/milner_1569367.cfm


58 

 

software systems with process algebras. Software architects can thereby reason in 
terms of composable software units without worrying about technicalities of the 
underlying formalism. In this perspective, adapting process algebras to the 
architectural level can increase both the degree of usability of this type of formalism 
and the degree of formality and analyzability of software architectures. 

Aiming at providing a simple, but expressive notation for describing software 
architectures while being well-founded theoretically, π-ADL [9] was proposed one 
decade ago as a formal language intended to describe software architectures under 
both structural and behavioral viewpoints, unlike most existing architecture 
description languages. This language extends π-calculus (hence the name) by 
providing formally founded constructs for architecture description while achieving 
computational completeness and high expressiveness. As one of the contributions 
resulting from this work, π-ADL was endowed with architectural-level primitives for 
specifying programmed reconfiguration operations [32]. In addition, two common 
approaches for enacting programmed dynamic reconfiguration [33, 34] were 
incorporated into π-ADL. The first approach is exogenous, in which it is possible to 
control all elements of the software architecture and apply the changes on the whole 
structure. In turn, the second approach is endogenous, in which the architectural 
elements themselves are able to manage dynamic reconfiguration actions. This 
culminates in an expressive language able to describe both structure and behavior of 
a dynamic software architecture, as well as the reconfiguration operations that can be 
applied over it at runtime [35]. 

This chapter presents the π-ADL language and how it can be used to describe 
dynamic software architectures. Section 4.1 introduces the main architectural 
abstractions of π-ADL. Section 4.2 presents the type system defined in the language. 
Section 4.3 presents the formally founded constructs used to represent the behavior of 
architectural elements. Section 4.4 describes the approach proposed in this work for 
specifying programmed reconfigurations of dynamic software architectures expressed 
in π-ADL. In Section 4.5, the WSN-based architecture presented in Chapter 3 is used 
as an illustrative example of how to describe dynamic software architectures in π-ADL. 
Finally, Section 4.6 discusses some related work on languages for describing dynamic 
software architectures. 

4.1 Architectural abstractions 
From the structural viewpoint, a software architecture is described in π-ADL in 

terms of components, connectors, and their composition to form the system, i.e., the 
architecture itself as a configuration of components and connectors. Components 
represent the functional elements of the system whereas connectors manage 
interactions among components. Components and connectors can be also composed 
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to construct composite elements, which may be themselves components or connectors. 
From the behavioral viewpoint, both components and connectors comprise a behavior, 
which expresses the interaction of an architectural element and its internal 
computation and uses connections to connect and transmit values. In π-ADL, 
architectures, components, and connectors are formally specified in terms of 
abstractions over behaviors. 

In π-calculus, interactions among concurrent processes take place through 
communication channels for synchronizing such processes by sending and receiving 
messages (values or names)6. Analogously, π-ADL provides connections, which are 
abstractions representing communication channels between architectural elements. By 
using typed connections, components and connectors can send (output connections) and 
receive (input connections) any value of the existing types as well as connections 
themselves. In order to attach a component to a connector, at least a connection of the 
former must be attached to a connection of the latter. Such an attachment takes place 
by means of a unification, so that attached connections can transport values, 
connections or even architectural elements. 

Figure 8 depicts the main architectural concepts of π-ADL. From a black-box 
perspective, only connections of components/connectors and values passing through 
connections are observable. From a white-box perspective, internal behaviors of such 
elements are also observable. 

Figure 8 – Main architectural concepts of the π-ADL language 

 

4.2 Type system 
π-ADL is formally defined by a transition and type system [9, 86]. As depicted 

                                                 
 

6 In spite of the same notions of communicating processes, the main feature that differentiates π-calculus 
from previous process algebras such as CCS and CSP is name mobility, i.e., the ability of passing names 
over channels. These names may refer to processes or even channels, so that it is possible to send 
channels over other channels, for example. 
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in Figure 9, the formal type system of π-ADL is structured upon two main layers: 

− π-ADLB (base π-ADL), which provides the connection and behavior 
constructs; and 

− π-ADLFO (first-order π-ADL), which extends π-ADLB with base, 
constructed, and collection data types, respectively represented by the π-
ADLFO–BV, π-ADLFO–CV, and π-ADLFO–CT sub-layers. 

Figure 9 – Layered type system of π-ADL 

 

Sections 4.2.1 to 4.2.3 present the atomic and composite data types defined in π-
ADLFO. The behavior constructs defined in π-ADLB are presented in Section 4.3. 

4.2.1 Base types 

The base value types are used to express atomic values. Table 1 shows the base 
value types defined in the π-ADLFO–BV layer (see Figure 9). 

Table 1 – Base types defined in π-ADLFO–BV 

Type Syntactic representation Definition 

Natural Natural Natural numbers (non-negative integers) 
Integer Integer Integer numbers (signed) 
Real Real Real numbers (floating-point) 
Boolean Boolean Boolean logical values 
String String Character strings 

In addition to these atomic types, π-ADL defines a type called Any that works as 
a generic type in the language. This type admits values of any type (base or constructed 
ones), so that it can be seen as a union type with no constraint on the type of value that 
it can hold. 

4.2.2 Constructed types 

The π-ADLFO–CV layer (see Figure 9) provides constructors for defining 
composite types by using the base types from π-ADLFO–BV. Table 2 summarizes these 
constructed value types, each one described as follows. 
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Table 2 – Constructed types defined in π-ADLFO–CV 

Type Syntactic representation Definition 

Tuple tuple[T1, T2, …, Tn] Tuple (v1, v2, …, vn) in which each vi is of type Ti 

View view[l1: T1, l2: T2, …, ln: Tn] 
Labeled form of a tuple (v1, v2, …, vn) in which 
each vi has a label li and is of type Ti 

Tuple. Values of a tuple type tuple[T1, T2, …, Tn] are n-uples (v1, v2, …, vn) (n ≥ 
2) in which each value vi is of type Ti. For example, the declaration 

t is tuple[Integer, String] 

refers to the declaration of a tuple t associated to pairs in which the first value is an 
integer value and the second one is a string value. The individual values within a tuple 
can be projected into other variables by using an explicit projection. Therefore, for the 
tuple t exemplified above, the instruction 

project t as a : Integer, b : String 

sequentially assigns values within t to the variables a and b, which respectively receive 
an integer value and a string value. 

View. A view can be understood as a labeled form of a tuple. Values of a view 
type view[l1: T1, l2: T2, …, ln: Tn] are views (l1 : v1, l2 : v2, …, ln : vn) (n ≥ 2) in which each 
value vi is labeled as li and is of type Ti. For example, the declaration 

v is view[x : Integer, y : String] 

refers to the declaration of a tuple v associated to pairs in which the first value (x) is an 
integer value and the second one (y) is a string value. The individual values within a 
view can be also projected into other variables by using the same explicit projection 
instruction used for tuples. 

4.2.3 Collection types 

The π-ADLFO–CT layer (see Figure 9) provides constructors for defining 
collection types by using base and constructed types from π-ADLFO–BV and π-ADLFO–

CV. Table 3 summarizes these collection value types, each one described as follows. 

Table 3 – Collection types defined in π-ADLFO–CT 

Type Syntactic representation Definition 

Set set[T] Unordered collection of elements of type T 
Sequence sequence[T] Ordered collection of elements of type T 

Set. In π-ADL, a set is an unordered collection of elements of the same type T. 
Values within a set type set[T] are values v1, v2, …, vn in which each value vi pertains 
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to such a set and is of type T. For example, the declaration 

s is set[Integer] 

refers to the declaration of a set s of integer values. 

Sequence. In π-ADL, a sequence is an ordered collection of elements of the same 
type T. Values within a sequence type sequence[T] are values v1, v2, …, vn in which 
each value vi pertains to such a sequence and is of type T. For example, the declaration 

q is sequence[Integer] 

refers to the declaration of a sequence q of integer values. 

 Elements can be added to both set and sequence collections by using the add 
operator. For example, the instruction 

q add 12 

adds the value 12 to the sequence q of integer values. In case of adding elements to a 
sequence, they are added at the end of the sequence to ensure element ordering. This 
is not guaranteed for sets as they represent unordered collections of elements. 

  π-ADL also provides the iterate construct for iterating over the elements of 
sets and sequences. The iterate construct is of the form 

 
in which collection refers to the name of the collection (set or sequence) to be iterated, 
iterator is the variable used to iterate over the collection, accumulator is a variable 
returned as result of the iteration, and initial_value is the initial value set to such an 
accumulator. As an example, consider the following instructions: 

 
This iterate construct counts the number of elements of the s and stores the result in 
the accumulator variable count, initially set to zero. The variable i is used to iterate over 
the elements of s. 

4.3 Behavior constructs 
Besides the connection abstraction, the π-ADLB layer provides behavior 

iterate collection by iterator 
from accumulator initially initial_value  
accumulate { 

// statements 

}  

iterate s by i 
from count initially 0 
accumulate { 

count = count + i 

}  
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constructs to represent the internal behavior of architectural elements, which make use 
of connections to send and receive values (see Section 4.1). Behaviors defined in π-ADL 
come from existing operators provided by π-calculus, in which channels (connections 
in π-ADL) are used to transmit values between interacting processes, i.e., behaviors of 
architectural elements. 

Let P and Q independent processes, c a channel, and x a value or name. π-
calculus formally defines the set of process constructs summarized in Table 4. 

Table 4 – Process constructs defined in π-calculus 

Notation Process construct Definition 

c(x).P Input prefixing action A process that waits to read x from c before 
sequentially proceeding as P 

c̅(x).P Output prefixing action 
A process that waits to write x (previously accepted 
in an input prefixing action) in c before sequentially 
proceeding as P 

τ.P Unobservable action A process executing an action that is not observable 
from an external viewpoint 

P | Q Parallel composition A process that runs P and Q concurrently 

P + Q Non-deterministic choice 
A process that behaves as either P or Q depending 
on whether an action within P or an action within Q 
is executed 

0 Inert (nil) process A process that does nothing, i.e., it has no remaining 
computation 

Similarly to these basic π-calculus constructs, π-ADL provides the behavior 
constructs defined in Table 5, each one described in the following. 

Table 5 – Behavior constructs defined in π-ADL 

Behavior construct Syntactic representation Definition 

Input prefixing action via c send v Send value v via connection c 

Output prefixing action via c receive s : T Receive value s of type T via 
connection c 

Unobservable action unobservable Unobservable internal action 

Parallel composition compose B1 and B2 ... and Bn   Execute behaviors B1, B2, …, 
Bn in parallel 

Non-deterministic choice choose B1 or B2 ... or Bn     Choose to execute either 
behavior B1 or B2, …, Bn 

Inert (nil) process done Nothing to do 

Prefixing actions. Behaviors run by performing prefixing actions. As shown in 
Table 5, three types of prefixing actions are defined in π-ADL: 
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− input prefixing action, which expresses the ability of receiving a value v 
via a connection c; 

− output prefixing action, which expresses the ability of sending a value v 
via a connection c; 

− unobservable action (a.k.a. silent prefixing action), which expresses an 
internal action unobservable from an external viewpoint. 

Composition behavior. A composition behavior expresses the ability of a 
behavior to compose sub-behaviors in parallel, each one independently proceeding 
from the others in a separate execution thread. These sub-behaviors can interact among 
each other via shared connections, e.g., when a behavior sends a value to another 
executing behavior via an attached connection. As an example, consider the following 
instructions: 

 
In this composition behavior, an integer value v is received via the input connection 
and its increment is sent via the output connection, simultaneously to the sending of 
the Boolean value true via the signal output connection. As another example, consider 
the following instructions: 

 

The sub-behaviors of this composition behavior interact with each other via the 
connection x. The first one sends a value v that is received by the second sub-behavior 
as the value y. 

 Choice behavior. In π-ADL, a choice behavior expresses the ability of a behavior 
to execute alternative sub-behaviors. When a given sub-behavior is enacted, the others 
are no longer available, i.e., only one of the choice sub-behaviors is executed. As an 
example, consider the following instructions: 

compose { 

via input receive v : Integer 

via output send (v+1) 

and 

via signal send true 

}  

compose { 

via x send v 

and 

via x receive y : Any 

}  
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This choice behavior is expressed by two alternative options, (i) receiving an integer 
value v via the input connection and then sending the increment of v via the output 
connection, or (ii) receiving an integer value s via the alt connection and then assigning 
it to a variable called db. It is worth mentioning that when more than one sub-behavior 
is eligible to be executed at the same time, the selection criterion for choosing the block 
to be executed is non-deterministic.  

 Inert (nil) process. The behavior of an inert process (expressed by the done 
keyword) represents the end of execution of a behavior, i.e., it does not execute any 
further actions. 

4.4 Specifying architectural elements in π-ADL 
A software architecture is described in π-ADL in terms of abstractions 

representing components, connectors, and their composition in order to form the 
architecture of the system. This section briefly introduces the elements provided by π-
ADL for specifying behavior of these architectural abstractions. More details about the 
syntax of architecture descriptions in π-ADL and its main elements can be found in [9, 
87]. 

4.4.1 Specifying behavior of components and connectors 

The specification of components and connectors is quite similar, except for the 
keyword used to determine the type of the architectural element (component or 
connector). These elements have an identifier as a unique name and they can 
optionally take a list of parameters in the form name : type as input. Furthermore, 
exactly one behavior must be mandatorily declared in order to specify the behavior of 
an architectural element. Besides the behavior constructs introduced in Section 4.3, the 
behavior of both components and connectors can comprise the following instructions. 

Type declarations. In π-ADL, it is possible to declare data types within the 
scope of a given architectural declaration. This type declaration is specified in the form 

choose { 

via input receive v : Integer 

via output send (v+1) 

or 

via alt receive s : Integer 

db = s 

}  
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type s is T, in which s is an identifier7 defining an alias for the type and T is an existing 
type (base, constructed or declared one). As an example, consider the following 
instructions: 

 
The two first instructions create the Latitude and Longitude types, both having a real 
value as underlying type. In turn, the third instruction creates the GeoCoordinate type 
as a tuple composed of values of the Latitude and Longitude types for representing a 
geographic coordinate. 

 Connection declarations. π-ADL allows declaring typed connections that 
represent the communication channels used to transmit (send/receive) values. The 
declaration of a connection within the scope of an architectural element is specified in 
the form connection c is d(T), in which c is an identifier, d is the direction of the 
connection, and T is an existing type (base, constructed or declared one). Two 
directions are available for declaring a connection, namely in for input connections 
and out for output connections. For example, the instructions 

 
declare an input connection x for receiving string values and output connection y for 
sending Boolean values. 

Variable declarations and assignments. Local variables can be declared in the 
form s is T, in which s is an identifier and T is an existing type (base, constructed or 
declared one). For example, the instruction 

 
declares a real variable named a. 

 Protocol declarations. In π-ADL, protocols are used within the specification of 
architectural elements in order to enforce the value types that must be transmitted via 
connections (complying with their respective declarations) and the order in which the 
sending/receiving operations must be performed. A protocol is declared as a set of 
connection actions specifying the action to be performed by the connection (send or 
receive) and the type of the values that will be transmitted via the connection. 
Furthermore, protocol declarations can make use of multiplicity symbols to specify 

                                                 
 

7 Conventionally, alias names for types shall start with capital letters in order to differentiate them from 
variable and function names. 

type Latitude is Real 

type Longitude is Real 

type GeoCoordinate is tuple[Latitude, Longitude]  

connection x is in(String) 

connection y is out(Boolean) 

a is Real 
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how many times the connection actions can be performed: an asterisk character (*) is 
used to specify that a given action (or set of actions) is performed zero or more times 
whereas the plus character (+) is used to specify that a given action (or set of action) is 
performed one or more times, i.e., at least one. It is also possible to specify alternative 
options by using the pipe character (|), so that A | B indicates that either action (or 
group of actions) A or action (or group of actions) B can be performed. As an example, 
consider the following protocol declaration: 

 
This protocol enforces receiving an integer value via connection a or connection b and 
then sending an integer value via connection c. The asterisk character after the 
outermost parentheses specifies that all of these actions (receiving via a or b then 
sending via c) can be performed multiple times. When declaring a protocol, specifying 
the multiplicity of the actions (by using the asterisk or the plus characters) is 
mandatory. 

4.4.2 Statements 

The specification of both components and connectors can also comprise a set of 
statements, which are mainly used in behavior and function declarations. Such 
instructions are briefly described in the following. 

 Variable assignments. Assigning values to declared variables is done by using 
the equal sign (=) after the identifier naming the variable. 

 Function declarations and calls. Local functions within behaviors have an 
identifier and can optionally take a list of parameters in the form name : type as input. 
In addition, they can also specify a return type. As an example, the following 
instruction 

 
declares a function named increment, which receives an integer value as parameter and 
returns an integer value. Declared functions can be called by making reference to its 
respective identifier and providing the required parameters. 

 Conditional statements. The if-then-else conditional statement provided by π-
ADL can be used within behaviors and function declarations. Upon the evaluation of 
a specified Boolean expression, if the condition is true then a sequence of statements is 
executed, otherwise the execution proceeds in the following branch, specified by 

protocol is { 

((via a receive Integer | via b receive Integer) 

  via c send Integer)* 

}  

increment is function(v : Integer) : Integer { 

// statements 

}  

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016



68 

 

optional else-if or else blocks. The basic structure of a conditional statement in π-ADL 
is as follows: 

 

 Condition-controlled loops. π-ADL provides a while statement as condition-
controlled loop that can be used within behavior and function declarations. Upon the 
evaluation of a specified Boolean expression, a sequence of statements is repeatedly 
executed until such a condition does not hold. The basic structure of a condition-
controlled loop in π-ADL is as follows: 

 

Iteration loops. π-ADL provides a for statement as iteration loop that can be 
used within behavior and function declarations. In this type of loop, a variable 
identifier is used as iterator in conjunction with a Boolean stop condition and an 
expression specifying how to advance to the next iteration. At each iteration, a set of 
statements is repeatedly executed until the stop condition is achieved. The basic 
structure of an iteration loop in π-ADL is as follows: 

 

4.4.3 Specifying architectural configurations 

The specification of the system architecture is declared with its respective 
keyword (architecture), a unique identifier, and an optional list of parameters to be 
taken as input, similarly to the declaration of components and connectors. The main 
difference resides in the fact that it comprises two basic elements, namely a set of 
element instances and a set of unifications. Element instances are contained within a 
composition behavior (see Section 4.3) and are in the form i is E, in which i is the 
instance identifier and E is the identifier of an architectural element (component or 
connector)8. In turn, unifications are the means of passing values from an output 

                                                 
 

8 If an architectural element requires input parameters (according to its declaration as an abstraction), 
the respective parameters must be provided when declaring an instance of such an element. 

if expression then { 

// statements 

} else if expression then { 

// statements 

} else { 

// statements 

} 

while expression do { 

// statements 

} 

for (start; expression; step) do { 

// statements 

} 
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connection of an element to an input connection of another. These unifications are in 
the form co::E1 unifies ci::E2, in which co is an output connection of the element E1 
and ci is an input connection of the element E2. Therefore, values can be transmitted 
from E1 to E2 (their behaviors) through such connections. 

As an example, consider the following specification of a basic architecture for 
the well-known pipe-filter architectural style, which comprises filter components for 
transforming data and pipe connectors for transmitting such data from a filter to 
another [11]: 

 
This architecture is named PipeFilter and it is composed of three instances of 
architectural elements, namely two instances of the Filter component (F1 and F2) and 
one instance of the Pipe connector (P1), all of them not requiring input parameters. In 
order to attach these architectural instances, two unifications take place:  

(i) the outFilter output connection of the filter component F1 is bound to the 
inPipe input connection of the pipe connector P1, thus representing a 
message flow from F1 to P1; and 

(ii) the outFilter output connection of the pipe connector P1 is bound to the 
inFilter input connection of the filter component F2, thus representing a 
message flow from P1 to F2. 

4.5 Dynamic software architectures in π-ADL 
The specification of dynamic software architectures in π-ADL is based on the 

concept of active architectures [88]. Active software architectures are: (i) dynamic in the 
sense that the structure and cardinality of the components and interactions are 
changeable during execution; (ii) updatable in the sense that architectural elements can 
be dynamically replaced; (iii) decomposable in the sense that an executing system can be 
dismantled into its architectural elements; and (iv) evolvable in the sense that the 
specification of components and interactions can be evolved at runtime. Figure 10 
depicts the basic life cycle for an active architecture as envisioned in π-ADL. At the 
initial stage Ⓐ, the architectural abstractions of the system are composed in order to 
form its software architecture. At stage Ⓑ, the system is decomposed to yield its 

architecture PipeFilter is abstraction() { 

behavior is { 

compose { 

    F1 is Filter() 

and P1 is Pipe() 

and F2 is Filter() 

} where { 

F1::outFilter unifies P1::inPipe 

P1::outPipe   unifies F2::inFilter 

} 

} 

} 
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individual architectural abstractions disconnected from each other. Next, such 
individual architectural abstractions can be evolved at stage Ⓒ, e.g., in terms of creating 
and/or removing elements. At last, the system architecture is (re)composed at stage Ⓓ 
by composing a new configuration of architectural elements aiming to form the new 
version of the architecture (stage Ⓔ). It is important to mention that the state of each 
architectural abstraction (and respective data) must be conserved at each evolution 
stage, thus maintaining consistency along the reconfiguration process. 

Figure 10 – Life cycle for active software architectures (adapted from [88]) 

 

In the light of active architectures, dynamic software architectures can be 
specified in π-ADL by using two main operations, namely composition (compose 
operator) and decomposition (decompose operator). The former is used to compose the 
architecture by (i) instantiating abstractions corresponding to architectural elements 
and (ii) unifying connections to attach such elements and allow their synchronization 
and communication. In turn, the latter is used to dismantle an architecture into a set of 
behaviors corresponding to the previously composed architectural elements, now 
detached from each other. Through decomposition, the executing system is broken 
into its constituent elements, which can be changed and further recomposed to form 
an evolved system. Even though the composition and decomposition operations 
provided by π-ADL seem to be divergent from the usual reconfiguration actions 
adopted in most works in literature [23, 32, 44], they allow specifying dynamic 
software architectures in a comprehensive way while preserving the formal 
foundations of the language upon the π-calculus process algebra. Therefore, 
supporting these operations with a suitable underlying formalism fosters formal 
verification of the specified software architectures as well as the enforcement of 
structural, behavioral, and quality properties before, during, and after the 
reconfiguration process itself. 

As previously mentioned, this work is concerned with supporting 
programmed, foreseen reconfiguration operations under both exogenous and 
endogenous approaches for describing dynamism in software architectures. The 
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exogenous approach concerns having two coexisting architectures, namely the initial 
architecture and the evolved architecture, the latter resulted from a reconfiguration 
applied over the former upon a stimulus [89]. The evolved architecture describes the 
reconfiguration actions to be performed over the initial architecture in order to 
produce it. Both architectures are executed by a coordinating behavior, the external 
entity that has control over all architectural abstractions. In turn, the endogenous 
approach concerns specifying the reconfiguration actions within the behavior of the 
architectural element(s) responsible for applying them. Reconfiguration actions in 
both approaches may comprise instantiating new architectural elements, modifying 
architectural elements or decomposing architecture configurations. 

 In order to illustrate the exogenous and endogenous approaches considered in 
π-ADL9, consider a simple client-server architecture initially composed of one client 
and one server interacting through a link connector. Moreover, consider the two 
following possible reconfigurations of such an architecture at runtime: 

R1: The architecture can have two available servers, namely (i) a primary server 
that is more desirable to use, but which may go down unexpectedly, and (ii) 
a secondary server, which can replace the former in case of unavailability. 
Therefore, the client can use the secondary server when the primary one is 
unavailable. 

R2: When the server is overloaded, it can allocate an auxiliary virtual machine 
for load balancing, thus maximizing throughput. 

To illustrate the exogenous reconfiguration process, consider two coexisting 
architectures for the client-server architecture, namely (i) an initial architecture called 
ClientServer and (ii) a new, evolved architecture called ClientServerEvol resulting from 
reconfiguration operations applied on ClientServer. As depicted in Figure 11, the 
ClientServer initial architecture is composed of one instance of the client component 
(Cl) and one instance of the server component representing the primary server (PrSv), 
which interact with each other through one instance of the link connector (lnk) (stage 
Ⓐ). In order to perform reconfiguration R1, ClientServerEvol must describe the 
decomposition of the architectural elements of ClientServer, detached from each other 
(stage Ⓑ). Finally, ClientServerEvol must describe (i) the creation a new instance of the 
server component to represent the secondary server, (ii) the composition of the 
previously instantiated client component and link connector with the new server 
component, and (iii) the unification of their connections in order to attach them. Upon 

                                                 
 

9 Examples textually describing both exogenous and endogenous reconfiguration approaches in π-ADL 
are provided in Sections 4.6.2 and 4.6.3 with the WSN-based flood monitoring system. 
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the execution of these operations, the ClientServerEvol evolved architecture is launched 
by the controlling behavior (stage Ⓒ). 

Figure 11 – Illustration of the exogenous approach for the dynamic reconfiguration of a simple 
client-server architecture. A primary server is replaced by a secondary one in case of 
unavailability of the former. 

 

Figure 12 illustrates the result of reconfiguration R2 on the ClientServer 
architecture. In this case, the server component (PrSv) representing the primary server 
is responsible for performing the reconfiguration, so that the required operations must 
be specified in its behavior. When the primary server is overloaded, it should create a 
new instance of the link connector (lnk2) and an instance of the component 
representing the auxiliary virtual machine for load balancing. After creating these 
instances, they must be attached by unifying their respective connections. It is 
important to mention that this case does not require decomposing the ClientServer 
architecture since reconfiguration R2 does not comprise detaching architectural 
elements, but only creating and attaching new ones. 
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Figure 12 – Result of the endogenous approach for the dynamic reconfiguration of a simple 
client-server architecture. An auxiliary virtual machine is created and attached to the primary 
server in case of overloading. 

 

4.6 Describing the flood monitoring system in π-ADL 
In this section, the WSN-based flood monitoring system presented in Chapter 3 

is used to exemplify how to describe dynamic software architectures in π-ADL. Section 
4.6.1 presents partial descriptions of the architecture for this system, based on the one 
previously depicted in Figure 7 (see Section 3.3). In turn, Sections 4.6.2 and 4.6.3 
respectively present programmed reconfigurations on such an architecture 
considering both exogenous and endogenous approaches (see Section 4.5). 

4.6.1 Architectural elements 

Sensor component. Figure 13 shows the specification of the Sensor component 
in π-ADL. Two user-defined types are declared within this component, both relying 
on the Real base type: (i) MV, which represents a raw value in millivolts measured by 
the pressure sensor (line 2), and (ii) CmH2O, which represents a value in centimeters 
of water (line 3). This component comprises three connections, namely: (i) sense, an 
input connection used for receiving raw data measured by the pressure sensor (line 4); 
(ii) pass, an input connection used for receiving data from a neighbor sensor (line 5); 
and (iii) measure, an output connection used for sending data (line 6). The protocol of 
this component (lines 7 to 10) enforces receiving either a value of the MV type via the 
sense connection or a value of the CmH2O type via the pass connection, and then 
sending a value of the CmH2O type via the measure connection, actions that are 
performed sequentially and at multiple times. Next, the behavior of this component 
encompasses the definition of the convertRawData function (line 12), which receives a 
value of the MV type and converts it to a value of the CmH2O type. As the 
implementation of the convertRawData function may change according to the sensor 
specifications provided by the respective manufacturers, it is set as unobservable (line 
13). Furthermore, such a behavior can proceed through two alternative, non-
deterministic options: (i) data received via the sense input connection are processed by 
the convertRawData function and then sent via the measure output connection (lines 16 
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and 17); or (ii) data received via the pass input connection are directly sent via the 
measure output connection (lines 21 and 22). After executing their respective 
instructions, each sub-behavior self-recurses (i.e., it continues being executed), as 
expressed by the behavior() call in lines 18 and 23. 

Figure 13 – π-ADL description of the Sensor component 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 

component Sensor is abstraction() { 

type MV is Real 

type CmH2O is Real 

connection sense is in(MV) 

connection pass is in(CmH2O) 

connection measure is out(CmH2O) 

protocol is { 

((via sense receive MV | via pass receive CmH2O) 

  via measure send CmH2O)* 

} 

behavior is { 

convertRawData is function(measure : MV) : CmH2O { 

unobservable 

} 

choose { 

via sense receive d : MV 

via measure send convertRawData(d) 

behavior() 

or 

via pass receive m : CmH2O 

via measure send m 

behavior() 

} 

} 

} 

Gateway component. Figure 14 shows the specification of the Gateway 

component in π-ADL. This component comprises two connections, namely (i) data, an 
input connection used for receiving data collected by sensor nodes (line 3), and (ii) 
alert, an output connection used for sending alert messages in case of risk of flood. The 
protocol of this component (lines 5 to 8) enforces receiving a value of the CmH2O type 
(declared in line 2) and sequentially sending a string value, actions performed at 
multiple times. Next, the behavior of this component encompasses the definition of 
two functions. The calculateHI function (line 10) calculates the hazard index based on 
the water level measures given as input. In turn, the triggerAlert function (line 14) uses 
the previously calculated hazard index to determine the severity of the flood risk [63] 
and send a message accordingly. Therefore, data received via the data input connection 
are provided as input to the triggerAlert function (line 28), which will analyze the 
potential of flood risk according to the calculated hazard index (lines 17 to 25) and then 

25: 
26: 
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send the corresponding message via the alert output connection (line 29). After 
executing these instructions, the behavior continues being executed (line 30). 

Figure 14 – π-ADL description of the Gateway component 

1: 
2: 
3: 
4: 
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20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 

component Gateway is abstraction() { 

type CmH2O is Real 

connection data is in(CmH2O) 

connection alert is out(String) 

protocol is { 

(via data receive CmH2O 

 via alert send String)* 

} 

behavior is { 

calculateHI is function(data : CmH2O) : Real { 

unobservable 

} 

triggerAlert is function(measure : CmH2O) : String { 

hi is Real 

hi = calculateHI(measure) 

if (hi > 0.0 && hi < 0.5) then { 

return “Low risk” 

} else if (hi >= 0.5 && hi < 1.0) then { 

return “Medium risk” 

} else if (hi >= 1.0 && hi < 1.4) then { 

return “High risk” 

} else { 

return “Very high risk” 

} 

} 

via data receive d : CmH2O 

via alert send triggerAlert(d) 

behavior() 

} 

} 

ZigBee connector. Figure 15 shows the specification of the ZigBee connector in 
π-ADL, which represents a ZigBee wireless connection. As shown in lines 3 and 4, this 
connector comprises an input connection (from) for receiving data and an output 
connection for sending data (to). The protocol of this connector specifies receiving data 
of the CmH2O type via the from connection and then sending string data via the to 
connection at multiple times (lines 5 to 8). Furthermore, the behavior of this connector 
encompasses an input prefixing action (line 10) for receiving data via the from 
connection and an output prefixing action (line 11) for sending data via the output 
connection. After executing these instructions, the behavior recurses (line 12). 

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016



76 

Figure 15 – π-ADL description of the ZigBee connector 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

connector ZigBee is abstraction() { 

type CmH2O is Real 

connection from is in(CmH2O) 

connection to is out(CmH2O) 

protocol is { 

(via from receive CmH2O) 

 via to send CmH2O)* 

} 

behavior is { 

via from receive m : CmH2O 

via to send m 

behavior() 

} 

} 

WSNFloodMonitoring architecture. Figure 16 shows the π-ADL specification of 
the WSNFloodMonitoring architecture, based on the one previously depicted in Figure 
7 (see Section 3.3). The behavior of this abstraction comprises the composition of three 
instances of the sensor component (lines 4 to 6), three instances of the ZigBee connector 
(lines 7 to 9), and one instance of the gateway component (line 10). The attachments of 
these architectural elements take place through six unifications (lines 12 to 17) that 
represent data flows from an architectural element to another. Therefore, such 
unifications of connections allow transmitting data from sensors until reaching the 
gateway by using the created links. 

Figure 16 – π-ADL description of the WSNFloodMonitoring architecture 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

architecture WSNFloodMonitoring is abstraction() { 

behavior is { 

compose { 

    S1 is Sensor() 

and S2 is Sensor() 

and S3 is Sensor() 

and L1 is ZigBee() 

and L2 is ZigBee() 

and L3 is ZigBee() 

and Gw is Gateway() 

} where { 

S1::measure unifies L1::from 

S2::measure unifies L2::from 

L1::to    unifies S3::pass 

L2::to    unifies S3::pass 

S3::measure unifies L3::from 

L3::to    unifies Gw::data 

} 

} 

} 20: 
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4.6.2 Exogenous reconfiguration: Low battery of a sensor node 

For the sake of simplicity, consider the architecture of the flood monitoring 
system shown in Figure 7 (see Section 3.3). In addition, consider a situation in which 
the battery of sensor S3 is low, thus requiring the replacement of this mote by another 
one. Despite this new mote is near to the other two ones, it is far from the gateway 
station, so that it is not possible to use ZigBee as wireless connection. For this reason, 
a GPRS wireless connection needs to be used as it is suitable for communications over 
long distances. 

To realize this reconfiguration by means of an exogenous approach, consider 
the WSNFloodMonitoring architecture described in Figure 16 as the initial architecture. 
Figure 17 shows a partial π-ADL description of the WSNFloodMonitoringEvol evolved 
architecture, resulted from reconfiguration actions to be applied on the initial 
architecture. First, WSNFloodMonitoring is decomposed into a sequence of seven 
detached behaviors (abs), each one associated to the architectural elements previously 
instantiated (line 5)10. In lines 6 to 16, the previous instances of the sensor and gateway 
components and of the ZigBee connectors are composed with a new instance of the 
sensor component (S4) and a new instance of the GPRS connector (Gprs1), which is 
similar to the ZigBee connector described in Figure 15. Next, the connections of these 
elements are unified to attach them (lines 14 to 21). The reconfiguration is triggered 
when a value is sent via the connection lowb in the initial architecture (iarch), thereby 
indicating that the battery level of the sensor is low (line 28). In this case, the 
coordinating behavior performs an application to run WSNFloodMonitoringEvol (line 
30), i.e., the evolved version of the initial architecture to realize the reconfiguration 
itself. 

Figure 17 – Partial π-ADL description of the WSNFloodMonitoringEvol evolved architecture for 
realizing a reconfiguration aimed to replace a sensor mote due to low battery level by means 
of an exogenous approach. 

1: 
2: 
3: 
4: 
5: 

architecture WSNFloodMonitoringEvol is 

abstraction(lowb : connection[Boolean], iarch : Any) { 

behavior is { 

abs is sequence[Any] 

abs = decompose iarch     // decomposing the initial architecture (iarch) 

compose { 

10 The elements representing the architectural abstractions (behaviors) are assigned to the abs sequence 
in the order in which they were previously declared. These elements can be directly accessed by using 
integer indexes or the iterate construct. 

6: 
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7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 

abs[0] is Sensor()    // previous Sensor component instance (S1) 

and abs[1] is Sensor()    // previous Sensor component instance (S2) 

and S4     is Sensor()    // new Sensor component instance 

and abs[3] is ZigBee()    // previous ZigBee connector instance (Zb1) 

and abs[4] is ZigBee()    // previous ZigBee connector instance (Zb2) 

and Gprs1  is GPRS()      // new GPRS connector instance 

and abs[6] is Gateway()   // previous Gateway component instance (Gw) 

} where { 

abs[0]::measure unifies abs[3]::from 

abs[1]::measure unifies abs[4]::from 

abs[3]::to  unifies S4::pass 

abs[4]::to  unifies S4::pass 

S4::measure  unifies Gprs1::from 

Gprs1::to  unifies abs[6]::data 

} 

} 

} 

behavior is { 

connection lowb is in(Boolean) 

iarch = WSNFloodMonitoring(lowb) 

via lowb receive v : Boolean 

if (v == true) then { 

WSNFloodMonitoringEvol(iarch) 

} 

} 

4.6.3 Endogenous reconfiguration: Avoiding false positives 

Consider another situation in which a flood was detected based on data 
collected by the motes. As an evacuation procedure might be expensive, it is necessary 
to improve the accuracy of measures aiming at avoiding false positives. For this 
purpose, drones endowed with digital cameras and WiFi networking capabilities can 
be used to capture images from the river in order to estimate its flow rate. Captured 
images can be sent to the gateway station, which will effectively process and combine 
them with data provided by the motes spread along the river, thereby confirming 
whether a flood is imminent or not. 

Figure 18 shows a partial description in π-ADL realizing this reconfiguration 
through an endogenous approach. Lines 1 from 8 show the specification of the UAV 
component, which comprises the camera input connection for receiving images 
captured by the embedded digital camera (line 3), and the output output connection 
for sending the captured images (line 4). In turn, lines 10 to 17 show the specification 
of the WiFi connector, similar to the ZigBee connector described in Figure 15. Lines 19 
to 62 show a new specification for the Gateway component (previously described in 
Figure 14), which now comprises an additional input connection for receiving images 
(image, line 23) and a function for processing them (processImage, lines 33 to 35). To 
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apply the required changes for adding a drone component connected to the gateway 
via WiFi, the gateway component first verifies if data provided by the sensor motes 
indicate imminent risk of flood (line 44). If such a risk is classified as high or very high, 
then the gateway component performs a composition behavior that creates an instance 
of the UAV component (dr, line 46), creates an instance of the WiFi connector (wf, line 
47), and attaches these new instances by unifying their respective connections (lines 49 
and 50). It is worth mentioning that the initial architecture WSNFloodMonitoring 
presented in Figure 7 does not need to be decomposed as the reconfiguration does not 
require detaching architectural elements, but creating and attaching new ones. 

Figure 18 – Partial π-ADL description for realizing a reconfiguration aimed to increase 
accuracy and avoid false positives by means of an endogenous approach. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 

component UAV is abstraction() { 

type Image is Any 

connection camera is in(Image) 

connection output is out(Image) 

behavior is { 

   unobservable 

} 

} 

connector WiFi is abstraction() { 

type Image is Any 

connection input is in(Image) 

connection output is out(Image) 

behavior is { 

   unobservable 

} 

} 

component Gateway is abstraction() { 

type CmH2O is Real 

type Image is Any 

connection data is in(CmH2O) 

connection image is in(Image) 

connection alert is out(String) 

protocol is { 

((via data receive CmH2O | via image receive Image) 

 via alert send String)* 

} 

behavior is { 

calculateHI is function(data : CmH2O) : Real { 

unobservable 

} 

processImage is function(i : Image) : Boolean { 

unobservable 

} 

triggerAlert is function(measure : CmH2O) : String { 

unobservable 

} 

38: 
39: 
40: 
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41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 

via data receive d : CmH2O 

risk is String 

risk = triggerAlert(d) 

if (risk == “High” || risk == “Very high”) then { 

compose { 

    dr is UAV() 

and wf is WiFi() 

} where { 

dr::output unifies wf::input 

wf::output unifies self::image 

} 

} 

via image receive i : Image 

if (processImage(i) == true) then { 

via alert send “Flood risk confirmed” 

} else { 

via alert send risk 

} 

behavior() 

} 

} 

4.7 Related work: 
Languages for describing dynamic software architectures 

Bradbury et al. [43] report that some ADLs have been proposed in the last 15 
years for specifying dynamic software architectures aiming at allowing for their 
automated, rigorous analysis. In particular, most works address programmed 
dynamic reconfiguration by providing specific reconfiguration primitives at the 
architectural level to describe when and how the system architecture shall be 
reconfigured. This section briefly discusses some of these approaches. 

One of the earliest ADLs addressing dynamic software architectures is Darwin 
[22], a formal declarative language with an operational semantics based on FSP and 
that allows hierarchically specifying distributed systems. Dynamic behavior is defined 
in Darwin by means of lazy and direct instantiations: in the former, each component is 
not instantiated until one of its services is requested; in the latter, components are 
directly instantiated. However, Darwin only allows instantiating components, but not 
removing them neither creating/destructing links. 

Dynamic Wright [23] is a formal ADL that allows describing the behavior and 
reconfiguration of a system by using a variant of CSP. However, CSP is able to specify 
only static configurations, i.e., dynamic reconfigurations are not supported and have 
to be simulated. By adopting an exogenous approach, Dynamic Wright provides a 
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configuror, a special component in the architecture responsible for centralizing all 
reconfiguration operations since only it can modify the architecture. The supported 
reconfiguration operations are new, del, attach, and detach, respectively used to create 
and remove instances, and to link and unlink them. 

LEDA [84] is another formal ADL based on π-calculus. It is structured upon: (i) 
components, which represent system modules and can be either functional elements or 
connectors; (ii) roles, which describe the observable behavior of components; and (iii) 
attachments, which define connections among component instances. The approach 
adopted in LEDA for dynamism is endogenous, decentralized, so that the 
reconfiguration operations are described along with the behavior specification of 
components. The main operations are (i) the instantiation of components (processes) 
and (ii) dynamic attachments between them by using channel mobility capabilities 
provided by π-calculus. However, there are no means of detaching and removing 
components. In addition, the behavior of architectural elements is specified by directly 
using the operators defined in π-calculus as-are, i.e., unlike π-ADL, LEDA does not 
provide architectural abstractions over these constructs, thus making architecture 
descriptions more difficult. 

The Architecture Analysis and Design Language (AADL) [90] is a language 
intended to describe both software and hardware architectures of distributed real-time 
embedded systems. This language allows specifying reconfigurable systems by using 
state machines that describe modes and mode transitions: modes represent particular 
(state) configurations whereas transitions specify events that enable the system to be 
reconfigured, i.e., changed from the current mode to another, so that modes and 
transitions in AADL are programmed, statically defined. As AADL is used to specify 
embedded systems at a low level (e.g., in terms of processors, platforms, etc.), 
modeling reconfigurations in such a language is constrained to a specific system and 
platform. Moreover, AADL lacks of a native formal semantics, thereby severely 
limiting both unambiguous communication and the use of formal analysis techniques. 

Plastik [91] is a framework for reconfiguration of component-based systems 
that extends the well-known Acme/Armani ADLs [20, 92] to allow describing 
dynamic reconfiguration operations. In terms of programmed reconfiguration, Plastik 
introduces the on-do construct, a predicate-action element to specify reconfiguration 
actions when the specified predicate is true. In addition to the typical operators for 
creating, removing, and attaching architectural elements, two new explicit operators 
are introduced, namely detach and remove, for respectively detaching and destroying 
architectural elements. Finally, there is a construct for specifying dependencies 
between architectural elements. Despite of its ease of use for specifying programmed 
dynamic reconfiguration, the Acme/Armani/Plastik ensemble lacks of formal 
underpinnings to allow further automated architectural analysis. 
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To sum up, Table 6 shows a comparative analysis among the aforementioned 
ADLs. Considering the taxonomic dimensions for characterizing dynamic 
reconfiguration approaches discussed in Section 2.1, it is clearly possible to notice that 
π-ADL is able to provide a comprehensive notation for describing dynamic software 
architectures while paving the way for their formal verification. 
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Table 6 – Comparative analysis of existing ADLs considering some taxonomic dimensions for characterizing dynamic reconfiguration approaches 
in software architectures 

ADL 
Underlying 
formalism 

Description viewpoint Reconfiguration operations Reconfiguration management 

Structural Behavioral Create Remove Attach Detach Exogenous Endogenous 

Darwin [22] FSP    ○ × × ×  
Dynamic 
Wright [23] CSP-based  ○     ×  

LEDA [84] π-calculus    ×  ×  ×
AADL [90] N/A   ○ ○ ○ ○  × 

Plastik [91] N/A  ×      ×
π-ADL π-calculus    ○  ○   

Key: 
 = supported

○ = partially supported
× = not supported 
N/A = not applicable 
? = lack of evidences 
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5 Architecture-based code generation 

Besides capturing important design decisions about a system at a high 
abstraction level, software architectures can be used to derive the implementation of 
such a system. Taylor et al. [17] point out that relating software architectures to 
implementation is a mapping problem. A good, well-analyzed architectural design has 
a limited value unless there is a clear, direct relationship between the architectural 
level and artifacts at the implementation level [6]. In this context, choosing how to 
create and maintain this mapping is critical in architecture-based software 
development since the less complete or automated it is, the more opportunity for an 
architectural drift exists. For this reason, it is highly desirable providing some sort of 
mechanism that allows generating source code from architecture descriptions. 
Manually converting an architectural model into a running application may result in 
many problems in terms of consistency and traceability between the architecture and 
its implementation [17]. Furthermore, maintaining traceability between architecture 
and implementation helps system developers to easily understand architecture 
designs and provides support for software quality control and maintenance [93]. 

Supporting code generation by translating architecture descriptions to a target 
programming language is a research subject addressed in the literature since the dawn 
of Software Architecture as a discipline in the 1990s [94, 95]. This concern has remained 
relevant along the years mainly due to the concern of maintaining conceptual integrity 
between the representation of a software architecture and its corresponding 
implementation. Nonetheless, the existing gap between these two levels has been 
sometimes neglected and became a more severe problem considering the inherent 
dynamicity of many contemporary software systems. As previously highlighted, even 
if a system is built in conformance to the defined prescriptive architecture, its 
implementation has a significant probability of becoming inconsistent with respect to 
the original architecture over time. 

Aiming at tackling such an existing gap between architectural and 
implementation levels while contributing to minimize the risk of architectural drifts 
and allowing for the validation of the architecture itself, this chapter presents a process 
to generate source code in the Go programming language [36] from architecture 
descriptions expressed in the π-ADL, another contribution brought by this work [35, 
37]. Section 5.1 defines the correspondences between the elements of π-ADL and Go. 
Section 5.2 presents the automated process for generating source code from 
architecture descriptions. Section 5.3 shows the generation of source code in Go from 
the π-ADL architecture description of the flood monitoring system. Finally, Section 5.4 
briefly discusses related work on the support for implementing software architectures. 
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5.1 Correspondences between π-ADL and Go 
As previously mentioned, Go was chosen to serve as target language for 

generating implementation-level artifacts from architecture descriptions in π-ADL 
because it is suitable for constructing scalable distributed systems and handling 
multicore and networked computer architectures, as required by many contemporary 
systems. The integration of π-ADL and Go is fostered mainly by their common basis 
on the π-calculus process algebra [81] and the straightforward relationship between 
elements of these languages, such as the use of connections in π-ADL and channels in 
Go as means of communication and synchronization between concurrent processes. 
This section defines the correspondences between the elements of these languages. 

Table 7 summarizes the correspondences between the main architecture-level 
elements of π-ADL and implementation-level elements of Go, each one described in 
the following. Relationships regarding other elements such as statements and 
expressions were omitted as they are practically identical in both languages and 
therefore straightforward. 

Table 7 – Summary of correspondences between the main architecture-level elements of π-
ADL and implementation-level elements of Go 

π-ADL Go 

Architectural abstraction 
(component, connector, architecture) Function (goroutine) 

Behavior of architectural abstraction Body of function (goroutine) 

Connection Channel 

Instantiation of architectural element Call to goroutine 

Connection declaration Instantiation of channel map 

Unification of connections Special-purpose function (goroutine) 

Connection detachment Channel closure 

Coordinating behavior Main function 

Architectural abstractions and their behavior. Components, connectors, and 
architectures are defined in π-ADL as abstractions over behaviors. In Go, these 
elements are represented by functions called as goroutines (see Section 2.2), thereby 
being equivalent to the notion of communicating processes in π-calculus. The signature 
of such functions is defined by the respective name of the architectural abstraction and 
the list of parameters that they require. In turn, the body of these functions comprises 
the respective element behavior. 

Connections. As introduced in Section 4.1, channels are among the main 

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016



86 

elements of the π-calculus process algebra and they are used as means of 
communication and synchronization among concurrent processes. In π-ADL, 
connections are used for sending/receiving values between architectural abstractions 
and their behaviors. Straightforwardly to π-calculus, typed channels in Go are used to 
send and/or receive values between concurrent processes (goroutines to be 
synchronized), so that connections in π-ADL are mapped to channels in Go. The type 
of the values to be transmitted through a channel is the one specified in the connection 
declaration. 

Connection declarations. The set of connections comprised in the structure of 
both components and connectors is represented in Go by <string, channel> maps11 of 
channels. These maps use the names of the declared connections as keys and map such 
keys to channel objects representing the connections themselves.  

Instantiation of architectural elements. In Go, the instantiation of components 
and connectors within an architecture encompasses two steps. The first one refers to 
the creation of the maps of channels representing the set of connections comprised by 
such architectural elements. The second one involves to launch the goroutines that 
respectively represent these architectural elements within the function associated to 
the architecture. In these goroutine calls, the map of channels representing the created 
instance is provided as parameter to the goroutine. When performing reconfiguration 
operations to create new components/connectors, it is necessary to make new calls to 
the respective goroutines implementing them. 

As an example, consider the aforementioned simple client-server architecture 
composed of one client component and one server component connected through a 
link connector. The creation of an instance of the client component (c) first 
encompasses creating the map of channels that represents the set of connections 
declared for this component. Next, this component is run by calling the Client 
goroutine and providing the previously created map of channels as input parameter. 

11 A map (a.k.a. associative array) is an unordered, non-sequential collection of pairs used to search for a 
value through a key, which works as an index that allows accessing the value associated to it. 
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component Client is abstraction() { 

connection call is out(Integer) 

behavior is { 

   unobservable 

} 

} 

architecture ClientServer is 

abstraction() { 

behavior is { 

compose { 

c is Client() 

// other declared instances 

} where { 

// unification of connections 

} 

} 

} 

func Client(conn map[string]interface{}) { 

// behavior implementation 

} 

func ClientServer() { 

c := map[string] interface{}{ 

“call” : make(chan int64), 

go Client(c) 

} 

Unification of connections. In π-ADL, a unification of connections allows 
attaching an output connection of a component/connector to an input connection of 
another component/connector, thereby enabling these elements to communicate and 
exchange data. This process is implemented in Go by means of a special-purpose 
function called unifies, which receives the connections to be unified as parameters. 
Such a function basically reads the contents of the sending channel (output connection) 
and writes them to the receiving channel (input connection). 

Connection detachment. As described in Section 4.5, the execution of a 
decomposition operation automatically removes the existing unifications between the 
architectural elements previously composed. When mapping from π-ADL to Go, 
removing these attachments is equivalent to closing the communication channels used 
to synchronize the goroutines that represent architectural elements. In Go, closing an 
unbuffered communication channel12 indicates that no more values will be transmitted 
through it and leads to an immediate blockage of the goroutines that use such a 
channel. 

Coordinating behavior. To enable a system architecture to execute, a 

12 In Go, communication is synchronous and unbuffered: a sending operation does not complete until there 
is a receiver to accept the value. Therefore, send/receive operations block until the other side is ready. 

func unifies(sender, receiver interface{}) { 

if (sender != nil && receiver != nil) { 

v, _ := reflect.ValueOf(sender).Recv() // reading from output connection 

reflect.ValueOf(receiver).Send(v)       // writing to input connection 

} 

} 

} 

// other declared instances 
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coordinating behavior performs an application (similar to a call) of the abstraction 
corresponding to such an architecture. In Go, this behavior represented by the main 
function, which is the first function called when a Go program is executed. Therefore, 
the main function calls the goroutine that represents the architecture itself, which in 
turn calls the goroutines associated to the instances of architectural elements 
(components and connectors). 

Base, constructed, and collection types. As presented in Section 4.2, π-ADL 
provides three data types: (i) base types, which are used to express atomic values; (ii) 
constructed types, composite types constructed upon base types; and (iii) collection types, 
which are types representing collections based on base and/or constructed value 
types. Table 8 summarizes the mappings from these types defined in π-ADL to data 
types in Go. 

Table 8 – Summary of the mappings from data types defined in π-ADL to types in Go 

Type π-ADL 
Go 

Syntactic representation Semantics 

Basic types 

Natural uint64 Unsigned integer numbers 
Integer int64 Signed integer numbers 
Real float64 Floating-point numbers 
Boolean bool Boolean logical values 
String string Character strings 

Constructed types 
Tuple [n]interface{}

Empty interface array of size n 
(n is the number of composing 
types) 

View map[string]interface{} 
Map whose keys are the labels 
for the view values 

Collection types 
Set map[T]bool Map with keys of type T of the 

set 

Sequence []T
Slice (dynamic array) with 
elements of type T 

π-ADL also provides a special base type named Any, which works as a generic 
type in the language and admits values of any type (see Section 4.2.1). For similar 
purposes, this type is mapped to empty interfaces (interface{}), which represent 
means of generic typing in Go. As empty interfaces do not have defined methods, any 
type is able to satisfy them. 

Behavior constructs. Table 9 summarizes the mappings from behavior types 
defined in π-ADL (see Section 4.3) to Go. 
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Table 9 – Summary of the mappings from behavior constructs defined in π-ADL to Go 

π-ADL behavior construct 
Go 

Syntax representation Semantics 

Output prefixing action conn[“c”].(chan T) <- v Send value v of type T via 
channel (connection) c 

Input prefixing action v := <- conn[“c”].(chan T) Receive value s of type T
from channel (connection) c 

Unobservable action // Empty block Empty block13 

Non-deterministic choice 

select { 

case p1:

B1 
case p2:

B2 
case pn:

Bn 
} 

Selection of a block 
(corresponding to a sub-
behavior Bi) to execute based 
on receiving/sending 
operations over channels pi 

(prefixing actions) 

Parallel composition 
go func() { 

B:
}() 

Creation and invocation of a 
goroutine for each sub-
behavior Bi 

Inaction return Empty return 

5.2 Code generation procedure 
Taylor et al. [17] distinguish two main generative approaches in the relationship 

between architectural models and implementation artifacts. One-way approaches 
allow a software artifact to be generated from another, e.g., generating source code 
from architectural models. In turn, round-trip approaches allow changes in the target 
artifact to be automatically reflected-back in the source artifact. For example, in a one-
way approach, a component in an architectural model might result in the creation of a 
new Java package containing class files. In a round-trip approach, the creation of a new 
Java package might result in a new component in the architectural model as well. 
Although round-trip approaches are preferable to one-way ones, they are generally 
tricky to be correctly implemented, especially when architectural modeling and code 
development tools are not well integrated (as it is often the case). 

This section describes the process for producing source code in Go from 
architecture descriptions in π-ADL by following a one-way generative approach. 

13 The generated empty block can be filled with any instruction at the developer’s choice since a silent 
prefixing action refers to details that are not observable at the architectural level. 
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Section 5.2.1 first gives an overview of the tool developed to assist software architects 
in architecture description using the π-ADL language. Next, Section 5.2.2 presents the 
technical elements used to realize the mapping between π-ADL and Go defined in 
Section 5.1 towards automatically generating source code. 

5.2.1 π-ADL textual editor 

One of the concerns regarding the usefulness of an ADL is directly related to 
the tools that it provides for supporting the activities encompassed by an architecture-
driven software development approach, i.e., architectural description, analysis, code 
generation, and evolution [17]. Tool support is especially vital for the successful use of 
any ADL since architecture descriptions persist throughout the development lifecycle 
and evolve along with the described software system, so that ADL tools play an 
important role for creating, analyzing, and maintaining these documents over time. 
Furthermore, a recent survey about ADLs in the industry context has revealed the 
importance of ADL tools in this scenario, despite few description languages for 
software architectures are supported by satisfactory tools [18]. Such a survey identified 
some requirements for these tools, such as simplicity, intuitiveness, high degree of 
usability, provisioning of comprehensive textual and graphical notations, meaningful 
communication and documentation, and alignment of software architecture 
descriptions with their respective implementation. 

In the context of the ArchWare European Project in which the π-ADL language 
was originally conceived, an open-source toolset was developed in order to support 
formal description, analysis, refinement, code generation, and evolution of software 
architectures [96, 97]. Altogether, these tools allow compiling architectural models into 
their executable representations as well as the formal analysis and evolution of such 
models. However, considering the evolutions in the π-ADL language along the years 
and the requirements of new generation software systems (e.g., distribution, large-
scale, concurrency, and dynamicity), this work contributed with the development of a 
completely new tool support for π-ADL. As a first step, a textual editor based on the 
Eclipse platform [98] was developed for assisting architects to make architecture 
descriptions using the π-ADL language and further automatically generate 
implementation code in Go. A screenshot of the tool is shown in Figure 19. 
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Figure 19 – Screenshot of the Eclipse-based π-ADL textual editor 

The π-ADL textual editor was developed upon Xtext [99], a well-known open-
source, highly customizable framework for developing domain-specific languages 
(DSLs). Xtext covers all aspects of a complete language infrastructure by parsing 
textual models written in such a language and allows generating code from them in 
another language. Furthermore, this infrastructure is fully integrated with the Eclipse 
development environment and provides the π-ADL textual editor with useful features, 
such as: 

− syntax highlighting, a useful feature for distinguishing keywords from 
identifiers;  

− syntactic and semantic validation of architecture descriptions by showing 
error and warning alerts, thereby enabling architects to early detect and 
fix errors and potential problems; 

− interpretation of expressions, which is useful for type checking purposes; 
− auto formatting; 
− content assist, which provides suggestions on how to complete a given 

statement/expression based on the syntactic rules; and 
− automatic build on save for automatically generating Go source code from 

the architecture description in π-ADL (if they are correct according to the 
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syntactic and validation rules of the language) when it is saved in the 
language editor. 

5.2.2 Code generation procedure 

Figure 20 depicts the technical elements related to the generation source code 
in Go from architecture descriptions in π-ADL. From the π-ADL grammar specification 
in the Extended Backus-Naur Form (EBNF) [100], Xtext automatically generates the π-
ADL infrastructure by running a script written in the Modeling Workflow (MWE2) 
DSL. More specifically, this script (also automatically created by Xtext) is used to 
derive a specification from the π-ADL grammar compatible with the ANTRL parser 
generator [101], which is used for generating the parser of the language. When running 
the script, Xtext generates a set of artifacts: (i) a Java implementation of a parser, which 
is automatically generated by ANTRL and is responsible for the syntactic analysis of 
the architecture textual description; (ii) a metamodel defining the abstract entities of the 
language and the relationships among them; (iii) the entry point for a code generator, 
which is used to generate code in Go from the architecture description in π-ADL; and 
(iv) an Eclipse-based code editor for assisting the textual description of a software
architecture in π-ADL. In addition, Xtext creates an abstract syntax tree (AST) from the
input textual model for representing the structure of the parsed model as well as the
respective Java classes to persist such an AST.

Figure 20 – Elements for generating Go source code from π-ADL architecture descriptions 

The code generator within the π-ADL textual editor is implemented by using 
facilities provided by the Xtend programming language [102], a fully Java-
interoperable programming language featuring a more compact, easier to use syntax, 
as well as advanced features such as type inference and lambda expressions. As the 
AST model needs to be continuously traversed, Xtend provides useful mechanisms to 
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straightforwardly doing this while being easy to use and allowing for a better readable 
code. Moreover, as Xtend programs are compiled to plain Java code, they can access 
all of the libraries available in Java, thus allowing these languages to coexist 
seamlessly. 

Once the architecture description is checked as correct by the parser, it might 
still have errors since its overall correctness cannot always be determined during the 
parsing procedure. Besides performing such a syntactic analysis of the textual 
architecture description against the rules defined in the π-ADL grammar, the code 
generator makes use of some validators to semantically analyze a π-ADL architecture 
description. In Xtext, validators are classes that contain methods (validation rules) 
implementing additional constraint checks over the abstract elements of the current 
model. These validation rules (also implemented in Xtext) are detailed in Appendix B. 

In order to describe the behavior of components and connectors, a software 
architect can make use of expressions that are similar to the ones used in programming 
languages, e.g., logical, relational, equality, and arithmetic expressions. Determining 
the data types handled by such expressions is important for ensuring that an 
expression value sent via a connection is the one expected, i.e., its type is equal to the 
type specified when declaring such a connection. However, type checking cannot be 
performed during parsing and expressions are resolved at runtime, i.e., their value is 
calculated while they are described. As Xtext is mainly concerned with syntactic 
analysis and it does not support expression resolution, an interpreter and a validator 

were developed in Xtend for handling expressions in π-ADL architecture descriptions. 

Finally, the code generator itself uses extension methods and template expressions. 
Extension methods implement how a given abstract element of the input π-ADL 
architecture textual description (defined in the AST) can be translated to its 
representation in the source code to be generated. These extension methods make use 
of template expressions, which allow for more readable string concatenation and 
proper formatting to write characters into the output Go source code. These 
mechanisms provided by Xtend are used to translate the abstract elements defined in 
the π-ADL grammar to their respective implementation in Go based on the 
correspondences defined in Section 5.1. 

5.3 Generating code for the flood monitoring system 
This section illustrates how the π-ADL architecture description of the flood 

monitoring system presented in Section 4.6 can be automatically translated to its 
respective implementation in Go, including the programmed reconfiguration 
operations performed at runtime. It is worth mentioning that Go has recently started 
to be used as a support platform to some frameworks targeting sensors, such as 
Patchwork [103], EMDB [104], and Gobot [105]. These frameworks have chosen Go for 
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implementation aiming at leveraging the benefits promoted by the language to the 
device realm, in particular cross-platform building directly to native code, 
performance, productivity, and easy application development. Nevertheless, Go 
programs consume more memory than C/C++ code and compilation artifacts are 
larger when compared to the ones produced by other languages, issues that may be 
problematic in a very limited physical device. 

5.3.1 Architectural elements 

Sensor component. Figure 21 shows an excerpt of the Go code generated from 
the π-ADL description of the Sensor component (see Figure 13). This component is 
implemented in Go by the Sensor function, which receives a map of channels (conn) 
representing its declared connections. The Sensor function also comprises the 
declaration of a local function (closure) corresponding to the convertRawData function 
specified in the component behavior. The select instruction is used for representing 
the non-deterministic choice behavior in terms of selecting the sub-behavior to be 
executed according to the order in which values are received through the channels 
(connections). Therefore, the value to be written to the measure output connection can 
be either the one received via the sense input channel (sensed data) or the one received 
via the pass input channel (data from another sensor). The MV and CmH2O data types 
declared within the component behavior are respectively translated to global type 
declarations in the form type T U, in which T is an alias for the underlying type U.  

Figure 21 – Description of the Sensor component in π-ADL (left) and corresponding 
implementation in Go (right) 

component Sensor is abstraction() { 

type MV is Real 

type CmH2O is Real 

connection sense is in(MV) 

connection pass is in(CmH2O) 

connection measure is out(CmH2O) 

protocol is { 

((via sense receive MV | 

  via pass receive CmH2O) 

  via measure send CmH2O)* 

} 

behavior is { 

convertRawData is  

function(measure : MV) : CmH2O { 

unobservable 

} 

choose { 

via sense receive d : MV 

via measure  

send convertRawData(d) 

behavior() 

or 

via pass receive m : CmH2O 

type CmH2O float64 

type MV float64 

func Sensor(conn map[string]interface{}) { 

var convertRawData func(measure MV) CmH2O 

convertRawData = func(measure MV) CmH2O { 

// Empty block 

} 

select { 

case d : <- conn[“sense”].(chan MV) : 

conn[“measure”].(chan CmH2O) <- 

convertRawData(d) 

Sensor(conn) 

case m : <- conn[“pass”].(chan CmH2O) : 

conn[“measure”].(chan CmH2O) <- m 

Sensor(conn) 

} 

} 

via measure send m 

behavior() 
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} 

} 

} 

Gateway component. Figure 22 shows an excerpt of the Go code generated 
from the π-ADL description of the Gateway component (see Figure 14). This component 
is implemented in Go by the Gateway function, which receives as parameter a map of 
channels (conn) representing its declared connections. The Gateway function also 
comprises the declaration of two local functions (closures) corresponding to the 
calculateHI and triggerAlert functions specified in the component behavior. Note that 
the statements implementing these functions are practically identical to the ones used 
when describing this component in π-ADL. 

Figure 22 – Description of the Gateway component in π-ADL (left) and corresponding 
implementation in Go (right) 

component Gateway is abstraction() { 

type CmH2O is Real 

connection data is in(CmH2O) 

connection alert is out(String) 

protocol is { 

(via data receive CmH2O 

 via alert send String)* 

} 

behavior is { 

calculateHI is  

function(data : CmH2O) : Real { 

unobservable 

} 

triggerAlert is function 

(measure : CmH2O) : String { 

hi is Real 

hi = calculateHI(measure) 

if (hi > 0.0 && hi < 0.5) 

then { 

return “Low risk” 

} else  

if (hi >= 0.5 && hi < 1.0) 

then { 

return “Medium risk” 

} else  

if (hi >= 1.0 && hi < 1.4) 

then { 

return “High risk” 

} else { 

return “Very high risk” 

} 

} 

via data receive d : CmH2O 

via alert send triggerAlert(d)

behavior() 

} 

func Gateway(conn map[string]interface{}) { 

var calculateHI func(data CmH2O) float64 

calculateHI = func(data CmH2O) float64 { 

// Empty block 

} 

var triggerAlert func(measure CmH2O) string 

triggerAlert = func(measure CmH2O) string { 

var hi float64 

hi = calculateHI(measure) 

if hi > 0.0 && hi < 0.5 { 

return “Low risk” 

} else if hi >= 0.5 && hi < 1.0 { 

return “Medium risk” 

} else if hi >= 1.0 && hi < 1.4 { 

return “High risk” 

} else { 

return “Very high risk” 

} 
} 

d := <- conn[“data”].(chan CmH2O) 

conn[“measure”].(chan CmH2O) <- d 

Gateway(conn) 

} 
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} 
ZigBee connector. Figure 23 shows an excerpt of the Go code generated from 

the π-ADL description of the ZigBee connector (see Figure 15). This connector is 
implemented in Go by the ZigBee function, which receives as parameter a map of 
channels (conn) representing its declared connections. In the ZigBee function, the value 
received via the from input channel is assigned to a variable (m) to be sent via the to 
output channel. 

Figure 23 – Description of the ZigBee connector in π-ADL (left) and corresponding 
implementation in Go (right) 

connector ZigBee is abstraction() { 

type CmH2O is Real 

connection from is in(CmH2O) 

connection to is out(CmH2O) 

protocol is { 

(via from receive CmH2O 

 via to send CmH2O)* 

} 

behavior is { 

via from receive m : CmH2O 

via to send m 

behavior() 

} 

}

func ZigBee(conn map[string]interface{}) { 

m := <- conn[“from”].(chan CmH2O) 

conn[“to”].(chan CmH2O) <- m 

ZigBee(conn) 

} 

WSNFloodMonitoring architecture. Figure 24 shows an excerpt of the Go code 
generated from the π-ADL description of the WSNFloodMonitoring architecture (see 
Figure 16), implemented by the WSNFloodMonitoring function. In this function, the 
Sensor and Gateway components and the ZigBee connector are instantiated by (i) 
creating the maps of channels corresponding to the instances of these architectural 
elements and their declared connections and (ii) calling the goroutines that represent 
such elements and their behavior. Next, these elements are attached by calling the 
unifies goroutine with the channel objects representing the connections to be unified. 
For example, the first call to the unifies goroutine unifies the measure output connection 
of sensor S1 to the from input connection of the ZigBee connector L1 
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Figure 24 – Description of the WSNFloodMonitoring architecture in π-ADL (left) and 
corresponding implementation in Go (right) 

architecture WSNFloodMonitoring 

is abstraction() { 

behavior is { 

compose { 

    S1 is Sensor() 

and S2 is Sensor() 

and S3 is Sensor() 

and L1 is ZigBee() 

and L2 is ZigBee() 

and L3 is ZigBee() 

and Gw is Gateway() 

} where { 

S1::measure unifies L1::from 

S2::measure unifies L2::from 

L1::to   unifies S3::pass 

L2::to   unifies S3::pass 

S3::measure unifies L3::from 

L3::to   unifies Gw::data 

} 

} 

}

func WSNFloodMonitoring() { 

S1, S2, S3 := map[string]interface{}{ 

“sense”   : make(chan MV), 

“pass”    : make(chan CmH2O),

“measure” : make(chan CmH2O),

} 

L1, L2, L3 := map[string]interface{}{ 

“from” : make(chan CmH2O), 

“to”   : make(chan CmH2O), 

} 

Gw := map[string]interface{}{ 

“data” : make(chan CmH2O), 

“alert”: make(chan string), 

} 

go Sensor(S1) 

go Sensor(S2)

go Sensor(S3) 

go ZigBee(L1) 

go ZigBee(L2) 

go ZigBee(L3)

go Gateway(Gw) 

go unifies(S1[“measure”], L1[“from”]) 

go unifies(S2[“measure”], L2[“from”]) 

go unifies(L1[“to”], S3[“pass”]) 

go unifies(L2[“to”], S3[“pass”]) 

go unifies(S3[“measure”], L3[“from”]) 

go unifies(L3[“to”], Gw[“data”]) 

} 

5.3.2 Exogenous reconfiguration 

Consider the situation described in Section 4.6.2 in which the flood monitoring 
system needs to be reconfigured due to the low battery level of a sensor. In this case, 
the reconfiguration encompasses replacing such a node by another one and connecting 
the latter by using a wireless connection. Realizing this reconfiguration by means of 
an exogenous approach comprises WSNFloodMonitoringEvol, an evolved architecture 
resulting from reconfiguration actions applied on the WSNFloodMonitoring initial 
architecture (see Figure 16 and Figure 17). 

Figure 25 shows an excerpt of the Go source code generated from the π-ADL 
description of the evolved architecture, implemented by the WSNFloodMonitoringEvol 
goroutine that receives the references to the elements instantiated within the 
WSNFloodMonitoring initial architecture as parameters. These elements are returned 
by the WSNFloodMonitoring goroutine through a slice containing the maps of channels 
that represent the declared instances (iarch), which are copied to another slice named 
abs (lines 2 to 4). As the sensor S3 and the ZigBee connector Zb3 instances are unused 
in the evolved architecture, their respective channels are closed by calling the close 
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built-in function14 (lines 5 to 16). Next, the new instances of the sensor component and 
the GPRS connector are created (lines 18 to 26) and provided as parameters to the 
goroutines that implement them (lines 29 to 35). At last, the unifications attaching 
the architectural elements take place as before by calling the unifies goroutine (lines 
38 to 43). 

Figure 25 – Excerpt of Go source code generated from the π-ADL description of the 
WSNFloodMonitoringEvol evolved architecture, following an exogenous approach 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

func WSNFloodMonitoringEvol(iarch []map[string]interface{}) { 

var abs []map[string]interface{}      // decomposing initial architecture 

abs = iarch 

select {  // closing channels (connections) 

case <-abs[2][“sense”].(chan MV): 

close(abs[2][“sense”].(chan CmH2O)) 

case <-abs[2][“pass”].(chan CmH2O): 

close(abs[2][“pass”].(chan CmH2O)) 

case <-abs[2][“measure”].(chan CmH2O): 

close(abs[2][“measure”].(chan CmH2O)) 

case <-abs[5][“from”].(chan CmH2O): 

close(abs[5][“from”].(chan CmH2O)) 

case <-abs[5][“from”].(chan CmH2O): 

close(abs[5][“to”].(chan CmH2O)) 

} 

S4 := map[string]interface{}{      // instantiating new sensor component 

“sense”   : make(chan MV), 

“pass”    : make(chan CmH2O), 

“measure” : make(chan CmH2O), 

} 

Gprs1 := map[string]interface{}{   // instantiating new GPRS connector 

“from” : make(chan CmH2O), 

“to”   : make(chan CmH2O), 

} 

// relaunching architectural elements (goroutine calls) 

go Sensor(abs[0])    // previous sensor component (S1) 

go Sensor(abs[1])    // previous sensor component (S2) 

go Sensor(S4)  // new sensor component 

go ZigBee(abs[3])    // previous ZigBee connector (Zb1) 

go ZigBee(abs[4])    // previous ZigBee connector (Zb2) 

go GPRS(Gprs1) // new GPRS connector 

go Gateway(Gw) // previous gateway component (Gw) 

// reunifying connections 

go unifies(abs[0][“measure”], abs[3][“from”])  // from S1 to Zb1 

go unifies(abs[1][“measure”], abs[4][“from”])  // from S2 to Zb2 

go unifies(abs[3][“to”], S4[“pass”])    // from Zb1 to S4 

go unifies(abs[4][“to”], S4[“pass”])  // from Zb2 to S4 

14 For a channel c, the built-in function close(c) explicitly records that no more values will be sent on c. 

25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 

13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 

41: 

Un framework formel pour les architectures logicielles dynamiques Everton Ranielly De Sousa Cavalcante 2016



99 

42: 
43: 
44: 

go unifies(S4[“measure”], Gprs1[“from”])    // from S4 to Gprs1 

go unifies(Gprs1[“to”], abs[6][“data”])       // from Gprs1 to Gw 

} 

5.3.3 Endogenous reconfiguration 

Consider the situation described in Section 4.6.3 in which the flood monitoring 
system needs to be reconfigured in order to increase the accuracy of measures 
provided by motes aiming at avoiding false positives. In this case, the reconfiguration 
encompasses (i) allocating drones endowed with digital cameras and WiFi networking 
capabilities to capture images from the river and (ii) sending them to the gateway 
station for further processing. To realize this reconfiguration by means of an 
endogenous approach, the gateway component can create an instance of a drone 
component and link it by using a WiFi connector (see Figure 18).  

Figure 26 shows an excerpt of the Go source code generated from the π-ADL 
description of the Gateway component, the one responsible for performing the 
reconfiguration actions. In case of high or very high risk given by the 
triggerAlert function (line 19), the Gateway function creates dr and wf, the maps of 
channels that respectively represent instances of the UAV component and the GPRS 
connector (lines 21 to 28). Next, these elements are run by respectively calling the 
UAV and GPRS goroutines, which receive the created maps as parameters (lines 30 
and 31). At last, these new instances are attached to the existing elements by 
calling the unifies goroutine (lines 33 and 34). 

Figure 26 – Excerpt of Go source code generated from the π-ADL description of the Gateway 
component, following an endogenous approach 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

func Gateway(conn map[string]interface{}) { 

var calculateHI func(measure CmH2O) float64 

calculateHI = func(measure CmH2O) float64 { 

// implementation of the calculateHI function 

} 

var processImage func(i Image) bool 

processImage = func(measure Image) bool { 

// implementation of the processImage function 

} 

var triggerAlert func(measure CmH2O) string 

triggerAlert = func(measure CmH2O) string { 

// implementation of the triggerAlert function 

} 

d := <- conn[“data”].(chan CmH2O) 17: 
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18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 

var risk string 

risk = triggerAlert(d) 

if risk == “High” || risk == “Very high” { 

dr := map[string]interface{}{    // instantiating UAV component 

“camera” : make(chan Image), 

“output” : make(chan Image), 

} 

wf := map[string]interface{}{      // instantiating WiFi connector 

“input”  : make(chan Image), 

“output” : make(chan Image), 

} 

go UAV(dr)    // running UAV component 

go WiFi(wf)   // running WiFi connector 

go unifies(dr[“output”], wf[“input”]) 

go unifies(wf[“output”], conn[“image”]) 

} 

i := <- conn[“image”].(chan Image) 

if processImage(i) == true { 

conn[“alert”].(chan string) <- “Flood risk confirmed” 

} else { 

conn[“alert”].(chan string) <- risk 

} 

} 

5.4 Related work: 
Supporting the implementation of software architectures 

In spite of the existence of ADLs for describing dynamic software architectures, 
these languages lack of a proper integration between the architectural and 
implementation levels. Furthermore, there is still no work on the integration of ADLs 
with new generation programming languages towards tackling the gap between these 
levels in the context of the construction of large-scale software systems with concurrent 
and distributed elements. This section briefly discusses some existing work on the 
integration of architecture descriptions with implementation and its limitations. 

The Medvidovic et al.’s work [95] is one of the first works on the relationship 
between architecture descriptions and implementation languages. The proposed 
approach encompasses Dradel, an environment for modeling, analyzing, evolving, 
and implementing architectures described in the C2 Software Architecture Description 
and Evolution Language (C2SADEL), an extension of the C2 language designed to 
support architecture-based evolution. A Java class is generated for each component 
specified in C2SADEL and a method is generated for each component service, 
commented with preconditions and postconditions. In addition, developers need to 
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provide an implementation for these application-specific methods. 

ArchJava [106] is an extension to Java that tangles software architecture 
specifications to implementation code in order to ensure traceability between 
architecture and code (i.e., the conformation of the implementation with the specified 
architecture) and to support the co-evolution of both architecture and implementation. 
ArchJava adds new language constructs to Java for specifying components and 
connections among them, while their behavior is implemented together the services 
that they provide. In terms of dynamicity support, components can be dynamically 
instantiated in a similar way to ordinary objects and connected at runtime. Despite the 
freshness of the approach as an architectural solution, ArchJava is limited in that it is 
more concrete than traditional ADLs due to its strong implementation basis. 
Architectures specified in ArchJava cannot be subjected to formal reasoning because it 
basically relies on an informal Java foundation, even though a formally well-founded 
type system can be found for ArchJava component extensions [107]. Furthermore, the 
generated Java implementations are to be executed on a single Java Virtual Machine, 
a condition that hinders the use of multicore and networked computer architectures 
for constructing large-scale, dynamic systems. 

The MontiArcAutomaton language [108, 109] extends the MontiArc ADL [110] 
targeting cyber-physical systems modeling. MontiArcAutomaton encompasses a 
component/connector view to model the architectural structure and it uses automata 
to describe behavior of components, comprising the representation of possible states 
and transitions. To generate code from architecture descriptions in the Java and Python 
languages, MontiArcAutomaton makes use of complex templates that directly access 
the AST resulted from a compilation of the architecture description. Moreover, there 
is no support for dynamicity. 

π-ADL.NET Project [111] was proposed some years ago as the result of the 
integration of π-ADL with the Microsoft® .NET Framework [112]. In π-ADL.NET, 
formal architecture descriptions in π-ADL are compiled to the low-level Common 
Intermediate Language (CIL) [113], resulting in a code able to access the existing 
resources provided by the .NET platform. π-ADL.NET also supports runtime analysis 
of the concrete software architecture by executing the architecture description, thus 
seeking to preserve architectural integrity of the system at the implementation level. 
Despite its intention of bringing a formally founded ADL to an implementation 
platform, the main limitation of π-ADL.NET that makes it not suited for contemporary 
software systems regards the lack of counterparts when performing mappings from π-
ADL to CIL or to the .NET platform. As an example, behaviors and abstractions in π-
ADL communicate through connections, but these elements have no corresponding 
entities in CIL. For this reason, a .NET class was developed by hand to emulate π-ADL 
connections, with requisite threading and synchronization functionality. In turn, π-
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ADL connections are straightforwardly mapped to channels in Go, which are first-
class elements of the language and can be easily managed mainly when synchronizing 
processes. Furthermore, π-ADL.NET also lacks of support for distribution, a feature 
that is easily and natively supported by Go and typically required for contemporary 
software. 

In summary, it is possible to observe that the ensemble proposed in this work 
as the result of the integration of the π-ADL and Go stands out due to a series of 
important aspects. π-ADL and Go are not only formally founded languages, but they 
also have the same underlying formalism, the π-calculus process algebra. Such a 
common foundation allows for a straightforward mapping between elements of the 
languages, thereby fostering the understanding of these relationships and easing their 
implementation at the technological side. Finally, both π-ADL and Go languages are 
suitable candidates for coping with requirements posed by contemporary software 
systems at both architectural and implementation levels. On the one hand, π-ADL is a 
formal, theoretically well-founded language for comprehensively describing dynamic 
software architectures by encompassing both structural and behavioral viewpoints. 
On the other hand, Go is an easy general-purpose language designed to address the 
construction of scalable distributed systems and handle multicore and networked 
computer architectures. Therefore, integrating π-ADL and Go can contribute to 
minimize architectural drifts while bringing benefits to important activities such as 
automatic generation of implementation code and automated analysis of software 
architectures.  
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6 Verifying dynamic software architectures 
As previously discussed, the critical nature of many complex software systems 

calls for formal, rigorous architecture descriptions as means of supporting automated 
verification and enforcement of architectural properties and constraints. Model 
checking has been one of most used techniques to automatically analyzing software 
architectures with respect to the satisfactions of architectural properties [29, 30], even 
though it leads to an explosion of the state space due to the exhaustive exploration of 
all possible states of the system under verification. Such a state explosion problem 
becomes more severe for verifying the contemporary software systems due to their 
typical non-deterministic runtime behavior and the unpredictable conditions in which 
they operate. 

Formal verification techniques such as model checking require not only 
significant execution time and computational resources, but also an unneglectable 
effort from architects. This is one of the major reasons that often hinders the adoption 
of formal-based techniques in software industry, as revealed in a recent survey in this 
context [18]. Therefore, providing affordable, computationally efficient approaches for 
rigorously verifying properties in dynamic software architectures is a major concern. 

In order to cope with the aforementioned issues, this chapter presents the 
work15 on the use of statistical model checking (SMC) to support the formal analysis of 
dynamic software architectures described in the π-ADL language while striving to 
reduce effort, computational resources, and time to perform this task [38]. Such an 
approach requires a stochastic execution model of the system, in which the choice of 
the next action to execute is done according to a probabilistic distribution. With a 
stochastic system, a property to be verified might be satisfied by some executions and 
not be satisfied by some others. In the proposed approach, a number of stochastic 
simulations of that system is executed and the approximated probability of the system 
to meet the property under verification is evaluated. It is worth mentioning that 
requiring the system execution to be probabilistic is not a limitation because dynamic 
software systems can be reasonably described by assigning probabilities for new 
components to appear or for the existing components to fail and be disconnected, for 
example. Moreover, probability distributions can be used to model input values. 

Besides an executable probabilistic model of the system, the proposed SMC-
based approach requires a language for expressing properties to be verified and a 

15 This work was conducted in collaboration with researchers from IRISA-UBS (Vannes, France) and 
INRIA Rennes Bretagne Atlantique (Rennes, France). 
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monitor for deciding them on finite traces. The particular nature of dynamic software 
systems is hat architectural elements (components or connectors) may appear, 
disappear, be connected or be disconnected at runtime. Therefore, expressing 
behavioral and structural properties regarding a dynamic software architecture needs 
to take into account architectural elements that are dynamically created and removed, 
i.e., they may exist at a given instant in time and no longer exist at another. To cope
with these characteristics, this work also introduces DynBLTL, a novel logic and
notation aimed to express properties in dynamic software architectures [41]. DynBLTL
was designed to handle the absence of an architectural element in a given formula
expressing a property by means of the undefined value (U), which is returned when
reading values from components that are no longer in the system. DynBLTL and the
SMC-based approach itself were implemented as a plug-in for PLASMA [114, 115], a
flexible, modular statistical model checker.

The remainder of this chapter is structured as follows. Section 6.1 specifies how 
to formalize execution traces of dynamic software architectures. Section 6.2 presents 
how to formally express properties to be verified. Section 6.3 describes the toolchain 
developed to support the verification of dynamic software architectures by using the 
SMC approach. Finally, Section 6.4 briefly discusses related works. 

6.1 Representing traces of dynamic software architectures 
As discussed in Section 2.1, typical operations performed on dynamic software 

architectures comprise creating, removing, attaching, and detaching components and 
connectors. Exchanging values among such architectural elements can be considered 
as one of the main indicators of behavior in a software architecture at runtime, so that 
a value exchange can lead the system from a given state to another. 

In the SMC-based approach proposed in this work, a state of a dynamic software 
architecture is represented by a directed graph g = (V, E) comprising a set of finite 
nodes V and a finite set of edges E. Each node v ∈ V represents an architectural element 
(component or connector) of the system. In turn, each edge e ∈ E represents a 
communication channel between two architectural elements and is labeled y the 
values exchanged between the nodes. The set of all possible values is represented by 
Val, which contains the undefined value U to represent the absence of a value. More 
specifically: 

− Each node v ∈ V is defined by a tuple (id, T, C) in which id is a globally 
unique identifier for the architectural element, T is the declared type of 
the architectural element, and C is a finite set representing its 
connections. id(v) returns the identifier for node v, C(v) denotes the set of 
connections of the node v, and v.c denotes a connection c ∈ C(v). 

− Each edge e ∈ E connecting two nodes in the graph is labeled by the 
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values exchanged between them. These values are contained into Val, the 
set of all possible values that can be exchanged between two nodes. 
Formally, E ⊂ {(v1.c1, x, v2.c2) | x ∈ Val ∧ ⋀ vi ∈ V ∧2

i = 1  ci ∈ C(vi)}. 

Given a state graph g, V(g) and E(g) respectively denote its sets of nodes and of edges. 

The SMC technique relies on checking multiple execution traces resulted from 
simulations of the system under verification against the specified properties. 
Therefore, as a simulation ω results in a trace σ composed of a finite sequence of states, 
ω can be defined as a sequence of state graphs gi (i ∈ ℕ). In the proposed approach, it 
important to distinguish between untimed traces and timed traces. An untimed trace σut 
is a simple sequence g0, g1, …, gn of states. In turn, a timed trace σ is a sequence ((t0, g0), 
(t1, g1), …, (tn, gn)) of states with timestamps t, such that ∀i ti ∈ ℝ ∧ ti ≤ ti+1. 

SMC allows verifying systems that are stochastic processes, in the mathematical 
sense. Therefore, we require that traces are produced by a stochastic process, i.e., each 
state in the trace is the restriction of a complete system state and the choice of next one 
is governed by a probability distribution at each state. For verifying timed systems, the 
system will eventually produce a state (ti, gi) with ti > M for any value M ∈ ℝ. In other 
words, the time converges towards +∞ during the execution of the system. 

As an example, consider a simple client-server architecture that dynamically 
adapts to the demand. In such a system, clients may appear and interact with a server 
by sending requests and receiving answers. It is assumed that each server can handle 
a limited number of clients (two in the example). If all servers have reached that limit 
and a new client appears, the systems spawns a new server to handle the new client. 
Whenever the client has completed its interaction with the server, it disconnects and 
disappears from the system. If a server has no client left, it is shut down and disappears 
from the system. At last, if the overall utilization of the servers is low, one tries to shut 
down some servers in order to save energy. This is done by reallocating clients so that 
some severs become unused. 

Figure 27 presents an illustration of an execution trace for a simple client-server 
system, made up client and server instances. Initially, only one server is present in the 
system, and a server has four connections (r1, r2, a1 and a2). At t = 5, three new clients 
appear and two of them are directly connected to the server. At t = 6, a new server 
spawns and connects to the third client, while the two first clients send their requests 
(requests and answers are represented as numbers). At t = 7, the client C2 receives the 
answer to its request while the client C3 sends a request to server S2. At t = 9, the client 
C3 receives the answer to its request and the client C2 has disappeared. At t = 10, the 
client C3 is relocated to server S1 and the server S2 is removed. 
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Figure 27 – Illustration of an execution trace for a simple client-server system 

Aiming at obtaining an execution trace from an architecture description in π-
ADL, the simulation emits explicit messages recording a set of actions on the state 
graph, namely: (i) add, which refers to the creation of an instance of an architectural 
element; (ii) link, which represents an unification of an output connection of a 
component/connector with an input connection of another component/connector; (iii) 
rdv, i.e., the sequential execution of a output prefixing action followed by an input 
prefixing action; and (iv) decompose, which stands for the dismantling of the 
architectural configuration. These actions and the respective conditions for their 
validity are summarized in Table 10. Enacting an action leads to a transition from a 
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given state graph g = (V, E) to a state graph g’ = (V’, E’). 

Table 10 – Summary of actions on a state graph g = (V, E) 

Action 
Correspondence to 
architectural level 

Description Condition 

add(v) 
Create an instance v 
of an architectural 
element 

Add a node v to the 
state graph 

link(v1.c1, v2.c2) 
Unify output 
connection v1::c1 to 
input connection v2::c1 

Link connection c1 of 
node v1 to connection c2 
of node v2 

vi ∈V ∧ ci ∈ vi 

(i = 1, 2) 

rdv(v1.c1, x, v2.c2) 

Send value x via 
connection v1::c1 and 
receive x via 
connection v2::c2 

Exchange value x 
between connection c1 

of node v1 and 
connection c2 of node v2 

vi ∈V ∧ ci ∈ vi  ∧  
∃x ∈ Val. 
(v1.c1, x, v2.c2) ∈ E 

(i = 1, 2) 

decompose()

Dismantle an 
architecture into 
composing 
architectural elements 

Decompose the 
architecture  ― 

6.2 Expressing properties about dynamic software architectures 
Mateescu and Oquendo [27] highlight that architecture descriptions using 

ADLs should cover not only structure and behavior of a software architecture, but also 
the required and desired architectural properties, in particular the ones related to 
consistency and correctness. The notation for expressing such properties must hence 
complement (or be part of) an ADL to specify and support verification of architecture-
related semantic properties. These properties can be (i) structural, e.g., cardinality of 
architectural elements, interconnection topology, etc., or (ii) behavioral, e.g., safety, 
liveness or fairness defined on actions of the system. As reported by Zhang et al. [29], 
most existing notations allow specifying only properties about components and their 
interfaces, types, and instances while few ones are expressive enough to specify 
properties regarding all architectural elements and configurations [21, 23, 27]. 

6.2.1 Underlying formalisms for expressing properties 

Most architectural properties to be verified by using model checking techniques 
are temporal [29], i.e., they are qualified and can be reasoned upon a sequence of system 
states along the time. Temporal properties typically verified in the context of software 
architectures are safety and liveness: safety properties usually state that something (bad) 
never happens while liveness properties state that something (good) will eventually happen 
or keeps happening. 

Zhang et al. [29] report that linear temporal logic (LTL) [116] has been often 
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used in the literature as underlying formalism for specifying temporal architectural 
properties and verifying them through model checking. LTL extends classical Boolean 
logic with temporal operators (a.k.a. modalities) that allow reasoning on the temporal 
dimension of the execution of the system. In this perspective, LTL can be used to 
express properties about the future of the execution (sequence of states), e.g., a 
condition that will eventually true, a condition that will be true until another fact 
becomes true, etc. LTL has been well studied along the years and it is known to be 
useful for verifying and specifying concurrent systems [117]. 

As SMC relies on simulation, it verifies bounded properties, i.e., properties that 
can be defined in terms of finite executions of the system under verification. While 
LTL-based formulas aim at specifying the infinite behavior of the system, a time-
bounded form of LTL called BLTL considers finite sequences of execution states of the 
system during a relative time interval [0, t]. The bounds are specified on temporal 
operators, e.g., the always operator. In LTL, this operator states that a property must be 
verified at each step of a (potentially infinite) trace, while in BLTL it has a bound and 
a state that the property must hold until the bound is reached.  

The basic syntax of BLTL is defined as follows: 

ϕ = ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ℱ tϕ | �tϕ | ψ�tϕ | �ϕ | κ 

where ∨, ∧ and ¬ are standard propositional logic operators and κ is a Boolean 
constant or an atomic proposition constructed from numerical constants, state 
variables, and relational operators. Four temporal operators are also defined: 

(i) � is the next operator. �ϕ means that the formula ϕ will be true in the
next step.

(ii) ℱ is the finally or eventually operator, which is bounded by a relative time
interval [0, t]. ℱ tϕ means that the formula ϕ will be true at least once in
the time interval [0, t].

(iii) � is the globally or always operator, which is bounded by a relative time
interval [0, t]. �tϕ means that the formula ϕ will be true at all times in the
time interval [0, t].

(iv) � is the until operator, which is bounded by a relative time interval [0, t].
In the time interval [0, t], ψ�tϕ means that either the formula ϕ is initially
true or ψ will be true until ϕ is true at the current or a future time.

Combining these temporal operators creates complex properties with interleaved 
notions of eventually (ℱ), always (�), and one thing after another (�). 
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6.2.2 A novel logic and notation for expressing properties in dynamic 
software architectures 

A key characteristic of dynamic software systems is the impossibility of 
foreseeing the exact set of architectural elements deployed at a given point of 
execution. Furthermore, it is of particular interest verifying that new components 
respect a particular behavior. Both LTL and BLTL are unable to handle this 
characteristic as they would require knowing the set of components that will appear 
prior to the execution and writing a dedicated formula for each of them. To tackle such 
a limitation, this work comes up with DynBLTL as a novel logic and notation for 
expressing linear temporal properties over traces of dynamic software architectures. 
DynBLTL can express the required behavior of new components by having quantifiers 
over the set of existing components. Aiming at specifying a behavior for the quantified 
components, DynBLTL allows interleaving quantifiers and temporal operators. In 
DynBLTL, all temporal operators are bounded, thereby making properties decidable on 
finite traces.  

DynBLTL is designed to handle the absence of an architectural element in a 
given formula expressing a property. In practice, this means that a Boolean expression 
can take three values, namely true, false or undefined (U). The undefined additional 
value refers to the fact that an expression may not be evaluated at a given execution 
state depending on the current runtime configuration of the system. This is necessary 
for situations in which it is not possible to evaluate an expression at the considered 
state, e.g., a statement about an architectural element that does not exist at that 
moment. As an example, the expression c1.req > 3.2 cannot be evaluated if the 
component c1 does not exist (as at t0 in Figure 27) or the connection c1.req is not 
involved in a communication at that state (as at t1 in Figure 27). 

DynBLTL is not typed, so that a property can be evaluated to any type, i.e., 
Boolean, integer, string or undefined. As SMC requires a Boolean value as the result 
of the evaluation of a property on a trace, a syntactical constraint on properties is 
added to enforce that the returned value is Boolean. For example, the until or isTrue 
operators always return a Boolean value. Consequently, the root operator of a property 
must be either until, isTrue or a Boolean combination of them. 

The semantics of a property ϕ is a function [[ϕ]] that takes a trace σ as argument 
and returns a value in Val. The semantics for a timed trace is defined as σ = ((t0, g0), (t1, 
g1), …, (tn, gn)). If the system is untimed, only temporal operators whose bound is 
expressed in steps can be evaluated. Assume that ϕ is a property in which all temporal 
operators’ bounds are expressed in steps. Evaluating an untimed trace σut = (g0, g1, ..., 
gn) falls back to evaluating a timed trace with the same states and arbitrary timestamps. 
Indeed, timestamps are only relevant for temporal operators whose bound is 
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expressed in time units. 

A property can be specified by a formula containing literals, identifiers referring 
to nodes and connections in the state graph, operations and comparisons, predefined 
functions, quantified expressions, and temporal operators. These elements are briefly 
described in Section 6.2.2.1 along with some examples in Section 6.2.2.2 using the 
WSN-based system depicted in Section 3.3. Appendix C shows the concrete syntax of 
DynBLTL in the Extended Backus-Naur Form (EBNF). 

6.2.2.1 DynBLTL elements 

Literals and identifiers. As basic elements, a formula expressing a property can 
contain (i) a literal, which can be a Boolean value, numerical value or a string, (ii) an 
identifier representing a node of the state graph, or (iii) a connection of a node of the 
state graph. The evaluation of these literals are as follows: 

− if ϕ is a literal l, then [[ϕ]](σ) = [[l]](σ) = l, i.e., the formula is evaluated to 
the respective value of l; 

− if ϕ is an identifier idt representing a node, then [[ϕ]](σ) = [[idt]]((t0, g0), 
(t1, g1), …, (tn, gn)) = true if there exists a node with that name at the 
current state, i.e., if ∃v ∈ V(gi) . id(v) = idt; otherwise, the formula is 
evaluated to U; 

− if ϕ refers to a connection c of a node v of a state graph (v.c), then [[ϕ]](σ) 
= [[v.c]]((t0, g0), (t1, g1), …, (tn, gn)) is evaluated to the only non-undefined 
value labeling any edge of the graph state gi attached to the connection 
v.c; otherwise, the formula is evaluated to U. 

Operations and comparisons. Arithmetic operations as well as inequalities and 
equalities are evaluated as usual or set as U if at least one argument is out of their 
definition domain. DynBLTL supports the usual arithmetic operators (+, –, *, /) and 
comparisons (<, <=, >, >=, =, !=). Note that both U != U and U = U are evaluated to U. 

Usual Boolean operators are also supported. The not operator works as usual 
on Boolean values and returns U with other values. The or operator returns true if at 
least one of the operands is evaluated to true, false if both operands are evaluated to 
false, and U otherwise. Note that it may return true even if one of the operands is U. 
Other usual Boolean operators are obtained as follows:  

ϕ1 and ϕ2 ≝ not (not ϕ1 or not ϕ2) 
ϕ1 implies ϕ2 ≝ not ϕ1 or ϕ2 

Functions. DynBLTL provides four predefined functions that can be used to 
explore the architectural configuration, i.e., the nodes of a state graph: 

− allOfType(T) returns a collection with all nodes of type T; 
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− areConnected(v1, v2) returns true if nodes v1 and v2 are connected by an 
edge in the state graph false if v1 and v2 exist in the state graph, but they 
are not connected by an edge, or U otherwise; 

− areLinked(v1.c1, v2.c2) returns true if the connection c1 of node v1 and the 
connection c2 of node v2 are connected by an edge in the state graph, false 
if both v1.c1 and v2.c2 exist in the state graph, but they are not connected 
by an edge, or U otherwise; and 

− lastValue(v.c) returns the last non-undefined value of the connection c 
of node v or U if its value was always undefined. 

Quantified expressions. In DynBLTL, three types of quantified expressions can 
be used to specify formulas expressing properties, namely the existential and universal 
quantified expressions traditionally used in predicate logic, as well as an additional 
quantifier for counting elements upon the satisfaction of a predicate. These quantified 
expressions comprise an identifier r, a function f that returns a collection of elements, 
and a formula ϕ with free occurrences of r. In the following, [[f]](σ) = e = {e1, …, en} and 
ϕ[r ← ei] refers to the formula ϕ where each free occurrence of r is replaced by the 
element ei. Quantifiers are defined as follows:  

− exists r : f ϕ returns true if ϕ[r ← ei] is evaluated to true for at least one 
element ei (1 ≤ i ≤ n) or to false if ϕ[r ← ei] is evaluated to false for all 
elements ei, or to U otherwise; 

− forall r : f ϕ returns true if ϕ[r ← ei] is evaluated to true for all elements 
ei (1 ≤ i ≤ n) or to false if ϕ[r ← ei] is evaluated to false for at least one 
element ei, or to U otherwise; 

− count r : f ϕ returns how many elements ei ∈ e evaluate ϕ[r ← ei] to true. 

Temporal operators. Similarly to traditional BLTL (see Section 6.2.1), DynBLTL 
provides four temporal operators, namely in, until, eventually before, and always 
during. These operators are bounded either by means of steps or time units. They are 
defined as follows: 

− The in operator evaluates its argument at a later point specified by the 
bound. If the bound is expressed in b steps (b ∈ ℕ), the trace is translated 
by that number of steps: 

[[in b steps ϕ]]((t0, g0), …, (tn, gn)) = [[ϕ]]((tb, gb), …, (tn, gn)) 

If the bound is expressed in terms of b time units (b ∈ ℕ), the trace is 
translated by the amount of time units provided as argument: 

[[in b time units ϕ]]((t0, g0), …, (tn, gn)) = [[ϕ]]((tk, gk), …, (tn, gn)) 

where k = min({0 ≤ i ≤ n | ti – t0 > b)}. 

− The until operator returns a Boolean value. An until expression is 
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evaluated to true if its right argument is evaluated to true within the 
bound and if the left argument is evaluated to true or to U until the right 
argument becomes true. Consider the following standard notations: 

σ ⊨ ϕ ≡ [[σ]](σ) = true 
σ ⊭ ϕ ≡ [[σ]](σ) = false16 

If the bound is expressed in steps: 

((t0, g0), …, (tn, gn)) ⊨ ϕ1 until b steps ϕ2 iff 
∃0 ≤ i ≤ b . ((ti, gi), …, (tn, gn)) ⊨ ϕ2  ∧ ∀0 ≤ j ≤ i . ¬((tj, gj), …, (tn, gn)) ⊭ ϕ1 

If the bound is express in time units: 

((t0, g0), …, (tn, gn)) ⊨ ϕ1 until b time units ϕ2 iff 
∃0 ≤ i ≤ n . (ti – t0 ≤ b) ∧ ((ti, gi), …, (tn, gn)) ⊨ ϕ2 ∧  

∀0 ≤ j ≤ i . ¬((tj, gj), …, (tn, gn)) ⊭ ϕ1 

− The eventually before operator can be defined by reusing the previous 
definition of the until operator as: 

eventually before b ϕ ≝ true until b ϕ 

− The always during operator can be defined by reusing the previous 
definition of the eventually before operator as: 

always during b ϕ ≝ not eventually before b ϕ 

Note that the value U is treated in a particular way when defining the until 
operator. Indeed, when U appears on the left side of until, it is treated as true. 
However, when it appears on the right side, it is treated as false. This choice was made 
for the sake of intuitiveness. For example, the property  

c1.req < 2 until 10 steps c2.req = 5 

can return true, even if c1.req < 2 evaluates to U during the ten steps. Therefore, 
evaluating to U on the left side of until does not invalidate the formula. However, if 
c1.req < 2 evaluates to false before c2.req = 5, then the whole expression is evaluated 
to false. 

 The isTrue operator enforces the evaluation of a property to a Boolean value. 
Formally: 

[[isTrue ϕ]](σ) = σ ⊨ ϕ 

This operator can be used to modify the behavior of the until operator. For example:  

                                                 
 

16 Note that if ϕ is not evaluated to a Boolean, then neither σ ⊨ ϕ nor σ ⊭ ϕ holds. 
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(isTrue c2.req < 2) until 10 steps c2.req = 5  

will evaluate to false if c2.req < 2 evaluates to U before c2.req evaluates to 5. Its dual 
operator is defined as: 

isNotFalse ϕ ≝ not isTrue not ϕ 

6.2.2.2 Example 

Consider the WSN-based system architecture depicted in Section 3.3. It is 
possible to express some interesting properties about such an architecture. For 
instance, one can ensure that all sensors must send data in less than three time units. 
Assuming that a sensor successfully holds measured data if they are positive values, 
such a statement can be expressed by the SendData(X) property, defined as: 

 
In this property, receiving data either from the sense input connection (data gathered 
by the sensor itself) or via the pass input connection (data received from a neighbor 
sensor) implies that data need to be sent via the measure output connection in less than 
three time units. As previously mentioned, the bound of X time units on the always 
during operator is need to ensure that the property can be decided on a finite trace. 
Therefore, the property checks only the first X time units of the execution trace. 

An important property to be verified is the correctness of the architectural 
model with respect to its main goal, i.e., warning upon the risk of flood (in the flood 
monitoring system) or detection of leakage (in the pipeline monitoring system). In this 
context, a false negative occurs when the system fails to make the expected prediction. 
This can be expressed by the FalseNeg(X,Y,Z) property, defined as: 

 
This property characterizes a false negative: the gateway component (Gw) predicts that 
there is a low risk for an anomalous event (imminent flood or leakage), but data 
received from sensors via the input connection data characterizes that such an event is 
actually happening. The parameters of this formula are X, the time during which the 
system is monitored, Y, the time during which the prediction of the gateway should 
hold, and Z, the maximum threshold considered for normal conditions. 

 Similarly, a false positive occurs when the system predicts an anomalous event 
that does not actually occur. This can be expressed by the FalsePos(X,Y,Z) property, 
defined as: 

always during X time units { 

forall s:allOfType(Sensor) { 

isTrue (s.sense > 0 or s.pass > 0) implies 

eventually before 3 time units s.measure > 0 

} 

}  

eventually before X time units { 

(Gw.alert = “low risk”) and (eventually before Y time units Gw.data > Z)  

}  
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The system is said to be correct if there are no false negatives nor false positives for the 
expected prediction anticipation (parameter Y). 

 Note that these three formulas are actually BLTL formulas as they involve 
simple predicates on the state. However, DynBLTL allows expressing properties about 
the dynamic architecture of the system. For example, suppose that one wants to check 
if a sensor is available, i.e., at least one sensor is connected to the gateway. More 
precisely, it is required that there is a wireless link connecting a sensor to a gateway, 
otherwise such a sensor needs to appear in less than Y time units. This can be expressed 
by the SensorAvailable(X,Y) property, defined as: 

 
The parameters of this formula are X, the time during which the system is monitored, 
and Y, the maximum time at which the sensor must appear. 

 Finally, suppose that one wants to check if a sensor is failing (i.e., its gathered 
measures are negative values), then it should be removed from the system in a 
reasonable amount of time. This disconnection is needed because a faulty sensor will 
not pass incoming measures neither will gather correct values. The removal of a given 
sensor component is characterized by the fact that it is not attached to a link connector. 
As sensors may appear or disappear during execution, the temporal pattern needs to 
be dynamically instantiated at each step for each existing sensor. This can be expressed 
by the RemoveSensor(X,Y) property, defined as: 

 
The parameters of this formula are X, the time during which the system is monitored, 

eventually before X time units { 

(Gw.alert = “anomaly detected”) and  

(always during Y time units not Gw.data > Z)  

}  

always during X time units { 

(not (exists l:allOfType(Link) areLinked(l.output, gw.data) 

 and (exists s:allOfType(Sensor) areLinked(s.measure, l.from)))) 

implies eventually before Y time units { 

exists l:allOfType(Link) areLinked(l.to, gw.data) 

and (exists s:allOfType(Sensor) areLinked(s.measure, l.from)) 

} 

}  

always during X time units { 

forall s:allOfType(Sensor) { 

(isTrue s.measure < 0) implies 

eventually before Y time units { 

not exists l:allOfType(Link) areLinked(s.measure, l.from) 

} 

} 

}  
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and Y, the maximum time at which the faulty sensor must appear as disconnected 
within the system. The RemoveSensor(X, Y) property cannot be stated in BLTL since it 
does not have a construct (such as the forall universal quantifier) for instantiating a 
variable number of temporal sub-formulas, where the number depends on the current 
state. 

6.3 Statistical model checking of π-ADL architectural models 
This section describes how to perform statistical model checking of π-ADL 

architecture descriptions. As SMC is a stochastic technique, the executable model 
representing the system needs to be stochastic, a feature that the π-ADL language does 
not possess. For this reason, it was necessary to provide a way of producing a 
stochastic executable model from π-ADL architecture descriptions, thus allowing for 
property verification using SMC.  

Section 6.3.1 describes how to make π-ADL architectural models stochastic 
whereas Section 6.3.2 presents the developed SMC-based toolchain to verify properties 
expressed in DynBLTL regarding dynamic software architectures described in π-ADL. 
Finally, Section 6.3.3 reports the results of some experiments on the computational 
effort for verifying properties regarding the WSN-based monitoring system described 
in Chapter 3. 

6.3.1 Stochastic execution of π-ADL architecture descriptions 

In π-ADL, non-determinism occurs in two different ways. First, whenever 
several actions are possible, any one of them can be executed as the next action, i.e., 
the choice of the next action to execute is non-deterministic. Second, some functions 
can be declared as unobservable (see Section 4.3), thus meaning that its internal 
operations are concealed at the architectural level. In this case, the value returned by 
the function is also non-deterministic because it is not defined in the model. As a 
stochastic process is required for performing SMC17 [118], the non-determinism of π-
ADL models are resolved by using probabilities. The following describes how to 
proceed in the aforementioned cases. 

Resolving non-determinism in the choice of the next action. The Go code from 
a π-ADL architecture description encodes architectural element (component or 
connector) as a concurrent goroutine. The communication between architectural 
elements takes place via a channel. If several communications are possible, the Go 
runtime chooses one of them to execute according to a FIFO (first-in, first out) policy. 

                                                 
 

17 It is worth mentioning that SMC also applies to non-stochastic systems [119]. 
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Such a policy is not suitable for SMC since it is necessary to specify how the next action 
is chosen. 

To support the stochastic scheduling of actions, a scheduler was implemented 
as a goroutine that controls all non-local actions, i.e., composition, decomposition or 
communication. Whenever an architectural element needs to perform a non-local 
action, it informs the scheduler and blocks until the scheduler responds. The scheduler 
responds with the action executed (if the component submitted a choice between 
several actions) and a return value, corresponding either to the reception side of a 
communication or a decomposed architecture. 

Figure 28 depicts the behavior of the scheduler. The scheduler waits until all 
architectural components (components and connectors) have indicated their possible 
actions. At this step, the scheduler builds a list of possible rendezvous by checking 
which declared unifications have both sender and receiver ready to communicate. For 
this purpose, the scheduler maintains a list of the active architectures and the 
corresponding unifications. The possible communications are added to the list of 
possible actions and the scheduler chooses one of them according to a probabilistic 
choice function. The scheduler then executes the action and outputs its effect to the 
statistical model checker. At last, the scheduler notifies the components and connectors 
involved in the action. 

Figure 28 – Working schema of the scheduler to support the stochastic execution of a π-ADL 
architectural model 

 

Resolving non-determinism in unobservable functions. Functions declared as 
unobservable require an implementation to allow simulating the model. In practice, 
this implementation is provided in form of a Go function whose return value can be 
determined by a probability distribution. Such an implementation relies on the Go 
libraries that implement usual probability distributions. In particular, such functions 
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can model inputs of the systems that have a known probabilistic value, i.e., input to a 
component, time to the next failure of a component, etc. 

6.3.2 An SMC-based toolchain to simulate and verify dynamic software 
architectures 

SMC techniques rely on the simulation of an executable model of the system 
under verification against a set of formulas expressing bounded properties to be 
verified (see Section 2.3). These elements are provided as inputs to a statistical model 
checker, which basically consists of (i) a simulator for running the executable model of 
the system under verification, (ii) a model checker for verifying properties, and (iii) a 
statistical analyzer responsible for calculating probabilities and performing statistical 
tests. 

Among the SMC tools available in the literature, PLASMA [114, 115] is a 
compact, flexible platform that enables users to create custom SMC plug-ins atop it. 
PLASMA incorporates in-built compilers to create bytecode for execution on its own 
stack-based machine, thereby contributing to increase the efficiency of the SMC 
procedure. PLASMA also offers three alternative modes for SMC, namely a simple 
Monte Carlo probabilistic algorithm [120], a Monte Carlo algorithm with Chernoff 
confidence bounds [60], and sequential hypothesis testing [54]. 

One of the outstanding features of PLASMA is the ability of developing plug-
ins atop the platform, so that users can take advantage of the PLASMA environment 
to create custom statistical model checkers. For instance, users who have developed 
their own model description language can use it with PLASMA by providing a 
simulator plug-in. Similarly, users can add custom languages for specifying properties 
and use the available SMC algorithms through a checker plug-in. Besides its efficiency 
and good performance results [115, 121], such a flexibility was one of the main reasons 
motivating the choice of PLASMA to serve as basis to develop the toolchain for 
specifying and verifying properties of dynamic software architectures described in π-
ADL. In addition, PLASMA has been applied to problems from different application 
domains and it is also used by several European projects [122]. 

Figure 29 provides an overview of the developed SMC-based toolchain18 for 
verifying properties of dynamic software architectures. The inputs for the process are 
(i) an architecture description in π-ADL and (ii) a set of properties specified in 
DynBLTL. By following the process described in Chapter 5, the architecture 
description in the π-ADL language is translated towards generating source code in the 

                                                 
 

18 The developed toolchain is publicly available at http://plasma4pi-adl.gforge.inria.fr. 
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Go programming language, but augmented with the state transition actions 
introduced in Section 6.1. Instrumenting the Go source code with these actions is 
necessary in order to allow generating execution traces upon the compilation and 
execution of such a code. These execution traces are provided as input to the simulator 
plug-in, which makes use of the SMC algorithms originally implemented in PLASMA. 

Figure 29 – Overview of the developed SMC-based toolchain for verifying properties 
expressed in DynBLTL regarding dynamic software architectures described in π-ADL 

 

As π-ADL architectural models do not have a stochastic execution, they are 
linked to a stochastic scheduler parameterized by a probability distribution for 
drawing the next action, as described in Section 6.3.1. Furthermore, existing 
probability distribution Go libraries are used to model inputs of system models as user 
functions. The program resulting from the compilation of the generated Go source 
code emits messages referring to transitions from a given state to another in case of 
addition, attachment, detachment, and value exchanges of architectural elements. 

Two plug-ins were developed atop the PLASMA platform, namely (i) a 
simulator plug-in that interprets execution traces produced by the generated Go 
program and (ii) a checker plug-in that implements DynBLTL. With this toolchain, a 
software architect is able to evaluate the probability of a π-ADL architectural model to 
satisfy a given property specified in DynBLTL. 

6.3.3 Quantitative evaluation 

In this section, some experiments aiming to quantitatively evaluate the 
efficiency of the proposed SMC-based approach to support the architectural analysis 
activity are reported. Considering that the literature already reports that PLASMA and 
its SMC algorithms outperform other existing approaches (c.f. [115, 121, 122]), the 
experiments concerned assessing how efficient is such an approach and toolchain to 
verify properties in dynamic software architectures. In the experiments, 
computational effort in terms of execution time and RAM consumption were chosen 
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as metrics, which were used to observe the performance of the toolchain when varying 
the precision of the verification. As PLASMA is executed upon a Java Virtual Machine, 
20 runs were performed for each precision value in order to ensure a proper statistical 
significance for the results. The experiments19 were conducted under GNU/Linux on 
a computer equipped with a quad-core 3 GHz processor and 16 GB of RAM. Time and 
RAM consumption measures were obtained by using the time utility from Linux.  

The toolchain was evaluated with the FalsePositive, SensorAvailable, and 
RemoveSensor properties described in Section 6.2.2.2 with predefined time units for the 
temporal operators. These properties were evaluated using the Chernoff algorithm 
[60] from PLASMA, which requires a precision and a confidence degree as parameters 
and returns an approximation of the probability with an error below the precision 
parameter, with the given confidence. A confidence of 95% and a precision ranging 
from 0.1 to 0.02 were chosen. Using descriptive statistics [53], Table 11 and Table 12 
show the minimum, maximum, average, and standard deviation values for the 
execution time (in seconds) and RAM consumption (in megabytes). 

Table 11 – Descriptive statistics for execution time of the analysis (in seconds) 

Property Precision Minimum Maximum Average 
Standard 
deviation 

FalsePositive(100, 3) 

0.10 49.69 59.49 54.49 2.2730 
0.05 182.19 199.80 192.50 4.8063 
0.04 293.65 335.97 301.32 9.7782 
0.03 512.89 563.13 528.36 13.8758 
0.02 1138.11 1233.96 1175.72 25.7600 

SensorAvailable(50, 2) 

0.10 16.68 18.14 17.68 0.4253 
0.05 58.30 62.67 59.58 1.0564 
0.04 88.59 96.15 90.42 1.6064 
0.03 153.80 159.89 156.16 1.5584 
0.02 340.90 363.49 350.06 7.6525 

RemoveSensor(100, 4) 

0.10 38.29 42.85 41.40 1.1708 
0.05 144.27 160.55 150.37 4.3215 
0.04 222.78 235.86 229.54 3.3158 
0.03 398.23 421.50 406.23 6.0654 
0.02 883.93 968.54 910.49 22.1756 

                                                 
 

19 The complete instructions on how to reproduce the performed experiments are publicly available at 
http://plasma4pi-adl.gforge.inria.fr/ 
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Table 12 – Descriptive statistics for RAM consumption (in megabytes) 

Property Precision Minimum Maximum Average 
Standard 
deviation 

FalsePositive(100, 3) 

0.10 1747 1885 1791 38.0714 
0.05 1721 1950 1812 61.4808 
0.04 1724 1973 1842 73.5887 
0.03 1706 2012 1858 85.3014 
0.02 1721 2023 1870 71.1738 

SensorAvailable(50, 2) 

0.10 1367 1585 1493 60.6001 
0.05 1531 1625 1583 34.7258 
0.04 1514 1627 1574 33.2827 
0.03 1511 1643 1579 35,7215 
0.02 1546 1634 1573 25.8882 

RemoveSensor(100, 4) 

0.10 1670 1821 1740 37.4755 
0.05 1749 1871 1799 33.1524 
0.04 1747 1856 1801 31.9481 
0.03 1726 1870 1815 41.5488 
0.02 1732 1974 1842 78.1475 

Figure 30 shows how the analysis time increases when the precision increases 
(i.e., the error decreases). As highlighted in Section 2.3, a higher accuracy of the answer 
provided by the statistical model checker requires generating more execution traces 
through simulations, thereby increasing the analysis time. In case of rare events, i.e., 
properties that have a very low probability to happen, a better convergence can be 
obtained by using dedicated methods [115]. The property regarding the sensor 
availability evaluated over a window of 50 time units requires less time than the other 
properties evaluated over a window of 100 time units because the analysis of each trace 
is faster.  
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Figure 30 – Effect of the precision variation in the analysis of three properties upon analysis 
time (measured in seconds) 

 

In Figure 31, it is possible to observe that the amount of RAM required to 
perform the analyses are nearly constant, thus meaning that the precision has no 
strong influence on the RAM consumption. This can be explained by the fact that SMC 
only analyzes one trace at a time. Therefore, it is possible to conclude that the proposed 
SMC-based approach and toolchain can be regarded as efficient with respect to both 
execution time and RAM consumption. 

Figure 31 – Effect of the precision variation in the analysis of three properties upon RAM 
consumption (in megabytes) 

 

6.4 Related work: Formal specification and verification of 
architectural properties in dynamic systems 

As far as it is concerned, this is the first work on the application of SMC to verify 
properties in dynamic software architectures. Therefore, the brief discussion presented 
in this section mainly concerns existing approaches on the specification of properties 
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in dynamic software systems, in contrast to the features exhibited by DynBLTL. 

Traditional versions of temporal logics such as LTL and BLTL are expressed 
over atomic predicates that evaluate properties to a Boolean value at every point 
execution. However, a key characteristic of dynamic software systems is the 
impossibility of foreseeing the exact set of architectural elements deployed at a given 
point of execution. Such traditional formalisms do not allow reasoning about elements 
that may appear, disappear, be connected or be disconnected during the execution of 
the system for two main reasons. First, specifying a predicate for each property of each 
element is not possible as the set of architectural elements may be unknown a priori. 
Second, there is no canonical way of assigning a truth value to a property about an 
element that does not exist at the considered point of execution. In addition, existing 
approaches to tackle such issues typically focus on behavioral properties, but they do 
not address structural properties [123]. On the other hand, some approaches assume 
that architectures are static [124]. DynBLTL overcomes these limitations by being an 
extension of BLTL able to cope with both structural and behavioral properties in 
dynamic software architectures, as well as to handle the absence of architectural 
elements by means of the undefined truth value (see Section 6.2.2). 

The Bandera specification language allows model checking multithreaded Java 
programs [125]. The dynamicity is handled by bounding the number of classes that 
can be dynamically created to be able to statically build a representation of the state 
space, but such an approach requires the user to annotate the Java code. Cho et al. [123] 
also proposed a logic for dealing with dynamic systems based on freeze quantifiers. In 
both cases, the logic cannot express architectural properties. The π-AAL language [27] 
was developed to express properties about π-ADL models, but its semantics is not 
suitable for performing SMC since properties are evaluated on each trace, not on the 
computation tree. 

An important part of the verification of dynamic systems deals with validation 
of reconfiguration operations and hence several works have provided ways to specify 
what a correct reconfiguration means. In the Mazzara and Bhattacharyya’s work [126], 
several frameworks for describing and analyzing dynamic reconfiguration are 
studied, but they do not handle logics similar to DynBLTL. The idea of interleaving 
quantifiers and temporal logics is not new and has been used in LTL(MSO) [127], for 
example, in which the number of constituents is constant throughout the execution 
and therefore such a logic is not applicable to dynamic systems. Basso et al. [128] 
express architectural properties with additional predicates encoding the state of the 
architecture, but this logic does not allow interleaving quantifiers (over sets) and 
temporal operators. Finally, Dormoy et al. [129] propose a logic where architectural 
properties are used as predicate and expressed through quantifiers, but quantifiers 
and temporal operators cannot be interleaved as DynBLTL allows for. 
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7 Conclusion 

Software systems have grown in size and complexity and are now an integrated 
part of every aspect of the society, including finance, transportation, communication, 
and health care. One of the most prominent ways of taming such a complexity is by 
means of a software architecture, which provides manageable, meaningful system 
abstractions and play a significant role in the achievement of both functional and 
quality requirements. Indeed, software architectures are quite useful in system 
development as they can be a cornerstone at both (i) design time, for verification and 
validation purposes, and (ii) runtime, for guiding the system implementation and 
contributing to avoid architectural erosion along the time. 

Dynamicity is increasingly becoming an intrinsic property of the contemporary 
systems, which operate on environments that are highly dynamic, subjected to a 
number of changes. Therefore, software architectures for these systems need to be 
dynamic to accommodate such changes, as well as to encompass evolution rules for a 
software system and its elements during runtime. In a dynamic software architecture, 
constituent elements may be created, interconnected or removed, or even may 
undergo a whole rearrangement at runtime, ideally with minimum or no disruption. 
For this reason, supporting dynamism is important mainly in the case of certain safety- 
and mission-critical systems, such as traffic control, energy, disaster management, 
environmental monitoring, and health systems. 

Due to its importance, dynamism shall be taken into account at all activities of 
the software architecture lifecycle. With respect to the architectural representation 
activity, most of the existing ADLs are not able to properly describe dynamic software 
architectures, either because they do not cover both structural or behavioral 
viewpoints or because they do not allow specifying the changes that can be performed 
over the architecture and its constituent elements. Another important issue in this 
context is the significant gap between the description and the implementation of a 
software architecture, a problem that becomes worse mainly as the architecture needs 
to evolve. 

Finally, a cumbersome issue in software architectures is the verification of 
architectural properties and constraints. Formal techniques such as model checking, 
albeit being able to precisely determine if a software system can satisfy properties 
related to user and quality requirements, suffer from limitations regarding scalability 
and required effort to perform such a task. As previously mentioned, this problem is 
exacerbated in the contemporary dynamic software systems for two main reasons, 
namely the non-determinism of their behavior caused by concurrency and the 
unpredictable environmental conditions in which they operate. This makes the 
traditional techniques used to verify properties in dynamic software architectures 
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unfeasible in terms of execution time and computational resources. 

7.1 Revisiting the proposal and its contributions 
In order to tackle the aforementioned problems, this work has proposed a 

formally founded framework intended to support dynamic software architectures and 
their representation, verification, and validation. These concerns are typically not 
addressed together at the state of the art. Figure 32 depicts the main constituents of the 
proposed framework (described in the previous chapters) and how they are related to 
the goals and research questions established in this work. In essence, the framework 
encompasses: (i) π-ADL, a formal language for describing software architectures under 
both structural and behavioral viewpoints; (ii) the specification of programmed 
dynamic reconfiguration operations; (iii) the automated generation of source code 
from architecture descriptions; and (iv) an SMC-based approach to formally express 
and verify properties in dynamic software architectures.  

Figure 32 – Main constituents of the proposed framework and correlation to goals and 
associated research questions 

 

The main contributions of this work are fourfold: (i) an ADL able to describe 
dynamic software architectures; (ii) an automated process to generate source code 
from architecture descriptions; (iii) an architecturally-driven, computationally efficient 
approach and toolchain to verify properties in dynamic software architectures; and 
(iv) a novel logic and notation to formally express properties in dynamic software 
architectures. Each one of these contributions is described in the following. 
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An ADL able to formally describe dynamic software architectures. As 
described in Chapter 4, the π-ADL language was endowed with architecture-level 
primitives for specifying programmed reconfiguration operations. In addition, two 
common approaches for enacting programmed dynamic reconfiguration were 
incorporated into π-ADL. The first approach is exogenous, in which it is possible to 
control all elements of the software architecture and apply the changes on the whole 
structure. In turn, the second approach is endogenous, in which the architectural 
elements themselves are able to manage dynamic reconfiguration actions. This has 
culminated in an expressive language able to describe both structure and behavior of 
a dynamic software architecture, as well as the reconfiguration operations that can be 
applied over it at runtime [35]. 

An automated process to generate source code from architecture descriptions. 

Chapter 5 presented the second main contribution of this work, the mapping of 
architecture descriptions in the π-ADL to implementation source code in Go. Such a 
mapping process resulted in an automated process for generating source code from an 
architecture description [35, 37], thereby tackling the existing gap between 
architectural and implementation levels, contributing to minimize the risk of 
architectural drifts, and allowing for the validation of the architecture itself. 

An architecturally-driven, computationally efficient approach and toolchain 

for verifying properties in dynamic software architectures. The third contribution, 
described in Chapter 6, regards the use of SMC to support the formal analysis of 
dynamic architectures expressed in π-ADL. To support the verification process, a 
toolchain was developed upon PLASMA, a flexible, modular statistical model checker, 
striving to reduce effort, computational resources, and time for performing such a task. 
As far as it is concerned, this is the first work on the application of SMC to verify 
properties in dynamic software architectures. 

A novel logic and notation for formally expressing properties in dynamic 

software architecture. At last, the fourth contribution of this work, also introduced in 
Chapter 6, is DynBLTL, a novel logic and notation intended to express properties in 
dynamic software architectures [41]. Aiming at overcoming the inability of existing 
notations available at the literature to deal with dynamicity concerns, DynBLTL was 
designed to take into account architectural elements that are created or removed at 
runtime, i.e., they may be present in the architecture at a given instant of time and be 
absent at another. This is achieved by means of the undefined truth value (U), to which 
a given formula expressing a property is evaluated when considering architectural 
elements that do not exist in the system at the current state. 
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7.2 Future work 
In spite of the contributions of this work described in Section 7.1, there are many 

other directions for ongoing and future work. Some of these directions described in 
Sections 7.2.1 and 7.2.2 respectively as short-term and long-term work. 

7.2.1 Short-term work 

Improvements on the developed tools. In the scope of this work, two main 
tools were developed, namely (i) the π-ADL textual editor (c.f. Section 5.2), intended 
to assist software architects in architectural representation and code generation, and 
(ii) the SMC-based toolchain to specify and verify properties in dynamic software 
architectures (c.f. Section 6.3). These tools will be constantly updated and improved, 
culminating in a development environment to assist software architects in activities 
such as description of dynamic software architectures, automated generation of source 
code, validation of software architectures by means of simulation, and verification of 
architectural properties. Furthermore, it is highly desirable providing π-ADL with a 
graphical notation that must be consistent and synchronized with the textual notation. 

Use of model-transformation metrics within the process for generating Go 

source code from π-ADL architecture descriptions. As the mapping from π-ADL to 
Go can be viewed as a model-to-text (M2T) transformation (i.e., the generation of 
textual artifacts from abstract models) [136], model transformation metrics available 
in the literature can be used to perform a quantitative evaluation of the process for 
generating Go source code from π-ADL architecture descriptions. A potential 
candidate to be used in this evaluation is the set of metrics introduced in the Nguyen’s 
work [137], which comprises Xtend-based M2T transformations. 

7.2.2 Long-term work 

Expansion of the SMC-based approach. An interesting investigation refers to 
the expansion of the SMC-based approach proposed in this work towards the 
specification and verification of properties in systems-of-systems (SoS), a class of 
systems resulted from the interaction among other distributed, heterogeneous 
independent systems (the so-called constituent systems) that cooperate to form a 
larger and more complex system towards the accomplishment of global goals [138]. 
Each constituent system accomplishes its individual goals and can contribute to the 
accomplishment of the global goals of the overarching SoS. However, the result of such 
an interaction is said to be more than the sum of the constituents as it enables the SoS 
to offer new functionalities that cannot be provided by any of these constituent 
systems working alone. SoS software architectures are inherently dynamic, i.e., they 
can be composed and reconfigured at runtime, as well as its concrete constituent 
systems may be partially known or even unknown at design time [139]. Therefore, the 
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DynBLTL logic and notation seems to be promising in this context as it can be able to 
cope with such a lack of prior knowledge about the constituent systems that compose 
an SoS software architecture, besides the dynamic appearance/disappearance of 
constituent systems within an SoS at runtime. In this work, π-ADL will be investigated 
as the ADL for describing SoS architectures, targeting mainly acknowledged SoS. 

Investigation on the use of models@runtime to support dynamic 

reconfiguration of software architectures. Models@runtime can be defined as the 
abstract representation of a system (including its structure and behavior) that exists in 
tandem with such a system during its execution [140]. Such an approach has been 
recently advocated as promising to support dynamic evolution of software systems 
mainly in cases of unanticipated changes unforeseen at design time [141]. Therefore, 
the intention is to investigate the applicability of models@runtime as means of 
supporting the ad-hoc, unforeseen dynamic reconfiguration of a software architecture. 
Models@runtime can also allow having traceable, manageable models representing 
the elements of a software architecture at both design time and runtime. Furthermore, 
the causal connection between the architectural and execution levels allows addressing 
how reconfiguration actions specified at the former can be reflected into the latter (and 
vice-versa) while maintaining consistency between them. In this work, 
models@runtime will be investigated as a technology for implementing the formal 
definition of π-ADL as a front-end for the translation from π-ADL to Go.  
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Appendix A – π-ADL Grammar 

This appendix describes the concrete textual syntax of the π-ADL language by 
using the Extended Backus-Naur Form (EBNF) meta-language [1], a notation for 
formally describing the context-free grammar of a language, i.e., its syntax. Section A.1 
presents the notation elements used hereinafter whereas Section A.2 presents the 
production rules forming the π-ADL grammar. 

A.1 Grammar notation 
The EBNF meta-language consists of terminal symbols, which are a sequence of 

one or more characters forming an irreducible element of the language, and non-
terminal production rules governing how a particular syntactic element can be legally 
formed in terms of terminal symbols. Syntactic elements have names that are used in 
production rules and they are distinguished from names and reserved words 
(keywords) in the language. Furthermore, the EBNF meta-language uses a set of meta-
symbols summarized in Table A-I. 

Table A-I – EBNF meta-symbols 

Meta-symbol Usage 

Right arrow (→) Definition of production rule: A → B is read as A is defined as B 

Pipe symbol (|) Alternative choice between elements in production rule 

Brackets ([ and ]) Optional occurrence of element in production rule 

Asterisk character (∗) Multiple occurrences of element in production rule 

Plus character (+) At least one occurrence of element in production rule 

Ampersand character (&) 
Any occurrence order of elements in production rule: 
A&B denotes that both AB and BA sequences of the elements  
A and B are valid 

Ellipses (…) Character range 

Parentheses Element grouping 

In the EBNF specification of the π-ADL grammar, reserved words and terminal 
symbols of the language are expressed in a typewriter font whereas names of 
production rules are typed in the italic form. It is important to highlight that names of 
production rules and attributes in this specification seek to be representative and self-
explanatory. 

As an example, consider the three following production rules: 
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The ArchitectureDescription rule refers to an architecture description composed of a set 
of architectural elements (defined by the ArchitecturalElement rule), at least one 
architecture (defined by the Architecture rule), and exactly one behavior declaration 
(defined by the BehaviorDeclaration rule). An architectural element can be either a 
component or a connector, respectively defined by the Component and Connector rules. 
A component is declared by using the component keyword and it comprises an 
identifier (represented by the Identifier rule). Optionally, a component can also take as 
input a list of parameters, each one defined by the Parameter rule. Within the definition 
of this architectural element (delimited by braces), one can have in sequence: 

− declaration of zero or more types defined by the TypeDeclaration rule; 
− declaration of zero or more connections defined by the 

ConnectionDeclaration rule; 
− declaration of zero or more variables defined in the VariableDeclaration 

rule; 
− optional declaration of a protocol defined by the ProtocolDeclaration rule; 

and 
− declaration of exactly one behavior defined by the BehaviorDeclaration 

rule. 

  

ArchitectureDescription → 
ArchitecturalElement∗ 
Architecture+ 
BehaviorDeclaration 
 
ArchitecturalElement → Component | Connector 
 
Component → 
component Identifier is abstraction([Parameter (, Parameter)∗]) { 

TypeDeclaration∗ 
ConnectionDeclaration∗ 
VariableDeclaration∗ 
[ProtocolDeclaration] 
BehaviorDeclaration 

} 
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A.2 π-ADL production rules 

ArchitectureDescription → 
ArchitecturalElement∗ 
Architecture+ 
BehaviorDeclaration 

ArchitecturalElement → Component | Connector 

Component → 
component Identifier is abstraction([Parameter∗ (, Parameter)∗]) { 

TypeDeclaration∗ 
ConnectionDeclaration∗ 
VariableDeclaration∗ 
[ProtocolDeclaration] 
BehaviorDeclaration 

} 

Connector → 
connector Identifier is abstraction[Parameter∗ (, Parameter)∗]) { 

TypeDeclaration∗ 
ConnectionDeclaration∗ 
VariableDeclaration∗ 
[ProtocolDeclaration] 
BehaviorDeclaration 

} 

TypeDeclaration → type Identifier is ValueType 

ConnectionDeclaration → connection Identifier is ConnectionMode (ValueType) 

ConnectionMode → in | out 

VariableDeclaration → Identifier is ValueType 

ProtocolDeclaration → 
protocol is { 

(ProtocolAction∗ (| ProtocolAction)∗ ProtocolAction∗) (∗ | +) 
} 

ProtocolAction → (∗ via Identifier Action ValueType )∗ 

Action → send | receive 

BehaviorDeclaration → 
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behavior is { 

BehaviorClause∗ 
} 

BehaviorClause → 
   TypeDeclaration 
| Prefix 
| Choice 
| Composition 
| Decomposition 
| Recurse 
| IfThenElse 
| Statement 
| Inaction 
| Iteration 

Prefix → InputPrefix | OutputPrefix | SilentPrefix 

InputPrefix → via Identifier receive Parameter 

OutputPrefix → via Identifier send AbstractExpression 

SilentPrefix → unobservable 

Parameter → Identifier : ValueType 

Choice → 
choose { 

BehaviorClause+ 
(or BehaviorClause+)+ 

} 

Composition → 
compose { 

[(BehaviorClause | ElementInstantiation | ElementReference | VariableRef)+ 

(and (BehaviorClause | ElementInstantiation | ElementReference | VariableRef))∗] 
} [UnificationClause] 

UnificationClause → 
where { 

(UnificationElem)∗ 
} 

UnificationElem → Unification | VariableRef 
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Decompostion → Identifier := decompose Identifier 

Recurse → SelfRecurse  

SelfRecurse → behavior([AbstractExpression (, AbstractExpression)*]) 

Inaction → done 

Iteration →  
iterate VariableRef by Identifier 
[from Identifier initially InitialValue] 
accumulate { 

BehaviorClause∗ 
} 

InitialValue → Composition | EmptyList | EmptyChoice | AbstractExpression 

EmptyList → []ValueType 

EmptyChoice → choose{} 

Statement → 
    VariableDeclaration 
| ExplicitProjection 
| Assignment 
| FunctionDeclaration 
| FunctionCall 
| While 
| For 
| Return 
| Unobservable 

ExplicitProjection → project Identifier as Parameter (, Parameter)∗ 

Assignment → VariableAssignment | CollectionAddition 

VariableAssignment → VariableRef = AbstractExpression 

CollectionAddition → VariableRef add (AbstractExpression | Unification) 

FunctionDeclaration → 
Identifier is function([Parameter (, Parameter)∗]) [: ValueType] { 

BehaviorClause∗ 
} 

FunctionCall → Identifier([AbstractExpression (, AbstractExpression)∗]) 
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Return → return AbstractExpression 

IfThenElse → 
if AbstractExpression then { 

BehaviorClause∗ 
} ElseIf∗ 
[Else] 

ElseIf → 
else if AbstractExpression then { 

BehaviorClause∗ 
} 

Else → 
else { 

BehaviorClause∗ 
} 

While → 
while AbstractExpression do { 

BehaviorClause∗ 
} 

For → 
for (VariableAssignment ; LogicalExpression ; VariableAssignment) do { 

BehaviorClause∗ 
} 

Unobservable → unobservable 

Architecture → 
architecture Identifier is abstraction([Parameter (, Parameter)∗]) { 

TypeDeclaration∗ 
BehaviorDeclaration 

} 

ElementInstantiation → Identifier is FunctionCall 

ElementReference → Identifier is AbstractExpression 

Unification → ConnectionAccess unifies ConnectionAccess 

ConnectionAccess → VariableRef :: Identifier 

ValueType → BaseType | ConstructedType | Identifier 
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BaseType →  
NaturalType | IntegerType | RealType | BooleanType | StringType | AnyType 

NaturalType → Natural 

IntegerType → Integer 

RealType → Real 

BooleanType → Boolean 

StringType → String 

AnyType → Any 

ConstructedType → Tuple | View | Set | Sequence 

Tuple → tuple[ValueType (, ValueType)∗] 

View → view[LabeledType (, LabeledType)∗] 

LabeledType → Identifier : ValueType 

Set → set[ValueType] 

Sequence → sequence[ValueType] 

AbstractExpression → Expression | ConstructedValue 

Expression → LogicalExpression 

LogicalExpression → EqualityExpression (|| | &&) EqualityExpression 

EqualityExpression → RelationalExpression (== | !=) RelationalExpression 

RelationalExpression → ArithmeticExpression (>= | <= | > | <) ArithmeticExpression 

ArithmeticExpression → Term (+ | –) Term 

Term → Factor (∗ | / | mod) Factor 

Factor → (Expression) | UnaryExpression | AtomicElement 

UnaryExpression → !AtomicElement 

AtomicElement → LiteralElement | VariableRef | FunctionCall 

VariableRef → Identifier([ AbstractExpression ])∗ 
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LiteralElement → IntegerLiteral | RealLiteral | StringLiteral | BooleanLiteral | SelfLiteral 

IntegerLiteral → Number 

RealLiteral → RealNumber 

StringLiteral → String 

BooleanLiteral → true | false 

SelfLiteral → self 

ConstructedValue → FunctionCall | TupleValue | ViewValue 

TupleValue → tuple[AbstractExpression (, AbstractExpression)∗] 

ViewValue → view[Identifier : AbstractExpression (, Identifier : AbstractExpression)∗] 

Number → (0…9)+ 

RealNumber → Number.Number 

Identifier → (a…z | A…Z | _) (a…z | A…Z | _ | 0…9)* 

String →  « any ASCII character » 

A.3 References 
[1] ISO/IEC 14977:1996(E). ISO/IEC International Standard for Information 

Technology – Syntactic metalanguage, Extended BNF. Geneva, Switzerland: 
ISO/IEC, 1996. 
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Appendix B – The π-ADL textual editor 

This appendix provides a description about the implementation of a textual 
editor for the π-ADL language. Section B.1 concerns the main underlying technologies 
used for developing the editor. In turn, Section B.2 presents the editor itself and its 
main constituent elements. 

B.1 Preliminaries 
The choice of using a development environment based on the Eclipse platform 

[1] to construct the new π-ADL tools was motivated by its widespread use for 
developing software and good support in terms of open-source tools and frameworks. 
Moreover, as Eclipse is based on the Java programming language, it takes advantage 
of the portability capabilities provided by such a language, thereby allowing its use in 
multiple operating systems and hardware platforms. 

Among the most relevant Eclipse frameworks, the Eclipse Modeling 
Framework (EMF) [2] is an open-source framework used for model-driven software 
development and it has been the cornerstone of related technologies and other 
frameworks. EMF provides facilities for generating code and building tools and 
applications based on structured models. The typical workflow for these tasks by using 
the EMF facilities encompasses the construction of the models, code generation and 
customization, and the implementation of the application itself. Therefore, EMF can 
be seen as the middle ground between abstract models and concrete programming 
artifacts. 

The (meta)model used for representing models in EMF is Ecore. In an Ecore 
model, classes are model entities with attributes (each one with a name and a data type) 
and relationships (references) among each other. From these elements, EMF allows 
using instances of the classes defined in Ecore to describe a model of the system and 
then generating its respective code. In this perspective, all frameworks, tools, and 
applications built upon EMF have an underlying model based on the Ecore 
(meta)model. In the last years, EMF has been the basis for the construction of several 
tools and frameworks for developing software. Among them, Xtext [3] is a well-known 
open-source, highly customizable framework for developing domain-specific 
languages (DSLs). Xtext covers all aspects of a complete language structure by parsing 
textual models written in such a language and allows generating code from it in 
another language. 
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B.2 The Xtext-based π-ADL textual editor 

B.2.1 The π-ADL grammar 

The main artifact used as input by Xtext for generating the π-ADL infrastructure 
is a grammar specification in the Extended Backus-Naur Form (EBNF) [4]. This 
grammar is a set of production rules (or simply rules) describing the form of the elements 
that are valid according to the language syntax. When compiling this grammar 
specification, Xtext generates the respective Ecore metamodel and a Java class 
corresponding to each production rule. 

Figure B-1 shows an excerpt of the π-ADL grammar that was specified based on 
the π-ADL production rules described in Appendix A. Rules start with their respective 
name followed by a colon and end with a semicolon. In Figure B-1, line 1 indicates that 
the current grammar reuses an Xtext grammar with common terminal symbols 
(org.eclipse.xtext.common.Terminals), such as identifiers (ID) and integer numbers. 
The ArchitectureDescription rule (lines 5 to 9) corresponds to an architecture description 
itself, which is composed of a set with zero or more architectural elements (represented 
by the ArchitecturalElement rule), at least one architecture declaration (represented by 
the Architecture rule), and exactly one behavior declaration referring to the controlling 
behavior (represented by the BehaviorDeclaration rule). In turn, the ArchitecturalElement 
rule (lines 11 to 13) define that an architectural element can be either a component or 
a connector, respectively defined by the Component and Connection rules. The syntax of 
the specification of a component is defined by the Component rule (lines 15 to 23): it is 
declared by using the component keyword and comprises the name attribute, which is 
represented by the terminal ID defined in the Xtext terminals grammar. Optionally, a 
component can also take a list of parameters as input, each one defined by the 
Parameter rule and separated by commas (line 17). Within the definition of the 
architectural element (delimited by braces), one can have in sequence: 

− declaration of zero or more types defined by the TypeDeclaration rule 
(line 18); 

− declaration of zero or more connections defined by the 
ConnectionDeclaration rule (line 19); 

− optional declaration of a protocol defined by the ProtocolDeclaration rule 
(line 20); and 

− declaration of exactly one behavior defined by the BehaviorDeclaration 
rule (line 21). 
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Figure B-1 – Excerpt of the π-ADL grammar specified in the Xtext framework 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 

grammar fr.irisa.archware.PiADL with org.eclipse.xtext.common.Terminals 

 

generate piADL ‘‘http://www.irisa.fr/archware/PiADL’’ 

 

ArchitectureDescription: 

archElements+=ArchitecturalElement* 

archs=Architecture+ 

cbehavior=BehaviorDeclaration 

; 

 

ArchitecturalElement: 

Component | Connector 

; 

 

Component: 

‘component’ name=ID ‘is’ ‘abstraction’ 

‘(’ (parameters+=Parameter (‘,’ parameters+=Parameter)*)? ‘)’ ‘{’ 

typeDecl+=TypeDeclaration* 

connections+=ConnectionDeclaration* 

protDecl=ProtocolDeclaration? 

Behavior=BehaviorDeclaration 

‘}’ 

; 

 

Figure B-2 shows a Class Diagram in the Unified Modeling Language (UML) 
representing part of the π-ADL metamodel rooted upon the ArchitectureDescription 
class. Despite it is possible to generate an Ecore-based language metamodel from its 
grammar specification, some developers do not regard this practice as a good one since 
metamodels are at a higher abstraction level than the concrete syntax model. 
Nonetheless, it was opted for starting from the π-ADL grammar specification and then 
generating its corresponding metamodel since such a specification was almost 
complete from previous versions of the language. 
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Figure B-2 – UML Class Diagram representing part of the part of the π-ADL metamodel 

 

B.2.2 Automatic generation of the π-ADL infrastructure 

In order to automatically generate the π-ADL language infrastructure, Xtext 
uses a script written in the Modeling Workflow Engine (MWE2) DSL to configure the 
generation of its artifacts. This script (also automatically created by Xtext) is used by 
the framework to derive a specification from the π-ADL grammar compatible with the 
ANTRL parser generator [5], which is used for generating the parser of the language. 
As depicted in Figure B-3, Xtext generates the following artifacts upon running the 
script: (i) a Java implementation of a parser, which is automatically generated by 
ANTRL and is responsible for the syntactic analysis of the textual description; (ii) an 
Ecore-based metamodel defining the abstract entities of the language and the 
relationships among them; (iii) a class for implementing the Go source code generator; 
and (iv) an Eclipse-based code editor for assisting the textual description of a software 
architecture in the π-ADL language. In addition, Xtext creates an abstract syntax tree 
(AST) from the parsed π-ADL textual model and it generates the respective Java classes 
to persist such an AST. 
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Figure B-3 – Artifacts generated by Xtext from the π-ADL grammar specification 

 

Although the Java programming language can be used for customizing the 
generated artifacts, Xtext fosters the use of Xtend [6], a fully Java-interoperable 
programming language featuring a more compact, easier to use syntax, as well as 
advanced features such as type inference and lambda expressions. As the AST model 
needs to be continuously traversed, Xtend provides useful mechanisms for 
straightforwardly doing this while being easy to use and allowing for a better readable 
code. Moreover, as Xtend programs are compiled to plain Java code, they can access 
all of the libraries available in Java, thus allowing these languages to coexist 
seamlessly. 

B.2.3 Validations 

Once an architecture description is checked as correct by the parser, it might 
still have errors as its overall correctness cannot always be determined during the 
parsing procedure, thereby requiring a semantic analysis to be performed on the model. 
For this purpose, the Xtext framework provides means of constructing validators, i.e., 
classes that contain methods (validation rules) implementing additional constraint 
checks over the abstract elements of the current model. Despite Xtext provides some 
default validators (e.g., for checking that two entities have the same name), it also 
enables developers to implement custom validators by extending the base validation 
classes that come with the framework. 

Xtext performs validation by invoking each Xtend method annotated with the 
@Check directive and passing all instances that have a compatible runtime type to each 
method. In the body of such methods, the semantic checks are implemented for the 
element passed as parameter. If a semantic check fails, trigger warning or error 
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messages appear in the textual editor while making the architecture description. Table 
B-I summarizes the main error/warning conditions checked by the implemented 
validation methods. 

Table B-I – Error/warning conditions checked by the implemented validation methods 

Target element Warning error/condition Severity 

Architecture description Duplicate names of components, connectors, and 
architectures within the architecture description  Error 

Architectural element Architectural element has no declared connections Warning 

Architectural element Architectural element has no specified protocol Warning 

Architectural element 
Inconsistencies between connection declaration 
and protocol specification (e.g., in terms of data 
types and/or directions) 

Error 

Architectural element Protocol has undeclared connection Error 

Architectural element Behavior of architectural element is empty Warning 

Type declaration Name of the declared type starts lower cased Warning 

Architectural element 
Inconsistencies between a prefix within a behavior 
and a connection declaration (e.g., in terms of data 
types and/or directions) 

Error 

Variable assignment Target variable within assignment is undeclared Error 

Explicit projection Tuple to be projected is undeclared Error 

Function call Function call refers to an undeclared function Error 

Function declaration Function is declared with return type and there is 
no return statement in its body Warning 

Connector Connector behavior is unobservable Warning 

Choice behavior Alternative branch in a choice behavior contains no 
recursion or inaction instruction Error 

Architecture Duplicate names of architectural element instances Error 

Architecture Instance refers to an undeclared architectural 
element Error 

Architecture Absence of unifications between architectural 
elements Error 

Architecture Connection elements in unification are both 
component or connector instances Error 

Architecture Unification is not from an output connection to an 
input connection Error 

Architecture Unification does not comprise input/output 
connections of the same type Error 

Architecture Unification refers to an undeclared connection Error 
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B.2.4 Interpreting expressions 

In order to describe the behavior of components and connectors, a software 
architect can make use of expressions that are similar to the ones used in programming 
languages, e.g., logical, relational, equality, and arithmetic expressions. Determining 
the data types handled by such expressions is important for ensuring that an 
expression value sent via a connection is the one expected, i.e., its type is equal to the 
type specified when declaring such a connection. However, type checking cannot be 
performed during parsing (thus requiring a semantic analysis) and expressions are 
resolved at runtime, i.e., their value is calculated while they are described. As Xtext is 
mainly concerned with syntactic analysis and it does not support expression 
resolution, an interpreter and a validator were developed in Xtend for handling 
expressions in π-ADL architecture descriptions. 

As the first step, a type provider implemented as an Xtend class was developed 
aiming to provide the type of a given expression. This class contains a set of typeOf 
methods that return the type of a given expression received as input. Four basic 
situations are possible when determining the type of an expression: 

(i) When the type of the expression does not depend upon the types of its sub-
expressions. Negation, logical, equality, and relational expressions will 
always return a Boolean value whereas atomic values have their types 
directly determined by their literals. 

(ii) When the type of expression depends upon the operation and its operands. In 
this case, other situations are possible: 

− the division operation will always return a real value, regardless 
the operands; 

− the multiplication, modulus, and minus operations will return a 
real value if one of the operands is a real value or an integer value 
otherwise; 

− the sum operation will return a string value if one of the operands 
is a string value, a real value if one of the operands is a real value, 
or an integer value otherwise. 

(iii) When the expression is an assignment expression. The type of the expression 
is determined by the declared type of the variable to which the value will 
be assigned. 

(iv) When the expression is a function call. The type of the expression is 
determined by the return type specified when declaring the function. 

The expression interpreter of π-ADL was implemented as another auxiliary 
Xtend class. This interpreter contains a method called interpret that receives an 
expression as input and determines its type by using the typeOf methods implemented 
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in the type provider class. After identifying the atomic values of the operands and 
converting them to conventional Java primitive types, the interpretation method 
performs the respective operations given by the operands, similarly to what is done 
when evaluating an expression by using a typical programming language. 

At last, the expression validator of π-ADL was implemented as another Xtend 
class in order to perform the semantic type checking for expressions. The methods of 
this class are annotated with the @Check directive and then called at runtime in 
conjunction with the validation methods that check the conditions shown in Table B-
I. Table B-II summarizes the main error conditions checked by the implemented 
expression validation methods. All of these methods trigger error messages when their 
respective semantic checks fail. 

Table B-II – Error conditions checked by the implemented expression validation methods 

Target expression Error condition 

Negation expression Operand is not a Boolean value 

Logical expression Both operands are not Boolean values 

Equality expression Both operands are not Boolean values 

Relational expression Both operands are not of the same type or they are Boolean values 
Multiplication, 
division, and 
modulus operations 

Both operands are not numeric values 

Minus operation Both operands are not numeric values 

Sum operation Both operands are not neither numeric nor string values 

Variable assignment The type of the value to be assigned is not equal to the type of the 
variable (defined when declaring it) 

Conditional prefix The type of the guard is not Boolean 
Conditional 
statement The type of the guard is not Boolean 

While loop The type of the condition is not Boolean 

For loop The type of the stop condition is not Boolean 

B.2.5 Features of the π-ADL textual editor 

These are some useful features provided by Xtext to the generated π-ADL 
textual editor: 

− error and warning alerts while describing the architecture, thus enabling 
architects to early detect and fix errors and potential problems on the 
architecture description as well as allowing for saving time and mental 
effort to correct these errors; 
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− syntax highlighting, which allows for making distinction between 
keywords of the language (reserved words) from identifiers allowed for 
use; 

− auto formatting, accessed with the Ctrl + Shift + F keyboard shortcut; 
− content assist (accessed with the Ctrl + Space bar keyboard shortcut), 

which provides suggestions on how to complete a given 
statement/expression based on the syntactic rules; and 

− automatic build on save, which allows automatically generating code from 
the architecture description when it is saved in the language editor. 
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Appendix C – DynBLTL notation 

This appendix describes the concrete textual syntax of the DynBLTL notation 
by using the Extended Backus-Naur Form (EBNF) meta-language [1], a notation for 
formally describing the context-free grammar of a language, i.e., its syntax. Section A.1 
presents the notation elements used hereinafter whereas Section A.2 presents the 
production rules forming the DynBLTL grammar. 

C.1 Grammar notation 
The EBNF meta-language consists of terminal symbols, which are a sequence of 

one or more characters forming an irreducible element of the language, and non-
terminal production rules governing how a particular syntactic element can be legally 
formed in terms of terminal symbols. Syntactic elements have names that are used in 
production rules and they are distinguished from names and reserved words 
(keywords) in the language. Furthermore, the EBNF meta-language uses a set of meta-
symbols summarized in Table A-I. 

Table A-I – EBNF meta-symbols 

Meta-symbol Usage 

Right arrow (→) Definition of production rule: A → B is read as A is defined as B 

Pipe symbol (|) Alternative choice between elements in production rule 

Brackets ([ and ]) Optional occurrence of element in production rule 

Asterisk character (∗) Multiple occurrences of element in production rule 

Plus character (+) At least one occurrence of element in production rule 

Ellipses (…) Character range 

Parentheses Element grouping 

In the EBNF specification of the DynBLTL grammar, reserved words and 
terminal symbols of the language are expressed in a typewriter font whereas names of 
production rules are typed in the italic form. It is important to highlight that names of 
production rules and attributes in this specification seek to be representative and self-
explanatory.  
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C.2 DynBLTL production rules 

Node → Identifier 

Connection → Identifier.Identifier 

Function → Identifier([Value (, Value)∗]) 

Value →  
Value ArithmeticOperator Value | -Value | Connection | Function | Node | Literal 

Predicate → Value ComparisonOperator Value | Value 

ArithmeticOperator → + | - | / | * 

ComparisonOperator → = | != | < | <= | > | >= 

Bound → RealLiteral time units | IntegerLiteral steps 

Property → 
    exists Identifier : Function Property 
| count Identifier : Function Property 
| in Bound Property 
| Property until Bound Property 
| isTrue Property 
| not Property 
| Property and Property 
| Property or Property 
| Predicate 

Literal → IntegerLiteral | RealLiteral | BooleanLiteral | StringLiteral 

IntegerLiteral → Number 

RealLiteral → RealNumber 

BooleanLiteral → true | false 

StringLiteral → String 

Number → (0…9)+ 

RealNumber → Number.Number 

Identifier → (a…z | A…Z | _) (a…z | A…Z | _ | 0…9)* 

String →  « any ASCII character » 
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