Two-Player Stochastic Games with Perfect and Zero Information

We consider stochastic games that are played on nite graphs. The subject of the rst part are two-player stochastic games with perfect information. In such games the two players take turns choosing actions from a nite set, for an in nite duration, resulting in an in nite play. The objective of the game is given by a Borel-measurable and bounded payo function that maps in nite plays to real numbers. The rst player wants to maximize the expected payo , and the second player has the opposite objective, that of minimizing the expected payo . We prove that if the payo function is both shift-invariant and submixing then the game is half-positional. This means that the rst player has an optimal strategy that is at the same time pure and memoryless. Both players have perfect information, so the actions are chosen based on the whole history.

In the second part we study nite-duration games where the protagonist player has zero information. That is, he gets no feedback from the game and consequently his strategy is a nite word over the set of actions. Probabilistic nite automata can be seen as an example of such a game that has only a single player. First we compare two classes of probabilistic automata: leaktight automata and simple automata, for which the value 1 problem is known to be decidable. We prove that simple automata are a strict subset of leaktight automata. Then we consider half-blind games, which are two player games where the maximizer has zero information and the minimizer is perfectly informed. We de ne the class of leaktight half-blind games and prove that it has a decidable maxmin reachability problem. stochastic games, half-positional, shift-invariant, submixing, probabilistic automata, leaktight automata, simple automata, half-blind games, maxmin reachability Jeux Stochastiques à Deux Joueurs à Information Parfaite et Zéro On considère des jeux stochastiques joués sur un graphe ni. La première partie s'intéresse aux jeux stochastiques à deux joueurs et information parfaite. Dans de tels jeux, les joueurs choisissent des actions dans ensemble ni, tour à tour, pour une durée in nie, produisant une histoire in nie. Le but du jeu est donné par une fonction d'utilité qui associe un réel à chaque histoire, la fonction est bornée et Borel-mesurable. Le premier joueur veut maximiser l'utilité espérée, et le deuxième joueur veut la minimiser. On démontre que si la fonction d'utilité est à la fois shift-invariant et submixing alors le jeu est semi-positionnel. C'est-à-dire le premier joueur a une stratégie optimale qui est déterministe et sans mémoire. Les deux joueurs ont information parfaite: ils choisissent leurs actions en ayant une connaissance parfaite de toute l'histoire.

Dans la deuxième partie, on étudie des jeux de durée ni où le joueur protagoniste a zéro information. C'est-à-dire qu'il ne reçoit aucune information sur le déroulement du jeu, par conséquent sa stratégie est un mot ni sur l'ensemble des actions. Un automates probabiliste peut être considéré comme un tel jeu qui a un seul joueur. Tout d'abord, on compare deux classes d'automates probabilistes pour lesquelles le problème de valeur 1 est décidable: les automates leaktight et les automates simples. On prouve que la classe des automates simples est un sous-ensemble strict de la classe des automates leaktight. Puis, on considère des jeux semi-aveugles, qui sont des jeux à deux joueurs où le maximiseur a zéro information, et le minimiseur est parfaitement informé. On dé nit la classe des jeux semi-aveugles leaktight et on montre que le problème d'accessibilité maxmin est décidable sur cette classe. jeux stochastiques, demi-positionnel, shift-invariant, submixing, automates probabilistes, automates leaktight, automates simples, jeux demiaveugles, accessibilité maxmin ' Laboratoire Bordelais de Recherche en Informatique (LaBRI) Unité Mixte de Recherche CNRS (UMR 5800) 351, cours de la Libération F-33405 Talence cedex, France Les jeux sont des modèles mathématiques permettant de modéliser des prises de décision rationnelles. Les décideurs peuvent être en compétition ou coopérer. Le domaine d'étude qui concerne les jeux, la théorie des jeux, est déjà très bien établie. Ses applications concernent de nombreux domaines, y compris l'économie, la science politique, la psychologie, la biologie, l'informatique et la logique.

Très généralement, dans un jeu, les joueurs choisissent des actions, et en le faisant changent l'état du jeu. En n de compte, en fonction des actions qui ont été prises et de la suite d'états par laquelle le jeu passe, chaque joueur reçoit un un certain paiement. Les joueurs visent à maximiser ce paiement.

Les questions essentielles qui sont étudiées sont les suivantes: combien les joueurs peuvent-ils gagner, quelle est la meilleure suite d'actions à prendre (stratégies), y at-il des points d'équilibre (choix de stratégie où aucun joueur n'a d'incitation à changer sa stratégie).

Au cours des dernières décennies, avec le développement de l'informatique, les problèmes algorithmiques liés à par ces questions ont naturellement gagné en importance: est-il possible de calculer combien les joueurs peuvent gagner, la meilleure stratégie, les points d'équilibre etc. et si oui, à quel point est-il di cile d'e ectuer ces calculs? Cette thèse aborde ces questions.

Parce que la notion de jeu est fondamentale et ajustable à la modélisation de nombreuses situations, il existe de nombreux types de jeux qui ont des propriétés très di érentes et qui nécessitent des méthodes di érentes pour être étudiés.

Nous considérons des jeux qui sont: un ou deux joueurs, somme nulle, à durée nie ou in nie, discrets, stochastiques et tour à tour, qui ont un nombre ni d'états et un nombre ni d'actions pour les deux joueurs. Nous représentons le jeu par un graphe ni, dont les sommets représentent les états du jeu et dont les arcs sont les actions que les joueurs peuvent prendre.

Les jeux sont classés en fonction de certaines de leurs propriétés de base. Tout d'abord, le nombre de joueurs: un jeu peut avoir seulement un joueur, deux joueurs ou plus, un ensemble ni mais xe de joueurs (ces jeux sont surtout utilisés en biologie). Nous regarderont les jeux à un et deux joueurs ici.

Il ya des jeux où les joueurs peuvent coopérer entre eux, et ceux où il n'ya aucune raison de le faire. Les jeux à somme nulle sont des jeux où la somme des gains que chaque joueur reçoit est toujours égale à zéro. Par exemple, dans un jeu à somme nulle, un joueur reçoit le montant exact que son adversaire perd: il reçoit x alors que son adversaire reçoit -x. En particulier, les jeux à deux joueurs où un joueur gagne ou perd, i.e. il n'y a pas de match nul, sont zéro-somme, par exemple, le papier-ciseaux-pierre est à somme nulle. Tous les jeux de cette thèse sont à somme nulles, il n'y a donc pas de coopération entre les joueurs. v Dans cette thèse, nous nous concentrons uniquement sur les jeux avec un ensemble ni d'états et un ensemble ni d'actions. Dans la littérature, les jeux avec un ensemble in ni d'états et d'actions sont également étudiés, en particulier dans la théorie des ensembles descriptifs.

Les jeux que nous étudierons sont discrets, c'est-à-dire que les joueurs choisissent leurs actions à intervalle discret. Outre les jeux discrets, il ya des jeux continus aussi. Là, l'état du jeu change en continu, par exemple selon une équation di érentielle.

Une autre façon de classer les jeux est de savoir si, après un joueur joue une action, l'état du jeu change d'une manière déterministe ou aléatoire, en suivant une certaine loi de probabilité. Les premiers sont des jeux déterministes, les seconds des jeux stochastiques et ils sont le sujet de cette thèse.

Dans la première partie de la thèse nous parlons de jeux à durée in nie, et dans la deuxième partie de la thèse de jeux à durée nie mais arbitraire.

Les jeux peuvent être simultanés ou joués à tour de rôle. Un jeu est simultané si les joueurs choisissent une action indépendamment de chaque autre en même temps, puis l'état du jeu est modi é en fonction de l'état actuel et de cette paire des actions. Un jeu est joué à tour de rôle si les joueurs prennent leurs décisions l'un après l'autre. Par exemple, les échecs se jouent à tour de rôle, le premier joueur fait un mouvement, puis l'autre joueur et ainsi de suite. D'autre part, dans ciseaux, papier, pierre, les deux joueurs jouent en même temps, il s'agit d'un jeu simultané. Nous ne considérerons que les jeux tour à tour.

Une autre propriété importante est l'information que les joueurs ont quand ils prennent des décisions. Dans le jeu d'échecs, par exemple, les deux joueurs ont toutes les informations qui existent, i.e. ils voient l'échiquier, et ils connaissent tous les deux les mouvements qui ont été faits. Nous disons qu'ils sont parfaitement informés ou qu'il s'agit d'un jeu à information parfaite. Tous les jeux ne sont pas comme ça, un contre-exemple notoire est le poker.Au poker, les joueurs n'ont qu'une vue partielle du jeu. Ils connaissent les cartes qu'ils tiennent mais pas celles de leurs adversaires. Les joueurs ne savent pas exactement l'état du jeu, mais seulement un ensemble d'états dans lequel il pourrait être. Ces jeux sont appelés jeux avec em information partiel.

En informatique et en logique, les jeux sont souvent utilisés comme un outil théorique, par exemple les jeux Ehrenfeucht-Fraïssé dans la théorie des modèles nis, les jeux de parité dans véri cation, etc., mais il existe une autre utilité importante des jeux dans informatique et véri cation, c'est-à-dire la synthèse du contrôleur.

On part d'un système que l'on veut contrôler. En e ectuant des actions, le contrôleur change l'état du système, mais l'environnement peut également modi er l'état du système. Supposons que nous voulons contrôler le système tel que il n'entre jamais dans un ensemble interdit d'états, ou qu'il passe par quelque état in niment souvent. De nombreux scénarios réels peut être vus d'une telle manière, comme un contrôleur et environnement qui change l'état du système, tour à tour. Ceci peut être modélisé comme un jeu avec deux joueurs, contrôleur et environnement. Le contrôleur souhaite réaliser l'objectif de ne jamais entrer dans l'état interdit, ou voir un état distingué in niment souvent, alors que l'environnement est son adversaire et essaie de faire le contraire, e.g. à entrer dans l'état interdit. Le problème de savoir si le contrôleur peut atteindre son objectif est la question de savoir si Controller a une stratégie gagnante dans un tel jeu. En construisant e cacement la stratégie, nous synthétisons ce que le contrôleur du système devrait faire pour atteindre son objectif, indépendamment de l'environnement.

Cette application centrale soulève l'importance des jeux à information partielle. En e et, dans de nombreux cas, le contrôleur ne peut pas connaître l'état exact du système, par exemple il est aidé par des capteurs qui sont défectueux parfois, ou le système est contrôlé par une interface qui ne révèle pas tous ses rouages internes (ce qui est en fait la norme).

Cependant, les jeux à informations partielle sont beaucoup plus di ciles à calculer que leurs équivalents à information parfaits. Dans plusieurs cas, un problème qui est relativement facile de décider pour les jeux à information parfaite, devient indécidable sur les jeux à informations partielle.

Comme il est habituellement fait en mathématiques, a n de faire la lumière sur le cas général, des cas spéciaux sont considérés, nous allons faire de même dans cette thèse. Dans le but de comprendre un peu mieux les jeux à information partielle, nous étudier deux cas extrêmes spéciaux, l'information parfaite, où les joueurs connaissent l'état exact du jeu, et l'information zéro, où le joueur protagoniste n'a aucune information sur l'état du jeu. En d'autres termes, il joue les actions aveuglément, sans obtenir aucune indication sur l'état du jeu.

La thèse est divisée en deux parties, la première partie s'intéresse aux jeux à deux joueurs et information parfaite tandis que la deuxième partie s'intéresse aux jeux information zéro.

Jeux à information parfaite.

Dans les jeux stochastiques à deux joueurs et information parfaite, l'ensemble des états est divisé en deux, l'ensemble des états qui sont contrôlés par le joueur 1, et l'ensemble des états qui sont contrôlés par son adversaire, le joueur 2.

Si le jeu est dans un état qui est contrôlé par le joueur 1 (joueur 2), alors c'est le joueur 1 (joueur 2) qui choisit une action. Suite à cette action, l'état du jeu change en fonction d'une distribution de probabilités sur l'ensemble des états, qui dépend de l'état actuel et de l'action qui a été prise par le joueur 1 (joueur 2). Ainsi, le jeu se déroule, produisant une séquence in nie de paires action, état, appelée l'histoire.

La fonction de paiement, associe à cette séquence de paires états action un nombre réel x. Le joueur 1 reçoit le montant x et son adversaire reçoit le montant -x. Le joueur 1 préfère les histoires qui donnent des paiements plus grands, vii alors que son adversaire les histoires qui donnent des paiements plus petits, les joueurs sont appelés le maximiseur et le minimiseur, respectivement.

A ce degré de généralité, les jeux comme celui que nous avons décrit cidessus ne possèdent pas de propriétés algorithmiques intéressantes, celles-ci commencent à émergent uniquement sous certaines restrictions de la fonction de paiement. Notamment, si la fonction de paiement est Borel-mesurable et bornée, alors ces jeux stochastiques ont des valeurs [Martin, 1998]. Cela signi e qu'il existe un point d'équilibre. Plus précisément, cela signi e que le minmax de paiement attendu est égal au maxmin de paiement attendu, cette quantité est appelée la valeur du jeu. La valeur minimale de paiement attendu est l'in mum sur les stratégies du minimiseur, du supremum sur les stratégies du maximiseur, de paiement attendu dans le cadre des stratégies choisies; Symétriquement pour maxmin. Cela nous permet de parler de stratégies -optimales, i.e. des stratégies qui assurent que le paiement attendu est à une distance de la valeur du jeu.

Dans les jeux à information parfaite, les stratégies qui sont à la disposition des joueurs sont des fonctions qui mappent les histoires nies du jeu (séquences nies des paires état action) à une action, ou potentiellement une distribution de probabilités sur l'ensemble des actions, selon laquelle l'action est choisie.

Beaucoup de jeux comme ci-dessus ont été étudiés dans la littérature, y compris les jeux de moyenne-payo , les jeux à prix réduit, les jeux de parité, certains jeux de compteur etc. Le théorème de Martin garantit que tous ces jeux ont des stratégies -optimales pour tous > 0, mais pas nécessairement de stratégies optimales (stratégies 0-optimales). Mais comme il s'avère, dans de nombreux jeux classiques, y compris ceux que nous avons mentionnés ci-dessus, les deux joueurs possèdent des stratégies optimales. Plus intéressant, les stratégies sont très simples. En fait, ils ont des stratégies optimales les plus simples possibles: des stratégies positionnelles.

En général, les stratégies sont des objets compliqués, la quantité d'information dont les joueurs ont besoin est potentiellement in nie, mais pour beaucoup de jeux intéressants, les stratégies optimales n'ont pas besoin d'avoir de mémoire. Les stratégies sont appelés positionnelles si elles n'utilisent ni la mémoire ni la puissance de la randomisation, ce sont des stratégies qui toujours choisissent la même action unique en fonction de l'état du jeu, i.e. ce sont des fonctions de l'ensemble des états vers l'ensemble des actions.

Les jeux dans lesquels les deux joueurs ont toujours des stratégies optimales et positionelles sont appelés positionnels, Les jeux dans lesquels le maximiseur a toujours une stratégie positionnelle optimale sont appelés semi-positionnels.

La positionnalité et la semi-positionnalité sont des propriétés importantes, d'autant plus que cela implique que seul un ensemble ni de stratégies doivent être prises en compte lors de la recherche de la stratégie optimale. Ceci avec le fait que beaucoup des jeux sont positionnels, soulève la question de savoir si viii nous pouvons déterminer sous quelles conditions sur la fonction de paiement un jeu est (semi) positionel. Une réponse à cette question donnerait une preuve uni ée de la positionnalité; au lieu de comprendre pourquoi un jeu particulier est (semi) positionnel, nous comprendrions quelle est la raison commune qui garantit la (semi) positionnalité.

Dans le travail dans la littérature qui suit cette direction de la recherche, se présentent deux conditions qui sont imposées à la fonction de paiement: shiftinvariance et submixing.

Une fonction de paiement est shift-invariant (invariant par décalage) si le déplacement de l'histoire in nis en supprimant n'importe quel pré xe ni ne change pas la valeur de la fonction. Une fonction de paiement est submixing si pour chaque trois histoires in nies de paires état action x, y, z, tel que z est un shu ing de x et y, le paiement de z est au plus le maximum de paiement de x et le paiement de y.

Dans [Gimbert, 2007], Gimbert prouve que dans les jeux stochastiques à un joueur (processus de décision Markov), si la fonction de paiement est à la fois submixing et shift-invariant alors le joueur dispose d'une strategie optimale positionnelle. Pour les jeux déterministes de deux joueurs, avec des fonctions de paiement qui mappent à {0, 1}, Kopczyński prouve que si le paiement est shift-invariant et submixing, alors le jeu est semi-positionnel en [Kopczyński, 2006[Kopczyński, , 2009]].

Nous généralisons ces résultats dans [Gimbert and Kelmendi, 2014b] en prouvant que dans les jeux stochastiques à deux joueurs, si la fonction de paiement est à la fois shift-invarant et submixing, alors le jeu est semi-positionnel, i.e. le maximiseur a une stratégie optimale qui est positionnelle.

Jeux à information zéro. La deuxième partie de cette thèse se caractérise par le joueur protagoniste, le maximiseur, ayant zéro information.

Les objets que nous étudierons, tout comme dans la première partie, sont des jeux stochastiques joués sur des graphes nis. Les di érences seront les suivantes. Dans la première partie, nous traiterons des jeux de durée in nie, tandis que dans la seconde, les jeux auront une durée nie mais arbitraire.

Dans la première partie, le maximiseur, est parfaitement informé. Cela signi e qu'il peut fonder ses décisions sur toute l'histoire du jeu jusqu'à ce point. Il choisit parmi les stratégies qui sont des fonctions qui mappent des histoires nies à une action. Dans un jeu à information partielle, l'histoire nie ne constitue pas une suite nie d'états par lesquels le jeu a passé du début, mais plutôt une suite nie d'ensembles d'états. Donc, le joueur ne connaît pas l'état réel du jeu, mais il connaît un ensemble d'états, auquel appartient l'état réel du jeu. Les jeux d'informations parfaites sont les jeux où les ensembles qui sont révélés au joueur ix sont des singletons. Les jeux d'information zéro (ou jeux aveugles) sont les jeux où l'ensemble qui est révélé au joueur est l'ensemble complet des états.

Nous allons considérer deux jeux avec information zéro, d'abord le plus simple: les automates nis probabilistes, que nous considérons comme un jeu à un joueur et information zéro avec objectifs d'accessibilité. Deuxièmement, la généralisation d'automates probabilistes aux jeux à deux joueurs avec des objectifs d'accessibilité où l'adversaire est parfaitement informé, que nous appelons jeux semi-aveugles.

Les automates nis probabilistes (AFP) sont une généralisation d'automates nis déterministes (AFD) sur les mots, introduits pour la première fois par Rabin dans [Rabin, 1963]. Un AFD, après avoir lu une lettre, se transforme de façon déterministe en un nouvel état. Quand un AFP lit une lettre, l'état suivant est choisi selon une distribution de probabilité sur l'ensemble des états qui dépend sur l'état actuel et la lettre lue. Un AFD accepte un mot ou pas, alors qu'un automate probabiliste accepte un mot avec une certaine probabilité.

Les automates probabilistes ont de nombreuses applications, mais malheureusement la majorité des problèmes sont indécidable. Par exemple, le problème du vide est indécidable [Paz, 1971]. C'est le problème qui demande s'il existe un mot qui est accepté avec une probabilité au moins 1/2.

Le problème que nous étudions est le problème de la valeur 1. On demande si pour tout > 0 il existe un mot ni qui est accepté avec une probabilité d'au moins 1 -. Ce problème est indécidable [Gimbert and Oualhadj, 2010].

Néanmoins, des e orts récents ont été déployés pour identi er des classes intéressantes d'automates où le problème de la valeur 1 est décidable. Notamment la classe des automates leaktight dans [Fijalkow et al., 2012], et la classe des automates simples dans [Chatterjee and Tracol, 2012], qui inclut toutes les autres classes connues d'automates avec problème de valeur 1 décidable. En outre, ces deux papiers utilisent des techniques qui sont tout à fait di érentes pour atteindre leurs conclusions.

Nous allons prouver que la classe des automates simples est incluse strictement dans la classe des automates leaktight [Fijalkow et al., 2015].

Les jeux semi-aveugles sont des jeux stochastiques à deux joueurs qui sont joués sur un graphe ni avec l'objectif d'accessibilité. Le maximiseur essaie d'atteindre l'ensemble des états naux mais il a zéro information (il est aveugle) comme le joueur dans un automate ni probabiliste et joue de même un mot ni. Son adversaire, le minimiseur, est parfaitement informé. Le problème que nous considérons est celui de l'accessibilité maxmin. On demande si pour tout > 0 il existe une stratégie pour le maximiseur (i.e. un mot ni) de sorte que contre toutes les stratégies du minimiseur la probabilité d'atteindre l'ensemble des états naux est d'au moins 1 -.

Le cas particulier d'un jeu semi-aveugle où le minimiseur n'a jamais de choix, est un automate probabiliste et le problème d'accessibilité maximin se réduit au x problème de la valeur 1. Puisque ce dernier est indécidable, le premier est aussi indécidable.

C'est la raison principale pour laquelle ces problèmes d'accessibilité limitesûrs ne sont pas considérés dans la littérature, pour les jeux informations partielles, car même pour le cas le plus simple d'automates probabilistes, il est indécidable. La situation est di érente pour l'accessibilité presque-sûre (positif) [Bertrand et al., 2009;Nain and Vardi, 2013;Chatterjee et al., 2012]. C'est la question de savoir s'il existe une stratégie pour le maximiseur de sorte que contre toutes les stratégies du minimisuer, la probabilité d'atteindre l'ensemble des états naux est 1 (positive).

Pour les jeux semi-aveugles nous prouvons que le problème d'accessibilité maxmin est décidable dans une classe de jeux que nous appelons des jeux semiaveugles leaktight [Kelmendi and Gimbert, 2016].

A C K N O W L E D G M E N T S
Finishing this thesis would have been impossible without the help of many people. Firstly, I would like to express my deep gratitude to my advisers François Dufour and Hugo Gimbert, for their continuous support throughout the years. Everything that I know about this subject, I have learned from Hugo. I would like to thank him primarily for his immense patience, as well as for his guidance, and support -in every sense of the word. In retrospect, choosing to do an internship with Hugo, was an excellent decision whose natural continuation was this resulting thesis.

My sincere thanks also goes to the members of the jury. Especially to Laurent Doyen and Mahesh Viswanathan, for the time that they have spent to read this thesis and for their very helpful comments and suggestions. I thank Véronique Bruyère and Marc Zeitoun for agreeing to take part in the jury of my thesis.

I am tremendously grateful to the members of the formal methods group at LaBRI. Most have been my teachers. They introduced me to this part of computer science, for which I am very thankful. I will never forget their continuous support that started with the rst day I came here, as well as their patience with a foreigner that did not speak French.

I would like to also thank my colleagues, my fellow o ce mates, and especially my collaborators Nathanaël, Youssouf, and Denis. When one moves to a di erent country, one has to form a new social circle. During these years I have met a variety of very kind people, to whom I am grateful. The moments that we shared, will forever be cherished, they are some of my best memories. On the other side, the connections that we keep despite moving abroad are just as important. On this note I would like to thank my friends Betim and Eni.

Last but not least I want to express my sincere gratitude to my family for their support in my life. My parents, my sister Arta, and her family, as well as my cousins. Ky punim iu dedikohet juve.

1

I N T R O D U C T I O N 1.1
Games are mathematical models through which we study logical decision making. They model competition and cooperation between the decision-makers or players. The eld of study that concerns games, game theory, is already very well-established. Its applications are numerous, in many elds, including economics, political science, psychology, biology, computer science, logic. The usefulness of games need not be argued.

Very generally, in a game, the players take actions, and by doing so change the state of the game. In the end, as a function of the sequence of states through which the game went, and the actions that were taken, each player gets paid a certain amount. The players aim to increase this amount.

The essential questions that are studied are as follows: how much can the players gain, what is the best sequence of actions (strategy) to take, are there equilibrium points (strategy choices where no player has an incentive to change his strategy), among others.

In the last few decades, with the development of the electronic computer, questions concerning the computation of the above have naturally gained importance: is it possible to compute how much can the players gain, the best strategy, or one that is close to it, the equilibrium points etc. and if yes, how di cult it is to perform those computations. This thesis addresses these questions.

Because the notion of a game is fundamental and adjustable to modeling many situations, there are numerous types of games that have very di erent properties and that require di erent methods to study.

We will consider games that are: one or two player, zero-sum, nite or in nite duration, discrete, stochastic and turn-based, that have a nite number of states and a nite number of actions for both players. We will depict the game using a nite graph, whose vertices represent the states of the game and whose edges are the actions that the players can take.

1 Games are classi ed as a function of some of their basic properties. First, the number of players: a game can have only a single player, two, or more players, a nite but xed set of players (such games are especially used in biology). We will regard one and two player games here.

There are games where the players can cooperate between themselves, and ones where there is no reason to. Zero-sum games are games where the sum of the payo s that every player receives is always equal to zero. For example in a two player zero-sum game, a player gets paid the exact amount that his opponent loses: he receives x while his opponent receives -x. In particular two player games where a player either wins or loses, i.e. there is no draw, are zero-sum. All the games in this thesis are zero-sum, so there is no cooperation between the players.

Here we will solely focus on games with a nite set of states and a nite set of actions. In the literature, games with in nite state and action space are studied as well, especially in descriptive set theory.

The games that we will study are all discrete, that is, at discrete time steps the players take actions and change the state of the game. Besides discrete games, there are continuous games too. There the state of the game changes continuously, e.g. according to some di erential equation. Think of the di erence in modeling a continuous game such as tennis and discrete game such as any board game.

Another way of classifying games is whether after a player plays an action the state of the game changes deterministically or randomly, following some probability distribution. The former are called deterministic games, while the latter are called stochastic games. Consider the di erence between tic-tac-toe, a deterministic game, and any board game that involves throwing a die. The subject of this thesis are stochastic games.

We will talk about both games of in nite duration (in the rst part of the thesis), as well as games of nite but arbitrary long duration (in the second part of the thesis).

Games can be concurrent or turn-based. A game is concurrent if the players both choose an action independently of each other at the same time, and then the state of the game is changed as a function of the current state and this pair of actions. It is turn-based if the players take turns to make their decisions. For example, chess is turn-based, rst one player makes a move, then the other player and so on. On the other hand in rock-paper-scissors both players make the move at the same time, by choosing either rock paper or scissors, this is a concurrent game. We will regard only turn-based games.

Another important property is the information that the players have when they make decisions. In the game of chess, for example, both players have all the information that there is, i.e. they both see the board, and they both know all the moves that have been made. We say that they are perfectly informed or that 1.1 Stochastic Games on Finite Graphs it is a game of perfect information. But not all games are like this, for example poker is not. In poker the players have only a partial view of the game. They know the cards that they are holding but not those of their opponents. The players do not know the exact state of the game, but only some set of states in which it might be. Such games are called games with partial information. Their study is lucrative for the following reason.

In computer science and logic, games are often used as a theoretical tool, for example Ehrenfeucht-Fraïssé games in nite model theory, parity games in veri cation etc. but there is another important utility of games in computer science and veri cation, that is controller synthesis.

We are given a system that we want to control. By performing actions the controller changes the state of the system, but the environment can change the state of the system as well. Suppose that we want to control the system such that it never enters some forbidden state, or that it passes through some state in nitely often. Many real-world settings can be seen in such a way, as a controller and the environment taking turns to change the state of the system. This can be modeled as a game with two players, Controller and Environment. Controller wants to ful ll the objective of never entering the forbidden state or seeing some distinguished state in nitely often, while the environment is his opponent and tries to do the opposite, e.g. to enter the forbidden state. The problem of whether the controller can achieve his objective is the question of whether Controller has a winning strategy in such a game. By e ectively constructing this strategy, we synthesize what the controller of the system should do to achieve his objective, whatever it might be, regardless of the environment. This central application raises the importance of partial-information games. This is because in many scenarios the controller cannot know the exact state of the system, for example it is helped by sensors that are faulty at times, or the system is controlled through some interface which does not reveal all its inner workings (which in fact is the norm).

However, games with partial information are computationally much harder than their perfect information counterparts, as well as less understood. In a few cases, a problem that is relatively easy to decide for perfect information games, becomes undecidable on the setting of partial information games.

As it is usually done in mathematics, in order to shed light into the general case, special cases are considered, we are going to do the same in this thesis. In the quest to understand partial information games a little bit better, we will study two extreme special cases, the perfect information one, where the players know the exact state of the game, and the zero information one, where the protagonist player has no information on the state of the game. In other words he plays the actions blindly, without getting any feedback from the game. 1 Consequently the thesis is divided into two parts, the rst part involves two player games of perfect information while the second part has to do with games of zero information.

1.2

In the two player stochastic games with perfect information, the set of states is partitioned into two, the set of states that are controlled by, say, player 1, and the set of states that are controlled by his opponent, player 2.

If the game is in a state that is controlled by player 1 (player 2), then it is player 1 (player 2) that picks an action. Following this action, the state of the game changes according to a probability distribution on the set of states, which depends on the current state and the action that was taken by player 1 (player 2). Thus the game unfolds, producing an in nite sequence of state -action pairs, called the outcome.

The payo function, then, maps this sequence of state-action pairs to a real number x. Player 1 is paid the amount x and his opponent is paid the amount -x. Player 1 prefers outcomes that give a larger payo , whereas his opponent outcomes that give smaller payo s, hence the players are suitably called the maximizer and the minimizer respectively.

In this generality, games like the one that we described above do not posses any interesting properties, those start to emerge only under some restrictions of the payo function. Notably, if the payo function is Borel-measurable and bounded, then such two player stochastic games have values [Martin, 1998]. This means that there exists an equilibrium point. More precisely it means that the minmax of the expected payo is equal to the maxmin of the expected payo , this quantity is called the value of the game. The minmax of the expected payo is the minimum over the strategies of the minimizer, of the maximum over the strategies of the maximizer, of the expected value of the payo function under the chosen strategies; symmetrically for maxmin. This allows us to talk about -optimal strategies, i.e. strategies that ensure that the expected payo is within some distance from the value of the game.

In perfect information games the strategies that are at the disposal of the players are general behavioral ones: functions that map nite histories of the game (nite sequences of state -action pairs) to an action, or potentially a probability distribution over the set of actions, according to which the action is chosen.

Many games like above have been studied in the literature, including meanpayo games, discounted games, parity games, some counter games etc. Martin's theorem ensures that all these games have -optimal strategies for all > 0, but not optimal strategies (0-optimal strategies). But as it turns out, in many classical games, including the ones that we mentioned above both play-1.2 Games with Perfect Information ers posses optimal strategies. More interestingly the optimal strategies are very simple. In fact they are the simplest possible strategy: a positional strategy.

In general, strategies are complicated objects, the amount of information that they need to retain is potentially in nite, but for a lot of interesting games, the optimal strategies do not need to have any memory. Strategies are called positional if they do not use neither memory nor the power of randomization, they are strategies that at every time pick the same single action depending on what state the game is, i.e. they are functions from the set of states to the set of actions.

Games in which both players always have positional optimal strategies are called positional, while games in which one player always has a positional optimal strategy are called half-positional.

Positionality and half-positionality are important properties, especially since it implies that only a nite set of strategies should be considered when searching for the optimal strategy. This together with the fact that many important games are positional, raises the question of whether we can ascertain under what conditions on the payo function is the game (half) positional. Furthermore it would give a uni ed proof of positionality; instead of understanding the reason why each game is (half) positional by itself, we would understand what is the common reason that is making all of them positional.

In the work in the literature that follows this direction of research, turn up two conditions that are imposed on the payo function, shift-invariance and being submixing.

A payo function is shift-invariant if shifting the in nite sequence by deleting any nite pre x does not change the value of the function. A payo function is submixing if for any three in nite sequences of state -action pairs x, y, z, such that z is a shu ing of x and y, the payo of z is at most the maximum of the payo of x and the payo of y.

In [Gimbert, 2007], Gimbert proves that for one player stochastic games (Markov decision processes), if the payo function is both submixing and shift-invariant then the player has an optimal positional strategy. For deterministic two player games, with payo functions that map to {0, 1}, Kopczyński proves that if the payo function is shift-invariant and submixing, then the game is halfpositional in [Kopczyński, 2006[Kopczyński, , 2009]].

We further generalize these results in [Gimbert and Kelmendi, 2014b] by proving that for two player stochastic games, if the payo function is both shiftinvariant and submixing then the game is half-positional, i.e. the maximizer has an optimal strategy that is positional. The second part of this thesis is characterized by the protagonist player, the maximizer, having zero information.

The objects that we will study, just like in the rst part, are stochastic games played on nite graphs. The di erences will be as follows. In the rst part we will deal with games of in nite duration, while in the second, the games will have a nite but arbitrary duration.

In the rst part, the maximizer, is perfectly-informed. This means that he can base his decisions on the whole history of the game up to that point. He chooses among behavioral strategies: functions that map nite histories to a mixed action.

In a partial-information game, the nite history that the players have at hand before making the decision on what action to take, does not constitute of a nite sequence of states through which the game has passed from the beginning, but rather a nite sequence of sets of states. So the player does not know the actual state of the game, but knows a set of states, to which the real state of the game belongs. Games of perfect information are special cases where the sets that are revealed to the player are singletons. Games of zero information (or blind games) are the special cases where the set that is revealed to the player is the full set of states.

We will consider two games with zero information, rst the simplest one: probabilistic nite automata, which we see as one player zero information games with reachability objectives. Second, the generalization of probabilistic nite automata to two player games with reachability objectives where the opponent is perfectly informed, that we call half-blind games.

Probabilistic automata

Probabilistic nite automata are a generalization of deterministic nite automata on words, rst introduced by Rabin in [Rabin, 1963]. A DFA, after reading a letter, transitions deterministically into a new state. After a PFA reads a letter, the next state is chosen according to a probability distribution on the set of states which depends on the current state and the letter that is read. A DFA either accepts a word or it does not, while a probabilistic automaton accepts a word with certain probability.

Probabilistic automata have numerous applications, but unfortunately the majority of the problems related to them are undecidable. For example, the emptiness problem is undecidable [Paz, 1971]. This is the problem that asks whether there exists a word that is accepted with probability at least 1/2.

Games with Zero Information

The problem that we are going to study is the value 1 problem. This asks whether for all > 0 there exists a nite word that is accepted with probability at least 1 -. This problem is undecidable [Gimbert and Oualhadj, 2010].

Nevertheless there have been some recent e orts to identify interesting classes of automata for which the value 1 problem is decidable. Notably the class of leaktight automata in [Fijalkow et al., 2012] and simple automata in [Chatterjee and Tracol, 2012], that subsumed all other known classes of automata with decidable value 1 problem. Moreover these two papers use techniques that are quite di erent to reach their conclusions.

We will prove that the class of leaktight automata is a strict superset of the class of simple automata [Fijalkow et al., 2015].

Half-blind games

Half-blind games are two player stochastic games that are played on a nite graph with the reachability objective. The maximizer tries to reach the set of nal states but he has zero information (he is blind) as the single player in a probabilistic nite automaton, and similarly plays a nite word. His opponent, the minimizer, is perfectly informed.

The problem that we will consider is that of the maxmin reachability. This asks whether for all > 0 there exists some strategy for the minimizer (i.e. a nite word) such that against all the strategies of the minimizer the probability to reach the set of nal states is at least 1 -.

The special case of a half-blind game where the minimizer never has any choice, is a probabilistic automaton, and the maxmin reachability problem reduces to the value 1 problem. Since the latter is undecidable the former is as well. This is the main reason why these limit-sure reachability problems are not considered in the literature, for stochastic games with partial information, because even for the simplest case of probabilistic automata it is undecidable. The situation is di erent for the almost-sure (positive) reachability [Bertrand et al., 2009;Nain and Vardi, 2013;Chatterjee et al., 2012]. This is the question of whether there exists a strategy for the maximizer such that against all the strategies of the minimizer, the chance of reaching the set of nal states is 1 (positive).

For half-blind games we will prove that the maxmin reachability problem is decidable in a class of games that does not exhibit any leaks that we call leaktight half-blind games [Kelmendi and Gimbert, 2016].

Part I G A M E S W I T H P E R F E C T I N F O R M AT I O N 2 S U B M I X I N G A N D S H I F T -I N VA R I A N T G A M E S
The subject of this chapter is two-player stochastic games with perfect information. As in the rest of this thesis these games are played on a nite arena. An arena is a graph whose vertices (states) are partitioned into two sets, corresponding to the states controlled by the two players. If the game is in a state controlled by Player i, then it is Player i that chooses where the game moves next. He can base this choice on the whole history (he has perfect recall). The objectives of the game are given by a payo function; a function that maps in nite histories to real numbers. One player's objective is to maximize the expectation of the payo function while the other player tries to minimize it: it is a zero-sum game. Under some conditions on the payo function these games admit optimal strategies. In computer science we are not interested in merely optimal strategies, but in optimal strategies that are also simple. This is because a strategy in general is a very complicated object, it might even have unbounded memory.

Fortunately, many interesting games admit very simple optimal strategies, ones that do not use randomization and whose choices do not depend on the history, but only on the current state of the game. We say that these strategies are pure and stationary. In this chapter we consider the question: when does a player have an optimal strategy that is both stationary and pure? We will give a su cient condition that is relatively easy to check, under which a game will admit optimal strategies that are both stationary and pure for the player whose objective is to maximize the expected payo . Furthermore we will see that many classical stochastic games ful ll this condition. We will give an informal description of the games studied in this chapter, and an overview of related literature on this subject. Followed by precise de nitions in the next section.

The arena is where the stochastic game takes place, it is graphically represented as in Figure 1. There is a set of states S = {s 0 , s 1 , s 2 , s 3 , s 4 }, partitioned into states that are controlled by Player 1: S 1 = {s 0 , s 2 , s 4 } and those controlled by Player 2: S 2 = {s 1 , s 3 }. In the graph they are represented by circles and squares respectively. There is a set of actions A = {a, α, β} as well, and for each state s ∈ S, a subset of actions A(s) ⊆ A available in s. For example A(s 1) = {α, β}. If for some state s ∈ S there is some action a ∈ A such that a ∈ A(s), in the graphical representation we do not draw any outgoing edge from s labeled by a, e.g. in Figure 1, s 1 does not have any outgoing edge labeled by a.

Say the game starts in state s 0 , it is a state controlled by Player 1 so he chooses the action a and the game moves to either state s 1 or s 3 , with equal probability. Suppose it goes to state s 1 , this is a state controlled by Player 2, hence he has a choice between the action α and β, or he can randomize the two, e.g. by playing action α with probability 1 2 and β with probability 1 2 . In that case in the next turn the game will be in one of the states s 0 , s 2 , s 4 with respective probabilities 1 2 , 1 6 , 1 3 . In this way players take turns choosing actions available in the states that are controlled by them, and build an in nite play -a word in the language H = (SA) ω1 .

s 0 s 2 s 4 s 1 s 3 a 1 2 1 2 β 1 3 2 3 α α a a
Figure 1: Arena of a stochastic game 1 this is notation from automata and formal language theory meaning the set of in nite words of the form state,action,state,action... and so on

Overview

A payo function is a function f mapping H to R. The amount that is paid to Player 1 is given by f , and the amount that is paid to Player 2 is given by f . Such games are called zero-sum. So Player 1 prefers in nite histories with larger payo whilst Player 2 prefers the opposite. For this reason we will call Player 1 the maximizer and Player 2 the minimizer.

When studying games, we are normally interested in optimal strategiesrecipes that show how a player can play the game in an optimal manner. Under the weak assumption that the payo function f is Borel-measurable, according Martin's second determinacy theorem [Martin, 1998] there exist -optimal strategies for all > 0. These are strategies that get arbitrarily close to optimal. If one's aim is to construct such strategies, the bad news is that they might be in nite-memory strategies and hence complicated, but the good news is that for many interesting payo functions there are optimal strategies that are very simple: they do not use memory or randomization. Such stationary and pure strategies are maps from states S to actions A. If a game admits optimal strategies that are stationary and pure for both players, we say that it is positional, if the maximizer has an optimal strategy that is stationary and pure we say that the game is half-positional. In most scenarios we are interested in synthesizing the optimal strategy of one of the players (the protagonist) while the other player plays the role of the environment. Therefore knowing that the game in question is half-positional is crucially helpful. In this chapter we will give a condition of when this is true.

Usually in the literature (half) positionality is proved for a speci c payo function. Recently there has been some e ort in a more general and unifying approach of giving conditions on the payo function under which the game is (half) positional. We give a brief overview of some of the results.

In the seminal paper [Shapley, 1953], Shapley considers stochastic games with the discount payo function. In discounted games, to every state s ∈ S we associate an immediate reward r(s) ∈ R and a discount factor λ(s) ∈ [0, 1). The payo for a history s 0 a 0 s 1 a 1

• • • ∈ H is f disc (s 0 s 1 • • •) = r(s 0) + λ(s 0)r(s 1) + λ(s 0)λ(s 1)r(s 2) + • • • = r(s 0) + ∞ ∑ i=1 i ∏ j=0 λ(s j) r(s i).
Shapley considers concurrent games: where players play their actions at the same time in every turn. Turn-based games, subject of this thesis, are a special case of concurrent games. Using a xpoint of an operator approach, Shapley proves that these games have values and that they admit optimal strategies that are stationary. Although in general the optimal strategies might not be pure, because the game is concurrent. Shapley goes on to observe in the Examples and Applications section, point 3, that turn-based games are a special case of 2 concurrent games in which there are optimal strategies that are both stationary and pure.

The mean payo function is considered by Derman in [Derman, 1962] in the context of one player games, i.e. Markov decision processes (MDPs). For the mean payo , every state s ∈ S has an immediate reward r(s) ∈ R, and for a history

s 0 a 0 s 1 a 1 • • • ∈ H the payo is f mean (s 0 s 1 • • •) = lim sup n→∞ 1 n + 1 n ∑ i=0 r(s i).
There is also the lim inf version of the payo function above, denoted by f mean . Derman proves that for MDPs with the mean payo function, there exist an optimal strategy that is both stationary and pure. This is done using the fact that Cesàro sum of the sequence of rewards (used in the mean payo) is equal to the Abel sum (used in the discount payo), and that the former summability implies the latter. This follows from classical Abel and Tauberian type theorems, see e.g. [Hardy, 2000].

First attempt at generalizing the existence of optimal strategies that are both stationary and pure, to two player games was done by Gilette in [Gillette, 1957]. It uses an extension of Littlewood-Hardy theorem [Hardy, 2000] to reduce to the discount payo . Unfortunately, as pointed by Liggett and Lippman in [Liggett and Lippman, 1969], this extension is false.

Another attempt is made by Liggett and Lippman in the same paper by using a theorem of Blackwell [Blackwell, 1962]. But this proof also contains an error. A counter-example to one of the statements in [Liggett and Lippman, 1969] and an alternate proof is given in the technical report [Gimbert and Kelmendi, 2014a].

In the veri cation setting, the most useful payo function is the parity payo . Here every state s ∈ S is colored by an integer c(s) ∈ N, and for a history

s 0 a 0 s 1 a 1 • • • ∈ H, the payo is f parity (s 0 s 1 • • •) = 1 if lim sup n c(s n) is even 0 otherwise .
The parity payo function is important in veri cation, because for every ωregular language there is a parity automaton that accepts it, and typically, conditions that we want to verify are given as ω-regular languages. For example, say we are given an ω-regular language L that describes the correct behavior of the system (in some sense). We use two player stochastic games to model the system: the maximizer is the controller, the minimizer is the environment and we use the parity payo function, with an appropriate coloring of the states, related to the language L that is given. The optimal strategy for the maximizer 2.1 Overview in such a game is the best controller that the system can have (no matter the behavior of the environment) with respect to ful lling the correctness speci ed by L. Using linear programming Courcoubetis and Yannakakis have shown that for MDPs equipped with a parity payo function, there exist optimal strategies that are both stationary and pure [Courcoubetis and Yannakakis, 1998]. This is done by e ectively computing an MDP M from the given MDP M with the parity payo , and identifying a set of distinguished states in M such that "hitting" one of the distinguished states in M corresponds to ful lling the parity condition in M. Furthermore, optimal strategies for M can be transferred to optimal strategies in M. Using linear programming the value2 of the MDP M is calculated, and it is shown that M admits optimal strategies that are stationary and pure.

This result was then generalized to two player stochastic games in [McIver and Morgan, 2002], where the authors build links between an extension of µcalculus called qMµ (that has probabilistic choice) and two player stochastic games with the parity payo . In this quest, they show that both players have optimal strategies that are stationary and pure, thereby proving the positionality of stochastic games equipped with the parity payo function.

Another proof of this theorem can be found in [Chatterjee et al., 2004]. Here the authors use the fact that there exist qualitatively optimal strategies that are both pure and stationary. This is proved in [Chatterjee et al., 2003] by reduction to deterministic parity games.

See also [Zielonka, 2004] for yet another proof of the positionality of two player stochastic parity games. Zielonka gives a straightforward proof by induction on the edges.

An example of stochastic games that are stationary but not as classically studied as the ones above, are one-counter stochastic games. The states are labeled by an element of {-1, 0, +1}, and the objective is termination: the counter reaches value 0. See [Brázdil et al., 2010].

While the results above have very di erent proofs, there has been some recent work on capturing that which is common among (half) positional games. Central to this e ort seem to be two properties: shift-invariance, and being submixing. The former says that the payo does not change because of a nite pre x of the in nite history. In other words, the in nite history can be shifted without a change in the payo . The latter says that given two histories h 1 and h 2 , shu ing them in any way we want into a history h, results in h having a payo of at most the maximum of the payo s of h 1 and h 2 ; i.e. we do not gain more by mixing h 1 and h 2 . Precise de nitions are given in the section that follows.

2

We start by surveying results on deterministic games. Gimbert and Zielonka in [Gimbert and Zielonka, 2004] use the slightly stronger notion of fairly mixing payo function to prove that deterministic two-player games equipped with such payo functions admit stationary optimal strategies (players do not have the option of randomization in such deterministic games). This is achieved by induction on the edges, using the same technique as in [Zielonka, 2004]. Moreover the authors point out that classical payo functions such as parity and mean-payo are fairly mixing. This is further improved upon in [Gimbert and Zielonka, 2005]. Here the authors completely characterize the payo functions for which two-player deterministic games admit stationary optimal strategies. The characterization is done over the preference relations on the set of in nite histories. The su cient and necessary condition requires that the preference relation and its inverse, is monotone and selective. These two conditions roughly correspond respectively to the shift-invariance and being submixing. As a corollary an interesting property follows: if both players have stationary optimal strategies in one-player games, then they also have them in the two player game.

Progressing to stochastic games, Gimbert in [Gimbert, 2007] proves that for one-player stochastic games (MDPs) if the payo function is shift-invariant and submixing, then there exist an optimal strategy that is stationary and pure. The proof is by induction on the edges and an application of a zero-one law from probability theory. We will use similar techniques in this chapter.

For two player stochastic games, as for deterministic games, in [Gimbert and Zielonka, 2009] the authors prove that if both players have stationary and pure optimal strategies in one player games, then the two player game is positional as well. This result is, in a sense, furthered by Zielonka in [Zielonka, 2010] by showing that positionality in one player games can be reduced to the existence of optimal and trivial strategies in multi-armed bandit games. These are nite sequences of Markov chains, where the decision that the player has to make is which one of the Markov chains to evolve. The payo is a function of the in nite sequence of edges that were taken. A trivial strategy in a multi-armed bandit game is a strategy that chooses to always evolve the same Markov chain. As noted by Zielonka, in practice the submixing and shift-invariant condition is easier to check, but there are one player games that can be proven to admit optimal pure and stationary strategies by reduction to questions on multi-armed bandit games, that do not satisfy shift-invariance or are not submixing.

The results above deal with positionality of two player games. But in many cases we care only for one of the players, while the other represents the adversary, the environment, for whom the possession of simple optimal strategies is not of interest. From here, the question of half-positionality is raised, the question of whether the maximizer has an optimal strategy that is both pure and stationary. Then, if both games equipped with the payo function f andf are 2.1 Overview half-positional, they are both positional as well. Moreover there are interesting examples in the literature of games that are half-positional but not positional. For example, in the survey article by Grädel [Grädel, 2004], the Streett-Rabin game is mentioned as an example of a game that is half-positional but not positional. In a Streett-Rabin game (like in a parity game) the payo function maps to {0, 1}, a player either wins or not. This winning condition is given by a set W ⊆ 2 S such that the complement of W, ¬W, is union-closed; the payo function maps a history s 0 s 1 • • • to 1 if and only if the set of states that are seen in nitely often belongs to W.

Another interesting example of games that are half-positional but not positional, are mean-payo co-Büchi games [Chatterjee et al., 2005] 3 . The co-Büchi condition is de ned by a set F ⊆ S, and it is ful lled by a history if and only if every state that appears in nitely often belongs to F. The mean-payo co-Büchi function is a conjunction of the mean payo and the co-Büchi condition. The idea is that it is of interest (especially when modeling e.g. reactive systems) to combine qualitative constraints with quantitative ones.

Going to more general results on half-positional games, Eryk Kopczynski shows in [Kopczyński, 2006] that conditions similar to submixing and shiftinvariant imply half-positionality. Moreover, he proves some closure properties and consequently shows families of half-positional games. More details, and more half-positional games that are not positional can be found in [Kopczyński, 2009]. These results are for deterministic two player games, and for payo functions that take values from {0, 1}.

In this chapter we will report on [Gimbert and Kelmendi, 2014b], where we continue this line of work and prove that in two player stochastic games, if the payo function is shift-invariant and submixing then the game is halfpositional, i.e. player Max has an optimal strategy that is stationary and pure. In this way we further generalize [Gimbert, 2007] from one player games to two player games, and [Kopczyński, 2006] from deterministic to stochastic.

The proof is by induction on the set of actions available for Max, using a 0-1 law. It rests on a technical lemma which says that if the payo function is shift-invariant then both players in the game posses -subgame-perfect strategies for all > 0. The proof of this lemma relies on some well-known results from martingale theory, used to analyze the outcome of the game under a reset strategy.

2.2

Let us give precise de nitions of two player stochastic games with perfect information, and in doing so, x the notation.

The game is played between two players. Player 1 is the player whose objective is to maximize the expected payo , and Player 2 is his enemy. We usually will refer to Player 1 as Max or "the maximizer", whereas Player 2 is referred to as Min or "the minimizer".

If X is a nite set, a probability distribution on X is a function δ : X → [0, 1] such that for all x ∈ X, δ(x) ≥ 0 and ∑ x∈X δ(x) = 1. The set of probability distributions over a set X is denoted by ∆(X).

A game is given as an arena, where the game is played, and a payo function, for what objective the game is played. The arena was introduced informally in the previous section and illustrated with an example, now we give a precise de nition.

De nition 2.1 (Arena).

An arena A is the tuple A = (S 1 , S 2 , A, (A(s)) s∈S , p), where

• S 1 is a nite set of states controlled by Max,

• S 2 is a nite set of states controlled by Min,

• A is a nite set of actions,

• for all s ∈ S, A(s) ⊆ A is the set of actions available in state s, and • p : S × A → ∆(S) a function that gives the transition probabilities, or the edges of the arena.

We assume that for all s ∈ S, A(s) = ∅, and that the function p is de ned only for the pairs (s, a) where a ∈ A(s), i.e. only for the available actions in s.

We denote by S the union S 1 ∪ S 2 .

A few examples of payo functions were given in the previous section, and it was said that the payo function is a map from histories to the reals. In reality, in order to make sure that the games we are dealing with have values, we will impose some restrictions that will allow us to use Martin's second determinacy theorem. Since the aim here is to know in which games we have simple optimal strategies, it is favorable to narrow the scope of payo functions to -at least -the ones that give determined games.

Let X and Y be two nonempty nite sets. By their juxtaposition XY (like SA in the de nition above) we mean the set of all nite sequences (words) xy such that x ∈ X and y ∈ Y.

We denote by X * the set of all nite words with alphabet X, including the empty word; by X + the set of all nite words with alphabet X excluding the empty word; and by X ω the set of all in nite words with alphabet X.

Recall that a function f : (SA) ω → R is Borel-measurable if and only if for all sets X open in R, f -1 (X) is Bore (the σ-algebra of Borel sets is the smallest σ-algebra that contains all the open sets), where (SA) ω is endowed with the product topology. As a standard reference, see [Kechris, 1995].

De nition 2.2 (Payo function for an arena).

Let A be an arena. A payo function for A is any function f : (SA) ω → R, that is bounded and Borel-measurable.

A game is de ned as a tuple of arena and payo function.

De nition 2.3 (Two player stochastic game).

A two player stochastic game with perfect information G, is de ned as the pair G = (A, f) where A is an arena and f is a payo function of A.

Let us give the arena of the game in Figure 1 explicitly.

Example 1. We de ne explicitly a game G based in the arena in gure Figure 1 for the mean payo function. The arena is the tuple A = (S 1 , S 2 , A, (A(s)) s∈S , p), where S 1 = {s 0 , s 2 , s 4 } are the states that are controlled by Max, S 2 = {s 1 , s 3 } states controlled by Min. The set of actions is A = {a, α, β}, and the actions that are available in particular states are given by A(s 0) = A(s 2) = A(s 4) = {a}, A(s 3) = {α} and A(s 1) = {α, β}. The function p is de ned as p(s 0 , a)(s 1) = p(s 0 , a)(s 3) = 1/2, p(s 1 , α)(s 0) = 1, etc. We can give the rewards r(s i) = i, i ∈ {0, . . . , 4}, and f mean the function that uses them. Then the game G = (A, f mean) is a mean payo game based on Figure 1. In this game Max does not have any choice, the only action that is enabled in states controlled by him is the action a, so he is obliged to always play it. On the other hand, Min, has a choice in state s 1 . If he plays action β then the game will loop in state s 4 and states s 2 and s 3 . In the former the mean payo will be exactly 4, in the latter 2 the mean payo will be 5/2. So playing a β after the rst turn will result in a payo of 1 3 • 5 2 + 2 3 • 4 = 21 6 . But on the other hand if Min always plays α when in state s 1 then eventually we will end up in the loop s 2 , s 3 and the amount paid to Max will be 5/2. Of course this is what Min prefers. Usually we will not give examples of games in an explicit manner as above, but rather using only their graphical representation.

Strategies

Strategies are the recipes according to which players make their moves. Since we are dealing with perfect-information games, the strategies of the players are functions that, given a nite history, say which action should be played next. The nite history is a nite sequence in (SA) * S.

De nition 2.4 (Strategies).

A strategy for Max is a function σ

: (SA) * S 1 → ∆(A), such that for all h ∈ (SA) * , s ∈ S 1 , a ∈ A, σ(hs)(a) > 0 =⇒ a ∈ A(s).
Similarly de ned, a strategy for Min is a function τ : (SA) * S 2 → ∆(A).

As we can see, the type of strategies that we are considering are mixed behavioral strategies, that is to say that at every stage of the game a player can mix between the available actions. For example in state s instead of playing either action a 1 or action a 2 , he can mix them, by playing a 1 with 1/2 probability and a 2 with the same probability. Another possibility is to mix strategies themselves. In the beginning of the game, we decide which strategy to follow by ipping a coin, for example. The reason that we do not consider such strategies is that it is a theorem that they are not more powerful than behavioral strategies, in perfect information games. This result is known as Kuhn's theorem. This stops being true without the perfect information hypothesis. See the example of the absent-minded driver in [Piccione and Rubinstein, 1997].

We follow standard notation, by denoting with σ strategies for Max, and by τ strategies for Min, with possible subscripts or superscripts.

As mentioned before, we are interested in a class of particularly simple strategies: the pure and stationary strategies.

De nition 2.5 (Pure and stationary strategies). Let σ be a strategy for Max. We say that σ is pure if for all nite histories

h = s 0 • • • s n ∈ (SA) * S 1 there exists a ∈ A(s n) such that σ(h)(a) = 1.
We say that σ is stationary if for all nite histories h = s 0

• • • s n ∈ (SA) * S 1 , σ(h) = σ(s n).
Similarly, one de nes stationary and pure strategies for Min.

So a strategy is pure if at every stage of the game, it chooses deterministically a single action, i.e. it always maps to Dirac distributions on A, and it is stationary if it is solely a function of the current state, and not of the previous states and actions played in the game. In particular we see that strategies that are both stationary and pure are functions σ : S 1 → A.

Probability measure

In order to talk about the probability of certain events happening, or the expected payo we have to de ne a probability space. Indeed, once an initial state s 0 ∈ S is xed, together with strategies σ, τ belonging to Max and Min respectively, we can construct a probability space whose sample space is (SA) ω , the set of in nite histories. The σ-algebra, is the one that is generated by the cylinders h(SA) ω and h (AS) ω , where h ∈ (SA) * and h ∈ (SA) * S. So a cylinder h(SA) ω is the set of in nite words whose pre x is h.

In this σ-algebra there is a unique probability measure, which we denote by P σ,τ s 0 , such that the following holds for all h = r 0 • • • r n ∈ (SA) * S, t ∈ S and a ∈ at,

P σ,τ s 0 [ha | h] = σ(h)(a) if r n ∈ S 1 , τ(h)(a) if r n ∈ S 2 , P σ,τ s 0 [hat | h] = p(r n , a)(t).
Above, to simplify the notation, for the cylinder ha(SA) ω , we wrote

P σ,τ s 0 [ha] instead of P σ,τ s 0 [ha(SA) ω]
, and we will continue to do so in the sequel. The notation in the left hand sides of the two equations above are standard conditional probabilities. The rst equation says that the probability measure follows the two strategies σ and τ, and the second equation says that it follows the transition probabilities of the arena.

The degenerate case of P σ,τ s 0 [s] for s ∈ S is de ned to be equal to 1 if s = s 0 , otherwise it is equal to 0; so that the probability measure also follows the initial state.

2

We denote by E σ,τ s 0 , the expectation corresponding to the probability measure above.

In order to make precise what we mean when we say the expected payo , or the expected value of a function let us de ne a family of random variables that will be used throughout this chapter. For all n ∈ N de ne the random variables S n , A n to be such that for all outcomes s 0 a 0 s 1 a 1

• • • ∈ (SA) ω , S n (s 0 a 0 s 1 • • •) = s n and A n (s 0 a 0 s 1 • • •) = a n .
The expected value of a random variable is de ned as usual, and the expected value of a function f whose domain is the sample space (SA) ω , denoted by

E σ,τ s 0 [f], is just the expectation of the random variable f (S 0 A 0 S 1 • • •).

Values and optimal strategies

Let G be a game with payo function f ; by de nition f is bounded and Borelmeasurable. The expected payo when starting from state s 0 ∈ S and players play with the respective strategies σ and

τ is E σ,τ s 0 [f].
This is what Max wants to maximize (and Min to minimize). Let τ be some strategy for Min, then the best response to τ is some strategy σ τ for Max such that for all other strategies σ,

E σ τ ,τ s 0 [f] ≥ E σ,τ s 0 [f].
The expected payo under the best response for τ is the most that Max can win, given that Min has chosen τ.

The best response does not always exist, but in any case it can be approximated, by better and better responses converging to sup σ E σ,τ s 0 [f]. Min, true to his name, will want to minimize, hence inf τ sup σ E σ,τ s 0 [f], called the minmax of the game G is of interest. Symmetrically the maxmin of the game is de ned to be sup

σ inf τ E σ,τ s 0 [f].
Naturally knowing what strategy your opponent will choose before choosing your own is advantageous, so it is easy to prove that

inf τ sup σ E σ,τ s 0 [f] ≥ sup σ inf τ E σ,τ s 0 [f].
In many cases the inverse inequality holds as well, i.e. , minmax is equal to maxmin providing an equilibrium point. Such minimax theorems are central in game theory, in fact, the proof of the minimax theorem on matrix games by Von Neumann is the genesis of game theory.

In our case minmax is equal to maxmin as well, this is a corollary of another celebrated result.

Theorem 2.6 (Martin's second determinacy theorem [Martin, 1998]). Let G be a game with payo function f (so f is Borel-measurable and bounded) then inf

τ sup σ E σ,τ s 0 [f] = sup σ inf τ E σ,τ s 0 [f].
This quantity is called the value of the game.

De nition 2.7 (Value of the game).

Let G be a game with payo function f and s ∈ S. The value of the state s is de ned as

val(G, s) = inf τ sup σ E σ,τ s 0 [f] = sup σ inf τ E σ,τ s 0 [f].
When the game G is clear from the context, we omit it and write only val(s).

Intuitively the value of the game is the quantity that either of the players can win at most, given that their enemy plays his best strategy. So it is related to the notion of optimal strategies. De nition 2.8 (-optimal strategies). Let > 0 and σ a strategy for Max. We say that σ is -optimal if and only if for all states s ∈ S and all strategies τ for Min,

E σ,τ s [f] ≥ val(s) -.
Symmetrically de ne -optimal strategies for Min. We say that a strategy is optimal if it is 0-optimal.

Note the di erence between the best response and an optimal strategy. If Max has an optimal strategy σ # , and Min plays with a particularly bad strategy τ, then σ # in general is not the best response to τ. Example 2. Let ¬F be the closure under union of {{A, a}, {B, b}, {A, B, a, b}, {D}}. For an in nite history h ∈ (SA) ω de ne In f (h) to be the set of states that are seen in nitely often. The Rabin-Strett payo function f rs is de ned as

f rs (h) = 1 if In f (h) ∈ F 0 otherwise.
Let G be the game with the arena depicted in the following gure and payo f rs .

s 0 s 1 D 1 2 1 2 B A s 2 b a d α 2 3 1 3 α β α β β Figure 2: A Streett-Rabin game
Player Min prefers that the set of states that are seen in nitely often to be in ¬F. Moreover observe that ¬F is by de nition closed under union.

Consider the strategy for Min that plays as follows. When the game is in state s 2 , if in the previous turn it was in A play α, if it was in B play β. This ensures that whatever Max plays in the upper part of the game, the set of states that are seen in nitely often will not be an element of F. So in this part of the game Min can win, no matter the strategy of Max. Therefore we can conclude that val(s 1) = 0 and the same for the values of A, a, B, b and s 2 ; since this is a strongly connected component of the arena.

In state D, Max has the choice between playing β and going to the strongly connected component above, where Min wins, or repeatedly playing α and almost surely landing on the state d. Of course the latter is more preferable, especially since {d} ∈ F. In this part of the arena Min does not control anything (state d can only self-loop) so we can conclude that val(D) = val(d) = 1. Consequently, since s 0 has a single action that takes the game to either state s 1 or D with equal probability, and it has no incoming edge, we conclude that val(s 0) = 1/2.

A stationary and pure strategy that is optimal for Max is the strategy σ dened as σ(s 1) = σ(D) = α, i.e. always play action α. With this strategy Max makes sure that the payo is at least 1/2. Min has a simple strategy as a best response to σ -the stationary and pure strategy τ that simply plays τ(s 2) = α. Nevertheless τ is not an optimal strategy; Max can beat it with a strategy σ that plays σ (s 1) = β, getting a payo 1.

We observe that while Max indeed has an optimal strategy that is pure and stationary, that is not the case for Min. In order for Min to win in the upper part of the arena, he needs to remember the last state seen before making his decision. So this is an example of a half-positional game that is not positional.

In the example above we see that there might be more than one optimal strategy that is stationary and pure, and that such a strategy is not always the best response, but it makes sure that the player that is playing it, receives at least the value as payo .

Martingales

Consider the stochastic process (sequence of random variables) (val(S n)) n∈N , if Max plays only optimal actions then this process on average increases, a stochastic process that increases in this way is called a supermartingale. Martingales are a basic notion in probability theory of a type of a stochastic process whose expected value, knowing everything up to a certain date, is equal to the value of the process at that same date. In this section we will recall the de nition of martingales and prove a lemma which we will use later.

2 De nition 2.9 (Martingale and stopping time). In a ltered probability space with some ltration (F n) n∈N a (discrete-time) martingale is a stochastic process (X n) n∈N such that for all n ∈ N,

E[|X n |] < ∞, E[X n+1 | F 1 , . . . , F n] = X n . A stopping time with respect to a ltration (F n) n∈N is a random variable T taking values in N ∪ {∞} such that for all t ∈ N the event T ≤ t is in F t .
To get the de nition of a supermartingale and submartingale replace in the de nition above the equality in the second equation by ≥ and ≤ respectively.

The following two theorems can be found in any textbook on probability or measure theory, see e.g. [Williams, 1991].

Theorem 2.10 (Lebesgue's dominated convergence theorem). Let (f n) n∈N be a sequence of real-valued measurable functions with respect to the measure space (S, Σ, µ). Assume that (f n) converges pointwise to some function f and that there exists an integrable function g such that for all n ∈ N and x ∈ S, | f n (x)| ≤ g(x), then f is integrable as well and lim

n→∞ S f n dµ = S f dµ. Above by a function f is integrable we mean S | f | dµ < ∞.
Theorem 2.11 (Doob's martingale convergence theorem).

Let (X n) n∈N be a martingale. Suppose that there exists some K ∈ R such that for all h in the sample space and n ∈ N, |X n (h)| ≤ K, then the point-wise limit

X(h) = lim n→∞ X n (h)
exists and is nite for all outcomes h.

Two Player Stochastic Games

This theorem also holds for sub and supermartingales.

For the sake of clarity, the theorems above, are weaker versions that are easier to state, but su cient for our purposes.

The lemma that follows deals with a martingale whose value we want to know at some time T that depends on the outcome, i.e. it is a stopping time.

Lemma 2.12. Let T be a stopping time with respect to the natural ltration induced by the sequence (S n) n∈N , and (X n) n∈N a martingale. Assume that there exists some K ∈ R such that for all h in the sample space and n ∈ N, |X n (h)| ≤ K. We de ne the random variable X T as

X T = X n if T is nite and equal to n, lim n→∞ X n if T = ∞. Then E[X T] = E[X 0].
Proof.

First we show that X T is well-de ned. Indeed this follows immediately from Theorem 2.11, i.e. the limit lim n→∞ X n exists in the de nition of X T . We de ne another process: the stopped process (Y n) n∈N as

Y n = X min(T,n) ,
for all n ∈ N. An immediate observation is that (Y n) n∈N is a martingale as well, and that it has the bound K. Applying Theorem 2.11 to (Y n) n∈N , we conclude that it converges. From the de nition of X T , we have that lim n→∞ Y n = X T . Now applying Theorem 2.10 to (Y n) n∈N and X T , we have

lim n→∞ E[Y n] = E[X T]. (1) Since (Y n) n∈N is a martingale we can prove that E[Y n] = E[Y 0] = E[X 0].
This together with (1) concludes the proof.

If we replace martingale by supermartingale or submartingale, the lemma above still holds with the equality replaced by the appropriate inequality.

2.3

We formally introduced what a payo function for an arena is in De nition 2.2. In this section we will give the de nitions of shift-invariance and being submixing, the two conditions on payo functions whose conjunction is su cient for half-positionality.

In order to simplify the notation we decouple the payo function from the arena in the following way. Let C be a set of colors. Any bounded and Borelmeasurable function f : C ω → R is called a payo function. Given an arena A, we color it by a function c : SA → C, and extend the coloring to in nite histories c : (SA) ω → C ω in the obvious way. We equip the arena A with the payo function

f in A to form the game G = (A, f) where f = f • c.
A shift-invariant payo function is one that does not change when adding some nite pre x.

De nition 2.13 (Shift-invariant payo function). A payo function

f : C ω → R is shift-invariant if for all p ∈ C * and h ∈ C ω , f (ph) = f (h).
A similar (but sometimes not equivalent) property is found in the literature under the name of tail-measurability. All the payo functions that we have seen before, except the discount payo , are shift-invariant. This is fairly trivial to prove, as is usually the case for shift-invariance.

The submixing property roughly says that given c 1 , c 2 ∈ C ω , we cannot gain a larger payo by shu ing c 1 and c 2 . We make this formal.

Let

h ∈ C ω , a factorization of h is a sequence of nite words w 1 , w 2 , . . . ∈ C * , such that h = w 1 w 2 • • • . De nition 2.14 (Shu le). Let h, h 1 , h 2 ∈ C ω .
We say that h is a shu e of h 1 and h 2 , if there exist factorizations w 1 , w 2 , . . . and v 1 , v 2 , . . . of h 1 and h 2 respectively such that

h = w 1 v 1 w 2 v 2 • • • .
Now we can de ne the submixing property.

Existence of -subgame-perfect Equilibria

De nition 2.15 (Submixing payo function).

A payo function f is said to be submixing if for all h, h 1 , h 2 ∈ C ω such that h is a shu e of h 1 and h 2 ,

f (h) ≤ max(f (h 1), f (h 2)).
The main theorem of this chapter says that if the payo function of the game is both shift-invariant and submixing then the game is half-positional. Using this theorem we will be able to recover a few of the classical results on positionality and further provide examples of games that are half-positional.

Example 3.

Consider the Streett-Rabin payo function f rs induced by the winning set F ⊂ 2 S . Recall that by de nition ¬F is closed under union and the payo function is given as

f rs (h) = 1 if In f (h) ∈ F 0 otherwise.
We can imagine that the set of colors is S and the domain of f rs is S ω . Since the payo is de ned in terms of In f , the set of states that are seen in nitely often we see immediately that it is shift-invariant.

In order to show that it is submixing as well, let h, h 1 , h 2 ∈ S ω be such that h is a shu e of h 1 and h 2 . With the purpose of reaching a contradiction assume that f (h) = 1 and f (h 1) = f (h 2) = 0. From the de nition it follows that In f (h 1) ∈ ¬F, and

In f (h 2) ∈ ¬F but In f (h) = In f (h 1) ∪ In f (h 2) ∈ F;
this contradicts the hypothesis that ¬F is closed under union.

2.4

In this section we will prove a technical lemma that has to do with existence of -subgame-perfect strategies. These are strategies that are not only -optimal from the beginning of the play, but for any state that is visited throughout the history, they remain -optimal with respect to that state. That is to say that, when playing with an -subgame-perfect strategy it never happens that when we reach some state of the game that is more lucrative than the state from which we have started, and we do not take advantage.

In a sense, -subgame-perfect strategies are -optimal strategies that take advantage of non-optimal decisions that the enemy makes, in this way they are strategies that are -optimal but also get close to being best responses. We rst introduce the notion of shifted function with domain (SA) ω . Let h = s 0 • • • s n ∈ (SA) * S be a nite history and f some function whose domain is the set of in nite histories (the sample space) (SA) ω . The function f shifted by the nite history h, denoted by f [h] is de ned by

f [h](t 0 b 0 t 1 b 1 • • •) = f (s 0 • • • t 0 b 0 • • •) if s n = t 0 , f (t 0 b 0 • • •) otherwise.
So f [h] is the same as f except that it inserts h as the pre x of its parameter.

De nition 2.16 (-subgame-perfect strategy).

Let σ be a strategy for Max and > 0. We say that σ is -subgame

-perfect if for all h = s 0 • • • s n ∈ S(AS) * , inf τ E σ[h],τ s n [f [h]] ≥ val(s n) -.
-subgame-perfect strategies for Min are de ned symmetrically.

In this section we will prove the following lemma.

Lemma 2.17 ([Gimbert and Kelmendi, 2014b;Mashiah-Yaakovi, 2014]).

Let f be a shift-invariant payo function, in a game G. Then for all > 0 both players have -subgame-perfect strategies in G.

In parallel to our work, a simpler proof of Lemma 2.17 was given in [Mashiah-Yaakovi, 2014]. While it is stated that there are -subgame-perfect strategies for all payo functions that are Borel-measurable and bounded; the notion ofsubgame-perfect strategy used in [Mashiah-Yaakovi, 2014] is slightly di erent from the one we have here. Indeed there need not exist -subgame-perfect strategies if the payo function is not shift-invariant as seen in the following example. Consider the one player arena in Figure 3 equipped with the payo function f that is not shift-invariant, de ned as follows. It takes as input S ω where S = {s 0 , s 1 , s 2 , x, y} and maps to {0, 1 2 , 1}. It returns 1 2 for the sequence s 0 s 1 x ω and 1 for the sequence s 1 y ω , for all other inputs it returns 0. We see that val(s 0) = 1 4 with the optimal strategy that plays a. Similarly val(s 1) = 1 with the strategy that plays b. But no -subgame-perfect strategy exists with 0 < < 1/2. To see this, consider the history h = s 0 as 1 . An -subgame-perfect strategy σ ensures

E σ[h] s 1 [f [h]] ≥ val(s 1) -> 1 2 , which implies that E σ s 0 [f] > 1 4 . This is not possible since val(s 0) = 1 4 .
Before moving on to the technical details of the proof let us give a rough idea of how it goes.

Proof Idea (Lemma 2.17). Martin's determinacy theorem (Theorem 2.6) implies that there exist -optimal strategies, but a strategy that is -optimal need not be -subgame-perfect. In particular imagine a game with payo function whose lower bound is b and s some state with val(s) = b. Here Max can choose any strategy to be σ[s] and still remain optimal.

We will take an -optimal strategy σ, and detect when playing with σ is notsubgame-perfect, i.e. when there exist some h = s 0 • • • s n such that σ[h] is not -optimal from s n . We will call this a weakness, and simply reset the memory whenever we detect it. We do this because σ is -optimal from s n even though σ[h] might not be.

If the number of memory resets that we have to perform is nite then the reset strategy is -subgame-perfect and we are done. What then remains to show is that almost surely the number of resets that is performed is nite. This 2 can be shown by choosing particular -optimal strategies, namely ones that only play actions that preserve the value.

Let G = (A, f) be some game whose payo function is shift-invariant. For the sake of clarity we x here for the rest of this section some > 0 and prove that there exists 2 -subgame-perfect strategies. We will do the proof for Max, but symmetrically one can prove the lemma for Min as well.

Weaknesses and the reset strategy

Let σ be a strategy for Max. If after some nite history σ is not 2 -optimal in the subgame, we say that the history is a σ-weakness.

De nition 2.18 (σ-weakness).

Let σ be a strategy for Max. A nite history h ∈

S(AS) * is a σ-weakness if σ[h] is not 2 -optimal.
Observe that if some strategy σ has no σ-weaknesses then it is 2 -subgameperfect. Given a strategy σ and h ∈ (SA) ω , we say that a weakness occurs in h if there exists some nite pre x of h that is a σ-weakness.

We will factorize h ∈ (SA) ω according to its σ-weaknesses in the following way. Let h = s 0 a 0 • • • , and take h 0 = s 0 a 0 s 1 • • • s n to be the shortest pre x of h that is a σ-weakness. Take h 1 to be the shortest pre x of s n a n • • • that is a σ-weakness and so on. In this way we construct a possibly in nite sequence of nite histories4 h 0 , h 1 , . . . such that for all n ∈ N for which h n exists we have

• if h n is nite then it is a σ-weakness, • if h n is nite then no strict pre x of h n is a σ-weakness, • if h n is in nite then no pre x of h n is a σ-weakness and h = h 0 • • • h n .
The reset strategy will reset its memory whenever it detects a weakness, in particular it will reset it after reading each of the factors h 0 , h 1 , The payo is the Büchi payo , which is a special case of f parity ; Max wins if and only if the state F is seen in nitely often. We observe that the value of s 2 and F is 1 and the value of every other state is 0. Consider the strategy σ for Max that plays as follows. If we have seen s 0 in the past when we are in state s 2 play b, otherwise play a. While σ is not a particularly intelligent strategy, it is optimal. When the game starts from s 0 and Min plays a in s 1 , σ does not take advantage of this mistake, but in any case the value of s 0 is 0 so σ remains optimal. But it is not -subgame-perfect, for any < 1. In fact the nite history s 0 as 1 as 2 is a σ-weakness. If at this stage we reset the memory of σ, it will not remember that the state s 0 has been seen and play as if the game has started from s 2 and consequently make the good choice of playing a. This induces the in nite history s 0 as 1 as 2 (aF) ω , which is factorized as above into h 0 = s 0 as 1 s 2 and h 1 = s 2 (aF) ω .

Existence of -subgame-perfect Equilibria

We give the de nition of the date of weakness, which serves for the presentation of the proofs that will follow.

δ σ (s 0 • • • s n) = n if h is a σ-weakness, δ σ (s 0 • • • s n-1) otherwise,
where

δ σ (s 0) = 0 and h = s δ σ (s 0 •••s n-1) • • • s n . We say that W σ (s 0 • • • s n) is true if and only if δ σ (s 0 • • • s n) = n. W σ (s 0 • • • s n) can be read as s 0 • • • s n is a σ-weakness.
In particular, with regard to the factorization of h = s 0 a 0 • • • into h 0 , h 1 , • • • , the function δ σ , returns the dates n 0 , n 1 , n 2 , i.e. for any strict pre x of h 0 it returns 0, for h 0 itself and every strict pre x of h 0 h 1 returns n 0 , for h 0 h 1 itself returns n 1 and so on. Intuitively δ σ gives the date of the last σ-weakness in the nite history. Let us use it to de ne the reset strategy.

De nition 2.20 (Reset strategy).

Let σ be a strategy for Max. We de ne σ, the reset strategy based on σ as

σ(s 0 • • • s n) = σ(s δ σ (s 0 •••s n) • • • s n).
So the strategy σ plays like the strategy σ except that it ignores the part of the history that comes before the last σ-weakness.

Locally-optimal strategies

We will base the reset strategy in a particular class of -optimal strategies, the locally-optimal strategies. These are strategies that at every stage make decisions that do not decrease the value (from Max's point of view). The reason why we consider this subclass of strategies is that there exist -optimal strategies (that are not locally-optimal) for which the reset strategy has to reset in nitely many times with positive probability. This is not the case for locally-optimal strategies.

De nition 2.21 (Value-preserving action and locally-optimal strategy). An action a ∈ A(s) is value-preserving (in s) if and only if

val(s) = ∑ t∈S p(s, a)(t)val(t).
In case it is not value-preserving we say that it is value-changing.

A strategy that plays only value-preserving actions is called locallyoptimal.

Observe that a locally-optimal strategy is not necessarily optimal. Imagine a one-player game with two states s 0 and s 1 with action a in s 0 we loop, and with action b we go to state s 1 . The game is won if and only if we see the state s 1 in nitely often. Both states have value 1 and in s 0 both actions are value-preserving, so the strategy that keeps playing a and looping in state s 0 is locally-optimal but not optimal.

On the other hand, an optimal strategy must be locally-optimal, otherwise the opponent can take advantage of the mistake and get a larger payo .

When a player plays with a locally-optimal strategy, he imposes some regularity on the stochastic process (val(S n)) n∈N . In particular if Max (Min) plays with a locally-optimal strategy, then the process (val(S n)) n∈N is a supermartingale (submartingale). If both Max and Min play with a locally-optimal strategy then the process is a martingale.

Proposition 2.22. Let σ,τ be strategies for Max and Min and s 0 ∈ S. If σ is locally-optimal then (val(S n)) n∈N is a supermartingale, for the probability measure P σ,τ s 0 . If τ is locally-optimal then (val(S n)) n∈N is a submartingale.

Proof.

We will consider the probability space that is ltered by the ltration induced by the process (S n) n∈N . Since the payo function f is bounded, the expected value of S n is bounded as well. From the de nitions we have that the expected value at date n + 1,

E σ,τ s 0 [val(S n+1) | S 0 , . . . , S n] 2 is equal to ∑ a∈A(S n) σ(S 0 • • • S n)(a) ∑ t∈S p(S n , a)(t) • val(t) if S n ∈ S 1 , ∑ a∈A(S n) τ(S 0 • • • S n)(a) ∑ t∈S p(S n , a)(t) • val(t) if S n ∈ S 2 .
Since σ is locally-optimal, it follows that

E σ,τ s 0 [val(S n+1) | S 0 , . . . , S n] ≥ val(S n
). The process (val(S n)) n∈N is a supermartingale. Symmetrically we can prove that if τ is locally-optimal, the process of values is a submartingale; if both σ and τ are locally-optimal then (val(S n)) n∈N is a martingale.

We continue proving properties of the game when Max plays with a locallyoptimal strategy. One interesting property, is that if one of the players plays with a locally-optimal strategy, he eventually forces the opponent to do the same. While this might seem counter-intuitive in a sense, because playing with a good strategy is forcing the opponent to also play with a somewhat good strategy, it becomes clearer if we think of it as follows. Suppose that it is Max that plays with a locally-optimal strategy. At each stage that Min plays a valuechanging action, he damages his payo , and since Max is playing with locallyoptimal strategy he takes advantage of this. But it is not possible to keep taking advantage and increasing the payo for Max and decreasing it for Min since the payo function is bounded and we have a nite arena.

In fact we will prove a stronger property: if Max plays with a locally-optimal strategy then both players will eventually play only stable actions.

De nition 2.23 (Stable actions).

Let s ∈ S and a ∈ A(s). We say that a is stable (in s) if for all t ∈ S,

p(s, a)(t) > 0 =⇒ val(s) = val(t)
A stable action is necessarily value-preserving. On the other hand a valuechanging action cannot be stable. So being stable is strictly stronger than being value-preserving.

Lemma 2.24. Let σ and τ be strategies for Max and Min respectively, and s 0 ∈ S. If σ is locally-optimal then

P σ,τ s 0 [{∃n, ∀k ≥ n, A n is stable}] = 1.

Existence of -subgame-perfect Equilibria

Proof.

In case every action is stable, we are done, therefore assume that there exists s ∈ S and a ∈ A(s) such that a is not stable in s. Let t ∈ S be such that p(s, a)(t) > 0 and val(s) = val(t). Denote the event "we see action a in nitely often" by E sa de ned formally as

E sa = {∀m, ∃n ≥ m, S n = s ∧ A n = a}.
We will prove that P σ,τ

s 0 [E sa] = 0 by contradiction. Assume that P σ,τ s 0 [E sa] > 0. It follows that P σ,τ s 0 [E sat]
> 0 where E sat is the event de ned as

E sat = {∀m, ∃n ≥ m, S n = s ∧ A n = a ∧ S n+1 = t}.
From here we conclude that there is nonzero probability that for in nitely many n ∈ N,

|val(S n) -val(S n+1)| ≥ val(t) -val(s) > 0.
In other words, there is some nonzero probability that the process (val(S n)) n∈N does not converge. But having σ locally-optimal, from Proposition 2.22 the process (val(S n)) n∈N is a supermartingale, and Doob's theorem (Theorem 2.11) implies that it converges almost surely. Hence the assumption that P σ,τ s 0 [E sa] > 0 must be false.

By weakening the stability of the action to it being value-preserving we get the following corollary.

Corollary 2.25. Let σ and τ be strategies for Max and Min respectively, and s 0 ∈ S. If σ is locally-optimal then

P σ,τ s 0 [{∃n, ∀k ≥ n, A n is value-preserving}] = 1.
The proof is completely symmetric if we suppose that τ is locally-optimal.

Another useful property of the game when Max plays with a locally-optimal strategy is that if we stop the process (val(S n)) n∈N at some stopping time, the value will be larger then the value of the initial state. Proof.

Immediately follows from Proposition 2.22 and Lemma 2.12.

We have shown a few desirable properties of the game under the hypothesis that Max plays with a locally-optimal strategy. Alas, as mentioned before, a locally-optimal strategy may be far from optimal. Nevertheless there exist strategies that are -optimal and at the same time locally-optimal. This is the following lemma.

Lemma 2.27. Let µ > 0 and a ∈ A(s), a value-changing action in state s ∈ S 1 . There exists a µ-optimal strategy for Max that never plays action a.

Proof.

Let G be a game that is identical to G except that a ∈ A(s) -action a is not enabled in state s in the game G .5 Since it is an action of Max that is missing in G we have ∀t ∈ S, val(G, t) ≥ val(G , t).

We will prove the inverse inequality, i.e.

∀t ∈ S, val(G , t) ≥ val (G, t).

(2)

We split this in two cases, for t = s and for t = s.

• Case 1. We prove val(G , s) ≥ val (G, s).

Let d = val(G, s) -∑ t∈S p(s, a)(t) • val(G, t) > 0,
µ > 0, and τ a strategy for Min that follows a strategy τ which is µoptimal in G as long as Max does not play action a in s, and if he does, τ switches de nitely to another strategy τ that is d 2 -optimal in G. De ne

E opt = {∀n, S n = s =⇒ A n = a},
the event that a is never played. We will prove that for all σ and t ∈ S,

E σ,τ t [f | E opt] ≤ val(G , t) + µ (3) E σ,τ t [f | ¬E opt] ≤ val(G, s) -d + d 2 . (4
)
For (3), observe that in in nite histories of E opt the game is played solely in G , therefore, even though σ is a strategy in G it has the same behavior as the strategy σ in the game G de ned as

σ (h)(b) = P σ,τ s 0 [hb | h ∩ E opt], for all h = s 0 • • • s n ∈ S(AS) * , and b ∈ A(s n).
From here, since τ never has to switch to τ we have

E σ,τ t [f | E opt] = E σ ,τ t [f],
where the rst expectation is in the game G and the second is in the game G . Now (3) follows from τ being µ-optimal.

When Max plays the action a, τ switches to the strategy that is d 2 -optimal in G, and the value decreases by d because of the choice of the valuechanging action a, hence (4). With (3) and (4) we have shown that for all strategies σ for Max, t ∈ S and µ > 0,

E σ,τ t [f] ≤ max(val(G , t) + µ, val(G, s) - d 2
).

Taking t = s and the supremum over strategies σ, from the inequality above we conclude val(G , s) ≥ val(G, s).

• Case 2. We prove that for all t ∈ S di erent from s, val(G , t) ≥ val (G, t).

Let E σ = {∃n, S n = s ∧ σ(S 0 • • • S n)(a) > 0},
the event that at some point the state s is reached and the strategy σ wants to play action a with some nonzero probability. Let µ > 0, and for all strategies σ de ne σ s to be the strategy in G that plays according to σ as long as the latter is not about to play action a with some nonzero probability, in which case it switches to the strategy σ that is µ-optimal in G .

De ne τ to be the strategy that follows some strategy τ that is µ-optimal in G as long as Max does not play the action a from s, in which case τ switches to a strategy τ that is µ-optimal in G.

For all σ, since the pairs of strategies σ, τ play the same as σ s , τ respectively up to the date n in the event E σ , we can write

c σ = P σ,τ t [E σ] = P σ s ,τ t [E σ].
From the de nition of τ, σ s and Case 1, for all strategies σ we have,

E σ,τ t [f | E σ] ≤ val(G, s) + µ = val(G , s) + µ E σ s ,τ t [f | E σ] ≥ val(G , s) -µ.
Whose combination yields

E σ,τ t [f | E σ] ≤ E σ s ,τ t [f | E σ] + 2µ. (5)
To conclude we decompose E σ,τ t [f] on the event E σ and make the following observation, for all strategies σ,

c σ E σ,τ t [f | E σ] + (1 -c σ)E σ,τ t [f | ¬E σ] (6) ≤ c σ (E σ s ,τ t [f | E σ] + 2µ) + (1 -c σ)E σ s ,τ t [f | ¬E σ] (7) = E σ s ,τ t [f] + 2µc σ (8) = E σ s ,τ t [f] + 2µc σ ≤ val(G , t) + µ(2c σ + 1). (9)
Here (7) comes from (5) and because σ and σ s coincide in the in nite histories of ¬E σ , and (9) because σ s never plays the action a, hence τ plays according to τ that is µ-optimal in the game G . Taking the supremum over all σ nishes this case.

We have proved that for all t ∈ S, val(G, t) = val(G , t), so there is a µoptimal strategy that never plays action a.

From this lemma, by induction on the value-changing actions follows this corollary.

Corollary 2.28. For all µ > 0, both players have µ-optimal strategies that are locallyoptimal.

Finitely many resets

The desirable properties that we have gathered in the previous section will now be used to demonstrate that playing with the reset strategy that is based on a strategy that is both -optimal and locally-optimal ensures that only nitely many weaknesses occur, almost surely. The reset strategy resets the memory only when a weakness occurs, therefore only nitely many weaknesses occur, almost surely.

Proving this will require a couple of steps.

• First, we will show that for σ that is -optimal and τ locally-optimal, there is nonzero probability (for small enough) that no σ-weakness occurs.

• Second, when playing with the reset strategy σ based on some -optimal strategy σ that is locally-optimal, against all τ, it is ensured that there exists n such that the probability that there are two σ-weakness after date6 n is bounded away from 1. The intermediate step is to demonstrate the same statement for strategies τ n . These are strategies that play according to τ up to a date n, after which they only play value-preserving actions.

For the sake of clarity we will use English to refer to certain events. Let us formally state their de nitions in terms of De nition 2.19. The event there is no σ-weakness after date n is de ned as

{∀m > n, ¬W σ (S 0 • • • S m)}.
The event there are two σ-weaknesses after date n is de ned as

{∃m, m , m > m > n, W σ (S 0 • • • S m) ∧ W σ (S 0 • • • S m)}.
For n ∈ N and s 0 • • • s m ∈ S(AS) * , de ne the boolean-valued function wa7 wa(n,

s 0 • • • s m) = (m > n) ∧ (W σ (s 0 • • • s m)) ∧ (δ σ (s 0 • • • s m-1) ≤ n),
that characterizes nite histories that are the rst weakness after the date n.

Let us start with the rst step.

Lemma 2.29.

Let σ be an -optimal strategy for Max. There exists µ() > 0 such that for all s 0 ∈ S and locally-optimal strategies τ for Min,

P σ,τ s 0 [{∃n, S 0 • • • S n is a σ-weakness}] ≤ 1 -µ().
2

We will prove this lemma by contradiction. For a small enough , if we assume that almost surely there will be a σ-weakness, although σ is -optimal, we can construct a strategy for Min that takes advantage of this weakness resulting in a less then -optimal performance from σ.

Proof.

De ne the random variable F σ (the date of the rst σ-weakness) as

F σ = min{n ∈ N | W σ (S 0 • • • S n)},
with the convention that min ∅ = ∞. Let τ be a strategy for Min, s 0 ∈ S, M and m the upper and lower bound of the payo function f respectively. De ne τ to be the strategy that plays identically to τ as long as no weakness occurs, and if it does it switches de nitely to a 2 -response τ .

Let us explain what we mean by 2 -response. Suppose that W σ (s 0 • • • s n) and that no strict pre x of s 0 • • • s n is a σ-weakness. By de nition of the σ-weakness, we have

inf τ E σ[s 0 •••s n],τ s n f [s 0 • • • s n] < val(s n) -2 ,
and τ is chosen such that

E σ[s 0 •••s n],τ s n f [s 0 • • • s n] ≤ val(s n) -2 + 2 . (10
)
Since τ and τ coincide up to the date of the rst weakness, we write

c σ = P σ,τ s 0 [{F σ = ∞}] = P σ,τ s 0 [{F σ = ∞}].
Decomposing on the events {F σ = ∞} and {F σ < ∞}, we have

E σ,τ s 0 [f] = (1 -c σ)E σ,τ s 0 [f | F σ < ∞] + c σ E σ,τ s 0 [f | F σ = ∞] ≤ (1 -c σ)E σ,τ s 0 [f | F σ < ∞] + c σ M.
Combining the above with the fact that σ is -optimal we have

val(s) -≤ (1 -c σ)E σ,τ s 0 [f | F σ < ∞] + c σ M. (11)
From the de nition of the strategies τ and τ , and the assumption that f is shift-invariant it follows that

E σ,τ s 0 [f | F σ < ∞] = ∑ wa(0,s 0 •••s n) P σ,τ s 0 [s 0 • • • s n | F σ < ∞]E σ[s 0 •••s n],τ s n [f] ≤ ∑ wa(0,s 0 •••s n) P σ,τ s 0 [s 0 • • • s n | F σ < ∞](val(s n) -2 + 2) = E σ,τ s 0 [val(S F σ) | F σ < ∞] - 3 2 .
The sums above are over nite histories s 0 • • • s n ∈ S(AS) * , for which wa(s 0 • • • s n) holds. Plugging the above into (11) we have

val(s) - ≤ (1 -c σ)E σ,τ s 0 [val(S F σ) | F σ < ∞] - 3 2 (1 -c σ) + c σ M (12) = E σ,τ s 0 [val(S F σ)] + c σ (M -E σ,τ s 0 [val(S F σ) | F σ = ∞] (13) - 3 2 (1 -c σ)) ≤ val(s 0) + c σ (M -E σ,τ s 0 [val(S F σ) | F σ = ∞]) - 3 2 (1 -c σ) (14) ≤ val(s 0) + c σ (M -m) - 3 2 (1 -c σ). (15
)
We have (13) from the decomposition of E σ,τ s 0 [val(S F σ)] on the event {F σ < ∞}. While (14) comes from the following. The random variable F σ is a stopping time with respect to the ltration that is induced by the process (S n) n∈N , and since the strategy τ plays only value-preserving actions up to the rst weakness the process (val(S n)) n∈N is a submartingale. Applying Lemma 2.12 we have E σ,τ s 0 [val(S F σ)] ≤ val(s 0). Now a uniform bound that does not depend on the choice of the strategy τ follows

µ() = 2(M -m + 3 2) ≤ c σ .
Now we will prove something similar but for the reset strategy σ that is based on some -optimal and locally-optimal strategy σ. In fact we will prove that there exists some n ∈ N such that there is some nonzero probability that there do not exist two σ-weaknesses after date n. Even though we are playing with the reset strategy, we still care about σ-weaknesses (in place of say σweaknesses) because they tell us when the reset strategy resets its memory.

We will prove the above, rst for a class of strategies of Min that after some date are sure to play value-preserving actions, then lift this to all strategies of Min, using the fact that if one of the players plays with a locally-optimal strategy then he forces the other one to do so as well.

First let us insert a small proposition. By 1 E , denote the indicator function for the event E . 2 Proposition 2.30. Let E be an event, and σ 1 , σ 2 two strategies for Max, such that for all pre xes p of an in nite history in E , σ 1 (p) = σ 2 (p). For all payo functions f , strategies τ and s 0 ∈ S

E σ 1 ,τ s 0 [f • 1 E] = E σ 2 ,τ s 0 [f • 1 E].
Proof.

It is immediate if f is an indicator function itself. The class of functions for which the above holds, is closed under linear combinations and limits, therefore we can use the monotone class theorem to nish the proof. For a proof of the monotone class theorem see e.g. [Durrett, 2010].

For a state s ∈ S denote by

vp(s) ⊆ A(s),
the set of value-preserving actions in s. For a nite set X denote by U (X), the uniform distribution on X.

Let τ be a strategy for Min. For all n ∈ N we de ne τ n to be the strategy that after the date n plays only value-preserving actions, i.e. for all

s 0 • • • s m ∈ S(AS) * , s m ∈ S 2 , τ n (s 0 • • • s m) =        τ(s 0 • • • s m) if m < n or ∀a, τ(s 0 • • • s m)(a) > 0 =⇒ (a ∈ vp(s m)) U (vp(s m)) otherwise.
In the strategy τ n , the strategy τ is followed in the rst n turns. After the rst n turns, if τ plays a value-preserving action, then so does τ n , otherwise it plays some random value preserving action.

Lemma 2.31. Let σ and τ be two strategies, with σ being -optimal and locally-optimal. There exists µ() > 0 such that for all n ∈ N and s 0 ∈ S, P σ,τ n s 0 [{there are two σ-weaknesses after the date n}] ≤ 1µ().

Make note that the statement of the lemma above is about the reset strategy σ, instead of σ.

Proof. We will de ne two random variables. For n ∈ N, let

F n = min{m > n | W (S 0 • • • S m)},
with the convention min ∅ = ∞. This is the rst weakness that occurs strictly after the date n. De ne F 2 n = F F n , the second weakness that occurs strictly after the date n, with the convention

F ∞ = ∞.
We rst show that there exists µ() > 0 such that for all n ∈ N and s 0 ∈ S,

P σ,τ n s 0 {F 2 n < ∞} | F n < ∞ ≤ 1 -µ(). (16
)
As above, de ne the boolean-valued function wa, wa(n,

s 0 • • • s m) = (m > n) ∧ (W σ (s 0 • • • s m)) ∧ (δ σ (s 0 • • • s m-1) ≤ n),
for n ∈ N and s 0 • • • s m ∈ S(AS) * . Fix µ() from Lemma 2.29. Then (16) is a consequence of the following

P σ,τ n s 0 [{F 2 n < ∞} | F n < ∞] = ∑ h=s 0 •••sm wa(n,h) P σ,τ n s 0 [{F 2 n < 2} | h ∧ F n < ∞] • P σ,τ n s 0 [h | F n < ∞] (17) = ∑ h=s 0 •••sm wa(n,h) P σ,τ n s 0 [{F 2 n < ∞} | h] • P σ,τ n s 0 [h | F n < ∞] (18) = ∑ h=s 0 •••sm wa(n,h) P σ,τ n [h] s m [{F 0 < ∞}] • P σ,τ n s 0 [h | F n < ∞] (19) = ∑ h=s 0 •••sm wa(n,h) P σ,τ n [h] s m [{F 0 < ∞}] • P σ,τ n s 0 [h | F n < ∞] (20) ≤ 1 -µ(). (21)
We have (17) and (18) because

{F n < ∞} = h=s 0 •••sm wa(n,h) h(AS) ω .
We have (19) from the de nition of the reset strategy, if wa(n, h) then σ[h] = σ.

We have Equation (20) from (2.30) because σ and σ coincide up to the rst σweakness. Finally (21) is from the de nition of τ n , since |h| ≥ n, τ n [h] is locallyoptimal so we can use Lemma 2.29.

2

To nish the proof, we have

P σ,τ n s 0 [F 2 n < ∞] = P σ,τ n s 0 [F 2 n | F n < ∞] • P σ,τ n s 0 [F n < ∞] ≤ 1 -µ().
Now we are able to strengthen this result so that it holds for any strategy chosen by Min. We have to do this strengthening because there is no guarantee that Min always plays intelligently, he might in general play actions which do not preserve the value.

Lemma 2.32. Let σ be a strategy for Max that is -optimal and locally-optimal. For all τ and s 0 ∈ S there exists n ∈ N such that P σ,τ s 0 [{there are two σ-weaknesses after date n}] < 1.

Proof.

Let L be the random variable taking values in N ∪ {∞} that maps to the date of the last value-changing action that has been played, if it exists, and it maps to ∞ if it does not. The strategies τ and τ n coincide on all in nite histories where the last value-changing action is played before the date n, i.e. the event {L < n}. Hence for all n ∈ N and event E

P σ,τ s 0 [E] = P σ,τ s 0 [{L < n}] • P σ,τ n s 0 [E | L < n] + P σ,τ s 0 [{L ≥ n}] • P σ,τ s 0 [E | L ≥ n].
The strategy σ is locally-optimal, so from Corollary 2.25 we have

lim n P σ,τ s 0 [{L < n}] = 1,
and consequently

lim n P σ,τ n s 0 [E] = P σ,τ s 0 [E]. Fix µ() from Lemma 2.31 and n ∈ N such that for all E |P σ,τ s 0 [E] -P σ,τ n s 0 [E]| < µ().
Now take n > n and let E = {there are two σ-weaknesses after date n } and apply Lemma 2.31.

Finally we can prove that almost surely, only nitely many times the reset strategy will reset its memory.

Lemma 2.33 (Finitely many resets). Let σ be a strategy that is locally-optimal and -optimal. For all strategies τ and s 0 ∈ S, P σ,τ s 0 [{∃n, there is no σ-weakness after date n}] = 1

Proof.

Let L = lim n δ σ (S 0 • • • S n) ∈ N ∪ {∞}.
The random variable L is well-de ned since the δ σ (S 0

P σ,τ s [{L = ∞}] ≤ P σ,τ s 0 [{L = ∞}] + . (22)
Fix n ∈ N to be such that according to Lemma 2.32 we have

µ = P σ,τ s 0 [{F n < ∞}] < 1,
where F n is the random variable that gives the date of the rst weakness strictly after n, i.e.

F n = min{m > n | W (S 0 • • • S m)}.
Note that we can apply Lemma 2.32 for the event {F n < ∞}, because if the event of having at most one weakness after date n is nonzero, we can choose some n > n such that the event of having one weakness after n is nonzero. We now have

P σ,τ s [{L = ∞}] = E σ,τ s P σ,τ s [{L = ∞} | F n , S 0 , . . . , S F n] (23) = E σ,τ s 1 F n <∞ • P σ,τ s [{L = ∞} | F n , S 0 , . . . , S F n] (24) = E σ,τ s 1 F n <∞ • P σ,τ[S 0 •••S Fn] S Fn [{L = ∞}] (25) ≤ E σ,τ s 1 F n <∞ • (P σ,τ s [{L = ∞}] +) (26) = µ P σ,τ s [{L = ∞}] + (27)
We have (23) from a basic property of conditional expectations. Then (24) follows from the fact that

P σ,τ s [{F n < ∞} | L = ∞] = 1.
From the de nition of the reset strategy comes (25), and (26) follows from (22). Consequently, since

µ < 1 we get P σ,τ s [{L = ∞}] ≤ µ 1 -µ .
Now for all s 0 and τ

P σ,τ s 0 ≤ sup τ ,s P σ,τ s [{L = ∞}] ≤ P σ,τ s [{L = ∞}] + ≤ 1 -µ .
This holds for all > 0, therefore P σ,τ s 0 [{L = ∞}] = 0.

2.4.4

The reset strategy is 2 -subgame-perfect

When playing with the reset strategy, we see that on almost all possible in nite histories, there is some date n after which there will be no more resets of the memory, since there will be no more weaknesses, and consequently the strategy will be 2 -subgame-perfect.

In order to show that the reset strategy is 2 -subgame-perfect for all nite histories, we will rst prove that it is -optimal. This will be done in two steps, where the rst step is proving it for strategies that reset the memory only up to some date n.

Let σ be a strategy for Max, we de ne the strategy based on σ that resets the memory only up to date n, denoted σn as

σn (s 0 • • • s m) = σ(s δ σ (s 0 •••s m∧n) • • • s m), where m ∧ n = min(m, n).
Lemma 2.34. Let σ be a strategy for Max that is -optimal and locally-optimal. For all n ∈ N, σn is -optimal.

Proof.

The proof is by induction on n.

Base case. By de nition since σ0 = σ. Induction step. Let τ be a strategy for Min and s 0 ∈ S. De ne τ to be the strategy that follows τ except if there is a weakness at date n + 1, i.e. the event {W σ (S 0 • • • S n+1)} in which case it resets de nitely to an 2 -response τ . De ne the random variable

L n = W σ (S 0 • • • S n).
We will decompose the expected values on the event of a weakness at date n + 1. Denote by W the set of all nite histories of n + 1 turns, where a weakness occurs,

W = {s 0 • • • s n+1 ∈ S(AS) * | W σ (s 0 • • • s n+1)}. Hence {L n+1 } = h∈W h(AS) ω .
From here,

E σn+1 ,τ s 0 [f] = E σn+1 ,τ s 0 [1 L n+1 • f] + E σn+1 ,τ s 0 [1 ¬L n+1 • f] = ∑ h=s 0 •••s n+1 ∈W P σn+1 ,τ s 0 [h] • E σ,τ[h] s n+1 [f] + E σn+1 ,τ s 0 [1 ¬L n+1 • f] ≥ ∑ h=s 0 •••s n+1 ∈W P σn+1 ,τ s 0 [h] • (val(s n+1) -) + E σn+1 ,τ s 0 [1 ¬L n+1 • f],
from the de nition of σn+1 , shift-invariance of f and the fact that σ is -optimal.

In the other hand

E σn ,τ s 0 [f] = E σn ,τ s 0 [1 L n+1 • f] + E σn ,τ s 0 [1 ¬L n+1 • f] = ∑ h=s 0 •••s n+1 ∈W P σn ,τ s 0 [h] • E σn [s 0 •••s n+1],τ s n+1 [f] + E σn ,τ s 0 [1 ¬L n+1 • f] ≤ ∑ h=s 0 •••s n+1 ∈W P σn ,τ s 0 [h] val(s n+1) -2 + 2 + E σn ,τ s 0 [1 ¬L n+1 • f]
by construction of τ and shift-invariance of f . We can combine the two inequalities above because both pairs of strategies σn , σn+1 and τ,τ coincide on all in nite histories where no σ-weakness occurs at date n + 1 and on every action before the date n + 1. Therefore the second terms of the inequalities above are equal hence

E σn ,τ s 0 [f] ≤ E σn+1 ,τ s 0 [f].
From the induction hypothesis σ is -optimal thus

E σn+1 ,τ s 0 [f] ≥ val(s 0) -. 2
Being done with this intermediate step we move on to show that the reset strategy is -optimal.

Lemma 2.35. Let σ be a strategy for Max that is -optimal and locally-optimal. Then σ is -optimal.

Proof.

Let m and M be respectively the lower and upper bound of f . De ne

L = lim n δ σ (S 0 • • • S n) ∈ N ∪ {∞},
the date of the last σ-weakness if it exists, and otherwise ∞. Let s 0 ∈ S and τ a strategy for Min, from Lemma 2.34 we have

val(s 0) -≤ E σn ,τ s 0 [f • 1 L≤n] + E σn ,τ s 0 [f • 1 L n] ≤ E σn ,τ s 0 [f • 1 L≤n] + M • P σn ,τ s 0 [{L > n}].
Since σ and σn coincide upon all in nite histories in {L ≤ n}, using Proposition 2.30 we have

E σ,τ s 0 [f] -E σ,τ s 0 [f • 1 L>n] = E σ,τ s 0 [f • 1 L≤n] = E σn ,τ s 0 [f • 1 L>n] ≥ val(s 0) --M • P σn ,τ s 0 [{L > n}].
Applying Proposition 2.30 for the constant payo function that maps to 1 we have

P σ,τ s 0 [{L ≤ n}] = P σn ,τ s 0 [{L ≤ n}], therefore E σ,τ s 0 [f] ≥ val(s 0) --(M -m) • P σ,τ s 0 [{L > n}].
From Lemma 2.33 the right-most term above vanishes as n grows, which concludes the proof.

After gathering all the lemmata above we nish this section by proving that the reset strategy is 2 -subgame-perfect.

Lemma 2.36. Let σ be a strategy for Max, that is -optimal and locally optimal. The reset strategy σ is 2 -subgame-perfect.

Proof. Let h = s 0 • • • s n ∈ S(AS) * ,
we will show that

inf τ E σ[h],τ s n [f] ≥ val(s n) -2 . (28
)
In case W σ (h) we have

inf τ E σ[h],τ s n [f] = inf τ E σ,τ s n [f] ≥ val(s n) -,
from the de nition of σ and Lemma 2. [START_REF]Stochastic games with perfect information and time average payo[END_REF]. Therefore assume that ¬W σ (h), this implies that

δ σ (s 0 • • • s n) = δ σ (s 0 • • • s n-1),
i.e. the date of the last σ-weakness in the nite play s 0 • • • s n is the same as the date in the nite play s 0 • • • s n-1 since the assumption is that h is not a σweakness. From the de nition of a σ-weakness and that of the reset strategy, the assumption ¬W σ (h) also implies that

inf τ E σ[h],τ s n [f] ≥ val(s n) -2 , (29)
where

h = s δ σ (s 0 •••s n-1) • • • s n .
To prove (28), we will proceed by contradiction, assume that there exists some strategy τ such that

E σ[h],τ s n [f] < val(s n) -2 .
Now from τ we will construct another strategy τ such that

E σ[h],τ s n [f] < val(s n) -2
which contradicts [START_REF] Hoblitzelle | The algebraic theory of semigroups[END_REF].

De ne τ to be the strategy that follows τ as long as no weakness occurs, and when it does, it switches to the -response strategy τ . De ne the random variable

L = lim n δ σ (S 0 • • • S n) ∈ N ∪ {∞}, 2
the date of the last σ-weakness, if it exists and otherwise ∞. Denote by F σ the date of the rst σ-weakness, i.e.

F σ = min{n ∈ N | W σ (S 0 • • • S n)}. Now we have val(s n) -2 > E σ[h],τ s n [f • 1 L=0] + E σ[h],τ s n [f • 1 F σ <∞] (30) = E σ[h],τ s n [f • 1 L=0] + E σ[h],τ s n [f • 1 F σ <∞] (31) = E σ[h],τ s n [f] -E σ[h],τ s n [f • 1 F σ <∞] + E σ[h],τ s n [f • 1 F σ <∞]. (32
)
We have (30) because {L = 0} = {F σ = ∞} and the assumption on the strategy τ. We have [START_REF]Discrete dynamic programming[END_REF] because the pairs of strategies σ[h],σ[h] and τ, τ coincide up to the rst σ-weakness.

For the last two terms of [START_REF]Discrete dynamic programming[END_REF] we have

E σ[h],τ s n [f • 1 F σ <∞] = ∑ g=t 0 •••tm wa(g) P σ[h],τ s n [g] • E σ,τ[g] t m [f] ≥ ∑ g=t 0 •••tm wa(g) P σ[h],τ s n [g] • (val(t m) -)
by the de nition of σ and Lemma 2.35. For the other term we have

E σ[h],τ s n [f • 1 F σ <∞] = ∑ g=t 0 •••tm wa(g) P σ[h],τ s n [g] • E σ[h][g],τ t m [f] ≤ ∑ g=t 0 •••tm wa(g) P σ[h],τ s n [g] • val(t m) -2 + ,
from the de nition of τ .

In the probabilities of the cylinders g(AS) ω we can freely interchange the strategies σ[h] and σ[h] as well as τ and τ since they coincide up to the rst weakness. Therefore we have

E σ[h],τ s n [f • 1 F σ <∞] ≥ E σ[h],τ s n [f • 1 F σ <∞],
which contradicts [START_REF] Hoblitzelle | The algebraic theory of semigroups[END_REF] when replaced into (32).

Half-Positionality

2.5

In this section we will prove the main result of the chapter. If the payo function is submixing and shift-invariant then the game is half-positional: Max has an optimal strategy that is both stationary and pure.

Theorem 2.37. Let G be a game equipped with a payo function that is shift-invariant and submixing, then G is half-positional.

Proof Idea.

The proof is by induction on the number of actions. We will choose some state and partition the set of actions that are available into two sets, and de ne two games by restricting the available actions to the two corresponding sets. Then the goal is to show that the value of the original game does not exceed the maximum of the values of the two subgames. If this is true then we can play only actions from one of the sets and win just as much as playing in the original game. The induction hypothesis will imply that the subgames are half-positional so in the original game there will be an optimal strategy that is stationary and pure.

The value of the original game is shown to be no more than the maximum of the values of the two subgames by decomposing the set of outcomes in the original game into the trajectories that eventually remain only in subgame 1, the trajectories that eventually remain only in subgame 2 and the trajectories that switch between the two at in nitely many stages. For each one of them we will show that it is not possible to do better than the maximum of the values of the subgames.

Let G = (A, f) be a game, such that f is shift-invariant and submixing. The proof of Theorem 2.37 is by induction on

N = ∑ s∈S 1 (|A(s)| -1).
Base case. If N = 0, Max has a single strategy and it is stationary, pure and optimal.

Induction step. Assume that the theorem holds for N = n we will prove it for N = n + 1. Let s ∈ S 1 such that A(s) ≥ 2. Such a state exists because N = n + 1. Partition A(s) into two nonempty sets A 1 and A 2 , and let G 1 and G 2 be the games that are identical to G except that in game G i , A(s) = A i .

In order to prove Theorem 2.37 it su ces to show that

val(G, s) ≤ max val(G 1 , s), val(G 2 , s) . (33
)
2 This is because, from the induction hypothesis the games G i admit optimal strategies that are stationary and pure. Moreover a strategy in the game G i is a strategy in the game G as well.

Therefore we will proceed with the proof of (33).

For a nite set X, we used the notation X * for the set of nite words over the alphabet X, and X ω for the set of in nite words over the alphabet X. Denote by

X ∞ = X * ∪ X ω ,
their union. We will de ne two projection mappings on the set of nite or in nite histories that start from the state s in the game G into histories in the games G i , by deleting appropriate subwords,

π 1 : s(AS) ∞ → s(AS) ∞ π 2 : s(AS) ∞ → s(AS) ∞ .
We give the precise de nition of π 1 . That of π 2 is symmetrical. For nite histories, π 1 deletes the subword that are in the game G 2 , i.e. the ones where the state s is followed by an action in

A 2 . Let h = sa 0 s 1 a 1 • • • a n-1 s n ∈ s(AS) * , π(h)
is the nite history where the following subwords are deleted • all simple cycles on s starting with an action in A 2 ,

• in case the last occurrence of s in h is followed by an action in A 2 , then that su x is deleted.

Formally let i 1 < i 2 < • • • < i k = {1 ≤ i ≤ n | s i = s},
the dates where the nite history reaches state s, and for all 1 ≤ j < k de ne the subword

h j = s i j a i j • • • a i j+1 -1 , and h k = s i k a i k • • • a n-1 s n Then π 1 (h) = ∏ 1≤j≤k a i j ∈A 1 h j ,
where ∏ is word concatenation. For in nite histories h ∈ s(AS) ω , π 1 is extended naturally as the limit of the sequence (π 1 (h n)) n∈N where h n is the nite history of the rst n rounds in h, i.e. the pre x of length 2n + 1.

Observe that π 1 (h), is not necessarily an in nite history, even when h itself is. If the tail of the history is in the game G 2 then π 1 will map to a nite history.

Let us enumerate some other properties of the mappings π 1 , and π 2 . For all h = s(AS) ω ,

• if π 1 (h) is nite, then h has a su x which is an in nite history in G 2 starting from s, (34)

• if π 2 (h) is nite, then h has a su x which is an in nite history in G 1 starting from s, [START_REF]Stochastic games with perfect information and time average payo[END_REF] • if both π 1 (h) and π 2 (h) are in nite, then in both of them the state s is reached in nitely often, (36)

• if both π 1 (h) and π 2 (h) are in nite, then h is a shu e of π 1 (h) and π 2 (h).

(37)

The properties above follow immediately from the de nitions of π 1 and π 2 . From Lemma 2.17 there exist -subgame-perfect strategies τ # 1 and τ # 2 in the games G 1 and G 2 respectively. By combining these two we construct a strategy τ # , called the trigger strategy. It switches between τ # 1 and τ # 2 depending on the action that was played in the last visit to state s. For a nite history h = sa 0 s 1 a 1 • • • a n-1 ∈ (SA) * let l(h) be the action that was played in the last visit of s. Let s n ∈ S and de ne

τ # (hs n) = τ # 1 π 1 (h)s n if l(h) ∈ A 1 τ # 2 π 2 (h)s n if l(h) ∈ A 2 .
The trigger strategy is retaining the nite histories in both subgames, and depending on which subgame Max is playing, τ # replies with actions that follow the -subgame-perfect strategy in that subgame. De ne the three following random variables,

Π = S 0 A 0 S 1 A 1 • • • , Π 1 = π 1 (S 0 A 0 S 1 A 1 • • •), Π 2 = π 2 (S 0 A 0 S 1 A 1 • • •).
We will show that the trigger strategy is -optimal in G. In particular we will prove that for all strategies σ for Max,

E σ,τ # s [f | Π 1 is nite] ≤ val(G 2 , s) + , E σ,τ # s [f | Π 2 is nite] ≤ val(G 1 , s) + , E σ,τ # s [f | Π 1 and Π 2 are in nite] ≤ max val(G 1 , s), val(G 2 , s) + .
Observe that this is su cient for (33), so we will nish the proof of Theorem 2.37 with the demonstration of the above inequalities. 2 Proposition 2.38. For all strategies σ for Max,

E σ,τ # s [f | Π 1 is nite] ≤ val(G 2 , s) + , E σ,τ # s [f | Π 2 is nite] ≤ val(G 1 , s) + .

Proof.

We prove just the rst inequality, the proof of the second one is symmetric.

De ne P 2 a probability measure on the set of in nite histories in the game G 2 as follows, for all measurable events E ,

P 2 [E] = P σ,τ # s [Π 2 ∈ E | Π 1 is nite].
We will show that under this measure, the expected payo is smaller then val(G 2 , s) + . Toward this purpose, we de ne a strategy σ 2 for Max in the game G 2 as follows, for all nite histories h = s 0 • • • s n , with s n ∈ S 1 , and a ∈ A(s n),

σ 2 (h)(a) = P σ,τ # s [ha Π 2 | h Π 2 and Π 1 is nite],
where denotes the pre x relation. We see that

σ 2 (h)(a) = P 2 [ha | h].
Consequently, for all h = s 0 • • • s n , and t ∈ S

P 2 [ha | h] = σ 2 (h)(a) if s n ∈ S 1 , τ # 2 (h)(a) if s n ∈ S 2 , P 2 [hat | ha] = p(s n , a)(t).
From this, the fact that P 2 [s(AS) ω] = 1 and the de nition of a probability measure given an arena (Section 2.2.2) we conclude that P 2 coincides with the measure P

σ 2 ,τ # 2 s . Since τ # 2 is -optimal in G 2
, it follows that the expected payo under the measure P 2 is smaller than val(G 2 , s) + .

Proposition 2.39. For all strategies σ for Max,

E σ,τ # s [f | Π 1 and Π 2 are in nite] ≤ max val(G 1 , s), val(G 2 , s) + .
Proof. We will rst prove two claims.

Claim 1. For all strategies σ for Max in G 1

P σ ,τ # 1 s [{ f ≤ val(G 1 , s) + } | s is reached in nitely often] = 1. Since f is shift-invariant and τ # 1 is -subgame-perfect we have that for all n ∈ N, E σ ,τ # 1 s [f | S 0 , A 0 , . . . , S n] = E σ ,τ # 1 s [f (S n A n S n+1 • • •) | S 0 , A 0 , . . . , S n] = E σ [S 0 •••S n],τ # 1 [S 0 •••S n] S n [f] ≤ val(S n) + .
Using Levy's 0-1 law (see e.g. [Durrett, 2010])

lim n E σ ,τ # 1 s [f | S 0 , A 0 , . . . , S n] = f (S 0 A 0 S 1 • • •) a.s., consequently P σ ,τ # 1 s [{ f ≤ lim inf n val(G 1 , S n) + }] = 1,
which proves Claim 1.

Claim 2.

For all strategies σ for Max in G, there exists σ 1 in G 1 such that for any measurable event E in G 1 ,

P σ 1 ,τ # 1 s [E] ≥ P σ,τ # s [{Π 1 is in nite, and Π 1 ∈ E }]. (38)
We de ne σ 1 as follows, for all h = s 0 • • • s n , s n ∈ S 1 , and a ∈ A(s n),

σ 1 (h)(a) = P σ,τ # s [ha Π 1 | h Π 1], if P σ 1 ,τ # s [h Π 1] > 0, otherwise σ(h)
is chose arbitrarily. Let E be the set of events for which the claim holds. We will show that the cylinders are in E and that it is closed under countable monotone unions and intersections. That the claim holds for all measurable events, then follows from the monotone class theorem.

Indeed E contains all the cylinders h 1 (AS) ω since

P σ 1 ,τ # 1 s [h 1] ≥ P σ,τ # s [h 1 Π 1] ≥ P σ,τ # s [Π 1 is in nite, and Π 1 ∈ h 1 (AS) ω],
2 can be proved by induction on the length of h 1 , using the de nition of σ 1 . That E is closed under countable monotone unions and intersections it is easy to see. This concludes the proof of Claim 2. For ß ∈ {1, 2} we de ne the events E i = {Π i is in nite and reaches s in nitely often},

F i = E i ∩ { f (Π i) ≤ val(G i , s) + }.
Fix σ be a strategy for Max. From Claim 2, let σ 1 be a strategy in G 1 such that (38) holds. From Claim 1 and the de nition of the strategies,

P σ 1 ,τ # 1 s [{ f > val(G 1 , s) + , and s is reached in nitely often}] = 0. Now Claim 2 implies P σ,τ # s [{ f (Π 1) > val(G 1 , s) + } ∩ E 1] = 0,
and symmetrically

P σ,τ # s [{ f (Π 2) > val(G 2 , s) + } ∩ E 2] = 0.
From here it follows that

P σ,τ # s [F 1 ∩ F 2 | E 1 ∩ E 2] = 1.
In the end, using the assumption that f is submixing, from (37) we have

P σ,τ # s [{ f ≤ max val(G 1 , s), val(G 2 , s) + } | E 1 ∩ E 2] = 1.
This concludes the proof to the proposition and to Theorem 2.37.

2.6

We have given a su cient condition in Theorem 2.37 for a game to be halfpositional. The condition is that the payo function is Borel-measurable and bounded (so that the game is determined), that it is shift-invariant and submixing (so that Max has an optimal strategy that is stationary and pure). When enumerating all four conditions one might be lead to believe that this is quite restrictive. We will give arguments that point out to the contrary, in the form of examples of payo functions that ful ll the condition of being shift-invariant and submixing. Almost all of the results that will follow are already known, some are classical, our intention is to understand what is common to them and to give a uni ed proof.

Throughout this chapter it was Max who was the protagonist -the player that interests us, but one might ask what about optimal strategies of Min, are 2.6 Examples they stationary and pure? The quick answer is to just take the payo functionf , if it is submixing and shift-invariant then Min also possesses optimal strategies that are stationary and pure. Equivalently is the payo function f shift-invariant and such that for all in nite sequences of colors h, h 1 , h 2 ∈ C ω where h is a shu e of h 1 and h 2 ,

f (h) ≥ min f (h 1), f (h 2) . (39
)
So for some of the payo functions Theorem 2.37 can be used to show that the game is positional. All of the payo functions that we will treat in what follows are obviously shift-invariant, so the only question will be whether they are submixing or not.

Parity payo . We introduced the parity payo earlier in Section 2.1. Her the set of colors is some nite set of natural numbers C and the payo is de ned for sequences

c 0 c 1 • • • ∈ C ω as f parity (c 0 c 1 • • •) = 1 if lim sup n c n is even 0 otherwise,
i.e. the highest color that is seen in nitely often is even. Let h, h 1 , h 2 ∈ C ω such that h is a shu e of h 1 and h 2 . If the highest color that appears in nitely often in h is even (so f parity (h) = 1) then this color must appear in nitely often in at least one of h i and it is the highest color appearing there as well, so for an i ∈ {1, 2}, f parity (h i) = 1. Therefore f parity is submixing. It also ful lls (39). If the highest color seen in nitely often in h is odd, then it must appear in nitely often in one of h i where it is the highest color as well. Consequently Theorem 2.37 proves that in perfect-information two player stochastic games with the parity payo both players Max and Min have optimal strategies that are stationary and pure.

Limsup and liminf payo . As one can guess from the name, the limsup and liminf payo functions compute the limsup and liminf of in nite sequences of real numbers, respectively. To see that they are submixing and even ful ll (39) is immediate, since for all h, h 1 , h 2 ∈ C ω such that h is a shu e of h 1 and h 2 ,

f lim sup (h) = max f lim sup (h 1), f lim sup (h 2) , and
f lim inf (h) = min f lim inf (h 1), f lim inf (h 2) .
Another proof of the positionality of f lim sup can be found in [Maitra and Sudderth, 2012]. Mean payo . In the mean payo , the colors are real numbers, and the function calculated is the average of the colors over the in nite run. Since we allow 2 players to have in nite memories, the average may not converge. Therefore we had two versions of the mean payo , for all c 0 c 1

• • • ∈ C ω , f mean (c 0 c 1 • • •) = lim sup n→∞ 1 n + 1 n ∑ i=0 c i , and
f mean (c 0 c 1 • • •) = lim inf n→∞ 1 n + 1 n ∑ i=0 c i .
We can show that f mean is submixing in the following way. We reproduce the proof from [Gimbert, 2007]. Let h, h 1 , h 2 ∈ C ω such that h is a shu e of h 1 and h 2 . Let f be the mean of a nite word of colors, then for all n ∈ N, we factor the word of the rst n colors into the words d 1 and d 2 depending on whether they appear in h 1 or h 2 such that

f (c 0 • • • c n-1) = |d 1 | n 1 |d 1 | ∑ i∈d 1 c i + |d 2 | n 1 |d 2 | ∑ i∈d 2 c i .
Let m be the maximum of the two expressions appearing in parentheses above, then

f (c 0 • • • c n-1) ≤ |d 1 | n m + |d 2 | n m = m.
Since this holds for every n ∈ N, we conclude that f mean is submixing. Note however that it does not ful ll (39). This is because for sequences a = (a n) n∈N , b = (b n) n∈N , in general it is not true that The situation for f mean is symmetrical, i.e. (39) holds, but it is not submixing. To summarize Theorem 2.37 implies that in a game with f mean , Max has an optimal strategy that is both stationary and pure, whereas in a game f mean it implies that it is Min who has an optimal strategy that is stationary and pure. We know that in both games, it is both players that possess such optimal strategies, see Section 2.1 and e.g. [Gimbert and Zielonka, 2009]. This is not captured by Theorem 2.37. Nevertheless this theorem implies that even for Min in f mean and for Max in f mean , among all nite-memory strategies, the best one is stationary and pure. This is because with nite memory strategies the sequence of averages converges and these two payo functions coincide.

Positive average payo . Here, Max wants to keep the average of the rewards to be nonzero. For all h ∈ C ω ,

f posavg (h) = 1 ⇐⇒ f mean (h) ≥ 0.
Observe that this payo function, in fact, gives a very di erent game from the mean payo function. For example, with the positive average payo , Max 2.6 Examples prefers to have larger chance of getting a trajectory with a small but positive mean, which is not the case for the mean payo .

The positionality of games with positive average payo does not follow easily from the positionality of games with mean payo . But the positive average payo function is submixing thanks to the fact that f mean is submixing. In fact we can prove that every increasing function that is composed with a submixing function is itself submixing. For every component we compute the mean payo , and Max wins if in all the components the average is nonzero. In [Chatterjee et al., 2010], the authors show that when computing the average with f mean or f mean , Max may require in nite memory. In the latter case the generalized mean payo function ful lls (39), hence Min has an optimal strategy that is stationary and pure.

One can consider an optimistic version of generalized payo , de ned as follows. For Max to win, instead of requiring that in all the components the average is nonzero, we require that there exists some component that has a nonzero average. When computing the average with f mean this function is submixing and therefore Max has an optimal strategy that is stationary and pure. co-Büchi mean payo . In this payo function each state is assigned a reward -a real number, and the colors are elements of S × R, pairs of state and reward. Let m be the smallest reward. There is F ⊆ S, a set of distinguished states. Max wins the co-Büchi payo (f cb) if and only if the set of states that appear in nitely often is a subset of F. The co-Büchi mean payo is de ned as follows. It combines the two payo functions. For all (s 0 , r 0)(s 1 , r 1)

• • • ∈ (S × R) ω , where r i is the reward on state s i f cbm (s 0 , r 0)(s 1 , r 1) • • • = f mean (r 0 r 1 • • •) if f cb (s 0 s 1 • • •) = 1 m otherwise.
That this function is submixing follows easily from the fact that f mean is submixing and that if the co-Büchi is won by Max in some in nite history h, then it is also won in the histories h 1 , h 2 , given that h is a shu e of them.

Another function that we mentioned in Section 2.1 was the discount payo . Observe that this function is not shift-invariant. Nevertheless a game with the discount payo can be reduced to a game with mean payo in such a way that an optimal strategy in the latter is an optimal strategy in the former. See [Gimbert, 2006] for details.

Comments

The class of submixing functions have some closure properties, i.e. when they are composed with increasing functions they remain submixing, a function dened as the maximum of submixing functions is itself submixing, some linear combinations of submixing functions are submixing etc. For more properties for which the class of submixing functions is closed, consult [Gimbert, 2006;Kopczyński, 2009].

The submixing and shift-invariant is not necessary for a game to be halfpositional. Moreover for games with a shift-invariant payo function, the submixing property is not necessary for the game to be half-positional. An example of this is the game where the colors are integers and Max wins if and only if the lim inf n of the sum of the rst n colors equals -∞, [Brázdil et al., 2010].

In light of the main result of [Gimbert and Zielonka, 2009], which says that if both Max and Min, in one player games (MDPs) possess optimal strategies that are both stationary and pure then the two player game is positional as well, one might wonder whether an analogous result holds for half-positionality. Is it true that if Max possesses optimal strategies that are stationary and pure in all one player games, then the two player game is half-positional. This is not true, as it can be witnessed by the following example.

Let the set of colors be C = {a, b}, and de ne f :

C * → {0, 1}, for all h ∈ C * f (h) = 0 if h and pab 2 ab 4 • • • have a common su x for some (p ∈ C *) 1 otherwise.
In a one player game equipped with such a payo function it is very easy to win as Max, in fact, since the set of states is nite, any stationary and pure strategy is optimal. In the other hand there is a simple two player game where Max can win but not with a stationary and pure strategy. Its arena is depicted in Figure 6. Here the states are labeled by their colors, where is the empty word. Note that the function c that maps in nite histories to C ω is well-de ned because the sole state that is controlled by Min, and labeled by does not have a self-loop. Assume that Min plays with a stationary and pure strategy, then in the sole state where he has choice he will always choose to play either x or y. In this case Min can create the sequence ab 2 ab 4 • • • , and win the game with probability 1. Whereas if Max plays e.g. uniformly between the actions x and y then Min has no hope to create such a sequence that has so much structure. Max can prevent Min from building such a sequence also by using memory.

2.7

In this part of the thesis we have studied two player stochastic games of innite duration, that are played on nite graphs where both players are perfectly informed. We have tried to answer the question of when the protagonist player Max has an optimal strategy that does not use neither memory nor randomization. We have provided a su cient condition of when Max has such an optimal strategy. This is a condition on the payo function, it has to be shift-invariant and submixing. But this condition is not necessary for Max to have a memoryless and deterministic optimal strategy, for example, discounted games are not shift-invariant but they are positional.

One possible research direction is to try to characterize completely when Max has such a simple optimal strategy, in other words to nd a condition that is both necessary and su cient. Alternatively one can ask, what condition is both su cient and necessary for Max to have an optimal strategy that is only memoryless or only deterministic.

The reason why questions as above are interesting is that ultimately we want to construct the optimal strategy. In this sense, a very important question is what conditions do we need to force on the payo function such that in the resulting game we are able to e ectively construct the optimal strategy of Max?

P R O B A B I L I S T I C A U T O M AT A

Probabilistic automata are a generalization of deterministic nite state automata, where nondeterminism is resolved by transition probabilities. When a letter is read from a deterministic nite state automaton, it transitions to a new state deterministically, whereas when a probabilistic automaton reads a letter there is a probability distribution according to which the next state is randomly determined. A deterministic automaton either accepts a word or it does not, while a probabilistic automaton accepts a word with some probability. As with other notions of automata, we can consider probabilistic automata over nite words as well as over in nite words. In this chapter we will concentrate only on the former. Questions such as, does there exist a word that is accepted with probability larger than c (emptiness), and whether all words are accepted with probability larger than c (universality), are undecidable, where c is a xed rational number in (0, 1). The value 1 problem has the same fate. This is the question whether for all > 0 there exists a word that is accepted with probability larger than 1 -. Recently there has been some e ort to nd interesting and robust classes of automata for which, problems such as the value 1 problem are decidable. Notably leaktight automata in [Fijalkow et al., 2012] and simple automata in [Chatterjee and Tracol, 2012], for both of which the value 1 problem is decidable. In this chapter we are going to show that simple automata are strictly contained in the class of leaktight automata. In doing so, we will introduce some notions that are used in [Fijalkow et al., 2012] for deciding the value 1 problem for leaktight automata which will be useful for the chapter that follows, where we will lift this decidability result to two player half-blind games.

One can view probabilistic automata as a one player game with the winning objective of reaching the nal states, where the player has no information about the state of the game. While in the rst part of this thesis we considered games with perfect information, now we will consider the other extreme: games where the protagonist has no information. In the example in Figure 7 the initial state of the automaton is s 0 , the nal state is s 2 . When the letter a is read in state s 0 the automaton moves with equal probability to s 1 or s 2 . At this point, if Figure 7 was an arena of a Markov decision process (MDP) we could base the decision on what action to take next on whether the current state is s 1 or s 2 . This is not the case in a probabilistic automaton, we have to blindly choose whether a or b is the next letter of the word. Because of this, a probabilistic automaton can be seen as a one player game with zero information. In other words, in an MDP we are allowed to play according to general strategies, while in a probabilistic nite automaton, we search among particular and very simple strategies, i.e. nite words of actions.

Probabilistic automata were rst introduced by Rabin in [Rabin, 1963]. Even though most problems for probabilistic automata are undecidable it has a rich literature. We will brie y discuss a portion of said literature in this section. The interested reader is referred to the book-length treatment [Paz, 1971] and the survey [Bukharaev, 1980].

In [Rabin, 1963], the language theoretic point of view is taken, with questions such as, are stochastic languages more expressive than other formal languages e.g. regular languages. A stochastic language of a given probabilistic automaton with respect to some cut-point 0 ≤ c < 1 is de ned as the set of words that are accepted by the automaton with probability strictly larger than c. Rabin proves that there are uncountably many stochastic languages, hence there are some stochastic languages that are not regular.

Overview

Theorem 3.1 ([Rabin, 1963]). There exists a probabilistic automaton with a cut-point c such that the language of words that are accepted with probability strictly larger than c is not regular.

Moreover he claims that it is possible to construct a particular language that is not regular that is accepted by a probabilistic automaton, albeit with an irrational cut-point. In [Paz, 1971, Theorem 3.6, page 167] it is proved that there exists a three state probabilistic automaton with a single letter alphabet and a rational cut-point that de nes a stochastic language that is not regular.

On the other hand if the cut-point c is isolated then the stochastic language with respect to c is regular. We say that a cut-point c is isolated if there exists some > 0 such that there is no word that is accepted with probability in the -neighborhood of c, we call the degree of isolation. Moreover it is shown that there is an upper bound as a (e ective) function of on the number of states of the deterministic automaton that recognizes the same language as the probabilistic automaton with an isolated cut-point. Theorem 3.2 ([Rabin, 1963]). For all probabilistic automata A and cut-points c, if c is isolated with degree of isolation , the stochastic language of A with respect to the cut-point c is regular and the deterministic nite automaton that recognizes it has at most (1 + -1) n-1 states where n is the number of states of A.

Rabin further studies a subclass of automata called actual automata which enjoys good properties. These are automata where the support of every probability distribution in the transition table is the full set of states S, i.e. there is nonzero probability to go from any state to any other state with any letter of the alphabet.

Emptiness is undecidable for probabilistic automata [Paz, 1971]. Emptiness is the question of whether there exists a word that is accepted with probability strictly larger than c. If we replace "strictly larger" by larger, smaller, equal, strictly smaller, the question remains undecidable. An even stronger statement holds in fact 3 Theorem 3.3 ([Condon and Lipton, 1989]). Given a probabilistic automaton A and some rational > 0 there does not exist any algorithm such that • if there exists some word that is accepted by A with probability strictly larger than 1 -then it replies yes,

• if all words are accepted with probability smaller than it replies no.

Moreover emptiness is undecidable even for automata of xed size [Blondel and Canterini, 2003].

In contrast to this, observe that from Theorem 3.2 if the cut-point is isolated and we know the degree of isolation then the emptiness problem is decidable because we have a bound on the length of the words that are su cient to check. The decidability of the emptiness problem when the cut-point is isolated, but the degree of isolation is not known, is an open question.

As a consequence we see that whether the cut-point is isolated or not plays an important role in the di culty of decision problems such as emptiness in probabilistic automata; but the isolation problem itself is not decidable either.

Theorem 3.4 ([Bertoni, 1975]). Given a probabilistic automaton A and a rational cut-point c ∈ (0, 1) the problem of whether c is isolated (i.e. does there exists some such that no word is accepted by A with probability in [c -, c +]) is undecidable.

Notice that in the theorem above Bertoni leaves open the question when the cut-point is equal to 1 or 0. In [Gimbert and Oualhadj, 2010] it is shown that it remains undecidable for c = 1 and c = 0. The former is called the value 1 problem and is the subject of this chapter.

Problem 3.5 (The value 1 problem).

Given a probabilistic automaton A, decide whether for all > 0 there exists a word that is accepted by A with probability larger than 1 -.

Overview

While the problem above is undecidable in general there have recently been some work on identifying interesting classes of automata for which it is decidable. Before introducing them, let us survey a few more results on probabilistic automata.

The equivalence problem is decidable. We are given two probabilistic automata and we want to decide whether for all words w the probability of accepting w from both automata is equal. The decidability of this problem follows from the work of Schützenberger on minimizing automata [Schützenberger, 1961]. Another algorithm for this problem can be found in [Tzeng, 1992].

Probabilistic automata with a unary alphabet are studied in [Chadha et al., 2014]. These are equivalent to Markov Chains. The authors show that the isolation problem (the problem of deciding whether the a cut-point is isolated) is coNP-complete for cutpoints c ∈ {0, 1} and it is in PSPACE for cutpoints c ∈ (0, 1).

In [Chadha et al., 2013] it is demonstrated that the exact level of undecidability of the isolation problem is Σ 0 2 -complete. Then they de ne a class of automata called the eventually weakly ergodic automata for which the emptiness problem is decidable when the cut-point is isolated, even if the degree of isolation is not known. While we will concentrate on automata on nite words in this thesis, probabilistic automata on in nite words are of interest as well, especially considering their possible applications. Probabilistic Büchi automata were introduced rst in [Baier and Grosser, 2005]. They are probabilistic automata on in nite words with the Büchi acceptance condition, i.e. at least one of the in nitely occurring states belongs to the set of nal states. They are then compared in terms of language expressiveness with nondeterministic ω-automata and shown to be more expressive, as in the case of nite word automata. Two semantics are considered, the nonzero semantics where we de ne the language accepted by the automaton to be the set of in nite words whose probability of acceptance is nonzero, and the almost sure semantics. In [Baier et al., 2008] the authors show that all interesting problems such as emptiness universality etc. are undecidable for the nonzero semantics; however the almost sure semantics has a decidable emptiness problem. The exact complexity of these problems is closed in [Chadha et al., 2009]. It is shown that emptiness and universality for the nonzero semantics are Σ 0 2 -complete and for the almost sure semantics they are PSPACE-complete. Further semantics and acceptance conditions are considered in [Chatterjee and Henzinger, 2010]. Except the nonzero and almost sure semantics, the limit semantics is considered as well (the value 1 problem introduced above), and di erent acceptance conditions such as safety, reachability, Büchi, co-Büchi etc.

3

The decidability results for the positive semantics and co-Büchi, as well as almost sure semantics and Büchi were later generalized to game of partial information in [Bertrand et al., 2009], and[Gripon andSerre, 2009].

In [Korthikanti et al., 2010] the probability distributions on the set of states are labeled by colors picked from a nite set. As an in nite word is read by a probabilistic automaton it produces an in nite word of colors. The question is can one decide whether the intersection of the language of in nite words of colors (for some linear labeling) and of some regular language is nonempty (the model checking problem). In general it is undecidable because of the undecidability of the emptiness mentioned above. But for a special class of contracting automata and strategies it is decidable. A similar point of view is taken in [Chadha et al., 2011] where it is shown that for automata that have a unique and compact invariant set of distributions which are called semi-regular it is decidable to model check any ω-regular property. As a corollary the authors prove that for semi-regular probabilistic automata on nite words with an isolated cut-point the emptiness problem is decidable, even if the degree of isolation is not known.

Another decidable problem for probabilistic automata on in nite words is that of synchronization [Doyen et al., 2011]. This is the problem of deciding whether there exists some in nite word such that the highest probability in the sequence of distributions that is generated by it tends to 1, i.e. in the limit it behaves like a deterministic automaton.

We come back on probabilistic automata on nite words and the value 1 problem. Gimbert and Oualhadj prove that the value 1 problem for probabilistic automata on nite words is undecidable [Gimbert and Oualhadj, 2010], this problem was left open by Bertoni. The proof reduces the value 1 problem to the equality problem, this is the problem of deciding whether there exists some word with acceptance probability exactly equal to 1 2 . The equality problem in turn can be reduced to Post's correspondence problem. Furthermore the authors introduce a class of automata called #-acyclic automata for which the value 1 problem is decidable. The decision procedure constructs the support graph of the automaton. This is a graph whose vertices are the powerset of states, and we add an edge from the vertex S 1 ⊆ S to the vertex S 2 ⊆ S if it is possible for the automaton to transition from a distribution with support S 1 to a distribution with support S 2 . The transitions can happen from reading a nite word, but it also takes into account the fact that by repeating some word we can decrease the distribution on some states arbitrarily: this is what #-operator captures. If this support graph does not have any cycles, except for simple loops, we say that the corresponding automaton is #-cyclic.

Another class of probabilistic automata was de ned in [Chadha et al., 2009], the class of hierarchical probabilistic Büchi automata. These are automata that have a hierarchical structure: the set of states is partitioned into levels and at 3.1 Overview each level, from every state there can be at most one transition that goes to some state in the same level while all others go to states at higher levels. These automata with respect to the nonzero semantics (for the probabilistic Büchi automata) de ne exactly the class of ω-regular languages, and for the almost sure semantics they de ne the class of ω languages that are recognized by deterministic Büchi automata. Moreover the universality and emptiness problems are tractable for both semantics in this class of automata.

The subject of this chapter is the comparison between two classes of automata: the leaktight automata and the simple automata.

The class of leaktight probabilistic nite automata is introduced in [Fijalkow et al., 2012]. This class of automata has a decidable value 1 problem. The authors show that the automaton can be abstracted with a nite monoid called the Markov monoid which has su cient information for deciding whether the automaton has value 1 or not -given that the automaton is leaktight. Roughly speaking, a leak occurs in a probabilistic nite automaton if there is some communication between di erent recurrence classes that we attain in the limit of a sequence of nite words. This will be de ned precisely in the section that follows, and it will be discussed in more detail in the next chapter.

The Markov monoid abstracts away the exact transition probabilities, the only information it retains is whether the probability transition is zero or nonzero. We can partition the set of all probabilistic automata into sets for which all zero transition probabilities coincide, e.g. for all automata on such a set with letter a there is nonzero probability to go from state s to state t. We can associate to any such set a numberless automaton. Since the Markov monoid is the same for every probabilistic automaton associated to the same numberless automaton this begs the question whether the information that the Markov monoid is capturing is su cient to decide whether, for example, there exists an automaton in the set that has value 1. This is not the case. In [Fijalkow et al., 2014], it is proved that that for all probabilistic automata A one can construct a numberless automaton such that, A has value 1 if and only if all automata associated to the numberless automaton have value 1, which in turn is equivalent to: there exists some automaton associated to the numberless automaton that has value 1.

Probabilistic automata on in nite words with parity conditions are considered in [Chatterjee and Tracol, 2012], and three semantics, the nonzero, almost sure, and the limit semantics (i.e. the value 1 problem). The authors identify the class of structurally simple probabilistic automata, which is a syntactic restriction on the support graph that is associated to the automaton. Then it is proved that this class of automata generalizes both #-acyclic and hierarchical automata that we mentioned above.

Interestingly the techniques of [Fijalkow et al., 2012] and [Chatterjee and Tracol, 2012] are quite di erent. The former uses the theory of nite semi-groups, 3 in particular Simon's forest factorization theorem [Simon, 1990]. Whereas the latter uses a result from probability theory, namely the decomposition separation theorem [Sonin, 2008]. Given a morphism from the set of nite words over an alphabet to a nite monoid, Simon's theorem shows how to factor (with respect to the morphism) any given word into a tree whose height does not depend on the length of the word but only on the size of the nite monoid. The decomposition separation theorem generalizes a theorem on homogeneous Markov chains, that partitions the set of states into recurrent and transient classes (sometimes called essential and nonessential). The generalization is from homogeneous to nonhomogeneous, and the decomposition is into jets.

In this chapter we will report on [Fijalkow et al., 2015], and prove that the class of leaktight automata strictly contains the structurally simple automata, and consequently it is the largest and most robust class of automata for which it is known that the value 1 problem is decidable. The proof demonstrates that the information of whether the automaton is simple or not can be found in the Markov monoid.

The class of leaktight automata and the Markov monoid algorithm are also interesting because they are optimal in some sense [Fijalkow, 2015]. A probabilistic automaton has value 1 if and only if there exists a sequence of nite words that witnesses it, that is the probability of accepting the n-th word tends to 1 as n tends to in nity. Nathanaël Fijalkow demonstrates in [Fijalkow, 2015] that the Markov monoid algorithm replies yes if and only if there exists a polynomial sequence of words that witnesses the value 1. The set of polynomial sequences of words is attained by taking the set of constant sequences and closing it by concatenation and iteration, where the iteration of a sequence (u n) n∈N is de ned to be (u n n) n∈N . But once we walk away from the polynomial sequences even the following -simpler than the value 1 -problem is undecidable: given a probabilistic automaton, determine whether there exist two nite words u and v such that ((uv n) 2 n) n witnesses the value 1.

Another point of interest of this class is that it can be lifted to a type of two player games. In the chapter that follows we will show that the maxmin reachability is decidable for leaktight half-blind games, where we will be using some of the notions that will be introduced in this chapter, namely the Markov monoid.

A reason for the size of the literature on probabilistic automata, even though most problems are undecidable, is that there are numerous applications from a variety of elds. For example in pharmacokinetics, the way that a drug moves in an organism can be modeled as a probabilistic automaton [Shargel et al., 2007;Korthikanti et al., 2010]. Another area of applications is software veri cation [Vardi and Wolper, 1986;Baier et al., 2012;Raskin et al., 2007]. Probabilistic automata have also been used in other places in computational biology [Durbin et al., 1998], in speech processing [Mohri, 1997] etc. Su ce it to say that it is a useful tool for modeling a certain type of probabilistic machines.

3.2

We will de ne probabilistic automata on nite words, and then introduce the classes of leaktight and simple automata. In the next section we prove that the latter is a strict subset of the former.

De nition 3.6 (Probabilistic automaton).

A probabilistic automaton A is a tuple A = (S, A, s 0 , δ, F), where

• S is a nite set of states,

• A is a nite alphabet,

• s 0 ∈ S is an initial state,

• δ : S × A → ∆(S), is the transition function, and

• F ⊆ S is a set of nal states.
Comparing this de nition with De nition 2.1, one can see probabilistic automata as the arena of a one player game. The di erences are as follows, here we will be interested uniquely on the reachability of the set of nal states as opposed to some general payo function, the strategies that we are allowed to use are very special: the set of nite words, and the game is of nite (but arbitrary long) duration.

The transition function δ induces a stochastic matrix for every a ∈ A. Stochastic matrices are matrices whose each line is a probability distribution. In our case they are indexed by elements of S, e.g. for the letter a ∈ A, the stochastic matrix M a is de ned as M a (s, s) = δ(s, a)(s), where s, s ∈ S. Essentially questions about probabilistic automata are questions over the semi-group that is generated by {M a | a ∈ A}.

Let w ∈ A * and s, s ∈ S, we will use the notation

P(s w -→ s),
to mean the probability of going from state s to state s with the word w. This can be precisely de ned inductively on the length of the word, that is for every letter a ∈ A and states s, s ∈ S, we de ne For example the question of whether there exists a word that is accepted with probability strictly larger than 1 2 is formulated as whether there exists some w ∈ A * such that ∑ t∈F P(s 0 w -→ t) > 1 2 . We will also use the following notation shorthand, for all s ∈ S, S ⊆ S, and w ∈ A * P(s

P(s a -→ s) = δ(s, a)(s),
w -→ S) = ∑ s ∈S P(s w -→ s).
In parallel to the two player games that were the subject of the previous chapter, we de ne the value of a probabilistic automaton as follows.

De nition 3.7 (Value of a probabilistic automaton).

Let A(S, A, s 0 , δ, F) be a probabilistic automaton, then its value is

val(A) = sup w∈A * P(s 0 w -→ F).
With the de nition above, the value 1 problem (Problem 3.5) is the question of whether val(A) = 1. In the automaton in Figure 8, the initial state is the state s 0 (this is denoted by the incoming arrow), and the (single) nal state is the state f (this is denoted by the double circling). The value of this automaton is at least 1 2 , because we see that the word ab is accepted with probability 1 2 . But we can do better than this. The word aaab is accepted with probability 3 4 . In general we see that the word (aa) k ab is accepted with probability 1 -1 2 k . Consequently this automaton has value 1.

If hypothetically we had δ(s 2 , a)(⊥) = 1, the value would be 1 2 , since once we reach the sink state ⊥ we are trapped there and we have no hope of reaching the nal state, hence after playing an a it is best to play a b and then to stop.

Leaktight automata

We de ne rst the class of leaktight automata, introduced in [Fijalkow et al., 2012]. The proof of decidability is algebraic in nature and it uses tools from the theory of nite semi-groups.

We mentioned above that for every letter a ∈ A the transition function δ induces a |S| × |S| stochastic matrix, which we denoted by M a . It is not hard to see that for a word w = a 1 a 2 • • • a n ∈ A * , and states s, s ∈ S,

P(s w -→ s) = (M a 1 • • • M a n)(s, s),
that is, the entry (s, s) of the product M a 1 • • • M a n is the probability to go from state s to state s with the word w = a 1 • • • a n .

The set of all matrices generated by closing {M a | a ∈ A} under taking products is in general in nite. Therefore there is no hope to compute all of it.

The idea of the Markov monoid algorithm is to abstract away the probabilities of the stochastic matrices and to keep only the information of whether the transition is zero or not, in this way constructing a nite object, a monoid, which will have the relevant information for deciding the value 1 problem, in the subset of leaktight automata. In other words the stochastic matrix is abstracted by a binary one, i.e. the matrix M a is abstracted by the binary matrix B a whose entries are 1 if and only if the corresponding entry in M a is nonzero. That is, for all s, s ∈ S,

B a (s, s) = 1 ⇐⇒ M a (s, s) > 0. (40
)
The elements of the Markov monoid are binary matrices that are indexed by a pair of states. The operation is matrix product over the boolean semi-ring, in other words, given two binary matrices B and B , and the pair of states s, s ∈ S, we have (BB)(s, s) = 1 if and only if there exists some state t ∈ S such that B(s, t) = 1 and B (t, s) = 1, where by BB we have denoted the product of the two matrices. A subset of binary matrices together with the product operation described above, and the unit matrix already forms a monoid, but this is not the Markov monoid, in particular it does not have any information about the possible states that can be reached by iterating some word. To illustrate this let us go back to the example in Figure 8.

Example 7.

The monoid in question is the one that is generated by B a and B b and has the unit matrix, where

B a =        0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0        , B b =        0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0        .
The states have been ordered as s 0 < s 1 < s 2 < ⊥ < f , i.e. the (0, 0) entry corresponds to (s 0 , s 0). One can quickly see that if we close the set {B a , B b } by taking products, none of the elements of this closure will have the rst row equal to (0, 0, 0, 0, 1). This means that there does not exist any word w ∈ A * such that P(s 0 w -→ f) = 1. Nevertheless the example in Figure 8 has value 1.

In order to account for the fact that in some cases we are able to decrease the probability to be in some state (or increase) arbitrarily (as in the case of the states s 0 and s 1 in the example in Figure 8), another unary operation is added, called the iteration (sometimes it is called the stabilization operation in the literature). The Markov monoid is a stabilization monoid. These are (usually nite) monoids, that are equipped with unary operation (denoted by #) that maps idempotent1 elements of the monoid to idempotents. Stabilization monoids were used by Simon in [Simon, 1994] and then later by Kirsten in [Kirsten, 2004] for his algorithm for the famous star height problem in automata and formal language theory; and Colcombet gave the general de nition of stabilization monoids in [Colcombet, 2009] and used them as important tools for the theory of cost functions. A proof that the Markov monoid is a stabilization monoid, can be found in [Fijalkow et al., 2012].

To motivate the de nition of the iteration operation in the context of the Markov monoid and probabilistic automata, let us consider nite space and discrete time, homogeneous Markov chains. Such a chain can be characterized by a single stochastic matrix M. Say that M is a |S| × |S| matrix, for the sake of the illustration. If for all s, s ∈ S,

M(s, s) > 0 ⇐⇒ M 2 (s, s) > 0, (41)
3.2 Decidable Classes then we say that the Markov chain characterized by M is idempotent and we can partition the set of states into recurrent and transient states. Given that the Markov chain is recurrent, we say that a state r ∈ S is recurrent if and only if for all r ∈ S, M(r, r) > 0 implies that M(r , r) > 0. A state is transient if it is not recurrent. So a state r is recurrent if for all states r , if there is nonzero probability of reaching r from r, then there is nonzero probability of coming back, i.e. of reaching r from r . This is not the usual de nition of recurrence for general Markov chains, but it coincides with the usual one if the Markov chain is idempotent. It is only for idempotent Markov chains that we will talk about recurrence and transience.

A fundamental theorem for Markov chains says that the more steps the chain is run, the less there is chance to be in a transient state. In other words for all states s, t ∈ S if t is transient then lim inf n M n (s, t) = 0. Intuitively this is because the transient state gives away some probability that is never returned.

Example 8.

Observe that the stochastic matrix M 2 a from the example in Figure 8 veri es property [START_REF]On Decision Problems for Probabilistic Büchi Automata[END_REF]. Moreover the states s 0 and s 1 are transient (with respect to the chain associated with M 2 a) because both M 2 a (s 0 , s 2) and M 2 a (s 1 , s 2) are nonzero, whereas both M 2 a (s 2 , s 0) and M 2 a (s 2 , s 1) are. As a consequence, the rst row in the sequence (M 2n a) n will tend to (0, 0, 1, 0, 0). Now one can imagine the right de nition of the iteration operator #, after de ning the notions of recurrent, transient etc, for the binary matrices, which we do now. We assume that all matrices are indexed by the states S.

De nition 3.8 (Product operator for the Markov monoid).

The product of the binary matrices B and B , denoted BB is de ned for all s, s ∈ S, as

BB (s, s) = 1 ⇐⇒ ∃ t ∈ S, B(s, t) = 1 and B (t, s) = 1.

De nition 3.9 (Idempotent binary matrix).

A binary matrix B is idempotent if and only if B 2 = B.

Decidable Classes

Example 9. We go back yet again to the example in Figure 8, and consider the element of the monoid B2 a = B aa . It is an idempotent element therefore B # aa is well-de ned. Calculating it yields

B # aa =        0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0        .
This captures the fact that by repeating the word aa many times we can increase the chance of reaching s 2 from s 0 to 1.

An interesting fact comes up from De nition 3.12. As mentioned before, when we abstract the matrices M a by the binary matrices and generators of the Markov monoid B a , we throw away the probabilities and keep only the qualitative properties of the automaton. The exact transition probabilities are obviously important for the problem of emptiness among others, but this raises the question whether they are important for the value 1 problem as well. Unsurprisingly, they are. In [Gimbert and Oualhadj, 2010] the authors demonstrate an example of an automaton that has value 1 if and only if a particular transition probability is strictly larger than 1 2 . In fact they show undecidability of the value 1 problem by reducing it to the emptiness problem 2 , where that critical transition is replaced by an automaton. But as we shall see later, for leaktight automata, the qualitative part is su cient to decide the value 1 problem.

The Markov monoid algorithm simply constructs M associated to a given probabilistic automaton. This object is nite hence such a procedure always terminates. Even though nite, the size of the monoid can be exponentially large in the number of states. But it is not necessary to compute the whole monoid because we are interested in particular elements, called the value 1 witness. This element can be guessed, and shown that the Markov monoid algorithm has PSPACE upper bound. This bound is tight [Fijalkow et al., 2012].

De nition 3.13 (Value 1 witness).

Let M be the Markov monoid associated to a probabilistic automaton with initial state s 0 and nal states F, then B ∈ M is a value 1 witness if and only if for all s ∈ S B(s 0 , s) = 1 =⇒ s ∈ F.

3

Example 10.

Computing the product B # aa B b in the example in Figure 8 yields

B # aa B b =        0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0       
, which is a value 1 witness.

The algorithm constructs M and then searches for a value 1 witness, once it is found, it returns yes, if the monoid does not have a value 1 witness then it returns no. The algorithm does not return false positives.

Theorem 3.14 ([Fijalkow et al., 2012]).

Let A be a probabilistic automaton and M the Markov monoid associated to it. If M has a value 1 witness then val(A) = 1.

The converse does not hold in general of course, since the value 1 problem is undecidable; but it does if the automaton is of a special kind: a leaktight automaton. Here we will only give the de nition of leaktight automata without any intuition or further investigation. We will postpone this to the next chapter which also deals with leaks.

The (syntactic) de nition of leaktight automata relies on the extended Markov monoid. Think of this monoid as a Markov monoid where we remember the edges that were deleted from the iteration operation by keeping pairs of binary matrices, in such a way that the right component is not modi ed by iteration.

De nition 3.15 (Extended Markov monoid).

The extended Markov monoid, denoted by M, is the smallest set that is closed under taking product and iteration and contains all the elements

{(B a , B a) | a ∈ A} ∪ {(I, I)},
where B a are de ned as in (40), whereas the product and iteration are dened as

(B, B) • (C, C) = (BC, B C) (D, D) # = (D # , D),
where (D, D) is idempotent, i.e. (D, D) 2 = (D, D).

Decidable Classes

The extended Markov monoid can be computed the same way that the Markov monoid is.

Roughly speaking, leaks complicate calculations necessary for nding out whether the automaton has value 1, since convergence speeds start to matter. We will identify leaks as elements of the extended Markov monoid that have certain properties. Indeed we will see that the (extended) Markov monoid, has more information about the automaton than whether it has value 1 or not. By calculating the extended Markov monoid we can also decide whether the automaton is leaktight or not, as well as if it is not a simple automaton. First let us de ne leaks and leaktight automata.

De nition 3.16 (Leaktight automata).

Let A be a probabilistic automaton and M the extended Markov monoid that is associated to it. An idempotent element (B, B) ∈ M is called a leak if there exists r, r ∈ S such that • r and r are B-recurrent,

• B(r, r) = 0, • B(r, r) = 1.
If M does not contain a leak then we say that A is leaktight. we see that it is a leak. This is because the states s 0 and s

s 0 s 1 s 2 a 1 2 1 2 b b a a, b
2 are B # a B b -recurrent, B # a B b (s 0 , s 2) = 0 and B a B b (s 0 , s 2) = 1.
Indeed if one investigates the asymptotic behavior of the sequence of stochastic matrices (M n a M b) n∈N , one can conclude that it already depends on the exact transition probabilities of the letter a from state s 0 . We will come back to this, and other examples of leaks in the next chapter.

Simple automata

Let us now turn our attention to the simple automata described in [Chatterjee and Tracol, 2012]. The authors of this paper consider probabilistic automata on in nite words. An in nite word w ∈ A ω induces a stochastic process on S, that is a sequence of random variables (X n) n∈N that takes values in S. The central notion of this paper is that of a simple process. A stochastic process induced by some in nite word is simple if it has a particular structure that is inspired by a deep result in probability theory, called the decomposition-separation theorem, see [Sonin, 2008] and the references therein. Then it is proved that for words that induce simple processes for the almost sure, the positive semantics, and parity conditions, emptiness is in PSPACE. Furthermore the words that are eventually repeating always induce simple process.

A simple automaton is de ned as an automaton where all words induce a simple process. Structurally simple automata are a subclass of automata that are provably simple (but not all simple automata are structurally simple). It is demonstrated that for structurally simple automata the value 1 problem is decidable and in EXPSPACE. They also subsume hierarchical automata and #-acyclic automata.

The decomposition separation theorem decomposes the set of in nite sequences of states into jets.

De nition 3.17 (Jets).

A jet J = (J n) n∈N is a sequence of subsets of S, i.e. for all n ∈ N, J n ⊆ S. We say that a tuple of jets (J 1 , . . . , J k) is a decomposition of S ω (the set of all in nite sequences of states) if for all n ∈ N, (J 1 n , . . . ,

J k n) is a partition of S.
The classical result for homogeneous Markov chains partitions the state space S into the transient states, and recurrence classes (sets of recurrent states that communicate with each other). Then no matter from what state we start the chain will enter one of the recurrence classes with probability 1 and stay there forever. It is surprising that a similar result holds when the chain is nonhomogeneous as well.

Note that an in nite word in a probabilistic automaton induces a nonhomogeneous Markov chain where the transition probability at time n depends on the n-th letter of the word. The decomposition separation theorem says that for all nonhomogeneous Markov chains, there exists a decomposition of S ω into jets (J 0 , . . . , J k) such that with probability 1 we enter one of the jets J k , . . . , J k and stay there forever. Where the jet J 0 plays a role analogous to transient states.

In the case of homogeneous Markov chains we partition the state space, whereas for nonhomogeneous Markov chains we partition the "space time". We have to take time into consideration as well since the chain being nonhomogeneous implies that the transition probabilities change as a function of time.

The idea of a simple process is based on the decomposition separation theorem where a lower-bound is added for the chance of going to one of the recurrent jets.

For an in nite word w ∈ A ω and n ∈ N we denote by w <n the pre x of length n -1 of w.

De nition 3.18 (Simple process).

We say that the process induced by w ∈ A ω from the state s 0 ∈ S is simple if there exists some µ > 0 and decomposition of S ω into jets (A, B) such that,

• for all n ∈ N and s ∈ A n , P(s 0 w <n --→ s) ≥ µ, and

• lim n→∞ P(s 0 w <n --→ B n) = 0.
An automaton for which for all words w ∈ A ω and states s 0 , the induced process of w from s 0 is simple is called a simple automaton.

In [Chatterjee and Tracol, 2012] this structure is taken advantage of to show decidability of some of the problems. We are interested in how it compares to the leaks. First let us understand when a process is not simple. Let us see an example of an automaton with a process that is not simple. Even though the automaton in Figure 10 might look simple (it only has two states after all), it is not. We show how to induce a process that is not simple in this automaton. De ne the nite words

w n = a n b.
Observe that P(s 0

a n -→ s 0) = 1 2 n .
On the other hand P(s 0

w n -→ s 0) = 1.
This gives us a sequence with a sort of pulsating behavior. By reading a's, the chance to stay in s 0 decreases arbitrarily, then reading a b resets everything back to the initial state of the automaton and so on ad in nitum. The process induced by the in nite word w = w 1 w 2 w 3 • • • , from the state s 0 is not simple. This is because the state s 0 has to appear innitely often in at least one of the jets which renders impossible the simultaneous ful llment of both conditions of a simple process.

Consequently the automaton in Figure 10 is not simple.

Let w ∈ A ω and s 0 ∈ S. One way that the process induced by w from s 0 is not simple is if there exists some state s ∈ S such that the probability to be in s from s 0 as we are progressively reading the word w, pulsates, just like in the example above. Let us illustrate what we mean by "pulsates". The sequence of the probabilities to go to state s from state s 0 in date n, that is (P(s 0 w <n --→ s)) n∈N goes to some 1 > 0 then resets to some ν > 1 , then goes back to 1 , then to some 2 < 1 , resets to ν and so on ad in nitum. The sequence of the probabilities to go from state s 0 back to s 0 , in Example 12 with the word w is an instance of such a behavior. See the following gure. Figure 11: The probability to go to state s from state s 0 in a process that is not simple One way to construct such a sequence is to take any sequence (x n) n∈N that converges to 0 and is decreasing and concatenate

x 1 | x 1 , x 2 | x 1 , x 2 , x 3 | x 1 , x 2 , x 3 , x 4 • • • .
Why is such a process not simple? Assume that there exists some µ > 0 and a decomposition of S ω into jets (A, B). Then for the process that we described above we see that there exists some ν > 0 such that there are in nitely many n ∈ N for which

0 < ν < P(s 0 w <n --→ s) < µ. (42
)
Since (A, B) is a decomposition of S ω then for all the n ∈ N for which the inequation above holds, either s ∈ A n or s ∈ B n , consequently there are two cases: either there are in nitely many n ∈ N for which (42) holds and s ∈ B n , in which case the second item of De nition 3.18 cannot be true, or there exists one n ∈ N for which (42) holds and s ∈ A n then rst item of De nition 3.18 does not hold. In any case such a process is not simple.

The automaton in Figure 10 is not simple, moreover, computing its extended Markov monoid one can conclude that it does not contain any leaks, and therefore it is leaktight. Thus we have: 3.3 Leaktight Automata are a Superset exists a sequence of words such that asymptotically there is nonzero probability of going from s to s , and if B(s, s) = 0 then the chance of going from s to s will tend to zero.

De nition 3.21 (Rei cation).

We say that the sequence of nite words (w n) n∈N rei es the element of the monoid W ∈ M if and only if for all s, s ∈ S, (P(s

w n -→ s)) n∈N converges and W(s, s) = 1 ⇐⇒ lim n→∞ P(s w n -→ s) > 0.
The theorem of soundness of the Markov monoid algorithm can be stated as follows.

Theorem 3.22 ([Fijalkow et al., 2012]). For every element of the Markov monoid there exists a sequence of words that rei es it. Theorem 3.14 follows as a corollary since there exists a sequence of words that rei es the value 1 witness. The completeness of the Markov monoid says the converse: if there exists a sequence of nite words that reaches a set of states, then it is accounted for in the monoid. This is not true in general, but it is true for leaktight automata.

The proof of Theorem 3.22 is by induction on the structure of the elements of the monoid. First it is easy to see that for all a ∈ A, the elements B a are rei ed by the constant sequences (a) n∈N . Then it is proved that the property remains true when taking products, i.e. (w n) n∈N rei es W ∈ M and (z n) n∈N rei es Z ∈ M then (w n z n) n∈N rei es WZ. Finally if (w n) n∈N rei es the idempotent element W ∈ M then there exists an increasing function f : N → N such that (w n f (n)) n∈N rei es W # . We will apply this theorem in the sequel, it is a way of going from the abstraction (elements of the monoid) to the actual behavior of the automaton (a sequence of nite words that rei es the element of the monoid).

In the classical result for Markov chains we partition the set of states into transient states, and recurrence classes. Transient states are states where the chance to go will diminish in the future, ultimately converging to zero. Recurrence classes are sets of states that are recurrent, and communicate with each 3 other, once the chain enters a recurrence class it stays there forever, and if it is aperiodic there will be a lower bound on the chance that the chain is in any one of the states of the recurrence class at every step. This bound is the gist of the following lemma, which we state and prove before moving on with the proof of Theorem 3.20.

Lemma 3.23. Let W ∈ M be an idempotent element of the Markov monoid, r ∈ S that is W-recurrent and (w n) n∈N a sequence of words that rei es W. Then there exists a constant γ > 0 and a map that is strictly increasing h : N → N such that for all n ∈ N, P(r

w h(0) •••w h(n-1) -------→ r) ≥ γ. Proof. Let λ = 1 2 • min{lim n P(s w n -→ s) | W(s, s) = 1}.
The constant λ is well-de ned since by De nition 3.21 the limits exist for all s, s ∈ S. Observe that since (w n) n∈N rei es W there exists an increasing function h : N → N such that for all n ∈ N, and s, s ∈ N W(s, s) = 0 =⇒ P(s

w h(n) --→ s) < 1 |S| • 2 n+2 , and (43)
W(s, s) = 1 =⇒ P(s

w h(n) --→ s) ≥ λ. (44
) Set γ = λ 2 and z n = u h(0) u h(0) • • • u h(n-1) . Denote by R the recurrence class of r i.e. R = {t ∈ S | W(r, t) = 1}.
Since W is idempotent the set R is closed, that is to say that for every s ∈ R and s ∈ S, W(s, s) = 1 implies that s ∈ R. Consequently using (43) we can show that

P(r z n-1 --→ S \ R) < 1 2 .
This follows because

P(r z n-1 --→ S \ R) ≤ ∑ s∈R n-2 ∑ k=0 P(s w h(k) --→ S \ R) < ∑ s∈R n-2 ∑ k=0 1 |S| • 2 k+2 < 1 2 .
Hence P(r

z n-1 --→ R) ≥ 1 2 . 3 Proof.
We assume on the contrary that w induces a simple process from p with bound λ and show a contradiction.

Observe rst that for in nitely many n ∈ N, we have s ∈ A i n and t ∈ B j n , where A and B are the jets from the De nition 3.18. This follows from the assumptions (1) and (3).

Let n ∈ N be such that s ∈ A i n and t ∈ B j n , (2) implies that P(s

w[i n ,j n] ---→ t) > 0,
therefore along the path from s to t there must be some moment where we move from the jet A to the jet B. Formally there exists some

k n such that i n ≤ k n < j n , s k n ∈ A k n , s k n +1 ∈ B k n +1
and there is nonzero probability to go from s k n to s k n +1 with the letter w[k n , k n + 1] = b. Denote by p min the smallest nonzero transition probability in the automaton, that is

p min = min{δ(s, a)(s) > 0 | s, s ∈ S, a ∈ A}. Then P(s k n b -→ s k n +1) ≥ p min . Now because s k n ∈ A k n ,

P(p

w <kn +1 ----→ s k n +1) ≥ P(p w <kn --→ s k n) • P(s k n b -→ s k n +1) ≥ λ • p min .
Since this holds for in nitely many n ∈ N and s k n +1 ∈ B k n +1 this contradicts the second point in De nition 3.18, that of lim n→∞ P(p

w <n --→ B n) = 0.
Now we show that when the Markov monoid has a non-simplicity witness we can construct an in nite word such that the conditions in Lemma 3.25 are ful lled.

Lemma 3.26. If the Markov monoid associated to an automaton has a non-simplicity witness then it is not a simple automaton.

Proof.

Let (U, V, W) ∈ M be a non-simplicity witness with states r, t ∈ S for which the properties in De nition 3.24 are true. From Theorem 3.22 let (u n) n∈N , (v n) n∈N , (w n) n∈N be sequences of words that reify U, V and W respectively. As mentioned in the discussion of the proof of Theorem 3.22, there exists an Since Z = Z, there must exist U, V, W ∈ M such that Z = UV # W and V = V # . Let T be the set of states that are V-transient and R = {s ∈ S | Z(r, s) = 1}, the Z-recurrence class of r. We will prove that there exists r ∈ R and t ∈ T such that UV(r , t) = 1.

(47)

Observe that this is su cient for proving that (U, V, W) is a non-simplicity witness, the states r and t ful ll the conditions in De nition 3.24.

We prove (47) by contradiction. Assume that it does not hold, we will show that the element of the extended Markov monoid (UVW, Z)

| M|! is in L. This is a contradiction because UVW has a strictly smaller #-height than Z = UV # W.
So what is left to show is that (UVW, Z) K is in L, where K = | M|!.

Observe rst that from the assumption that (47) is not true, for all r ∈ R and s ∈ S, UV(r , s) = UV # (r , s) and from here

UVW(r , s) = UV # W(r , s) = Z(r , s). (48)
We demonstrate that (UVW, Z) K ∈ L, for the states r, r .

1. (UVW, Z) K is idempotent:

This follows from the fact that for every nite monoid of size n and element x, x n! is idempotent.

2. r is (UVW) K -recurrent:

Let s ∈ S such that (UVW) K (r, s) = 1. From idempotency, r ∈ R, therefore applying (48), (UV # W) K (r, s) = 1. From here, since (UV

W) K = Z K = Z, Z(r, s) = 1. Because r is Z -recurrent, Z(s, r) = 1, and s ∈ R.
Applying (48) again, this time for s, we have Z(s, r) = UVW(s, r) = 1. Also 1 = Z(r, r) = UVW(r, r), hence (UVW) K (s, r) = 1.

3. (UVW) K (r, r) = 0:

Assume on the contrary that (UVW) K (r, r) = 1. Then there exist

s 0 • • • s K such that s 0 = r, s K = r and for all 0 ≤ i < k, UVW(s i , s i+1) = 1. Applying (48) for i = 0, since s 0 = r ∈ R we see that s 1 ∈ R as well, because r is Z-recurrent. Inductively we conclude that for all 0 ≤ i < k, Z(s i , s i+1) = 1, hence Z K (r, r) = 1, Z is idempotent thus Z(r, r) = 1, a contradiction of point (3) in the de nition of L. 4. Z K (r, r) = 1:
This follows immediately from point (4) of the de nition of L and the fact that Z is idempotent.

In this way we conclude the demonstration of Theorem 3.20. The class of leaktight automata is also closed under synchronized product, parallel composition etc, [Fijalkow et al., 2015]. Since there are no known classes of automata with decidable value 1 problem that are not a strict subset of leaktight and since the Markov monoid algorithm that takes advantage of this class is in some way the best that we can hope for [Fijalkow, 2015] we can safely conclude that this class is robust and deserves attention. It seems to capture tightly the complications that stem from calculating in nitely precise transition probabilities, that are the cause of undecidability of the value 1 problem. In the next chapter we will continue with the notion of leaks and lift it to two player half-blind games, where it proves just as useful as for probabilistic automata.

,

Stamina (stabilization monoids in automata theory) [Fijalkow et al., 2016] is a tool authored by Nathanaël Fijalkow, Hugo Gimbert, Denis Kuperberg and the author of this thesis that computes stabilization monoids. An example of a stabilization monoid is the Markov monoid that we have discussed in this chapter. Stamina is a successor to the tool ACME [Fijalkow and Kuperberg, 2014]. The aim of Stamina is to solve the following three problems:

• The value 1 problem for leaktight probabilistic automata. It implements the Markov monoid algorithm, that computes the Markov monoid. The size of the Markov monoid can be exponential in number of states. As a consequence, having a small memory footprint is crucial. Stamina achieves this by a set of techniques, such as saving the same matrix row only once in the memory, and managing only pointers to the locations of the saved row. This enables us to handle relatively large automata despite the PSPACE complexity of deciding the value 1 problem for leaktight automata.

• The star height problem. We are given a nite automaton and an integer, we have to decide whether the language de ned by the automaton has star height equal to the integer. The star height of a language is the smallest number of nested Kleene stars that are necessary for expressing the language as a regular expression without complements. The decidability of the star height problem was an open question for 25 years until Hashiguchi answered it positively in [Hashiguchi, 1988]. Though he showed that the problem is decidable, his algorithm has a computational complexity that makes implementing it worthless. After an equally long time, Kirsten gave a simpler algorithm with better complexity bounds in [Kirsten, 2004], using a stabilization monoid. Even though this algorithm 3.4 Stamina, the tool is much simpler than the rst one by Hashiguchi, it remains far from tractable being doubly exponential in space. In order to ameliorate the situation we employ the loop complexity heuristic. Overall the star height problem remains computationally hard but Stamina provides a sandbox for experimenting with di erent heuristics and verifying small examples.

• Boundedness problem for regular cost functions [Colcombet, 2009]. We are given an automaton with counters that de nes some function f : A * → N, where A is the alphabet of the automaton, and asked to determine if f is bounded. This problem reduces to computing a stabilization monoid as well.

The three problems: the value 1 problem for probabilistic automata, the star height problem, and the boundedness problem for regular cost functions have been glued together in the sense that we have one tool to solve the three of them, because the three problems reduce to computing stabilization monoids. The algorithms that solve them are essentially the same.

Stamina can be run as a standalone application (it can output PDFs of the stabilization monoids it computes), as well as a module for SAGE (http:// www.sagemath.org). In this way it can be used in conjunction with the whole platform of SAGE in general, and its automata libraries in particular.

Stamina furthers the work that was done for ACME, both in terms of features and problems that are solved, as well as, perhaps more importantly performance. This is evident by the benchmarks that were performed and then plotted in Figure 12. In particular, we see that there is a threshold around the point of 3000 element monoids, which cannot be passed by ACME because of stack over ows. Half-blind stochastic games are nite duration games that are played on a nite arena between two players. The maximizer that wants to reach the nal set of states and the minimizer that wants to do the opposite. They take turns for a nite but arbitrarily long duration. The di erence between simple stochastic games and half-blind ones is that in half-blind games we restrict the maximizer to a particular set of strategies. The maximizer can choose a pure and nite word over the alphabet of the actions as his strategy. Whereas his opponent chooses among general behavioral strategies. In other words we are dealing with a special case of two player games with partial information. The case where the maximizer has zero information (he is blind), while the minimizer is perfectly informed. From another point of view, half-blind games are generalizations of probabilistic automata on nite words. They are probabilistic automata with an adversary that tries to stop the protagonist from reaching the set of nal states. The problem that we are going to study for these games in this chapter is the maxmin reachability problem. This is the question of whether for all > 0 there exists a nite word for maximizer such that against all strategies of the minimizer, the chance of reaching the set of nal states is larger than 1 -. The maxmin reachability problem is the analogue of the value 1 problem for probabilistic nite automata. Consequently it is not decidable in general. Nevertheless, we will identify the subclass of leaktight half-blind games for which the maxmin reachability problem is decidable. This lifts the result of [Fijalkow et al., 2012] to two player half-blind games. We will also compare the power of di erent types of strategies and show that mixed strategies are in general stronger for both players, as well as the perhaps surprising fact that optimal strategies of the minimizer might require in nite memory even though he plays against an opponent that has zero information. Two player stochastic games are suitable for modeling numerous phenomena with probability. In the eld of software veri cation and controller synthesis, two player stochastic games with partial information are particularly useful. The game is played between the controller and the environment. By taking actions the former tries to reach his objective (put the system in some state, see a set of states in nitely often, etc.), and the environment tries to stop this. The controller takes actions that are helpful to reaching his objective based on the history of states. Albeit, typically in practice the controller cannot know the exact state of the system, but has only a partial picture. This is because the controller is aided by sensors, which can be noisy, or have some degree of error; or a software interface that provides only a partial view of the system. Hence the suitability of partial information two player stochastic games in this very important context. In this chapter we will discuss a particular type of two player partial information stochastic game: the half-blind games. One arrives to these games by generalizing probabilistic nite automata to two player games, with a perfectly informed opponent.

Consider Figure 13. This arena looks like the arenas of two player games that we have discussed in Chapter 2 -we see a turn-based stochastic game played between two players on a nite graph. One player's objective (Max) is to reach the nal state f , his opponent (Min) tries to stop him from doing this. As in probabilistic nite automata, Max has no information about the state of the game, and his aim is to reach the set of nal states by playing some nite word over the set of actions. His opponent, Min, on the other hand is perfectly 4.1 Overview informed about the state of the game. He can see the whole history of the states and actions that were taken before he makes the decision, when it is his turn.

The question that we will study is that of whether the set of nal states is maxmin reachable from the initial state. This is analogous to the value 1 problem for probabilistic nite automata. Before we de ne this problem precisely, let us overview related work.

Partial information games are algorithmically harder than their perfect information counterparts; especially quantitative problems, they are often undecidable. We saw in the previous chapter how many problems are undecidable for probabilistic automata, which is a special case of a partial information game with one player. But there is a series of positive results for qualitative problems.

For example, Büchi partial information games are qualitatively determined [Bertrand et al., 2009], i.e. either Max can ensure the Büchi condition almost surely or Min can ensure positively the opposite co-Büchi condition. In a reachability game, there are three possibilities, either Max can ensure the condition almost surely, Min can ensure the opposite safety condition surely, or both players have positively winning strategies. Moreover for both games, only nitememory strategies are necessary, and which player has an almost-sure or positively winning strategy can be decided, and the strategy that ensures it, can be e ectively constructed as well.

Consult the survey article [Chatterjee et al., 2012] and the references therein, for a general overview of two player games with partial information. It su ces to illustrate the contrast between the perfect information and partial information games: for example the problem of the existence of a strategy that ensures almost sure reachability (of a set of states) for perfect information games is in linear time, whereas for partial information games it is 2EXPTI ME-complete. For perfect information games with parity condition, the question whether there exists a strategy that ensures the parity condition almost surely is in NP ∩ coNP, but for partial information games it is undecidable.

There is the interesting special case of one-sided games. Partial information games where the minimizer is assumed to have perfect information, and the maximizer has partial information. In the context of software veri cation these are games where the antagonistic environment is perfectly informed, a pessimistic but safe approach. Under this restriction there is some relief. Deterministic two player one-sided games with parity objectives are in NP ∩ coNP, whereas the general case of deterministic partial observation games is 2EXPTI ME-complete [Chatterjee and Henzinger, 2005].

In the stochastic case, even the one-sided games for parity objectives under the almost-sure semantics are undecidable. However, the di culty stems from the analysis of strategies with in nite memory. In many applications such strategies are useless, since we cannot actually implement them. Whether the protagonist can satisfy the parity condition almost surely with a nite-memory 4 strategy in a one-sided stochastic game, was proved to be decidable in [Nain and Vardi, 2013]. This problem is EXPTI ME-complete and the strategies need to have memory of at most exponential size [Chatterjee et al., 2014]. We are going to take the same approach and assume that the opponent (Min) is perfectly informed.

In the majority of the positive results, the almost-sure semantics is being considered, i.e. does there exist a strategy for Max such that against all strategies for Min the winning condition is ensured with probability 1. One can argue that this question is at times too strong, in comparison to the limit-sure semantics. Especially for one-sided games, where we already assume that Min is perfectly informed. Moreover, there are simple examples of games with reachability condition where there is no strategy that ensures that the set of nal states will be reached almost surely, but for every > 0 there is some strategy that ensures it with probability of at least 1 -. One such game is depicted in Figure 13. There is no strategy for Max that ensures reaching the state f almost surely. Because Min can always play the action α, so whenever Max plays a b, the game ends up with some nonzero probability in the sink state s. On the other hand the state f is limit-sure reachable: Max plays a sequence of n a's which results in the game being in state c with probability at least 1 -2 -n , and then plays a b. So f is limit-sure reachable but it is not almost sure reachable.

The reason for lack of treatment of the limit-sure semantics in the literature is that even in the case of probabilistic nite automata the limit-sure problem (value 1 problem) is undecidable. However, we saw in the previous chapter that there are at least a couple of interesting classes of probabilistic automata with 4.1 Overview decidable value 1 problem. It is interesting to see whether we can lift these results to games.

In this chapter we will use the notion of a leak to show decidability of the maxmin reachability problem for a class of half-blind games. Precisely, the maxmin reachability problem is as follows.

Problem 4.1 (Maxmin reachability for half-blind games). Given a half-blind game, decide whether for all > 0 there exists a nite word (over the alphabet of actions) for Max, such that against any strategy for Min, the set of nal states is reached with probability of at least 1 -.

Leaks seem to catch well the di culties that make the value 1 problem undecidable for probabilistic nite automata. It is interesting to explore whether in games it is this phenomena of leaks that alone causes undecidability, or if there is more hardness added with the perfectly informed opponent. Another motivation for considering half-blind games is as follows. With half-blind games we can model lack of knowledge of exact transition probabilities. Imagine that in the transition in Figure 15 we do not know exactly the value of x, but we know that it is in some 2 neighborhood of 1 2 . We model this lack of knowledge by basically letting Min make the choice, as in Figure 16. In the sequel we will report on [Kelmendi and Gimbert, 2016], identify the class of leaktight half-blind games, then proceed to prove that the maxmin reachability problem in this restricted subclass is decidable. Moreover we will compare the power of di erent types of strategies and prove that optimal strategies for the minimizer might require in nite memory.

s 0 t 1 t 2 a x 1 -x
s 0 s 1 t 1 t 2 α 1 1 2 + 1 2 - α 2 1 2 - 1 2 + a
The proof methods that we will employ are as follows. We will de ne the belief monoid, which is a nite monoid that we will build on top of the Markov monoid that was used for probabilistic nite automata. It will play the same role that the Markov monoid plays for probabilistic automata, namely we will search it for a particular element whose existence is equivalent to the maxmin reachability of the set of nal states. In order to demonstrate that the belief monoid is sound, we utilize a modi cation of the Simon's factorization forest theorem [Simon, 1990], for a data structure that is called the k-factorization tree. With the help of k-factorization trees we will prove some upper and lower bounds of probabilities in the game. This is however done under the assumption that the game is leaktight, i.e. it is not guaranteed that there are no false positives for the general case of half-blind games. This stands in contrast to [Fijalkow et al., 2012], where the soundness of the Markov monoid is almost for free, and does not rely on the leaktight hypothesis. Consequently we will prove that the belief monoid is complete, which uses the leaktight hypothesis and Simon's forest factorization theorem as well. The arena of a half-blind game is very similar to that of perfect information games. We will however assume that the game is played in a bipartite graph, in order to make the presentation cleaner.

We de ne the half-blind games formally.

De nition 4.2 (Half-blind game).

A half-blind game G is given by the tuple G = (S 1 , S 2 , A 1 , A 2 , p, F), where

• S 1 is a nite set of states that is controlled by Max,

• S 2 is a nite set of states that is controlled by Min,

• A 1 is a nite set of actions that are disposable to Max,

• A 2 is a nite set of actions that are disposable to Min,

• p is the transition function that maps S 1 × A 1 to ∆(S 2), and S 2 × A 2 to ∆(S 1),

• F is a set of nal states.

We will write S = S 1 ∪ S 2 and A = A 1 ∪ A 2 . The objective of Max is to reach the set of nal states F.

The game proceeds in turns. Say that it starts in some state s 0 , if s 0 ∈ S 1 then Max chooses some action a ∈ A 1 and the next state is determined from the distribution p(s 0 , a), symmetrically if s 0 ∈ S 2 . Then Min chooses his action and so on until Max decides to stop, and when he does, if the current state of the game is in F then he wins, otherwise it is Min who wins. The decision of what action to take, Min can base on the whole history, including the actions that he himself took, as well as those of Max. But Max can base his own decisions only on the number of turns that have elapsed.

In other words, Max plays a nite and pure word over the alphabet A 1 . Min's strategy is a general behavior one. The set of strategies for Max is denoted by Σ 1 and it is de ned as

Σ 1 = A * 1 ,
the set of pure nite words over the alphabet A 1 . The set of strategies for Min is denoted by Σ 2 and it is the set of functions (SA) * S 2 → ∆(A 2).

We will usually denote by w the elements of Σ 1 , to stress that it is a particular kind of strategy, i.e. a word, and by τ the elements of Σ 2 . Why such strategies have been chosen, and discussions of other types of strategies can be found in Section 4.7.

When we x an initial state s ∈ S, a strategy τ for Min and a nite word w ∈ A * 1 of length n for Max, we induce a probability distribution on the set (SA) n S 1 . We will denote this by P w,τ s . More precisely it is de ned as follows:

for a history h = s 1 a 1 t 1 b 1 • • • s n a n t n b n s n+1 ∈ (SA) n S 1 , P w,τ s (h) = n ∏ i=1 p(s i , a i)(t i) • τ(h i)(b i) • p(t i , b i)(s i+1), if s = s 1 and w = a 1 • • • a n and 0 otherwise, where h i = s 1 a 1 t 1 b 1 • • • s i a i t i , 1 ≤ i ≤ n.
As we did before, we will use the following shorthand. For t ∈ S 1 we denote by P w,τ s (t) the chance of being in state t, when the players have chosen the respective strategies w and τ, and the game starts from the state s, i.e. P w,τ s (t) = ∑ h∈(SA) * P w,τ s (ht).

For a set T ⊆ S, we write P w,τ s (T) for the chance of ending up in the set of states T, i.e. P w,τ s (T) = ∑ t∈T P w,τ s (t).

We are interested in the maxmin value of the game. This is de ned as follows.

De nition 4.4 (Maxmin value).

Let G be a game, with F its set of nal states and s ∈ S some state. We de ne the maxmin value of s to be

val(s) = sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F).
The problem that we will consider is whether val(s) = 1, where s is the initial state. This is Problem 4.1, that is the problem of whether for all > 0 there exists some word w such that against all strategies τ of the opponent the set of nal states F is reached with probability of at least 1 -. So player Min knows the strategy that was chosen by Max before making his own strategy choice. In the controller synthesis application, this results in a controller that wins even against a strong environment, which is desirabl.e

In general sup w∈σ 1 inf τ∈Σ 2 P w,τ s (F) is not equal to inf τ∈Σ 2 sup w∈σ 1 P w,τ s (F), it matters who chooses the strategy rst. But if instead of considering only pure words for Max, we consider mixed words as well, that is elements of ∆(Σ * 1), then it does not matter who chooses the strategy rst, i.e. the game has a value. We will discuss this choice, as well as how much memory the strategies require in Section 4.7. For now we concentrate only on the maxmin value.

Unfortunately it is not possible to algorithmically determine if a game has maxmin value equal to 1.

Theorem 4.5 ([Gimbert and Oualhadj, 2010]). Given a half-blind game G, and s ∈ S, the problem of whether

val(s) = 1, is undecidable.
Observe that if Min has no choice in any of the states S 2 (there is a single action), then we are dealing with the special case of probabilistic nite automata. The value 1 problem is undecidable, hence the theorem above. Our purpose is to decide whether val(s) = 1 when the game is leaktight. The game starts at state i and the objective of the maximizer is to reach the state f , which is the unique nal state. Observe that in order to reach the state f , Max has to play the letter b at some point, because against the strategy that plays only a, Min will reply with a strategy that never plays the action α from 2 and therefore making sure that the game never reaches state f . But it is critical for Max to choose the right time to play the letter b. Because if he plays it when the game is in state i then he loses, since the game goes to the sink state s and 4. But if he plays it when the game is in state c then he wins by going to the state f and 3. Of course he cannot tell when he is in state c, because he has no information. Consequently, no matter what strategy Max chooses, Min can refute it, by acting as follows. If the game is in state 2, and in the next turn Max will play an a, Min plays β, if in the next turn Max will play a b, Min plays α, making sure that with probability 3/4 the game will end up in the sink state s. Note that we are xing the strategy of Max rst in this analysis, i.e. we are considering val(i), and we see that it is bounded above by 3/4. This is because when Max plays ab, and Min follows the strategy that we described above, the state f is reached with probability 3/4, but if Max plays at least two a's before the b, then f is reached only with 1/4. Hence val(i) = 3/4.

The Belief Monoid

The refutation of Min depends on the word that was chosen by Max, in order to refute it we need to know whether in the next turn Max will play an a or a b. If we x a strategy for Min rst, then Max can reach the set of nal states with a chance that is strictly larger than 3/4. This is because if the strategy that is chosen by Min, in some turn will play the action β almost surely, then Max takes advantage of this and plays b at this turn. Otherwise if there is some nonzero probability that the strategy of Min will play the action α at every turn, this adds up over time, making the chance of going to the nal state f equal to 1, given that Max plays only a. Thus we see that in general

val(s) = sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F) = inf τ∈Σ 2 sup w∈Σ 1 P w,τ s (F).
Nevertheless we will consider only the maxmin for now.

Deterministic strategies for Min su ce

Min is advantaged in two ways. First, we are considering the maxmin value, so we x rst the strategy of Max and then Min replies, knowing this strategy. Second, Max uses a very particular and simple strategy, a pure nite word. With this in mind, it is not surprising that a general behavioral strategy for Min is not necessary. Min can manage with a simpler type of strategy, that is a deterministic strategy that depends on the current state of the game, as well as which turn it is. We denote the set of such strategies by Σ p 2 , it consists of strategies that map N → (S 2 → A 2),

i.e. strategies that at every turn play according to some pure and memoryless strategy.

We prove that Min cannot gain more by choosing some strategy that is in Σ 2 but not in Σ p 2 .

Lemma 4.6. Let G be some game with the set of nal states F, and s ∈ S, then

val(s) = sup w∈Σ 1 inf τ∈Σ p 2 P w,τ s (F) = sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F).
Proof. we can only go to a state in {2} × S 2 (by taking into account that Max plays a 2 as a reply), and so on, in general from a state in {i} × S 2 we go to a state in {i + 1} × S 2 , for the states in {n} × S 2 , with every action we loop. In this MDP, Min wants to stay away from the states {n} × F, and he can do this with a pure and memoryless strategy [Puterman, 1995]. A pure and memoryless strategy in this MDP translates to a strategy in Σ p 2 in the half-blind game. As a consequence of this, in the sequel, we will assume that Min chooses a strategy in Σ p 2 , which will simplify the proofs.

The belief monoid algorithm

Given a half-blind game, we will construct an algebraic structure called the belief monoid. The decision procedure consist of this construction and then searching for a particular element in the monoid. If the game belongs to the class of leaktight games then this abstraction using the belief monoid will be faithful. We are going to rst de ne the belief monoid, as well as the belief monoid algorithm, illustrate a few examples, and then later on we will give a precise de nition of the class of leaktight half-blind games.

The belief monoid relies on the Markov monoid of [Fijalkow et al., 2012], de ned in De nition 3.16. In a sense it is a nesting of the Markov monoid. First, given a half-blind game, we can construct its Markov monoid. In the case of probabilistic automata we were abstracting the nite set of the stochastic matrices M a by the binary matrices B a , by mapping nonzero entries to 1. In the case of half-blind games we will abstract the stochastic matrices M a,τ , where τ is a pure and memoryless strategy. These are |S 1 | × |S 1 | stochastic matrices that are de ned as follows, for all s, s ∈ S 1

M a,τ (s, s) = ∑ t∈S 2 p(s, a)(t) • p(t, τ(t))(s).
In other words M a,τ (s, s) gives the probability to go from state s to state s in the game that takes only one turn, and where Max plays the single letter a and Min replies with the pure and memoryless strategy τ. Observe that if Max chooses some word w = a 1 • • • a n and Min chooses some strategy τ ∈

Σ p 2 , P w,τ s (s) = M a 1 ,τ(1) M a 1 ,τ(2) • • • M a n ,τ(n) (s, s
). For a ∈ A 1 and τ pure and memoryless (i.e. an element of S 2 → A 2), we de ne the binary matrices (that abstract the stochastic ones) by B a,τ (s, s) = 1 ⇐⇒ M a,τ (s, s) > 0.

(49)

The Belief Monoid

Now we can de ne the Markov monoid for half-blind games as one would assume, considering the previous chapter.

De nition 4.7 (Markov monoid for half-blind games). The Markov monoid for half-blind games M is de ned as

M = {B a,τ | a ∈ A 1 , τ ∈ S 2 → A 2 } ∪ {I} ,
where I is the unit matrix.

We recall that for a set of binary matrices b, we said b is the smallest set that contains b and is closed under taking products and iterations. Where the last two are de ned in De nition 3.8 and De nition 3.11 respectively.

The elements of M say something about how the game can progress. For example, consider

B = B a 1 ,τ(1) • • • B a n ,τ(n) ,
where τ ∈ Σ p 2 and a 1 • • • a n ∈ Σ 1 . If for some s, s ∈ S 1 , B(s, s) = 1, then the chance of reaching s from s when Max plays the word a 1 • • • a n and Min the strategy τ, is nonzero. Or, for example, if we have some idempotent B a,τ ∈ M, a ∈ A 1 , τ memoryless and pure, and s, s ∈ S 1 such that for the iterated element B # a,τ (s, s) = 0, then this means that

lim n P a n ,τ s (s) = 0.
That is, if Max plays longer and longer chain of a's and Min replies always with the same memoryless and pure strategy τ, then the chance of going from state s to state s tends to zero. We need some more structure in the belief monoid, the elements of M need to be grouped according to what might happen when Max chooses some strategy. 1The elements of the belief monoid are subsets of M. We group together those elements which correspond to the same strategy by Max. For instance for

a ∈ A 1 , a = {B a,τ | τ ∈ S 2 → A 2 }. (50
)
We will denote elements of the belief monoid by boldfaced lowercase letters. The element a groups together all that might happen in the game when Max 4 plays the letter a. The product of two elements of the belief monoid is just the product of its elements.

De nition 4.8 (Product operator for the belief monoid). The product of u and v, denoted by uv is de ned as

uv = {UV | U ∈ u, V ∈ v}.
Now, for example, to any nite word w = a 1 a 2 • • • a n , we can associate the element w = a 1 a 2 • • • a n , that consists of binary matrices that together encompass all that is possible to occur in the game when Max plays the word w.

As with probabilistic automata, this is not the end of the story, since we need to take into account that in the limit Max can make the probability to go to certain states tend to zero. For this purpose, we de ne the iteration operator for the belief monoid as follows.

De nition 4.9 (Iteration operator for the belief monoid). Let u be idempotent, its iteration, denoted by u # , is de ned as

u # = {UE # V | U, E, V ∈ u, E 2 = E} .
In u # , we are taking elements of u that are iterated at least once, and then closing that set under product and iteration.

Having de ned these two operations for subsets of M, we are now ready to de ne the belief monoid.

De nition 4.10 (The belief monoid).

Given a half-blind game G, the belief monoid that is associated to it, denoted by B, is the smallest set that contains {a | a ∈ A 1 } ∪ {{I}}, and is closed under taking product and iteration, where I is the unit matrix and a is de ned as in (50).

The Belief Monoid

Example 14. We go back to the game in Figure 13. Min has two pure and memoryless strategies in total, the one that plays α and the one that plays β. We construct its belief monoid. By de nition we have B a,α = 1 1 0 1 , and B a,β = 0 1 0 1 .

As well as, a = {B a,α , B a,β }.

We have used the order i < f of the states for the matrices above, e.g. the (1, 1) entry of B a,α corresponds to (i, i), the probability to loop in the state i.

Observe that the set a, is closed under taking products, hence a 2 = a, i.e. a is idempotent and a # is well-de ned. Moreover both of the elements B a,α and B a,β are idempotent, and B a,β is absorbing, in the sense that

B a,α B a,β = B a,β B a,α = B a,β . Since B # a,α = B a,β we conclude that a # = {B a,β }.
Furthermore, a and a # are the only elements of B, the belief monoid that is associated to the game in Figure 13.

In the example above the element a # serves as a reachability witness. It witnesses the fact that the state f can be reached with probability arbitrarily close to 1, from the state i.

De nition 4.11 (Maxmin reachability witness).

Let G be a half-blind game with initial state i and set of nal states F, and let B be the belief monoid that is associated to it. An element u ∈ B is called a maxmin reachability witness if for all B ∈ u, and s ∈ S 1 ,

B(i, s) = 1 =⇒ s ∈ F.
The belief monoid algorithm, constructs the belief monoid and then searches for a maxmin reachability witness. If it nds one, then it returns yes, otherwise it returns no. 4 Roughly speaking, elements u ∈ B of the belief monoid correspond to strategies of Max, while elements B ∈ u inside it, correspond to a response strategy for Min. In this sense the maxmin reachability witness says that there exists some element u ∈ B (some strategy for Max), such that for all B ∈ B (for all strategies for Min), the result of the game is that from the initial state we end up in the set of nal states. Let us go back to the game in Figure 17 and construct its belief monoid. We use the following order on the states:

i < c < s < f . a = {B a,α =     1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1     , B a,β =     0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1     } b = {B b,α = B b,β =     0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1     } Moreover b = b 2 = b # .
On the other hand, observe that a 2 = a. The elements of a 2 are as follows.

B a,α • B a,α =     1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1     , B a,α • B a,β =     0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1     , B a,β • B a,β = B a,β , B a,β • B a,α =     1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1     .
By computing a 4 , it follows that a 2 is idempotent, therefore (a 2) # is well-de ned. Furthermore, (a 2) # is a strict superset of a 2 , containing the following new element:

(B a,α • B a,α) # = (B a,α • B a,β) # = (B a,β • B a,α) # =     0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1     .
Intuitively this element is saying that if Max keeps playing a longer and longer sequence of a 2 , and Min replies to each one with (α, α), (α, β) or (β, α), then the nal state is reached almost surely. This is because playing α by Min ensures that 1/4 of the probability that is not in f goes to f , and since f is a sink state, it remains there.

From here, without continuing the computation, it is easy to conclude that (a 2) # b is not a maxmin reachability witness, since it contains the element

B = (B 2 a,β) # • (B a,β • B a,α) • B b,α =     0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1     ,
and B(i, s) = 1, but s ∈ F. Other elements of B are easily seen to not be maxmin reachability witnesses either.

The extended belief monoid

For the proofs of the correctness of the belief monoid algorithm, as well as the de nition of the leaktight half-blind games we will make use of the extended belief monoid. This is just the belief monoid that is built on top of the extended Markov monoid that was de ned in De nition 3.15.

De nition 4.12 (Extended belief monoid).

The extended belief monoid, denoted by B, has as elements subsets of M, otherwise it is de ned just as the belief monoid, i.e. it is the smallest set that contains {a | a ∈ A 1 } ∪ {{(I, I)}}, and is closed under product and iteration, where a are de ned as

a = {(B a,τ , B a,τ) | τ ∈ S 2 → A 2 }. 4 4.3
The concept of leaks was introduced in [Fijalkow et al., 2012], as we have discussed in the previous chapter it is interesting for various reasons. In this chapter we will give an informal description of leaks, as well as de ne them for halfblind games. See [Fijalkow et al., 2012] and[Fijalkow et al., 2015] for examples, and further discussions on leaks.

Let us consider the simplest possible example that exhibits leaks. In Figure 18a we have a probabilistic automaton with two letters, where x is some rational with 0 < x < 1. We regard the behavior of the automaton when it reads the sequence of words ((a f (n) b) g(n)) n∈N , where f and g are some increasing functions. If we start from the state c and play the sequence a f (n) b, the chance of coming back to c is 1x f (n) . This is because the chance of going to the sink state s, is x f (n) , and the probability to go to the state r is 0. So with a very small probability we are going to the sink state, otherwise we come back to c. Up until now, the behavior of the automaton is fairly straight forward. The complications arise when we repeat the word a f (n) b. There is some small chance that we go to the sink state s, but we repeat this experiment g(n) times, thereby increasing the probability of being stuck in the sink state. Will there always be some nonzero chance of going to the sink state in the limit, is hard to ascertain, and in fact it is algorithmically impossible in the general case, since this is a leak. In our case here, the answer depends on the quantity x as well as how fast the functions f and g increase; so already it depends on the quantitative properties of the automaton, and not just the qualitative ones.

Leaks

Under the sequence of words (a f (n) b) n∈N the state c is recurrent and it forms its own recurrence class, the same holds for s. We have illustrated this in Figure 18b. By this we mean that in the limit of that sequence of words, there is no nonzero probability of going from the state c to some other state and not coming back (note that the dotted transition from c to s tends to zero in the limit).

While the dotted transition is zero in the limit, it is nonzero for all n ∈ N. What we are dealing with here, is two recurrence classes that still communicate with each other with some transition that has little chance of occurring. This is what we refer to as a leak, the transition between the two recurrence classes that has little chance of occurring, the recurrence class {r} leaks some probability to the recurrence class {s}.

We summarize this discussion in the gure below. We have two recurrence classes, R 0 and R 1 , and R 0 leaks some probability to R 1 . By repeating, or iterating this many times there are two possible things that might happen, either some probability remains in R 0 (this is (I) in Figure 19) or the leak vanishes too slowly and therefore depletes all the probability from R 0 (this is (II) in Figure 19). Which one of these two possible outcomes happens is algorithmically too complicated to conclude, and in general impossible. It becomes even more complicated when there are two or more leaks at the same time, and we have to compare their speeds. See [Fijalkow et al., 2012] for such examples, and [Fijalkow, 2015] for further discussion on the speeds of convergence of leaks.

R 0 R 1 R 0 R 1 R 0 R 1 I II iterate
Hopefully the discussion is su cient to motivate the syntactic characterization, which serves as a de nition, of leaks given in De nition 3.16. We recall this de nition here, for the extended Markov monoid that is associated to a half-blind game. 4 De nition 4.13 (Leaktight half-blind games). Let G be a half-blind game and M the extended Markov monoid that is associated to it. An idempotent element (B, B) ∈ M is called a leak if there exists r, r ∈ S 1 such that • r and r are B-recurrent,

• B(r, r) = 0, • B(r, r) = 1.
If M does not contain a leak then we say that the game G is leaktight.

What follows from here is that in order to ascertain whether a given game is leaktight, it su ces to check if any element of its extended Markov monoid ful lls the properties given in De nition 4.13, so it is decidable.

Theorem 4.14. Given a half-blind game, one can decide whether it is leaktight. This is a very convenient property of this subclass of automata and half-blind games: having a class of games with decidable maxmin reachability problem whose membership we cannot decide would not be very useful.

Example 16.

In the extended Markov monoid of the automaton in Figure 18a, we have the following couple(we have used the order c < r < s on the states),

B # a B b =   1 0 0 1 0 0 0 0 1   , B # a B b =   1 0 1 1 0 0 0 0 1   .
In the right component we have kept the transition from c to s. Observe that this element ful lls all the properties in De nition 4.13 for the states c and s, and therefore is a leak.

We have illustrated above the leaks on probabilistic automata instead of halfblind games for the sake of simplicity. The situation for games is very similar, in fact, it is easy to see that, given a game G we can construct an automaton A such that G is leaktight if and only if A is. The automaton has an alphabet of size

|A 1 | × |S 2 → A 2 |.
It is true that in games the asymptotic behavior can be much more complex, since Min can choose some complex strategy, but as we shall see, when the game is leaktight, none of such complex strategies help Min to impede Max from reaching the nal states, and hence do not make the question of maxmin reachability harder.

k

The notion of k-decomposition trees is central in the proofs of the correctness of the belief monoid algorithm. We will de ne k-decomposition trees in this section, and prove a key property that they have: a bound on their height.

The setting is as follows. We have a nite alphabet A, a nite monoid (M, •) and a morphism φ from A * (the set of nite words with alphabet A) to M. This means that for all u, v ∈ A * , we have φ

(uv) = φ(u) • φ(v).
Since the set A * is in nite but M is nite, Ramsey's theorem tells us that for all n ∈ N, any su ciently long word w ∈ A * can be decomposed into factors

w = uw 1 w 2 • • • w n v such that φ(w 1) = φ(w 2) = • • • φ(w n).
Simon's factorization forest theorem [Simon, 1990], is a strong extension of Ramsey factorization. There we have decomposed the word into factors, Simon's theorem completely decomposes the word into a tree whose height is independent of the length of the word. More precisely it decomposes a word w ∈ A * into a Ramsey decomposition tree of w. This is a rooted tree whose nodes are labeled by pairs in A * × M that follows the following rules:

• the leaves are labeled by (a, φ(a)), where a ∈ A,

• the product nodes have exactly two children, if the children are labeled by (u 1 , m 1) and (u 2 , m 2) then the product node, their parent, is labeled by (u 1 u 2 , m 1 • m 2),

• the idempotent nodes have more than two children whose label's right component coincides and is idempotent, if the children are labeled by (u 1 , e), (u 2 , e), . . . , (u n , e), where e is idempotent, then the idempotent node, their parent, is labeled by

(u 1 • • • u n , e),
• the root is labeled by (w, φ(w)).

A tree whose every node is either a product, an idempotent node or a leaf and that ful lls the rules above is a Ramsey decomposition tree.

k-decomposition Trees

In [Fijalkow et al., 2012], 2-decomposition trees are used, i.e. there are no idempotent nodes, only product and iteration nodes. The reason why we use the more general notion of the k-decomposition tree for half-blind games is roughly as follows.

In the case of probabilistic automata, the 2-decomposition trees are used to prove a lower bound on the probability to go from a state to another state. In the proof we inductively walk up the tree, and use the fact that there exists a bound on the height of the tree that does not depend on the length of the word.

In the case of half-blind games, we will use decomposition trees to prove some upper bounds as well, and for this we need to make sure that the chance to go to the transient states decreases in the game. This comes as a result of iterating some word many times, but in a 2-decomposition tree, an iteration node can have as little as three children, there is no lower bound on the number of children and consequently we cannot gain an upper bound that decreases on the chance to go to a transient state. For this reason we need more control on the number of children of iteration nodes and one way to achieve it is through k-decomposition trees. Observe that the node labeled by bbb, φ(b) is an idempotent node, whereas the one that is labeled by aaaa, φ(a) # is an iteration node.

In this section we are going to prove an analogue of Theorem 4.15 for the kdecomposition trees and monoids equipped with a unary operator (#) that has the following properties:

∀e ∈ e(M), e # ∈ e(M)

∀e ∈ e(M), (e #) # = e # (52)

∀e ∈ e(M), ee # = e # e = e # .

The analogue result for 2-decomposition trees, with a proof in the same spirit as the one given here, can be found in [Simon, 1994;Fijalkow et al., 2012]. For k-decomposition trees, a proof can be found in [Colcombet, 2009], but it asks for an additional property for the monoid. It asks that (ab) # a = a(ba) # where ab, ba ∈ e(M). We require only (51), (52) and (53).

Lemma 4.17. Let A be a nite set, (M, •) a monoid that is equipped with a unary operator # : e(M) → e(M), such that (51), (52) and (53) hold, and φ a morphism from A * to M. For all w ∈ A * , k > 1, there exists a k-decomposition tree of w whose height is at most 9|M| 2 . Before we prove Lemma 4.17, we have to introduce some essential nite semigroup results. In particular Green's relations, which are the main tool in the study of nite semigroups. These results can be found in any textbook on nite semigroups. See for example [Pin and Miller, 1986] and [Cli ord and Preston, 1961].

Let u ∈ M, we use the following notation

uM = {uu | u ∈ M} Mu = {u u | u ∈ M} MuM = {vuv | v, v ∈ M}.
We will de ne the relations L, R, J , H and D, that are equivalence relations on M. These relations together are called Green's relations.

De nition 4.18 (Green's relations). Let u, v ∈ M,

• uLv ⇐⇒ Mu = Mv,

• uRv ⇐⇒ uM = vM,

• uJ v ⇐⇒ MuM = MvM,

• uHv ⇐⇒ uLv and uRv,

• uDv ⇐⇒ ∃w ∈ M, uLw and wRv 4.4 k-decomposition Trees Lemma 4.22 ([Fijalkow et al., 2015]). For the extended Markov monoid (51), (52), and (53) hold.

Lemma 4.23. For the extended belief monoid (51), (52), and (53) hold.

Proof.

We prove it for the belief monoid B, for the extended version, the proof is the same.

First (51) follows from De nition 4.9: u # is a subset of M that is closed under taking product, hence u # u # ⊆ u # . To see the inverse inclusion observe that UE # V = (UE # E)(EE # V) from Lemma 4.22. Furthermore membership in u # u # remains true under taking products and iterating.

The property (52) is trivial since from Lemma 4.22, for all idempotent E ∈ M, (E #) # = E # , so (u #) # has the elements

UE # (E #) # E # V = UE # V.
Last the property (53) can be easily proved after making the observation that UE # V = U(EE # V), which comes from Lemma 4.22.

We now have at our disposal a powerful tool which we will use to demonstrate the correctness of the belief monoid algorithm. In the case of the soundness of the algorithm we will apply Lemma 4.17 to the alphabet A 1 × (S 2 → A 2) and the corresponding morphism to the Markov monoid that is associated to the game, whereas in the case of the completeness of the algorithm we will apply the lemma to the alphabet A 1 with the corresponding morphism to the Belief monoid that is associated to the given game.

Soundness

We now prove the rst step, by showing initially that for a sequence (p n) n∈N , there exists some X ⊆ M that realizes it. This is the following lemma. Its proof is a simple argument whose essential part is that M is nite.

Lemma 4.28. Let (p n) n∈N , p n ∈ A * . There exists h ∈ N, and X ⊆ M, such that (p n) n∈N realizes X with height h.

Proof.

Set h = 9|M| 2 . From Lemma 4.17, for all k > 2 and n ∈ N,

T h k (p n) = ∅.
Since M is nite, there exists some X 1 ⊆ M and some subsequence (p n) n∈N of (p n) n∈N , such that T h 2 (p n) = X 1 for all n ∈ N. If for in nitely many i > 2, X 1 appears in nitely often in the sequence (T h i (p n)) n∈N , we are done. Otherwise there exists some k 1 ∈ N such that for all i > k 1 , X 1 appears only nitely often in the sequence (T h i (p n)) n∈N . Repeating this process, there exists some X 2 ⊆ M and a subsequence (p n) n∈N of (p n) n∈N such that T h k 1 (p n) = X 2 for all n ∈ N, and so on. The monoid M being nite implies that this process eventually stops, and there exists some X ⊆ M such that (p n) n∈N realizes X with height h.

We now know that all sequences of nite plays (nite words over the alphabet A) are realizing some X ∈ M for the height 9|M| 2 . Nevertheless we are going to need something similar having to do with the belief monoid instead of the Markov one. This is the next lemma, which nishes the rst step. Its proof is by induction on the structure of B. The other two proofs of this section have the same form. Above by (u n , τ n), we mean the word (a 1 , τ n (1)) • • • (a l , τ n (l)) over the alphabet A, where u n = a 1 • • • a l . 4 ρ there exists 0 ≤ C(π) ≤ j -1 such that W(s C(π) , s C(π)+1) = 0 and for all 0 ≤ i ≤ C(π) -1, W(s i , s i+1) = 1. De ne ρ to be the set of such pre xes, i.e.

ρ = {s 0 • • • s C(π) | π = s 0 • • • s j ∈ ρ}.
The set ρ is nonempty because there exists some r ∈ S 1 such that W(s, r) = 1.

Then we have

P p 1 •••p j s (t) = ∑ s 0 •••s j ∈ρ P p 1 s 0 (s 1) • • • P p j s j-1 (s j) ≤ ∑ π=s 0 •••s C(π) ∈ρ P p 1 s 0 • • • P p C(π) s C(π)-1 (s C(π)) • F ≤ 2F,
Iteration nodes. Assume that we have the children whose label's left components are p 1 , . . . , p j , j ≥ k and each label's right component is the same idempotent (W, W) and for whom the upper bound F holds. Let s, t ∈ S 1 be such that W # (s, t) = 0. In case W(s, t) = 0 a proof like the one above for idempotent nodes gives 2F as the upper bound. Therefore we assume that W(s, t) = 1. Then by de nition t is W-transient and it communicates with some recurrence classes whose union we denote by S r ⊆ S 1 . We will prove that for all 0 ≤ i < j ≤ j such that ji ≥ |S 1 | there exists i ≤ i ≤ j such that ii ≤ |S 1 | and

P p i •••p i t (S r) ≥ L |S 1 | . (58
)
Let i ∈ {0, . . . j}, then there exists a 2-decomposition tree T i for the word p i , with type (W i , W). It is possible that W = W i , but for all s , t ∈ S 1 , W(s , t) = 0 implies that W i (s , t) = 0. This is because by the induction hypothesis, if W(s , t) = 0, we know that P u i s (t) ≤ F whereas according to Lemma 4.31 for T i , if W i (s , t) = 1 we have P u i s (t) ≥ L, from F ≤ h2 h • (1 -L) k and our choice of k, superior to K h , this is a contradiction, hence W i (s , t) = 0.

Let S t be the set of states that are W-reachable from t (for all t ∈ S t , W(t, t) = 1) but not in S r . These states are all W-transient and moreover for all i ∈ {0, . . . , j}, there exists a W i path from t, and any state in S t , to some element in S r . This is because for all t ∈ S t ∪ {t}, r ∈ S r , W(t , r) = 1, and there is no W i path from S r to S t ∪ {t}, if there was no W i path from S t ∪ {t} we could construct a leak, which contradicts the hypothesis that M is leaktight. Similarly, for 0 ≤ i < j ≤ j such that ij ≥ |S 1 |, if W i • • • W j (t, S r) = 0 we can construct a leak by repeating a factor of W i • • • W j , hence we can assume that there exists i ≤ i ≤ j , such that ii ≤ |S 1 | and W i • • • W i (t, S r) = 1. Then it follows from Lemma 4.31 that P We have shown that for all s such that P

u 3 •••u n-2k ,τ s 2 (s) > 0, s G 1
-→ s 2 . As a consequence, from the choice of τ 2 and (64) we have

P u 2 •••u n-2k+1 ,τ s 1 (s 2) ≥ µ 2 .
To nish up with the proof of (60), for all s, s ∈ S 1 and G i , s

G # i -→ s implies that s G i
-→ s , therefore from (62) we have

s F 1 -→ s 1 G # 1 -→ s 2 F 2 -→ s 3 G 2 -→ • • • G k -→ s 2k F k+1 --→ t, (65)
so for all G i , 2 ≤ i ≤ k, we write G i instead of G # i . Then by the choice of the strategies τ i and the de nition of τ, P u,τ s (t) ≥ P u 1 ,τ 1 s (s 1)P u 2 ,...,u n-2k+1 ,τ s 1

(s 2) • • • P u n ,τ 2k+1 s 2k (t) ≥ µ • µ 2 • µ 2k-1 = µ 2k+2 ,
where for the last inequality we have used (63) and (65). Since 2k + 1 ≤ N , this concludes the proof of (60) for τ,u and the bound µ = µ N +1 .

4.7

A natural question when studying any type of game is how powerful should the strategies of the players be. In this section we are going to discuss whether randomization, or in nite memory allows the players to win strictly more. The maxmin reachability question asks whether the quantity val(s) = sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F), is equal to 1. That is, whether for all > 0 there exists some nite word w such that against all (behavioral) strategies τ of Min the chance of reaching the set of nal states from the initial state s is at least 1 -. This question is motivated from considering the model of half-blind games which serve as a generalization of probabilistic nite automata to two player games with a perfectly-informed adversary. These games can be seen as probabilistic automata whose probabilistic transitions we do not know exactly, because they are controlled by the environment. Another reason for considering this model is the notion of leaks. It is interesting to explore where else can it be used except for probabilistic automata, and half-blind games are a prime candidate.

Nevertheless other quantities are just as interesting to study. Primarily val(s) = sup where Σ m 1 = ∆(A * 1) is the set of mixed words. This is induces the question of whether for all > 0 there exists a mixed strategy for Max (i.e. a distribution over the set of nite words) such that against all the strategies of Min, the set of nal states is reached with probability at least 1 -. This problem is undecidable as well, for the same reason as the maxmin reachability problem, that is, its decidability implies the decidability of the value 1 problem for probabilistic nite automata. Observe that in general val(s) ≤ val(s),

and that if val < val(s) = 1 then Max needs to mix between larger and larger sets of nite words in order to reach the set of nal states with a larger and larger probability. An important argument for the study of the quantity val(s) is that under these two types of strategies: mixed nite words for Max and behavioral strategies for Min the game admits a value:

Theorem 4.38 ([Gimbert et al., 2016]). A natural question is whether we can relate val(s) and val(s), particularly whether there exists some game where val(s) < val(s). Indeed there is, we have shown this in Example 13. For this example val(s) = sup But the quantity on the right hand side is equal to val(s), this is because once the strategy of Min has been xed, Max cannot gain anything by randomizing his choice of words, this is helpful to him only if he has to choose his strategy before Min chooses his. Its purpose is to hide information (the exact strategy) from Min.

Unfortunately the belief monoid algorithm does not seem to tell us anything about val(s), except for a lower bound, moreover the analysis that we have done in this chapter is not likely to be helpful to resolve the problem of whether val(s) = 1.

In other words, we are able to treat the sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F) but not inf τ∈Σ 2 sup w∈Σ 1 P w,τ s (F). The essential di culty is that strategies are complex objects, in the former case, that of sup w∈Σ 1 inf τ∈Σ 2 P w,τ s (F), we need only analyze a simpler set of strategies for Min thanks to Lemma 4.6. But when Min xes 4 its strategy rst we cannot a priori make such a simpli cation. Nevertheless this raises an interesting question: does Min need in nite memory strategies?

Denote by Σ f 2 the set of nite-memory strategies for Min, these are nite state transducers that read nite histories and output elements of ∆(A 2). Obviously

val f (s) = inf τ∈Σ f 2 sup w∈Σ 1 ≥ val(s),
but does there exist an example where Min stands to gain more by playing with an in nite memory strategy? At rst sight this seems unlikely when one considers that Min is much more advantaged, being perfectly informed while his adversary has zero information. But it turns out that in order for Min to pro t maximally from this advantage he might need in nite memory strategies. We are going to prove this in the remainder of this section.

Proposition 4.39.

There exists a half-blind game with initial state s, for which val f (s) > val(s).

The proof of Proposition 4.39 will be based on the following gadget. We give the main idea behind the gadget. Max wants to be able to know whether he is in state top or bottom after playing his rst b so that he can go to the nal state. The objective of Min is to make the probability of being in the top state equal to that of being in the bottom state, so that Max cannot win more than 1 2 . In order to do this, when it is his turn to make the choice between α and β (or a mixing of them) he has to know the exact probability 4.7 Power of Strategies and Examples distribution over t 1 and t 2 . But this is impossible to keep track with a nite memory strategy, because Max plays too many a's for Min's small memory. Hence Max can always win slightly more than 1 2 . We then use this gadget in a new game that emphasizes the importance of these winnings and prove that in that game 1 2 = val(s) < val f (s) = 1. Let us now demonstrate these ideas formally.

The game starts either at state s 1 or s 2 with equal probability. Max can play a series of a's but eventually has to play a b if he wants to make progress. After this, Min observes whether the game is in the state t 1 or t 2 . In case it is in t 1 , Min has no choice and proceeds to state . In case it is in t 2 Min can choose between α and β to go either to state or to state ⊥. Then Max has to guess which one it is. If the guess is right he wins, if it is wrong he loses by going to the sink state. The goal of Min is to keep track of the probability distribution on the states of the game such that when it is his time to make a decision, he plays a mixed action (between α and β) such that the probability to be in is equal to the probability to be in ⊥ equal to 1 2 . Keeping track of the distribution will be impossible with a nite memory strategy because the sequence of a's that Max plays can be arbitrarily long.

Observe that val(γ) = 1 2 , where γ is the initial distribution, i.e. γ(s 1) = γ(s 2) = 1 2 , by giving the optimal strategies as follows. Max can mix the two words ba and bb with equal probability. Call this mixed word w. Then for all strategies τ for Min, we have P w,τ γ (F) = 1 2 . In the other hand, after a b is played, the probability to be in the state t 2 is always larger than 1 2 , P a n b,τ γ (t 2) ≥ 1 2 , and consequently Min has an optimal action such that both and ⊥ are reached with equal probability and equal to 1 2 . Moreover this optimal action can be played by Min, by keeping track of the distribution on t 1 and t 2 by counting the number of as that are played before b. Albeit this requires memory of unbounded size. We give a proof of this in what follows.

Assume that the game stops just before Min makes his action, then we have

P a n b,τ γ (t 2) = 1 - 1 2 • 1 2 n = 2 n+1 -1 2 n+1
Therefore if τ is optimal, after seeing a n b it would play the action β with the following probability,

τ(a n b)(β) = 1 2 • 2 n+1 2 n+1 -1 = 1 2 • 1 1 -1 2 n+1
. With such a strategy, it is ensures that P a n b,τ γ () = P a n b,τ γ (⊥) = 1 2 . We prove that this is impossible with a nite memory strategy.

The proof is by contradiction. Assume that the minimizer has a nite-memory strategy with m states such that against the word a n b it plays the action β implies that ∑ m i=1 z n i f i (n) = ∑ m i=1 c i z n i = c for some constants c i . The reason being that (68) clearly cannot be true for |z i | < 1, as for |z i | ≥ 1 assume that the dominating term of the denominator has the form n k ∑ m i=1 c i z n i for constants c i , then for (68) to hold we need k = 0. Hence ∑ m i=1 z n i f i (n) = ∑ m i=1 c i z n i , and similarly it is necessary that |z Applying (68) we have ∑

1 | = |z 2 | = • • • = |z m | = 1.
r 1 k=1 λ n k P k (n) = ∑ r 1 k=1 λ n k c k = 1 2 .
We substract both of these equal quantities from (67), to get

r ∑ k=r 1 λ n k P k (n) = 1 2 • (1 2 n+1 + 1 2 2(n+1) + • • •). (69
)
Repeating the same argument for the leading terms of (69) we have

lim n→∞ 1 2 n+2 ∑ r 2 k=r 1 λ n k P k (n) = lim n→∞ 1 4 ∑ r 2 k=r 1 (2λ k) n P k (n) = 1.
Again, applying (68) we get ∑ r 2 k=r 1 (2λ k) n P k (n) = ∑ r 2 k=r 1 c k 2 n λ n k = 1/4. Hence we can subtract the quantity 1 2 n+2 from both sides in (69). Repeating the same argument for the eigenvalues that are left we conclude that

0 = 1 2 • (1 2 r(n+1) + 1 2 (r+1)(n+1) + • • •),
which is clearly a contradiction therefore there are no two nite stochastic matrices A, B such that (66) holds, and consequently the minimizer has no nitestrategy that is optimal in achieving the 1 2 . Nevertheless for all > 0 the minimizer has -optimal strategies that have nite memory. These strategies would constitute of counting the number of a's up to some length.

4

We have shown the following lemma.

Lemma 4.41.

In the game in Figure 21 for all nite memory strategies τ for the minimizer there exists a word w such that

P w,τ γ (F) > 1 2 ,
where γ is the initial distribution, γ(s 1) = γ(s 2) = 1/2.

In order to nish the proof of Proposition 4.39, now we give an example that gives a stronger property. We will use the game in Figure 21 in another game as a gadget. We then demonstrate that for this larger game it also holds that val(i) = 1/2 where i is the initial state but val f (i) = 1, i.e. for all nite memory strategies τ and > 0 there is a nite word that reaches the set of nal states with probability larger than 1 -. We give an informal description of the game in Figure 22. The state i is the initial state. A fair coin is tossed at i and if it results heads, then the game moves to state , otherwise it goes to state ⊥. After this, we toss a biased coin in by playing c 1 , if we happen to be in ⊥, playing c 1 would not change anything. At this point, another biased coin is tossed by playing c 2 as a result we are in one of the states ⊥⊥, ⊥ , , ⊥, after the two coin tosses. Repeating this process n times, by playing a(c 1 c 2 R) n , we end up in state if and only if we had n + 1 heads and symmetrically we end up in state ⊥ if and only if we have This part of the thesis is characterized by the protagonist player having zero information, this means that he is not aware of the state of the game when making decisions. We dealt with two models, probabilistic nite automata and half-blind games.

i ⊥ ⊥ ⊥⊥ ⊥ s f m a 1 2 1 2 c 1 x 1 y 1 c 2 y 2 x 2 c 1 c 2 c 2 R R R R R R R R, c 1 , c 2
The former is a model that has been studied for quite some time now, even though most of the problems are undecidable. When taking the game theory point of view, one of the most important problems is that of value 1: is it true that for every > 0 there exists some word that is accepted by the automaton with probability at least 1 -. This problem is undecidable [Gimbert and Oualhadj, 2010]. When a problem is undecidable, we are obliged to make some compromise e.g. nd an interesting subset of instances where the problem is decidable. This was done for a few classes of probabilistic automata. Two classes came up as the most interesting, leaktight automata of [Fijalkow et al., 2012], and simple automata of [Chatterjee and Tracol, 2012]. Curiously, their proofs of decidability used very di erent techniques.

We demonstrated that leaktight automata are a strict superset of simple automata. This, together with the results from [Fijalkow, 2015], suggests that the notion of leaks captures tightly the complications that cause the undecidability of the value 1 problem. Which serves as motivation to explore whether the notion of leaks can be used in some other, more general, model that is in some sense similar to probabilistic automata.

One possible research direction is to try to use the leak notion to decide some class of partially observable Markov decision processes (one player games with partial information). One result in this direction, for the more restrictive class of #-acyclic POMDPs can be found in [Gimbert and Oualhadj, 2014].

Another research direction is the one that we followed by turning probabilistic nite automata into two player games, by adding a perfectly informed adversary, thereby de ning half-blind games. We saw that we can decide the maxmin reachability problem (an analogue of the value 1 problem) for a class of leaktight half-blind games, by using the belief monoid structure, that is a nesting of the Markov monoid one.

Further into this line of research, the decidability of whether val(s) = 1 (the minmax reachability problem) and val f (s) = 1 (minmax reachability when Min can use only a nite memory strategy) when the half-blind game is leaktight remains open.

Another problem that we have left open is the exact complexity of the maxmin reachability problem for leaktight half-blind games.

In the case of leaktight probabilistic automata, the value 1 problem is PSPACEcomplete. The Markov monoid algorithm, that is used to decide it, runs in exponential space. However, the value 1 witness can be guessed, resulting in a The belief monoid algorithm on the other hand, runs in doubly exponential space, since it is a nesting of the Markov monoid.

 2

 4 A Half-positional example Let us consider a Streett-Rabin game.

 2

 2

Figure 3 :

 3 Figure 3: A game with no -subgame-perfect strategies

Figure 4 :

 4 Figure 4: Factorizing an in nite history into weaknesses

2

 De nition 2.19 (Date of weakness). Let σ be a strategy for Max and s 0 • • • s n ∈ S(AS) * a nite history. De ne inductively on n the function

2

 Lemma 2.26. Let T be a stopping time with respect to the ltration induced by (S n) n∈N , σ and τ strategies for Max and Min respectively and s 0 ∈ S. If σ is locallyoptimal then the process (val(S n)) n∈N point-wise converges almost surely and E σ,τ s 0 [lim n val(S min(n,T))] ≥ val(s 0).

 Generalized mean payo . This payo function was introduced in [Chatterjee et al., 2010]. The colors are an element of R k for some xed k ∈ N.

Figure 6 :

 6 Figure 6: An arena for the game with payo f

 automata the transition function maps pairs of state, and letter of the alphabet, S × A, to states S. Whereas in probabilistic automata the transition function maps pairs of state, and letter of the alphabet, S × A to probability distributions on states ∆(S).

 Figure 7: A probabilistic automaton

3

 and for every word w ∈ A * , letter a ∈ A, and states s, s ∈ S,

 Figure 8: A probabilistic automaton with value 1

 3

Figure 9 :

 9 Figure 9: A probabilistic automaton that is not leaktight

 3

Figure 10 :

 10 Figure 10: An automaton that is not simple

Figure 12 :

 12 Figure 12: Benchmark comparison between Stamina and ACME

 Figure 13: A half-blind game

Figure 14

 14 Figure 14: A half-blind game with no strategy for Max that wins almost surely

Figure 15 :

 15 Figure 15: An uncertain transition in a PFA

Figure 16 :

 16 Figure 16: Translation to half-blind games

 De nitions and values

4

 De nition 4.3 (Strategies for half-blind games).

 An ExampleLet us explore a more involved example.

 Figure 17: A half-blind game with val(i) < 1

 Figure 18: Illustrative example with a leak

Figure 19 :

 19 Figure 19: Summary of leaks

 Figure 20: A 4-decomposition tree of the word aaaaabbbb

Lemma 4. 29 .

 29 For all u ∈ B there exists(u n) n∈N , u n ∈ A * 1 , h ∈ N, and a function N : N → N, such that for all replies (τ n) n∈N , τ n ∈ Σ p 2 , k > 2, and n > N(k) T h k ((u n , τ n)) ∩ u = ∅.

 p i •••p i t (S r) ≥ L |S 1 | which concludes (58).

 4

 Figure 21: A gadget

 Finally, because of (68) we have ∑ m i=1 c i z n i = c. Assume without loss of generality that |λ1 | = |λ 2 | = • • • = |λ r 1 |, for some 1 ≤ r 1 ≤ r and that |λ 1 | ≥ |λ i |, 1 ≤ i ≤ r.The expression on the left hand side of (69) is dominated by ∑ r 1 k=1 λ n k P k (n) whereas the expression on the right hand side is dominated by the leading term 1 2 . Consequently, because of the equality above, it follows that lim

Figure 22 :

 22 Figure 22: A game for which val(i) = 1/2

4. 8

 8 ConclusionPSPACE upper bound. The matching lower bound comes from a reduction to the problem of intersection of regular languages.

 • • • S n) is point-wise increasing as a function of n. In other words L is the date of the last σ-weakness, if it exists, otherwise it is equal to ∞.

Let > 0 and choose τ and s 0 such that sup τ ,s

 After xing a nite word w ∈ Σ 1 and state s, we can construct a Markov decision process (MDP) with n • |S 2 | states, where n is the length of w as follows. Let w = a 1 • • • a n where a i ∈ A 1 , the set of states of the MDP is {1, . . . , n} × S 2 . If the initial state s is in S 1 , then the initial distribution of the MDP is the same as p(s, a 1) but over the states {1} × S 2 . With an action from a state in {1} × S 2

 Algorithm 1: The belief monoid algorithm. Data: A leaktight half-blind game. Result: Answer to the Maxmin reachability problem. B ← {a | a ∈ A 1 }. Close B by product and iteration Return true i there is a reachability witness in B

	Example 15.

the supremum over the strategies of the expected value of f parity

in contrast to the half-positionality of mean-payo co-Büchi games, mean-payo parity games admit optimal strategies, but they may require in nite-memory

2.2 Two Player Stochastic Games

2.4 Existence of -subgame-perfect Equilibria

if the sequence is nite, then the last element is an in nite history

if in game G, A(s) is a singleton action a, then it cannot be value-changing, therefore in the game G , A(s) is nonempty after removing a

the date is the number of turns

read weakness after

2.7 Conclusion

elements M such that M

= M

consequently emptiness is reduced to the problem of equality

3.2 Decidable Classes

3.3 Leaktight Automata are a Superset

even though strategies of Max are nite and pure words, we will sometimes informally use the same term to mean sequences of nite and pure words, since we are dealing with the maxmin reachability problem, which is a question about the asymptotic behavior

4.4 k-decomposition Trees

4.7 Power of Strategies and Examples

De nition 3.10 (B-recurrence). Let B be an idempotent binary matrix, and r ∈ S. We say that r is Brecurrent if and only if for all r ∈ S, B(r, r) = 1 =⇒ B(r , r) = 1.

If a state is not recurrent we say that it is transient.

De nition 3.11 (Iteration operator for the Markov monoid).

Let B be an idempotent binary matrix. We de ne the iteration of B, denoted by B # , for all s, t ∈ S as B # (s, t) = 1 ⇐⇒ B(s, t) = 1 and t is B-recurrent.

In other words, the iteration operation deletes incoming edges to transient states.

Having de ned both of the operators now we are ready for the de nition of the Markov monoid that is associated to a probabilistic automaton. For a set of binary matrices X denote by X , the smallest set that contains X and is closed under taking products and iterations.

De nition 3.12 (Markov monoid).

The Markov monoid M is de ned as

where the elements B a are as in (40), and I is the unit matrix.

Proposition 3.19.

LEAKTIGHT ⊆ SI MPLE.

Where by LEAKTIGHT we denote the class of automata that are leaktight and by SI MPLE the class of simple automata.

3.3

In this section we will prove the main theorem of this chapter, that the class of simple automata is included in the class of leaktight automata.

Theorem 3.20.

SI MPLE ⊂ LEAKTIGHT.

Proof Idea. The main point is that of the de nition of a non-simplicity witness. This is a triple of elements of the Markov monoid with certain properties, that when they exist we can induce a process that has the pulsating behavior that we described for Example 12. In other words there is a su cient condition that can be found in the Markov monoid (and computed) for the automaton to not be simple.

The proof of the theorem is in two steps. First we will prove that if the Markov monoid that is associated with an automaton has a non-simplicity witness then we can construct an in nite word that induces a process that is not simple. The second step is to show that when the Markov monoid contains a leak, then it also contains a non-simplicity witness, which, together with the rst step, will conclude the proof of Theorem 3.20.

We are going to need a theorem from [Fijalkow et al., 2012], whose corollary is Theorem 3.14. The Markov monoid algorithm has no false positives, that is, when it replies yes then the value of the automaton is 1. Said in other words, the monoid is sound.

The elements of the monoid describe possible asymptotic behaviors of the automaton. For example, let B ∈ M, and s, s ∈ S. If B(s, s) = 1, then there 3.3 Leaktight Automata are a Superset Since r is W-recurrent and W is idempotent for all s ∈ R we have W(s, r) = 1 consequently using (44) we conclude that

We de ne the central notion, that of a non-simplicity witness.

De nition 3.24 (Non-simplicity witness).

A tripe (U, V, W) of elements of the Markov monoid M is a non-simplicity witness if there exist states r, t ∈ S such that

• UV(r, t) = 1,

• t is V-transient.

Now we move on with the proof of Theorem 3.20 in two steps, rst, if the Markov monoid associated to an automaton has a non-simplicity witness then the automaton is not simple, second, if the Markov monoid has a leak then it also has a non-simplicity witness.

In order to prove the rst step, we make the idea of pulsating sequence discussed in the previous section more formal using the lemma that follows. For an in nite word w = a 0 a 1 a 2 • • • we use this notation of subwords, for j, k ∈ N,

Lemma 3.25. Let w ∈ A ω be an in nite word. If there exists states p, s, t ∈ S, increasing sequences (i n) n∈N , (j n) n∈N and γ > 0 such that 1. for all n ∈ N, P(p

2. for all n ∈ N, i n < j n and P(s

then the process induced by w from p is not simple.

3.3 Leaktight Automata are a Superset increasing function f : N → N such that (v n f (n)) n∈N rei es V # . The proof of this, can be found in [Fijalkow et al., 2012, Lemma 4].

Then

By assumption UV(r, t) = 1 so there exists N k ∈ N such that for all n ≥ N k , P(r

We omit the parentheses or function composition operator and write f g

) n∈N so it rei es UV # W as well. We will use this sequence of nite words to construct an in nite word that induces a process that is not simple. Observe that by the de nition of g, for all n ∈ N, P(r

We apply Lemma 3.23 to the element UV # W, the state r and the sequence of words (u

) n∈N to obtain the bound γ > 0 and h another increasing function. Denote the following shorthand,

We have for all n ∈ N, P(r

We argue that the conditions of Lemma 3.25 are met:

1. for all n ∈ N, P(r

2. for all n ∈ N, P(r

x n -→ t) > 0, and 3. lim n→∞ P(r

Items 1 and 2 follow from (46) and (45) respectively. We prove item 3.

Observe that (x n) n∈N rei es UV # , since we are only taking subsequences of the original sequence. Let s ∈ S, since t is V-transient from the hypothesis, UV # (s, t) = 0, and because (x n) n∈N rei es UV # , lim n→∞ P(s x n -→ t) = 0. We conclude the proof of item 3 because

and the second factor of every term is tending to zero.

So we can apply Lemma 3.25 for the in nite word z = z 0 z 1 • • • , and from it we deduce that the process induced by z from r is not simple. Now we proceed to the second and last part of the proof of Theorem 3.20. We will show that if the Markov monoid has a leak then it has a non-simplicity witness.

For the proof we need the notion of #-height. For some subset of the monoid R ⊆ M denote by [R] the smallest set that contains all elements of R and is closed under taking product. Let E(R) be the set of idempotent elements in R.

De nition 3.27 (#-height, [Fijalkow et al., 2015]). Set

The #-height of some W ∈ M is the smallest n for which W ∈ S n .

Lemma 3.28. If the extended Markov monoid of an automaton M contains a leak then it also contains a non-simplicity witness.

Proof.

Let L ⊆ M be the set of all elements (Z, Z) for which there exists r, r ∈ S such that

By hypothesis L is not empty because we have assumed that M contains a leak, and all leaks are contained within L. Let (Z, Z) ∈ L such that no other element of L has a strictly smaller #-height, and r, r ∈ S such that the enumerated items above hold. Theorem 4.15 ([Simon, 1990]). For all w ∈ A * there exists a Ramsey decomposition tree with height at most 9|M|.

The k-decomposition trees, k ∈ N, are analogues of the Ramsey decomposition tree for the monoids that are equipped with the unary operator (#) as well as the product. Instances of such monoids (M, •, #) where # maps e(M) to e(M), e(M) being the set of idempotents of M, are the Markov and belief monoids, among others.

In [Simon, 1994] and [Fijalkow et al., 2012] 2-decomposition trees were used in conjunction with a similar theorem to Theorem 4.15. The notion of a kdecomposition tree was introduced in [Colcombet, 2013].

We de ne k-decomposition trees. Let A be a nite alphabet, and (M, •) a monoid equipped with a unary operator # that maps e(M) to e(M), e(M) being the set of idempotents of M.

De nition 4.16 (k-decomposition tree).

Given w ∈ A * , and k ∈ N, k > 1, a k-decomposition tree of w is a rooted tree whose nodes are labeled by elements of A * × M that follows the following rules:

• the leaves are labeled by (a, φ(a)), a ∈ A,

• the product nodes have exactly two children, if the children are labeled by (u 1 , m 1) and (u 2 , m 2) then the product node, their parent, is labeled by (u 1 u 2 , m 1 • m 2),

• the idempotent nodes have at most k children whose label's right component coincides and is idempotent, if the children are labeled by (u 1 , e), (u 2 , e), . . . , (u n , e), with e idempotent and n ≤ k, then the idempotent node, their parent, is labeled by

• the iteration nodes have at least k + 1 children whose label's right component coincides and is idempotent, if the children are labeled by (u 1 , e), (u 2 , e), . . . , (u n , e), where e is idempotent and n > k, then the iteration node, their parent, is labeled by

• the root node is labeled by (w, m) for some m ∈ M.

k-decomposition Trees

For L, R, J we can de ne the partial orders ≤ L , ≤ R , ≤ J , for all u, v ∈ M, u ≤ L v if and only if Mu ⊆ Mv. Similarly for ≤ R and ≤ J . With < L , < R , < J we denote their strict counterparts.

The relations are equivalence relations, so we will use, for example, J -class to mean an equivalence class with respect to the J relation.

We recall some basic results, whose proofs can be found in the books cited above.

Lemma 4.19.

No H-class contains more than one idempotent element.

• If u ≤ L v and uJ v, then uLv.

• If u ≤ R v and uJ v, then uRv. Now we will give a lemma that is key in the proof of Lemma 4.17, it can be found in [Simon, 1994]. We assume that the monoid M is such that it ful lls the properties (51), (52) and (53).

Lemma 4.21 ([Simon, 1994]).

Let e ∈ M be an idempotent element such that e # = e. Then e # < J e.

Proof.

First observe that from (53), ee # e = e # . From this, together with (51), it follows that e # ≤ J e. The proof is by contradiction: assume that eJ e # . Note that e ≤ L e # = ee # , so from Lemma 4.20, eLe # . The argument for eRe # is dual, and hence eHe # . Since both e and e # are idempotent and in the same H-class, from Lemma 4.19 it follows that e = e # , which is a contradiction.

We are now equipped to proceed with the proof of Lemma 4.17 Proof Idea (of Lemma 4.17). We start with the Ramsey decomposition tree of some word, and replace nodes that could be iteration nodes (i.e. that have at least k children) by some new letter of the alphabet. Each time we do this, because of Lemma 4.21, we descend the J -class, since we can do this at most |M| times, it provides us with a bound.

Proof (of Lemma 4.17). Let w ∈ A * and k > 1. We are going to prove that there exists some kdecomposition tree of w whose height is at most 9J|M|, where J is the number of J -classes on M. This su ces to conclude the lemma since J ≤ |M|.

Set φ 0 = φ and A 0 = A. From Theorem 4.15 there exists a Ramsey decomposition tree T 0 of w whose height is at most 9|M|. Call any idempotent node of T 0 with children (u 1 , e), (u 2 , e), . . . , (u n , e), a primitive node, if e # = e and n ≥ k. If T 0 has no primitive node then it is itself a k-decomposition tree and we are done. Otherwise for all primitive nodes that are at maximal depth (they have no descendants that are primitive) and that are labeled (u, e) with children (u 1 , e), . . . , (u n , e), where n ≥ k, add a new letter a u to the alphabet A 0 , and call this new alphabet A 1 . De ne the morphism φ 1 , whose domain is

Transform the word w by replacing the factor u with the new letter a u . Do the above in parallel for all the primitive nodes that have maximal depth, i.e. we possibly add more than one new letter in A 1 . Now we apply again Theorem 4.15 to the alphabet A 1 and the morphism φ 1 . This gives us a new Ramsey decomposition tree T 1 , where the subtree of T 0 whose root has the label (u, e) is replaced by the leaf (a u , e #). If T 1 has no primitive nodem then we unwrap the leaves labeled (a u , e #), by plugging in the tree that was in T 0 , except that for its root we use the label (u, e #), and we are done, T 1 is a k-decomposition tree. If, on the other hand T 1 still has some primitive nodes, then we repeat the procedure above. Since this procedure replaces more and more factors of w by letters, it must stop at some T j . We claim that j ≤ J. To see this, observe rst that for all u, v, e ∈ M with e idempotent we have ue # v ≤ J e # , ue # ≤ J e # , and e # v ≤ J e # . So when we multiply e # with some other element of the monoid we do not ascend in the J -classes. But on the other hand according to Lemma 4.21 whenever we pass from e to e # , we descend on the J -classes, and since we are doing this with every pass of the procedure above, it follows that k ≤ J where J is the number of J -classes.

We are going to use Lemma 4.17 in the sequel by instantiating it for the monoids M and B. In order to do so we must make sure that these two monoids ful ll (51), (52), and (53). The proof of correctness of the Belief monoid algorithm is in two parts. The soundness that justi es the yes replies of the algorithm and the correctness that justi es the no replies of the algorithm.

This section is devoted to demonstrating the following theorem.

Theorem 4.24 (Soundness).

Given a leaktight half-blind game, if its belief monoid has a maxmin reachability witness, then the set of nal states is maxmin reachable, that is, val(s) = 1, where s is the initial state.

This theorem is a corollary of the following lemma.

Lemma 4.25.

Assume that we are given a leaktight half-blind game with belief monoid B. With every u ∈ B we can associate some (u n) n∈N , u n ∈ A * 1 , such that for all sequence (τ n) n∈N , τ n ∈ Σ p 2 , there exists U ∈ u, and ((u n , τ n)) n∈N a subsequence of ((u n , τ n)) n∈N for which

This lemma materializes the intuition that we gave before, that the strategy choice of Max is selecting some u ∈ B, whereas that of Min is selecting some U ∈ u.

Lemma 4.25 implies Theorem 4.24 because to the maxmin reachability witness u, we associate some sequence of words (u n) n∈N such that against any (τ n) n∈N there exists some subsequence

where s is the initial state and t ∈ F. This is because from De nition 4.11, for all U ∈ u, and t ∈ F, U(s, t) = 0.

Before we give the proof idea of Lemma 4.25, we are going to give a couple of de nitions.

Soundness

The pair of strategies u ∈ A * 1 and τ ∈ Σ p 2 induce a nite word over the alphabet

We are going to handle words over A, and the morphism φ to the nite monoid M (or M) that is de ned by φ((a, α)) = B a,α , where the latter's denition is given in (49) on Page 112.

In a k-decomposition tree, the right components of labels (i.e. the elements of the monoid), are called the types. The type of the tree is the type of its root. For example the type of the 4-decomposition tree in Figure 20

We denote by T h k (p), the set of all k-decomposition trees of p whose height is at most h.

Whereas by T h k (p) we denote the set of all types of trees that appear in T h k (p).

Lemma 4.17 says that there exists some k-decomposition tree of certain height, but there might be more (even of di erent types), or there might be none if the height is too small.

De nition 4.27 (Realization).

Let (p n) n∈N , p n ∈ A * , h ∈ N, and X ⊆ M. We say that (p n) n∈N realizes X with height h if there exists some subsequence

The sequence (p n) n∈N realizes X if there exists a row k in the table above with in nitely many elements equal to X, and furthermore, after deleting all the columns with elements that are not equal to X, in all rows below k, X appears in nitely often. This means that for all U ∈ X, we can construct a kdecomposition tree of p n of height at most h, for larger and larger k and n, that has type U. This is useful because we are going to prove an upper bound, as a function of k, on the probability to go from s to t with p n , whenever U(s, t) = 0. Moreover this bound will tend to zero as k tends to in nity. In this way we will demonstrate that the game under (p n) n∈N behaves similarly to U. In other words (p n) n∈N realizes U, and in general any element of X.

Proof Idea (of Lemma 4.25). We will prove Lemma 4.25 in two steps. Both proofs are by induction on the structure of the monoid B, that is, the base case is for a ∈ B, where a ∈ A 1 , and in the induction step we demonstrate that the property remains true under product and iteration.

First we will show that for all u ∈ B there is some (u n) n∈N , u n ∈ A * 1 , such that against all replies (τ n) n∈N , τ n ∈ Σ p 2 , there exists X ⊆ M, with X ∩ u = ∅, and ((u n , τ n)) n∈N realizes X.

In particular, this means that we can construct k-decomposition trees of (u n , τ n), of height at most h (for some h ∈ N), for larger and larger n and k whose type is some U ∈ u.

In the second step we will demonstrate the existence of an upper bound f (h, k) such that if we are given some k-decomposition tree of (u, τ) of height h, whose type is U, then U(s, t) = 0 =⇒ P u,τ s (t) ≤ f (h, k). Moreover f (h, k) tends to zero as k tends to in nity. This we will prove by walking up the tree inductively, that is, we show it for trees that are leaves, and then prove that it remains true for the parent, given that it is true for the children.

The leaktight hypothesis is used when proving the existence of this upper bound, in the case of iteration nodes (when we assume that it is true for the children, and we want to prove that it is true for the parent as well, when the parent is an iteration node).

Proof.

The proof is by induction on the structure of the elements of B. This means that we will prove the lemma rst for a ∈ B, where a ∈ A 1 (the base case), then we will assume that the lemma is true for some u, v ∈ B, and prove that it remains true for uv (product), in the end we will assume that the lemma is true for some idempotent u ∈ B and prove that it remains true for u # .

Base case. We prove the lemma for all a ∈ B, where a ∈ A 1 . Set the sequence of words to be the constant sequence (a) n∈N , h = 1 and N the constant function that maps to 0. For all τ ∈ Σ p 2 , and k > 1 the unique k-decomposition tree of (a, τ), is the single leaf node whose type is in a by de nition of the morphism φ and (50).

Product. Assume that the lemma is true for two elements u, v ∈ B, (u n) n∈N , h u , N u and (v n) n∈N , h v , N v respectively. We will prove that the lemma is true for uv, with the sequence

Let (τ n) n∈N be a sequence of strategies, k > 2, and n > N(k). De ne

the strategies τ n that are shifted by the length of the word u n .

From the induction hypothesis there exists a k-decomposition tree of height at most h u for (u n , τ n) whose root node has some type U ∈ u, and a k-decomposition tree of height at most h v for (u n , τ n) whose root node has some type V ∈ v. Therefore we can construct a k-decomposition tree of height at most max{h u , h v } + 1 of (u n v n , τ) whose root node has label UV, by making a product node, between whose children are the two corresponding trees. By de nition of the product UV ∈ uv, which concludes this case.

Iteration. Assume that the lemma is true for some idempotent element u ∈ B. Then there exists (u n) n∈N , h u and N u for which the lemma holds. We are going to prove that the lemma holds for u # ∈ B, for (u n n) n∈N , h = h u + 9|M| 2 and the function N de ned as

and n > N(k) and de ne

the strategies τ n that are shifted by the length of the word u i n . Since n > N(k) > N u (k), from the induction hypothesis, for all strategies τ ∈ Σ p 2 , T h u k ((u n , τ)) ∩ u = ∅, therefore for all 0 ≤ i < n pick some

and denote by T i the corresponding k-decomposition tree. Similarly to the proof of Lemma 4.17, we will modify the alphabet A, by adding (u n , τ i n), 0 ≤ i < n, as letters, as well as modifying the morphism φ so that it maps (u n , τ i n) to U i . Applying Lemma 4.17 to this new alphabet, morphism, and the word (u n n , τ n) we have that there exists a k-decomposition tree of height at most 9|M| 2 , where the leaves are labeled by ((u n , τ i n), U i), 0 ≤ i < n. Unwrapping the trees T i for the leaves, we construct a k-decomposition tree T of height at most h = h u + 9|M| 2 . Since the number of such leaves is n > N(k) ≥ k 9|M| 2 , T needs to have at least one iteration node in order to be of height smaller than h, therefore the type of T has at least one iteration. It now follows from the de nition of u # , that the type of T must belong to u # . This concludes the iteration case.

Observe that we have not xed a height h for which the lemma is true for all u ∈ B, but we start with height 0 and increase it by 1 for the product nodes and by 9|M| 2 for iteration nodes, but since B is nite, it follows that we can choose the height h = 9|M| 2 |B|.

The two lemmas above nish up the rst step of the proof of Lemma 4.25 which we summarize as follows.

Corollary 4.30. For all u ∈ B there exists a sequence (u n) n∈N , u n ∈ A * 1 , such that against any (τ n) n∈N , τ n ∈ Σ p 2 , there exists X ⊆ M with X ∩ u = ∅ that is realized by ((u n , τ n)) n∈N with height h = 9|M| 2 |B|.

To summarize, for all elements u of the belief monoid, we can nd some sequence of nite words over the alphabet A 1 , (u n) n∈N such that against all the replies of Min (τ n) n∈N , we can construct k-decomposition trees of (u n , τ n) for larger and larger k and n, whose type is identical and equal to some element U of u. Now in the second step of the proof of Lemma 4.25, we will use these kdecomposition trees to prove bounds for P u n ,τ n s (t), s, t ∈ S 1 , such that asymptotically it behaves like U.

We will start with a lower bound. The same proof can be found for probabilistic automata in [Fijalkow et al., 2012].

In the lemmas above, we have used the non-extended version of the Markov and belief monoids, for the sake of clarity, even though they all hold for the extended versions of the monoids as well.

4

Lemma 4.31. Assume that the half-blind game is leaktight. There exists a function L : N 2 → R >0 , such that for all words p = (w, τ) ∈ A * , T a k-decomposition tree of p of height at most h with type (W, W) ∈ M, and s, t ∈ S 1 ,

In other words, for any k-decomposition tree of a nite play p, the type (W, W) of the tree gives the behavior of the game under p, in the way that if W(s, t) = 1 then we can bound from below the probability to go from s to t, furthermore this probability is nonzero if and only if W(s, t) = 1.

Proof.

We start from the leaves, and walk up the tree, while proving the lower bound for all the nodes of the tree.

Leaves. The leaves have the label (a, (B a,α , B a,α)) for some a ∈ A 1 and α ∈ S 2 → A 2 . The statements (55) and (56) for (a, α) and (B a,α) follow immediately from the de nition of B a,α , for the bound m, the smallest nonzero probability transition that appears in the game.

Product nodes. Assume that there is a lower bound L for the children of the product node, that are labeled (u, (U, U)) and (v, (V, V)). Then it is possible to prove the lower bound L 2 for the parent node that is labeled by (uv, U V).

Idempotent nodes. Similarly to the product nodes above, if there is a lower bound L for the children, then the parent has the bound L k , because the number of children is less than k.

Iteration nodes. Assume that the lemma holds for the n children, n ≥ k, that are labeled by

for the lower bound L, where (U, U) is idempotent. From this assumption, (56) follows easily, so we prove (55). Let s, t ∈ S 1 be such that U # (s, t) = 1. Then

The state t is U-recurrent, this is because we have assumed U # (s, t) = 1. Moreover since M is leaktight, the element (U, wU) is not a leak, therefore for all s ∈ S 1 , P

(s) > 0, implies that U(t, s) = 1, from where we have U(s , t) = 1. Now from the induction hypothesis (that the lemma holds for the children) we conclude that P u n s (t) ≥ L. This together with (57) implies that

From the four cases above, it follows that the lemma holds for the root node for the bound L(h, k) = m k h , where m is the smallest nonzero probability transition of the game. Now we are going to prove a dual lemma to the above, one that shows an upper bound that vanishes as k tends to in nity. This will conclude the second step and Lemma 4.25 itself.

Set

where L : N 2 → R >0 is as above.

Lemma 4.32.

Assume that M is leaktight. Let h ∈ N, and set

For all p = (w, τ) ∈ A * , k > K h and T a k-decomposition tree of p of height at most h with the root node labeled by (p, (W, W)), for all s, t ∈ S 1 W(s, t) = 0 =⇒ P w,τ s (t)

Proof.

We walk up the tree, starting from the leaves up to the root node, while proving some upper bounds that are always smaller than h2 h (1

Leaves. The leaves have an upper bound of 0, this follows from the de nitions.

Product nodes. Assume that the lemma holds for the bound F for the children labeled (u, (U, U)) and (v, (V, V)). Let s, t ∈ S 1 be such that UV(s, t) = 0. It follows that P uv s (t) ≤ 2F.

Idempotent nodes. Assume that we have the children whose label's left components are p 1 , . . . , p j , j < k and each label's right component is the same idempotent (W, W). Let s, t ∈ S 1 such that W(s, t) = 0. By the induction hypothesis the upper bound F holds for all the children.

Denote by ρ the set of all paths s 0 s 1 • • • s j such that s 0 = s, s j = t and W(s i , s i+1) = 1 for all 0 ≤ i ≤ j -1. Since W(s, t) = 0 for all π = s 0 • • • s j ∈

Completeness

Let ρ be the set of all paths s 0 • • • s j such that s 0 = s, s j = t and W(s i , s i+1) = 1 for all 0 ≤ i ≤ j -1. We partition ρ into the set ρ 1 of all the paths that pass through S r and ρ 2 the set of all paths that do not. Since t is W-transient, for all r ∈ S r , W(r, t) = 0, consequently we can use the argument above for the idempotent nodes to give 2F as an upper bound for the probability of the event that constitutes the union of all the sets in ρ 1 . As for ρ 2 , because of transience of t and (58) the probability of the union of all the paths in ρ 2 can be bounded above by 2(1 -

Walking up the tree of height h for the upper bounds above, we conclude the lemma for the root node.

Lemma 4.25 is a consequence of Corollary 4.30 and Lemma 4.32.

4.6

We shall prove the second part of the correctness of the belief monoid algorithm in this section: if the belief monoid of a leaktight half-blind game has no maxmin reachability witness then val(s) < 1 where s is the initial state of the game.

Theorem 4.33 (Completeness).

If the belief monoid of a half-blind leaktight game has no maxmin reachability witness then val(s) < 1, where s ∈ S 1 is the initial state of the game.

For the soundness we were justifying the elements of u ∈ B, by demonstrating that for all of them there is some word over A 1 that realizes them, i.e. for all replies of Min, the behavior is described by some U ∈ u. In this section we will justify the U ∈ u, by proving that there exists some strategy of Min such that the behavior is described by U. In other words, we are not abstracting more behaviors than possible.

Let us be more precise, and summarize that intuitive idea into the following de nition.

4

De nition 4.34 (µ-faithful abstraction). Let u ∈ A * 1 , and µ > 0. We say that u ∈ B is a µ-faithful abstraction of u if for all (U, U) ∈ u there exists some τ ∈ Σ p 2 such that for all s, t ∈ S 1 ,

In the de nition above µ is the lower bound. We want to prove that there exists some µ > 0, such that all words have some element of the belief monoid that is a µ-faithful abstraction of them. This is su cient for Theorem 4.33 for the following reason. If val(s) = 1, then there exists some u ∈ A * 1 such that against all the strategies of Min the chance of reaching the set of nal states is at least 1µ 2 . But for the word u there exists an element of the belief monoid u (that is not a maxmin reachability witness) that is a µ-faithful abstraction of u. Since u is not a maxmin reachability witness there is some U ∈ u such that U(s, t) = 1 where s is the initial state and t ∈ F. Therefore there exists some τ ∈ Σ p 2 such that P u,τ s (t) ≤ 1µ, a contradiction, hence val(s) < 1. As a consequence we concentrate our e orts into the proof of the following lemma.

Lemma 4.35.

There exists µ > 0 such that all u ∈ A * 1 have some u ∈ B that is their µ-faithful abstraction.

First observe that for letters a ∈ A 1 , a ∈ B is a m-faithful abstraction, where m > 0 is the smallest nonzero probability transition that appears in the game. Moreover we can concatenate two words, but unfortunately the lower bound diminishes:

We can use this lemma repeatedly, but then the lower bound depends on the length of the word, and diminishes with it. This is because by playing longer 4.6 Completeness and longer words Max can make the probability to go to the transient states arbitrarily small, so the lower bound gets arbitrarily small as well. So we need to abstract these longer words by the iterated elements of the monoid.

The idea is to use k-decomposition trees for the alphabet A 1 and the monoid B. Given some (longer) word u, we construct its k-decomposition tree and then prove that its type is a µ-faithful abstraction of u, and moreover that µ depends only on the height of the tree and not the length of the word, at which point, Lemma 4.17 comes in. The leaktight hypothesis is used to show that for iteration nodes the bound does not decrease as a function of the number of children.

Let N = 2 9| M| 2 . The essential part of this section is the proof of the follow- ing lemma.

Lemma 4.37. Let u ∈ Σ 1 , such that u = u 1 • • • u n , where n > N = 2 9| M| , and u ∈ B and idempotent element that is a µ-faithful abstraction of u i , 1 ≤ i ≤ n, for some µ > 0. If u is not a leak then u # is a µ N +1 -faithful abstraction of u.

We argue why this lemma is su cient for Lemma 4.35. Given a word u ∈ A * 1 , we construct a N -decomposition tree of u of height at most 9| B| 2 . Such a tree always exists thanks to Lemma 4.17. For the leaves we can prove the bound m > 0, then we can propagate it up the tree as follows, if the bound µ holds for the children, in case of a product node we can prove µ 2 , in case of an idempotent node we can prove µ N and in case of an iteration node µ N +1 . Since the height of the tree is at most h = 9| B| 2 we have the lower bound µ = m h(N +1) , that holds for all u ∈ A * 1 . In the proof that follows we will use the following notation, for some B ∈ M and s, t ∈ S 1 , we write s B -→ t if and only if B(s, t) = 1, otherwise we write s B -→ t.

Proof.

Let (W, W) ∈ u # we will construct a strategy τ ∈ Σ p 2 such that (59) and (60) in De nition 4.34 hold, for (W, W) the word u and the bound µ = µ N +1 . Let us rst assume that (W, W) is such that

The set of #-expressions of u ⊆ M denoted by E (u) is a language de ned by the grammar:

so the terminal symbols are the elements of u. There is γ u , a natural function mapping E (u) to M, i.e. the function that is the identity when restricted to the terminal symbols, otherwise γ u (e • e) = γ u (e)γ u (e), and γ u (e #) = (γ u (e)) # . Given e ∈ E (u) we de ne its #-height as the number of the deepest nesting of

We can safely make the assumption on the form of (W, W) above because for all (U, U) ∈ u we can nd a #-expression e ∈ E (u) whose #-height is 1, such that γ u (e) = (U , U) and for all s, t ∈ S 1 U(s, t) = 1 =⇒ U (s, t) = 1. This is because when we iterate we are removing edges.

Since u is a µ-faithful abstraction of u i ,1 ≤ i ≤ n, for all (U, U) in u there is a strategy in Σ p 2 such that (59) and (60) hold. Let τ 1 be such a strategy for (F 1 , F 1), τ 2 for (G 1 , G 1) and so on until τ 2k+1 for the element (F k+1 , F k+1). We de ne the strategy τ by assigning one of the τ i to some part of the word in the following way:

• against u 1 play τ 1 ,

• against u 2 play τ 2 , play τ 2 also against u 3 , u 4 , . . . , u n-2k+1 each,

• against u n-2k+2 play τ 3 , etc., in general against u n-2k+1+i play τ i+2 , 1 ≤ i ≤ 2k -1.

One can visualize this in the following way.

. This means that τ plays according to τ 2 against u 2 then it keeps playing according to τ 2 against u 3 and so on until u n-2k+1 is read. Note that it is well de ned since we have assumed that n > N . Now we prove (59) for τ and u.

(=⇒) Let s, t ∈ S 1 be such that s

Let F(s 1 , . . . , s n-1) be equal to

. From the de nition of a nite memory strategy, this implies that there exist two m × m stochastic matrices A and B, and J ⊂ {1, . . . , m} such that

where i is the initial memory location of the strategy, and for a matrix A we denote by A i,j the element on the ith row and jth column. We use the following well-known theorem. See e.g. [Gantmacher, 1959].

Theorem 4.40.

Let A be a square m × m stochastic matrix and λ 1 , λ 1 , . . . , λ r (r ≤ m) its distinct eigenvalues. Then for all n > m

where P ijk are polynomials of smaller order than the multiplicity of λ k .

Using Theorem 4.40 and doing a small calculation we see that there exist polynomials P 1 , P 2 , . . . , P r such that for all n > m ∑

In the other hand the Taylor expansion for 1 1-1 2 n+1

gives us

Now observe that for complex numbers z

then the probability to win the game will be arbitrarily close to 1 (for well chosen n and k) if and only if the coin tosses are biased towards heads, that is x 1 , x 2 > 1/2. The idea is to embed the gadget in Figure 21 in place of the states ⊥ and . For all k let

the probability to be in any state except the sink (s) or nal (f) state after the word (a(c 1 c 2 R) n R) k has been played. Then we have µ 0 = 1, and

Hence

Then there exists some function g such that lim n→∞ (1 -1 2 x n 1 -1 2 y n 2) g(n) = 0. Also, we have x 1 > y 2 if and only if lim n→∞ x n 1

x n 1 +y n 2 = 1. After embedding the gadget in Figure 21 in place of the states ⊥ and and replace the letter c 1 with the letters a 1 , b 1 from the gadget, and symmetrically c 2 with the letters a 2 , b 2 , such that the nal state of the gadget embedded on the right becomes , the sink state ⊥ and symmetrically the nal state of the gadget embedded on the left becomes ⊥ and the sink state ⊥⊥; Lemma 4.41 concludes the proof of Proposition 4.39 since 1 = val f (i) > val(i) = 1/2.