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ABSTRACT

Introduction: Under normal healthy conditions, organisms maintain a dynamic
endocrine cell mass throughout life. Pancreatic beta cell mass are able to maintain
plasma glucose levels increasing insulin secretion in conditions as obesity. Beta cell
inability to compensate in insulin demand provokes hyperglycemia and Type 2 Diabetes.
Clinically, most obese individuals do not develop diabetes because islets compensate for
insulin resistance. Direct evidence that human islet mass adapts longitudinally to obesity
in vivo was lacking and, moreover, little information was available on the mechanisms and
cell type(s) involved. Current evidence for increased beta cell mass in obese humans (vs

lean) is based entirely on postmortem histology.

Aim: In this thesis, firstly, we explored the longitudinal adaptation of human islets to
an obesogenic environment and showed direct evidence that non-diabetic human islets
adapt both endocrine and beta cell mass, function and gene expression to obesity in vivo.
Secondly, we investigated the mechanisms of human islet regeneration and we
performed lineage tracing to determine which cell type alpha or beta give rise to the
increase islet mass in obesity. Thirty, in this diet induced obesity model we developed, we
looked at the differential gene expression with Affymetrix gene chips in a kinetic study on
human islets which were laser capture microdissected at 6, 8 and 10 weeks on control or
high fat diet.

Methods: Archived human pancreatic sections were immunostained for endocrine,
beta, alpha, fat. In the obese/immunodeficient mouse model, non-diabetic Rag2—/— mice
were transplanted under kidney capsule with human islets from human brain-deceased
donors (non-diabetics donors and donors with overt metabolic dysfunction). Animals were
fed for 12 weeks with a control or high-fat diet (HFD), and followed for weight, serum
triacylglycerol, fasting blood glucose and human C-peptide. After the mice were killed,
human grafts and the endogenous pancreas were analyzed for endocrine volume,

distribution of beta and alpha cells, and mechanisms of regeneration.

Results: In the longitudinal study, concomitant with the increased weight gain,
doubling of abdominal fat, increased serum triacylglycerol and reduced insulin sensitivity
in 12 week HFD animals we reported that human islet grafts showed functional
compensation, measured as a more than doubling of fasting human C-peptide in mouse

serum, and histological adaptation of islet endocrine mass including increased beta cells.
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Further analysis of the human grafts revealed proliferation and neogenesis as the

responsible mechanisms for the doubling of the human endocrine mass.

Discussion: This novel model allows, for the first time, longitudinal studies of
human islet adaptation to an obese murine environment and may be instrumental in
deciphering pathways involved in human beta cell expansion, as well as in helping to

identify factors predisposing human beta cells to undergo decompensation.
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RESUME

Introduction: Dans les conditions normales, les organismes maintiennent une
masse cellulaire endocrine stable tout au long de leur vie. En cas d’obésité, la masse de
cellules b pancréatiques est capable de maintenir des taux de glucose plasmatique en
augmentant la sécrétion en insuline. L’incapacité de ces cellules a fournir de l'insuline
entraine alors I'apparition d’'une hyperglycémie et d’'un diabéte de type II. Cliniguement, la
majorité des individus obéses ne développent pas de diabéte car les ilots pallient a cette
résistance a l'insuline. La preuve de I'adaptation de la masse d’ilots humains a l'obésité,
in vivo, n'a pas été clairement décrite et, de plus, peu d’informations existent sur les
mécanismes et les types cellulaires impliqués. Actuellement, la mise en évidence de
'augmentation de la masse des cellules b chez les humains obéses repose uniquement

sur des études histologiques.

But : Au cours de cette thése, nous avons étudié I'adaptation au cours du temps
des flots humains a un environnement obésogéne. Nous avons montré ainsi que les ilots
humains non diabétiques s’adaptent in vivo a I'obésité en modifiant la masse de cellules
b, leur fonction et leur expression génique. En suite, on a cherché les mécanismes de
régénération des ilots humaines (prolifération et néogéneses) et on a identifié le
mécanisme de transdifférenciation des cellules alpha et beta en utilisant la méthode de
lineage tracing. Finalement, on a déterminé la différence sur I'expression de géne des
ilots humains greffé chez les souris sous régime control ou régime riche en graisse en

utilisant les puces d’ARN (lllumina).

Methodes et Resultats: Au cours de I'étude longitudinale, des souris Rag2-/- non
diabétiques ont été greffées sous la capsule rénale avec des ilots humains issus de
donneurs en état de mort cérébrale (donneurs non diabétiques ou donneurs avec un
dysfonctionnement métabolique déclaré). Les animaux ont été nourris pendant 2
semaines avec soit un régime contrdle soit un régime riche en graisse (high fat diet HFD).
Un suivi du poids, du taux des triglycérides, de la glycémie et du C-peptide a été mis en
place. Aprés sacrifice des souris, les greffons et les pancréas endogénes ont été
analyseés pour le volume endocrine, la distribution des cellules b et a et les mécanismes
de régénération des cellules pancréatiques. Apres 12 semaines sous régime gras, les
souris montraient toutes les caractéristiques typiques de I'obésité, a savoir, une
augmentation du poids, un doublement de la graisse abdominale, des triglycérides, de la

glycémie et une sensibilité a l'insuline réduite. De plus, I'apparition sur ces animaux d’un
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doublement rapide de la quantité de C-peptide humain dans le sérum murin nous indique
la mise en place d’'une compensation fonctionnelle. Une analyse histologique des
greffons a permis de mettre en évidence une adaptation de la masse endocrine des ilots
avec une augmentation des cellules b. D’autres analyses ont identifié la prolifération et la
néogénése comme les meécanismes responsables de ce doublement de la masse

endocrine humaine.

Discussion: Ce nouveau modéle animal permet d’étudier, in vivo sur une longue
période, I'adaptation des ilots humains a un environnement obésogéne murin. Il peut étre
utilisé comme un outil dans le décryptage des voies de signalisation impliquées dans
I'expansion des cellules b humaines et permettre également I'identification des facteurs

prédisposant ces cellules a subir une décompensation.
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MepiAnyn

Eioaywyn: YO @UOIONOYIKEG OUVONRKEG, OI OPYyavIOUOi dIaTnNEOUV Hia OUVOUIKA
TTOYKPEATIKA €VOOKPIVIKY) uala. Ta [ TraykpeaTikd KUTTapa €ival utrelBuva yia Tnv
dlatipnon Twv eMTTEOWV YAUKOLNG OTO Qid augavovTag TNV €KKPION TNG IVOOUAIVNG O€
OUVONRKEG OTTWG OTNV TTaXUoapPKia. AvikavotnTa Twv B KUTTAPWYV va atravtouv otn {Atnon
yla IvoouAivn TTpokaAei utrepyAukaiyia kai AlaBATn TUTTou 2. 2TIG TTEPICOOTEPES, WOTOCO,
KAIVIKEG TTEPITITWOEIG T TTAXUOOPKA Atoua dgv avatrtuooouv diaBrTn Kkabwg Tta vnoidia
Tou Langerhans atravrouv oTnv avtiotaon oTnv IVOOUAivr. Apeca dedopéva yia Tnv
TIPOCAPMOYN TG AvOPWTTIVNG TTAYKPEQTIKAG MAJAS HOKPOTTPOBeoua oTnV TTaXUCapKia in
ViVO €ival avetTapkr Kal €Tmiong, TTOAU Aiyn gival TTANpo@opia yia TOUG PNXavioUoUg TTou
OUMPUETEXOUV O€ AUTH TNV TTpocapuoyr. loxuovta dedopéva yia Tnv augnon tng Nadag Twv
avOpWTTIVWV B KUTTAPWYV OTNV TTAXUCAPKIa TTPOEPXOVTAI ATTO I0TOAOYIKEG JEAETEG ATOPWV

TTOU aTTERiwaav.

YAika kar MéBodor: TlMpwTtov, I0TONOYIKEG TOWEG aTTd avBpwTTIva  TTayKpEéaTa
avoAuBnkav yia Tnv evookpivik upala, pdla a kal B KUTTapwv Kal eTmitTreda AiTToug.
AedTepov, avBpWTTIVO TTAYKPEATIKA vnaoidla atrd pn diaBnTikoug Kal diapnTIKoUug dOTEG
OPYAVWYV PETAPOOXEUTNKAV OTNV VEPPIKI KAWYOUAD aVOOOAVETTAPKWY TTOVTIKwY Rag2—/—
mice. Ta meipapardolwa Tpé@ovtav yia 12 ¢pdouddec pe Tpo®n xaunAn i uwnAf oe
ANiTapd.  Ztnv didpkeia Twv 12 eOopadwy, Kataypdenke 1o BAPOC Twv TTOVTIKWY, TA
eTTireda TPIYAUKEPISiwY, YAUKOLNG Kal ¢ TTETTTIOIOU. MeTd TIG Buaieg Twv TTEIPAPATOlWWY,
TO €VOOYEVEG TTAYKPEQG KAl TO POOXEUMA avaAuBnkav yia Tnv €vOOKPIVIKA HAla, Thv

avaAoyia a Kail B KUTTApWV Kal TOUG uNXaviououg avayévvnong.

AmoreAéouara ;. ZTnv in Vvivo MEAETN, augnon Tou PAPOUC TWV  TTOVTIKWY,
OITAacIaouog Twv emTTEdWV AITTOUG Kal TPIYAUKEPISiwV Kal auénon Tng avriotaong o€
IVOOUAiIvVN TNV 12 €Bdoudada TraparnerOnke oTa TTOVTIKIA TTOU TPEPOVTAV PE TPOPH UWNANG
TTEPIEKTIKOTNTAG O€ NITTAPd. ZTa idIa TTEIPAPATOlWA, N HAKPOTTPOBECUN TTPOCAPHOYN TWV
avBpwtivwy vnoidiwv Tou Langerhans o€ TepIBAAOV TTaXUCOPKIAG €EEPEUVHONKE.
ApXIKA, OTOIXEIO yIa TNV TTPOCAPUOYH, TNV AEITOUpYia KAl TNV £EKYPACN TWV YOoVIOiwV TNG
evOOKPIVIAG NAZag in vivo OoTnv TTaxuoapkia avakaAu@onkav. AvaAuon Twv avBpwTTivwyv
MOOXEUUATWYV €0€1EE AEITOUPYIKA TTPOCAPUOYI ME AUENON TNG €KKPIONG TOU C-TTETTTIOIOU
OTO 0pPO TOU aipaTog, dITTAACIAoPO TNG avBpwTTIvnG EVOOKPIVIKAG PMAZag Kal augnon Tng
Malag Twv B kuttdpwv. ‘ETTEira,  gpeuvrBnkav o1 unxaviopoi avayévvnong Tng
€VOOKPIVIKNG MACOG Kal TEXVIKES lineage tracing epappooTnkav yia va TTpocdlopicouv TO
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TUTTO TwWV KUTTApwv (a i B KOTTApA) TTOU CUMMETEXOUV OTNV aué¢non Tng uala otnv
TTaxuoapkia. AvAAuon TwV UNXOVIOUWY avayEvvnong, ammoKAAUWE TOV TTOAAATTAQCIAC O,
TV VEOYEVVNON Kal TV atrodlagopoTroinon wg Tmeavoug unxaviopoug augnong tng
€VOOKPIVIKNG pacag. TEAOG, aANayEG oTnv €KQPOOT TwV YOVIOiWV TTOU CUPUETEXOUV OTO
KUTTAPIKO KUKAO Kal OTO OTPEG TOU €VOOTTAOOUATIKOU OIKTUOU ME TN XpNon

MIKPOGUGTOIXIWV TTpoadiopioTnke yia Tnv 6", 8" kal 10" eBdoudda Traxucapkiag.

2udntnon: To CUYKEKPIPMEVO TTPWTOTUTIO POVTEAO, MOG ETTITPETTEI VIA TTPWTN QOPd,
TNV JAKPOTTPOBETUN UEAETN TNG TTPOCAPUOYNS TWV AVOPWTTIVWY TTAYKPEATIKWY vVNOI10iwV
oe TrepIBAGANOV TTayxuoapkiag in vivo. MTtropei va xpnoigotroinBei yia tnv digpelvnon
MOVOTTATIWV TTOU CUMMETEXOUV OTNV auénon TnG NAdag Twv avBpwTTIvwy B TTAYKPEATIKWY
KUTTAPWY  Kal  OTnV  TAuToTroinon  TTPOJIOBECIKWY  TTapayovIiwy  yia  Thv

OUOTIPOCAPUOCTIKOTATA TWV TTAYKPEATIKWY vNoI1diwv Tou Langerhans.
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RESUME DETAILLE

Le pancréas est un organe situé au niveau de 'abdomen, derriere I'estomac. Il est
constitué de 3 parties distinctes : la téte, partie la plus large du pancréas qui s’insére au
niveau du duodénum, le corps et la queue qui se prolonge jusqu’a la rate. Le pancréas est
composé de 2 types de tissus : exocrine et endocrine. La partie exocrine renferme le
systéme canalaire ou ductal et les cellules épithéliales acineuses. Ces dernieres sécretent
des enzymes digestives (trypsine, chymotrypsine, lipase et amylase) qui se déversent
dans le petit intestin via l'arbre canalaire. La partie endocrine est formée de 4 types
cellulaires qui sont, historiquement, définis par 'hormone qu’ils expriment: 1) les cellules a
(le glucagon), 2) les cellules B (l'insuline), 3) les cellules & (la somatostatine) et 4) les
cellules PP (le polypeptide pancréatique). Ces cellules sont regroupées sous forme de
grappe et ne représentent que 1-2% de la masse pancréatique. Edouard Laguesse,
professeur d’histologie a Lille, a été le premier a proposer d’appeler ces petites
« grappes » pancréatiques ‘ilots de Langerhans’ d’aprés la description originelle de
I'étudiant allemand Paul Langerhans en 1869. Récemment, un cinquiéme type cellulaire a

été décrit : les cellules epsilon qui produisent la ghréline.

Il est généralement admis que 'organisation des cellules endocrines dans les ilots
humains est différente de celle des ilots de rongeurs. Chez les rongeurs, les cellules 3
constituent le centre de l’ilot et les cellules non- B (cellules a, &, PP) le manteau. Chez
’homme, une étude récente a décrit que les cellules des ilots de Langerhans sont
agencées sous forme de plaque trilaminaire : une couche de cellules 3 intercalée entre
deux couches de cellules a. Cette structure se présente sous forme d’'un modéle replié
permettant ainsi aux vaisseaux de se propager sur I'ensemble de ses cotés. lls peuvent,
également, s’amalgamer grace a leurs contacts intracellulaires. Néanmoins, il n'y a
aucun doute sur le fait que les ilots humains contiennent proportionnellement moins de

cellules B et plus de cellules a que ceux des rongeurs.

Dans les conditions normales, les organismes maintiennent une masse de cellule
endocrine dynamique tout au long de leur vie. Des études chez 'homme ont montré
gu’une hémi-pancréatectomie provoque une intolérance au glucose peu de temps aprés
la chirurgie, suggérant ainsi I'existence d'une relation entre le volume de cellules
endocrines et les concentrations de glucose a jeun. D’anciennes études transversales
réalisées chez ’'hnomme et les primates ont montré une relation curviligne entre les deux.

Les mécanismes de maintien du taux de cellules pancréatiques restent toujours inconnus
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chez 'hnomme. Mais, des études sur le modéle animal ont mis en évidence trois
mécanismes potentiels : (i) la réplication des cellules endocrines matures existantes, (ii)
la différentiation (ou la néogenése) des cellules ductales ou des cellules précurseurs
pancréatiques acineuses et (iii) la mort programmeée des cellules existantes. Récemment,
des expériences induisant la suppression totale des cellules 8 (PDL avec alloxane et la
toxine diphtérique) ont montré la transdifférentiation des cellules a en cellules B. Ceci
apparait comme un nouveau mécanisme potentiel de la régénération des cellules B. La
cellule endocrine présente une excellente plasticité a se régénérer. Le mode de
régénération dépend du stimulus, qui peut étre physiologique (grossesse, obésité),
compensateur, ou aprés un dommage (ligature du canal, suppression des cellules 3,

pancréatectomie partielle).

Le glucose est la seule source d’énergie qui peut étre utilisée par le cerveau et les
globules rouges. Le glucose est stocké au niveau du foie sous forme de glycogéne et ses
taux circulants sont contrdlés par deux hormones pancréatiques : l'insuline (secrétée par
les cellules B) et le glucagon (secrété par les cellules a). Banting et al ont dépeint pour la
premiéere fois des actions opposées de l'insuline et du glucagon. En effet, en réponse a
des taux élevés de glucose, la pro-insuline est libérée par les cellules B. L’insuline stimule
la capture du glucose et son stockage au niveau des tissus sous forme de glycogéne
(glycogenése). Au contraire, des taux bas de glucose provoquent la sécrétion du
glucagon par les cellules B et du PP par les cellules &. Le glucagon permet la conversion
du glycogéne stocké dans le foie en glucose (glycogénolyse) et sa libération dans le
sang. Au cours du jelne ou d'un exercice intense, le glucose peut aussi étre produit a
partir des précurseurs des non-carbohydrates (pyruvate, acides aminés et glycérol), un

processus appelé gluconéogeneése.

La perturbation du métabolisme glucidique peut causer un diabéte, maladie endocrine,

qui peut étre divisée en 4 types.

Dans les conditions normales, la masse de cellules 3 est capable de maintenir des
taux de glucose plasmatique en augmentant la sécrétion d’insuline. L'incapacité de la
cellule a compenser la demande en insuline provoque I'’hyperglycémie. La concentration
en insuline requise pour une réponse semi-maximale est définie comme la ‘sensibilité a
l'insuline’. L'incapacité des cellules a utiliser I'insuline produite, entrainant la diminution de
la sensibilité a I'insuline, est définie comme la ‘résistance a l'insuline’. La relation entre la

sensibilité a linsuline et la libération d’insuline est non-linéaire. Pour atteindre une
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condition physiologique, les changements de sensibilité a l'insuline (grossesse, prise de
poids) doivent étre accompagnés par des changements proportionnellement croissants a
linsuline libérée. La masse et la fonction des ilots jouent un rdéle majeur au niveau de
'adaptation et du développement du diabéte, causé par le manque d’acclimatation a ce
changement. La fonction des ilots humains dans I'obésité est basée uniquement sur des

études transversales d’histologie post-mortem.

L’activité sécrétrice des ilots pancréatiques est régulée par des hormones gastro-
intestinales, des hormones tissulaires (adipocytes, ostéoblastes) et du systéme nerveux
autonome (sympathique, parasympathique). Les principaux facteurs impliqués dans la
régulation de la fonction des ilots ainsi que leurs taux plasmatiques dans I'obésité sont

repris dans le tableau 2.

Objectif

L’objectif principal de cette étude a été d’explorer 'adaptation des ilots humains

dans un environnement obésogéne.
Les différentes étapes :

» Création d’'un modeéle de souris in vivo qui associe 'obésité et 'immunodéficience
et qui soit compatible avec la transplantation d’ilots humains.

» Vérification de la capacité des ilots humains a s’adapter fonctionnellement a un
environnement obésogéne murin.

» Mise en évidence de la régénération in vivo des ilots humains (prolifération,
néogenése, transdifférentiation).

» Cinétique d’expression des génes des ilots humains au cours de leur adaptation a

'obésité.
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Matériels et Méthodes

Les pancréas ont été obtenus a partir de donneurs en état de mort cérébrale, en
accord avec les réglements francgais et avec notre comité d’éthique institutionnel. Les ilots
ont été isolés en utilisant une version modifiée de la méthode automatisée de Ricordi,
comme déja décrite. Au cours de ce projet de these, six pancréas de donneurs non-
diabétiques et deux de donneurs possédant un dysfonctionnement du métabolisme
déclaré (plus agé, HbA1c élevé ou histoire de diabéte) ont été utilisés. Des études chez
les souris ont été réalisées selon I'accord du comité local d’expérimentation animale. 93
souris males C57BL6 RAG 2-/- immunodéficiences (A Bouloumié, INSERM U858
Toulouse France et Taconic USA RAGN12-M), agées de 8 a 9 semaines ont été utilisées
dans ce projet. Les animaux ont été nourris 4, 6, 8, 10 ou 12 semaines sous un régime
contréle ou HFD (Research Diets, New Brunswick, NJ — Ref D12450B). Toutes les souris
ont été suivies au niveau du poids, du triacyglycerol sérique et du glucose sanguin a jeun

a 6 heures.

Pour évaluer la prolifération, le Bromodeoxyuridine (BrdU) a été injecté 18 heures
avant le sacrifice ou a été ajouté 7 jours avant dans I'eau potable. Le pancréas endogéne

de souris et les greffons humains ont été analysés.

Le lineage tracing est une technique qui permet lidentification de toute la
progéniture d’'une seule cellule. Elle a été utilisée pour déterminer la transdifférentiation

des ilots greffés aux souris contréles ou HFD.

La capture par microdissection laser, a partir de cryocoupes, a été réalisée pour
isoler des ilots humains greffés chez les souris sous le régime contréle ou HFD. Les
souris sous régime contréle ou HFD ont été sacrifiées a 6, 8 et 10 semaines (n=18).
L’extraction d’ARN a été réalisée avec I'Arcturus Pico Pure RNA isolation kit (Applied
Biosystems) et sa qualité a été déterminée par Bioanalyser et agilent 2100
expert_Eukaryote Total RNA Pico kit. L’expression des genes a été estimée en utilisant le
Affymetrix Human Gene 2.0 ST array (Affymetrix, Santa Clara, California) a l'institut
Cochin (INSERM U1016, Paris).
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Résultats
Manuscrit 1

Dans la premiére partie du mémoire, un nouveau modele in vivo de souris obése
immunodéficiente a été mis au point. La compatibilité avec la transplantation des ilots
humains a permis d’étudier I'adaptation des ilots et leur fonction dans un environnement
obésogéne. L’analyse des pancréas endogénes a confirmé que ce modeéle offre un
environnement approprié a I'expansion des greffons humains et a 'amélioration de leur
fonction. Les mécanismes de régénération des ilots humains (prolifération, néogenése)
ont été découverts grace aux études de la voie par laquelle la masse des ilots est
augmentée dans l'obésité. Dans la deuxiéme partie, des ilots humains dysfonctionnels,
provenant de patients diabétiques de type 2, ont été greffés, mettant ainsi en évidence

leur incapacité a s’adapter a un environnement obésogéne.
Dans ce manuscrit, nous avons montré que :

1) Les souris immunodéficientes Rag2 ont développé des traits liés a 'obésité aprés
un régime HFD de 2 a 4 semaines.

2) Les ilots humains greffés chez les souris ont montré une adaptation fonctionnelle
a un environnement obésogéne : augmentation de la sécrétion d’insuline et
maintient de la normoglycémie (le 2éme mois).

3) Les ilots humains ont semblé perdre totalement leur fonction au 3éme mois de
régime HFD.

4) Les ilots humains dysfonctionnels ne peuvent pas s’adapter a un environnement
obésogéne et les souris deviennent hyperglycémiques au début du deuxiéme
mois.

5) L’analyse histologique a montré une augmentation progressive de la masse des
cellules B sous régime HFD, causée par la régénération des ilots (prolifération et

néogenese).

23



Manuscrit 2

Treés récemment, I'étude transversale de Saisho et Co a montré l'effet de I'obésité
humaine sur la masse de cellules. Des échantillons d’autopsie d’individus non-
diabétiques (53 minces et 61 obéses+surpoids) ont été utilisés pour quantifier la masse
de cellules B pancréatiques. Il a été observé que : 1) chez les obeses, la masse de
cellules B est 50% plus élevée a cause de I'augmentation du nombre de cellules j3,
aucune différence au niveau de la surface des cellule 3 n’a été trouvée, 2) 'accumulation
de la graisse est plus élevée chez les obéses, 3) une corrélation positive entre la masse
de cellules B et le BMI (r=0.5) a été mise en évidence, 4) le taux de prolifération reste
inchangé et peu fréquent chez les obéses par rapport au groupe d’individus minces, et 5)
'apoptose est trés rare (9 sur 236.711 cellules), aucune différence entre les 2 groupes.
De plus, les sujets en surpoids ont été examinés dans le groupe des obéses pour

déterminer le taux de réplication au début de I'obésité.

Les auteurs reconnaissent la nécessité d’études longitudinales pour comprendre
comment la cellule beta s’adapte a un environnement obésogene. Les études
transversales, comme souligné dans cet article, nous donnent peu d’information sur le
mécanisme par lequel 'obésité conduit en méme temps a une augmentation (50%) de la
masse et du diamétre nucléaire moyen de la cellule beta ainsi qu’a I'expansion des
cellules acineuses. Par conséquent, il apparait urgent de réaliser des études
longitudinales chez 'homme afin de caractériser les mécanismes par lesquels I'obésité
provoque des altérations de la masse et de la fonction des ilots. Mais, le manque d’un
acces non-invasif direct a la glande pancréatique exclut I'étude de ce phénoméne chez

’'hnomme.

Notre lettre de commentaire s’est focalisée sur notre modéle publié de souris
immunodéficiente-obése transplantée avec des ilots humains, et son intérét pour des

études longitudinales futures.
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Discussion

Ma recherche a Lille a débuté par la caractérisation de l'influence de I'obésité sur
les ilots humains au niveau morphologique et fonctionnel (Master 2, 2009-2010). La
question posée a été : est-ce que les ilots des personnes obéses sont les meilleurs ilots
pour le traitement cellulaire du diabéte ? Une étude rétrospective portant sur 283
donneurs de pancréas a l'université hospitaliere de Lille a montré que le nombre total et
la taille moyenne des ilots ainsi que le taux d’insuline intracellulaire moyen sont plus
élevés chez les donneurs obéses que chez les donneurs normaux et en surpoids.
L’analyse histologique de 37 donneurs a montré: une augmentation de la taille des ilots,
du nombre total de cellules endocrines (cellules a, B, &, pp) et de la graisse intra-
pancréatique chez les donneurs obéses. De plus, les ilots des individus obeéses
possedent plus de cellules [1 et moins de cellules [J que les non-obéses. Par conséquent,
au niveau morphologique, les ilots humains des obéses apparaissent sensiblement trés
différents de ceux des personnes normales et en surpoids. Cela étant dit, 'obésité n’est
pas un critere d’exclusion pour le prélevement de pancréas a but de transplantation.
Certains centres d’isolement préférent isoler des pancréas provenant de personnes avec

un BMI élevé car le rendement est meilleur.

Le but principal de ce programme de recherche a été de concevoir des modeéles in vivo
pour étudier la fonction et 'adaptation des ilots humains a leur environnement. Mon projet
s’est premiérement concentré sur le développement dun modéle murin: la
caractérisation de [l'adaptation fonctionnelle et morphologique des ilots humains
transplantés chez des souris immunodéficientes soumises a un régime conduisant a
l'obésité (régime HFD). L’adaptation des ilots humains a un environnement obésogene
murin a été confirmée par une augmentation significative du C-peptide humain chez les
souris HFD par rapport aux souris contrdles. Au cours de cette thése, une adaptation
fonctionnelle des ilots humains a l'environnement obése a été démontrée et les
mécanismes de régénération des ilots ont été étudiés. Des ilots pancréatiques de
Langerhans provenant de 8 donneurs d’organes (non-diabétiques et diabétiques) ont été
greffés chez des souris immunodéficientes Rag2 sous la capsule rénale comme déja

décrit.

Toutes les lignées de souris ne développent pas la méme sensibilité a induire une obésité
sous régime HFD. Des études antérieures menées au laboratoire ont permis d’explorer

'alimentation HFD chez des souris nude males C57BI6. Ces souris ont gagné moins de
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2% de leur poids (<8% prise de poids) 8 semaines aprés un régime HFD. D’autres études
ont confirmé que les souris RAG1ko et RAG2ko sont sensibles au régime HFD ou au
régime HFD + régime de sucre élevé. Dans notre étude, nous avons décidé d'utiliser les
souris C57BL/6 Rag2-/-, car lalimentation sous régime HFD (60% des calories
proviennent de la graisse) pendant 12 semaines a provoqué une prise de poids
supérieure a 60%. Au cours du premier mois sous régime HFD, les souris peuvent
développer plusieurs caractéristiques associées a l'obésité. Des taux élevés de
triglycérides sériques et des quantités importantes de graisse abdominale chez nos
souris HFD ont confirmé le phénotype obése. Le méme degré de prise de poids, sur une

courte durée, ne peut pas étre observé chez 'lhomme.

L’analyse des pancréas endogenes des souris contréles a montré une diminution
progressive de la surface des cellules endocrines contrairement aux souris sous régime
HFD, pour lesquelles une augmentation progressive a été observée, (différence
significative a la douziéme semaine (versus Controle)). Cependant, lorsque comparé aux
souris HFD non greffées, la surface des cellules B apparait plus petite chez les souris
HFD greffés. Ce résultat suggére un effet des ilots greffés sur le pancréas endogéne des
souris contréles et HFD. De plus, un nombre plus faible d’ilots a été trouvé chez les souris
contrdles a la douzieme semaine. La quantification morphométrique a permis de mettre
en évidence une augmentation progressive de la taille des ilots chez les souris HFD par
rapport aux contrdles. Ajouté a ce résultat, lorsque la glycémie a été testée, la glycémie a
jeun a été trouvée légerement plus élevée apres 6 semaines et significativement plus
élevée aprés 10 et 12 semaines chez les souris HFD. Néanmoins, les taux de glucose
sanguin n'ont jamais excédé 10mM aux semaines 6, 8, et 10 comme régulierement
observés chez les souris HFD non greffées de type C57BL/6 Rag2-/- ou chez les souris
males C57BI6 WT. La prolifération des cellules B du pancréas endogéne a été trouvée
plus élevée chez les souris HFD a 6 et 12 semaines du, peut-étre, a 'augmentation du
glucose. En conséquence, une faible augmentation des quantités de glucose pourrait étre
a l'origine de la réplication des cellules B.

Le taux de C-peptide humain sécrété a été mesuré chez les souris greffées a jeun afin
d’étudier la fonction des greffons humains. Celui-ci a progressivement augmenté chez les
souris HFD par rapport aux souris contréles. Au cours des premiéres semaines, les taux
de C-peptide humain semblaient étre indépendants du type de régime. Mais, au cours du
temps, il a été affecté par la durée du régime et la prise de poids des souris. Trés

récemment, une étude a montré I'effet de la prise de poids sur la sécrétion d’insuline chez
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les souris C57BL/6 sous régime HFD, les répondeurs-haut (prise de poids importante) ont
3 fois plus d’insuline que les répondeurs-bas ( prise de poids faible). D’un autre coté, les
taux élevés de C-peptide humain dans notre modéle d’obésité pourraient étre expliqués
par I'hyperglycémie. En effet, un jour aprés l'infusion de glucose aux souris, des études
antérieures ont démontré une augmentation de 3 fois de la sécrétion d’insuline des ilots
humains transplantés. Est-ce que les ilots des souris HFD sont des « supers ilots » ?
Pour répondre a cette question, le modéle d'évaluation de 'homéostasie (HOMA) a été
utilisé pour quantifier la résistance a l'insuline (HOMA%IR), la fonction des cellules 3
(HOMA%B) des greffons humains et le HOMA2%BS qui tient compte de la fonction beta
a une sensibilité ou a une résistance a l'insuline donnée. Les HOMA B, IR et S sont
calculés par rapport aux taux de base de linsuline humaine, du C-peptide et de la
glycémie a jeun. A cause de la prise de poids, une chute vertigineuse de la sensibilité a
linsuline (HOMA%S) a été observée (jusqu’a 70% tout au long des semaines) chez les
souris HFD par rapport aux contréles, comme décrit dans le manuscrit 1 (analyse
longitudinale ; modéle mixte). Ce phénomene a été accompagné par une augmentation
significative de la fonction  déterminée par le HOMA2%B, qui a été amélioré chez
'ensemble des souris HFD et contrdles. Cependant, a 12 semaines, la fonction totale
(HOMA2%BS) des greffons humains chez les souris HFD a progressivement diminué par
rapport aux contréles. En particulier, le HOMA2%BS était 4-fois plus bas chez les souris
HFD que chez les souris contrbles. Ce résultat suggére que les ilots humains ont vu leur
fonction diminuée aprés 12 semaines de régime HFD. Dans cette étude, I'utilisation du
HOMA pour le C-peptide est intéressante et spécifique, mais il peut faire 'objet d’'un
débat puisque la glycémie a jeun dans ce modéle peut étre régulée a la fois par le greffon

et le pancréas endogéne encore en place.

Est-ce que notre modéle d’obésité provoqué par un régime HFD est capable de
reproduire l'altération morphologique de la composition des cellules a et B comme
observée au cours de mon Master dans les sections pancréatiques des obéses versus
minces (8% de cellules a en moins chez les obéses versus les minces, exprimé par
rapport au nombre total de cellules a+3). De ce fait, observerait-on ce phénomene si on
greffait des ilots humains provenant d’'un donneur mince chez des souris contrdles ou
HFD ? Le ratio du volume a/a+f du greffon a été calculé pour pouvoir comparer la méme
valeur. Il a été observé que les ilots greffés aux souris HFD avaient 6% de cellules a en
moins (18.08+£1.49 chez les contrdles versus 12.45+1.69% chez les souris HFD). Si nous

voulions aller encore plus loin, la question serait : si nous implantons des ilots provenant
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de donneurs obéses, observerions nous ces altérations chez les souris controles ? Ce
processus est-il réversible ? Pour le moment, nous n’avons pas la réponse a cette

guestion.

Au cours d’une étude de cinétique, I'analyse du volume de cellules endocrines humaines
a révélé une corrélation entre le volume de cellules a et 3 avec le glucose sanguin et la
sécrétion de C-peptide humain. Des taux semblables de glucose sanguin et de C-peptide
ont été mesurés chez les souris contrdles tout au long de I'étude. En paralléle, aucun
changement important n’a été observé au niveau du volume endocrine et de cellules (3.
Une faible diminution de la sécrétion du C-peptide humain et du volume de cellules a a
été trouvée au niveau des greffons controles a 12 semaines. Un résultat qui pourrait étre
expliqué par une intra-régulation des greffons humains. Par contre, des modifications du
volume de cellules a et 3 ont été observées chez les souris HFD durant les 12 semaines.
Pendant la période normo glycémique (4 semaines), le volume de cellules B a été
augmenté en réponse aux besoins en insuline pour contrecarrer 'augmentation de la
résistance a I'insuline au niveau des tissus périphériques, car les souris avaient déja pris
28% de poids. Le volume de cellules a a été diminué (4 semaines). Rahier et co ont
montré que le ration de cellules a: B ne diminuait pas avec 'augmentation du BMI chez
'homme. Ce résultat confirme notre observation sur 45 pancréas humains (r=0.14,
p=0,12). Au cours d’'une courte hyperglycémie (6 semaines), le volume de celluleg B est
faiblement diminué et le volume de cellules a est élevé (aucune différence comparé aux
souris contréles). Au cours d’'une longue période d’hyperglycémie (>10 semaines), le
volume de cellule B est augmenté et le volume de cellule [ apparait étre plus élevé

seulement a 12 semaines.

Dans nos 3 premieres seéries de préparations d’ilots humains, le BrdU a été ajouté 1 jour
avant le sacrifice. Dans ces séries, une prolifération endocrine élevée avait tendance a
apparaitre, mais nous étions incapables d’identifier les cellules B en prolifération. Par
conséquent, dans toutes les études suivantes, nous avons mis le BrdU dans I'eau potable
7 jours avant le sacrifice. L’étude cinétique nous a permis d’examiner la prolifération des
cellules endocrines humaines, de maniére longitudinale, chez les souris sous un régime
contrdle ou HFD pendant 12 semaines. Durant la période normoglycémique (4
semaines), une prolifération élevée des cellules 3 a été observée chez les greffons HFD
en comparaison aux greffons contréles. Ce résultat est du a la demande en insuline
causée par l'obésité (déterminé par I'analyse de la quantité de BrdU mis dans l'eau

potable 7 jours avant le sacrifice). Des études transversales sur des pancréas humains
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provenant de donneurs normoglycémiques ont mis en évidence des taux de prolifération
de cellules B trés bas. Cette prolifération a été Iégérement augmentée chez les obéses.
Aucun changement au niveau de la prolifération des cellules B chez les greffons HFD n’a

été observé en comparaison aux controles.

Un résultat qui peut étre partiellement expliqué par la diminution du volume de cellules a
a ce moment la. Un pic a 6 semaines de la prolifération des cellules B humaines a été
observé, tandis que I'hyperglycémie moyenne n’a pas entrainé de changements au
niveau de la prolifération des cellules a. De maniére inattendue, a la fin de cette période,
lorsque les taux de glucose sanguin ont commencé a augmenter (8 semaines), une
diminution de la prolifération de 'ensemble des cellules a et B est apparue. Finalement, la
prolifération des cellules a et B s’est reproduite lorsque I'’hyperglycémie a été établie. Une
étude des ilots humains a montré que l'infusion de haut glucose a augmenté de 2-fois la
réplication des cellules B chez les ilots greffés aux souris nudes. En particulier, la
réplication croissante des cellules a a été attribuée a un taux élevé d’IL-6, une cytokine
associée a la résistance a l'insuline dans I'obésité. Une rare réplication des cellules 6 a
été observée, mais de maniére intéressante toutes les cellules ont été trouvées au niveau

du greffon chez les souris HFD.

Le double marquage CK-19/chromogranine A, insuline ou glucagon a été effectué pour
mettre en évidence la néogenése chez les greffons humains. La néogenéese déterminée a
12 semaines chez 3 premiers donneurs avait des niveaux plutét bas. L’étude cinétique a
montré des taux de néogenése plus élevé a 8 semaines comme décrit dans le manuscrit
1. Ce résultat doit étre confirmé par des expériences ultérieures. A ce moment,
'hyperglycémie a commencé a augmenter et la prolifération des cellules endocrines a
diminuer. Une analyse complémentaire a montré que 80% des cellules
CK19+/ChromoA+ étaient des cellules a. Ce résultat confirme ceux d’autres études qui

proposent que la néogenése des cellules a survient en premier.

Dans notre modeéle, la technique du test TUNEL n’a pas mis en évidence d’apoptose au
niveau des cellules endocrines dans les greffons humains chez les souris controles et
HFD comme attendu. Levitt et Co ont montré que la réactivité¢ TUNEL des cellules B
n’était pas mesurablement augmentée chez les greffons humains exposés au glucose
sanguin élevé. De plus, dans d’autres études, le régime HFD et la prise de poids des
souris n‘avaient pas modifié le pourcentage de cellules caspase 3 positives dans le

pancréas endogene des souris.
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L’étude du lineage tracing a été réalisée pour expliquer l'altération du volume des cellules
a et B, car aucune différence au niveau de l'apoptose n’'avait été détectée chez les
greffons HFD. Tout d’abord, une conversion des cellules 8 en cellules a a été observée.
L’analyse des cellules GFP+ avant la transplantation des ilots a confirmé la spécificité du
vecteur Rip-CRE comme décrit dans d’autres études utilisant les mémes vecteurs (Pr
Philippe Ravassard, BCBC/UMR-7225). Aprés le marquage des cellules B des ilots avec
les vecteurs RIP-CRE et CMV-LOXP, l'analyse des cellules GFP-Ins+ et GFP+Gcg+ 12
semaines apres la transplantation a montré que 24.71% et 35.62% de cellules GFP+ (ils
expriment le promoteur a l'insuline) étaient des cellules a (gcg+) chez les souris contréles
et HFD1 respectivement. Cependant, le nombre de souris était trop petit, par exemple
seulement 13.04% de conversion a été trouvé chez la souris HFD2. Ce résultat, pour la
souris HFD2, a montré une trés faible expression du C-peptide humain (~20pmol/l a 8 et
10 semaines sous HFD). Trés récemment, la transition des cellules a matures en cellules
B a été décrite dans les ilots humains greffés chez des souris NOD/SCID a 2 semaines.
Des changements au niveau de I'expression des hormones endocrines ont été expliqués
par la conversion de 10% des cellules B et non a cause de l'apoptose ou de la
prolifération. Par ailleurs, la conversion des cellules a en cellules B a été testée en
utilisant le vecteur Glu-CRE pour les ilots provenant dun méme donneur. L’analyse
quantitative a montré que 41.53% des cellules GFP+ dans le controle 1 et 42.4% chez les
souris HFD étaient des cellules 3. De plus, 43.14% de conversion a été trouvé chez le
contrdle 2. Une observation plus précise de ces souris a montré une sécrétion
anormalement élevée du C-peptide, associé a une prise de poids de 15%. Dans des
études antérieures, deux modéles ont été utilisés pour décrire la capacité de conversion
des cellules a en cellules B ; I'expression transgénique de la toxine diphtérique chez la
souris et le modéle de cellule B induit par alloxan plus PDL. Une approche plus

consciencieuse de la transition des cellules humaines a en cellules 3 devra étre réalisée.

Pour valider notre modéle, des ilots dysfonctionnels de deux donneurs diabétiques ont
été greffés chez des souris sous régime contrble et HFD (DD1 a été traité pendant 10 ans
pour diabéte de type 2). Aucune adaptation fonctionnelle associée a une sécrétion de C-
peptide et a I'évaluation de HOMA2 n’a été observée dans ces greffes (données décrites
dans le manuscrit 1). Le C-peptide humain a jeun a été moins élevé chez le DD2 au cours
des 12 semaines par rapport aux donneurs contréles. Il faut souligner que les ilots de
DD1 sécrétaient moins de C-peptide que ceux de DD2. En plus, les taux de glucose

sanguin ont augmenté au cours des 12 semaines chez ces souris (a partir de 2
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semaines). Il a été observé que les souris greffées avec des ilots de DD1 avaient des
taux de glucose sanguin plus élevés (>10mmol/l), mettant ainsi en évidence une
mauvaise fonction et une mauvaise adaptation de ces ilots a I'obésité. Finalement,
aucune adaptation au niveau histologique n’a été observée pour ces greffons. Le déficit
de la masse de cellule B a été déja décrit chez des patients de typeT2D. Il est connu que
le vieillissement est corrélé a une diminution de la capacité de prolifération et a une
masse de cellules B dysfonctionnelles chez les patients T2D. Le double marquage
BrdU/Chromogranine A n’a pas détecté de prolifération des cellules endocrines comme

attendu.

31



ABBREVIATION LIST

BMI Body Mass Index

BrdU Bromodeoxyuridine

CAMP Cyclic adenosine Monophosphate
CAMs Cell Qdhesion Molecules

CDKs Cyclin-Dependent Kinases

CKK Cholecystokinin

CMV Cytomegalovirus

DAB Diaminobenzidine

DNA Deoxyribonucleic acid

EGF Epidermal Growth Factor

Eph Ephrin

ER Estrogen Receptors

GABA Gamma-Aminobutyric Acid

GFP Green Fluorescent Protein

GIP Glucose-dependent Insulinotropic Polypeptide
GLP-1 Glucagon-like Peptide-1

GPR30 G Protein-Coupled Receptor 30
HbAlc Hemoglobin Alc

HFD High Fat Diet

HOMA Homeostatic model assessment (HOMA)
IEQ Islet Equivalents

IGT Impaired Glucose Tolerance

IL-18 Interleukin-13

IL-6 Interleukin 6

IPGTT Intraperitoneal Glucose Tolerance Test
IST Insulin Suppression Test

IVGTT Intravenous Glucose Tolerance Test
LADA Latest Autoimmune Diabetes in Adults
LIF Leukaemia Inhibitory Factor

MODY Maturity-Onset Diabetes of the Young
MRI Magnetic Resonance Imaging

NCAM Neural Cell Adhesion Molecule



http://en.wikipedia.org/wiki/Ephrin_receptor
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging

NF-kB
OGTT
PCD
PDL
PTH
PYY
RIN
RNA
STZ
T1/2D
T1D
T2D
TNF-a
WHO
Wnt
YFP

Nuclear Factor kappa-light-chain-enhancer of activated B «
Oral Glucose Tolerance Test
Programmed Cell Death
Pancreatic Duct Digation
Parathyroid Hormone

Peptide YY

RNA Integrity Number

Ribonucleic acid

Streptozotocin

Type 2 Diabetes

Type 1 Diabetes

Type 2 Diabetes

Tumor Necrosis Factor-a

World Health Organization
Drosophila melanogaster wingless
Yellow Fluorescent Protein

33


http://en.wikipedia.org/wiki/Streptozotocin
http://www.copewithcytokines.de/cope.cgi?key=Drosophila%20melanogaster%20wingless
http://en.wikipedia.org/wiki/Yellow_fluorescent_protein

FIGURES LIST

Fig 1
Fig 2
Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 10
Fig 11

Fig 12

Fig 13

Fig 14

Fig 15

Fig 16

Fig 17
Fig 18
Fig 19
Fig 20
Fig 21
Fig 22

Fig 23

Pancreas StrUCtUIre. ... ..., 38
Mechanisms of glucose homeostasis regulation.........................ooo, 40
Approaches of insulin secreting cells regeneration................cccccviiiiinannnn. 41
Transcriptions factors involved in endocrine cells development...................... 49
Relationship between obesity and diabetes prevalence rates worldwide in

AAUIES. . .o 50
Hyperbolic relationship between insulin sensitivity and insulin release............. 51
Nonlinear correlation of basal plasma insulin and glucose concentrations in the
updated HOMA MOGEL...........oee e, 62
Different islet transplantation Sites.......................oooi 65
Method of determination of cell volume in islets transplanted under kidney

0= 1 5] 1 | [ 75
Pair of vectors of pancreatic cells infection........................coo, 76
Laser Microdissection Equipment...................ooiii 78
Gene expression Microarray ProCeAUNE. .......ciuii e aeaaeaen 78

Fasting blood glucose and human C-peptide for mice grafted with islets
(NOrmal O diabEtiC ONOIS). ... ....veeeeee e, 97

Fasting c-peptide expressed as a function of blood glucose for mice grafted
with islets from normal dONOrS. ...

Fasting blood glucose and human C-peptide for mice grafted with normal islets
(KINETIC STUAY). .. ettt e et

Fasting c-peptide expressed as a function of blood glucose for mice (kinetic

Morphometric analysis of endogenous mouse pancreas.........................eeees 100
Classification of mouse islets according to their size.................................... 101
Proliferation of mouse beta cells......................... 102
Morphometric analysis of human endocrine cell volume (grafts)..................... 103
Determination of proliferation on human endocrine cells in human grafts......... 105
Determination of neogenesis in human endocrine cells in human grafts........... 106
Lineage tracing study design .............cooiiiiiiiiiiii 108

34



Fig 24

Fig 25

Fig 26

Fig 27

Fig 28

Fig 29

Fig 30

Fig 31

Fig 32

Fig 33

Fig 34

Fig 35

Fig 36

Fig 37

Fig 38

Fig 39

Fig 40

Weight gain, fasting blood glucose and human C-peptide for mice grafted with
islets (Lineage tracing StUAY).........cuiieiriiiiii e

Staining of c-myc and GFP after transfection only by CMV-Lox vector............ 110
Staining of c-myc and GFP after transfection only by CMV-Lox vector
AN RIP-CIE VECIOTS. ...ttt 111
Staining of c-myc and GFP after transfection only by CMV-Lox vector and Glu- 113
(o LT o) (o] £
Weight change and diet in MICe...........iiiiii 114
Fasting blood glucose and human C-peptide for mice grafted with islets (Gene
eXPression Profile SEUAY)..........couwee e 115
Laser microdiSSECtiON PrOCEAUIE. ... . ..uu it 116
Representative electrophoregram of total RNA extracted from human grafts..... 117
Hierarchically clustering of microarrays data................cccoooiiiiiiiiiiiiiiiininns, 118
3D Condition Scatter Plot and Principal Components Analysis....................... 119
CYCIES PlOt. .. e e

120
Relative expression/ endocrine cell specific genes and transcription factors... 121
Relative expression/ protein pocket and E2F transcriptions factors family...... 12
Relative expression/ cyclins, cdks, INK4 and CIP/KIP family members............ 123
Relative expression/ adaptive ER stress genes...........cccooviiiiiiiiiiiiiinnnn . 124
Study of the characteristics of human pancreas................cccoooiiiin. 197
Model description and possible mechanisms of human islets adaptation to
0bESE ENVIFONMENT. ... . e 138

35



TABLES LIST

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Studies providing evidence of in vivo beta cell proliferation..........

Studies providing evidence of regulation on pancreatic cell
FUNCHION. L

Characteristics of non diabetic human donors................c.c.ooee.e.
Characteristics of dysfunctional human donors..........................
Composition of Research DietS...........ccoviiiiiiiiiiiiieee
List of primary and secondary antibodies..............c.cooviiiiennn.
Viability of human islets after transfection................ccoooiiinnne.

Analysis of cell conversion after transfection of human islets
(CMV-Lox and RIP-Cre VECIOrS)......c.cvveieiiiiiei e

Analysis of cell conversion after transfection of human islets
(CMV-Lox and GIU-Cre VECIOIS. .......civieiiieiiie e

59

70

70

71

74

107

112

113

36



Chapter |

Introduction

37



1. Structure of human and mouse pancreas

The pancreas, an elongated organ located across the back of the abdomen,
behind the stomach, is constituted of three distinct parts: the head, the widest part which
lies in the curve of the duodenum, the body, and the tail that is located near the spleen
(Fig 1a). The pancreas is composed of exocrine and endocrine tissue. The exocrine part
contains the ductal system and the epithelial acinar cells which secrete digestive enzymes
(trypsin, chymotrypsin, lipase and amylase) into the small intestine (Fig 1b, c) via the
ductal tree. Edouard Laguesse a histology professor in Lille was the first to suggest that
the small clusters in the pancreas should be called “islets of Langerhans” based on the
original description by the German medical student Paul Langerhans in 1869; they
comprise only 1-2% of the pancreatic mass. Islets are comprised of four endocrine cell
types that have historically been defined by their hormone expression: 1) a cells secrete
glucagon, 2) B cells secrete insulin, 3) & cells secrete somatostatin and 4) PP cells
secrete pancreatic polypeptide (Fig 1d). A few years ago, a fifth islet cell type, grhelin-
producing epsilon cells,
was described [1, 2]. s P

“ 7\~ Common bile duct

Pyloric sphincter

It is generally
admitted that the
endocrine cell

organization in  human

Islet of
Duodenum — =4 Deita cell — langerhans — Pancreatic

islets is different from that
of rodent islets, where B-
cells compose the core
and non B cells (a, 6, PP-
cells) the mantle of the
islets. A recent study
describes that human

Fig. 1 Pancreas structure.a) Anatomy of the human pancreas

islet cells are arranged in _ _ _ _
b) The exocrine pancreas c) A single acinus d) An islet of

a trilaminar plate Langerhans embedded in exocrine tissue (Bardeesy, 2002)
comprised of one layer of

beta cells sandwiched between two layers of alpha cells. This structure has a folded
pattern and vessels circulate along both of its sides. Moreover, they can be considered

intermingled because of their intracellular contacts [3]. Thus, there is no doubt that the
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human islets contain proportionally fewer 3-cells and more a-cells than the mouse islets

[4]

2. Overview of transcription factors in pancreatic development

Most of our knowledge of pancreatic development is based on studies in mouse,
chicken, zebrafish and Xenopus models. Knowledge about human pancreas development
is more limited and some differences exist between the mouse and the human pancreas.
The development of the three primary layers called gastrulation (ectoderm, endoderm,
mesoderm) starts at embryonic day 6.5 (2wks in humans). Canonical Wnt pathway
contributes to the differentiation of the mesendoderm cells [5, 6]. Cells within the
endoderm (E7.5-9.5/3 wks) are specified for several transcription factors and give genesis
to gut tube. FGF2 and activin are also crucial for the gut tube development via inactivation
of Shh gene [7].

First evidence for pancreas formation appears at 9 embryonic days (4wks) after the
development of two pancreatic buds, dorsal endoderm and ventral endoderm. A network
of transcription factors interact at this stage such as Pdx1, Hb9, Sox9, Sox17, Cpal. Pdx1
is activated by retinoic acid-mediated pathway and has an important role for the pancreas
development and the beta cell identity later. At stage of E9, immature glucagon producing
cells are observed when immature insulin producing cells can be detected later at E10.5
(end of 4wks) [8]. Endocrine lineage is specified by the expression of transcription factor
of Neurogenin 3 (Ngn3). Ngn3 inactivation by inhibitory factor Hesl (Notch-Delta
pathway) leads to exocrine precursors development (E10.5-12.5/5 wks [9]. Then,
transcription activity of Hnf6 gives genesis to duct cells or expression of Ptfla, Rpbj leads
to acinar cell differentiation. On the other hand, active ngn3 promotes the expression of
Arx, Pax4, NeuroD1, Nkx2.2, Nkx6.1, which allows endocrine precursors to express one
of the endocrine hormones. Arx and Pax4 were found to be specific for a-/PP cells and -
/® cells differentiation respectively [10, 11]. Nk2.2 and Nkx6.1 appears only in beta cells,
when Pax6 and Isl1 are responsible to delta cell formation [8]. Additionally, expression of

MafA and MafB, is crucial for B and a cells maturation respectively [12].

Studies in rodents revealed that epsilon cells can be detected in the mouse
pancreas as early as embryonic day 10.5 and that they are the major source of ghrelin
during fetal life [13]. Recent study demonstrated that epsilon cells represent a multi-potent
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progenitor cell population that delineates a major subgrouping of the islet endocrine cell

populations [14]. Contrarily, there is little information on epsilon cells during fetal

development of the human pancreas. A study of Andralojc et al, showed that during fetal

development epsilon cells show an ontogenetic and morphogenetic pattern that is distinct

from that of alpha and beta cells [15]. The transcriptions factors which characterize the

different type of endocrine cells are given in Fig 2.

Ventral
endoderm

Retinoid Acid
Activin

PAX6 / ISL1 / NeuroD1

Pax4 Arx
-
MafA Brn4
" g ey Nio2.2

'mu,ras,rm Pab

Endocrine cells

Fig 2: Transcriptions factors involved in endocrine cells development. Schematic

overview of (Ben-Othman, 2013)
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ey N eheiin)
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3. Mechanisms of pancreatic cell maintenance

Under normal healthy conditions, organisms maintain a dynamic endocrine cell mass
throughout life. Studies in humans revealed that hemi-pancreatectomy causes glucose
intolerance in short term after surgery proposing the relationship between endocrine cell
volume and fasting blood glucose concentrations [16]. Further cross-sectional studies in
humans and primates showed a curvilinear relationship between beta cell volume and
fasting blood glucose concentrations [17, 18]. The mechanisms of pancreatic cell
maintenance are still unknown in humans, but studies in animal model reveal three
potential mechanisms: (i) replication of existing mature endocrine cells (ii) differentiation
(or neogenesis) by ductal or acinar pancreatic precursor cells and (iii) programmed cell
death of existing cells. Recently, experiments induced extreme 3 cell ablation (PDL with
alloxan and diphtheria toxin) showed a to B cell transdifferentiation as novel potential
mechanism of beta cell regeneration [19, 20]. The endocrine cell has great plasticity to
regenerate [21, 22] (Fig 3). The mode of regeneration depends on the stimulus which can
be physiological (pregnancy, obesity) or compensatory, following damage (duct ligation,

beta cell ablation, partial pancreatectomy).

Differentiation
of stem/progenitors
in the ductal epithelium

13 New acinar
cells 9

Replication of
preexisting B-cells

'/
<

t&k‘&\.‘ G‘:.i '-Tt“ ZL €@ ¥

‘c} @ S e - ’,_h- -
gy ® o O ‘&& Budding

a < @
-

. - ek of new islet
. (o::'a -
) - -
© : . S
Differentiation \-k/“‘ Acinar
of stem/progenitors transdifferentiation
(not islet, duct or acinar) to B-cells

Fig 3: Approaches of insulin secreting cells regeneration. Replication of preexisting
beta cells and (trans)differentiation of ductal or acinar precursor cells (Bonner-Weir S, 2005)
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3.1 Pancreatic endocrine cell replication in vivo

The strongest evidence of in vivo beta cell proliferation was provided by animal
studies. Dor et al demonstrated for the first time that preexisting beta cells were the major
source of new beta cells during adult life in mice and following damage [23]. Studies in
embryonic and neonatal rodent pancreases revealed the role of the cell cycle regulator,
cyclin D2, in the massive proliferation of beta cells [24]. Rodent islet function and
proliferation decreases with aging [25, 26]. Furthermore, endogenous beta cells replicates
in response to insulin demand in physiological models of pregnancy and obesity [27-32].
Likewise, proliferation of surviving beta cell plays the major role in regeneration in rodents
after duct ligation, partial pancreatectomy and extreme 3 cell ablation in transgenic mice

by diphtheria toxin or after alloxan perfusion [33-40].

While significant progress has been made towards the understanding of b-cell
regeneration in adults, very little is known about the regeneration of the non- endocrine
cells such as glucagon producing a-cells and somatostatin producing &-cells. Studies in
obese mice revealed the association between interleukin 6 (IL-6) and alpha cell
proliferation [41]. Recently, it has been shown that alpha and delta cells can proliferate
following STZ-induced beta cell destruction [42]. Previous studies showed endogenous

alpha cell proliferation in PDL plus alloxan before their conversion in beta cells [19].

In humans, pancreatic beta cell mass may expand several fold from birth to
adulthood, but human islet proliferation is very low in adults [43] as proliferation already
decreases 3% six months after birth [44]. Human islet function and proliferation also
decrease with aging [26, 45]. The cell cycle protein cyclin D1, D2 and D3 with the
absence of pl6 and p27 expression appears to promote beta cell replication in prenatal
beta cells [46]. Very recently, the repertoire of G1/S regulatory proteins was delineated for
the adult human beta pancreatic cells. The human beta cell G1/S atlas revealed that the
only nuclear molecules are the cell cycle inhibitors pRb, p57, p21 and none of the cyclins
or cdks are present in the nuclear compartment [47]. This may explain the refractoriness
of human beta cell proliferation. Although the knowledge about cell cycle regulation is
abundant, the mechanisms beyond human beta cell proliferation in physiological
conditions are still unknown but are a subject of intense research in particular in vitro [48,
49].

The majority of studies on human islet proliferation and neogenesis in physiological

conditions (pregnancy, obesity) are based on histological findings of autopsied pancreatic
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tissue following accidental or pathology-induced death. Cross- sectional studies showed
low levels of human beta cell replication with no change in pregnant individuals and no
significant increase in obese subjects (0.06%) [50, 51]. Table 1 shows further details for

the in vivo studies providing evidence for beta cell proliferation in animals and humans.
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Table 1: Studies providing evidence of in vivo beta cell proliferation

Neonates -B cell replication is the primary mechanism for Georgia,S. and
maintaining postnatal b cell mass BhushanA. et al[24]
Adult -Pre-existing beta-cells, are the major source of Dor, Y. et al[23]
new beta-cells during adult life in mice Teta, M. et al[25]
-Decrease of beta cell proliferation rates in aged
adult mice
Pregnancy -Lactogenic hormones, growth hormones and | Karnik, S.K. et al[27]

prolactine promote beta cell proliferation during
pregnancy

Brelje, T.C. et al[28]

Obese rodent
model

-Long-term fat feeding is associated with an
increase in the beta cell population but an
inadequate functional adaptation.

-Islet volume and beta cell proliferation increase
in adult ob/ob mice

-Beta cell proliferation increases with 4 days
glucose infusion

Hull, R.L. et al[29]
Davis, D.B. et al[30]
Bock, T. et al[31]
Alonso, L.C. et al[32]

Partial Duct -10 fold higher proliferation (BrdU+Ins+) after PDL | Xu, X. et al[34]

Ligation (PDL) | via Ngn3 gene activation Van de Casteele, M.
et al[35]

Partial -FoxM1 is required for increased beta cell | Ackermann Misfeldt,

Pancreatectomy | proliferation after 60% partial pancreatectomy A. et al[36]

-High level of beta cell replication 14 days after
70% partial pancreatectomy

-90% partial pancreatectomy enhance beta cell
replication

Lee, S.H. et al[37]
Liu, T. et al[38]
Bonner-Weir, S. et
al[40]

Transgenic beta
cells expressing
diphtheria toxin
upon treatment
of mice with
doxycycline

-Proliferation of surviving 3 cells played the major
role in regeneration, after 80-90% of beta cell
ablation

Nir, T. et al[33]

Alloxan

-Beta cell replication was observed in

nonperfused part of pancreas

Waguri, M. et al[39]

Islet graft in STZ
mice

-Increase in beta cell mass due to proliferation of
differentiated B-cells in porcine islet graft

Trivedi, N. et al[52]

Neonates -High rate of beta cell proliferation is coincident | Meier, J.J. et al[43]
with the major postnatal expansion of beta cell | Kassem, S. A. et al
mass [44]
-3% decrease of beta cell proliferation after 6
months of age

Adult -The frequency of beta cell replication is very low | Butler, A.E. et al[50]
in normal, obese, diabetic subjects (0.03-0.06%) Maedler, K. et al[26]
-Islet function and replication decrease with aging

Pregnancy -Increase beta cell mass with no change in | Butler, A.E. et al[51]
replication

Obesity -Very low beta cell proliferation level (0.06%) with | Butler, A.E. et al[50]

no significant difference compared to normal
individuals (0.04%)

Gastric Bypass

-No evidence for beta cell
hyperinsulinemic hypoglycemia

replication after

Meier, J.J. et al[53]

Intra-pancreatic
gastrinomas

-Increase islet beta cell replication

Meier, J.J. et al[54]
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3.2 Neogenesis of beta cells by ductal pancreatic precursor cells

The role of ductal tissue as a source for the formation of new islets remains a
controversial hypothesis. Neogenesis of islets occurs during normal development and in
response to physiological stress. Mathematical models proposing two phases of
neogenesis (in birth and 3 weeks after birth) were confirmed by studies in newborn rats
[55-57]. On the contrary, Solar et al proposed the lack of B cell neogenesis after birth [58].
Studies in classic rodent models of partial duct ligation also provided evidence for in vivo
differentiation of exocrine duct cells. Islet neogenesis is characterized by increase of small
islets and islet cell clusters after PDL [59]. Very recently, Van de casteele et al confirmed
in situ their previous study that Ngn3+ cell contributes not only to beta cell proliferation but
also to its neogenesis after PDL [34, 35]. However, islet neogenesis after partial
pancreatectomy seems to be controversial. Some reports showed both neogenesis and
replication [36, 40], while others reported only increased proliferation [23, 37]. Finally,
extreme B-cell ablation with alloxan seems to increase insulin positive duct cells in

perfused part of pancreas [39].

Two independent cross-sectional studies in human pancreases showed a low
range of 0-2.2% insulin positive duct cells before 7 years old and a range of 0-1.2% after
7 years old proposing decline of neogenesis level with aging [43, 60]. Furthermore, study
in pregnancy in the age of 18-42 years old showed three fold higher level of insulin
positive duct cells in pregnant individuals (0.4% in control group vs 1.2% in pregnant
group). In parallel, two fold higher insulin positive duct cells was observed in obese
individuals in the age of 64-81 years old (0.4% in control group and 0.8%in obese group)
[50, 51, 53].
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3.3 (Trans or de)-differentiation of endocrine cells

Recent findings revealed new ideas for the potential mechanisms of endocrine cell
regeneration. It has been demonstrated the possibility to directly or indirectly convert

differentiated cells into other cell subtypes.

Acinar cell conversion into beta cells: Evidence for acinar cell transdifferentiation was

showed in rat exocrine pancreatic cells treated in vitro with two growth factors, epidermal
growth factor (EGF) and leukaemia inhibitory factor (LIF) [61]. Later, Zhou et al provided
evidence that differentiated exocrine cells can be directly reprogrammed into single beta
cells or small clusters within 3 days. Transfection of a combination of the transcription
factors Ngn3, Pdx1 and MafA induced 20% direct conversion of exocrine cells into insulin
positive cells. In this study, dedifferentiation via progenitors was excluded, because rapid

division or expression of Sox9 and Hnf6 was not detected [62].

Alpha to beta cell transdifferentiation: Due to the fact that mature a-and B-cells share

several transcription factors and a common ancestor and are functionally very close, the
a-cell represents an appropriate candidate for reprogramming to B-cell phenotype. Firstly,
Collombat et al showed that Pax4 regulates the balance between a-cells and B-cells by
antagonizing Arx in endocrine progenitors [10]. Additionally, it was reported that Pax4
expression in embryonic a-cells provokes their conversion into 3-cells [63]. In vivo lineage
reprogramming was shown by Thorel et al using a transgenic model of diphtheria-toxin-
induced B cell ablation [64]. In this study, it was reported that cells co-expressing
glucagon and insulin are increased the days after B cell destruction. 90% of these cells
were YFP-labeled under Cre-Lox proposing that pre-existing a-cells started expressing
insulin. One month later, 65% of these cells expressed only insulin and YFP. Another
model following pancreatic duct ligation and elimination of pre-existing 8 cell with alloxan,
was used to examine the conversion of mature a-cells [19]. Expression of the
transcription factors MafA (expressed only in rodent B-cells) and MafB (expressed only in
rodent a-cells) was examined to determine the nature of b cells that appeared 2 weeks
after PDL with alloxan. One week following 99% of (3 cell ablation, 64% of insulin positive
cells expressed MafB when only 22% insulin+tMafB+ were found after two weeks

proposing a novel mechanism of beta cell regeneration.

Beta to alpha cell transdifferentiation: Study in Dnmtl (an enzyme that participates in

DNA methylation during cell division)- deficient beta cells, revealed the beta cell

conversion into alpha cells [65]. Arx repression in beta cells was required via its
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methylation and so, deletion of methylation in beta cells provokes activation of Arx and
conversion into alpha cells. Recently, the role of Pax4 and MafA was examined in normal
and dysfunctional human islets. Lower expression of MafA in dysfunctional human beta
cells was observed in two independent studies. Interestingly, expression of Pax4 and
MafA was found in 50% of human alpha cells which did not confirmed in rodent islets

studies [66] (Bonnavion et al, accepted in Plos one).

Beta cell dedifferentiation: In in vitro experiments with mouse beta cells, increased

vimentin expression and loss of the markers Pdx1, insulin, Glut2, and PC1/3 (80% in 21
days) proposing their dedifferentiation into mesenchymal cells [67]. This was confirmed
with human beta cells in culture [68]. In addition, experiments in diabetic mice proposed
that a decrease of beta cell mass associates with loosening of FoxO1 expression. Further
studies in FoxO1 KO mice showed that beta cell didn’t die but dedifferentiated decreasing
the expression of beta cell specific markers (MafA, Pdx1). Moreover, FoxO1-deficient
beta cells often gained expression of other islet hormone such as glucagon. This was a
provocative explanation for beta cell failure and alpha cell hyperfunction in type 2 diabetes
[69].

3.4Programmed cell death in endocrine cells

Programmed cell death (PCD) is death of a cell mediated by an intracellular
program. In physiological process, apoptosis and autophagy are both forms of PCD.
During the neonatal period, the increasing level of B cell mass is followed by increases in
B cell death [44]. In adults, massive B cell apoptosis and reduction of § cell mass were
shown in type 2 diabetic patients [50, 70].The apoptotic caspases were found as the main
participants in apoptosis. They are classified as initiators (caspase-2, 8, 9, 10) or
executioners (caspase-3, 6, 7); the first activates the second [71]. There have been only a
few studies investigating the role of caspases in the mechanism of B cell apoptosis in
vivo. Studies of mice with Bcell caspase-8 deficiency showed protection against multiple
low doses of streptozotocin and high fat diet-inducedpf cell death and diabetes
development. However, under basal conditions, loss of caspase-8 leads to an age-
dependent decrease in 3 cell mass and glucose intolerance [72], providing evidence for a

critical role in maintaining endocrine cell mass. Furthermore, deletion of caspase-3 in the
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B cells was also shown to be protective against multiplelow doses of streptozotocin model

without islet tumor promotion [73].

Autophagy is a process of removal of damaged organelles/proteins for recycling
providing signals for removal of apoptotic cells and genome stability. Data proposed the
protective role of autophagy during  cell stress when in other conditions autophagy had a
detrimental role to cell survival. Autophagy deficient mice (Atg7) showed increased
apoptosis and decreased proliferation of B cells promoting hypoinsulinemia and
hyperglycemia [74]. Additionally, experiments in obesity-induced diabetic mice (db/db)
revealed increasing numbersof autophagosomes in B cells [75]. Autophagy is necessary
to maintain the structure, mass and function of pancreatic cells. Direct inter relationship
between autophagy and endoplasmic reticulum stress-induced obesity suggests that

autophagy deficiency may contribute to the progression from obesity to diabetes [76].

4. Role of pancreas in glucose homeostasis

Glucose is the only energy source that brain and red blood cells can use. Glucose is
stored in the liver as glycogen and its circulating levels are controlled by two pancreatic
hormones, insulin (secreted by beta pancreatic cells) and glucagon (secreted by alpha
pancreatic cells). Banting et al showed for the first time the opposing actions of insulin
and glucagon [77]. In response to high glucose levels, pro-insulin is released from
pancreatic beta cells. Insulin stimulates the uptake of glucose and storage in the tissues
as glycogen (glycogenesis). In contrast, low glucose levels cause secretion of pancreatic
peptide hormone glucagon from alpha cells. Glucagon promotes the conversion of liver
glycogen to glucose (glycogenolysis) and release of glucose back into the blood [78-80].
During starvation and intense exercise, glucose can also be generated from non-
carbohydrate precursors (i.e. pyruvate, amino acids and glycerol), in a process called

gluconeogenesis (Fig 4).

Disturbance of glucose metabolism may cause Diabetes Mellitus, one of the most
common endocrine diseases, which can be divided into four types. Type 1 Diabetes (T1D)
is an autoimmune disorder characterized by absolute loss of insulin-producing beta cells

and Type 2 Diabetes (T2D) provoked by a progressive decline in beta cell function and
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insulin secretion. Additionally, 10% of phenotypic type 2 diabetic patients are positive for
at least one of islet autoantibodies and they are referred as latest autoimmune diabetes in
adults (LADA) or Type ', Diabetes (T1/2D) [81]. Finally, MODY (Maturity-
Onset Diabetes of the Young) is a group of monogenic disorders characterized by
autosomally dominantly inherited diabetes or hyperglycemia typically detected during
adolescence or young adulthood [82]. Historically, three different concepts for the etiology
of diabetes have been supported. For thirty years, after the discovery of insulin (1922),
lack of insulin was considered as the unique cause of all diabetes abnormalities
(insulinocentric trend). Although glucagon had been identified much earlier, its role on
diabetes abnormalities was taken into account from 1975 (bihormonal trend). Nowadays,
part of scientific community declaims that decline of insulin secretion provokes some
diabetes abnormalities and excess glucagon causes all the others (glucagocentric trend)
[83].

Carbohydrates

glucose, fructose,
falactose

Lactic Acid Pyruvic Acid

Fig 4: Mechanisms of glucose homeostasis regulation. The action of insulin and
glucagon of pancreas regulates glucose homeostasis by the mechanisms of glycogenesis,
glycogenolysis and glyconeogenesis in liver.
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5. Pancreas in obesity

Overweight and obesity are defined as abnormal or excessive fat accumulation

that presents a risk to health. Body mass index (BMI) is a simple index of weight-for-

height that is commonly used to classify overweight and obesity in adults. BMI higher than

30Kg/m? characterizes obesity status, while overweight condition refers to BMI levels

equal or more than 25Kg/m?. According to WHO (World Health Organization) more than

1.4  bilion adults were
overweight in 2008. Among
these, over 200 million men
and nearly 300 million women
were obese. Moreover, in
2011, more than 40 million
children under the age of five
were overweight (data of
WHO). Overweight and

obesity are major risk factors

for a number of chronic
diseases, including diabetes,
cardiovascular diseases and

cancer. The most devastating
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Fig 5. Relationship between obesity and diabetes
prevalence rates worldwide in adults. Data from
WHO 2012 and International Diabetes Federation, Atlas
2011 (Basu S, 2013)

of these diseases seems to be Type 2 diabetes. Relationship between obesity and

diabetes prevalence rates worldwide for 2012 is shown in Figure 5 [84]. However, as

shown in the same figure, obesity does not fully explain diabetes prevalence rates,

because some countries with high diabetes prevalence rates have low obesity rates. Both

obesity and T2D are associated with insulin resistance but most obese, insulin-resistant

peoples do not develop hyperglycemia.
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5.1 Adaptation of islets in obesity

Under normal conditions, pancreatic beta cell mass is able to maintain plasma
glucose levels increasing insulin secretion. Beta cell inability to compensate in insulin
demand provokes hyperglycemia. Insulin concentration required for a half-maximal
response defines as “insulin sensitivity“. Inability of cells to use insulin-produced by beta
cells decreases the insulin sensitivity and is defined as “insulin resistance”. The
relationship between insulin sensitivity and insulin release is nonlinear [85]. In order to
reach a physiological condition, changes in insulin sensitivity for example in pregnancy or
weight gain must be followed by a proportionate incremental changes of insulin release
(Fig 6). Islet mass and function play a major role in adaptation and development of
diabetes based on failure to adapt to this change. Evidence for human islet function in

obesity is provided only by cross-sectional studies based on postmortem histology.

Fig 6: Hyperbolic
relationship between
20 insulin sensitivity and
insulin  release. If
changes in insulin
sensitivity cannot be
Normal followed by a
1.0 - proportionate opposite
changes of insulin
release, individuals go
05 IGT () out the physiological
range  (green) and
0 . ) ) become pre-diabetics
0 0.5 1.0 15 2.0 25 (yellow) or diabetics
Insulin sensitivity (red) (Kahn, 2006)

Insulin release

51



5.2Distribution and communication of islet cells in obesity

Human islets tend to contain fewer B-cells and more a-cells compared to rodent
islets. Cabrera et al reported little difference in the proportion of endocrine cells in islets
from different regions of the pancreas where beta cells intermingled with alpha and delta
cells throughout the human islet [4]. Islets seem to have three layers and all endocrine
cells touch the blood vessels, the middle layer is enriched with beta cells and the two
others are enriched with alpha cells [3]. In obese humans, B-cells increase in number to
compensate for increased insulin demand. In obese patients with type 2 diabetes, there
are reduced numbers of B-cells due to increased apoptosis. Study in type 2 diabetic

individuals also showed the presence of amyloid deposits in the dysfunctional islets [86].

The interaction of endocrine cells plays an important role in islet function and insulin
secretion. High heterologous intracellular contacts of beta cells has an effect on insulin
secretion [87]. Cell adhesion molecules (CAMs), cadherins, gap junction, protein
connexin-36, Eph receptors, ephrin ligands and insulin are some of the regulators of 3
cell-B cell interactions [88]. Neural cell adhesion molecule (NCAM) is essential for a cell-a
cell interaction and glucagon secretion as alpha cell intermingled with B cells in NCAM
deficient mice [89]. Somatostatin inhibits insulin and glucagon secretion and ghrelin
inhibits only insulin secretion where its effect on glucagon secretion remains controversial
[90, 91]. Little is known about the physiological alteration of cell-cell communication in
obesity. Recently, studies on mice fed with high fat diet for 2 months showed changes in

connexin-36 made GAP channels decreasing (3 cell- cell coupling [92].
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6. Regulation of islet function in obesity

The secretory activity of pancreatic islets is regulated by gastrointestinal hormones,
hormones of tissues (adipocytes, osteoblasts) and autonomic nervous system
(sympathetic, parasympathetic). Brief report of the most common factors that regulate

islet function and their plasma levels in obesity is given in Table 2.
6.1 Gastrointestinal hormones

The gastrointestinal hormones (or gut hormones) constitute a group
of hormones secreted by enteroendocrine cells in the stomach, pancreas, and small
intestine. Hormones like Glucagon-like peptide-1 (GLP-1), Glucose-dependent
insulinotropic polypeptide (GIP), Peptide YY (PYY), Cholecystokinin (CKK), gastrin and
ghrelin have an important role on insulin secretion. Hormone level depend on glucose
load and insulin demand in different situations such as pregnancy, obesity and type 2
diabetes. 70% of the secreted insulin after a meal in healthy individuals is induced by the
GLP-1 and GIP, called incretin effect. They are released from the gut in response to food
intake. GLP-1 has a dual action, as a satiety signal and as incretin hormone stimulating
insulin release. Findings regarding GLP-1 levels in obesity have been inconsistent.
Increased levels of GLP-1 are observed in metabolically healthy obese individuals [93]. In
these cases, inhibition of glucagon secretion and decrease of hepatic gluconeogenesis
via GLP-1 response in insulin demand increase insulin sensitivity. Some studies have
reported reduced postprandial GLP-1 levels in obese compared with lean subjects, while
others showed a correlation of GLP-1 to BMI [94]. In all cases, it is well established that
individuals with T2D display an impaired incretin effect. Study in mouse and human islets
revealed the interaction between TCF7L2 and GLP-1R/GIP-R expression in T2D while
low levels of TCF7L2 protein was associated with downregulation of GLP-1 and GIP-
receptors [95]. On the other hand, HFD mice seem to have higher levels of GIP and
GIPKO mice are protected from obesity and insulin resistance [96, 97]. Furthermore,
overexpression of GIP in transgenic mice increases beta cell function and improves
insulin sensitivity, but mice were resistant to HF diet-induced glucose intolerance [98].
Finally, it has been shown that GIP has glucagonotropic effects in human subjects and
the increased GIP levels in at-risk obese might contribute to the increased glucagon basal
levels and to glucagon’s inappropriate suppression after glucose load [99].
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Peptide YY (PYY) is a gut hormone whichis also expressed in the pancreas. Obese
subjects seem to have significantly reduced circulating levels of PYY [100]. Selective
ablation of PYY in pancreas provokes severe hyperglycemia decreasing insulin secretion
by disruption of islet morphology in mice [101]. Cholecystokinin (CKK) is also an important
regulator of insulin sensitivity. Microarray analysis revealed that CKK was the most
upregulated gene in islets of ob/ob mouse model. Another study showed that CKK
contributes to islets expansion by increasing beta cell survival [102]. On the other hand,

cholecystokinin-deficient mice seem to have impaired insulin secretion [103].

Ghrelin is expressed in pancreatic islets and released into pancreatic microcirculations
and its role is the inhibition of insulin release in mice, rats, and humans [91]. When the
systemic demand for insulin exceeds the physiological range, including insulin resistance
and obesity, antagonism of ghrelin function can promote insulin secretion and thereby
prevent from glucose intolerance [104]. Epidemiological studies showed low ghrelin
concentration in obese individuals, however there was no relevant data for diabetes state
[105, 106].

Finally, gastrin is also released by the pancreas, but no changes in serum concentrations
were detected in obese individuals. However, gastrin has an important role on human and
mouse islet function. It stimulates beta cell neogenesis and increases islet mass in ligated
part after PDL [107]. Furthermore, expansion of transplanted human islets was confirmed
in mice treated by gastrin and GLP-1 [108].

6.1 Adipocyte-secreted factors

The interaction between adipocytes and pancreatic islets is not fully known, but it seems
that some adipocyte-secreted factors such as leptin, adiponectin, resistin, interleukin-6,
tumor necrosis factor-a and interleukin-1p have an important roleon islet cell survival and
function. The change in cytokine profiles in islets and plasma is associated with
pancreatic 3-cell dysfunction and apoptosis. Cytokines have important roles in regulation

of pancreatic 3-cell function[109].

Leptin and adiponectin are two important peptide hormones secreted by
adipocytes that are involved in the regulation of metabolism and energy homeostasis.
Both of them have a crucial role in islet function. Leptin-to-adiponectin ratio is also

proposed to be a better index of B-cell dysfunction than leptin or adiponectin alone.Leptin
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receptors are expressed in pancreatic beta-cells.The direct effect of leptin on pancreatic
insulin secretion has been examined in several studies with various leptin concentrations.
In physiological concentrations, leptin significantly downregulates insulin secretion from 3-
cells in the presence of high glucose concentrations, increases beta cell proliferation and
blocks lipid accumulation by reducing beta cell apoptosis [110, 111]. It has been reported
that plasma levels of leptin are positively correlated with BMI and obese subjects have
higher leptin levels than their lean counterparts. The observation that obese subjects have
greater leptin but also high insulin concentrations indicates that there is a state of leptin
resistance in obese subjects [112]. Contrary to the leptin concentration, adiponectin is the
only cytokine downregulated in obesity and type 2 diabetes. In healthy adults, adiponectin
circulates in serum at a high concentrations and stimulates insulin secretion by enhancing
exocytosis of insulin granules [109].Studies on adiponectin knockout mice revealed the
development of severe insulin resistance in response to high fat diet [113]. Adiponectin
has been also shown to positively correlate with insulin sensitivity and inversely correlate
with fasting proinsulin concentration and the proinsulin-to-insulin ratio, a marker of 3-cell
failure [114].

Resistin is another factor; its role on obesity remains controversial. Although,
clinical studies showed a positive correlation of resistin with BMI, its controversial
correlation to insulin sensitivity in some studies or insulin resistance in others proposes an
important role of resistin in the link between obesity and type 2 diabetes [115-117]. In
physiological concentrations, resistin increases beta cell viability while high concentration
reduces insulin receptor activity and provokes beta cell apoptosis in in vitro experiments
[118].

Interleukin-6 (IL-6), Interleukin-1B (IL-1B) and Tumor Necrosis Factor-a (TNF-0)
are also elevated in obesity.IL-6 is considered as a predictive factor for T2D development
in obese subjects with systematically increased levels.Interleukin-6 has a protective effect
on beta cells. The elevation of IL-6 production in obese and type 2 diabetic individuals
may be involved in the beta-cell compensation for insulin resistance in these conditions. It
has been showed that IL-6 regulates beta cell function by increasing insulin secretion and
viability and alpha cell expansion in obesity [41, 119]. On the other hand, increased
circulating IL-1f concentrations are associated with a greater risk of developing T2D while
that leads to beta cell death and dysfunction. Studies in high fat diet mice showed that
decreased levels of IL-18 using IL-1R antagonist protects from hyperglycemia.

Additionally, elevated secretion of IL-1B in human beta cell after high glucose exposure
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provokes beta cell dysfunction and apoptosis via NF-kB activation [120, 121]. Finally,
TNF-ais a cytokine implied in systemic inflammation. Overexpression of TNF-a was
observed in ob/ob and db/db mouse models. In humans, it is associated with obesity,
adipocyte cell volume, and inhibition of glucose uptake in adipocytes [109, 122].In the
insulin resistant state, TNF-a has been reported to inhibit insulin secretion through
activation of several serine kinases in insulin signaling pathway and induce cell

apoptosisvia caspase activation[123].

6.2 Osteoblast-associated factors

The observation of vitamin D accumulation in mature beta cells urged the investigation on
the role of vitamin D on insulin biosynthesis and secretion. Interestingly, global gene
analysis of murine islets revealed huge effects of vitamin D on intercellular junction
formation, cytoskeletal organization, exocytosis of insulin [124]. Several studies showed
that low plasma vitamin D levels are positively associated with both B-cell function and
insulin sensitivity in healthy obese and obese with impaired glucose tolerance [125, 126].
However, no correlation of vitamin D levels with insulin sensitivity and beta cell function
was revealed in young healthy obese, prediabetic and diabetic obese subjects[127].
Parathyroid hormone (PTH) is another factor that participates in islets compensation in
obesity. Increased levels of PTH may contribute oncompensatory mechanism in response
to low circulating levels of vitamin D [126]. Parathyroid hormone-related protein
overexpression in mouse islets leads to islet hyperplasia and increase insulin

secretion[128].

6.3Sex hormones

Estrogen and testosterone are two steroid hormones. The principal binding receptors for
estrogen are the nuclear estrogen receptors (ER)-a and —3 and G protein-coupled
receptor 30 (GPR30). Human and animal islet studies suggest that 17-estradiol (E2), one
of the most common types of estrogens, might promote insulin production in diabetic
individuals and prolong cell survival. Additionally, the antiapoptotic effects of estrogen in

female islets was confirmed via activation of GPR30[129]. More recently, it has been
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found that estradiol improves the function of human islets transplanted in nude mice[130].
Finally, human cross-sectional studies showed the protective effect of testosterone and
estradiol on the development of metabolic syndrome. High testosterone levels is
associated with high insulin sensitivity and better beta cell function [131].

6.4 Autonomic nervous system

Neurotransmitters are endogenous chemicals that transmit signals froma neuronto a
target cell across a synapse. Many neurotransmitters were identified as regulators of islet
function in obesity such as glutamate, GABA, dopamine, epinephrine, norepinephrine,

serotonin, somatostatin and acetylcholine.

High levels of glutamate and y-aminobutyric acid (GABA), two amino acids classified as
neurotransmitters, have been observed in obesity. Recently, two independent studies
showed that the flux of glutamate modulated insulin release from insulin granules.
Decrease of glutamate transport enhanced insulin secretion, but did not change glucagon
secretion [132, 133]. Furthermore, GABA seems also to modulate insulin secretion and

have an important role on islet mass maintenance [134].

High or low levels of the amines like dopamine, epinephrine, norepinephrine and
serotonin modulate islet function in obesity. Obese individuals seem to have less
dopamine receptors proposing low levels of dopamine [135, 136]. In vivo studies and
studies in isolated human islets showed that dopamine inhibits insulin secretion and this
inhibition correlates with a reduction in frequency of the intracellular [CaZ2]
oscillations[137]. Opposite levels have been identified for epinephrineand
norepinephrineonobesity. A positive association has been shown between plasma
epinephrine levels and insulin sensitivity in healthy obese individuals [138]. Additionally, it
is known that epinephrine induces glucagon secretion through the activation of b-
adrenoceptors and the generation of cCAMP [133]. On the other hand,norepinephrine
levels tended to decrease in obesity. It was showed that norepinephrine increases
glucose uptake in brown adipose tissue in mouse [139]. Physiologically,it inhibits insulin
secretion by three actions a) increasingCa*?concentrations by activation of K* channels b)
inactivating of adenylylcyclases and inhibiting exocytosis and c) reducing the activity of
the L-type Ca*? channels [140]. Finally, human obesity was associated with chronic
elevation of brain serotonin. Overweight individuals seem to have high levels of serotonin
metabolites in one study, without data documenting their diabetes state [141].

Additionally, high levels of plasma serotonin were observed in T2D patients. Recently, a
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study in db/db mice confirmed the elevated expression of serotonin in islets and revealed

that inhibition of serotonin using antagonist improves insulin secretion [142].

Somatostatin and acetylcholine are two neurotransmitters for which plasma levels do not
change in obese or obese patients with impaired glucose tolerance (IGT), and type 2
diabetes. Exogenous somatostatin infusion in mouse models (ob/ob, db/db) and in vitro
experiments with human islets showed that somatostatin inhibits insulin and glucagon
secretion [143]. Acetylcholine is crucial for pancreatic beta cell function as it stimulates
insulin secretion by increasing the cytoplasmic free Ca** concentration and enhancing
insulin exocytosis. Rodriguez-Diaz et al recently showed that acetylcholine secreted by

human alpha cells sensitizes beta cells to secrete insulin [144].

58



Table2: Studies providing evidence of regulation on pancreatic cell function

GLP-1

Controversial results but
attenuated in obese with
insulin resistance

-physiologicaly, it has insulinotropic effect, inhibits pancreatic
glucagon secretion, decreases hepatic gluconeogenesis, and
decreases insulin resistance

-low level in obese type 2 diabetic patients

Muscelli, S. et al[93]
Madsbad, S. et al[94]

PYY

Low concentration
predispose the
development of obesity

-regulate beta cell function and survival via the receptor Y(1/2)

Batterham et al[100]
Sam, A.H et al[101]

Ghrelin

Decreased in human
obesity

-inhibit insulin release in rodents and humans
-obestatin (ghrelin gene-derived peptide) increase insulin secretion
in high fat diet mice

Dezaki, K. et al[91], Granata,
R. et al[104], Tschop, M. et
al[105]Rosicka, J. et al[106]

GIP

Unaffected levels in
healthy obese but
increased at risk obese
subjects

-Gluganotropic effect in healthy individuals

-Overexpression of GIP in trangenic mice increase beta cell function
and improve insulin sensitivity but they were resistant to HF diet-
induced glucose intolerance

-GIPR ko mice do not develop obesity

Meier, J.J. et al[99]
Calanna, S. et al[96]
Kim, S.J. et al[98]
Miyawaki, K. et al[97]

Gastrin

No significant difference
in obese subjects
(serum concentration)

-stimulation of beta cell neogenesis in duct-ligated rats
-expansion of human islets transplanted in NOD-SCID mice treated
by gastrin+GLP-1

Rooman, |. et al[107]
Sadry, S.A.et al[108]

CCK

+++

- increase beta cell survival in ob/ob mice
-impaired insulin secretion and increasing insulin sensitivity in
CKKko mice

Lavine, J.A. et al[102]
Lo, C.M et al[103]

Leptin

+++

-Inhibit insulin secretion in rodents and human islets by acting
directly in beta cells and reduce glucose transport into beta cells
-Regulator of beta cell mass and survival, antiapoptotic affect

Kulkarni, R.N. et al[111]
Lee, Y.N. et al[110]

Adiponectin

Downregulated

-Adiponectin knockout mice develop severe insulin
resistance in response to a high-fat diet

-is associated to insulin resistance in humans
-antiapoptotic affect

Maeda, N. et al[113]
Kern, P.A. et al[114]
Lee, Y.N. et al[110]

Resistin

+++ (positive correlation
to BMI)

-controversial correlation to insulin sensitivity in humans
-associated to insulin resistance in rodents and humans
-increase beta cell viability in physiological concentration but high
level provoke beta cell dysfunction (resistance state)

Silha, J.V. et al[115]
Lee, J.H. et al[116]
Wang, C. et al[117]

IL-6

+++

-regulate pancreatic alpha cell expansion
-stimulate insulin secretion via direct cell-based mechanisms

Ellingsgaard, H. et al[41]
da Silva Krause, M. et al[119]
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IL-18 +++ -beta cell itself produce IL-1B after high glucose exposure Sauter. N.S. et al[120]
-IL-1B antagonists improve beta cell survival and function in HFD Ardestani, A. et al[121]
animals

TNF-a +++ -inhibitinsuilin secretion and induce beta cell apoptosis Zhao, Y.F. et al[109]

Vitamin D

Low level in obese
adults and no changes
in youth obese

-Positive association with 3-cell function and insulin sensitivity in
humans
-Effect on intercellular junction formation, cytoskeletal organization,

de Las Heras, J. et al
Wolden-Kirk, H. et al
Karnchanasorn, R. et al[124,

individuals exocytosis (murine islets) 125, 127]
Parathyroid +++ (serum -PTHrP over expression increase islet mass and insulin secretion Guasch, A. et al
Hormone concentration) Porter, S.E. et al[126, 128]
Estrogen +++ -improve human islet survival, revascularization and function grafted | Liu, S. et al ; Kumar, R. et
in nude mice al[129, 130]
-antiapoptotic effect in human islets through activation of GPR30
when GPR30 expression in islets is related to BMI
Testosterone +++ -higher levels are associated with a higher insulin sensitivity and Muller, M. et al[131]
reduced the risk of the metabolic syndrome
Glutamate +++ -Insulin secretion is modulated by the flux of glutamate through the | Gammelsaeter, R. et al
secretory granule Feldmann, N. et al[132, 133]
-The intra-cellular glutamate pool is likely of lesser importance in a-
cells
GABA +++ -role in maintain beta cell mass Taneera, J. [134]
Dopamine Lower D2 receptors - Exhibits insulin secretion in isolated islets and in vivo Wang, G.J. et al; Rubi, B. et
availability al ; Ustione, A. et al[135-137]

Norepinephrin
e

tended to decrease

-Increases glucose uptake in brown adipose tissue
-Three effects on beta cell that exhibits insulin secretion

Dallner, O.S. et al
Straub, S.G. et al[139, 140]

Epinephrine

Increased in healthy
obese individuals

-Epinephrine induces glucagon secretion through the activation of
B-adrenoceptors and the generation of cAMP

- positive association between plasma epinephrine level and insulin
sensitivity in obese individuals

Feldmann, N. et al
Dai, X.P. et al[133, 138]

Serotonin

High plasma levels in
obese T2D patients

-Inhibition of serotonin receptor improve insulin secretion

Zhang, Q.[142]; Markianos,
M. [141]

Somatostatin

No significant changes

-exogenous SST inhibit insulin and glucagon secretion in rodents
and humans

Hauge-Evans, A.C. et al[143]

Acetylcholine

No significant changes

-Secreted by alpha cells and sensitize beta cell to response in
increased glucose concentration

Rodriguez-Diaz, R.et al[144]
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7. Regulation of gene expression by microRNAs in obesity

MicroRNAs (miRNAS) are single-stranded non-protein coding gene products (20-22
nucleotides) that regulate negatively the expression of target genes at the post-transcription
level through interactions with specific mMRNAs. The first miRNAs were characterized in the
early 1990s [145]. However, miRNAs were not recognized as a distinct class of biological
regulators with conserved functions until the early 2000s. Different sets of expressed
mMiRNAs are found in different cell types and tissues. The human genome may encode over
1000 miRNAs, which may target about 60% of mammalian genes and are abundant in

many human cell types.

It have been shown that miRNAs regulate multiple diverse biological processes
inhibiting translation or degrading the target mRNA such as development, insulin secretion
and cell differentiation [146]. The role of many microRNAs was identified in regulation of
insulin expression (MiR-30d, miR-375, miR-124a2), insulin secretion (miR-9, miR-375, miR-
124a2), glucose-stimulated insulin secretion (miR-369-5p, MiR-130a, miR-27a miR-410,
miR-200a, miR-337, miR-532, miR-320, miR-192, miR-379, miR-375, miR-124a2) and
insulin sensitivity (miR-103, miR-107, miR-29, miR-320).

MiRNAs have been also found to be important for the proper development of the
pancreas and beta cells physiology. Recently, different miRNAs were identified to express
in human pancreatic alpha and beta cells, 134 were expressed more in beta cells and 7 in
alpha cells [147]. Jacovetti et al, revealed the miRNAs contribution to beta cel expansion
during pregnancy and obesity [148]. Decreased level of miR-338-3p activated the GPR30
(G protein-coupled estrogen receptor) and GLP1R (glucagon-like peptide 1) in obese mice.
Thus, blockage of mi-338-3p increased proliferation and improved survival of beta cell in
vitro and in vivo. Moreover, inhibition of miRNA-7a has been also showed to regulate
proliferation in adult pancreatic beta cells via mTOR pathway [149]. Finally, very recently
Nesca et al, proposed that the maintenance of blood glucose homeostasis or progression
toward glucose intolerance and type 2 diabetes may be determined by the balance between
expression changes of particular microRNAs [150]. Modifications in the levels of miR-34a,
miR-146a, miR-199a-3p, MmiR-203, miR-210 and miR-383 primarily occur in diabetic mice

and result in increased beta cell apoptosis.
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8. Methods of quantification of insulin sensitivity/resistance

Different methods for the quantification of insulin sensitivity and insulin resistance are
used in humans and animal models. The Hyperinsulinemic Euglycemic Glucose Clamp and
Insulin Suppression Test (IST) are the two direct methods to measure insulin sensitivity. In
the glucose clamp technique, after an overnight fast, insulin is infused intravenously at a
constant state (hyperinsulynemic state). Under this condition, blood glucose is measured,
while 20% dextrose is given intravenously at an appropriate rate to conserve glycemia in the
normal range (euglycemic). In spite of technical difficulties, time and money consuming, it is
considered one of the best methods to measure insulin sensitivity, because glycemia
remains in the same levels, as the infusion rate of glucose and the glucose consuming
depends only on serum insulin [151, 152]. IST is based on suppression of endogenous
insulin and glucagon secretion following somatostatin oroctreotide infusion. The ability of
exogenous insulin to mediate disposal of the glucose is provided directly by IST [152, 153].
Dynamics or indirect tests were also developed to quantify insulin sensitivity such as
Intravenous Glucose Tolerance Test (Minimal Model/IVGTT), Intraperitoneal Glucose
Tolerance Test (IPGTT) and Oral Glucose /Meal Tolerance Test (OGTT). In these cases,
glucose is administered intravenously, intraperitoneally and orally then, blood glucose and

%0 1 endogenous insulin is measured to
300

determine the indexes of insulin
sensitivity [152, 154].
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plasma insulin concentrations at both the liver and the periphery. Figure 7 shows the
nonlinear correlation of basal plasma insulin and glucose concentrations in the updated
HOMA model (Homa2: computer model) [155]. Insulin secretion curve is modified by
increasing insulin secretion in response to plasma glucose concentrations. Higher insulin
secretion in response to low glucose concentrations leads to highest insulin sensitivity
(S=200%) and highest beta cell function (B=200%). A computer model can calculate the %S
and %B using insulin or C-peptide concentrations and gives a value of Homa %S and Homa
%B, where 100% is considered as normal. In addition, Homa %BxS index is calculated from
insulin secretion (Homa %B) and insulin sensitivity (Homa %S) to describe the overall
function of beta cells [156, 157].

9. Non invasive imaging of islet mass

The improvement of non invasive imaging technologies of pancreatic islet mass is a
crucial field for investigation. Progress has been hindered by many problems. The small
size of beta cells dispersed throughout of pancreas put obstacles in development of clinical
beta cell imaging. In addition, some of these techniques necessitate the in vitro

manipulation of islets and are limited by the short half-life of available labeling molecules.

Nuclear imaging, Mn*?> MRI, Zn*? MRI, optical imaging and functional imaging into
eye anterior are some of these methods. Nuclear imaging technologies are based on
labeled molecules that enter into beta cell modulating insulin secretion as fluorine 19
labeled mannoheptulose and glibenlamide. Mannoheptulose inhibits insulin secretion via
inhibition of glucose phosphorylation acting on glucose transporters (GLUT2) [158].
Glibenlamide promotes insulin secretion via activation of Ca®* channels in beta pancreatic
cells [159]. Mn*?> MRI methods are accompanied with glucose injection as manganese
enters into beta cells through Ca** channels in a glucose dependent manner. Additionally,
zinc ions are released with insulin in response to glucose and Zn*? MRl is used in beta cell
mass quantification [160, 161]. Optical imaging technologies investigate endocrine pancreas
using optical coherence, confocal or 2-photon microscopy [162, 163]. Functional clinical
imaging modalities with very high sensitivity, such as PET or single photon emission
computed tomography (SPECT) are hampered by the partial volume effect, leading to an

underestimation of the signals derived from objects smaller than the spatial resolution of the
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scanner [164]. Nowadays, none of these techniques has been associated with the overall

beta cell function and none is used in clinical practice.

On the other hand, non invasive approaches, allowing transplanted-islet functional
imaging, were developed. Speier et al proposed the anterior chamber of the eye as a novel
non invasive imaging method to investigate pancreatic cell function and survival [165]. After
transplantation, the morphology and cellular composition of the islets engrafting in the
anterior chamber of the eye are preserved and are able to recover hyperglycemia. Recently,
radioligand of exendin-4 (GLP-1 analog) was used to evaluate the function and survival of
transplanted islets into human brachioradialis muscle [166].

10. Islet transplantation

The first successful use of exogenous insulin in the treatment of diabetes was at
1922. Patients with T1D depend on external insulin for their survival. Whole pancreas
transplantation is associated with complications such as bleeding, infection and
inflammation of the pancreas and it is performed in specific cases. Nowadays, islet
transplantation is a more physiological method to recover hyperglycemia than exogenous
insulin therapy and pancreas transplantation. Shapiro et al reported for the first time islet
transplantation and insulin independence in all patients in Edmonton Center at 2000 [167].
In clinical practice, naked islets are transplanted into the liver via the portal vein. This allows
delivery of insulin to the portal circulation as occurs with normal physiology. The main
disadvantages of islet transplantation method are the graft rejection, poor vascularization,
hypoxia and the large number of islets as at least two donors pancreases are needed for
one recipient [168]. Historically, all age and BMI donors were frequently used. High donor
BMI and large pancreas size are important for successful human islet isolation (250 000
islets) [169]. Obese donors tend to be avoided for pancreas transplantation because of fat
content within their pancreas [170] but these donors often are accepted for islet cell isolation
and subsequent transplantation because of the high yields [171]. Some islet isolation
laboratories only accept high BMI pancreatic donors for islet isolation/transplant trials [172].

The capacity of obese islets for clinical islet transplantation should be investigated.

Immunoisolation devices are proposed to facilitate islets transplantation providing

sufficient oxygen and separating islets from blood. Some materials used to encapsulate
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islets are natural (arginate, agarose and collagen) or synthetic (PLL/poly-L-ornithine coating
and polyethylene glycol) [173-176]. Animal models are used for technical improvement of
islet transplantation and further investigation on human islets using these encapsulated
methods is needed. Figure 8 shows different sites of islet transplantation. Islet
transplantation into intraportal vein offers physiologically delivery of insulin to the portal
circulation, but has limited space and increases the risk of complications including vein
thrombosis and hemorrhage (Fig 8A) [177, 178]. In addition, transplantation into muscle is
recently proposed as an alternative site which offers vascular network and unlimited space
(Fig8B) [166]. Furthermore, animal studies use sites as kindey capsule and subcutaneous
tissue offering quick revascularization of islets (Fig 8D, 8F) [179-181]. On the other hand,
peritoneal cavity and omentum are two sites with unlimited space, but no vascular network
and invasive procedure is required (Fig 8C) [182, 183]. Finally, islet transplantation in
anterior chamber of the eye is proposed as the method with the easiest access for islet
structure and function investigation but with no practical application in clinical procedure

(large number of islets in humans transplantation) (Fig 8E) [165].

Fig 8: Different islet transplantation sites. A) Intraportal vein B) muscle C)
Peritoneal cavity D) Under kindey capsule E) Anterior chamber of eye, and F)
Subcutaneous tissue/ epididymal fat pad.
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1. Background

Human islets were isolated in Lille University Hospital since 1994. Routinely
performed in our laboratory, human islet function is quantified after transplantation in
immunodeficient mice by dosing human C-peptide in mouse blood [184]. In the context
of organ donation for pancreas transplantation, obesity is an exclusion criteria [170].
This was initially the case for pancreases harvested for islet isolation and
transplantation. However, lean (BMI<21Kg/m?) pancreatic donors are characterized by
significantly lower islet yields as compared with normal (BMI<21-24 Kg/m?) and obese
(BMI>24 Kg/m?) donors [185]. In Lille laboratory, likewise 62% of organ donors, that
were clinically suitable for islet transplantation, were overweight or obese
(BMI>25Kg/m3).

Cross-sectional study during my master project, exploiting archived paraffin
sections of pancreases (U859 collection), confirmed morphological differences in
human islets between obese and lean donors: pancreases of obese donors had four
basic characteristics: 1) increased total endocrine mass (a,3,0,pp cells), 2) individual
islets were bigger in size 3) increased of intrapancreatic fat tissue and 4) increased beta
cell mass and decreased alpha cell mass in islets expressed in addition of alpha and
beta cells. Yet, direct evidence that human islet mass adapts longitudinally to obesity in
vivo is lacking and, moreover, little information is available on the mechanisms and cell
type(s) involved. Current evidence for increased beta cell mass in obese humans (vs.

lean) is based entirely on postmortem histology.
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2. Aim

Generally, the aim of this study was to explore the longitudinal adaptation of

human islets to an obesogenic environment. The following steps were followed:

» Creation of a novel in vivo mouse model that associates obesity and
immunodeficiency and is compatible with human islet transplantation.

» Verification of human islets capacity to functionally adapt to the murine obesity
environment.

» Providing evidence for in vivo regeneration of human islets (proliferation,
neogenesis, transdifferentiation).

> Kinetic Gene expression profiling of human islets during islet adaptation to

obesity.
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1. Human islets

Pancreases were harvested from human brain deceased donors in agreement
with French regulations and with our institutional ethics committee. Islets are isolated
from the pancreases using a modified version of the automated Ricordi’s method as
previously described [186, 187]. During the thesis project, six pancreases from non-
diabetic donors and two from donors with overt metabolic dysfunction (older, high
HbAlc or a history of diabetes) were used. The characteristics of non diabetic and

diabetic human donors were given in Tables 3 and 4 respectively.

Table 3: Characteristics of non diabetic human donors

M 16 19.5 5,5(34.1)

F 41 31.6 6(37.2) 08

M 22 20.5 5,3(32.9) 96.4

M 16 21.2 5,3(32.9) 94.8

M 41 26.2 95

M 34 24.2 5,4(33.5) 08
28.33x4.82 | 23.87£1.85 | 5.5+0.16(34.2¢1.02) | 94.9+1.56

Table 4: Characteristics of dysfunctional human donors

* treated for 10 years for type 2 diabetes

Human islets were cultured in CMRL medium (Sigma C0422), Stem Ease (Abc0103),
10% human serum AB (Sigma H4522), 5ml Penicillin-Streptomycin. Viability of islet
cells was performed with dithizon-trypan blue method (Annex 1). All islets showed more
than 90% viability after culture, but were quantitatively insufficient for clinical islet

transplantation.
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2. Animals and induction of obesity

Mouse studies were performed in accordance with the local Animal
Experimentation Committee. Ninety-three male C57BL6 RAG 2 immunodeficient mice
(A Bouloumié, INSERM U858 Toulouse France [188] and Taconic USA RAGN12-M) 8-
9 week-old were used for this project. Animals were fed 4, 6, 8, 10 or 12 weeks with
Control or HFD (Research Diets, New Brunswick, NJ ref D12450B is given in Table 5).
All mice were followed for weight, serum triacylglycerol and 6 hour fasting blood
glucose. Fat content was quantified by Magnetic Resonance Imaging (MRI) using 10
images/mouse before sacrifice as described [189].

Table 5: Composition of Research Diets (New Brunswick, NJ ref D12450B)

20 20
70 20
10 60

3. Human islet transplantation

Four hundred human islet equivalents (IEQ) were transplanted under the kidney
capsule as described [184]. To control for potential differences in islet quality between
the donors, islets from each human donor were distributed symmetrically across
experimental groups [190]. More than ten mice were transplanted per donor per

condition.
3.1 Human C-peptide Measurements on mice

Human islet function is quantified after transplantation by dosing human C-peptide in
mouse serum. Within the pancreatic beta cells, proinsulin is cleaved into one molecule
of C-peptide and one molecule of insulin. C-peptide is subsequently released into
circulation at concentrations equimolar to those of insulin. Specific C-peptide ELISA kit
(Ultrasensitive human C-peptide kit, Mercodia, Uppsala, Sweden) allows the distinction
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between human C-peptide and murineC- peptide allowing follow up of human graft
function. It is based on the direct sandwich technique in which two monoclonal
antibodies are directed against separate antigenic determinants on the human C-
peptide molecule. Blood was harvested from tail vein in heparinized tubes. After
centrifugation, plasma was collected and frozen for human C-peptide dosage. Control
mouse serum is negative for human C-peptide. The procedure of C-peptide

measurement is given in Annex 2.

3.2 Quantification of insulin resistance/sensitivity with OGTT and Homeostatic model

assessment

At the end of the study, mice were fasted for 6 hours before receiving an oral bolus of
glucose (2g per Kg body weight) diluted in saline buffer (0.9% Sodium Chloride). Tail
Blood was collected at 0, 30, 60 minutes after administration to evaluate human C-
peptide levels. Blood glucose was measured (GlucometerAccu-chek® Go, Roche
France) up to 180 minutes. Homeostatic model assessment, calculated using fasting
human C-peptide and blood glucose in mice
(http://www.dtu.ox.ac.uk/homacalculator/index.php) was used as an index of insulin
sensitivity (HOMA2%S), beta cell function (HOMA2%B) and the hyperbolic product
(HOMA2%S x HOMA2%B /100). Results of 12 clinical grade islet preparations
(glycemia, human C-peptide) transplanted in 20 immunodeficient mice, as described

were used to calculate theoretical HOMA2%B and S.
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4. Histological analysis in endogenous mouse pancreas and

human islet graft in mice

To assess proliferation, Bromodeoxyuridine (BrdU) was injected 18h before sacrifice or
administered 7 days in the drinking water. Both the endogenous mouse pancreas and

human grafts were analyzed.
4.1 Fixation of mouse and human tissues

Different types of tissue fixation were used adjusted to the needs of the analysis.
Endogenous mouse pancreas and human grafts were fixed overnight in 4% PFA or
formalin and embedded in paraffin (Annex 3a). Sections of 5um thick were cut using
microtome and were used for immunohistochemistry. For the study of lineage tracing,
human grafts were fixed overnight in 4% PFA and embedded in gelatin. Isopentane (2-
methylbutane) cooled by dry ice were used to freezing gelatin blocks containing the
kidney with transplanted human islets (Annex 3b). Cryo-sections of 10um thick were
used for these analyses. Directly immersion of fresh human grafts into liquid nitrogen
was performed for the microdissection process. Isopentane (2-methylbutane) cooled by
liquid nitrogen were used to freezing OCT blocks. Cryo-sections of 10-12 thick were
used for microdissection following RNA extraction. Finally inclusion in thrombin and
fibrinogen was performed for single islets or cells (Annex 3c).

4.2 Immuno-histochemistry and fluorescence

Specific antibodies for islet cell, duct cell, cell nucleus and markers for proliferation were
used to determine the distribution of islet cell and mechanisms of regeneration for
mouse and human islets. Endocrine mass of the endogenous pancreas was determined
with Papanicolaou staining of sections. Two, three or four color fluorescence or DAB
staining was performed to reveal the reaction of these antibodies. The basic excitation
wavelengths of fluorochromes are green, red, infrared and blue. Table 6 shows the
primary and secondary antibodies used in this project. Immunostaining protocols are

given in Annex 4.
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Table 6: List of primary and secondary antibodies

Primary Antibody
Insulin/Proinsulin | mouse beta cells AbDserotec 5330-3339 1/300
Insulin guinea pig | beta cells Dako A0564 1/300
C-peptide mouse human Beta cells MONOSAN C-pep-01 1/300
Glucagon mouse alpha cells Sigma G2654 1/300
Glucagon rabbit alpha cells Gentaur 20076 1/300
Chromogranin A | rabbit endocrine cells Dako A0430 1/300
Somatostatin rabbit delta cells Dako A0566 1/100
CK-19 mouse duct cells Dako RCK108 1/200
BrdU rat S phase of cell cycle AbDserotec 013T0030 1/200
Ki67 mouse Active phases of cell cycld Dako MIB-1 1/100
GFP chicken green fluorescent protein | GeneTex GTX13970 1/1000
c-Myc mouse c-Mycepitope Tag Abcam Ab32 1/200
Secondary antibody
Alexa 488 goat chicken Invitrogen A11039 1/500
Alexa 488 donkey rabbit Invitrogen A21206 1/500
Alexa 488 goat mouse Invitrogen A11001 1/500
Alexa 594 donkey mouse Invitrogen A21203 1/400
Alexa 594 goat rabbit Invitrogen A11012 1/400
Alexa 594 goat rat Invitrogen A11007 1/300
Alexa 647 donkey rabbit Invitrogen A31573 1/400
Dylight 405 goat guinea pig Interchim 106-475-003 | 1/400

5. Microscopy and morphometric analysis

Three types of optical microscope (bright field, fluorescence and confocal) were used
for sections analysis. To quantify graft size, volume of islet, volume of alpha and beta
cell in human grafts, the sections were scanned with Nikon Eclipse Ti microscope
(motorized stage). The fractional area of the pancreas was digitally quantified using a
color based threshold using the Nikon software (Nis Elements AR 3.0). Both Leica DM-
R and Nikon Eclipse Ti fluorescence microscope were used toquantify endogenous
pancreas and islets, distribution of endocrine cells, endocrine cell proliferation and
endocrine cell neogenesis.Co-localisation of cytoplasmic proteins was determined
usingconfocal microscope Zeiss 710.The quantification of total number of nuclei and
individual cells, cytoplasm and nuclei surface were identified by the ImageJ (NIH, USA)

software using a color based threshold.
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Planimetry, used for clinical tumour volume appreciation (surface in microns®xdistance
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surface was measured and volume in islets transplanted under kidney capsule.
One in every ten paraffin sections were stained

was determined as the addition and measured. Volume was determined as the
addition of surface (um2) x distance in microns

2 . .
ofsurface  (um°) x distance in between two paraffin sections (s1-s2).

microns between two paraffin
sections (sl1-s2). Specifically, V(um®)=s1(um?x50(um) + s2(um?)x50(um) +
s3(UM?)X50(um) ... + sn(um?)x50(um) (Fig 9).




6. Lineage Tracing

Lineage tracing is the identification of all progeny of a single cell. This technique was
used to determine the transdifferentiation of islet cell transplanted in control and HFD
mice. The principal vector, pTRIP-CMV-eGFP-AU3 [191], expresses the eGFP gene
under the control of an internal cytomegalovirus (CMV) promoter. Two new lentiviral
vectors, pTRIP-RIP-eGFP-AU3 and pTRIP-Gcg-eGFP-AU3, were constructedwith the
Rat insulin Il gene promoter (RIP) and glucagon promoter in order torestrict the
expression of eGFP to insulin and glucagon-producing cells respectively. Two other
vectors were constructed based on the two first excluding the expression of eGFP,
pTRIP-RIP-nIsCRE-AU3 and pTRIP-Gcg-

nIsSCRE-AU3 as previously described [192]. A Beta cells
The nIsCRE gene translates CRE [ rip_|{ niscre
recombinase, an enzyme derived from P1
| [l
bacterophage. Finally, one reporter vector LoxP Loxp
pTRIP-CMV-loxP-cmycdsred2-loxP-eGFP-AU3
B Alpha cells

was constructed by insertion of loxP-

vector. Cre-lox system is a site-specific ml

cmycdsred2-loxP cassette into the principal

LoxP

recombinase technology which used to carry LoxP

out deletions, insertions, translocations and Fig 10: Pair of vectors of

pancreatic  cells infection.A)
Specific for beta cells infection and
For our project, two types of vectors were used B) specific for alpha cell infection.

to tag beta and alpha cells; pTRIP-RIP-nIsCRE-
AU3, pTRIP-Gcg-nlsCRE-AU3 and one reporter vector; pTRIP-CMV-loxP-cmycdsred2-
loxP-eGFP-AU3 (provided by Professor Philippe Ravassard, BCBC/UMR-7225). Two

independent experiments were performed, one for beta cell and the other for alpha cell

inversions at specific sites in the DNA of cells.

differentiation. The pair of vectors used for beta and alpha cells was given in Figure 10.
In the first case, beta cells which received the two vectors express eGFP and all the
others express dsred2. On the other hand, alpha cells which received the two vectors

express eGFP and all the others express dsred2.
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6.1 Cell culture and infection

Human islets from normal donor (D5, see Table 3) were cultured in CMRL medium with
0.5% steam ease (Abc0103), 10% human serum AB (Sigma H4522), 5ml Penicillin-
Streptomycin. After 2 days in culture, islets were washed with PBS and infected with a
1:1mixture of the two viruses at multiplicity of infection (MOI) 3:1 in same medium
containing 1/1000 diethylaminoethyl-dextran (Sigma-Aldrich, Saint-Quentin Fallavier,
France) for 1,5 hour. To validate the efficacy of vectors, a part of islets was infected
only with reporter vector (pTRIP-CMV-loxP-cmycdsred2-loxP-eGFP-AU3). Viability of
islet cells was performed with dithizon-trypan blue method (Annex 1). Five hundred
islets from the same donor were transplanted in mice (n=14) fed with control or HFD for
10 weeks. Cryo-sections of human grafts were analyzed for several antibodies (Table
6).

7. Cryosections and Laser microdissection

Laser capture microdissection was performed to specifically isolate human islet
grafts transplanted under kidney capsule of control and HFD mice. Human islets grafted
under kidney capsule and mice, fed with control or HFD, were sacrificed at 6, 8 and 10
weeks (n=18). Cryo-sections of mouse kidney with transplanted human islets were
collected withspecific Arctrurus PEN membrane slides (Applied Biosystem). Slides were
incubated for 2 minutes in 100% ethanol and 2 minutes in xylene. ArcturusXT laser
microdissection system (Applied Biosystems) was used to cut the selected region which
was provided by the laboratory of Professor Bart Staels in institute Pasteur of Lille,
technical responsible is Jonathan Vanhoutte (Fig 11A). Selected region of the tissue
(islet graft) was collected in specific cap capsure (macro LSM caps of Applied
Biosystem) whichinserted onto microcentrifuge tube with RNA extraction buffer (Fig
11B). RNA isolation was performed with Arcturus Pico Pure RNA isolation kit (Applied
Biosystems) (Annex 5). RNA quality was determined with Bioanalyser and agilent 2100

expert_Eukaryote Total RNA Pico kit.
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Fig 11. Laser Microdissection equipment.A) ArcturusXT laser microdissection of applied
biosystems and Nikon microscopy system and B) Selection of tissue with macro LSM caps
(white arrow).

8. Gene expression profile

Gene expression was measured using the Affymetrix Human Gene 2.0 ST array
(Affymetrix, Santa Clara, California) at Cochin Institut (INSERM U1016, Paris). RNA
was labeled using NUGEN Ovation Version 1. Labeled cDNA was hybridized to

Affymetrix Human Gene 2.0 arrays A. RNA Isolation R
. Imaging
and scanned with an Agilent ?o”?:'o;‘ @ sempie >0
(,j Sample B> A Sample A=B
G2500A GeneArray Scanner. In ,t - ——
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transcribed into cDNA and biotin- e ool
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labelled cRNA was prepared by in \l Tl l/
. _— T *
vitro transcription (Enzo T
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Diagnostics Inc, Farmingdale, NY).

D. Hybridization
to Array
—

After hybridization, the arrays were

scanned wusing the Affymetrix .
Fig 12: Gene expression microarray procedure. A)
GeneArray GCS3000 scanner and  gNA  isolation from human islets  after laser
visualized using GeneChip  Microdissection B) Reverse transcription of RNA to
cDNA, C) Probes labeling with fluorescence, D)
Operating Software (GCOS,  Hybridization to array and E) Imaging

Affymetrix). Gene  expression
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levels were normalized using the Robust Multiarray Average (RMA)(Fig 12).
Microarrays analysis was performed with Ingenuity System provided by Institute Cochin

in Paris.

9. Statistical analysis

Two different statistical approaches were applied. Differences between the two
groups (control and HFD) in each time point were determined by non parametric Mann-
Whitney test. More interestingly, changes of continuous traits overtime (period of 12
weeks) in the two groups were determined by a mixed model analysis. Diet was
considered as a fixed effect, donors or mice (in the case of one donor) as a random

effect and time as covariable.

Statistical analyses were performed using StatView (SAS Institute, Cary, NC,
USA) and SAS (SAS Institute Inc., Cary, NC, USA). P values<0.05 were considered as

statistically significant. Data are meant SEM (standard error of mean).
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Chapter IV

Results
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1. Preview of manuscript 1: Adaptive changes of human islets to

an obesogenic environment in the mouse.

In the first part of the manuscript, a novel in vivo immunodeficient obese mouse model
was created. The compatibility with human islet transplantation permitted the study of
human islets adaptation and function in obese environment. In parallel, analysis of
endogenous pancreas confirmed that this model offers an appropriate environment for
human graft expansion and increased function. Mechanisms of human islet
regeneration (proliferation, neogenesis) were revealed explaining the way with which
islet mass is increased in obesity. In the second part, dysfunctional human islets from
type 2 diabetic patients were transplanted providing evidence for inability to adapt in

obese environment.

In this manuscript, generally, we showed that:

6) Rag2 Immunodeficient mice developed obesity associated traits after 2-4 weeks
on high fat diet.

7) Human islets transplanted to mice showed functional adaptation in obese
environment, insulin secretion was increased and normoglycemia was
maintained (2" month).

8) Human islets seemed to lose their overall function in the third month on high fat
diet.

9) Dysfunctional human islets cannot adapt in obese environment and mice
became hyperglycemic early in the second month.

10)Histological analysis showed progressive increase of beta cell mass during high

fat diet due to islet regeneration (proliferation and neogenesis).
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2. Manuscript 1
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3. Unpublished data related to manuscript 1

As statistical analyses showed, there was no effect of donor in our results. In the article,
the data of the four donors (D1, D2, D3, D4) were analyzed together. The following
supplementary unpublished data will be presented with the same way. Data for the two
diabetic donors will be given separately as in the article.

3.1 Human islet graft function during 12 weeks on high fat diet

For the mice grafted with normal human islets from non diabetic donors, fasting blood
glucose was higher in HFD mice from 6 weeks with a statistical significant difference at
6 and 12 weeks, p=0.003 and p=0.002 respectively (Fig 13A) (2 wks: 5.51£0.2 control
vs. 6.09+0.34 mmol/l HFD; 4 wks: 6.2+0.3 control vs. 6.8+0.75 mmol/l HFD; 6 wks:
5.940.3 control vs. 8.6+0.5 mmol/l HFD; 8 wks: 7.7+0.5 control vs. 9.1£0.5 mmol/l HFD;
12 wks: 4.6+£0.48 control vs. 8.2+0.8 mmol/l HFD). Compared to mice grafted with
dysfunctional islets (diabetic donors), fasting blood glucose was significantly higher over
the entire time; p<0.05 (Fig 13B) (DD2/2 wks: 5.41+£0.4 control vs. 9.7£0.47 mmol/l
HFD; 4 wks: 7.3+0.75 control vs. 10.04+1.15 mmol/l HFD; 6 wks: 4.7+0.44 control vs.
8.67+0.63 mmol/l HFD; 8 wks: 3.39+0.08 control vs. 8.06£1.12 mmol/l| HFD; 12 wks:
6.320.28 control vs. 8.89+0.56 mmol/l HFD). Values for blood glucose were higher for
the mice grafted with islets provided by D1 donor treated 10 years for type 2 diabetes
(Fig 13C) (DD1/2 wks: 5,951+0.16 control vs. 10.38+0.71 mmol/l HFD; 4 wks: 9.3+0.46
control vs. 13.42+0.72 mmol/l HFD; 6 wks: 7.81£0.85 control vs. 12.19+0.37 mmol/l
HFD; 8 wks: 5.9+1.8 control vs. 11.24+0.46 mmol/l HFD; 12 wks: 7.5+0.67 control vs.
9.2+0.12 mmol/l HFD).

Fasting C-peptide was slightly higher from 8 weeks on high fat diet with p=0.04 (2 wks:
172.42+28.75 control vs. 479.54+148.84 pmol/l HFD; 4 wks: 388+113.4 control vs
523.546+136.96 pmol/l HFD; 6 wks: 386.17+147.445 control vs. 507.05£0.5 pmol/l
HFD; 8 wks: 237.156+£130.278 control vs. 956.83+130.27 pmol/l HFD; 12 wks:
370.89+97.91 control vs. 1081.41£216.32 pmol/l HFD) (Fig 13D). On the other hand,
no difference in fasting c-peptide was observed between the two groups in mice grafted
with dysfunctional islets with lower secretion for DD1 (Fig 13E, F). (DD2/2 wks:
332.5£12.31 control vs. 369.36£32.51 pmol/l HFD; 4 wks: 282.87+36.83 control vs.
372.01+£22.65 pmol/l HFD; 6 wks: 312.35+83.98 control vs. 554.23147.97 pmol/l HFD; 8
wks: 237.11£120.8 control vs. 425.87+21.33 pmol/l HFD; 12 wks: 362.65+58.58 control
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vs. 412.23£19.19 pmol/l HFD) and (DD1/2 wks: 111.92+16.18 control vs. 7914.7 pmol/|
HFD; 4 wks: 120.94+24.69 control vs. 50.36+17.76 pmol/l HFD; 6 wks: 37.51£1.5
control vs. 29.5£12.52 pmol/l HFD; 8 wks: 461.74147.43 control vs. 392.34+31.82
pmol/l HFD; 12 wks: 387.54+24.62 control vs. 256.01+£15.45 pmol/l HFD).
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Fig 13: Fasting blood glucose and human C-peptide for mice grafted with islets (normal
or diabetic donors). A) normal donors (D1, D2, D3, D4) B) Diabetic donor 2 (DD2) C) diabetic
donor 1 treated for 10 years (DD1) and fasting C-peptide for the same groups D) normal donors
(D1, D2, D3, D4) E) diabetic donor 2 (DD2) F) diabetic donor 1 (DD1).

Human C-peptide expressed as a function of glycemia was also higher at 8 and 12
weeks on high fat diet mice transplanted with islets from normal donors; no statistically
significant difference was observed (Figure 14) (2 wks: 30.0914.69 control vs.
55.5£10.25 pmol/mmol HFD; 4 wks: 61.57+19.05 control vs. 79.27£15.94 pmol/mmol
HFD; 6 wks: 65.19+£28.6 control vs. 59.14+12.74 pmol/mmol HFD; 8 wks: 32.77+5.09
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control vs. 114.24+35.46 pmol/mmol HFD; 12 wks: 107.92+38.35 control vs.
193.24+48.3 pmol/mmol HFD).
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Fig 14: Fasting C-peptide expressed as a function of blood glucose for mice grafted with
islets from normal donors (D1, D2, D3, D4) at 2, 4, 6, 8 and 12 weeks on high fat diet.

3.2 Kinetic study of normal human islet adaptation (results of n=1 donor)

Kinetic study was performed to evaluate normal human islet adaptation. BrdU was
administrated in the drinking water for 7 days prior to killing at 4, 6, 8 and 12 weeks.
Mice of this study group had higher blood glucose at 10-12 weeks (2 wks: 5.3+0.13
control vs. 6 £0.25 mmol/l HFD; 4 wks: 5.9+0.49 control vs. 4.9+1.08 mmol/l HFD; 6
wks: 6.6+0.27 control vs. 8.37+0.7 mmol/l HFD; 8 wks: 8.62+0.41 control vs. 8.08+0.34
mmol/l HFD; 10 wks: 6.7+0.11 control vs. 12.51+0.52 mmol/l| HFD; 12 wks: 6.57+0.3
control vs. 10.28+0.55 mmol/l HFD) (Fig 15A). However, mixed model analysis showed
that neither diet nor diet duration had significantly effect on blood glucose levels
(p>0.05). Moreover, fasting C-peptide was significantly higher from 6 to 12 weeks (2
wks: 186.78+19.57 control vs. 215.95+18.97 pmol/l HFD; 4 wks: 236+11.4 (control vs.
252.26+63.54 pmol/l HFD; 6 wks: 166.17+£13.84 control vs. 291.961£42.35 pmol/l HFD; 8
wks: 282.195+47.71 control vs. 491.64168.78 pmol/l HFD; 10 wks: 261.75£14.59
control vs. 479.32+107 pmol/l HFD; 12 wks: 120.47+1.17 control vs. 297.95+68.16
pmol/l HFD) (Fig 15B). In this case, C-peptide seemed to be unaffected by the type of
diet (control or HFD), but it was significantly influenced by diet duration in HFD mice
(p=0.01).
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Fig 15: Fasting blood glucose and human C-peptide for mice grafted with normal islets
(Kinetic study). A) Fasting blood glucose of mice transplanted with normal islets and B) fasting C-
peptide of human islets

Human C-peptide expressed as a function of glycemia was also higher at 6, 8 and 12
weeks on high fat diet mice of kinetic study with significant difference at 8 weeks
(p=0.02) (Fig 16) (2 wks: 35.15+3.66 control vs. 36.1£3.17 pmol/mmol HFD; 4 wks:
44.25+6.49 control vs. 48.4816.24 pmol/mmol HFD; 6 wks: 25.12+2.12 control vs.
32.14+4.74 pmol/mmol HFD; 8 wks: 32.77+5.09 control vs. 60.33+7.21 pmol/mmol
HFD; 10 wks: 39.05+2.81 control vs. 38.73+10.16 pmol/mmol HFD; 12 wks: 18.36+0.66
control vs. 28.69+5.09 pmol/mmol HFD). Longitudinal analysis (mixed model) did not
reveal significant difference for C-peptide/glycemia ratio due to higher levels of blood

glucose in HFD mice at 10 and 12 weeks.
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Fig 16: Fasting c-peptide expressed as a function of blood glucose for mice (kinetic

study).
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3.3 Morphometric analysis of endogenous mouse pancreas in kinetic study

Morphometric analysis in 633 (325 control/308 HFD) islets showed that total endocrine
area increased progressively in HFD mice and was five times higher at 12 weeks
(p<0.05) (Fig 17A). Lower endocrine cell area was observed at 4 weeks (p>0.05) (4
wks: 0.404+0.06 control vs. 0.26£0.04 % HFD; 6 wks: 0.29+0.07 control vs. 0.52+0.11
% HFD; 8 wks: 0.26£0.05 control vs. 0.4£0.12 % HFD; 12 wks: 0.1+£0.01 control vs.
0.64+0.07 % HFD). Difference in islet number was observed only at 12 weeks (p=0.01;
12 wks: 3.56+0.54 control vs. 8.3+1.69 x 10 % HFD) (Fig 17B).
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Fig 17: Morphometric analysis of endogenous mouse pancreas. A) Endocrine cell area

expressed in total pancreatic area (%) and B) number of islets in pancreatic area (%)

Further analysis was performed for the islet size. Islets seemed to become larger in
HFD mice as significantly more small islets (0-5000um?) were observed at 4 weeks
(p=0.024) and significantly more big islets (>10000um?) were observed at 12 weeks in
HFD mice (p=0.01). There was difference in islet with size 5000-10000um? between two
groups (Fig 18).
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Fig 18: Classification of mouse islets according to their size. (0-5000um?; 5000-10000pm?;
>10000um?) in mice at 4, 6, 8 and 12 weeks on control and HFD

Finally, BrdU-insulin staining revealed the proliferation levels in endogenous pancreas
(Fig 19A). Quantification of BrdU+ Ins+ cells in total islet cells showed that proliferation
peaked at 6 and 12 weeks with significant difference at 12 weeks (p=0.02) (4 wks:
3.5%£1.11 control vs. 2.66£1.9 % HFD; 6 wks: 9.72+1 control vs. 26.1£19.9 % HFD; 8
wks: 6.9+2.34 control vs. 9.38+2.9 % HFD; 12 wks: 30.01+1.64 control vs. 39.8+4.94 %
HFD) (Fig 19B).
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Fig 19: Proliferation of mouse beta cells. A) Representative sections of paraffin-embedded
endogenous pancreas stained by Insulin (green), BrdU (red) and DAPI (blue) B) Quantification
of BrdU+Ins+ expressed in total beta cells (Ins+) in mice at 4, 6, 8 and 12 weeks on control diet
and HFD

3.4 Morphometric analysis of human grafts of kinetic study

Human graft volume, beta and alpha cell volume were measured for all mice of kinetic
study as described in the article. Human endocrine volume increased progressively in
mice after 8 weeks on high fat diet. Triple endocrine volume was observed at 12 weeks
on HFD (0.021+0.02 control vs. 0.057+0.02 mm?® HFD) (Fig 20A). Interestingly, human
beta and alpha cell volume maintained in control mice over time with small increase of
alpha cell volume at 12 weeks. Contrary, beta cell volume was higher at 4 weeks,
decrease at 6 weeks and increase at 8 and 12 weeks on HFD mice compared to control
group (4 wks: 0.013+0.0004 control vs. 0.02+0.001 mm?® HFD; 6 wks: 0.0084+0.002
control vs. 0.008+0.0009 mm? HFD; 8 wks: 0.009+0.0005 control vs. 0.018+0.007 mm?®
HFD; 12 wks: 0.014+0.0007 control vs. 0.04+0.0008 mm® HFD)(Fig 20B). Alpha cell

102



volume was lower at 4 weeks (0.008+0.0004 control vs. 0.005+0.0017 mm?® HFD) but

remained higher after 6 weeks on HFD mice (vs. control) (Fig 20C).
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Fig 20: Morphometric analysis of human endocrine cell volume (grafts). A) total human
endocrine volume (stained by chromogranin A) B) human beta cell volume (stained by c-
peptide) and C) human cell volume (stained by glucagon) in mice fed with control and high fat
diet 4, 6, 8 and 12 weeks

3.5 Evidence for human endocrine cell proliferation (n=1)

In our initial study design, BrdU was injected one day prior to sacrifice, however
proliferation levels measured with BrdU or Ki67 were low. Therefore in subsequent
studies after validation, BrdU was administered 7 days prior to sacrifice in drinking
water. The following kinetic proliferation results were performed on one series of
animals, in which BrdU was injected 7 days before sacrifice at 4, 6, 8 and 12 weeks.
Double staining with anti BrdU- chromogranin A, C-peptide, glucagon or somatostatin
was performed to determine proliferation level of total endocrine, beta, alpha or delta
cells respectively (Fig 21A, C, E, G). More than 40000 cells were measured to

determine the proliferation levels of the different types of human endocrine cells.
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Morphometric analysis revealed that proliferation of human endocrine cells was higher
at 4, 6 and 12 weeks and lower at 8 weeks on HFD mice (vs control) (Fig 21B) (4 wks:
0.4+0.18 control vs. 1.2+0.5% HFD; 6 wks: 1.4+0.007 control vs. 4.3+2.8% HFD; 8 wks:
2.56x0.74 control vs 1.14+0.7% HFD; 12 wks: 2.4+0.18 control vs. 3.8+1.044% HFD).
The same proliferation profile was observed for the human beta cells which peaked at 6
and 12 weeks for the grafts in HFD mice vs controls (Fig 21D) (4 wks: 0.44+0.14 control
vs. 1.49+0.04% HFD; 6 wks: 0.83+0.16 control vs. 4.1£2.8% HFD; 8 wks: 2.24+0.002
control vs. 0.83+0.16% HFD; 12 wks: 1.83+0.46 control vs. 4.99+0.33% HFD).

Interestingly, higher levels of alpha cell proliferation were observed both for
control and HFD grafts at 6 weeks compared to 4 weeks (4 wks: 0.75+0.18 control vs.
0.591£0.15% HFD; 6 wks: 2.5+£0.3 control vs. 2.53+0.36% HFD). However, alpha cell
proliferation was significantly reduced at 8 weeks and re-peaked at 12 weeks in HFD
mice (Fig 21F) (8 wks: 2.842.03 control vs. 0.38+0.2 % HFD; 12 wks: 1.96+1.7 control
vs. 5.57+£0.95% HFD). Finally, few proliferating delta cells were observed after BrdU
staining, but surprisingly, all were detected in grafts in HFD mice (Fig 21H).
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Fig 21: Determination of proliferation on human endocrine cells in human grafts. A)
Double staining of anti-BrdU and chromogranin A in paraffin sections of human islets
transplanted in mice fed with control or HFD B) Morphometric analysis for total human
endocrine cell proliferation C) Double staining of anti-BrdU and c-peptide in paraffin sections of
the same human grafts D) Morphometric analysis for human beta cell proliferation E) Double
staining of anti-BrdU and glucagon in paraffin sections of the same human grafts F)
Morphometric analysis for human alpha cell proliferation G) Double staining of anti-BrdU and
somatostatin in paraffin sections of the same human grafts H) Morphometric analysis for human

delta cell proliferation.

3.6 Evidence for human endocrine cell neogenesis

Neogenesis was determined by double staining anti CK19-chromogranin A a
pan- endocrine marker as described in the manuscript 1. Furthermore, double staining
of anti-CK19 with glucagon or insulin (Fig 22) revealed that 80% of CK19+ChromoA+

cells were CK19+Gcg+ cells.

A

CK19/Gcg

CK19/Ins

Fig 22: Determination of neogenesis in human endocrine cells in human grafts. A)
Double staining of anti-CK19 (red) and glucagon (green) and B) Double staining of anti-CK19
(red) and insulin (green) in paraffin sections of human islets transplanted in mice fed with
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control or HFD; white arrows show co-localization of duct cells with alpha or beta cell
respectively.

4. Lineage Tracing: Preliminary results of a pilot study

4.1 Permanent Human islet tagging by transfection and function after transplantation

To determine which cells (beta or alpha) give rise to the doubling of the human islet
mass 12 weeks after HFD (vs controls) we performed, in collaboration with P
Ravassard, two experiments to permanently tag human beta cells and alpha cells within
primary islets with the cre-lox technology, as previously published by their lab. One
aliquot of human islets was transfected with the vectors RIP-CRE and CMV- LOX and
another aliquot with GLU-CRE and CMV-LOX. Transfection with only CMV-LOX vector
was also performed as a control. Viability of islets was reduced after transfection

determined by trypan blue (Table 7)

Table 7: Viability of human islets after transfection

One and a half hours after transfection, human islets were washed and
transplanted under kidney capsule of mice. A preliminary viral safety study was
performed to quantify the viral count in each wash after transfection in collaboration with
Morvane Colin (INSERM U837 Lille) in order to ensure that there was no manipulator
risk during transplantation. Following transplantation (Figure 23 shows study design),
mice were fed either with control or high fat diet for 10 weeks. Islets without vectors
were transplanted in mice to validate the self-expression of eGFP and c-myc. Figure
24A confirms the weight gain of mice fed with control of HFD over 10 weeks, with
increased body weight in HFD mice after 2 weeks (p<0.001 vs controls). One control

mouse died just after transplantation and one HFD died at 2 weeks due to infection.
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CMV-LOX (n=4)
L'""IH,H CMV-LOX + RIP-CRE (n=4)
: — CMV-LOX + GLU-CRE (n=4)

‘ without virus (n=2)

0 10 weeks

Feeding with control or HFD

1) Transfection of
human islets

2) Islet transplantation

3) Analyses of human grafts

Fig 23: Lineage Tracing Study design: 1) Human islets transfected independently with the
two pairs of vectors (CMV-LOX+RIP-CRE or CMV-LOX+GLU-CRE) or only with CMV-LOX ; 2)
Islet transplantation was performed in day 0 and mice were fed 10 weeks with control agnd
HFD; 3) Human grafts were analyzed at 10 weeks

Fasting blood glucose remained in the same levels for control mice over 10 weeks.
HFD mice had higher levels after 2 weeks (vs. control) corresponding to weight gain
difference with significant difference only at 6, 8 and 10 weeks (Fig 24A) (6 wks:
7.09£0.49 control vs. 9.471£0.56 mmol/l HFD, p=0.009; 8 wks: 6.66+0.15 control vs.
8.11+0.29 mmol/l HFD, p=0.001; 10 wks: 6.5+0.29 control vs. 9.34+0.67mmol/l| HFD,
p=0.003). Fasting human C-peptide was also measured for transplanted islets after
transfection. C-peptide levels were determined according to baseline level (feeding
start) as islet cell viability was different after transfection. For control mice, C-peptide
secretion was maintained over time with minor increase at 10 weeks. However, C-
peptide levels were increased in HFD mice peaked at 4 weeks and remaining higher
compared to control mice (Fig 24B) (2 wks: 83.09+24.76 control vs. 171.7+29.08%
HFD, p=0.0042; 4 wks: 89.61£21.27 control vs. 232.61+31.05% HFD, p=0.003; 6 wks:
78.55£10.81 control vs. 139.98+22.98% HFD, p=0.03; 8 wks: 69.3+13.24 control vs.
128.47143.49% HFD, p=0.4; 10 wks: 180.238+55.56 control vs. 132.72+37.82% HFD,
p=0.4).
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Fig 24: Weigh gain, fasting blood glucose and human C-peptide for mice grafted with
islets (Lineage tracing study). A) Weight gain (% of baseline) over 10 weeks in animals
grafted with human islets and fed with control or high fat diet (Lineage Tracing Study) B)
Fasting blood glucose of mice transplanted with normal islets fed with control and HFD and C)
fasting c-peptide of human islets transfected with viral vectors before transplantation
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4.2 Validation of viral vector labeling of human islets

Islets without vectors were transplanted in mice to validate the self-expression of eGFP
and cmyc. Quadruple immunostainings (anti-GFP, anti-cmyc, anti-ins and anti-gcg)
were used to determine the GFP and cmyc expression in alpha and beta cells of grafts
in cryo sections. Confocal microscopy revealed that non-transfected human islets were

completely negative for GFP and cmyc expression.

Validation of CMV-LOX vector

Transfection with only CMV-LOX vector was performed in human islets before
transplantation in control and HFD mice. Staining with four antibodies for insulin,
glucagon, GFP and c-Myc showed co-expression of c-Myc and insulin or glucagon (Fig
25). Few cells positive for c-myc and negative for insulin or glucagon were also
identified. Measurements revealed that 20% of grafted cells were positive for c-Myc
after transfection with only CMV-Lox. Contrary, GFP staining was completely negative
as expected in islets transplanted both in control and HFD mice.
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Fig 25: Staining of c-myc and GFP after transfection only by CMV-Lox vector.Transfection
of human islets with CMV-Lox vector: staining with anti- insulin (blue), glucagon (orange), c-Myc
(red) and eGFP (green) in human grafts; co-localization of c-Myc and insulin or glucagon was
determined by confocal microscope (white arrows).

Taqgging human beta cells by transfection with RIP-CRE and CMV-LOX vectors

Two hundred human islets were cultured one week after transfection with RIP-CRE and
CMV-LOX vectors for the validation of the specificity of the tagging method with viral
vectors. Islets were stained for insulin, glucagon, c-Myc and GFP. Only one glucagon
positive cell was found to express GFP after one week in culture confirming the

specificity of beta cells for RIP-Cre vector.

Human islet grafts were also analyzed 10 weeks post transplantation with the same
antibodies. GFP expression was observed only in ins+ or gcg+ cells (alpha or beta).
More GFP+ cells were found in grafts on HFD mice (~12.5% vs 10% control). Confocal
microscope revealed co-localisation of GFP-insulin and GFP-glucagon staining

proposing conversion of beta cells to alpha cells (Fig 26).

/Glucagon

Fig 26: Staining of c-myc and GFP after transfection only by CMV-Lox vector and RIP-cre
vectors.Transfection of human islets with CMV-Lox and RIP-cre vectors: staining with anti-
insulin (blue), glucagon (orange), c-Myc (red) and eGFP (green) in human grafts; co-localization
of GFP with insulin or glucagon was determined by confocal microscope; white arrows show
GFP+GCG+ cells.
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Quantification of double staining cells showed more GFP+Ins+ cells than GFP+Gcg+ in
both control and HFD mice as expected but without a difference in conversion between
control and HFD mice (Table 8).

Table 8: Analysis of cell conversion after transfection of human islets (CMV-Lox and RIP-
cre vectors).Transfection of human islets with CMV-Lox and RIP-cre vectors: quantification of
double staining GFP+Ins+ and GFP+Gcg+ cells in human islets grafted in control or HFD mice;
percent(%) was determined by total GFP+ or by total ins+ and gcg+ cells.

75.28 24.71 7.47 2.45
63.72 35.62 7.66 4.28
84.05 13.04 10.39 161

Tagqing human alpha cells by transfection with GLU-CRE and CMV-LOX vectors

Islets were also cultured one week after transfection for the validation of the method. In
this case, very few insulin positive cells were found to express GFP after one week in

culture confirming the specificity of Glu-cre vector.

Human islet grafts were also analyzed with insulin, glucagon, GFP and c-Myc
antibodies. GFP expression was observed in ins+ or gcg+ and also in ins-gcg- cells
(non alpha or beta). More GFP+ cells were found in grafts on HFD mice (~17,3% vs
13% and 16% in controls). Confocal microscope revealed co-localization of GFP-insulin

and GFP-glucagon staining proposing conversion of alpha cells to beta cells (Fig 27).
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Fig 27: Staining of c-myc and GFP after transfection only by CMV-Lox vector and Glu-cre
vectors.Transfection of human islets with CMV-Lox and Glu-cre vectors: staining with anti-
insulin (blue), glucagon (orange), c-Myc (red) and eGFP (green) in human grafts; co-localization
of GFP with insulin or glucagon was determined by confocal microscope; white arrows show

GFP+Ins+ cells

Quantification of double staining cells showed slightly more GFP+Gcg+ cells than
GFP+Ins+ in both control and HFD mice as expected but without a difference in the

percent of conversion between control and HFD mice (Table 9).

Table 9: Analysis of cell conversion after transfection of human islets (CMV-Lox and Glu-
cre vectors.Transfection of human islets with CMV-Lox and Glu-cre vectors: quantification of
double staining GFP+Ins+ and GFP+Gcg+ cells in human islets grafted in control or HFD mice;
percent(%) was determined by total GFP+ or by total ins+ and gcg+ cells
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5. Kinetic study of gene expression profiling in human islet grafts

during adaptation to obesity by high fat diet

The goal of this experiment was to follow the gene expression profiles during the
adaptation of human islet grafts after 6, 8, 10 weeks HFD in comparison to control fed
animals transplanted with the same human islet donor. For this study we purposely
transplanted human islets from a young donor. Following transplantation, animals were
sacrificed at 6, 8 and 10 weeks, and human grafts were snap frozen in isopentane in
preparation for subsequent laser capture microdissection which aimed to minimize the
contaminating murine tissue. After extraction, quantification, and quality controls, RNA
was shipped to Hopital Cochin (Inserm U1016) for Affymetrix chip analysis. Remaining
RNA and frozen sections will be subsequently used respectively to confirm chip data on

an RNA and protein level.

5.1 Confirmation of the adaptation of human islets to obesity induced by high fat diet

In this series of animals, mice were fed with control or high fat diet for 10 weeks. Figure
28 confirms the weight gain of mice fed with control of HFD over 10 weeks. HFD mice
significantly increased body weight after 2 weeks (p<0.001 vs. controls).
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Fig 28: Weight change and diet in mice. Weight gain (% of baseline) over 10 weeks in
animals grafted with human islets and fed with control or high fat diet (Gene expression profile
study).
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Compared to our other series, mice in this group had slightly higher blood glucose at 8-
10 weeks (0 wks: 7.6+0.32 control vs. 6.5+0.33 mmol/l HFD; 2 wks: 5.7£0.52 control vs.
7.84+£0.32 mmol/l HFD; 4 wks: 6.240.29 control vs. 7.5+0.25 mmol/l HFD; 6 wks:
7.14+0.53 control vs. 8.4+0.6 mmol/l HFD; 8 wks: 7.4+£0.31 control vs. 9.87+0.96 mmol/|
HFD; 10 wks: 8.19+0.98 control vs. 10.47+0.68 mmol/l HFD) (Fig 29A). However,
mixed model analysis showed that neither diet nor diet duration had significantly effect
on blood glucose levels (p>0.05). We were able to confirm also that fasting C-peptide
was significantly higher from 2 to 10 weeks (0 wks: 633.11£63.19 control vs.
760.77+£53.09 pmol/l HFD; 2 wks: 561+£134.8 control vs. 1101.91+44.72 pmol/l HFD; 4
wks: 560.82+64.50 control vs. 776.741£29.46 pmol/l HFD; 6 wks: 624.631133.4 control
vs. 1023.499+70.06 pmol/l HFD; 8 wks: 730.01+£84.1 control vs. 991.33+112.47 pmol/l
HFD; 10 wks: 520.25+94.46 control vs. 834.29+51.52 pmol/l HFD) (Fig 29B).
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Fig 29: Fasting blood glucose and human C-peptide for mice grafted with islets (Gene
expression profile study). A) Fasting blood glucose of mice transplanted with normal islets fed
with control and HFD and B) fasting c-peptide of human islets
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5.2 Laser capture microdissection procedure to recover human islet enriched grafts

The different structure of human islet graft compared to mouse kidney tissue allowed us
to separate the two tissues under a light microscope (Fig 30A). In collaboration with
Jonathan Vanhoutte (INSERM U 1011, professor B Staels) the human graft region was
outlined with a pen on the screen (Fig 30B) and laser microdissection system cut the
selected region using two lasers (Fig 30C). Finally, the selected microdissected region
adhered to the cap (Fig 30D) which was subsequently inserted onto microcentrifuge
tube with RNA extraction buffer. Samples were transferred to —80°C for storage and

subsequent RNA extraction.

Fig 30: Laser microdissection procedure. A) View in light microscopy of A) Cryosection of a
mouse kidney section with a human islet graft under the kidney capsule B) Selection of human
graft region with specific pen on the screen C) Two lasers cut the selected region and D) Piece
of human graft adhered to the cap
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5.3 RNA quality

RNA isolation was performed with Arcturus Pico Pure RNA isolation kit as described in
the manual. Integrity of RNA (RIN) was 6.5 to 7.5 and the concentration was between
2-15ng/ul for all samples. The same profile for RNA electrophoresis was taken for all
samples (Fig 31). Ribosomal RNA peaked at 28S/18S and the ratio indicated good
quality to perform microarrays analysis for all samples. If RNA quality or quantity were

insufficient, kidney sections were recut and microdissected.

T T T T T T T T T T
20 25 30 35 40 45 50 55 60 [s]

Overall Results for sample 1 : Sample 1

RNA Area: 8439 RNA Integrity Number (RIN) 7.1 (B.0207)
RNA Concentration 2,407 pgipl Result Flagging Color- 1
TRNA Ratio [28s / 18s]: 08 Result Flagging Label. RIN: 7.10

Fig 31: Representative electrophoregram of total RNA extracted from human grafts. The
ratio of 28S to 18S of ribosomal RNA indicates good quality of total RNA.

5.4 Gene expression profiling of human islets grafted in control and HFD mice/
preliminary analysis (Kinetic study)

Expression of ~24,000 genes was measured using the Affymetrix Human Gene 2.0 ST
array (Affymetrix, Santa Clara, California) at Cochin Institut (INSERM U1016, Paris).
The fold change of a given gene measured in two samples is calculated by dividing the
two measured intensities and is, therefore, referred to as a ratio. These raw ratios are

generally log-transformed (usually log2). This is expected to give a mean log-ratio of
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zero and improve the symmetry of the data distribution. This means that a two-fold up-
or down-regulation in gene expression is equivalent to log-ratios of +1 or -1

respectively.

Classification of the genes into groups based on their expression values was
performed. Firstly, general estimation for the 18 samples was given by unsupervised
clustering. In figure 32, unsupervised clustering is performed hierarchically with gene

clusters within clusters for all samples.
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Fig 32: Hierarchically Clustering of microarrays data from 18 human islet grafts in kinetic
study (6, 8 and 10 weeks on control or HFD diet)

Moreover, two unsupervised clustering was created based on the type of diet (Control
or HFD) and or duration of feeding (6, 8 and 10 weeks) (Fig 33A, B). Principal

Components Analysis (PCA) is a method that reduces data dimensionality by
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performing a covariance analysis between factors. In our analysis, PCA analysis gave

26.1% variance.

A B
PCA Mapping (26.1%) PCA Mapping (26.1%)

81 4 6‘0‘ o1 4 éﬂm
43 é‘" ﬁu 6 o
-13 4 H ‘61; 5 “‘m 6“1 é‘mu
-32 4 1305 “4!0
-51 4 da 4
ol ‘5140

i, gor . 73 57 4 25 10 H 2 ® 54 7 -:é 0 75 5 n = - T . T = 7,

‘ HFD 0 Control 0 6Wks 0 8Wks 0 10Wks

Fig 33: 3D Condition Scatter Plot and Principal Components Analysis (PCA) based on A)
type of diet and B) duration of diet

In addition, supervised analysis was used to determine changes of gene expression
between samples. In the first preliminary analysis, strict filters were used (fold>2).
Figure 34 shows the number of genes which changed at 6, 8 and 10 weeks between
islets grafted in control and HFD mice. Different genes were observed at 6 and 8 and
10 weeks.
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Fig 34: Cycles plot giving the number of genes in human grafts that changed their expression
at 6, 8 and 10 weeks on HFD compared to control.

Gene specific for pancreatic endocrine mass in human islet grafts

Analysis of the expression of genes which are specific for the human islets
showed higher expression of insulin (fold>6), glucagon (fold>4), somatostatin (fold>3)
and islet amyloid polypeptide gene (fold>5) at 6 weeks compared to control. Moreover,
there were no significant changes of genes expression at 8 and 10 weeks compared to
control except from insulin expression gene that remained higher over time compared
to control. However, longitudinal reduction of genes expression was observed over time
in the group of HFD mice (Fig 35A).

Gene expression of transcription factors involved in endocrine cell development
was also determined. Significantly higher expression of the transcription factors PDX1,
NKX6.1, PAX6 and Isl1l and no changes for PAX4 and ARX were observed at 6 weeks
in HFD grafts compared to control. At 8 weeks, significant higher level of ISL1
expression and significant lower level of ARX were observed in HFD mice compared to
control. Finally, at 12 weeks, lower level of PDX1 and NKX6.1 expression was
determined in HFD mice compared to control mice. Interestingly, significant longitudinal
reduction of the expression was revealed for PDX1, NKX6.1, PAX6 and ISL1 genes in
the group of HFD mice (Fig 35B).
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Fig 35: Relative expression of A) endocrine cell specific genes (INS, GCG, SST, IAPP)
and B) transcription factors (PDX1, NKX6.1, PAX4, ARX, PAX6 and ISL1) (***p<0.001,
**p<0.01, *p<0.05)

Cell cycle genes in human islet grafts

Very recently, Fiaschi-Taesch et al provided the immunocytochemical atlas of G1/S cell
cycle control molecules in the human beta cell. Expression of cell cycle genes in human
islet grafts was determined longitudinally according to this atlas. Firstly, no significant
changes of the expression of the three pocket proteins were observed. These proteins

play crucial roles in the cell cyclethrough interaction with members of
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the E2F transcription factors family (Fig 36A). In addition, expression of the most E2F
transcription factors did not change at 6 weeks on HFD (vs control). However, E2F4
was significantly downregulated at 6 weeks. At 8 weeks, only the regulators of S phase

of cell cycle, E2F7 and E2F8, were significantly upregulated (Fig 36B).
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Fig 36: Relative expression of A) protein pocket (pRb, pl07, p130) and B) E2F
transcription factors family (E2F1-8) (**p<0.01, *p<0.05)

Moreover, the expression of cyclins and cdks, which are necessary to drive human cell
proliferation, were determined. Here, only cdk4 was upregulated at 8 weeks in HFD

mice. Cdk4 is a Ser/Thr-kinase that phosphorylate and inhibit members of
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the retinoblastoma (RB) protein family including RB1 (pRb) (Fig 37A). Finally, the
expression of the cyclin-dependent kinase inhibitors: INK4 family members (p15, pl6,
pl8, pl19) and CIP/KIP members (p21, p27, p57) were observed (Fig 37B). Only p18
seemed to be induced but not significantly at 8 weeks. It is known that p18 interacts
strongly with CDK6, weakly with CDK4 inhibiting cell growth and proliferation with a
correlated dependence on endogenous retinoblastoma protein RB. In addition, p21,
p27, p57 were also upregulated at 8 weeks with significant difference only for p57. They
are strong inhibitor of several G1 cyclin/Cdk complexes and a negative regulator of cell
proliferation which may explain why most of the cyclin / Cdk complex is inhibited.
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Fig 37: Relative expression of A) cyclins and cdks (cdkl, cdk2, cdk4, cdk6, cyclin A3, D1,
D2, D3, E1) and B) INK4 and CIP/KIP family members (p15, p16, p18, p19 and p21, p27,
p57) (***p<0.001, *p<0.05)

123



ER stress genes in human islet grafts

Endoplasmic reticulum (ER) stress has been proposed as a mechanism for b-cell
dysfunction and death in type 2 diabetes. The expression of the adaptive ER stress
gene was determined in our model (BiP, p58, Erp72, Fkbpll, Grp94, XBP1). Bip,
Grp94 and XBP1l were upregulated at 6 weeks promoting the adaptation of human
islets in obesity. However, the expression of these genes decreased progressively at 8
and 10 weeks in HFD mice proposing failure of ER adaptation long term in obesity (Fig
38)
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Fig 38: Relative expression of adaptive ER stress genes: BiP, p58, Erp72, Fkbpl1l,
Grp94, XBP1 at 6, 8 and 10 weeks on HFD mice compared to control (***p<0.001,
**p<0.01, *p<0.05)
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6. Manuscript 2. Comment on: Saisho et al. B-Cell Mass and

Turnover in Humans: Effects of Obesity and Aging.

6.1 Preview of manuscript 2: comment letter

Recently, cross-sectional study of Saisho et al showed the effect of human
obesity on beta cell mass[193]. Autopsy samples (53 lean and 61 obese +overweight)
from non diabetic individuals were examined for pancreatic beta cell mass. They
observed 1) 50% more beta cell mass in obesity by the increase of beta cell number as
no difference in individual beta cell area was determined, 2) higher fat accumulation in
obese individuals, 3) positive correlation between beta cell mass and BMI (r=0.5), 4)
infrequent and unchanged replication levels in obese vs. lean group and 5) rare
apoptotic evident in beta cells (9 to 236.771 cells) without difference between the two
groups. Additionally, overweight subjects were also examined in obese group to

determine replication level earlier in obesity.

Authors admitted the necessity of longitudinal studies to investigate beta cell
adaptation in obesity. Cross-sectional studies, as underlined in this article, give little
information on the mechanism underlying how obesity leads to both increased (50%)
beta cell mass, mean beta cell nuclear diameter, and ductal cell expansion. Thus, there
is an urgent need for longitudinal studies, to characterize the mechanism(s) by which
obesity leads to alterations in islet mass and function in humans. The current lack of a
direct noninvasive access to the pancreatic gland precludes the direct study of this

phenomenon in man.

Our comment letter strived to call attention to our published immunodeficient—
obesity model with transplanted human islets, and its interest for future longitudinal

studies.
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6.2 Manuscript 2 : comment letter
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6.3 Unpublished data related to comment letter

Regarding exhaustively the study of Saisho et al, great variation of beta cell mass
among obese individuals was identified. Descriptive cross-sectional study in human
pancreas was performed in our laboratory. Morphometric analysis of pancreatic
sections stained by chromogranin A (Fig 39A), confirmed the 30% augmentation of
endocrine cell mass in obese individuals compared to lean and overweight without
achieving statistical significance due to samples variation (p=0.2; n=45) (Fig 39C).
Furthermore, no change in endocrine cell mass was observed between lean and
overweight subjects. On the other hand, significant differences were observed in beta
cell mass between the three groups, 20% and 25% increase in overweight and obese
individuals respectively compared to leans (p<0.01, n=18) [194]. Analysis of the nuclear
size showed a positive correlation of the nuclear size with BMI (r=0.72, n=8) as also
described in the article of Saisho et al [193] (Fig 39D).
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Fig 39: Study of the characteristics of human pancreas (n=40) A) Sections of human
pancreas provided by lean, overweight and obese donors, stained by chromogranin A B)

Sections of human pancreas stained by perilipin C) Morhometric analysis of pancreatic
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endocrine mass from lean, overweight and obese donors D) Correlation between nucleus size
of beta cell and BMI OF 8 individual (r=0.72, p=0.007) E) Correlation between intrapancreatic
fat (%) with BMI in non diabetic individuals. r=0.13, p=0.02

Staining with perilipin (Fig 39B), an adipocyte marker on paraffin sections of pancreas
revealed intrapancreatic fat accumulation in three groups. Analysis showed
progressively more fat surface in overweight and obese individuals compared to leans
(leans: 0.49+0.19%; overweight: 2.67£0.9%; obese: 3.98%1.19%). However, no
correlation between intrapancreatic fat and BMI was observed due to samples variation
as we observed in Fig 32 (r=0.13, p=0.02) (Fig 39E).

In our model, a doubling of beta cell mass was determined in grafts in mice
which gained 50% of their weight (12 weeks). We were interested in exploring if indeed
the diameter or area of each human beta cell increased in HDF vs controls (ie
hypertrophy). Further analysis of beta cell size determined as surface area was also
performed for the islet grafts in control and HFD mice. No difference in individual beta
cell size/area of the grafts was observed suggesting that the increase of total beta cell
mass can be attributed to increased numbers and not individual beta hypertrophy.
However, nucleus size measurements showed modest increases of beta cell size in
grafts on HFD mice vs. control (333.75+19.73 vs. 363+8.99 uym? HFD). Longitudinal
study of our model revealed higher levels of proliferation in grafts on HFD mice
proposing that this model may be used as tool for investigation of islet adaptation to

obesity.
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6.4 Response to Comment on: Saisho et al. B-Cell Mass and

Turnover in Humans: Effects of Obesity and Aging.

COMMENTS AND
RESPONSES

Response to
Comment on: Saisho
et al. p-Cell Mass
and Turnoverin
Humans: Effects of
Obesity and Aging.
Diabetes Care
2013;36:111-117

e thank Gargani et al. (1) for their

interest in our article reporting

[B-cell mass in age-matched obese
(n=61) and lean (n = 53) human pan-
creas samples. In that study, we reported
an ~350% greater B-cell mass (0.8 to 1.2
g) in obese humans compared with lean
humans (2). We acknowledged that our
study was cross-sectional and so we could
provide no time course for the difference
we reported. In the interesting report that
Gargani et al. direct us to, we note their
approach to the question of human islet
adaptation to dietary insulin resistance.
They implanted 400 human islet equiva-
lents under the renal capsule in immuno-
deficient mice and then performed a
cross-sectional study of the implants 12
weeks later after high fat (n = 6) versus a
regular diet (n = 7). Itis well known that
the first week after implantation of human
islets there is a substantial and variable
B-cell loss, presumed to be in part due
to anoxia after loss of islet vasculature
and formation of islet amyloid (3).

Since there was no reported measure
of B-cell apoptosis or necrosis in the re-
port by Gargani et al., it is not clear to
whar extent the changes in graft B-cell
volume 12 weeks later were due to dif-
ferences in B-cell loss. The insulin and

GLP-1 signaling pathways inhibit apopto-
sis, and levels of both would be predicted to
be increased in the high-fat diet—fed mice,
so it is perhaps plausible that engrafted
B-cell loss may have benefited from the
high-fat diet environment. Gargani et al
tound no difference in B-cell replication
at the 12-week evaluation by Ki67, al-
though they concluded after repeated
BRDU labeling early after transplantation
that there was an increase in B-cell replica-
tion by this measure. However, BRDU la-
beling also occurs during DNA repair that
might predictably be mcreased shortly fol-
lowing islet transplantation (4). It would be
of interest if the B-cell Ki67 was increased
at the same early time points, as this mea-
sure is less vulnerable to this problem

In general, it seems at present that it
might be premature to interpret the islet
adaptation in the studies of Gargani et al
purely in terms of new B-cell formation or
indeed the origins of such formation. If after
decades of obesity B-cell mass hasincreased
by ~0.5 fold, it would indeed be intriguing
if human islets adaptively increase by 5
times that n just 12 weeks in the devascu-
larized implant under the renal capsule.

Finally, we are less surprised than
Gargani et al. that we did not see an
increase in B-cell replication in human
obesity (5,6). Expansion of B-cell mass
occurs in the early posmatal phase by
B-cell replication, and then the capacity
for B-cell replication is silenced by epige-
netic repression of cell-cycle regulators.

We congrarulate Gargani et al. for
their interesting studies and pursuit of the
important but difficult question of B-cell
turmnover in human islets. We wish them
well in their ongoing research.
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My research in Lille initially focused on characterizing of the influence of obesity
on morphological and functional characteristics of human islets (Master’s 2 thesis 2009-
2010). The underlying question was: are obese human islets indeed the best islets for
cell therapy of diabetes? A retrospective study in 283 pancreatic organ donors at the
University Hospital in Lille showed that in obese donors compared to normal weight and
overweight donors, the total number of islets increased, the average islet size increased
and the mean intracellular insulin was higher. Histological analysis in 37 donor
pancreases confirmed: obese donors were characterized by increased in total
endocrine cells (a,3,0,pp cells), bigger individual islets size, and increased
intrapancreatic fat. Interestingly, we observed increased beta cells and decreased alpha
cells in islets of obese vs non obese pancreata. Thus morphologically human islets in

obese individuals are distinctly different from overweight and lean individuals.

That being said, obesity is an exclusion criterion for pancreas harvesting in the
context of pancreas transplantation, yet these pancreases are not only routinely used
for islet isolation and transplantation, they are preferred in certain isolation centers due
to the improved technical success of islet isolation from high BMI pancreases [172,
195]. The general object of my PI's research program is to devise in vivo models to
study the function and adaptation of human islets to their environment. My project
focused first on developing the model and characterizing the functional and
morphological adaptation of human islets to diet induced obesity in the immunodeficient
mouse. The adaptation of human islets to the obese murine environment was confirmed
by the significant increases in human c peptide in high fat diet mice compared with
control diet mice. In this PhD thesis, a functional adaptation of human endocrine cells to
the obese environment was determined and mechanisms of islets regeneration were
investigated. Human pancreatic islets of Langerhans provided by eight organ donors
(non diabetic and diabetic) were transplanted in Rag2 immunodeficient mice under
kidney capsule as previously described [184, 196, 197].

Mouse strains differ in the susceptibility to diet-induced obesity. Previous studies
in our lab explored HFD feeding of C57BI6 male nude mice C57BL/6 nude mice gained
less than 2gr of weight (<8% weight gain) after 8 weeks feeding with high fat diet [198].
Previous studies confirmed that RAG1ko and RAG2ko were sensitive to HFD or HFD
and high sugar diet [199]. In our study, C57BL/6 Rag2” mice were selected, as feeding
with HFD diet (60% calories from fat) for 12 weeks resulted in >60% weight gain. The
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same degree of short term weight gain cannot be observed in humans as no more than
4% weight gain was observed after one month high fat feeding [200]. Within the first
month on HFD, mice could develop several obesity associated traits [201]. High levels
of serum triglycerides and abdominal fat content in our HFD mice confirmed the obese
phenotype.

Analysis of endogenous pancreas showed progressive decrease of endocrine
cell area in control mice and progressive increase in HFD mice with significant
difference at 12 weeks (vs. control). However, when compared to HFD mice without
grafts [202, 203], lower percent of endocrine cell area was detected in our HFD grafted
mice. The latter proposes the effect of islets grafts on endogenous pancreas both in
HFD and control mice [204]. In addition, lower number of islets was observed in control
mice at 12 weeks. Further morphometric quantification showed progressive increase of
islet size in HFD mice compared to control (Fig 18). Moreover, when glycemia tested,
fasting blood glucose was found to be slightly increased after 6 weeks with significantly
higher levels at 10 and 12 weeks in mice on high fat diet. However, blood glucose
levels had never exceeded 10 mmol/l at 6, 8 and 10 weeks as routinely observed in
HFD C57BL/6 Rag2” mice without islet graft [201, 205, 206] or in male C57Bl6 WT
mice. Beta cell proliferation of endogenous pancreas was higher in HFD mice at 6 and
12 weeks probably due to glucose increase (Fig 19B). Even small increase on glucose

levels could provoke beta cell replication [32, 207].

In order to investigate human graft function, fasting human C-peptide secreted
by islet grafts was measured. Fasting human C-peptide was progressively increased in
HFD mice compared to control. Human C-peptide level seemed to be independent of
the type of diet in the first weeks, but it was affected by the duration of diet and the
weight gain of mice. Very recently, a study showed the effect of weight gain on C57BL/6
mice fed with HFD in insulin secretion as high-HFD responders (more weight gain) had
3 fold higher insulin secretion than low-HFD responders (less weight gain) [205]. On the
other hand, elevated human C-peptide levels in our obese model may be simply
explained by hyperglycemia. Previous studies showed that one day after glucose
infusion in mice insulin secretion of transplanted human islets was increased three
times [208]. Are these islets in HFD mice “super islets”? To determine this, the
homeostatic model assessment (HOMA) was used to quantify insulin resistance
(HOMA%IR) and beta-cell function (HOMA%B) of human grafts and HOMA2%BS,
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which takes into account beta cell function at a given insulin sensitivity or resistance.
HOMA B, IR and S are calculated based on fasting human insulin, c-peptide and
glycemia. A expected, upon weight gain a major incremental drop in insulin sensitivity
(HOMA2%S) was observed -up to 70% over time in HFD mice compared to control as
described in manuscript 1 (longitudinal analysis; Mixed model), was accompanied by an
significant increase in beta cell function determined by HOMA2%B, which was
improved in both control and HFD mice. However, the overall function (HOMA2%BS) of
human grafts on HFD mice progressively decreased as compared to controls at 12
weeks. Particularly, at 12 wks, HOMA%BS was 4-fold lower in HFD mice than in control
mice. This would on the contrary suggest that human islets on 12 weeks of HFD have
impaired function. Use of HOMA in this study is interesting and specific (human C-
peptide), but may be the subject of debate since fasting glycaemia in this model can be
regulated by both the human graft and the endogenous pancreas still in place, which
also adapts [155].

One question we asked ourselves is will our HFD induced obesity model be able
to reproduce the morphological alteration in beta and alpha cell composition that we
observed during my Masters degree in obese pancreatic vs lean sections (8% less
alpha cell in obese individuals vs leans expressed in total alpha+beta cells). That is say
if we implant human islets from a lean donor in control or HFD mice do we see an
alteration? The ratio of alpha/ alpha+beta volume of the graft was calculated in order to
compare the same value and it was observed that islets grafted in HFD mice had 6%
less alpha cell (18.08+1.49 in control vs 12.45+1.69% in HFD mice). Taking things one
step further if we implant islets from obese donors do we see alterations in the control

mice- is the process reversible? We do not have the answer for the latter.

Analysis of human endocrine cell volume in kinetic study revealed an association
of beta and alpha cell volume with weight gain of mice, blood glucose and human c-
peptide secretion. Same levels of blood glucose and c-peptide were measured in
control mice over time and in parallel, no important changes were observed in
endocrine and beta cell volume of control mice. A slight decrease of human c-peptide
secretion and a slight increase of alpha cell volume was observed in control grafts at 12
weeks (Fig 15B) which may be explained by intra islet regulation in human grafts [209,
210]. On the other hand, changes in beta and alpha cell volume were determined on

HFD mice over 12 weeks. During the normoglycemic period (4 weeks), beta cell volume
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was increased responding to insulin needs to overcome increasing insulin resistance of
peripheral tissue as mice had already gained 28% of weight [50, 194]. Interestingly,
alpha cell volume was decreased (4 weeks). Rahier et al showed that ratio alpha:beta
cell did not decrease with the increase in BMI in humans confirming our observation in
45 human pancreas (r=0.14, p=0.12) [211]. In mild hyperglycemia (6 weeks), beta cell
volume was slightly decreased and alpha cell volume was elevated (with no difference
compared to control mice). In the hyperglycemic period (>10weeks) beta cell volume
was increased and alpha cell volume seemed to be elevated only at 12 weeks (Fig 15
and 20) probably responding in hyperglycemia [17, 41, 212-214].

General discussion on proliferation (in our initial series of 3 control human islet
prepartions BrdU was added 1 day prior to sacrifice. In these series there was a
tendency for increased endocrine proliferation however we were unable to identify
human beta cells undergong proliferation. All subsequent studies used 7 day BrdU in
drinking water prior to sacifice.The kinetic study allowed us to examine proliferation of
human endocrine cells longitudinally in mice fed with control or HFD over the 12 week
period. During the normoglycemic period (4 weeks), higher beta cell proliferation was
observed in HFD grafts compared to control grafts provoked by insulin demand in
obesity (determined by BrdU into drinking water for 7 days before killing). Cross-
sectional studies in human pancreas of normoglycemic donors showed very low levels
of beta cell proliferation which was slightly increased in obese individuals [215]. No
change in alpha cell proliferation was determined in HFD grafts compared to control
which may partially be explained by the decrease of alpha cell volume at this time point.
Human beta cell proliferation peaked at 6 weeks whereas mild hyperglycemia occurred
without changes in alpha cell proliferation. Unexpectedly, at the end of this period when
blood glucose levels started to increase (8 weeks), a decrease of proliferation in both
beta and alpha cells was observed. Finally, beta and alpha cell proliferation reoccurred
when hyperglycemia was established (Fig 21D and F). A study with human islets
showed that high glucose infusion increased 2-fold beta cell replication in islets
transplanted in nude mice [208]. Particularly, increased alpha cell replication has been
attributed to high level of IL-6, a cytokine associated with insulin resistance in obesity
[41]. Rare delta cell replication was observed but interestingly all cells were found in
grafts on HFD mice (Fig 21H).

134



Staining by CK-19/chromogranin A and insulin or glucagon was performed to
reveal neogenesis in human grafts. Neogenesis was determined at 12 weeks in the
first 3 donors- yet levels were rather low. The kinetic study (HFD 11) showed that higher
levels of neogenesis were observed at 8 weeks as described in manuscript 1. This will
requires confirmation in subsequent experiments. At this time point hyperglycemia
started to increase and proliferation of endocrine cells was decreased. Further analysis
showed that 80% of CK19+/ChromoA+ cells were alpha cells confirming other studies

which proposed that alpha cell neogenesis comes first [216-218].

Tunel test was also performed in our model and no measurable apoptosis of
endocrine cell was observed in human grafts on control and HFD mice as expected.
Levitt et al showed that beta cell TUNEL reactivity was not measurably increased in
human grafts exposed to elevated blood glucose [208]. Additionally, high fat diet and
weight gain of mice did not change the percent of caspase 3 positive cells in

endogenous pancreas of mice in other study [29].

The lineage tracing study was performed to explain the alteration of alpha and
beta cell volume as no difference in apoptosis was detected in HFD grafts. Firstly,
conversion of beta cells to alpha cells was observed. Analysis of GFP+ cells before islet
transplantation confirmed the specificity of Rip-CRE vector as described in other study
using the same vectors (provided by Pr Philippe Ravassard, BCBC/UMR-7225) [192].
After labeling beta cells in islets with RIP-CRE and CMV-LOXP analysis of GFP+Ins+
and GFP+Gcg+ cells at 12 weeks post transplantation revealed that 24.71% and
35.62% of GFP positive cells (ie originally expressing the insulin promoter) were alpha
cells (gcg+) in control and HFD1 mouse respectively. However, mouse numbers were
small and for example only 13.04% conversion was found in HFD2 mouse. The result
was unclear for HFD2 mouse as individual observation showed very low human c-
peptide expression (~20pmol/l at 8 and 10 weeks on HFD). Very recently, transition of
mature beta cells into alpha cells was described in human islets grafted in NOD/SCID
mice for 2 weeks [219]. Changes in endocrine hormone expression of this recent study
were explained by ~10% of beta cell conversion and not due to apoptosis or
proliferation. On the other hand, conversion of alpha to beta cell was tested using a
Glu-CRE vector for the islets provided from the same donor. Quantification analysis
showed that 41.53% GFP positive cells in controll and 42.42% in HFD mouse were
beta cells. Furthermore, 43.14% conversion was found in control 2. Observation of this

135



mice revealed abnormally high c-peptide secretion associated with 15% of weight gain.
Two models were used in previous studies to describe the capacity of alpha cell
conversion to beta cell; transgenic expression of diphtheria toxin mouse mice [64] and
PDL plus alloxan-induced beta cell model [19]. A more thorough study in transition of
human alpha cells to beta cells should be performed.

Kinetic microarrays study was performed to reveal the gene expression profiling
of human islets longitudinally in obese environment. In preliminary analysis, the
expression of endocrine specific gene (insulin, glucagon, somatostatin, amylin) as well
as the expression of specific transcription factors confirmed functional adaptation early
in obesity at 6 weeks. However, the expression of cell cycle genes did not give strong
evidence for whole islet proliferation. This may be explained by different proliferation
levels each time individually for beta, alpha, delta and PP cells. Furthermore, the
specific localization of these cell cycle proteins has a major role in proliferation as
described [220]. Presence of these molecules in nuclear compartment drives human
pancreatic cells to proliferation. Nuclear or cytoplasmic localization of cell cycle
molecules should be determined in our model. Finally, the expression of ER stress
genes was observed in our model. ER stress activates a signaling cascade known as
the unfolded protein response (UPR), which has roles alleviating the ER stress through
the upregulation of ER chaperones and folding enzymes and, paradoxically activating
apoptosis via deleterious UPR signaling if the stress is too severe or prolonged. Very
recently, study in ob/ob and db/db mice showed that early in obesity ER genes were
upregulated in both models but only in db/db mice their expression decreased
progressively proposing failure of islets adaptation [221]. The same profile was detected
in our model confirming the dysfunction of human islets long term in obesity. Further

studies should be performed to confirm these results.

To validate our model, dysfunctional islets from two diabetic donors were
transplanted in mice fed with control and HFD (DD1 was treated for 10 years for time 2
diabetes). No functional adaptation associated with c-peptide secretion and HOMA2
assessment was observed in these grafts (data described in manuscript 1). Fasting
human c-peptide was lower in DD2 over time (12 weeks) compared to the normal
donors. It should be noticed that that islets of DD1 secreted much lower c-peptide levels
compared to DD2. Additionally, blood glucose levels were increased over time in these

mice (onset from 2 weeks). It was also observed that mice grafted with islets of DD1
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had higher levels of blood glucose (>10mmol/l) providing more evidence for the bad
function and maladaptation of these islets in obesity. Finally, no histological adaptation
was observed for these grafts (ESM Fig 3 in manuscript 1). Deficit of beta cell mass has
already described in T2D patients and it is known that aging correlates with decreased
proliferation capacity and dysfunctional beta cell mass in T2D patients [26, 50, 60, 222].
Double staining BrdU/ Chromogranin A didn’t reveal proliferation of endocrine cells as
expected [50, 215].

Model description and potential mechanisms of human islets adaptation in obese

environment are shown in Fig 40.
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Perspectives
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An immunodeficient obese model was created to study the human islet
adaptation to obesity. Longitudinal adaptation of human islets to the obese murine
environment was confirmed by the significant increases in human c peptide in high fat
diet mouse, and concomitantly morphometric analysis also revealed human endocrine
cell expansion. Changes in endocrine cell contribution during 12 weeks on HFD were
determined and mechanisms of regeneration were investigated. This novel model
allows further investigation of molecular pathways involved in human beta cell
expansion, as well as identification of factors predisposing human beta cells to undergo

decompensation.

Progress would include imaging of the islets (and determination of graft volume
in vivo) without sacrifice. This will require transplanting islets elsewhere besides the
kidney capsule, as the kidney shows great background in diverse imaging techniques
due to its role in eliminating tracers from the body. Our group [166, 223] as well as more
recent work with human fetal pancreatic tissue [224] suggest the muscle may be the
ideal spot (speed and accessibility) for transplantation and potential imaging for graft

volume assessment.

The secretory activity of human islets in obesity is regulated by several
circulating factors. Very recently, a new hormone expressed in mouse liver, betatrophin,
was found to regulate the proliferation of mouse beta cells promising a novel therapy for
type 2 diabetes [225]. However, the mechanisms by which betatrophin activates human
beta cell proliferation remains unknown and this novel model may be used to respond
to this question. Studies are underway in our laboratory to determine if betatrophin is
increased in HFD and in addition if administration of an insulin receptor antagonist like
S961 which leads to insulin resistance and islet compensation in mice, can lead to the
adaptation of human Islets transplanted in immunodeficient mice. This model would be
advantageous over the diet induced obesity model as it would require 7-14 days vs 3

months in the HFD model developed herein.

The mechanisms responsible for the inability of diabetic islets to adapt in obesity
should be identified. We hope that in collaboration with P Froguel’s group that this
model may contribute to stratifying the multiple polymorphisms in polygenic forms of
diabetes. In this context, the 2 labs received funding to develop a project DiaStem :

Diabetic modeling in vitro using induced Pluripotent Stem Cell technology.
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It is known that human beta cells do not proliferate in vitro and this
immunodeficient mouse model developed in this project will be exploited for further
experiences in islet proliferation. Knowledge of cell cycle regulation of beta cell in vitro
is abundant but the mechanisms of human beta cell proliferation and adaptation to
physiological conditions are still unknown. Menin has been reported as a regulator of
beta cell proliferation and islet adaptation in pregnancy and obesity but the pathways in

which menin provokes the expansion of endocrine cells remain unknown [27, 226].

Not long ago the transdifferenciation of mature endocrine cells was identified as
potential mechanism of regeneration. Pax4 and Arx have been reported as the key
transcription factors for beta and alpha cell conversion. It remains unclear when, why
and how deletion of these factors provokes human endocrine cell conversion in
physiological conditions. Kinetic study using our model should be firstly performed to
determine longitudinally the rates of human endocrine cell conversion associated with
mouse weight gain, duration of high fat diet and hyperglycemia and, secondly the
molecular mechanisms implicated in islet transdifferentiation could be revealed.

The lineage tracing results performed in this study, are only preliminary and
require confirmation. Recent evidence shows a differential and less alpha/beta specific
expression of Pax 4 and Maf A and Maf B in human beta and alpha cells as compared
to mouse beta cells and alpha cells. Expression of Pax4 and MafA was found in 50% of
human alpha cells [227]. Further Lineage tracing experiments may prove to show that a
degree of transdifferentiation in human pancreatic islet cells may occur in physiological

processes like obesity.
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Annex 1
Viability of islet cells

e Centrifuge 200 islets for 2 min and remove the medium

e Add cocktail of Dithizon (300pl), Trypan blue (300pl) and PBS (300ul) and mix gently

e Centrifuge for 2 min and remove ~850ul of the supernatant

e Add 1mlPBS

e Remove maximum of supernatant

e Add 300-400ul PBS

e Measure the islets of three droplets

e |slets are determined with red color (dithizon) and dead cell into islets with dark blue
color (trypan blue)

e |slets classified in group with10%; 30%; 50%; 75%, 90% and 100% live cell and total

viability is measured taking into account the number of islets in each group
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Annex 2

Steps of procedure of human c-peptide measurement

Steps  Contents Incubation

1 25ul Serum of mice

2 50ul Assay Buffer 1lhour at room temperature
3 350ul Wash Buffer (6times)

4 100pl Enzyme 1lhour at room temperature
5 350ul Wash Buffer (6times)

6 200p! Substrate TMB 30 min at room temperature
7 50ul Stop Solution

8 Read optical density at 450nm

The concentration of c-peptide is obtained from the calibration curve. In each plate, the

optical density at 450nm and the known concentration of calibrators (pmol/l) create a curve

in which the concentration of unknown samples may be calculated according to their optical

density.
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Annex 3

a) Automatic inclusion in paraffin

e Immersion in 70% EtOH-> 1h

e Immersion in 95% EtOH-> 1h30
e Immersion in 95% EtOH-> 1h30
e Immersion in 100% EtOH-> 1h30
e Immersion in 100% EtOH-> 2h

e Immersion in 100% EtOH-> 2h

e Immersion in toluene > 2h

e Immersion in toluene > 2h

e Immersion in paraffin > 2h30

e Immersion in paraffin > 2h30

b) Inclusion in gelatin

e |Immersion of tissue in 15% sucrose overnight at 4°C
¢ Inclusion in 7% gelatin/15% sucrose

e Gelatin block freezing into isopentane cooled by dry ice

¢) Inclusion in thrombin/ fibrinogen

e Centrifugation of islets or cells
e Discard the supernatant

e Add V1 of thrombin

e Add V2=V1 fibrinogen

e Fixation overnight in 4% PFA
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Annex 4

Immunohistochemistry -fluoresce protocol for paraffin section

1)

2)

3)
4)
5)
6)

7)
8)

Deparaffinizing and rehydrating the section

e Xylene 1 for 5 min

e Xylene 2 for 10 min

e 100% EtOH for 5 min

e 90% EtOH for 5 min

e 70% EtOH for 5 min

e 50% EtOH for 5 min

e Distilled water for 5 min

e PBSfor5min

Antigen retrieval is depended by primary antibody

e Heat-induced by microwave (9 min; 650W): Sodium citrate 10 mM or unmasking
solution (Vector H 3300), pH 6.0

e Heat-induced by microwave (9 min; 650W): Tris/EDTA pH 9.0

e Enzymatic: Protease K

Leave slides to cool down for 30 min in the same solution

PBS washing 3 x 5 min

Blocking with Protein block (Dako) for 15-60 min

Incubation with primary antibody diluted for 3hours (room temperature) or overnight

at 4°C (dilution with PBS or antibody diluant-DAKO)

PBS washing 3 x 5 min

Incubation with secondary antibody diluted

a) Immunofluorescence: for 45min (PBS or antibody diluant-DAKO)

e For double staining: PBS washing 3 x 5 min; incubation with 2" primary
antibody for 2-3 hours; PBS washing 3 x 5 min; incubation with 2™
secondary antibody for 45min

b) Visible in light microscopy: Peroxide/DAB reaction

e Endogenous peroxidases quenching: slides in H202 bath diluted in H20
for 30min (3%) or enzyme block solution (DAKO)

e Biotinylated secondary antibody for 45min

e DAB for 10-20 min
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9) PBS washing 3 x 5 min
10)Nuclear staining Vectashield Mounting Medium with DAPI (immunofluorescence) or
Hematoxyline (Peroxide/DAB reaction)

Immunofluoresce protocol for cryo-sections

1) PBS washing for 10 min at 40°C

2) PBS washing for 5 min at room temperature

3) PBTriton 0.2% washing for 10 min

4) Protein blocking with PBT0.2%+10% goat serum for 1 hour

5) Incubation with all the primary antibodies in PBT0.2%+2% goat serum overnight at
4°C

6) PBT0.2% washing 3 x 5 min

7) Incubation with all the secondary antibodies in PBT0.2%+2% goat serum for 1hour

8) PBT0.2% washing 3 x 5 min

9) Mounting slides with Vectashield mounting medium
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