
HAL Id: tel-01426223
https://theses.hal.science/tel-01426223v1

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-Player Stochastic Games with Perfect and Zero
Information
Edon Kelmendi

To cite this version:
Edon Kelmendi. Two-Player Stochastic Games with Perfect and Zero Information. Other [cs.OH].
Université de Bordeaux, 2016. English. �NNT : 2016BORD0238�. �tel-01426223�

https://theses.hal.science/tel-01426223v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

par Edon Kelmendi

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Two-Player Stochastic Games with Perfect and Zero Information

Date de soutenance : 02 décembre 2016

Devant la commission d’examen composée de :
Véronique Bruyère . . . Professeur, Université de Mons Examinatrice
Laurent Doyen Chargé de recherche, CNRS LSV-ENS Cachan Rapporteur
François Dufour Professeur, INP Bordeaux Directeur de thèse
Hugo Gimbert Chargé de recherche, CNRS LaBRI Bordeaux Directeur de thèse
Mahesh Viswanathan Professuer, University of Illinois Rapporteur
Marc Zeitoun Professeur, Université de Bordeaux Président

2016

title Two-Player Stochastic Games with Perfect and Zero Information

abstract We consider stochastic games that are played on �nite graphs.
The subject of the �rst part are two-player stochastic games with perfect infor-
mation. In such games the two players take turns choosing actions from a �nite
set, for an in�nite duration, resulting in an in�nite play. The objective of the
game is given by a Borel-measurable and bounded payo� function that maps
in�nite plays to real numbers. The �rst player wants to maximize the expected
payo�, and the second player has the opposite objective, that of minimizing the
expected payo�. We prove that if the payo� function is both shift-invariant and
submixing then the game is half-positional. This means that the �rst player has
an optimal strategy that is at the same time pure and memoryless. Both players
have perfect information, so the actions are chosen based on the whole history.

In the second part we study �nite-duration games where the protagonist
player has zero information. That is, he gets no feedback from the game and con-
sequently his strategy is a �nite word over the set of actions. Probabilistic �nite
automata can be seen as an example of such a game that has only a single player.
First we compare two classes of probabilistic automata: leaktight automata and
simple automata, for which the value 1 problem is known to be decidable. We
prove that simple automata are a strict subset of leaktight automata. Then we
consider half-blind games, which are two player games where the maximizer
has zero information and the minimizer is perfectly informed. We de�ne the
class of leaktight half-blind games and prove that it has a decidable maxmin
reachability problem.

keywords stochastic games, half-positional, shift-invariant, submixing, prob-
abilistic automata, leaktight automata, simple automata, half-blind games, maxmin
reachability

ii

titre Jeux Stochastiques à Deux Joueurs à Information Parfaite et Zéro

abstrait On considère des jeux stochastiques joués sur un graphe �ni. La
première partie s’intéresse aux jeux stochastiques à deux joueurs et information
parfaite. Dans de tels jeux, les joueurs choisissent des actions dans ensemble
�ni, tour à tour, pour une durée in�nie, produisant une histoire in�nie. Le but
du jeu est donné par une fonction d’utilité qui associe un réel à chaque histoire,
la fonction est bornée et Borel-mesurable. Le premier joueur veut maximiser
l’utilité espérée, et le deuxième joueur veut la minimiser. On démontre que
si la fonction d’utilité est à la fois shift-invariant et submixing alors le jeu est
semi-positionnel. C’est-à-dire le premier joueur a une stratégie optimale qui est
déterministe et sans mémoire. Les deux joueurs ont information parfaite: ils
choisissent leurs actions en ayant une connaissance parfaite de toute l’histoire.

Dans la deuxième partie, on étudie des jeux de durée �ni où le joueur protag-
oniste a zéro information. C’est-à-dire qu’il ne reçoit aucune information sur le
déroulement du jeu, par conséquent sa stratégie est un mot �ni sur l’ensemble
des actions. Un automates probabiliste peut être considéré comme un tel jeu
qui a un seul joueur. Tout d’abord, on compare deux classes d’automates proba-
bilistes pour lesquelles le problème de valeur 1 est décidable: les automates leak-
tight et les automates simples. On prouve que la classe des automates simples
est un sous-ensemble strict de la classe des automates leaktight. Puis, on consid-
ère des jeux semi-aveugles, qui sont des jeux à deux joueurs où le maximiseur a
zéro information, et le minimiseur est parfaitement informé. On dé�nit la classe
des jeux semi-aveugles leaktight et on montre que le problème d’accessibilité
maxmin est décidable sur cette classe.

mots-clés jeux stochastiques, demi-positionnel, shift-invariant, submixing,
automates probabilistes, automates leaktight, automates simples, jeux demi-
aveugles, accessibilité maxmin

iii

laboratoire d’accueil

Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Unité Mixte de Recherche CNRS (UMR 5800)
351, cours de la Libération F-33405 Talence cedex,
France

iv

résumé Les jeux sont des modèles mathématiques permettant de modéliser
des prises de décision rationnelles. Les décideurs peuvent être en compéti-
tion ou coopérer. Le domaine d’étude qui concerne les jeux, la théorie des
jeux, est déjà très bien établie. Ses applications concernent de nombreux do-
maines, y compris l’économie, la science politique, la psychologie, la biologie,
l’informatique et la logique.

Très généralement, dans un jeu, les joueurs choisissent des actions, et en le
faisant changent l’état du jeu. En �n de compte, en fonction des actions qui ont
été prises et de la suite d’états par laquelle le jeu passe, chaque joueur reçoit un
un certain paiement. Les joueurs visent à maximiser ce paiement.

Les questions essentielles qui sont étudiées sont les suivantes: combien les
joueurs peuvent-ils gagner, quelle est la meilleure suite d’actions à prendre
(stratégies), y at-il des points d’équilibre (choix de stratégie où aucun joueur
n’a d’incitation à changer sa stratégie).

Au cours des dernières décennies, avec le développement de l’informatique,
les problèmes algorithmiques liés à par ces questions ont naturellement gagné
en importance: est-il possible de calculer combien les joueurs peuvent gagner,
la meilleure stratégie, les points d’équilibre etc. et si oui, à quel point est-il
di�cile d’e�ectuer ces calculs? Cette thèse aborde ces questions.

Parce que la notion de jeu est fondamentale et ajustable à la modélisation
de nombreuses situations, il existe de nombreux types de jeux qui ont des pro-
priétés très di�érentes et qui nécessitent des méthodes di�érentes pour être
étudiés.

Nous considérons des jeux qui sont: un ou deux joueurs, somme nulle, à
durée �nie ou in�nie, discrets, stochastiques et tour à tour, qui ont un nombre
�ni d’états et un nombre �ni d’actions pour les deux joueurs. Nous représentons
le jeu par un graphe �ni, dont les sommets représentent les états du jeu et dont
les arcs sont les actions que les joueurs peuvent prendre.

Les jeux sont classés en fonction de certaines de leurs propriétés de base. Tout
d’abord, le nombre de joueurs: un jeu peut avoir seulement un joueur, deux
joueurs ou plus, un ensemble �ni mais �xe de joueurs (ces jeux sont surtout
utilisés en biologie). Nous regarderont les jeux à un et deux joueurs ici.

Il ya des jeux où les joueurs peuvent coopérer entre eux, et ceux où il n’ya
aucune raison de le faire. Les jeux à somme nulle sont des jeux où la somme
des gains que chaque joueur reçoit est toujours égale à zéro. Par exemple, dans
un jeu à somme nulle, un joueur reçoit le montant exact que son adversaire
perd: il reçoit x alors que son adversaire reçoit −x. En particulier, les jeux à
deux joueurs où un joueur gagne ou perd, i.e. il n’y a pas de match nul, sont
zéro-somme, par exemple, le papier-ciseaux-pierre est à somme nulle. Tous les
jeux de cette thèse sont à somme nulles, il n’y a donc pas de coopération entre
les joueurs.

v

Dans cette thèse, nous nous concentrons uniquement sur les jeux avec un
ensemble �ni d’états et un ensemble �ni d’actions. Dans la littérature, les jeux
avec un ensemble in�ni d’états et d’actions sont également étudiés, en partic-
ulier dans la théorie des ensembles descriptifs.

Les jeux que nous étudierons sont discrets, c’est-à-dire que les joueurs choi-
sissent leurs actions à intervalle discret. Outre les jeux discrets, il ya des jeux
continus aussi. Là, l’état du jeu change en continu, par exemple selon une équa-
tion di�érentielle.

Une autre façon de classer les jeux est de savoir si, après un joueur joue une
action, l’état du jeu change d’une manière déterministe ou aléatoire, en suivant
une certaine loi de probabilité. Les premiers sont des jeux déterministes, les
seconds des jeux stochastiques et ils sont le sujet de cette thèse.

Dans la première partie de la thèse nous parlons de jeux à durée in�nie, et
dans la deuxième partie de la thèse de jeux à durée �nie mais arbitraire.

Les jeux peuvent être simultanés ou joués à tour de rôle. Un jeu est simultané
si les joueurs choisissent une action indépendamment de chaque autre en même
temps, puis l’état du jeu est modi�é en fonction de l’état actuel et de cette paire
des actions. Un jeu est joué à tour de rôle si les joueurs prennent leurs décisions
l’un après l’autre. Par exemple, les échecs se jouent à tour de rôle, le premier
joueur fait un mouvement, puis l’autre joueur et ainsi de suite. D’autre part,
dans ciseaux, papier, pierre, les deux joueurs jouent en même temps, il s’agit
d’un jeu simultané. Nous ne considérerons que les jeux tour à tour.

Une autre propriété importante est l’information que les joueurs ont quand
ils prennent des décisions. Dans le jeu d’échecs, par exemple, les deux joueurs
ont toutes les informations qui existent, i.e. ils voient l’échiquier, et ils connais-
sent tous les deux les mouvements qui ont été faits. Nous disons qu’ils sont
parfaitement informés ou qu’il s’agit d’un jeu à information parfaite. Tous les
jeux ne sont pas comme ça, un contre-exemple notoire est le poker.Au poker,
les joueurs n’ont qu’une vue partielle du jeu. Ils connaissent les cartes qu’ils
tiennent mais pas celles de leurs adversaires. Les joueurs ne savent pas exacte-
ment l’état du jeu, mais seulement un ensemble d’états dans lequel il pourrait
être. Ces jeux sont appelés jeux avec em information partiel.

En informatique et en logique, les jeux sont souvent utilisés comme un outil
théorique, par exemple les jeux Ehrenfeucht-Fraïssé dans la théorie des modèles
�nis, les jeux de parité dans véri�cation, etc., mais il existe une autre utilité
importante des jeux dans informatique et véri�cation, c’est-à-dire la synthèse
du contrôleur.

On part d’un système que l’on veut contrôler. En e�ectuant des actions, le
contrôleur change l’état du système, mais l’environnement peut également mod-
i�er l’état du système. Supposons que nous voulons contrôler le système tel que
il n’entre jamais dans un ensemble interdit d’états, ou qu’il passe par quelque
état in�niment souvent. De nombreux scénarios réels peut être vus d’une telle

vi

manière, comme un contrôleur et environnement qui change l’état du système,
tour à tour. Ceci peut être modélisé comme un jeu avec deux joueurs, contrôleur
et environnement. Le contrôleur souhaite réaliser l’objectif de ne jamais en-
trer dans l’état interdit, ou voir un état distingué in�niment souvent, alors que
l’environnement est son adversaire et essaie de faire le contraire, e.g. à entrer
dans l’état interdit. Le problème de savoir si le contrôleur peut atteindre son ob-
jectif est la question de savoir si Controller a une stratégie gagnante dans un tel
jeu. En construisant e�cacement la stratégie, nous synthétisons ce que le con-
trôleur du système devrait faire pour atteindre son objectif, indépendamment
de l’environnement.

Cette application centrale soulève l’importance des jeux à information par-
tielle. En e�et, dans de nombreux cas, le contrôleur ne peut pas connaître l’état
exact du système, par exemple il est aidé par des capteurs qui sont défectueux
parfois, ou le système est contrôlé par une interface qui ne révèle pas tous ses
rouages internes (ce qui est en fait la norme).

Cependant, les jeux à informations partielle sont beaucoup plus di�ciles à
calculer que leurs équivalents à information parfaits. Dans plusieurs cas, un
problème qui est relativement facile de décider pour les jeux à information par-
faite, devient indécidable sur les jeux à informations partielle.

Comme il est habituellement fait en mathématiques, a�n de faire la lumière
sur le cas général, des cas spéciaux sont considérés, nous allons faire de même
dans cette thèse. Dans le but de comprendre un peu mieux les jeux à information
partielle, nous étudier deux cas extrêmes spéciaux, l’information parfaite, où
les joueurs connaissent l’état exact du jeu, et l’information zéro, où le joueur
protagoniste n’a aucune information sur l’état du jeu. En d’autres termes, il
joue les actions aveuglément, sans obtenir aucune indication sur l’état du jeu.

La thèse est divisée en deux parties, la première partie s’intéresse aux jeux à
deux joueurs et information parfaite tandis que la deuxième partie s’intéresse
aux jeux information zéro.
Jeux à information parfaite.
Dans les jeux stochastiques à deux joueurs et information parfaite, l’ensemble

des états est divisé en deux, l’ensemble des états qui sont contrôlés par le joueur
1, et l’ensemble des états qui sont contrôlés par son adversaire, le joueur 2.

Si le jeu est dans un état qui est contrôlé par le joueur 1 (joueur 2), alors c’est
le joueur 1 (joueur 2) qui choisit une action. Suite à cette action, l’état du jeu
change en fonction d’une distribution de probabilités sur l’ensemble des états,
qui dépend de l’état actuel et de l’action qui a été prise par le joueur 1 (joueur 2).
Ainsi, le jeu se déroule, produisant une séquence in�nie de paires action, état,
appelée l’histoire.

La fonction de paiement, associe à cette séquence de paires états action un
nombre réel x. Le joueur 1 reçoit le montant x et son adversaire reçoit le mon-
tant−x. Le joueur 1 préfère les histoires qui donnent des paiements plus grands,

vii

alors que son adversaire les histoires qui donnent des paiements plus petits, les
joueurs sont appelés le maximiseur et le minimiseur, respectivement.

A ce degré de généralité, les jeux comme celui que nous avons décrit ci-
dessus ne possèdent pas de propriétés algorithmiques intéressantes, celles-ci
commencent à émergent uniquement sous certaines restrictions de la fonction
de paiement. Notamment, si la fonction de paiement est Borel-mesurable et
bornée, alors ces jeux stochastiques ont des valeurs [Martin, 1998]. Cela signi�e
qu’il existe un point d’équilibre. Plus précisément, cela signi�e que le minmax
de paiement attendu est égal au maxmin de paiement attendu, cette quantité est
appelée la valeur du jeu. La valeur minimale de paiement attendu est l’in�mum
sur les stratégies du minimiseur, du supremum sur les stratégies du maximiseur,
de paiement attendu dans le cadre des stratégies choisies; Symétriquement pour
maxmin. Cela nous permet de parler de stratégies ε-optimales, i.e. des straté-
gies qui assurent que le paiement attendu est à une distance ε de la valeur du
jeu.

Dans les jeux à information parfaite, les stratégies qui sont à la disposition
des joueurs sont des fonctions qui mappent les histoires �nies du jeu (séquences
�nies des paires état action) à une action, ou potentiellement une distribution
de probabilités sur l’ensemble des actions, selon laquelle l’action est choisie.

Beaucoup de jeux comme ci-dessus ont été étudiés dans la littérature, y com-
pris les jeux de moyenne-payo�, les jeux à prix réduit, les jeux de parité, certains
jeux de compteur etc. Le théorème de Martin garantit que tous ces jeux ont des
stratégies ε-optimales pour tous ε > 0, mais pas nécessairement de stratégies
optimales (stratégies 0-optimales). Mais comme il s’avère, dans de nombreux
jeux classiques, y compris ceux que nous avons mentionnés ci-dessus, les deux
joueurs possèdent des stratégies optimales. Plus intéressant, les stratégies sont
très simples. En fait, ils ont des stratégies optimales les plus simples possibles:
des stratégies positionnelles.

En général, les stratégies sont des objets compliqués, la quantité d’information
dont les joueurs ont besoin est potentiellement in�nie, mais pour beaucoup de
jeux intéressants, les stratégies optimales n’ont pas besoin d’avoir de mémoire.
Les stratégies sont appelés positionnelles si elles n’utilisent ni la mémoire ni la
puissance de la randomisation, ce sont des stratégies qui toujours choisissent
la même action unique en fonction de l’état du jeu, i.e. ce sont des fonctions de
l’ensemble des états vers l’ensemble des actions.

Les jeux dans lesquels les deux joueurs ont toujours des stratégies optimales
et positionelles sont appelés positionnels, Les jeux dans lesquels le maximiseur
a toujours une stratégie positionnelle optimale sont appelés semi-positionnels.

La positionnalité et la semi-positionnalité sont des propriétés importantes,
d’autant plus que cela implique que seul un ensemble �ni de stratégies doivent
être prises en compte lors de la recherche de la stratégie optimale. Ceci avec
le fait que beaucoup des jeux sont positionnels, soulève la question de savoir si

viii

nous pouvons déterminer sous quelles conditions sur la fonction de paiement
un jeu est (semi) positionel. Une réponse à cette question donnerait une preuve
uni�ée de la positionnalité; au lieu de comprendre pourquoi un jeu particulier
est (semi) positionnel, nous comprendrions quelle est la raison commune qui
garantit la (semi) positionnalité.

Dans le travail dans la littérature qui suit cette direction de la recherche, se
présentent deux conditions qui sont imposées à la fonction de paiement: shift-
invariance et submixing.

Une fonction de paiement est shift-invariant (invariant par décalage) si le
déplacement de l’histoire in�nis en supprimant n’importe quel pré�xe �ni ne
change pas la valeur de la fonction. Une fonction de paiement est submixing si
pour chaque trois histoires in�nies de paires état action x, y, z, tel que z est un
shu�ing de x et y, le paiement de z est au plus le maximum de paiement de x
et le paiement de y.

Dans [Gimbert, 2007], Gimbert prouve que dans les jeux stochastiques à un
joueur (processus de décision Markov), si la fonction de paiement est à la fois
submixing et shift-invariant alors le joueur dispose d’une strategie optimale
positionnelle. Pour les jeux déterministes de deux joueurs, avec des fonctions
de paiement qui mappent à {0, 1}, Kopczyński prouve que si le paiement est
shift-invariant et submixing, alors le jeu est semi-positionnel en [Kopczyński,
2006, 2009].

Nous généralisons ces résultats dans [Gimbert and Kelmendi, 2014b] en prou-
vant que dans les jeux stochastiques à deux joueurs, si la fonction de paiement
est à la fois shift-invarant et submixing, alors le jeu est semi-positionnel, i.e. le
maximiseur a une stratégie optimale qui est positionnelle.
Jeux à information zéro.
La deuxième partie de cette thèse se caractérise par le joueur protagoniste, le

maximiseur, ayant zéro information.
Les objets que nous étudierons, tout comme dans la première partie, sont

des jeux stochastiques joués sur des graphes �nis. Les di�érences seront les
suivantes. Dans la première partie, nous traiterons des jeux de durée in�nie,
tandis que dans la seconde, les jeux auront une durée �nie mais arbitraire.

Dans la première partie, le maximiseur, est parfaitement informé. Cela sig-
ni�e qu’il peut fonder ses décisions sur toute l’histoire du jeu jusqu’à ce point.
Il choisit parmi les stratégies qui sont des fonctions qui mappent des histoires
�nies à une action.

Dans un jeu à information partielle, l’histoire �nie ne constitue pas une suite
�nie d’états par lesquels le jeu a passé du début, mais plutôt une suite �nie
d’ensembles d’états. Donc, le joueur ne connaît pas l’état réel du jeu, mais
il connaît un ensemble d’états, auquel appartient l’état réel du jeu. Les jeux
d’informations parfaites sont les jeux où les ensembles qui sont révélés au joueur

ix

sont des singletons. Les jeux d’information zéro (ou jeux aveugles) sont les jeux
où l’ensemble qui est révélé au joueur est l’ensemble complet des états.

Nous allons considérer deux jeux avec information zéro, d’abord le plus sim-
ple: les automates �nis probabilistes, que nous considérons comme un jeu à
un joueur et information zéro avec objectifs d’accessibilité. Deuxièmement, la
généralisation d’automates probabilistes aux jeux à deux joueurs avec des objec-
tifs d’accessibilité où l’adversaire est parfaitement informé, que nous appelons
jeux semi-aveugles.

Les automates �nis probabilistes (AFP) sont une généralisation d’automates
�nis déterministes (AFD) sur les mots, introduits pour la première fois par Rabin
dans [Rabin, 1963]. Un AFD, après avoir lu une lettre, se transforme de façon
déterministe en un nouvel état. Quand un AFP lit une lettre, l’état suivant est
choisi selon une distribution de probabilité sur l’ensemble des états qui dépend
sur l’état actuel et la lettre lue. Un AFD accepte un mot ou pas, alors qu’un
automate probabiliste accepte un mot avec une certaine probabilité.

Les automates probabilistes ont de nombreuses applications, mais malheureuse-
ment la majorité des problèmes sont indécidable. Par exemple, le problème du
vide est indécidable [Paz, 1971]. C’est le problème qui demande s’il existe un
mot qui est accepté avec une probabilité au moins 1/2.

Le problème que nous étudions est le problème de la valeur 1. On demande si
pour tout ε > 0 il existe un mot �ni qui est accepté avec une probabilité d’au
moins 1− ε. Ce problème est indécidable [Gimbert and Oualhadj, 2010].

Néanmoins, des e�orts récents ont été déployés pour identi�er des classes
intéressantes d’automates où le problème de la valeur 1 est décidable. Notam-
ment la classe des automates leaktight dans [Fijalkow et al., 2012], et la classe
des automates simples dans [Chatterjee and Tracol, 2012], qui inclut toutes les
autres classes connues d’automates avec problème de valeur 1 décidable. En
outre, ces deux papiers utilisent des techniques qui sont tout à fait di�érentes
pour atteindre leurs conclusions.

Nous allons prouver que la classe des automates simples est incluse stricte-
ment dans la classe des automates leaktight [Fijalkow et al., 2015].

Les jeux semi-aveugles sont des jeux stochastiques à deux joueurs qui sont
joués sur un graphe �ni avec l’objectif d’accessibilité. Le maximiseur essaie
d’atteindre l’ensemble des états �naux mais il a zéro information (il est aveugle)
comme le joueur dans un automate �ni probabiliste et joue de même un mot
�ni. Son adversaire, le minimiseur, est parfaitement informé.

Le problème que nous considérons est celui de l’accessibilité maxmin. On
demande si pour tout ε > 0 il existe une stratégie pour le maximiseur (i.e. un
mot �ni) de sorte que contre toutes les stratégies du minimiseur la probabilité
d’atteindre l’ensemble des états �naux est d’au moins 1− ε.

Le cas particulier d’un jeu semi-aveugle où le minimiseur n’a jamais de choix,
est un automate probabiliste et le problème d’accessibilité maximin se réduit au

x

problème de la valeur 1. Puisque ce dernier est indécidable, le premier est aussi
indécidable.

C’est la raison principale pour laquelle ces problèmes d’accessibilité limite-
sûrs ne sont pas considérés dans la littérature, pour les jeux informations par-
tielles, car même pour le cas le plus simple d’automates probabilistes, il est
indécidable. La situation est di�érente pour l’accessibilité presque-sûre (posi-
tif) [Bertrand et al., 2009; Nain and Vardi, 2013; Chatterjee et al., 2012]. C’est
la question de savoir s’il existe une stratégie pour le maximiseur de sorte que
contre toutes les stratégies du minimisuer, la probabilité d’atteindre l’ensemble
des états �naux est 1 (positive).

Pour les jeux semi-aveugles nous prouvons que le problème d’accessibilité
maxmin est décidable dans une classe de jeux que nous appelons des jeux semi-
aveugles leaktight [Kelmendi and Gimbert, 2016].

xi

C O N T E N T S

1 introduction 3
1.1 Stochastic Games on Finite Graphs 3
1.2 Games with Perfect Information 6
1.3 Games with Zero Information 8

1.3.1 Probabilistic automata 8
1.3.2 Half-blind games . 9

i games with perfect information 11
2 submixing and shift-invariant games 13

2.1 Overview . 14
2.2 Two Player Stochastic Games 20

2.2.1 Strategies . 22
2.2.2 Probability measure . 23
2.2.3 Values and optimal strategies 24
2.2.4 A Half-positional example 26
2.2.5 Martingales . 27

2.3 Shift-Invariant and Submixing Payo� Functions 30
2.4 Existence of ε-subgame-perfect Equilibria 31

2.4.1 Weaknesses and the reset strategy 34
2.4.2 Locally-optimal strategies 36
2.4.3 Finitely many resets . 43
2.4.4 The reset strategy is 2ε-subgame-perfect 50

2.5 Half-Positionality . 55
2.6 Examples . 60

2.6.1 Comments . 64
2.7 Conclusion . 65

ii games with zero information 67
3 probabilistic automata 69

3.1 Overview . 70
3.2 Decidable Classes . 77

3.2.1 Leaktight automata . 79
3.2.2 Simple automata . 86

3.3 Leaktight Automata are a Superset 90
3.4 Stamina, the tool . 98

4 half-blind leaktight games 101
4.1 Overview . 102

xiii

Contents

4.2 The Belief Monoid . 107
4.2.1 De�nitions and values 107
4.2.2 An Example . 110
4.2.3 Deterministic strategies for Min su�ce 111
4.2.4 The belief monoid algorithm 112
4.2.5 The extended belief monoid 117

4.3 Leaks . 118
4.4 k-decomposition Trees . 121
4.5 Soundness . 128
4.6 Completeness . 137
4.7 Power of Strategies and Examples 142
4.8 Conclusion . 150

Bibliography 153

xiv

A C K N O W L E D G M E N T S

Finishing this thesis would have been impossible without the help of many peo-
ple. Firstly, I would like to express my deep gratitude to my advisers François
Dufour and Hugo Gimbert, for their continuous support throughout the years.
Everything that I know about this subject, I have learned from Hugo. I would
like to thank him primarily for his immense patience, as well as for his guid-
ance, and support — in every sense of the word. In retrospect, choosing to do
an internship with Hugo, was an excellent decision whose natural continuation
was this resulting thesis.

My sincere thanks also goes to the members of the jury. Especially to Laurent
Doyen and Mahesh Viswanathan, for the time that they have spent to read this
thesis and for their very helpful comments and suggestions. I thank Véronique
Bruyère and Marc Zeitoun for agreeing to take part in the jury of my thesis.

I am tremendously grateful to the members of the formal methods group at
LaBRI. Most have been my teachers. They introduced me to this part of com-
puter science, for which I am very thankful. I will never forget their continuous
support that started with the �rst day I came here, as well as their patience with
a foreigner that did not speak French.

I would like to also thank my colleagues, my fellow o�ce mates, and espe-
cially my collaborators Nathanaël, Youssouf, and Denis.

When one moves to a di�erent country, one has to form a new social circle.
During these years I have met a variety of very kind people, to whom I am
grateful. The moments that we shared, will forever be cherished, they are some
of my best memories. On the other side, the connections that we keep despite
moving abroad are just as important. On this note I would like to thank my
friends Betim and Eni.

Last but not least I want to express my sincere gratitude to my family for
their support in my life. My parents, my sister Arta, and her family, as well as
my cousins. Ky punim iu dedikohet juve.

1

1
I N T R O D U C T I O N

1.1 stochastic games on finite graphs

Games are mathematical models through which we study logical decision mak-
ing. They model competition and cooperation between the decision-makers
or players. The �eld of study that concerns games, game theory, is already
very well-established. Its applications are numerous, in many �elds, including
economics, political science, psychology, biology, computer science, logic. The
usefulness of games need not be argued.

Very generally, in a game, the players take actions, and by doing so change
the state of the game. In the end, as a function of the sequence of states through
which the game went, and the actions that were taken, each player gets paid a
certain amount. The players aim to increase this amount.

The essential questions that are studied are as follows: how much can the
players gain, what is the best sequence of actions (strategy) to take, are there
equilibrium points (strategy choices where no player has an incentive to change
his strategy), among others.

In the last few decades, with the development of the electronic computer,
questions concerning the computation of the above have naturally gained im-
portance: is it possible to compute how much can the players gain, the best
strategy, or one that is close to it, the equilibrium points etc. and if yes, how
di�cult it is to perform those computations. This thesis addresses these ques-
tions.

Because the notion of a game is fundamental and adjustable to modeling
many situations, there are numerous types of games that have very di�erent
properties and that require di�erent methods to study.

We will consider games that are: one or two player, zero-sum, �nite or in�nite
duration, discrete, stochastic and turn-based, that have a �nite number of states
and a �nite number of actions for both players. We will depict the game using
a �nite graph, whose vertices represent the states of the game and whose edges
are the actions that the players can take.

3

1 introduction

Games are classi�ed as a function of some of their basic properties. First, the
number of players: a game can have only a single player, two, or more players,
a �nite but �xed set of players (such games are especially used in biology). We
will regard one and two player games here.

There are games where the players can cooperate between themselves, and
ones where there is no reason to. Zero-sum games are games where the sum
of the payo�s that every player receives is always equal to zero. For example
in a two player zero-sum game, a player gets paid the exact amount that his
opponent loses: he receives x while his opponent receives −x. In particular
two player games where a player either wins or loses, i.e. there is no draw, are
zero-sum. All the games in this thesis are zero-sum, so there is no cooperation
between the players.

Here we will solely focus on games with a �nite set of states and a �nite set of
actions. In the literature, games with in�nite state and action space are studied
as well, especially in descriptive set theory.

The games that we will study are all discrete, that is, at discrete time steps the
players take actions and change the state of the game. Besides discrete games,
there are continuous games too. There the state of the game changes contin-
uously, e.g. according to some di�erential equation. Think of the di�erence
in modeling a continuous game such as tennis and discrete game such as any
board game.

Another way of classifying games is whether after a player plays an action
the state of the game changes deterministically or randomly, following some
probability distribution. The former are called deterministic games, while the
latter are called stochastic games. Consider the di�erence between tic-tac-toe,
a deterministic game, and any board game that involves throwing a die. The
subject of this thesis are stochastic games.

We will talk about both games of in�nite duration (in the �rst part of the
thesis), as well as games of �nite but arbitrary long duration (in the second part
of the thesis).

Games can be concurrent or turn-based. A game is concurrent if the players
both choose an action independently of each other at the same time, and then
the state of the game is changed as a function of the current state and this pair
of actions. It is turn-based if the players take turns to make their decisions.
For example, chess is turn-based, �rst one player makes a move, then the other
player and so on. On the other hand in rock-paper-scissors both players make
the move at the same time, by choosing either rock paper or scissors, this is a
concurrent game. We will regard only turn-based games.

Another important property is the information that the players have when
they make decisions. In the game of chess, for example, both players have all
the information that there is, i.e. they both see the board, and they both know all
the moves that have been made. We say that they are perfectly informed or that

4

1.1 Stochastic Games on Finite Graphs

it is a game of perfect information. But not all games are like this, for example
poker is not. In poker the players have only a partial view of the game. They
know the cards that they are holding but not those of their opponents. The
players do not know the exact state of the game, but only some set of states in
which it might be. Such games are called games with partial information. Their
study is lucrative for the following reason.

In computer science and logic, games are often used as a theoretical tool,
for example Ehrenfeucht–Fraïssé games in �nite model theory, parity games
in veri�cation etc. but there is another important utility of games in computer
science and veri�cation, that is controller synthesis.

We are given a system that we want to control. By performing actions the
controller changes the state of the system, but the environment can change the
state of the system as well. Suppose that we want to control the system such
that it never enters some forbidden state, or that it passes through some state
in�nitely often. Many real-world settings can be seen in such a way, as a con-
troller and the environment taking turns to change the state of the system. This
can be modeled as a game with two players, Controller and Environment. Con-
troller wants to ful�ll the objective of never entering the forbidden state or
seeing some distinguished state in�nitely often, while the environment is his
opponent and tries to do the opposite, e.g. to enter the forbidden state. The
problem of whether the controller can achieve his objective is the question of
whether Controller has a winning strategy in such a game. By e�ectively con-
structing this strategy, we synthesize what the controller of the system should
do to achieve his objective, whatever it might be, regardless of the environment.

This central application raises the importance of partial-information games.
This is because in many scenarios the controller cannot know the exact state of
the system, for example it is helped by sensors that are faulty at times, or the
system is controlled through some interface which does not reveal all its inner
workings (which in fact is the norm).

However, games with partial information are computationally much harder
than their perfect information counterparts, as well as less understood. In a few
cases, a problem that is relatively easy to decide for perfect information games,
becomes undecidable on the setting of partial information games.

As it is usually done in mathematics, in order to shed light into the general
case, special cases are considered, we are going to do the same in this thesis.
In the quest to understand partial information games a little bit better, we will
study two extreme special cases, the perfect information one, where the players
know the exact state of the game, and the zero information one, where the
protagonist player has no information on the state of the game. In other words
he plays the actions blindly, without getting any feedback from the game.

5

1 introduction

Consequently the thesis is divided into two parts, the �rst part involves two
player games of perfect information while the second part has to do with games
of zero information.

1.2 games with perfect information

In the two player stochastic games with perfect information, the set of states is
partitioned into two, the set of states that are controlled by, say, player 1, and
the set of states that are controlled by his opponent, player 2.

If the game is in a state that is controlled by player 1 (player 2), then it is
player 1 (player 2) that picks an action. Following this action, the state of the
game changes according to a probability distribution on the set of states, which
depends on the current state and the action that was taken by player 1 (player
2). Thus the game unfolds, producing an in�nite sequence of state - action pairs,
called the outcome.

The payo� function, then, maps this sequence of state-action pairs to a real
number x. Player 1 is paid the amount x and his opponent is paid the amount
−x. Player 1 prefers outcomes that give a larger payo�, whereas his opponent
outcomes that give smaller payo�s, hence the players are suitably called the
maximizer and the minimizer respectively.

In this generality, games like the one that we described above do not posses
any interesting properties, those start to emerge only under some restrictions
of the payo� function. Notably, if the payo� function is Borel-measurable and
bounded, then such two player stochastic games have values [Martin, 1998].
This means that there exists an equilibrium point. More precisely it means
that the minmax of the expected payo� is equal to the maxmin of the expected
payo�, this quantity is called the value of the game. The minmax of the expected
payo� is the minimum over the strategies of the minimizer, of the maximum
over the strategies of the maximizer, of the expected value of the payo� function
under the chosen strategies; symmetrically for maxmin. This allows us to talk
about ε-optimal strategies, i.e. strategies that ensure that the expected payo�
is within some ε distance from the value of the game.

In perfect information games the strategies that are at the disposal of the play-
ers are general behavioral ones: functions that map �nite histories of the game
(�nite sequences of state - action pairs) to an action, or potentially a probability
distribution over the set of actions, according to which the action is chosen.

Many games like above have been studied in the literature, including mean-
payo� games, discounted games, parity games, some counter games etc. Mar-
tin’s theorem ensures that all these games have ε-optimal strategies for all
ε > 0, but not optimal strategies (0-optimal strategies). But as it turns out, in
many classical games, including the ones that we mentioned above both play-

6

1.2 Games with Perfect Information

ers posses optimal strategies. More interestingly the optimal strategies are very
simple. In fact they are the simplest possible strategy: a positional strategy.

In general, strategies are complicated objects, the amount of information that
they need to retain is potentially in�nite, but for a lot of interesting games,
the optimal strategies do not need to have any memory. Strategies are called
positional if they do not use neither memory nor the power of randomization,
they are strategies that at every time pick the same single action depending on
what state the game is, i.e. they are functions from the set of states to the set of
actions.

Games in which both players always have positional optimal strategies are
called positional, while games in which one player always has a positional op-
timal strategy are called half-positional.

Positionality and half-positionality are important properties, especially since
it implies that only a �nite set of strategies should be considered when search-
ing for the optimal strategy. This together with the fact that many important
games are positional, raises the question of whether we can ascertain under
what conditions on the payo� function is the game (half) positional. Further-
more it would give a uni�ed proof of positionality; instead of understanding
the reason why each game is (half) positional by itself, we would understand
what is the common reason that is making all of them positional.

In the work in the literature that follows this direction of research, turn up
two conditions that are imposed on the payo� function, shift-invariance and
being submixing.

A payo� function is shift-invariant if shifting the in�nite sequence by delet-
ing any �nite pre�x does not change the value of the function. A payo� func-
tion is submixing if for any three in�nite sequences of state - action pairs x, y, z,
such that z is a shu�ing of x and y, the payo� of z is at most the maximum of
the payo� of x and the payo� of y.

In [Gimbert, 2007], Gimbert proves that for one player stochastic games (Markov
decision processes), if the payo� function is both submixing and shift-invariant
then the player has an optimal positional strategy. For deterministic two player
games, with payo� functions that map to {0, 1}, Kopczyński proves that if
the payo� function is shift-invariant and submixing, then the game is half-
positional in [Kopczyński, 2006, 2009].

We further generalize these results in [Gimbert and Kelmendi, 2014b] by
proving that for two player stochastic games, if the payo� function is both shift-
invariant and submixing then the game is half-positional, i.e. the maximizer has
an optimal strategy that is positional.

7

1 introduction

1.3 games with zero information

The second part of this thesis is characterized by the protagonist player, the
maximizer, having zero information.

The objects that we will study, just like in the �rst part, are stochastic games
played on �nite graphs. The di�erences will be as follows. In the �rst part we
will deal with games of in�nite duration, while in the second, the games will
have a �nite but arbitrary duration.

In the �rst part, the maximizer, is perfectly-informed. This means that he
can base his decisions on the whole history of the game up to that point. He
chooses among behavioral strategies: functions that map �nite histories to a
mixed action.

In a partial-information game, the �nite history that the players have at hand
before making the decision on what action to take, does not constitute of a �nite
sequence of states through which the game has passed from the beginning, but
rather a �nite sequence of sets of states. So the player does not know the actual
state of the game, but knows a set of states, to which the real state of the game
belongs. Games of perfect information are special cases where the sets that
are revealed to the player are singletons. Games of zero information (or blind
games) are the special cases where the set that is revealed to the player is the
full set of states.

We will consider two games with zero information, �rst the simplest one:
probabilistic �nite automata, which we see as one player zero information games
with reachability objectives. Second, the generalization of probabilistic �nite
automata to two player games with reachability objectives where the opponent
is perfectly informed, that we call half-blind games.

1.3.1 Probabilistic automata

Probabilistic �nite automata are a generalization of deterministic �nite automata
on words, �rst introduced by Rabin in [Rabin, 1963]. A DFA, after reading a let-
ter, transitions deterministically into a new state. After a PFA reads a letter, the
next state is chosen according to a probability distribution on the set of states
which depends on the current state and the letter that is read. A DFA either
accepts a word or it does not, while a probabilistic automaton accepts a word
with certain probability.

Probabilistic automata have numerous applications, but unfortunately the
majority of the problems related to them are undecidable. For example, the
emptiness problem is undecidable [Paz, 1971]. This is the problem that asks
whether there exists a word that is accepted with probability at least 1/2.

8

1.3 Games with Zero Information

The problem that we are going to study is the value 1 problem. This asks
whether for all ε > 0 there exists a �nite word that is accepted with probability
at least 1− ε. This problem is undecidable [Gimbert and Oualhadj, 2010].

Nevertheless there have been some recent e�orts to identify interesting classes
of automata for which the value 1 problem is decidable. Notably the class of
leaktight automata in [Fijalkow et al., 2012] and simple automata in [Chatter-
jee and Tracol, 2012], that subsumed all other known classes of automata with
decidable value 1 problem. Moreover these two papers use techniques that are
quite di�erent to reach their conclusions.

We will prove that the class of leaktight automata is a strict superset of the
class of simple automata [Fijalkow et al., 2015].

1.3.2 Half-blind games

Half-blind games are two player stochastic games that are played on a �nite
graph with the reachability objective. The maximizer tries to reach the set of
�nal states but he has zero information (he is blind) as the single player in a
probabilistic �nite automaton, and similarly plays a �nite word. His opponent,
the minimizer, is perfectly informed.

The problem that we will consider is that of the maxmin reachability. This
asks whether for all ε > 0 there exists some strategy for the minimizer (i.e. a
�nite word) such that against all the strategies of the minimizer the probability
to reach the set of �nal states is at least 1− ε.

The special case of a half-blind game where the minimizer never has any
choice, is a probabilistic automaton, and the maxmin reachability problem re-
duces to the value 1 problem. Since the latter is undecidable the former is as
well.

This is the main reason why these limit-sure reachability problems are not
considered in the literature, for stochastic games with partial information, be-
cause even for the simplest case of probabilistic automata it is undecidable.
The situation is di�erent for the almost-sure (positive) reachability[Bertrand
et al., 2009; Nain and Vardi, 2013; Chatterjee et al., 2012]. This is the question
of whether there exists a strategy for the maximizer such that against all the
strategies of the minimizer, the chance of reaching the set of �nal states is 1
(positive).

For half-blind games we will prove that the maxmin reachability problem
is decidable in a class of games that does not exhibit any leaks that we call
leaktight half-blind games [Kelmendi and Gimbert, 2016].

9

Part I

G A M E S W I T H P E R F E C T I N F O R M AT I O N

2
S U B M I X I N G A N D S H I F T- I N VA R I A N T G A M E S

The subject of this chapter is two-player stochastic games with perfect infor-
mation. As in the rest of this thesis these games are played on a �nite arena.
An arena is a graph whose vertices (states) are partitioned into two sets, corre-
sponding to the states controlled by the two players. If the game is in a state
controlled by Player i, then it is Player i that chooses where the game moves
next. He can base this choice on the whole history (he has perfect recall). The
objectives of the game are given by a payo� function; a function that maps
in�nite histories to real numbers. One player’s objective is to maximize the ex-
pectation of the payo� function while the other player tries to minimize it: it is
a zero-sum game. Under some conditions on the payo� function these games
admit optimal strategies. In computer science we are not interested in merely
optimal strategies, but in optimal strategies that are also simple. This is because
a strategy in general is a very complicated object, it might even have unbounded
memory.

Fortunately, many interesting games admit very simple optimal strategies,
ones that do not use randomization and whose choices do not depend on the
history, but only on the current state of the game. We say that these strategies
are pure and stationary. In this chapter we consider the question: when does a
player have an optimal strategy that is both stationary and pure? We will give
a su�cient condition that is relatively easy to check, under which a game will
admit optimal strategies that are both stationary and pure for the player whose
objective is to maximize the expected payo�. Furthermore we will see that
many classical stochastic games ful�ll this condition.

13

2 submixing and shift-invariant games

2.1 overview

We will give an informal description of the games studied in this chapter, and
an overview of related literature on this subject. Followed by precise de�nitions
in the next section.

The arena is where the stochastic game takes place, it is graphically repre-
sented as in Figure 1. There is a set of states S = {s0, s1, s2, s3, s4}, partitioned
into states that are controlled by Player 1: S1 = {s0, s2, s4} and those con-
trolled by Player 2: S2 = {s1, s3}. In the graph they are represented by circles
and squares respectively. There is a set of actions A = {a, α, β} as well, and
for each state s ∈ S, a subset of actions A(s) ⊆ A available in s. For example
A(s1) = {α, β}. If for some state s ∈ S there is some action a ∈ A such that
a 6∈ A(s), in the graphical representation we do not draw any outgoing edge
from s labeled by a, e.g. in Figure 1, s1 does not have any outgoing edge labeled
by a.

Say the game starts in state s0, it is a state controlled by Player 1 so he chooses
the action a and the game moves to either state s1 or s3, with equal probability.
Suppose it goes to state s1, this is a state controlled by Player 2, hence he has a
choice between the action α and β, or he can randomize the two, e.g. by playing
action α with probability 1

2 and β with probability 1
2 . In that case in the next

turn the game will be in one of the states s0, s2, s4 with respective probabilities
1
2 , 1

6 , 1
3 . In this way players take turns choosing actions available in the states

that are controlled by them, and build an in�nite play — a word in the language
H = (SA)ω1.

s0 s2 s4

s1

s3

a

1
2

1
2

β

1
3

2
3

α

α
a

a

Figure 1: Arena of a stochastic game

1 this is notation from automata and formal language theory meaning the set of in�nite words of
the form state,action,state,action... and so on

14

2.1 Overview

A payo� function is a function f mapping H to R. The amount that is paid
to Player 1 is given by f , and the amount that is paid to Player 2 is given by
− f . Such games are called zero-sum. So Player 1 prefers in�nite histories with
larger payo� whilst Player 2 prefers the opposite. For this reason we will call
Player 1 the maximizer and Player 2 the minimizer.

When studying games, we are normally interested in optimal strategies —
recipes that show how a player can play the game in an optimal manner. Under
the weak assumption that the payo� function f is Borel-measurable, accord-
ing Martin’s second determinacy theorem [Martin, 1998] there exist ε-optimal
strategies for all ε > 0. These are strategies that get arbitrarily close to optimal.
If one’s aim is to construct such strategies, the bad news is that they might be
in�nite-memory strategies and hence complicated, but the good news is that
for many interesting payo� functions there are optimal strategies that are very
simple: they do not use memory or randomization. Such stationary and pure
strategies are maps from states S to actions A. If a game admits optimal strate-
gies that are stationary and pure for both players, we say that it is positional, if
the maximizer has an optimal strategy that is stationary and pure we say that
the game is half-positional. In most scenarios we are interested in synthesiz-
ing the optimal strategy of one of the players (the protagonist) while the other
player plays the role of the environment. Therefore knowing that the game in
question is half-positional is crucially helpful. In this chapter we will give a
condition of when this is true.

Usually in the literature (half) positionality is proved for a speci�c payo�
function. Recently there has been some e�ort in a more general and unifying
approach of giving conditions on the payo� function under which the game is
(half) positional. We give a brief overview of some of the results.

In the seminal paper [Shapley, 1953], Shapley considers stochastic games
with the discount payo� function. In discounted games, to every state s ∈ S we
associate an immediate reward r(s) ∈ R and a discount factor λ(s) ∈ [0, 1).
The payo� for a history s0a0s1a1 · · · ∈ H is

fdisc(s0s1 · · ·) = r(s0) + λ(s0)r(s1) + λ(s0)λ(s1)r(s2) + · · ·

= r(s0) +
∞

∑
i=1

(i

∏
j=0

λ(sj)
)
r(si).

Shapley considers concurrent games: where players play their actions at the
same time in every turn. Turn-based games, subject of this thesis, are a special
case of concurrent games. Using a �xpoint of an operator approach, Shapley
proves that these games have values and that they admit optimal strategies that
are stationary. Although in general the optimal strategies might not be pure,
because the game is concurrent. Shapley goes on to observe in the Examples
and Applications section, point 3, that turn-based games are a special case of

15

2 submixing and shift-invariant games

concurrent games in which there are optimal strategies that are both stationary
and pure.

The mean payo� function is considered by Derman in [Derman, 1962] in the
context of one player games, i.e. Markov decision processes (MDPs). For the
mean payo�, every state s ∈ S has an immediate reward r(s) ∈ R, and for a
history s0a0s1a1 · · · ∈ H the payo� is

fmean(s0s1 · · ·) = lim sup
n→∞

1
n + 1

n

∑
i=0

r(si).

There is also the lim inf version of the payo� function above, denoted by fmean.
Derman proves that for MDPs with the mean payo� function, there exist an
optimal strategy that is both stationary and pure. This is done using the fact
that Cesàro sum of the sequence of rewards (used in the mean payo�) is equal
to the Abel sum (used in the discount payo�), and that the former summability
implies the latter. This follows from classical Abel and Tauberian type theorems,
see e.g. [Hardy, 2000].

First attempt at generalizing the existence of optimal strategies that are both
stationary and pure, to two player games was done by Gilette in [Gillette, 1957].
It uses an extension of Littlewood-Hardy theorem [Hardy, 2000] to reduce to the
discount payo�. Unfortunately, as pointed by Liggett and Lippman in [Liggett
and Lippman, 1969], this extension is false.

Another attempt is made by Liggett and Lippman in the same paper by using
a theorem of Blackwell [Blackwell, 1962]. But this proof also contains an error.
A counter-example to one of the statements in [Liggett and Lippman, 1969]
and an alternate proof is given in the technical report [Gimbert and Kelmendi,
2014a].

In the veri�cation setting, the most useful payo� function is the parity payo�.
Here every state s ∈ S is colored by an integer c(s) ∈ N, and for a history
s0a0s1a1 · · · ∈ H, the payo� is

fparity(s0s1 · · ·) =
{

1 if lim supn c(sn) is even
0 otherwise

.

The parity payo� function is important in veri�cation, because for every ω-
regular language there is a parity automaton that accepts it, and typically, con-
ditions that we want to verify are given as ω-regular languages. For example,
say we are given an ω-regular language L that describes the correct behavior
of the system (in some sense). We use two player stochastic games to model the
system: the maximizer is the controller, the minimizer is the environment and
we use the parity payo� function, with an appropriate coloring of the states,
related to the language L that is given. The optimal strategy for the maximizer

16

2.1 Overview

in such a game is the best controller that the system can have (no matter the be-
havior of the environment) with respect to ful�lling the correctness speci�ed by
L. Using linear programming Courcoubetis and Yannakakis have shown that
for MDPs equipped with a parity payo� function, there exist optimal strategies
that are both stationary and pure [Courcoubetis and Yannakakis, 1998]. This
is done by e�ectively computing an MDP M′ from the given MDP M with the
parity payo�, and identifying a set of distinguished states in M′ such that “hit-
ting” one of the distinguished states in M′ corresponds to ful�lling the parity
condition in M. Furthermore, optimal strategies for M′ can be transferred to
optimal strategies in M. Using linear programming the value2 of the MDP M′ is
calculated, and it is shown that M′ admits optimal strategies that are stationary
and pure.

This result was then generalized to two player stochastic games in [McIver
and Morgan, 2002], where the authors build links between an extension of µ-
calculus called qMµ (that has probabilistic choice) and two player stochastic
games with the parity payo�. In this quest, they show that both players have
optimal strategies that are stationary and pure, thereby proving the positional-
ity of stochastic games equipped with the parity payo� function.

Another proof of this theorem can be found in [Chatterjee et al., 2004]. Here
the authors use the fact that there exist qualitatively optimal strategies that are
both pure and stationary. This is proved in [Chatterjee et al., 2003] by reduction
to deterministic parity games.

See also [Zielonka, 2004] for yet another proof of the positionality of two
player stochastic parity games. Zielonka gives a straightforward proof by in-
duction on the edges.

An example of stochastic games that are stationary but not as classically stud-
ied as the ones above, are one-counter stochastic games. The states are labeled
by an element of {−1, 0,+1}, and the objective is termination: the counter
reaches value 0. See [Brázdil et al., 2010].

While the results above have very di�erent proofs, there has been some re-
cent work on capturing that which is common among (half) positional games.
Central to this e�ort seem to be two properties: shift-invariance, and being
submixing. The former says that the payo� does not change because of a �nite
pre�x of the in�nite history. In other words, the in�nite history can be shifted
without a change in the payo�. The latter says that given two histories h1 and
h2, shu�ing them in any way we want into a history h, results in h having
a payo� of at most the maximum of the payo�s of h1 and h2; i.e. we do not
gain more by mixing h1 and h2. Precise de�nitions are given in the section that
follows.

2 the supremum over the strategies of the expected value of fparity

17

2 submixing and shift-invariant games

We start by surveying results on deterministic games. Gimbert and Zielonka
in [Gimbert and Zielonka, 2004] use the slightly stronger notion of fairly mixing
payo� function to prove that deterministic two-player games equipped with
such payo� functions admit stationary optimal strategies (players do not have
the option of randomization in such deterministic games). This is achieved
by induction on the edges, using the same technique as in [Zielonka, 2004].
Moreover the authors point out that classical payo� functions such as parity
and mean-payo� are fairly mixing.

This is further improved upon in [Gimbert and Zielonka, 2005]. Here the
authors completely characterize the payo� functions for which two-player de-
terministic games admit stationary optimal strategies. The characterization is
done over the preference relations on the set of in�nite histories. The su�cient
and necessary condition requires that the preference relation and its inverse, is
monotone and selective. These two conditions roughly correspond respectively
to the shift-invariance and being submixing. As a corollary an interesting prop-
erty follows: if both players have stationary optimal strategies in one-player
games, then they also have them in the two player game.

Progressing to stochastic games, Gimbert in [Gimbert, 2007] proves that for
one-player stochastic games (MDPs) if the payo� function is shift-invariant and
submixing, then there exist an optimal strategy that is stationary and pure. The
proof is by induction on the edges and an application of a zero-one law from
probability theory. We will use similar techniques in this chapter.

For two player stochastic games, as for deterministic games, in [Gimbert and
Zielonka, 2009] the authors prove that if both players have stationary and pure
optimal strategies in one player games, then the two player game is positional
as well. This result is, in a sense, furthered by Zielonka in [Zielonka, 2010] by
showing that positionality in one player games can be reduced to the existence
of optimal and trivial strategies in multi-armed bandit games. These are �nite
sequences of Markov chains, where the decision that the player has to make
is which one of the Markov chains to evolve. The payo� is a function of the
in�nite sequence of edges that were taken. A trivial strategy in a multi-armed
bandit game is a strategy that chooses to always evolve the same Markov chain.
As noted by Zielonka, in practice the submixing and shift-invariant condition is
easier to check, but there are one player games that can be proven to admit op-
timal pure and stationary strategies by reduction to questions on multi-armed
bandit games, that do not satisfy shift-invariance or are not submixing.

The results above deal with positionality of two player games. But in many
cases we care only for one of the players, while the other represents the adver-
sary, the environment, for whom the possession of simple optimal strategies is
not of interest. From here, the question of half-positionality is raised, the ques-
tion of whether the maximizer has an optimal strategy that is both pure and
stationary. Then, if both games equipped with the payo� function f and− f are

18

2.1 Overview

half-positional, they are both positional as well. Moreover there are interesting
examples in the literature of games that are half-positional but not positional.
For example, in the survey article by Grädel [Grädel, 2004], the Streett-Rabin
game is mentioned as an example of a game that is half-positional but not posi-
tional. In a Streett-Rabin game (like in a parity game) the payo� function maps
to {0, 1}, a player either wins or not. This winning condition is given by a set
W ⊆ 2S such that the complement of W, ¬W, is union-closed; the payo� func-
tion maps a history s0s1 · · · to 1 if and only if the set of states that are seen
in�nitely often belongs to W.

Another interesting example of games that are half-positional but not posi-
tional, are mean-payo� co-Büchi games [Chatterjee et al., 2005]3. The co-Büchi
condition is de�ned by a set F ⊆ S, and it is ful�lled by a history if and only
if every state that appears in�nitely often belongs to F. The mean-payo� co-
Büchi function is a conjunction of the mean payo� and the co-Büchi condition.
The idea is that it is of interest (especially when modeling e.g. reactive systems)
to combine qualitative constraints with quantitative ones.

Going to more general results on half-positional games, Eryk Kopczynski
shows in [Kopczyński, 2006] that conditions similar to submixing and shift-
invariant imply half-positionality. Moreover, he proves some closure properties
and consequently shows families of half-positional games. More details, and
more half-positional games that are not positional can be found in [Kopczyński,
2009]. These results are for deterministic two player games, and for payo� func-
tions that take values from {0, 1}.

In this chapter we will report on [Gimbert and Kelmendi, 2014b], where
we continue this line of work and prove that in two player stochastic games,
if the payo� function is shift-invariant and submixing then the game is half-
positional, i.e. player Max has an optimal strategy that is stationary and pure.
In this way we further generalize [Gimbert, 2007] from one player games to
two player games, and [Kopczyński, 2006] from deterministic to stochastic.

The proof is by induction on the set of actions available for Max, using a
0-1 law. It rests on a technical lemma which says that if the payo� function is
shift-invariant then both players in the game posses ε-subgame-perfect strate-
gies for all ε > 0. The proof of this lemma relies on some well-known results
from martingale theory, used to analyze the outcome of the game under a reset
strategy.

3 in contrast to the half-positionality of mean-payo� co-Büchi games, mean-payo� parity games
admit optimal strategies, but they may require in�nite-memory

19

2 submixing and shift-invariant games

2.2 two player stochastic games

Let us give precise de�nitions of two player stochastic games with perfect in-
formation, and in doing so, �x the notation.

The game is played between two players. Player 1 is the player whose objec-
tive is to maximize the expected payo�, and Player 2 is his enemy. We usually
will refer to Player 1 as Max or “the maximizer”, whereas Player 2 is referred to
as Min or “the minimizer”.

If X is a �nite set, a probability distribution on X is a function δ : X → [0, 1]
such that for all x ∈ X, δ(x) ≥ 0 and ∑x∈X δ(x) = 1. The set of probability
distributions over a set X is denoted by ∆(X).

A game is given as an arena, where the game is played, and a payo� function,
for what objective the game is played. The arena was introduced informally in
the previous section and illustrated with an example, now we give a precise
de�nition.

De�nition 2.1 (Arena).
An arena A is the tuple A = (S1, S2, A, (A(s))s∈S, p), where

• S1 is a �nite set of states controlled by Max,

• S2 is a �nite set of states controlled by Min,

• A is a �nite set of actions,

• for all s ∈ S, A(s) ⊆ A is the set of actions available in state s, and

• p : S×A→ ∆(S) a function that gives the transition probabilities,
or the edges of the arena.

We assume that for all s ∈ S, A(s) 6= ∅, and that the function p is
de�ned only for the pairs (s, a) where a ∈ A(s), i.e. only for the available
actions in s.

We denote by S the union S1 ∪ S2.

A few examples of payo� functions were given in the previous section, and it
was said that the payo� function is a map from histories to the reals. In reality,
in order to make sure that the games we are dealing with have values, we will
impose some restrictions that will allow us to use Martin’s second determinacy
theorem. Since the aim here is to know in which games we have simple optimal
strategies, it is favorable to narrow the scope of payo� functions to — at least
— the ones that give determined games.

20

2.2 Two Player Stochastic Games

Let X and Y be two nonempty �nite sets. By their juxtaposition XY (like SA
in the de�nition above) we mean the set of all �nite sequences (words) xy such
that x ∈ X and y ∈ Y.

We denote by X∗ the set of all �nite words with alphabet X, including the
empty word; by X+ the set of all �nite words with alphabet X excluding the
empty word; and by Xω the set of all in�nite words with alphabet X.

Recall that a function f : (SA)ω → R is Borel-measurable if and only if for
all sets X open in R, f−1(X) is Bore (the σ-algebra of Borel sets is the smallest
σ-algebra that contains all the open sets), where (SA)ω is endowed with the
product topology. As a standard reference, see [Kechris, 1995].

De�nition 2.2 (Payo� function for an arena).
LetA be an arena. A payo� function forA is any function f : (SA)ω → R,
that is bounded and Borel-measurable.

A game is de�ned as a tuple of arena and payo� function.

De�nition 2.3 (Two player stochastic game).
A two player stochastic game with perfect information G , is de�ned as the
pair G = (A, f) where A is an arena and f is a payo� function of A.

Let us give the arena of the game in Figure 1 explicitly.

Example 1.
We de�ne explicitly a game G based in the arena in �gure Figure 1 for the mean
payo� function. The arena is the tuple A = (S1, S2, A, (A(s))s∈S, p), where
S1 = {s0, s2, s4} are the states that are controlled by Max, S2 = {s1, s3} states
controlled by Min. The set of actions is A = {a, α, β}, and the actions that
are available in particular states are given by A(s0) = A(s2) = A(s4) = {a},
A(s3) = {α} and A(s1) = {α, β}. The function p is de�ned as p(s0, a)(s1) =

p(s0, a)(s3) = 1/2, p(s1, α)(s0) = 1, etc. We can give the rewards r(si) = i,
i ∈ {0, . . . , 4}, and fmean the function that uses them. Then the game G =

(A, fmean) is a mean payo� game based on Figure 1. In this game Max does not
have any choice, the only action that is enabled in states controlled by him is
the action a, so he is obliged to always play it. On the other hand, Min, has a
choice in state s1. If he plays action β then the game will loop in state s4 and
states s2 and s3. In the former the mean payo� will be exactly 4, in the latter

21

2 submixing and shift-invariant games

the mean payo� will be 5/2. So playing a β after the �rst turn will result in a
payo� of 1

3 ·
5
2 +

2
3 · 4 = 21

6 . But on the other hand if Min always plays α when
in state s1 then eventually we will end up in the loop s2, s3 and the amount paid
to Max will be 5/2. Of course this is what Min prefers. 4

Usually we will not give examples of games in an explicit manner as above,
but rather using only their graphical representation.

2.2.1 Strategies

Strategies are the recipes according to which players make their moves. Since
we are dealing with perfect-information games, the strategies of the players are
functions that, given a �nite history, say which action should be played next.
The �nite history is a �nite sequence in (SA)∗S.

De�nition 2.4 (Strategies).
A strategy for Max is a function σ : (SA)∗S1 → ∆(A), such that for all
h ∈ (SA)∗, s ∈ S1, a ∈ A,

σ(hs)(a) > 0 =⇒ a ∈ A(s).

Similarly de�ned, a strategy for Min is a function τ : (SA)∗S2 → ∆(A).

As we can see, the type of strategies that we are considering are mixed behav-
ioral strategies, that is to say that at every stage of the game a player can mix
between the available actions. For example in state s instead of playing either
action a1 or action a2, he can mix them, by playing a1 with 1/2 probability and
a2 with the same probability. Another possibility is to mix strategies themselves.
In the beginning of the game, we decide which strategy to follow by �ipping
a coin, for example. The reason that we do not consider such strategies is that
it is a theorem that they are not more powerful than behavioral strategies, in
perfect information games. This result is known as Kuhn’s theorem. This stops
being true without the perfect information hypothesis. See the example of the
absent-minded driver in [Piccione and Rubinstein, 1997].

We follow standard notation, by denoting with σ strategies for Max, and by
τ strategies for Min, with possible subscripts or superscripts.

As mentioned before, we are interested in a class of particularly simple strate-
gies: the pure and stationary strategies.

22

2.2 Two Player Stochastic Games

De�nition 2.5 (Pure and stationary strategies).
Let σ be a strategy for Max. We say that σ is pure if for all �nite histories
h = s0 · · · sn ∈ (SA)∗S1 there exists a ∈ A(sn) such that σ(h)(a) = 1.

We say that σ is stationary if for all �nite histories h = s0 · · · sn ∈
(SA)∗S1, σ(h) = σ(sn).

Similarly, one de�nes stationary and pure strategies for Min.

So a strategy is pure if at every stage of the game, it chooses deterministi-
cally a single action, i.e. it always maps to Dirac distributions on A, and it is
stationary if it is solely a function of the current state, and not of the previous
states and actions played in the game. In particular we see that strategies that
are both stationary and pure are functions σ : S1 → A.

2.2.2 Probability measure

In order to talk about the probability of certain events happening, or the ex-
pected payo� we have to de�ne a probability space. Indeed, once an initial state
s0 ∈ S is �xed, together with strategies σ, τ belonging to Max and Min respec-
tively, we can construct a probability space whose sample space is (SA)ω , the
set of in�nite histories. The σ-algebra, is the one that is generated by the cylin-
ders h(SA)ω and h′(AS)ω , where h ∈ (SA)∗ and h′ ∈ (SA)∗S. So a cylinder
h(SA)ω is the set of in�nite words whose pre�x is h.

In this σ-algebra there is a unique probability measure, which we denote by
P

σ,τ
s0 , such that the following holds for all h = r0 · · · rn ∈ (SA)∗S, t ∈ S and

a ∈ at,

Pσ,τ
s0

[ha | h] =

{
σ(h)(a) if rn ∈ S1,

τ(h)(a) if rn ∈ S2,

Pσ,τ
s0

[hat | h] = p(rn, a)(t).

Above, to simplify the notation, for the cylinder ha(SA)ω , we wrote P
σ,τ
s0 [ha]

instead of P
σ,τ
s0 [ha(SA)ω], and we will continue to do so in the sequel.

The notation in the left hand sides of the two equations above are standard
conditional probabilities. The �rst equation says that the probability measure
follows the two strategies σ and τ, and the second equation says that it follows
the transition probabilities of the arena.

The degenerate case of P
σ,τ
s0 [s] for s ∈ S is de�ned to be equal to 1 if s = s0,

otherwise it is equal to 0; so that the probability measure also follows the initial
state.

23

2 submixing and shift-invariant games

We denote by E
σ,τ
s0 , the expectation corresponding to the probability measure

above.
In order to make precise what we mean when we say the expected pay-

o�, or the expected value of a function let us de�ne a family of random vari-
ables that will be used throughout this chapter. For all n ∈ N de�ne the ran-
dom variables Sn, An to be such that for all outcomes s0a0s1a1 · · · ∈ (SA)ω ,
Sn(s0a0s1 · · ·) = sn and An(s0a0s1 · · ·) = an.

The expected value of a random variable is de�ned as usual, and the expected
value of a function f whose domain is the sample space (SA)ω , denoted by
E

σ,τ
s0 [f], is just the expectation of the random variable f (S0A0S1 · · ·).

2.2.3 Values and optimal strategies

Let G be a game with payo� function f ; by de�nition f is bounded and Borel-
measurable. The expected payo� when starting from state s0 ∈ S and players
play with the respective strategies σ and τ is E

σ,τ
s0 [f]. This is what Max wants

to maximize (and Min to minimize). Let τ be some strategy for Min, then the
best response to τ is some strategy στ for Max such that for all other strategies
σ, E

στ ,τ
s0 [f] ≥ E

σ,τ
s0 [f]. The expected payo� under the best response for τ is the

most that Max can win, given that Min has chosen τ.
The best response does not always exist, but in any case it can be approxi-

mated, by better and better responses converging to supσ E
σ,τ
s0 [f]. Min, true to

his name, will want to minimize, hence infτ supσ E
σ,τ
s0 [f], called the minmax

of the game G is of interest. Symmetrically the maxmin of the game is de�ned
to be supσ infτ E

σ,τ
s0 [f].

Naturally knowing what strategy your opponent will choose before choosing
your own is advantageous, so it is easy to prove that

inf
τ

sup
σ

Eσ,τ
s0

[f] ≥ sup
σ

inf
τ

Eσ,τ
s0

[f].

In many cases the inverse inequality holds as well, i.e. , minmax is equal to
maxmin providing an equilibrium point. Such minimax theorems are central
in game theory, in fact, the proof of the minimax theorem on matrix games by
Von Neumann is the genesis of game theory.

In our case minmax is equal to maxmin as well, this is a corollary of another
celebrated result.

24

2.2 Two Player Stochastic Games

Theorem 2.6 (Martin’s second determinacy theorem [Martin, 1998]).
Let G be a game with payo� function f (so f is Borel-measurable and
bounded) then

inf
τ

sup
σ

Eσ,τ
s0

[f] = sup
σ

inf
τ

Eσ,τ
s0

[f].

This quantity is called the value of the game.

De�nition 2.7 (Value of the game).
Let G be a game with payo� function f and s ∈ S. The value of the state s
is de�ned as

val(G, s) = inf
τ

sup
σ

Eσ,τ
s0

[f] = sup
σ

inf
τ

Eσ,τ
s0

[f].

When the game G is clear from the context, we omit it and write only val(s).
Intuitively the value of the game is the quantity that either of the players can

win at most, given that their enemy plays his best strategy. So it is related to
the notion of optimal strategies.

De�nition 2.8 (ε-optimal strategies).
Let ε > 0 and σ a strategy for Max. We say that σ is ε-optimal if and only
if for all states s ∈ S and all strategies τ for Min,

Eσ,τ
s [f] ≥ val(s)− ε.

Symmetrically de�ne ε-optimal strategies for Min. We say that a strategy
is optimal if it is 0-optimal.

Note the di�erence between the best response and an optimal strategy. If
Max has an optimal strategy σ#, and Min plays with a particularly bad strategy
τ, then σ# in general is not the best response to τ.

25

2 submixing and shift-invariant games

2.2.4 A Half-positional example

Let us consider a Streett-Rabin game.

Example 2.
Let ¬F be the closure under union of {{A, a}, {B, b}, {A, B, a, b}, {D}}. For
an in�nite history h ∈ (SA)ω de�ne In f (h) to be the set of states that are seen
in�nitely often. The Rabin-Strett payo� function frs is de�ned as

frs(h) =

{
1 if In f (h) ∈ F

0 otherwise.

Let G be the game with the arena depicted in the following �gure and payo�
frs.

s0

s1

D

1
2

1
2

B

A

s2

b

a

dα

2
3 1

3

α

β

α

β

β

Figure 2: A Streett-Rabin game

Player Min prefers that the set of states that are seen in�nitely often to be in
¬F. Moreover observe that ¬F is by de�nition closed under union.

Consider the strategy for Min that plays as follows. When the game is in
state s2, if in the previous turn it was in A play α, if it was in B play β. This
ensures that whatever Max plays in the upper part of the game, the set of states
that are seen in�nitely often will not be an element of F. So in this part of the
game Min can win, no matter the strategy of Max. Therefore we can conclude
that val(s1) = 0 and the same for the values of A, a, B, b and s2; since this is a
strongly connected component of the arena.

26

2.2 Two Player Stochastic Games

In state D, Max has the choice between playing β and going to the strongly
connected component above, where Min wins, or repeatedly playing α and al-
most surely landing on the state d. Of course the latter is more preferable, es-
pecially since {d} ∈ F. In this part of the arena Min does not control anything
(state d can only self-loop) so we can conclude that val(D) = val(d) = 1.
Consequently, since s0 has a single action that takes the game to either state
s1 or D with equal probability, and it has no incoming edge, we conclude that
val(s0) = 1/2.

A stationary and pure strategy that is optimal for Max is the strategy σ de-
�ned as σ(s1) = σ(D) = α, i.e. always play action α. With this strategy Max
makes sure that the payo� is at least 1/2. Min has a simple strategy as a best
response to σ — the stationary and pure strategy τ that simply plays τ(s2) = α.
Nevertheless τ is not an optimal strategy; Max can beat it with a strategy σ′ that
plays σ′(s1) = β, getting a payo� 1.

We observe that while Max indeed has an optimal strategy that is pure and
stationary, that is not the case for Min. In order for Min to win in the upper
part of the arena, he needs to remember the last state seen before making his
decision. So this is an example of a half-positional game that is not positional.4

In the example above we see that there might be more than one optimal
strategy that is stationary and pure, and that such a strategy is not always the
best response, but it makes sure that the player that is playing it, receives at
least the value as payo�.

2.2.5 Martingales

Consider the stochastic process (sequence of random variables) (val(Sn))n∈N,
if Max plays only optimal actions then this process on average increases, a
stochastic process that increases in this way is called a supermartingale. Mar-
tingales are a basic notion in probability theory of a type of a stochastic process
whose expected value, knowing everything up to a certain date, is equal to the
value of the process at that same date. In this section we will recall the de�nition
of martingales and prove a lemma which we will use later.

27

2 submixing and shift-invariant games

De�nition 2.9 (Martingale and stopping time).
In a �ltered probability space with some �ltration (Fn)n∈N a (discrete-time)
martingale is a stochastic process (Xn)n∈N such that for all n ∈N,

E[|Xn|] < ∞,

E[Xn+1 | F1, . . . , Fn] = Xn.

A stopping time with respect to a �ltration (Fn)n∈N is a random variable
T taking values in N ∪ {∞} such that for all t ∈ N the event T ≤ t is in
Ft.

To get the de�nition of a supermartingale and submartingale replace in the
de�nition above the equality in the second equation by ≥ and ≤ respectively.

The following two theorems can be found in any textbook on probability or
measure theory, see e.g. [Williams, 1991].

Theorem 2.10 (Lebesgue’s dominated convergence theorem).
Let (fn)n∈N be a sequence of real-valued measurable functions with re-
spect to the measure space (S, Σ, µ). Assume that (fn) converges point-
wise to some function f and that there exists an integrable function g such
that for all n ∈ N and x ∈ S, | fn(x)| ≤ g(x), then f is integrable as well
and

lim
n→∞

∫
S

fn dµ =
∫

S
f dµ.

Above by a function f is integrable we mean
∫

S | f | dµ < ∞.

Theorem 2.11 (Doob’s martingale convergence theorem).
Let (Xn)n∈N be a martingale. Suppose that there exists some K ∈ R such
that for all h in the sample space and n ∈ N, |Xn(h)| ≤ K, then the
point-wise limit

X(h) = lim
n→∞

Xn(h)

exists and is �nite for all outcomes h.

28

2.2 Two Player Stochastic Games

This theorem also holds for sub and supermartingales.
For the sake of clarity, the theorems above, are weaker versions that are easier

to state, but su�cient for our purposes.
The lemma that follows deals with a martingale whose value we want to

know at some time T that depends on the outcome, i.e. it is a stopping time.

Lemma 2.12.
Let T be a stopping time with respect to the natural �ltration induced by the
sequence (Sn)n∈N, and (Xn)n∈N a martingale. Assume that there exists
some K ∈ R such that for all h in the sample space and n ∈N, |Xn(h)| ≤
K. We de�ne the random variable XT as

XT =

{
Xn if T is �nite and equal to n,

limn→∞ Xn if T = ∞.

Then
E[XT] = E[X0].

Proof.
First we show that XT is well-de�ned. Indeed this follows immediately from
Theorem 2.11, i.e. the limit limn→∞ Xn exists in the de�nition of XT .

We de�ne another process: the stopped process (Yn)n∈N as

Yn = Xmin(T,n),

for all n ∈N. An immediate observation is that (Yn)n∈N is a martingale as well,
and that it has the bound K. Applying Theorem 2.11 to (Yn)n∈N, we conclude
that it converges. From the de�nition of XT , we have that limn→∞ Yn = XT .
Now applying Theorem 2.10 to (Yn)n∈N and XT , we have

lim
n→∞

E[Yn] = E[XT]. (1)

Since (Yn)n∈N is a martingale we can prove that E[Yn] = E[Y0] = E[X0].
This together with (1) concludes the proof.

If we replace martingale by supermartingale or submartingale, the lemma
above still holds with the equality replaced by the appropriate inequality.

29

2 submixing and shift-invariant games

2.3 shift-invariant and submixing payoff functions

We formally introduced what a payo� function for an arena is in De�nition 2.2.
In this section we will give the de�nitions of shift-invariance and being submix-
ing, the two conditions on payo� functions whose conjunction is su�cient for
half-positionality.

In order to simplify the notation we decouple the payo� function from the
arena in the following way. Let C be a set of colors. Any bounded and Borel-
measurable function f : Cω → R is called a payo� function. Given an arena
A, we color it by a function c : SA → C, and extend the coloring to in�nite
histories c : (SA)ω → Cω in the obvious way. We equip the arena A with the
payo� function f ′ in A to form the game G = (A, f ′) where f ′ = f ◦ c.

A shift-invariant payo� function is one that does not change when adding
some �nite pre�x.

De�nition 2.13 (Shift-invariant payo� function).
A payo� function f : Cω → R is shift-invariant if for all p ∈ C∗ and
h ∈ Cω ,

f (ph) = f (h).

A similar (but sometimes not equivalent) property is found in the literature
under the name of tail-measurability. All the payo� functions that we have
seen before, except the discount payo�, are shift-invariant. This is fairly trivial
to prove, as is usually the case for shift-invariance.

The submixing property roughly says that given c1, c2 ∈ Cω , we cannot gain
a larger payo� by shu�ing c1 and c2. We make this formal.

Let h ∈ Cω , a factorization of h is a sequence of �nite words w1, w2, . . . ∈ C∗,
such that h = w1w2 · · · .

De�nition 2.14 (Shu�le).
Let h, h1, h2 ∈ Cω . We say that h is a shu�e of h1 and h2, if there exist
factorizations w1, w2, . . . and v1, v2, . . . of h1 and h2 respectively such that

h = w1v1w2v2 · · · .

Now we can de�ne the submixing property.

30

2.4 Existence of ε-subgame-perfect Equilibria

De�nition 2.15 (Submixing payo� function).
A payo� function f is said to be submixing if for all h, h1, h2 ∈ Cω such
that h is a shu�e of h1 and h2,

f (h) ≤ max(f (h1), f (h2)).

The main theorem of this chapter says that if the payo� function of the game
is both shift-invariant and submixing then the game is half-positional. Using
this theorem we will be able to recover a few of the classical results on position-
ality and further provide examples of games that are half-positional.

Example 3.
Consider the Streett-Rabin payo� function frs induced by the winning set F ⊂
2S. Recall that by de�nition ¬F is closed under union and the payo� function
is given as

frs(h) =

{
1 if In f (h) ∈ F

0 otherwise.

We can imagine that the set of colors is S and the domain of frs is Sω . Since the
payo� is de�ned in terms of In f , the set of states that are seen in�nitely often
we see immediately that it is shift-invariant.

In order to show that it is submixing as well, let h, h1, h2 ∈ Sω be such that h
is a shu�e of h1 and h2. With the purpose of reaching a contradiction assume
that f (h) = 1 and f (h1) = f (h2) = 0. From the de�nition it follows that
In f (h1) ∈ ¬F, and In f (h2) ∈ ¬F but In f (h) = In f (h1) ∪ In f (h2) ∈ F;
this contradicts the hypothesis that ¬F is closed under union. 4

2.4 existence of ε-subgame-perfect eqilibria

In this section we will prove a technical lemma that has to do with existence of
ε-subgame-perfect strategies. These are strategies that are not only ε-optimal
from the beginning of the play, but for any state that is visited throughout the
history, they remain ε-optimal with respect to that state. That is to say that,
when playing with an ε-subgame-perfect strategy it never happens that when
we reach some state of the game that is more lucrative than the state from which
we have started, and we do not take advantage.

In a sense, ε-subgame-perfect strategies are ε-optimal strategies that take
advantage of non-optimal decisions that the enemy makes, in this way they are
strategies that are ε-optimal but also get close to being best responses.

31

2 submixing and shift-invariant games

We �rst introduce the notion of shifted function with domain (SA)ω . Let
h = s0 · · · sn ∈ (SA)∗S be a �nite history and f some function whose domain
is the set of in�nite histories (the sample space) (SA)ω . The function f shifted
by the �nite history h, denoted by f [h] is de�ned by

f [h](t0b0t1b1 · · ·) =
{

f (s0 · · · t0b0 · · ·) if sn = t0,

f (t0b0 · · ·) otherwise.

So f [h] is the same as f except that it inserts h as the pre�x of its parameter.

De�nition 2.16 (ε-subgame-perfect strategy).
Let σ be a strategy for Max and ε > 0. We say that σ is ε-subgame-perfect
if for all h = s0 · · · sn ∈ S(AS)∗,

inf
τ

E
σ[h],τ
sn [f [h]] ≥ val(sn)− ε.

ε-subgame-perfect strategies for Min are de�ned symmetrically.

In this section we will prove the following lemma.

Lemma 2.17 ([Gimbert and Kelmendi, 2014b; Mashiah-Yaakovi, 2014]).
Let f be a shift-invariant payo� function, in a game G . Then for all ε > 0
both players have ε-subgame-perfect strategies in G .

In parallel to our work, a simpler proof of Lemma 2.17 was given in [Mashiah-
Yaakovi, 2014]. While it is stated that there are ε-subgame-perfect strategies
for all payo� functions that are Borel-measurable and bounded; the notion of ε-
subgame-perfect strategy used in [Mashiah-Yaakovi, 2014] is slightly di�erent
from the one we have here. Indeed there need not exist ε-subgame-perfect
strategies if the payo� function is not shift-invariant as seen in the following
example.

32

2.4 Existence of ε-subgame-perfect Equilibria

s0

s1

s2

1
2

1
2

x

y

a

b

Figure 3: A game with no ε-subgame-perfect strategies

Example 4.
Consider the one player arena in Figure 3 equipped with the payo� function f
that is not shift-invariant, de�ned as follows. It takes as input Sω where S =

{s0, s1, s2, x, y} and maps to {0, 1
2 , 1}. It returns 1

2 for the sequence s0s1xω and
1 for the sequence s1yω , for all other inputs it returns 0. We see that val(s0) =

1
4

with the optimal strategy that plays a. Similarly val(s1) = 1 with the strategy
that plays b. But no ε-subgame-perfect strategy exists with 0 < ε < 1/2.
To see this, consider the history h = s0as1. An ε-subgame-perfect strategy σ

ensures
E

σ[h]
s1 [f [h]] ≥ val(s1)− ε >

1
2

,

which implies that Eσ
s0
[f] > 1

4 . This is not possible since val(s0) =
1
4 . 4

Before moving on to the technical details of the proof let us give a rough idea
of how it goes.

Proof Idea (Lemma 2.17).
Martin’s determinacy theorem (Theorem 2.6) implies that there exist ε-optimal
strategies, but a strategy that is ε-optimal need not be ε-subgame-perfect. In
particular imagine a game with payo� function whose lower bound is b and s
some state with val(s) = b. Here Max can choose any strategy to be σ[s] and
still remain optimal.

We will take an ε-optimal strategy σ, and detect when playing with σ is not ε-
subgame-perfect, i.e. when there exist some h = s0 · · · sn such that σ[h] is not
ε-optimal from sn. We will call this a weakness, and simply reset the memory
whenever we detect it. We do this because σ is ε-optimal from sn even though
σ[h] might not be.

If the number of memory resets that we have to perform is �nite then the
reset strategy is ε-subgame-perfect and we are done. What then remains to
show is that almost surely the number of resets that is performed is �nite. This

33

2 submixing and shift-invariant games

can be shown by choosing particular ε-optimal strategies, namely ones that
only play actions that preserve the value. 4

Let G = (A, f) be some game whose payo� function is shift-invariant. For
the sake of clarity we �x here for the rest of this section some ε > 0 and prove
that there exists 2ε-subgame-perfect strategies. We will do the proof for Max,
but symmetrically one can prove the lemma for Min as well.

2.4.1 Weaknesses and the reset strategy

Let σ be a strategy for Max. If after some �nite history σ is not 2ε-optimal in
the subgame, we say that the history is a σ-weakness.

De�nition 2.18 (σ-weakness).
Let σ be a strategy for Max. A �nite history h ∈ S(AS)∗ is a σ-weakness
if σ[h] is not 2ε-optimal.

Observe that if some strategy σ has no σ-weaknesses then it is 2ε-subgame-
perfect. Given a strategy σ and h ∈ (SA)ω , we say that a weakness occurs in h
if there exists some �nite pre�x of h that is a σ-weakness.

We will factorize h ∈ (SA)ω according to its σ-weaknesses in the following
way. Let h = s0a0 · · · , and take h0 = s0a0s1 · · · sn to be the shortest pre�x of
h that is a σ-weakness. Take h1 to be the shortest pre�x of snan · · · that is a
σ-weakness and so on. In this way we construct a possibly in�nite sequence of
�nite histories4 h0, h1, . . . such that for all n ∈N for which hn exists we have

• if hn is �nite then it is a σ-weakness,

• if hn is �nite then no strict pre�x of hn is a σ-weakness,

• if hn is in�nite then no pre�x of hn is a σ-weakness and h = h0 · · · hn.

The reset strategy will reset its memory whenever it detects a weakness, in
particular it will reset it after reading each of the factors h0, h1,

4 if the sequence is �nite, then the last element is an in�nite history

34

2.4 Existence of ε-subgame-perfect Equilibria

reset reset reset

Figure 4: Factorizing an in�nite history into weaknesses

Example 5.
Consider the deterministic game with the arena in Figure 5.

s0 s1

s2

s3

F s4

a

b

a
b

Figure 5: A Büchi game

The payo� is the Büchi payo�, which is a special case of fparity; Max wins if
and only if the state F is seen in�nitely often. We observe that the value of s2

and F is 1 and the value of every other state is 0. Consider the strategy σ for
Max that plays as follows. If we have seen s0 in the past when we are in state
s2 play b, otherwise play a. While σ is not a particularly intelligent strategy,
it is optimal. When the game starts from s0 and Min plays a in s1, σ does not
take advantage of this mistake, but in any case the value of s0 is 0 so σ remains
optimal. But it is not ε-subgame-perfect, for any ε < 1. In fact the �nite history
s0as1as2 is a σ-weakness. If at this stage we reset the memory of σ, it will not
remember that the state s0 has been seen and play as if the game has started
from s2 and consequently make the good choice of playing a. This induces the
in�nite history s0as1as2(aF)ω , which is factorized as above into h0 = s0as1s2

and h1 = s2(aF)ω . 4

We give the de�nition of the date of weakness, which serves for the presenta-
tion of the proofs that will follow.

35

2 submixing and shift-invariant games

De�nition 2.19 (Date of weakness).
Let σ be a strategy for Max and s0 · · · sn ∈ S(AS)∗ a �nite history. De�ne
inductively on n the function

δσ(s0 · · · sn) =

{
n if h is a σ-weakness,
δσ(s0 · · · sn−1) otherwise,

where δσ(s0) = 0 and h = sδσ(s0···sn−1) · · · sn.
We say that Wσ(s0 · · · sn) is true if and only if δσ(s0 · · · sn) = n.
Wσ(s0 · · · sn) can be read as s0 · · · sn is a σ-weakness.

In particular, with regard to the factorization of h = s0a0 · · · into h0, h1, · · · ,
the function δσ, returns the dates n0, n1, n2, i.e. for any strict pre�x of h0 it
returns 0, for h0 itself and every strict pre�x of h0h1 returns n0, for h0h1 itself
returns n1 and so on. Intuitively δσ gives the date of the last σ-weakness in the
�nite history. Let us use it to de�ne the reset strategy.

De�nition 2.20 (Reset strategy).
Let σ be a strategy for Max. We de�ne σ̂, the reset strategy based on σ as

σ̂(s0 · · · sn) = σ(sδσ(s0···sn) · · · sn).

So the strategy σ̂ plays like the strategy σ except that it ignores the part of
the history that comes before the last σ-weakness.

2.4.2 Locally-optimal strategies

We will base the reset strategy in a particular class of ε-optimal strategies, the
locally-optimal strategies. These are strategies that at every stage make deci-
sions that do not decrease the value (from Max’s point of view). The reason why
we consider this subclass of strategies is that there exist ε-optimal strategies
(that are not locally-optimal) for which the reset strategy has to reset in�nitely
many times with positive probability. This is not the case for locally-optimal
strategies.

36

2.4 Existence of ε-subgame-perfect Equilibria

De�nition 2.21 (Value-preserving action and locally-optimal strategy).
An action a ∈ A(s) is value-preserving (in s) if and only if

val(s) = ∑
t∈S

p(s, a)(t)val(t).

In case it is not value-preserving we say that it is value-changing.
A strategy that plays only value-preserving actions is called locally-

optimal.

Observe that a locally-optimal strategy is not necessarily optimal. Imagine
a one-player game with two states s0 and s1 with action a in s0 we loop, and
with action b we go to state s1. The game is won if and only if we see the
state s1 in�nitely often. Both states have value 1 and in s0 both actions are
value-preserving, so the strategy that keeps playing a and looping in state s0is
locally-optimal but not optimal.

On the other hand, an optimal strategy must be locally-optimal, otherwise
the opponent can take advantage of the mistake and get a larger payo�.

When a player plays with a locally-optimal strategy, he imposes some regu-
larity on the stochastic process (val(Sn))n∈N. In particular if Max (Min) plays
with a locally-optimal strategy, then the process (val(Sn))n∈N is a supermartin-
gale (submartingale). If both Max and Min play with a locally-optimal strategy
then the process is a martingale.

Proposition 2.22.
Let σ,τ be strategies for Max and Min and s0 ∈ S. If σ is locally-optimal
then (val(Sn))n∈N is a supermartingale, for the probability measure P

σ,τ
s0 .

If τ is locally-optimal then (val(Sn))n∈N is a submartingale.

Proof.
We will consider the probability space that is �ltered by the �ltration induced
by the process (Sn)n∈N. Since the payo� function f is bounded, the expected
value of Sn is bounded as well. From the de�nitions we have that the expected
value at date n + 1,

Eσ,τ
s0

[val(Sn+1) | S0, . . . , Sn]

37

2 submixing and shift-invariant games

is equal to{
∑a∈A(Sn) σ(S0 · · · Sn)(a)

(
∑t∈S p(Sn, a)(t) · val(t)

)
if Sn ∈ S1,

∑a∈A(Sn) τ(S0 · · · Sn)(a)
(

∑t∈S p(Sn, a)(t) · val(t)
)

if Sn ∈ S2.

Since σ is locally-optimal, it follows that

Eσ,τ
s0

[val(Sn+1) | S0, . . . , Sn] ≥ val(Sn).

The process (val(Sn))n∈N is a supermartingale. Symmetrically we can prove
that if τ is locally-optimal, the process of values is a submartingale; if both σ

and τ are locally-optimal then (val(Sn))n∈N is a martingale.

We continue proving properties of the game when Max plays with a locally-
optimal strategy. One interesting property, is that if one of the players plays
with a locally-optimal strategy, he eventually forces the opponent to do the
same. While this might seem counter-intuitive in a sense, because playing with
a good strategy is forcing the opponent to also play with a somewhat good
strategy, it becomes clearer if we think of it as follows. Suppose that it is Max
that plays with a locally-optimal strategy. At each stage that Min plays a value-
changing action, he damages his payo�, and since Max is playing with locally-
optimal strategy he takes advantage of this. But it is not possible to keep taking
advantage and increasing the payo� for Max and decreasing it for Min since
the payo� function is bounded and we have a �nite arena.

In fact we will prove a stronger property: if Max plays with a locally-optimal
strategy then both players will eventually play only stable actions.

De�nition 2.23 (Stable actions).
Let s ∈ S and a ∈ A(s). We say that a is stable (in s) if for all t ∈ S,

p(s, a)(t) > 0 =⇒ val(s) = val(t)

A stable action is necessarily value-preserving. On the other hand a value-
changing action cannot be stable. So being stable is strictly stronger than being
value-preserving.

Lemma 2.24.
Let σ and τ be strategies for Max and Min respectively, and s0 ∈ S. If σ is
locally-optimal then

Pσ,τ
s0

[{∃n, ∀k ≥ n, An is stable}] = 1.

38

2.4 Existence of ε-subgame-perfect Equilibria

Proof.
In case every action is stable, we are done, therefore assume that there exists s ∈
S and a ∈ A(s) such that a is not stable in s. Let t ∈ S be such that p(s, a)(t) >
0 and val(s) 6= val(t). Denote the event “we see action a in�nitely often” by
Esa de�ned formally as

Esa = {∀m, ∃n ≥ m, Sn = s ∧ An = a}.

We will prove that P
σ,τ
s0 [Esa] = 0 by contradiction. Assume that P

σ,τ
s0 [Esa] > 0.

It follows that P
σ,τ
s0 [Esat] > 0 where Esat is the event de�ned as

Esat = {∀m, ∃n ≥ m, Sn = s ∧ An = a ∧ Sn+1 = t}.

From here we conclude that there is nonzero probability that for in�nitely many
n ∈N,

|val(Sn)− val(Sn+1)| ≥ val(t)− val(s) > 0.

In other words, there is some nonzero probability that the process (val(Sn))n∈N

does not converge. But having σ locally-optimal, from Proposition 2.22 the pro-
cess (val(Sn))n∈N is a supermartingale, and Doob’s theorem (Theorem 2.11)
implies that it converges almost surely. Hence the assumption that P

σ,τ
s0 [Esa] >

0 must be false.

By weakening the stability of the action to it being value-preserving we get
the following corollary.

Corollary 2.25.
Let σ and τ be strategies for Max and Min respectively, and s0 ∈ S. If σ is
locally-optimal then

Pσ,τ
s0

[{∃n, ∀k ≥ n, An is value-preserving}] = 1.

The proof is completely symmetric if we suppose that τ is locally-optimal.
Another useful property of the game when Max plays with a locally-optimal

strategy is that if we stop the process (val(Sn))n∈N at some stopping time, the
value will be larger then the value of the initial state.

39

2 submixing and shift-invariant games

Lemma 2.26.
Let T be a stopping time with respect to the �ltration induced by (Sn)n∈N,
σ and τ strategies for Max and Min respectively and s0 ∈ S. If σ is locally-
optimal then the process (val(Sn))n∈N point-wise converges almost surely
and

Eσ,τ
s0

[lim
n

val(Smin(n,T))] ≥ val(s0).

Proof.
Immediately follows from Proposition 2.22 and Lemma 2.12.

We have shown a few desirable properties of the game under the hypothe-
sis that Max plays with a locally-optimal strategy. Alas, as mentioned before,
a locally-optimal strategy may be far from optimal. Nevertheless there exist
strategies that are ε-optimal and at the same time locally-optimal. This is the
following lemma.

Lemma 2.27.
Let µ > 0 and a ∈ A(s), a value-changing action in state s ∈ S1. There
exists a µ-optimal strategy for Max that never plays action a.

Proof.
Let G ′ be a game that is identical to G except that a 6∈ A(s) — action a is not
enabled in state s in the game G ′.5 Since it is an action of Max that is missing
in G ′ we have

∀t ∈ S, val(G, t) ≥ val(G ′, t).

We will prove the inverse inequality, i.e.

∀t ∈ S, val(G ′, t) ≥ val(G, t). (2)

We split this in two cases, for t = s and for t 6= s.

• Case 1. We prove val(G ′, s) ≥ val(G, s).
Let

d = val(G, s)−∑
t∈S

p(s, a)(t) · val(G, t) > 0,

5 if in game G , A(s) is a singleton action a, then it cannot be value-changing, therefore in the
game G ′, A(s) is nonempty after removing a

40

2.4 Existence of ε-subgame-perfect Equilibria

µ > 0, and τ a strategy for Min that follows a strategy τ′ which is µ-
optimal in G ′ as long as Max does not play action a in s, and if he does, τ

switches de�nitely to another strategy τ′′ that is d
2 -optimal in G . De�ne

Eopt = {∀n, Sn = s =⇒ An 6= a},

the event that a is never played. We will prove that for all σ and t ∈ S,

E
σ,τ
t [f | Eopt] ≤ val(G ′, t) + µ (3)

E
σ,τ
t [f | ¬Eopt] ≤ val(G, s)− d +

d
2

. (4)

For (3), observe that in in�nite histories of Eopt the game is played solely
in G ′, therefore, even though σ is a strategy in G it has the same behavior
as the strategy σ′ in the game G ′ de�ned as

σ′(h)(b) = Pσ,τ
s0

[hb | h ∩ Eopt],

for all h = s0 · · · sn ∈ S(AS)∗, and b ∈ A(sn). From here, since τ never
has to switch to τ′′ we have

E
σ,τ
t [f | Eopt] = E

σ′,τ′
t [f],

where the �rst expectation is in the game G and the second is in the game
G ′. Now (3) follows from τ′ being µ-optimal.
When Max plays the action a, τ switches to the strategy that is d

2 -optimal
in G , and the value decreases by d because of the choice of the value-
changing action a, hence (4). With (3) and (4) we have shown that for all
strategies σ for Max, t ∈ S and µ > 0,

E
σ,τ
t [f] ≤ max(val(G ′, t) + µ, val(G, s)− d

2
).

Taking t = s and the supremum over strategies σ, from the inequality
above we conclude val(G ′, s) ≥ val(G, s).

• Case 2. We prove that for all t ∈ S di�erent from s, val(G ′, t) ≥ val(G, t).
Let

Eσ = {∃n, Sn = s ∧ σ(S0 · · · Sn)(a) > 0},

the event that at some point the state s is reached and the strategy σ

wants to play action a with some nonzero probability. Let µ > 0, and for
all strategies σ de�ne σs to be the strategy in G ′ that plays according to
σ as long as the latter is not about to play action a with some nonzero
probability, in which case it switches to the strategy σ′ that is µ-optimal
in G ′.

41

2 submixing and shift-invariant games

De�ne τ to be the strategy that follows some strategy τ′ that is µ-optimal
in G ′ as long as Max does not play the action a from s, in which case τ

switches to a strategy τ′′ that is µ-optimal in G .

For all σ, since the pairs of strategies σ, τ play the same as σs, τ′ respec-
tively up to the date n in the event Eσ, we can write

cσ = P
σ,τ
t [Eσ] = P

σs,τ′
t [Eσ].

From the de�nition of τ, σs and Case 1, for all strategies σ we have,

E
σ,τ
t [f | Eσ] ≤ val(G, s) + µ = val(G ′, s) + µ

E
σs,τ
t [f | Eσ] ≥ val(G ′, s)− µ.

Whose combination yields

E
σ,τ
t [f | Eσ] ≤ E

σs,τ
t [f | Eσ] + 2µ. (5)

To conclude we decompose E
σ,τ
t [f] on the event Eσ and make the follow-

ing observation, for all strategies σ,

cσE
σ,τ
t [f | Eσ] + (1− cσ)E

σ,τ
t [f | ¬Eσ] (6)

≤ cσ(E
σs,τ
t [f | Eσ] + 2µ) + (1− cσ)E

σs,τ
t [f | ¬Eσ] (7)

= E
σs,τ
t [f] + 2µcσ (8)

= E
σs,τ′
t [f] + 2µcσ ≤ val(G ′, t) + µ(2cσ + 1). (9)

Here (7) comes from (5) and because σ and σs coincide in the in�nite
histories of¬Eσ, and (9) because σs never plays the action a, hence τ plays
according to τ′ that is µ-optimal in the game G ′. Taking the supremum
over all σ �nishes this case.

We have proved that for all t ∈ S, val(G, t) = val(G ′, t), so there is a µ-
optimal strategy that never plays action a.

From this lemma, by induction on the value-changing actions follows this
corollary.

Corollary 2.28.
For all µ > 0, both players have µ-optimal strategies that are locally-
optimal.

42

2.4 Existence of ε-subgame-perfect Equilibria

2.4.3 Finitely many resets

The desirable properties that we have gathered in the previous section will now
be used to demonstrate that playing with the reset strategy that is based on a
strategy that is both ε-optimal and locally-optimal ensures that only �nitely
many weaknesses occur, almost surely. The reset strategy resets the memory
only when a weakness occurs, therefore only �nitely many weaknesses occur,
almost surely.

Proving this will require a couple of steps.

• First, we will show that for σ that is ε-optimal and τ locally-optimal, there
is nonzero probability (for small enough ε) that no σ-weakness occurs.

• Second, when playing with the reset strategy σ̂ based on some ε-optimal
strategy σ that is locally-optimal, against all τ, it is ensured that there ex-
ists n such that the probability that there are two σ-weakness after date6

n is bounded away from 1. The intermediate step is to demonstrate the
same statement for strategies τn. These are strategies that play according
to τ up to a date n, after which they only play value-preserving actions.

For the sake of clarity we will use English to refer to certain events. Let us
formally state their de�nitions in terms of De�nition 2.19. The event there is no
σ-weakness after date n is de�ned as

{∀m > n,¬Wσ(S0 · · · Sm)}.

The event there are two σ-weaknesses after date n is de�ned as

{∃m, m′, m > m′ > n,Wσ(S0 · · · Sm) ∧Wσ(S0 · · · Sm′)}.

For n ∈N and s0 · · · sm ∈ S(AS)∗, de�ne the boolean-valued function wa7

wa(n, s0 · · · sm) = (m > n) ∧ (Wσ(s0 · · · sm)) ∧ (δσ(s0 · · · sm−1) ≤ n),

that characterizes �nite histories that are the �rst weakness after the date n.
Let us start with the �rst step.

Lemma 2.29.
Let σ be an ε-optimal strategy for Max. There exists µ(ε) > 0 such that
for all s0 ∈ S and locally-optimal strategies τ for Min,

Pσ,τ
s0

[{∃n, S0 · · · Sn is a σ-weakness}] ≤ 1− µ(ε).

6 the date is the number of turns
7 read weakness after

43

2 submixing and shift-invariant games

We will prove this lemma by contradiction. For a small enough ε, if we as-
sume that almost surely there will be a σ-weakness, although σ is ε-optimal, we
can construct a strategy for Min that takes advantage of this weakness resulting
in a less then ε-optimal performance from σ.
Proof.
De�ne the random variable Fσ (the date of the �rst σ-weakness) as

Fσ = min{n ∈N | Wσ(S0 · · · Sn)},

with the convention that min ∅ = ∞. Let τ be a strategy for Min, s0 ∈ S, M
and m the upper and lower bound of the payo� function f respectively. De�ne
τ′ to be the strategy that plays identically to τ as long as no weakness occurs,
and if it does it switches de�nitely to a ε

2 -response τ′′.
Let us explain what we mean by ε

2 -response. Suppose thatWσ(s0 · · · sn) and
that no strict pre�x of s0 · · · sn is a σ-weakness. By de�nition of the σ-weakness,
we have

inf
τ

E
σ[s0···sn],τ
sn

[
f [s0 · · · sn]

]
< val(sn)− 2ε,

and τ′′ is chosen such that

E
σ[s0···sn],τ′′
sn

[
f [s0 · · · sn]

]
≤ val(sn)− 2ε +

ε

2
. (10)

Since τ and τ′ coincide up to the date of the �rst weakness, we write

cσ = Pσ,τ
s0

[{Fσ = ∞}] = Pσ,τ′
s0

[{Fσ = ∞}].

Decomposing on the events {Fσ = ∞} and {Fσ < ∞}, we have

Eσ,τ′
s0

[f] = (1− cσ)E
σ,τ′
s0

[f | Fσ < ∞] + cσEσ,τ′
s0

[f | Fσ = ∞]

≤ (1− cσ)E
σ,τ′
s0

[f | Fσ < ∞] + cσ M.

Combining the above with the fact that σ is ε-optimal we have

val(s)− ε ≤ (1− cσ)E
σ,τ′
s0

[f | Fσ < ∞] + cσ M. (11)

From the de�nition of the strategies τ′ and τ′′, and the assumption that f is
shift-invariant it follows that

Eσ,τ′
s0

[f | Fσ < ∞]

= ∑
wa(0,s0···sn)

Pσ,τ′
s0

[s0 · · · sn | Fσ < ∞]E
σ[s0···sn],τ′′
sn [f]

≤ ∑
wa(0,s0···sn)

Pσ,τ′
s0

[s0 · · · sn | Fσ < ∞](val(sn)− 2ε +
ε

2
)

= Eσ,τ′
s0

[val(SFσ) | Fσ < ∞]− 3
2

ε.

44

2.4 Existence of ε-subgame-perfect Equilibria

The sums above are over �nite histories s0 · · · sn ∈ S(AS)∗, for which
wa(s0 · · · sn) holds. Plugging the above into (11) we have

val(s)− ε

≤ (1− cσ)E
σ,τ′
s0

[val(SFσ) | Fσ < ∞]− 3
2

ε(1− cσ) + cσ M (12)

= Eσ,τ′
s0

[val(SFσ)] + cσ(M−Eσ,τ′
s0

[val(SFσ) | Fσ = ∞] (13)

− 3
2

ε(1− cσ))

≤ val(s0) + cσ(M−Eσ,τ′
s0

[val(SFσ) | Fσ = ∞])− 3
2

ε(1− cσ) (14)

≤ val(s0) + cσ(M−m)− 3
2

ε(1− cσ). (15)

We have (13) from the decomposition of E
σ,τ′
s0 [val(SFσ)] on the event {Fσ < ∞}.

While (14) comes from the following. The random variable Fσ is a stopping time
with respect to the �ltration that is induced by the process (Sn)n∈N, and since
the strategy τ′ plays only value-preserving actions up to the �rst weakness
the process (val(Sn))n∈N is a submartingale. Applying Lemma 2.12 we have
E

σ,τ′
s0 [val(SFσ)] ≤ val(s0).
Now a uniform bound that does not depend on the choice of the strategy τ

follows

µ(ε) =
ε

2(M−m + 3
2 ε)
≤ cσ.

Now we will prove something similar but for the reset strategy σ̂ that is
based on some ε-optimal and locally-optimal strategy σ. In fact we will prove
that there exists some n ∈ N such that there is some nonzero probability that
there do not exist two σ-weaknesses after date n. Even though we are playing
with the reset strategy, we still care about σ-weaknesses (in place of say σ̂-
weaknesses) because they tell us when the reset strategy resets its memory.

We will prove the above, �rst for a class of strategies of Min that after some
date are sure to play value-preserving actions, then lift this to all strategies
of Min, using the fact that if one of the players plays with a locally-optimal
strategy then he forces the other one to do so as well.

First let us insert a small proposition. By 1E , denote the indicator function
for the event E .

45

2 submixing and shift-invariant games

Proposition 2.30.
Let E be an event, and σ1, σ2 two strategies for Max, such that for all pre�xes
p of an in�nite history in E , σ1(p) = σ2(p). For all payo� functions f ,
strategies τ and s0 ∈ S

Eσ1,τ
s0

[f · 1E] = Eσ2,τ
s0

[f · 1E].

Proof.
It is immediate if f is an indicator function itself. The class of functions for
which the above holds, is closed under linear combinations and limits, therefore
we can use the monotone class theorem to �nish the proof. For a proof of the
monotone class theorem see e.g. [Durrett, 2010].

For a state s ∈ S denote by

vp(s) ⊆ A(s),

the set of value-preserving actions in s. For a �nite set X denote by

U (X),

the uniform distribution on X.
Let τ be a strategy for Min. For all n ∈ N we de�ne τn to be the strategy

that after the date n plays only value-preserving actions, i.e. for all s0 · · · sm ∈
S(AS)∗, sm ∈ S2,

τn(s0 · · · sm) =

τ(s0 · · · sm) if m < n or

∀a, τ(s0 · · · sm)(a) > 0 =⇒ (a ∈ vp(sm))

U (vp(sm)) otherwise.

In the strategy τn, the strategy τ is followed in the �rst n turns. After the
�rst n turns, if τ plays a value-preserving action, then so does τn, otherwise it
plays some random value preserving action.

Lemma 2.31.
Let σ and τ be two strategies, with σ being ε-optimal and locally-optimal.
There exists µ(ε) > 0 such that for all n ∈N and s0 ∈ S,

Pσ̂,τn
s0

[{there are two σ-weaknesses after the date n}] ≤ 1− µ(ε).

46

2.4 Existence of ε-subgame-perfect Equilibria

Make note that the statement of the lemma above is about the reset strategy
σ̂, instead of σ.
Proof.
We will de�ne two random variables. For n ∈N, let

Fn = min{m > n | W(S0 · · · Sm)},

with the convention min ∅ = ∞. This is the �rst weakness that occurs strictly
after the date n. De�ne

F2
n = FFn ,

the second weakness that occurs strictly after the date n, with the convention
F∞ = ∞.

We �rst show that there exists µ(ε) > 0 such that for all n ∈N and s0 ∈ S,

Pσ̂,τn
s0

[
{F2

n < ∞} | Fn < ∞
]
≤ 1− µ(ε). (16)

As above, de�ne the boolean-valued function wa,

wa(n, s0 · · · sm) = (m > n) ∧ (Wσ(s0 · · · sm)) ∧ (δσ(s0 · · · sm−1) ≤ n),

for n ∈ N and s0 · · · sm ∈ S(AS)∗. Fix µ(ε) from Lemma 2.29. Then (16) is a
consequence of the following

Pσ̂,τn
s0

[{F2
n < ∞} | Fn < ∞]

= ∑
h=s0 ···sm
wa(n,h)

Pσ̂,τn
s0

[{F2
n < 2} | h ∧ Fn < ∞] ·Pσ̂,τn

s0
[h | Fn < ∞] (17)

= ∑
h=s0 ···sm
wa(n,h)

Pσ̂,τn
s0

[{F2
n < ∞} | h] ·Pσ̂,τn

s0
[h | Fn < ∞] (18)

= ∑
h=s0 ···sm
wa(n,h)

P
σ̂,τn[h]
sm [{F0 < ∞}] ·Pσ̂,τn

s0
[h | Fn < ∞] (19)

= ∑
h=s0 ···sm
wa(n,h)

P
σ,τn[h]
sm [{F0 < ∞}] ·Pσ̂,τn

s0
[h | Fn < ∞] (20)

≤ 1− µ(ε). (21)

We have (17) and (18) because

{Fn < ∞} =
⋃

h=s0 ···sm
wa(n,h)

h(AS)ω.

We have (19) from the de�nition of the reset strategy, if wa(n, h) then σ̂[h] = σ̂.
We have Equation (20) from (2.30) because σ and σ̂ coincide up to the �rst σ-
weakness. Finally (21) is from the de�nition of τn, since |h| ≥ n, τn[h] is locally-
optimal so we can use Lemma 2.29.

47

2 submixing and shift-invariant games

To �nish the proof, we have

Pσ̂,τn
s0

[F2
n < ∞] = Pσ̂,τn

s0
[F2

n | Fn < ∞] ·Pσ̂,τn
s0

[Fn < ∞] ≤ 1− µ(ε).

Now we are able to strengthen this result so that it holds for any strategy
chosen by Min. We have to do this strengthening because there is no guarantee
that Min always plays intelligently, he might in general play actions which do
not preserve the value.

Lemma 2.32.
Let σ be a strategy for Max that is ε-optimal and locally-optimal. For all τ

and s0 ∈ S there exists n ∈N such that

Pσ̂,τ
s0

[{there are two σ-weaknesses after date n}] < 1.

Proof.
Let L be the random variable taking values in N ∪ {∞} that maps to the date
of the last value-changing action that has been played, if it exists, and it maps
to ∞ if it does not. The strategies τ and τn coincide on all in�nite histories
where the last value-changing action is played before the date n, i.e. the event
{L < n}. Hence for all n ∈N and event E

Pσ̂,τ
s0

[E] = Pσ̂,τ
s0

[{L < n}] ·Pσ̂,τn
s0

[E | L < n]

+ Pσ̂,τ
s0

[{L ≥ n}] ·Pσ̂,τ
s0

[E | L ≥ n].

The strategy σ̂ is locally-optimal, so from Corollary 2.25 we have

lim
n

Pσ̂,τ
s0

[{L < n}] = 1,

and consequently
lim

n
Pσ̂,τn

s0
[E] = Pσ̂,τ

s0
[E].

Fix µ(ε) from Lemma 2.31 and n ∈N such that for all E

|Pσ̂,τ
s0

[E]−Pσ̂,τn
s0

[E]| < µ(ε).

Now take n′ > n and let E = {there are two σ-weaknesses after date n′} and
apply Lemma 2.31.

Finally we can prove that almost surely, only �nitely many times the reset
strategy will reset its memory.

48

2.4 Existence of ε-subgame-perfect Equilibria

Lemma 2.33 (Finitely many resets).
Let σ be a strategy that is locally-optimal and ε-optimal. For all strategies
τ and s0 ∈ S,

Pσ̂,τ
s0

[{∃n, there is no σ-weakness after date n}] = 1

Proof.
Let

L = lim
n

δσ(S0 · · · Sn) ∈N∪ {∞}.

The random variable L is well-de�ned since the δσ(S0 · · · Sn) is point-wise in-
creasing as a function of n. In other words L is the date of the last σ-weakness,
if it exists, otherwise it is equal to ∞.

Let ε′ > 0 and choose τ and s0 such that

sup
τ′,s′

P
σ̂,τ′
s′ [{L = ∞}] ≤ Pσ̂,τ

s0
[{L = ∞}] + ε′. (22)

Fix n ∈N to be such that according to Lemma 2.32 we have

µ = Pσ̂,τ
s0

[{Fn < ∞}] < 1,

where Fn is the random variable that gives the date of the �rst weakness strictly
after n, i.e.

Fn = min{m > n | W(S0 · · · Sm)}.

Note that we can apply Lemma 2.32 for the event {Fn < ∞}, because if the
event of having at most one weakness after date n is nonzero, we can choose
some n′ > n such that the event of having one weakness after n′ is nonzero.

We now have

Pσ̂,τ
s [{L = ∞}]
= Eσ̂,τ

s
[
Pσ̂,τ

s [{L = ∞} | Fn, S0, . . . , SFn]
]

(23)
= Eσ̂,τ

s
[
1Fn<∞ ·Pσ̂,τ

s [{L = ∞} | Fn, S0, . . . , SFn]
]

(24)

= Eσ̂,τ
s
[
1Fn<∞ ·P

σ̂,τ[S0···SFn]
SFn

[{L = ∞}]
]

(25)

≤ Eσ̂,τ
s
[
1Fn<∞ · (Pσ̂,τ

s [{L = ∞}] + ε′)
]

(26)
= µ

(
Pσ̂,τ

s [{L = ∞}] + ε′
)

(27)

We have (23) from a basic property of conditional expectations. Then (24) fol-
lows from the fact that P

σ̂,τ
s [{Fn < ∞} | L = ∞] = 1. From the de�nition of

49

2 submixing and shift-invariant games

the reset strategy comes (25), and (26) follows from (22). Consequently, since
µ < 1 we get

Pσ̂,τ
s [{L = ∞}] ≤ µ

1− µ
ε′.

Now for all s0 and τ′′

Pσ̂,τ′′
s0
≤ sup

τ′,s′
P

σ̂,τ′
s′ [{L = ∞}]

≤ Pσ̂,τ
s [{L = ∞}] + ε′

≤ ε′

1− µ
.

This holds for all ε′ > 0, therefore P
σ̂,τ′′
s0 [{L = ∞}] = 0.

2.4.4 The reset strategy is 2ε-subgame-perfect

When playing with the reset strategy, we see that on almost all possible in�nite
histories, there is some date n after which there will be no more resets of the
memory, since there will be no more weaknesses, and consequently the strategy
will be 2ε-subgame-perfect.

In order to show that the reset strategy is 2ε-subgame-perfect for all �nite
histories, we will �rst prove that it is ε-optimal. This will be done in two steps,
where the �rst step is proving it for strategies that reset the memory only up
to some date n.

Let σ be a strategy for Max, we de�ne the strategy based on σ that resets the
memory only up to date n, denoted σ̂n as

σ̂n(s0 · · · sm) = σ(sδσ(s0···sm∧n) · · · sm),

where m ∧ n = min(m, n).

Lemma 2.34.
Let σ be a strategy for Max that is ε-optimal and locally-optimal. For all
n ∈N, σ̂n is ε-optimal.

Proof.
The proof is by induction on n.
Base case. By de�nition since σ̂0 = σ.
Induction step. Let τ be a strategy for Min and s0 ∈ S. De�ne τ′ to be

the strategy that follows τ except if there is a weakness at date n + 1, i.e. the

50

2.4 Existence of ε-subgame-perfect Equilibria

event {Wσ(S0 · · · Sn+1)} in which case it resets de�nitely to an ε
2 -response τ′′.

De�ne the random variable

Ln =Wσ(S0 · · · Sn).

We will decompose the expected values on the event of a weakness at date n+ 1.
Denote by W the set of all �nite histories of n + 1 turns, where a weakness
occurs,

W = {s0 · · · sn+1 ∈ S(AS)∗ | Wσ(s0 · · · sn+1)}.

Hence
{Ln+1} =

⋃
h∈W

h(AS)ω.

From here,

E
σ̂n+1,τ
s0 [f]

= E
σ̂n+1,τ
s0 [1Ln+1 · f] + E

σ̂n+1,τ
s0 [1¬Ln+1 · f]

= ∑
h=s0···sn+1∈W

P
σ̂n+1,τ
s0 [h] ·Eσ,τ[h]

sn+1 [f] + E
σ̂n+1,τ
s0 [1¬Ln+1 · f]

≥ ∑
h=s0···sn+1∈W

P
σ̂n+1,τ
s0 [h] · (val(sn+1)− ε) + E

σ̂n+1,τ
s0 [1¬Ln+1 · f],

from the de�nition of σ̂n+1, shift-invariance of f and the fact that σ is ε-optimal.
In the other hand

Eσ̂n,τ′
s0

[f]

= Eσ̂n,τ′
s0

[1Ln+1 · f] + Eσ̂n,τ′
s0

[1¬Ln+1 · f]

= ∑
h=s0···sn+1∈W

Pσ̂n,τ′
s0

[h] ·Eσ̂n[s0···sn+1],τ′′
sn+1 [f] + Eσ̂n,τ′

s0
[1¬Ln+1 · f]

≤ ∑
h=s0···sn+1∈W

Pσ̂n,τ′
s0

[h]
(
val(sn+1)− 2ε +

ε

2
)
+ Eσ̂n,τ′

s0
[1¬Ln+1 · f]

by construction of τ′ and shift-invariance of f .
We can combine the two inequalities above because both pairs of strategies

σ̂n,σ̂n+1 and τ,τ′ coincide on all in�nite histories where no σ-weakness occurs
at date n + 1 and on every action before the date n + 1. Therefore the second
terms of the inequalities above are equal hence

Eσ̂n,τ′
s0

[f] ≤ E
σ̂n+1,τ
s0 [f].

From the induction hypothesis σ̂ is ε-optimal thus

E
σ̂n+1,τ
s0 [f] ≥ val(s0)− ε.

51

2 submixing and shift-invariant games

Being done with this intermediate step we move on to show that the reset
strategy is ε-optimal.

Lemma 2.35.
Let σ be a strategy for Max that is ε-optimal and locally-optimal. Then σ̂

is ε-optimal.

Proof.
Let m and M be respectively the lower and upper bound of f . De�ne

L = lim
n

δσ(S0 · · · Sn) ∈N∪ {∞},

the date of the last σ-weakness if it exists, and otherwise ∞. Let s0 ∈ S and τ

a strategy for Min, from Lemma 2.34 we have

val(s0)− ε ≤ Eσ̂n,τ
s0

[f · 1L≤n] + Eσ̂n,τ
s0

[f · 1L n]

≤ Eσ̂n,τ
s0

[f · 1L≤n] + M ·Pσ̂n,τ
s0

[{L > n}].

Since σ and σ̂n coincide upon all in�nite histories in {L ≤ n}, using Proposi-
tion 2.30 we have

Eσ̂,τ
s0

[f]−Eσ̂,τ
s0

[f · 1L>n] = Eσ̂,τ
s0

[f · 1L≤n]

= Eσ̂n,τ
s0

[f · 1L>n]

≥ val(s0)− ε−M ·Pσ̂n,τ
s0

[{L > n}].

Applying Proposition 2.30 for the constant payo� function that maps to 1 we
have

Pσ̂,τ
s0

[{L ≤ n}] = Pσ̂n,τ
s0

[{L ≤ n}],

therefore

Eσ̂,τ
s0

[f] ≥ val(s0)− ε− (M−m) ·Pσ̂,τ
s0

[{L > n}].

From Lemma 2.33 the right-most term above vanishes as n grows, which con-
cludes the proof.

After gathering all the lemmata above we �nish this section by proving that
the reset strategy is 2ε-subgame-perfect.

52

2.4 Existence of ε-subgame-perfect Equilibria

Lemma 2.36.
Let σ be a strategy for Max, that is ε-optimal and locally optimal. The reset
strategy σ̂ is 2ε-subgame-perfect.

Proof.
Let

h = s0 · · · sn ∈ S(AS)∗,

we will show that

inf
τ

E
σ̂[h],τ
sn [f] ≥ val(sn)− 2ε. (28)

In caseWσ(h) we have

inf
τ

E
σ̂[h],τ
sn [f] = inf

τ
Eσ̂,τ

sn
[f] ≥ val(sn)− ε,

from the de�nition of σ̂ and Lemma 2.35. Therefore assume that ¬Wσ(h), this
implies that

δσ(s0 · · · sn) = δσ(s0 · · · sn−1),

i.e. the date of the last σ-weakness in the �nite play s0 · · · sn is the same as
the date in the �nite play s0 · · · sn−1 since the assumption is that h is not a σ-
weakness. From the de�nition of a σ-weakness and that of the reset strategy,
the assumption ¬Wσ(h) also implies that

inf
τ

E
σ[h′],τ
sn [f] ≥ val(sn)− 2ε, (29)

where
h′ = sδσ(s0···sn−1) · · · sn.

To prove (28), we will proceed by contradiction, assume that there exists some
strategy τ such that

E
σ̂[h],τ
sn [f] < val(sn)− 2ε.

Now from τ we will construct another strategy τ′ such that

E
σ[h′],τ′
sn [f] < val(sn)− 2ε

which contradicts (29).
De�ne τ′ to be the strategy that follows τ as long as no weakness occurs,

and when it does, it switches to the ε-response strategy τ′′. De�ne the random
variable

L = lim
n

δσ(S0 · · · Sn) ∈N∪ {∞},

53

2 submixing and shift-invariant games

the date of the last σ-weakness, if it exists and otherwise ∞. Denote by Fσ the
date of the �rst σ-weakness, i.e.

Fσ = min{n ∈N | Wσ(S0 · · · Sn)}.

Now we have

val(sn)− 2ε > E
σ̂[h],τ
sn [f · 1L=0] + E

σ̂[h],τ
sn [f · 1Fσ<∞] (30)

= E
σ[h′],τ′
sn [f · 1L=0] + E

σ̂[h],τ
sn [f · 1Fσ<∞] (31)

= E
σ[h′],τ′
sn [f]−E

σ[h′],τ′
sn [f · 1Fσ<∞] + E

σ̂[h],τ
sn [f · 1Fσ<∞]. (32)

We have (30) because {L = 0} = {Fσ = ∞} and the assumption on the strat-
egy τ. We have (31) because the pairs of strategies σ̂[h],σ[h′] and τ, τ′coincide
up to the �rst σ-weakness.

For the last two terms of (31) we have

E
σ̂[h],τ
sn [f · 1Fσ<∞] = ∑

g=t0 ···tm
wa(g)

P
σ̂[h],τ
sn [g] ·Eσ̂,τ[g]

tm
[f]

≥ ∑
g=t0 ···tm

wa(g)

P
σ̂[h],τ
sn [g] · (val(tm)− ε)

by the de�nition of σ̂ and Lemma 2.35. For the other term we have

E
σ[h′],τ′
sn [f · 1Fσ<∞] = ∑

g=t0 ···tm
wa(g)

P
σ[h′],τ′
sn [g] ·Eσ[h′][g],τ′′

tm
[f]

≤ ∑
g=t0 ···tm

wa(g)

P
σ[h′],τ′
sn [g] ·

(
val(tm)− 2ε + ε

)
,

from the de�nition of τ′.
In the probabilities of the cylinders g(AS)ω we can freely interchange the

strategies σ̂[h] and σ[h′] as well as τ and τ′ since they coincide up to the �rst
weakness. Therefore we have

E
σ̂[h],τ
sn [f · 1Fσ<∞] ≥ E

σ[h′],τ′
sn [f · 1Fσ<∞],

which contradicts (29) when replaced into (32).

54

2.5 Half-Positionality

2.5 half-positionality

In this section we will prove the main result of the chapter. If the payo� function
is submixing and shift-invariant then the game is half-positional: Max has an
optimal strategy that is both stationary and pure.

Theorem 2.37.
Let G be a game equipped with a payo� function that is shift-invariant and
submixing, then G is half-positional.

Proof Idea.
The proof is by induction on the number of actions. We will choose some state
and partition the set of actions that are available into two sets, and de�ne two
games by restricting the available actions to the two corresponding sets. Then
the goal is to show that the value of the original game does not exceed the
maximum of the values of the two subgames. If this is true then we can play only
actions from one of the sets and win just as much as playing in the original game.
The induction hypothesis will imply that the subgames are half-positional so in
the original game there will be an optimal strategy that is stationary and pure.

The value of the original game is shown to be no more than the maximum
of the values of the two subgames by decomposing the set of outcomes in the
original game into the trajectories that eventually remain only in subgame 1,
the trajectories that eventually remain only in subgame 2 and the trajectories
that switch between the two at in�nitely many stages. For each one of them we
will show that it is not possible to do better than the maximum of the values of
the subgames. 4

Let G = (A, f) be a game, such that f is shift-invariant and submixing. The
proof of Theorem 2.37 is by induction on

N = ∑
s∈S1

(|A(s)| − 1).

Base case. IfN = 0, Max has a single strategy and it is stationary, pure and
optimal.
Induction step. Assume that the theorem holds for N = n we will prove

it for N = n + 1. Let s ∈ S1 such that A(s) ≥ 2. Such a state exists because
N = n + 1. Partition A(s) into two nonempty sets A1 and A2, and let G1 and
G2 be the games that are identical to G except that in game Gi, A(s) = Ai.

In order to prove Theorem 2.37 it su�ces to show that

val(G, s) ≤ max
(
val(G1, s), val(G2, s)

)
. (33)

55

2 submixing and shift-invariant games

This is because, from the induction hypothesis the games Gi admit optimal
strategies that are stationary and pure. Moreover a strategy in the game Gi is a
strategy in the game G as well.

Therefore we will proceed with the proof of (33).
For a �nite set X, we used the notation X∗ for the set of �nite words over the

alphabet X, and Xω for the set of in�nite words over the alphabet X. Denote
by

X∞ = X∗ ∪ Xω,

their union.
We will de�ne two projection mappings on the set of �nite or in�nite histo-

ries that start from the state s in the game G into histories in the games Gi, by
deleting appropriate subwords,

π1 : s(AS)∞ → s(AS)∞

π2 : s(AS)∞ → s(AS)∞.

We give the precise de�nition of π1. That of π2 is symmetrical.
For �nite histories, π1 deletes the subword that are in the game G2, i.e. the

ones where the state s is followed by an action inA2. Let h = sa0s1a1 · · · an−1sn ∈
s(AS)∗, π(h) is the �nite history where the following subwords are deleted

• all simple cycles on s starting with an action in A2,

• in case the last occurrence of s in h is followed by an action in A2, then
that su�x is deleted.

Formally let i1 < i2 < · · · < ik = {1 ≤ i ≤ n | si = s}, the dates where
the �nite history reaches state s, and for all 1 ≤ j < k de�ne the subword

hj = sij aij · · · aij+1−1,

and
hk = sik aik · · · an−1sn

Then
π1(h) = ∏

1≤j≤k
aij
∈A1

hj,

where ∏ is word concatenation. For in�nite histories h ∈ s(AS)ω , π1 is ex-
tended naturally as the limit of the sequence (π1(hn))n∈N where hn is the �nite
history of the �rst n rounds in h, i.e. the pre�x of length 2n + 1.

Observe that π1(h), is not necessarily an in�nite history, even when h itself
is. If the tail of the history is in the game G2 then π1 will map to a �nite history.

56

2.5 Half-Positionality

Let us enumerate some other properties of the mappings π1, and π2. For all
h = s(AS)ω ,

• if π1(h) is �nite,
then h has a su�x which is an in�nite history in G2 starting from s, (34)
• if π2(h) is �nite,
then h has a su�x which is an in�nite history in G1 starting from s, (35)
• if both π1(h) and π2(h) are in�nite,
then in both of them the state s is reached in�nitely often, (36)
• if both π1(h) and π2(h) are in�nite,
then h is a shu�e of π1(h) and π2(h). (37)

The properties above follow immediately from the de�nitions of π1 and π2.
From Lemma 2.17 there exist ε-subgame-perfect strategies τ#

1 and τ#
2 in the

games G1 and G2 respectively. By combining these two we construct a strategy
τ#, called the trigger strategy. It switches between τ#

1 and τ#
2 depending on

the action that was played in the last visit to state s. For a �nite history h =

sa0s1a1 · · · an−1 ∈ (SA)∗ let l(h) be the action that was played in the last visit
of s. Let sn ∈ S and de�ne

τ#(hsn) =

{
τ#

1
(
π1(h)sn

)
if l(h) ∈ A1

τ#
2
(
π2(h)sn

)
if l(h) ∈ A2.

The trigger strategy is retaining the �nite histories in both subgames, and de-
pending on which subgame Max is playing, τ# replies with actions that follow
the ε-subgame-perfect strategy in that subgame.

De�ne the three following random variables,

Π = S0A0S1A1 · · · ,

Π1 = π1(S0A0S1A1 · · ·),
Π2 = π2(S0A0S1A1 · · ·).

We will show that the trigger strategy is ε-optimal in G . In particular we will
prove that for all strategies σ for Max,

Eσ,τ#

s [f | Π1 is �nite] ≤ val(G2, s) + ε,

Eσ,τ#

s [f | Π2 is �nite] ≤ val(G1, s) + ε,

Eσ,τ#

s [f | Π1 and Π2 are in�nite] ≤ max
(
val(G1, s), val(G2, s)

)
+ ε.

Observe that this is su�cient for (33), so we will �nish the proof of Theorem 2.37
with the demonstration of the above inequalities.

57

2 submixing and shift-invariant games

Proposition 2.38.
For all strategies σ for Max,

Eσ,τ#

s [f | Π1 is �nite] ≤ val(G2, s) + ε,

Eσ,τ#

s [f | Π2 is �nite] ≤ val(G1, s) + ε.

Proof.
We prove just the �rst inequality, the proof of the second one is symmetric.

De�ne P2 a probability measure on the set of in�nite histories in the game
G2 as follows, for all measurable events E ,

P2[E] = Pσ,τ#

s [Π2 ∈ E | Π1 is �nite].

We will show that under this measure, the expected payo� is smaller then
val(G2, s) + ε. Toward this purpose, we de�ne a strategy σ2 for Max in the
game G2 as follows, for all �nite histories h = s0 · · · sn, with sn ∈ S1, and
a ∈ A(sn),

σ2(h)(a) = Pσ,τ#

s [ha � Π2 | h � Π2 and Π1 is �nite],

where � denotes the pre�x relation. We see that

σ2(h)(a) = P2[ha | h].

Consequently, for all h = s0 · · · sn, and t ∈ S

P2[ha | h] =

{
σ2(h)(a) if sn ∈ S1,

τ#
2 (h)(a) if sn ∈ S2,

P2[hat | ha] = p(sn, a)(t).

From this, the fact that P2[s(AS)ω] = 1 and the de�nition of a probability
measure given an arena (Section 2.2.2) we conclude that P2 coincides with the
measure P

σ2,τ#
2

s . Since τ#
2 is ε-optimal in G2, it follows that the expected payo�

under the measure P2 is smaller than val(G2, s) + ε.

Proposition 2.39.
For all strategies σ for Max,

Eσ,τ#

s [f | Π1 and Π2 are in�nite] ≤ max
(
val(G1, s), val(G2, s)

)
+ ε.

58

2.5 Half-Positionality

Proof.
We will �rst prove two claims.

Claim 1.
For all strategies σ′ for Max in G1

P
σ′,τ#

1
s [{ f ≤ val(G1, s) + ε} | s is reached in�nitely often] = 1.

Since f is shift-invariant and τ#
1 is ε-subgame-perfect we have that for all

n ∈N,

E
σ′,τ#

1
s [f | S0, A0, . . . , Sn] = E

σ′,τ#
1

s [f (Sn AnSn+1 · · ·) | S0, A0, . . . , Sn]

= E
σ′[S0···Sn],τ#

1 [S0···Sn]
Sn

[f]

≤ val(Sn) + ε.

Using Levy’s 0-1 law (see e.g. [Durrett, 2010])

lim
n

E
σ′,τ#

1
s [f | S0, A0, . . . , Sn] = f (S0A0S1 · · ·) a.s.,

consequently

P
σ′,τ#

1
s [{ f ≤ lim inf

n
val(G1, Sn) + ε}] = 1,

which proves Claim 1.

Claim 2.
For all strategies σ for Max in G , there exists σ1 in G1 such that for any measurable
event E in G1,

P
σ1,τ#

1
s [E] ≥ Pσ,τ#

s [{Π1 is in�nite, and Π1 ∈ E}]. (38)

We de�ne σ1 as follows, for all h = s0 · · · sn, sn ∈ S1, and a ∈ A(sn),

σ1(h)(a) = Pσ,τ#

s [ha � Π1 | h � Π1],

if P
σ1,τ#

s [h � Π1] > 0, otherwise σ(h) is chose arbitrarily.
Let E be the set of events for which the claim holds. We will show that the

cylinders are in E and that it is closed under countable monotone unions and
intersections. That the claim holds for all measurable events, then follows from
the monotone class theorem.

Indeed E contains all the cylinders h1(AS)ω since

P
σ1,τ#

1
s [h1] ≥ Pσ,τ#

s [h1 � Π1] ≥ Pσ,τ#

s [Π1 is in�nite, and Π1 ∈ h1(AS)ω],

59

2 submixing and shift-invariant games

can be proved by induction on the length of h1, using the de�nition of σ1. That
E is closed under countable monotone unions and intersections it is easy to see.
This concludes the proof of Claim 2.

For ß ∈ {1, 2} we de�ne the events

Ei = {Πi is in�nite and reaches s in�nitely often},
Fi = Ei ∩ { f (Πi) ≤ val(Gi, s) + ε}.

Fix σ be a strategy for Max. From Claim 2, let σ1 be a strategy in G1 such that
(38) holds. From Claim 1 and the de�nition of the strategies,

P
σ1,τ#

1
s [{ f > val(G1, s) + ε, and s is reached in�nitely often}] = 0.

Now Claim 2 implies

Pσ,τ#

s [{ f (Π1) > val(G1, s) + ε} ∩ E1] = 0,

and symmetrically

Pσ,τ#

s [{ f (Π2) > val(G2, s) + ε} ∩ E2] = 0.

From here it follows that

Pσ,τ#

s [F1 ∩ F2 | E1 ∩ E2] = 1.

In the end, using the assumption that f is submixing, from (37) we have

Pσ,τ#

s [{ f ≤ max
(
val(G1, s), val(G2, s)

)
+ ε} | E1 ∩ E2] = 1.

This concludes the proof to the proposition and to Theorem 2.37.

2.6 examples

We have given a su�cient condition in Theorem 2.37 for a game to be half-
positional. The condition is that the payo� function is Borel-measurable and
bounded (so that the game is determined), that it is shift-invariant and submix-
ing (so that Max has an optimal strategy that is stationary and pure). When
enumerating all four conditions one might be lead to believe that this is quite
restrictive. We will give arguments that point out to the contrary, in the form of
examples of payo� functions that ful�ll the condition of being shift-invariant
and submixing. Almost all of the results that will follow are already known,
some are classical, our intention is to understand what is common to them and
to give a uni�ed proof.

Throughout this chapter it was Max who was the protagonist — the player
that interests us, but one might ask what about optimal strategies of Min, are

60

2.6 Examples

they stationary and pure? The quick answer is to just take the payo� func-
tion − f , if it is submixing and shift-invariant then Min also possesses optimal
strategies that are stationary and pure. Equivalently is the payo� function f
shift-invariant and such that for all in�nite sequences of colors h, h1, h2 ∈ Cω

where h is a shu�e of h1 and h2,

f (h) ≥ min
(

f (h1), f (h2)
)
. (39)

So for some of the payo� functions Theorem 2.37 can be used to show that the
game is positional.

All of the payo� functions that we will treat in what follows are obviously
shift-invariant, so the only question will be whether they are submixing or not.

Parity payo�. We introduced the parity payo� earlier in Section 2.1. Her
the set of colors is some �nite set of natural numbers C and the payo� is de�ned
for sequences c0c1 · · · ∈ Cω as

fparity(c0c1 · · ·) =
{

1 if lim supn cn is even
0 otherwise,

i.e. the highest color that is seen in�nitely often is even. Let h, h1, h2 ∈ Cω

such that h is a shu�e of h1 and h2. If the highest color that appears in�nitely
often in h is even (so fparity(h) = 1) then this color must appear in�nitely often
in at least one of hi and it is the highest color appearing there as well, so for
an i ∈ {1, 2}, fparity(hi) = 1. Therefore fparity is submixing. It also ful�lls
(39). If the highest color seen in�nitely often in h is odd, then it must appear
in�nitely often in one of hi where it is the highest color as well. Consequently
Theorem 2.37 proves that in perfect-information two player stochastic games
with the parity payo� both players Max and Min have optimal strategies that
are stationary and pure.

Limsup and liminf payo�. As one can guess from the name, the limsup
and liminf payo� functions compute the limsup and liminf of in�nite sequences
of real numbers, respectively. To see that they are submixing and even ful�ll
(39) is immediate, since for all h, h1, h2 ∈ Cω such that h is a shu�e of h1 and
h2,

flim sup(h) = max
(

flim sup(h1), flim sup(h2)
)
,

and
flim inf(h) = min

(
flim inf(h1), flim inf(h2)

)
.

Another proof of the positionality of flim sup can be found in [Maitra and Sud-
derth, 2012].
Mean payo�. In the mean payo�, the colors are real numbers, and the func-

tion calculated is the average of the colors over the in�nite run. Since we allow

61

2 submixing and shift-invariant games

players to have in�nite memories, the average may not converge. Therefore we
had two versions of the mean payo�, for all c0c1 · · · ∈ Cω ,

fmean(c0c1 · · ·) = lim sup
n→∞

1
n + 1

n

∑
i=0

ci,

and
fmean(c0c1 · · ·) = lim inf

n→∞

1
n + 1

n

∑
i=0

ci.

We can show that fmean is submixing in the following way. We reproduce the
proof from [Gimbert, 2007]. Let h, h1, h2 ∈ Cω such that h is a shu�e of h1 and
h2. Let f be the mean of a �nite word of colors, then for all n ∈ N, we factor
the word of the �rst n colors into the words d1 and d2 depending on whether
they appear in h1 or h2 such that

f (c0 · · · cn−1) =
|d1|
n
(1
|d1| ∑

i∈d1

ci
)
+
|d2|
n
(1
|d2| ∑

i∈d2

ci
)
.

Let m be the maximum of the two expressions appearing in parentheses above,
then

f (c0 · · · cn−1) ≤
|d1|
n

m +
|d2|
n

m = m.

Since this holds for every n ∈ N, we conclude that fmean is submixing. Note
however that it does not ful�ll (39). This is because for sequences a = (an)n∈N,
b = (bn)n∈N, in general it is not true that

lim sup
n

max(an, bn) ≤ max
(

lim sup
n

an, lim sup
n

bn
)
.

The situation for fmean is symmetrical, i.e. (39) holds, but it is not submix-
ing. To summarize Theorem 2.37 implies that in a game with fmean, Max has
an optimal strategy that is both stationary and pure, whereas in a game fmean

it implies that it is Min who has an optimal strategy that is stationary and pure.
We know that in both games, it is both players that possess such optimal strate-
gies, see Section 2.1 and e.g. [Gimbert and Zielonka, 2009]. This is not captured
by Theorem 2.37. Nevertheless this theorem implies that even for Min in fmean

and for Max in fmean, among all �nite-memory strategies, the best one is sta-
tionary and pure. This is because with �nite memory strategies the sequence
of averages converges and these two payo� functions coincide.
Positive average payo�. Here, Max wants to keep the average of the re-

wards to be nonzero. For all h ∈ Cω ,

fposavg(h) = 1 ⇐⇒ fmean(h) ≥ 0.

Observe that this payo� function, in fact, gives a very di�erent game from
the mean payo� function. For example, with the positive average payo�, Max

62

2.6 Examples

prefers to have larger chance of getting a trajectory with a small but positive
mean, which is not the case for the mean payo�.

The positionality of games with positive average payo� does not follow easily
from the positionality of games with mean payo�. But the positive average
payo� function is submixing thanks to the fact that fmean is submixing. In fact
we can prove that every increasing function that is composed with a submixing
function is itself submixing.

Generalized mean payo�. This payo� function was introduced in [Chat-
terjee et al., 2010]. The colors are an element of Rk for some �xed k ∈ N.
For every component we compute the mean payo�, and Max wins if in all the
components the average is nonzero. In [Chatterjee et al., 2010], the authors
show that when computing the average with fmean or fmean, Max may require
in�nite memory. In the latter case the generalized mean payo� function ful�lls
(39), hence Min has an optimal strategy that is stationary and pure.

One can consider an optimistic version of generalized payo�, de�ned as fol-
lows. For Max to win, instead of requiring that in all the components the aver-
age is nonzero, we require that there exists some component that has a nonzero
average. When computing the average with fmean this function is submixing
and therefore Max has an optimal strategy that is stationary and pure.

co-Büchi mean payo�. In this payo� function each state is assigned a re-
ward — a real number, and the colors are elements of S×R, pairs of state and re-
ward. Let m be the smallest reward. There is F ⊆ S, a set of distinguished states.
Max wins the co-Büchi payo� (fcb) if and only if the set of states that appear
in�nitely often is a subset of F. The co-Büchi mean payo� is de�ned as follows.
It combines the two payo� functions. For all (s0, r0)(s1, r1) · · · ∈ (S×R)ω ,
where ri is the reward on state si

fcbm
(
(s0, r0)(s1, r1) · · ·

)
=

{
fmean(r0r1 · · ·) if fcb(s0s1 · · ·) = 1

m otherwise.

That this function is submixing follows easily from the fact that fmean is sub-
mixing and that if the co-Büchi is won by Max in some in�nite history h, then
it is also won in the histories h1, h2, given that h is a shu�e of them.

Another function that we mentioned in Section 2.1 was the discount pay-
o�. Observe that this function is not shift-invariant. Nevertheless a game with
the discount payo� can be reduced to a game with mean payo� in such a way
that an optimal strategy in the latter is an optimal strategy in the former. See
[Gimbert, 2006] for details.

63

2 submixing and shift-invariant games

2.6.1 Comments

The class of submixing functions have some closure properties, i.e. when they
are composed with increasing functions they remain submixing, a function de-
�ned as the maximum of submixing functions is itself submixing, some linear
combinations of submixing functions are submixing etc. For more properties
for which the class of submixing functions is closed, consult [Gimbert, 2006;
Kopczyński, 2009].

The submixing and shift-invariant is not necessary for a game to be half-
positional. Moreover for games with a shift-invariant payo� function, the sub-
mixing property is not necessary for the game to be half-positional. An example
of this is the game where the colors are integers and Max wins if and only if
the lim infn of the sum of the �rst n colors equals −∞, [Brázdil et al., 2010].

In light of the main result of [Gimbert and Zielonka, 2009], which says that if
both Max and Min, in one player games (MDPs) possess optimal strategies that
are both stationary and pure then the two player game is positional as well,
one might wonder whether an analogous result holds for half-positionality. Is
it true that if Max possesses optimal strategies that are stationary and pure in
all one player games, then the two player game is half-positional. This is not
true, as it can be witnessed by the following example.

Let the set of colors be C = {a, b}, and de�ne f : C∗ → {0, 1}, for all
h ∈ C∗

f (h) =

{
0 if h and pab2ab4 · · · have a common su�x for some (p ∈ C∗)
1 otherwise.

In a one player game equipped with such a payo� function it is very easy
to win as Max, in fact, since the set of states is �nite, any stationary and pure
strategy is optimal. In the other hand there is a simple two player game where
Max can win but not with a stationary and pure strategy. Its arena is depicted
in Figure 6.

ε b

b

a

x

y

x
y

Figure 6: An arena for the game with payo� f

64

2.7 Conclusion

Here the states are labeled by their colors, where ε is the empty word. Note
that the function c that maps in�nite histories to Cω is well-de�ned because the
sole state that is controlled by Min, and labeled by ε does not have a self-loop.
Assume that Min plays with a stationary and pure strategy, then in the sole state
where he has choice he will always choose to play either x or y. In this case
Min can create the sequence ab2ab4 · · · , and win the game with probability 1.
Whereas if Max plays e.g. uniformly between the actions x and y then Min has
no hope to create such a sequence that has so much structure. Max can prevent
Min from building such a sequence also by using memory.

2.7 conclusion

In this part of the thesis we have studied two player stochastic games of in�-
nite duration, that are played on �nite graphs where both players are perfectly
informed. We have tried to answer the question of when the protagonist player
Max has an optimal strategy that does not use neither memory nor randomiza-
tion. We have provided a su�cient condition of when Max has such an optimal
strategy. This is a condition on the payo� function, it has to be shift-invariant
and submixing. But this condition is not necessary for Max to have a memory-
less and deterministic optimal strategy, for example, discounted games are not
shift-invariant but they are positional.

One possible research direction is to try to characterize completely when
Max has such a simple optimal strategy, in other words to �nd a condition that
is both necessary and su�cient. Alternatively one can ask, what condition is
both su�cient and necessary for Max to have an optimal strategy that is only
memoryless or only deterministic.

The reason why questions as above are interesting is that ultimately we want
to construct the optimal strategy. In this sense, a very important question is
what conditions do we need to force on the payo� function such that in the
resulting game we are able to e�ectively construct the optimal strategy of Max?

65

Part II

G A M E S W I T H Z E R O I N F O R M AT I O N

3
P R O B A B I L I S T I C A U T O M ATA

Probabilistic automata are a generalization of deterministic �nite state automata,
where nondeterminism is resolved by transition probabilities. When a letter is
read from a deterministic �nite state automaton, it transitions to a new state
deterministically, whereas when a probabilistic automaton reads a letter there
is a probability distribution according to which the next state is randomly deter-
mined. A deterministic automaton either accepts a word or it does not, while a
probabilistic automaton accepts a word with some probability. As with other no-
tions of automata, we can consider probabilistic automata over �nite words as
well as over in�nite words. In this chapter we will concentrate only on the for-
mer. Questions such as, does there exist a word that is accepted with probability
larger than c (emptiness), and whether all words are accepted with probability
larger than c (universality), are undecidable, where c is a �xed rational number
in (0, 1). The value 1 problem has the same fate. This is the question whether for
all ε > 0 there exists a word that is accepted with probability larger than 1− ε.
Recently there has been some e�ort to �nd interesting and robust classes of au-
tomata for which, problems such as the value 1 problem are decidable. Notably
leaktight automata in [Fijalkow et al., 2012] and simple automata in [Chatterjee
and Tracol, 2012], for both of which the value 1 problem is decidable. In this
chapter we are going to show that simple automata are strictly contained in the
class of leaktight automata. In doing so, we will introduce some notions that
are used in [Fijalkow et al., 2012] for deciding the value 1 problem for leaktight
automata which will be useful for the chapter that follows, where we will lift
this decidability result to two player half-blind games.

One can view probabilistic automata as a one player game with the winning
objective of reaching the �nal states, where the player has no information about
the state of the game. While in the �rst part of this thesis we considered games
with perfect information, now we will consider the other extreme: games where
the protagonist has no information.

69

3 probabilistic automata

3.1 overview

In deterministic �nite automata the transition function maps pairs of state, and
letter of the alphabet, S × A, to states S. Whereas in probabilistic automata
the transition function maps pairs of state, and letter of the alphabet, S×A to
probability distributions on states ∆(S).

s0

s1

s2

a

1
2

1
2

b 1
2

1
2

b

a

b

a

Figure 7: A probabilistic automaton

In the example in Figure 7 the initial state of the automaton is s0, the �nal
state is s2. When the letter a is read in state s0 the automaton moves with
equal probability to s1 or s2. At this point, if Figure 7 was an arena of a Markov
decision process (MDP) we could base the decision on what action to take next
on whether the current state is s1 or s2. This is not the case in a probabilistic
automaton, we have to blindly choose whether a or b is the next letter of the
word. Because of this, a probabilistic automaton can be seen as a one player
game with zero information. In other words, in an MDP we are allowed to play
according to general strategies, while in a probabilistic �nite automaton, we
search among particular and very simple strategies, i.e. �nite words of actions.

Probabilistic automata were �rst introduced by Rabin in [Rabin, 1963]. Even
though most problems for probabilistic automata are undecidable it has a rich
literature. We will brie�y discuss a portion of said literature in this section. The
interested reader is referred to the book-length treatment [Paz, 1971] and the
survey [Bukharaev, 1980].

In [Rabin, 1963], the language theoretic point of view is taken, with questions
such as, are stochastic languages more expressive than other formal languages
e.g. regular languages. A stochastic language of a given probabilistic automaton
with respect to some cut-point 0 ≤ c < 1 is de�ned as the set of words that are
accepted by the automaton with probability strictly larger than c. Rabin proves
that there are uncountably many stochastic languages, hence there are some
stochastic languages that are not regular.

70

3.1 Overview

Theorem 3.1 ([Rabin, 1963]).
There exists a probabilistic automaton with a cut-point c such that the lan-
guage of words that are accepted with probability strictly larger than c is
not regular.

Moreover he claims that it is possible to construct a particular language that
is not regular that is accepted by a probabilistic automaton, albeit with an irra-
tional cut-point. In [Paz, 1971, Theorem 3.6, page 167] it is proved that there
exists a three state probabilistic automaton with a single letter alphabet and a
rational cut-point that de�nes a stochastic language that is not regular.

On the other hand if the cut-point c is isolated then the stochastic language
with respect to c is regular. We say that a cut-point c is isolated if there exists
some ε > 0 such that there is no word that is accepted with probability in the
ε-neighborhood of c, we call ε the degree of isolation. Moreover it is shown
that there is an upper bound as a (e�ective) function of ε on the number of
states of the deterministic automaton that recognizes the same language as the
probabilistic automaton with an isolated cut-point.

Theorem 3.2 ([Rabin, 1963]).
For all probabilistic automata A and cut-points c, if c is isolated with degree
of isolation ε, the stochastic language of A with respect to the cut-point c
is regular and the deterministic �nite automaton that recognizes it has at
most (1 + ε−1)n−1 states where n is the number of states of A.

Rabin further studies a subclass of automata called actual automata which
enjoys good properties. These are automata where the support of every prob-
ability distribution in the transition table is the full set of states S, i.e. there is
nonzero probability to go from any state to any other state with any letter of
the alphabet.

Emptiness is undecidable for probabilistic automata [Paz, 1971]. Emptiness
is the question of whether there exists a word that is accepted with probability
strictly larger than c. If we replace “strictly larger” by larger, smaller, equal,
strictly smaller, the question remains undecidable. An even stronger statement
holds in fact

71

3 probabilistic automata

Theorem 3.3 ([Condon and Lipton, 1989]).
Given a probabilistic automaton A and some rational ε > 0 there does not
exist any algorithm such that

• if there exists some word that is accepted by A with probability
strictly larger than 1− ε then it replies yes,

• if all words are accepted with probability smaller than ε it replies no.

Moreover emptiness is undecidable even for automata of �xed size [Blondel
and Canterini, 2003].

In contrast to this, observe that from Theorem 3.2 if the cut-point is isolated
and we know the degree of isolation then the emptiness problem is decidable
because we have a bound on the length of the words that are su�cient to check.
The decidability of the emptiness problem when the cut-point is isolated, but
the degree of isolation is not known, is an open question.

As a consequence we see that whether the cut-point is isolated or not plays
an important role in the di�culty of decision problems such as emptiness in
probabilistic automata; but the isolation problem itself is not decidable either.

Theorem 3.4 ([Bertoni, 1975]).
Given a probabilistic automaton A and a rational cut-point c ∈ (0, 1) the
problem of whether c is isolated (i.e. does there exists some ε such that no
word is accepted by A with probability in [c− ε, c + ε]) is undecidable.

Notice that in the theorem above Bertoni leaves open the question when the
cut-point is equal to 1 or 0. In [Gimbert and Oualhadj, 2010] it is shown that
it remains undecidable for c = 1 and c = 0. The former is called the value 1
problem and is the subject of this chapter.

Problem 3.5 (The value 1 problem).
Given a probabilistic automaton A, decide whether for all ε > 0 there
exists a word that is accepted by A with probability larger than 1− ε.

72

3.1 Overview

While the problem above is undecidable in general there have recently been
some work on identifying interesting classes of automata for which it is decid-
able. Before introducing them, let us survey a few more results on probabilistic
automata.

The equivalence problem is decidable. We are given two probabilistic au-
tomata and we want to decide whether for all words w the probability of ac-
cepting w from both automata is equal. The decidability of this problem follows
from the work of Schützenberger on minimizing automata [Schützenberger,
1961]. Another algorithm for this problem can be found in [Tzeng, 1992].

Probabilistic automata with a unary alphabet are studied in [Chadha et al.,
2014]. These are equivalent to Markov Chains. The authors show that the
isolation problem (the problem of deciding whether the a cut-point is isolated)
is coNP-complete for cutpoints c ∈ {0, 1} and it is in PSPACE for cutpoints
c ∈ (0, 1).

In [Chadha et al., 2013] it is demonstrated that the exact level of undecidabil-
ity of the isolation problem is Σ0

2-complete. Then they de�ne a class of automata
called the eventually weakly ergodic automata for which the emptiness prob-
lem is decidable when the cut-point is isolated, even if the degree of isolation
is not known.

While we will concentrate on automata on �nite words in this thesis, proba-
bilistic automata on in�nite words are of interest as well, especially considering
their possible applications. Probabilistic Büchi automata were introduced �rst
in [Baier and Grosser, 2005]. They are probabilistic automata on in�nite words
with the Büchi acceptance condition, i.e. at least one of the in�nitely occur-
ring states belongs to the set of �nal states. They are then compared in terms
of language expressiveness with nondeterministic ω-automata and shown to
be more expressive, as in the case of �nite word automata. Two semantics are
considered, the nonzero semantics where we de�ne the language accepted by
the automaton to be the set of in�nite words whose probability of acceptance
is nonzero, and the almost sure semantics. In [Baier et al., 2008] the authors
show that all interesting problems such as emptiness universality etc. are un-
decidable for the nonzero semantics; however the almost sure semantics has a
decidable emptiness problem. The exact complexity of these problems is closed
in [Chadha et al., 2009]. It is shown that emptiness and universality for the
nonzero semantics are Σ0

2-complete and for the almost sure semantics they are
PSPACE-complete. Further semantics and acceptance conditions are consid-
ered in [Chatterjee and Henzinger, 2010]. Except the nonzero and almost sure
semantics, the limit semantics is considered as well (the value 1 problem intro-
duced above), and di�erent acceptance conditions such as safety, reachability,
Büchi, co-Büchi etc.

73

3 probabilistic automata

The decidability results for the positive semantics and co-Büchi, as well as
almost sure semantics and Büchi were later generalized to game of partial in-
formation in [Bertrand et al., 2009], and [Gripon and Serre, 2009].

In [Korthikanti et al., 2010] the probability distributions on the set of states
are labeled by colors picked from a �nite set. As an in�nite word is read by
a probabilistic automaton it produces an in�nite word of colors. The question
is can one decide whether the intersection of the language of in�nite words of
colors (for some linear labeling) and of some regular language is nonempty (the
model checking problem). In general it is undecidable because of the undecid-
ability of the emptiness mentioned above. But for a special class of contract-
ing automata and strategies it is decidable. A similar point of view is taken in
[Chadha et al., 2011] where it is shown that for automata that have a unique and
compact invariant set of distributions which are called semi-regular it is decid-
able to model check any ω-regular property. As a corollary the authors prove
that for semi-regular probabilistic automata on �nite words with an isolated
cut-point the emptiness problem is decidable, even if the degree of isolation is
not known.

Another decidable problem for probabilistic automata on in�nite words is
that of synchronization [Doyen et al., 2011]. This is the problem of deciding
whether there exists some in�nite word such that the highest probability in the
sequence of distributions that is generated by it tends to 1, i.e. in the limit it
behaves like a deterministic automaton.

We come back on probabilistic automata on �nite words and the value 1 prob-
lem. Gimbert and Oualhadj prove that the value 1 problem for probabilistic
automata on �nite words is undecidable [Gimbert and Oualhadj, 2010], this
problem was left open by Bertoni. The proof reduces the value 1 problem to the
equality problem, this is the problem of deciding whether there exists some word
with acceptance probability exactly equal to 1

2 . The equality problem in turn
can be reduced to Post’s correspondence problem. Furthermore the authors
introduce a class of automata called #-acyclic automata for which the value 1
problem is decidable. The decision procedure constructs the support graph of
the automaton. This is a graph whose vertices are the powerset of states, and
we add an edge from the vertex S1 ⊆ S to the vertex S2 ⊆ S if it is possible for
the automaton to transition from a distribution with support S1 to a distribution
with support S2. The transitions can happen from reading a �nite word, but it
also takes into account the fact that by repeating some word we can decrease
the distribution on some states arbitrarily: this is what #-operator captures. If
this support graph does not have any cycles, except for simple loops, we say
that the corresponding automaton is #-cyclic.

Another class of probabilistic automata was de�ned in [Chadha et al., 2009],
the class of hierarchical probabilistic Büchi automata. These are automata that
have a hierarchical structure: the set of states is partitioned into levels and at

74

3.1 Overview

each level, from every state there can be at most one transition that goes to
some state in the same level while all others go to states at higher levels. These
automata with respect to the nonzero semantics (for the probabilistic Büchi au-
tomata) de�ne exactly the class of ω-regular languages, and for the almost sure
semantics they de�ne the class of ω languages that are recognized by deter-
ministic Büchi automata. Moreover the universality and emptiness problems
are tractable for both semantics in this class of automata.

The subject of this chapter is the comparison between two classes of au-
tomata: the leaktight automata and the simple automata.

The class of leaktight probabilistic �nite automata is introduced in [Fijalkow
et al., 2012]. This class of automata has a decidable value 1 problem. The au-
thors show that the automaton can be abstracted with a �nite monoid called
the Markov monoid which has su�cient information for deciding whether the
automaton has value 1 or not — given that the automaton is leaktight. Roughly
speaking, a leak occurs in a probabilistic �nite automaton if there is some com-
munication between di�erent recurrence classes that we attain in the limit of
a sequence of �nite words. This will be de�ned precisely in the section that
follows, and it will be discussed in more detail in the next chapter.

The Markov monoid abstracts away the exact transition probabilities, the
only information it retains is whether the probability transition is zero or nonzero.
We can partition the set of all probabilistic automata into sets for which all zero
transition probabilities coincide, e.g. for all automata on such a set with letter
a there is nonzero probability to go from state s to state t. We can associate to
any such set a numberless automaton. Since the Markov monoid is the same for
every probabilistic automaton associated to the same numberless automaton
this begs the question whether the information that the Markov monoid is cap-
turing is su�cient to decide whether, for example, there exists an automaton
in the set that has value 1. This is not the case. In [Fijalkow et al., 2014], it is
proved that that for all probabilistic automata A one can construct a number-
less automaton such that, A has value 1 if and only if all automata associated
to the numberless automaton have value 1, which in turn is equivalent to: there
exists some automaton associated to the numberless automaton that has value
1.

Probabilistic automata on in�nite words with parity conditions are consid-
ered in [Chatterjee and Tracol, 2012], and three semantics, the nonzero, almost
sure, and the limit semantics (i.e. the value 1 problem). The authors identify
the class of structurally simple probabilistic automata, which is a syntactic re-
striction on the support graph that is associated to the automaton. Then it is
proved that this class of automata generalizes both #-acyclic and hierarchical
automata that we mentioned above.

Interestingly the techniques of [Fijalkow et al., 2012] and [Chatterjee and Tra-
col, 2012] are quite di�erent. The former uses the theory of �nite semi-groups,

75

3 probabilistic automata

in particular Simon’s forest factorization theorem [Simon, 1990]. Whereas the
latter uses a result from probability theory, namely the decomposition separa-
tion theorem [Sonin, 2008]. Given a morphism from the set of �nite words over
an alphabet to a �nite monoid, Simon’s theorem shows how to factor (with
respect to the morphism) any given word into a tree whose height does not
depend on the length of the word but only on the size of the �nite monoid.
The decomposition separation theorem generalizes a theorem on homogeneous
Markov chains, that partitions the set of states into recurrent and transient
classes (sometimes called essential and nonessential). The generalization is
from homogeneous to nonhomogeneous, and the decomposition is into jets.

In this chapter we will report on [Fijalkow et al., 2015], and prove that the
class of leaktight automata strictly contains the structurally simple automata,
and consequently it is the largest and most robust class of automata for which
it is known that the value 1 problem is decidable. The proof demonstrates that
the information of whether the automaton is simple or not can be found in the
Markov monoid.

The class of leaktight automata and the Markov monoid algorithm are also
interesting because they are optimal in some sense [Fijalkow, 2015]. A prob-
abilistic automaton has value 1 if and only if there exists a sequence of �nite
words that witnesses it, that is the probability of accepting the n-th word tends
to 1 as n tends to in�nity. Nathanaël Fijalkow demonstrates in [Fijalkow, 2015]
that the Markov monoid algorithm replies yes if and only if there exists a poly-
nomial sequence of words that witnesses the value 1. The set of polynomial se-
quences of words is attained by taking the set of constant sequences and closing
it by concatenation and iteration, where the iteration of a sequence (un)n∈N is
de�ned to be (un

n)n∈N. But once we walk away from the polynomial sequences
even the following — simpler than the value 1 — problem is undecidable: given
a probabilistic automaton, determine whether there exist two �nite words u
and v such that ((uvn)2n

)n witnesses the value 1.
Another point of interest of this class is that it can be lifted to a type of

two player games. In the chapter that follows we will show that the maxmin
reachability is decidable for leaktight half-blind games, where we will be using
some of the notions that will be introduced in this chapter, namely the Markov
monoid.

A reason for the size of the literature on probabilistic automata, even though
most problems are undecidable, is that there are numerous applications from a
variety of �elds. For example in pharmacokinetics, the way that a drug moves
in an organism can be modeled as a probabilistic automaton [Shargel et al., 2007;
Korthikanti et al., 2010]. Another area of applications is software veri�cation
[Vardi and Wolper, 1986; Baier et al., 2012; Raskin et al., 2007]. Probabilistic
automata have also been used in other places in computational biology [Durbin

76

3.2 Decidable Classes

et al., 1998], in speech processing [Mohri, 1997] etc. Su�ce it to say that it is a
useful tool for modeling a certain type of probabilistic machines.

3.2 decidable classes

We will de�ne probabilistic automata on �nite words, and then introduce the
classes of leaktight and simple automata. In the next section we prove that the
latter is a strict subset of the former.

De�nition 3.6 (Probabilistic automaton).
A probabilistic automaton A is a tuple A = (S, A, s0, δ, F), where

• S is a �nite set of states,

• A is a �nite alphabet,

• s0 ∈ S is an initial state,

• δ : S×A→ ∆(S), is the transition function, and

• F ⊆ S is a set of �nal states.

Comparing this de�nition with De�nition 2.1, one can see probabilistic au-
tomata as the arena of a one player game. The di�erences are as follows, here
we will be interested uniquely on the reachability of the set of �nal states as op-
posed to some general payo� function, the strategies that we are allowed to use
are very special: the set of �nite words, and the game is of �nite (but arbitrary
long) duration.

The transition function δ induces a stochastic matrix for every a ∈ A. Stochas-
tic matrices are matrices whose each line is a probability distribution. In our
case they are indexed by elements of S, e.g. for the letter a ∈ A, the stochastic
matrix Ma is de�ned as Ma(s, s′) = δ(s, a)(s′), where s, s′ ∈ S. Essentially
questions about probabilistic automata are questions over the semi-group that
is generated by {Ma | a ∈ A}.

Let w ∈ A∗ and s, s′ ∈ S, we will use the notation

P(s w−→ s′),

to mean the probability of going from state s to state s′ with the word w. This
can be precisely de�ned inductively on the length of the word, that is for every
letter a ∈ A and states s, s′ ∈ S, we de�ne

P(s a−→ s′) = δ(s, a)(s′),

77

3 probabilistic automata

and for every word w ∈ A∗, letter a ∈ A, and states s, s′ ∈ S,

P(s wa−→ s′) = ∑
t∈S

P(s w−→ t)P(t a−→ s′).

For example the question of whether there exists a word that is accepted
with probability strictly larger than 1

2 is formulated as whether there exists
some w ∈ A∗ such that ∑t∈F P(s0

w−→ t) > 1
2 . We will also use the following

notation shorthand, for all s ∈ S, S′ ⊆ S, and w ∈ A∗

P(s w−→ S′) = ∑
s′∈S′

P(s w−→ s′).

In parallel to the two player games that were the subject of the previous
chapter, we de�ne the value of a probabilistic automaton as follows.

De�nition 3.7 (Value of a probabilistic automaton).
Let A(S, A, s0, δ, F) be a probabilistic automaton, then its value is

val(A) = sup
w∈A∗

P(s0
w−→ F).

With the de�nition above, the value 1 problem (Problem 3.5) is the question
of whether val(A) = 1.

s0

s1

s2

a

1
2

1
2

f

⊥

b

a

b

a

b

a, b
a, b

Figure 8: A probabilistic automaton with value 1

78

3.2 Decidable Classes

Example 6.
In the automaton in Figure 8, the initial state is the state s0 (this is denoted by
the incoming arrow), and the (single) �nal state is the state f (this is denoted by
the double circling). The value of this automaton is at least 1

2 , because we see
that the word ab is accepted with probability 1

2 . But we can do better than this.
The word aaab is accepted with probability 3

4 . In general we see that the word
(aa)kab is accepted with probability 1− 1

2k . Consequently this automaton has
value 1.

If hypothetically we had δ(s2, a)(⊥) = 1, the value would be 1
2 , since once

we reach the sink state⊥we are trapped there and we have no hope of reaching
the �nal state, hence after playing an a it is best to play a b and then to stop.4

3.2.1 Leaktight automata

We de�ne �rst the class of leaktight automata, introduced in [Fijalkow et al.,
2012]. The proof of decidability is algebraic in nature and it uses tools from the
theory of �nite semi-groups.

We mentioned above that for every letter a ∈ A the transition function δ

induces a |S| × |S| stochastic matrix, which we denoted by Ma. It is not hard
to see that for a word w = a1a2 · · · an ∈ A∗, and states s, s′ ∈ S,

P(s w−→ s′) = (Ma1 · · ·Man)(s, s′),

that is, the entry (s, s′) of the product Ma1 · · ·Man is the probability to go from
state s to state s′ with the word w = a1 · · · an.

The set of all matrices generated by closing {Ma | a ∈ A} under taking
products is in general in�nite. Therefore there is no hope to compute all of it.

The idea of the Markov monoid algorithm is to abstract away the probabil-
ities of the stochastic matrices and to keep only the information of whether
the transition is zero or not, in this way constructing a �nite object, a monoid,
which will have the relevant information for deciding the value 1 problem, in
the subset of leaktight automata. In other words the stochastic matrix is ab-
stracted by a binary one, i.e. the matrix Ma is abstracted by the binary matrix
Ba whose entries are 1 if and only if the corresponding entry in Ma is nonzero.
That is, for all s, s′ ∈ S,

Ba(s, s′) = 1 ⇐⇒ Ma(s, s′) > 0. (40)

The elements of the Markov monoid are binary matrices that are indexed by
a pair of states. The operation is matrix product over the boolean semi-ring, in
other words, given two binary matrices B and B′, and the pair of states s, s′ ∈ S,
we have (BB′)(s, s′) = 1 if and only if there exists some state t ∈ S such that
B(s, t) = 1 and B′(t, s′) = 1, where by BB′ we have denoted the product of
the two matrices.

79

3 probabilistic automata

A subset of binary matrices together with the product operation described
above, and the unit matrix already forms a monoid, but this is not the Markov
monoid, in particular it does not have any information about the possible states
that can be reached by iterating some word. To illustrate this let us go back to
the example in Figure 8.

Example 7.
The monoid in question is the one that is generated by Ba and Bb and has the
unit matrix, where

Ba =

0 1 1 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0

 , Bb =

0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 0

 .

The states have been ordered as s0 < s1 < s2 < ⊥ < f , i.e. the (0, 0) entry
corresponds to (s0, s0). One can quickly see that if we close the set {Ba, Bb}
by taking products, none of the elements of this closure will have the �rst row
equal to (0, 0, 0, 0, 1). This means that there does not exist any word w ∈ A∗

such that P(s0
w−→ f) = 1. Nevertheless the example in Figure 8 has value 1.4

In order to account for the fact that in some cases we are able to decrease
the probability to be in some state (or increase) arbitrarily (as in the case of
the states s0 and s1 in the example in Figure 8), another unary operation is
added, called the iteration (sometimes it is called the stabilization operation in
the literature). The Markov monoid is a stabilization monoid. These are (usu-
ally �nite) monoids, that are equipped with unary operation (denoted by #)
that maps idempotent1 elements of the monoid to idempotents. Stabilization
monoids were used by Simon in [Simon, 1994] and then later by Kirsten in
[Kirsten, 2004] for his algorithm for the famous star height problem in automata
and formal language theory; and Colcombet gave the general de�nition of sta-
bilization monoids in [Colcombet, 2009] and used them as important tools for
the theory of cost functions. A proof that the Markov monoid is a stabilization
monoid, can be found in [Fijalkow et al., 2012].

To motivate the de�nition of the iteration operation in the context of the
Markov monoid and probabilistic automata, let us consider �nite space and dis-
crete time, homogeneous Markov chains. Such a chain can be characterized by
a single stochastic matrix M. Say that M is a |S| × |S| matrix, for the sake of
the illustration. If for all s, s′ ∈ S,

M(s, s′) > 0 ⇐⇒ M2(s, s′) > 0, (41)

1 elements M such that M2 = M

80

3.2 Decidable Classes

then we say that the Markov chain characterized by M is idempotent and we
can partition the set of states into recurrent and transient states. Given that the
Markov chain is recurrent, we say that a state r ∈ S is recurrent if and only if
for all r′ ∈ S, M(r, r′) > 0 implies that M(r′, r) > 0. A state is transient if it
is not recurrent. So a state r is recurrent if for all states r′, if there is nonzero
probability of reaching r′ from r, then there is nonzero probability of coming
back, i.e. of reaching r from r′. This is not the usual de�nition of recurrence for
general Markov chains, but it coincides with the usual one if the Markov chain
is idempotent. It is only for idempotent Markov chains that we will talk about
recurrence and transience.

A fundamental theorem for Markov chains says that the more steps the chain
is run, the less there is chance to be in a transient state. In other words for all
states s, t ∈ S if t is transient then lim infn Mn(s, t) = 0. Intuitively this is
because the transient state gives away some probability that is never returned.

Example 8.
Observe that the stochastic matrix M2

a from the example in Figure 8 veri�es
property (41). Moreover the states s0 and s1 are transient (with respect to the
chain associated with M2

a) because both M2
a(s0, s2) and M2

a(s1, s2) are nonzero,
whereas both M2

a(s2, s0) and M2
a(s2, s1) are. As a consequence, the �rst row in

the sequence (M2n
a)n will tend to (0, 0, 1, 0, 0). 4

Now one can imagine the right de�nition of the iteration operator #, after
de�ning the notions of recurrent, transient etc, for the binary matrices, which
we do now. We assume that all matrices are indexed by the states S.

De�nition 3.8 (Product operator for the Markov monoid).
The product of the binary matrices B and B′, denoted BB′ is de�ned for all
s, s′ ∈ S, as

BB′(s, s′) = 1 ⇐⇒ ∃ t ∈ S, B(s, t) = 1 and B′(t, s′) = 1.

De�nition 3.9 (Idempotent binary matrix).
A binary matrix B is idempotent if and only if B2 = B.

81

3 probabilistic automata

De�nition 3.10 (B-recurrence).
Let B be an idempotent binary matrix, and r ∈ S. We say that r is B-
recurrent if and only if for all r′ ∈ S,

B(r, r′) = 1 =⇒ B(r′, r) = 1.

If a state is not recurrent we say that it is transient.

De�nition 3.11 (Iteration operator for the Markov monoid).
Let B be an idempotent binary matrix. We de�ne the iteration of B, denoted
by B#, for all s, t ∈ S as

B#(s, t) = 1 ⇐⇒ B(s, t) = 1 and t is B-recurrent.

In other words, the iteration operation deletes incoming edges to transient
states.

Having de�ned both of the operators now we are ready for the de�nition of
the Markov monoid that is associated to a probabilistic automaton. For a set of
binary matrices X denote by 〈X〉, the smallest set that contains X and is closed
under taking products and iterations.

De�nition 3.12 (Markov monoid).
The Markov monoidM is de�ned as

M = 〈{Ba | a ∈ A} ∪ {I}〉,

where the elements Ba are as in (40), and I is the unit matrix.

82

3.2 Decidable Classes

Example 9.
We go back yet again to the example in Figure 8, and consider the element of
the monoid B2

a = Baa. It is an idempotent element therefore B#
aa is well-de�ned.

Calculating it yields

B#
aa =

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0

 .

This captures the fact that by repeating the word aa many times we can increase
the chance of reaching s2 from s0 to 1. 4

An interesting fact comes up from De�nition 3.12. As mentioned before, when
we abstract the matrices Ma by the binary matrices and generators of the Markov
monoid Ba, we throw away the probabilities and keep only the qualitative prop-
erties of the automaton. The exact transition probabilities are obviously impor-
tant for the problem of emptiness among others, but this raises the question
whether they are important for the value 1 problem as well. Unsurprisingly,
they are. In [Gimbert and Oualhadj, 2010] the authors demonstrate an example
of an automaton that has value 1 if and only if a particular transition probability
is strictly larger than 1

2 . In fact they show undecidability of the value 1 prob-
lem by reducing it to the emptiness problem2, where that critical transition is
replaced by an automaton. But as we shall see later, for leaktight automata, the
qualitative part is su�cient to decide the value 1 problem.

The Markov monoid algorithm simply constructs M associated to a given
probabilistic automaton. This object is �nite hence such a procedure always ter-
minates. Even though �nite, the size of the monoid can be exponentially large
in the number of states. But it is not necessary to compute the whole monoid be-
cause we are interested in particular elements, called the value 1 witness. This
element can be guessed, and shown that the Markov monoid algorithm has
PSPACE upper bound. This bound is tight [Fijalkow et al., 2012].

De�nition 3.13 (Value 1 witness).
LetM be the Markov monoid associated to a probabilistic automaton with
initial state s0 and �nal states F, then B ∈ M is a value 1 witness if and
only if for all s ∈ S

B(s0, s) = 1 =⇒ s ∈ F.

2 consequently emptiness is reduced to the problem of equality

83

3 probabilistic automata

Example 10.
Computing the product B#

aaBb in the example in Figure 8 yields

B#
aaBb =

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0 1 0

 ,

which is a value 1 witness. 4

The algorithm constructsM and then searches for a value 1 witness, once it
is found, it returns yes, if the monoid does not have a value 1 witness then it
returns no. The algorithm does not return false positives.

Theorem 3.14 ([Fijalkow et al., 2012]).
Let A be a probabilistic automaton andM the Markov monoid associated
to it. IfM has a value 1 witness then val(A) = 1.

The converse does not hold in general of course, since the value 1 problem
is undecidable; but it does if the automaton is of a special kind: a leaktight
automaton. Here we will only give the de�nition of leaktight automata without
any intuition or further investigation. We will postpone this to the next chapter
which also deals with leaks.

The (syntactic) de�nition of leaktight automata relies on the extendedMarkov
monoid. Think of this monoid as a Markov monoid where we remember the
edges that were deleted from the iteration operation by keeping pairs of binary
matrices, in such a way that the right component is not modi�ed by iteration.

De�nition 3.15 (Extended Markov monoid).
The extended Markov monoid, denoted by M̃, is the smallest set that is
closed under taking product and iteration and contains all the elements

{(Ba, Ba) | a ∈ A} ∪ {(I, I)},

where Ba are de�ned as in (40), whereas the product and iteration are de-
�ned as

(B, B̃) · (C, C̃) = (BC, B̃C̃)

(D, D̃)# = (D#, D̃),

where (D, D̃) is idempotent, i.e. (D, D̃)2 = (D, D̃).

84

3.2 Decidable Classes

The extended Markov monoid can be computed the same way that the Markov
monoid is.

Roughly speaking, leaks complicate calculations necessary for �nding out
whether the automaton has value 1, since convergence speeds start to matter.
We will identify leaks as elements of the extended Markov monoid that have
certain properties. Indeed we will see that the (extended) Markov monoid, has
more information about the automaton than whether it has value 1 or not. By
calculating the extended Markov monoid we can also decide whether the au-
tomaton is leaktight or not, as well as if it is not a simple automaton. First let us
de�ne leaks and leaktight automata.

De�nition 3.16 (Leaktight automata).
Let A be a probabilistic automaton and M̃ the extended Markov monoid
that is associated to it. An idempotent element (B, B̃) ∈ M̃ is called a leak
if there exists r, r′ ∈ S such that

• r and r′ are B-recurrent,

• B(r, r′) = 0,

• B̃(r, r′) = 1.

If M̃ does not contain a leak then we say that A is leaktight.

s0 s1

s2

a
1
2

1
2

b
b

a

a, b

Figure 9: A probabilistic automaton that is not leaktight

Example 11.
Consider the automaton in Figure 9. Calculating the element of the extended
Markov monoid

(Ba, Ba)
#(Bb, Bb),

85

3 probabilistic automata

we see that it is a leak. This is because the states s0 and s2 are B#
a Bb-recurrent,

B#
a Bb(s0, s2) = 0 and BaBb(s0, s2) = 1. 4

Indeed if one investigates the asymptotic behavior of the sequence of stochas-
tic matrices (Mn

a Mb)n∈N, one can conclude that it already depends on the exact
transition probabilities of the letter a from state s0. We will come back to this,
and other examples of leaks in the next chapter.

3.2.2 Simple automata

Let us now turn our attention to the simple automata described in [Chatterjee
and Tracol, 2012]. The authors of this paper consider probabilistic automata on
in�nite words. An in�nite word w ∈ Aω induces a stochastic process on S, that
is a sequence of random variables (Xn)n∈N that takes values in S. The central
notion of this paper is that of a simple process. A stochastic process induced by
some in�nite word is simple if it has a particular structure that is inspired by
a deep result in probability theory, called the decomposition-separation theorem,
see [Sonin, 2008] and the references therein. Then it is proved that for words
that induce simple processes for the almost sure, the positive semantics, and
parity conditions, emptiness is in PSPACE. Furthermore the words that are
eventually repeating always induce simple process.

A simple automaton is de�ned as an automaton where all words induce a
simple process. Structurally simple automata are a subclass of automata that
are provably simple (but not all simple automata are structurally simple). It
is demonstrated that for structurally simple automata the value 1 problem is
decidable and in EXPSPACE. They also subsume hierarchical automata and
#-acyclic automata.

The decomposition separation theorem decomposes the set of in�nite se-
quences of states into jets.

De�nition 3.17 (Jets).
A jet J = (Jn)n∈N is a sequence of subsets of S, i.e. for all n ∈ N, Jn ⊆ S.
We say that a tuple of jets (J1, . . . , Jk) is a decomposition of Sω (the set of
all in�nite sequences of states) if for all n ∈ N, (J1

n, . . . , Jk
n) is a partition

of S.

The classical result for homogeneous Markov chains partitions the state space
S into the transient states, and recurrence classes (sets of recurrent states that
communicate with each other). Then no matter from what state we start the

86

3.2 Decidable Classes

chain will enter one of the recurrence classes with probability 1 and stay there
forever. It is surprising that a similar result holds when the chain is nonhomo-
geneous as well.

Note that an in�nite word in a probabilistic automaton induces a nonhomoge-
neous Markov chain where the transition probability at time n depends on the
n-th letter of the word. The decomposition separation theorem says that for all
nonhomogeneous Markov chains, there exists a decomposition of Sω into jets
(J0, . . . , Jk) such that with probability 1 we enter one of the jets Jk, . . . , Jk and
stay there forever. Where the jet J0 plays a role analogous to transient states.

In the case of homogeneous Markov chains we partition the state space,
whereas for nonhomogeneous Markov chains we partition the “space time”. We
have to take time into consideration as well since the chain being nonhomoge-
neous implies that the transition probabilities change as a function of time.

The idea of a simple process is based on the decomposition separation theo-
rem where a lower-bound is added for the chance of going to one of the recur-
rent jets.

For an in�nite word w ∈ Aω and n ∈ N we denote by w<n the pre�x of
length n− 1 of w.

De�nition 3.18 (Simple process).
We say that the process induced by w ∈ Aω from the state s0 ∈ S is simple
if there exists some µ > 0 and decomposition of Sω into jets (A, B) such
that,

• for all n ∈N and s ∈ An, P(s0
w<n−−→ s) ≥ µ, and

• limn→∞ P(s0
w<n−−→ Bn) = 0.

An automaton for which for all words w ∈ Aω and states s0, the induced
process of w from s0 is simple is called a simple automaton.

In [Chatterjee and Tracol, 2012] this structure is taken advantage of to show
decidability of some of the problems. We are interested in how it compares to
the leaks. First let us understand when a process is not simple.

Let us see an example of an automaton with a process that is not simple.

87

3 probabilistic automata

s0 s1
a

1
2

1
2

b b

a

Figure 10: An automaton that is not simple

Example 12.
Even though the automaton in Figure 10 might look simple (it only has two
states after all), it is not. We show how to induce a process that is not simple in
this automaton. De�ne the �nite words

wn = anb.

Observe that P(s0
an
−→ s0) = 1

2n . On the other hand P(s0
wn−→ s0) = 1. This

gives us a sequence with a sort of pulsating behavior. By reading a’s, the chance
to stay in s0 decreases arbitrarily, then reading a b resets everything back to the
initial state of the automaton and so on ad in�nitum. The process induced by
the in�nite word

w = w1w2w3 · · · ,

from the state s0 is not simple. This is because the state s0 has to appear in-
�nitely often in at least one of the jets which renders impossible the simultane-
ous ful�llment of both conditions of a simple process.

Consequently the automaton in Figure 10 is not simple. 4

Let w ∈ Aω and s0 ∈ S. One way that the process induced by w from
s0 is not simple is if there exists some state s ∈ S such that the probability
to be in s from s0 as we are progressively reading the word w, pulsates, just
like in the example above. Let us illustrate what we mean by “pulsates”. The
sequence of the probabilities to go to state s from state s0 in date n, that is
(P(s0

w<n−−→ s))n∈N goes to some ε1 > 0 then resets to some ν > ε1, then
goes back to ε1, then to some ε2 < ε1, resets to ν and so on ad in�nitum. The
sequence of the probabilities to go from state s0 back to s0, in Example 12 with
the word w is an instance of such a behavior. See the following �gure.

88

3.2 Decidable Classes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a

b
ili

ty
 t
o
 g

o
 t
o

 s

Time

Pulsating probability

Figure 11: The probability to go to state s from state s0 in a process that is not
simple

One way to construct such a sequence is to take any sequence (xn)n∈N that
converges to 0 and is decreasing and concatenate

x1 | x1, x2 | x1, x2, x3 | x1, x2, x3, x4 · · · .

Why is such a process not simple? Assume that there exists some µ > 0 and
a decomposition of Sω into jets (A, B). Then for the process that we described
above we see that there exists some ν > 0 such that there are in�nitely many
n ∈N for which

0 < ν < P(s0
w<n−−→ s) < µ. (42)

Since (A, B) is a decomposition of Sω then for all the n ∈ N for which the
inequation above holds, either s ∈ An or s ∈ Bn, consequently there are two
cases: either there are in�nitely many n ∈ N for which (42) holds and s ∈ Bn,
in which case the second item of De�nition 3.18 cannot be true, or there exists
one n ∈ N for which (42) holds and s ∈ An then �rst item of De�nition 3.18
does not hold. In any case such a process is not simple.

The automaton in Figure 10 is not simple, moreover, computing its extended
Markov monoid one can conclude that it does not contain any leaks, and there-
fore it is leaktight. Thus we have:

89

3 probabilistic automata

Proposition 3.19.

LEAKTIGHT 6⊆ SIMPLE.

Where by LEAKTIGHT we denote the class of automata that are leaktight
and by SIMPLE the class of simple automata.

3.3 leaktight automata are a superset

In this section we will prove the main theorem of this chapter, that the class of
simple automata is included in the class of leaktight automata.

Theorem 3.20.

SIMPLE ⊂ LEAKTIGHT.

Proof Idea.
The main point is that of the de�nition of a non-simplicity witness. This is a
triple of elements of the Markov monoid with certain properties, that when they
exist we can induce a process that has the pulsating behavior that we described
for Example 12. In other words there is a su�cient condition that can be found
in the Markov monoid (and computed) for the automaton to not be simple.

The proof of the theorem is in two steps. First we will prove that if the Markov
monoid that is associated with an automaton has a non-simplicity witness then
we can construct an in�nite word that induces a process that is not simple. The
second step is to show that when the Markov monoid contains a leak, then it
also contains a non-simplicity witness, which, together with the �rst step, will
conclude the proof of Theorem 3.20. 4

We are going to need a theorem from [Fijalkow et al., 2012], whose corollary
is Theorem 3.14. The Markov monoid algorithm has no false positives, that is,
when it replies yes then the value of the automaton is 1. Said in other words,
the monoid is sound.

The elements of the monoid describe possible asymptotic behaviors of the
automaton. For example, let B ∈ M, and s, s′ ∈ S. If B(s, s′) = 1, then there

90

3.3 Leaktight Automata are a Superset

exists a sequence of words such that asymptotically there is nonzero probability
of going from s to s′, and if B(s, s′) = 0 then the chance of going from s to s′

will tend to zero.

De�nition 3.21 (Rei�cation).
We say that the sequence of �nite words (wn)n∈N rei�es the element of
the monoid W ∈ M if and only if for all s, s′ ∈ S, (P(s wn−→ s′))n∈N

converges and

W(s, s′) = 1 ⇐⇒ lim
n→∞

P(s wn−→ s′) > 0.

The theorem of soundness of the Markov monoid algorithm can be stated as
follows.

Theorem 3.22 ([Fijalkow et al., 2012]).
For every element of the Markov monoid there exists a sequence of words
that rei�es it.

Theorem 3.14 follows as a corollary since there exists a sequence of words
that rei�es the value 1 witness. The completeness of the Markov monoid says
the converse: if there exists a sequence of �nite words that reaches a set of
states, then it is accounted for in the monoid. This is not true in general, but it
is true for leaktight automata.

The proof of Theorem 3.22 is by induction on the structure of the elements of
the monoid. First it is easy to see that for all a ∈ A, the elements Ba are rei�ed
by the constant sequences (a)n∈N. Then it is proved that the property remains
true when taking products, i.e. (wn)n∈N rei�es W ∈ M and (zn)n∈N rei�es
Z ∈ M then (wnzn)n∈N rei�es WZ. Finally if (wn)n∈N rei�es the idempotent
element W ∈ M then there exists an increasing function f : N → N such
that (wn

f (n))n∈N rei�es W#. We will apply this theorem in the sequel, it is a way
of going from the abstraction (elements of the monoid) to the actual behavior
of the automaton (a sequence of �nite words that rei�es the element of the
monoid).

In the classical result for Markov chains we partition the set of states into
transient states, and recurrence classes. Transient states are states where the
chance to go will diminish in the future, ultimately converging to zero. Recur-
rence classes are sets of states that are recurrent, and communicate with each

91

3 probabilistic automata

other, once the chain enters a recurrence class it stays there forever, and if it is
aperiodic there will be a lower bound on the chance that the chain is in any one
of the states of the recurrence class at every step. This bound is the gist of the
following lemma, which we state and prove before moving on with the proof
of Theorem 3.20.

Lemma 3.23.
Let W ∈ M be an idempotent element of the Markov monoid, r ∈ S that is
W-recurrent and (wn)n∈N a sequence of words that rei�es W. Then there
exists a constant γ > 0 and a map that is strictly increasing h : N → N

such that for all n ∈N,

P(r
wh(0)···wh(n−1)−−−−−−−→ r) ≥ γ.

Proof.
Let

λ =
1
2
·min{lim

n
P(s wn−→ s′) | W(s, s′) = 1}.

The constant λ is well-de�ned since by De�nition 3.21 the limits exist for all
s, s′ ∈ S. Observe that since (wn)n∈N rei�es W there exists an increasing
function h : N→N such that for all n ∈N, and s, s′ ∈N

W(s, s′) = 0 =⇒ P(s
wh(n)−−→ s′) <

1
|S| · 2n+2 , and (43)

W(s, s′) = 1 =⇒ P(s
wh(n)−−→ s′) ≥ λ. (44)

Set γ = λ
2 and zn = uh(0)uh(0) · · · uh(n−1). Denote by R the recurrence class

of r i.e.
R = {t ∈ S | W(r, t) = 1}.

Since W is idempotent the set R is closed, that is to say that for every s ∈ R
and s′ ∈ S, W(s, s′) = 1 implies that s′ ∈ R. Consequently using (43) we can
show that

P(r
zn−1−−→ S \ R) <

1
2

.

This follows because

P(r
zn−1−−→ S \ R) ≤ ∑

s∈R

n−2

∑
k=0

P(s
wh(k)−−→ S \ R) < ∑

s∈R

n−2

∑
k=0

1
|S| · 2k+2 <

1
2

.

Hence
P(r

zn−1−−→ R) ≥ 1
2

.

92

3.3 Leaktight Automata are a Superset

Since r is W-recurrent and W is idempotent for all s ∈ R we have W(s, r) = 1
consequently using (44) we conclude that

P(r zn−→ r) ≥ ∑
s∈R

P(r
zn−1−−→ s)P(s

wn−1−−→ r) ≥ 1
2
· λ.

We de�ne the central notion, that of a non-simplicity witness.

De�nition 3.24 (Non-simplicity witness).
A tripe (U, V, W) of elements of the Markov monoidM is a non-simplicity
witness if there exist states r, t ∈ S such that

• UV#W is idempotent,

• r is UV#W-recurrent,

• UV(r, t) = 1,

• t is V-transient.

Now we move on with the proof of Theorem 3.20 in two steps, �rst, if the
Markov monoid associated to an automaton has a non-simplicity witness then
the automaton is not simple, second, if the Markov monoid has a leak then it
also has a non-simplicity witness.

In order to prove the �rst step, we make the idea of pulsating sequence dis-
cussed in the previous section more formal using the lemma that follows. For
an in�nite word w = a0a1a2 · · · we use this notation of subwords, for j, k ∈N,
j < k

w[j, k] = aj · · · ak−1.

Lemma 3.25.
Let w ∈ Aω be an in�nite word. If there exists states p, s, t ∈ S, increasing
sequences (in)n∈N, (jn)n∈N and γ > 0 such that

1. for all n ∈N, P(p
w<in−−→ s) ≥ γ,

2. for all n ∈N, in < jn and P(s
w[in,jn]−−−→ t) > 0,

3. limn→∞ P(p
w<jn−−→ t) = 0,

then the process induced by w from p is not simple.

93

3 probabilistic automata

Proof.
We assume on the contrary that w induces a simple process from p with bound
λ and show a contradiction.

Observe �rst that for in�nitely many n ∈ N, we have s ∈ Ain and t ∈ Bjn ,
where A and B are the jets from the De�nition 3.18. This follows from the
assumptions (1) and (3).

Let n ∈N be such that s ∈ Ain and t ∈ Bjn , (2) implies that

P(s
w[in,jn]−−−→ t) > 0,

therefore along the path from s to t there must be some moment where we move
from the jet A to the jet B. Formally there exists some kn such that in ≤ kn < jn,
skn ∈ Akn , skn+1 ∈ Bkn+1 and there is nonzero probability to go from skn to
skn+1 with the letter w[kn, kn + 1] = b. Denote by pmin the smallest nonzero
transition probability in the automaton, that is

pmin = min{δ(s, a)(s′) > 0 | s, s′ ∈ S, a ∈ A}.

Then
P(skn

b−→ skn+1) ≥ pmin.

Now because skn ∈ Akn ,

P(p
w<kn+1−−−−→ skn+1) ≥ P(p

w<kn−−→ skn) ·P(skn

b−→ skn+1) ≥ λ · pmin.

Since this holds for in�nitely many n ∈ N and skn+1 ∈ Bkn+1 this contradicts
the second point in De�nition 3.18, that of limn→∞ P(p

w<n−−→ Bn) = 0.

Now we show that when the Markov monoid has a non-simplicity witness
we can construct an in�nite word such that the conditions in Lemma 3.25 are
ful�lled.

Lemma 3.26.
If the Markov monoid associated to an automaton has a non-simplicity wit-
ness then it is not a simple automaton.

Proof.
Let (U, V, W) ∈ M be a non-simplicity witness with states r, t ∈ S for which
the properties in De�nition 3.24 are true. From Theorem 3.22 let (un)n∈N,
(vn)n∈N, (wn)n∈N be sequences of words that reify U, V and W respectively.
As mentioned in the discussion of the proof of Theorem 3.22, there exists an

94

3.3 Leaktight Automata are a Superset

increasing function f : N→ N such that (vn
f (n))n∈N rei�es V#. The proof of

this, can be found in [Fijalkow et al., 2012, Lemma 4].
Then (v f (n))n∈N rei�es V as well, since it is a subsequence of (vn)n∈N.
If (xn)n∈N rei�es X and (yn)n∈N rei�es Y, it is easy to prove that (xnyn)n∈N

rei�es XY. Consequently since V is idempotent, for all k ∈ N, (vk
f (n))n∈N

rei�es Vk = V. By assumption UV(r, t) = 1 so there exists Nk ∈N such that
for all n ≥ Nk,

P(r
unvk

f (n)−−−→ t) > 0.

Let g(n) = max(n, Nn). We omit the parentheses or function composition op-
erator and write f g(n) for f (g(n)). Since g is increasing, (ug(n)v

g(n)
f g(n)wg(n))n∈N

is a subsequence of (unvn
f (n)wn)n∈N so it rei�es UV#W as well. We will use

this sequence of �nite words to construct an in�nite word that induces a process
that is not simple. Observe that by the de�nition of g,

for all n ∈N, P(r
ug(n)vn

f g(n)−−−−−→ t) > 0. (45)

We apply Lemma 3.23 to the element UV#W, the state r and the sequence of
words (ug(n)v

g(n)
f g(n)wg(n))n∈N to obtain the bound γ > 0 and h another increas-

ing function. Denote the following shorthand,

(zn)n∈N = (ugh(n)v
gh(n)
f gh(n)wgh(n))n∈N,

(xn)n∈N = (ugh(n)v
gh(n)
f gh(n))n∈N.

We have

for all n ∈N, P(r
z0···zn−1−−−−→ r) ≥ γ. (46)

We argue that the conditions of Lemma 3.25 are met:

1. for all n ∈N, P(r
z0···zn−1−−−−→ r) ≥ γ,

2. for all n ∈N, P(r xn−→ t) > 0, and

3. limn→∞ P(r
z0···zn−1xn−−−−−→ t) = 0.

Items 1 and 2 follow from (46) and (45) respectively. We prove item 3.
Observe that (xn)n∈N rei�es UV#, since we are only taking subsequences

of the original sequence. Let s ∈ S, since t is V-transient from the hypothesis,
UV#(s, t) = 0, and because (xn)n∈N rei�es UV#, limn→∞ P(s xn−→ t) = 0. We
conclude the proof of item 3 because

P(r
z0···zn−1xn−−−−−→ t) = ∑

s∈S
P(r

z0···zn−1−−−−→ s) ·P(s xn−→ t),

95

3 probabilistic automata

and the second factor of every term is tending to zero.
So we can apply Lemma 3.25 for the in�nite word z = z0z1 · · · , and from it

we deduce that the process induced by z from r is not simple.

Now we proceed to the second and last part of the proof of Theorem 3.20.
We will show that if the Markov monoid has a leak then it has a non-simplicity
witness.

For the proof we need the notion of #-height. For some subset of the monoid
R ⊆ M denote by [R] the smallest set that contains all elements of R and is
closed under taking product. Let E(R) be the set of idempotent elements in R.

De�nition 3.27 (#-height, [Fijalkow et al., 2015]).
Set

S0 = [{Ba | a ∈ A}]
Sn = [Sn−1 ∪ {W# | W ∈ E(R)}].

The #-height of some W ∈ M is the smallest n for which W ∈ Sn.

Lemma 3.28.
If the extended Markov monoid of an automaton M̃ contains a leak then
it also contains a non-simplicity witness.

Proof.
Let L ⊆ M̃ be the set of all elements (Z, Z̃) for which there exists r, r′ ∈ S
such that

1. (Z, Z̃) is idempotent,

2. r is Z-recurrent,

3. Z(r, r′) = 0,

4. Z̃(r, r′) = 1.

By hypothesis L is not empty because we have assumed that M̃ contains
a leak, and all leaks are contained within L. Let (Z, Z̃) ∈ L such that no
other element of L has a strictly smaller #-height, and r, r′ ∈ S such that the
enumerated items above hold.

96

3.3 Leaktight Automata are a Superset

Since Z 6= Z̃, there must exist U, V, W ∈ M such that Z = UV#W and
V 6= V#. Let T be the set of states that are V-transient and R = {s ∈ S |
Z(r, s) = 1}, the Z-recurrence class of r. We will prove that

there exists r′ ∈ R and t′ ∈ T such that UV(r′, t′) = 1. (47)

Observe that this is su�cient for proving that (U, V, W) is a non-simplicity
witness, the states r′ and t′ ful�ll the conditions in De�nition 3.24.

We prove (47) by contradiction. Assume that it does not hold, we will show
that the element of the extended Markov monoid (UVW, Z̃)|M̃|! is inL. This is
a contradiction because UVW has a strictly smaller #-height than Z = UV#W.

So what is left to show is that (UVW, Z̃)K is in L, where K = |M̃|!.
Observe �rst that from the assumption that (47) is not true, for all r′ ∈ R and

s ∈ S, UV(r′, s) = UV#(r′, s) and from here

UVW(r′, s) = UV#W(r′, s) = Z(r′, s). (48)

We demonstrate that (UVW, Z̃)K ∈ L, for the states r, r′.

1. (UVW, Z̃)K is idempotent:

This follows from the fact that for every �nite monoid of size n and ele-
ment x, xn! is idempotent.

2. r is (UVW)K-recurrent:

Let s ∈ S such that (UVW)K(r, s) = 1. From idempotency, r ∈ R, there-
fore applying (48), (UV#W)K(r, s) = 1. From here, since (UV#W)K =

ZK = Z, Z(r, s) = 1. Because r is Z− recurrent, Z(s, r) = 1, and s ∈ R.
Applying (48) again, this time for s, we have Z(s, r) = UVW(s, r) = 1.
Also 1 = Z(r, r) = UVW(r, r), hence (UVW)K(s, r) = 1.

3. (UVW)K(r, r′) = 0:

Assume on the contrary that (UVW)K(r, r′) = 1. Then there exist
s0 · · · sK such that s0 = r, sK = r′ and for all 0 ≤ i < k, UVW(si, si+1) =

1. Applying (48) for i = 0, since s0 = r ∈ R we see that s1 ∈ R as well,
because r is Z-recurrent. Inductively we conclude that for all 0 ≤ i < k,
Z(si, si+1) = 1, hence ZK(r, r′) = 1, Z is idempotent thus Z(r, r′) = 1,
a contradiction of point (3) in the de�nition of L.

4. Z̃K(r, r′) = 1:

This follows immediately from point (4) of the de�nition of L and the
fact that Z̃ is idempotent.

97

3 probabilistic automata

In this way we conclude the demonstration of Theorem 3.20. The class of
leaktight automata is also closed under synchronized product, parallel compo-
sition etc, [Fijalkow et al., 2015]. Since there are no known classes of automata
with decidable value 1 problem that are not a strict subset of leaktight and since
the Markov monoid algorithm that takes advantage of this class is in some way
the best that we can hope for [Fijalkow, 2015] we can safely conclude that this
class is robust and deserves attention. It seems to capture tightly the complica-
tions that stem from calculating in�nitely precise transition probabilities, that
are the cause of undecidability of the value 1 problem. In the next chapter we
will continue with the notion of leaks and lift it to two player half-blind games,
where it proves just as useful as for probabilistic automata.

3.4 stamina, the tool

Stamina (stabilization monoids in automata theory) [Fijalkow et al., 2016] is
a tool authored by Nathanaël Fijalkow, Hugo Gimbert, Denis Kuperberg and
the author of this thesis that computes stabilization monoids. An example of
a stabilization monoid is the Markov monoid that we have discussed in this
chapter. Stamina is a successor to the tool ACME [Fijalkow and Kuperberg,
2014]. The aim of Stamina is to solve the following three problems:

• The value 1 problem for leaktight probabilistic automata. It implements
the Markov monoid algorithm, that computes the Markov monoid. The
size of the Markov monoid can be exponential in number of states. As a
consequence, having a small memory footprint is crucial. Stamina achieves
this by a set of techniques, such as saving the same matrix row only
once in the memory, and managing only pointers to the locations of the
saved row. This enables us to handle relatively large automata despite
the PSPACE complexity of deciding the value 1 problem for leaktight
automata.

• The star height problem. We are given a �nite automaton and an inte-
ger, we have to decide whether the language de�ned by the automaton
has star height equal to the integer. The star height of a language is the
smallest number of nested Kleene stars that are necessary for expressing
the language as a regular expression without complements. The decid-
ability of the star height problem was an open question for 25 years un-
til Hashiguchi answered it positively in [Hashiguchi, 1988]. Though he
showed that the problem is decidable, his algorithm has a computational
complexity that makes implementing it worthless. After an equally long
time, Kirsten gave a simpler algorithm with better complexity bounds in
[Kirsten, 2004], using a stabilization monoid. Even though this algorithm

98

3.4 Stamina, the tool

is much simpler than the �rst one by Hashiguchi, it remains far from
tractable being doubly exponential in space. In order to ameliorate the
situation we employ the loop complexity heuristic. Overall the star height
problem remains computationally hard but Stamina provides a sandbox
for experimenting with di�erent heuristics and verifying small examples.

• Boundedness problem for regular cost functions [Colcombet, 2009]. We
are given an automaton with counters that de�nes some function f :
A∗ →N, where A is the alphabet of the automaton, and asked to deter-
mine if f is bounded. This problem reduces to computing a stabilization
monoid as well.

The three problems: the value 1 problem for probabilistic automata, the star
height problem, and the boundedness problem for regular cost functions have
been glued together in the sense that we have one tool to solve the three of
them, because the three problems reduce to computing stabilization monoids.
The algorithms that solve them are essentially the same.

Stamina can be run as a standalone application (it can output PDFs of the
stabilization monoids it computes), as well as a module for SAGE (http://
www.sagemath.org). In this way it can be used in conjunction with the
whole platform of SAGE in general, and its automata libraries in particular.

Stamina furthers the work that was done for ACME, both in terms of fea-
tures and problems that are solved, as well as, perhaps more importantly per-
formance. This is evident by the benchmarks that were performed and then
plotted in Figure 12. In particular, we see that there is a threshold around the
point of 3000 element monoids, which cannot be passed by ACME because of
stack over�ows.

99

http://www.sagemath.org
http://www.sagemath.org

3 probabilistic automata

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000 12000

T
im

e
 (

s
)

Size of the monoid

Stamina
Acme

Figure 12: Benchmark comparison between Stamina and ACME

100

4
H A L F - B L I N D L E A K T I G H T G A M E S

Half-blind stochastic games are �nite duration games that are played on a �nite
arena between two players. The maximizer that wants to reach the �nal set of
states and the minimizer that wants to do the opposite. They take turns for a
�nite but arbitrarily long duration. The di�erence between simple stochastic
games and half-blind ones is that in half-blind games we restrict the maximizer
to a particular set of strategies. The maximizer can choose a pure and �nite
word over the alphabet of the actions as his strategy. Whereas his opponent
chooses among general behavioral strategies. In other words we are dealing
with a special case of two player games with partial information. The case
where the maximizer has zero information (he is blind), while the minimizer
is perfectly informed. From another point of view, half-blind games are gener-
alizations of probabilistic automata on �nite words. They are probabilistic au-
tomata with an adversary that tries to stop the protagonist from reaching the
set of �nal states. The problem that we are going to study for these games in this
chapter is the maxmin reachability problem. This is the question of whether for
all ε > 0 there exists a �nite word for maximizer such that against all strate-
gies of the minimizer, the chance of reaching the set of �nal states is larger
than 1− ε. The maxmin reachability problem is the analogue of the value 1
problem for probabilistic �nite automata. Consequently it is not decidable in
general. Nevertheless, we will identify the subclass of leaktight half-blind games
for which the maxmin reachability problem is decidable. This lifts the result of
[Fijalkow et al., 2012] to two player half-blind games. We will also compare
the power of di�erent types of strategies and show that mixed strategies are
in general stronger for both players, as well as the perhaps surprising fact that
optimal strategies of the minimizer might require in�nite memory even though
he plays against an opponent that has zero information.

101

4 half-blind leaktight games

4.1 overview

Two player stochastic games are suitable for modeling numerous phenomena
with probability. In the �eld of software veri�cation and controller synthesis,
two player stochastic games with partial information are particularly useful.
The game is played between the controller and the environment. By taking
actions the former tries to reach his objective (put the system in some state,
see a set of states in�nitely often, etc.), and the environment tries to stop this.
The controller takes actions that are helpful to reaching his objective based on
the history of states. Albeit, typically in practice the controller cannot know
the exact state of the system, but has only a partial picture. This is because the
controller is aided by sensors, which can be noisy, or have some degree of error;
or a software interface that provides only a partial view of the system. Hence
the suitability of partial information two player stochastic games in this very
important context.

i f

1

2

a

1
2

1
2

β

α

a

Figure 13: A half-blind game

In this chapter we will discuss a particular type of two player partial infor-
mation stochastic game: the half-blind games. One arrives to these games by
generalizing probabilistic �nite automata to two player games, with a perfectly
informed opponent.

Consider Figure 13. This arena looks like the arenas of two player games
that we have discussed in Chapter 2 — we see a turn-based stochastic game
played between two players on a �nite graph. One player’s objective (Max) is
to reach the �nal state f , his opponent (Min) tries to stop him from doing this.
As in probabilistic �nite automata, Max has no information about the state of
the game, and his aim is to reach the set of �nal states by playing some �nite
word over the set of actions. His opponent, Min, on the other hand is perfectly

102

4.1 Overview

informed about the state of the game. He can see the whole history of the states
and actions that were taken before he makes the decision, when it is his turn.

The question that we will study is that of whether the set of �nal states is
maxmin reachable from the initial state. This is analogous to the value 1 problem
for probabilistic �nite automata. Before we de�ne this problem precisely, let us
overview related work.

Partial information games are algorithmically harder than their perfect in-
formation counterparts; especially quantitative problems, they are often unde-
cidable. We saw in the previous chapter how many problems are undecidable
for probabilistic automata, which is a special case of a partial information game
with one player. But there is a series of positive results for qualitative problems.

For example, Büchi partial information games are qualitatively determined
[Bertrand et al., 2009], i.e. either Max can ensure the Büchi condition almost
surely or Min can ensure positively the opposite co-Büchi condition. In a reach-
ability game, there are three possibilities, either Max can ensure the condition
almost surely, Min can ensure the opposite safety condition surely, or both play-
ers have positively winning strategies. Moreover for both games, only �nite-
memory strategies are necessary, and which player has an almost-sure or posi-
tively winning strategy can be decided, and the strategy that ensures it, can be
e�ectively constructed as well.

Consult the survey article [Chatterjee et al., 2012] and the references therein,
for a general overview of two player games with partial information. It su�ces
to illustrate the contrast between the perfect information and partial informa-
tion games: for example the problem of the existence of a strategy that ensures
almost sure reachability (of a set of states) for perfect information games is in
linear time, whereas for partial information games it is 2EXPTIME-complete.
For perfect information games with parity condition, the question whether
there exists a strategy that ensures the parity condition almost surely is in
NP ∩ coNP, but for partial information games it is undecidable.

There is the interesting special case of one-sided games. Partial information
games where the minimizer is assumed to have perfect information, and the
maximizer has partial information. In the context of software veri�cation these
are games where the antagonistic environment is perfectly informed, a pes-
simistic but safe approach. Under this restriction there is some relief. De-
terministic two player one-sided games with parity objectives are in NP ∩
coNP, whereas the general case of deterministic partial observation games is
2EXPTIME-complete [Chatterjee and Henzinger, 2005].

In the stochastic case, even the one-sided games for parity objectives un-
der the almost-sure semantics are undecidable. However, the di�culty stems
from the analysis of strategies with in�nite memory. In many applications such
strategies are useless, since we cannot actually implement them. Whether the
protagonist can satisfy the parity condition almost surely with a �nite-memory

103

4 half-blind leaktight games

strategy in a one-sided stochastic game, was proved to be decidable in [Nain
and Vardi, 2013]. This problem is EXPTIME-complete and the strategies need
to have memory of at most exponential size [Chatterjee et al., 2014]. We are go-
ing to take the same approach and assume that the opponent (Min) is perfectly
informed.

In the majority of the positive results, the almost-sure semantics is being con-
sidered, i.e. does there exist a strategy for Max such that against all strategies
for Min the winning condition is ensured with probability 1. One can argue that
this question is at times too strong, in comparison to the limit-sure semantics.
Especially for one-sided games, where we already assume that Min is perfectly
informed. Moreover, there are simple examples of games with reachability con-
dition where there is no strategy that ensures that the set of �nal states will be
reached almost surely, but for every ε > 0 there is some strategy that ensures
it with probability of at least 1− ε. One such game is depicted in Figure 13.

i c 3

f

4s

1

2

a

1
2

1
2

β

α

b

a, b

b

a, b

a

Figure 14: A half-blind game with no strategy for Max that wins almost surely

There is no strategy for Max that ensures reaching the state f almost surely.
Because Min can always play the action α, so whenever Max plays a b, the game
ends up with some nonzero probability in the sink state s. On the other hand
the state f is limit-sure reachable: Max plays a sequence of n a’s which results
in the game being in state c with probability at least 1− 2−n, and then plays a
b. So f is limit-sure reachable but it is not almost sure reachable.

The reason for lack of treatment of the limit-sure semantics in the literature
is that even in the case of probabilistic �nite automata the limit-sure problem
(value 1 problem) is undecidable. However, we saw in the previous chapter that
there are at least a couple of interesting classes of probabilistic automata with

104

4.1 Overview

decidable value 1 problem. It is interesting to see whether we can lift these
results to games.

In this chapter we will use the notion of a leak to show decidability of the
maxmin reachability problem for a class of half-blind games. Precisely, the
maxmin reachability problem is as follows.

Problem 4.1 (Maxmin reachability for half-blind games).
Given a half-blind game, decide whether for all ε > 0 there exists a �nite
word (over the alphabet of actions) for Max, such that against any strategy
for Min, the set of �nal states is reached with probability of at least 1− ε.

Leaks seem to catch well the di�culties that make the value 1 problem un-
decidable for probabilistic �nite automata. It is interesting to explore whether
in games it is this phenomena of leaks that alone causes undecidability, or if
there is more hardness added with the perfectly informed opponent. Another
motivation for considering half-blind games is as follows.

s0

t1

t2

a

x

1− x

Figure 15: An uncertain transition in a PFA

With half-blind games we can model lack of knowledge of exact transition
probabilities. Imagine that in the transition in Figure 15 we do not know exactly
the value of x, but we know that it is in some 2ε neighborhood of 1

2 .

We model this lack of knowledge by basically letting Min make the choice,
as in Figure 16.

105

4 half-blind leaktight games

s0 s1

t1

t2

α1

1
2 + ε

1
2 − ε

α2

1
2 − ε

1
2 + ε

a

Figure 16: Translation to half-blind games

In the sequel we will report on [Kelmendi and Gimbert, 2016], identify the
class of leaktight half-blind games, then proceed to prove that the maxmin
reachability problem in this restricted subclass is decidable. Moreover we will
compare the power of di�erent types of strategies and prove that optimal strate-
gies for the minimizer might require in�nite memory.

The proof methods that we will employ are as follows. We will de�ne the
belief monoid, which is a �nite monoid that we will build on top of the Markov
monoid that was used for probabilistic �nite automata. It will play the same
role that the Markov monoid plays for probabilistic automata, namely we will
search it for a particular element whose existence is equivalent to the maxmin
reachability of the set of �nal states. In order to demonstrate that the belief
monoid is sound, we utilize a modi�cation of the Simon’s factorization forest
theorem [Simon, 1990], for a data structure that is called the k-factorization
tree. With the help of k-factorization trees we will prove some upper and lower
bounds of probabilities in the game. This is however done under the assump-
tion that the game is leaktight, i.e. it is not guaranteed that there are no false
positives for the general case of half-blind games. This stands in contrast to
[Fijalkow et al., 2012], where the soundness of the Markov monoid is almost
for free, and does not rely on the leaktight hypothesis. Consequently we will
prove that the belief monoid is complete, which uses the leaktight hypothesis
and Simon’s forest factorization theorem as well.

106

4.2 The Belief Monoid

4.2 the belief monoid

4.2.1 De�nitions and values

The arena of a half-blind game is very similar to that of perfect information
games. We will however assume that the game is played in a bipartite graph, in
order to make the presentation cleaner.

We de�ne the half-blind games formally.

De�nition 4.2 (Half-blind game).
A half-blind game G is given by the tuple G = (S1, S2, A1, A2, p, F), where

• S1 is a �nite set of states that is controlled by Max,

• S2 is a �nite set of states that is controlled by Min,

• A1 is a �nite set of actions that are disposable to Max,

• A2 is a �nite set of actions that are disposable to Min,

• p is the transition function that maps S1×A1 to ∆(S2), and S2×A2

to ∆(S1),

• F is a set of �nal states.

We will write S = S1 ∪ S2 and A = A1 ∪A2. The objective of Max is
to reach the set of �nal states F.

The game proceeds in turns. Say that it starts in some state s0, if s0 ∈ S1

then Max chooses some action a ∈ A1 and the next state is determined from
the distribution p(s0, a), symmetrically if s0 ∈ S2. Then Min chooses his action
and so on until Max decides to stop, and when he does, if the current state of the
game is in F then he wins, otherwise it is Min who wins. The decision of what
action to take, Min can base on the whole history, including the actions that he
himself took, as well as those of Max. But Max can base his own decisions only
on the number of turns that have elapsed.

In other words, Max plays a �nite and pure word over the alphabet A1. Min’s
strategy is a general behavior one.

107

4 half-blind leaktight games

De�nition 4.3 (Strategies for half-blind games).
The set of strategies for Max is denoted by Σ1 and it is de�ned as

Σ1 = A∗1 ,

the set of pure �nite words over the alphabet A1.
The set of strategies for Min is denoted by Σ2 and it is the set of functions

(SA)∗S2 → ∆(A2).

We will usually denote by w the elements of Σ1, to stress that it is a particular
kind of strategy, i.e. a word, and by τ the elements of Σ2. Why such strategies
have been chosen, and discussions of other types of strategies can be found in
Section 4.7.

When we �x an initial state s ∈ S, a strategy τ for Min and a �nite word
w ∈ A∗1 of length n for Max, we induce a probability distribution on the set
(SA)nS1. We will denote this by P

w,τ
s . More precisely it is de�ned as follows:

for a history h = s1a1t1b1 · · · snantnbnsn+1 ∈ (SA)nS1,

Pw,τ
s (h) =

n

∏
i=1

p(si, ai)(ti) · τ(hi)(bi) · p(ti, bi)(si+1),

if s = s1 and w = a1 · · · an and 0 otherwise, where hi = s1a1t1b1 · · · siaiti,
1 ≤ i ≤ n.

As we did before, we will use the following shorthand. For t ∈ S1 we denote
by P

w,τ
s (t) the chance of being in state t, when the players have chosen the

respective strategies w and τ, and the game starts from the state s, i.e.

Pw,τ
s (t) = ∑

h∈(SA)∗
Pw,τ

s (ht).

For a set T ⊆ S, we write P
w,τ
s (T) for the chance of ending up in the set of

states T, i.e.
Pw,τ

s (T) = ∑
t∈T

Pw,τ
s (t).

We are interested in the maxmin value of the game. This is de�ned as follows.

108

4.2 The Belief Monoid

De�nition 4.4 (Maxmin value).
Let G be a game, with F its set of �nal states and s ∈ S some state. We
de�ne the maxmin value of s to be

val(s) = sup
w∈Σ1

inf
τ∈Σ2

Pw,τ
s (F).

The problem that we will consider is whether val(s) = 1, where s is the
initial state. This is Problem 4.1, that is the problem of whether for all ε > 0
there exists some word w such that against all strategies τ of the opponent the
set of �nal states F is reached with probability of at least 1− ε. So player Min
knows the strategy that was chosen by Max before making his own strategy
choice. In the controller synthesis application, this results in a controller that
wins even against a strong environment, which is desirabl.e

In general supw∈σ1
infτ∈Σ2 P

w,τ
s (F) is not equal to infτ∈Σ2 supw∈σ1

P
w,τ
s (F),

it matters who chooses the strategy �rst. But if instead of considering only pure
words for Max, we consider mixed words as well, that is elements of ∆(Σ∗1),
then it does not matter who chooses the strategy �rst, i.e. the game has a value.
We will discuss this choice, as well as how much memory the strategies require
in Section 4.7. For now we concentrate only on the maxmin value.

Unfortunately it is not possible to algorithmically determine if a game has
maxmin value equal to 1.

Theorem 4.5 ([Gimbert and Oualhadj, 2010]).
Given a half-blind game G , and s ∈ S, the problem of whether

val(s) = 1,

is undecidable.

Observe that if Min has no choice in any of the states S2 (there is a single
action), then we are dealing with the special case of probabilistic �nite automata.
The value 1 problem is undecidable, hence the theorem above. Our purpose is
to decide whether val(s) = 1 when the game is leaktight.

109

4 half-blind leaktight games

4.2.2 An Example

Let us explore a more involved example.

i c f

1

2

3

s4

a

1
2

1
2

α

3
4

1
4

b a

b a, bα

β

a, b

Figure 17: A half-blind game with val(i) < 1

Example 13.
The game starts at state i and the objective of the maximizer is to reach the
state f , which is the unique �nal state. Observe that in order to reach the state
f , Max has to play the letter b at some point, because against the strategy that
plays only a, Min will reply with a strategy that never plays the action α from 2
and therefore making sure that the game never reaches state f . But it is critical
for Max to choose the right time to play the letter b. Because if he plays it when
the game is in state i then he loses, since the game goes to the sink state s and
4. But if he plays it when the game is in state c then he wins by going to the
state f and 3. Of course he cannot tell when he is in state c, because he has
no information. Consequently, no matter what strategy Max chooses, Min can
refute it, by acting as follows. If the game is in state 2, and in the next turn Max
will play an a, Min plays β, if in the next turn Max will play a b, Min plays α,
making sure that with probability 3/4 the game will end up in the sink state
s. Note that we are �xing the strategy of Max �rst in this analysis, i.e. we are
considering val(i), and we see that it is bounded above by 3/4. This is because
when Max plays ab, and Min follows the strategy that we described above, the
state f is reached with probability 3/4, but if Max plays at least two a’s before
the b, then f is reached only with 1/4. Hence val(i) = 3/4.

110

4.2 The Belief Monoid

The refutation of Min depends on the word that was chosen by Max, in order
to refute it we need to know whether in the next turn Max will play an a or a
b. If we �x a strategy for Min �rst, then Max can reach the set of �nal states
with a chance that is strictly larger than 3/4. This is because if the strategy
that is chosen by Min, in some turn will play the action β almost surely, then
Max takes advantage of this and plays b at this turn. Otherwise if there is some
nonzero probability that the strategy of Min will play the action α at every turn,
this adds up over time, making the chance of going to the �nal state f equal to
1, given that Max plays only a. Thus we see that in general

val(s) = sup
w∈Σ1

inf
τ∈Σ2

Pw,τ
s (F) 6= inf

τ∈Σ2
sup
w∈Σ1

Pw,τ
s (F).

Nevertheless we will consider only the maxmin for now. 4

4.2.3 Deterministic strategies for Min su�ce

Min is advantaged in two ways. First, we are considering the maxmin value, so
we �x �rst the strategy of Max and then Min replies, knowing this strategy. Sec-
ond, Max uses a very particular and simple strategy, a pure �nite word. With
this in mind, it is not surprising that a general behavioral strategy for Min is not
necessary. Min can manage with a simpler type of strategy, that is a determin-
istic strategy that depends on the current state of the game, as well as which
turn it is. We denote the set of such strategies by Σp

2 , it consists of strategies
that map

N→ (S2 → A2),

i.e. strategies that at every turn play according to some pure and memoryless
strategy.

We prove that Min cannot gain more by choosing some strategy that is in Σ2

but not in Σp
2 .

Lemma 4.6.
Let G be some game with the set of �nal states F, and s ∈ S, then

val(s) = sup
w∈Σ1

inf
τ∈Σp

2

Pw,τ
s (F) = sup

w∈Σ1

inf
τ∈Σ2

Pw,τ
s (F).

Proof.
After �xing a �nite word w ∈ Σ1 and state s, we can construct a Markov deci-
sion process (MDP) with n · |S2| states, where n is the length of w as follows. Let

111

4 half-blind leaktight games

w = a1 · · · an where ai ∈ A1, the set of states of the MDP is {1, . . . , n}× S2. If
the initial state s is in S1, then the initial distribution of the MDP is the same as
p(s, a1) but over the states {1} × S2. With an action from a state in {1} × S2

we can only go to a state in {2} × S2 (by taking into account that Max plays
a2 as a reply), and so on, in general from a state in {i} × S2 we go to a state in
{i+ 1}×S2, for the states in {n}×S2, with every action we loop. In this MDP,
Min wants to stay away from the states {n}× F, and he can do this with a pure
and memoryless strategy [Puterman, 1995]. A pure and memoryless strategy
in this MDP translates to a strategy in Σp

2 in the half-blind game.

As a consequence of this, in the sequel, we will assume that Min chooses a
strategy in Σp

2 , which will simplify the proofs.

4.2.4 The belief monoid algorithm

Given a half-blind game, we will construct an algebraic structure called the
belief monoid. The decision procedure consist of this construction and then
searching for a particular element in the monoid. If the game belongs to the
class of leaktight games then this abstraction using the belief monoid will be
faithful. We are going to �rst de�ne the belief monoid, as well as the belief
monoid algorithm, illustrate a few examples, and then later on we will give a
precise de�nition of the class of leaktight half-blind games.

The belief monoid relies on the Markov monoid of [Fijalkow et al., 2012],
de�ned in De�nition 3.16. In a sense it is a nesting of the Markov monoid.
First, given a half-blind game, we can construct its Markov monoid. In the case
of probabilistic automata we were abstracting the �nite set of the stochastic
matrices Ma by the binary matrices Ba, by mapping nonzero entries to 1. In the
case of half-blind games we will abstract the stochastic matrices Ma,τ , where
τ is a pure and memoryless strategy. These are |S1| × |S1| stochastic matrices
that are de�ned as follows, for all s, s′ ∈ S1

Ma,τ(s, s′) = ∑
t∈S2

p(s, a)(t) · p(t, τ(t))(s′).

In other words Ma,τ(s, s′) gives the probability to go from state s to state s′

in the game that takes only one turn, and where Max plays the single letter a
and Min replies with the pure and memoryless strategy τ. Observe that if Max
chooses some word w = a1 · · · an and Min chooses some strategy τ ∈ Σp

2 ,

Pw,τ
s (s′) =

(
Ma1,τ(1)Ma1,τ(2) · · ·Man,τ(n)

)
(s, s′).

For a ∈ A1 and τ pure and memoryless (i.e. an element of S2 → A2), we
de�ne the binary matrices (that abstract the stochastic ones) by

Ba,τ(s, s′) = 1 ⇐⇒ Ma,τ(s, s′) > 0. (49)

112

4.2 The Belief Monoid

Now we can de�ne the Markov monoid for half-blind games as one would
assume, considering the previous chapter.

De�nition 4.7 (Markov monoid for half-blind games).
The Markov monoid for half-blind gamesM is de�ned as

M = 〈{Ba,τ | a ∈ A1, τ ∈ S2 → A2} ∪ {I}〉,

where I is the unit matrix.

We recall that for a set of binary matrices b, we said 〈b〉 is the smallest set
that contains b and is closed under taking products and iterations. Where the
last two are de�ned in De�nition 3.8 and De�nition 3.11 respectively.

The elements of M say something about how the game can progress. For
example, consider

B = Ba1,τ(1) · · · Ban,τ(n),

where τ ∈ Σp
2 and a1 · · · an ∈ Σ1. If for some s, s′ ∈ S1, B(s, s′) = 1, then the

chance of reaching s′ from s when Max plays the word a1 · · · an and Min the
strategy τ, is nonzero. Or, for example, if we have some idempotent Ba,τ ∈ M,
a ∈ A1, τ memoryless and pure, and s, s′ ∈ S1 such that for the iterated
element B#

a,τ(s, s′) = 0, then this means that

lim
n

Pan,τ
s (s′) = 0.

That is, if Max plays longer and longer chain of a’s and Min replies always with
the same memoryless and pure strategy τ, then the chance of going from state
s to state s′ tends to zero.

We need some more structure in the belief monoid, the elements ofM need
to be grouped according to what might happen when Max chooses some strat-
egy.1

The elements of the belief monoid are subsets of M. We group together
those elements which correspond to the same strategy by Max. For instance
for a ∈ A1,

a = {Ba,τ | τ ∈ S2 → A2}. (50)

We will denote elements of the belief monoid by boldfaced lowercase letters.
The element a groups together all that might happen in the game when Max

1 even though strategies of Max are �nite and pure words, we will sometimes informally use the
same term to mean sequences of �nite and pure words, since we are dealing with the maxmin
reachability problem, which is a question about the asymptotic behavior

113

4 half-blind leaktight games

plays the letter a. The product of two elements of the belief monoid is just the
product of its elements.

De�nition 4.8 (Product operator for the belief monoid).
The product of u and v, denoted by uv is de�ned as

uv = {UV | U ∈ u, V ∈ v}.

Now, for example, to any �nite word w = a1a2 · · · an, we can associate the
element w = a1a2 · · · an, that consists of binary matrices that together encom-
pass all that is possible to occur in the game when Max plays the word w.

As with probabilistic automata, this is not the end of the story, since we need
to take into account that in the limit Max can make the probability to go to
certain states tend to zero. For this purpose, we de�ne the iteration operator
for the belief monoid as follows.

De�nition 4.9 (Iteration operator for the belief monoid).
Let u be idempotent, its iteration, denoted by u#, is de�ned as

u# = 〈{UE#V | U, E, V ∈ u, E2 = E}〉.

In u#, we are taking elements of u that are iterated at least once, and then
closing that set under product and iteration.

Having de�ned these two operations for subsets ofM, we are now ready to
de�ne the belief monoid.

De�nition 4.10 (The belief monoid).
Given a half-blind gameG , the belief monoid that is associated to it, denoted
by B, is the smallest set that contains

{a | a ∈ A1} ∪ {{I}},

and is closed under taking product and iteration, where I is the unit matrix
and a is de�ned as in (50).

114

4.2 The Belief Monoid

Example 14.
We go back to the game in Figure 13. Min has two pure and memoryless strate-
gies in total, the one that plays α and the one that plays β. We construct its
belief monoid. By de�nition we have

Ba,α =

(
1 1
0 1

)
, and

Ba,β =

(
0 1
0 1

)
.

As well as,
a = {Ba,α, Ba,β}.

We have used the order i < f of the states for the matrices above, e.g. the
(1, 1) entry of Ba,α corresponds to (i, i), the probability to loop in the state i.

Observe that the set a, is closed under taking products, hence a2 = a, i.e. a
is idempotent and a# is well-de�ned. Moreover both of the elements Ba,α and
Ba,β are idempotent, and Ba,β is absorbing, in the sense that

Ba,αBa,β = Ba,βBa,α = Ba,β.

Since B#
a,α = Ba,β we conclude that

a# = {Ba,β}.

Furthermore, a and a# are the only elements of B, the belief monoid that is
associated to the game in Figure 13. 4

In the example above the element a# serves as a reachability witness. It wit-
nesses the fact that the state f can be reached with probability arbitrarily close
to 1, from the state i.

De�nition 4.11 (Maxmin reachability witness).
Let G be a half-blind game with initial state i and set of �nal states F, and
let B be the belief monoid that is associated to it. An element u ∈ B is
called a maxmin reachability witness if for all B ∈ u, and s ∈ S1,

B(i, s) = 1 =⇒ s ∈ F.

The belief monoid algorithm, constructs the belief monoid and then searches
for a maxmin reachability witness. If it �nds one, then it returns yes, otherwise
it returns no.

115

4 half-blind leaktight games

Roughly speaking, elements u ∈ B of the belief monoid correspond to strate-
gies of Max, while elements B ∈ u inside it, correspond to a response strategy
for Min. In this sense the maxmin reachability witness says that there exists
some element u ∈ B (some strategy for Max), such that for all B ∈ B (for all
strategies for Min), the result of the game is that from the initial state we end
up in the set of �nal states.

Algorithm 1: The belief monoid algorithm.
Data: A leaktight half-blind game.
Result: Answer to the Maxmin reachability problem.
B ← {a | a ∈ A1}.
Close B by product and iteration
Return true i� there is a reachability witness in B

Example 15.
Let us go back to the game in Figure 17 and construct its belief monoid. We use
the following order on the states: i < c < s < f .

a = {Ba,α =

1 1 0 1
1 0 0 1
0 0 1 0
0 0 0 1

 , Ba,β =

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

}

b = {Bb,α = Bb,β =

0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

}

Moreover b = b2 = b#. On the other hand, observe that a2 6= a. The elements
of a2 are as follows.

Ba,α · Ba,α =

1 1 0 1
1 1 0 1
0 0 1 0
0 0 0 1

 , Ba,α · Ba,β =

0 1 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 ,

Ba,β · Ba,β = Ba,β, Ba,β · Ba,α =

1 0 0 1
1 0 0 1
0 0 1 0
0 0 0 1

 .

116

4.2 The Belief Monoid

By computing a4, it follows that a2 is idempotent, therefore (a2)# is well-de�ned.
Furthermore, (a2)# is a strict superset of a2, containing the following new ele-
ment:

(Ba,α · Ba,α)
= (Ba,α · Ba,β)

= (Ba,β · Ba,α)
=

0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1

 .

Intuitively this element is saying that if Max keeps playing a longer and
longer sequence of a2, and Min replies to each one with (α, α), (α, β) or (β, α),
then the �nal state is reached almost surely. This is because playing α by Min
ensures that 1/4 of the probability that is not in f goes to f , and since f is a
sink state, it remains there.

From here, without continuing the computation, it is easy to conclude that
(a2)#b is not a maxmin reachability witness, since it contains the element

B = (B2
a,β)

· (Ba,β · Ba,α) · Bb,α =

0 0 1 1
0 0 1 1
0 0 1 0
0 0 0 1

 ,

and B(i, s) = 1, but s 6∈ F. Other elements of B are easily seen to not be
maxmin reachability witnesses either. 4

4.2.5 The extended belief monoid

For the proofs of the correctness of the belief monoid algorithm, as well as the
de�nition of the leaktight half-blind games we will make use of the extended
belief monoid. This is just the belief monoid that is built on top of the extended
Markov monoid that was de�ned in De�nition 3.15.

De�nition 4.12 (Extended belief monoid).
The extended belief monoid, denoted by B̃, has as elements subsets of M̃,
otherwise it is de�ned just as the belief monoid, i.e. it is the smallest set
that contains

{a | a ∈ A1} ∪ {{(I, I)}},

and is closed under product and iteration, where a are de�ned as

a = {(Ba,τ, Ba,τ) | τ ∈ S2 → A2}.

117

4 half-blind leaktight games

4.3 leaks

The concept of leaks was introduced in [Fijalkow et al., 2012], as we have dis-
cussed in the previous chapter it is interesting for various reasons. In this chap-
ter we will give an informal description of leaks, as well as de�ne them for half-
blind games. See [Fijalkow et al., 2012] and [Fijalkow et al., 2015] for examples,
and further discussions on leaks.

Let us consider the simplest possible example that exhibits leaks.

c

s

r

a
x

1− x

b

b

a

a, b

(a) A probabilistic automaton that
has a leak

c

s

r

(b) Behavior of the automaton
when reading the sequence of
words (a f (n)b)n∈N

Figure 18: Illustrative example with a leak

In Figure 18a we have a probabilistic automaton with two letters, where x
is some rational with 0 < x < 1. We regard the behavior of the automaton
when it reads the sequence of words ((a f (n)b)g(n))n∈N, where f and g are some
increasing functions. If we start from the state c and play the sequence a f (n)b,
the chance of coming back to c is 1 − x f (n). This is because the chance of
going to the sink state s, is x f (n), and the probability to go to the state r is 0.
So with a very small probability we are going to the sink state, otherwise we
come back to c. Up until now, the behavior of the automaton is fairly straight
forward. The complications arise when we repeat the word a f (n)b. There is
some small chance that we go to the sink state s, but we repeat this experiment
g(n) times, thereby increasing the probability of being stuck in the sink state.
Will there always be some nonzero chance of going to the sink state in the limit,
is hard to ascertain, and in fact it is algorithmically impossible in the general
case, since this is a leak. In our case here, the answer depends on the quantity
x as well as how fast the functions f and g increase; so already it depends on
the quantitative properties of the automaton, and not just the qualitative ones.

118

4.3 Leaks

Under the sequence of words (a f (n)b)n∈N the state c is recurrent and it forms
its own recurrence class, the same holds for s. We have illustrated this in Fig-
ure 18b. By this we mean that in the limit of that sequence of words, there is
no nonzero probability of going from the state c to some other state and not
coming back (note that the dotted transition from c to s tends to zero in the
limit).

While the dotted transition is zero in the limit, it is nonzero for all n ∈ N.
What we are dealing with here, is two recurrence classes that still communicate
with each other with some transition that has little chance of occurring. This is
what we refer to as a leak, the transition between the two recurrence classes that
has little chance of occurring, the recurrence class {r} leaks some probability
to the recurrence class {s}.

We summarize this discussion in the �gure below.

R0 R1

R0 R1

R0 R1

I

II

iterate

Figure 19: Summary of leaks

We have two recurrence classes, R0 and R1, and R0 leaks some probability to
R1. By repeating, or iterating this many times there are two possible things that
might happen, either some probability remains in R0 (this is (I) in Figure 19) or
the leak vanishes too slowly and therefore depletes all the probability from R0

(this is (II) in Figure 19).
Which one of these two possible outcomes happens is algorithmically too

complicated to conclude, and in general impossible. It becomes even more com-
plicated when there are two or more leaks at the same time, and we have to
compare their speeds. See [Fijalkow et al., 2012] for such examples, and [Fi-
jalkow, 2015] for further discussion on the speeds of convergence of leaks.

Hopefully the discussion is su�cient to motivate the syntactic characteriza-
tion, which serves as a de�nition, of leaks given in De�nition 3.16. We recall
this de�nition here, for the extended Markov monoid that is associated to a
half-blind game.

119

4 half-blind leaktight games

De�nition 4.13 (Leaktight half-blind games).
Let G be a half-blind game and M̃ the extended Markov monoid that is
associated to it. An idempotent element (B, B̃) ∈ M̃ is called a leak if
there exists r, r′ ∈ S1 such that

• r and r′ are B-recurrent,

• B(r, r′) = 0,

• B̃(r, r′) = 1.

If M̃ does not contain a leak then we say that the game G is leaktight.

What follows from here is that in order to ascertain whether a given game
is leaktight, it su�ces to check if any element of its extended Markov monoid
ful�lls the properties given in De�nition 4.13, so it is decidable.

Theorem 4.14.
Given a half-blind game, one can decide whether it is leaktight.

This is a very convenient property of this subclass of automata and half-blind
games: having a class of games with decidable maxmin reachability problem
whose membership we cannot decide would not be very useful.

Example 16.
In the extended Markov monoid of the automaton in Figure 18a, we have the
following couple(we have used the order c < r < s on the states),

B#
a Bb =

1 0 0
1 0 0
0 0 1

 , B̃#
a Bb =

1 0 1
1 0 0
0 0 1

 .

In the right component we have kept the transition from c to s. Observe that
this element ful�lls all the properties in De�nition 4.13 for the states c and s,
and therefore is a leak. 4

We have illustrated above the leaks on probabilistic automata instead of half-
blind games for the sake of simplicity. The situation for games is very similar,
in fact, it is easy to see that, given a game G we can construct an automaton A

120

4.4 k-decomposition Trees

such that G is leaktight if and only if A is. The automaton has an alphabet of
size |A1| × |S2 → A2|.

It is true that in games the asymptotic behavior can be much more complex,
since Min can choose some complex strategy, but as we shall see, when the
game is leaktight, none of such complex strategies help Min to impede Max
from reaching the �nal states, and hence do not make the question of maxmin
reachability harder.

4.4 k-decomposition trees

The notion of k-decomposition trees is central in the proofs of the correctness
of the belief monoid algorithm. We will de�ne k-decomposition trees in this
section, and prove a key property that they have: a bound on their height.

The setting is as follows. We have a �nite alphabet A, a �nite monoid (M, ·)
and a morphism φ from A∗ (the set of �nite words with alphabet A) to M. This
means that for all u, v ∈ A∗, we have φ(uv) = φ(u) · φ(v).

Since the set A∗ is in�nite but M is �nite, Ramsey’s theorem tells us that for
all n ∈ N, any su�ciently long word w ∈ A∗ can be decomposed into factors
w = uw1w2 · · ·wnv such that φ(w1) = φ(w2) = · · · φ(wn).

Simon’s factorization forest theorem [Simon, 1990], is a strong extension of
Ramsey factorization. There we have decomposed the word into factors, Si-
mon’s theorem completely decomposes the word into a tree whose height is
independent of the length of the word. More precisely it decomposes a word
w ∈ A∗ into a Ramsey decomposition tree of w. This is a rooted tree whose
nodes are labeled by pairs in A∗ ×M that follows the following rules:

• the leaves are labeled by (a, φ(a)), where a ∈ A,

• the product nodes have exactly two children, if the children are labeled
by (u1, m1) and (u2, m2) then the product node, their parent, is labeled
by (u1u2, m1 ·m2),

• the idempotent nodes have more than two children whose label’s right
component coincides and is idempotent, if the children are labeled by
(u1, e), (u2, e), . . . , (un, e), where e is idempotent, then the idempotent
node, their parent, is labeled by (u1 · · · un, e),

• the root is labeled by (w, φ(w)).

A tree whose every node is either a product, an idempotent node or a leaf
and that ful�lls the rules above is a Ramsey decomposition tree.

121

4 half-blind leaktight games

Theorem 4.15 ([Simon, 1990]).
For all w ∈ A∗ there exists a Ramsey decomposition tree with height at
most 9|M|.

The k-decomposition trees, k ∈ N, are analogues of the Ramsey decompo-
sition tree for the monoids that are equipped with the unary operator (#) as
well as the product. Instances of such monoids (M, ·, #) where # maps e(M)

to e(M), e(M) being the set of idempotents of M, are the Markov and belief
monoids, among others.

In [Simon, 1994] and [Fijalkow et al., 2012] 2-decomposition trees were used
in conjunction with a similar theorem to Theorem 4.15. The notion of a k-
decomposition tree was introduced in [Colcombet, 2013].

We de�ne k-decomposition trees. Let A be a �nite alphabet, and (M, ·) a
monoid equipped with a unary operator # that maps e(M) to e(M), e(M) being
the set of idempotents of M.

De�nition 4.16 (k-decomposition tree).
Given w ∈ A∗, and k ∈ N, k > 1, a k-decomposition tree of w is a
rooted tree whose nodes are labeled by elements of A∗ × M that follows
the following rules:

• the leaves are labeled by (a, φ(a)), a ∈ A,

• the product nodes have exactly two children, if the children are la-
beled by (u1, m1) and (u2, m2) then the product node, their parent,
is labeled by (u1u2, m1 ·m2),

• the idempotent nodes have at most k children whose label’s right
component coincides and is idempotent, if the children are labeled
by (u1, e), (u2, e), . . . , (un, e), with e idempotent and n ≤ k, then
the idempotent node, their parent, is labeled by (u1 · · · un, e),

• the iteration nodes have at least k + 1 children whose label’s right
component coincides and is idempotent, if the children are labeled
by (u1, e), (u2, e), . . . , (un, e), where e is idempotent and n > k, then
the iteration node, their parent, is labeled by (u1 · · · un, e#).

• the root node is labeled by (w, m) for some m ∈ M.

122

4.4 k-decomposition Trees

In [Fijalkow et al., 2012], 2-decomposition trees are used, i.e. there are no
idempotent nodes, only product and iteration nodes. The reason why we use
the more general notion of the k-decomposition tree for half-blind games is
roughly as follows.

In the case of probabilistic automata, the 2-decomposition trees are used to
prove a lower bound on the probability to go from a state to another state. In
the proof we inductively walk up the tree, and use the fact that there exists a
bound on the height of the tree that does not depend on the length of the word.

In the case of half-blind games, we will use decomposition trees to prove
some upper bounds as well, and for this we need to make sure that the chance
to go to the transient states decreases in the game. This comes as a result of
iterating some word many times, but in a 2-decomposition tree, an iteration
node can have as little as three children, there is no lower bound on the number
of children and consequently we cannot gain an upper bound that decreases on
the chance to go to a transient state. For this reason we need more control on
the number of children of iteration nodes and one way to achieve it is through
k-decomposition trees.
Example 17.
Let A = {a, b}, (M, ·) some monoid with (#) a unary operator that maps e(M)

to e(M), and φ morphism from A∗ to M such that φ(a) and φ(b) are idempo-
tent. A 4-decomposition tree of the word aaaaabbbb is depicted in Figure 20.

aaaaabbbb, φ(a)#φ(a)φ(b)φ(b)

bbb, φ(b)

b, φ(b)b, φ(b)b, φ(b)

aaaaab, φ(a)#φ(a)φ(b)

ab, φ(a)φ(b)

b, φ(b)a, φ(a)

aaaa, φ(a)#

a, φ(a)a, φ(a)a, φ(a)a, φ(a)

Figure 20: A 4-decomposition tree of the word aaaaabbbb

Observe that the node labeled by bbb, φ(b) is an idempotent node, whereas
the one that is labeled by aaaa, φ(a)# is an iteration node. 4

In this section we are going to prove an analogue of Theorem 4.15 for the k-
decomposition trees and monoids equipped with a unary operator (#) that has
the following properties:

∀e ∈ e(M), e# ∈ e(M) (51)
∀e ∈ e(M), (e#)# = e# (52)
∀e ∈ e(M), ee# = e#e = e#. (53)

123

4 half-blind leaktight games

The analogue result for 2-decomposition trees, with a proof in the same spirit
as the one given here, can be found in [Simon, 1994; Fijalkow et al., 2012]. For
k-decomposition trees, a proof can be found in [Colcombet, 2009], but it asks
for an additional property for the monoid. It asks that (ab)#a = a(ba)# where
ab, ba ∈ e(M). We require only (51), (52) and (53).

Lemma 4.17.
Let A be a �nite set, (M, ·) a monoid that is equipped with a unary operator
: e(M) → e(M), such that (51), (52) and (53) hold, and φ a morphism
from A∗ to M. For all w ∈ A∗, k > 1, there exists a k-decomposition tree
of w whose height is at most 9|M|2.

Before we prove Lemma 4.17, we have to introduce some essential �nite semi-
group results. In particular Green’s relations, which are the main tool in the
study of �nite semigroups. These results can be found in any textbook on �nite
semigroups. See for example [Pin and Miller, 1986] and [Cli�ord and Preston,
1961].

Let u ∈ M, we use the following notation

uM = {uu′ | u′ ∈ M}
Mu = {u′u | u′ ∈ M}

MuM = {vuv′ | v, v′ ∈ M}.

We will de�ne the relationsL,R,J ,H andD, that are equivalence relations
on M. These relations together are called Green’s relations.

De�nition 4.18 (Green’s relations).
Let u, v ∈ M,

• uLv ⇐⇒ Mu = Mv,

• uRv ⇐⇒ uM = vM,

• uJ v ⇐⇒ MuM = MvM,

• uHv ⇐⇒ uLv and uRv,

• uDv ⇐⇒ ∃w ∈ M, uLw and wRv

124

4.4 k-decomposition Trees

For L,R,J we can de�ne the partial orders ≤L,≤R,≤J , for all u, v ∈ M,
u ≤L v if and only if Mu ⊆ Mv. Similarly for≤R and≤J . With <L,<R,<J
we denote their strict counterparts.

The relations are equivalence relations, so we will use, for example, J -class
to mean an equivalence class with respect to the J relation.

We recall some basic results, whose proofs can be found in the books cited
above.

Lemma 4.19.
NoH-class contains more than one idempotent element.

Lemma 4.20.
Let u, v ∈ M,

• If u ≤L v and uJ v, then uLv.

• If u ≤R v and uJ v, then uRv.

Now we will give a lemma that is key in the proof of Lemma 4.17, it can be
found in [Simon, 1994]. We assume that the monoid M is such that it ful�lls
the properties (51), (52) and (53).

Lemma 4.21 ([Simon, 1994]).
Let e ∈ M be an idempotent element such that e# 6= e. Then e# <J e.

Proof.
First observe that from (53), ee#e = e#. From this, together with (51), it follows
that e# ≤J e. The proof is by contradiction: assume that eJ e#. Note that
e ≤L e# = ee#, so from Lemma 4.20, eLe#. The argument for eRe# is dual, and
hence eHe#. Since both e and e# are idempotent and in the sameH-class, from
Lemma 4.19 it follows that e = e#, which is a contradiction.

We are now equipped to proceed with the proof of Lemma 4.17.

125

4 half-blind leaktight games

Proof Idea (of Lemma 4.17).
We start with the Ramsey decomposition tree of some word, and replace nodes
that could be iteration nodes (i.e. that have at least k children) by some new
letter of the alphabet. Each time we do this, because of Lemma 4.21, we de-
scend the J -class, since we can do this at most |M| times, it provides us with
a bound. 4

Proof (of Lemma 4.17).
Let w ∈ A∗ and k > 1. We are going to prove that there exists some k-
decomposition tree of w whose height is at most 9J|M|, where J is the number
of J -classes on M. This su�ces to conclude the lemma since J ≤ |M|.

Set φ0 = φ and A0 = A. From Theorem 4.15 there exists a Ramsey decom-
position tree T0 of w whose height is at most 9|M|. Call any idempotent node
of T0 with children (u1, e), (u2, e), . . . , (un, e), a primitive node, if e# 6= e and
n ≥ k. If T0 has no primitive node then it is itself a k-decomposition tree and
we are done. Otherwise for all primitive nodes that are at maximal depth (they
have no descendants that are primitive) and that are labeled (u, e) with children
(u1, e), . . . , (un, e), where n ≥ k, add a new letter au to the alphabet A0, and
call this new alphabet A1. De�ne the morphism φ1, whose domain is A∗1 , as
φ1(au) = e# and φ1(u′) = φ0(u′), for all other u′ ∈ A∗0 . Transform the word
w by replacing the factor u with the new letter au. Do the above in parallel for
all the primitive nodes that have maximal depth, i.e. we possibly add more than
one new letter in A1.

Now we apply again Theorem 4.15 to the alphabet A1 and the morphism
φ1. This gives us a new Ramsey decomposition tree T1, where the subtree of
T0 whose root has the label (u, e) is replaced by the leaf (au, e#). If T1 has no
primitive nodem then we unwrap the leaves labeled (au, e#), by plugging in
the tree that was in T0, except that for its root we use the label (u, e#), and
we are done, T1 is a k-decomposition tree. If, on the other hand T1 still has
some primitive nodes, then we repeat the procedure above. Since this procedure
replaces more and more factors of w by letters, it must stop at some Tj.

We claim that j ≤ J. To see this, observe �rst that for all u, v, e ∈ M with
e idempotent we have ue#v ≤J e#, ue# ≤J e#, and e#v ≤J e#. So when we
multiply e# with some other element of the monoid we do not ascend in the
J -classes. But on the other hand according to Lemma 4.21 whenever we pass
from e to e#, we descend on the J -classes, and since we are doing this with
every pass of the procedure above, it follows that k ≤ J where J is the number
of J -classes.

We are going to use Lemma 4.17 in the sequel by instantiating it for the
monoids M̃ and B̃. In order to do so we must make sure that these two monoids
ful�ll (51), (52), and (53).

126

4.4 k-decomposition Trees

Lemma 4.22 ([Fijalkow et al., 2015]).
For the extended Markov monoid (51), (52), and (53) hold.

Lemma 4.23.
For the extended belief monoid (51), (52), and (53) hold.

Proof.
We prove it for the belief monoid B, for the extended version, the proof is the
same.

First (51) follows from De�nition 4.9: u# is a subset ofM that is closed un-
der taking product, hence u#u# ⊆ u#. To see the inverse inclusion observe
that UE#V = (UE#E)(EE#V) from Lemma 4.22. Furthermore membership in
u#u# remains true under taking products and iterating.

The property (52) is trivial since from Lemma 4.22, for all idempotent E ∈ M,
(E#)# = E#, so (u#)# has the elements UE#(E#)#E#V = UE#V.

Last the property (53) can be easily proved after making the observation that
UE#V = U(EE#V), which comes from Lemma 4.22.

We now have at our disposal a powerful tool which we will use to demon-
strate the correctness of the belief monoid algorithm. In the case of the sound-
ness of the algorithm we will apply Lemma 4.17 to the alphabet A1 × (S2 →
A2) and the corresponding morphism to the Markov monoid that is associated
to the game, whereas in the case of the completeness of the algorithm we will
apply the lemma to the alphabet A1 with the corresponding morphism to the
Belief monoid that is associated to the given game.

127

4 half-blind leaktight games

4.5 soundness

The proof of correctness of the Belief monoid algorithm is in two parts. The
soundness that justi�es the yes replies of the algorithm and the correctness that
justi�es the no replies of the algorithm.

This section is devoted to demonstrating the following theorem.

Theorem 4.24 (Soundness).
Given a leaktight half-blind game, if its belief monoid has a maxmin reach-
ability witness, then the set of �nal states is maxmin reachable, that is,
val(s) = 1, where s is the initial state.

This theorem is a corollary of the following lemma.

Lemma 4.25.
Assume that we are given a leaktight half-blind game with belief monoid
B. With every u ∈ B we can associate some (un)n∈N, un ∈ A∗1 , such that
for all sequence (τn)n∈N, τn ∈ Σp

2 , there exists U ∈ u, and ((u′n, τ′n))n∈N

a subsequence of ((un, τn))n∈N for which

U(s, t) = 0 =⇒ lim
n

P
u′n,τ′n
s (t) = 0, s, t ∈ S1.

This lemma materializes the intuition that we gave before, that the strategy
choice of Max is selecting some u ∈ B, whereas that of Min is selecting some
U ∈ u.

Lemma 4.25 implies Theorem 4.24 because to the maxmin reachability wit-
ness u, we associate some sequence of words (un)n∈N such that against any
(τn)n∈N there exists some subsequence ((u′n, τ′n))n∈N of ((un, τn))n∈N, such
that

lim
n

P
u′n,τ′n
s (t) = 0,

where s is the initial state and t 6∈ F. This is because from De�nition 4.11, for
all U ∈ u, and t 6∈ F, U(s, t) = 0.

Before we give the proof idea of Lemma 4.25, we are going to give a couple
of de�nitions.

128

4.5 Soundness

The pair of strategies u ∈ A∗1 and τ ∈ Σp
2 induce a �nite word over the

alphabet

A = {(a, α) | a ∈ A1, α ∈ S2 → A2}.

In this case, if u = a1 · · · an, it is the word (a1, τ(1)), (a2, τ(2)), . . . , (an, τ(n)) ∈
A∗. We are going to handle words over A, and the morphism φ to the �nite
monoidM (or M̃) that is de�ned by φ((a, α)) = Ba,α, where the latter’s de�-
nition is given in (49) on Page 112.

In a k-decomposition tree, the right components of labels (i.e. the elements of
the monoid), are called the types. The type of the tree is the type of its root. For
example the type of the 4-decomposition tree in Figure 20 is φ(a)#φ(a)φ(b)φ(b) =
φ(a)#φ(a)φ(b).

De�nition 4.26.
Let p ∈ A∗, h, k ∈ N. We denote by Th

k (p), the set of all k-decomposition
trees of p whose height is at most h.

Whereas by Th
k(p) we denote the set of all types of trees that appear in

Th
k (p).

Lemma 4.17 says that there exists some k-decomposition tree of certain height,
but there might be more (even of di�erent types), or there might be none if the
height is too small.

De�nition 4.27 (Realization).
Let (pn)n∈N, pn ∈ A∗, h ∈N, and X ⊆ M̃. We say that (pn)n∈N realizes
X with height h if there exists some subsequence (p′n)n∈N of (pn)n∈N and
k ∈N such that

Th
k(p′n) = X, n ∈N,

and for in�nitely many i > k, X appears in�nitely often in the sequence
(Th

i (p′n))n∈N.

Consider the following table for some h ∈N and (pn)n∈N:

129

4 half-blind leaktight games

Th
2(p1) Th

2(p2) · · · Th
2(pn) · · ·

Th
3(p1) Th

3(p2) · · · Th
3(pn) · · ·

...
...

Th
i (p1) Th

i (p2) · · · Th
i (pn) · · ·

...
...

(54)

The sequence (pn)n∈N realizes X if there exists a row k in the table above
with in�nitely many elements equal to X, and furthermore, after deleting all
the columns with elements that are not equal to X, in all rows below k, X ap-
pears in�nitely often. This means that for all U ∈ X, we can construct a k-
decomposition tree of pn of height at most h, for larger and larger k and n, that
has type U. This is useful because we are going to prove an upper bound, as a
function of k, on the probability to go from s to t with pn, whenever U(s, t) = 0.
Moreover this bound will tend to zero as k tends to in�nity. In this way we will
demonstrate that the game under (pn)n∈N behaves similarly to U. In other
words (pn)n∈N realizes U, and in general any element of X.
Proof Idea (of Lemma 4.25).
We will prove Lemma 4.25 in two steps. Both proofs are by induction on the
structure of the monoid B, that is, the base case is for a ∈ B, where a ∈ A1,
and in the induction step we demonstrate that the property remains true under
product and iteration.

First we will show that for all u ∈ B there is some (un)n∈N, un ∈ A∗1 , such
that against all replies (τn)n∈N, τn ∈ Σp

2 , there exists X ⊆M, with X∩u 6= ∅,
and ((un, τn))n∈N realizes X.

In particular, this means that we can construct k-decomposition trees of (un, τn),
of height at most h (for some h ∈N), for larger and larger n and k whose type
is some U ∈ u.

In the second step we will demonstrate the existence of an upper bound
f (h, k) such that if we are given some k-decomposition tree of (u, τ) of height
h, whose type is U, then

U(s, t) = 0 =⇒ Pu,τ
s (t) ≤ f (h, k).

Moreover f (h, k) tends to zero as k tends to in�nity. This we will prove by
walking up the tree inductively, that is, we show it for trees that are leaves,
and then prove that it remains true for the parent, given that it is true for the
children.

The leaktight hypothesis is used when proving the existence of this upper
bound, in the case of iteration nodes (when we assume that it is true for the
children, and we want to prove that it is true for the parent as well, when the
parent is an iteration node). 4

130

4.5 Soundness

We now prove the �rst step, by showing initially that for a sequence (pn)n∈N,
there exists some X ⊆M that realizes it. This is the following lemma. Its proof
is a simple argument whose essential part is thatM is �nite.

Lemma 4.28.
Let (pn)n∈N, pn ∈ A∗. There exists h ∈ N, and X ⊆ M, such that
(pn)n∈N realizes X with height h.

Proof.
Set h = 9|M|2. From Lemma 4.17, for all k > 2 and n ∈N,

Th
k(pn) 6= ∅.

SinceM is �nite, there exists some X1 ⊆M and some subsequence (p′n)n∈N

of (pn)n∈N, such that Th
2(p′n) = X1 for all n ∈N. If for in�nitely many i > 2,

X1 appears in�nitely often in the sequence (Th
i (p′n))n∈N, we are done. Other-

wise there exists some k1 ∈N such that for all i > k1, X1 appears only �nitely
often in the sequence (Th

i (p′n))n∈N. Repeating this process, there exists some
X2 ⊆M and a subsequence (p′′n)n∈N of (p′n)n∈N such that Th

k1
(p′′n) = X2 for

all n ∈ N, and so on. The monoid M being �nite implies that this process
eventually stops, and there exists some X ⊆ M such that (pn)n∈N realizes X
with height h.

We now know that all sequences of �nite plays (�nite words over the alphabet
A) are realizing some X ∈ M for the height 9|M|2. Nevertheless we are going
to need something similar having to do with the belief monoid instead of the
Markov one. This is the next lemma, which �nishes the �rst step. Its proof is
by induction on the structure of B. The other two proofs of this section have
the same form.

Lemma 4.29.
For all u ∈ B there exists (un)n∈N, un ∈ A∗1 , h ∈ N, and a function
N : N → N, such that for all replies (τn)n∈N, τn ∈ Σp

2 , k > 2, and
n > N(k)

Th
k((un, τn)) ∩ u 6= ∅.

Above by (un, τn), we mean the word (a1, τn(1)) · · · (al , τn(l)) over the al-
phabet A, where un = a1 · · · al .

131

4 half-blind leaktight games

Proof.
The proof is by induction on the structure of the elements of B. This means
that we will prove the lemma �rst for a ∈ B, where a ∈ A1 (the base case),
then we will assume that the lemma is true for some u, v ∈ B, and prove that
it remains true for uv (product), in the end we will assume that the lemma is
true for some idempotent u ∈ B and prove that it remains true for u#.
Base case. We prove the lemma for all a ∈ B, where a ∈ A1. Set the se-

quence of words to be the constant sequence (a)n∈N, h = 1 and N the constant
function that maps to 0. For all τ ∈ Σp

2 , and k > 1 the unique k-decomposition
tree of (a, τ), is the single leaf node whose type is in a by de�nition of the
morphism φ and (50).
Product. Assume that the lemma is true for two elements u, v ∈ B, (un)n∈N,

hu, Nu and (vn)n∈N, hv, Nv respectively. We will prove that the lemma is true
for uv, with the sequence (unvn)n∈N, h = max{hu, hv} + 1, and N(k) =

max{Nu(k), Nv(k)}, k ∈N.
Let (τn)n∈N be a sequence of strategies, k > 2, and n > N(k). De�ne

τ′n(i) = τn(i + |un|), n, i ∈N,

the strategies τn that are shifted by the length of the word un.
From the induction hypothesis there exists a k-decomposition tree of height

at most hu for (un, τn)whose root node has some type U ∈ u, and a k-decomposition
tree of height at most hv for (un, τ′n) whose root node has some type V ∈ v.
Therefore we can construct a k-decomposition tree of height at most max{hu, hv}+
1 of (unvn, τ) whose root node has label UV, by making a product node, be-
tween whose children are the two corresponding trees. By de�nition of the
product UV ∈ uv, which concludes this case.
Iteration. Assume that the lemma is true for some idempotent element u ∈
B. Then there exists (un)n∈N, hu and Nu for which the lemma holds. We are
going to prove that the lemma holds for u# ∈ B, for (un

n)n∈N, h = hu + 9|M|2
and the function N de�ned as

N(k) = Nu(k) + k9|M|2 , k ∈N.

Let (τn)n∈N, τn ∈ Σp
2 , k > 2, and n > N(k) and de�ne

τi
n(j) = τn(j + |ui

n|), i, j, n ∈N,

the strategies τn that are shifted by the length of the word ui
n. Since n >

N(k) > Nu(k), from the induction hypothesis, for all strategies τ ∈ Σp
2 ,

Thu
k ((un, τ)) ∩ u 6= ∅, therefore for all 0 ≤ i < n pick some

Ui ∈ Thu
k ((un, τi

n)) ∩ u

132

4.5 Soundness

and denote by Ti the corresponding k-decomposition tree. Similarly to the proof
of Lemma 4.17, we will modify the alphabet A, by adding (un, τi

n), 0 ≤ i < n,
as letters, as well as modifying the morphism φ so that it maps (un, τi

n) to Ui.
Applying Lemma 4.17 to this new alphabet, morphism, and the word (un

n, τn)

we have that there exists a k-decomposition tree of height at most 9|M|2, where
the leaves are labeled by ((un, τi

n), Ui), 0 ≤ i < n. Unwrapping the trees Ti
for the leaves, we construct a k-decomposition tree T of height at most h =

hu + 9|M|2. Since the number of such leaves is n > N(k) ≥ k9|M|2 , T needs to
have at least one iteration node in order to be of height smaller than h, therefore
the type of T has at least one iteration. It now follows from the de�nition of u#,
that the type of T must belong to u#. This concludes the iteration case.

Observe that we have not �xed a height h for which the lemma is true for all
u ∈ B, but we start with height 0 and increase it by 1 for the product nodes
and by 9|M|2 for iteration nodes, but since B is �nite, it follows that we can
choose the height h = 9|M|2|B|.

The two lemmas above �nish up the �rst step of the proof of Lemma 4.25
which we summarize as follows.

Corollary 4.30.
For all u ∈ B there exists a sequence (un)n∈N, un ∈ A∗1 , such that against
any (τn)n∈N, τn ∈ Σp

2 , there exists X ⊆ M with X ∩ u 6= ∅ that is
realized by ((un, τn))n∈N with height h = 9|M|2|B|.

To summarize, for all elements u of the belief monoid, we can �nd some
sequence of �nite words over the alphabet A1, (un)n∈N such that against all
the replies of Min (τn)n∈N, we can construct k-decomposition trees of (un, τn)

for larger and larger k and n, whose type is identical and equal to some element
U of u.

Now in the second step of the proof of Lemma 4.25, we will use these k-
decomposition trees to prove bounds for P

un,τn
s (t), s, t ∈ S1, such that asymp-

totically it behaves like U.
We will start with a lower bound. The same proof can be found for proba-

bilistic automata in [Fijalkow et al., 2012].
In the lemmas above, we have used the non-extended version of the Markov

and belief monoids, for the sake of clarity, even though they all hold for the
extended versions of the monoids as well.

133

4 half-blind leaktight games

Lemma 4.31.
Assume that the half-blind game is leaktight. There exists a function L :
N2 → R>0, such that for all words p = (w, τ) ∈ A∗, T a k-decomposition
tree of p of height at most h with type (W, W̃) ∈ M̃, and s, t ∈ S1,

W(s, t) = 1 =⇒ Pw,τ
s (t) ≥ L(h, k), and (55)

W̃(s, t) = 1 ⇐⇒ Pw,τ
s (t) > 0 (56)

In other words, for any k-decomposition tree of a �nite play p, the type
(W, W̃) of the tree gives the behavior of the game under p, in the way that
if W(s, t) = 1 then we can bound from below the probability to go from s to t,
furthermore this probability is nonzero if and only if W̃(s, t) = 1.

Proof.
We start from the leaves, and walk up the tree, while proving the lower bound
for all the nodes of the tree.
Leaves. The leaves have the label (a, (Ba,α, Ba,α)) for some a ∈ A1 and α ∈

S2 → A2. The statements (55) and (56) for (a, α) and (Ba,α) follow immediately
from the de�nition of Ba,α, for the bound m, the smallest nonzero probability
transition that appears in the game.
Product nodes. Assume that there is a lower bound L for the children of the

product node, that are labeled (u, (U, Ũ)) and (v, (V, Ṽ)). Then it is possible
to prove the lower bound L2 for the parent node that is labeled by (uv, ŨṼ).
Idempotent nodes. Similarly to the product nodes above, if there is a lower

bound L for the children, then the parent has the bound Lk, because the number
of children is less than k.
Iteration nodes. Assume that the lemma holds for the n children, n ≥ k,

that are labeled by

(u1, (U, Ũ)), (u2, (U, Ũ)), . . . , (un, (U, Ũ)),

for the lower bound L, where (U, Ũ) is idempotent. From this assumption, (56)
follows easily, so we prove (55). Let s, t ∈ S1 be such that U#(s, t) = 1. Then

Pu1···un
s (t) ≥ Pu1

s (t) ∑
s′∈S1

P
u2···un−1
t (s′)Pun

s′ (t). (57)

The state t is U-recurrent, this is because we have assumed U#(s, t) = 1. More-
over since M̃ is leaktight, the element (U, wU) is not a leak, therefore for all
s′ ∈ S1, P

u2···un−1
t (s′) > 0, implies that Ũ(t, s′) = 1, from where we have

134

4.5 Soundness

U(s′, t) = 1. Now from the induction hypothesis (that the lemma holds for the
children) we conclude that P

un
s′ (t) ≥ L. This together with (57) implies that

Pu1···un
s (t) ≥ L2.

From the four cases above, it follows that the lemma holds for the root node
for the bound L(h, k) = mkh , where m is the smallest nonzero probability tran-
sition of the game.

Now we are going to prove a dual lemma to the above, one that shows an
upper bound that vanishes as k tends to in�nity. This will conclude the second
step and Lemma 4.25 itself.

Set
L = L(9|M̃|2, 2),

where L : N2 → R>0 is as above.

Lemma 4.32.
Assume that M̃ is leaktight. Let h ∈N, and set Kh ∈N such that h2h(1−
L)Kh < L and Kh > |S1|.

For all p = (w, τ) ∈ A∗, k > Kh and T a k-decomposition tree of p of
height at most h with the root node labeled by (p, (W, W̃)), for all s, t ∈ S1

W(s, t) = 0 =⇒ Pw,τ
s (t) ≤ h2h(1− L|S1|)bk/|S1|c.

Proof.
We walk up the tree, starting from the leaves up to the root node, while proving
some upper bounds that are always smaller than h2h(1− L|S1|)bk/|S1|c.

Leaves. The leaves have an upper bound of 0, this follows from the de�ni-
tions.

Product nodes. Assume that the lemma holds for the bound F for the chil-
dren labeled (u, (U, Ũ)) and (v, (V, Ṽ)). Let s, t ∈ S1 be such that UV(s, t) =
0. It follows that

Puv
s (t) ≤ 2F.

Idempotent nodes. Assume that we have the children whose label’s left
components are p1, . . . , pj, j < k and each label’s right component is the same
idempotent (W, W̃). Let s, t ∈ S1 such that W(s, t) = 0. By the induction
hypothesis the upper bound F holds for all the children.

Denote by ρ the set of all paths s0s1 · · · sj such that s0 = s, sj = t and
W̃(si, si+1) = 1 for all 0 ≤ i ≤ j− 1. Since W(s, t) = 0 for all π = s0 · · · sj ∈

135

4 half-blind leaktight games

ρ there exists 0 ≤ C(π) ≤ j− 1 such that W(sC(π), sC(π)+1) = 0 and for all
0 ≤ i ≤ C(π)− 1, W(si, si+1) = 1. De�ne ρ′ to be the set of such pre�xes, i.e.

ρ′ = {s0 · · · sC(π) | π = s0 · · · sj ∈ ρ}.

The set ρ′ is nonempty because there exists some r ∈ S1 such that W(s, r) = 1.
Then we have

P
p1···pj
s (t) = ∑

s0···sj∈ρ

P
p1
s0 (s1) · · ·P

pj
sj−1(sj)

≤ ∑
π=s0···sC(π)∈ρ′

P
p1
s0 · · ·P

pC(π)
sC(π)−1

(sC(π)) · F

≤ 2F,

Iteration nodes. Assume that we have the children whose label’s left com-
ponents are p1, . . . , pj, j ≥ k and each label’s right component is the same
idempotent (W, W̃) and for whom the upper bound F holds. Let s, t ∈ S1

be such that W#(s, t) = 0. In case W(s, t) = 0 a proof like the one above
for idempotent nodes gives 2F as the upper bound. Therefore we assume that
W(s, t) = 1. Then by de�nition t is W-transient and it communicates with
some recurrence classes whose union we denote by Sr ⊆ S1. We will prove
that for all 0 ≤ i < j′ ≤ j such that j′ − i ≥ |S1| there exists i ≤ i′ ≤ j′ such
that i′ − i ≤ |S1| and

P
pi ···pi′
t (Sr) ≥ L|S1|. (58)

Let i ∈ {0, . . . j}, then there exists a 2-decomposition tree Ti for the word pi,
with type (Wi, W̃). It is possible that W 6= Wi, but for all s′, t′ ∈ S1, W(s′, t′) =
0 implies that Wi(s′, t′) = 0. This is because by the induction hypothesis, if
W(s′, t′) = 0, we know that P

ui
s′ (t
′) ≤ F whereas according to Lemma 4.31

for Ti, if Wi(s′, t′) = 1 we have P
ui
s′ (t
′) ≥ L, from F ≤ h2h · (1− L)k and our

choice of k, superior to Kh, this is a contradiction, hence Wi(s′, t′) = 0.
Let St be the set of states that are W-reachable from t (for all t′ ∈ St, W(t, t′) =

1) but not in Sr. These states are all W-transient and moreover for all i ∈
{0, . . . , j}, there exists a Wi path from t, and any state in St, to some element
in Sr. This is because for all t′ ∈ St ∪ {t}, r ∈ Sr, W̃(t′, r) = 1, and there
is no Wi path from Sr to St ∪ {t}, if there was no Wi path from St ∪ {t} we
could construct a leak, which contradicts the hypothesis that M̃ is leaktight.
Similarly, for 0 ≤ i < j′ ≤ j such that i− j′ ≥ |S1|, if Wi · · ·Wj′(t, Sr) = 0 we
can construct a leak by repeating a factor of Wi · · ·Wj′ , hence we can assume
that there exists i ≤ i′ ≤ j′, such that i′ − i ≤ |S1| and Wi · · ·Wi′(t, Sr) = 1.
Then it follows from Lemma 4.31 that P

pi ···pi′
t (Sr) ≥ L|S1| which concludes (58).

136

4.6 Completeness

Let ρ be the set of all paths s0 · · · sj such that s0 = s, sj = t and W̃(si, si+1) =

1 for all 0 ≤ i ≤ j− 1. We partition ρ into the set ρ1 of all the paths that pass
through Sr and ρ2 the set of all paths that do not. Since t is W-transient, for
all r ∈ Sr, W(r, t) = 0, consequently we can use the argument above for the
idempotent nodes to give 2F as an upper bound for the probability of the event
that constitutes the union of all the sets in ρ1. As for ρ2, because of transience
of t and (58) the probability of the union of all the paths in ρ2 can be bounded
above by 2(1− LS1)bj/|S1|c.

Walking up the tree of height h for the upper bounds above, we conclude the
lemma for the root node.

Lemma 4.25 is a consequence of Corollary 4.30 and Lemma 4.32.

4.6 completeness

We shall prove the second part of the correctness of the belief monoid algo-
rithm in this section: if the belief monoid of a leaktight half-blind game has no
maxmin reachability witness then val(s) < 1 where s is the initial state of the
game.

Theorem 4.33 (Completeness).
If the belief monoid of a half-blind leaktight game has no maxmin reacha-
bility witness then

val(s) < 1,

where s ∈ S1 is the initial state of the game.

For the soundness we were justifying the elements of u ∈ B, by demonstrat-
ing that for all of them there is some word over A1 that realizes them, i.e. for all
replies of Min, the behavior is described by some U ∈ u. In this section we will
justify the U ∈ u, by proving that there exists some strategy of Min such that
the behavior is described by U. In other words, we are not abstracting more
behaviors than possible.

Let us be more precise, and summarize that intuitive idea into the following
de�nition.

137

4 half-blind leaktight games

De�nition 4.34 (µ-faithful abstraction).
Let u ∈ A∗1 , and µ > 0. We say that u ∈ B̃ is a µ-faithful abstraction of u
if for all (U, Ũ) ∈ u there exists some τ ∈ Σp

2 such that for all s, t ∈ S1,

Ũ(s, t) = 1 ⇐⇒ Pu,τ
s (t) > 0, (59)

U(s, t) = 1 =⇒ Pu,τ
s (t) ≥ µ. (60)

In the de�nition above µ is the lower bound. We want to prove that there
exists some µ > 0, such that all words have some element of the belief monoid
that is a µ-faithful abstraction of them. This is su�cient for Theorem 4.33 for
the following reason. If val(s) = 1, then there exists some u ∈ A∗1 such that
against all the strategies of Min the chance of reaching the set of �nal states is
at least 1− µ2. But for the word u there exists an element of the belief monoid
u (that is not a maxmin reachability witness) that is a µ-faithful abstraction of
u. Since u is not a maxmin reachability witness there is some U ∈ u such that
U(s, t) = 1 where s is the initial state and t 6∈ F. Therefore there exists some
τ ∈ Σp

2 such that P
u,τ
s (t) ≤ 1− µ, a contradiction, hence val(s) < 1. As a

consequence we concentrate our e�orts into the proof of the following lemma.

Lemma 4.35.
There exists µ > 0 such that all u ∈ A∗1 have some u ∈ B̃ that is their
µ-faithful abstraction.

First observe that for letters a ∈ A1, a ∈ B̃ is a m-faithful abstraction, where
m > 0 is the smallest nonzero probability transition that appears in the game.
Moreover we can concatenate two words, but unfortunately the lower bound
diminishes:

Lemma 4.36.
Let u, v ∈ B̃ be µ-faithful abstraction of u ∈ A∗1 and v ∈ A∗1 respectively,
then uv is a µ2-faithful abstraction of uv.

We can use this lemma repeatedly, but then the lower bound depends on the
length of the word, and diminishes with it. This is because by playing longer

138

4.6 Completeness

and longer words Max can make the probability to go to the transient states
arbitrarily small, so the lower bound gets arbitrarily small as well. So we need
to abstract these longer words by the iterated elements of the monoid.

The idea is to use k-decomposition trees for the alphabet A1 and the monoid
B̃. Given some (longer) word u, we construct its k-decomposition tree and
then prove that its type is a µ-faithful abstraction of u, and moreover that µ

depends only on the height of the tree and not the length of the word, at which
point, Lemma 4.17 comes in. The leaktight hypothesis is used to show that for
iteration nodes the bound does not decrease as a function of the number of
children.

Let N = 29|M̃|2 . The essential part of this section is the proof of the follow-
ing lemma.

Lemma 4.37.
Let u ∈ Σ1, such that u = u1 · · · un, where n > N = 29|M̃|, and u ∈ B̃
and idempotent element that is a µ-faithful abstraction of ui, 1 ≤ i ≤ n,
for some µ > 0. If u is not a leak then u# is a µN+1-faithful abstraction of
u.

We argue why this lemma is su�cient for Lemma 4.35. Given a word u ∈ A∗1 ,
we construct a N -decomposition tree of u of height at most 9|B̃|2. Such a tree
always exists thanks to Lemma 4.17. For the leaves we can prove the bound
m > 0, then we can propagate it up the tree as follows, if the bound µ holds for
the children, in case of a product node we can prove µ2, in case of an idempotent
node we can prove µN and in case of an iteration node µN+1. Since the height
of the tree is at most h = 9|B̃|2 we have the lower bound

µ = mh(N+1),

that holds for all u ∈ A∗1 .
In the proof that follows we will use the following notation, for some B ∈ M

and s, t ∈ S1, we write s B−→ t if and only if B(s, t) = 1, otherwise we write
s 6 B−→ t.
Proof.
Let (W, W̃) ∈ u# we will construct a strategy τ ∈ Σp

2 such that (59) and (60)
in De�nition 4.34 hold, for (W, W̃) the word u and the bound µ′ = µN+1. Let
us �rst assume that (W, W̃) is such that

W = F1G#
1 · · · FkG#

k Fk+1,

W̃ = F̃1G̃1 · · · F̃kG̃k F̃k+1,

139

4 half-blind leaktight games

where (Fi, F̃i) ∈ u,(Gi, G̃i) ∈ u and (Gi, G̃i) are idempotent.
The set of #-expressions of u ⊆ M denoted by E(u) is a language de�ned

by the grammar:

E(u) := u | E(u) · E(u) | (E(u))#,

so the terminal symbols are the elements of u. There is γu, a natural function
mapping E(u) toM, i.e. the function that is the identity when restricted to the
terminal symbols, otherwise γu(e · e′) = γu(e)γu(e′), and γu(e#) = (γu(e))#.
Given e ∈ E(u) we de�ne its #-height as the number of the deepest nesting of
#. E.g. #− height(U#(VW#)#) = 2.

We can safely make the assumption on the form of (W, W̃) above because
for all (U, Ũ) ∈ u we can �nd a #-expression e ∈ E(u) whose #-height is 1,
such that γu(e) = (U′, Ũ) and for all s, t ∈ S1 U(s, t) = 1 =⇒ U′(s, t) = 1.
This is because when we iterate we are removing edges.

Since u is a µ-faithful abstraction of ui,1 ≤ i ≤ n, for all (U, Ũ) in u there
is a strategy in Σp

2 such that (59) and (60) hold. Let τ1 be such a strategy for
(F1, F̃1), τ2 for (G1, G̃1) and so on until τ2k+1 for the element (Fk+1, F̃k+1). We
de�ne the strategy τ by assigning one of the τi to some part of the word in the
following way:

• against u1 play τ1,

• against u2 play τ2, play τ2 also against u3, u4, . . . , un−2k+1 each,

• against un−2k+2 play τ3, etc., in general against un−2k+1+i play τi+2, 1 ≤
i ≤ 2k− 1.

One can visualize this in the following way.

τ :=
u1
τ1
F1

|
|
|

u2, u3, . . . , un−2k+1
τ2
G1

|
|
|

un−2k+2
τ3
F2

|
|
|
· · ·
|
|
|

un−2k+2k−1
τ2k
Gk

|
|
|

un
τ2k+1
Fk+1

.

This means that τ plays according to τ2 against u2 then it keeps playing accord-
ing to τ2 against u3 and so on until un−2k+1 is read. Note that it is well de�ned
since we have assumed that n > N .

Now we prove (59) for τ and u.
(=⇒) Let s, t ∈ S1 be such that s W̃−→ t. Since W̃ = F̃1G̃1 · · · G̃k F̃k+1 and

G̃1 is idempotent there exist s1, . . . , sn−1 ∈ S1 such that

s
F̃1−→ s1

G̃1−→ · · · G̃1−→ sn−2k
F̃2−→ sn−2k+1

G̃2−→ sn−2k+2 · · ·
G̃k−→ sn−1

F̃k+1−−→ t. (61)

Let F(s1, . . . , sn−1) be equal to

Pu1,τ1
s (s1)P

u2,τ2
s1

(s2) · · ·Pun−2k+1,τ2
sn−2k−1 (sn−2k)P

un−2k+2,τ3
sn−2k (sn−2k+1) · · ·P

un,τ2k+1
sn−1 (t).

140

4.6 Completeness

Then by the choice of τ we have P
u,τ
s (t) ≥ F(s1, . . . , sn−1). Since u is a µ-

faithful abstraction of ui, (61) implies that every factor of F(s1, . . . , sn−1) is
positive, hence P

u,τ
s (t) > 0.

(⇐=) Let s, t ∈ S1 be such that P
u,τ
s (t) > 0, then similarly to above there

must exist states s1, . . . , sn−1 such that

Pu,τ
s (t) ≥ F(s1, . . . , sn−1) > 0.

This implies (61), since u is a µ-faithful abstraction of all ui, and in turn, (61)

implies that s W̃−→ t, since W̃ = F̃1G̃1 · · · G̃k F̃k+1.
Now we prove (60) for τ and u and the bound µ′ = µN+1. Let s, t ∈ S1 such

that s W−→ t. Then there exists states s1, . . . , s2k such that

s
F1−→ s1

G#
1−→ s2

F2−→ · · ·
G#

k−→ s2k
Fk+1−−→ t. (62)

First we will show that

P
u2,...,un−2k+1,τ′
s1 (s2) ≥ µ2, (63)

where τ′ is the strategy that plays τ2 against u2, and against u3 and so on. This
is exactly what the strategy τ does, after it reads u1. Then we have

P
u2···un−2k+1,τ′
s1 (s2) ≥ Pu2,τ2

s1
(s2) ∑

s′∈S1

P
u3···un−2k ,τ′′
s2 (s′)Pun−2k+1,τ2

s′ (s2),

where τ′′ is the strategy that plays τ2 against u3 ,and against u4 and so on. The

strategy τ′′ is the same as τ′ just shifted by the �rst part u2. From (62) s1
G#

1−→ s2,

which implies that s2 is G1-recurrent, s1
G̃1−→ s2 and s1

G1−→ s2. By the choice of
τ2, because s1

G1−→ s2, we have

P
u2···un−2k+1,τ′
s1 (s2) ≥ µ ∑

s′∈S1

P
u3···un−2k ,τ′′
s2 (s′)Pun−2k+1,τ2

s′ (s2). (64)

Let s′ be such that P
u3···un−2k ,τ′′
s2 (s′) > 0. Then from the de�nition of τ′′,

s2
G̃n−2k−3

1−−−−→ s′ and since G̃1 is idempotent s2
G̃1−→ s′. We will prove that s′

G1−→ s2.
There are two cases:

• s′ is G1-recurrent: then both s′ and s2 are G1-recurrent, and s2
G̃1−→ s′.

Since we have assumed that u is not a leak, then s′
G1−→ s2.

• s′ is G1-transient: there exists some state r that is G1-recurrent, such
that s′

G1−→ r and r 6 G1−→ s′. Now s′
G1−→ r implies that s′

G̃1−→ r, and from

idempotency of G̃1, s2
G̃1−→ r. Then from the argument for the case above

r
G1−→ s2, and �nally from idempotency of G1, s′

G1−→ s2.

141

4 half-blind leaktight games

We have shown that for all s′ such that P
u3···un−2k ,τ′′
s2 (s′) > 0, s′

G1−→ s2. As a
consequence, from the choice of τ2 and (64) we have

P
u2···un−2k+1,τ′
s1 (s2) ≥ µ2.

To �nish up with the proof of (60), for all s, s′ ∈ S1 and Gi, s
G#

i−→ s′ implies
that s

Gi−→ s′, therefore from (62) we have

s
F1−→ s1

G#
1−→ s2

F2−→ s3
G2−→ · · · Gk−→ s2k

Fk+1−−→ t, (65)

so for all Gi, 2 ≤ i ≤ k, we write Gi instead of G#
i . Then by the choice of the

strategies τi and the de�nition of τ,

Pu,τ
s (t) ≥ Pu1,τ1

s (s1)P
u2,...,un−2k+1,τ′
s1 (s2) · · ·Pun,τ2k+1

s2k (t) ≥ µ ·µ2 ·µ2k−1 = µ2k+2,

where for the last inequality we have used (63) and (65). Since 2k + 1 ≤ N ,
this concludes the proof of (60) for τ,u and the bound µ′ = µN+1.

4.7 power of strategies and examples

A natural question when studying any type of game is how powerful should
the strategies of the players be. In this section we are going to discuss whether
randomization, or in�nite memory allows the players to win strictly more.

The maxmin reachability question asks whether the quantity

val(s) = sup
w∈Σ1

inf
τ∈Σ2

Pw,τ
s (F),

is equal to 1. That is, whether for all ε > 0 there exists some �nite word w such
that against all (behavioral) strategies τ of Min the chance of reaching the set
of �nal states from the initial state s is at least 1− ε.

This question is motivated from considering the model of half-blind games
which serve as a generalization of probabilistic �nite automata to two player
games with a perfectly-informed adversary. These games can be seen as prob-
abilistic automata whose probabilistic transitions we do not know exactly, be-
cause they are controlled by the environment. Another reason for considering
this model is the notion of leaks. It is interesting to explore where else can
it be used except for probabilistic automata, and half-blind games are a prime
candidate.

Nevertheless other quantities are just as interesting to study. Primarily

val(s) = sup
w∈Σm

1

inf
τ∈Σ2

Pw,τ
s (F),

142

4.7 Power of Strategies and Examples

where Σm
1 = ∆(A∗1) is the set of mixed words. This is induces the question of

whether for all ε > 0 there exists a mixed strategy for Max (i.e. a distribution
over the set of �nite words) such that against all the strategies of Min, the set
of �nal states is reached with probability at least 1− ε. This problem is unde-
cidable as well, for the same reason as the maxmin reachability problem, that is,
its decidability implies the decidability of the value 1 problem for probabilistic
�nite automata. Observe that in general

val(s) ≤ val(s),

and that if val < val(s) = 1 then Max needs to mix between larger and larger
sets of �nite words in order to reach the set of �nal states with a larger and
larger probability. An important argument for the study of the quantity val(s)
is that under these two types of strategies: mixed �nite words for Max and
behavioral strategies for Min the game admits a value:

Theorem 4.38 ([Gimbert et al., 2016]).

val(s) = sup
w∈Σm

1

inf
τ∈Σ2

Pw,τ
s (F) = inf

τ∈Σ2
sup

w∈Σm
1

Pw,τ
s (F).

A natural question is whether we can relate val(s) and val(s), particularly
whether there exists some game where val(s) < val(s). Indeed there is, we
have shown this in Example 13. For this example

val(s) = sup
w∈Σ1

inf
τ∈Σ2

P
w,τ
i ({ f }) < inf

τ∈Σ2
sup
w∈Σ1

P
w,τ
i ({ f }).

But the quantity on the right hand side is equal to val(s), this is because once
the strategy of Min has been �xed, Max cannot gain anything by randomizing
his choice of words, this is helpful to him only if he has to choose his strategy
before Min chooses his. Its purpose is to hide information (the exact strategy)
from Min.

Unfortunately the belief monoid algorithm does not seem to tell us anything
about val(s), except for a lower bound, moreover the analysis that we have
done in this chapter is not likely to be helpful to resolve the problem of whether
val(s) = 1.

In other words, we are able to treat the supw∈Σ1
infτ∈Σ2 P

w,τ
s (F) but not

infτ∈Σ2 supw∈Σ1
P

w,τ
s (F). The essential di�culty is that strategies are complex

objects, in the former case, that of supw∈Σ1
infτ∈Σ2 P

w,τ
s (F), we need only ana-

lyze a simpler set of strategies for Min thanks to Lemma 4.6. But when Min �xes

143

4 half-blind leaktight games

its strategy �rst we cannot a priorimake such a simpli�cation. Nevertheless this
raises an interesting question: does Min need in�nite memory strategies?

Denote by Σ f
2 the set of �nite-memory strategies for Min, these are �nite state

transducers that read �nite histories and output elements of ∆(A2). Obviously

val f (s) = inf
τ∈Σ f

2

sup
w∈Σ1

≥ val(s),

but does there exist an example where Min stands to gain more by playing
with an in�nite memory strategy? At �rst sight this seems unlikely when one
considers that Min is much more advantaged, being perfectly informed while
his adversary has zero information. But it turns out that in order for Min to
pro�t maximally from this advantage he might need in�nite memory strategies.
We are going to prove this in the remainder of this section.

Proposition 4.39.
There exists a half-blind game with initial state s, for which

val f (s) > val(s).

The proof of Proposition 4.39 will be based on the following gadget.

s1

s2

t1

t2

>

⊥

F

s

a 1
2

1
2

b

b

a

α

β

a

b

a

b

Figure 21: A gadget

We give the main idea behind the gadget. Max wants to be able to know
whether he is in state top or bottom after playing his �rst b so that he can go
to the �nal state. The objective of Min is to make the probability of being in
the top state equal to that of being in the bottom state, so that Max cannot
win more than 1

2 . In order to do this, when it is his turn to make the choice
between α and β (or a mixing of them) he has to know the exact probability

144

4.7 Power of Strategies and Examples

distribution over t1 and t2. But this is impossible to keep track with a �nite
memory strategy, because Max plays too many a’s for Min’s small memory.
Hence Max can always win slightly more than 1

2 . We then use this gadget in
a new game that emphasizes the importance of these winnings and prove that
in that game 1

2 = val(s) < val f (s) = 1. Let us now demonstrate these ideas
formally.

The game starts either at state s1 or s2 with equal probability. Max can play
a series of a’s but eventually has to play a b if he wants to make progress. After
this, Min observes whether the game is in the state t1 or t2. In case it is in t1,
Min has no choice and proceeds to state >. In case it is in t2 Min can choose
between α and β to go either to state > or to state ⊥. Then Max has to guess
which one it is. If the guess is right he wins, if it is wrong he loses by going to
the sink state. The goal of Min is to keep track of the probability distribution
on the states of the game such that when it is his time to make a decision, he
plays a mixed action (between α and β) such that the probability to be in > is
equal to the probability to be in ⊥ equal to 1

2 . Keeping track of the distribution
will be impossible with a �nite memory strategy because the sequence of a’s
that Max plays can be arbitrarily long.

Observe that val(γ) = 1
2 , where γ is the initial distribution, i.e. γ(s1) =

γ(s2) = 1
2 , by giving the optimal strategies as follows. Max can mix the two

words ba and bb with equal probability. Call this mixed word w. Then for all
strategies τ for Min, we have P

w,τ
γ (F) = 1

2 . In the other hand, after a b is played,
the probability to be in the state t2 is always larger than 1

2 , P
anb,τ
γ (t2) ≥ 1

2 , and
consequently Min has an optimal action such that both > and ⊥ are reached
with equal probability and equal to 1

2 . Moreover this optimal action can be
played by Min, by keeping track of the distribution on t1 and t2 by counting
the number of as that are played before b. Albeit this requires memory of un-
bounded size. We give a proof of this in what follows.

Assume that the game stops just before Min makes his action, then we have

Panb,τ
γ (t2) = 1− 1

2
· 1

2n =
2n+1 − 1

2n+1

Therefore if τ is optimal, after seeing anb it would play the action β with the
following probability,

τ(anb)(β) =
1
2
· 2n+1

2n+1 − 1
=

1
2
· 1

1− 1
2n+1

.

With such a strategy, it is ensures that P
anb,τ
γ (>) = P

anb,τ
γ (⊥) = 1

2 . We prove
that this is impossible with a �nite memory strategy.

The proof is by contradiction. Assume that the minimizer has a �nite-memory
strategy with m states such that against the word anb it plays the action β

145

4 half-blind leaktight games

with probability 1
2 ·

1
1− 1

2n+1
. From the de�nition of a �nite memory strategy,

this implies that there exist two m×m stochastic matrices A and B, and J ⊂
{1, . . . , m} such that

∑
j∈J

(AnB)i,j =
1
2
· 1

1− 1
2n+1

, (66)

where i is the initial memory location of the strategy, and for a matrix A we
denote by Ai,j the element on the ith row and jth column. We use the following
well-known theorem. See e.g. [Gantmacher, 1959].

Theorem 4.40.
Let A be a square m×m stochastic matrix and λ1, λ1, . . . , λr (r ≤ m) its
distinct eigenvalues. Then for all n > m

(An)i,j =
r

∑
k=1

λn
k Pijk(n),

where Pijk are polynomials of smaller order than the multiplicity of λk.

Using Theorem 4.40 and doing a small calculation we see that there exist
polynomials P1, P2, . . . , Pr such that for all n > m

∑
j∈J

(AnB)i,j =
r

∑
k=1

λn
k Pk(n).

In the other hand the Taylor expansion for 1
1− 1

2n+1
gives us

∑
j∈J

(AnB)i,j =
1
2
· (1 + 1

2n+1 +
1

22(n+1)
+ · · ·).

Therefore

r

∑
k=1

λn
k Pk(n) =

1
2
· (1 + 1

2n+1 +
1

22(n+1)
+ · · ·). (67)

Now observe that for complex numbers z1, . . . , zm, m ≥ 1, with |z1| =
|z2| = · · · = |zm|, real c > 0, and polynomials f1, . . . , fm on n of degree
at most d,

lim
n→∞

c
∑m

i=1 zn
i fi(n)

= 1, (68)

146

4.7 Power of Strategies and Examples

implies that ∑m
i=1 zn

i fi(n) = ∑m
i=1 cizn

i = c for some constants ci. The reason
being that (68) clearly cannot be true for |zi| < 1, as for |zi| ≥ 1 assume that
the dominating term of the denominator has the form nk ∑m

i=1 cizn
i for constants

ci, then for (68) to hold we need k = 0. Hence ∑m
i=1 zn

i fi(n) = ∑m
i=1 cizn

i , and
similarly it is necessary that |z1| = |z2| = · · · = |zm| = 1. Finally, because of
(68) we have ∑m

i=1 cizn
i = c.

Assume without loss of generality that |λ1| = |λ2| = · · · = |λr1 |, for some
1 ≤ r1 ≤ r and that |λ1| ≥ |λi|, 1 ≤ i ≤ r. The expression on the left hand
side of (69) is dominated by ∑r1

k=1 λn
k Pk(n) whereas the expression on the right

hand side is dominated by the leading term 1
2 .

Consequently, because of the equality above, it follows that

lim
n→∞

1
2

∑r1
k=1 λn

k Pk(n)
= 1.

Applying (68) we have ∑r1
k=1 λn

k Pk(n) = ∑r1
k=1 λn

k ck =
1
2 . We substract both of

these equal quantities from (67), to get

r

∑
k=r1

λn
k Pk(n) =

1
2
· (1

2n+1 +
1

22(n+1)
+ · · ·). (69)

Repeating the same argument for the leading terms of (69) we have

lim
n→∞

1
2n+2

∑r2
k=r1

λn
k Pk(n)

= lim
n→∞

1
4 ∑r2

k=r1
(2λk)nPk(n)

= 1.

Again, applying (68) we get ∑r2
k=r1

(2λk)
nPk(n) = ∑r2

k=r1
c′k2nλn

k = 1/4. Hence
we can subtract the quantity 1

2n+2 from both sides in (69). Repeating the same
argument for the eigenvalues that are left we conclude that

0 =
1
2
· (1

2r(n+1)
+

1
2(r+1)(n+1)

+ · · ·),

which is clearly a contradiction therefore there are no two �nite stochastic ma-
trices A, B such that (66) holds, and consequently the minimizer has no �nite-
strategy that is optimal in achieving the 1

2 . Nevertheless for all ε > 0 the
minimizer has ε-optimal strategies that have �nite memory. These strategies
would constitute of counting the number of a’s up to some length.

147

4 half-blind leaktight games

We have shown the following lemma.

Lemma 4.41.
In the game in Figure 21 for all �nite memory strategies τ for the minimizer
there exists a word w such that

Pw,τ
γ (F) >

1
2

,

where γ is the initial distribution, γ(s1) = γ(s2) = 1/2.

In order to �nish the proof of Proposition 4.39, now we give an example that
gives a stronger property. We will use the game in Figure 21 in another game
as a gadget. We then demonstrate that for this larger game it also holds that
val(i) = 1/2 where i is the initial state but val f (i) = 1, i.e. for all �nite
memory strategies τ and ε > 0 there is a �nite word that reaches the set of
�nal states with probability larger than 1− ε.

i >⊥ >>

>⊥

⊥⊥

⊥>

s f

m

a
1
2

1
2

c1
x1

y1

c2y2

x2

c1 c2

c2

R

RR

R

R̄ R̄

R̄

R, c1, c2

Figure 22: A game for which val(i) = 1/2

We give an informal description of the game in Figure 22. The state i is the
initial state. A fair coin is tossed at i and if it results heads, then the game moves
to state >, otherwise it goes to state ⊥. After this, we toss a biased coin in >
by playing c1, if we happen to be in ⊥, playing c1 would not change anything.
At this point, another biased coin is tossed by playing c2 as a result we are in
one of the states ⊥⊥,⊥>,>>,>⊥, after the two coin tosses. Repeating this
process n times, by playing a(c1c2R)n, we end up in state > if and only if we
had n + 1 heads and symmetrically we end up in state⊥ if and only if we have

148

4.7 Power of Strategies and Examples

tossed n + 1 tails. Now we play R̄, and by doing so we win if we have tossed
n + 1 consecutive heads, we lose if we have tossed n + 1 consecutive tails and
otherwise we go to the state i. If we repeat this process k times, by playing the
word

(a(c1c2R)nR̄)k,

then the probability to win the game will be arbitrarily close to 1 (for well cho-
sen n and k) if and only if the coin tosses are biased towards heads, that is
x1, x2 > 1/2. The idea is to embed the gadget in Figure 21 in place of the states
⊥ and >.

For all k let
µk = P

(a(c1c2R)n R̄)k

i (¬{ f , s}),

the probability to be in any state except the sink (s) or �nal (f) state after the
word (a(c1c2R)nR̄)k has been played. Then we have

µ0 = 1, and

µk = µk−1(1−
1
2

xn
1 −

1
2

yn
2).

Hence
µk = (1− 1

2
xn

1 −
1
2

yn
2)

k.

Observe that

P
(a(c1c2R)n R̄)k

i (f) =
1
2

xn
1 (µ0 + µ1 + · · ·+ µk−1)

=
1
2

xn
1

1− (1− 1
2 xn

1 − 1
2 yn

2)
k

1− (1− 1
2 xn

1 −
1
2 yn

2)

=
xn

1
xn

1 + yn
2
· (1− (1− 1

2
xn

1 −
1
2

yn
2)

k).

Then there exists some function g such that limn→∞(1− 1
2 xn

1 − 1
2 yn

2)
g(n) = 0.

Also, we have x1 > y2 if and only if limn→∞
xn

1
xn

1+yn
2
= 1.

After embedding the gadget in Figure 21 in place of the states ⊥ and > and
replace the letter c1 with the letters a1, b1 from the gadget, and symmetrically
c2 with the letters a2, b2, such that the �nal state of the gadget embedded on the
right becomes >>, the sink state >⊥ and symmetrically the �nal state of the
gadget embedded on the left becomes ⊥> and the sink state ⊥⊥; Lemma 4.41
concludes the proof of Proposition 4.39 since 1 = val f (i) > val(i) = 1/2.

149

4 half-blind leaktight games

4.8 conclusion

This part of the thesis is characterized by the protagonist player having zero
information, this means that he is not aware of the state of the game when
making decisions. We dealt with two models, probabilistic �nite automata and
half-blind games.

The former is a model that has been studied for quite some time now, even
though most of the problems are undecidable. When taking the game theory
point of view, one of the most important problems is that of value 1: is it true
that for every ε > 0 there exists some word that is accepted by the automa-
ton with probability at least 1− ε. This problem is undecidable [Gimbert and
Oualhadj, 2010]. When a problem is undecidable, we are obliged to make some
compromise e.g. �nd an interesting subset of instances where the problem is de-
cidable. This was done for a few classes of probabilistic automata. Two classes
came up as the most interesting, leaktight automata of [Fijalkow et al., 2012],
and simple automata of [Chatterjee and Tracol, 2012]. Curiously, their proofs
of decidability used very di�erent techniques.

We demonstrated that leaktight automata are a strict superset of simple au-
tomata. This, together with the results from [Fijalkow, 2015], suggests that the
notion of leaks captures tightly the complications that cause the undecidabil-
ity of the value 1 problem. Which serves as motivation to explore whether the
notion of leaks can be used in some other, more general, model that is in some
sense similar to probabilistic automata.

One possible research direction is to try to use the leak notion to decide some
class of partially observable Markov decision processes (one player games with
partial information). One result in this direction, for the more restrictive class
of #-acyclic POMDPs can be found in [Gimbert and Oualhadj, 2014].

Another research direction is the one that we followed by turning proba-
bilistic �nite automata into two player games, by adding a perfectly informed
adversary, thereby de�ning half-blind games. We saw that we can decide the
maxmin reachability problem (an analogue of the value 1 problem) for a class
of leaktight half-blind games, by using the belief monoid structure, that is a
nesting of the Markov monoid one.

Further into this line of research, the decidability of whether val(s) = 1 (the
minmax reachability problem) and val f (s) = 1 (minmax reachability when
Min can use only a �nite memory strategy) when the half-blind game is leak-
tight remains open.

Another problem that we have left open is the exact complexity of the maxmin
reachability problem for leaktight half-blind games.

In the case of leaktight probabilistic automata, the value 1 problem is PSPACE-
complete. The Markov monoid algorithm, that is used to decide it, runs in ex-
ponential space. However, the value 1 witness can be guessed, resulting in a

150

4.8 Conclusion

PSPACE upper bound. The matching lower bound comes from a reduction to
the problem of intersection of regular languages.

The belief monoid algorithm on the other hand, runs in doubly exponential
space, since it is a nesting of the Markov monoid.

151

B I B L I O G R A P H Y

Baier, C. and Grosser, M., 2005. Recognizing omega-regular languages with probabilistic automata. In
20th Annual IEEE Symposium on Logic in Computer Science (LICS’ 05). doi:10.1109/lics.2005.41.
URL http://dx.doi.org/10.1109/lics.2005.41

Baier, Christel, Bertrand, Nathalie and Grösser, Marcus, 2008. On Decision Problems for Probabilistic
Büchi Automata, pages 287–301. Foundations of Software Science and Computational Structures.
Springer Science + Business Media. doi:10.1007/978-3-540-78499-9_21.
URL http://dx.doi.org/10.1007/978-3-540-78499-9_21

Baier, Christel, Grösser, Marcus and Bertrand, Nathalie, 2012. Probabilistic omegta-automata. Jour-
nal of the ACM, 59(1):1–52. doi:10.1145/2108242.2108243.
URL http://dx.doi.org/10.1145/2108242.2108243

Bertoni, A., 1975. The Solution of Problems Relative to Probabilistic Automata in the Frame of the Formal
Languages Theory, pages 107–112. Lecture Notes in Computer Science. Springer Science + Business
Media. doi:10.1007/978-3-662-40087-6_6.
URL http://dx.doi.org/10.1007/978-3-662-40087-6_6

Bertrand, Nathalie, Genest, Blaise and Gimbert, Hugo, 2009. Qualitative determinacy and decidability
of stochastic games with signals. In 2009 24th Annual IEEE Symposium on Logic In Computer Science.
doi:10.1109/lics.2009.31.
URL http://dx.doi.org/10.1109/lics.2009.31

Blackwell, David, 1962. Discrete dynamic programming. Ann. Math. Statist., 33(2):719–726. doi:
10.1214/aoms/1177704593.
URL http://dx.doi.org/10.1214/aoms/1177704593

Blondel and Canterini, 2003. Undecidable problems for probabilistic automata of �xed dimension.
Theory Comput. Systems, 36(3):231–245. doi:10.1007/s00224-003-1061-2.
URL http://dx.doi.org/10.1007/s00224-003-1061-2

Brázdil, Tomás, Brozek, Václav and Etessami, Kousha, 2010. One-counter stochastic games. CoRR,
abs/1009.5636.
URL http://arxiv.org/abs/1009.5636

Bukharaev, R. G., 1980. Probabilistic automata. Journal of Soviet Mathematics, 13(3):359–386. doi:
10.1007/bf01088986.
URL http://dx.doi.org/10.1007/bf01088986

Chadha, Rohit, Kini, Dileep and Viswanathan, Mahesh, 2014. Decidable Problems for Unary PFAs,
pages 329–344. Quantitative Evaluation of Systems. Springer Science + Business Media. doi:10.1007/
978-3-319-10696-0_26.
URL http://dx.doi.org/10.1007/978-3-319-10696-0_26

153

http://dx.doi.org/10.1109/lics.2005.41
http://dx.doi.org/10.1007/978-3-540-78499-9_21
http://dx.doi.org/10.1145/2108242.2108243
http://dx.doi.org/10.1007/978-3-662-40087-6_6
http://dx.doi.org/10.1109/lics.2009.31
http://dx.doi.org/10.1214/aoms/1177704593
http://dx.doi.org/10.1007/s00224-003-1061-2
http://arxiv.org/abs/1009.5636
http://dx.doi.org/10.1007/bf01088986
http://dx.doi.org/10.1007/978-3-319-10696-0_26

Bibliography

Chadha, Rohit, Korthikanti, Vijay Anand, Viswanathan, Mahesh, Agha, Gul and Kwon, Youngmin,
2011. Model checking mdps with a unique compact invariant set of distributions. In 2011 Eighth
International Conference on Quantitative Evaluation of SysTems. doi:10.1109/qest.2011.22.
URL http://dx.doi.org/10.1109/qest.2011.22

Chadha, Rohit, Sistla, A. Prasad and Viswanathan, Mahesh, 2009. Power of Randomization in Au-
tomata on In�nite Strings, pages 229–243. CONCUR 2009 - Concurrency Theory. Springer Science +
Business Media. doi:10.1007/978-3-642-04081-8_16.
URL http://dx.doi.org/10.1007/978-3-642-04081-8_16

Chadha, Rohit, Sistla, A. Prasad and Viswanathan, Mahesh, 2013. Probabilistic Automata with Iso-
lated Cut-Points, pages 254–265. Mathematical Foundations of Computer Science 2013. Springer Sci-
ence + Business Media. doi:10.1007/978-3-642-40313-2_24.
URL http://dx.doi.org/10.1007/978-3-642-40313-2_24

Chatterjee, K., Henzinger, T.A. and Jurdzinski, M., 2005. Mean-payo� parity games. In 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’ 05). doi:10.1109/lics.2005.26.
URL http://dx.doi.org/10.1109/lics.2005.26

Chatterjee, Krishnendu, Doyen, Laurent and Henzinger, Thomas A., 2012. A survey of partial-
observation stochastic parity games. Form Methods Syst Des, 43(2):268–284. doi:10.1007/
s10703-012-0164-2.
URL http://dx.doi.org/10.1007/s10703-012-0164-2

Chatterjee, Krishnendu, Doyen, Laurent, Henzinger, Thomas A and Raskin, Jean-François, 2010.
Generalized mean-payo� and energy games. arXiv preprint arXiv:1007.1669.

Chatterjee, Krishnendu, Doyen, Laurent, Nain, Sumit and Vardi, Moshe Y., 2014. The Complexity
of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies, pages 242–257. Lecture
Notes in Computer Science. Springer Science + Business Media. doi:10.1007/978-3-642-54830-7_16.
URL http://dx.doi.org/10.1007/978-3-642-54830-7_16

Chatterjee, Krishnendu and Henzinger, Thomas A., 2005. Semiperfect-Information Games, pages 1–
18. Lecture Notes in Computer Science. Springer Science + Business Media. doi:10.1007/11590156_1.
URL http://dx.doi.org/10.1007/11590156_1

Chatterjee, Krishnendu and Henzinger, Thomas A., 2010. Probabilistic Automata on In�nite Words:
Decidability and Undecidability Results, pages 1–16. Automated Technology for Veri�cation and Anal-
ysis. Springer Science + Business Media. doi:10.1007/978-3-642-15643-4_1.
URL http://dx.doi.org/10.1007/978-3-642-15643-4_1

Chatterjee, Krishnendu, Jurdziński, Marcin and Henzinger, Thomas A., 2003. Simple Stochastic
Parity Games, pages 100–113. Computer Science Logic. Springer Science + Business Media. doi:
10.1007/978-3-540-45220-1_11.
URL http://dx.doi.org/10.1007/978-3-540-45220-1_11

Chatterjee, Krishnendu, Jurdziński, Marcin and Henzinger, Thomas A., 2004. Quantitative stochas-
tic parity games. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, pages 121–130. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
ISBN 0-89871-558-X.
URL http://dl.acm.org/citation.cfm?id=982792.982808

154

http://dx.doi.org/10.1109/qest.2011.22
http://dx.doi.org/10.1007/978-3-642-04081-8_16
http://dx.doi.org/10.1007/978-3-642-40313-2_24
http://dx.doi.org/10.1109/lics.2005.26
http://dx.doi.org/10.1007/s10703-012-0164-2
http://dx.doi.org/10.1007/978-3-642-54830-7_16
http://dx.doi.org/10.1007/11590156_1
http://dx.doi.org/10.1007/978-3-642-15643-4_1
http://dx.doi.org/10.1007/978-3-540-45220-1_11
http://dl.acm.org/citation.cfm?id=982792.982808

Bibliography

Chatterjee, Krishnendu and Tracol, Mathieu, 2012. Decidable problems for probabilistic automata
on in�nite words. In 2012 27th Annual IEEE Symposium on Logic in Computer Science. doi:10.1109/
lics.2012.29.
URL http://dx.doi.org/10.1109/lics.2012.29

Clifford, Alfred Hoblitzelle and Preston, Gordon Bambord, 1961. The algebraic theory of semigroups,
volume 7. American Mathematical Soc.

Colcombet, Thomas, 2009. The Theory of Stabilisation Monoids and Regular Cost Functions, pages
139–150. Automata, Languages and Programming. Springer Science + Business Media. doi:10.1007/
978-3-642-02930-1_12.
URL http://dx.doi.org/10.1007/978-3-642-02930-1_12

Colcombet, Thomas, 2013. Regular cost functions, part i: Logic and algebra over words. Logical Methods
in Computer Science, 9(3). doi:10.2168/lmcs-9(3:3)2013.
URL http://dx.doi.org/10.2168/lmcs-9(3:3)2013

Condon, A. and Lipton, R.J., 1989. On the complexity of space bounded interactive proofs. In 30th
Annual Symposium on Foundations of Computer Science. doi:10.1109/sfcs.1989.63519.
URL http://dx.doi.org/10.1109/sfcs.1989.63519

Courcoubetis, C. and Yannakakis, M., 1998. Markov decision processes and regular events. IEEE
Transactions on Automatic Control, 43(10):1399–1418. doi:10.1109/9.720497.
URL http://dx.doi.org/10.1109/9.720497

Derman, Cyrus, 1962. On sequential decisions and markov chains. Management Science, 9(1):16–24.
doi:10.1287/mnsc.9.1.16.
URL http://dx.doi.org/10.1287/mnsc.9.1.16

Doyen, Laurent, Massart, Thierry and Shirmohammadi, Mahsa, 2011. In�nite Synchronizing Words
for Probabilistic Automata, pages 278–289. Mathematical Foundations of Computer Science 2011.
Springer Science + Business Media. doi:10.1007/978-3-642-22993-0_27.
URL http://dx.doi.org/10.1007/978-3-642-22993-0_27

Durbin, Richard, Eddy, Sean, Krogh, Anders and Mitchison, Graeme, 1998. Biological sequence anal-
ysis cambridge university press. Cambridge, UK.

Durrett, Rick, 2010. Probability: theory and examples. Cambridge university press.

Fijalkow, Nathanaël, 2015. Pro�nite techniques for probabilistic automata and the optimality of the
markov monoid algorithm. CoRR, abs/1501.02997.
URL http://arxiv.org/abs/1501.02997

Fijalkow, Nathanaël, Gimbert, Hugo, Horn, Florian and Oualhadj, Youssouf, 2014. Two Recursively
Inseparable Problems for Probabilistic Automata, pages 267–278. Mathematical Foundations of Com-
puter Science 2014. Springer Science + Business Media. doi:10.1007/978-3-662-44522-8_23.
URL http://dx.doi.org/10.1007/978-3-662-44522-8_23

Fijalkow, Nathanaël, Gimbert, Hugo, Kelmendi, Edon and Oualhadj, Youssouf, 2015. Deciding the
value 1 problem for probabilistic leaktight automata. Logical Methods in Computer Science, 11(2). doi:
10.2168/LMCS-11(2:12)2015.
URL http://dx.doi.org/10.2168/LMCS-11(2:12)2015

155

http://dx.doi.org/10.1109/lics.2012.29
http://dx.doi.org/10.1007/978-3-642-02930-1_12
http://dx.doi.org/10.2168/lmcs-9(3:3)2013
http://dx.doi.org/10.1109/sfcs.1989.63519
http://dx.doi.org/10.1109/9.720497
http://dx.doi.org/10.1287/mnsc.9.1.16
http://dx.doi.org/10.1007/978-3-642-22993-0_27
http://arxiv.org/abs/1501.02997
http://dx.doi.org/10.1007/978-3-662-44522-8_23
http://dx.doi.org/10.2168/LMCS-11(2:12)2015

Bibliography

Fijalkow, Nathanael, Gimbert, Hugo and Oualhadj, Youssouf, 2012. Deciding the value 1 problem for
probabilistic leaktight automata. In 2012 27th Annual IEEE Symposium on Logic in Computer Science.
doi:10.1109/lics.2012.40.
URL http://dx.doi.org/10.1109/lics.2012.40

Fijalkow, Nathanaël and Kuperberg, Denis, 2014. ACME: Automata with Counters, Monoids and Equiv-
alence, pages 163–167. Automated Technology for Veri�cation and Analysis. Springer Science + Busi-
ness Media. doi:10.1007/978-3-319-11936-6_12.
URL http://dx.doi.org/10.1007/978-3-319-11936-6_12

Fijalkow, Nathanaël, Gimbert, Hugo, Kelmendi, Edon and Kuperberg, Denis, 2016. Stamina (stabi-
lization monoids in automata theory). http://stamina.labri.fr/. Accessed: 2016-07-26.

Gantmacher, 1959. The theory of matrices vol1.

Gillette, Dean, 1957. Stochastic games with zero stop probabilities. Contributions to the Theory of
Games, 3:179–187.

Gimbert, Hugo, 2006. Jeux Positionnels. PhD thesis, Université Denis Diderot, Paris.

Gimbert, Hugo, 2007. Pure Stationary Optimal Strategies in Markov Decision Processes, pages 200–211.
STACS 2007. Springer Science + Business Media. doi:10.1007/978-3-540-70918-3_18.
URL http://dx.doi.org/10.1007/978-3-540-70918-3_18

Gimbert, Hugo and Kelmendi, Edon, 2014a. Note: On A Proof Of Positionality Of Mean-Payo� Stochas-
tic Games. Research report, Université de Bordeaux, LaBRI.
URL https://hal.archives-ouvertes.fr/hal-01091192

Gimbert, Hugo and Kelmendi, Edon, 2014b. Two-player perfect-information shift-invariant submixing
stochastic games are half-positional. CoRR, abs/1401.6575.
URL http://arxiv.org/abs/1401.6575

Gimbert, Hugo and Oualhadj, Youssouf, 2010. Probabilistic Automata on Finite Words: Decidable and
Undecidable Problems, pages 527–538. Automata, Languages and Programming. Springer Science +
Business Media. doi:10.1007/978-3-642-14162-1_44.
URL http://dx.doi.org/10.1007/978-3-642-14162-1_44

Gimbert, Hugo and Oualhadj, Youssouf, 2014. Deciding the Value 1 Problem for] -acyclic Partially Ob-
servable Markov Decision Processes, pages 281–292. SOFSEM 2014: Theory and Practice of Computer
Science. Springer Science + Business Media. doi:10.1007/978-3-319-04298-5_25.
URL http://dx.doi.org/10.1007/978-3-319-04298-5_25

Gimbert, Hugo, Renault, Jérôme, Sorin, Sylvain, Venel, Xavier and Zielonka, Wiesław, 2016. On
values of repeated games with signals. Ann. Appl. Probab., 26(1):402–424. doi:10.1214/14-aap1095.
URL http://dx.doi.org/10.1214/14-aap1095

Gimbert, Hugo and Zielonka, Wieslaw, 2009. Pure and stationary optimal strategies in perfect-
information stochastic games.

Gimbert, Hugo and Zielonka, Wiesław, 2004. When Can You Play Positionally?, pages 686–697. Lecture
Notes in Computer Science. Springer Science + Business Media. doi:10.1007/978-3-540-28629-5_53.
URL http://dx.doi.org/10.1007/978-3-540-28629-5_53

156

http://dx.doi.org/10.1109/lics.2012.40
http://dx.doi.org/10.1007/978-3-319-11936-6_12
http://stamina.labri.fr/
http://dx.doi.org/10.1007/978-3-540-70918-3_18
https://hal.archives-ouvertes.fr/hal-01091192
http://arxiv.org/abs/1401.6575
http://dx.doi.org/10.1007/978-3-642-14162-1_44
http://dx.doi.org/10.1007/978-3-319-04298-5_25
http://dx.doi.org/10.1214/14-aap1095
http://dx.doi.org/10.1007/978-3-540-28629-5_53

Bibliography

Gimbert, Hugo and Zielonka, Wiesław, 2005. Games Where You Can Play Optimally Without Any
Memory, pages 428–442. Lecture Notes in Computer Science. Springer Science + Business Media.
doi:10.1007/11539452_33.
URL http://dx.doi.org/10.1007/11539452_33

Grädel, Erich, 2004. Positional Determinacy of In�nite Games, pages 4–18. Lecture Notes in Computer
Science. Springer Science + Business Media. doi:10.1007/978-3-540-24749-4_2.
URL http://dx.doi.org/10.1007/978-3-540-24749-4_2

Gripon, Vincent and Serre, Olivier, 2009. Qualitative Concurrent Stochastic Games with Imperfect Infor-
mation, pages 200–211. Automata, Languages and Programming. Springer Science + Business Media.
doi:10.1007/978-3-642-02930-1_17.
URL http://dx.doi.org/10.1007/978-3-642-02930-1_17

Hardy, Godfrey Harold, 2000. Divergent series, volume 334. American Mathematical Soc.

Hashiguchi, Kosaburo, 1988. Algorithms for determining relative star height and star height. Informa-
tion and Computation, 78(2):124–169. doi:10.1016/0890-5401(88)90033-8.
URL http://dx.doi.org/10.1016/0890-5401(88)90033-8

Kechris, Alexander S., 1995. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer
New York. doi:10.1007/978-1-4612-4190-4.
URL http://dx.doi.org/10.1007/978-1-4612-4190-4

Kelmendi, Edon and Gimbert, Hugo, 2016. Deciding maxmin reachability in half-blind stochastic
games. In Symposium of Algorithmic Game Theory (to appear).

Kirsten, Daniel, 2004. Distance Desert Automata and the Star Height One Problem, pages 257–272. Lec-
ture Notes in Computer Science. Springer Science + Business Media. doi:10.1007/978-3-540-24727-2_
19.
URL http://dx.doi.org/10.1007/978-3-540-24727-2_19

Kopczyński, Eryk, 2006. Half-Positional Determinacy of In�nite Games, pages 336–347. Automata, Lan-
guages and Programming. Springer Science + Business Media. doi:10.1007/11787006_29.
URL http://dx.doi.org/10.1007/11787006_29

Kopczyński, Eryk, 2009. Half-Positional Determinacy of In�nite Games. PhD thesis, University of War-
saw.

Korthikanti, Vijay Anand, Viswanathan, Mahesh, Agha, Gul and Kwon, YoungMin, 2010. Reason-
ing about mdps as transformers of probability distributions. In 2010 Seventh International Conference
on the Quantitative Evaluation of Systems. doi:10.1109/qest.2010.35.
URL http://dx.doi.org/10.1109/qest.2010.35

Liggett, Thomas M. and Lippman, Steven A., 1969. Stochastic games with perfect information and time
average payo�. SIAM Rev., 11(4):604–607. doi:10.1137/1011093.
URL http://dx.doi.org/10.1137/1011093

Maitra, Ashok P and Sudderth, William, 2012. Discrete gambling and stochastic games, volume 32.
Springer Science & Business Media.

157

http://dx.doi.org/10.1007/11539452_33
http://dx.doi.org/10.1007/978-3-540-24749-4_2
http://dx.doi.org/10.1007/978-3-642-02930-1_17
http://dx.doi.org/10.1016/0890-5401(88)90033-8
http://dx.doi.org/10.1007/978-1-4612-4190-4
http://dx.doi.org/10.1007/978-3-540-24727-2_19
http://dx.doi.org/10.1007/11787006_29
http://dx.doi.org/10.1109/qest.2010.35
http://dx.doi.org/10.1137/1011093

Bibliography

Martin, Donald A., 1975. Borel determinacy. The Annals of Mathematics, 102(2):363. doi:10.2307/
1971035.
URL http://dx.doi.org/10.2307/1971035

Martin, Donald A., 1998. The determinacy of blackwell games. The Journal of Symbolic Logic,
63(04):1565–1581. doi:10.2307/2586667.
URL http://dx.doi.org/10.2307/2586667

Mashiah-Yaakovi, Ayala, 2014. Correlated equilibria in stochastic games with borel measurable payo�s.
Dynamic Games and Applications, 5(1):120–135. doi:10.1007/s13235-014-0122-2.
URL http://dx.doi.org/10.1007/s13235-014-0122-2

McIver, A. K. and Morgan, C. C., 2002. Games, Probability, and the Quantitative µ-Calculus qMµ, pages
292–310. Logic for Programming, Arti�cial Intelligence, and Reasoning. Springer Science + Business
Media. doi:10.1007/3-540-36078-6_20.
URL http://dx.doi.org/10.1007/3-540-36078-6_20

Mohri, Mehryar, 1997. Finite-state transducers in language and speech processing. Computational
linguistics, 23(2):269–311.

Nain, Sumit and Vardi, Moshe Y., 2013. Solving partial-information stochastic parity games. In 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science. doi:10.1109/lics.2013.40.
URL http://dx.doi.org/10.1109/lics.2013.40

Paz, Azaria, 1971. Introduction to Probabilistic Automata. Elsevier BV.

Piccione, Michele and Rubinstein, Ariel, 1997. On the interpretation of decision problems with imper-
fect recall. Games and Economic Behavior, 20(1):3–24. doi:10.1006/game.1997.0536.
URL http://dx.doi.org/10.1006/game.1997.0536

Pin, Jean Eric and Miller, Raymond E, 1986. Varieties of formal languages. Plenum Publishing Co.

Puterman, Martin L, 1995. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Rabin, Michael O., 1963. Probabilistic automata. Information and Control, 6(3):230–245. doi:10.1016/
s0019-9958(63)90290-0.
URL http://dx.doi.org/10.1016/s0019-9958(63)90290-0

Raskin, Jean-Francois, Chatterjee, Krishnendu, Doyen, Laurent and Henzinger, Thomas, 2007. Al-
gorithms for omega-regular games with imperfect information. Logical Methods in Computer Science,
3(3). doi:10.2168/lmcs-3(3:4)2007.
URL http://dx.doi.org/10.2168/lmcs-3(3:4)2007

Schützenberger, M.P., 1961. On the de�nition of a family of automata. Information and Control, 4(2-
3):245–270. doi:10.1016/s0019-9958(61)80020-x.
URL http://dx.doi.org/10.1016/s0019-9958(61)80020-x

Shapley, L. S., 1953. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–
1100. doi:10.1073/pnas.39.10.1095.
URL http://dx.doi.org/10.1073/pnas.39.10.1095

158

http://dx.doi.org/10.2307/1971035
http://dx.doi.org/10.2307/2586667
http://dx.doi.org/10.1007/s13235-014-0122-2
http://dx.doi.org/10.1007/3-540-36078-6_20
http://dx.doi.org/10.1109/lics.2013.40
http://dx.doi.org/10.1006/game.1997.0536
http://dx.doi.org/10.1016/s0019-9958(63)90290-0
http://dx.doi.org/10.2168/lmcs-3(3:4)2007
http://dx.doi.org/10.1016/s0019-9958(61)80020-x
http://dx.doi.org/10.1073/pnas.39.10.1095

Bibliography

Shargel, Leon, Wu-Pong, Susanna and Yu, Andrew BC, 2007. Applied biopharmaceutics & pharmacoki-
netics. McGraw-Hill.

Simon, Imre, 1990. Factorization forests of �nite height. Theoretical Computer Science, 72(1):65–94. doi:
10.1016/0304-3975(90)90047-l.
URL http://dx.doi.org/10.1016/0304-3975(90)90047-l

Simon, Imre, 1994. On semigroups of matrices over the tropical semiring. ITA, 28(3-4):277–294.

Sonin, Isaac M., 2008. The Decomposition-Separation Theorem for Finite Nonhomogeneous Markov Chains
and Related Problems, pages 1–15. Institute of Mathematical Statistics Collections. Institute of Math-
ematical Statistics. doi:10.1214/074921708000000264.
URL http://dx.doi.org/10.1214/074921708000000264

Tzeng, Wen-Guey, 1992. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput., 21(2):216–227. doi:10.1137/0221017.
URL http://dx.doi.org/10.1137/0221017

Vardi, Moshe Y. and Wolper, Pierre, 1986. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183–221. doi:10.1016/0022-0000(86)90026-7.
URL http://dx.doi.org/10.1016/0022-0000(86)90026-7

Williams, David, 1991. Probability with martingales. Cambridge university press.

Zielonka, Wieslaw, 2010. Playing in stochastic environment: from multi-armed bandits to two-player
games. In LIPIcs-Leibniz International Proceedings in Informatics, volume 8. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Zielonka, Wiesław, 2004. Perfect-Information Stochastic Parity Games, pages 499–513. Lecture Notes in
Computer Science. Springer Science + Business Media. doi:10.1007/978-3-540-24727-2_35.
URL http://dx.doi.org/10.1007/978-3-540-24727-2_35

159

http://dx.doi.org/10.1016/0304-3975(90)90047-l
http://dx.doi.org/10.1214/074921708000000264
http://dx.doi.org/10.1137/0221017
http://dx.doi.org/10.1016/0022-0000(86)90026-7
http://dx.doi.org/10.1007/978-3-540-24727-2_35

	1 Introduction
	1.1 Stochastic Games on Finite Graphs
	1.2 Games with Perfect Information
	1.3 Games with Zero Information
	1.3.1 Probabilistic automata
	1.3.2 Half-blind games

	Games with Perfect Information
	2 Submixing and Shift-Invariant Games
	2.1 Overview
	2.2 Two Player Stochastic Games
	2.2.1 Strategies
	2.2.2 Probability measure
	2.2.3 Values and optimal strategies
	2.2.4 A Half-positional example
	2.2.5 Martingales

	2.3 Shift-Invariant and Submixing Payoff Functions
	2.4 Existence of -subgame-perfect Equilibria
	2.4.1 Weaknesses and the reset strategy
	2.4.2 Locally-optimal strategies
	2.4.3 Finitely many resets
	2.4.4 The reset strategy is 2-subgame-perfect

	2.5 Half-Positionality
	2.6 Examples
	2.6.1 Comments

	2.7 Conclusion

	Games with Zero Information
	3 Probabilistic Automata
	3.1 Overview
	3.2 Decidable Classes
	3.2.1 Leaktight automata
	3.2.2 Simple automata

	3.3 Leaktight Automata are a Superset
	3.4 Stamina, the tool

	4 Half-Blind Leaktight Games
	4.1 Overview
	4.2 The Belief Monoid
	4.2.1 Definitions and values
	4.2.2 An Example
	4.2.3 Deterministic strategies for Min suffice
	4.2.4 The belief monoid algorithm
	4.2.5 The extended belief monoid

	4.3 Leaks
	4.4 k-decomposition Trees
	4.5 Soundness
	4.6 Completeness
	4.7 Power of Strategies and Examples
	4.8 Conclusion

	Bibliography

